
XLogo: Reference Manual

Loïc Le Coq

Translators: Guy Walker

July 8, 2009

http://xlogo.tuxfamily.org

2

Chapter 1

Introduction

Logo is a programming language developed in the 1960's by Seymour Papert. Papert was the developer
of an original and highly in�uential theory on learning called �constructionism� which could be summarised
with the expression: �learning by doing�.

Logo is a really good language to develop mathematical and logic skills. It is an excellent language to
begin learning with, as it teaches the basics of things like loops, tests, procedures, etc. The user moves an
object called a "turtle" around the screen using commands as simple as forward, back, right, and so on. As it
moves, the turtle leaves a trail behind it, and so it is therefore possible to create drawings. The fact that the
user can give the turtle orders in a very natural language makes Logo very easy to learn. More advanced
usage is possible too with operations on lists, words or �les.

XLogo is a Logo interpreter, it means that the user's instructions are executed directly. The user can
see their errors on screen immedately. This very intuitive graphical approach makes Logo an ideal language
for beginners, especially children!

The main adress for the XLogowebsite is

http://xlogo.tuxfamily.org/

Here you can download both the documentation and the software. You can also �nd many examples created
with XLogo and you will be able to judge XLogo's capacity.

XLogo now supports ten languages (arabic, asturian, english, esperanto, french, galician, greek, german,
portuguese and spanish) and is written in Java - a programming language with the bene�t of being cross-
platform. Therefore XLogo will run on Linux, Windows or MacOS machines without problems.

XLogo is licensed under the GPL: Hence, it is free software and users have four freedoms:

• Freedom 1: The freedom to run the program for any purpose.

• Freedom 2: The freedom to study and modify the program.

• Freedom 3: The freedom to copy the program so you can help your neighbour.

• Freedom 4: The freedom to improve the program, and release your improvements to the public, so that
the whole community bene�ts.

Manual structure:

This manual will help you to discover XLogo.

• In the �rst part, di�erent menus and interface options are explained.

3

4 CHAPTER 1. INTRODUCTION

• Then, some chapters presenting the most important instructions to begin using XLogo. The �rst
are very easy and then, complexity grows. Sometimes, at the end of a chapter, some exercices are
presented. Their solutions can be found in appendix D.

• Then, a sequence of di�erent themes is o�ered for advanced users.

• In appendix A, you'll �nd a complete description of all XLogo's primitives.

This manual exists under several formats:

• PDF: http://downloads.tuxfamily.org/xlogo/downloads-en/manual-en.pdf

• Zipped HTML: http://downloads.tuxfamily.org/xlogo/downloads-en/manual-html-en.zip

• LATEX2ε: Manual Source: http://downloads.tuxfamily.org/xlogo/downloads-fr/manual-src-en.zip

• JavaHelp: Menu Help-Online Manual in XLogo

Contents

1 Introduction 3

2 Install XLogo 9

2.1 XLogo Con�guration . 9

2.1.1 Linux Environment . 9

2.1.2 Windows Environment . 10

2.2 XLogo Updates . 11

2.3 Uninstall . 12

3 Interface features: 13

3.1 First run . 13

3.2 The main window . 13

3.3 The procedure editor . 14

3.4 Quit XLogo . 15

4 Menu options: 17

4.1 �File� Menu . 17

4.2 �Edit� Menu . 18

4.3 �Tools� Menu . 18

4.4 �Help� Menu . 22

5 Conventions adopted by XLogo 25

5.1 Commands and their interpretation . 25

5.2 Procedures . 26

5.3 Speci�c character \ . 26

5.4 Case-sensitivity . 27

5.5 Operators and syntax . 27

6 Basic primitives 29

6.1 New primitives . 29

6.2 Drawing a regular polygon . 29

6.2.1 Square . 30

6.2.2 Equilatéral triangle . 30

6.2.3 Hexagon . 31

6.2.4 Drawing a regual polygon in general . 31

6.3 Saving a procedure . 31

6.4 Exercice ... 32

7 Using coordinates 33

7.1 Presentation . 33

7.2 Exercice: . 34

5

6 CONTENTS

8 Variables 35
8.1 Examples . 35
8.2 Drawing a rectangle with chosen dimension . 36
8.3 Drawing at di�erent scales . 36
8.4 Exercice: . 37

9 Recursion 39
9.1 With drawing area. 39

9.1.1 First example: . 39
9.1.2 Second example: . 39

9.2 With the text zone . 40
9.2.1 First example: . 40
9.2.2 Breakout test . 40

9.3 A fractal example: Van Koch snow�ake . 40
9.4 Recursion with words . 42
9.5 Calculate a factorial . 42
9.6 π Approximation . 43

10 Create an animation 45
10.1 Calculator's numbers . 45

10.1.1 Filling a rectangular . 46
10.1.2 The program . 46
10.1.3 Creating an animation . 47

10.2 Second animation: The growing man . 48

11 Interact with the user 51
11.1 Question-answer . 51
11.2 Programming a little game. 52

12 Topic: Two dice sum 53
12.1 Simulating rolling one die. 53
12.2 The program . 53

13 Topic: Probabilistic approximation of π 57
13.1 GCD (Greatest Common Divisor) . 57
13.2 Euclidean algorithm . 57
13.3 Calculate a GCD in Logo programming . 58
13.4 Calculating π-approximation . 58
13.5 More complex: π generating π..... 60

14 Topic: Menger's sponge 63
14.1 Using recursion . 64
14.2 Second approach: Drawing a Menger sponge, order 4 . 66

14.2.1 Sierpinski carpet . 66
14.2.2 Drawing a Sierpinski carpet of order p . 66
14.2.3 All Di�erent possible schemas for columns . 68
14.2.4 The program . 69
14.2.5 Menger's sponge order 4 . 71

15 Topic: Lindenmayer system 79
15.1 Formal de�nition . 79
15.2 Turtle interpretation . 80

15.2.1 Usual Symbols . 80
15.2.2 Van Snow�ake . 81
15.2.3 Quadratic Van Koch curve . 82

CONTENTS 7

15.2.4 Dragon curve . 83

15.2.5 Hilbert 3D curve . 83

A List of primitives 87

A.1 Movement of the turtle; pen and color settings . 87

A.1.1 A word on colors . 93

A.1.2 Animation Mode . 94

A.1.3 Writing in the text area with the primitive print or write 95

A.2 Turtle and 3D . 96

A.2.1 The perspective projection . 96

A.2.2 Understanding orientation in a 3D World . 96

A.2.3 Primitives available in 2D mode and 3D mode . 98

A.2.4 3D Viewer . 99

A.2.5 Drawing a cube . 99

A.2.6 Lighting the scene . 101

A.2.7 Fog e�ect . 101

A.3 Arithmetical and logical operations . 102

A.4 Operations on lists . 105

A.5 Booleans . 107

A.6 Testing an expression with the primitive if . 108

A.7 The workspace . 109

A.7.1 Procedures . 109

A.7.2 Concept of variables . 111

A.7.3 Property Lists . 113

A.8 Advanced �ll function: . 116

A.8.1 fill and fillzone . 116

A.8.2 Primitive fillpolygon . 118

A.9 Break commands . 119

A.10 Multiturtle Mode . 119

A.11 Play music . 120

A.11.1 Playing music using MIDI synthetizer . 120

A.11.2 Playing MP3 . 121

A.12 Loops: . 121

A.12.1 A loop with repeat . 121

A.12.2 A loop with for . 122

A.12.3 A loop with while . 122

A.12.4 A loop with foreach . 122

A.12.5 A loop with forever . 123

A.12.6 A loop with repetewhile . 123

A.12.7 A loop with repeatuntil . 123

A.13 Receiving input from the user . 124

A.13.1 Interact with the keyboard . 124

A.13.2 Some examples of usage: . 124

A.13.3 Interact with the mouse . 125

A.13.4 Some examples of usage: . 125

A.13.5 Graphical components . 127

A.14 Time and date . 128

A.15 Using a network with XLogo . 129

A.15.1 The network How to . 129

A.15.2 Primitives for networking . 129

B Launching XLogo with command line 131

8 CONTENTS

C Executing Xlogo from the WEB 133
C.1 The problem . 133
C.2 How to create the jnlp �le . 133

D Solutions 135
D.1 Chapitre 5 . 135
D.2 Chapter 6 . 135
D.3 Chapter 7 . 136

D.3.1 the robot . 136
D.3.2 The frog . 137

D.4 Chapter 9: . 137

E FAQ - Tricks Things to know 139
E.1 Though I erase a procedure from the editor, it keeps on popping back! 139
E.2 I'm using the version in Esperanto but I can't write with the special characters! 139
E.3 In the Sound tab from the Preferences dialogue box, no instrument can be found. 139
E.4 How to quickly retype a command used previously? . 139
E.5 How can you help? . 140

Chapter 2

Install XLogo

• First of all, you will have to install the Java Runtime Environment on your computer. Go to this page:

http://java.sun.com/javase/downloads/index.jsp

Download the JRE (Java Runtime Environment) which corresponds to your operating system (Win-
dows, Linux ...), and install it.

• You have to download the �le xlogo.jar at the address:

http://xlogo.tuxfamily.org/common/xlogo.jar

Otherwise, you can go on the XLogo website, at the address http://xlogo.tuxfamily.org, choose
english language and then click on the downloads menu.

2.1 XLogo Con�guration

2.1.1 Linux Environment

Under Ubuntu 8.04:

1. To install JAVA:

• System -> Administration -> Synaptic Package Manager

• Install the package sun-java6-jre

2. To open the �le xlogo.jar double-clicking:

• Right click on xlogo.jar, Properties

• Tab �Open With�: Choose Sun Java 6 Runtime

3. To associate extensions lgo to XLogo:

• Right click on xlogo.jar, Properties

• Tab �Open With�

• Button �Add�

• Field �Use a custom command�, write:

java -jar path_to_xlogo.jar

Note: XLogo is included in distribution OpenSuse.

9

10 CHAPTER 2. INSTALL XLOGO

2.1.2 Windows Environment

In theory, if you double-click on the XLogo icon, the program should launch. If this is the case, go on to
the next section. If not, and another application is launched instead (something like winzip, perhaps), this
is because .jar �les are in fact .zip �les, and these are themselves executable (ie a program can be launched
by clicking on them). If your computer opens a program like winzip, it is because from its point of view
�les with a .jar extension can only be opened with that program. You therefore have to deactivate the
association of that program with .jar �les. To do that, follow these steps for Windows XP (some paths may
di�er depending on the �avour of Windows you are running, and you will have to adjust them):

1. Start -> Control Panel -> Switch to Classic View -> Folder options

2. Click on the tab File Types (the third tab)

3. Find in the list of registered �le types those connected with jar �les (jar �les, executable jar �les, jar
archive, etc)

4. Click the �le type, and then click Advanced...

5. A new window will appear: click on Open, and then Edit...

6. Click on Browse... and navigate to javaw.exe; this is usually

c:\Program Files\java\j2re1.4.1\bin\javaw.exe

7. The path �c:\Program Files\java\j2re1.4.1\bin\javaw.exe� will then appear in the �eld Application

used to perform action:. You need to make an addition to the end of this, so that it reads:

"c:\Program Files\java\j2re1.4.1\bin\javaw.exe" -jar "%1" %*

(note that there is a space on either side of -jar).

8. Finally, close all the dialogue windows. Now all you should have to do is to double-click on the �le
icon to launch XLogo!

If that still doesn't work, there is a second possibility. Open an MSDOS box (on XP: Start -> All
Programs -> Accessories -> Command Prompt), and then type in the following command:

java -jar \path\to\XLogo

For example : java -jar c:\windows\office\xlogo.jar

(if xlogo.jar is located in this folder).

If you �nd it annoying to have to keep typing this command, type it into a text �le and save it as (say)
xlogo.bat. You can then just double-click on xlogo.bat to launch XLogo.

Associating �les with the extension .lgo with XLogo

Files with the extension .lgo will not usually be recognised by your computer, and when you double-click
on them, a dialogue box will appear asking you which application should be used to open �les with the .lgo
extension. Select other and then give the path to javaw.exe

Usually, this will be: C:\Program Files\java\j2re1.4.1\bin\javaw.exe

You will have to input a name to designate �les with an .lgo extension.
For example: Logo Files

To set this up as a default on Windows XP, follow the steps below:

2.2. XLOGO UPDATES 11

1. Start -> Control Panel -> Switch to Classic View -> Folder options

2. Click on the tab File Types (the third tab)

3. Find in the list of registered �le types those connected with jar �les (jar �les, executable jar �les, jar
archive, etc)

4. Click the �le type, and then click New

5. Type the extension .lgo into the File Extension box, and click OK

6. Click on the newly-added LGO entry in the list of Registered �le types, and then click Advanced...

7. A new window will appear: click on New...

8. Under Action, enter "open", and then click on Browse... to navigate to javaw.exe; this is usually

c:\Program Files\java\j2re1.4.1\bin\javaw.exe

9. Click on Open to add the path to the Actions box of the Edit File Type dialogue.

10. Click on open, and then Edit...

11. The path �c:\Program Files\java\j2re1.4.1\bin\javaw.exe� will be in the �eld Application used to per-

form action:. You need to make an addition to the end of this, so that it reads:

"c:\Program Files\java\j2re1.4.1\bin\javaw.exe" -jar xlogo.jar "%1" %*

12. Finally, close all the dialogue windows. Now all you should have to do is to double-click on the �le
icon to launch XLogo!

2.2 XLogo Updates

http://xlogo.tuxfamily.org/rss.xml

To update XLogo, you just have to replace the �le xlogo.jar with its new version. If you want to receive
an alert whenever a new version is published, you can subscribe to XLogo's RSS feed. Its address is

http://xlogo.tuxfamily.org/rss.xml

Several softwares can manage RSS feeds, if you're not familiar with this technique, the easiest way is to use
Mozilla Thunderbird:

• Menu Edit - Account Settings...

• Button �Add Account�

• �RSS News & Blogs�, Next

• Account Name: �RSS Feeds� for example

• Buttons �Next� and �Finish�

• In the main window �Account Settings�, Select �RSS Feeds� on the left menu and click on button
�Manage Subscriptions�.

• Button �Add�

� Feed URL: http://xlogo.tuxfamily.org/rss.xml

� Check item �Show the article summary instead of loading the web page�

It's done, with the button �Get Mail�, you can receive XLogo News in the same way you receive mails.

12 CHAPTER 2. INSTALL XLOGO

2.3 Uninstall

To uninstallXLogo, all that needs to be done is to delete the �le xlogo.jar and the con�guration �le .xlogo,
which is located in your home directory (/home/votre_login for Linux users, or c:\windows\.xlogo for
Windows users).

Chapter 3

Interface features:

3.1 First run

The �rst time you launch XLogo (or if you have deleted the �le .xlogo - Read Section 2.3), a dialog box
will ask you for your language.

Then, you could modify the language with the Preferences Dialog Box (Read Section 4.3).

3.2 The main window

• Along the top, there are the usual menus File Edit Options and Help

• Just below this is the command line, which allows the logo instructions to be applied.

• In the middle of the screen is the drawing area.

• On the right of the drawing area, a tool bar allows the user to do several actions:

� Zoom in/out.

13

14 CHAPTER 3. INTERFACE FEATURES:

� Edit (cut/copy/paste)

� The �play� button launches the main command de�ned in the editor.

• At the bottom is the command history, which shows every command entered, and the associated
response. To quickly recall a command which has already been entered, there are two options: you can
either click on the old command in the history, or you can click several times on the upper scroll-arrow
until the desired command appears. The upper and lower scroll-arrows in fact allow you to navigate
through all the commands that you have already entered (very practical).

• To the right of the history are two buttons: STOP and EDITOR.

� Button STOP interrupts the execution of the program.

� Button EDITOR allows the procedure editor to be opened.

3.3 The procedure editor

There are three ways to open the editor:

• Enter ed on the command line at the top of the screen. The editor will then open to show all the
procedures already de�ned. If you only want to edit speci�c procedures, enter:
ed [procedure_1 procedure_2 . . .]

• Press the Editor button on the main screen.

• Use the keyboard shortcut Alt+E.

These are the di�erent buttons that you will �nd in the editor:

Save the changes made in the editor and then close it. It is this but-
ton that you have to press each time you want to apply newly entered
operations. If you prefer, you can use the keyboard shortcut ALT+Q.

Close the editor without saving any of the changes made there. You can
also use the shortcut ALT+C.

Print the contents of the editor.

Copy the selected text to the clipboard.

Cut the selected text to the clipboard.

Paste the selected text from the clipboard.

3.4. QUIT XLOGO 15

Open a Replace/Find Dialog Box for the procedure Editor.

At the bottom of the editor, a text �eld allows the user to de�ne a main command. This command is
the general instruction that launches the program. It can be accessed with the �play� button from the main
window's tool bar. This command is saved and then restored when the editor and all its content are recorded
in a Logo format �le (.lgo)

IMPORTANT:

• Note that clicking on the close button (x) in the window titlebar will have no e�ect! Only the two
main buttons will allow you to quit the editor.

• To delete one or more unwanted procedures, use the primitives er and erall, or use in the menu bar,
Tools→ Procedure Eraser.

3.4 Quit XLogo

To quit XLogo, you can choose in the menu bar, File - Quit or click on the close button in the window
titlebar. A dialog box wil ask you if you really want to quit.

16 CHAPTER 3. INTERFACE FEATURES:

Chapter 4

Menu options:

4.1 �File� Menu

• File→New: delete all procedures and variables. You create a new workspace.

• File→Open: open a previously saved logo �le.

• File→Save as... save the current procedures under a di�erent name.

• File→Save: save the procedures in the current �le.

• File→Capture image→Save image as... : allow the image to be saved in jpg or png format. If you
wish to select only a part of the image, you can de�ne a bounding box by dragging the mouse on the
drawing area.

17

18 CHAPTER 4. MENU OPTIONS:

• File→Capture image→Print image: allows the image to be printed. In the same way as above,
you can select an area to print.

• File→Capture image→Copy image into the clipboard: put the image into the system clipboard.
Just as for printing and recording, you can select an area of the image. This functionality works very
well under the Windows environments. On the other hand, it does not work under Linux (the clipboard
has a di�erent behaviour).

• File→Text→Save As... (RTF) : save the command history in RTF format (color and text format
are preserved).

• File→Quit: quit the XLogo application.

4.2 �Edit� Menu

• Edit→Copy: copy the selected text to the clipboard.

• Edit→Cut: cut the selected text to the clipboard.

• Edit→Paste: paste the text contained in the clipboard into the command line.

• Edit→Select All: select all the text in the command line.

4.3 �Tools� Menu

• Tools→Pen Color: allows the colour with which the turtle will draw to be chosen from a palette of
colours. Also accessible via the command setpc.

• Tools→Screen Color: set the color of the screen background. Accessible via the primitive setscreencolor.

• Tools→Start Up File: allows the path to �start-up� �les to be de�ned. Any procedures contained
in these *.lgo format �les will then become �pseudo-primitives� in the XLogo language. They cannot
be edited or changed by the user. You can thus de�ne personalised primitives.

4.3. �TOOLS� MENU 19

• Tools→Code Translator: allows code translation from one language to another. In fact, very useful
when you want to use an XLogo example written in another language.

• Tools→Procedure Eraser: with this dialog box, you can delete some procedures. You can also
modify the order of appearance of the procedures in the editor.

• Tools→Preferences: opens a dialog box in which you can con�gure several things:

� General Tab:

→ Language : allows language to be chosen. Note that the primitives di�er in each language.

→ Look: allows the �look� or skin of XLogo to be de�ned. Metal, Native Java and Motif styles
are available.

→ Drawing speed: if you prefer to see all the turtle's movements, you can slow it down by
using the slider bar on the �rst tab.

.

20 CHAPTER 4. MENU OPTIONS:

� Turtle Tab: On the second tab, you can choose your preferred turtle.

� Options Tab: On the third tab, many options:

→ Background grid: You can choose to draw a grid on the background drawing screen. You
can de�ne the width and the height of a square of the grid and the grid color.

→ Background axis: You can choose to draw horizontal axis or vertical axis on the background
drawing screen. You can de�ne the distance between two divisions and the axis color.

→ Default screen color: You can de�ne a default screen color.

→ Default pen color: You can de�ne a default pen color.

→ Border motif : You can choose your own motif for the drawing area's border (an image or
a uniform color).

4.3. �TOOLS� MENU 21

→ Maximum pen width: You can choose the maximum pen width allowed. If you don't want
to use this option, put -1.

→ Pen shape: You can choose the shape of the pen, round or square.

→ Drawing quality: Finally, you can choose the accuracy of the drawing line. In high quality,
pen edges will be smoothed. But remember that by increasing the quality you will lose some
execution speed.

→ Maximum number of turtles: You can choose the maximum number of turtles available
in mode multiturtle.

→ Clear screen when closing the editor: You can choose if you want to clear the screen
when you leave the editor.

→ Clear variables when closing the editor: You can choose if you want to clear all variables
when you leave the editor. (And you restart working with a "clean" workspace)

→ Screen size: You can choose a personal size for the drawing area. Default size is 1000 by
1000 pixels. Be careful, when you increase the size of the drawing area, you may need to
increase the memory size of XLogo, (an error message will pop up).

→ Memory allocation: You can change the memory space allocated to XLogo. Default size
is 64MB. You might have to increase this if you want to work on a bigger drawing area. If you
modify this parameter, you must restart XLogo so that the change takes place. Be careful,
do not over increase this parameter since it could considerably slow your system down.

→ TCP port number: You can modify the default TCP port used for networking. (See p.129)

22 CHAPTER 4. MENU OPTIONS:

� Sound Tab: On the fourth tab, you can choose an instrument for your MIDI interface. If you
experience some detection problems, and the list is empty, have a look at the FAQs at the end of
the manual. This function can be accessed with the primitive setinstrument.

� Font Tab: On the �fth tab, you can choose the font for the interface.

� Highlighter Tab: You can choose active syntax highlighting and de�ne your own highlight
colors.

4.4 �Help� Menu

• Help→Online Manual: Displays the reference manual of XLogo, accessible only by internet.

• Help→Licence: shows the GPL license under which this software is distributed.

4.4. �HELP� MENU 23

• Help→Translation: shows a translation of the above license. This translation has no o�cial standing
- this belongs only to the English version, and the translation is provided here only as an aid to
understanding.

• Help→Translate XLogo: this dialog box allows to consult/modify/complete XLogo transaltions
for any language (messages and primitives).

Otherwise, You can create a new translation for a new language if you want to. In every case, send me
the generated �le at loic@xlogo.tuxfamily.org

• Menu � > About: The standard thing and xlogo.tuxfamily.org for your bookmarks !! o:)

24 CHAPTER 4. MENU OPTIONS:

Chapter 5

Conventions adopted by XLogo

This section sets out some key points about the LOGO language itself, and about XLogo speci�cally.

5.1 Commands and their interpretation

The LOGO language allows certain events to be triggered by internal commands - these commands are
called primitives. Each primitive may have a certain number of parameters which are called arguments. For
example, the primitive cs, which clears the screen, takes no arguments, while the primitive sum takes two
arguments.

print sum 2 3 will return 5.

LOGO arguments are of three kinds:

• Numbers: some primitives expect numbers as an argument: fd 100 is an example.

• Words: Words are marked by an initial ". An example of a primitive which can take a word argument
is print.

print "hello

This command displays hello. If you forget the ", the interpreter will return an error message. In
e�ect, print expects an argument, or for the interpreter, hello does not represent anything, since it
is not a number, a word, a list, or an already de�ned procedure.

• Lists: these are de�ned between brackets.

Note: Numbers are treated in some instances as a numeric value (eg: fd 100), and in others as a word (eg:
print first 12 writes 1).

Several primitives have a general form, it means they could be used with an unde�ned number of argu-
ments. All those primitives are on the table below:

print sum product or

and list sentence word

To notify the interpreter that these primitives will be used in their general form, we have to write our
command into parenthesis, look at those examples below:

25

26 CHAPTER 5. CONVENTIONS ADOPTED BY XLOGO

print (sum 1 2 3 4 5)

15

(list [a b] 1 [c d])

I don't know what to do with [[a b] 1 [c d]]?

if (and 1=1 2=2 8=5+3) [fd 100 rt 90]

5.2 Procedures

In addition to these primitives, you can de�ne your own commands. These are called procedures. Procedures
are introduced by the word to and conclude with the word end. They can be created using the internal
XLogo procedure editor. Here is a short example:

to square

repeat 4[forward 100 right 90]

end

These procedures can take advantage of arguments as well. To do that, variables are used. A variable is
a word to which a value can be assigned. Here is a very simple example:

to total :a :b

print sum :a :b

end

total 2 3

5

5.3 Speci�c character \

The speci�c character \ (backslash) allows the creation of words containing blank or line feed symbols. If \n
is used, the phrase skips to the following line, and \ followed by a blank means a blank in a word. Example:

pr "xlogo\ xlogo

xlogo xlogo

pr "xlogo\nxlogo

xlogo

xlogo

You can therefore only write the \ symbol by typing \\.

Similar behaviour, characters () [] # are speci�c delimiters of Logo. If you want to use them in a word,
you just have to add the character \before.

All \ only symbols are ignored. This remark is especially important for the use of �les.

To set your current directory path to c:\My Documents:

setdir "c:\\My\ Documents.

Please note the use of \ to notify the space between My and Documents. If, you forget the double
backslash, the path that will be de�ned will then be c:My Documents and the interpretor will send you an
error message.

5.4. CASE-SENSITIVITY 27

5.4 Case-sensitivity

XLogo makes no distinctions on case as regards procedure names and primitives. Thus, with the procedure
square as de�ned earlier, whether you type SQUARE or sQuaRe, the command interpreter will translate it
correctly and execute square. On the other hand, XLogo is case-sensitive on lists and words:

print "Hello ----> "Hello (the initial capital H is retained)

5.5 Operators and syntax

There are two ways to write certain commands. For example, to add 4 and 7, there are two possibilities:
you can either use the primitive sum which expects two arguments: sum 4 7, or you can use the operator +:
4+7. Both have the same e�ect.
This table shows the relationship between operators and primitives:

sum difference product quotient

+ - * /

or and equal?

| (ALT GR+6) & =

There are two other operators with no associated primitive:

• Operator �Less than or equal to�: <=

• Opérator �Greater than or equal to�: >=

Note: The two operators | and & are speci�c to XLogo. They do not exist in traditional versions of LOGO.
Here are some examples of usage:

pr 3+4=7-1 ----> false

pr 3=4 | 7<=49/7 ----> true

pr 3=4 & 7=49/7 ----> false

28 CHAPTER 5. CONVENTIONS ADOPTED BY XLOGO

Chapter 6

Basic primitives

Level: newbie

To move the turtle on the drawing area, we use prede�ned commands called �primitives�. In this chap-
ter, we're going to discover the basic primitives allowing us to pilot the turtle on the drawing area.

6.1 New primitives

• forward number fd 50

Moves the turtle forward number of steps in the direction it is currently facing.

• back number bk 100

Moves the turtle backwards number of steps in the direction it is currently facing.

• right number rt 90

Turns the turtle towards the right in relation to the direction it is currently facing.

• left number lt 45

Turns the turtle towards the left in relation to the direction it is currently facing.

• clearscreen cs

Erases the drawing area.

• showturtle st

The turtle is visible on screen.

• hideturtle ht

The turtle is invisible (drawing is faster).

• penup pu

The turtle won't draw a line when it moves.

• pendown pd

The turtle will draw a line when it moves.

• repeat integer list repeat 5[fd 50 rt 45]

Repeat instructions contained in the list.

6.2 Drawing a regular polygon

In this part, we'll learn to draw a square, equilateral triangle, and a regular polygon in general....

29

30 CHAPTER 6. BASIC PRIMITIVES

6.2.1 Square

To draw this square, we're going to write:

fd 200 rt 90 fd 200 rt 90 fd 200 rt 90 fd 200 rt 90

We can see that we repeat 4 times the same instructions. Therefore, a better syntax:

repeat 4[fd 200 rt 90]

6.2.2 Equilatéral triangle

Here, we'll learn how to draw this equilatéral triangle (all three sides have 150 steps lengths).

The command will have this form:

repeat 3[fd 150 rt]

We must determinate the angle. In an equilateral triangle, all three internal angles are equal to each other and
so are each 60 degrees. The turtles turns outside the triangle. Hence, the value for this angle is 180-60=120
degrees. The valid command is:

repeat 3[fd 150 rt 120]

6.3. SAVING A PROCEDURE 31

6.2.3 Hexagon

repeat 6[fd 80 rt]

When the turtle has �nished its moves, it has made one tour from its initial position to its �nal position.

This is done using 6 steps. Therefore, each angle value is equal to
360
6

= 60�.

The valid command is: repeat 6[fd 80 rt 60]

6.2.4 Drawing a regual polygon in general

In fact, the reasoning makes us think that to draw a polygon with n sides, the turtle will have to turn from
an angle whose value is 360 divided by n. For example:

• To draw a regular pentagon with side length 100:

repeat 5[fd 100 rt 72] (360:5=72)

• To draw a nine sided polygon with side length 20:

repeat 9[fd 20 rt 40] (360:9=40)

• To draw hum... a regular 360-gon with side length 2:

repeat 360[fd 2 rt 1]

This form is really near a circle!

• To draw an heptagon with side length 120:

repeat 7[fd 120 rt 360/7]

6.3 Saving a procedure

Because we do not wish to rewrite each time the same instructions to draw a square, a triangle... it's better
to save these instructions into a �procedure�. To de�ne a procedure, open the editor. A procedure starts
with the keyword to and �nishes with the keyword end. To de�ne a square procedure:

to square

repeat 4[fd 100 rt 90]

end

then we close the editor by clicking on the turtle button. It will save the editor contents. Now, when we
write square in the command line, a square appears on screen!

32 CHAPTER 6. BASIC PRIMITIVES

6.4 Exercice ...

Each square is 10 steps wide. Try to draw this image de�ning eight procedures:

• A procedure called square that draws the main square of the house.

• A procedure called triangle that draws the roof as an equilateral triangle.

• A procedure called door that draws the rectangular door.

• A procedure called chimney that draws the chimney.

• A procedure called move1 that allows the turtle to move from point A to point B.

• A procedure called move2 that allows the turtle to move from point B to point C.

• A procedure called move3 that allows the turtle to move from point C to point D. (Warning: you'll
have to pen up!)

• A general procedure called house that draws the whole house using all previous procedures.

Chapter 7

Using coordinates

Level: Newbie

7.1 Presentation

In this chapter, we're going to discover the primitive setposition, setpos. The drawing area has two axis
that allows to determine each point using the cartesian coordinate system. The origin is the center of the
drawing area.

seposition list setpos [100 -250]

Moves the turtle to the co-ordinates speci�ed by the two numbers in the list

A little exemple:
cs setpos [200 100] setpos [50 -150] setpos [-100 -150]

33

34 CHAPTER 7. USING COORDINATES

7.2 Exercice:

Try to draw this picture using only the following primitives: setpos, cs, pu, pd.

Chapter 8

Variables

Level: Newbie

Sometimes, it's necessary to draw a �gure on a di�erent scale. For example, if we want to draw a square
with side length 100, a square with side length 200 and a square with side length 50, we need actually three
di�erent procedures for each square.

to square1

repeat 4 [forward 100 right 90]

end

to square2

repeat 4 [forward 200 right 90]

end

to square3

repeat 4 [forward 50 right 90]

end

We can see immediately that it would be easier to de�ne a single procedure waiting for an argument: the
side length. For example, square 200 should draw a square with side length 200, square 100 should draw
a square with side length 100 ... It's time to introduce the variable notion!

8.1 Examples

To draw a square with side length 100, we write in the editor:

to square

repeat 4 [forward 100 right 90]

end

We just have to modify this procedure by doing:

• We add :c at the end of the de�nition line. This indicates that the procedure is now waiting for an
argument called :c

• We replace the side length 100 by the variable name :c

We obtain

to square :c

repeat 4 [forward :c right 90]

end

Therefore, if we write: square 100 square 50 square 30 square 20 square 10

35

36 CHAPTER 8. VARIABLES

8.2 Drawing a rectangle with chosen dimension

We de�ne here a procedure called rec depending on two variables representing the dimensions of the rectangle.
Hence rec 200 100 will draw a rectangle with height 200 and width 100.

to rec :lo :la

repeat 2 [forward :lo right 90 forward :la right 90]

end

Make some examples:

rec 200 100 rec 100 300 rec 50 150 rec 1 20 rec 100 2

If we give to the procedure rec only one number, the interpreter will send an error message indicating that
the procedure is waiting for a second argument.

8.3 Drawing at di�erent scales

We saw how to draw a square, and a rectangle with di�erent sides. Now, we return to our house example p.
32 and we're going to modify the code to draw this house at any chosen scale.

The objective is to send an argument to the procedure house and according to this parameter, the house
will be smaller or bigger.

• house 1 will draw the house in real size.

• house 0.5 will draw the house at scale 0.5.

• house 2 will draw the house with double proportion.

In real size, the procedure square was:

to square

repeat 4 [forward 150 right 90]

end

All the initial dimensions are multiplied by the scale. Hence, the procedure square becomes:

to square :c

repeat 4 [forward 150*:c right 90]

end

Therefore, when we'll write square 2, the square will have for side length 150 × 2 = 300. Proportions are
well respected! In fact, we can see that we just need to modify all procedures replacing the length according
to this rule:
fd 70 becomes fd 70*:c

fd 45 becomes fd 45*:c

8.4. EXERCICE: 37

to carre :c

repeat 4[forward 150*:c right 90]

end

to tri :c

repeat 3[forward 150*:c right 120]

end

to porte :c

repeat 2[forward 70*:c right 90 forward 50*:c right 90]

end

to che :c

forward 55*:c right 90 forward 20*:c right 90 forward 20*:c

end

to dep1 :c

right 90 forward 50*:c left 90

end

to dep2 :c

left 90 forward 50*:c right 90 forward 150*:c right 30

end

to dep3 :c

penup right 60 forward 20*:c left 90 forward 35*:c pendown

end

to ma :c

carre :c dep1 :c porte :c dep2 :c tri :c dep3 :c che :c

end

8.4 Exercice:

Try to generate the following drawings at di�erent scales.

38 CHAPTER 8. VARIABLES

Chapter 9

Recursion

Level: Medium

Logo programming often uses a technic called recursion. In this chapter, �rst, we'll explore recursion
with some simple examples. Then, we'll go further with the drawing of a fractal curve called the Van Koch
snow�ake�. First of all:

A procedure is recursive if it calls itself.

9.1 With drawing area.

9.1.1 First example:

to ex1

rt 1

ex1

end

This procedure is recursive because the procedure ex1 is called on the last line. While executing, we can see
that the turtle turns on itself forever. To break the program, we must click on the STOP button.

9.1.2 Second example:

Here are three new primitives:

• wait number wait 60

Pause the program during the number of 60th seconds.
For example, wait 120 will pause the program for two seconds.

• penerase penerase
When the turtle moves, it erases all it encounters instead of drawing.

• penpaint penpaint
Returns to classic mode. The turtle draws lines when it moves.

to ex2

fd 200 penerase wait 60

bk 200 penpaint rt 6

ex2

end

Now, we can execute the program. On each second, the same procedure is repeated. We obtain the seconds
of a clock!

39

40 CHAPTER 9. RECURSION

9.2 With the text zone

9.2.1 First example:

The primitive print, pr displays text in the text zone. print is waiting for an argument: a list or a word.
Eg: pr "hello pr [I write what I want] (Don't forget the quote " when you want to write only a word.)

to ex3 :n

print :n

ex3 :n+1

end

Run the command: ex3 0 and stop the program with the STOP button.
Modify the program to dispay the numbers with an interval of 2.

We now want to display all integers greater than 100 which are divisable by 5. We just have to modify
the program:

to ex3 :n

print :n

ex3 :n+5

end

and then run: ex3 100

9.2.2 Breakout test

Try the following lines:
if 2+1=3 [print [it is true]]

if 2+1=4 [print [it is true]][print [it is false]]

if 2+5=7 [print "true][print "false]

If you doesn't understand yet the syntax of the primitive if, refer to the annex.

to ex3 :n

if :n=100 [stop]

print :n

ex3 :n+1

end

Then run the command ex3 0

Modify the program to display integers between 55 and 350 which are divisable by 11.

9.3 A fractal example: Van Koch snow�ake

Using recursion, it's very easy to generate in Logo some special curves called fractals in mathematics.

Here are the �rst steps to create the Van Koch broken line:

Between two steps:

9.3. A FRACTAL EXAMPLE: VAN KOCH SNOWFLAKE 41

1. each segment is divided into three equal part.

2. an equilateral triangle is drawn on the middle segment.

3. �nally, this middle segment is erased.

What is important: Let's have a look at step 2, we can see that the broken lines contains four identical
motifs corresponding to precedent step with a 3 lesser size. Here we have found the recursive structure of
the fractal.

Let's call Ln,` the motif of size `, corresponding to step n.
To draw this motif:

1. We draw Ln−1,`/3

2. We turn left 60 degrees

3. We draw Ln−1,`/3

4. We trun right 120 degrees

5. We draw Ln−1,`/3

6. We trun left 60 degrees

7. We draw Ln−1,`/3

With Logo, it's very easy to write:

:l motif size

:p step

to line :l :p

if :p=0 [fd :l] [

line :l/3 :p-1 lt 60 line :l/3 :p-1 rt 120 line :l/3 :p-1 lt 60 line :l/3 :p-1

]

end

If we draw an equilateral triangle with three Van Koch lines, we obtain a beautiful Van Koch snow�ake.

:l side length

to snowflake :l :p

repeat 3[line :l :p rt 120]

end

Then run: snowflake 200 6

42 CHAPTER 9. RECURSION

9.4 Recursion with words

Read p.87 to understand how to use the primitives word, last, and butlast.

Here is a recursive procedure that inverts the characters of a word.

to invertword :m

if emptyp :m [output "]

output word last :m invertword butlast :m

end

print invertword "abcde

edcba

A palindrome is a word, or a phrase that can be read in both sense (Examples: A man, a plan, a canal:
Panama ...).

test if the word :m is a palindrome

to palindrom :m

if :m=invertword :m [output true] [output false]

end

Finally, this little kind program, (Thanks Olivier SC):

to palin :n

if palindrom :n [print :n stop]

print (list :n "PLUS invertword :n "EQUAL sum :n invertword :n)

palin :n + invertword :n

end

palin 78

78 PLUS 87 EQUAL 165

165 PLUS 561 EQUAL 726

726 PLUS 627 EQUAL 1353

1353 PLUS 3531 EQUAL 4884

4884

9.5 Calculate a factorial

Factorial of the integer 5 is de�ned by:

5! = 5× 4× 3× 2× 1 = 120

For n positive integer, we can note that: n! = n× (n− 1)!.
This relation explains the recursive nature of the program:

to fac :n

if :n=0[output 1][output :n*fac :n-1]

ent

pr fac 5

120

pr fac 6

720

9.6. π APPROXIMATION 43

9.6 π Approximation

approximation We can approximate the number π using the formula:

π ≈ 2k

√√√√
2−

√
2 +

√
2 + . . .

√
2 +
√

2

with k the number of squareroots. The greater is k, the better is the π .

The formula contains the recursive expression 2 +
√

2 + . . .
√

2 +
√

2, so let's code:

k is the number of squareroots

to approxpi :k

write "approximation:\ print (power 2 :k) * squareroot (2- squareroot (calc :k-2))

print "-------------------------

write "pi:\ print pi

end

to calc :p

if :p=0 [output 2][output 2+squareroot calc :p-1]

end

approxpi 10

Approximation: 3.141591421568446

Pi: 3.141592653589793

We found the �rst 5 digits! If we're looking for more π digits, we have to allow a better precision with a
higher number of digits while computing. Thus, we're going to use the primitive setdigits.

setdigits 100

approxpi 100

Approximation: 3.1415926535897932384626433832795028841973393069670160975807684313880468...

Pi: 3.141592653589793238462643383279502884197169399375105820974944592307816406....

And now, we have 39 digits...

44 CHAPTER 9. RECURSION

Chapter 10

Create an animation

Level: Medium

This chapter presents two di�erent themes with the goal of creating animation in XLogo.

10.1 Calculator's numbers

This theme is based on the fact that every calculator's number could be drawn with the above schema:

• For example, to draw digit 4, we light rectangles 3,4,5,7.

• To draw digit 8, we light rectangles 1,2,3,4,5,6,7.

• To draw digit 3, we light rectangles 2,3,4,5,6.

45

46 CHAPTER 10. CREATE AN ANIMATION

10.1.1 Filling a rectangular

If we want to draw a �lled rectangle with dimensions 100 by 200, a �rst idea could be to draw a rectangle
100 by 200 then to draw a rectangle 99 by 199, then a rectangle 98 by 198 ... until the rectangle is fully
�lled.
Let's begin by de�ning a rectangle with two variables corresponding to width and height

to rec :h :w

repeat 2[fd :h rt 90 fd :w rt 90]

end

To �ll our rectangle, we have to run:
rec 100 200 rec 99 199 rec 98 198 rec 1 101

Let's de�ne a procedure for this �lled rectangle.

to rectangular :h :w

rec :h :w

rectangular :h-1 :w-1

end

We test rectangular 100 200 and we can see there is a problem: The procedure doesn't stop when the
rectangle has been �lled, it continues in�nitely! We must add a breakout test that will detect if width or
height is equal to 0. When this condition is realized, we'll ask the program to stop with the primitive stop.

to rectangular :h :w

if or :h=0 :w=0 [stop]

rec :h :w

rectangular :h-1 :w-1

end

Note: Instead of using the primitive or, it's possible to use the symbol |, the line becomes:

if :h=0 | :w=0 [stop]

10.1.2 The program

We must reuse the precedent �lled rectangle:

to rectangular :h :w

if or :h=0 :w=0 [stop]

rec :h :w

rectangular :h-1 :w-1

end

We suppose that the turtle starts from the bottom left corner. We're going to de�ne a procedure called
number depending on 7 arguments :a, :b, :c, :d, :e, :f, :g. When :a is equal to 1, we draw the rectangle
1. If :a is equal to 0, we don't draw this rectangle. Here is the main idea.

The code:

10.1. CALCULATOR'S NUMBERS 47

to number :a :b :c :d :e :f :g

we draw the rectangular 1

if :a=1 [rectangular 160 40]

we draw the rectangular 2

if :b=1 [rectangular 40 160]

penup right 90 forward 120 left 90 pendown

we draw the rectangular 3

if :c=1 [rectangular 160 40]

penup forward 120 pendown

we draw the rectangular 5

if :e=1 [rectangular 160 40]

we draw the rectangular 4

left 90 penup back 40 pendown

if :d=1 [rectangular 160 40]

we draw the rectangular 6

right 90 penup forward 120 left 90 pendown

if :f=1 [rectangular 160 40]

we draw the rectangular 7

penup forward 120 left 90 back 40 pendown

if :g=1 [rectangular 160 40]

end

10.1.3 Creating an animation

In this part, we'll de�ne a countdown from 9 to 0.

to countd

clearscreen hideturtle number 0 1 1 1 1 1 1 wait 60

clearscreen hideturtle number 1 1 1 1 1 1 1 wait 60

clearscreen hideturtle number 0 0 1 0 1 1 0 wait 60

clearscreen hideturtle number 1 1 1 1 0 1 1 wait 60

clearscreen hideturtle number 0 1 1 1 0 1 1 wait 60

clearscreen hideturtle number 0 0 1 1 1 0 1 wait 60

clearscreen hideturtle number 0 1 1 1 1 1 0 wait 60

clearscreen hideturtle number 1 1 0 1 1 1 0 wait 60

clearscreen hideturtle number 0 0 1 0 1 0 0 wait 60

clearscreen hideturtle number 1 1 1 0 1 1 1 wait 60

end

Little problem: There is a �ickering e�ect during each number drawing. To make the animation �uid, we're
going to use the three primitives animation, stopanimation and repaint.

• animation enables the mode �animation�. The turtle stops drawing on the screen but remembers all
changes in cache. To display the image, it's necessary to use the primtive repaint.

• stopanimation returns to the classic drawing mode.

Here is the new code for this procedure:

to countd

Enables animation mode

animation

clearscreen hideturtle number 0 1 1 1 1 1 1 repaint wait 60

clearscreen hideturtle number 1 1 1 1 1 1 1 repaint wait 60

48 CHAPTER 10. CREATE AN ANIMATION

clearscreen hideturtle number 0 0 1 0 1 1 0 repaint wait 60

clearscreen hideturtle number 1 1 1 1 0 1 1 repaint wait 60

clearscreen hideturtle number 0 1 1 1 0 1 1 repaint wait 60

clearscreen hideturtle number 0 0 1 1 1 0 1 repaint wait 60

clearscreen hideturtle number 0 1 1 1 1 1 0 repaint wait 60

clearscreen hideturtle number 1 1 0 1 1 1 0 repaint wait 60

clearscreen hideturtle number 0 0 1 0 1 0 0 repaint wait 60

clearscreen hideturtle number 1 1 1 0 1 1 1 repaint wait 60

back to classic mode

stopanimation

end

10.2 Second animation: The growing man

First, we'll de�ne a procedure man that draws the above schema. We use a variable to reproduce it at di�erent
scales

to man :c

left 154 forward 44*:c back 44*:c

left 52 forward 44*:c back 44*:c

left 154 forward 40*:c

left 154 forward 44*:c back :c*44

left 52 forward 44*:c back :c*44

left 154 forward 10*:c

left 90 repeat 180[forward :c/2 right 2] right 90

end

Now, we'll create an animation that will make the man grow. To realize this, we'll draw man 0.1, then man

0.2 man 0.3 ... until man 5. Between each man, we'll erase the screen. We obtain two di�erent procedures:

to man :c

left 154 forward 44*:c back 44*:c

left 52 forward 44*:c back 44*:c

left 154 forward 40*:c

left 154 forward 44*:c back :c*44

left 52 forward 44*:c back :c*44

10.2. SECOND ANIMATION: THE GROWING MAN 49

left 154 forward 10*:c

left 90 repeat 180[forward :c/2 right 2] right 90

if :c=5[stop]

cs ht man :c+0.1

end

to go

cs ht

man 0

end

Finally to make the animation �uid, we'll use animation mode and the primitive repaint.

to man :c

left 154 forward 44*:c back 44*:c

left 52 forward 44*:c back 44*:c

left 154 forward 40*:c

left 154 forward 44*:c back :c*44

left 52 forward 44*:c back :c*44

left 154 forward 10*:c

left 90 repeat 180[forward :c/2 right 2] right 90

repaint

if :c=5[stop]

cs ht man :c+0.1

end

to go

cs ht animation

man 0

stopanimation

end

Note: Here, the procedure man is recursive. In aother way, we could use the primitive for to make the
variable :c from 0.1 to 5. Here is the program:

to man :c

cs left 154 forward 44*:c back 44*:c

left 52 forward 44*:c back 44*:c

left 154 forward 40*:c

left 154 forward 44*:c back :c*44

left 52 forward 44*:c back :c*44

left 154 forward 10*:c

left 90 repeat 180[forward :c/2 right 2] right 90

repaint

end

to go

ht animation

for [c 0 5 0.1][man :c]

stopanimation

end

50 CHAPTER 10. CREATE AN ANIMATION

Chapter 11

Interact with the user

Level: Newbie

11.1 Question-answer

The program that we're going to create in this chapter will ask the user his �rst name, his name and his age.
At the end, the program will make a synthesis!

Your first name is:

Your name is:

Your age is:

You're over 20/less than 20

Here are the primitives we're going to use:

• read: read [] "a

Displays a dialog box whose title is the text from the list (here, �How are you?�). The answer given by
the user is stored in a word or in a list (in case of several words) in the variable :a.

• make: make "a 30

Gives the value 30 to the variable :a

• sentence, se: sentence [30 k] "a

Adds a value in a list. If this value is a list, removes square brackets.

sentence [30 k] "a ---> [30 k a]

sentence [1 2 3] 4 ---> [1 2 3 4]

sentence [1 2 3] [4 5 6] ---> [1 2 3 4 5 6]

This is the code program:

to question

read [How old are you?] "age

read [What's your first name?] "fname

read [What's your name?] "name

print sentence [Your name is:] :name

print sentence [Your first name is:] :fname

print sentence [Your age is:] :age

if or :age>20 :age=20 [print [You're over 20]] [print [You're less than 20]]

end

51

52 CHAPTER 11. INTERACT WITH THE USER

11.2 Programming a little game.

Here is the game we want to program:

The program chooses an integer between 0 and 32 and memorizes it. Then, a dialog box opens and asks
the user to enter an integer. If this integer is equal to the saved integer, it displays �WIN� in the text zone.
Otherwise, the program indicates if the saved integer in greater or lesser than the user's integer and reopens
the dialog box. The program will end when the user has found the correct integer.

We need to use the primitive random:
For example, random 20 returns an integer randomly between 0 and 19.

Here are the rules to create this game:

• The number choosen by the computer will be stored in a variable called number.

• The dialog box will be named �Give an integer please�

• The number choosen by the user will be stored in a variable called try.

• The main procedure will be named game.

Some possible improvements:

• Displays the number of tries.

• The computer's number will be between 0 and 2000.

• Check that the user enters a valid number. You can use the primitive number?.
Examples: number? 8 returns true.

number? [5 6 7] returns false.
number? "abcde returns false

Chapter 12

Topic: Two dice sum

Niveau: Medium

By rolling two dice, the sum of the scores on the two dice is an integer between 2 and 12. Here, we're
going to see the di�erent probabilities for each integer to appear and represent this with a graphical dia-
gram.

12.1 Simulating rolling one die.

To simulate rolling a die, we're going to use the primitive random. Here's how it works:.

random 6 −→ returns a randomly choosen integer among 0, 1, 2, 3, 4, 5.
Hence, (random 6)+1 returns a randomly choosen integer from 1, 2, 3, 4, 5, 6. We need the parenthesis, oth-
erwise, the Logo interpreter should understand random 7. To avoid parenthesis, we can write 1+random 6

too.

We de�ne the primitive called die which simulates rolling one die.

to die

output 1+random 6

end

12.2 The program

We're going to use the multiturtle mode and the primitive setturtle. setturtle followed by an integer
allows us to select the turtle whose identi�er is the integer.

A good schema is better than a thousand explanations....

53

54 CHAPTER 12. TOPIC: TWO DICE SUM

Each turtle whose integer is from 2 o 12 will forward one step, when the corresponding dice sum appears.
For example, if the two dice scores is 8, then turtle number 8 will forward one step. Between two turtle,
there are 30 steps horizontally.

We set all turtles using coordinates.

• The turtne n�2 has coordinates (−150; 0)

• The turtne n�3 has coordinates (−120; 0)

• The turtne n�4 has coordinates (−90; 0)

• The turtne n�5 has coordinates (−60; 0)
...

setturtle 2 setpos [-150 0]

setturtle 3 setpos [-120 0]

setturtle 4 setpos [-90 0]

setturtle 5 setpos [-60 0]

setturtle 6 setpos [-30 0]

.....

Better than writing 11 times the same command line, we're going to use the primitive for. With this primi-
tive, we can give a variable a sequence of values. Here, we want that the variable :i to have succesive values
2, 3, 4, ... , 12. We write:
for [i 2 12] [list of instructions]

To set up all the turtles we create the procedure initialize

to initialize

cs ht pu

for [i 2 12] [

Set up the turtle

setturtle :i setpos list -150+(:i-2)*30 0

We write turtle number 15 steps under

pu bk 15 label :i fd 15 pd

]

end

You must understand the expression -150+(:i-2)*30. We're beginning from −150, and for each new
turtle we add 30. (Test with the di�erent values for :i if you're sceptic)

Finally this is the program:

to die

output 1+random 6

end

to initialize

cs ht pu

for [i 2 12] [

Set up the turtle

setturtle :i setpos list -150+(:i-2)*30 0

We write turtle number 15 steps under

pu bk 15 label :i fd 15 pd

]

end

12.2. THE PROGRAM 55

to go

initialize

We make 1000 tries

repeat 1000 [

make "sum die+die

setturtle :sum fd 1

]

We display frequencies

for [i 2 12] [

setturtle :i

The Y-coordinates of each turle represents the number of times

a dice scores has appeared

localmake "number last pos

pu fd 10 lt 90 fd 10 rt 90 pd label :number/1000*100

]

end

Here is a more general program. We'll ask the user the number of dice he wants and the number of tries to
make.

to initialize

cs ht pu setturtlesmax :max+1

for sentence list "i :min :max [

Set up the turtle

setturtle :i setpos list -150+(:i-2)*30 0

We write turtle number 15 steps under

pu bk 15 label :i fd 15 pd

]

end

to die

localmake "somme 0

repeat :dice [

localmake "somme :somme+1 +random 6

]

output :somme

end

to go

read [Number of dice:] "dice

if not numberp :dice [print [Not a valid number!] stop]

globalmake "min :dice

globalmake "max 6*:dice

read [Number of tries to make:] "tries

if not numberp :tries [print [labellength nombre rentré n'est pas valide!] stop]

initialize

We make tries

repeat :tries [

setturtle die forward 1

]

Display frequencies

for sentence list "i :min :max [

setturtle :i

Y-Axis coordinates represent the number of times a score has appeared

56 CHAPTER 12. TOPIC: TWO DICE SUM

localmake "effectif last position

Round to 0.1

penup forward 10 left 90 forward 10 right 90 pendown label (round :effectif/:tries*1000)/10

]

end

Chapter 13

Topic: Probabilistic approximation of π

Level: Advanced

Note: Some elementary mathematical knowledge needed for this chapter.

13.1 GCD (Greatest Common Divisor)

The GCD of two integers is the largest positive integer that divides both numbers without remainder.

• For example, the GCD of 42 and 28 is 14. (It's the largest integer that divide both 42 and 28)

• The GCD of 25 and 55 is 5.

• The GCD of 42 and 23 is 1.

The integers a and b are said to be coprime or relatively prime if they have no common factor other
than 1 or, equivalently, if their greatest common divisor is 1. With the precedent example, 42 and 23 are
relatively prime.

13.2 Euclidean algorithm

Calculate the GCD of two inetgers e�ciently can be done with the Euclidean algorithm. (Here, we don't
show that this algorithm is valid)

Description of the algorithm:
Given two positive integers a and b, we check �rst if b is equal to 0. If it's the case, then the GCD is equal
to a. Otherwise, we calculate r, the remainder after dividing a by b. Then, we replace a by b, and b by r,
and we restart this method.
For example, let's calculate the GCD of 2160 and 888 with the Euclidean algorithm:

a b r
2160 888 384
888 384 120
384 120 24
120 24 0
24 0

Hence, the GCD of 2160 and 888 is 24. There's no largest integer that divide both numbers. (In fact
2160 = 24× 90 and 888 = 24× 37)
GCD is the last remainder not equal to 0.

57

58 CHAPTER 13. TOPIC: PROBABILISTIC APPROXIMATION OF π

13.3 Calculate a GCD in Logo programming

A little recursive procedure will calculate the GCD of two integers :a and :b

to gcd :a :b

if (modulo :a :b)=0 [output :b][output gcd :b modulo :a :b]

end

print gcd 2160 888

24

Note: It's important to put parenthesis around modulo :a :b. Otherwise, the interpreter would try to
evaluate :b = 0. If you don't want to use parenthesis, write: if 0=remainder :a :b

13.4 Calculating π-approximation

In fact, a famous result in numbers theory says that the probability for two randomly chosen integers to be

coprime is
6
π2
≈ 0, 6079. To exhibit this result, we're going to:

• Choose randomly two integers between 0 and 1 000 000.

• Calculate their GCD.

• If the GCD value is 1, increment the counter variable.

• Repeat this experience 1000 times.

• The frequence for the couple of coprime integers can be calculated dividing the variable counter by
1000 (tries number).

to test

We set the variable counter to 0

globalmake "counter 0

repeat 1000 [

if (gcd random 1000000 random 1000000)=1 [globalmake "counter :counter+1]

]

print [frequence:]

print :counter/1000

end

In a similar way as the precevious note, notice the parenthesis around gcd random 1000000 random 1000000.
Otherwise, the interpreter will try to evaluate 1 000 000 = 1. You can write in other way: if 1=gcd random

1000000 random 1000000

We execute the program test.

test

0.609

test

0.626

test

0.597

13.4. CALCULATING π-APPROXIMATION 59

We obtain some values close to the theorical probability: 0,6097. This frequency is an approximation of
6
π2

.

Thus, if I note f the frequency, we have: f ≈ 6
π2

Hence, π2 ≈ 6
f

and π ≈
√

6
f
.

I append to my program a line that gives this π approximation in procedure test:

to test

We set the variable counter to 0

globalmake "counter 0

repeat 1000 [

if (gcd random 1000000 random 1000000)=1 [globalmake "counter :counter+1]

]

We calculate te frequency

make "f :counter/1000

we dispaly the pi approximation

print sentence [pi approximation:] sqrt (6/:f)

end

test

pi approximation: 3.1033560252704917

test

pi approximation: 3.1835726998350666

test

pi approximation: 3.146583877637763

Now, we modify the program because I want to set the number of tries. I want to try with 10 000 and
perhaps more tries.

to test :tries

We set the variable counter to 0

globalmake "counter 0

repeat :tries [

if (gcd random 1000000 random 1000000)=1 [globalmake "counter :counter+1]

]

We calculate te frequency

make "f :counter/:tries

we dispaly the pi approximation

print sentence [pi approximation:] sqrt (6/:f)

end

test 10000

pi approximation: 3.1426968052735447

test 10000

pi approximation: 3.1478827771265787

test 10000

pi approximation: 3.146583877637763

test 10000

Quite interesting, isn't it?

60 CHAPTER 13. TOPIC: PROBABILISTIC APPROXIMATION OF π

13.5 More complex: π generating π.....

What is a random integer? Is an integer choosen randomly between 1 and 1000000 really representative for
all integers choosen randomly? We can see that our experience is only an approximation of an ideal model.
Here, we're going to modify the method for generating random integers... We won't use the primitive random,
we're going to generate random integers with the π digits sequence.
π digits have always interested mathematicians:

• The numbers 0 to 9, do some appear more often than others?

• Is there some sequence of integers that appear frequently?

In reality, it seems that the π digit sequence is a really randomly sequence. (Result not demonstrated yet).
It's not possible to predict the following digit after the others, there's no period.

Here is the method we're going to use to generate integers randomly choosen:

• First, we need the �rst digit of π (For example, one billion)

1. First way: some programs calculate the π digits. For example, PiFast in Windows environment
and SchnellPi for Linux.

2. Second way: you can download this �le from XLogo website:

http://downloads.tuxfamily.org/xlogo/common/millionpi.txt

• To generate the integers, we're going to read the digits sequence in packet of 7 digits:
3.1415926︸ ︷︷ ︸
First number

53589793︸ ︷︷ ︸
Second number

23846264︸ ︷︷ ︸
Third number

338327950288419716939 etc

I remove the point �. � in 3.14that will cause problem when we're going to extract the digits

Let's create now a new procedure called randompi and let's modify the procedure test

to gcd :a :b

if (modulo :a :b)=0 [output :b][output gcd :b modulo :a :b]

end

to test :tries

We open a flow whose identifier is 1 towards the file millionpi.txt

Here we suppose that millionpi.txt is in the current directory

Otherwise, fix it with changedirectory

openflow 1 "millionpi.txt

Set the variable line to the first line of the file millionpi.text

globalmake "line first readlineflow 1

Set the variable counter to 0

globalmake "counter 0

repeat :tries [

if 1=gcd randompi 7 randompi 7 [globalmake "counter :counter+1]

]

Calculate frequency

globalmake "f :counter/:tries

Display th pi approximation

print sentence [pi approximation:] squareroot (6/:f)

closeflow 1

end

to randompi :n

localmake "number "

13.5. MORE COMPLEX: π GENERATING π..... 61

repeat :n [

If there's no char yet on the line

if 0=count :line [globalmake "line first readlineflow 1]

Set the variable char to the first character of the line

globalmake "char first :line

Then remove first character from the line.

globalmake "line butfirst :line

globalmake "number word :number :char

]

output :number

end

test 10

approximation de pi: 3.4641016151377544

test 100

approximation de pi: 3.1108550841912757

test 1000

approximation de pi: 3.081180112566604

test 10000

approximation de pi: 3.1403714651066386

test 70000

approximation de pi: 3.1361767950325627

We �nd a correct approximation of π with its own digits!

It's still possible to imrove the program by indicating the time for the computation. We add on the �rst line
of the procedure test:

globalmake "begin pasttime

Then we append before closeflow:

print sentence [pasttime mis:] pasttime - :begin

62 CHAPTER 13. TOPIC: PROBABILISTIC APPROXIMATION OF π

Chapter 14

Topic: Menger's sponge

Level: Advanced

In this chapter, we're going to build a fractal solid called Menger's sponge. Here are the �rst steps to
create this solid:

Step 0 Step 1

Step 2 Step 3

This chapter contains two sections:

• First, we'll show how to create this solid using recursion.

• Finally, we'll try to generate a Menger sponge of order 4.

63

64 CHAPTER 14. TOPIC: MENGER'S SPONGE

14.1 Using recursion

Let's consider a Menger sponge of order n which side length is L.

On the schema, we can see that this sponge contains 20 Menger sponges of order n−1 and with a side length
L

3
. The recursive structure of the sponge is well shown.

The program:

to cube :l

if :counter=10000 [view3d]

faces colors

localmake "colors [yellow magenta cyan blue]

lateral faces

repeat 4 [setpencolor run item repcount :colors square :l right 90 forward :l left 90 rightroll 90]

bottom

setpencolor red downpitch 90 square :l uppitch 90

forward :l downpitch 90 setpencolor green square :l uppitch 90 back :l

end

to square :c

globalmake "counter :counter+1

polystart

repeat 4 [forward :c right 90]

polyend

end

Menger's sponge

p: recursion order

l: side length of the cube

to menger :l :p

if :p=0 [cube :l] [

localmake "p :p-1

localmake "l :l/3

#front face

14.1. USING RECURSION 65

repeat 3 [menger :l :p forward :l] back 3*:l

right 90 forward :l left 90

menger :l :p forward 2*:l menger :l :p back 2*:l

right 90 forward :l left 90

repeat 3 [menger :l :p forward :l] back 3*:l

#right face

downpitch 90 forward :l uppitch 90

menger :l :p forward 2*:l menger :l :p back 2*:l

downpitch 90 forward :l uppitch 90

repeat 3 [menger :l :p forward :l] back 3*:l

left 90 forward :l right 90

menger :l :p forward 2*:l menger :l :p back 2*:l

left 90 forward :l right 90

repeat 3 [menger :l :p forward :l] back 3*:l

downpitch 90 back :l uppitch 90

menger :l :p forward 2*:l menger :l :p back 2*:l

downpitch 90 back :l uppitch 90

]

end

to sponge :p

clearscreen hideturtle globalmake "counter 0 3d setscreencolor 0 menger 800 :p

write [nombre penpaint polygone:] print :counter

view3d

end

This program has four procedures:

• square :c

This procedure draws a square which has side length :c. This polygon is stored in the 3D Viewer. The
variable counter counts the number of drawn polygons.

• cube :l

This procedure draws a cube which has side length :l. Of course, it uses procedure square

• menger :l :p

This is the most important procedure of the program, it draws a Menger motif of order p and with a
side length equal to l. This motif is created using recursion as we have seen before on the schema.

• sponge :p

This procedure creates a Menger sponge, order p with a side length equal to 800 and draws it in the
Viewer 3D.

66 CHAPTER 14. TOPIC: MENGER'S SPONGE

14.2 Second approach: Drawing a Menger sponge, order 4

The main advantage of the previous program is to exploit the recursive structure of the solid. This method
is quite similar to the one we used to draw the Van Koch snow�ake on p.40. The main advantage of using
recursion is a quite natural short program code. The disadvantage of the recursive approach is the number
of created polygons: for example, a sponge of order 3 needs 48 000 polygons. XLogo requires in this case
an internal memory set to 256 Mb in the Preferences panel to prevent from memory over�ow.

If we want to draw a Menger sponge, order 4, we have to rethink the program and to forget recursion.
We're going to create in this section a program that will draw the Menger solid of order 0,1,2,3 or 4.

14.2.1 Sierpinski carpet

Menger's sponge is the generalization in 3 dimensions of a plane �gure called �the Sierpinski carpet�. Here
are the �rst steps to generate this �gure:

Step 0 Step 1 Step 2 Step 3

Each face of a Menger sponge of order p is a Sierpinski carpet of order p.

14.2.2 Drawing a Sierpinski carpet of order p

The objective is to set minimal the number of polygon to draw a Sierpinski carpet. The following example
explains how to draw a Sierpinski carpet of order 3. Here, the �rst square has 33 = 27 lines and 27 columns.
We write in 3-basis each line number and each column number.

• First step: For each line whose number doesn't contain any 1, we draw a 27 units line. Using sym-
metry, we repeat the same operation on columns.

14.2. SECOND APPROACH: DRAWING A MENGER SPONGE, ORDER 4 67

• Second step: Now, we're looking at lines whose numbers have a single 1 in �rst place. We draw
rectangles of 9 units length by alternation.

• Third step: Now we're looking at lines whose number contains a single 1 in second place. We draw
rectangles following the schema [3 3 6 3 6 3 3]. (It means 3 units pen down, 3 units pen up, 6 units
pen down etc...). Using symmetry, we repeat this operation on columns.

• Final step: Now we're looking at lines whose number contains a double 1 in the �rst two positions.
We draw rectangles alternating following the schema [3 3 3 9 3 3 3]. We repeat this operation on
columns.

68 CHAPTER 14. TOPIC: MENGER'S SPONGE

Now, we have built a Sierpnski carpet of order 3. To draw such a carpet, we need: 16 + 16 + 32 + 16 = 80
polygons.

14.2.3 All Di�erent possible schemas for columns

To recapitulate, here are the di�erent column schemas according to the line numbers. (The symbol *
represents 0 or 2)

Number of line Schema to apply

*** 27

1** 9 9 9

1 3 3 6 3 6 3 3

11* 3 3 3 9 3 3 3

In the same way, to build a carpet of order 4, we need a square with 34 = 81 units. The line and column
numbers will have 4 numbers in their writing in 3-basis. For each line number, here is the schema to apply
(the symbol * represents 0 or 2):

Line number Schema to apply

**** 81

1*** 27 27 27

*1** 9 9 18 9 18 9 9

**1* 3 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 3

11 3 3 3 9 3 3 6 3 3 9 3 3 6 3 3 9 3 3 3

1*1* 3 3 6 3 6 3 3 27 3 3 6 3 6 3 3

11** 9 9 9 27 9 9 9

111* 3 3 3 9 3 3 3 27 3 3 3 9 3 3 3
496 polygons are necessary to draw the a Sierpinski carpet of order 4.

Finally, here are the schema to apply for solid of order 2:

14.2. SECOND APPROACH: DRAWING A MENGER SPONGE, ORDER 4 69

Line numbers Schema to apply

** 9

1* 3 3 3

14.2.4 The program

Draws a Sierpinski carpet of order :p and size :size

to carpet :size :p

globalmake "unit :size/(power 3 :p)

if :p=0 [rec :size :size stop]

if :p=1 [repeat 4 [rec :size :unit forward :size right 90] stop]

for (list "x 1 power 3 :p) [

localmake "cantorx cantor :x :p []

We didn't draw elements with a 1 in last position

if not (1=last :cantorx) [

localmake "nom evalue butlast :cantorx "

drawcolumn :x getproperty "map :nom

]

]

end

output the writing in 3-basis of number x

p order of the carpet (3^p units)

:list empty list

to cantor :x :p :list

if :p=0 [output :list]

localmake "a power 3 :p-1

if :x<= :a [

output cantor :x :p-1 sentence :list 0]

[if :x<=2*:a [output cantor :x-:a :p-1 sentence :list 1]

output cantor :x-2*:a :p-1 sentence :list 0]

end

Draw the column number x respecting the schema in list :list

to drawcolumn :x :list

penup right 90 forward (:x-1)*:unit left 90 pendown des :list

penup left 90 forward (:x-1)*:unit right 90 forward :x*:unit right 90 pendown des :list

penup left 90 back :x*:unit pendown

end

Draws a rectangle with choosen dimensions

It is stored in 3D viewer

to rec :lo :la

globalmake "compteur :compteur+1

polystart

repeat 2 [forward :lo right 90 forward :la right 90]

polyend

end

Inits the different possible columns for carpet order 0 to 4

to initmap

putproperty "map 111 [3 3 3 9 3 3 3 27 3 3 3 9 3 3 3]

putproperty "map 110 [9 9 9 27 9 9 9]

70 CHAPTER 14. TOPIC: MENGER'S SPONGE

putproperty "map 101 [3 3 6 3 6 3 3 27 3 3 6 3 6 3 3]

putproperty "map 011 [3 3 3 9 3 3 6 3 3 9 3 3 6 3 3 9 3 3 3]

putproperty "map 000 [81]

putproperty "map 100 [27 27 27]

putproperty "map 010 [9 9 18 9 18 9 9]

putproperty "map 001 [3 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 3]

putproperty "map 01 [3 3 6 3 6 3 3]

putproperty "map 00 [27]

putproperty "map 10 [9 9 9]

putproperty "map 11 [3 3 3 9 3 3 3]

putproperty "map 1 [3 3 3]

putproperty "map 0 [9]

end

if the 3-basis writing is [1 0 1] --> output 101

to evalue :list :mot

if emptyp :list [output :mot]

[

localmake "mot word :mot first :list

output evalue butfirst :list :mot

]

end

Draws the block of rectangles alternanting

to des :list

localmake "somme 0

for (list "i 1 count :list) [

localmake "element item :i :list

localmake "somme :element+:somme

if even? :i [penup forward :element*:unit pendown] [rec :element*:unit :unit forward :element*:unit]

]

penup back :somme * :unit pendown

end

Is this number even?

to pair? :i

output 0=reste :i 2

end

Draws the carpet order :p

to tapis :p

clearscreen 3d hideturtle initmap

globalmake "compteur 0

carpet 810 :p

write "nombre\ de\ polygones:\ print :compteur

view3d

end

Is this number even?

to even? :i

output 0=modulo :i 2

end

14.2. SECOND APPROACH: DRAWING A MENGER SPONGE, ORDER 4 71

tapis 3 draws a Sierpinski carpet of order 3 with a side length equal to 810. Here we are! Now we can come
back to the Menger's sponge!

14.2.5 Menger's sponge order 4

The Menger sponge has a lot of symmetries. To build the sponge, we're going to draw the di�erent sections
along the plane (xOy) and then repeat those �gures along the planes (yOz) and (xOz). To explain what
happens, let's have a look at the sponge of order 2:
When we cut with a vertical plane, we can obtain four di�erent motifs:

72 CHAPTER 14. TOPIC: MENGER'S SPONGE

To draw a sponge of order 3, we're going to browse the number from 1 to 27, it means from 001 to 222 in 3
basis. For each number, we'll apply the valid section and we'll report this �gure along (Ox), (Oy) and (Oz).

The code

With this program, we can draw Menger's sponge of order 0,1,2,3 and 4.

Draws a Sierpinski carpet of order :p and size :size

to carpet :size :p

globalmake "unit :size/(power 3 :p)

if :p=0 [rec :size :size stop]

if :p=1 [repeat 4 [rec :size :unit forward :size right 90] stop]

for (list "x 1 power 3 :p) [

localmake "cantorx cantor :x :p []

We didn't draw elements with a 1 in last position

if not (1=last :cantorx) [

localmake "nom evalue butlast :cantorx "

drawcolumn :x getproperty "map :nom

]

]

end

14.2. SECOND APPROACH: DRAWING A MENGER SPONGE, ORDER 4 73

output the writing in 3-basis of number x

p order of the carpet (3^p units)

:list empty list

to cantor :x :p :list

if :p=0 [output :list]

localmake "a power 3 :p-1

if :x<= :a [

output cantor :x :p-1 sentence :list 0]

[if :x<=2*:a [output cantor :x-:a :p-1 sentence :list 1]

output cantor :x-2*:a :p-1 sentence :list 2]

end

Draw the column number x respecting the schema in list :list

to drawcolumn :x :list

penup right 90 forward (:x-1)*:unit left 90 pendown des :list

penup left 90 forward (:x-1)*:unit right 90 forward :x*:unit right 90 pendown des :list

penup left 90 back :x*:unit pendown

end

Draws a rectange with choosen dimensions

It is stored in 3D viewer

to rec :lo :la

globalmake "counter :counter+1

polystart

repeat 2 [forward :lo right 90 forward :la right 90]

polyend

end

Inits the different possible columns for carpet order 0 to 4

to initmap

putproperty "map 111 [3 3 3 9 3 3 3 27 3 3 3 9 3 3 3]

putproperty "map 110 [9 9 9 27 9 9 9]

putproperty "map 101 [3 3 6 3 6 3 3 27 3 3 6 3 6 3 3]

putproperty "map 011 [3 3 3 9 3 3 6 3 3 9 3 3 6 3 3 9 3 3 3]

putproperty "map 000 [81]

putproperty "map 100 [27 27 27]

putproperty "map 010 [9 9 18 9 18 9 9]

putproperty "map 001 [3 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 3]

putproperty "map 01 [3 3 6 3 6 3 3]

putproperty "map 00 [27]

putproperty "map 10 [9 9 9]

putproperty "map 11 [3 3 3 9 3 3 3]

putproperty "map 1 [3 3 3]

putproperty "map 0 [9]

end

if the 3-basis writing is [1 0 1] --> output 101

if the 3-basis writing is [1 0 2] --> output 100

Element from the list are translated into a word.

2 are replaced by 0

74 CHAPTER 14. TOPIC: MENGER'S SPONGE

to evalue :list :mot

if emptyp :list [output :mot]

[

localmake "first first :list

if :first=2 [localmake "first 0]

localmake "mot word :mot :first

output evalue butfirst :list :mot

]

end

Draws the block of rectangular alternanting

to des :list

localmake "somme 0

for (list "i 1 count :list) [

localmake "element item :i :list

localmake "somme :element+:somme

if even? :i [penup forward :element*:unit pendown]

[rec :element*:unit :unit forward :element*:unit]

]

penup back :somme * :unit pendown

end

Draws the carpet order :p

to tapis :p

clearscreen 3d hideturtle initmap

globalmake "compteur 0

carpet 810 :p

write "nombre\ de\ polygones:\ print :compteur

view3d

end

Is this number even?

to even? :i

output 0=modulo :i 2

end

Remove the last 1 from :list

to deletelastone :list

for (list "i count :list 1 minus 1) [

localmake "element item :i :list

if :element=1 [localmake "list replace :list :i 0 stop] [if :element=2 [stop]]

]

output :list

end

Draws the Serpinski carpet

along axis (ox), (oy) and (oz)

to draw3carpet :size :order :z

penup home

uppitch 90 forward (:z-1)*:unite downpitch 90 pendown

setpencolor blue run :order :size

penup home

leftroll 90 forward (:z-1)*:unite downpitch 90 pendown

14.2. SECOND APPROACH: DRAWING A MENGER SPONGE, ORDER 4 75

setpencolor yellow run :order :size

penup home

uppitch 90 forward :size right 90 forward (:z-1)*:unite downpitch 90 pendown

setpencolor magenta run :order :size

end

Menger's sponge order :p and size :size

to menger :size :p

globalmake "unite :size/(power 3 :p)

for (list "z 1 power 3 :p) [

localmake "cantorz cantor :z :p []

localmake "last last :cantorz

localmake "cantorz butlast :cantorz

if :last=0 [localmake "order evalue deletelastone :cantorz "]

[localmake "order evalue :cantorz "]

localmake "order word "coupe :order

draw3carpet :size :order :z

penup uppitch 90 forward :unit downpitch 90 pendown

]

draw3carpet :size :order (power 3 :p)+1

end

Main procedure

Draws a sponge order :p with side length 405

to sponge :p

clearscreen setsc 0 3d hideturtle

localmake "time pasttime

initmap

globalmake "counter 0

if :p=0 [cube 405] [menger 405 :p]

Displays the time to build the sponge

write "Polygons\ number:\ print :counter

write "Time:\ print pasttime -:time

view3d

end

Different sections for menger order 2

to coupe1 :size

repeat 4 [carpet :size/3 1 penup forward :size right 90 pendown]

end

to coupe0 :size

carpet :size 2

end

Different sections for Menger order 3

to coupe10 :size

repeat 4 [carpet :size/3 2 penup forward :size right 90 pendown]

end

76 CHAPTER 14. TOPIC: MENGER'S SPONGE

to coupe01 :size

repeat 4 [repeat 2 [coupe1 :size/3 penup forward :size/3 pendown] forward :size/3 right 90]

end

to coupe11 :size

repeat 4 [coupe1 :size/3 penup forward :size right 90 pendown]

end

to coupe00 :size

carpet :size 3

end

Different sections for Menger order 4

to coupe000 :size

carpet :size 4

end

to coupe100 :size

repeat 4 [carpet :size/3 3 penup forward :size right 90 pendown]

end

to coupe010 :size

repeat 4 [repeat 2 [coupe10 :size/3 penup forward :size/3 pendown] forward :size/3 right 90]

end

to coupe001 :size

repeat 4 [repeat 2 [coupe01 :size/3 penup forward :size/3 pendown] forward :size/3 right 90]

end

to coupe110 :size

repeat 4 [coupe10 :size/3 penup forward :size pendown right 90]

end

to coupe111 :size

repeat 4 [coupe11 :size/3 penup forward :size right 90 pendown]

end

to coupe101 :size

repeat 4 [coupe01 :size/3 penup forward :size right 90 pendown]

end

to coupe011 :size

repeat 4 [repeat 2 [coupe11 :size/3 penup forward :size/3 pendown] forward :size/3 right 90]

end

to coupe :size

carpet :size 1

end

to cube :size

repeat 2 [

setpencolor blue rec :size :size penup forward :size downpitch 90 pendown

14.2. SECOND APPROACH: DRAWING A MENGER SPONGE, ORDER 4 77

setpencolor yellow rec :size :size penup forward :size downpitch 90 pendown

]

setpencolor magenta

penup leftroll 90 left 90 forward :size right 90 pendown rec :size :size

penup right 90 forward :size left 90 rightroll 90 right 90 forward :size left 90 rightroll 90 pendown rec :size :size

leftroll 90 left 90 forward :size right 90

end

Then, we set memory allocated to XLogo to 640 Mb: sponge 4

78 CHAPTER 14. TOPIC: MENGER'S SPONGE

Chapter 15

Topic: Lindenmayer system

Level: Advanced

In this part, I take reference from:

• the english Wikipedia page about L-systems: http://en.wikipedia.org/wiki/L-System.

• the book �The Algorithmic Beauty of Plants� written by Przemyslaw Prusinkiewicz and Aristid Lin-
denmayer.

This section will deal with the Lindemayer systems or L-system introduced and developed in 1968 by the
Hungarian theoretical biologist Lindenmayer. A L-System is a set of rules and symbols used to to model
the growth processes of plant development, but also able to model the morphology of a variety of organisms.
The main concept in L-Systems is �rewriting rules�. This technic is used to replace some initial condition
using some rules to do the replacement.

15.1 Formal de�nition

A L-System is a formal grammar with :

1. An alphabet V : The set of the variables of the L-System. V ∗ stands for the set of the �words� we
could generate with any symbols taken from alphabet V , and V+ the set of �words� with at least one
symbol.

2. A set of constant values S. Some of this symbol are common to all L-System. (in particular with the
turtle!).

3. A start awiom ω taken from V+ , it is the initial state.

4. A set of prodution rules P of the V symbols.

Such a L-System is de�ned as a tuple {V, S, ω, P}.

Let's consider the following L-system:

• Alphabet : V = {A,B}

• Constants : S = {∅}

• Start Axiom: ω = A

• Rules :
A→ AB
B → A

The two production rules are rewriting rules. On each step, the symbol A is replaced by the séequence AB,
and the symbol B is replaced by A. Here are the �rst iterations of this Lindemayer system:

79

80 CHAPTER 15. TOPIC: LINDENMAYER SYSTEM

• Itération 1: A

• Itération 2: AB

• Itération 3: ABA

• Itération 4: ABAAB

Ok, ok but concretely? Let's read next section!

15.2 Turtle interpretation

This �rst example helps to understand what is a Lindenmayer system but we can't see for now the rapport
with our turtle and Logo..

Here it comes interesting: every word we built before has no meaning. We're going to de�ne for each
letter of the sequence an action to execute with the turtle, and draw with this method 2D or 3D drawing.

15.2.1 Usual Symbols

• F : Forward one unit step (∈ V)

• + : Turns left angle α (∈ S).

• − : Turns right angle α (∈ S).

• & : Go down angle α (∈ S).

• ^: Go up angle α (∈ S).

• \: Roll left angle α (∈ S).

• /: Roll right angle α (∈ S).

• |: Half-tour. In XLogo: rt 180

For example, if α = 90 with a unit step of 10 turtle steps, we have:

Symbol F + − & ^ \ / |
XLogo Command fd 10 lt 90 rt 90 down 90 up 90 lr 90 rr 90 rt 180

15.2. TURTLE INTERPRETATION 81

15.2.2 Van Snow�ake

Let's consider the L-system:

• Initial state: F −−F −−F −−

• Production rules: F → F + F −−F + F

• Angle α = 60�, Unit step is divided by 3 between each iteration.

First iterations:

XLogoProgram:

to snowflake :p

globalmake "unit 300/power 3 :p-1

repeat 3 [f :p-1 right 120]

end

to f :p

if :p=0 [forward :unit stop]

f :p-1 left 60 f :p-1 right 120 f :p-1 left 60

f :p-1

end

82 CHAPTER 15. TOPIC: LINDENMAYER SYSTEM

15.2.3 Quadratic Van Koch curve

Given this new L-system:

• Initial state: F − F − F − F

• Production rules: F → F − F + F + FF − F − F + F

Here are the �rst representations using α = 90, we adjust the unit step for the �gure has a constant size.

Then it is very easy to create a Logo program to generate these drawings:

p represent the order

to koch :p

Between two iteration, the unit step is divided by 4

The final figure will have a maximal size of 600x600

globalmake "unit 300/power 4 :p-1

repeat 3 [f :p-1 left 90] f :p-1

end

Rewriting rules

to f :p

if :p=0 [forward :unit stop]

f :p-1 left 90 f :p-1 right 90 f :p-1 right 90

f :p-1 f :p-1 left 90 f :p-1 left 90 f :p-1 right 90 f :p-1

end

15.2. TURTLE INTERPRETATION 83

15.2.4 Dragon curve

• Initial state: F

• Production rules:
A→ A+B+
B → −A−B

to a :p

if :p=0 [forward :unit stop]

a :p-1 left 90 b :p-1 left 90

end

to b :p

if :p=0 [forward :unit stop]

right 90 a :p-1 right 90 b :p-1

end

to dragon :p

globalmake "unit 300/8/ :p

a :p

end

dragon 10

dragon 15

15.2.5 Hilbert 3D curve

The following example will generate a 3D Hilbert curve. This curve is singular because it �lls perfectlty a
cube when we increase iterations.

Here is the L-system to consider:

• Initial state: A

• Angle α = 90�, Unit step is divided by 2 between two iterations.

84 CHAPTER 15. TOPIC: LINDENMAYER SYSTEM

• Production rule:

A→ B − F + CFC + F −D&F^D − F + &&CFC + F +B//
B → A&F^CFB^F^D^^− F −D^|F^B|FC^F^A//
C → |D^|F^B − F + C^F^A&&FA&F^C + F +B^F^D//
D → |CFB − F +B|FA&F^A&&FB − F +B|FC//

to hilbert :p

clearscreen 3d

globalmake "unit 400/power 2 :p

linestart setpenwidth :unit/2

a :p

lineend

view3d

end

to a :p

if :p=0 [stop]

b :p-1 right 90 forward :unit left 90 c :p-1 forward :unit c :p-1

left 90 forward :unit right 90 d :p-1 downpitch 90 forward :unit uppitch 90 d :p-1

right 90 forward :unit left 90 downpitch 180 c :p-1 forward :unit c :p-1

left 90 forward :unit left 90 b :p-1 rightroll 180

end

to b :p

if :p=0 [stop]

a :p-1 downpitch 90 forward :unit uppitch 90 c :p-1 forward :unit b :p-1 uppitch 90

forward :unit uppitch 90 d :p-1 uppitch 180 right 90 forward :unit right 90 d :p-1

uppitch 90 right 180 forward :unit uppitch 90 b :p-1 right 180 forward :unit c :p-1

uppitch 90 forward :unit uppitch 90 a :p-1 rightroll 180

end

to c :p

if :p=0 [stop]

right 180 d :p-1 uppitch 90 right 180 forward :unit uppitch 90 b :p-1 right 90

forward :unit left 90 c :p-1 uppitch 90 forward :unit uppitch 90 a :p-1 downpitch 180

forward :unit a :p-1 downpitch 90 forward :unit uppitch 90 c :p-1 left 90 forward :unit

left 90 b :p-1 uppitch 90 forward :unit uppitch 90 d :p-1 rightroll 180

end

to d :p

if :p=0 [stop]

right 180 c :p-1 forward :unit b :p-1 right 90 forward :unit left 90 b :p-1 right 180

forward :unit a :p-1 downpitch 90 forward :unit uppitch 90 a :p-1 downpitch 180 forward :unit

b :p-1 right 90 forward :unit left 90 b :p-1 right 180 forward :unit c :p-1 rightroll 180

end

And the �rst iterations:

15.2. TURTLE INTERPRETATION 85

Nice, isn't it?

86 CHAPTER 15. TOPIC: LINDENMAYER SYSTEM

Appendix A

List of primitives

The turtle is controlled by means of internal commands called `primitives' . The following sections set out
these primitives:

A.1 Movement of the turtle; pen and color settings

These �rst primitives govern the movement of the turtle.

forward, fd n
Moves the turtle forward n steps in the direction it is currently facing.

back, bk n
Moves the turtle backwards n steps in the direction it is currently facing.

right, rt n
Turns the turtle n degrees towards the right in relation to the direction it is currently facing.

left, lt n
Turns the turtle n degrees towards the left in relation to the direction it is currently facing.

circle R
Draws a circle of R radius around the turtle.

arc R cap1 cap2
Draws an arc of R radius around the turtle. This arc is inscribed between the caps cap1 and cap2.

home
Returns the turtle to its initial position, that is, the co-ordinates [0 0] with a heading of 0 degrees.

setpos, setposition list

Moves the turtle to the co-ordinates speci�ed by the two numbers in the list (x speci�es the x-axis and y the
y-axis)

setx x
Moves the turtle horizontally to the point x on the x-axis

sety y

87

88 APPENDIX A. LIST OF PRIMITIVES

Moves the turtle vertically to the point y on the y-axis

setxy x y

Identical to setpos [x y]

setheading, seth n
Orients the turtle in the speci�ed direction. 0 corresponds to a position facing vertically upwards. The head-
ing when the turtle is rotated is then based on compass bearings.

label arg
Draw the speci�ed word or list at the turtle's location, and following the direction it is facing.
Eg: label [Hello there!] will write the sentence "Hello there!" wherever the turtle is, and corresponding
to its bearing or heading.

dot list

The point de�ned by the co-ordinates in the list will be highlighted (in the pen colour).

This second group sets out the primitives which allow the properties of the turtle to be adjusted. For
example, should the turtle be visible on screen? What colour should it draw when it moves?

showturtle, st
Makes the turtle visible on the screen.

hideturtle, ht
Makes the turtle invisible on the screen.

clearscreen, cs
Empties the drawing area.

wash
Erases the drawing area but leaves the turtle in the same place.

resetall
Initialize the XLogo interface to standard values.

• PenColor: black

• ScreenColor:white

• Animation mode: disabled

• Text and Graphics Font: Dialog 12 pts

• Pen shape: square

• Drawing quality: normal

• Turtles allowed: 16

• Mode trace: disabled

• Screen size: 1000x1000

A.1. MOVEMENT OF THE TURTLE; PEN AND COLOR SETTINGS 89

and empties the drawing area.

pendown, pd
The turtle will draw a line when it moves.

penup, pu
The turtle will not draw a line when it moves.

penerase, pe
The turtle will rub out any marks that it meets.

penreverse, px
Lower the pen and put the turtle in inverted mode.

penpaint, ppt
Lower the pen and put the turtle in classic drawing mode.

setpencolor, setpc color
Sets the pen color. See p.93.

setscreencolor, setsc color
Sets the screen color. See p.93.

pos, position
Gives the current position of the turtle.Eg: pos returns [10 -100]

x
Returns the x-coordinate of the turtle position.

y
Returns the y-coordinate of the turtle position.

z
Returns the z-coordinate of the turtle position. (Only available in 3D mode)

heading
Gives the bearing or heading of the turtle (cf setheading)

towards list
The list must contain two numbers representing co-ordinates. Gives the heading which the turtle must follow
to go towards the point de�ned by the co-ordinates in the list.

distance list
The list must contain two numbers representing co-ordinates. Gives the number of steps between the current
position and the point de�ned by the co-ordinates in the list.

pencolor, pc

90 APPENDIX A. LIST OF PRIMITIVES

Gives the current colour of the pen. This colour is speci�ed by a list [r g b] where r is the red component, b
the blue and g the green.

screencolor, sc
Gives the current colour of the screen (background). This colour is speci�ed by a list [r g b] where r is the
red component, b the blue and g the green.

window
Window con�guration: the turtle can travel outside the drawing area (but of course, it cannot draw there).

wrap
Window con�guration: if the turtle leaves the drawing area, it will reappear on the opposite side!

fence
Window con�guration: the turtle is con�ned to the drawing area. If it is about to go outside, an error mes-
sage will let you know, and give you the maximum number of steps the turtle can move before the exit point
is reached (to within 1 or 2 steps ...).

perspective
Window con�guration: the turtle can move through 3d Space. (See Special Section A.2 for this mode). To
quit this mode, use one of these primitives window, wrap or fence

�ndcolor, fc list

Returns the colour of the list coordinates pixel. This color is determined by a [r g b] list where r is red, g is
green and b is blue.

setpenwidth, setpw n

De�nes the thickness of the pen nib in pixels. The default is 1. The pen has a square or round nib. (Other
shapes will be provided in future versions.)

penwidth, pw
Returns the thickness of the pen nib in pixels.

setPenShape, setps 0-1
Set the pen shape.

• 0→square.

• 1→round.

PenShape, ps
Returns the pen shape.

• 0→square.

• 1→round.

setDrawingQuality, setdq 0-1-2
Set the drawing Quality.

A.1. MOVEMENT OF THE TURTLE; PEN AND COLOR SETTINGS 91

• 0→normal.

• 1→high.

• 2→low.

DrawingQuality, dq
Returns the drawing Quality.

• 0→normal.

• 1→high.

• 2→low.

setscreensize list
Set the screen size to the dimension contained in the list. setscreensize [1000 1000]

screensize
Returns the current screen size in a list. setscreensize [1000 1000]

setshape n
You can choose your preferred turtle with the second tab of menu Options-Preferences.... But you can choose
your favourite turtle with setshape. The number n goes from 0 to 6. (0 is the triangular shape).

shape
Returns the number that represents the shape of the turtle.

setfontsize, setfs n
When you write on the screen with the primitive label, it's possible to modify the size of the font with
setfontsize. The size of the font is 12 by default.

fontsize
Returns the size of the font when you write on the screen with the primitive label.

setfontname, setfn n
Select the font number n when you write on the screen with the primitive label. You can �nd the link be-
tween number and font in Menu→OptionsvPreferences→Tab Font.

setfontjustify list
When you write on the screen with the primitive label, it's possible to specify the text alignment around
the turtle. The list contains two integers.

• The �rst integer represents the horizontal alignment.

� 0: left horizontal alignment.

� 1: center horizontal alignment.

� 2: right horizontal alignment.

• The second integer represents the vertical alignment.

� 0: bottom vertical alignement.

92 APPENDIX A. LIST OF PRIMITIVES

� 1: center vertical alignment.

� 2: top vertical alignment.

Here are all possible cases: setfontsize 50 label "XLogo

setfontjustify [2 0] setfontjustify [1 0] setfontjustify [0 0]

setfontjustify [2 1] setfontjustify [1 1] setfontjustify [0 1]

setfontjustify [2 2] setfontjustify [1 2] setfontjustify [0 2]

fontjustify
Returns a list that represents the text alignment around the turtle when you write on drawing area with the
primtive label

fontname
Returns a list with two elements. The �rst is the number corresponding to the font used when you write on
the screen with the primitive label. The last element is a list which contains the name of the font.

setseparation, setsep n
Determines the ratio between the graphic screen and the history zone. The number n must be included be-
tween 0 and 1. When n equals 1 the drawing zone uses all the space, when n equals 0, the history zone uses
all the window.

separation,sep
Provides the current ratio between the drawing zone and the history zone.

grid a b
Draw a grid. Each square has dimension a and b.

stopgrid
Erase grid.

setgridcolor color
Allow the user to choose a custom color for the grid. Eg: setgridcolor red

gridcolor
Returns current grid color.

grid?
Return true if the grid is drawn, else return false.

axis n

A.1. MOVEMENT OF THE TURTLE; PEN AND COLOR SETTINGS 93

Draw horizontal and vertical axis. The distance between two divisions is n steps.

xaxis n
Draw only horizontal axis. The distance between two divisions is n steps.

yaxis n
Draw only vertical axis. The distance between two divisions is n steps.

stopaxis
Erase both axis.

setaxiscolor, sac color
Allow the user to choose a custom color for the axis. Eg: setaxiscolor green

axiscolor
Returns current axis color.

xaxis?
Return true if the horizontal axis is drawn, else return false.

yaxis?
Return true if the vertical axis is drawn, else return false.

setzoom a
Zoom on the drawing screen. In fact, the number a represents the scale regarding to the original image size
�xed in the preference panel.

zoom
Returns the current zoom scaling.

labellength arg
Returns the length that needs the word or the list to be displayed on the screen with the primitive label

using the current font.

zonesize
Returns a list which contains four numbers. These integers are the coordinates of the left upper corner of
the drawing zone and the coordinates for the right bottom corner.

message, msg list
Shows the message in list in a dialog box, the program stops until the user has clicked the button "OK"

A.1.1 A word on colors

Colors are de�ned in XLogo with a list of three numbers [r g b] between 0 and 255. The number r is the
red component, b the blue and g the green. Xlogo has 16 prede�ned colours: you can access with their rgb
list, with a number, or with a primitive. look at this table:

94 APPENDIX A. LIST OF PRIMITIVES

Number Primitives [R G B] Color

0 black [0 0 0]

1 red [255 0 0]

2 green [0 255 0]

3 yellow [255 255 0]

4 blue [0 0 255]

5 magenta [255 0 255]

6 cyan [0 255 255]

7 white [255 255 255]

8 gray [128 128 128]

9 lightgray [192 192 192]

10 darkred [128 0 0]

11 darkgreen [0 128 0]

12 darkblue [0 0 128]

13 orange [255 200 0]

14 pink [255 175 175]

15 purple [128 0 255]

16 brown [153 102 0]

These three instructions are the same

setsc orange

setsc 13

setsc [255 200 0]

A.1.2 Animation Mode

There are two primitives which allow execution of commands witout the turtle displaying them: animation
and stopanimation

anim, animation
You go into animation mode. The turtle does not draw on the screen anymore but follows the stored line.
To update the drawing on the screen, use the primitive repaint. It is very useful to create an animation or
to draw a line faster.

stopanim, stopanimation
Animation mode is �nished: you switch back to classical mode. You can see the turtle's moves on screen.

A.1. MOVEMENT OF THE TURTLE; PEN AND COLOR SETTINGS 95

repaint
In animation mode, updates the screen: the image on the drawing area is updated.

To identify animation mode, a camera icon appears in the history window. If you click on the icon, the
animation mode will stop. It's equivalent to the primitive stopanimation.

A.1.3 Writing in the text area with the primitive print or write

This table sets out the primitives which allow the properties of the text area to be adjusted. Primitive that
control the color and the size of the history area, are available only for the primitives print or write

cleartext, ct
Empties the area containing the command and comment history.

pr, print arg
Shows the argument speci�ed in the history zone.

print "abcd --------> abcd

pr [1 2 3 4] ----> 1 2 3 4

pr 4 ------------> 4

write arg1
The same as for the print primitive but doesn't go back to the start of the line.

setTextSize, setTS n
De�ne the size of the font in the command history. Only valid with the primtive print

textsize, ts
Returns the size of the font with primitive print.

setTextColor, setTC color
De�ne the color of the font in command history. Valid only with the primitive . See p.93.

TextColor, tc
Returns the color of the font with the primitive print in the command history.

setTextName, setTN n
Select the font number n when you write on the the command history with the primitive print. You can
�nd the link between number and font in Menu→Options→Preferences→Tab Font.

TextName, tn
Returns a list with two elements. The �rst is the number corresponding to the font used when you write on
the command history with the primitive print. The last element is a list which contains the name of the font.

setstyle, setsty arg
Set the format of the text in the text area. You can choose between seven styles: none, bold, italic,

strike, underline, superscript, subscript. If you want several styles together, write them in a list.

96 APPENDIX A. LIST OF PRIMITIVES

A few examples for formatting text:

setstyle [bold underline] print "hello

hello
ssty "strike write [strike] ssty "italic write "\ x ssty "superscript print 2

strike x2

sty, style
Returns a list which contains the di�erents styles used for the primitive print.

A.2 Turtle and 3D

>From version 0.9.92, our turtle can leave its plane and move into 3D space. To switch to this mode, we use
the primitive perspective. Welcome to a 3D world!

A.2.1 The perspective projection

To represent a 3D space on a 2D plane, XLogo uses a projection perspective. A camera looks at the 3D
scene, where the image from the projection screen is displaying. Here is a little scheme to explain this:

Some primitives allow us to set the camera position. The screen projection is half the distance from the
camera.

A.2.2 Understanding orientation in a 3D World

In a 2D plane, the turtle's orientation was only de�ned by its heading. In a 3D world, the turtle's orientation
is given by 3 angles:

• Roll: The turtle's angle around axis (Oy)

• Pitch: The turtle's angle around axis (Ox)

• Heading: The turtle's angle around axis (Oz)

In fact, to move itself in the 3D World, the turtle is very similar to an aircraft. Here is a little illustration
which represents these 3 values:

A.2. TURTLE AND 3D 97

Roll Pitch Heading

It seems quite complex at �rst, but you will see that a lot of things stay very similar to moving in a
2D plane. Here are the basic primitives for moving in the 3D world:

forward, fd, back, bk n
Same behaviour as in 2D plane.

right, rt, left, lt n
Same behaviour as in 2D plane.

rr, rightroll n
The turtle turns n degrees to the right around its longitudinal axis.

lr, leftroll n
The turtle turns n degrees to the left around its longitudinal axis.

up, uppitch n
The turtle goes n degrees up around its transversal axis.

down, downpitch n
The turtle goes n degrees down around its transversal axis.

In the 2D plane, when we want to draw a square of side 200 steps, we write:

repeat 4[fd 200 rt 90]

These instructions are still available in the 3D world, where the square is drawn in perspective mode. If the
turtle goes down 90 degrees, we can draw another square and we obtain:

cs

repeat 4[fd 200 rt 90]

down 90

repeat 4[fd 200 rt 90]

You just have to try some examples to understand these orientations and become an expert!
You must understand that the 3 rotation primitives are linked together, for example try this:

cs

leftroll 90 up 90 rightroll 90

The turtles movement is equivalent to
left 90 (You can try with your hand

simulating the turtle if you don't
understand)

98 APPENDIX A. LIST OF PRIMITIVES

A.2.3 Primitives available in 2D mode and 3D mode

The following primitives are available in 2D plane or in 3D world. The only di�erence is the arguments
received by the primitives. For example, the primitive setpos or setposition is still waiting for a list as an
argument but now, the list must contain three numbers (x; y; z) which represent the three point coordinates.
Here are all those primitives:

circle arc home towards

distance setpos, setposition setx sety

setheading label labellength dot

pos, position heading

Primitives only available in 3D mode

setxyz x y z
This primitive moves the turtle to the chosen point. This primitive is waiting for three arguments represent-
ing the point's coordinates. setxyz is very similar to setpos but the coordinates are not written into a list.
Example, setxyz -100 200 50: move the turtle to the point x = −100; y = 200; z = 50

setz z
This primitive moves the turtle to the point with the valid value z. setz is waiting for one number as an
argument. This primitive is comparable to setx or sety.

setorientation list
Set the turtle's orientation. This primitive waits for a list which contains 3 numbers, the roll, the pitch and
the heading.
Example, setorientation [100 0 58]: the turtle has roll: 100 degrees, pitch: 0 degree and heading: 58
degrees.

orientation
Returns the turtle's orientation in a list which contains: [roll pitch heading]. Note the number order,
if for example, the orientation value is [100 20 90], this means that if you want the same orientation starting
from the origin position (after a clearscreen instruction), you'll have to write the following sequence:

rightroll 100 up 20 right 90

If you inverse the instruction's order, you don't obtain the valid orientation!

setroll n
The turtle turns around its longitudinal axis to the chosen roll angle.

roll
Returns the current roll value.

setpitch n
The turtle turns around its transversal axis to the chosen pitch angle.

pitch
Returns the current pitch value.

A.2. TURTLE AND 3D 99

A.2.4 3D Viewer

A 3D Viewer is included in XLogo, it allows you to visualize your drawing in 3D. This module uses the
JAVA3D library, so it's necessary to have java3D fully installed.

Here are the rules to use the 3D Viewer:
When we create a geometric �gure on the drawing area, we have to indicate to the 3D Viewer which shapes
we want to record for future visualization. It's possible to record polygons (surfaces), lines, points or text.
To use this feature, here are the primitives:

polystart
The following turtle's moves are saved to create a polygon.

polyend
Since the last polystart call, the turtle has gone through several vertices. This new polygon is recorded, its
color is de�ned by all vertices color. This primitive �nalizes the polygon.

linestart
The following turtle's moves are saved to create a strip line.

lineend
Since the last linestart call, the turtle has gone through several vertices. This new line is recorded, its
color is de�ned by all vertices color. This primitive �nalizes the strip line.

pointstart
The following turtle's moves are saved to create a point set.

pointend
This primitive �nalizes the point set.

textstart
Each time the user displays text on the drawing area with the primitive label, it will be recorded and then
displayed by the 3D Viewer.

textend
End of text recording.

view3d polyview
Launch the 3D viewer, all recorded objects are drawn on this new window. You have control of the camera
scene:

• You can rotate the scene by clicking on the mouse's left button.

• You can translate the scene by clicking on the mouse's right button.

• You can zoom the scene with the mouse's wheel button.

A.2.5 Drawing a cube

All faces are 400 steps square. Here is the program:

100 APPENDIX A. LIST OF PRIMITIVES

to square

we record the vertice square

polystart repeat 4[forward 400 right 90] polyend

end

to simpleCube

yellow cube

clearscreen perspective setpencolor yellow

lateral faces

repeat 4[square penup right 90 forward 400 left 90 rightroll 90 pendown]

bottom face

downpitch 90 square uppitch 90

upper face

forward 400 downpitch 90 square

visualization

view3d

end

We launch with the command: simpleCube:

When we replace in the procedure square, polystart with linestart and polyend with lineend

A.2. TURTLE AND 3D 101

If we had used pointstart and pointend instead of linestart and lineend, we would see on screen only
the eight cube vertices. These primitives are very useful to display the point set in 3D Space.

A.2.6 Lighting the scene

You can specify four lights in your 3D scene. By default, the main 3D scene has only two ponctual lights
enabled. Click on one of the 4 button lights in the 3D modeler, and this dialog box appears:

Several light type are available:

• Ambient light: uniform light, you just have to specify its color.

• Unidirectional light: di�uses according to a constant direction. It's the same case as a ponctual light
when the source is very very far from the observer. For example, the case of sun.

• Ponctual light: This light has a speci�ed position. This light is similar to a headlight.

• Spot Light: it is a ponctual light but the light is only displayed in a light cone. You have to specify a
value angle for this cone.

The best thing is to play with those lights to understand how they work!

A.2.7 Fog e�ect

You can add a fog e�ect on the main 3d scene. Click on the cloud button in the 3D scene and this dialog
box appears.

102 APPENDIX A. LIST OF PRIMITIVES

Two fogs are available:

• Progressive fog: this fog's opactity is progressive. You have to specify two parameters:

� The distance from which fog begins.

� The disatnce from which opacity is full

• uniform fog: This fog is uniform on the whole scene. You just have to specify the fog's density.

Example with a progressive fog:

A.3 Arithmetical and logical operations

This is a list of number-related commands:

sum x y
Adds the two numbers x and y, and returns the result
Eg: sum 40 60 returns 100

A.3. ARITHMETICAL AND LOGICAL OPERATIONS 103

di�erence x y
Returns x− y.
Eg: difference 100 20 returns 80

minus x
Returns the negative of x.
Eg: minus 5 returns -5. See the note at the end of this table.

product x y
Returns the result of multiplying x by y.

div, divide x y
Returns the result of dividing x by y
div 3 6 returns 0.5

quotient x y
Returns quotient x by y
quotient 15 6 returns 2

rem, remainder x y
Returns the remainder after dividing x by y.

mod modulo x y
Returns x modulo y.

x y remainder x y modulo x y

14 5 4 4
−14 5 −4 1
14 −5 4 −1
−14 −5 −4 −4

This table shows the di�érence between modulo x y and remainder x y.

round, rnd x
Returns the nearest whole number to the number x.
round 6.4 returns 6

integer, int x
Returns the integer part of the number x. integer 8.9 returns 8
integer 6.8 returns 6

power x n
Returns x raised to the power of n.
power 3 2 returns 9

squareroot, sqrt x
Returns the square root.

log x

104 APPENDIX A. LIST OF PRIMITIVES

Returns the logarithm of x.

exp x
Returns the exponential of x.

log10 x
Returns the decimal logarithm of x.

sine, sin x

Returns the sine of x. (x is expressed in degrees)

cosine, cos x

Returns the cosine of x. (x is expressed in degrees)

tangent, tan x

Returns the tangent of x. (x is expressed in degrees)

arccosine, acos x

Returns the angle in range [0-180] which cosine is x.

arcsine, asin x
Returns the angle which sine is x.

arctangent, atan x
Returns the angle which tangent is x.

pi
Returns the number π (3.141592653589793)

random, ran n
Returns a random integer between 0 and n− 1.

alea
Returns a random number between 0 and 1.

absolute, abs x

Returns the absolute value (its numerical value without regard to its sign) of a number.

setdigits n
Sets the number of digits, it sets the precision while calculating. Some more informations:

• By default, 16 digits are allowed.

• If n is negative, the default mode is choosen.

• If n is esual to 0, all numbers are rounded to the unit.

This primitive is useful when you want to calculate with a high precision. Have a look at the example with
number π p.43.

A.4. OPERATIONS ON LISTS 105

digits
Returns the number of digits allowed while calculating. By default, this value is -1.
Important : Be careful with those primitives which require two parameters!

Eg:
setxy a b If b is negative
For example, setxy 200 -10

The Logo interpreter will carry out the operation 200-10 (ie it will subtract 10 from 200). It will there-
fore conclude that there is only one parameter (190) when it requires two, and will generate an error message.
To avoid this type of problem, use the primitive �minus� to specify the negative number - setxy 200 minus

10.
This is a list of logical operators:

or b1 b2
Returns true if b1 or b2 is true, otherwise returns false

and b1 b2
Returns true if b1 and b2 is true, otherwise returns false

not b1
Returns the negation of b1.

• If b1 is true, returns false.

• If b1 is false, returns true.

A.4 Operations on lists

word word1 word2
Concatenates the two words word1 and word2.
Eg: pr word "a 1 returns a1

list arg1 arg2
Returns a list composed of arg1 and arg2.
For example, list 3 6 returns [3 6].
list �a �list returns [a list]

sentence, se arg1 arg2
Returns a list composed of arg1 and arg2. If arg1 or arg2 is a list, then each element of arg1 and arg2 will
become an element of the resulting list (square brackets are deleted).
Eg: se [4 3] �hello returns [4 3 hello]
se [how are] �things returns [how are things]

fput arg1 list2
Insert arg1 in the �rst slot in list2.
Eg : fput �cocoa [2] returns [cocoa 2]

lput arg1 list2
Insert arg1 in the last slot of list2.

106 APPENDIX A. LIST OF PRIMITIVES

Eg: lput 5 [7 9 5] returns [7 9 5 5]

reverse list
Reverse the order of elements in list.
reverse [1 2 3] returns [3 2 1]

pick arg1

• If arg1 is a word, returns one of the letters of arg1 at random.

• If arg1 is a list, returns one of the elements of arg1 at random.

remove arg1 list2
Remove element arg1 from list list2 if it occurs there.
Eg: remove 2 [1 2 3 4 2 6] returns [1 3 4 6]

item n arg2

• If arg2 is a word, returns the letter numbered n from the word (1 represents the �rst letter).

• If arg2 is a list, returns the element numbered n from the list.

butlast, bl arg1

• If arg1 is a list, returns the whole list except for its last element.

• If arg1 is a word, returns the word minus its last letter.

but�rst, bf arg1

• If arg1 is a list, returns the whole list except for its �rst element.

• If arg1 is a word, returns the word minus its �rst letter.

last arg1

• If arg1 is a list, returns the last element of the list.

• If arg1 is a word,returns the last letter of the word.

�rst arg1

• If arg1 is a list, returns the �rst element of the list.

• If arg1 is a word,returns the �rst letter of the word.

A.5. BOOLEANS 107

setitem, replace list1 n arg3
Replace the element number n in the list list1, by the word or the list arg3.
replace [a b c] 2 8 �-> [a 8 c]

additem list1 n arg3
Adds at the position n in the list list1 the word or the list arg3
additem [a b c] 2 8 �-> [a 8 b c]

count arg1

• If arg1 is a word, returns the number of letters in arg1.

• If arg1 is a list, returns the number of elements in arg1.

unicode word1
returns the Unicode value of the character word1.
pr unicode "A returns 65

character,char n
Returns the character which Unicode value is n.
pr character 65 returns "A

A.5 Booleans

A boolean is a primitive which returns the word �true or the word �false. These primitives terminate in a
question-mark.

true
Returns "true.

false
Returns "false.

word? arg1
Returns true if arg1 is a word, false otherwise.

number? arg1
Returns true if arg1 is a number, false otherwise.

integer? arg1
returns true if arg1 is a whole number, false otherwise.

list? arg1
Returns true if arg1 is a list, false otherwise.

empty? arg1
Returns true if arg1 is an empty word or an empty list, false otherwise.

108 APPENDIX A. LIST OF PRIMITIVES

equal? arg1 arg2
Returns true if arg1 and arg2 are equal, false otherwise.

before? word1 word2
Returns true if word1 is before word2 in terms of alphabetical order, false otherwise.

member? word1 arg2

• If arg2 is a list, speci�es if word1 is an element of arg2.

• If arg2 is a word, speci�es if word1 is a letter in arg2.

member word1 arg2

• If arg2 is a list, look for the element word1 in this list. There are two possible outcomes:

� If word1 is in arg2, returns a sublist containing all list elements from the �rst instance of word1
in arg2.

� If word1 is not in arg2, returns the word false.

• If arg2 is a word, look for the character word1 in this word. There are two possibilities:

� If word1 is in arg2, returns the latter part of the word, starting from word1.

� Otherwise, return the word false.

member �o �cocoa return ocoa
member 3 [1 2 3 4] returns [3 4]

pendown?, pd
Returns the word true is the pen is down, false otherwise.

visible?
Returns the word true if the turtle is visible, false otherwise.

primitive?, prim? word1
Returns true if the word is an XLogoprimitive, false otherwise.

procedure?, proc? word1
Returns true if the word is a procedure de�ned by the user, false otherwise.

var? variable? word1
Return true if :a is a variable, false otherwise.

A.6 Testing an expression with the primitive if

As in all programming languages, Logo allows you to check if a condition is satis�ed and then to execute the
desired code if it's true or false.
With the primitive if you can realize those tests.

A.7. THE WORKSPACE 109

if expression_test list1 list2
if expression_test is true, the instructions included in list1 are executed. Else, if expression_test is
false, the instructions in list2 are executed. This second list is optional.

Examples:

• if 1+2=3[print "true][print "false]

• if (first "XLOGO)="Y [fd 100 rt 90] [pr [XLOGO starts with a X!]]

• if (3*4)=6+6 [pr 12]

Important: When the result of the �rst predicate is equal to false, the primitive if looks for a second list,
I mean an expression starting with a square bracket. In some very rare cases, it can't be done, and you'll
have to use the primitive ifelse . For example:

We affect two lists in variables a and b

make "a [print true]

make "b [print false]

First test with the primitive if--> The second list can't be evaluated.

if 1=2 :a :b

What to do with [print false]?

Second test with the primitive ifelse --> success.

ifelse 1=2 :a :b

false

A.7 The workspace

The workspace contains all the elements de�ned by the user. These are:

• The procedures

• The variables

• The property lists

A.7.1 Procedures

Procedures are a kind of �program�. When a procedure is called, the instructions in the body of the procedure
are executed. A procedure is de�ned with the keyword to.

to name_of_procedure :v1 :v2 :v3 [:v4] [:v5]

Body of the procedure

end

• name_of_procedure is the name given to the procedure.

• :v1 :v2 :v3 stand for the variables used internally in this procedure. (local variables).

• [:v4 ...], [:v5 ...] are optional variables that we could add into the procedure (go below for more
explanations).

110 APPENDIX A. LIST OF PRIMITIVES

• Body of the procedure represents the commands to be executed when this procedure is called.

Eg:

to square :s

repeat 4[fd :s rt 90]

end

The procedure is called square and takes a parameter called s. square 100 will therefore produce a
square, the length of whose sides is 100. (See the examples of procedures at the end of this manual.)

Since version 0.7c, it is possible to insert comments in the code preceded by #.

to square :s

#this procedure allows a square to be drawn whose side equals :s.

repeat 4[fd :s rt 90] # handy, isn't it?

end

Optional variables

It's now possible to add optional arguments to XLogo's procedure. Look at the example below:

to poly :n [:l 10]

repeat :n [fd :l rt 360/:n]

end

this command will draw a regular polygon with

20 sides of 10

poly 20

During the interpretation, the variable :l has been replaced by its default value, I mean 10. If I we want
to modify this value, we have to call the procedure poly between parenthesis to notice to the interpreter
that we're going to use optional arguments.

This command will draw a regular polygon with 20

sides. Every side is 5 long.

(poly 20 5)

This is a square with each side equal to 100

(poly 4 100)

Primitive 'trace'

It is possible to follow the working of a program or have it show the procedures which are working. This
mode can also show if the procedures provide arguments thanks to the primitive output.

trace
Activate trace mode

stoptrace
stoptrace will disactivate the trace mode.

A small example with the factorial (see page 42).

A.7. THE WORKSPACE 111

trace pr fac 4

fac 4

fac 3

fac 2

fac 1

fac returns 1

fac returns 2

fac returns 6

fac returns 24

24

A.7.2 Concept of variables

There are two kinds of variables:

• Global variables: these are always accessible from any location in the program.

• Local variables: these are only accessible in the procedure where they are de�ned.

In this version of Logo, local variables are not accessible in sub-procedures. At the end of the procedure,
the local variables are deleted.

make word1 arg2
If the local variable word1 exists, assigns it the value arg2. If not, creates a global variable word1 and assigns
it the value arg2.
Eg: make �a 100 assigns the value 100 to the variable a

local arg1
Creates a variable called arg1. If arg1 is a list, creates all variables contained in the list. Note, this is not
initialised. To assign it a value, see make.

localmake word1 arg2
Creates a new local variable and assigns it the value arg2.

de�ne, def word1 list1
De�ne a new procedure called word1.
list1 contains several lists:

• The �rst list contains all variables and optional variables.

• Then, each following list represents a procedure line.

def "polygon [[nb length] [repeat :nb[fd :length rt 360/:nb]]

�-> this command de�nes a procedure called polygon with two variables (:nb and :length). This proce-
dure draws a regular polygon, we can choose the number of sides and their length.

text word1
Returns all information about the procedure called word1. It gives a list which contains several lists.

• The �rst list contains all variables and optional variables about the procedure word1.

• Then, each following list represents a procedure line.

112 APPENDIX A. LIST OF PRIMITIVES

This primitive is of course associated to define.

thing word1
returns the value of the variable word1. thing "a is similar to :a

eraseprocedure, erp arg1
Deletes the procedure calling arg1 or all procedures that contains the list arg1.

erasevariable, erv arg1
Deletes the variable arg1 or all variables that contains the list arg1.

erasepropertylist, erpl arg1
Deletes the property list arg1 or all property lists that contains the list arg1.

erall, eraseall
Deletes all the variables, property lists and procedures currently running.

bye
Quit XLogo.

procs, procedures
Returns a list which contains all the procedures currently de�ned.

variables vars
Returns a list which contains all the de�ned variables.

pls, propertylists
Returns a list which contains all the property lists currently de�ned.

primitives
Enumerates all primitives for the current language.

contents
Returns a list which contains 3 lists. The �rst list contains all procedures names, the second all variables
names and the last all propert lists names.

run list1
Executes the list of instructions contained in list1

externalcommand list1
Run a system command from XLogo. list1 must contain several lists which represent any word constituing
the command. Some few examples:

externalcommand [[gedit][/home/xlogo/file.txt]]

Run the application gedit and loads the �le /home/xlogo/file.txt (Linux)

externalcommand [[notepad][C : /file.txt]]
Run the application notepad and loads the �le called C : /file.txt (Windows)

A.7. THE WORKSPACE 113

This syntax a bit ... particular allow to specify white spaces in �le path.

A.7.3 Property Lists

Now, you can de�ne property lists with XLogo. Each list has a speci�c name and contains some key-value
couples.

For example, we can consider a property list named �car�. It should contain the key �color� associated
to the value �red�, or the key �type� and the value �4x4�.

To handle these lists, we can use the following primitives:

pprop putproperty listname key value
Adds a property to the property list named listname. value will be accessible with the key key. If no property
list named listname exists, then it will be created.

gprop getproperty listname key
Returns the value associated with the key key in the property list called listname. If this property list doesn't
exist or if there isn't any valid key, it returns an empty list.

rprop removeproperty listname key
Removes the corresponding couple key-value in the property list listname.

plist propertylist listname
Displays all key-value couples contained in the property list called listname.

Let's return to the property list called �car�.

Filling property list

pprop "car "color "red

pprop "car "type "4x4

pprop "car "vendor "Citroën

Display one value

print gprop "car "color

red

Display all elements

print plist "car

color red type 4x4 vendor Citroën

�les
By default, lists the contents of the directory. (Equivalent to the ls command for Linux users and the dir
command for DOS users)

loadimage, li list
Load the image �le contained in the list. Its upper left corner will be placed at the turtle's location. The
only supported formats are .png and .jpg. The path speci�ed must be relative to the current folder. Eg:
setdir "C:\\my_images_dir loadimage "turtle.jpg

saveimage word list
Saves the drawing area image in �le speci�ed with word in the current directory.
The supported format are png and jpg. If you don't specify any extension, the default format is png.

114 APPENDIX A. LIST OF PRIMITIVES

The list contains four numbers [XminYminXmaxYmax] which allow to specify the two corners if you want a
zone selection. An empty list is equivalent to the whole image. An example:

In the editor

to test

repeat 20 [

forward 30 right 18

Save all images as 1.png, 2.png ... 20.png

saveimage word repcount ".png [-50 150 200 -150]

]

end

In the command line:

test

clearscreen hideturtle repeat 20 [loadimage word repcount ".png]

And you create a little animation!

setdirectory, setdir word1
Speci�es the current directory. The path must be absolute. The directory must be speci�ed with a word.

changedirectory, cd word1
Allows to choose the current directory. The path is related to the current directory. You can use the '..'
notation to refer to the parent directory.

directory, dir
Gives the current directory. The default is the user's home directory, ie /home/your_login for Linux users,
C:\WINDOWS for Windows users.

save word1 list2
A good example to explain this: save "test.lgo [proc1 proc2 proc3] saves in the �le test.lgo in the
current directory the procedues proc1, proc2 et proc3. If the extension .lgo is omitted, it is added by
default. word1 gives a relative path starting from the current directory. This command will not work with
an absolute path.

saved word1
saved "test.lgo saves in the �le test.lgo in the current directory the collection of procedures currently
de�ned. If the extension .lgo is omitted, it is added by default. word1 gives a relative path starting from the
current directory. This command will not work with an absolute path.

ed, edit arg1
Open the editor with all the procedures speci�ed in the list arg1 or in the word arg1.

edall, editall
Open the editor with all the currently de�ned procedures.

load word1
Opens and reads the �le word1. For example, to delete all the de�ned procedures and load the �le test.lgo,
you would use: efns load "test.lgo. word1 gives a relative path starting from the current directory. This
command will not work with an absolute path.

A.7. THE WORKSPACE 115

open�ow id �le
When you want to read or write in a �le, you must �rst open a �ow toward this �le. The argument �le

must be the name of the �le you want. You must use a phrase to show the name of the �le in the current
directory. The id argument is the number given to this �ux so as to identify it.

list�ow
Shows the list of the various open �uxes with their identi�ers.

readline�ow id
Opens the �ow which identi�er corresponds to the number used as argument and then reads a line in this �le.

readchar�ow id
Opens the �ux which identi�er corresponds to the number used as argument and then reads a character in
this �le. This primitive sends back a number representing the value of the character (similar to readchar).

writeline�ow id list
Writes the text line included in list at the beginning of the �le identi�ed thanks to the identi�er id. Be care-
ful, the writing is e�ective only after the �ow has been closed by the primitive closeflow.

appendline�ow id list
Writes the text line included in list at the end of the �le identi�ed thanks to the identi�er id. Be careful,
the writing is e�ective only after the �ux has been closed by the primitive closeflow.

close�ow id
Closes the �ux when its identi�er number is written as argument.

end�ow? id
Sends back "true if it is the end of the �le. Otherwise sends back "false.

Here is an example of the use of primitives allowing to read and write in a �le. I will give this example
in a Windows-type framework. Other users should be able to adapt the following example.

The aim of this �le is to create the �le c:\example containing the following three lines:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Abcdefghijklmnopqrstuvwxyz
0123456789

You open a flow towards the desired file. This flow is given the number 2

setdirectory "c:\\

openflow 2 "example

You type the desired lines

writelineflow 2 [abcdefghijklmnopqrstuvwxyz]

writelineflow 2 [abcdefghijklmnopqrstuvwxyz]

writelineflow 2 [0123456789]

You close the flux to end the writing

closeflow 2

Now, you can see the writing procedure went alright:

You open a flow towards the file you want to read. This flow is given the number 0

116 APPENDIX A. LIST OF PRIMITIVES

openflow 0 "c:\\example

You read the one after the other the different lines from the file

pr readlineflow 0

pr readlineflow 0

pr readlineflow 0

You close the flow

closeflow 0

if you wish to add the line 'Great !':

setdirectory "c:\\

openflow 1 "example]

appendlineflow 1 [Great!]

closeflow 1

A.8 Advanced �ll function:

Three primitives allow to colour a �gure. The primitive fill, fillzone and fillpolygon. .

A.8.1 fill and fillzone

These primitives allow a shape to be coloured in. These primitives can be compared with the '�ll' feature
available in many image-retouching programs. This feature can extend to the margins of the design area.
There are two rules that must be adhered to in order to use this primitive correctly:

1. The pen must be lowered (pd).

2. The turtle must not be located on a pixel of the colour with which the shape is to be �lled. (If you
want to colour things red, it can't be sitting on red...)

Let's take a look at an example to see the di�erence between fill and fillzone:
The pixel under the turtle is white right now. The primitive fill will colour all the neighbouring white

Figure A.1: At the beginning

pixels with the current pen colour. If for example, you type: setpc 1 fill. Let's now go back to the �rst
case, if the pen colour of the turtle is black, the primitive fillzone colours all pixels until it encounters the
current colour (here black).

This is a good example of the use of this primitive:

to halfcirc :c

draw a half-circle of diameter :c

repeat 180 [fd :c*tan 0.5 rt 1]

fd :c*tan 0.5

rt 90 fd :c

A.8. ADVANCED FILL FUNCTION: 117

Figure A.2: With the primitive fill

Figure A.3: With the primitive fillzone, if you type: setpc 0 fillzone

end

to tan :angle

renders the tangent of the angle

output (sin :angle)/cos :angle

end

to rainbow :c

if :c<100 [stop]

halfcirc :c rt 180 fd 20 lt 90

rainbow :c-40

end

to dep

pu rt 90 fd 20 lt 90 pd

end

to arc

ht rainbow 400 pe lt 90 fd 20 bk 120 ppt pu rt 90 fd 20 pd

setpc 0 fill dep

setpc 1 fill dep

setpc 2 fill dep

setpc 3 fill dep

setpc 4 fill dep

setpc 5 fill dep

setpc 6 fill dep

end

118 APPENDIX A. LIST OF PRIMITIVES

Figure A.4: Arc-in-LOGO

A.8.2 Primitive fillpolygon

�llpolygon list
It �lled a shape using a series of triangles, so every time you drew a line the next triangle is �lled. The list
contains all instructions needed to draw the shape to �ll.

• A �rst example to �ll a square:

cs fillpolygon [repeat 4 [forward 100 rt 90]]

Step 1 Step 2 Step 3 Step 4

• A second example that draws a �ve pointed star:

repeat 5 [forward 100 fillpolygon [back 100 right 144 forward 100] back 100 left 72]

Step 1 Step 2 Step 3 Step 4 Step 5

A.9. BREAK COMMANDS 119

A.9 Break commands

XLogo has three break commands: stop, stopall and op, output.

stop
stop can have two results.

• If it is included in a repeat or while loop, the program jumps out of the loop there and then.

• If it occurs in a procedure, the program breaks out of the procedure immediately.

stopall
The program breaks out of all procedures immediately and stops.

output, op
output, op allows breaking out of a procedure with a value to be returned.

A.10 Multiturtle Mode

It's possible to have several active turtles on the screen. By default, on Xlogo startup, only one turtle is
available. Its number is 0. If you want to "create" a new turtle, you can use the primitive setturtle followed
by the number of the turtle. To prevent obstruction, the turtle is created on the origin and is invisible (you
must use showturtle to show it). Then, the new turtle is the active turtle, it obeys all classic primitives
while you don't change the active turtle with setturtle. The maximum number of available turtles can be
set in menu Options - Preferences - Tab options.

Here are the primitives for the multiturtle mode:

setturtle, sturtle n
The turtle numero n is now the active turtle. By default on Xlogo startup the active turtle is the number 0.

turtle
Returns the number of the active turtle.

turtles
Returns a list which contains all the numero af the turtles actually on the screen.

eraseturtle, ert n
Delete the turtle number n

setTM, setturtlesmax n
Set the maximum number of turtles for multiturtle mode.

tm, turtlesmax
Returns the maximum number of turtles for multiturtle mode.

120 APPENDIX A. LIST OF PRIMITIVES

A.11 Play music

A.11.1 Playing music using MIDI synthetizer

sequence, seq list
Put in memory the sequence in the list. Read after this table how to write a sequence.

play
Play the sequence in memory.

instrument, instr
Returns the number that corresponds to the selected instrument.

setinstrument, sinstr n
The selected instrument is now the instrument number n. You can see the list of all available instruments
in menu Options-Preferences-Tab Sound.

indexsequence, indseq
Returns where the cursor is located in the current sequence.

setindexsequence, sindseq n
Put the cursor to index n in the current sequence in memory.

deletesequence, delseq
Delete the current sequence in memory.

If you want to play music, you must put the notes in memory in a list called sequence. To create the
sequence, you can use the primitive seq or sequence.

These are the rules to follow to create a valid sequence:
do re mi fa sol la si : the usual notes of the �rst octave.
To make a sharp re, we note re +

To make a �at re, we note re -

If you want to go up or down and octave, we use symbol ":" followed by + or -. E.g. After :++ in the
sequence, all the notes will be played two octaves up (two ++) .
By default, notes are played for a duration of one. If you want to increase or decrease, you write the number
that corresponds to the duration of notes. E.g. seq [sol 0.5 la si]. will play sol with a duration 1 and
la si with a duration 0.5 (twic as fast).
If you want to play this example:

to tabac

create the sequence of notes

A.12. LOOPS: 121

seq [0.5 sol la si sol 1 la 0.5 la si 1 :+ do do :- si si 0.5 sol la si sol

1 la 0.5 la si 1 :+ do re 2 :- sol]

seq [:+ 1 re 0.5 re do 1 :- si 0.5 la si 1 :+ do re 2 :- la]

seq [:+ 1 re 0.5 re do 1 :- si 0.5 la si 1 :+ do re 2 :- la]

seq [0.5 sol la si sol 1 la 0.5 la si 1 :+ do do :- si si 0.5 sol la si sol

1 la 0.5 la si 1 :+ do re 2 :- sol]

end

To hear music, launch the command: tabac play

Now, we can see/hear an interesting application of the primitive sindseq. Write those commands:

delseq # Delete the sequence in memory

tabac # Put in memory the notes

sindseq 2 # Put the cursor on the second "la".

tabac # Put in memory the same sequence but translated of 2.

play # Great!

You can choose your instrument with the primitive sinstr or with the menu Options-Preferences-Tab
sound. You will �nd the list of all available instruments with their associated number.

A.11.2 Playing MP3

mp3play word1
Reads the mp3 �le word1. This �le has to be located in the current folder, you can access a network path
too. Here are some examples:
mp3play file.mp3

mp3play http://website.com/file.mp3

mp3stop
Stops to play the current mp3 �le.

A.12 Loops:

XLOGO has seven primitives which allow the construction of loops: repeat, for , while, foreach, forever,
repeatwhile and repeatuntil.

A.12.1 A loop with repeat

repeat n list_of_commands
n is a whole number and list_of_commands is a list containing the commands to execute. The LOGO in-
terpreter will implement the commands in the list n times: that avoids the need to copy the same command
n times!
Eg:

repeat 4 [forward 100 left 90] # A square of side 100

repeat 6 [forward 100 left 60] # A hexagon of side 100

repeat 360 [forward 2 left 1] # A uh... 360-gon of side 2

In short, almost a circle!

repcount

122 APPENDIX A. LIST OF PRIMITIVES

Included in a repeat loop. Its an internal variable. Returns the number of the running iteration. (The �rst
iteration is number 1).

repeat 3 [pr repcount]

1

2

3

A.12.2 A loop with for

for list1 list2
for assigns to a variable some successive values in a �xed range with a choosen increment.
list1 contains three arguments: the variable name, the start value, the end value.
A fourth argument is optionnal representing the increment (the step between two successive values). Default
value is 1. Here are a few examples:

for [i 1 4][pr :i*2]

2

4

6

8

Now, i is going from 7 to 2 falling down of 1.5 each times

Look at the negative increment

Then, Displays its square.

for [i 7 2 -1.5][pr list :i power :i 2]

7 49

5.5 30.25

4 16

2.5 6.25

A.12.3 A loop with while

while list_to_evaluate list_of_commands
list_to_evaluate is a list containing an instruction set which can be evaluated as a boolean. list_of_commands

is a list containing the commands to execute. The LOGO interpreter will continue implementing the
list_of_commands so long as the list_to_evaluate is returned as true.
Eg:

while ["true] [rt 1] # The turtle will turn around

An example which allows us to spell the alphabet in reverse

make "list "abcdefghijklmnopqrstuvwxyz

while [not empty? :list] [pr last :list make "list butlast :list]

A.12.4 A loop with foreach

foreach variable_name arg1 instructions

A.12. LOOPS: 123

The variable has for successive value the item from a list, or the character from a word. The instructions are
repeated for each value of the variable.

foreach "i "XLOGO [print :i]

X

L

O

G

O

foreach "i [a b c] [print :i]

a

b

c

make "sum 0 foreach "i 12345 [make "sum :sum+:i] print :sum

15

A.12.5 A loop with forever

forever instructions_list
Repeats forever a block of instructions waiting for a command to stop the loop.

Eg: forever [fd 1 rt 1]

Be careful when you use this primitive because of the in�nite loop!

A.12.6 A loop with repetewhile

repeatwhile dowhile list1 list2
Repeats a block of instructions contained in list1 while list2 is true.
The main di�erence with the primitive while is that the bloack of instructions is at least executed one times
even if list2 is false.

make "i 0

repeatwhile [pr :i make "i :i+1] [:i<4]

0

1

2

3

4

A.12.7 A loop with repeatuntil

repeatuntil dountil list1 list2
Repeats a block of instructions contained in list1 until list2 will be true.

make "i 0

repeatuntil [pr :i make "i :i+1] [:i>4]

0

1

124 APPENDIX A. LIST OF PRIMITIVES

2

3

4

A.13 Receiving input from the user

A.13.1 Interact with the keyboard

Currently, text can be accepted from the user during program execution mainly via 3 primitives: key?,
readchar and read.

key?
Is read as true or false according to whether a key has been pressed or not since the start of program execution.

readchar

• If key? is false, the program is paused until the user presses a key.

• If key? is true, it gives the key which was pressed last.

These are the values given for particular keys:
If you are uncertain about the value returned by a key, you can type:

A �> 65 B �> 66 C �> 67 etc ... Z �> 90
← �> -37 or -226 (NumPad) ↑ �> -38 or -224 → �> -39 or -227 ↓ �> -40 or -225
Echap �> 27 F1 �> -112 F2 �> -113 F12 �> -123
Shift �> -16 Espace �> 32 Ctrl �> -17 Enter �> 10

Table A.2: Values for particular keys

pr readchar. The interpreter will then wait for you to type on a key before giving you the corresponding
value.

read list1 word2
Presents a dialogue box whose title is list1. The user can then input a response in a text �eld, and the re-
sponse will be stored in the form of a word or a list (if the user wrote several words) in the variable word2,
and will be evaluated when the OK button is pressed.

A.13.2 Some examples of usage:

to vintage

read [What is your age?] "age

make "age :age

if :age<18 [pr [you are a minor]]

if or :age=18 :age>18 [pr [you are an adult]]

if :age>99 [pr [Respect is due!!]]

end

to rallye

if key? [

make "car readchar

if :car=-37 [lt 90]

A.13. RECEIVING INPUT FROM THE USER 125

if :car=-39 [rt 90]

if :car=-38 [fd 10]

if :car=-40 [bk 10]

if :car=27 [stop]

]

rallye

end

You can control the turtle with the keyboard, and stop with Esc

A.13.3 Interact with the mouse

Currently, mouse events can be accepted from the user during program execution via three primitives:
readmouse, mousepos and mouse?.

readmouse
The program is paused until the user presses the mouse. Then, it returns a number that represents the event.
These are the di�erents values:

• 0→The mouse has moved.

• 1→The button 1 has been pressed.

• 2→The button 2 has been pressed.

The button 1 is the left button , the button 2 is the next on the right ...

mousepos, mouseposition
Returns a list that contains the position of the mouse.

mouse?
Returns true if we touch the mouse since the program begins. Returns false otherwise.

A.13.4 Some examples of usage:

In this �rst procedure, the turtle follows the mouse when it moves on the screen.

to example

when the mouse moves, go to the next position

if readmouse=0 [setpos mousepos]

example

end

In this second procedure, it's the same but you must click with the left button of the mouse if you want the
turtle to move.

to example2

if readmouse=1 [setpos mousepos]

example2

end

In this third example, we create two pink buttons. If we left-click on the left button, we draw a square with
a side of 40. if we left-click on the right button, we draw a little circle. Last, if we right-click on the right
button, it stops the program.

126 APPENDIX A. LIST OF PRIMITIVES

to button

#create a pink rectangular button (height 50 - width 100)

repeat 2[fd 50 rt 90 fd 100 rt 90]

rt 45 pu fd 10 pd setpc [255 153 153]

fill bk 10 lt 45 pd setpc 0

end

to lance

cs button pu setpos [150 0] pd button

pu setpos [30 20] pd label "Square

pu setpos [180 20] pd label "Circle

pu setpos [0 -100] pd

mouse

end

to mouse

we put the value of readmouse in the variable ev

make "ev readmouse

we put the first coordinate of the mouse in variable x

make "x item 1 mousepos

we put the second coordinate of the mouse in variable y

make "y item 2 mousepos

When we click on the left button

if :ev=1 & :x>0 & :x<100 & :y>0 & :y<50 [square]

When we click on the right button

if :x>150 & :x<250 & :y>0 & :y<50 [

if :ev=1 [circle]

if :ev=3 [stop]

]

mouse

end

to circle

repeat 90 [fd 1 lt 4] lt 90 pu fd 40 rt 90 pd

end

to square

repeat 4 [fd 40 rt 90] rt 90 fd 40 lt 90

end

A.13. RECEIVING INPUT FROM THE USER 127

A.13.5 Graphical components

With XLogo, you can add several graphical components on the drawing area (Button or Menu). All the
primitives allowing the user to manipulate those components start with the pre�x gui (for Graphical User
Interface).

Create a component

First, you need to create those graphical objects, then you can modify some of their properties and last, you
can display them on the drawing area

• To create a button:

guibutton word1 word2
Create a button whose title is word2. The button name is word1

• To create a combo Menu:

guimenu word1 list2
This command creates a combo menu which name is word1 and which contains items from list2

guimenu "myMenu [item1 item2 item3]

Modify some properties of graphical components

guiposition word1 list2
Locates the graphical element word1 on a speci�c place with its coordinate. For example, if you want to put
the button at the point with coordinates (20; 100), you will write:

guiposition "b [20 100]

If you don't specify a location for the component, it will be placed by default on the upper left corner of the
drawing area.

guiremove word1
Remove a graphical component. For example, to delete the button:

guiremove "b

guiaction word1 list2
De�nes an action for the component when the user interacts with it.

the turtle forwards of 100 if we click on the button "b

guiaction "b [fd 100]

For the combo menu, each item has its own action

guiaction "m [[print "item1] [print "item2] [print "item3]]

guidraw word1
Displays the graphical component on the drawing area. For example, to display the button:

guidraw "b

128 APPENDIX A. LIST OF PRIMITIVES

A.14 Time and date

XLogo has several primitives for date, time or generating countdown.

wait n
Halts the program, and therefore the turtle, for n

60 seconds.

countdown n
Starts a countdown of n seconds. We know if this countdown has �nished with the primitive endcountdown?

endcountdown?
Returns "true if there's no active countdown. Returns "false if the countdown is active.

date
Returns a list wich contains three integers representing the date. The �rst integer indicates the day, the
second the month and the last the year. �> [day month year]

time
Returns a list of three integers representing the time. The �rst integer indicates the hour, the second the
minutes and the last the seconds. �> [hour minute seconde]

pasttime
Returns the past time in seconds since XLogohas started.

Di�erence between wait and countdown is that countdown doesn't halt the program.

Here is an example:

to clock

shows time in numerical format

we refresh the time each five seconds

if endcountdown? [

cs

sfont 75 ht

make "heu time

make "h first :heu

make "m item 2 :heu

We shows two number for seconds and minutes. (we must add a 0)

if :m-10<0 [make "m word 0 :m]

make "s last :heu

We shows two number for seconds and minutes. (we must add a 0)

if :s-10<0 [make "s word 0 :s]

label word word word word :h ": :m ": :s

countdown 5

]

clock

end

A.15. USING A NETWORK WITH XLOGO 129

A.15 Using a network with XLogo

A.15.1 The network How to

First, we have to introduce the basis for network communication before we can use the XLogo primitives.
Two computers (or more) can communicate through a network if they both have ethernet cards. Each com-

Figure A.5: A simple network

puter is identi�ed by a personal address called an IP address. This IP address consists of four integers,
each between 0 and 255 and separated by a dot. For example, The IP address of the �rst computer in the
illustration is 192.168.1.1

Because it's not easy to remember these numbers, it's also possible to identify each computer by a more usual
name. As can be seen in the illustration, we can communicate to the right computer with its IP address:
192.168.1.2, or with its name: turtle

For the moment, I'll add just one more thing. The local computer on which you are working is located
by the address: 127.0.0.1. Its general name is localhost. We will see this later in practice.

A.15.2 Primitives for networking

XLogo has 4 primitives that allow it to communicate over a network: listentcp, executetcp, chattcp
and send. In all future examples, we will take the case of the two computers in the previous �gure.

listentcp
This primitive listentcp is the basis for all network communication. It doesn't need an argument. When
you execute this primitive on a computer, the computer will listen for instructions sent from other computers
on the network.

executetcp word1 list2
this primitive allows execution of instructions by a computer on the network.
word1 is the called IP address or computer name, the list2 contains instructions to execute.

Example: I'm on computer hare, I want to draw a square with a side of 100 on the other computer.
Thus, on the computer turtle, I have to launch the command listentcp. Then, on the computer hare, I
write:

130 APPENDIX A. LIST OF PRIMITIVES

executetcp "192.168.1.2 [repeat 4[fd 100 rt 90]]

or

executetcp "turtle [repeat 4[fd 100 rt 90]]

chattcp word1 list2
Allows chat between two computers on a network. On each computer, it displays a chat window.
word1 is the called IP address or computer name, list2 contains the sentence to display.

Example: hare wants to talk with turtle.
First turtle executes listentcp so it is waiting for instructions from network computers. Then hare writes:
chattcp "192.168.1.2 [hello turtle].
Chat windows will open on both computers, allowing them to talk with each other.

sendtcp word1 list2
Send data towards a computer on the network and return his answer.

word1 is the called IP address or computer name, list2 contains the data to send. When Xlogo is launched
on the other computer, il will answer OK. It is possible with this primitive to communicate with a robot
through its network interface. Then, the answer of the robot could be di�erent.

Example: turtle wants to send to hare the sentence "3.14159 is quite pi".
First hare executes listentcp so it is waiting for the other computer to communicate. Then, turtle writes:
print sendtcp "hare [3.14159 is quite pi].

A little hint: Launch two instances of XLogo on the same computer.

• In the �rst window, execute listentcp.

• In the second one, write executetcp "127.0.0.1 [fd 100 rt 90]

You can move the turtle in the other window! (heh, heh, it's possible because 127.0.0.1 designates your local
address, so it's your own computer...)

Appendix B

Launching XLogo with command line

To execute XLogo, here is the syntax of the command:

java -jar xlogo.jar [-a] [-lang en] [-memory 64] [file1.lgo file2.lgo ...]

List of available options:

• Attribute -lang: this attribute speci�es a language for XLogo. This parameter overwrites the one
from the con�g �le called .xlogo. Have a look at the following table which shows all available languages:

French English Spanish german Arabic Portuguese Espéranto Galician Greek

fr en es de ar pt eo gla el

• Attribute -a: this attribute indicates execution of the main command, contained in the loaded �les on
startup, after XLogo's window has opened.

• Attribute -memory: this attribute changes the corresponding memory space allocated to XLogo.

• �le1.lgo, �le2.lgo ...: these �les in format .lgo are loaded on XLogo startup. These �les could be
local or distant. Hence, you can specify a local address or a web address.

• Attribute -tcp_port: this attribute allows to modify the default TCP port used for networking (See
p.129). By default, its value is 1948.

A few examples:

• java -jar xlogo.jar -lang es prog.lgo:
Files xlogo.jar and prog.lgo are in the current directory. This command executes XLogo, with
language con�gured to spanish. Then, it loads the �le prog.lgo (Thus, this �le is written in spanish...)

• java -jar xlogo.jar -a -lang en http://xlogo.tuxfamily.org/prog.lgo:
This command executes XLogo in english. It loads the �le http://xlogo.tuxfamily.org/prog.lgo.
Finally, the main command from this �le is executed on startup.

131

132 APPENDIX B. LAUNCHING XLOGO WITH COMMAND LINE

Appendix C

Executing Xlogo from the WEB

C.1 The problem

You're managing a web site. On this site, you're talking about XLogo and you want to provide some of the
programs you have created with XLogo. You could distribute the Logo �le in format .lgo, but it would be
better if the user could launch Xlogo on line and directly test your program.

To launch XLogo from a web site, we'll use the technology JAVA WEB START. In fact, we just need to
put on our site a link towards a �le with extension .jnlp. It will execute XLogo on line.

C.2 How to create the jnlp �le

Here is an example of such a �le. In fact, the following example is the one used on the french site in the section
called �exemples�. This �le allows loading of the program that draws a dice in the 3D section. Explanation
of the �le's contents will be given after the code.

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.5+" codebase="http://downloads.tuxfamily.org/xlogo/common/webstart">

<information>

<title>XLogo</title>

<vendor>xlogo.tuxfamily.org</vendor>

<homepage href="http://xlogo.tuxfamily.org"/>

<description>Logo Programming Language</description>

<offline-allowed/>

</information>

<security>

<all-permissions/>

</security>

<resources>

<j2se version="1.4+"/>

<jar href="xlogo.jar"/>

</resources>

<application-desc main-class="Lanceur">

<argument>-lang</argument>

<argument>fr</argument>

<argument>-a</argument>

<argument>http://xlogo.tuxfamily.org/fr/html/examples-fr/3d/de.lgo</argument>

133

134 APPENDIX C. EXECUTING XLOGO FROM THE WEB

</application-desc>

</jnlp>

This �le is written in format XML. The most important part are these four lines:

<argument>-lang</argument>

<argument>fr</argument>

<argument>-a</argument>

<argument>http://xlogo.tuxfamily.org/fr/html/examples-fr/3d/de.lgo</argument>

These lines specify the parameters for XLogo on startup

• Line 1 and line 2 force the language to be french.

• The last line indicates the �le address to load.

• Line 3 indicates that the main command from this �le will be executed on XLogo start up.

A last hint: Because Tuxfamily's server can't accept all connections, it's better to put the �le xlogo.jar on
your site. To link this �le with the .jnlp �le, you just have to modify the address on line 2 after codebase=

Appendix D

Solutions

D.1 Chapitre 5

to square

repeat 4[forward 150 right 90]

end

to tri

repeat 3[forward 150 right 120]

end

to door

repeat 2[forward 70 right 90 forward 50 right 90]

end

to chimney

forward 55 right 90 forward 20 right 90 forward 20

end

to move1

right 90 forward 50 left 90

end

to move2

left 90 forward 50 right 90 forward 150 right 30

end

to move3

penup right 60 forward 20 left 90 forward 35 pendown

end

to house

square move1 door move2 tri move3 chimney

end

D.2 Chapter 6

to supercube

clearscreen penup setpos[-30 150] pendown setpos[-150 150] setpos[-90 210] setpos[30 210] setpos[-30 150]

setpos[-30 -210] setpos[30 -150] setpos[30 -90] setpos[-30 -90] setpos[90 -90] setpos[90 30]

135

136 APPENDIX D. SOLUTIONS

setpos[-270 30] setpos[-270 -90] setpos[-210 -90] setpos[-210 -30] setpos[-90 -30] setpos[-90 -150]

setpos[-210 -150] setpos[-210 -30] setpos[-150 30] setpos[-30 30] setpos[-90 -30] setpos[90 150]

setpos[30 150] setpos[30 210] setpos[30 90] setpos[90 90] setpos[90 150] setpos[90 90] setpos[150 90]

setpos[150 -30] setpos[90 -90] setpos[90 30] setpos[150 90] penup setpos[-150 30] pendown setpos[-150 150]

setpos[-150 90] setpos[-210 90] setpos[-270 30] penup setpos[-90 -150] pendown setpos[-30 -90]

penup setpos[-150 -150] pendown setpos[-150 -210] setpos[-30 -210]

end

D.3 Chapter 7

D.3.1 the robot

The �rst drawing is formed only with elementar motifs: rectangulars, squares and triangle. Here is the
associated code:

to rec :lo :la

draws a rectangular with choosen dimansion

repeat 2[forward :lo right 90 forward :la right 90]

end

to square :c

Draws a square with side length :c

repeat 4[forward :c right 90]

end

to tri :c

Draws an equilateral triangle with side length :c

repeat 3[forward :c right 120]

end

to leg :c

rec 20*:c 30*:c square 20*:c

end

to antenna :c

forward 30*:c left 90 forward 10*:c right 90 square 20*:c

penup back 30 *:c right 90 forward 10*:c left 90 pendown

end

to robot :c

clearscreen hideturtle

body

rec 40*:c 280* :c

legs

right 90 forward 20*:c leg :c forward 40* :c leg :c forward 140*:c leg :c forward 40*:c leg :c

queue

penup left 90 forward 40* :c pendown right 45 forward 110*:c back 110* :c left 135

head

forward 180 *:c square 10*:c forward 30*:c square 10*:c right 90 forward 10*:c left 90

forward 20*:c right 90 square 80* :c

ears

forward 40*:c left 60 tri 30*:c penup right 150 forward 80 *:c left 90 pendown tri 30*:c

antennas

forward 40 *:c left 90 forward 20*:c right 90 antenna :c left 90 forward 40*:c right 90 antenna :c

D.4. CHAPTER 9: 137

eyes

penup back 30 *:c pendown square 10*:c right 90 penup forward 30*:c pendown left 90 square 10*:c

mouth

penup back 30*:c left 90 forward 30*:c right 90 pendown rec 10*:c 40*:c

end

D.3.2 The frog

to frog :c

clearscreen hideturtle

forward 20 *:c right 90 forward 50*:c left 90 forward 40*:c

left 90 forward 70 *:c right 90 forward 70*:c right 90

forward 210 *:c right 90 forward 20*:c left 90 forward 20*:c

right 90 forward 90*:c right 90 forward 20*:c left 90

forward 20*:c right 90 forward 90*:c right 90 forward 20*:c

right 90 forward 70*:c back 50*:c left 90 forward 40*:c

right 90 forward 40*:c back 40*:c left 90 back 20*:c left 90

forward 50*:c left 90 forward 40*:c right 90 forward 70*:c

right 90 penup forward 90*:c pendown repeat 4[forward 20*:c right 90]

end

D.4 Chapter 9:

to game

Initailaize number and counter

globalmake "number random 32

globalmake "counter 0

loop

end

to loop

read [choose a number] "try

if numberp :try[

if the value is a number

if :number=:try[print sentence sentence [You win in] :counter+1 [tries]][

if :try>:number [print [Lesser]][print [Greater]]

globalmake "counter :counter+1

loop

]

]

[print [Enter a Valid number!] loop]

end

138 APPENDIX D. SOLUTIONS

Appendix E

FAQ - Tricks Things to know

E.1 Though I erase a procedure from the editor, it keeps on popping
back!

When you leave the editor, it just saves or updates whatever the editor contains. The only way to erase a
procedure in XLogo is to use the primitive eraseprocedure or erp.
Exemple: erp "toto −→ erases the procedure toto.

E.2 I'm using the version in Esperanto but I can't write with the special
characters!

When you type in the command line or the editor, if you click with the right button, a rolling screen
appears. In this menu, you can �nd the traditional editing functions (cut, copy, paste) and the esperanto
special characters when this language is selected.

E.3 In the Sound tab from the Preferences dialogue box, no instrument
can be found.

Sometimes, the instruments list doesn't appear in Tools/Preferences/Sound. Go here:

http://java.sun.com/products/java-media/sound/soundbanks.html

Download on eof the sound banks: minimal, midsize ou deluxe and uncompress it in C:\Program Files\Java\jre1.6.0_05\lib\audio\.

• The folder jre1.6.0_05 corresponds to your installed JRE version.

• If the folder audio doesn't exist, create it.

• You have to rename the uncompressed �le as: soundbank.gm

Then, restart XLogo and have a look at Tools/Preferences/Sound

E.4 How to quickly retype a command used previously?

• First method: with the mouse, click on the line in the history area, it will reappear immediately on
the control line.

• Second method: with the keyboard, the Up and Down arrows allow navigation of the list of previous
commands that have been typed, (very practical).

139

140 APPENDIX E. FAQ - TRICKS THINGS TO KNOW

E.5 How can you help?

• By reporting any observed bug. If you are able to reproduce systematically an observed problem, it is
even better.

• Any suggestion to improve the program is welcome.

• By helping to translate.

• A little moral support is always welcome!

Thanks

• I want to thank all my active translators for their work in XLogo.

� English: Guy Walker

� Spanish: Marcelo Duschkin, Alvaro Valdes Menendez

� Arabic: El Houcine Jarad

� Portuguese: Alexandre Soares

� German: Michael Malien

� Esperanto: Michel Gaillard, Carlos Enrique Carleos Artime

� Galician: Justo freire

� Greek: Anastasios Drakopoulos

� Italian: Marco Bascietto

� Catalan: David Arso

� Hungarian: József Varga

• I want to thank Eitan Gurari for his patience, and for his great LATEX extension called tex4ht which
allow to convert my manuals into di�erent formats

www.cse.ohio-state.edu/~gurari/TeX4ht

• Several OpenSource projects very important for XLogo:

� Java3D: https://java3d.dev.java.net/

� JavaHelp: http://java.sun.com/javase/technologies/desktop/javahelp/

� Eclipse: http://www.eclipse.org/

� JLayer: http://www.javazoom.net/javalayer/javalayer.html

• Finally, a big THANKS to Tuxfamily for the quality of their website hosting and their important
contribution in free software!

http://www.tuxfamily.org

141

Index

absolute, abs, 104
additem, 107
alea, 104
and, 105
anim, animation, 94
appendline�ow, 115
arc, 87
arccosine, acos, 104
arcsine, asin, 104
arctangent, atan, 104
axis, 92
axiscolor, 93

back, bk, 87
before?, 108
black, 94
blue, 94
brown, 94
but�rst, bf, 106
butlast, bl, 106
bye, 112

changedirectory, cd, 114
character,char, 107
chattcp, 130
circle, 87
clearscreen, cs, 88
cleartext, ct, 95
close�ow, 115
contents, 112
cosine, cos, 104
count, 107
countdown, 128
cyan, 94

darkblue, 94
darkgreen, 94
darkred, 94
date, 128
de�ne, def, 111
deletesequence, delseq, 120
di�erence, 103
digits, 105
directory, dir, 114
distance, 89
div, divide, 103
dot, 88

down, downpitch, 97
DrawingQuality, dq, 91

ed, edit, 114
edall, editall, 114
empty?, 107
end, 109
endcountdown?, 128
end�ow?, 115
equal?, 108
erall, eraseall, 112
eraseprocedure, erp, 112
erasepropertylist, erpl, 112
eraseturtle, ert, 119
erasevariable, erv, 112
executetcp, 129
exp, 104
externalcommand, 112

false, 107
fence, 90
�les, 113
�ll, 116
�llpolygon, 118
�llzone, 116
�ndcolor, fc, 90
�rst, 106
fontjustify, 92
fontname, 92
fontsize, 91
for, 122
foreach, 122
forever, 123
forward, fd, 87
forward, fd, back, bk, 97
fput, 105

gprop getproperty, 113
gray, 94
green, 94
grid, 92
grid?, 92
gridcolor, 92
guiaction, 127
guibutton, 127
guidraw, 127
guimenu, 127

142

INDEX 143

guiposition, 127
guiremove, 127

heading, 89
hideturtle, ht, 88
home, 87

if, 109
ifelse, 109
indexsequence, indseq, 120
instrument, instr, 120
integer, int, 103
integer?, 107
item, 106

key?, 124

label, 88
labellength, 93
last, 106
left, lt, 87
lightgray, 94
lineend, 99
linestart, 99
list, 105
list?, 107
listentcp, 129
list�ow, 115
load, 114
loadimage, li, 113
local, 111
localmake, 111
log, 103
log10, 104
lput, 105
lr, leftroll, 97

magenta, 94
make, 111
member, 108
member?, 108
message, msg, 93
minus, 103
mod modulo, 103
mouse?, 125
mousepos, mouseposition, 125
mp3play, 121
mp3stop, 121

not, 105
number?, 107

open�ow, 115
or, 105
orange, 94
orientation, 98

output, op, 119

pasttime, 128

pencolor, pc, 89

pendown, pd, 89

pendown?, pd, 108

penerase, pe, 89

penpaint, ppt, 89

penreverse, px, 89

PenShape, ps, 90

penup, pu, 89

penwidth, pw, 90

perspective, 90

pi, 104

pick, 106

pink, 94

pitch, 98

play, 120

plist propertylist, 113

pls, propertylists, 112

pointend, 99

pointstart, 99

polyend, 99

polystart, 99

pos, position, 89

power, 103

pprop putproperty, 113

pr, print, 95

primitive?, prim?, 108

primitives, 112

print, pr, 95

procedure?, proc?, 108

procs, procedures, 112

product, 103

purple, 94

quotient, 103

random, ran, 104

read, 124

readchar, 124

readchar�ow, 115

readline�ow, 115

readmouse, 125

red, 94

rem, remainder, 103

remove, 106

repaint, 95

repcount, 121

repeat, 121

repeatuntil dountil, 123

repeatwhile dowhile, 123

resetall, 88

reverse, 106

144 INDEX

right, rt, 87
right, rt, left, lt, 97
roll, 98
round, rnd, 103
rprop removeproperty, 113
rr, rightroll, 97
run, 112

save, 114
saved, 114
saveimage, 113
screencolor, sc, 90
screensize, 91
sendtcp, 130
sentence, se, 105
separation,sep, 92
sequence, seq, 120
setaxiscolor, sac, 93
setdigits, 104
setdirectory, setdir, 114
setDrawingQuality, setdq, 90
setfontjustify, 91
setfontname, setfn, 91
setfontsize, setfs, 91
setgridcolor, 92
setheading, seth, 88
setindexsequence, sindseq, 120
setinstrument, sinstr, 120
setitem, replace, 107
setorientation, 98
setpencolor, setpc, 89
setPenShape, setps, 90
setpenwidth, setpw, 90
setpitch, 98
setpos, setposition, 87
setroll, 98
setscreencolor, setsc, 89
setscreensize, 91
setseparation, setsep, 92
setshape, 91
setstyle, setsty, 95
setTextColor, setTC, 95
setTextName, setTN, 95
setTextSize, setTS, 95
setTM, setturtlesmax, 119
setturtle, sturtle, 119
setx, 87
setxy, 88
setxyz, 98
sety, 87
setz, 98
setzoom, 93
shape, 91
showturtle, st, 88

sine, sin, 104
squareroot, sqrt, 103
stop, 119
stopall, 119
stopanim, stopanimation, 94
stopaxis, 93
stopgrid, 92
stoptrace, 110
sty, style, 96
sum, 102

tangent, tan, 104
text, 111
TextColor, tc, 95
textend, 99
TextName, tn, 95
textsize, ts, 95
textstart, 99
thing, 112
time, 128
tm, turtlesmax, 119
to, 109
towards, 89
trace, 110
true, 107
turtle, 119
turtles, 119

unicode, 107
up, uppitch, 97

var? variable?, 108
variables vars, 112
view3d polyview, 99
visible?, 108

wait, 128
wash, 88
while, 122
white, 94
window, 90
word, 105
word?, 107
wrap, 90
write, 95
writeline�ow, 115

x, 89
xaxis, 93
xaxis?, 93

y, 89
yaxis, 93
yaxis?, 93
yellow, 94

INDEX 145

z, 89
zonesize, 93
zoom, 93

