POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/log1p.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)s_log1p.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* double log1p(double x)
00030  *
00031  * Method :
00032  *   1. Argument Reduction: find k and f such that
00033  *                      1+x = 2^k * (1+f),
00034  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
00035  *
00036  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
00037  *      may not be representable exactly. In that case, a correction
00038  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
00039  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
00040  *      and add back the correction term c/u.
00041  *      (Note: when x > 2**53, one can simply return log(x))
00042  *
00043  *   2. Approximation of log1p(f).
00044  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
00045  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
00046  *               = 2s + s*R
00047  *      We use a special Reme algorithm on [0,0.1716] to generate
00048  *      a polynomial of degree 14 to approximate R The maximum error
00049  *      of this polynomial approximation is bounded by 2**-58.45. In
00050  *      other words,
00051  *                      2      4      6      8      10      12      14
00052  *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
00053  *      (the values of Lp1 to Lp7 are listed in the program)
00054  *      and
00055  *          |      2          14          |     -58.45
00056  *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
00057  *          |                             |
00058  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
00059  *      In order to guarantee error in log below 1ulp, we compute log
00060  *      by
00061  *              log1p(f) = f - (hfsq - s*(hfsq+R)).
00062  *
00063  *      3. Finally, log1p(x) = k*ln2 + log1p(f).
00064  *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
00065  *         Here ln2 is split into two floating point number:
00066  *                      ln2_hi + ln2_lo,
00067  *         where n*ln2_hi is always exact for |n| < 2000.
00068  *
00069  * Special cases:
00070  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
00071  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
00072  *      log1p(NaN) is that NaN with no signal.
00073  *
00074  * Accuracy:
00075  *      according to an error analysis, the error is always less than
00076  *      1 ulp (unit in the last place).
00077  *
00078  * Constants:
00079  * The hexadecimal values are the intended ones for the following
00080  * constants. The decimal values may be used, provided that the
00081  * compiler will convert from decimal to binary accurately enough
00082  * to produce the hexadecimal values shown.
00083  *
00084  * Note: Assuming log() return accurate answer, the following
00085  *       algorithm can be used to compute log1p(x) to within a few ULP:
00086  *
00087  *              u = 1+x;
00088  *              if(u==1.0) return x ; else
00089  *                         return log(u)*(x/(u-1.0));
00090  *
00091  *       See HP-15C Advanced Functions Handbook, p.193.
00092  */
00093 
00094 #ifdef POK_NEEDS_LIBMATH
00095 
00096 #include <types.h>
00097 #include "math_private.h"
00098 
00099 static const double
00100 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
00101 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
00102 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
00103 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
00104 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
00105 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
00106 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
00107 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
00108 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
00109 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
00110 
00111 static const double zero = 0.0;
00112 
00113 double
00114 log1p(double x)
00115 {
00116         double hfsq,f,c,s,z,R,u;
00117         int32_t k,hx,hu,ax;
00118 
00119         f = c = 0;
00120         hu = 0;
00121         GET_HIGH_WORD(hx,x);
00122         ax = hx&0x7fffffff;
00123 
00124         k = 1;
00125         if (hx < 0x3FDA827A) {                  /* x < 0.41422  */
00126             if(ax>=0x3ff00000) {                /* x <= -1.0 */
00127                 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
00128                 else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
00129             }
00130             if(ax<0x3e200000) {                 /* |x| < 2**-29 */
00131                 if(two54+x>zero                 /* raise inexact */
00132                     &&ax<0x3c900000)            /* |x| < 2**-54 */
00133                     return x;
00134                 else
00135                     return x - x*x*0.5;
00136             }
00137             if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
00138                 k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */
00139         }
00140         if (hx >= 0x7ff00000) return x+x;
00141         if(k!=0) {
00142             if(hx<0x43400000) {
00143                 u  = 1.0+x;
00144                 GET_HIGH_WORD(hu,u);
00145                 k  = (hu>>20)-1023;
00146                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
00147                 c /= u;
00148             } else {
00149                 u  = x;
00150                 GET_HIGH_WORD(hu,u);
00151                 k  = (hu>>20)-1023;
00152                 c  = 0;
00153             }
00154             hu &= 0x000fffff;
00155             if(hu<0x6a09e) {
00156                 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
00157             } else {
00158                 k += 1;
00159                 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
00160                 hu = (0x00100000-hu)>>2;
00161             }
00162             f = u-1.0;
00163         }
00164         hfsq=0.5*f*f;
00165         if(hu==0) {     /* |f| < 2**-20 */
00166             if(f==zero) { if(k==0) return zero;
00167                           else {c += k*ln2_lo; return k*ln2_hi+c;}
00168             }
00169             R = hfsq*(1.0-0.66666666666666666*f);
00170             if(k==0) return f-R; else
00171                      return k*ln2_hi-((R-(k*ln2_lo+c))-f);
00172         }
00173         s = f/(2.0+f);
00174         z = s*s;
00175         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
00176         if(k==0) return f-(hfsq-s*(hfsq+R)); else
00177                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
00178 }
00179 #endif
00180