POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_j0.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_j0.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* __ieee754_j0(x), __ieee754_y0(x)
00030  * Bessel function of the first and second kinds of order zero.
00031  * Method -- j0(x):
00032  *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
00033  *      2. Reduce x to |x| since j0(x)=j0(-x),  and
00034  *         for x in (0,2)
00035  *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
00036  *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
00037  *         for x in (2,inf)
00038  *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
00039  *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
00040  *         as follow:
00041  *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
00042  *                      = 1/sqrt(2) * (cos(x) + sin(x))
00043  *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
00044  *                      = 1/sqrt(2) * (sin(x) - cos(x))
00045  *         (To avoid cancellation, use
00046  *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
00047  *          to compute the worse one.)
00048  *
00049  *      3 Special cases
00050  *              j0(nan)= nan
00051  *              j0(0) = 1
00052  *              j0(inf) = 0
00053  *
00054  * Method -- y0(x):
00055  *      1. For x<2.
00056  *         Since
00057  *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
00058  *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
00059  *         We use the following function to approximate y0,
00060  *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
00061  *         where
00062  *              U(z) = u00 + u01*z + ... + u06*z^6
00063  *              V(z) = 1  + v01*z + ... + v04*z^4
00064  *         with absolute approximation error bounded by 2**-72.
00065  *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
00066  *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
00067  *      2. For x>=2.
00068  *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
00069  *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
00070  *         by the method mentioned above.
00071  *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
00072  */
00073 
00074 #ifdef POK_NEEDS_LIBMATH
00075 
00076 #include <libm.h>
00077 #include "math_private.h"
00078 
00079 static double pzero(double), qzero(double);
00080 
00081 static const double
00082 huge    = 1e300,
00083 one     = 1.0,
00084 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
00085 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
00086                 /* R0/S0 on [0, 2.00] */
00087 R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
00088 R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
00089 R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
00090 R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
00091 S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
00092 S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
00093 S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
00094 S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
00095 
00096 static const double zero = 0.0;
00097 
00098 double
00099 __ieee754_j0(double x)
00100 {
00101         double z, s,c,ss,cc,r,u,v;
00102         int32_t hx,ix;
00103 
00104         GET_HIGH_WORD(hx,x);
00105         ix = hx&0x7fffffff;
00106         if(ix>=0x7ff00000) return one/(x*x);
00107         x = fabs(x);
00108         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
00109                 s = sin(x);
00110                 c = cos(x);
00111                 ss = s-c;
00112                 cc = s+c;
00113                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
00114                     z = -cos(x+x);
00115                     if ((s*c)<zero) cc = z/ss;
00116                     else            ss = z/cc;
00117                 }
00118         /*
00119          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
00120          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
00121          */
00122                 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
00123                 else {
00124                     u = pzero(x); v = qzero(x);
00125                     z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
00126                 }
00127                 return z;
00128         }
00129         if(ix<0x3f200000) {     /* |x| < 2**-13 */
00130             if(huge+x>one) {    /* raise inexact if x != 0 */
00131                 if(ix<0x3e400000) return one;   /* |x|<2**-27 */
00132                 else          return one - 0.25*x*x;
00133             }
00134         }
00135         z = x*x;
00136         r =  z*(R02+z*(R03+z*(R04+z*R05)));
00137         s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
00138         if(ix < 0x3FF00000) {   /* |x| < 1.00 */
00139             return one + z*(-0.25+(r/s));
00140         } else {
00141             u = 0.5*x;
00142             return((one+u)*(one-u)+z*(r/s));
00143         }
00144 }
00145 
00146 static const double
00147 u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
00148 u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
00149 u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
00150 u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
00151 u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
00152 u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
00153 u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
00154 v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
00155 v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
00156 v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
00157 v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
00158 
00159 double
00160 __ieee754_y0(double x)
00161 {
00162         double z, s,c,ss,cc,u,v;
00163         int32_t hx,ix,lx;
00164 
00165         EXTRACT_WORDS(hx,lx,x);
00166         ix = 0x7fffffff&hx;
00167     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
00168         if(ix>=0x7ff00000) return  one/(x+x*x);
00169         if((ix|lx)==0) return -one/zero;
00170         if(hx<0) return zero/zero;
00171         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
00172         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
00173          * where x0 = x-pi/4
00174          *      Better formula:
00175          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
00176          *                      =  1/sqrt(2) * (sin(x) + cos(x))
00177          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
00178          *                      =  1/sqrt(2) * (sin(x) - cos(x))
00179          * To avoid cancellation, use
00180          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
00181          * to compute the worse one.
00182          */
00183                 s = sin(x);
00184                 c = cos(x);
00185                 ss = s-c;
00186                 cc = s+c;
00187         /*
00188          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
00189          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
00190          */
00191                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
00192                     z = -cos(x+x);
00193                     if ((s*c)<zero) cc = z/ss;
00194                     else            ss = z/cc;
00195                 }
00196                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
00197                 else {
00198                     u = pzero(x); v = qzero(x);
00199                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
00200                 }
00201                 return z;
00202         }
00203         if(ix<=0x3e400000) {    /* x < 2**-27 */
00204             return(u00 + tpi*__ieee754_log(x));
00205         }
00206         z = x*x;
00207         u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
00208         v = one+z*(v01+z*(v02+z*(v03+z*v04)));
00209         return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
00210 }
00211 
00212 /* The asymptotic expansions of pzero is
00213  *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
00214  * For x >= 2, We approximate pzero by
00215  *      pzero(x) = 1 + (R/S)
00216  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
00217  *        S = 1 + pS0*s^2 + ... + pS4*s^10
00218  * and
00219  *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
00220  */
00221 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
00222   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
00223  -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
00224  -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
00225  -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
00226  -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
00227  -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
00228 };
00229 static const double pS8[5] = {
00230   1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
00231   3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
00232   4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
00233   1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
00234   4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
00235 };
00236 
00237 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
00238  -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
00239  -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
00240  -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
00241  -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
00242  -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
00243  -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
00244 };
00245 static const double pS5[5] = {
00246   6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
00247   1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
00248   5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
00249   9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
00250   2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
00251 };
00252 
00253 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
00254  -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
00255  -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
00256  -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
00257  -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
00258  -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
00259  -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
00260 };
00261 static const double pS3[5] = {
00262   3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
00263   3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
00264   1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
00265   1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
00266   1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
00267 };
00268 
00269 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
00270  -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
00271  -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
00272  -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
00273  -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
00274  -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
00275  -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
00276 };
00277 static const double pS2[5] = {
00278   2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
00279   1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
00280   2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
00281   1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
00282   1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
00283 };
00284 
00285 static double
00286 pzero(double x)
00287 {
00288         const double *p,*q;
00289         double z,r,s;
00290         int32_t ix;
00291 
00292         p = q = 0;
00293         GET_HIGH_WORD(ix,x);
00294         ix &= 0x7fffffff;
00295         if(ix>=0x40200000)     {p = pR8; q= pS8;}
00296         else if(ix>=0x40122E8B){p = pR5; q= pS5;}
00297         else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
00298         else if(ix>=0x40000000){p = pR2; q= pS2;}
00299         z = one/(x*x);
00300         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
00301         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
00302         return one+ r/s;
00303 }
00304 
00305 
00306 /* For x >= 8, the asymptotic expansions of qzero is
00307  *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
00308  * We approximate pzero by
00309  *      qzero(x) = s*(-1.25 + (R/S))
00310  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
00311  *        S = 1 + qS0*s^2 + ... + qS5*s^12
00312  * and
00313  *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
00314  */
00315 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
00316   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
00317   7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
00318   1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
00319   5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
00320   8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
00321   3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
00322 };
00323 static const double qS8[6] = {
00324   1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
00325   8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
00326   1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
00327   8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
00328   8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
00329  -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
00330 };
00331 
00332 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
00333   1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
00334   7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
00335   5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
00336   1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
00337   1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
00338   1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
00339 };
00340 static const double qS5[6] = {
00341   8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
00342   2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
00343   1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
00344   5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
00345   3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
00346  -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
00347 };
00348 
00349 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
00350   4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
00351   7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
00352   3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
00353   4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
00354   1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
00355   1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
00356 };
00357 static const double qS3[6] = {
00358   4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
00359   7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
00360   3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
00361   6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
00362   2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
00363  -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
00364 };
00365 
00366 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
00367   1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
00368   7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
00369   1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
00370   1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
00371   3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
00372   1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
00373 };
00374 static const double qS2[6] = {
00375   3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
00376   2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
00377   8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
00378   8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
00379   2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
00380  -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
00381 };
00382 
00383 static double
00384 qzero(double x)
00385 {
00386         const double *p,*q;
00387         double s,r,z;
00388         int32_t ix;
00389 
00390         p = q = 0;
00391         GET_HIGH_WORD(ix,x);
00392         ix &= 0x7fffffff;
00393         if(ix>=0x40200000)     {p = qR8; q= qS8;}
00394         else if(ix>=0x40122E8B){p = qR5; q= qS5;}
00395         else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
00396         else if(ix>=0x40000000){p = qR2; q= qS2;}
00397         z = one/(x*x);
00398         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
00399         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
00400         return (-.125 + r/s)/x;
00401 }
00402 #endif