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PREFACE.

THIS book is precisely described by the title, and is mainly
the outgrowth of a conviction that the lgéc of algebra is a very
much neglected study.

Partly because the processes of algebra are simple and easily
taught, partly because both arithmetic and algebra are generally
studied for the sake of the processes rather than for the sake of
discipline, the reasoning which underlies the processes has come
to be very generally slurred over or even absolutely ignored.

This fault would be somewhat overcome if geometry were
taught, before or along with algebra, so that geometric illustra-
tions could constantly be given of algebraic principles. The
conceptions of geometry are less abstract and so more easy to
grasp than those of algebra, and the reasoning of geometry is
correspondingly more simple. Furthermore, geometry is usu-
ally presented as a fixed and settled science received in all
its perfection from the hands of the immortal Euclid. The
student does not learn one definition of a triangle and then
unlearn it for another: is not told that straightness is only a
special case of crookedness; that the inside of a circle is only
the outside looked at in a peculiar way.

Algebra, on the other hand, shows everywhere traces of its
origin and development. Numbers are, first, integral and posi-
tive; afterwards, negative, fractional, incommensurable, im-
aginary, and double. There is a corresponding series of mean-
ings to the words sum, difference, product, quotient, power,
root, and logarithm. Moreover, these extensions of meaning
are all more or less arbitrary, and some of them at first sight

contradictory. One has constantly to discriminate between
v
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just what is argument and just what is definition and assump-
tion on which future argument is to be based.

But these very difficulties make the logic of algebra a
peculiarly useful and invigorating discipline. Besides, there is
no branch of mathematics which gives one so good a general
insight into the whole body of mathematics, By it the student
learns the meaning and relationship of processes that he has
been using more or less blindly, perceives the oneness of
mathematical reasoning whether veiled under the name of
geometry or of algebra, and gets a glimpse of those methods
and conceptions on which the whole of modern mathematics
has been built up.

In the hope that the present little book may contribute to
this desirable end it is submitted to the indulgence of teache/rs. '
Only an introduction is attempted, because an attempt at more
would defeat the very end in view. Thorough discussion of a
few things better trains the mind than a superficial treatment
of many. My only fear is lest I shall have erred in giving
too much.

The student is supposed to have a knowledge of geometry
and elementary algebra. In Part Second, some knowledge of
trigonometry and analytic geometry will be a help.

In the preparation of the book various sources have been
drawn upon. These are the more important:

ARGAND, Sur le maniére de représenter quantités imaginaires.
CLiFrorRD, Common Sense of the Exact Sciences.
DE MORGAN, Trigonometry and Double Algebra.
“ Calculus, Introduction.
DIRICHLET, Zahlen Theorie.
TANNERY, Théorie des Fonctions d’une variable seule.

My thanks are particularly due to Prof. Sloan of the Uni-
vérsity of South Carolina for help in revising manuscript, and
to Mr. Gustav Bissing of Baltimore for many corrections and
fruitful suggestions.

UNIVERSITY OF SOUTH CAROLINA,
January 1, 1890,
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PART FIRST.
SIMPLE NUMBERS.
I. THE DIREcT PROCESSES WITH POSITIVE INTEGERS.

Mathematics is characterized by deductive reasoning.
Reasoning requires language. By growth of language Arithmetic becomes

Algebra.
The number of objects in a group is independent of the order of counting.

. Addition is commutative: a4 = 5--a.

Addition is associative: (@4 8)+c=a- (5 + o).

. Multxphcatnon is commutative: ¢ X 6 =46 X a.
. Multlpllcauon is associative for three numbers: (¢ X 8) X c=a X (6 X ¢).
. The product of any number of factors is independent of the order i in mhich

they are multiplied together.

. Multiplication is associative for any number of factors.

Involution grows out of multiplication as does multiplication out of addition.
Involution is non-commutative: g% 3= 8,
Involution is non-associative: a®) £ (a®),

The direct processes are uniform: ¢ —=a’ with 4 = &' requires a6 =a'+ ¥4,
a)(6=a'xb',andab=a’y. '
Multiplication takes precedence of involution; addition, of both multiplica-

tion and involution: a4 & Xc 4 = a4 [4 X (4)], a convention.
Multiplication is distributive to addition: (§4¢) Xe=8Xa+c Xa.
Addition is non-distributive to multiplication: (6Xc)+a # (6+a) X (c+a).
Involution is distributive to multiplication when the product is the base, but

not when the product is the index: (4 X )8 = 4% X ¢4, but a® X a¢ # a?* ¢,
Multiplication is non-distributive to involution: & X a 3 (6 X a)y s,
Involution is non-distributive to addition: (84 ¢)* £ 644 ¢, ab+¢ 3£ a? 4 ac.

. Addition is non-distributive with regard to involution; &4 a &= (64 a)y+a,

The distributive law for involution is (4 X ¢)* =43 X 2. The index laws
are ab X a¢ = a®+¢ and (a®)f = abxc,
Successive powerings can be performed in any order: (a%) = (a)%.

, vii
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II. THE INVERSE PROCESSES WITH POSITIVE INTEGERS.

The inverse processes are the undoers of the direct processes.
Subtraction undoes addition: ifa}é=¢, c— 6 =a.

Division undoes multiplication: ifa X 6 =¢, c + 86 =a.

Involution may be undone in two ways.

Evolution determines an unknown base: if a?=¢, a = z/c.

Taking a logarithm determines an unknown index: if a® =¢, § =log, c.

A whole series of processes may be undone: if (246X} =¢, a= ‘;/c-!-t—-b.
The inverse processes are performed by ‘ guess and try.’
The inverse processes are non-commutative: ¢ — b4 —a,a+ 5+ b+a,

z/a = ;/6, loga 4 ¥ logs a.
The inverse processes are non-associative: (@ — &) —cza — (5 — ),

b b
@+b8)+cta+(+0), V Vet y1/£' loga logs ¢ = logioeg, 5 ¢.
Parentheses are sometimes avoided by conventions as to the use of the
symbols +s —_, X, +, ( )( )» V’ ]°g'

III. NEGATIVES AND FRACTIONS.,

> >
The inverse processes lead to new numbers: ¢ — 6 =¢ —d if s d = é-}c.
< <

To every positive number, -} 2, corresponds a negative number, — a.

A positive number is a name reached by counting on forward from zero; a
negative, one reached by counting off backward from zero.

. dividend multiplies .

Multiplying a { divisor divides %the quotient.

> >
a+b=c+difaXd=5bXe.
< <

a+b= 3’ a fraction.

The bar of a fraction is a sign of inclusion.

3X 5XaXsX(+d)=3.5ab(c+d). Rules of precedence

Between fractions lie other fractions forever: if 5 ; >< 73 2> :i-; ;

The sum of two integers is the integer reached by counting from either as
we would count from zero to get the other.

Addition is indicated by writing numbers together connected by their
proper signs: (4 a)+(—4) =a — 4. To subtract a number is to add
its opposite: @ — (+ 8) a=a¥F b.

The order of algebraic addition is indifferent: a4 —6=— 44 a.

Algebraic addition is both commutative and associative.

To subtract an addition and subtraction expression is to add its opposite.
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In an involved addition and subtraction expression the sign of any number
positive 2_ i { even

negative odd }number of minus signs act

is, upon the whole, {

upon it.

Addition and subtraction of integers gives naught save integers.
posm've } if they have { the same sign } )

negative opposite signs
The product of any number of factors # of which are negative is

{positive } e . %even}

. if 2 is .
negative odd

Multiplication, when negatives enter, continues to be commutative and

associative.

The product of two numbers is {

positi.ve } if they have {the same ?ign }

negative opposite signs

Between any two negative fractions lie an infinite number of other nega-
tive fractions.

To multiply by a fraction means to multiply by the numerator and then
divide by the denominator.

The quotient of twosnumbers is {

product of numerators
product of denominators®

The productof any number of fractionsis thefraction

The operation is commutative and associative.
multiply } . { divide
To { divide by a number is to multiply
The result of a chain of multiplications and divisions is independent of the
order in which they are performed.
Any number in an involved multiplication and division expression is, upon

the whole, a { mu.llfpher
divisor

} by 1ts reciprocal.

;‘ of that expression. if it is acted upon by an

{ even

odd }number of division signs.

. We cannot by multiplication and division with positive integers and frac-

tions get aught save positive integers and fractions.

. The sum of any number of fractions is a new fraction, whose numerator is

the sum of all the products obtained by multiplying the numerator of
each given fraction by the denominators of all the other given fractions,
and whose denominator is the product of all the given denominators.

Subtraction of fractions enters as did subtraction of integers, carrying with
it negative fractions and algebraic addition and subtraction of fractions.

§§ 50, 51, 52, 53, hold for fractions. To multiply by a multiplication and
division expression is to divide by its reciprocal.

With the numbers now introduced, addition, subtraction, multiplication, and
division are always possible.

A multiplication and division expression is powered by distributing the
index of the power over the factors of the expression.

A i {/‘i—gandlo 4
- \z) =7 requires 4/~ =7+ g%‘——c.
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positive

negative
the base. Powering by zero is letting unity alone.

A fractional power is an integral root of an integral power,

multiplying

Pov'veriﬁg by a { } integer is repeatedly { dividing } unity by

ey (Lot

IV. INCOMMENSURABLES.

Evolution leads to new expression numbers: 4/3 is no integer or fraction.

/25 50

Opposites and reciprocals of incommensurables lie between the opposites
and reciprocals, respectively, of the inclusives of the incommensurables..

Taking logarithms leads to incommensurables: logs 3 is no integer or
fraction.

.. €

If (g)d > } ( ) then log, 2 F lies between 3 and f

An incommensurable is a number dividing all fractions into two sets 4 and
B, so that any fraction from 4 is less than any from 5, but yet no frac-
tion from A is largest, nor any from B smallest.

Two incommensurables are equal if their inclusives are equal.

The results of operating with incommensurables are hemmed in by the
results of operating with their inclusives.

As always, the inverse operations are mere undoers of the dlrect

To hem in all incommensurables, we do not need all fractions: decimal
fractions are sufficient.

. Ratio is a general term for all sorts of numbers. The sign ¢ :’ is not iden-

tical with the sign ‘4.

V. ILLUSTRATIONS.

Algebraic numbers and their addition and subtraction are illustrated by
steps and otherwise. Negative numbers are sometimes nonsense.
The multiplication of algebraic numbers is illustrated by a lever.

The illustrations of §§ 81, 82, may be extended to fractions, but fractions
are sometimes non-sense.

Lengths taken at random are very likely incommensurable. The illustra-
tion of the lever is extended to incommensurables.

VI. GROWTH AND RATE.

The foregoing sections comprise the main conceptions of elementary algebra.
A number grows from one value to another by taking in succession all in-
termediate values,
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When y = ax, y grows with x at a uniform rate a.

When y = 2%, y grows at varying rate 2x compared to x. The ratio i’ :1 .

has a definite value only because of the law connecting y and x in the

growth of y' —y' from y—y_,_
X - Ll 4

Whatever law connects y growth with x growth, the varying rate of growth

of y compared to x is 1 —

.

. If y = a%, the rate of y growth to x growth when x' =0 is hemmed in by
a"—randa-"—x
I —4

When a = 2, the above rate is0.693 . . . .

. . rate of growth
The varying rate is 2% X 0.693 = y X 0.693. The ratio growing number
is always 0.693 . . . .

Any number 2% can be reached by unity’s growth at a logarithmic rate »
. . 14 se . .
with regard to zero growing to ; X 0.693. The logarithmic rate » requires

the base 27 +0.693, The logarithmic rate unity requires the natural base
21+0.693 =¢ = 2.71828 . . . .

. (t+£)”+l>e> (I +i)"; (r+£)“+’> &> (!-}-E)n. When # is

large, &5 = (1 +:—’)u= (I =+ 5)”

Money put out at simple and compound interest, respectively, grows roughly
at uniform and logarithmic rates.

VII. GrarHs,

. By a simple convention paired values of » and y determine a series of points

(x, »), forming the graph of any given relation between x and y. The
graphs of y = §x and y = 2%,

2= i, is the slope of the line joining (#, y)and (x', ¥). i, :i, is the slope

of a graph at (x', ¥').
If, on the graph of y = a¥, the line through (x, y) and (x', ¥') cuts the line of
A
ah— 1

#’s where x = %, then, so long as x — x' = 4, a constant, 2’ — & =
another constant. This gives a geometrical construction of the logarith-

s oas . x\»
mic curve and a geometrical interpretation of &¥ = (I -|-;) .
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PART SECOND.
DOUBLE NUMBERS.

I. INTEGRAL DOUBLE NUMBERS AND THE SIMPLER OPERATIONS.

99. ¥/ — a® = ai; ai 4 bi = (a +8)i; ai X bi X ci = — abci. The absolute value

100.

I0I.

102,

103.

104.

105.

106.

107.

108.

109.

II10.

of a product of ¢ and non-i numbers is the product of the absolute values

i . .
. } number if the number of 7 factors

n-z

of its factors; the product is an { n

is { (:,d:‘ } ; and, in determining its sign, each pair of 7 factors counts for

a minus in addition to the minus signs before the factors

Non-i and ¢ numbers are gbject and group numbers. The double number
a -} 6: marks the ath object in the éth group. Two double numbers are
equal if their { and non-i parts are separately equal, and the sum of two
double numbers is the number reached by counting from either, as we
would count from zero to get the other.

The product of @ 4 4¢ by ¢ -} 4% is the ath number in the th group of the
¢+ di system. The groups of objects may be rows of dots. The laws
for the multiplication of simple numbers hold for double numbers.
Raising to integral non-i powers is done by repeated multiplication.

Subtraction is the addition of an opposite, and division is a guessing what
to multiply one given double number by to get another.

II. NON-INTEGRAL DOUBLE NUMBERS: TENSORS AND SORTS.

The interpolation of fractions and incommensurables gives Argand’s dia-
gram, x4y = (x, ).

Fractional double numbers are simple fractions of double integers. Double
numbers may be of the same, of opposite, and of different sorts.

@46+ (c+di) = (a+tbiXc —di)+ (4 d%). T(c+di)=-T(c— di)

42,

Every double number is the product of a quantity and a quality factor.

If two numbers are of different sorts, the tensor of their sum is less than
the sum but greater than the difference of their tensors.

The tensor of the ‘: prod.uct prod'uct

ratio ratio
tensors. The tensor of a non-i power of a double number is the non-¢
power of the number’s tensor.

One number lies between two others if, and only if, in some system
or other the parts of the one lie between the parts of the others. a4
lies between a, + ¢4, and a3~ ¢4, if, and only if, (a1 — a)a — a2) +
6y — 6} 6 — 83) K 0.

A number may be such with reference to two others that, in all systems,
its parts lie between the parts of the two others.

} of two numbers is the *z } of their
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III. CompLEX UNITS AND NON-{ POWERS.

Because Vp+iq—_-‘/l -2|-p+i‘/x :p' it is possible to take of any

double number a root whose index is an integral power of 2,

Any complex unit between unity and the doubly positive complex unit
2 ¢i can be expressed as closely as one pleases by a fractional power
of p 4 gi.

All complex units are hemmed in as closely as one pleases by integral
non-¢ powers of a doubly-positive complex unit whose ¢ part is small.
The powers of the doubly-positive complex unit can be replaced by powers

of a positive-negative complex unit.

Any complex unit is, as near as one pleases, a fractional power of any
other complex unit. Conversely, a complex unit can be found that shall
come as near as one pleases to any assigned non-i power of a double
number. A non-i power of a non-unit double number is the product
power-of-number’s-tensor X power-of-complex-unit-of-number’s-sort.

IV. GROWTHS, RATES, AND AMOUNTS.

A double number grows by the separate growths of its i and non-7 parts.
Growths of double numbers are represented by graphs; uniform growths,
by straight lines; varying growths, by curves.

If % 4 iv = (¢ + id Xx + éy) and ¢ 4 id is constant, the growth of 4 iz
is the same for the ¢ - id system that the growth of x --iy is for the
standard system.

If from each of two numbers there is a uniform growth, there will always
be one and generally only one number reached by the growth., If more
than one, then an infinity of numbers is reached.

All numbers directly between a 4 ¢ and &' 4 ¢4’ are given by Xa + i8)+4
I(a'+ib"y where >0, /' >0, and /47 =1.

A single uniform growth from a - ¢4 to ¢} id is more direct than a chain
of uniform growths from @ -} 75 to ¢-¢d through numbers not directly
between a -} 6 and c4-id.

If the chain of growths joining a -4 6 to ¢ id through x, 4 iy,
xatiya, ..., 246, issuchthata <x <x:3 < ... <xy <dand
nobop=ng 4= :
x—a  x3—x c—xn
numbers on different growths of the chain cannot contain a third num-
ber on the chain.

A chain of growths of the same character as that of § 121, but through
numbers all directly between @ -}-#4 and numbers on that chain, is more
direct than that is.

then a uniform growth joining two

ry-y

x—X

Numbers taken on a varying growth from @ - 76 to ¢ + id such that
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decreases with increasing x, determines two chains of growths related
like those of § 122.

124. By taking numbers on the varying growth closer and closer together, the
{Te::e} direct of the two chains determined by the two numbers

becomes {ml::: ::: :::’re § direct, and the difference of the amounts
of the two chains becomes as small as one pleases. Each amoun
becomes the amount of the varying growth.

125. The total amount of any growth can be gotten by breaking it up into parts

for which %
X

—i increases with increasing x, decreases with increasing x,

or remains constant,
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131. Every number has 4 distinct 4th roots. All these roots have the same
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AN INTRODUCTION

TO THE

LOGIC OF ALGEBRA.

PArT FIRST.

SIMPLE NUMBERS.

I. THE DIRECT OPERATIONS WITH POSITIVE INTEGERS.

1. The essential characteristic of mathematics is that all
truths therein are established by reasoning. Suggested they
may be by observation and confirmed by experiment; but
finally settled they must be by rigid deduction, by showing
that the statements to be proved are necessary consequences
of other statements already known to be true or, at any rate,
taken to be true.

When I say, “ All snow is white ; this is snow ; therefore this
is white,” the mental process is so simple as almost to escape
attention. Yet it is by the constant repetition of just such
processes that the most profound researches in mathematics
are carried on. The successive steps are easy ; the difficulty lies
in seeing what steps to take.

2. Reasoning must be carried on by language of some
sort. Of course the more perfect the language, the more
clearly it brings before the mind the statements needed and
their relations; and the more completely it shuts out all irrele-
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vant ideas, the greater the ease will be with which the mind
takes in the reasoning.

- The intricacy of mathematical reasoning has necessitated a
language peculiar to that science. In the symbols and notation
of arithmetic we have its beginnings. When from the coasid-
eration of particular numbers we pass to the consideration of
numbers in general, the language grows. New terms are
added and the meaning of the old ones is enlarged ; arithmetic,
the art of computation, becomes algebra, the science of numerical
relations.

3. We are all familiar with the names one, two, three, . . .
In counting a group of objects we apply to them, one by one,
these names in order, till each object has its name. The last
name given is the number of objects in the group. Manifestly
this name is independent of the order of counting.

“ Manifestly,” did I say? How is it manifest? Did any one
ever try it for all possible groups of objects? Can any one so
try it? Do we not, after all, assume, because it has turned out
true in the many cases in which we and others have tried it,
that therefore it must always be true? The assumption is
natural, perhaps justifiable ; nevertheless it is altogether need-
less.

For, let £ stand for any number whatever, and / for the
next greater number. Imagine that a certain group of objects
were counted in all possible orders, and that every count gave
% for the number of objects in the group. Add an object to
the group and count again. If this new object is counted after
all the others, it takes the name or number next after 4, that
is /. If counted before some, then these take each a number
next greater than one given them in some previous counting.
In particular, the object then counted last and so called £ is
still counted last, but must now be called /Z

Thus if, in counting any group, the last name or number
given is independent of the order of counting, it remains so
when we add an object to the group. But starting with a
single object, and adding objects one by one, gives any group
whatsoever. At the start £ is one and /two; then 4 two and
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Z three, £ three and / four, . . . : at first evidently, and so at
each successive stage, and therefore finally, there is one and
only one result of counting.

4. Suppose two groups of objects 4 and B. Let the num-
ber of objects in 4 be a; and in B, 5. Count all the objects in
both groups, beginning with the objects from 4. The last
object counted from A takes the number @, and so the first
from B the number @ 4 1, @ increased by one, the next 2 + 2,
and so on; the last taking the number @ -+ 4, @ increased by .
This is the total number of objects in both groups. But count
first the objects from & and this same total number isé +a;

at+b="06+4a.

The sum of two numbers is independent of the order of adding—
addition ts commutative.

5. Similarly, if there were a third group C of ¢ objects, we
should find

a—+b+c=cta+b=b4c+ta = ctb+a = b+atc=atc+ob.

Now a+ & + ¢ means (@ + &) +¢, a-increased-by-5 increased
by ¢, and 64 ¢+ a means (64 ¢)+a. But this last is the
same as a+ (0 +¢);

(@+b+c=a+ 6+,
2+3)+70r547=24(347) or24 10;

and the sum of three numbers does not depend at all upon
which two of the three were first gathered into a partial sum.
In this proof we used commutation quite needlessly. For
notice : in the expression @ + &+ ¢ we think of the objects in
A as named from I to @, of those in B as named from 1 to &,
and of those in C as named from 1 to ¢. In (a4 8)+ ¢ the
objects in B are named froma 4 1toa+ &; andin a4 (6 +¢)
the objects in C are named from 641 to 6+ ¢c. But pass
from either (@ + &) + ¢ or a4 (6 4 ¢) to the final sum, and the
objects in 4 are named from 1 to @, those in B from a 41 to
a -+ b, and those in C from e+ &+ 1toa—+ b+ c. The final
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result hangs only upon the names finally given and not at all
upon the various changes of name taken by the objects in get-
ting that result.

The same reasoning shows that the manner of grouping
does not affect the sum of four, five, any number of numbers;
i.e., addition is associative.

The student may prove that if the associative law holds for
the sum of £ numbers, it must hold for #-4 1 numbers and
therefore universally. Also, he may show that the sum of any
number of numbers is independent of the order of adding.

6. Suppose & groups of a objects each. The total number
of objects in the groups is

at+a+at+ata+ ...tobda’s.

We call this sum the product of @ by 4 and write it 2 X 4, &
multiplied by 4.

From each of the & groups take an object; they together
form a group of & objects: another object from each of the
groups, and we have another group of & objects. In all there
are @ such groups of & objects each. Together they contain
b+b6+46+4+6+4 ... toad’sorb X aobjects.

e aXb=06Xa.

3X4=4X3

In words, the product of two numbers is independent of the
order of the factors—multiplication is commutative.

7. Just as we understand @ + & + ¢ to mean (@ 4 6)+ ¢, so
we understand @ X & X ¢ to mean (@ X &) X ¢. This is the
number of objects in ¢ groups of é-groups-of-z-objects. In each
of the ¢ groups there are & sub-groups, and in all the ¢ groups
b X ¢ sub-groups. As each of these & X ¢ sub-groups contains
a objects, the number in all of them is 2 X (6 X ¢).

(@X b Xc=aXxX(bXc);
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and for the product of any three numbers, multiplication is
associative. '

Eg, & o

(4X2)X30r8X3=4X(2X3)orgX6.

8. Because multiplication is both commutative and associa-
tive,

aXbXc=bXcXa=cXaXb=cXbXa=bXaXc=aXcXb,

and the product of three numbers is independent of the order
of the factors.

Suppose that the product of any number of factors up to
7 inclusive is independent of the order of the factors; then also
is the product of # -} 1 factors.

If there is any change in the final result, it must be due to
starting with different pairs of factors; for the moment we mul-
tiply together any two of the # 4 1 factors, we have then to
deal with but 7 factors, the pair-product and #z—1 other factors.

Let a, &, ¢ be any three out of the » - 1 factors. Starting
with @ X 4, we can go on as we please and so have a X & X .
Likewise, starting with @ X ¢, we can take for the first three
aXcXb ButaXéXc=aXcX b and so the product of
the » -+ 1 factors is the same starting with @ X & as starting
with @ X ¢. If, however, we can change one of the factors in
sthe first pair, we can the other also; i.e., the first pair of factors
can be any two out of the # -4 1 factors. Thus the proposition
is proved.

But the product of two factors, and also that of three fac-
tors, is independent of the order of the factors: then, too, is
that of four factors, of five, six, any number of factors.

9. In getting the final product the factors can be grouped
into partial products in any way we please.

Eg, aXbéXcXdXeXf=aX (@ XecXd)X (e X))
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For the expression on the right is

GXexdyXaX(EeXf)=bXecXdXaX(eX))
=(EXfIXbXecXdXa=eXfXbXdXeX[f
=aXbXcXdXeX[f;

or, without using the commutative law,

aX (@ Xexd)X(exXf)=aX[(6Xe)Xd]X (X))
=aX[bX(EeXd)]X(EeXf)=@Xb X(Xd)X (X))
=@XbX)XdX(eXf)=(@XbXcXd)X(eX[f)
=@XbXcXdXe)Xf=aXbXcXdXeX[)

The general proof of this, the associative law for multipli-
.cation, will be an excellent exercise for the student,

10. We wrote for a+a-+a+ ...tobas,axX b We
now write for a X a X aX ... to & a’s,a, and call the ex-
pression the 4th power of a. a is the dase, 6 the index of the
power, and & is the exponent of a. In getting the expression,
a is said to be raised to the 4th power or to be powered by &,
and the process is called involution.

1I. Base and index cannot in general be interchanged.
E.g., 22 = 8, but 3* =9; 25 = 32, but 5 = 25. Nevertheless,
2¢ =4 =16. By trying a number of cases the student can
probably satisfy himself that 2* £ 2 unless £ = 2 or 4; then,
with slightly more difficulty, that 3* = 42 unless £ = 3. Later
he may be able to see under just what conditions @* = &. A
single case of failure, however, suffices to show that for involu-
tion there is no commutative law.

On the other hand, a thousand successes, even though we
had not come upon a failure, would not have proved the law.
They would only create a presumption in its favor and make
it worth our while to look further: to inquire into the reason
of the successes, and see if that reason must hold in all cases
and so necessitate the law.

12. [nvolution is non-assoctative. For 267 = 29 = 512, but
(2%)' = 8 = 64. Here, again, there is not always failure. Thus
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(3)'=9" = 81, and 3 = 3* = 81; (§)" = 25" = 625, and
5(3’) =gt = 625. ' :

13. One property, however, involution shares with addition
and multiplication. All three are uniform processes. That is
to say, the results of the processes cannot be changed without
changing the numbers used in getting the results. Insymbols—
a=a and b =¥ requirea+b=a +b0,a X b=a" X ¥,and
a=a"’.

14. We now consider expressions in which more than one
of the above fundamental processes occur. iy

To avoid the useless writing of parentheses we agree that
the parts of an expression separated by - signs, the terms of
the expression, are to be first calculated and then the results
added. Addition is said to take precedence of both multiplica-
tion and involution. Thus 742X 345*=7+4 64 25=38.

In the same way, multiplication takes precedence of involu-
tion: 3 X 5= 3 X 25 = 75. The multiplications are performed
upon the results of the involutions, the additions upon the re-
sults of the multiplications; hence the use of the word ‘prece-
dence.’

Whatever is connected with the exponent of a power by
any sign forms part of that exponent. a’* ¢ means a®+9; 2*X¢,
a®X9; and a¥, a®.

Notice that all the above is arbitrary ; other agreements as
to our use of mathematical language might be made, sbmetimes
have been made. We merely follow prevailing usage, a usage
that has come about, as most changes in language come about,
from the attempt to express ideas with as little trouble as pos-
sible.

Let the student calculate the value of these expressions:

+1 ’1 2_*_I=X3)< 3
» 3, 4 +5X3.

15. Consider the expression & X @ 4 ¢ X a. It denotes the
number of objects in @ groups of & objects each, together with
the number of objects in @ groups of ¢ objects each. With

2 1
22)(2’ 2:+!
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each of the groups of 4 objects we can place a group of ¢ ob-
jects, thus forming @ groups of (& 4 ¢) objects. In these there
are (6 4 ¢) X a objects.

bXat+cXa=(0+¢c) Xa.
Moreover, since multiplication is commutative,
aXbt+aXc=aX@+o)

In the expressions on the left the product is said to be d%s-
tributed ; and we say multiplication is distributive with regard to
addition whether the sum be multiplier or multiplicand.

The proof is easily pictured to the eye, thus:

2X3+3X3=(@2+3)X3=5X3.
The student may prove that

@+ XC+d=axctaxd+bxctbxd;

and, in general, the product of two sums of numbers is the sum
of all the products obtained by multiplying each number of the
one sum by each number of the other.

Then let him state and prove a rule for the product of three
or more sums.

When from the distributed product we pass back to the
single term, from @ X 6+ @ X ¢ to @ X (6 + ¢), the terms a X &
and a X ¢ are said to be collected, summed, or added.

16. We have seen that both addition and multiplication are
commutative and associative. We have just now established
a relation between the two processes. Is this relation recipro-
cal? is addition distributive with regard to multiplication? In

G+Xa=0GXa+(Xa)
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can the signs ‘4’ and ¢ X ' be interchanged and the equality
hold? (Notice the introduction of parentheses above on the
right and explain it.) )

We have (0+a) X (c+a)=6Xc+aXc+bX a+ a*;
but plainly (4 X ¢) + @ cannot exceed the first two terms of
this; and therefore addition is non-distributive with regard to
multiplication, the proof not being changed in character when
the product is the second instead of the first term of the sum.

L] L] . . . . . . . .

3X4+2#3+2)X@4+2).
17. In order to more easily see the relations between in-

volution and the other processes, adopt for the time being a
notation for involution similar to that for multiplication, writing

& =apb,

where the p may be read ‘powered by.’
At once, then, in order that involution shall be completely
distributive with regard to multiplication requires that both in

G+Xa=(Xa)+ X a)
and in aX(@4)=(@X b+ (aXec)
we shall be able, keeping the equality true, to write p and X
for X and +.

The first gives

(¢ Xcpa=(bpa)X(cpa),

or GXeyp=86Xc,
a true equality; for
CXeP=BXIXEX)XEX)X ...toa(dXc)s

=(@XEXEX...t0abs)X(cXecXecX ... .toac’s)
=& X .
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Hence, snvolution is distributive with regard to multiplication
when the product is the base.
When the product is the index the distributive law would
require
ap(bXec)=(apb) X (apo),
or X =a X a.

This, however, is a false equality, for

@dXa=@xXaxXaxX...tobas)X(@XaXaX...toca'’s)
=aXaXaX...to(b+c)a's
=att £ X unless b =c = 2.

Consequently, énvolution is non-distributive with regard to mul-
tiplication when the product is the indezx.

18. In order that multiplication shall be distributive with
regard to involution we need

(bpo)Xa=(dXa)p(cXa)
and aX (@Gpe)=(axXbplaxXe;

that is to say, we must have

¥ Xa= (X ayxe
and a X ¥ =(a XX,

both which equalities are false unless @ = 1. Therefore, mul-
tiplication is non-distributive with regard to involution.

19. Involution is non-distributive with regard to addition
when the sum is the base.

(@+c)pa+(bpa)+(cpa)
or G+or#&4c.
For, unless @ = 1, we shall get, on expanding (& -} ¢)’ other

terms in addition to &* and ¢*.
Netther is it distributive when the sum is the index.'

ap(+c)#apb+ape
@t Edta.
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For we have already seen that &’t°= a® X @, and @* X a°
#Fa+a unlessa=2andb=c=1.
20. Addition is non-distributive with regard to involution.

F¥+a#@+arts, and a+&F£(a+ ).
Any exception?
2I1. Since @ X & =ate,
it follows that @®*¢ or @é+8+8+4+ ... t0cs's jg

@XaXdXAX ... toca's=(a;

and thence, axexaxe = [ a‘)’]‘}‘,

It is because (%) is expressed by a**‘ that we use @ to
mean a®.

By § 17, the product of the same powers of several bases is the
productof-the-bases raised to the common power.

This is the distributive law for involution.

Also, the product of powers of a common base is that base
powered by the sum of the given indices.

We now see that a power is itself raised to a power by mul-
tiplying its index by the index of the power to which it is to be
raised. ,

These two are tke laws of the power index.

22. Though involution is non-commutative, yet it has a
property resembling commutation. Using the p-notation and
agreeing that the operations denoted by a succession of p’s shall
be performed in order from left to right, we have

{[@71'} =apépepdpe.

Now, if in these expressions we keep a first, the other letters
may be put in any order we please; for the changed expres-
sions would, like the original ones, all be

ap(b XeX d)( e) =a”""“”“,
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II. THE INVERSE OPERATIONS WITH POSITIVE INTEGERS.

23. Not only is it true that the three fundamental processes
are uniform, giving with the same numbers the same results;
but also it is true that if either of the numbers combined in the
operations is changed the results will be changed. Thus,

b>crequiresatb>a+tc,aXb>aXc, a>a, >

There is one exception: 1> = 1 even though 4 > ¢.

The problem, given one of the numbers determining a result
of ome of the three processes, to find the other number, leads to the
Jour new processes of subtraction, division, evolution, and taking
logarithms.

24. Subtraction is the process that undoes addition. Thus, if
a-+b=c, then ¢ — b = a, ¢ diminished by & is 2. But, by
commutation, 8 +a =c¢,andsoc —a=>=4.

The number after the minus sign is said to be subtracted
JSrom the number before it. The sum is now called the mznu-
end, the number subtracted the subtraiend, and the result the
remainder.

25. Division s the process that undoes multiplication. Ac-
cordingly, if @ X & = ¢, then ¢ + & = a; and because of commu-
tation, ¢ -~ @ = d. The number before the sign - is said to be
divided by the number after it; or, if we prefer, we may say
that the number after the sign is divided out of the number
beforeit. So X is sometimes read multiplied into. The product
that we divide is called the dzvidend, the number dividing the
divisor, and the result the guotient.

26. Since involution is non-commutative, it may be undone
in two ways: so as to determine an unknown base or so as to
determine an unknown index.

27. The undoing of involution that gives the base is called
evolution. When & = ¢, we write 4/c = a, and read, “the 4th
root of ¢ isa.” ¢ is called the 7oot-base and & the root-index.
The root-index 2 is commonly omitted.
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28. The undoing of involution that gives the index is called
taking the logarithm. Thus, @ =c gives b =log,c, b is the
logarithm to the base a of c. In the early development of alge-
bra this process was overlooked, and so has come to be classed
as non-algebraic or transcendental, the other processes being
called dlgebraic.

29. If, starting with any number, we perform a series of
operations upon it and thus get another number, we can of
course get back to the starting number by merely undoing these
operations in an order the reverse of that in which they were
performed.

E.g., if [(@+8) Xc]* =e,
then a=[(ye)=c]l=8 s=[(ye)+c]—a,
c= (:/")+(a+b)! d=log+nxa€;

all which equations may be verified by substituting numbers for
the letters.

In like manner, given the equalities below, let the student
express each letter in terms of the others.

VI(Voxo) wd) —f=1n;

[{VE=exrl+e}+4] =1

(@X b+ =[le+f)—gl

It will be well for him to test his results by the substitution
of numbers for letters. He can easily devise for himself as
many more problems of this kind as he pleases.

30. The first three processes that we took up are called
direct; the last four arercalled inverse. In particular, evolution
is the first inverse, and taking a logarithm the second inverse of
involution.

The actual performance of the inverse operations is a guess-

ing and trying founded upon previous knowledge of the results
of the direct operations.
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We know that 12 — 5 = 7 because 745 = 12; that
56 =~ 7 = 8 because 8 X 7=156; that 4144 = 12 because
12* = 144 ; that log,81 = 4 because 3* =81.

Consider the division of 2461 by 23.

23)2461( 107 Because 200 X 23 = 4600 > 2461,
23 and 100 X 23 = 2300 < 2461,
T161 .+ 200> 2461 + 23> 100.

161

Again, because 2461 — 2300 = 161, and 161 is less than
10 X 23, .. 2461 < 110 X 23. Because 20, which is smaller
than 23, would be contained barely 8 times in 161, we.guess 7
for the number of times that 23 is contained in 161. Our guess
proves right, and consequently 2461 <+ 23 = 107.

After this fashion can be analyzed any example in division.

In mathematics, as in other sciences, guessing and trying
are the two most important tools that the student has. Let
him not shrink from their use.

In the following equations he may guess values of x and y
that will make the equations true.

P47Xr=18;2X2*—3 X 3*=4; 3*=28; log,r = 64;
log,16=2; 5§ Xx+3Xy=8;5X24+3Xy=19;3X=x
F7Xy=58 nxXr—(yy=12; F+y=7; ¥ =2;
Vi=3;p=64; Vaty=3 VZty=x—y.

Sometimes in the above he may find more than one value
or set of values.

31. We return to the inverse operations. Are they com-
mutative? Tryit. Wehave8 —2=6;12+4=23; y8=2;
log, 16 = 4; but 2 — 8, 4 + 12, y3, log, 2, have as yet no
meaning.

Hence, the inverse operations are not commutative.

32. Nor arethey associative. Thus: (8 —4) —2=4—2=2,
but 8 —(4—2)=8—2=6; (24+4)+2=6-+2=3,
but 24 + (4 + 2) = 24 + 2 = 12; ¢/(4256) = y/4 = 2, but

(V4
256 = 4256 = 16; log, (log, 4096) = log, 8 = 3, but
log(og, 4 4096 = log, 4096 = 64.
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The student may have some difficulty in seeing that
(o) andw\&/c, log, (log, ¢) and logog,s) ¢, differ as to form in

the same way that (@ + 8) +cand a4 (6 +¢) do. The nota-
tion is somewhat confusing. To make matters plainer, just as

we wrote @ = a p b, we will, for the moment, write y46 = & up a,
(¥4
& ‘unpowered’ by a; then y/( y¢) is (cup &) up @, while \/ cis

cup(bup a), and the analogy is manifest.

Again, if in a* we regard 4 as changed into a new number
by writing @ to the left and below it, we can speak of & as
‘based’ by @, and write @° = éba; with which goes log, 6 =
duba, 6‘unbased’ by a. So we get log, (log,¢) = (cubé)uba,
and log og, ¢ = ¢ ub (& uba), all difficulty vanishing.

If the student is unsatisfied with the disproof just given of
the commutative and associative laws for the inverse processes,
he will find it not very difficult, after going on a little farther,
to work out a proof based upon the definitions of the processes.
Thus will he show not merely that the laws do fail, but also
why they fail.

33. Inthe various expressions considered in the immediately
foregoing paragraphs, certain parentheses are rendered unnec-
essary by the following conventions :

In expressions containing the signs 4, —, X, <+, ¢/, log,
( )", the precedence is—

1st, 4+ —; 2d, X =-; 3d, ¢/ log; 4th, ( ).

A chain of operations denoted by 4 and — signs are per-
formed in order as if all the signs were }; a chain denoted by
X and =+ signs as if all the signs were X ; a chain denoted by

¢ and log signs as if all the signs were 4/.

Since the symbols 4/ and log are written to the left of the
numbers on which they operate, the operations denoted by a
chain of them are performed in order from right to left.

Whatever is connected with a root-index or logarithm-base
by any symbol whatever forms part of that ro6t-index or loga-
rithm-base.
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Thus, 8 —4 — 2 is the same as (8 —4) —2; 24+ 4+ 2,
as (24 +4) + 2; # V256, as y(¥256); *y256, as V9256,
log, log, 4096, as log, (log, 4096) ; 10g o, 4 4096, as 10g(og, 4) 4096-

Again, log, y/64 = log,8 = 3; ylog, 16 = y4 = 2; log,4*
=log,16=4; (log,8) =3*=9; ¥2*= 64 =4; (y8y =2"=4.

The student may remove unnecessary parentheses from the
expressions in § 29.

III. NEGATIVES AND FRACTIONS.

34. We have seen that in certain cases the inverse opera-
tions failed. Algebra takes up these failures, compares them,
reasons about them, operates with them,—in short, converts
them into numbers. Thus, she “marshals victory out of
defeat,” and presses on to new and ever-widening fields of con-
quest.

Consider, now, her methods.

5 — 8 is to be a new sort of number as are likewise 6 — g
and 6 — 10. All three represent attempts to take away more
units than there are to take. In 5 — 8 and 6 — g we are asked
to take away 3 too many; in 6 — 10, 4 too many. We say
then

5—8=6—9, but 5 —8>6—10.

To obtain a general test of equality and inequality, suppose
a, b, ¢, d to be four numbers; and first, let a> 4 and ¢ > 4.
Then a — 4 is some ordinary number, say 4, and ¢ — & is also
an ordinary number, say g

ie, a—06=k, and ¢c—d=g.
a=rk+5, and c=g-+d;
whence a+d =+ b6-4d, and b4c=g+b+d
Plainly,a-i-d% b + ¢ if, and only if, £ Eg‘; ie. if

a—b;c—d.
<
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Thus, when a — & and ¢ — d are ordinary numbers,
a +d% b c is the necessary and sufficient condition that

>
a—b=c—ad.
< o,
We impose the same conditions on the new sort of num-

bers; and thus, always a4+ 4 E b+ ¢ requires a — & Ec —d.

Let the student prove that a — & E c—dif b— aEd —-c

35. In particular, suppose ¢ = & and ¢ =4; thena+c =
b+d,andsoe—b=c—d Buta—bdisa—a,andc—dis
c—c. :

Hence, a—a=c—c= 0, say,

no matter what two numbers @ and ¢ may be. This is a new
number, zero or naught, the symbol of nothing to count.
Ordinary numbers, 1, 2, 3,4, . . . , may be conceived as
gotten by adding to zero, and we may write them 04 1, 0+ 2,
o+30+4 ...;or for short, +1, +2, +3, +4 ...

We call them positive numbers.
If a—b=o0+c¢,
then b—a=0—c;

for the test gives, writing 4, @, 0, and ¢, in place of a, 4, ¢, and
d, respectively,

b+c=0+4a=a,

a direct consequence of 2 — & = .

Thus, to any positive number ¢ there corresponds a number
gotten by subtracting ¢ from zero. Furthermore, the corre-
spondence is reciprocal, and all the new numbers can be so
gotten. We write them 0—1,0-2,0—3,0—4, ..., o0r,
for short, — 1, —2, — 3, —4, . .. We call them negative
numbers.

The number zero, neither positive nor negative, is the link
between the two sorts of numbers.
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The signs + and —, originally used to denote addition and
subtraction, are now used to show whether a number is the
result of an addition or a subtraction from zero.

This double signification of the signs need not confuse us:
the distinction is merely one of point of view. Precisely similar
is that between @ 4 4 regarded as a command to add é to «, or
as the single number resulting from the addition.

The value of a number without regard to its sign, or say
with its sign taken positive, is called its abdsolute value ; and
numbers whose absolute value is the same, but which differ in
sign, are called gpposize numbers.

36. We now have the series of names,

...—4,—3,—2,—I,O,+I,-|—2,+3,+4,...

extending ad libitum oz forward and off backward from zero.

A positive number is simply a name to which we come
when we count on forward from zero; a negative number, a
name to which we come when we count off backward from zero.

One number in the series is larger than another, if we have
to count off backward to get from it to the other; and smaller,
if we have to count on forward.

Opposite numbers are equally removed opposite ways from
zero, and their absolute value is the number of their removes
from zero.

37. In somewhat the same way that we compared the ex-
pressions 5§ — 8, 6 — g, and 6 — 10, we can compare expressions
like @ <+ .

When & exactly divides @, we know that the larger a is, &
remaining unchanged, the larger is @ < 4; and, on the other
hand, that when a is unchanged, the larger &, the smaller is
a-+0b.

Thus, 15+3>12-+3, and 15-5 <15+ 3.

Further, multiplying 2 multiplies @ + 4; while multiplying
b, leaving the division exact, divides a + 4.

For, suppose ¢+ b6=¢, ¢+ d=¢, and f is any number;
thenaX f+b0=fXa+b=fX(XO)+b=fXcXb+b
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= f X ¢ = f X (@ + b), which proves the first part of the state-
ment, .
Again, a=86X ¢, butc=d X ¢;

andso, a=56X([@Xe)=eX (6 Xd).
a+-(bXd)=eX(@Xd)+lXd)=e
=c+d=(a+0b)+d

which proves the other part.
It follows at once that if £ be any number,

@X B +@GXEH=a+b;
for, @XA+@EXEH=axXk+(kXSb)
=aXk+rkbk+-b=a-=b

38. Suppose two expressions @ <+ & and ¢ +~d. Moreover,
let the division be exact.
By what we have just proved,

a+-b=(@Xxd)+(®xd),
and c+d=0Xc)+ (@6 Xd)
Necessarily, then,

avbzcrdif axXd= bXe.
< <

This, the test of equality when division is exact, we make
the definition of equality when division is not exact. Thus the *
test becomes universal.

39. The new sort of numbers whose equality we have just
defined are fractions, and we write

a
d-.—6=z-,

where a is the numerator and & the denominator of the fraction.
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In contradistinction the numbers with wkich we have pre-
viously been dealing are whole numbers or integers.

40. Whatever is connected with the numerator or denomi-
nator of a fraction by any symbol whatever forms part of that
numerator or denominator, the bar of the fraction serving as a
sign of inclusion.

e _ ¥4 _2 lg8_3 . 1z_
-g-,3X4_I—-“, 3 —9'4- 4—4'39

162 :
1/-32-2 = ¢/16 = 4; log,—~ =log, 81 = 4; 57= %.5
Thus powering is the only operation upon a fraction for which
a sign of inclusion is needed.

41. Along with the new division notation it is convenient
to bring in an abbreviated multiplication notation.

Instead of X we write ., or even merely write our letters
and expressions together.

Thus,2 X 3 X §XaXbX(c+d)=2.3.5ab(c+4d)

Notice, in passing, that 3§ means 3 4 4, but aff means

aX g In arithmetic 4, in algebra X, is omitted.

When multiplication is denoted by mere writing together
of the factors, all operations, save only involution and evolu-
tion, take precedence of it.

Accordingly,

24+2.3=24+2X 3=36; but abc = bc = a;
log. ab = log, (ab); log. a(é6 + ¢) = log, [a(6 + ¢)].

There is division of usage as to the meaning of y/ab, some

making it ¥ad, others y/2 . 6 = & y/a. The latter usage is more
general,
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If the first be adopted, §/a {4 ought to mean Va §6; if the
other, {/a {/b would mean ya X §/b.

So log, a log. & ought to mean log, (@ log. 4); and for the
product of two logarithms, we should write logc a. log, b.

42. If ; and 5 7 are two fractions such that = > 7 then the

. a-tc¢ . .
fraction ﬁ?, whose numerator is the sum of their numerators

and whose denominator is the sum of their denominators, is
intermediate in value to the two fractions;

a+c
b+d

ie.,

w&
&.I“

For, 3 > glves ad > bc, whence ab + ad > ab -+ bc; or, what

is the same thing,

a_a+c
alb+d)> ba-+c¢), andso Z—>b+d'
But ad > bc also requires
a+c
(@4 ¢)d> (6 + d)c, and hence b-{—i—_d> %,

+

. a
In like manner, W1a lies between 7 and

a
+ lies between

2a+c
b+ 2d b+d

Plainly, we can go on forever finding interinediate fractions.
In other words, between any two unequal fractions lie an in-
finite number of other fractions.

Find by the above method all the fractions of which neither
the numerators nor the denominators exceed 10, and which lie
between ¢ and 10. Arrange them in the order of their mag-
nitude.

Given a set of fractions, prove that any new fraction

3 j——d' while

and
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sum of multiples of numerators
sum of multiples of denominators
and larger than the least fraction of the set.

If all the fractions of the set are equal, how about the value
of the new fraction?

The positive integers 1, 2, 3, 4, . . . are fractions whose
denominators happen to exactly divide their numerators. In
particular, then, between any two positive integers lie an infinite
number of fractions.

Analogy suggests, that we ought also to have fractions lying
between negative integers. We shall presently see how these
arise. ‘

43. We now extend the meaning of the words ‘addition’
and ‘sum’ so as to apply them to negative integers.

The sum of two intcgers is the integer gotiem by counting
{ on forward on forward }

off backward off backward
Jrom zero to get the other.

To get the sum of several integers, we take the sum of any
two of them, the sum of that sum and a third, of that and a
Jourth, and so on—until all of the integers have been used.

Addition is the process of getting this sum. Subtraction, as
before, is, now and always, the process that undoes addition.

44. It follows directly from the definition that we can indi-
cate the addition of integers by merely writing them in any
order connected by their proper signs.

E.g., thesumof — 7, 4+ 4, — 2,and } 1 is

is smaller than the greatest

}‘ Srom either as we would count {

—7+4—2+1, or 4—74+1—2, or 1—244—7.

We do not say that these sums are the same; we do not
say that these are the only sums; we merely say that either of
the above three expressions could, in perfect accordance with
our definition, be the sum of the four given numbers.

Since to count from an integer to zero requires the same
number of counts and in the same direction as to count from
zero to the opposite of the number, it follows that to subtract
an integer is the same as to add its opposite.
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45. When all the numbers added happen to be positive,
addition as just defined falls in with ordinary addition. When
necessary to distinguish it from ordinary addition we call it
algebraic, and the sum is an algebraic sum.

With algebraic as with ordinary or arithmetical addition, the
order of adding is indifferent.

For, consider the sum

a—b—ct+d—e+f
This is

I+1414..  FL, —I—I—I—I—,,.—I,—I—=I—I—,..—I,...

——

or, a counts forward, 4 backward, ¢ backward, . . .,
and we count

1,2,3,...a—La;a—1,8—2,...a—b,a—b—1,...a—b—c; ...

The final count is in nowise changed if we remove the counts
a, a — 1 underlined above. This is the same as if, in the unit
additions, we removed the underlined combination 4 1 — 1, at
the first change of sign. Of course the combinations 4 1 — 1
and — 1 4 1 can be removed wherever they occur. To keep
doing so will finally get the signs all of one kind. The number
of units left will be the excess of the number of units of one
kind over the number of units of the opposite kind. But this
excess depends merely upon the number of units of each kind
there were at the start and not at all upon their order.

Hence, the sum of any number of integers has for its absolute
value the difference between the sum of the positive integers and
the sum of the opposites of the negative integers; and for its sign,
the sign of those integers that gave the larger sum.

45. Algebraic addition is thus both commutative and associa-
tive: commutative, because commutation is but a special case
of change of order; associative, because by successive changes
of order as we add we can get any desired grouping.
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Let the student compare §9 and show how, by changes of
order, to get

[(+a+(—H )]+ {H D+ [(—a+—NF+H2&)};
from (+a)4(—8)+(— o)+ (+ &)+ (— & +(— )+ (+2)-

46. From the associative law it follows that tke sum of two
or more addition and subtraction expressions is the sum of the
numbers entering into the expressions.

Eg, (—adb—c—d)+(—etb—f—g)
=—a+4b—c—d—et+b—f—g

47. If all the numbers in one addition and subtraction ex-
pression are the opposites of the numbers in another addition and
subtraction expression, the expressions are called opposites of eack
other. Plainly, their values, i.e. the single numbers to which
they are reducible, are opposite. But to subtract a number is
to add its opposite ; therefore, fo subtract an addition and sub-
traction expression is to add its opposite.

Eg, (a—btc—d—&)—(—f—g+k—1)
=a—b+tc—d—e+f+og—2+1

48. The expressions considered may themselves be sums of
expressions and these in turn sums of others, and so on.

Eg., a—{b+[c+(f—g— A}

This means that the number g — £ is to be taken from f,
the result added to ¢, that result added to 4, and this last result
subtracted from a.

By §§46, 47,

a—{b+c+(f—g—RAll=a—b—[c+(f=g—A)]
=a—b—c—(f—g—F=a—b—c—ft+g—F
=a—b—c—f+g'—k.

.
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Of course, we could have just as well removed the signs of
inclusion, beginning with the inmost and proceeding outwards.

But the final result can be written without going through
the intermediate steps. For notice: each number is acted upon
not only by the sign immediately before it, but also by the sign
of each and every expression in which it is included.

Thus £ is to be counted backward from g, the reverse of
backward, i.e. forward, from f, forward from ¢, forward from &,
backward from @. Hence its final sign is —.

Similarly, we can get the signs of all of the other numbers.

In general, every minus sign acting upon a number reverses
the number, and hence the sign of the number is finally + or —
according as an even or an odd number of minus signs act upon
the number.

The student will do well to build up complicated addition
and subtraction expressions and simplify them by the foregoing
rule. He can test his work by substituting actual numbers for
the letters in both the original expression and the final simpli-
fication. The calculated value of each should be the same.

49. Evidently any addition and subtraction expression is by
the above processes reducible to a positive or a negative in-
teger; and we cannot, therefore, by addition and subtraction of
integers get aught save integers.

50. Let a, 4, and 4 be positive integers, and let 2 & = c.

Then cd = (a + b)d = ad + bd,
and ad = cd — bd;
but a=c—b and ad=(c—b)d;

v (c— b)d = cd — bd.

In words, multiplication is distributive with regard to subtrac-
zion if the result of the subtraction is positive.

We have not defined multiplication when negative numbers
enter. Let us assume it such that this law still holds. Then,
just as (¢ — &)d = cd — bd, we have

(6 —c)d =bd —cd, or (— a)d = — ad.
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The product of a negative number by a positive is a negative
number ; and by commutation, a positive number multiplied by a
negative likewise gives a negative result,

Further,

(— a)(—d) = (b — )= d) = {— d) — {— d)
= —bd+ cd=cd — bd = ad.

A negative number multiplied by a negative gives a positive
number.

It goes without saying that, in all cases, the absolute value
of the product is the product of the absolute values of the
factors.

51. In like manner, tke continued product of any number of
positive and of negative integers has for its absolute value the
product of the absolute values of the integers, and its sign will be
- or — according as the number of negative integers is even or
odd.

52. Since the absolute value of the product is the same
when negatives enter as when they do not, and since the sign

. of the product depends only upon the number of negatives
entering, it follows that the multiplication can be performed
in any order. In other words, the commutative and associative
laws still hold.

53. Let ad = ¢; where a, 4, and ¢ are positive integers.

Then (—ad=a(—d)y= —ad= —¢,

and (—a(—d)=ad=c.

But division is the undoer of multiplication :
(—o)+d=c+—d=—a=—(c+d),

and (—)+—d=a=c+d;

¢ _=f__ ¢ and
or —Z=Z =" ¥

|'I
&‘(\
A
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These equations, true when division is exact, we assume
true when division is inexact, thus defining the negative frac-
tions to which reference has been made.

With fractions as with integers, opposites have the same
absolute values but opposite signs.

We say that two negative fractions are equal if the opposite
positive fractions are equal;

a ¢,
Hence 3=7 involves—
—a_—¢ —a_<¢ a_—¢ —a =—¢
T =d " d b =d’ & ~ d°
—a__¢c & _—¢ & __°
b~ —d' —b— d' —b -4

a ¢ . .
Notice that just as 3 = 7 requires ad = bc, so in all the

other fraction equalities the cross-products are equal.
54. We know that a> 4 involves —a< — 4. We now

agree that % > f_l shall involve — g- < - f_i But the necessary

. ops a>c , >
and sufficient condition for 72718 ad = bc. The correspond-

‘ing condition, therefore, with negative fractions is
_Z=—t_l” if — ———bé‘

It easily follows that if a fraction lies between two others
its opposite lies between the opposites of the two others. Con-
sequently between any two negative fractions there lie an infi-
nite number of other negative fractions.

55. We return to positive fractions. In § 37 we saw that if
a -~ b was an integer, then to multiply @ by any number or to
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divide 4 by any factor of 4 would multiply & - 4 by that num-
ber or factor. E.g,

24+6=4, and (24 X2)+6=24+(6+2)=8=4 X 2.

We assume this true of all division expressions, i.e. of all
fractions.
Thus, no matter what positive integers a, 4 and ¢ are,

In words, 2o multiply by a fraction means to multiply by the
numerator and then divide by the denominator.
Since not only ¢ xg— but also % X a gives iZ , it follows

that ¢ X ;—: ¢ + & X a, and so we can effect multiplication by

a fraction by first dividing by the numerator and then multi-
plying by the denominator.

In particular, 3 is either 1 X a -+ bor1 -+ 4 X a,is eithera

part of a multiple of unity or a multiple of a part of unity.
56. Immediately from the definition of multiplication by a
fraction, we get

and the product of any number of fractions is the fraction
product of numerators
product of denominators
Plainly, the operation is both commutative and associative.
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57. Because division undoes multiplication, fo divide by a
fraction is to multiply by the denominator and then divide by the
numerator.

Thus, to divide by ‘—;- is to multiply by & and then divide by

@ ; but this is the same as to multiply by g.

Now % X f—z = gg = 1. Two such numbers whose product
is positive unity we call reciprocals of each other. For instance,
the multiples of unity 2, 3,4, 5, . . . , are reciprocals of the
parts of unity 4, 4, 4, 4, - . .
multiply

divide }
drvide

}byanumber z.rto{ multiply

We can now say, #o {

by the reciprocal number.

58. Having a chain of multiplications and divisions to per.
form, we can turn the divisions into multiplications-by-recip-
rocals; § 56 then tells us that the operations can be performed
in any order. They could therefore previous to the change of
the divisions into multiplications. The student may give
examples.

59. Consider the expression

a+{6X[c X (f+g+A]}

S k 7
Here g+k=‘%; f-:—g—:-k=f+§=fx}=£-;
— % P bcfk
‘X(f+£’+k)=%-; 6><[c><(f-:—g+k)]=-?{—;
and finally,
. . L . bR ag

=a+b+rc+-fXg+ b
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This result we could have foreseen by noticing that 2 is a
divisor of g, a divisor of f’s divisor or a multiplier of £, a mul-
tiplier of ¢, a multiplier of 4; and since & is a divisor of a, £ is
thus a divisor of . And any number in the expression is a
multiplier or a divisor of @ according as it is affected by an
even or an odd number of division signs.

Of course our manner of indicating division has nothing to
do with this result. '

s divides 7, multiplies f, divides

Thus, in PUNY d, multiplies #, divides 7, multi-
“m plies ¢, divides 4, multiplies a.
£ d Likewise » divides, f multiplies,

_ r d divides, £ multiplies, » divides,
S+ % ¢ multiplies, and 4 divides a.

. . . ackfs
.. the expression is Imdr

The student should practise himself in reductions similar
to the above until he can perform them with ease and certainty.
Let him compare §48.

60. The method of reduction just exhibited can plainly be
applied to all multiplication and division expressions. Plainly
also, any chain of multiplications and divisions is indicated by
some such expression. We cannot, therefore, by the multipli-
cation and division of positive integers and fractions get aught
save positive integers and fractions.

61. The addition of fractions has not yet been defined.
We assume it to be such a process that multiplication is dis-
tributive with reference to it. Then, if Z— and %, are two posi.

tive fractions, we have by this convention

G+9xw=w+m

_ad +be

and thence -+ f? =7

STEN
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In the same way,

a, a, a, a,

ste Tyt Ty,
_abb .. . b.Abad ... b+ ... +bp ... b .
= 500, . . . o

Thus, the sum of any number of fractions is the fraction
whose numerator is the sum of the products gotten by multiplying
the numerator of eack given fraction by the denominators of all
the other given fractions, and whose denominator is the product
of all the given denominators.

Evidently the commutative and associative laws hold as
with integers.

62. Just asa+b=c gavec — b =a, 5°%+f7= ‘ gives

S
e a
s 2
traction of integers, then negative fractions, and algebraic addi-
tion and subtraction of fractions. Accordingly, the sum of

Thus subtraction of fractions enters as did sub-

WY

%, —7:,, —j—i, and%is
a ¢ e g _ adfk— bcfh— bdeh+ bdfg
F=a"FtE= bdfk '

The student may show that the definition of a negative
fraction just suggested agrees with that of § 53.

63. We can now in §§ 50, 51, 52, 53 remove the restriction,
express or implied throughout; that the letters should stand for
positive integers, and allow them to stand for fractions as well.
Thus we easily show that /e absolute value of any multiplication
and division expression is the same as if all the numbers entering
therein were positive, while the sign is positive or negative accord-
ing as there are an even or an odd number of minus signs affecting
the factors, dirvect or reciprocal, of the expression.

Here, by a direct factor we mean one that multiplies the
final value of the expression; by a reciprocal factor, one that
divides the final value of the expression.
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If in any multiplication and division expression we change all
the factors into their reciprocals, the resulting expression is the
reciprocal of the original expression, and to multiply by either
expression is the same as to divide by the other. The student
may give examples. Compare §47.

Can two expressions be both opposites and reciprocals?

If I change all the factors of a multiplication and division
expression into their opposites, will the resulting expression be
the opposite of the original expression?

64. Any expression that can be built up by additions, sub-
tractions, multiplications, and divisions, let the grouping be
ever so intricate and involved, can, by the mere performance
of the indicated operations, be reduced to a simple positive or
negative fraction. Furthermore, all the rules applying to the
addition and subtraction, the multiplication and division of
positive integers, apply to these more complicated expressions ;
for they apply to the equivalents of these expressions, the sim-
ple fractions.

65. Raising of negatives and fractions to positive integral
powers requires no explanation. Evidently, { Zv;: } powers of
positive
negative

power of numerator
power of denominator

Likewise any multiplication and division expression is
powered by a positive integer when all the factors, direct and
reciprocal, of the expression are so powered. In other words,
we power the expression by distributing the index of the power
over the factors of the expression.

66. Since evolution and taking logarithms are the inverses
of involution,

e d . ¢ d_a c __ ..
(;) = _ requires both\/-; = and log; Z=¢i

where g- and 3 must agree in sign if ¢ is odd.

negatives are { }; and any power of a fraction = the

new fraction
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67. Consider the expression @’ =+ &, where & and ¢ are posi-
tive integers. By our definitions the expression is

"(@XaxXaXaX ...tobas)+(@aXaXaXaX ...cas)
Assuming & > ¢ reduces the above to
IXaXaXaxXaX ... to(b—c)a’s'=a"";
while & = ¢ gives unity, and & < ¢ gives
I+a+a+a+-ar ...to(c—¥b)a’s.

The agreement that the last two results as well as the first
shall be denoted by a°-¢ extends our notion of powering, and
gives us these definitions.

Powering by a positive index is repeatedly multiplying unity
by the base.

Powering by zero is leaving unity alone.

Powering by a negative index is repeatedly dividing unity by
the base.

In all cases the absolute value of the index is the number of
times that the base operates upon unity.

=%

Thus, a™® = ;Ib (:;) =a, (22.37.477)7" + (277.3%.4)73
=273.3%. 47 = 2".3* = 18432.

Express as a simple fraction without negative indices

a a3\ [@PhTP\73 (bH -4
(a-w+a4F°) X (a_3) N (a—J) '
Also, write an equivalent expression without denominators or
the signs <.
68. Before considering the meaning of fractional indices,
the student should prove these equalities. We assume that
the indicated roots can always be taken. Thus the second

equality below is to be understood: *If there is a gth root of
a and a pth root of that gth root, and if there is also a gth root
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of a and a gth root of that gth root, then the gth root of the
4th root is the same as the gth root of the gth root, and each is
the pgth root of a.”

"a‘:("a)':“’a"; YVa=VVa= 7’a; Va. t’b:‘/a_b;

Yo 35 ve. =aw A2 o), Set )2,

Va + Ya="%a"*; Ya- Yfa="atts,

The product of the pth root, the gth root, and the rth root
of @ is what root of what power of a?

The pth root of a to the rth power, multiplied by the gth
root of a to the s power, is what root of what power of a?

To define powering by a fraction, suppose that (&%) = a*
holds just the same when & is a fraction as when it is an integer.

b\e 1 N
Then (ac') =a, and so. & = ya’.
In particular, & = ya.

Let the student now express all of the foregoing equalities

d b ad
in the new notation. He can then prove that a= Xa =a e ,

14
and that af X d¢ = (ad).

14 13
69. If ac = d, then 4% = a. But, if we use a fractional root.

) 2 ¢ 4
index,ef:dgives&/a’:a; and so d°=,{/d.

Of course, if ( ) f’ loga < F= = %. Find x below.

ﬂ.lg

Log; 4t =z, logy x = 32, log,64 = §.
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IV. INCOMMENSURABLES.

70. Evolution introduces new expression-numbers. For
example, 4/2 is such a number. Obviously, the square of no
integer is 2; for (£ 1)'=1, (£ 2 =4, (£3;=9, ...,
numbers all different from 2. Neither is there a fraction

g— such that (%)2 =2,

For this requires @* = 28

Is @ odd and = 2£& + 1, say?

Then @ = (224 1) (26 + 1) = 4% + 4k 4+ 1 = an odd
number.

But 2 is an even number.

». @ = 28 unless a is even.

Suppose, then, @ is even and = 2c.
It follows that a* = 4¢* = 24", and so # = 2¢%,

This requires & even, say & = 2d; and so ¢ = 24>,

Just as, at the start, 2 was shown to be even, we can now
show ¢ to be even. But ¢ is the result of dividing @ by 2.
Consequently @ + 2 is even; and goingon,c+2o0ra -2+ 2
is even, and likewise ¢ +-2+-2-+2,a+-2-+-2+2+-2,, ..
But every division gives a smaller number, and so exact division
must cease either when we come to the smallest integer 1, or
before that; that is, some time or other we get the square of
an odd number equal to an even number, a proved impossi-
bility. Therefore 42 is not a fraction.

In like manner it can be shown that ¢/3 = f;— requires

=3¢, where p =3/ % 1;
ie., 3pxp =30 0r3(p £2)F 1 =34

.a manifest absurdity, /, p, and ¢ being integers.
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Let the student show also that y2, §/2,... §2, are neither
integers nor fractions.

Later he can show that all powers of fractions are frac-
tions, and that consequently if an integer has no integral root
it can have no fractional one.

71. The new numbers are surd’s or érrationals and belong to
the large class of numbers called incommensurables because not

having a common measure with unity.
To define the equality and inequality of surds, consider how
the equality and inequality of expressions has so far been tested.

> >
—_—0 = —d,. =
We had a b<c if a+d<c+6,
and a-:—b:c—:-a',ifaXd.?-cxb;
< <

where of course 4, §, ¢, and & are supposed positive integers,
We ought to expect, then, using the p and up notation of

> . > . *
§17, aupb:cupd, 1fapa’2 cpb;

or, in ordinary notation,

ya

AlY

d,. : >
yeo if a‘zc‘.

When we can actually take the 4th root of @ and the dth
root of ¢, the condition certainly applies: for suppose yz = &,
and yc =/; then ¢ = #¢ and ¢ = /%, and plainly

BT i R
< <

which is precisely our condition. The condition is fulfilled,
moreover, even when, in place of & and ¢, we write fractions

% and i. If we now make this test universal we shall but be

s
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‘following our previous methods. Thus, for surds as well as
exact roots, we write

RYEELs SR

If 4 = d, this becomes

ez ol paze
e\ PUESF

Thus, we say
¥Y2>1, 14, 1.41, 1.414, 1.4142,
and y2<2, 1.5, 1.42, 1.415, 1.4143;
because the squares of the first set of numbers,
1, 1.96, 1.9881, 1.999396, 1.99996164,
are all less than 2: while the squares of the second set,
4, 2.25, 2.0164, 2.002225, 2.00024449,

are all greater than 2.

%and £ above may themselves be powers of fractions. Say

S
they are (%)m and (;)'. This gives

VR EI

N

1
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Arrange the expressions in the following groups in the order
of their magnitudes:

Vi Vb Ve Vh Y2 VE
@ @ @ Vs ¥ i6

a

b)’-‘ > 1,if a> b and ¢ > 4; and that otherwise

Prove that (

Aln

(g-)‘ ='<' 1. What conditions give (Z-) =1? Howcana® = a*?

Show that ()Y = (3%

72. We saw in § 42 that between any two positive fractions
were an infinite number of other fractions. Hence between
any two squares of fractions are an infinity of other squares of
fractions, between any two cubes an infinity of other cubes,
and so on. It follows that there are always two fractions as
close together as we please between which any required root
of c'ﬁositive integer or fraction must lie.

" A root lying between positives we naturally call positive,
and we define its opposite, negative of course, as the number
lying between the opposites of the including positives.

In the same way, we say that the reciprocal of a surd is the
number lying between the reciprocals of the including numbers.

73. Taking logarithms leads to incommensurables. Thus
there is no integer or fraction log, 3.

For, suppose log, 3 =

™ R

then 2° = 3%

Now 2 divides 2¢ and therefore it divides 3* or 3.3*.
This makes it divide 3?-*; for otherwise there would be a re-
mainder of 1; and in the three 3*-*’s a remainder of 3, which
2 does not divide. In like manner, 2 should divide 3*-7, 3*-3,

<+ 5 3% 3% 3% 3, an absurdity.
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Consequently 2 does not divide 3% and 2¢ # 3%, nor is there
a a
3 such that log, 3 = 7

Again, log,, 2, log,, 3, log,, 4, log,, 6, . . . , are incommen.
surables. For all powers of 10 end in a cipher, but no powers
of 2, 3, 4, 5, or 6 do.

74. Whether or no these incommensurables can be expressed
as surds need not now concern us. We can treat them as

a fraction

we did the surds. Thus, if 2‘7: > 3 and z?i< 3, we say that
a c
b_ > logz 3 > ’2-

More generally,

o 5> wa @

then logas 2 lies between g-and %
1

arn
(<Y

<
f’

2 ity &> loge £ > &
When 7 > unity, 5> loggb 7 > %

a . c e g‘
When 7 <umty,2<log§ 7. <7z'

. . ¢ .
Since between any two fractions zand‘% there are an in-

finite number of other fractions as close together as you please ;
and since if a fraction lies between two othets the result of
powering by that fraction will lie between the results of power-

ing by the including fractions; it follows that log% ¢ ishemmed

v

in as closely as you please.

Let the student put the above conditions in the b and ub
notation of § 17. ‘

75. Notice that for both sorts of incommensurables we have
all fractions divided into two sets, such that all in one set are
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less than any in the other set, and so that, moreover, there is
no largest fraction in the set of smaller ones, nor smallest frac-
tion in the set of larger ones.

. a .

Were there a largest fraction g in the set of smaller ones,
then no fraction could be ever so little larger than it without
falling into the set of larger ones, and the incommensurable a
hemmed in between the two sets could not be ever so little

larger nor the least bit smaller than % In other words, the

. a
incommensurable is the commensurable 72 palpable contra-

diction.
By this property we define incommensurables.
An incommensurable, we say, is a number that divides all

. . a
Jractions into two sels A and B such that any fraction p Srom

A is less than any fraction g, Srom B, but yet no% is largest,

b
nor any smallest.
These incommensurables we denote by Greek letters, and
. . . a b .
agree, if a is an incommensurable and or g Ay fractionswhat-

ever from the two sets of limiting fractions, that

a b
7<e<y

It follows immediately that tke opposites and reciprocals of
incommensurables, as defined (§74), are themselves incommen-
surable.

76. Two incommensurables a and B are called equal if every

Jraction smaller than a is also smaller than B and every fraction
larger than a is also larger than B : are equal, in brief, if their
inclusives are equal. Notice that the same definition applies to
commensurables.
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77. If two incommensurables a and B are connected by addi-
2ion, multiplication, or powering, we agree that the results shall
be hemmed tn by the results of the same operations on the inclu-
stves of a and f.

a 4

Thus ifo<F<a<jand 0<z< <5,

¢ €8 4,°¢ LV
tF<etB<GHG FXF<AXAIGXY,

EEN

" e @ 2\ A\ . -
while if ;>0 (b_) <at< ({7) , taking positive roots only.

Of course the inequalities are supposed to hold if in place
of either a@ or f we have a commensurable, and everybody
knows that they must hold when in place of both @ and g we
write commensurables.

Under the same conditions as above write the inclusives for
a— fB,a X — f,and a8,

Show that the sum of a commensurable and an incommen-
surable is incommensurable, as is likewise the product.

Show that the sum of two incommensurables may be com-
mensurable, as may likewise the product.

Show that the primary operations with incommensurables
" are uniform, and that the commutative, associative, distributive,
and index laws hold as with commensurables.

The last problem is especially simple. For example,

FHF<atf<z+grequres 243 <pta<fir

78. Since subtraction is the addition of an opposite;
division, multiplication by a reciprocal ; and evolution, raising -
to a reciprocal power,—we need not specially consider these
processes.
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As for taking logarithms, log. =y if ar = ,6 More

explicity, if a" <a' <L ad then y lies between = 3 and 5 7
The student may show that

log. By = log. B + log. y; log. g =log. B — log. ¥}

I
log, " =y log. f; log. ¥B = _ log. f;

log. B logsy = log.y; log.p log,d = log,d log, g =log., 6';
]

log, B =1+ logs a; al%8gY = yl%8z°; alokay = y;

logy.8y2=7log.y; 12=7log,+y. 3+ 2¢2)="?

logs ys. ya'6c y6. yc =7 log,. :://i ?

79. By deﬁmtnon, 5 < y2 <X 7 if 2- b’ < 2 <d’ But also, by

definition, ; <yz2< Z requires 3’— <(y2y < Z,—,. Conse-

quently (¢/2)* = 2. Similarly, (ya)* = a = ya* whether ya
be commensurable or incommensurable.

As between any two fractions there are an infinite number
of fractions, so between any two exact integral nth powers of
two fractions there are an infinite number of nth powers of frac-
tions infinitely close together. These can be used to hem in
incommensurables without the help of fractions not perfect #th
powers. In fact, howsoever close together the fractions

g and 3 enclosing the incommensurable @ may be taken

(Z— <a< a') there are an infinite number of fractions — f such

that <z f"
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) n /@
These fractions are those from the inclusives of \/ 7 and

\7 2. that are greater than \'/ % and less than .\/ 5 of

these an infinite number have their #th powers less than « and
an infinite number their #th powers greater than a; for other-
wise a would fall in either with one of the nth powers or else

with% or 2,, and could not be incommensurable.

*fa */ec
It is tacitly assumed above that \/ Z and \/ Z are incom-

mensurable. All that would happen, if they were not, is that
one or both of them would fall in with »#th powers of the frac-

. 2 . . .
tions F and the reasoning would not be invalidated.

In like manner, any series of fractions that are not limited
in stze and between any two of whick, howsoever close together, there
lies a fraction and so an infinity of fractions of the series, may
be used to hem in incommensurables.

In particular, we may use decimal fractions.

The condition “not limited in size” is important. If, for
instance, no fractions of the series were larger than 10, the
series could not be used to hem in an. incommensurable larger
than 10. If, again, all fractions of the series were either larger
than 10 or smaller than 5, no incommensurable between 5 and
10 could be hemmed in by the series.

An interesting application of the above principles is afforded
in the formal proof that ¥p* = (y2)*. Let ¥p* = a and
Y2 = B; we are to prove that a = g~

a c M a“ " c”.

We have F<a<z if <P <zgmi

¢ £ i & g"

and 7<ﬂ</‘, lf f"'<‘p</t'.
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e £ . L g,
Now - 7 <B<% involves 7 <p< ot
while f-; < f < iﬂ involves fnm <p <gj.¢"m¢
e g , e g
But F and Jp are mth powers of 7 and R

Consequently g* as well as a lies between numbers whose

mth powers hem in p*. The numbers — are thus among the

7
numbers %, and the numbers & f" among the numbers Z and
a =g~

80. Consider the expression :—;, where a and g are two posi-

tive incommensurables. Leto<a<a<a'ando<é< <&,
where the new letters may be fractions. Then

’

Zi<3<z.

@ . . . .
Now B may be either integral, fractional, or incommen-

surable. Thus, if a= 2/3, < 28 and a’ > 25, so that
2
b’<2<_é-' Again,ifa = - ﬂ, i 3 b'

z/<4/2<z.

Remove the restriction that @ and g shall be positive, and

while if @ = 8 y/2,

% stands for all the sorts of numbers with which we have had

to do. For this expression we have a name. We call'it a
ratio and define it as the number, be it positive, negative, in-
tegral, fractional, or incommensurable, éy whick we must mul-

tiply one number to get anmother. The ratio 2 of a to B is

B
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frequently denoted by a : B8, where the sign : takes precedence
of all other symbols of operation.

a+ By
5 .
-—¢

E.g., a4+ pBXy:0+e—(=

There is another unique convention about the use of the
ratio sign.

We write a:b:c:d=k:l:m:n

to mean that the ratio of any two numbers on the left is the
same as the ratio of the corresponding two on the right. Thus

24:8:6=12:4:3;
although 24+8-+-6=% and 12+-4+3=1

Some authors define : as the precise equivalent of < ; but
even they generally make some distinction in the use of the
two signs.

V. ILLUSTRATIONS.

8. —5 —4 -3 —2 —1 o 1 2 3 4 5 6
1 L [} !

Suppose that from the point marked o on this line I meas-
ure off equal distances to the right and left. These distances
I call unit distances or steps, and the point 3 is three steps to
the right of the origin of measurements, while the point — 4 is
four steps to the left of that origin.

Then the statements

—10+74+4—8=7—8+4+4+10=0411—-18=—7

may be translated : “If, starting from a point 10 steps to the
left of the origin, I go 7 steps right, then 4 right, then 8 left, I
get to the same place as if, starting from 7 steps to the right of
the origin, I go 8 steps left, then 4 right, then 10 left, or just
the same as if, starting from the origin, I go 11 steps right and
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then 18 left; in fact, by each of these routes I find myself 7
steps to the left of the origin.”

Again, suppose I pay out $10, take in $7, take in $4 more,
and then pay out $8. It will be the same, upon the whole, as
if I had merely paid out §$7.

Still again, let A, B, C, D stand for four events. If I know
that A happened 10 years ago, B 7 years after A, that C will
happen 4 years after B, and finally that D happened 8 years
before the time when C will happen ; then D happened 7 years
ago.

‘Let the student give other illustrations.

Imagine that after going 2 steps right and then 7 left, I
find myself 10 steps to the left of the origin. Where was I?

I retrace my steps, going from 10 left, 7 steps right, and
then 2 left, and I find myself § steps left from the origin. Or
again, I notice that I have come upon the whole 5 steps left
from the starting point, and retracing these, I get as before a
point 5 steps left from the origin.

In symbols:

—10—(+z=p)=—10—247=—3,
and —IO—(+2—7)=—IO—(—‘5)=—-IO+5=—5

an illustration of association and sign-reversal.

Of the latter, here are others: less of westing‘is more of
easting ; less of spent is more of saved; to lighten one’s bur-
dens is to add to one’s strength; taking away cold is making
‘warm.

But there are problems where negative numbers are non.
sense. A man cannot live a negative number of years. A
pond cannot be — 4 feet deep. A table cannot have — 3 legs.
No one is — 6 feet tall.

82. If I twice repeat three steps to the right from the
origin, I go 6 steps to the right. If I twice repeat 3 steps to
the left, I go 6 steps to the left. If I twice retrace 3 steps to
the right, I go 6 steps left. If I twice retrace 3 steps to the
left, I go 6 steps right.
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In symbols:
3X2=6;(—3)X2==6;3X—2=—6;(—3)X—2=6.

Again, I have a lever. Distances to the right on the lever
are positive ; to the left, negative. A pull up on the lever is
positive; a pull down, negative. The unit pull is that of one
pound one inch from the fulcrum, and is positive if it tends to
lift the right-hand end of the lever.

AP
U

Plainly, a pull up of 3 Ibs., 2 in. to the right of the fulcrum
is a 6-unit positive pull; a pull down of 3 Ibs., 2 in. to the left
of the fulcrum, is a 6-unit negative pull; a pull up 3 lbs., 2 in.
to the left of the fulcrum, is also a 6-unit negative pull; and
finally, a pull down of 3 lbs., 2 in. to the left of the fulcrum, is
a 6-unit positive pull.

83. Suppose I am between a point 2 steps to the right of
the origin and one 3 steps to the right of the origin. I can
indicate my position by saying what part of the way I am from
2 to 3; and of course I can indicate my position by a fraction.
Thus, the point § is half way from 2 to 3. Such ‘conventions
serve to introduce fractions into all the illustrations that we
have given. Notice, however, that just as negative numbers are
sometimes non-sense, so are fractions. A polygon cannot have
afractional number of sides. A ball cannot be thrown 2} times.
A surface has 2 dimensions, a solid 3 ; there is nothing between.

84. Not only are there distances to be expressed by frac-
tions, but also distances which must be expressed by incom-
mensurables. For example, the diagonal of a square whose
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side was the unit distance would be 4/2. In fact, if we draw
two lines at random we cannot take for granted that they have
any common measure. Plainly, it is infinitely improbable that
one should exactly measure the other: nor is it a whit more
probable that a half, a third, a quarter, that any named fraction
of the one should exactly measure the other.

If on the line of § 82 a point moves from 2 to 3, it passes
through positions at all distances from the origin both frac-
tional and incommensurable between 2 and 3. The same is
true of distances from the fulcrum on our lever. Likewise, if
in the latter problem the weight of pull is continuously in-
creased, as it would be, very nearly, if due to water gradually
flowing into a containing vessel; then, the weight of pull takes
both fractional and incommensurable values. Thus the num-
ber expressing the pull in terms of the unit pull might be the
product of two incommensurables. But as the pull varies
directly with its weight and its distance from the fulcrum, these
products must lie between the products of commensurables
and be hemmed in by them as closely as one pleases.

VI. GROWTH AND RATE.

85. We have now introduced the main part of the notation,
the fundamental conceptions, and the material of elementary
algebra. There remain for discussion the expression-numbers
arising from the attempt to take even roots of negatives.

Before entering upon that discussion, however, we shall ex-
hibit some of the operations and their results in a new light.

86. Suppose x to be, in succession, all numbers from zero
to a-number-as-large-as-you-please. We say x grows positively
from zero (0) to énfinity (+ ). On the other hand, if x is, in
succession, all numbers from o to — «, we say that it grows
negatively.

Any positive number a is the result of a positive growth,
say, is a positive growth; while — 2 is the result of a negative
growth., The sum of two growths is the result of the growth
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from either that would have given the other from zero. We
easily extend this to any number of growths. Thus,

OA + AB + BC+ CD + DE + EF + FG + GH = OH.

Gfl’f' B o4 c E D H

! ] ] ] ] ]

Evidently this equation would still be true if we were to
change the position of the letters upon the line in any imagi-
"nable way. Quite independent is it too of what we choose for
a unit growth, and of whether any or all of the growths added
are incommensurable with that unit growth.

Subtraction is included in addition and need not delay us.

87. Let y grow from zero so that always y = ax, where a is
a positive number that does not grow. If 2’ and y’ are two
corresponding fixed values of x and y, then always

y—y =alx—2"), and a==——5.

We say that y grows with x at a uniform rate a.
Did we have y = ax - 4, where & is another constant, we

/
’1—,: a. The rate of growth of y

should, as before, have i :

compared to x is the same as before ; but y grows from &, while
x grows from zero. In other words, y has the start & of x, and
keeps that start.

Did we have y = — ax or y = — ax + 4, we should say that
¥ grew against x at the uniform rate a.

When y = arx, we say that y’is the result of 3's growing
from zero at the uniform rate @, while x grows from zero to 2’

88. Suppose now y = 2% and that as before 2’ and 5’ are
corresponding fixed values of x and y. As x grows from
— oo to zero, y grows against x from 4 o to zero; and as x
grows on from zero to 4 «, y grows with x from zero to - ‘.
What is the rate of growth?
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’

Consider the fraction i' —": ;. We have

y— y x’—x
xr—2z r—x

Fr=x 4.

Evidently it changes its value as » changes its value ; is less
than 22’ when x is less than 2/, and is greater than 22’ when x
is greater than 2’; while at the moment when the growth of

4 —}', becomes ::, _'7 =, its value is 227,
x

x reaches 2’ and

’ /
We call the expression y’ 'y—, the rate-fraction and say that it
¥ —x

gives the rate of growth ¥ compared tox whenxr =2,

On the face of it, 4 _i, =2 —, and might be anything you

o
please: for £ X o =o0and so £ = 5 Mo matter what number

y=y J"

%4 may be. In our present problem —— P ; is 247 because of

—
the law connecting the growths of x and y as i — 'i:,— becomes

’ J ’
or grows to be 4 7 _y, . In fact 4 'y: is hemmed in as close
-z -z

_as you please by values of i: — 1: .

Thus, if 2/ = 0 and we imagine x to take the values + 1,

I I I
iﬁ’iﬁo’il ;:t

I
i where 7 is as large

1000000
4
as you please, is infinity, the corresponding values of —Z 4 ;
likewise & I, o, o ——,  ——, + —
are ltkewise ’ =10’ — 100’ ~ 1000’ IOOOOOO’iIO"'

4
':7 also nears

so that as x néars x’ or zero from either side __y

zero. But at the same time it nearai _'z,, and so tells us
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7 /
that i' 7 _‘1, is not “anything you please;”’ but, on the con-
trary, is the definite number zero.

4 /
Drop the accents from z,——'y-, and it becomes 4 Z, a
¥ —x x

variable, the varying rate of growth of y compared to x; and
does itself grow with x at the constant rate 2. At first when
zxis negative o the rate of growth of y compared to x is against
x at the rate 2 X . (We mean by this that however large in
absolute value the number may be by which x is expressed,
that by which the rate of growth is expressed will be twice as
large.) As x increases, becoming less negative, the rate like-
wise increases and twice as rapidly as x, becoming less and less
against x; until, when x is zero, the rate is zero. At this
instant, the rate changes from being against x to being with x,
and from now on, increasing as before, twice as fast as x does,
becomes 2 X o, when x becomes oo.

At the beginning of this section we said that as x grew
from — o to zero, y grew from + o to zero. It would have
been more accurate to have said that y grew from (— o)? = co?
to 0; that is, that y grew from a number as many times greater
than the opposite of x as the opposite of x was times greater
than unity, no matter how large the opposite of x might be.

89. Whatever the law may be by which the growth of y is
connected with the growth of x, we define the rate of growth

of y compared to x byvthis same fraction il——:%, and the rate

of growth when » = 2’ by the fixed fraction "%’,—E%

Let the student determine the rates for—

Yy =2x —3 when 2’ = — 3, —2, — 1,0, 1, 2, 3;
y =2z, “ F=—=70+45;

¥y =3x*—35, “ 2= — 11, — 1000, + 20;

¥y =3 “ =2,

r=3xt234+2r+1, “ 2=o I
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Also, in each of the above, what is the rate of x-growth
compared to y-growth? In other words, what is the value of
xr—x

?
y—=J

If y=2x+435 and 2=, what is the rate of z-growth
compared to x-growth, when 2’ = 3?

90. Suppose @ > I and y = a*; what is i:i’?

When x involves an even root, is, say, §, ¥ might be nega-
tive: these values of y we rule out. We are considering
growths, and y does not grow from one value to another unless
it takes in succession a// values between the two. Though
the values are as close together as you please and y takes
hundreds of thou sands of millions of values between thm it
does not strictly grow from one to the other. Thus, above, ¥
cannot grow from — ay to — at; for though it may have as
many values as you please between these two, there are as
many other intermediate values, for example — @, which y
cannot have. On the other hand, y does grow from at to
at when x grows from % to §, for y then takes all values between
at and at.

Then, as x grows from — o through o to 4 o, y grows from
o through 1 to 4 .

— 1 @ —1
}'—-1, = ———and the inclusives are
—2 " o0o—o0 Y

At 2’ =0,

a*— . - .
and ———, where /% is a positive number growing zero-ward
— /, ’

so that Z and — % are inclusives of zero.

G o
To prove that & y > and & py? ! really are inclusives of

y—-Jz y—3
— for 2’ = 0; we notice, first, that they are what :
r —x xr—x

becomes when we put in turn # = %4 and x = —/ while 2’ remains
I

. at—
zero. We then show that there is no least value of — "o

- @ —1_ at—1
—lz ,and that always R 7

s

greatest value of 2——1

—
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‘There is no least value of ‘fk ; ! if, foro< k< 4,

"b; : <"—7—‘; ie., if o< & — & — ha* + ka".

When £ =1 and £ =2 the condition becomes 0<1—22 4 a?,
which is 0 < (1 — @)% and true because all squares are positive.
Again, when 2=2 and % = 3, the condition becomes
0 <1 — 3@+ 243 or 0 < a(1 —a)* + (&> — 1) (@ — 1); and this
is true because a(1 — a)’ and (@*+ 1) (@ — 1) are separately
greater than zero. In like manner we could prove the condi-
tion to be fulfilled when # = 3 and 2 = 4. It is better, how-
ever, to show that if true for Z and % any two consecutive num-
bers, it remains true when we increase both %Z and % by unity:

that if 0< 1 — (k4 1)a* 4 ka*t?,
then also o<1 — (B4 2)a*t 4 (£+ 1)a*t2

This is easy enough, for the last expression is the sum of
a times 1 — (£ + 1)a* 4 ka***, positive by the first inequality,
and (¢*+* — 1) (@ — 1), the product of two positives.

Therefore the first inequality does involve the second, and
the condition holding for 2 =1 and %2 = 2 holds for 2 = 2,
h=23,for k=3, k=4, fork=4, k=5, ..., for £ = any
integer and 2 = £ 1. Still more does it hold if 2 and /% are
integral, and 2> £+ 1.

2

Suppose now £ and # are fractions 7 and g_:’ where» > p>o.
4 r
The condition becomes 0 < 7 — p — 7ra? + pat, precisely what

we had before with 7, g, and a7 in place of %, £, and «; and is
true because these numbers fulfil all the conditions imposed
upon £, &, and a.

.f—l ¢—1
“TE <"

foro< k<2
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when £ and % are commensurable. But, since the values of
the expression when £ and % are incommensurable are hemmed
in by the values when # and % are commensurable, the in-

at —
equality is always true, and there is no least value of %

. . at—1
Neither is there a greatest value of ———.

This will be found to hang upon the inequality
1\ 1\

o<h—k—ha*+ka* or o<lz—k—/z(;) +k(;z-) for o<k<A.

The demonstration will proceed precisely as before, except
that where we had (¢**' — 1)@ — 1), we shall now get
(}z”"" - 1)(;— - I), the product of two negatives instead of the
product of two positives.

. adA—1_at—1

Finally, y >— % for 2> o0 and %2 > o, whether

>k h=Fkork<k

at—1 1 @—1 ad—1

Ifh=4, — =2 < A
—1 _a—1_a*t—1
If k>4 P> >z
&*—1_a*t—1_a*t—1
If <4 P T >z
— -h —
Thus, as stated, ¢_z"_h__l and 2 — ! are inclusives of
/ /
%——_i—, for #' =oand y = a".
91. To fix our ideas, suppose « is 2, so that y = 2*; then
J” - J’, / . 2" — 1 Z-h — I .
o — for 2/ = o lies between % and — 7 e be-

. For

X =

tween n( 42— 1) and n( {2 — 1) =+ y2, where n =
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convenience in calculation, put z=1, 2, 4, 8, . . . We shall
find the rate fraction, call it », hemmed in as follows:

n=1I, I. >7r >0.5;

n=2, 083 >r >o0458;
n = 4, 076 >7r >064;
n=2_§, 073 >7r > 0.66;

7 = 16, oJ1 >r >067;

n=4096, 06931 >7 > 0.6929;

and the rate to the nearest thousandth is 0.693.
92. To find the rate when 2’ is different from zero we have

_y’ 2:’_24"
i"’—x’zx’—x” But when £ > o,

23’+k_2x’ 2:’_2:’ 2:’—&_23’
P A -7 —k ’

since this may be written,

2* — 1 1I—1 2k —1
2!
> 2 .o__o>2*'. >F

2%,

Therefore the ratio at 2’ = 2¥7 = »' X 0.693. When

' = — 2, — 1,0, 1, 2, this gives for the rate i93 0693 , 0.693,
2 X 0.693, 4 X 0.693.
The varying rate of growth has always the ratio

0.693 to the varying y; i.e., grows Wlth # at the uniform rate
0.693. We say that y grows logarithmically with regard to z,
rate of growth
growing number’:

the log, y; and the number 0.693, = e call
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logarithmic growth rate. Thus, 27 is the result of allowing
. grow from unity at the logarithmic rate 0.693 with regard
r growing from zero to 7. Or, dropping the y and x, we
that 27 is the result of unity’s growth at the logarithmic
0.693 with regard to zero growing to 7.

93. But unity is also (27)° and 27 = (27)'. So 27 is likewise
result of unity’s growth at another logarithmic rate with
ird to zero growing to 1. What is this new logarithmic rate?

27 — 1 . .
v, g—)h— when % becomes zero. We may otherwise write

L
2771; and as here the last factor is 0.693, the new rate
X 0.693.
Equally well can we get 27 by unity’s growth at the loga-
mic rate 3 X 0.693 with regard to zero growing to , or by

y’s growth at the logarithmic rate £ X 0.693 with regard to
» growing to %

Call £2X 0693, 7, and in place of 7 write 5. We see at
2 that any number 2% can be reached by unity’s growth at
assigned logarithmic rate » with regard to zero growing to

0.693.

Fixing the logarithmic rate 7 fixes the base by whose power-
unity grows. The base is in fact 27+ o.603,

Of great importance is the base for unit logarithmic rate,
0693 = 2146- .-, which we call the natural, hyperbolic, or
rerian base, and denote by e. At once, because $§>146> 4,
-e> 2% or2.8>¢> 25 More accurately, e is the incom-
isurable 2.7182818. . . . It has been defined as.zke base by
se powering unity grows at the logarithmic rate unmity; it is
the result of letting unity grow at the logarithmic rate unity
t regard to zero growing to one. Compare § 87.

’rove that by the powering of any base g, unity grows at
logarithmic rate log, @; and also that « is the result of
y growing at the logarithmic rate unity with regard to zero
ving to log, a.




GROWTH AND RATE. 57

The natural logarithms, that is, the ldgarithms to the base
< of the numbers

I, 2, 3’ 4, 51 6) 7) 8) 9,

are
©0.000, 0.693, 1.099, 1.386, 1.609, 1.792, 1.046, 2.079, 2.197.

Notice that 1.386 = 2 X 0.693 and 1.792 = 0.693 + 1.099.
‘Why these relations ?
At what logarithmic rate does unity grow by the powering

of 12, 15, 27, 2.5, 3%, 47

What must be the growth of zero for the above bases that
unity may grow to 20? to 10? to — §?

94. The conception at the end of §97 may be used to
approximate to the number e.

I L
When x grows from o to o € grows from 1 to e». Had ¢

kept the rate of growth it had for x =0, i.e. grown uniformly
instead of logarithmically with regard to x, it would have grown

I .
to 1 -|-;. As it has really grown ever faster and faster,

a>14 :7 On the other hand, ¢ *< 1 — —:;

. 7 \* n-+4 I)"
’ (n - 1) >e> ( n I’
whatever positive number # may be. We may otherwise write

the ¢ limits
(s o> (5

”n ”n

o s I . .
Here the superior limit is just ;th larger than the inferior,

and we therefore get ¢ to within less than an #th part of itself.
For instance, if # = 1000000, we know that ¢ does not differ,
since e is less than 3, 3 units in the sixth decimal place from
1.000001 "%,
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By exact parity of reasoning,

(27> G > o> (5
E.g, 1.000003"3 > 4 > 1.000003'%%%,

Because ¢ < 3, we have
e < 27, 1.000003 € < 27.000081, 1.000003* €2 < 27.000162,
and 1.000003? &8 < 27.000243.

Consequently 1.000003%2 exceeds 1.000003® by less
than 0.000243, and either limit comes still closer to ¢, By tak-
ing 7 large enough we can of course get ¢ to any desired de-
gree of accuracy.

Now notice. Not only is ¢ as nearly as you please
(1 + ;) , when 7 is taken large enough, but also ¢&* = ( 14 i)

-
b4

n

.. when # is large (I + %)“= (I + f)'.

This result might have been foreseen, for

(437 =2 =0+

since the » multiplying the two #’s in the middle expression is
meaningless, # being merely any sufficiently large number.

A continuation of this reasoning shows that, to any desired
degree of approximation,

S A L
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In brief, &£ = (1 + :7)”= (I -+ %)- holds for x# and for »

either positive or negative, provided 7 is large in absolute
value.

95. Rough examples of uniform and logarithmic growth:are
furnished by money put out at simple and at compound in-
terest respectively. Did the interest come in not merely yearly
or half-yearly, or even every day or minute or second, but all
the time, the examples would be perfect. What we call the
rate of interest corresponds, in the one case, to what we have
called rate of uniform growth; in the other, to what we have
called rate of logarithmic growth. In the one case, the money
grows by equal amounts in equal times; in the other, it grows
by equal multiples of itself in equal times, is equally multiplied
in equal times.

The more often we compound, the yearly rate remaining
unchanged, the greater will be the amount of a given sum of
money put out for a fixed time. Show, however, that, no
matter how often the compounding, $100 at 104 per annum
for 10 years could not amount to so much as §$271.83.

VII. GRAPHS.

96. We can picture to the eye some of the results of the
preceding sections.

We represented positive and negative numbers by distances
measured along a line to the right and left of a fixed point
called the origin. Equally well are they representéd by dis-
tances from the line upward and downward.

In the equation y = #z, represent x by a distance along the
line, and y by a distance measured at once from the line and
from the end of the distance z.

Thus below, if x is 4, y is the distance 2 of the point (4, 2)
from 4, on the line of x's.

Equally well, of course, we can write the equation x = 2y,
and say that if y = 2, » is the distance 4 of (4, 2) from the
point 2 on the line of y’s.
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When x takes the series of values

—6, —5, —4,—3 —2, —1,0, 1,2, 3, 4 5% 6,

yis —3, —§ —2, -4 —1,—%,0, %, 1, §, 2, %, 3

and is represented by the distances of the dots on the broken
line from the line of z's.

N
1

1

s

g-: J 4%

&

— v | r | Lineofztery—o.
@ =T 6 o «4 =8 3 o 0 L 38 8 4 B 6 17 8
{1
12
. 13
/ 4

By geometry, these dots are in one straight line, and the
dots gotten by taking any value whatsoever of x would also
lie on this line. Further, all points on the broken line are
points (z, y), i.e. points such that the y of any one of them is
half the ».

We call the line the grapk of y = 3.

In y = ax, a is simply y forx = 1.

Let the student construct the graphs of y = 5z, 2 = — 23y,
y=2x—3y=xy2+1,24r = — 3}y

Having given a number of distances, show how by a graph
to get a given multiple of all of them.

To construct the graph of y = 2%, we have the points (z, 3)
as follows: -

(_4’ 'Ilc')’ (_3» ‘})’ (_2: i’)r (_ I, })’ (0: l)’ (I’ 2)1 (2’ 4)v (3» 8), (4’ 16)’
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The graph is sketched below. It is also the graph of
x = log, ».

The graphs of all equations y = a* are of this sort, if a > 1.
They all pass through (o, 1) on the line of y's, all grow steeper
for increasing x, and for any & the graph that has the greatest
a is steepest.

Construct the graphs of y = 4/2%, y = 1.1%, y = 1.01*, y = I%,
=@t =24 logyxr =y, logy y = x.

97. In the graph of y = ax, a, = 2 =% is called the slope

of the grapk, which is in this case a straight line. In the
Y,
graphs of y = 2% y = a* and in other curved graphs, %,_—i:,
is the slope of the curves at (2, y').
What is the slope of y = 2x 4 3? the slope of y = 2* at
(o, 0) and where 2’ = 2, 3, — 1? of y = 2% at (0, 1) and where
x = 2,5 —3 ?
In general, the slope of a line joining arbitrary points (z, ),

7
@, 9),is i' — i, . If we put the points on a curved graph, the
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line cuts across the graph. If the points run together, (y = 5/,
yl

x = %’), but remain on the graph, f—,—:—x; is the slope of a

line touching the graph at (/, y').

Thus (compare § 93), 1, 0.83, 0.76,0.73, 0.71 are respectively
the slopes of lines cutting across the graph of y = 2* from the
points (0, 1) to the points (1, 2), &, ¥/2), & ¥2), &, ¥2), ({5 ¥2);
while 0.693 is the slope of a line touching the graph at (o, 1).
Our approximating to the value of the rate fraction is thus
finding the slope of a cutting line as the points of cutting run
together, making it a touching line.

—
98. Of course, when y =¢* and » — 2’ = 4, i i_i, is
a—1 .
y. — Suppose, as shown below, that we give 2’ the series
of values

—2k —h, o k, 2k 3k 4k sk, 6k, 7h.

And further, let the line joining (#, y) with (2, ') cut the
2

2%+

pn
[}
|
i

1 ' 5
% 2 A 0 r % m

line of 2’s where x = £ By geometry, 2’ — £, ¥, and the cut- '

ting line form a triangle similar to that formed by x — £, 5,

and the cutting line. They might be the triangles %, p’, 34,and

h’f’w‘

xr— £k

We have x,_k=—";i,=a";
, —

.o.k=xa“ x=x,_ Y]

a—1 a—1’
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i
a—1’

and 2y —k=

no matter what the value of 2.

A to be 24, and start-
a—1
ing with the point (o, 1) have found a number of points upon
the graph.
Show that the line touching the graph of y = 2% at (o, 1)
cuts the line of 2's at (— 1.46, o). ’
Prove that a line touching x = log, y at (%, ') cuts the line

In the figure we have supposed

of x's at (x’ — ﬁgl,_a’ o), i.e. at (' — log, ¢, O).

The point (4, 3) is on ¥ = &%; what is the value of 2?

In the figure just considered, suppose % = 2; then the
graph of y = J¢* is touched at (o, 1) by the line joining
(— 24, 0) with (0, 1). Of course, all points of the graph, save
(0, 1), lie wholly above that line; but the point (1, ¥/¢) is only
a little above, the point (3, y/¢) still less above, and so on.
Furthermore, were we to go out on the touching line till just
under the point (§, ¥¢), and then start the construction, join-
ing the point just reached with (— 33, o), the joining line would
lie closer to (1, §/¢) than our former line. By starting the con-
struction closer and closer to o, 1, we should get lines and
points closer and closer to the graph of y = /¢, and as close as
one pleased, when at a finite distance from the line of y's.

”
This is a geometrical interpretation of &* = (x -I—E) .



PART SECOND.

DOUBLE NUMBERS.

I. INTEGRAL DOUBLE NUMBERS AND THE SIMPLER
OPERATIONS.

99. We now consider the even roots of negatives referred
to in § 87.
Assuming the law @™ X ™ = (2 X &)™, we have

V—a4=VYaX —1=¥Y—1Xa4=y4.y—1=y—1.44
=42, 4y—I=44y—1.2
Similarly,

YV—9=23¢y—1,§y—16=24y—1, y—25=%5¢y—1I,...,
and, putting 7 for 4/— I, we get the scheme
L _51‘» _43.7 _3t: —2i, "‘i: o, i’ Zi’ 3’7 4i’ St. L

We call the new numbers ‘tmaginaries, non-reals, or i-num-
bers, while other numbers are rea/ or non-i.

Of course we have, in the same way, -numbers where the
multipliers of ¢ are fractional or incommensurable ; but, for the
present, we confine our attention to those with integral multi-
pliers. We call them éntegral i-numbers, and say that their
absolute value is the absolute value of the integral multipliers,
thus making of 7 a new unit.

The distributive law for multiplication gives a: & =(a + 8)s,
which defines the addition of z-numbers.

64
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For multiplication, we have

GAXUEXd=yYy—aXyYy—FXyYy—=¥—a"-—p.—¢
=V (- —AN=V-¥0.—C —a=VY—a-F.c-—1.-—1
= — 1. V= Fbe.

Consequently, @ X & X ¢t = at X (b X ¢c£) = bi X ¢i X at
= — abci, and the commutative and associative laws hold for
the multiplication of Znumbers.

Further, the absolute value of the product is the product of
the absolute values of the factors,; the product is an i or non
number according as there are an odd or an even number of
i-factors; and in determining its sign, eack pair of i-factors gives
a minus sign in addition to the minus signs before the several
Jactors.

. . . . . . I
Sincei Xt=—1,IX —2=1, and—z:;. Therefore

an z-number occurring as a divisor in any expression gives an
opposite sign to that given by an znumber occurring as a
multiplier.

The raising of Znumbers to integral non-Z powers is in-
cluded in the rules for multiplication and division. Nor is
there any difficulty in taking integral non-f roots. As frac-
tional powers are merely integral powers of integral roots, these
are similarly disposed of.

Find single ¢ or non-¢ numbers equivalent to the following
expressions:

8. 0i+(7.2i. 31), (26 + (36 + 8 + (& — 42),
7’._(2‘)3'"(3{)5_’.-5’ Vi’ ‘i/i’ ;/i’ 3/— 64’ 4/—1,
23, (=, (—ah, (—25), (=81, 2-3, i-4 -4

at . bi <+ ci . di + ei . fi.
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100. To give a meaning to Znumbers, think of our defini-
tion of ordinary positive integers, names arbitrarily given to
objects when counting a group of them.

Suppose we have several groups of objects. Number the
groups as well as the objects in the groups. We then desig-
nate any object by two numbers: we say it is the object 2 in
the group 3, the object 4 in the group 5, and so on. In other
words, fo an object number we add a group number ; call this last
an 7-number, and we then say that the third object in the
fourth group is the object 3+ 44.

All the objects 3 in all the groups themselves form a group;
viz., the group

3+74 342, 343 3+4, ...

In that group 3} 47 is the fourth object, and we are justified
in writing 3442 = 44 4 3.

Of course, we can name both groups'and objects by nega-
tive numbers as well as positive, and we can have starting or
nul groups and objects.

The expression a -+ 67 we now call a complex or double
number, of which @ and & are the non- and 7 parts.

To get to 3 + 47 we count forward from o, the name of the
nul object in the nul group, 3 object numbers, 4 group num-
bers. To get (3 4 47) -+ (5 + 77) we count from either double
number as we would count from zero to get the other.

G4+ 647 =54 7))+ G +4) =84 114

We see then that zwo double numbers are equal if their © and

" non-i parts are separately equal, and the sum of any number of

double numbers s that double number whose i and non-t parts are

respectively the sums of the i and non-i parts of the double num-
bers added.

Ordinary or non-z numbers are merely double numbers

whose 7 parts are zero; while numbers are double numbers
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whose non- parts are zero. In symbols, 2 =a 07 and
ai = 0 -} ai.

Plainly, all the laws of addition, previously established,
continue to hold.

10I. Assuming multiplication distributive with regard to
addition, and multiplying 1 -} 27 by all double numbers, we
get products that can be arranged as below.

. . - . . . . . . . . . .

eees 1-35, 2-34, 3+4 4+3, 545 64+ 7 7+ 95 ...

ey —1—2i, o ’ 1+2i, 2+4". 3+ 64, 4+ 81, 5+IO£, R

aesy —3— 7, —2+ Z, _I+3‘.- 5%, 1+ 7i, 2+ 9i, 3+Ili, oo
ooy =5 5 —4+2i, —3+4i, —246i, —14 8, 106, 14124, ...
weoy =74 =643, —s+si, —4+7, -3+ 9i, —2+411, —1413, ..

<o, —g+2i, —844i, —746i, —6+48i, —s+10i, —44-12{, —3414i,..

Here the product (1 + 22)(3 4 4¢) is 2+ 117 in the 3d row
down and 4th column right from o.

We have, in fact, a 1 27 arrangement or system in which
the product is the 3d number in the 4th group. Thus, to mul-
tiply a number @ +} &, by another ¢ 4 47, we pick out the cth
number in the 4th group of the @ 4 &2 system, or what is the
same thing, the ath number in the 4th group of the ¢4 47
system.

It is as though we spoke of 6, the product of 2 and 3, as the
second number in the third pair of numbers, or as the third
number in the second triplet of numbers;

12, 34, 56, or 123, 456.

The significance of all this will become more apparent on
adopting a simple geometric representation.
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Suppose the objects to be dots, and the groups rows of
them. Thus:

243+ o. . . . . . .

L] . . . . . . - °

-\2((31;)

All the dots belong to the original or standard 1 + of sys-
tem ; those encircled, to the 34 7 system, We have indicated
the dots — 247 and (— 2+ £)(3 + 2).

The student may in like manner construct a diagram to
show the 17 system, the — 1 47 system, the 24 o7 or 2
system, the o+ 37 or 37 system. Why do the dots of the first
of these systems coincide with those of the second? Why do
all dots belonging to the 3 — 7 and 27 — 7 systems, belong also
to the — 19 — 7 system? Why can no others be in that
system ?

The commutative law for the multiplication of double
numbers is contained in the definition of a product. The
student can show that the associative law also holds, and that
multiplication is distributive with regard to addition when all
the numbers involved are double.

.
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Raising to integral non-Z powers is done by repeated mul-
tiplication and does not require special consideration. Let the
student construct diagrams showing the 2 +7, (2 47y, and
(2 + 7)? systems; also, the 7, 7%, 7% and ¢ systems. In what do
these last differ? -

102. Of course, subtraction is a mere addition of opposites,
while division is a guessing what to multiply one double num-
.ber by to get another. It may or may not be integrally
possible.

Eg., (I+3t’).+.(2-|-i)=l+i; for.(1+i)(2+z')=1+3i.

But there is no double number » 4 7y, with integers for x
and y, such that (1 4-2)(x + ) =2+ 4.

For expanding, we have
x—y+@E+y)i=2+47 and f.x—y=2 and r4y=1;

‘equations which no integers satisfy.

Thus, 24 7 is not integral ly divisible by 1 7.

Similar remarks apply to the extraction of integral non-
roots. '

(14 58)+(3 4 20) =? (1 4 78)+(2 — )=? (4+9)+(2—39) =2
25+ (3449 =? 17+ (F—4)=? 13+ (2i+3)=? ¥3+4=?
V13 — 126 =?
" Showthat = y/(26 — 108 = (¥26 — 107)".
Prove the following not integtally possible:

(44)+@—2i); G—i)+@+3); T+9)+6—i).

II. NON-INTEGRAL DOUBLE NUMBERS: TENSORS AND SORTS.

103.. Fractions enter as with ordinary numbers. There, it
will be remembered, they were numbers lying somehow between
numbers already used. So double numbers with fractional
parts lie somehow between the double integers. Better, the
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fractional double numbers are such that their £ and non- parts
lie between the # and non-¢ parts of integral double numbers.
They are, if you please, names assigned to new objects inter-
polated into our groups and new groups interpolated into our
systems. ’ ’

Thus, in our diagram above, a dot placed between 1 and 2
on the initial line of the standard system would be marked by
one-and-a-fraction ; while a row of dots lying between the 7 and
the 27 row would be a one-and-a-fraction row.

Manifestly, the interpolation can be carried to any extent,
and the position of any point on the diagram marked as accu-
rately as you please.

Let it then be carried out. Make the line of 2's of § g6 the
initial line, or line of non-z numbers; and the line of y’s there,
the line of Znumbers here. Finally, represent numbers with
equal ¢ parts by points equally distant, the same way, from the
non-z line; and numbers whose non-z parts are equal by num-
bers equally distant, the same way, from the zline.

In brief, put (=, ) =249

We have a representation of double numbers first used by
a French mathematician, Argand, and frequently referred to as
the Argand diagram.

Evidently, now as heretofore, two double numbers are equal
if their i and noni parts are separately equal; and one double
number lies between two other double numbers, if its i and non-:
parts lie between the 1 and non-i parts of those otkers.

104. Consider the number ; + 5:’. This is

ad | bc. 1 .
3a T 2a’ =H(ad—|— bet).

Thus, all fractional double numbers are simple fractions of
double integers.

In the ad -+ bci system, %-—[— 3:’ belongs to the initial*
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group, and the general type of all numbers belonging to that
group is } (ad + bci).

Two numbers are said to be of the same sort if they belong

to the same group and if the multiplier ¢ has the same sign
group P g

S
for both; but of ogpposite sorts if the number 2 has opposite

S
signs for the two. They are of different sorts if not belonging

to the same group.

Show that g— + g,i and % + g,z' are of the same or opposite

sorts according as & does or does not agree in sign with c.
the same sort * .
. } have their points
opposite sorts
on the Argand diagram co-linear with the origin, and lying on
{ the same side
opposite sides
105. The product of @ + & by ¢} d% is ac — bd + (ad+ b¢)z;
and, obviously, the product of any number of the sort 2 | &
by one of the sort ¢+ 4% will give one of the sort ac — éd
+ (ad + bc)i. .
Suppose we were to divide @+ & by ¢ d¢ and get the
result x + y¢. Then

Show that numbers of {

} of the origin.

a+ b= (x +yi)c + &)

and
@+ bi)e — di) = (z + yi)e + die — @) = (= + yi¥e 4 d7;
whence z + yi = (a + &i)c — i) = (& + 2?).

But also  +yi = (2 + &) + (c + 4%).

Now ¢+ d% and ¢ — d7 are merely two double numbers that
agree in everything save the signs of the zparts. We call
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such numbers conjugates, and we have just proved that 20 mul-
tiply by either of two conjugates gives a number of the same sort
as to divide by the other : a remarkable and very useful theorem.

The number + #(non-Z part)® 4 (&-part)’, by which if both
of -two conjugates are divided the results are reciprocals, is
called the modulus, absolute value, or tensor of the numbers.

The student will see that when either the «part is zero or
the non-¢ part is zero, this agrees with previous definitions of
absolute value.

Show that numbers whose tensors are equal have their
points on the Argand diagram equidistant from the origin.

106. Let a -+ 76 be any number, and write 4+ ¥a? 4 & = m.
Further, let 2~ 2 and 2 =g¢. Then
m m

atib=m(p+13), and p+¢=1

The number is thus resolved into two factors: a quantity
factor determining the absolute value, and a quality factor
determining the sort. The latter, whose tensor is unity, we
call a complex unit.

Let there be a second number @’ + 6’ = m'(p’ + ¢¢’), and
consider the tensor of the sum, of the difference, of the product,
and of the quotient of the two.

107. For the sum we have

a+a’ +i(6+ &), with the tensor V(a4 é’)’ -|- 6+ o).
The tensor squared is
& B 8 4 2ad + B8) = i+ m" + 2mm’ (89 + 29).

Were pp’ -+ ¢¢’ = 1, this would plainly be the squalze of m~-nm;
and we should have the sum of the tensors for the tensor of
the sum. This does happen when p = ' and ¢ =¢; that is,
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when @+ #6 and @’ 4 74’ are numbers of the same sort. Other-
wise pp’ + g¢’ < 1, and the tensor of the sum is less than the sum
" of the tensors.
To see this, take account of the relatlons ra=p"+¢"=1,
and write gp’ + ¢¢' = £ Evidently,

- 2ﬁf’+ﬁ”+9’—249’+q”=é — 2k;
or =2y +@—92)=201—%).

The expression on the left is the sum of two squares, and
‘positive, unless p = p’ and ¢ = ¢’;

“1—4%>o0, .and k=4 +¢9¢ <1

On the other hand, k> —1.

For o0<(p+pY+(@+gy=2(14+#, and 14+%>o.

*. the tensor of the sum is greater than the difference of the
tensors unless p = — p’ and ¢ = — ¢’; that is, unless a4 ¢
and a’ + 74’ are numbers of opposite sorts.
sum

. o
difference } f two numbers

Show that the tensor of the {

opposite }
equal )~

Show that the tensor of the difference of two numbers ex-
ceeds the difference of their tensors, unless the numbers are of
the same sort; while it is less than the sum of their tensors,
unless the numbers are of opposite sorts.

Show that if two numbers are neither of the same nor of
-opposite sorts, their sum can be neither of the same sort as
either of them nor of an opposite sort from either.

vanishes when and only when the numbers are {
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108, The tensor of a product is a simpler matter. We have

(a + 16)@’ + ib') = aa’ — b8 + i(ab' 4 a'b)
=mm' [pp — 97’ + {29' + 2'9)].

But (2 —9d Y =210" — 20099 + 74",
- and (2 +2'9y =29"+200'9¢' + 20"
and so

(8 —92y+(2d + 29y = (2" + ¢+ ¢ *+¢") = p+¢=1.

"Thus (pp’ — 9¢)+ i(p¢9' + #’9) is a complex unit, and
(a + #b)(a’ + 26"y = mm’ X that complex unit. In words: z/4e

tensor of the product of two numbers is the product of their tensors.

It goes without saying that z/ke ratio of the temsors of two
numbers is the tensor of the ratio of the numbers.

Let the student prowve these. ‘

The tensor of an integral power of a number is the integral
power of the number's tensor.

If there be an integral root, its tensor is the integral root of
the number’s tensor.

 §
./

1 b

@ mﬁ?a%wg)/ (@it)

 TC2RS) 48
1% ,g"/__..,-—-"@-:r'fb Lo
a+ib
//
41 /
"\tb!afrtb') ; % _,,.——A'fa"-ib
—— '

—

1] a1 a2 >
Use the diagram representation. We go, from the nul-
point, & right 5 up to a+- 76 or 4. Evidently m, = 4 Va*+ &,

PR
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is the distance from the nul-point to 4. Likewise »’ is the
distance from the nul-point to 4’; while ¥(z 4 2’y 4 (& + &'y
is the distance from the nul-point to (@ 16) + (¢’ + 7%") or S;;
0, A, A’, and S are corners of a parallelogram; and of course
04 +AS > AS>04 — AS.

Show that the distance 44’ is ¥(a — &’y 4+ (6 — &)~

To get the product point P, we go from the nul-point
(@’ + #6')-ward the distance @', and then #(a’ 4 #&')-ward the
distance é#’. Thus the distance of 2 from the nul-point is
Varm' 4 bm'* = mm'.

Prove that the triangles o, 1, 4 and 0A4’p are similar.

Construct the sum and product points if @ + 76 and a’ 476
are interchanged.

Construct the two difference pointsand the two ratio points.

Construct (@ + #0)%, (a 4 i6p, (@ + 7b0), (@ + 26)7*, (@ + #b)~*
(only one figure is necessary).

The problems are easily varied by changing the numbers
a,a’, b,and &.

109. We have said that one double number lay between
two others when the z and non- parts of the one number lay
between the Z and non-Z parts of the two others.

Instead of referring the numbers to the standard system,
refer them to a (p + 4g) system (#* + ¢ = 1). In the place of
non-Z and ¢ parts, we now have p 4 ¢7 and #p — ¢ parts.

Consistency requires that the definition of lying between
shall be extended so as to include a reference to any possible
system. _

We say then that one number lies between two others if p and
q can be so chosen that the p + iqg and i1p — q parts of the one
number shall lie between the p + iq and ip — q parts of the other
numbers.

Thus, consider the numbers

144, 443 642

Although 3 does not lie between 1 and 2, yet 4 -+ 37 does
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lie between 1 47 and 6 4 2i. For, refer the three numbers to
a §+ 74 system. They become respectively

FE+H) -3 -1, HFA+ -1, RE+H—¥EE—1)
and 3} <3 <3, while also —3> —3>—238

To get clear ideas, let the student plot the above points on
the Argand diagram, and then through the 1 47 and 6 4 27
points draw lines parallel to the initial and ¢ lines of both the
standard and the § 4 ¢4 system. He will thus get two rectan-
gles having 1 4 ¢ and 6 4 27 for opposite corners. The rect-
angle that has a side parallel to the initial line of the standard
system does not contain the point 4 - 37, while the other rect-
angle does.

To try every possible system to see whether one number
lay between two others would be tedious. Take three num-
bers, a, + ¢b,, a + ib, a, + ¢b,. 1f a does lie between 4, and a,,
and also & between 4, and &,, no test is necessary. Putting this
in a slightly different form, if (2, — @)(a — a,) 2 o, and also
(6, — 86 — &) Z o, then a — 6 does lie between the other

two numbers. OQur problem then is to find a condition for
lying between when either or both of the above products are

negative.
Whatever the complex unit p 4 7g, we must have

@, + ib, = (pa,+ gb )P + ig) -+ (26, — 9a)ip — g),
a+ib = (pa + g¥p+ia)+ (26 — ga)ip — 9),
a,+ b, = (Paz + 962)(P + ’Q) + (sz - 9“:)(’? - 9)'

The multipliers of p 4 ié and 7p - ¢ now take the place of
‘a,, b, a,b, &,, and &,, above. It therefore follows that @ - 75
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does lie between a, - ¢4, and a, -} ¢5, if, and only if, p + ¢z can
be so chosen that '

[(al - a)p + (61 - 6)9][(“ - az)p + (b - 63)9] : o,

say I X II io,

and [(b,— 8)p — (a, —a)g][(6 — b.)p — (a — a,)9] =o,
say III X IV io,

Now, by the help of the relation p* 4 ¢* = 1, it will be found
that

P4IPHIPHIV =(a,—a)+(6,— by (e —a,)+(6—b, = A say ;
and (1 4 1y + (111 + 1y = (@, — a,)* + (6,— &,), = B say.

If B<A4, 1 X141 X IV <o, and certainly either
I X II<O,orelse III X IV < 0.

But B < A4 unless (@, — a)(a — a,) + (6, — 6)(6 — &,) Zo

~. a6 does not lie between a,+ 25, and a,+ 45, excepf
under the same condition.

Thus, 2 4 4¢ does not lie between 147 and 4 4 27; for
(—1)(—2)+(—=3)2z=—4<o0.

To show that, if (@, — a)(a — a,) + (6, — 8)(6 — &, Zortig
can be so chosen that neither 1 X 11 nor 111 X 1V shall be nega-
tive is easy. We merely chose it so that I, say, =o. This
makes I X II =0, and

because IXII41II X IV j o, ITTI X IV ‘;‘ 0.

b —b—i(a,— a)
V(b, - b)2 + (a, - a)z .
Notice that B above is the tensor squared of (a, 4 75,
— (a, + 14,), while A4 is the sum of the squares of the tensors
“of (a, + 26,) — (@ + ¢6) and (a + ¢6) — (a,+ 76,). That B shall
then be less than 4 means, on the Argand diagram, that a +- 76
shall be somewhere within a circle constructed on the junction
of a, + 6, and a, + 75, as a diameter.

The required value of p 477 is
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110. Suppose a, + 25,, a+ 15, and a, 4 8, to be such that
I X 11 S o, no matter what the value of p 472 Then
(a, — afa —a,) Zo and also (6, — 8)(6 — &, So,ascan be seen
by putting first p = 1 and then ¢ =1 in the values of I and IIL

Furthermore, since p 4 7¢ can become any complex unit, it
may become ¢ — 7p. Now, when p 4 7g changes to ¢ — 79, 1 is

changed to 111 and 11to Iv. Consequently, if always I X II >0

likewise always III X IV = = O.

Since I and II are posmve together and negatwe together,
they must be zero together. For, let p, 4 7g, be a value of
2 -+ ig that makes I vanish.

Then

1=(a,—a)p,+ (6. — b)g, =0, and 11 =(a — a,)p+ (6 — 4,)g.-

If 11 > o, let p 4 7g take a value such that II gets smaller,
but still remains larger than zero (the student may show this
possible).

Because the signs of the terms of I agree with the signs of
the terms of 1II, I also gets smaller and therefore negative.
I and II thus cease to agree in sign, and we could not have
1 X 11>0. Consequently 11 } 0 when I = 0; neither is 11 < o.

a—a_—¢ _a—a,
We have then 5—6= 5 —b—3

a condition to be satisfied by a, 4, a,, &,, a, and &, in order that
our supposition that I X II, and so III X IV, should never be
negative, may be realized.

We say, in this case, that @ 4 74 lies directly between
a, -+ 16, and a, + #5,. '

a—a
What condition besxdes =

b — 6 m‘ must be fulfilled
in order that a - 76 shall lie directly between a, 476, and
a,-+ 15,7 What that a, + 75, shall lie directly between a - 7%
and a, 4 75,7 that a, + 75, shall lie directly between a 4 76 and
a,+ 16,7
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Show that one complex unit cannot lie directly between two
other complex units.

Prove the following:

If one double number lies directly between two other double
numbers, then a number directly between it and either of them
lies directly between those two.

If a number lies between two others, but not directly so, a
number between it and either of them need not lie between
those two.

and
but not} directly
but not }
and
directly so, lies between the two numbers, but not directly so.

Work these out by the numerical conditions and then illus-

trate on the Argand diagram.

If a number lies between two others {

so, then a number between it and either of them, {

III. CoMmPLEX UNITS AND NON-£ POWERS.

III. In § 108 we proved that the tensor of the product of
two numbers was the product of the tensors of the numbers,
It followed that if there were an integral non-z root of a double
number, its tensor was the integral root of the number’s tensor.
We now consider the possibility of this integral root. Evidently
the possibility hangs upon whether a complex unit has such a
root or not.

For simplicity, think of the square root and suppose

Vot ig=zx+1.
Then
(x+9)y=p+7, andso »*—p =p.
But (p+ig)=1. (7 means “ tensor of.”)

S Tx+dy)=1 and P+ py=1
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Thusx=;|:1/lzp,y=;i;t/l;p,andforp>o,q>o,

. I . -
the required root is 1/ -:p +1 1/ ! 5 ? ,or the opposite thereof,

as may easily be verified.

By repetitions of this process we can, of course, get the
fourth root, the eighth, any root whose index is an integral
power of 2.

We have just seen that if both p and ¢ are positive we can
get a square root both of whose parts are positive. But no
matter what the complex unit with which we start, a square
root can be gotten whose 7 part is positive, and a fourth root
both of whose parts are positive. Thus:

Vp+tig =+‘/#+i$/-l—;—£, and so on;

Vp—igq =—1/-I—_2|-—p+i$/l%ﬂ,which is of the form —p-77;

4/:}.{’._{9=+‘/I—:£+£‘/I -2*_", and so on;

Vp—ig=—+ L 4 +iy/ %”, which is of the form —p-}-ig.

112. When p and ¢ are both positive, 2* < p < %‘3, and

therefore < 1—22, while ¢> $/ l—:£
As we keep on extracting doubly positive square roots, the
7 part finally gets as near as you please to zero; while, at the
same time, the non-7 part gets as near as you please to unity.
Call such a resulting root £ 4 %z, and consider the series of
powers % -+ 4i, (£ + kY, (k4 ki), . . . to (B ki), = p+1g.
They are all doubly positive complex units. Each has its
1 part greater and its non-¢ part less than that of the one before

it. The tensor of the difference of two successive powers is
constant and = ¥2(1 — £).
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To see the truth of this last statement, let /- » be one of
the series of powers. The next one is (£ 4 /4z)(/ + m:), and
their difference is (/4 mt)(# + %i — 1). Thus, at once, the
tensor in question is

TU+m) X T+ 4 —1)=1X TNk+ ki — 1)
=V — b+ 7= V2(1 —4).

It is plain that all doubly positive numbers » 4 s7 with 7 part
less than ¢ must lie between two powers of £+ /z; for the 7 .
and non-¢ parts of the number will lie between the 7 and non-7
parts of two of the powers. (From our point of view, coinciding
with either is merely an extreme case of lying between.) Since
(&£ + #i) = ¥p + ¢3, we can, by making # large, make % as near
to zero, and so ¥'2(1 — £) as near to zero, as you please. It fol-
lows that » 4 s¢ is hemmed in as closely as you please by a
power of aroot of p + ¢7; i.e., 4 sz can be expressed as closely
as you please by a fractional power of p 4 ¢7; and, conversely,
any power of p -+ ¢7 with index less than unity but greater than
zero can be expressed as closely as you please by a number
? + st.

113. We shall now show that all complex units whatsoever
can be expressed as powers of p 4 ¢7, and that to every power
of p + ¢7 corresponds a complex number.

In order to do this we establish three theorems:

ist. If 2> /> % and 2> m > %, then the complex units
!+ mi, — I+ mi, — I — mi, and [ — mi, will on multiplication
by £ -} /%2 have both their 7 and non-z parts changed by more
than 1 — 4, but by less than 4.

Consider the first of the four. The changes in question are

l—kl+mhk and km—+tii—m.

Nowl — bkl mh>1—Fkif I+ k+ mhk> k4 B+ 7,
.which is obviously true since each term on the left is greater
than the corresponding term on the right. Similarly,
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km4hl—m>1—%k because km4-hl+k>EBL+4m;

L— Rkl mhk <k, because Akl mh <I+Fk;
and
km A hl—m <k, because Am 4kl <m -+ k.

Since no distinction is made in the conditions imposed upon
Z and m, these letters can be interchanged in all of the above in-
equalities without destroying their truth. But it will be found
that the changes produced in — /- m, — / — mi, and /4 mz
on multiplication by £ -- /% will either be the same as the above
changes, or else derivable from them by the interchange of 2
and /. In fact, /4 m: itself, save for the interchange of 7 and
/, is converted into the three other forms by merely passing to
the 7, 2%, and ¢ systems.

2d. If 1 z&> #and o T f < 4, then the complex units

S+ g, — g+ fi, — f — g4, g — fi become, by the multiplica-
tion by £+ Az, units — f' +g't, — g’ — f'i, f' — g't, g/ + f3,
where the numbers f* and g’ fulfil the conditions 1> ¢' = 4,
o< f’ =

As before, to prove this for one of the given complex units
is to prove it for all. We have

(f + &)k + #) = Sk — hg +i(fh + kg).

Now f& — Ag is largest when f% is largest, and smallest when
kg is largest : is largest, therefore, when fis nearest % and g is
nearest £, and smallest when f = o0 and g = 1. Hence

o> fk—hg>—Fk or o<hr— fh<h

As-for fh -+ kg, it is positive and largest when /% — kg is least
in absolute value, and least when f2 — Ag is largcst in absolute
value.

1> fht kg T R

Thus kg — f% and f% - kg can be replaced by numbers #/ and
£’ conditioned as above.
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3d. If the complex units — f'+ g’s, — ¢’ — f's, f' — g1,
£ +.1't, be multiplied by £ 47, we shall get respectively
numbers — /- mi, — I — mi, [ — mi, [+ mi. We leave the
proof for the student.

Start now with unity or (£ 4:)°, and form in succession
the powers £+ 4i, (£ + Zi), (£ /i), . . . We shall get, in
order, numbers / -4 mi, a number f+- g7, a number — f’+4-¢'%,
numbers — /-4 mi, a number — g+ f7, a number — g’ — f7,
numbers — / — mi, a number — f — g7, a number f' — g’;,
numbers / — mi, a number g — fi, a number g’ 4 f'7, and
finally numbers /- ¢ again.

Now observe: if three different complex units agree in the
sign of one of their parts, one of the three numbers must lie
between the other two.

If they agree in the signs of both their parts, this is obvious
enough. E.g., any number /4 i lies between some two of
those numbers 7+ m: that we get by the powering of £} /i.

If the three agree in the sign of one of their parts only, the
lying between may not be obvious. E.g., when f> f’, does
a number f+ g7 lie between a number — f’ + g7 and a num-
ber /4 mi? Apply the test. We have for the quantity that
is not to be less than zero

(—f = = D+ (g'— &) g — m).

If this expression can be diminished without becoming nega-
tive, it must be positive. But this is precisely what happens
when for / we write f’ and for — 7 we write 4 ¢’. Each term
of the expression is diminished, and their sum becomes
S'*— f*+g’'* — g% which is zero. Similarly can be treated
other sets of three complex units agreeing in the sign of only
one of their parts.

Consequently all doubly positive complex units not lying
between two doubly positive powers of £ 4 47 must lie between
the last doubly positive power and the first negative-positive
power, i.e. between the /4 g7 and the — /" 4 ¢’7 number due
to the powering. Similar statements apply to negative-posi-
tive, doubly-negative, and positive-negative units, and to the
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numbers z, — 1, — 7, and 1 of which the non-expressed parts are
ambiguous in sign. Thus the powers of (£ /47) hem in all
complex units and our thesis is proved. Of course, when we
say “hemmed in,” we take for granted that % shall be as small

as you please, and so ¥2(1 — £), the tensor of the difference of
the two successive powers between which any assigned com-
plex unit must lie, as small as you please.

114. We have shown that all complex units whatsoever are
hemmed in by powers of £ /4. Because (& — 47) is the re-
ciprocal of £+ /i, and every complex unit is the reciprocal of
some other complex unit, all complex units are likewise
hemmed in by powers of 2 — /i. For the successive powers
of* £ — /i, the 7 and non- parts go through their changes in
precisely the reverse order to that for powers of £+ 4. In
fact, we get, in order, positive-negative numbers, doubly-nega-
tive numbers, negative-positive numbers, and doubly-positive
numbers. -

Why can we not hem in complex units by successive powers
of a negative-positive or a doubly-negative number?

115. Because all complex units are, as near as one pleases,
powers of £ -} 4z, any complex unit whatever is some power or
other of any other complex unit. E.g.,

If.p + g = (k4 4 and » +si = (£ + Ai), pF-ig = (r + st)fs.

Conversely, a complex unit can be found which comes as
near as you please to any assigned power of any given complex

unit p - zg.

”
Suppose we want (p + ¢¢#)=. If z isa power of 2, no expla-
nation is necessary. If not a power of 2, there are always two

. a at1 .. . .
fractions, 25 -—:—;—-, differing as little as you please, such that

a m a-t1
2SS T2

and (p+ iq)% is hemmed in by (p 4+ qz')z% and (p + qi)%'!.
Calculate, for instance, (§ 4 74)¥.
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We have I < H <18,
and Y3 T i% = 0.9944 + 0.1057:.
‘Whence 3+ 4)¥ =0.179 + 0.9847,
and 3 + ¥ = 0.074 + 0.997:.

More closely, }3§# <3+ < 1$4%; and we find that (3 4 7§)¥
lies between 0.1126 4 0.99367 and 0.1135 + 0.9935%.

Very accurately, (} 4 #4)¥ = 0.1133739 + 0.9935537:.

As an aid to clearness, we have plotted on the Argand dia-

gram the points (§ + 74)° (3 + z*)i @+ ... to 3+ PN,

marking them 0, 1, 2, . . . to §5.

B 10
% 3.
55 wi 5
2. 7 i
a. %i 3
%. %i 2 .
= 3
%, i 2
7. B
B oK % % % 1%
E- 3 -5
o -3
ﬂ:_ 51
7 %
8 &
ﬂ:a‘ 8
“ ﬁc. .—.a‘
ﬁ’ = ~f o bl
T s 8 a

It will be noticed that 1 is at 0; 7 is between 13 and 14;
— 1, between 27 and 28; — 7 between 40 and 41 ; and finally,
I is also between 54 and §5.

Just to the right of 13 is the dot for (§ + 74)¥.

If we call § 444, £ 47, then o to 12 are the /4 mi powers,
13 is the £+ g7 power, 14 the — £/ + g’ power, 15 to 26 the
— /- mi powers, and so on.
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The dots to represent the successive powers of (3 | ¢$)=
would be 128 times as near together as those for the powers of
(3 + #$)%, and could not be readily represented on our scale.

We have shown how any non-z power of a complex unit can
be gotten with any desired degree of accuracy.

Any double number is a product tensor X complex unit; and
therefore, any power of a double number is the product power-of-
tensor X power-of-complex-unit.

Thus, a definite meaning is given to all non-f powers of
double numbers. There remain for consideration the 7z and
double-number powers. For this we prepare by extending to
double numbers our ideas of growth.

IV. GROWTHS, RATES, AND AMOUNTS.

116. A double number grows by the separate growths of
its 7 and non-7 parts. These growths may be connected by any
law. In particular, they may be so connected that the 7 part
grows uniformly with regard to the non-¢ part.

Thus, if x 4 7y, where y = ax, grows so that always y keeps
equal to az, then the rate of growth of y compared to x is a.
If 2’ 4 4y’ is any number whatever reached by the growth, then
the number x — 2’ 4 #(y — »') is constantly of the sort 1 4 7a.
We say that the growth is a #niform one of the sort 1 - 7a.

If, on the other hand, the rate of 7 growth compared to
noni-¢ growth is not uniform, the number x — 2’ 4 #(y — »')
constantly changes its sort. We say that the x -} zy growth is
of a varying sort, or, more briefly, is a varying growtk.

When, for instance, x 4 7y grows so that always y = 22, the
rate of ¢ growth compared to non-# growth is 2z, and itself
grows with x at the rate 2. The sort of growth at 2’3y’ is

4

given by x — 2’ +¢(y — »), and is therefore 14 i:{;il”

which, for y = ', becomes 1 2z’s. Dropping accents, the

growth at x + ¢y is of the sort 1 227, a number that changes
with changing .

On comparing the above with § 86 sequiter, it will be seen
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that what we there called the graphs of y = ar, y = 22, etc,,
are merely representations of the growths of x - 7y according
to the laws y = ax, y = 23 etc. Uniform and varying growths
are represented respectively by straight lines and curves, while
the sort of growth at a point x + ¢y determines the law of
growth of a tangent to the graph at the point in question.

117. Whatever be the law by which x -+ ¢y grows, we can
connect with it the growth of another number « + 7.

Suppose y = ax, and u+ v = (c 4 id)(x + iy).

Then %+ ¢v as well as x + 2y has a growth of a uniform
sort. In fact, the multiplication by ¢ -} 7d merely changes the
system, so that the growth of # - zv would be represented by
a straight line through zero and (1 4 2a)(c 4 ¢d), just as the
growth of x4 2y is represented by a line through zero and 1 4-7a.

The growth of # + v is thus of the sort ¢ — ad + #(d + ac),
d—+ac
c—ad

The rate of growth of # + 7w compared to x -+ ¢y is of course
u-++1v— (u + )
4y — (@ +9)

This last result is independent of how x -+ zy grows. Does
. x-+1iy grow so that always y = 2°? As before, the rate of
% 4 iv growth compared to x 47y growth is ¢} 72, and the
graph of # 4 7v in the ¢+ 44 system is the same, for this sys-
tem, that the graph of » -+ Zy is for the standard system.
These graphs are sketched in the annexed diagram. That of
x -+ 7y with the standard reference-lines is drawn full ; that o[
# + v with the transformed reference-lines broken. The asrews
indicate the directions of positive growth in the two systems.

The rate of 72z — & growth compared to ¢ -+ ¢4 growth in the
transformed graph is, of course, that of 7 compared to non-z
growth in the original graph, viz. 2z.

The rate of 7 with regard to non-z growth in the transformed
graph is

and the rate of 7 growth compared to non-z in 4 7v is

= ¢+ id, a constant:

u—u _crddr—cx* —dr 2cx+d
V—v x —dv' —cx+dv*T ¢c— 2dx”’
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We leave it to the student to find the rate of growth of »
compared to z, of # compared to y, of v compared to y, and of
% compared to z.

118. From the two numbers @ 4 76 and @’ 4 74, respectively,
let there be uniform growths of the sorts p 4 7g and p' 4 i¢".
Asusual, P+ ¢ =p'"+¢*=1.

Any number reached by the first growth can be written
a-+ mp -+ i(6+ mq); while any number reached by the second
isa' +m'p +4(6 +m'y).

If now p 4 7g and p’ 4 7¢’ are not of the same or opposite
sorts, we can always find one and only one pair of numbers
m, m’, satisfying the condition

a+mp+i(6+mg)=a +m'p +i(6' +m'q).

The numbers, in fact, are

_ P —=¥)—qga—2a) ,_gla—a)—pb6—=¥)
"= 727 — 74 and ' =
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In case m =0, p' 474’ is of the sort a —a’+7(6 — &), and
a—a b=V
? q

cented and unaccented letters are interchanged.

When p -+ 7g and p’ + #¢’ are of the same or opposite sorts,
either m and ' are non-finite (m = o0, m’ = ) and no.num-
ber reached by the one growth can be reached by the other; or
else you can take either what you please, provided the other is
rightly paired with it. '

The free choice is possible when either p 4 7g and g’ 4 7’
are both of the same sort as @ — @'+ #(6 — &), both of an
opposite sort from it, or one of them of the same sort and the

=m’; statements that remain true when ac-

. .. o
other of the opposite sort. For this gives m = > oroXm=0;
which is true no matter what number » may be.

Having taken m, we have for »' the value

a'—a+m'p
7 .

The distinction between growths of the same and opposite
sorts can of course be avoided by agreeing that a growth of an
opposite sort is merely one of the same sort taken negatively.

119. The preceding investigation furnishes a simple test for
one number’s lying directly between two others.

That p4:9 and p' 4 i¢’° shall each be of the sort
a—a 4146 — &) is the same as saying that, if x 4 7y be the
number reached by the growths, then

a—a+m
? ’

In like manner, »’ taken. arbitrarily gives » =

b—y_y—=V
a—x zx—a°

Now z -} ¢y is directly between @ 4 76 and a’ 4 ¢&' if, be-
sides this, & — y and y — &’ agree in sign.
But x—{—z:y:a—l—z'b—!—m(p—l—iq)

—a 46— 5 .
=a+tib-+m V( g
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which, if we put £ for m <+ ¥ (a—a’)* 4 (6 — &')*, becomes
(1 + &)@ + ) — Ka' +5¥).
Thus y=(1+4 k)b — ¥ ;
whence b—y=Ab—0&), and y—¥& = (14 £)(6—¥&).

That 4 — y and y — & should agree in sign it is therefore
necessary and sufficient that

A1+ 4 <o;ie, —1<k<o.

All the numbers, then, directly between a 4 26 and 2’ + 75’
are contained in the form {a 4 #6) + /(@' + #¥'), where / and /’
are positive numbers whose sum is unity.

Furthermore, as the student can easily show, if, keeping
/47" =1, we take /' negative, a 4 76 lies directly between
@' + &' and the number that we get; while, if we take / nega-
tive, a’ -+ ¢4’ is the number between the other two. ’

From 7 -+ 8¢ and 2 — 3¢, respectively, are growths of the
sorts $ — ¢4 and — }§ 4+ ¢5. What is the number reached by
both?

From the same numbers, by growths of what sorts would
8 — 177 be reached?

Determine g in the following numbers so that they shall lie
directly between 7 4 87 and — 13 4 42::

g‘+21i, —7+g77 S—g’t’ 3Oi_g‘

Represent these problems on the Argand diagram.

120. The number a 4 26 is any number whatsoever. So
also is @ +mp + d6+ mg). In order that it shall be, say,
¢ -+ id, we require simply @ + mp = c and & 4 mg = d; whence

_a’—b_c—a_ (d—by4-(c—aY

n=" = =N rts Ve
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Thus m, p, and ¢ are given in terms of g, 4, ;, and 4, with
the possibility of always taking m positive.
In other words, we can always have

m= T [c+ itd— (a + 2)].

We call it the tensor of uniform growth from a4 to ¢ 4 7d.
The growth is evidently of the sort ¢ 474 — (a - ¢5).

A uniform growth from a 4 74 to a number x -} 7y, if not of
the sort ¢+ 2d — (@ + ¢5), must be followed by one also not of
that sort to get from x+ ¢y to c+{éd. By § 107, the sum of
the tensors of the two growths exceeds the tensor of a single
uniform growth from @ 4 5 to ¢+ 7d. We say that the single
growth is more direct. - 4 fortiors, the single growth is more
direct than a chain of uniform growths from a -5 to ¢+ id
through numbers x, 42y, x, 4+, x,+2,, . . . 2, + @,
not lying directly between a 4 24 and ¢ 4.

12I. Suppose that, in the chain of growths just suggested,

AL X, LE, LX< e e L Xy 3 < Xy <%, < b3

and also
s —b_ Y= VD2 Yu-1—Vn-2 yu;yn-x d—}',,.
x,——a> X, — & > X,— 2, > xu-x’—xﬁ-z> Xn—Xp-1 > C—Xy

By addition and subtraction of numerators and denomina-
tors we get

’&;é>}_l£_é>y3_b .yn-x—'b }’,‘—b d—-b.

zx—a” x,—a xa——e;>"'>x,,_,—a x,—a  c—a’
Vo=V Vsi— W Vs ™ In-1 =V Ve — 1,
z,—x,> xs—x,>x4—x,>' ’ '>x,,_,——x,>x,,—x,’

together with similar chains of inequalities beginning

Y3 —Ja Vo=V Vs — s V-1 = Vn-2  IYn — Vn-1

2= y .
Xy — Xy

xs—x:’ :84-—4‘?3’ xs—x4’ Xp-r— Xn-a
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Also, we have

d— d—yu. _d—Yu, d—y, d—y, d—58

c— z, c—x,,_,<c—x,,_,<"° c—2x, c—x%x, “c—a
Iu— Vn-1 <J’-"“}'--: <}'.—}’.-3<' . <}'-_J'; <J’n“yx <J’-_b;
En—Xns Xu—Zn-2 xn_x--s Xu—x; Xy—32, Ax—a

together with similar chains of inequalities beginning

Yu-1 = Vn-2 Inu-2 — Vu-3 Js —Ja Y2 — )
xn—l_xu—z, xﬂ-z—xn-s, v .x3'_xz’ x:_xl.

In brief, if we put for a, 4, ¢, and d, respectively, z,, ¥,
Zyi+1r and y, .., while letting /, £, 7/ be three of the numbers
o1,2,...n+41,with/> 7, we have

I =N <}'k —JY
H—x  H,—

Any number directly between z, + 7y, and 2, ,+ 2y, is
m(x,+ 1) + #(xs . + 24+, ), where » and 7 are positive and
m—-+n=1. Therefore, unless £ 4+ 1 =/

=S "t i — Vet — i,
> > H
Be—x, mrtnx,—x Ny, —2

(Y — ) + #(Jr e —20)
mxy — x) + nxsy, — )"
In like manner, unless £ = /4 1,

since the middle ratio is

Je — V14 > MY~ MYryy — Jigs >yb+x — V41

Ty— Xy, MO Ny, — Xy Xagpr— Xpgq

Then, if 7z, + 23,) + (%14, + 9.4,) is any number directly
between x; + #y, and x;4, + #¥,4,, it follows that

Ie— (04 i) _mne+ ey — (4 sy
H— (o4 Shy)  mut g, — (rx, 452,y

Ie+r — (714 s914)
Ty — ("0 $Y140)°

<
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Here notice that as 7 approaches unity and » approaches
zero, the middle ratio approaches the left-hand ratio; while,
wheén z approaches unity and = approaches zero, the middle
ratio approaches the right-hand ratio. At the same time,
m(x, + 2y:) + #(xi 4. + 94+.) approaches, respectively, x, + 7y,
and 2y, + iy

Now 7(x;+¢y)) + s(x; 4.+ #7:+,) isany number whatsoever on
the chain of growths from a7 to ¢+ #d; and m(x, 4 2p,) +
7#(x3.. + ©9:4,) is any other number on that chain.

Imagine, for the moment, a uniform growth joining these
two numbers. The middle ratio above is that of the 7 to the
non-Z part of this growth. We are told then, by the inequali-
ties, that as either of the two numbers changes its value along
the chain of growths from a 4 74 to ¢ + ¢4, this ratio likewise
changes, growing ever smaller for a change of either number
toward ¢ + ¢4, ever larger for a change toward @ 4- 4.

Hence a uniform growth joining any two numbers on the
chain of growths, but not itself forming part of the chain, can-
not contain a third number on that chain.

122. Let there be a second chain of growths joining @ - 75
to ¢+ 7d, of the same character as the one just treated but
through 2, + @, 2,4+ ,, 2,4+ ¢v,, . . ., 3,4+ 7v,. Call the
first the & + 7y chain ; the second, the z 4 v chain.

Further, let every number on the z 4 7z chain lie directly
between @ + 76 and some number on the x + 7y chain. In
other words, let all the numbers on the 2 4 7 chain be of the

type
7(a + i) + s[m(zs + i) + n(Za s + Diy))-

Then, the 5 -+ tv chain is more direct than the x + iy chain.

To prove this, we need to show that just as the growth from
a+1b to 2, + 7o, will, if continued, contain some number on
the x 4 Zy chain, so also will the growths from z, 477, to
2, iv,, from z, 4 7, to 2, + ¢v,, from 2, + 47, to 2,4 ¢v,, and
so on, every growth of the z - 7w chain containing, if continued,
a number on the x + ¢y chain.



M AN INTRODUCTION TO THE LOGIC OF ALGEBRA,

Consider a series of uniform growths connecting « - 75,
.+, x5+ 1., . ..,allto 5+ .

Since 2, + ¢7, is on a uniform growth from a 4 75 to some
number on the x 4 zy chain, and likewise 21, + 744,

h—b_v—b_ vy, —u,
X, —a> sz —a Brt1 — &

2=b_n—

b L
r—a—m—a’ then g, 4 47, is itself a number on the

— Uty _ U1 — U

. . . d
z + 7y chain; and since . <me—n
the growth from s, 4 77, to 2, , + ¢, , is part of some uni-
form growth or other joining two numbers of the x 4 7y chain.
»—0_ v —
If . —a >
sider m(a + z'b) + n(x, 4+ y,), where of course m>o0, 2> o,
andm+4 7 =1.
Evidently ma + nx, as n grows from o to 1, will grow from
mb+ny, —b . y,—b
ma—+-nx, — a is X —a

, it follows that

b >
— We may have z, Za. If z z,,, con-

a through 2, to z,; but always the ratlo

‘We have then

v—(mbny) mbtmp—b v—b .
— (ma—+nz)” ma+nx, —a z—b"fma+”x'>zh

mb+ny, —b wu—056_ vi— (mb+ny)

matnx,—a” z,—a” 2z, —(ma+tnx)

.. v, — (mb+ny,) _ v, —
while, in either case, — (mé + ny) =% — .
2, — (ma+nx)> 2, —x,

but

yif ma+nx, < z,;

— (mb + ny)) v —b
Thus py p— 'lx,) can take all values between 5 —a
and 2 ’7—. Among these values is 21— %*

z‘, x z,,.,. - Zk.
Consequently, if #, Z 2, the uniform growth connecting
some number or other on the growth from @+ to x, 42y,
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with 2, 4 v, is, together with the growth from z, 4 77, to
Zi41 + #Viy,, part of a uniform growth joining two numbers of
the x + #y chain.

43 —)'. =U4:— U
H—2 <&y, — 2
the previous reasoning, with a, 4, z,, y,, replaced respectively

But suppose x, < 2, then Repeating

by 2., y:, %, Y2y We find that, if x,fz,, the growth from

2+ 7y, to 244, + tv,4, Will yet be part of a uniform growth
joining two numbers on the x4 ¢y chain. If #, < 2, but

z, ->'= 2, the above statement still holds. Likewise does it if

we can at last find, from among the numbers z,, z,, %,, . . .,
Z,, ¢, anumber larger than z,. But certainly ¢ is larger than z,.
Therefore, always, the growth from 2, + 77, to &4, + 74, is
part of a uniform growth joining two numbers on the x4 zy
chain.

Since the 2 7v chain is not identical with the x - zy
chain, at least one number determining the z- #v chain is
different from any number determining the x + ¢y chain. Let,
then, 2,4 77, be a number not identical with any of the
numbers a6, x, 4+, x,+ 1, ..., Xu+ 1y, c+id.
D Ueox  Ure 7/,,’ the three numbers z,_, 4 7,_,,

r— Zk-1 Zetr — S
2+ 10, 24+ #v,,, cannot possibly all be on one and the
same growth of the x - Zy chain. Therefore at least one of
the two growths of the 2 4 7v chain connecting these numbers
is no part of a growth of the x4y chain. Continue this
growth, then, till it meets the x 4y chain, thus joining two
numbers on that chain by a single uniform growth. A new
<hain is formed, made up of these three parts: the x 4 Zy chain
from @ -} ¢4 to the first meeting number, the uniform growth
from here to the second meeting number, the » -4 7y chain
from there to ¢4 4. The new chain is more direct than
the » -+ 7y chain. Call it a first shortening of that chain.
Evidently this shortening enjoys all the properties stated as
common to the » + ¢y chain and the 24 7v chain. Further-
more, if not identical with the z 4 7z chain, it is met by con-

Because
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tinuations of the growths of that chain; otherwise the x4 zy
chain could not be met by these continued growths. Take,
then, any number, 5,4 77, not determining the first shortening,
and continue a growth of the 2 4 #v chain from it to mcet that
shortening. We get a second shortening. If this be not
identical with the 2z #v chain, we can in like manner get a
third shortening, and so on. But at the (# - 1)st shortening,
if not before, we reproduce the z 4 ¢v chain. Thus the 272
chain, the result of successive shortenings of the x + 7y chain,
is more direct than that chain.

To clearly fix in his mind the reasoning of this and the
preceding section, the student should draw figures to represent
the x 4 7y and 2 + 77 chains, together with the typical joining
lines to which reference is made. He will find that what is so
difficult from the standpoint of pure algebra is geometrically a
mere truism. :

123. Let a growth of varying sort connect @ 4 6 with
¢+ id, and let & 4 @/, 2" 4 0", 2"’ 4 7v'"’, be any numbers
on that growth. Furthermore, let the growth be such that if
only 2 < 2" < 2", we shall have

2)Il — 'U, 7]’,’ - ‘Z}”

zll — 2/ 8‘// — 3/, .

If then 2, 4 #v,, 5, + #v,, 2,+¢v,, . . . , 2, + #v,,be num-
bers on the growth, and 1 < 3,< 2, <5< ...<2,,<2,<¢,
the chain of growths gotten by directly joining these numbers
in order will be of precisely the same nature as the s 4 77
chain of the preceding section. We use the same name for it.
The varying growth we, in like manner, call the z 4 7v growth,
and use z 4+ 7v to denote a variable number on that growth.
The growth is, if you please, the result of (z - #2)’s growing in
a specified way from a 4 25 to ¢ 4 id.

The numbers a4 16, 2, + v, 5,4+ 4v,, ..., 2, + iv,,
¢} #d, are the only numbers common to growth and chain.
For that the number m(x; 4 i5.) -+ #(x44, + #44,), on the
chain, should be also on the growth would contradict the
inequalities used to define the character of the growth.



GROWTHS, RATES, AND AMOUNTS. 97

Suppose z -} ¢v to grow from @ 4 74 to x, -+ ¢y,, and then

V— U
grows from
z 2

on to ¢+ zd. At the same time, the ratio

v!,. The, by itself, mean-

b—uv Uy — Uy
% to , and then on to
a—z, &—25 ¢

* is hemmed in by ratios that differ .
— <k

as little as we please, and so becomes a symbol of the limit of
these ratios.

By § 118, there is a number, call it x, + #y,, such that

. . Vs
ingless expression Z

Ie— U __Up— U d =Yy Uy — U,y
Ar— %y & — & X — 8y By — Gy

Thus are defined a series of numbers x, 4 2y, #,+ 7y,,
2+ o o oy Zmtr+ Ymis, forming, with @ 4 76 and ¢ 44,
the basis of an x 4 7y chain. The only numbers common to
it and the z4 v growth are the numbers, a 4 ¢4, », 4 7y,,
r, 4+, ..., Zn+ ., ¢+ 2d, also on the z + 7v chain.

The present x 4 7y and 2z 4 7v chains are related as were
those of the preceding section ; i.e., any number on the s 4- 7v
chain lies between a - 26 and some number on the x - zy chain.
We leave the proof to the student. The proof established, it
follows that the x - iy chain is-less direct than the z 4 /v
chain. '

124. Take on the z 4 7v growth between each pair of num-
bers 2, + ¥4, %141+ y,, anumber g, 4 77/, and then through
a1, 2+ 1w/, 54w, 8 + w8+, ..., 2, 410,
¢+ id, form a 2’ 4 7v/ chain. From this chain form an 2’ 47y
chain, as the x 4 ¢y chain was formed from the 2z 7 chain.
Evidently the x -4 7y chain is less direct than the 2’ 47y’
chain, that less direct than the 2’ 4 2’ chain, and the &/ 4 o/
chain less direct than the z 4 77 chain.

In the same way we can go on forever getting 2’/ 4 72",
g+, ..., 2™ 4™ chains, each less direct than the
preceding one; and at the same time, x” + 3y”, 2" 41y,
.« ., 4 7y" chains, each more direct than the préceding
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one. But always the 2™ -4 52/ chain is more direct than the
2™ <4 7y chain.

In other words, the sum of the tensors of the growths in
the 2 - 7y" chain approaches an inferior limit that either
equals or exceeds a superior limit approached by the sum of
the tensors of the growths in the £ 4 72/ chain.

We can prove the two limits equal.

For convenience, call any two successive numbers common
to the z- v growth and the 2™ -4/ chain, a 476 and

a 4 ib.
—b V-6 V-V
!
Suppose @’ > a, then 2 72 > 7" For the

/ ’

= ? .47 wi
T—a and 7 — . We can put ? and 7" with p* 4 ¢

ratios

=p'*4¢*=1andp’'>p>0. Leta' —a==4, andp—§=k.
The number of the ™ + 7™ chain determined by the
numbers a + 76 and @’ + ¢4’ of the ™ 4 7™ chain is simply
that number which can be reached both by a growth of the
sort p + 7¢ from a + 75, and a growth of the sort p’ 4 7g*from
a’ 4 14'. Using the notation of § 118, the number is, in fact,

a4 mp+i(6+mg)=d +mp +i(¥ +m'g).

By §.120, 7 and »’ are numerically equal to the tensors of
the growths from @+ ¢6 and @’ 4#¥'. Call these tensors # and
¢ respectively. Then

¥—5 ¢
,_PC—0)—g@—a)_hT=a 7y
Pe—q? ? £

. g_bv—¢

o0 —a)—p¥ =8 h p d—a
e LT/ Il A
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The uniform growth from &+ ¢4 to &’ 474’ and forming
part of the 2™ -+ 7o™ chain has the tensor

+ V(a'—a)’+(b’—b)’=/z./\/ 1+ —l say.

Because of the inequalities % > ;,,, we have
Y 4
Ssu>=,
2”77
Thus / lies between numbers differing by less than
I I
/t(} — }7)
1 I I L\, (1, 1)
Now  5-3=(p)(5+7)
But
11— _ (P dV ¢ &”
2’ rr”’ V7 A e
1,199
and P+P'>P+P“
It (29N (249 _2_9_
? 7 (p’ ?" (P+P’) s r="

and the / inclusives differ by less than £4.

Observe that the last factors in the values of # and #, above,
are less than unity, while the sum of the numerators of these
factors is 2. It follows at once that

/ z
= _(bl__é —_ 2_/) — something less than 44,

4 b -5
Y= ;(_q_ - ) -+ something less than £4,

and ¢+ ¢/ = /+ something less than £4.



I00 4N INTRODUCIION TO THE LOGIC OF ALGEBRA.

As formerly, suppose a 4 75 and ¢+ 7d to be the terminal
numbers of the z 4 s» growth. The x™ 4 7™ chain is made
up of growths having the tensors¢,, 2/,¢,,2/,¢,,¢ , . . . The
2" 4 7v™ chain is made up of growths having the tensors
., 4,4, ... By what we have just shown,

L4t —Ii<kh, L4 —L<kh, 4t —L<kh, . ..

Therefore the two chains differ by less than

o+ b+ b+ ... S K(c — a),

where K is the largest of the numbers &,, £,, £,, . . .

Now ¢ — a is a fixed number, and K can be made as small
as you please. Consequently K (¢ — a) is as small as you
please, and the ™ 4 #y™ limit is identical with the 2" 4 7o
limit. We call this limit the amount of the z + v growth.

It may be objected that by different distributions of the
numbers on the varying growth we could get different final
limits. . This, however, is easily shown to be impossible. For
if Z’ and X’ are the amounts of the less and more direct chains
determined by any distribution, and Z”” and X"’ the correspond-
ing amounts for any other distribution, while Z and X are the
amounts determined by taking for our 2 4 ¢y and x 4 ¢y num-
bers all the numbers contained in either and each distribution,
we shall have

2l Z< X< X, andalso Z2'<Z< X< X".

Consequently the limit approached by increasing the number
of numbers in either distribution is identical with that ap-
proached by increasing the number of numbers in the combined
distribution.

Of course, instead of showing that the difference of the
two limits must be less than K(¢c — &), we could have shown
d—d b—b
that it was less than (c —, T2 a)H’ where A is the largest
of the numbers %,, 4,, %,, . . .
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125. No essential difference in treatment is necessary for a

.

varying growth in which the ratio i — i-,o continually increases

with increase of x. Observe also that, if the growth is a non-
varying one, the method is still applicable, but superfluous;
since, in that case, the amount of growth does not differ from
the tensor of the growth.

All growths whatsoever can be broken up into parts for
:;:Z increases with increase of x, or decreases
with increase of x, or remains constant. The sum of the
amounts of growth of the parts is the total amount of growth.

This entire investigation could have been carried through
referring all the numbers to a p 4 77 instead of a standard system,
ry—J
r—x ‘
of the 7 and non-7 parts of consecutive numbers on the varying
growth, substituting the ratio of the vanishing differences of
the 7p — ¢ and p + 7¢ parts of those numbers.

which either

and in place of the ratio of the vanishing differences

V. LOGARITHMIC GROWTHS AND DOUBLE-NUMBER POWERS.

126. We have seen (§ 113) how (p + 7g)*, by the growth of
# from zero, could become any complex unit whatever: how,
indeed, passing once and only once through each and every
complex unit, it could grow to (p -+ 7¢)° = 1, the starting value.
What is the total amount of growth?

Consider that portion of the growth in which both the 7 and
non-Z parts of the growing number are positive. That is to
say, let x + 7y, keeping 2* + y* = I, grow fromo 47z to 1} 07.
y—J

As we shall presently see, the growth is such that

decreases with increasing x. For convenience in calculation,
we so take the numbers x, 4 2y, x,+ 2y,, . . ., that the ten-
sor of the difference of each two adjacent numbers shall be the
same. For example, if between 7 and 1 we take only the num-
ber z, -y, this shall be 7t = ¢4 + 7 y/3: if we take three
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numbers, these shall be x, + #y,'= ¢4, x,+ iy, = i, x, + iy, = 7%,
Of course we always take doubly-positive roots, so that these
last numbers are

Hv2— yz+iv2+ v2), H v2+i y2), V2t v24iv/2— y2).

After this fashion, interpolate 1023 numbers. They will be

1024- R
oty =i gy, =80 | xty= e, .,

iyt Wieng = 27895,

The student may show that x, + £y = Fioa-s + t¥1004-4» SO
that 2, + 1y = 71 + 2, .
We have
. . Joucdor  mu-d
Mg+ D) — (e + )] = T(’ o—g i
= T(1 — ine)= T[1 — (3, + ix)] = 4 V(1 — 7).
Thus, the amount of growth is 1024 ¥2(1 — ,).
Let the student show that y,, = §4/2, 7,6 = $ V24 y2,
Vs =3V24+V2+y2 ..., =3%¥2+ 2y, and finally

. +W, V(,+\{(z+\[[z+\’(a+{(z+V(z+f(2+i’””m”

”x-xv

In actually performing the calculation we begin at the right
and proceed toward the left. If a sufficient number of decimal
places be used, it will be found that

J: = 0.099998823449,  x, = 0.0015339802,
¥2(1 — y,) = 0.0015339806, 1024 ¥2(1 — y,) = 1.5707961.

The number of which 1024 ¥2(1 — »,) is an approximate value
. T -
is symbolized by 2 SO that 7 is very nearly 3.1415922.

To find the error in the value of 7 we calculate, by the
method of § 124, the error in taking for the growth from 7 to
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x,+ 7y, the tensor of that growth. This multiplied by 1024 is
the total error in the growth from 7 to 1. We have

}'—}'t=}"—}',’ x+xx_ x+x> d!
r—z =z y+yn  1+rn<

=, if #, <.1:>o

But 2=%i Y=
r—2z x,—2x

yl’ l

, if #x =2,; and consequently

=-=
Likewise, 2—2 = % Ze=F_ _%__ 9 _ 4 and
. x—x y x,—=z Yo I
Pow = Ve 1 _
x,m—x,m (o]
y—y

(Thus,as » grows fromoto 1, decreases fromoto—o.)

) If for a, &, @/, ¥/, of § 124, we write x,, 5,, %, 7, the ¢ and
7’ of § 124 become

b 4 I ﬁ J’,—I
L A
I E A N Z;

N . I

wt=t = — and 247 = Zg-l—x—il) = 0.0015339810.
The error is thus less than 0.0000000004 for the growth

from 7 to x, 4 7y,, and less than 0.0000005 for the growth from
Zto 1. Therefore the amount of growth certainly lies between

1.5707961 and 1.5707966. Consequently
3.1415022 < 7 < 3.1415932.

More accurate calculation gives 7 = 3.14159265 . . . .

When unity grows through all complex units around to
unity again, the total amount of growth is made up of the
amounts of growth from 1 to 7,from 7 to — 1, from — 1 to — 4,
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and from — 7 to unity. Jach of these growths has the same
amount as that from 7 to 1. The total amount of growth is
therefore 27.

127. The expression #* when # starts to grow from zero,
does itself start to grow from unity. What is the rate of
growth of #* compared to »? When 7 grows from o to + 1,
" grows from 1 to + #; and, moreover, if during the growths =
takes a value between 7’ and »", s at the same time takes a

. - z’o — t‘o
value between 7* and #*“. Consequently ?_—0’, the symbol

for the rate of growth of ¢ compared to #» when n = o, lies

b 2= nd = where 1 Ti>o0
etween k an — k where I > .

Put k=1L b ... e

)
Then the rate o=

;is approached, on the one hand, by

i— 1,20 — 1), 4@t — 1), 8 — 1), . . ., 1024(5= — 1);
on the other, by

1—i 20—~ ¥),4(1 —2-%),81—2-1),..., 1024(1 —iﬁ)-

Now 1024 (¢ — 1) = 1024(y, 4 2%, — 1), where z,and y,
have the meaning given them in § 126.
But

1024(y, + 1z, — 1) = 10241/ Yo ¥/2(1 —y) + 10247, . ¢
=T =N T
- 2‘/ 2 + 1 2?

since 1024 ¥2(1 — y,) and 1024, are each, very nearly, 12’

In the same way

l I — .
1024(1 — 71024 7—;1/ -—ZL + zg , very nearly.
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Were we to take % smaller and smaller, the expressions for

- . ”
which we have written - would become more and more nearly

T .. I—
2—,wh11e V y * would become more and more nearly zero,

both approachmgs going on without limit. Thus, the non-Z

7° cps
— cannot be ever so little either positive or nega-

part of
tive, while the 7 part cannot differ from ;—t The growth rate,

. . . i
then, of 7* compared to » when » =0 is P

z
In the same way pra

)" i"

, the general rate of growth of 7

u+h v 1
. —
compared to 7, is as near as one pleases Py et when % ap-
proaches zero.
But gnth gk i *—1 Py ir
u — =" =1".—.
nt+kt—n Y3 2

Thus the rate of growth divided by growing number is
: in ’
constant and equal to - Compare now §§ 92, 93.

The result just reached may be stated:
By the powering of i, unity or ©° grows at the logarithmic

e T
rate —-.
. . . . ”
But 7* =7, and the amount of growth from unity is Py

. S
Likewise the amount of growth from unity to z* is—. Hence
) im g .
Sor unity to grow at ry logarithmic rate means to grow keeping

. T
Zensor constant and the amount of growtk from unity always >

times the power-index.



-
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Similarly, for unity to grow at logarithmic rate i means to
grow keeping tensor comstant and the amount of growth from
unity equal to the index of the power.

Notice that as the growths start from unity their sorts are
7, while in passing any complex unit p 4 7g their sorts are
ip —qg=12(p+19): the sort of growth divided by growing
number is alwayss. We say that the growths are of the
logarithmic sort 1.

The number by whose powering unity grows at the loga-

- ” 3 . -
rithmic rate # must be the number whose —th power is ; for #

can be reached both by unity’s growth at logarithmic rate t—:
with regard to zero growing to I, or by unity’s growth at

logarithmic rate 7 with regard to zero growing to 7—; Thus, the

2
base for logarithmic rate 7 is z=.

128. Furthermore, by analogy, 7 can be reacked by unity's
growth at logarithmic rate unity with regard to zero growing

. i
t-ward to PR

This definition gives for the base by whose powering unity

2 2 \ir
grows at logarithmic rate unity ¢, since \s#*/2 =37, But other-
wise this base is ¢ = 2.71828 . ...
e ; 2, -F
Consequently 7% =e¢, €& =12, i'=¢ 3
24 A 2kg L3
;2 ;== T S
H=iv, F=c7, (Fff=iv.c"%,

L4 &,
(ke = e U o

Now ¢*# is any double number whatsoever, and so is f+ g%.
We have therefore shown that any double-number power of «
double number is a double number. E.g.,

R N e R R e
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Since ¢ = 1 and % = 2, ¢~ °4, the tensor of the number,

L147

lies between % and 1. Because ™ = (z';) , the amount of
growth from unity to get the numberis 1.147. On the diagram
of § 114 this result would be represented by a point rather more
than § from the nul-point on a line from the origin passing
about midway between 9 and 10, 0.73 of the way from I to
on the growth through 1, 2, 3, . . .

In like manner, calculate and plot (1 —2)f ", (3 4 #§)~,
(4 — 37 (— 1), 17 17, (— )%

129. In the last section we saw that unity growing at loga-

2
rithmic rate 7 with regard to zero growing to 1, became 7.
Had it grown at the uniform rate 7, it would have become
1 4 Similarly, had it grown uniformly at rate 7 with regard
to zero growing to }, and then at the uniform rate #(1 4 37)
with regard to the further growth of % to 1, it would have be-

come I | 42 4 341 4 32) = (1 + %)2 In like manner, if for

G n—1
the growths from oto;to;to% to...to

to 1, unity
grows at the successive uniform rates 7 z(l +- ) (I + )
. z\*~ 1, z
. ooy z(l +;) , it becomes 1-|-—7;) .
z
If # = 1 000000, the tensor of 1 +; is 4/1.000000000 001,

and the tensor of (I + —:;) is

2 000 000,

1.000 000 000 QO15®%® — 1.000 000 000 QO] 0% 00 00000 |

Thus T(l + %) is very closely the 2000000th root of e. If

A PRV
we put # = I 000000 000 000, 7(1 -+ ;) is still more closely

the 2 000 000 000 0ooth root of e. Increasing # without limit will
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increase without limit the index of the root we must take of e

to get T(l + %) . Consequently, by making # large enough,

T(l-l—;), T(1+:—;)2, T(x+£)3, e 7(1+£)' are all

unity.
The successive growths by which we have supposed unity

Z\" . I
to become (I + ;) have each for its tensor ;th of the tensor

of the number from which it is supposed to grow. Therefore
the sum of the tensors of all these # growths is unity.

Since the chain of growths is through numbers on a vary-
ing growth from unity of logarithmic sort #, and since the ten-
sors of the growths are as small as you please, the sum of the
growths is as near as you please the amount of the varying

growth from unity to (I + ’—t‘) . But when a growth is of loga-

rithmic sort £ and the amount of growth from unity is unity,

the number reached by the growth is 72 = ¢. Now ¢ is

(x + %)” and ¢ is (l + '1‘) . Therefore

(I +%)n= ([ +’1t)iu.
Also, of course,

O S N

provided always that # is taken large enough.
130. Consider now the expression (I —|—%ﬁ) . Just as

the numbers (I + %), (I +£)2, (I —|—§)3, ...,areon a growth

n
of logarithmic sort 7, so we should naturally look for the num-

bers I+p+qz (I+p—};qz')” ( +p+qz) ..., 0n a
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growth of logarithmic sort p 1 g7, i.e. on a growth always
(2 + ¢7)-ward from the growing number. By assigning a proper

k
(p+an;

value to 2 any number on such a growth is e Our ex-

pectation will then be justified, if we can show that (1 +p + 9’)

= e("""');. This is easy. For

(425 = o242 T

L - PV
=’ ,en ttErn—¢on ;

. 7 . . . .
since Tren is nearer than anything to g7 when # is large.

. ' AT 2\
Notice also that T (1 + -—n——) = = (1 +;) .
To get the amount of growth of p + ¢7 logarithmic sort

(P+?0

from 1 to e» , we add together the tensors of the successive

ﬁ‘f‘q tll( +‘?+qu)&

growths from power to power of 1 *— "

is reached.

The 1st tensor is Tﬁi':ﬂ =—;

“a2d o« (S 2Ee 21 \
« g e e p[(EY.2ke) 2

The £th tensoris T [(e’ﬂ')k L2 —I-qz] k;" I
”

. 14 4 (= 1)
Consequently the sum is -}z(l e A R = eTe).
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At the same time that these growths are taking place the
tensor of the growing number has the growths
s 2 *-10p
Af, fe-‘-, £e7i,..., 2, .,
n’ n n n
. S
But the first value of the tensor is 1 and the last ¢=, while
its growth is of a non-¢ sort. Hence

eL:— 1 =£(i+e£+e3':+. . .+eu-':)').

Comparing this sum of the growths of the tensor with the
sum of the tensors of the growths above, we have for that sum

)

When p = 1 and so the growth is of a non- sort, this is

]
A . . I . .
e — 1; while for p=—1,it is 1 — — : results which verify

. o
our formula. Again, if p = 0, and the growth is of a pure 7
ho
=1 .
sort, the amount of growth is — = By another verifica-

tion.

Observe that whether the logarithmic rate be g 4 ¢7 or some
non- multiple of p 4 ¢7 in nowise affects the results. The
amount of growth depends solely upon the logarithmic sort
and the starting and terminal numbers of the growth.

Notice some geometric interpretations. The circle is the
result of a growth of logarithmic sort #; the spiral drawn full,
of a growth of logarithmic sort 1 + #; the spiral drawn broken,
of a growth of logarithmic sort 1 4 (27 4 1)i. Several points
on each growth are numbered. The student should satisfy
himself that the numbering is correct.

The direction of the spiral growths at the start from unity
is indicated by arrows. Notice that each spiral cuts all rays at
the same angle that it there cuts the unit ray. The one
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growth is always (1 4 #)-ward, the other [1 + (27 + 1)/}-ward
as to the ray from which it momentarily grows.

T
e 144 A +QTFN3

To the left of the figure is show a construction for the
amount of growth. BE isthe amount of growth on the broken
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spiral from B to 1, DC the amount of growth from 1 to C, while
AF is the amount of growth on the unbroken spiral from 4
to 1.
To prove the construction right take the last case. We
1—e-" OG— 04
1= 2 —Acw Ar = AF
131. We have represented e’ ** as reached by two growths;
one of the 1 ¢, the other of the 1 4 (27 41)7sort. Obviously,
it is reached by all growths of the sorts 1 4 (2#7 4 1)7 gotten
by giving to 7 all integral values; for er+@x+0i = g1 +i(pi)n
=eti 1*=¢+{ The 1 4 (227 4 1) spiral is such as to

have amount of growth =

1 .
make 7 turns and Eth of a turn while the tensor of the grow-

ing number grows from I to e.
Suppose we wish the 4th root of ¢*+G»+vi By our or-

dinary rules, this should be . ¢*. ¢* ™ The first factor is the
tensor of the root and independent of ». The last can be

¥
written ek, where # is the remainder after dividing by 4.
Since 4’ can be any one of the numbers 0,1, 2,3, . . , £—1,
according to the value assigned to #, we thus get £ and no
more distinct values for the second factor. In other words,
every root of £+ @+ % can be reached by less than a single
turn of some logarithmic growth from unity, and every 4th
root is on some one of the £ growths of the logarithmic sorts
1414 Cr4 1) 1+G@r+0, .., 1+ 2. F—1. 24 1)
If the growth be specified the root is uniquely determined.
Thus:

B DU

Now any double number is &+, where 4 < 27. The #
distinct Ath roots of this double number all have the tensor

#, and lie on the £ growths of the logarithmic sorts a 4 &7,

a+@r+dia+t(an+6)i, .. ,a+ (2.2 — 1.7+ b
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Consequently each can be reached by less than a single turn of
a logarithmic growth from unity.

Similar remarks apply to raising to fractional powers, the
denominator of the fraction giving the number of roots. As
we increase the denominator of the fraction,the number of
roots forever increases and they approach closer and closer
together. Remember now that we hem in incommensurables
by fractions, only by indefinitely increasing the denominators
of the fractions. It follows that an incommensurable power
of a number, the growth on which it lies not being specified,
is as near as one pleases, any number having the right tensor.

132. To say that any number ¢ 4 7d can be reached from
unity by an infinity of distinct logarithmic growths is the same
as saying that every number has an infinity of logarithms
to base ¢; for the logarithmic rate that determines the growth
is nothing else than a logarithm of the number to the base
e. In fact, if a4 76 is a logarithm of ¢ + 74, so also are
a+ (2n+b),a+ (4m + b)Y, . . ., a+ (2nwr 4 6)i. That
logarithm whose 7 part is less than 27 but not less than zero we
call z4e logarithm of the number. On the growth determined
by it lies that 4th root of the number whose sort is between
1and ¢#. Unless otherwise specified, we take any fractional
or incommensurable power of the number upon this same
growth. .

133. Usually, log, (¢ + #d) and log, (¢’ + ¢d’) are numbers
of different sorts, and so a logarithmic growth from unity con-
taining one of them will not contain the other. We can, how-
ever, in general find three numbers £, p, ¢, (#* + ¢ = 1) such
that the growth from ¢* of a logarithmic sort p -4 7¢ shall con-
tain bothc¢ -+ idandc’+¢d’. For, suppose log, (¢ + id) =
@ 4+ and log, (¢ + #d’) =a' + 74. Then ¢ 4 #d’' =
e¥—e+i¥—¢ (c4 id), and the wished-for growth is of the
sorta’ — a7 (¥ — &). This determinesp and g. From

M eE\ptia) — patwd

we have g= a-s-p,andthencek:6—gq=6—a2.

?
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Calculate £, p,and g forc +id = e't*and ¢ + id' =17,
drawing a diagram to show the results. Show that the method
fails when and only when ¢*+4 d? = ¢’ 4 4", and that then
both numbers lie on a growth of logarithmic sort 7z from

134. Suppose we wish the (¢ 4 #d")th power of ¢ 4 ¢, and
that ¢+ ¢d = e *+®. The desired power is e(®+ ) (+i’) and is
the result accordingly either of unity’s growing at the logarithmic
rate ¢/ 4 #d’ with regard to zero growing (a4 #6)-ward to
a + b, or of unity’s growing at logarithmic rate @ - 26 with
regard to zero growing (¢’ + #d’)ward to ¢ 4 7d’. The growth

. . a-+1b
makes the same angle at unity with the{ o+ id'

growth that the ray to { ‘;ig } makes with the ray to unity.

} logarithmic

Plot on the Argand diagram two numbers, and the power of
each of them by the other.

135. Any number e©*? is completely determined when we
know the tensor ¢, = r say, together with & giving the sort.
For brevity, we write then ¢##t# = 7,: so that 1,, when & grows
from o to 2m, becomes in succession all complex units.

Just as x +éy has its form of growth determined by a
relation between x and y, so 7; has its form of growth deter-
mined by a relation between » and 4. .

If 4 is constant, then 7gis of a constant sort, and the growth
is a uniform one; the same, in fact, as that of x4 7y for
x = ky, where £ is the ratio of the non- to the ¢ part of 7,
If, on the other hand, 7 is constant, the growth is the same as
that of x + 7y when 2?4 y* = »%

Suppose 7 = ¢%. Then the rate of growth of » compared to &
et — et
=
growth; consequently the rate of growth of », compared to &
is 7,(1 +¢), or the logarithmic rate of growth is 1 47 We
thus get one of the logarithmic spirals of § 120.

= ¢*=7r. But always the 4 growth is zward to »

Plot the growthsof 7, forr = b, r =8, r = ¢/b, r = .Ib.
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If 1, = + ¢, show the following equalities to be true:

P—¢=1,, —P—F=Lpu=DL_au, P+ =l

where 7 is integral,

9= P=lom—g—P=L_ g i=ln—1=1, —i=1
2

s

If also 1»4 = p’' + 7¢/, show that
LXy=1s18, I+ ly=Li_y, pP'—99+ (£9+0'9) 1= 154 -
Expressin terms of p, ¢, 2, ¢/, the numbers 1,,, 1,, 1,

From § 126 we have !

I » = 0.999998823449 - 0.0015339803%.
2048

Calculate I «, Iz, I, Igr.
1024 2048 4096 4096
In the calculation of § 126, in order to get 1 », we had

2048
first to get the non-z parts of Im Im Iw, . . . Had we at the
4 8 16
same time gotten the zparts, we could then easily obtain, by

the formule immediately above, p 4 7¢ expressions of 1, for

all values of 4, exact multiples of

4
2048 °
VI. TENSOR REPRESENTATION: SINES AND COSINES.
136. Suppose that for 1, = (z < 1), on a growth with con-
stant unit tensor from 1,to 1 . +£‘§, we substitute a number on
the uniform growth from 1, to 1, + 2 and the same part of the
way on that growth that 1, »=

+xs is on the varying growth.
What is the error in tensor and sort?

If ,=p+4gand 1, = =p'+ 4, while m +n =1, the
2048
number on the uniform growth is mp + np’ + #(mg + ng’). Of
this the tensor squared is
m* + 1 + 2mn(pp’ + 94') = (m + ny — 2mn(x — pp’ — 9¢°)
=1—mn(p —p+q —7)
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Here ¥(p'—2)+(¢'—g)* does not differ (§ 126) 0.0000000004
from 5& For each we will for brevity write £ Thus the

square of the tensor of the substituted number is 1 — mnk>.
Now mn is never larger than }, its value when m =z =3. Any
other value could, in fact, be written (3 + £} —A) =} — 4.

Consequently mn/? = ?, and the error in tensor,

— V1 — mnke, <§< 0.0000001.

Let the substituted number grow, keeping the sort con-
stant, until the tensor is unity. Suppose that the number then
becomes 1,4,. The error in sort is # — #k. We have

1, =2t | mat g
b Y1 — mnk? 1 — mnk?

and 7= 7(15+; — Ib)'

mp+np mg + ng :
H £=
ence Vi—mnkt )+( 1 — mnkt —1
—a 2 —nk?
- V1 — mnk
. 2 —nk? ..
Since —TV——_—Tn_It_‘> 2 — nk*, & > nk* and a fortior: B2 > n?k.

2 — nk < i
V1 — mnk 1 — mnk*’

truth of this last involves and is involved in

On the other hand, 2 — For the

o~ 2 <

which after expansion and reduction becomes #* < 1 — mzA?,
and is true because #* < 1 —mn < 1 — mnk’.
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/.
Therefore —I—V_Z_m > ¢t > nk. Butbecause Y1 — mnk?

does not differ mnA? from 1,

_1/1_213—»01_-/; does not differ mnk* X

nk = mn*/® from nk, and the error in sort is not as much as
©0.0000000001.

Had we the numbers p 4 7z for intervals in the value of &
less than -20;48’ the above method of approximation to inter-
mediate p 4 7g numbers would give still better results.

137. The numbers p and ¢, depending on 4, are called
respectively the cosine and the sine of 4, so that

cos b+ Zsin b= 1,.

The number 4 is usually given for the intervals 7 <+ 180,
called degrees, m - 180--60, called minutes, and w--180--60--60,
called seconds. Thus:

one degree = 1° = 0.0174533 - + « ,
one minute = 1’ = 0.0002909 . . .,
one second = 1" = 0.0000048 . . .,
while unity = 57° 17’ 44”.8.
Comparing § 135, write in terms of the sines and cosines of
b and &, cos (6 + %), sin (b +§), cos (6 4 =n), sin (6 + =),
cos (& + &), sin (b + &), cos 44, sin 45, cos 25, sin 24, sin 34,
sin (;5 - b), cos (— &).
Prove that (cos & + ¢ sin &)™ = cos mb + z sin m¥,
cos b = 3(e® 4 e7?), sin b = -;—(e"“ — ).
Show that a table giving the sine and cosine of & for all
values of 4 from zero to ;:— is sufficient for getting the sines and

cosines of any value of &
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With such a table let the student find sin 3, sin 1.15, cos 3
numbers whose sines are 2, 44, — 3, — 13.

He can roughly verify his values by plotting on the Argand
diagram the values of 1,, given or obtained, together with the
corresponding g + g numbers.

138. Cast a glance back over the route by which we have
come.

We started with familiar ideas of counting, and followed
them by the scarcely less familiar ideas of addition, subtrac-
tion, multiplication, division, involution,and evolution ; adding
to these, for the sake of completeness, the process of taking a
logarithm. 4

To make subtraction always possible, negative numbers
were introduced and defined, and the necessary extensions of
the algebraic processes carried out.

In the same way, fractions made division always possible ;
while for root extraction and taking of logarithms, incommen-
surables and double numbers were needed.

In all of our extensions of meanings it has been found
possible to adhere to these rules:

The extended meaning has included the unextended as a
special case.

The relation of process and inverse has been maintained.

The commutative, associative, distributive, and index laws
that held with the first simplest numbers have been made to
hold throughout.

Finally, by our extensions, we have made the three primary
operations and their four inverses always possible, i.e. always
resulting in a number belonging to our scheme.

Notice now whither further progress may lead us.

In the reasoning first employed for the handling of incom-
mensurables and further developed in the treatment of growths
and rates we have the germ of that marvellous invention ot
Leibnitz and Newton, the Infinitesimal Calculus.

The graphic representation leads to the Analytic Geometry
of Des Cartes.

The theory of sines and cosines with its geometric applica-
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tions is Trigonometry and leads, by the introduction of new
numbers and conceptions, to the Function Theory.

The theory of double numbers is simple and restricted, and
but a faint suggestion of what is to be found in the beautiful
developments proposed by Hamilton and Grassmann, the
Peirces and Sylvester. These are a few only of the lines of
thought open to the student.

Yet, in whatsoever direction investigation may carry him,
he will find his work essentially the same in character. Defini-
tions and conventions and their logical consequences and rela-
tions make up the whole of it. These relations form the uni-
verse wherein the Mathematician lives; a universe, to be sure,
of his own construction, a product of his brain, but none the
less real and substantial to him. Here he observes and com-
pares and experiments; here he reasons out connections, dis-
covers causes, and foretells results.





















