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PREFACE TO THE ONE-VOLUME EDITION

The two volumes of my Studies in Semantics, both of
which deal with semantical concepts and their relations to
syntactical concepts, are here combined in one book. Ex-
cept for minor corrections the text of both volumes i un-
changed; the original pagination has been preserved, in
order to facilitate references. Both bibliographies have
been brought up to date.

In the original preface to volume II, I indicated my in-
tention of writing another volume in this series, which was
to deal with the logic of modalities. My book Meaning
and Necessity (1947) may be regarded as a partial fulfill-
ment of the promise. It does not give the actual construc-
tion of systems of modal logic, but it lays the groundwork
for this task through philosophical discussions and seman-
tical analyses of modalities with the help of the semantical
concepts of extension and intension. Since then I have
studied various more comprehensive modal systems with
variables of all finite levels; but these investigations are
not yet finished.

RupoLrF CARNAP

UNIVERSITY OF CALIFORNIA AT LOS ANGELES
JuLy 1958
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PREFACE

The purpose of this book

In recent years many philosophers and scientists interested
in the logical analysis of science have become aware that we
need, in addition to a purely formal analysis of language, an
analysis of the signifying function of language — in other
words, a theory of meaning and interpretation. It is the
purpose of this book to furnish a theory of this kind, called
semantics. It will be seen that this theory, if sufficiently
developed, contains not only a theory of designation, i.e.
the relation between expressions and their meaning, but also
a theory of truth and a theory of logical deduction.

Semantical concepts are often used, not only in science but
in everyday life. When, for example, a person says that a
certain word is used by hun in a different sense than by some-
body else, or that a certain assertion is true or that it is false,
that a particular statement is analytic, i.e. true for purely
logical reasons, that another statement follows from the first,
or is compatible with it or contradicts it, — then in all these
cases he applies semantical concepts. Thus some of the prob-
lems of semantics deal with familiar concepts and are by no
means new. The task of a systematic construction of seman-
tics is to find adequate, exact definitions for the customary
semantical concepts and for new concepts related to them,
and to supply a theory based on these definitions.

The development of semantics

Semantical concepts, especially the concept of truth, have
been discussed by philosophers since ancient times. But a
systematic development with the help of the exact instru-
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ments of modern logic has been undertaken only in recent
years. This development originated with the Warsaw school
of logicians. This group has made many contributions of
great value to contemporary logic and the logical foundations
of mathematics; their work has, for the time being, been in-
terrupted by the invasion of Warsaw. There S. Lesniewski,
in lectures from 1919 on, analyzed semantical concepts, espe-
cially the concept of truth and the semantical antinomies;
and T. Kotarbinski, likewise in lectures and later (1926) in
his book, made an elaborate analysis of certain semantical
and related pragmatical concepts. (For a summary in Ger-
man of his book see R. Rand, Erkenntnis 7, 1938-39.) On the
basis of these preliminary analyses, Alfred Tarski (who is now
in this country) laid the foundation of a systematic construc-
tion. In his book on the concept of truth (Polish, 1933; Ger-
man translation, 1936), he set forth a method for defining the
semantical concept of truth with respect to deductive sys-
tems and arrived at very important results, among them an
answer to the question under what conditions a language of
semantics is rich enough for the construction of an adequate
definition of truth for a given system. Unfortunately, the
whole development of semantical investigations in Poland
remained unknown to the outside world until 1936 because
the pertinent publications were in Polish only.- This fact,
incidentally, confirms once more the urgent need for an inter-
national auxiliary language, especially for scientific purposes.

Tarski, both through his book and in conversation, first
called my attention to the fact that the formal method of
syntax must be supplemented by semantical concepts, show-
ing at the same time that these concepts can be defined by
means not less exact than those of syntax. Thus the present
book owes very much to Tarski, more indeed than to any
other single influence. On the other hand, our conceptions of
semantics seem to diverge at certain points. First — as will
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be seen by a look at the Table of Contents of this book — I
emphasize the distinction between semantics and syntax, i.e.
between semantical systems as interpreted language systems
and purely formal, uninterpreted calculi, while for Tarski
there seems to be no sharp demarcation. Second, within se-
mantics, 1 stress the distinction between factual truth, de-
pendent upon the contingency of facts, and logical truth,
independent of facts and dependent merely on meaning as
determined by semantical rules. I believe that this distinc-
tion is indispensable for the logical analysis of science; and
one of the chief problems discussed in this book is that of
representing this distinction, which has been made in some
form or other by most philosophers since ancient times, by
exact semantical definitions. Here again, Tarski seems to
doubt whether there is an objective difference or whether the
choice of a boundary line is not more or less arbitrary. (The
two points of divergence mentioned seem, incidentally, to go
back to a common root, namely to the distinction between
logical and descriptive signs.) At present, it is not quite clear
to me whether the divergence is a genuine difference of opin-
ion or perhaps merely a difference in emphasis, direction of
attention, and preference in procedure.

Arguments con and pro semantics

While many philosophers today urge the construction of a
system of semantics, others, especially among my fellow
empiricists, are rather sceptical. They seem to think that
pragmatics — as a theory of the use of language — is unob-
jectionable, along with syntax as a purely formal analysis;
but semantics arouses their suspicions. They are afraid that
a discussion of propositions — as distinguished from sen-
tences expressing them — and of truth — as distinguished
from confirmation by observations — will open the back door
to speculative metaphysics, which was put out at the front
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door. Some metaphysicians have indeed raised futile issues
concerning truth, or rather the Truth, and I certainly should
not like to help in reviving them. The same, however, holds
for many other concepts, e.g. number, space, time, quality,
structure, physical law, etc. Should we then refrain from
talking about them in a non-metaphysical, scientific way?
It seems to me that the only question that matters for our
decision in accepting or rejecting a certain concept is whether
or not we expect fruitful results from the use of that concept,
irrespective of any earlier metaphysical or theological doc-
trines concerning it.

Will the semantical method lead to fruitful results? Since
the development of semantics is still in its very beginning, it
is too early to give a well-founded answer. But the use of
this method for the construction of a theory of truth by
Tarski and its use in the present book for the construction of
a theory of logical deduction and a theory of interpretations
of formal systems seem to justify the expectation that se-
mantics will not only be of accidental help to pure logic but
will supply the very basis for it. In addition, I believe, se-
mantics will be of great importance for the so-called theory
of knowledge and the methodology of mathematics and of
empirical science. However, the form in which semantics is
constructed in this book need not necessarily be the most
appropriate for this purpose. This form is only a first at-
tempt; its particular features, e.g. the contrast between se-
mantics and syntax, and that between logical and factual
truth, not to mention all the minor features, may possibly
undergo fundamental changes in their further development.
But it seems plausible to assume that both pure logic and the
methodology of science will continue to require a method
which — like that of semantics and syntax at present —
sacrifices through abstraction some of the features which a
full, pragmatical investigation of language would take into
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account, and thereby gains an exactness not attainable by
the empirical concepts of pragmatics.

Plan of a series of books

The present book is the first of a series of small books which
will appear under the common title Studies in Semantics. The
further units of this series will in general be independent of
one another, but each of them presupposes this first volume,
which gives a general introduction to the field and an expla-
nation of the most important concepts, many of which will be
used in later studies. The second volume (Formalization)
will deal with the problem of whether a full formalization of
logic is possible and how such a formalization can be made.
Logic will then be regarded as represented by a semantical
system, and a formalization of logic will consist in the con-
struction of a corresponding calculus (syntactical system).
A full formalization would be a calculus which mirrors all
essential properties of the system of logic in a formal way
such that the intended interpretation is the only one possible.
It will be shown that the customary forms of the calculus of
logic (propositional and functional calculus) do not fulfil this
condition. With the help of new basic concepts, to be used
both in syntax and in semantics, a new calculus will be con-
structed which represents a full formalization of logic.

Use of symbols

In the present book, symbols of symbolic logic are used
chiefly in examples and seldom for the systematic construc-
tion of semantics. Nevertheless, a knowledge of the elements
of symbolic logic will generally be of great help in under-
standing, because the general viewpoint of modern symbolic
logic, if not its technical details, is essential for our conception
of semantics. A survey of those symbols and terms of sym-
bolic logic which are used in this book is given in §6.
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While the first chapter contains explanations that are eas-
ily comprehensible, the remainder of the book is on a more
technical level. Some devices are used to facilitate reading.
Material not absolutely necessary for an understanding of the
main text is printed in small type, e.g. digressions into more
technical problems, examples, proofs, references to other
authors, etc. Among the numbered definitions and theo-
rems, the more important are marked by ¢ +’. Each chapter
and each section is preceded by a brief summary. This will
enable the reader to look back over what has been covered
and to anticipate the path immediately ahead, so that he will
not feel lost in the jungle.
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INTRODUCTION TO SEMANTICS

A. SEMIOTIC AND ITS PARTS

Semiotic, the theory of signs and languages, is divided into
three parts: pragmatics, semantics, and syntax. Semantics is
divided into descriptive and pure semantics; syntax is divided
analogously into descriptive and pure syntax. The present
book deals with pure semantics, pure syntax, and their relations.

§1. Object Language and Metalanguage

The language spoken about in some context is called the ob-
Ject language; the language in which we speak about the first is
called the metalanguage.

A language, as it is usually understood, is a system of
sounds, or rather of the habits of producing them by the
speaking organs, for the purpose of communicating with other
persons, i.e. of influencing their actions, decisions, thoughts,
etc. Instead of speech s -inds other movements or things
are sometimes produced for the same purpose, e.g. gestures,
written marks, signals by drums, flags, trumpets, rockets,
etc. It seems convenient to take the term ‘language’ in such
a wide sense as to cover all these kinds of systems of means
of communication, no matter what material they use. Thus
we will distinguish between speech language (or spoken
language), language of writing (or written language), gesture
language, etc. Of course, speech language is the most im-
portant practically, and is, moreover, in most cases the basis
of any other language, in the sense that this other language
is learned with the help of the speech language. But this
fact is accidental; any of the other kinds of language could
be learned and used in a way independent of the specch
language.

If we investigate, analyze, and describe a language L,, we
need a language L, for formulating the results of our in-
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vestigation of L, or the rules for the use of L,. In this case we
call L, the object language, L, the metalanguage. The
sum total of what can be known about Z, and said in L, may
be called the metatheory of L, (in L,). If we describe in Eng-
lish the grammatical structure of modern German and French
or describe the historical development of speech forms or
analyze literary works in these languages, then German and
French are our object languages and English is our meta-
language. Any language whatever can be taken as an object
language; any language containing expressions suitable for
describing the features of languages may be taken as a meta-
language. Object language and metalanguage may also be
identical, e.g. when we are speaking in English about Eng-
lish grammar, literature, etc.

§ 2. Signs and Expressions

The smallest units of a language are called signs; sequences
of signs are called expressions.

A continuous utterance in a language, e.g. a speech, a
book, or a flag message, may be analyzed into smaller and
smaller parts. Thus a speech may be divided into sentences,
each sentence into words, each word into phonemes. A book
or letter may be divided into (written) sentences, each sen-
tence into (written) words, each word into letters of the

“alphabet, each letter into the simple strokes of which it
consists. Where we stop the analysis is to some extent ar-
bitrary, depending upon the purpose of our investigation.
When interested in grammar, we may take (spoken or writ-
ten) words or certain parts of words as ultimate units; when
interested in spelling, letters; when interested in the histori-
cal development of letter forms, the single form elements of
the letters. When we speak in abstracto about analysis of
language, we use the term ‘sign’ to designate the ultimate
units of the expressions of the languages. Thereby it re-
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mains undecided whether words or letters or whatever else
are taken as signs; this may be specified as soon as we go
over from the general discussion to a special investigation of
some one language.

By an expression in a language we mean any finite se-
quence of signs in that language, no matter whether meaning-
ful or not. Thus we treat all utterances in language as being
of linear form. This is convenient because it enables us to
specify the positions of signs in an expression by enumera-
tion. A spoken utterance in one of the ordinary languages is
a temporal series of sounds; a written utterance consists of
marks ordered in lines; either of them can therefore easily be
taken as linear, i.e. as one sequence. Where in practice a
second dimension is used — as e.g. in written accents or
sunilar discriminating marks, in a statistical table of figures,
or in a diagram of a configuration in chess — it is always pos-
sible by some device to regard the whole expression as linear
(e.g. by counting the acc- nt in ‘trés’ as the fourth sign, the
‘s’ as the fifth).

§3. Sign-Events and Sign-Designs

The word ‘sign’ is ambiguous. It means sometimnes a single
object or event, sometimes a kind to which many objects be-
long. Whenever necessary, we shall use ‘sign-event’ in the first
case, ‘sign-design’ in the second.

In the ordinary way of speaking about signs and expres-
sions, e.g. letters of the alphabet, words, phrases, and sen-
tences in English, certain ambiguities often occur. Thus,
for instance, the word ‘letter’ — and analogously the words
‘word’, ‘sentence’, etc. —is used in two different ways, as
exhibited by the following two sets of examples: 1. “There
are two letters ‘s’ in the eighth word of this paragraph”;
“The second letter ‘s’ in that word is a plural ending”.
2. “The letter ‘s’ occurs twice in the word ‘signs’ ”’; “The
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letter ‘s’ is in many cases used as a plural ending in Eng-
lish”. In (1) we say “many letters ‘s’ ", in (2) “the letter
‘s’ ”, thus indicating that there is only one; hence the phrase
“letter ‘s’ ” has two different meanings. In (1), a letteris a
single thing or event, e.g. a body consisting of printer’s ink
or a sound event; therefore, it is at a certain time-moment
or during a certain time-interval, and at each time-moment
within its duration it occupies a certain place. In (2), on
the other hand, a letter is not a single thing but a class of
things to which many things may belong, e.g. the letter ‘s’ is
that class of written or printed marks to which all lower case
S’s belong. Although, in most cases, the context leaves no
doubt as to which of the two meanings is intended, it will
sometimes be advisable to distinguish them explicitly. In
cases of this kind we shall use the term ‘event’ — or ‘letter-
event’, and analogously ‘word-event’, ‘expression-event’,
‘sentence-event’, etc. — for meaning (1), and the term
‘design’ — or ‘letter-design’, and analogously ‘word-
design’, ‘expression-design’, ‘sentence-design’, etc. — for
meaning (2).

In historical descriptions of particular acts of speaking or
writing, expression-events are often dealt with. But they
are usually characterized by the designs to which they be-
long. When we say ‘“‘Caesar wrote ‘vici’ ”’, then we are
speaking about a certain word-event produced by Caesar’s
hand; but we describe it by its design; the sentence is meant
to say: ‘“Caesar wrote a word-event of the design ‘vici’ ”.
When we are not concerned with the history of single acts
but with the linguistic description of a certain language or
the logical (syntactical or semantical) analysis of a certain
language system, then the features which we study are com-
mon to all events of a design. Therefore, in this kind of in-
vestigation, it is convenient to drop reference to expression-
events entirely and to speak only about designs. Instead of
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saying, “Every event of the word-design ‘Hund’ is a noun-
event (in German)”, we may simply say, ‘“ The word-design
‘Hund’ is a noun-design”. Since in these fields we are deal-
ing with designs only, we may establish the convention that,
in texts belonging to these fields, e.g. in this treatise, ‘word’
is to be understood as ‘word-design’, ‘noun’ as ‘noun-
design’, and analogously with ‘sign’, ‘expression’, ‘sen-
tence’, etc. Thus we come to the ordinary formulation,
“The word ‘Hund’ is a noun”. In the same way, if we say
in syntax that a certain sentence is provable in a certain
calculus, or in semantics that a certain sentence is true, then
we mean to attribute these properties to sentence-designs,
because they are shared by all sentence-events of a design;
the same holds for all other concepts of syntax and semantics.

An expression-event consists of (one or more) sign-events,
and an expression-design consists of sign-designs. However,
the relation is not the same in the two cases. In an expres-
sion-event all elements .re different (i.e. non-identical);
there is no repetition of sign-events, because an event (e.g. a
physical object) can only be at one place at a time. On the
other hand, in an expression-design a certain sign-design may
occupy several positions; in this case we speak of the several
occurrences of the sign (-design) within the expression (-design).

Examples. The first and the last letter-event in the eighth word-
event of § 3 in your copy (-event) of this book (-design) are two bodies
of ink. They are different (i.e. non-identical), although similar (i.e.
of similar geometrical shape); their similarity enables you to recognize
them as belonging to the same design. Thus that word-event contains
two letter-events ‘s’. On the other hand, the word-design ‘signs’ can-
not contain two letter-designs ‘s’ because there is only one letter-
design ‘s’; but this design ‘s’ occurs at two positions in the design

‘signs’ just as one and the same color or kind of substance or disease
or architectural style may occur at dlﬁetent places, i.e. be exhibited
by different things.

In an exact exhibition, an expression-event may be represented
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either as a (discrete, finite) series of sign-events or as a sequence with-
out repetitions. But an expression-design has to be represented as a
(finite) sequence of sign-designs because the same sign-design may
occur in it several times. (Concerning the difference between series
and sequences, see § 6.)

Whether in the metalanguage names of sign-events or names of
sign-designs are assigned to the zero-level, i.e. taken as individual con-
stants, depends upon the purpose of the investigation. If sign-events
are dealt with at all (as in descriptive semiotic), they will in general
be taken as individuals and hence be designated by individual con-
stants. In this case, a sign-design is a property or class of sign-
events and hence to be designated by a predicate (level 1, degree 1;
see § 6). If, however, only designs and not events are referred to — as
is mostly the case in pure semiotic, especially in pure syntax and pure
semantics — then sign-designs may be taken as individuals.

Another ambiguity of the word ‘word’ may be mentioned, although
it is of less importance for our subsequent discussions. ‘Speak’,
‘speaks’, ‘speaking’, ‘spoken’ are sometimes, e.g. in grammar books,
called four forms of the same word, but at other times four different
words (of the same word group). We prefer the second use of the
phrase ‘the same word (-design)’, hence applying it only in cases of
literal similarity, i.e. where the word-events consist of letter-events of
the same designs.

§4. The Parts of Semiotic: Pragmatics, Semantics,
and Syntax

In an application of language, we may distinguish three chief
_ factors: the speaker, the expression uttered, and the designatum
of the expression, i.e. that to which the speaker intends to refer
by the expression. In semiotict, the general theory of signs and
languages, three fields are distinguished. An investigation of a
language belongs to pragmatics if explicit reference to a speaker
is made; it belongs to semanticst if designata but not speakers
are referred to; it belongs to symfaxt if neither speakers nor
designata but only expressions are dealt with.
1 For terminological remarks concerning the terms marked by
an obelisk, see § 37.

When we observe an application of language, we observe
an organism, usually a human being, producing a sound,
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mark, gesture, or the like as an expression in order to refer
by it to something, e.g. an object. Thus we may distinguish
three factors involved: the speaker, the expression, and what
is referred to, which we shall call the designatum of the
expression. (We say e.g. that in German ‘Rhein’ designates
the Rhine, and that the Rhine is the designatum of ‘Rhein’;
likewise, the designatum of ‘rot’ is a certain property,
namely the color red; the designatum of ‘kleiner’ is a certain
relation, that of ‘Temperatur’ a certain physical function,
etc.)

If we are analyzing a language, then we are concerned, of
course, with expressions. But we need not necessarily also
deal with speakers and designata. Although these factors
are present whenever language is used, we may abstract from
one or both of them in what we intend to say about the
language in question. Accordingly, we distinguish three
fields of investigation of languages. If in an investigation
explicit reference is made .o the speaker, or, to put it in more
general terms, to the user of a language, then we assign it to
the field of pragmatics. (Whether in this case reference to
designata is made or not makes no difference for this classi-
fication.) If we abstract from the user of the language and
analyze only the expressions and their designata, we are in
the field of semanticst. And if, finally, we abstract from
the designata also and analyze only the relations between the
expressions, we are in (logical) syntaxf. The whole science
of language, consisting of the three parts mentioned, is
called semioticft.

The distinction between the three parts of semiotic has been made
by C. W. Morris [Foundations] (see bibliography at the end of this
book) on the basis of earlier distinctions of the three factors men-
tioned. There is a slight difference in the use of the term ‘pragmatics’,
which is defined by Morris as the field dealing with the relations be-
tween speakers (or certain processes in them) and expressions. In
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practice, however, there does not seem to be a sharp line between
investigations of this kind and those which refer also to designata.

Examples of pragmatical investigations are: a physiologi-
cal analysis of the processes in the speaking organs and in the
nervous system connected with speaking activities; a psy-
chological analysis of the relations between speaking be-
havior and other behavior; a psychological study of the
different connotations of one and the same word for different
individuals; ethnological and sociological studies of the
speaking habits and their differences in different tribes,
different age groups, social strata; a study of the procedures
applied by scientists in recording the results of experiments,
etc. Semantics contains the theory of what is usually called
the meaning of expressions, and hence the studies leading
to the construction of a dictionary translating the object
language into the metalanguage. But we shall see that
theories of an apparently quite different subject-matter also
belong to semantics, e.g. the theory of truth and the theory
of logical deduction. It turns out that truth and logical con-
sequence are concepts based on the relation of designation,
and hence semantical concepts.

An investigation, a method, a concept concerning expres-
sions of a language are called formalf if in their application
reference is made not to the designata of the expressions but
only to their form, i.e. to the kinds of signs occurring in an
expression and the order in which they occur. Hence any-
thing represented in a formal way belongs to syntax. It can
easily be seen that it is possible to formulate rules for the
construction of sentences, so-called rules of formation, in a
strictly formal way (see e.g. the rules for S; in § 8). One
might perhaps think at first that syntax would be restricted
to a formulation and investigation of rules of this kind and
hence would be a rather poor field. But it turns out that,
in addition, rules of deduction can be formulated in a formal
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way and hence within syntax. This can, among other possi-
bilities, be done in such a way that these rules lead to the
same results as the semantical rules of logical deduction. In
this way it is possible to represent logic in syntax.

The representation of certain concepts or procedures in a formal
way and hence within syntax is sometimes called formalization. The
formalization of semantical systems, i.e. the construction of corre-
sponding syntactical systems, will be explained in § 36.

The result that logical deduction can be represented in a formal way
— in other words, the possibility of a formalization of logic — is one of
the most important results of the development of modern logic. The
trend in this direction is as old as logic itself; but in different periods
of its development the formal side has been emphasized sometimes
more and sometimes less (comp. Scholz, Geschichte der Logik, 1931).
The problem of the possibility of a full formalization of logic will be
the chief subject-matter of Volume II.

For terminological remarks concerning the terms ‘syntax’ and
‘formal’, see § 37.

§ 5. Descriptive and Pure Semantics

Descriptive semantics is the empirical investigation of the
semantical features of historically given languages. Pure
semantics is the analysis of semantical systems, i.e. systems of
semantical rules. Syntax is divided analogously. The present
book is concerned with semantical and syntactical systems and
their relations, hence only with pure semantics and syntax.

Semantical investigations are of two different kinds; we
shall distinguish them as descriptive and pure semantics.
By descriptive semantics we mean the description and
analysis of the semantical features either of some particular
historically given language, e.g. French, or of all historically
given languages in general. The first would be special de-
scriptive semantics; the second, general descriptive seman-
tics. Thus, descriptive semantics describes facts; it is an
empirical science. On the other hand, we may set up a sys-
tem of semantical rules, whether in close connection with a
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historically given language or freely invented; we call this
a semantical system. The construction and analysis of se-
mantical systems is called pure semantics. The rules of
a semantical system S constitute, as we shall see, nothing else
than a definition of certain semantical concepts with respect
to S, e.g. ‘designation in S’ or ‘true in S’. Pure semantics
consists of definitions of this kind and their consequences;
therefore, in contradistinction to descriptive semantics, it
is entirely analytic and without factual content.

We make an analogous distinction between descriptive
and pure syntax (compare [Syntax] §§ 2 and 24), and divide
these fields into two parts, special and general syntax (com-
pare [Syntax] § 46). Descriptive syntax is an empirical in-
vestigation of the syntactical features of given languages.
Pure syntax deals with syntactical systems. A syntactical
system (or calculus) K consists of rules which define syn-
tactical concepts, e.g. ‘sentence in K’, ‘provable in K’,
‘derivable in K’. Pure syntax contains the analytic sen-
tences of the metalanguage which follow from these defini-
tions. Both in semantics and in syntax the relation between
the pure and the descriptive field is perfectly analogous to
the relation between pure or mathematical geometry, which
is a part of mathematics and hence analytic, and physical
geometry, which is a part of physics and hence empirical
(compare [Syntax] § 25; [Foundations] § 22).

Sometimes the question is discussed whether semantics
and syntax are dependent upon pragmatics or not. The
answer is that in one sense they are but in another they are
not. Descriptive semantics and syntax are indeed based on
pragmatics. Suppose we wish to study the semantical and
syntactical properties of a certain Eskimo language not
previously investigated. Obviously, there is no other way
than first to observe the speaking habits of the people who
use it. Only after finding by observation the pragmatical
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fact that those people have the habit of using the word
‘igloo’ when they intend to refer to a house are we in a posi-
tion to make the semantical statement ‘‘ ‘igloo’ means (desig-
nates) house” and the syntactical statement ‘‘igloo’ is a
predicate”. In this way all knowledge in the field of de-
scriptive semantics and descriptive syntax is based upon
previous knowledge in pragmatics. Linguistics, in the widest
sense, is that branch of science which contains all empirical
investigation concerning languages. It is the descriptive,
empirical part of semiotic (of spoken or written languages);
hence it consists of pragmatics, descriptive semantics, and
descriptive syntax. But these three parts are not on the
same level; pragmatics is the basis for all of linguistics. How-
ever, this does not mean that, within linguistics, we must
always explicitly refer to the users of the language in ques-
tion. Once the semantical and syntactical features of a
language have been found by way of pragmatics, we may
turn our attention away from the users and restrict it to
those semantical and syntactical features. Thus e.g. the
two statements mentioned before no longer contain explicit
pragmatical references. In this way, descriptive semantics
and syntax are, strictly speaking, parts of pragmatics.
With respect to pure semantics and syntax the situation
is different. These fields are independent of pragmatics.
Here we lay down definitions for certain concepts, usually
in the form of rules, and study the analytic consequences of
these definitions. In choosing the rules we are entirely free.
Sometimes we may be guided in our choice by the considera-
tion of a given language, that is, by pragmatical facts. But
this concerns only the motivation of our choice and has no
bearing upon the correctness of the results of our analysis
of the rules. (Analogy: the fact that somebody’s garden has
the shape of a pentagon may induce him to direct his studies
in mathematical geometry to pentagons, or rather to certain
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abstract structures which correspond in a certain way to
bodies of pentagonal shape; the shape of his garden guides
his interests but does not constitute a basis for the results of
his study.)

This treatise is devoted to pure semantics and pure syntax,
or rather to the field in which semantical systems and syn-
tactical systems, and in addition their relations, are analyzed.
(There is so far no suitable name for this field; see termino-
logical remarks, § 37, ‘Theory of Systems’.) There will
occasionally also occur examples referring to semantical
or syntactical features of historical languages, say English
or French, apparently belonging to descriptive semantics or
syntax. But these examples are in fact meant as referring to
semantical or syntactical systems which either are actually
constructed or could be constructed in close connection with

those languages.

Examples. Suppose that we make the statement, “The sentences
‘Napoleon was born in Corsica’ and ‘Napoleon was not born in
Corsica’ are logically exclusive (incompatible) in English”. This is
meant as based upon a system E of semantical rules, especially a rule
for ‘not’, constructed in consideration of the English language. The
system E is tacitly or explicitly presupposed in this statement; it
might be that a rule for ‘not’ has really been given previously, or it
might be that it has not but easily could be given. In any case, con-
cepts of logical analysis like ‘logically exclusive’, ‘logically equivalent’,
etc., can only be applied oun the basis of a system of rules.

The subject-matter of this treatise is restricted in still an-
other direction, as compared with that of semiotic in general.
Our discussions apply only to declarative semtences, leaving
aside all sentences of other kinds, e.g. questions, impera-
tives, etc.; and hence only to language systems (semantical
systems) consisting of declarative sentences. Our terminol-
ogy is to be understood in this restricted sense; ‘sentence’ is
short for ‘declarative sentence’, ‘language’ for ‘language
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(system) consisting of declarative sentences’, ‘English’ for
‘that part of English which consists of declarative sentences’,
‘interpretation of a sentence of a calculus’ for ‘interpreta-
tion of the sentence as a declarative sentence’, etc.

Not much has been done so far in the logical analysis of other than
declarative sentences. Concerning imperatives and ought-sentences
see: E. Mally, Grundgesetze des Sollens; Elemente der Logik des Willens,
1926; W. Dubislav, “Zur Unbegriindbarkeit der Forderungssitze”,
Theoria 3, 1937; J. Jprgensen, ‘‘Imperatives and Logic”, Erkenntnis 7,
1938; K. Menger, “A Logic of the Doubtful: On Optative and Im-
perative Logic”, Reports of a Math. Colloquium, 2nd ser., no. 1, pp. 53-
64; R. Rand, “Logik der Forderungssitze”, Zeitschr. f. Theorie d.
Rechtes, 1939; A. Hofstadter and J. C. C. McKinsey, “On the Logic
of Imperatives”, Phil. of Sc. 6, pp. 446-457, 1939. Concerning ques-
tions see short remarks in [Syntax] § 76, and in Hofstadter and Mc-
Kinsey, loc. cit., p. 454.

§ 6. Survey of Some Symbols and Terms of Symbolic
Logic
Symbols and technical terms are listed here for later use in
this book. Features deviating from other authors are chiefly
found in the following paragraphs: use of letters; terminology
of designata; (series and sequences); German letters; meta-
language.
t For terminological remarks concerning the terms marked
by an obelisk, see § 37.

In the subsequent discussions we shall often make use of
symbolic logic, especially its elementary parts. Therefore
a brief survey of the symbols, letters, and terms used will be
given here. We shall later apply these symbols chiefly in
examples of sentences in object languages, but occasionally
also in a metalanguage. While we usually take the ordinary
English word-language as metalanguage, it will sometimes
be convenient, for greater clarity and precision, to use a few
symbols in the metalanguage, either in combination with
English words or alone.
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SyMBOL TRANSLATION
1. Propositionalt connectives
calculust
one-place { negationf i~ ‘not ...’
disjunctiont | ¢...Vy---’ ‘... or---t
) conjunctiont | ‘... .---’ .and - --’
two-pa:ice implicationt | ¢...D---’ ‘not...or---’
connections (or: ‘if . . . then---")
equivalencet | ¢ = . if and only if - - -’
2. Functionalt
calewlust
universality {‘ x.) } ‘for everyz, .. x..’
‘@ (.x..)
existence ‘@x) (L.x..) ‘for some (i.e. at least one)
% ..x..
(or: ‘there is an x such that
’
abstraction ‘o) (Lx.l) ‘the class of all x such that
cexl!
‘Ar,y) (..2..y..)" | ‘the relation between x and
y such that . Ly
identity ‘x=y’ ‘x is identical wnth (1 e. the

same object as) y’

Use of letters for the different types.

CONSTANTS VARIABLES
individual signs a’, ‘b’, etc. ‘x’, 'y’ ‘8’ etc.
predicates (level 1), degree 1 ‘P' ‘Q’ ‘F’ ‘G’
predicates (level 1), degree 2 ‘R’ ‘S? ‘H’, ‘L’
functors ‘k’, D ‘7, ‘g’
propositional signst ‘A’, ‘B’, etc. ‘p’, ‘g, etc.
signs without types ‘u’, ‘v, etc.

Examples of sentences. ‘P(a)’ means “a is P (i.e. has the
property P)”; ‘R(a,b)’ “a has the relation R tob”’; ‘M(P)’
“P is M (i.e. the property P has the property of second

level M)”.

Individual signs designate the individuals of the realm in
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question (objects); they belong to the zero level. Their
properties and relations, and the predicates by which these
are designated, belong to the first level. An attribute (i.e.
a property or a relation) attributed to something of the level
n, and the predicate designating it, belong to the level n + 1.
A predicate of degree 1 (also called one-place predicate)
designates a property; a predicate of degree n (n-place
predicate) designates an n-adic relation, i.e. a relation hold-
ing between #» members.

Examples of functors: ‘prod’, ‘temp’; ‘prod(m,n)’ des-
ignates the product of the numbers m and #, ‘temp(x)’ the
temperature of the body «.

A definition has the form ‘... =pr---’; this means:
‘¢ .. is to be interchangeable with ‘- - -’ 7 (see § 24). Some-
times, instead of ‘ =v¢’, ‘=’ (between sentences) or ‘ ="’
(between other expressions) is used. ‘...’ is called the
definiendum, ‘- - -’ the definiens.

Classification of form: of sentences. Atomic sentences
are those which contain neither connectives nor variables
(e.g. ‘R(a,b)’, ‘b = c’); a molecular sentence is one not
containing variables but consisting of atomic sentences
(called its components) and connectives (e.g. ‘ ~P(a)’,
‘A v B’); a general sentence is one containing a variable
(e.g. ‘(x)P(x)’).

In a sentence of the form ‘(x) (.. .)’ or “(dx)(...)’ or an
expression of the form ‘(\x)(..x..)% ‘(x)’, ‘(dx)’, and
‘(\x)’ are called operators (universal, existential, and
lambda- operator, respectively); ‘. . .” is called the operand
belonging to the operator. A variable at a certain place in
an expression is called bound if it stands at that place in an
operator or in an operand whose operator contains the same
variable; otherwise it is called free. An expression is called
open, if it contains a free variable; otherwise closed. (A
class of sentences is called closed if all its sentences are
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closed; this concept must be distinguished from that of a
class closed with respect to a certain relation.) An open ex-
pression will also be called an expressional functiont;
and, moreover, an expressional function of degree », if the
number of (different) variables occurring in it as free variables
is n. An expressional function such that it or the closed ex-
pressions constructed out of it by substitution are sentences
is called a sentential functionf.

Terminology of designata. In this treatise, the following
terms for designata will be used. (Some of them do not seem
to me quite satisfactory; they will be changed as soon as
better ones have been proposed.)

SIGNS OR EXPRESSIONS

DESIGNATA

individual constants
predicates of degree 1

individuals

relations butes

properties (classes)} attri- functions
P'ﬁi‘;‘;}f;h‘fr degree 2 (1) or | entities
functors functions (11IB) conceptsf
sentences propositionst

Series and sequences. There are two different ways of ordering ob-
jects in a linear order; it can be done by a series or by a sequence. A
geries of n objects is a transitive, irreflexive, and connected relation
(‘x precedes y’). A sequence with » members is, so to speak, an enu-
meration of the objects (at most #); it can be represented in two
different ways: (1) by a predicate of degree 2 which designates a one-
many relation between the objects and the ordinal numbers up to #,
(2) by an argument expression containing # terms (in this case, the
argument expression and the sequence designated are said to be of
degree n). [Example: Suppose we want to order the objects b, c, d
in such a way that we take first b, then c, then d, then c again. Thus
we have a sequence with # = 4 but only three objects. This sequence
may be represented in either of the following ways: (1) by ‘{b;1, c;2,
d;3, c;4}’ i.e. as the relation which correlates the object b to the num-
ber 1, ¢ to 2 and also to 4, and d to 3; (2) by ‘b;c;d;c’. If the objects
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are individuals, the expression in (1) is of the first level, that in (2) of
the zero level. Thus method (2) leads to simpler formulations; we
shall apply it in this book. The sentence ‘T(b,c,d,c)’ is usually para-
phbrased in about this way: ‘“The relation T (of degree 4) holds for the
objects b, ¢, d and c in this order”’; on the basis of method (2), we shall
permit, in addition, the following formulation: “The relation T (of
degree 4) holds for the sequence (of degree 4) b;c;d;c.”’] In a sequence,
repetitions are possible, i.e. the same member may occur at several
places (e.g., ¢ in the example given). In a series, this is impossible be-
cause of its irreflexivity. Therefore, in many cases we cannot use
series but have to use sequences (e.g. in the representation of expres-
sion-designs, § 3 at the end).

German letters are used as signs of the metalanguage des-
ignating kinds of signs or expressions of the object language.
‘i’ designates (the class of) individual variables, ‘in’ individ-
ual signs (including variables), ‘p’ predicate variables, ‘pr’
predicates (including variables), ‘f’ functor variables, ‘fu’
functors (including variables), ‘f’ propositional variablesf,
‘fe’ propositional signs {("ncluding variables), ‘&’ sentences
(including propositional signs); ‘v’ variables (of any kind),
‘¢’ constants, ‘a’ signs, ‘U’ expressions; ‘ &’ classes of expres-
sions (in most cases classes of sentences); ‘ T’ sentences and
classes of sentences (see § 9). ‘pr"’ designates predicates of
degree n, ‘"pr’ predicates of level m, e.g. ‘?pr'’ predicates of
first degree and second level; analogously with ‘p’, ‘fu’, and
‘f’. A constant of the metalanguage designating a particular
sign (-design) or expression (-design) of one of the kinds men-
tioned is formed with the help of a figure as subscript; a
corresponding variable of the metalanguage with the help
of a letter ‘¢’, ‘5, etc., as subscript. Thus ‘in,’ is the name
(in the metalanguage) of a particular individual constant (of
the object language), e.g. ‘a’; ‘in,’ of another one, e.g. ‘b’,
etc.; ‘!pr?’ of a predicate of first level and second degree, e.g.
‘R’; ‘@’ of a particular sentence, e.g. ‘Q(b)’. “If pr; occurs
in &;, then .. .” is short for “if a predicate vpr; occurs in a
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sentence ©;, then...”. ‘21,-(;{2)’ designates that expres-
sion which is constructed out of %; by substituting %; for v
(i.e. by replacing v, at every place where it occurs as a free
variable in %; by %;). The designation of a compound ex-
pression is formed by putting the designations of its parts
one after the other in the order in which the parts occur in
the expression; signs which are not letters (e.g. brackets,
comma, connectives, etc.) are in this procedure designated
by themselves. Thus e.g. ‘pr; (ing, iny)’ (with the above ex-
amples) designates the expression ‘R(b,a)’; ©; vV ©; is the
sentence which consists of &; (this may be ‘Q(b)’) followed
by ‘v’ followed by &,.

As metalanguage we shall usually employ the English
word-language, but supplemented by symbols, for the sake
of brevity and precision. In this way, we shall use the Ger-
man letter symbols just explained, and occasionally also
certain symbols of symbolic logic, among them variables
(e.g. ‘x’,‘F’, etc.), operators (e.g. ‘ (x)’°, ‘(AF)’, ‘(\x)’, etc.),
the signs of identity (‘ =’) and of definition (‘ =p¢’). ¢ =p(’
is to mean ‘is (hereby defined to be) the same as’ or ‘if and
only if’. Further, with respect to classes, especially ®, we
use the customary symbols of the theory of sets: ‘x € £;’ means
““x is an element of 8;”; ‘R, C ®;’ means “ £, is a sub-class of
R;”; —R; is the complement of &;, i.e. the class of all ele-
ments (of the type in question) not belonging to &;; £, + ®; is
the sum of ®; and &, i.e. the class containing all elements of
f: and all elements of ®;; &; X ®; is the product of &; and
R;, i.e. the class of all elements belonging to both classes.
(Ifin T;+ T;, Tior T;is not a class but a sentence &y, then
its unit class {©;} is meant as component of the sum.) {x}
is the class whose only element is x; {%, s, .. %,} is the
class whose elements are x;, xs, . . x,. If M; is a class of
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classes, pr(M;) is the product of the classes of M; (if M; is
null, pr(M;) is the universal class).

As first introductions into symbolic logic for beginners see Cooley
|Logic] and Tarski {Logic]. On a higher technical level see White-

head and Russell [Princ. Math.|, Quine [Math. Logic], Church
|Logic}, Carnap [Logic].



B. SEMANTICS

The construction of semantical systems is explained. Seman-
tical concepts are introduced, especially truth, designation, and
other concepts defined with their help.

§ 7. Semantical Systems

A semantical system is a system of rules which state fruth-
conditions for the sentences of an object language and thereby
determine the meaning of these sentences. A semantical sys-
tem S may consist of rules of formation, defining ‘sentence in
S’, rules of designation, defining ‘designation in S’, and rules
of truth, defining ‘true in S’. The sentence in the metalanguage
‘@; is true in S’ means the same as the sentence &; itself. This
characteristic constitutes a condition for the adequacy of defi-
nitions of truth.

By a semantical system (or interpreted system) we
understand a system of rules, formulated in a metalanguage
and referring to an object language, of such a kind that the
rules determine a truth-condition for every sentence of the
object language, i.e. a sufficient and necessary condition for
its truth. In this way the sentences are interpreted by the
rules, i.e. made understandable, because to understand a
sentence, to know what is asserted by it, is the same as to
know under what conditions it would be true. To formulate
it in still another way: the rules determine the meaning or
sense of the sentences. Truth and falsity are called the truth-
values of sentences. To know the truth-condition of a
sentence is (in most cases) much less than to know its truth-
value, but it is the necessary starting point for finding out
its truth-value.

Example. Suppose that Pierre says: “Mon crayon est noir” (&,).

Then, if we know French, we understand the sentence &, although
we may not know its truth-value. Our understanding of &, consists
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in our knowledge of its truth-condition; we know that &, is true if and
only if a certain object, Pierre’s pencil, has a certain color, black.
This knowledge of the truth-condition for &, tells us what we must
do in order to determine the truth-value of &;, i.e. to find out whether
&, is true or false; what we must do in this case is to observe the color
of Pierre’s pencil.

In what way can the truth-conditions for the sentences
of a system be stated? If the system contains only a finite
number of sentences, then we may give a full list of the
truth-conditions, one for each sentence. This is done, for
instance, in the ordinary cable codes. A code translates each
sentence separately and thereby interprets it. Hence a code
is a semantical system, but one of a primitive kind. We may
thus distinguish two chief kinds of semantical systems, code
systems and language systems. A code system lists the truth-
conditions separately for each sentence, while a language
system gives general rules for partial expressions of sentences
in such a way that the t~uth-condition for every sentence is
determined by the rules for the expressions of which it con-
sists. In the case of the ordinary cable codes, flag codes, and
the like, only the first form, that of particular rules, is possi-
ble. In the case of a language system containing an infinite
number of sentences, only the second form, that of general
rules, is possible, because we cannot formulate an infinite
number of rules. There are cases of languages with a finite
number of sentences where either form is applicable.

Examples. 1. We construct a semantical system S; in the following
way. S; (that is to say, the object language of S;) contains seven signs:
three individual constants, in, ing, in, two predicates, pr; and prz, and
the two parentheses ‘(’ and ¢)’. [In order to be able to write down
actual examples of sentences of S;, we may choose some letters as the
first five signs, e.g. ‘a’, ‘b’, ‘c’, ‘P’, ‘Q’. But this choice is obviously
irrelevant for the semantical properties of S, and is therefore, strictly
speaking, outside of pure semantics. Its role is the same as that of
diagrams in geometry; they facilitate the operations practically but
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have no theoretical bearing on the proofs.] Sentences of S, are the
expressions of the form pr (in). The truth-conditions are given sep-
arately for each sentence by the following rules:

pr; (iny) is true if and only if Chicago is large.

. pr, (ine) is true if and only if New York is large.

pt, (ing) is true if and only if Carmel is large.

. prs (imy) is true if and only if Chicago has a harbor.

. pry (iny) is true if and only if New York has a harbor.
. pr, (ing) is true if and only if Carmel has a harbor.

St W N

2. We construct the semantical system S; in the following way. S
contains the same signs and sentences as S,. We give five particular
rules each specifying the designatum of one of the five chief signs, and
one general rule for the truth-conditions of the sentences:

1. im designates Chicago.

. inp designates New York.

. ins designates Carmel.

. pr; designates the property of being large.

. bre designates the property of having a harbor.

. A sentence pr; (in,) is true if and only if the des:gnatum of in; has
the desxgnatum of pr; (i.e. the object designated by in; has the property
designated by pr,). The systems S; and S, contain the same sentences,
and every sentence has the same truth-condition (interpretation, mean-
ing) in both systems. Hence they are essentially alike, but differ with
respect to the kinds of rules applied; S; is a code system, S, a language
system.

LN

As the previous and the following examples show, a
sémantical system may be constructed in this way: first a
classification of the signs is given, then rules of formation
are laid down, then rules of designation, and finally rules
of truth. By the rules of formation of a system S the term
‘sentence of S’ is defined; by the rules of designation ‘desig-
nation in S”’; by the rules of truth ‘true in .S’. The definition
of ‘true in S’ is the real aim of the whole system S; the other
definitions serve as preparatory steps for this one, making
its formulation simpler. On the basis of ‘true in .S’, other
semantical concepts with respect to S can be defined, as we
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shall see later. (The simplest one is the definition of falsity:
a sentence &; of S is false in S =p: &; is not true in S.) It
is especially important to be aware of the fact that the rules
of designation do not make factual assertions as to what are
the designata of certain signs. There are no factual assertions
in pure semantics. The rules merely lay down conventions in
the form of a definition of ‘designation in S’; this is done by
an enumeration of the cases in which the relation of desig-
nation is to hold. Sometimes the term ‘designation’ is also
used for compound expressions and even for sentences; this
will be discussed later (§ 12). In this case, the rules of desig-
nation define by enumeration the preliminary term ‘direct
designation’; and with its help the more general term
‘designation’ is defined recursively.

In the case of the very simple system S, it can easily be shown that
the rules of designation define ‘designation’ by enumeration. We can
transform those rules into an explicit definition:

x designates ¢ in S; =p¢ (2 = im; and ¢ = Chicago) or (x = inp and
t = New York) or (x = ingand ¢ = Carmel) or (x = pr;and ¢ = the
property of being large) or (x = pr; and ¢ = the property of having
a harbor).

(‘¢’ is here a variable not satisfying the ordinary rule of types; its range
of values comprehends both individuals and properties. The problem
involved here will be discussed later; see § 12.)

It will now be shown that the whole set of rules of formation, rules
of designation and rules of truth for S; can be brought into the form of
a definition for ‘true in S;’, based upon a classification of the signs
of S;. (The classes &, to ®4 are meant asin, pr, {*(’}, and {*)’} respec-
tively; but this need not be mentioned in the formulation of the
system.)

1. Classification. S, contains four (mutually exclusive) classes of
signs, R, £, 85, and K4; R contains (only) the signs ay, 6z, a3; K2, a4
and a;; s, as; N4, a7.

2. ¥, is true in S; =p; (dx) (Ay) (z) (IF) [A: consists of x, as, ¥,
a7 in this order and x ¢ §: and y € & and [(y = a; and z = Chicago) or
(y = mpand z = New York) or (y = a3 and 2 = Carmel)] and [(x =a,
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and F = the property of being large) or (x = asand F = the property
of having a harbor)] and F(zfl.

By this definition, the system S, is established.

A remark may be added as to the way in which the term
‘true’ is used in these discussions. We apply this term chiefly
to sentences (and later to classes of sentences also). [The
term may also be applied in an analogous way to proposi-
tions as designata of sentences (see D17-1); but this use will
not occur often in the following discussions; compare the
terminological remarks in § 37.] We use the term here in such
a sense that fo assert that a sentence is true means the same as
to assert the semtence iiself; e.g. the two statements ‘“‘The
sentence ‘The moon is round’ is true” and ““The moon is
round” are merely two different formulations of the same
assertion. (The two statements mean the same in a logical
or semantical sense; from the point of view of pragmatics,
in this as in nearly every case, two different formulations
have different features and different conditions of appli-
cation; from this point of view we may e.g. point to the
difference between these two statements in emphasis and
emotional function.)

The decision just mentioned concerning the use of the term
‘true’ is itself not a definition for ‘true’. It israther a stand-
ard by which we judge whether a definition for truth is ade-
quate, i.e. in accordance with our intention. If a definition
of a predicate pr; — e.g. the word ‘true’ or ‘valid’ or any
sign arbitrarily chosen — is proposed as a definition of truth,
then we shall accept it as an adequate definition of truth if
and only if, on the basis of this definition, pr, fulfills the con-
dition mentioned above, namely that it yields sentences like
“ ‘“The moon is round’ is...if and only if the moon is
round”, where pr; (e.g. ‘true’) is to be put at the place of
‘...°. This leads to the following definition D7-A.

D7-A. A predicate pr; is an adequate predicate (and its
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definition an adequate definition) for the concept of fruth
within a certain class of sentences ®; =p; every sentence
which is constructed out of the sentential function ‘x is F
if and only if ’ by substituting pr; for ‘F’, any sentence &,
of ®; for ‘p’, and any name (syntactical description) of &
for ‘x’, follows from the definition of pr;.

Example. Let &, contain the sentence ‘ Chicago is a city’. Let ‘&,’
be a name of this sentence. Suppose that somebody introduces the
word ‘verum’ into English by a certain definition D. In order to ap-
ply D7-A, we have to examine all sentences constructed in the way
described in D7-A. By putting ‘verum’ for ‘F’, ‘Chicago is a city’
for ‘p’, and ‘&,’ for ‘x’, we obtain ‘&, is verum if and only if Chicago
is a city’. If our examination comes to the result that D is of such a
kind that this and all analogous sentences follow from D, then, accord-
ing to D7-A, we shall call ‘verum’ an adequate predicate for truth and
the proposed definition D an adequate definition for truth. This is
practically justified by the fact that the result mentioned shows that
the new word ‘verum’ as introduced by D is used in the same way as
the ordinary word ‘true’ acc. ~ding to the decision mentioned above.

D7-A is the simplest form of the definition of adequacy;
it refers only to the special case where the sentences to which
the predicate for the concept of truth is applied belong to the
same language as this predicate — in other words, where
the object language is the same as (or part of) the meta-
language. In general, object language S and metalanguage
M are different. In this case, the following more general
definition of adequacy applies. (This definition is due to
Tarski; see below.)

D7-B. A predicate pr; in M is an adeguate predicate (and
its definition an adequate definition) for the concept of truth
with respect to an object language S =ps from the defini-
tion of pr, every sentence in M follows which is constructed
out of the sentential function ‘x is F if and only if p’ by sub-
stituting pr; for ‘F’, a translation of any sentence &, of S
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into M for ‘p’, and any name (syntactical description) of
S for ‘x’.

Example. Let S be a certain part of the German language, con-
taining among others the sentence ‘Der Mond ist rund’. Let ‘S,’ be
the name of this sentence. We take English as metalanguage M.
The translation of &, in M is ‘The moon is round’. Suppose that a
definition D, for the sign ‘T’ is proposed and that we wish to find out
whether D; is an adequate definition for truth with respect to the
part S of the German language. According to D7-B, one of the sen-
tences to be examined is constructed by substituting ‘T’ for ‘F’, the
translation ‘The moon is round’ for ‘p’, and ‘&,’ for ‘x’. Thus we
obtain the sentence ‘&, is T if and only if the moon is round’. If this
and all analogous sentences are found to follow from the definition
D, of ‘T’, then D, is an adequate definition and ‘T’ an adequate predi-
cate for truth in S.

It can easily be shown that two predicates each of which is an ade-
quate predicate for truth with respect to the same object language S
have the same extension (they are equivalent, Dio-11b, and even
L-equivalent, T22-13).

It is especially to be noticed that the concept of truth in
the sense just explained — we may call it the semantical con-
cept of truth — is fundamentally different from concepts like
‘believed’, ‘verified’, ‘highly confirmed’, etc. The latter
concepts belong to pragmatics and require a reference to a
person.

In order to make clearer the distinction just mentioned, let us con-
sider the following example. ‘The moon has no atmosphere’ (&,);
‘@, is true’ (&,); ‘G, is confirmed to a very high degree by scientists
at the present time’ (Ss). ©; says the same as S,; S, is, like &,, an
astronomical statement and is, like &,, to be tested by astronomical
observations of the moon. On the other hand, &; is a historical state-
ment; it is to be tested by historical, psychological observations of
the behavior of astronomers.

Wittgenstein ([Tractatus] 4.024, 4.46) has emphasized the point of
view that the truth-conditions of a sentence constitute its meaning,
and that understanding consists in knowing these conditions. This
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view is also connected with his conception of logical truth (compare
quotations given at the end of § 18A).

According to Tarski ((Wahrheitsbegriff] p. 267), S. Lesniewski was
the first to formulate an exact requirement of adequacy for the defini-
tion of truth, in the simple form of D7-A above (in unpublished lec-
tures since 1919); and similar formulations are found in a Polish book
on the theory of knowledge by T. Kotarbinski (1926). F. P. Ramsey,
in his review (1923) of Wittgenstein’s book, gives a related formula-
tion: “If a thought or proposition token ‘p’ says p, then it is called
true if p, and false if ~p” (“Foundations of Mathematics”, p. 275).
Tarski himself gave the more general form (like D7-B above) of the
definition of adequacy (his “Konvention 8”, [Wahrheitsbegriff]
p. 305). Further, he gave the first exact definition for truth with
respect to certain formalized languages; his definition fulfills the re-
quirement of adequacy and simultaneously avoids the antinomies con-
nected with an unrestricted use of the concept of truth as e.g. in every-
day language. In the same work [Wahrheitsbegriff], Tarski comes to
very valuable results by his analysis of the concept of truth and related
semantical concepts. These results are of a highly technical nature
and therefore cannot be explained in this introductory Volume I.

The requirement mentione:. is not meant as a new theory or con-
ception of truth. Kotarbinski has already remarked that it is the old
classical conception which dates back to Aristotle. The new feature is
only the more precise formulation of the requirement. Tarski says
further that the characterization given is also in agreement with the
ordinary use of the word ‘true’. It seems to me that heis right in this
assertion, at least as far as the use in science, in judicial proceedings,
in discussions of everyday life on theoretical questions is concerned.
But I will not stress this point; it may be remarked that Arne Ness
has expressed some doubts about the assertion, based on systematic
questioning of people. At any rate, this question is of a pragmatical
(historical, psychological) nature and has not much bearing on the
questions of the method and results of semantics.
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§ 8. Truth-Tables as Semantical Rules

The customary truth-tables are semantical truth-rules in the
form of diagrams. The rules of formation, and likewise the
rules of truth, for molecular sentences may be stated in the form
of a recursive definition, specifying the condition first for atomic
sentences and then for molecular sentences with reference to
their components.

The semantical systems considered so far contain only
atomic sentences. Now we come to systems possessing con-
nectives and molecular sentences constructed with their
help. The number of sentences in a system of this kind is
infinite. This is the case with nearly all symbolic systems
usually dealt with, and also with the natural languages. [In
English, for instance, for any given sentence, however long,
we can construct a longer sentence by adding ‘and the moon
is round’; therefore the number of sentences is infinite.]

The connectives are often introduced with the help of
truth-tables. It is easily seen that a truth-table is nothing
but a semantical rule in the form of a diagram. Take e.g.
the table of disjunction (usually written in a less correct way
with variables ‘p’, etc., of the object language instead of
signs ‘ &,’, etc., of the metalanguage):

& S S V&,

2o
ST

The four lines of the table are meant to say this: 1. If &, is
true and &, is true, &; vV &; is true; 2. if &; is true and &;
is false, &; v ©; is true; 3. if &; is false and ©; is true,
&; V ©;is true; 4. if &; is false and &, is false, &; vV ©; is
false. Hence the whole table says: ©; vV ©; is true if and
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only if &, is true or &;is true or both. Thus the table states
a truth-condition for the sentences of the form &; v &;; it
says the same as rule (4c) in the example S; below.

The customary truth-table for negation is this:

& ~C;
T F
2. F T

It says: 1. If &;is true, ~&; is false; 2. if &; is false, ~&; is
true. In other words, ~@; is true if and only if &; is false,
i.e. not true. Hence it says the same as rule (4b) in the
example S; below.

In the same way, the customary truth-tables for the other
connectives are truth-rules in the form of diagrams. Some
of them are reformulated in words in the rules of the example
S4 below.

The rules of formation 1.r a system S in which the number
of components in a sentence is not limited may be formulated
in the following way. First, the form or forms of atomic
sentences of S are stated, and, second, the operations are
described by which compound sentences of S may be con-
structed out of sentences (and sometimes other expressions)
of atomic form. Thus the definition of ‘sentence in S’ is not
an explicit but a recursive definition. The term defined oc-
curs also in the definiens (see e.g. rules (2) for S; below,
where ‘&’ occurs in the definiens). This fact, however, does
not make the definition circular. If we wish to determine
whether a given expression % is a sentence, the definition
refers us back to the question whether another expression
%, is a sentence. But it does so in such a way that ¥; is a
proper part of ;. Therefore, after a finite number of ap-
plications of the second part of the recursive definition we
come to an expression of atomic form and hence to a solu-
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tion with the help of the first part of the definition. The
situation with the rules of truth is similar. They give a
recursive definition for ‘true in S’ in strict analogy to the
definition for ‘sentence in S’. Therefore, for any given sen-
tence &, of S, the rules of truth determine a truth-condition,
although in general they do not determine the truth-value
of @.‘.

Examples of semantical systems. To facilitate understanding, we
formulate the rules in the following systems by using signs and ex-
pressions of the object language in quotes. The exact method using
names of the signs (German letters) has been shown in § 7.

Semantical System Ss

1. Classification of signs. Three in (‘a’,‘b’,‘c’), two pr (‘P’,‘Q’);
further single signs: ‘~’, V7, (’, ).

2, Rules of formation. An expression Ay in S; is a sentence (&) in
Ss =p¢ A, has one of the following forms:

a. pr(in); b. ~(&); c. (&) V (&)).

3. Rules of designation. a; designates (an entity) «» in S3 =psa; is
the first and % the second member in one of the following pairs: a. ‘a’,
Chicago; b. ‘b’, New York; c. ‘c’, Carmel; d. ‘P’, the property of be-
ing large; e. ‘Q’, the property of having a harbor.

4. Rules of truth. &; is true in S3 =p¢ one of the following three
conditions is fulfilled:
a. ©, has the form pr; (in;), and the object designated by in; has
the property designated by pr..
b. ©; has the form ~(&,), and &; is not true.
¢. ©; has the form (&;) V (&,), and at least one of the sentences
©; and &,; is true.

Examples of application of the rules. (While the rules require every
component of a connection to be included in parentheses, we shall omit
the parentheses here and in later examples under the customary con-
ditions.) Let us examine the expression ‘P(c) V ~Q(a)’ (%) on the
basis of the rules of S;. By applying rules (zc) and (2b), and rule (2a)
twice, we find that %, is a sentence in S;. Now we apply rules (4) in
order to construct a truth-condition for ¥, in S;. According to rule
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(4c), ¥, is true in S; if and only if ‘P(c)’ is true or ‘~Q(a)’ is true or
both. According to (4b), ‘~Q(a)’ is true if and only if ‘Q(a)’ is not
true. Hence, ¥, is true if and only if ‘P(c)’ is true or ‘Q(a)’ is not true
or both. According to (4a) and (3), ‘P(c)’ is true if and only if Carmel
is large, and ‘Q(a)’ is true if and only if Chicago has a harbor. There-
fore, U, is true in S; if and only if either Carmel is large or Chicago does
not have a harbor or both. Thus we have found a truth-condition for
¥, in S; as determined by the rules of S;. But these rules do not suffice
to determine the truth-value of U;. In order to find this we must
know certain facts in addition to the rules. This would lead us out-
side of semantics into empirical science, in this case into geography.

Semantical System S,
1. Classification of signs. The same signs as in S;, and in addition

[ N} LN

="
L] y =

2. Rules of formation. (a), (b), and (c) as in S3; further: d. (&;) « (&;);
e. (©)2(8); 1 (&) = (S)).

3. Rules of designation. The same as in Ss.

4. Rules of truth. (a), (b), and (c) as in Ss; further:

d. ©; has the form (S;; « (&;), and both &, and &; are true.

e. ©; has the form (&:) D (&,), and &; is not true or &, is true
or both.

f. ©y has the form (&;) = (&;), and &, and &; are either both
true or both not true.

§ 9. Radical Concepts

On the basis of the concept of truth, the following concepts,
called radical semantical concepts, are defined: ‘false’, ‘im-
plicate’, ‘equivalent’, ‘disjunct’, ‘exclusive’, ‘comprehensive’.
Theorems for these concepts are stated.

By the rules of a semantical system S the concept of truth
in S (for sentences) is defined, as we have seen. We shall now
define other semantical concepts on this basis. These con-
cepts are called radical concepts and their terms radical terms,
in distinction to terms formed with prefixes (‘L-’ and ‘F-’,
§§ 14 and 21). We add some theorems; these are based
merely on the definitions, not on any postulates; hence they
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are analytic. In the definitions and theorems we make no
special assumptions concerning any particular features of S.
Hence these definitions and theorems belong to general
semantics. For the sake of brevity, we often omit the phrase
‘in S’ in connection with a semantical term; but it must be
kept in mind that every semantical term has a meaning only
with respect to a semantical system and therefore, in a com-
plete formulation, must be accompanied by a reference to a
semantical system.

Most of the theorems in this section are not of great im-
portance in themselves but are lemmas to other theorems or
serve for later reference. Here and later, the more important
definitions, theorems, postulates, etc., are marked by a plus
symbol ¢ +°. In referring to a definition, a theorem, a postu-
late, etc., of the same section, we omit the section number
(e.g. a reference ‘D3’ in this section refers to Dg-3).

We shall apply the semantical concepts not only to sen-
tences but also to classes of sentences (including the null class
and transfinite classes). Thus we may e.g. regard a book or
a paper as a (finite) class of sentences; and a theory may be
regarded as the class (in general transfinite) of all those
sentences which are deducible from a given finite set of
sentences, e.g. physical laws. Now a book or a paper or a
theory is meant as the joint assertion of all sentences belong-
ing to it; hence it seems natural to call it true if and only if
those sentences are true (D1).

+D9-1. R;is true (in S) =ps every sentence of ; is true.

One possible way of defining the semantical terms for both
sentences and sentential classes would be to define them for
classes and then to add the general convention that a term
may be applied to a sentence &; if and only if it applies to
its unit class {©,}. Instead, we formulate the definitions
with the help of ‘T’ (§ 6); ‘ T,” is a variable of the meta-
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language whose range of values comprehends both sentences
and sentential classes of the object language.

+D9-2. ¢;is false (in S) =p; T; belongs to S and is not
true in S.

+T9-1. ®;is false if and only if at least one sentence of &;
is false. (From D2 and 1.)

T9-2. ¢,is not both true and false. (From D2.)

T9-3. T, is either true or false. (From D2.)

T9-4. If ®; C ®; and K; is true, then R, is true. (From
D1.)

T9-5. If &; C 8; and R, is false, then ®; is false. (From
Ti.)

T9-6. The class of all true sentences of S is true. (From
D1.)

T9-7. There is a false sentential class in S if and only
if there is a false sentence in S. (From Tri; if &; is false,
{©} is false.)

T9-8. ®: + R; is false if and only if &, is false or &; is
false. (From Ti.)

The relation of implication, to be defined now (D3), must
be clearly distinguished from logical implication, to be de-
fined later (‘L-implication’, § 14). [In order to stress the
difference, the first is sometimes called material implication;
see terminological remarks, § 37, Connections (1).] Analo-
gously, equivalence (Dg—4) must be distinguished from logical
equivalence (‘L-equivalence’, § 14). Implication and equiva-
lence as defined here are not logical relations; they do not
require any connection between the subject-matter of T;
and that of T;, but merely certain conditions with respect to
the truth-values of T;and ¥,. Therefore, these relations are
much less important than the corresponding L-concepts and
the corresponding concepts in syntax (C-concepts, § 28);
they serve chiefly as a basis for these other concepts. The
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same holds for the terms ‘disjunct’, ‘exclusive’, and ‘com-
prehensive’ in relation to the corresponding L-terms and
C-terms. For the sake of brevity, we shall often write
‘T; — T, instead of ‘T; is an implicate of T;’ (or ‘T, im-
plies T;’, a formulation we usually avoid). (Thus the arrow
‘—’ is here not, as in Hilbert’s notation, a connective (of
implication) but a predicate of the metalanguage designat-
ing a certain relation between sentences, not between propo-
sitions.)
+D9-3. T;isanimplicate of T; (T;implies T;, T; — T;)
(in S) =ps T, and ; belong to S, and either E; is false or
T, is true (or both).
+T9-10. If ; — T; and g; is true, T; is true. (From
D3 and 2.)
+T9-11. If §; — T, and T; is false, T, is false. (From
D3 and 2.)
T9-12. If T;is false, T; — every ¥;. (From D3.)
T9-13. If T, is true, every T; — T;. (From D3.)
T9-14. The relation of implication is
a) reflexive (i.e. T; — T.),
b) transitive (i.e., if T, > ¥; and T; — Ty, then
T; — Ti). (From T3, D3; T1o, T13, T12.)
T9-15. If &; € &;, then ®; — &;. (From D3, D1.)
T9-16. If ®; C 8, then ®; — &;. (From D3, D1.)
T9-17. T, — ®; if and only if T, — every sentence of
®;. (From D3, D1, T13, T12; T15, T14b.)
T9-18. g; is not an implicate of T; if and only if T; is
true and ¥; is false. (From D3.)
+D9-4. T;is equivalent to T; (in S) =p; T; and T;
belong to S, and either both are true or neither of them is
true.
T9-20. Each of the following conditions is a sufficient
and necessary condition for T; and ¥; to be equivalent (to
one another):
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+a. T; and T, are both true or both false. (From
D4, D2.)
+b. ;> T;and T; » T.. (From D4, D3.)

T9-21. Each of the following conditions is a sufficient
and necessary condition for ¥; and E; not to be equivalent:
a. Exactly one of them is true.
b. Exactly one of them is false. (From T20a.)

T9-22. &, and {&,} are equivalent. (From T20a, D1,
Tr.)

It is important to notice the difference (1) between a negation sen-
tence, whether in a symbolic language (example &, below) or in Eng-
lish (&), and a sentence about falsity (&;); and likewise (2) between
an equivalence sentence (&, and &;) and a sentence about equivalence
(®s), and (3) between an implication sentence (&7 and S;) and a sen-
tence about implication ().

Examples:

1. &;: ‘~Q(c)’.
©,: ‘Carmel does not have a harbor’.
Sy ¢ ‘Q(c)’ is false’.

2. &4 ‘P(a) = Q(b)’.
©;: ‘Chicago is large if and only if New York has a harbor’.
&q: ¢ ‘P(a)’ is equivalent to ‘Q(b)’ .

3. &7: ‘Q(c) D P(b)’.
©;: ‘If Carmel has a harbor, New York is large’.
Ss: © “‘Q(c)’ implies ‘P(b)’ * (or * ‘P(b)’ is an implicate of
‘Q(C)’ 'or ¢ ‘Q(C)’--"P(b)’ 7)‘

&, not &;, is the direct translation of &, into English; likewise, Ss,
not ©s, of ©,; and &g, not &, of S;. Here, for the sake of simplicity,
we have translated ‘... = ---’into ‘... if and only if - - - ’, and
‘...D---"into ‘if ... then---’. These translations are often
appropriate; but in these examples they deviate somewhat from the
customary use of the word ‘if’ and the phrase ‘if and only if’ in Eng-
lish, because these expressions are usually restricted to cases where
there is a logical or causal or motivational connection between the two
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members. A more precise but somewhat lengthy translation of ‘AD B’
is ‘not A, or B’, and of ‘A = B’ ‘A and B, or,not A and not B’. The
chief distinction is between &, and &; on the one hand and &; on the
other. &, belongs to a symbolic object language. &, may be regarded
as belonging either to English as an object language or, so to speak,
to the object part of the Englih metalanguage, i.e. to that part which
does not contain semiotical terms. On the other hand, &; belongs to
the metalanguage and, moreover, to its semantical part. In the cases
(2) and (3), the situation is analogous.

D9-5. gI,is disjunct with T; (in S) =p¢ at least one of
them is true (and hence, not both of them false).

T9-25. If ¥;is disjunct with T;, then T; is disjunct with
<;. (From Ds.)

D9-6. T;is exclusive of T; (in S) =p¢not both of them
are true (and hence, at least one is false).

T9-27. T; and T, are exclusive (of one another) if and
only if T; + ; is false. (From D6, T8, T1.)

We shall designate the null class of sentences in S, i.e.
that class of the type of sentential classes which has no ele-
ments, by ‘ A’ or simply ‘A’ (D7) and the universal senten-
tial class in S, i.e. the class of all sentences of S by ‘V;’ or
simply ‘V’ (D8). Then Ais true (T32); it fulfills the condi-
tion of D1 that every sentence of it is true, because there
is no such sentence. There is no analogous theorem for V.
Although in most semantical systems V is false, we cannot
state it as a general theorem that V is false, but only that V
is false if there is a false T; at all in S (T43b). There are
systems in which every sentence and hence every ®; and
every T, is true, including V (e.g. in the system S;, which is
like S,, § 7, except that in; designates San Francisco instead
of Carmel). The fact that every system contains a true £,
namely A, but not every system a false ®;, reveals an aston-
ishing lack of symmetry in the edifice of semantics. We shall
find in the discussion in [1I] (see Bibliography) that this is
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due to a lack of symmetry in the customary way of dealing
with sentential classes. By employing new concepts, which
are not definable by the concepts ordinarily used, it will be
possible to gain symmetry for semantics and simultaneously
for syntax.

+D9-7. A (A5) =p; the null sentential class.
T9-30. For every f:, A C &. (From D7.)
4+T9-32. Aistrue. (From D7, D1; can also be seen with
the help of T30, 6, and 4.)
T9-33. Every T; — A. (From T32 and 13.)
T9-34 (lemma). If A — g;, then T; is true. (From T32
and 10.)
T9-35. ¥;is true if and only if A — ;. (From T34;
Ti13.)
+D9-8. V (V) =ps the universal sentential class.
T9-37 (lemma). Every &; e V.
T9-38 (lemma). Eve~y ®; C V.
T9-39 (lemma). V — every &,;. (From T37 and 15.)
T9-40 (lemma). V — every ®;. (From T38 and 16.)
4+T9-41. V — every T;. (From T3¢9 and 40.)
T9-42. Each of the following conditions is a sufficient
and necessary condition for V to be true in S:
a. Every &;in S is true.
b. Every ®; in S is true.
c. Every T;in S is true. (From D8, D1.)

T9-43. Each of the following conditions is a sufficient
and necessary condition for V to be false in S:
a. At least one sentence in S is false.
b. At least one sentential class in S is false
c. At least one T;in S is false.
(From T42.)

The term ‘comprehensive’ (Dg) is introduced only for the sake of
corresponding L- and C- terms (D14~5, D30-6).
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D9-9. T is comprehensive (in S) =p¢ T;— every sentence in S.
T9-50. Each of the following conditions is a sufficient and necessary
condition for T; to be comprehensive:
a. T;— V. (From Do, T17.)
b. ¥, is equivalent to V. (From (a), T41.)
c. T;—every ®;. (From (a), T4o0, Tr4b.)
d. T.—every T,;. (From Dg, (c).)

We shall now define the concept of equivalence of seman-
tical systems; it must clearly be distinguished from the con-
cept of equivalence of sentences or sentential classes (Dg-34).

D9-11. The semantical system S, is equivalent to the seman-
tical system S, =ps the following two conditions are ful-
filled:

a. S, and S, contain the same sentences.
b. For every &;, &; is true in S,, if and only if &; is
true in S,.

T9-70. The systems S,, and S, are equivalent if and only
if the following three conditions are fulfilled:
a. S,, and S, contain the same sentences.
b. For every &, if &, is true in S,, it is true in S,.
c. For every &, if &; is false in S,, it is false in S,.
(From D11.)

T9-71. If S,, and S, are equivalent systems, then each of
the following concepts (applied to sentences and sentential
classes) has the same extension in S,, as in S,: a. truth,
b. falsity, c. implication, d. equivalence, e. disjunctness,
f. exclusion, g¢. comprehensiveness. ( (a), from D11, Ds;
(b) to (g), from D11 and the definitions of these concepts,
which are all based on the concept of truth.)
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§ 10. Further Radical Concepts

Some concepts applicable to attributes are defined, among
them ‘universal’, ‘empty’, ‘implicate’, ‘equivalent’. These
concepts are absolute, i.e. not dependent upon language. With
their help, corresponding semantical concepts (‘universal in §’,
etc.), applicable to predicates, are defined. Further, the terms
‘interchangeable’, ‘extensional sentence’, and ‘extensional
system’ are defined. Theorems for the concepts defined are
stated.

There are some semantical properties and relations of
predicates analogous to some of the properties and relations
of sentences defined in § 9. As a preliminary step to the
introduction of these semantical terms we shall first define
some terms which may belong to any suitable object lan-
guage rather than to the metalanguage. (They are, however,
not descriptive but logical in the sense to be explained in
§ 13.) Therefore these terms are not accompanied by a
reference to a language, b''t — as we shall say later (§ 17) —
they are used in an absolute way. The concepts designated
by these terms are thus not dependent upon language; we
call them absolute concepts (§ 17).

In the following definitions, M and N are attributes of any
degree, say #. ‘M (u)’ means ‘M holds for the argument %’
or ‘u possesses the attribute M’, where # is a sequence of »
members belonging to types suitable for M. H is a relation
of degree two; ‘H(x,y)’ means ‘H holds between x and y’.

D10-1. M is universal =y, for every », M (u).

D10-2. M is empty = for every , not M(«) (in other
words, there is no # such that M () ).

D10-3. M is non-empty =p¢ M is not empty (in other
words, there is at least one # such that M («) ).

D10-4. N is an implicate of M (or, M implies N) =p;
for every u, if M (u) then N(u) (in other words, the extension
of M is contained in that of N).
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D10-5. M is equivalent to N =y, for every , M (u) if
and only if N(%) (in other words, M and N imply one an-
other, they coincide, they have the same extension).

D10-6. M is exclusive of N =p, there is no % such that
M(u) and N(u).

Further, the familiar concepts of the theory of relations
belong to this kind of absolute concept, e.g. ‘symmetric’,
‘non-symmetric’, ‘asymmetric’, ‘reflexive’, ‘non-reflexive’,
‘irreflexive’, ‘transitive’, ‘non-transitive’, ‘intransitive’,
‘connected’, ‘one-many’, ‘many-one’, ‘one-one’, etc. We
shall give only one example here:

D10-7. H is symmelric =p; for every x and vy, if H(x,y)
then H(y,x).

Now we decide to use the same terms as semantical terms
also, hence for different but closely corresponding concepts.
While the terms in their absolute use defined above are ap-
plied to attributes, in their semantical use they will be ap-
plied to those predicates which designate attributes of the
kind specified. For these concepts, the dependence upon a
language system is essential. Thus e.g. (the property of be-
ing) large is non-empty independently of any language, just
because of the fact that there are some large things. On the
other hand, the predicate ‘P’ is non-empty in S; (§8) be-
cause of the same fact; the same predicate ‘P’ may be empty
in some other system because there it may designate some
other property which happens to be empty.

D10-10. A predicate pr;is a. universal (b. empty, c. non-
empty) in § =p; the attribute designated by pr; in S is
a. universal (b. empty, c. non-empty, respectively).

D10-11. pr; is a. an implicate of (b. equivalent to,
c. exclusive of) pr; in S =p; the designatum of pr; in S is
a. an implicate of (b. equivalent to, c. exclusive of, respec-
tively) the designatum of pr;.
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D10-12. A predicate pr; of degree two is symmeiricin S =p;
the relation designated by pr; in S is symmetric.

Analogous definitions may be laid down for the other terms
of the theory of relations.

The following concept is of interest chiefly because of the
corresponding L- and C- concepts (D14-6, D31-6).

D10-15. ¥; is interchangeable with %, (in S) =p( any
closed sentence ©; is equivalent to every sentence &; con-
structed out of &; by either replacing %; at some place in &;
by ¥; or %; by %, and there is at least one pair of sentences
©; and ©; of this kind. (The last condition is added in order
to exclude trivial cases.)

If a sentence ©; is constructed out of other sentences as
components with the help of some of the ordinary sentential
connectives (as e.g. in Sg and S, § 8) then the truth-value
of &; depends merely upon the truth-values of its com-
ponents. Therefore, a s-1itence of this kind is sometimes
called a truth-function of its components; we shall call it
extensional with respect to its partial sentences. This con-
cept is defined in a general way in D2o.

D10-20. ©;is extensional (in S) in relation to a partial
sentence &; occurring at a certain place in &; =p; for every
closed (§ 6) ©y, if &; is equivalent to &, then &; is
equivalent to the sentence constructed out of &; by replac-
ing ©; at the place in question by &;.

D10-21. The system S is extensional in relation to partial
sentences =pq for every &; in S, if &, contains a closed sen-
tence &; at some place, then &, is extensional in relation to
©; at that place.

T10-20. I1fS is extensional in relation to partial sentences,
then any two closed equivalent sentences in S are inter-
changeable. (From D21, D20, D13.)
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§ 11. Variables

If a system S contains variables, then, on the basis of the
rules of designation and as basis for the rules of truth, we lay
down first rules of values, and then either rules of determination
or rules of fulfillment. The rules of values specify which en-
tities are the values of the variables of the kinds occurring in §;
the rules of determination specify which attributes are deter-
mined by the sentential functions in S; the rules of fulfillment
specify which entities fulfill the sentential functions in S.

The examples of semantical systems discussed so far (S, to
S, §§ 7 and 8) are constructed in a very simple way. They
lack one important feature, variables. The chief applica-
tion of variables is in expressing universal and existential
propositions.

If a system S is to contain variables, the classification of
signs, which precedes the formulation of rules, has to specify
the kinds of variables. The rules of formation refer to these
kinds in describing the forms of sentences. Then, in a rule
of values related to the rules of designation, it is stated for
each kind of variable which entities are to be values of the
variables of that kind. Their class is sometimes called the
range of values of the variables in question. If an expres-
sion ¥; or a sign a; designates a value of a variable v;, we call
%; a value expression and a, a value sign of v;. A rule of
values might e.g. state that the range of values of the in-
dividual variables i in the system S comprehends all space-
time points, or all physical things, or all events, or all human
beings in general, or all human beings living at a certain
time, etc. The values of the i are then called the individuals
in S. A rule for another kind of variables, say p, might state
that all properties of individuals are their values, or all
second-degree relations of individuals, or all attributes of
any degree of individuals, or all properties of any finite level,
or all attributes of any finite level, etc. A rule for still an-
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other kind of variables, say f, might state that the proposi-
tions (designata of sentences) are their values.

Further, for a system S containing variables, rules have to
be given specifying which entities are determined by the
expressional functions (i.e. expressions with free variables;
see § 6) of various forms, and especially which attributes are
determined by sentential functions. These rules which de-
fine ‘determination in S’ are called rules of determination.

Then, with the help of the concepts defined by the preced-
ing rules, especially the range of values of a variable and the
attribute determined by a sentential function, truth rules for
general sentences have to be laid down.

Example of a semantical system containing variables. We construct
the system Sg out of S; (§ 8) by adding new signs and rules. (S con-
tains only individual variables; all sentences are closed; all operands
have molecular form, i.e. they do not contain operators.) Here again,
to facilitate understanding, we sometimes use expressions of the
object language included in yuotes.

Semantical system Sq

1. Classification of signs. In addition to the signs of Ss, Se contains
‘d’ and an infinite number of i (‘x’, ‘y’, etc.).

2. Rules of formation. An expression Uz in Se is a sentential function
in S¢ =p¢ As has one of the following forms: a. pr(i); 8. ~(Us), where
9, is a sentential function; v. (%) V (X;), where A; and ¥U; are sen-
tential functions containing the same variable,

An expression ¥, in Sg is a sentence (&) in S¢ =p¢ A has one of the
following forms: a. pr(in;), where in; is a constant; b. ~(&,); c. (&)
V (&;); d. (i}) (%), where %, is a sentential function containing i;;
e. (di;) (%), where ¥, is a sentential function containing ;.

3A. Rules of designation. The same as in S;. (We might, of course,
add in Sy more pr and in and then specify here the designatum of each
of these signs.)

3B. Rules of determination. A sentential function ¥, defermines in
Se the property F =p¢ one of the following three conditions is ful-
filled:
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a. U, has the form pr; (i;), and pr; designates F;

b. ¥ has the form ~(¥;), and F is the property of not having
the property determined by ¥;;

c. Ay has the form () V (A;), and F is the property of having
either the property determined by ¥; or that determined by
U; or both.

3C. Rule of values. Values of the i in Sg are the towns in the United

States.
4. Rules of truth. &; is true in Sy =p; one of the following condi-

tions is fulfilled:
(a), (b), and (c) as in Ss.
d. ©; has the form (i;) (¥;) and every value of i; (i.e. every town
in the United States) has the property determined by ..
e. ©; has the form (Ji,) (%;) and at least one value of i; has the
property determined by ..

The rules, especially those of determination, become more
complicated in a system where operators within operands
and therefore sentential functions of higher degree occur
(e.g. “(@)(y)(..x..y..)"). Here, an order of the vari-
ables must be specified, an alphabetical order, so to speak.
It is very convenient for many purposes, and especially for
the formulation of rules for systems containing variables, to
supplement the English word language (as metalanguage)
by adding variables and the operators ‘(x)’, ‘(dx)’, and
3 ()‘x) "

Examples of rules of determination (‘ M’ is used as a 'pr).

1. If (the sentential function) ¥; determines (the attribute of
degree #) M and if i, is the mth in alphabetical order among the n
variables occurring freely in ¥;, then the sentential function (of degree
n-1) (ix)(N:) determines (Axi,22, . . Zm1,Zmt1y - - - Zn) [ (Xm)M (2,
X3, .. %my . . %a)] (this is an attribute of degree n-1). (Formulated
in words and variables but without symbolic operators, it would run
like this: ““(i:) (%;) determines that relation which holds between x;,
%2, . . Xm—1, Tmt1, - - Xa if and only if for every individual xm, M holds
between xy, %3, . . . Zm,y . . X5".)

2. Under the same conditions (Hi:)(%;) determines (Axyxs, .
Tty Emply - « Xn) [(me) M(xy, zs, . . xa)]-
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If S contains other kinds of variables, then the rules of
values for these kinds are of course different from the ex-
amples given here (as shown by the examples given at the
beginning of this section). But the form of rules of determi-
nation is in all essential respects similar to that of the ex-
amples just given.

The concept of fulfillment (or satisfaction) to be defined
now is closely related to that of determination.

D11-1. « fulfills %; in S =p there is an M such that ¥;
determines M, and that M(x) (i.e. there is an attribute M
of degree # such that the sentential function ¥; of degree n
determines M and that M holds for %, which is a sequence
of degree n).

Examples. 1. The ordered pair (i.e. sequence of two members)
Castor, Pollux (a pair of objects, not of names!) fulfills the sentential
function ‘x ist ein Bruder von 9’ in German. 2. Chicago fulfills ‘P(x)’
in Se. 3. Suppose that the ,ystem S; contains Sg and, in addition,
predicate variables (‘F’ etc.). The simple formulation ‘Chicago,
large fulfills ‘F(x)’ in S;” is, unfortunately, not permitted by the tra-
ditional English grammar; therefore we have to replace it by the fol-
lowing clumsy formulation: “The pair consisting of Chicago and the
property of being large fulfills ‘F(x)’ in S;”.

D1 defines ‘fulfillment’ on the basis of ‘determination’;
the latter term is hereby supposed to be defined by rules of
determination. The inverse procedure is also possible;
‘determination’ can be defined on the basis of ‘fulfillment’
(DA). %; is here a sentential function of degree #, M an
attribute of degree », u a sequence of degree x.

D11-A. ¥; determines M in S =p; for every u, M(u) if
and only if » fulfills %,.

Thus fulfillment may serve as the basic concept in the
construction of a semantical system, defined by rules of
fulfillment instead of rules of determination. (For the formu-
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lation of rules of fulfillment, as for those of determination,
it is convenient but not necessary to make use of the con-
cept of designation to be defined by rules of designation.)
Then determination would be defined on the basis of ful-
fillment as in DA, and truth on the basis of determination,
as e.g. in the truth rules of S,.

There is another way of defining truth directly on the
basis of fulfillment without the use of the concept of determi-
nation. The definition can be given an especially simple
form (DB below) if we make use of the concept of the null
sequence (i.e. the sequence which has no members, analogous
to the null class) and regard a sentence as a sentential func-
tion of degree zero. Analogously, we may regard a proposi-
tion as an attribute of degree zero. [This widening out of
the concepts would of course involve certain modifications in
previous explanations and definitions, especially with respect
to the concept of fulfillment.]

D11-B. &;is true in S =p, the null sequence fulfills &;.

Tarski [Wahrheitsbegriff] bases his definition of truth on the con-
cept of fulfillment or satisfying (but in a way technically different
from that indicated here). This procedure seems to have certain
advantages in those cases where it can be applied, namely for lan-
guages containing variables.

In a later volume of these studies it is planned to make a systematic
comparison of the different forms of bases for semantical systems.

Previously we defined ‘universal’, etc., for attributes
(D1o-1, etc.) and ‘universal in S’ etc., for predicates des-
ignating those attributes (D1o-10, etc.). We now define
the same terms for sentential functions determining those
attributes.

D11-2. A sentential function ¥4, is a. universal (b. empty,
c. non-empty) in S =p, the attribute determined by ¥;
in S is a. universal (b. empty, c. non-empty, respectively).
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D11-3. A sentential function ¥%; is a. an implicate of
(b. equivalent to, c. exclusive of) a sentential function
%; in S =p¢ the attribute determined by ¥, in S is a. an im-
plicate of (b. equivalent to, c. exclusive of, respectively) the
attribute determined by %; in S.

§ 12. The Relation of Designation

It is convenient to adopt for semantical discussions a use of
the term ‘designation’ which is wider than the ordinary use, so
that we may speak of the designata not only of individual
constants and predicates but also of functors and sentences.
A general convention for this wider use is laid down (D12-B).

To which signs and expressions of a semantical system S
(i.e. of its object language) is it possible and advisable to
apply the relation of designation? So far we have applied
it to individual constants and predicates of different levels
and degrees. In a similar way it may of course be applied to
functors of any type occuiring inS. But it is possible to en-
large the domain of application to a considerable extent, and
it seems convenient to do so for the signs and expressions of
S of all those types for which variables occur in the meta-
language, even if this includes the type of sentences and the
types of sentential connectives. We use as metalanguage in
this section the English language supplemented by variables,
including propositional variables. Instead of ‘u designates v
in S’ we write ‘Desg(%,)’ or simply ‘Des(u,2)’ where the
context makes clear which system is meant.

Instead of, and in analogy to, the rules of truth based on
the narrower concept of designation in the previous form of
a semantical system (e.g. S; in § 8) we should have here rules
of designation for sentences and, in addition, a general ex-
plicit definition for truth; the latter has the same form in all
systems and may therefore be stated once for all in general
semantics (D1).
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D12-1. ©;is frue in S =p, there is a (proposition) p such
that Des(&,,p) and p.

In order to satisfy the ordinary rule of types, we should
have to use different terms for the relation of designation as
applied to individuals, attributes (of different types), and
propositions, e.g. ‘DesInd’, ‘DesAttr’, ‘DesProp’. It is,
however, much more convenient to use only one term ‘Des’.
This does not lead to ambiguities because the type of the
second argument makes clear which kind of designation is
meant. But this use presupposes a suitable structure of the
metalanguage so as to avoid the restrictions by the ordinary
rule of types in this point (see remark below).

Example. In order to reformulate the system S; (§ 8) in the way
described, we replace (3) by (3A) and (3B), and (4) (§ 8) by (3C) and
(4) (here). (3A) and (3B) are explicit definitions; (3C) is recursive,
like (4) in § 8. 3A, B, and C could be combined into one recursive
definition for ‘ Dess,’.

3. Rules of designation.

A. For individuals.
DesIndsy (in;,x) =ps one of the following three conditions is
fulfilled:
a. in; = ‘a’, and x = Chicago,
b. in; = ‘b’, and x = New York,
c. in; = ‘c’, and x = Carmel.

B. For attributes.
DesAttrss (pr;,F) =ps one of the following two conditions is
fulfilled:

a. pr; = ‘P’,and F = (the property of being) large,

= ‘Q’ and F = having a harbor.

C. For propositions.
DesProps, (©:,p) =p¢ one of the following three conditions is
ulfilled:
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a. ©; has the form pr; (in;), and there is an F and an x such
that DesAttr(pr;,F) and DesInd(in;x), and p = (the prop-
osition that) x is F.
b. &, has the form ~®&;, and there is a g such that
DesProp(S;,q), and p = not gq.
1 ¢ ©; has the form &; V &;, and there is a ¢ and an r
¢+~ such that DesProp(&;,q) and DesProp(&;,), and p =
g orr.

4. Rule of truth.
@y is true in S; =p there is a (proposition) p such that
DesProp(&y,p) and ».

Application of the rules. It follows from (3Aa), (3Ba), (3Ca), that
DesProp(‘P(a)’, Chicago is large); and hence with (4), that ‘P(a)’ is
true in S; if and only if Chicago is large. A similar result holds for
each of the other sentences of Ss. Therefore, the definition of ‘true in
Ss’ given by the rules stated above fulfills the requirement of adequacy
(§ 7); it is merely another formulation for the same system Ss.

According to the ordinary rule of types, usually called the simple
theory of types, a particular wrgument-place beside a particular predi-
cate may be filled only by expressions which all have the same type
and hence the same level and the same degree. Therefore, on the basis
of this rule, we could not have ‘x’, ‘F’, and ‘p’ as second arguments
to the same predicate ‘Des’, as we had above. [The same holds for
‘Chicago’ and ‘the property - - -’ as second arguments for ‘desig-
nates’ in the formulation of rule (3) for S; in § 8; that already was a
violation of the rule of types.] We may, however, modify the rule of
types by admitting transfinite levels; a predicate of level w is allowed
to take as arguments expressions of any finite level, including sen-
tences, which we assign to the zero level. If we assign ‘Des’ to this
level w, then its use instead of ‘DesInd’, ‘DesAttr’, and ‘DesProp’ in
the examples mentioned, and likewise its use with arguments of still
other types, is correct. Another way of accommodating ‘Des’ as here
used would be to use as metalanguage a language system without
distinctions of types or levels; systems of this kind have recently been
constructed especially by Quine [Math. Logic] and Bernays (Journ.
Symb. Logic, vol. 2 (1937) and subsequent volumes).

Concerning the simple theory of types see |Syntax] § 27, [Logic]
§8 21b and 29b. Concerning transfinite levels see [Syntax] § 53
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with references to Hilbert and Godel, Tarski [Wahrheitsbegriff]
§ 7, Carnap [Logic] § 29b.

Sometimes objections are raised, especially by empiricists,
against the wider use of the relation of designation and es-
pecially against its application as a relation between sen-
tences and propositions. It is said that, while object names
(individual constants) and predicates do designate some-
thing, namely objects and properties or relations, a sentence
does not designate anything; it rather describes or states
that something is the case. This may indeed be true with
respect to the customary use of the words ‘designation’, ‘to
designate’, etc., in English. It is obviously not in accordance
with ordinary usage to say “ ‘P(a)’ designates Chicago is
large”’; and the same holds for corresponding sentences in
languages of similar structure. First, English grammar does
not admit a sentence in the position of grammatical object.
This difficulty, however, can easily be overcome by insert-
ing ‘that’ after ‘designates’. Second, ‘to designate’ would
ordinarily not be used in this case. But this does not seem
to me to be a sufficient reason against its wider use as a
technical term. Very often, in transferring a word from
the ordinary language into the language of science, we en-
large its domain of application. The only question in such
a case seems to be a question of expediency; and the decision
will depend chiefly upon whether the similarity between the
cases of ordinary application and the new cases is strong
enough for the enlargement to seem natural. In the case
under discussion there seems to be a strong analogy between
the different cases, in spite of the difference in types; this
will soon become clear.

This analogy will also help us to remove from our path
some other stumblingblocks. With respect to some of the
types to which the relation of designation is here applied,
the puzzling question is sometimes raised, what exactly is
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the kind of designata of the expressions of the one type or the
other? Thus it is e.g. discussed whether the designatum of
a thing-name (e.g. ‘Chicago’) is the corresponding thing or
its unit-class (e.g. whether it is Chicago or {Chicago}).
Further, the question is discussed whether the designatum
of a predicate of first degree is a property or a class. In both
cases it is said as an argument in favor of the second answer
that a designatum should always be a class. If designata of
sentences are admitted at all, the question is raised whether
they are states of affairs (or possible facts, conditions, etc.,
which seems chiefly a terminological difference) or rather
thoughts.

Let us suppose for the moment that we understand a given
object language S, say German or S; (§ 8), in such a way that
we are able to translate its expressions and sentences into
the metalanguage M used, say English (including some vari-
ables and symbols). It does not matter whether this under-
standing is based on the knowledge of semantical rules or is
intuitive; it is merely supposed that, if an expression is given
(say e.g. ‘Pferd’, ‘drei’ in German, ‘P’,‘P(a)’ in S;), for all
practical purposes we know an English expression corre-
sponding to it as its “literal translation” (e.g. ‘horse’,
‘three’; ‘large’, ‘Chicago is large’). Then we will lay down
a definition of adequacy for the concept of designation,
which is not itself a definition for a term ‘Des;’ (or ‘to desig-
nate in S’) but a standard with which to compare proposed
definitions. In a similar way, we had before a definition of
adequacy for truth (D7-B), and later we shall have one for
L-truth (D16-1). ‘Adequacy’ means here simply agreement
with our intention for the use of the term.

D12-B. A predicate of second degree pr; in M is an ade-
quate predicate for designation in S =p; every sentence in M
of the form pr; (%;, ;) where ¥; is a name (or a syntactical
description) in M of an expression %, of S (belonging to one
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of the kinds of expressions for which pr; is defined) and 9,
is a translation of %, into M, is true in M.

If pr; is adequate then we also call its definition and its
designatum, i.e. the relation defined as designation, ade-
quate. This definition of adequacy leaves open the question
of which types are admitted as arguments for pr;; it deter-
mines only kow a predicate for designation is to be used for
certain types if we choose to use it for these types. Hence
we may, for instance, restrict its use, in the sense of the ob-
jection mentioned, to in and pr. But it is proposed here to
use it for all types for which there are variables in M, i.e.
to admit as a second argument 9, any value expression of
any variable in M. The practical justification for the given
definition of adequacy lies in these two facts: 1. It supplies a
general rule for all the different types, in a simple way;
2. it seems to be in agreement with the ordinary use of ‘desig-
nation’ as far as this use goes.

On the basis of an adequate relation of designation, the
question of the designatum of an object name is to be
answered in favor of the object (see example 2a below) as
against its unit class.

Examples. 1.1f ‘Desg’ is an adequate predicate (in M, i.e, English)
for designation in German, then the following sentences are true:
a. ‘Desc(‘Pferd’, horse)’; b. ‘Desg(‘drei’, three)’. 2. If ‘Desg;’ is
defined as indicated above (taking the place of ‘DesIndg,’, ‘Des-
Attrs,’, and ‘DesProps,’ simultaneously), then it is an adequate
predicate for designation in S;. Among other sentences, the following
must become true: a. ‘Desgy(‘a’, Chicago)’; b. ‘Desg,(‘P’, large)’;
c. ‘Dessy(‘P(a)’, Chicago is large)’; and they are indeed true, as we
have seen before. We see that adequacy requires us to write in the
argument-place of ‘Des’ ‘large’ instead of ‘largeness’ (as English
grammar would demand after the word ‘designates’) or ‘the property
of being large’ (as we formulated it previously) or ‘the class of large
things’; and likewise ‘horse’ instead of ‘ the property of being a horse’
or ‘the class of horses’. This shows that we can assign designata to
predicates without using either the term ‘property’ or ‘class’. [The
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question whether a designatum, e.g. large, is a property or a class will
thus not disturb us in using the relation of designation, but it, too,
must finally, of course, be answered. The answer will depend upon
the structure of the languages used, especially with respect to exten-
sionality. The same holds for the question whether sentential desig-
nata are truth-values or whatever else. It is planned to discuss these
questions in a later volume of these studies in connection with the
discussion of extensional and non-extensional language systems. |

We define ‘synonymous’ on the basis of ‘designation’
(D2). Thus the term ‘synonymous’ may be applied in a
narrower or wider way according to the narrower or wider
domain of application chosen for ‘designation’.

D12-2. ¥%; in S,, is synonymous with %; in S, =pr 4;
designates in S,, the same entity as ¥; in S,.

Thus the relation of synonymity is in general not restricted
to the expressions of one system. Most of the semantical
relations can be applied to expressions of different systems,
even those which, for the sake of simplicity and in considera-
tion of their most frequent use, we have defined with respect
to one system.

Example. ‘Gross’ in German is synonymous with ‘P’ in S; because
Desc(‘gross’, large) and Desg,(‘P’, large).

Examples of other semantical relations for two systems. Instead of
Dg-4, we might take the following definition:

D12-C. €, in S,, is equivalent to ¥; in S, =py either T; is true in
Smand T; is true in S, or I; is false in S,, and T, is false in S,.

The same could be done with ‘implicate’, ‘exclusive’, ‘disjunct’,
and also with the corresponding L-terms (§ 14ff; see remark at the end
of § 16), but not with the corresponding C-terms in syntax (§ 28).
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This chapter is concerned with the problems of logical truth
(‘L-true’), logical deducibility (‘L-implicate’), and related con-
cepts (L-concepts). It will become clear that logic, in the sense
of a theory of logical deduction and thereby of logical truth,
is a special part of semantics. The task of defining the L-con-
cepts not only for particular systems (special L-semantics) but
for systems in general (general L-semantics) involves peculiar
difficulties. At present, no complete solution of this problem is
known.

§ 13. Logical and Descriptive Signs

In preparation for the later discussion of L-concepts, the dis-
tinction between logical and descriptive signs is explained. By
descriptive signs we mean those designating things or events,
their properties or relations, etc. The two kinds of signs can
easily be defined with respect to any given system (special
semantics), but a definition for systems in general (general
semantics) is not yet known.

The problem of the nature of logical deduction and logical
truth is one of the most important problems in the founda-
tions of logic and perhaps in the whole of theoretical philoso-
phy. Although in the development of modern logic much
has been done to throw more light on this problem, especially
by Frege, Russell, and Wittgenstein, it can still not be re-
garded as completely solved.

In this chapter, we shall look at the old problem from a
new standpoint. The view will here be explained that logic
is a special branch of semantics, that logical deducibility and
logical truth are semantical concepts. They belong to a
special kind of semantical concepts which we shall call
L-concepts. (For logical truth we shall use the term ‘L-
true’, for logical deducibility ‘L-implicate’.) It will be shown
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that the L-concepts differ in a peculiar way from the radical
semantical concepts which we have discussed above. If the
rules of a semantical system S and thereby the concept of
truth in S are given, then the L-concepts are thereby also
determined in a certain sense; nevertheless, the task of de-
fining them on the basis of the radical concepts (e.g. ‘desig-
nation’ and ‘true’) involves some peculiar difficulties. Thus
this chapter is, even more than the others, of a preliminary
nature; it contains more open questions than answers.

The discussion of the L-concepts will begin in the next
section. At present, we shall deal with a distinction between
two kinds of expressions; we call them descriptive and logical
expressions. We shall see later (§ 16 at the end) that there
is a close relation between the concepts ‘descriptive’ and
‘logical’ and the L-concepts. The former concepts are, like
the L-concepts, of great practical importance in the logical
analysis of languages; but for them also no satisfactory
precise definition in general semantics is known. As de-
scriptive are classified names of single items in the world,
i.e. of single things or parts of things or events (e.g. ‘Napo-
leon’, ‘Lake Michigan’, ‘the sun’, ‘the French revolution’),
signs designating empirical properties, including kinds
of substances, and relations of things, places, events, etc.
(e.g. ‘black’, ‘hot’, ‘dog’, ‘silver’, ‘father’, ‘citizen’),
empirical functions of things, points, etc. (e.g. ‘weight’,
‘age’, ‘temperature’, ‘I1.Q.’, ‘price’). Examples of signs
which are regarded as logical are the sentential connectives
(“~? ‘v’ etc.), the sign of the universal operator (‘for
every’), the sign of the element-class relation (‘¢’, ‘is a’),
auxiliary signs (e.g. parentheses and comma as ordinarily
used in symbolic logic, punctuation marks in the written
word languages), the sign of logical necessity in a (non-
extensional) system of modalities (‘N’). Further, all those
signs are regarded as logical which are definable by those
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mentioned; hence e.g. the sign of the existential operator
(“d’, or ‘for some’), signs for universal and null classes of
all types, the sign of identity (‘ =, ‘is the same as’), all signs
of the system of [Princ. Math.] by Whitehead and Russell
and of nearly all other systems of symbolic logic, all signs
of mathematics (including arithmetic, analysis of real num-
bers, infinitesimal calculus, but not geometry) with the
meaning they have when applied in science, all logical mo-
dalities (e.g. Lewis’ ‘strict implication’). A defined sign is
descriptive if its definiens contains a descriptive sign; other-
wise logical. An expression is called descriptive if it contains
a descriptive sign; otherwise logical. (Descriptivity is, so to
speak, a dominant property, logicality a recessive one.)

When we are constructing a semantical system S we usu-
ally have in mind a specific meaning for each sign; and then
we lay down the rules in accordance with this intention. In
a case like this it is not difficult to define ‘logical sign in S’
and ‘descriptive sign in S’ in such a way that the distinction
is in accordance on the one hand with our general conception
of the distinction as explained above and, on the other hand,
with the meanings intended for the signs and formulated by
the rules. The distinction will usually be made in the simple
form of an enumeration either of the logical or of the de-
scriptive (primitive) signs or of kinds of signs as listed in the
classification of signs with which the construction of the
system begins.

Examples. With respect to each of the systems S; and S; (§ 7), Ss
and S, (§ 8), and Se (§ 11), the distinction with respect to constants
can be made in the following simple way (concerning variables, see
below). The individual constants and predicates are descriptive, the
other constants logical. With respect to languages I and II in [Syntax]
the distinction for the primitive signs is likewise simple: the primitive
predicates and functors are descriptive; all other primitive signs, in-
cluding the variables, are logical ([Syntax] §§ 8 and 29).
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As to variables, it might seem at first glance as if they must
be regarded as logical signs. A closer analysis shows, how-
ever, that with respect to some languages this would not be
in agreement with the intended distinction. This is the case
for a variable whose range of values is specified by a de-
scriptive expression of the metalanguage. It seems that a
variable of this kind should be regarded as a descriptive
variable. However, the whole question is in need of further
study. (The question is not merely a terminological one;
which terminological decision in this point leads to simpler
general theorems about logical and descriptive signs and
their relation to L-concepts is an objective question.)

Example. The range of values of the variables in the system S¢
(§ 11) is the class of the towns in the United States. The English
translation of a sentence of the form ‘(x)(. . .)’ is: ‘For every town
% in the United States, . . .’, which is clearly descriptive. Hence it
seems natural to call ‘2’ descriptive.

So far we have discussed the distinction between logical
and descriptive expressions only in the form in which it ap-
pears when we have to do with a particular semantical
system, in other words, as a question of special semantics.
The problem is more difficult in the form it takes in general
semantics. Here it is the question whether and how ‘logical’
and ‘descriptive’ can be defined on the basis of other semanti-
cal terms, e.g. ‘designation’ and ‘true’, so that the applica-
tion of the general definition to any particular system will
lead to a result which is in accordance with the intended dis-
tinction. A satisfactory solution is not yet known.

The possibility and the method of solution depend upon the kind
of metalanguage M chosen. A solution seems possible if we presuppose
that M is constructed in such a way that its rules, as formulated in the
metametalanguage MM, involve a corresponding distinction of the
signs of M. From another point of view, some light will be thrown on
the question by the results of a discussion of the sentential connectives
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in [II]. Itis planned todiscuss the general question in a later volume
of these studies.

§ 14. L-Concepts

An L-term (e.g. ‘L-true’) is to apply whenever the corre-
sponding radical term (e.g. ‘true’) applies on the basis of
merely logical reasons, in contradistinction to factual reasons.
Later, our problem will be to transform this vague characteriza-
tion into a precise definition. In this section, five L-terms are
taken as primitive terms for a set of postulates (P1 to 15). On
the basis of these postulates, theorems are stated. Then defini-
tions for further L-terms are laid down.

Logic, in the sense of the theory of logical deduction, will
here be shown to be a part of semantics. This, however,
does not contradict the possibility of dealing with logical
deduction in syntax also. We shall see later (in Chapter E
and, more in detail, in [II]) that what is usually called formal
logic is the construction of a formal procedure in syntax cor-
responding to the semantical procedure.

We begin with a discussion in general semantics. We have
previously defined the concepts of equivalence and implica-
tion (§ 10). They, however, are not logical concepts; as was
emphasized, they must be distinguished respectively from
logical equivalence, in the sense of agreement in meaning or
content, and logical implication, in the sense of logical de-
ducibility or entailment. For these latter concepts, we shall
use the terms ‘L-equivalence’ and ‘L-implication’ (for ter-
minological remarks, see § 37: Prefixes, and Connections).
If we had a definition for L-implication we could easily define
L-equivalence as mutual L-implication; the problem will be
how to define L-implication.

Further, there are other logical concepts very much used
in the logical analysis of science and closely connected with
those just mentioned. Above all, there is the concept of
logical truth, truth for logical reasons in contradistinction to
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empirical, factual reasons. The traditional term for this
concept is ‘analytic’; we shall use the term ‘L-true,’ for the
sake of analogy. As a correlate to logical truth we have the
concept of logical falsity, falsity for merely logical reasons,
logical self-contradiction; for it, the term ‘contradictory’ is
often used; we shall use here the term ‘L-false’. The terms
constructed with the prefix ‘L-’ out of the original semantical
terms are called L-terms; the concepts designated by them,
L-concepts. Later we shall introduce the prefix ‘F-’, and in
syntax the prefix ‘C-. The unprefixed semantical terms
(e.g. ‘designation’, ‘true’, ‘implicate’, etc.) are called radical
terms; the designated concepts, radical concepts. For other
radical concepts we shall also introduce corresponding
L-concepts; e.g. if two sentences are disjunct (Dg-5) for
logical reasons, we shall call them L-disjunct; if they are
exclusive (Dg—6) for logical reasons, we shall call them
L-exclusive.

The L-concepts — irrespective of the terminology used
for them —are of the greatest importance for the logical
analysis of science. Suppose that a certain physical theory,
formulated as a class of laws &, is investigated and compared
with another theory R,. There are many questions which
are beyond the scope of a merely logical analysis and require
factual observation; e.g. the questions to what degree the
particular laws belonging to ®; or their combination are
confirmed by the available evidence, whether &, is confirmed
to a higher or lower degree than ®,, etc. On the other hand,
there are questions of another kind, usually called logical
questions, whose answers are not dependent upon the result
of observations and therefore can be given before any relevant
observations are made. These questions involve L-concepts.

Examples of answers which might be given to logical questions con-

cerning two theories £, and R., as results of logical analysis (formu-
lations in our L-terminology are added in parentheses). 1. The law
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&, in R does not have any factual content but is merely analytic
(“&, is L-true”); hence it is unnecessary to look for a confirmation
of &, by the observation of facts, since &, is in accordance with all
possible facts; it follows that the simplified theory &, obtained from
81 by omitting &, asserts just as much as the original theory &, (“‘ &,
is L-equivalent to £,”). 2. The law &; in &, although it has factual
content (““@; is not L-true”’), follows from another law &; in &, (“&;
is an L-implicate of &;”"); hence the omission of &; in addition to &,
leads to a theory &, which is likewise not weaker than &, (“f,” is
also L-equivalent to £,”). 3. The laws &, and &; in f; contradict
each other, are logically incompatible with each other (“&, and &; are
L-exclusive’); hence ®: contains a contradiction, is inconsistent
(“8, is L-false”); therefore there is no purpose in looking for a con-
firmation of & by observation, because such a confirmation is impos-
sible. 4. The three theories K3, &4, and 5 constitute an exhaustive
set of competitive theories; that is to say, for merely logical reasons at
least one of them must hold (““ &3, 8, and &5 are L-disjunct with one
another”).

The above explanation of the meaning which we intend
for the L-terms, i.e. of the way in which we intend to use
these terms, is obviously rather vague. We have not said
what, exactly, we mean by ‘““logical reasons” for truth as
against factual reasons, or by “logical deduction” as against
other kinds of deduction. A precise account of the meaning
of the L-terms has to be given by definitions for them; and
the chief aim of the following discussions will be to look for
suitable ways of arriving at these definitions. The explana-
tions merely circumscribe what it is we are looking for. In
order to make this circumscription more precise we shall now
formulate some postulates. They are in agreement with our
intention with respect to the L-terms, and they will guide
our search for definitions. Not every definition compatible
with these postulates will necessarily be acceptable to us, i.e.
agree with our intention. But no definition will be accepted
unless it is in accordance with each of these postulates (with
the possible exception of P14 and 15; see below). We do not
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try to make the number of these postulates as small as possi-
ble, nor to make the set complete. This set is to serve only a
provisional purpose. We shall later (§ 20) come to a system
of general semantics using a new concept; it will be shown
that the present postulates P14-1 to 15 are all provable as
theorems in that later system on the basis of definitions
without use of postulates. And it is planned to construct in
a later volume of these studies a set of postulates for general
semantics on a still different basis of concepts which are not
available at the present stage of our discussions.

Primitive terms for the postulates:

1. ‘True’. (We make further use of the radical terms de-
fined in § 9 on the basis of ‘true’.)

2. a. ‘L-true’, b. ‘L-false’, c. ‘L-implicate’, d. ‘L-equiva-
lent’, e. ‘L-disjunct’. (Later we shall see that (a) and (d) are
definable by the other ones.)

The postulates may be divided into four groups.

1. P1 to 4 state the relation of inclusion between
L-concepts and the corresponding radical concepts.

2. Pj5 to 10 state general properties of L-concepts.

3. P11 to 13 concern relations between sentences and
sentential classes.

4. P14 and 15 state a particular property of L-truth and
L-falsity which will be discussed later.

In this postulate system, we take the sentences in S as
individuals; hence, the values of the variables ‘&,’, etc.,
are the individuals, of ‘R,’, etc., the classes of individuals,
of ‘T,’, etc., both. The L-terms are applied, as the radical
terms were earlier, both to sentences and sentential classes.
We write ‘L-true’ instead of ‘L-true in S’, and likewise with
the other semantical terms. Instead of ¢ E; is an L-implicate
of €.’ (or ‘S, L-implies T;’), we often write ‘T, T T;’.
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+P14-1. If €;is L-true, it is true.
+P14-2. If T, is L-false, it is false.
+P14-3. 1If T, © T;, then T; - ;.
P14-4. If ¢, and T; are L-disjunct (with one another),
they are disjunct.
+P14-5. L-implication is transitive (i.e. if T; T T;, and
T; T Ti, then T; T Tu).
+P14-6. If T; ¥ T; and I, is L-true, T, is L-true.
+P14-7. If T; © T; and I, is L-false, T, is L-false.
P14-8. For every &;, &; T &:..
+P14-9. T;is L-equivalent to ¢, if and only if T; T g;
and T; T T
P14-10. If T;is L-true, T; and E; are L-disjunct (with
one another).
P14-11. If &; ¢ 8, then &; T ;.
P14-12. If T; T every element of &}, then T; T &;.
P14-13. If every element of ; is L-true, &, is L-true.
+P14-14. If T; is L-true, then every T; ¥ I,.
+P14-15. If T;is L-false, then T; T every ;.

Now we shall show that these postulates are in agreement
with the previous explanations. (These considerations are
necessarily as vague as those explanations.) Pi, 2, and 4
are obvious on the basis of the explanations. Pj3 si in agree-
ment with the conception generally held that logical im-
plication (deducibility, logical entailment) is narrower than
(material) implication; P3 states nothing more than this: if
T T T; and T, is true, T; is also true. The transitivity
stated by Ps is obviously in agreement with the conception
of deducibility, no matter whether “by logical means” or
otherwise. P6 is easily seen to fulfill our intention; if some-
thing is true for logical reasons and something else follows
from it for logical reasons, then that is also true for logical
reasons. P7 is justified by an analogous remark: if by logical
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means (whatever that may be) we can show that ¥ is false
and also that T; follows from Z;, then we have shown by
the same logical means that g; is false. P8 is trivial. Pg
states, in accord with the previous explanation, that L-
equivalence is mutual L-implication. P10 is in accordance
with the explanations; if T, is true for logical reasons, then
for logical reasons at least one of ¢; and ¥; is true. P11 to
13 are simply based on our convention to regard the asser-
tion of a sentential class as the joint assertion of its sentences.
Therefore we have called ®; true if and only if all its sen-
tences are true (Dg-1). On the basis of this definition, if
R, is true any of its sentences is necessarily also true (P11).
And if every sentence of ®; follows logically from certain
premisses, then &; itself follows from these premisses (P12).
And if every sentence of f; is true for some reasons, then £;
is true for just the same reasons; if the reasons for the first
are logical (whatever that may mean), those for the second
are logical as well (P13). The status of the last postulates,
P14 and 15, is controversial. Some logicians would not ac-
cept these postulates. But they are in accordance with our
conception of L-implication. This can best be seen if we for-
mulate the explanation of our use of the term ‘L-implica-
tion’ in this way: T; T I, if and only if it is impossible for
logical reasons that E; be true and ¥; be false. Now this is
obviously the case if ¥ is true for logical reasons (P14); and
likewise if T, is false for logical reasons (P15).

Fundamentally, it is not a question of truth but a question of con-
vention whether we want to take the term ‘L-implication’ in such a
wide sense as to include the cases referred to in P14 and 150rina
narrower sense. As always in questions of this kind concerning extreme
cases, which frequently occur in logic and mathematics, the guiding
principle is the simplicity of the resulting theorems. The question here
is of the same nature as the following ones: ‘‘What shall we understand
by ‘x +0’, ‘x « 0, ‘2°’, etc.?"”, ““Shall we take the concept of sub-class
in such a wide sense as to include the cases AC F and F C V for any
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class F or not?” The latter question is not a mere analogy to our prob-
lem. Regarded from a certain point of view the question of P14 and 15
is just a special case of application of the question just mentioned; this
will be shown in § 18. Itis well known that the acceptance of the wider
concept of sub-class leads to a considerable simplification in the theory
of sets, although most beginners at first raise objections against it.
There can be no doubt that the theory of logical deduction also be-
comes much simpler if framed so as to include P14 and 15 than other-
wise, although the feelings against both, and especially against P13,
are psychologically well understandable.

The wider concept of logical implication here accepted is in agree-
ment with that of C. I. Lewis, which he took as a basis for his system
of ‘“strict implication” and defended against several objections
([Logic] pp. 174f, 248ff). (Strict implication is a relation between
propositions, while L-implication is the corresponding relation between
sentences (see § 17); this difference, however, is irrelevant for the
question discussed here.)

The following theorems are based on the postulates P1 to
15. As far as radical concepts are concerned, the proofs of
the following theorems make use also of the definitions in
§ 9 and the theorems based on these definitions (without
postulates) in § 9.

T14-1. g, is not both L-true and L-false. (From P1i,
P2, To-2.)
+T14-2. If ¥; and T, are L-equivalent, they are equiv-
alent. (From Pg, P3, Tg—20b.)
+T14-3.
a. If T; and I, are L-equivalent and &, is true,
T, is also true. (From T2 and Tg—20a.)
b. Analogously with ‘false’ instead of ‘true’.
¢. With ‘L-true’. (From Pg, P6.)
d. With ‘L-false’. (From Pg, P7.)

T14-4. For every &, &; T ®;. (From P11, P12.)
T14-5. L-implication is reflexive (i.e. for every g,
T T ). (From P8, T4.)
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+T14-6. L-equivalence is a. reflexive, b. symmetric,
c. transitive. (From Pg, Ts; Ps.)
T14-7 (lemma). &; T {&,}. (From P8, P12.)
T14-8 (lemma). {&,} 2 &;. (From P11.)
T14-9. {&,} and &; are L-equivalent. (From T7, T8,
Pg.)
T14-10. If ; C R, then &; T ®;. (From P11, P12.)
T14-11. If an element of ®; is L-false, ®; is L-false.
(From P11, P7.)
T14-12. If ®; C ®;and &, is L-true, &;is L-true. (From
T1o, P6.)
T14-13. If &, C &, and &; is L-false, ®; is L-false.
(From Tio, P7.)
+T14-14. If T; is true and T; T T;, then T, is true.
(From P14-3, Tg-10.)
T14-18. The class of the L-true individuals (i.e. sen-
tences in S) is L-true. (From P13.)
T14-19 (lemma). If &, is L-true, every element of
is L-true. (From P11, P6.)
+T14-20. R, is L-true if and only if every element of &;
is L-true. (From T1g, P13.)
T14-21 (lemma). If §; T &}, then T; T every element
of ;. (From P11, Ps.)
T14-22. T; T &; if and only if T; T every element of
®;. (From Ta21, P12.)
T14-23. If $; T f;and T; T K, then T T R + K.
(From T22.)
T14-24 (lemma). If ®; T ®;, then & T & + R
(From T4, T23.)
T14-25 (lemma). If ®; T &; and &; + ®; is L-false,
then R;is L-false. (From T24, P7.)

Theorems concerning A and V.
T14-30 (lemma). Every &; © A. (From P12.)
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T14-31 (lemma). Every ©&; ¥ A. (From T7, T30,
Ps.)
+T14-32. Every T; T A. (From T30, T31; also directly
from P12.)
+T14-33. A is L-true. (From P13; or from T18, T30,
P6.)
T14-34. If A ¥ T, T, is L-true. (From T33, P6.)
T14-40 (lemma). V T every 8;. (From Tro.)
T14-41 (lemma). V T every &;. (From Pr1.)
+T14-42. V  every ¥,;. (From Tso, T41.)
T14-43. The following conditions for a system S coin-
cide (i.e. if one is fulfilled, any other one is fulfilled):
a. Vis L-false in S.
b. There is an L-false ®; (but not necessarily an
L-false &;) in S.
c. There is an L-false T;in S.
(From Tgo, P7; T42.)

The following theorems depend upon the controversial
postulates 14 and 15.

T14-50 (lemma). If T; is L-true, then A 7 ;. (From
P14.)
+T14-51.
a. T;is L-true if and only if A © E;.
b. T;is L-true if and only if T; is L-equivalent to
A. (From Tso, T34; T32, Pg.)
T14-52. If ¥; and g, are both L-true, they are
L-equivalent to one another. (From Pg, P14.)
T14-53. If T; and T; are both L-false, they are
L-equivalent to one another. (From Pg, P1s.)
T14-54 (lemma). If T,is L-false, T; T V. (From P15.)
T14-55. If T, is L-false, T;is L-equivalent to V. (From
P9, Ts4, T42.)



§ 14. L-CONCEPTS 69

T14-56. If ®;is L-true, then 8; T &: + &;. (From Ty,
P14, T23.)

T14-57. If ; + ®;is L-false and ; is L-true, then R;is
L-false. (From Ts6, P7.)

T14-58. If T, is L-false, then ¥, is L-false if and only
if ;v ¢;. (From P7, P13.)

T14-59. If { S, ©;} T i and ©; is L-true, then &;
Zi. (From P8, P14, P12, Ps.)

If Tso is taken as postulate P14A instead of P14, and Ts4 as P15A
instead of Pi1s, then the resulting postulate set P1 to 13, 14A, 15A
yields the same theorems as Pr to 15. In the new system, P14 as
theorem can easily be proved on the basis of P14A (= Tso0), T3z, and
Ps; and likewise P15 on the basis of P15A (= Ts4), T42, and Ps.

We have taken five L-terms among the primitive terms for
the postulates. Are all of them necessary? With respect to
the corresponding radical terms we have seen (§9) that
‘false’ and ‘implicate’ ca~ be defined on the basis of ‘true’.
However, an analogous procedure is not possible for the
L-concepts in general semantics. Neither is ‘L-false’ de-
finable by ‘L-true’, nor ‘L-implicate’ by ‘L-true’ and
‘L-false’.

In the special semantics of some systems, an analogous order of
definitions is possible, but only with the additional help of some other
concepts, e.g. negation and conjunction. Let us consider a system S
of such a kind that, first, for any open sentence &;, if such occur at
allin S (e.g. ‘R(x,y)’), there is a corresponding closed sentence, desig-
nated by ‘( )&’ (e.g. ‘(x) (y)R(x,y)’); second, for any closed sentence
©; there is another sentence which is its negation, designated by
‘~@,’; and third, that for any sentential class &; there is a sentence
which is the conjunction of &, designated by ‘conj(f;)’, i.e. such that
conj(f;) is L-equivalent to £,. (The systems S; and S, in § 8 fulfill
these conditions.)

If ‘L-true in S” for sentences is given, we may lay down the follow-
ing definitions:

D14-A1. R, is L-true =ps conj(R;) is L-true.
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D14-A2. &; is L-false =p¢ ~( )&; is L-true.
D14-A3. &, is L-false =p¢ conj(&;) is L-false.
D14-A4. 8 T ©; =ps R + {~()S;} is L-false. (Compare [Syn-
tax] § 34f, definition of ‘consequence in II’.)
D14-A5. &; T &; =p( {&:} T S;.
D14-A6. ; T &; =p1 T; T’ every sentence of ;.

It is, however, easily possible to define ‘L-true’ and
‘L-equivalent’ in the following way, in accordance with
Ts1a and Pog.

D14-Bl1. T;is L-true =pt A T ..

D14-B2. ¥; is L-equivalent to T; =ps T; T T; and
T; T T
If we adopt DB1, we may omit P6, 13 and 14; if we adopt
DBz, we may omit Pg. Hence an alternative system could
take ‘L-false’, ‘L-implicate’, and ‘L-disjunct’ as primitive
L-terms and would consist of P1 to g, 7, 8, 10, 11, 12, 15,
DB1, and DB2. This system yields the same theorems as
the original.

We shall now lay down definitions for more L-concepts, on
the basis of the five concepts occurring in the postulates P1
to 15. These new L-concepts are not as important as those
five. They will, however, occasionally be applied in later
sections, especially those defined by D1, 4, and 5; and the
remarks preceding D5 have some bearing on later discussions.

+D14-1. T; is L-determinate (in S) =p; T; is either
L-true or L-false.

T14-64. If every &; in S is L-determinate, then every
T, in S is L-determinate. (From P13, T11.)

D14-2. T, is L-exclusive of T; (in §) =pr T; + I, is
L-false. (If T; or T; is a sentence &, then {&,} is to be
taken as component of the sum.)

T14-70. If T, and T, are L-exclusive (of one another),
they are exclusive. (From P2, Tg—1, Dg-6.)
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T14-71. If T, is L-false, ¥; is L-exclusive of every ..
(From T13.)

T14-72. If T; and T, are L-exclusive and T; is L-true,
then ¢, is L-false. (From D2, T57.)

T14-73 (lemma). If ; is L-exclusive of A, I; is
L-false. (From T72, T33.)

T14-74 (lemma). If g, is L-false, ¥, is L-exclusive of
A. (From D2, Tg; also from T71.)

T14-75. ¢, is L-false if and only if T; is L-exclusive of
A. (From T73 and 74.)

T14-76. If T; is L-exclusive of ¥, and T; v* T, then
¥; + T,is L-false, and hence T; is L-exclusive of ;. [Proof.
If the condition is fulfilled, T; + T is L-false (D2); hence
also T; + T + T, (Tr3); hence also T; + T; (T25).]

D14-3. ¢; is L-dependent upon ¥; (in S) =p¢ T; is
either an L-implicate of ; or L-exclusive of Z,. [Explana-
tion. If ¥; is L-depende: * upon T;, then either the truth
or the] falsity of ¥; can be logically inferred from the truth
of I,’.

T14-80. If T, is L-false, every ¥; is L-dependent upon
Z:. (From Pi13.)

T14-81. If T.is L-true and ¥, is L-dependent upon £,
then T;is L-determinate. (From P6, T72.)

T14-82. If ¢, is L-determinate, then ¥;is L-dependent
upon every T;. (From P14, T71.)

T14-83. T, is L-determinate if and only if T; is L-
dependent upon A. (From D1, Ts1, T75, D3.)

T14-84. If T; is L-dependent upon ¥, and T; T T, then
T; is L-dependent upon ;. (From D3, Ps, T76.)

D14-4. g, is L-complete (in S) =p; every sentence
©; (in S) is L-dependent upon ¥, [Explanation. If g, is
L-complete, then from its truth the truth or falsity of every
other sentence and sentential class is logically deducible;
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in other words, the assumption of ¥; decides about all ques-
tions expressible in S.]

T14-88. T; is L-complete in S if and only if every T;
(in S) is L-dependent upon ¥;. (From P12, T76, P11.)

T14-90. If T,is L-false, T;is L-complete. (From T8o.)

T14-91. V is L-complete. (From T41.)

T14-92. If T, T T; and g, is L-complete, T; is L-
complete. (From T84.)

T14-93 (lemma). If there is a T; in S which is L-true
and L-complete, then every T;in S is L-determinate. (From
T81, T88.)

T14-94. The following conditions for a system S coincide:

a. A is L-complete in S.

b. Every ;in S is L-complete.

c. Every T;in S is L-determinate.

d. Every &;in S is L-determinate.

e. There is a ¥; in S which is L-true and L-com-
plete.

(From T32, To2; T83; T33, T81; T64; To3.)

On the basis of L-implication, L-truth is definable in gen-
eral semantics (DB1) but it turns out that L-falsity is not.
The reason for this is that there is a ¥; which is L-true in
every system, namely, A; but there is no ¥; which is L-
false in every system, and there is not even in every system
an L-false ¥;. This reveals again the lack of symmetry in
the customary foundations of logic. We found it earlier with
respect to the radical concepts (see remarks before Dg-7)
and now with respect to the L-concepts. If we take ‘L-
implicate’, ‘L-true’, and ‘L-false’ as basis, then ‘L-exclu-
sive’ is definable (D2) but ‘L-disjunct’ is not and has there-
fore to be taken as primitive in the present system, although
the two concepts show some sort of analogy (compare D20—g
and 10). This fact is another symptom of the asymmetry
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mentioned. (This asymmetry will be analyzed and over-
come in [II].)

One might perhaps feel inclined to consider the following
definition, in analogy to DB1.

D14-C1. T;is L-false (in S) =p¢ ; T every sentence in
S (and hence V).

(An analogous definition has sometimes been taken for the
corresponding syntactical concept ‘C-false’; see § 29.) How-
ever, the definiens of DC1 cannot be taken as a definiens for
‘L-false’; it is rather the definiens for ‘L-comprehensive’
(Ds). The two concepts ‘L-false’ and ‘L-comprehensive’ are
closely related to one another and even coincide in most
systems (see T1o7b and examples); in the special semantics
of systems of this kind the definition DC1 would therefore
be adequate. But since there are other systems, although
not frequently used, in which there are L-comprehensive but
no L-false classes, DC1 would be inadequate with respect to
those systems and hence inadequate in general semantics.

If T; L-implies all sentences of S, and hence, so to speak,
comprehends all their contents, we shall call it L-compre-
hensive:

D14-5. T;is L-comprehensive (in S) =p; T; T every
sentence in S.

T14-100. V is L-comprehensive. (From T41.)

T14-101. If T, is L-false, T; is L-comprehensive. (From
P15.) The converse does not hold generally but only under
certain conditions; compare T1o07b.

T14-102. Each of the following conditions is a sufficient
and necessary condition for ¥; to be L-comprehensive:

a. T, V.

b. T, is L-equivalent to V.

c. T, T every R (in S).

d. T, T every g (in S).
(From T22; (a), T42; T22; (c).)
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T14-103. If T; is L-comprehensive, ¥; is L-complete.
(From Tr1o02d.)

T14-104. If T; is L-comprehensive, it is comprehensive.
(From P3, Dg—9.)

T14-105. The following conditions for S coincide:

a. Every L-comprehensive ¥, in S is L-false.
b. Vis L-false in S.

c. There is an L-false &, in S.

d. There is an L-false ;in S.

(From T1o00, T102a, P7; T43.)

T14-106. If ¢; T ¥;, and T; is L-comprehensive, then
¢; is L-comprehensive. (From Ds, Ps.)

T14-107. If S contains an L-false ¥;, the following holds:

a. Vis L-false in S.

b. ‘L-false in S’ and ‘L-comprehensive in S’ coin-
cide.

(From T105 and 101.)

The condition in T1o7 is fulfilled by most of the language
systems practically used. If (but not only if) S contains a
sign of negation, say ‘ ~’, then it contains an L-false class,
e.g. {©;, ~&,}, even if it does not contain an L-false sen-
tence. (Hence the condition is fulfilled e.g. by the systems
Ss, Si (§8), and Sy (§ 11). On the other hand, the systems
Sy and S; (§ 7), which contain atomic sentences only, fulfill
the condition of T108.)

T14-108. 1f S does not contain an L-false ®;, the following
holds:

a. No &; is L-false in S.

b. No Z; is L-false in S.

c. Vis not L-false, but L-comprehensive in S.
(From Tg, T100.)

D14-6. 9, is L-interchangeable with ¥; (in S) =p; any
closed sentence &; is L-equivalent to every sentence &; con-
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structed out of &; by either replacing %; at some place in §
by ¥; or %; by ¥;, and there is at least one pair of sentences
©; and &; of this kind.

The difference between this L-concept and the correspond-
ing radical concept (D1o-15) is this. If two expressions are
interchangeable, then the exchange of one for the other in a
closed sentence does not change its truth-value but might
change its logical content. Both remain unchanged if the
expressions are not only interchangeable but L-interchange-
able.

T14-112, If %; and ¥; are L-interchangeable, they are in-
terchangeable. (From T2.)

In many systems, ‘interchangeable’ and ‘synonymous’
coincide, and also ‘L-interchangeable’ and ‘L-synonymous’.
But, in general, the first concept in each pair is weaker than
the second. If %; and ¥; are interchangeable in .S, then their
designata have all properties in common which can be ex-
pressed (by closed sente: es) in .S but are not necessarily
identical. If they are L-interchangeable, then this is the case
for logical reasons, i.e. on the basis of the semantical rules,
but the designata may still be different. If, however, %;
and ¥, are synonymous, then their designata are identical;
therefore they have all properties in common whether ex-
pressible in S or not. And if ¥; and ¥; are, moreover, L-
synonymous, then the semantical rules show us that the
designata are identical; hence the expressions have, so to
speak, the same meaning.

D14-7. R;is L-perfect (in S) =p; for every &;, if ; T &4
then &; e R..

The defining condition means that any logical deduction
starting from any sentences of ®; leads always again to a
sentence of R;.

Tarski’s Theory of Systems (see remark on D3o-7) can also be
applied to the L-perfect classes.
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T14-116. R, is L-perfect if and only if for every &, if
®; T ®; then ®; CR;. (From D7, P11, Ps; P12.)
T14-117. The following classes are L-perfect:
a. The class of the L-true sentences (in S). (From
Dy, P13, P6.)
b. The class of the true sentences (in S). (From
Dog-1, T14.)
c. V. (From D7.)

T14-118 (lemma). For every Z;,, the class of the sentences
which are L-implicates of T; is L-perfect. (From D7, P12,
Ps.)

T14-120. If ®; and ®; are L-perfect and L-equivalent to
one another, then ®; = 8;. (From T116.)

If 9, is a class of sentential classes, ‘pr(IM;)’ designates
the product of the classes in ;. (If M, is null, then pr(M,) =
V.)

T14-121. If the classes in M; are L-perfect, then pr(M,) is
L-perfect.

Proof. Let pr(Ri) T Sk, and K; e M;. Then pr(M,) C K, hence
8: T pr(M;) (T10), hence K; T Si (Ps), hence S, ¢ K (D7). Since
this holds for every ®; in MM, S, e pr(M,). Therefore, pr(I;) is
L-perfect.

T14-122. If &; and R; are L-perfect, then &; X ®; is L-
perfect.

If ®; and R; are L-perfect, ®; + ®; is not necessarily also
L-perfect; but Lc(®; + ®;) (as defined by D23-F1) is L-
perfect (T23-F21) and is L-equivalent to &; + &; (T23-
F13). Compare remark on T30-84.

T14-123. Let M; be a class of L-perfect classes. If ®; is
an L-implicate of every class in M;, then ®; C pr(M;) and
pr(M) T K;. (From T116, T10.)

T14-124. 1f ®; is L-false and L-perfect, then &; = V.
(From P13s.)
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D14-8. S is an L-determinate system =p; every sen-
tence in S is L-determinate.

A system of this kind does not contain any factual sen-
tences (D21-1), only L-true and L-false sentences. Expressed
in terms of L-ranges (§ 18): there are only the two extreme
L-ranges (A, and V,). Many of the systems dealt with in
symbolic logic are L-determinate. Systems of this kind often
contain a large number and even an infinite number of sen-
tences; but they are, nevertheless, in a certain sense poor in
means of expression. Only two propositions (§ 17) can be
asserted or represented. For all L-true £ are L-equivalent
to one another (T52), and likewise all L-false T (T53).

T14-130. Each of the following conditions is a sufficient
and necessary condition for S to be an L-determinate system:

a. Ais L-complete in S.

b. Every T, is L-complete in S.

c. There is a . in S which is both L-true and L-
complete.

d. Every T;in S is L-determinate.

(From To4.)

The system Pr1 to 15 is far from complete. Especially with respect
to ‘L-disjunct’, hardly anything is determined. We shall mention
here three fundamental assumptions PEz to 3 concerning this concept
without trying to analyze them into simpler postulates. The concept
‘L-disjunct’ is here applied not only to two sentences or sentential
classes but to any (possibly infinite) number of sentences or sentential
classes, in the sense that for purely logical reasons at least one of them
must be true. Thus we must speak here of a class of classes M;. [The
reason why a procedure of this kind is necessary for this concept but
not for the other L-concepts is not any special nature of this concept
but rather the lack of symmetry mentioned above (see remark pre-
ceding DC1).] We will not add to the previous system Pr1 to 15 either
PE1 to 3 nor other postulates on the basis of which these could be
proved. We shall later (in § z0) construct a much simpler system of
L-concepts in which P1 to 15 and also PE1 to 3 will be provable. The
concept ‘L-disjunct’ will be used very seldom in this book. Only
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once (in the proofs for Tig-E20 and 21) shall we refer to PE2 and 3.

P14-El. If T; is L-exclusive of T; and T; is L-disjunct with Ty,
then T; 2 <.

P14-E2. Let I be a class of classes each of which contains only
two sentences which are L-disjunct and L-exclusive of one another.
Let IM; be the class of all classes which contain exactly one sentence
out of each class in M;. Then the classes in M; are L-disjunct with
one another.

P14-E3. If the sentential classes of I; are L-disjunct with one an-
other and ®; and &; are such that, for every ®; in M;, K: + &; = Sy,
then &: T’ G:.

We can easily see that these postulates are in agreement with the
previous intuitive explanations of the L-concepts. If, for logical
reasons, T; + T; is false and hence at least one of them is false and
either T; or T; is true, then, likewise for logical reasons, if T; is true,
¥; must be false and hence T must be true (PE1). If, for logical
reasons, exactly one sentence in each pairin I, is true, then there must
be a class in IN; which is true, namely the class which picks the true
sentence out of each pair (PE2). If, for logical reasons, there is a class
R, in M; which is true, and if, furthermore, for every class &; in M;,
R+ 8; T Sy, then R: + &1 T S;; that is to say, if all sentences of
R and of §; are true, then &; is also true. Since all sentences of §;
are true, it follows that, if all sentences of &; are true, &; is true

(PE3).

§ 15. L-Concepts in Special Semantics

We lay down L-rules for the system S; (§ 8) in the following
way. We decide to apply an L-term (e.g. ‘L-true in Sy’) if and
only if the corresponding radical term (e.g. ‘true in S;’) can be
shown to hold by making use of the semantical rules of S; only,
without referring to facts. This decision is in agreement with
the previous characterization of the L-concepts if the phrase
‘on the basis of logical reasons alone’ is understood as ‘on the
basis of the semantical rules of the system in question’.

So far we have discussed the L-concepts in general seman-
tics, i.e. without reference to any particular semantical sys-
tem. We will now interrupt this general discussion and turn
to special semantics. The examples studied here may furnish
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some helpful suggestions for the general analysis, to which
we shall return later.

Let us consider the semantical system S; given earlier
(§ 8) and the following examples of sentences of this system
(written here with the customary omission of parentheses):

©::‘P(a) v ~P(a)’.

©:: ‘ ~(P(a) v ~P(a)) .
S;: ‘P(a) ’.

@4 ‘P(a) v Q(b)’.

©s: ‘Q(b) v P(a)’.

€ is a famous example (principle of excluded middle) of
the kind of sentence called analytic in traditional terminol-
ogy. How can we define the term ‘L-true in S;’ in such a
way that it will be applicable to this and similar examples?
Are we to lay down primitive sentences and rules of inference
as is customary in the systems of symbolic logic? We shall
apply this method later .ithin syntax; but here it 1s not
necessary. We need no special rules in addition to those of
S; in order to show that & is true. If ‘P(a)’ is true, then,
according to rule (4¢) of S; (§ 8), ©; is true; and if ‘P(a)’ is
not true, then, according to (4b),  ~P(a)’ is true, and hence,
according to (4¢), ©, is true again. Hence &, is true in any
case, no matter what is the case with ‘P(a)’. From the
semantical rules alone it does not follow whether ‘P(a)’ is
true or not. In order to decide this question we have to ob-
serve facts. But we found that &, is true without making
use of any factual knowledge, by using merely the semantical
rules. We previously characterized L-true sentences as those
which are true on logical grounds, without, however, specify-
ing what are logical as against factual grounds. Now we see
how that characterization can be made more precise. The
logical grounds on which L-truth is based are the semantical
rules. A sentence of S; is L-frue in Ss if and only if it is true
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in Sg in such a way that its truth follows from the semantical
rules of S; alone.

In the same way it is characteristic of an L-false sentence
that it is false in such a way that its falsity can be shown by
using merely the semantical rules. We found that &, is
true in any case. Therefore, according to rule (4b), &, is not
true, and hence, according to the definition of ‘false in S;’,
is false. Therefore, we call &, L-false. Next we consider &;
and &,. On the basis of the interpretations of these sentences
previously given we see that &, follows logically from &;;
therefore we should wish to call &, an L-implicate of S;.
But we need no procedure of deduction leading from &; as
a premiss to &, as a conclusion. We merely show that, on
the basis of the rules of the system S;, if &; is true, & can-
not be other than true. In this case it is very simple to show
this, because one application of rule (4¢) is sufficient; in other
cases it would be more complicated. The result of the ap-
plication of (4¢c) in this case may also be formulated in this
way: either ©; is false or (i.e. if S; is not false but true) &,
is true; in other words &, is an implicate of &;. Generally,
@, is an L-implicate of &; in S; if the semantical rules of S;
suffice to show that &, is an implicate of &; in S;.

In the case of L-equivalence the situation is quite analogous.
When we understand the sentences &, and &; on the basis
of the rules of S;, we see that they assert the same although
we may not know whether what they assert is the case or not.
Therefore we want to call them L-equivalent. By merely
applying rule (4c) we can show that, if &, is true, ©; is true
and vice versa; in other words, that &, and &; are equivalent.
To put it in general terms, &; and &; are L-equivalent in S,
if and only if the semantical rules of S; suffice to show that
they are equivalent in S,.

The result found with respect to the system S; may be
generalized. We shall be in accordance with our original in-
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tention with respect to the L-concepts and with the essential
features of the traditional use of these concepts if we adopt
the following convention: we shall apply the concept of
L-truth to a sentence &; in a semantical system S if and
only if &; is true in S in such a way that its truth follows
from the semantical rules of S alone without the use of any
factual knowledge. And likewise we shall use an L-term cor-
responding to another radical term if and only if the semanti-
cal rules suffice to show that the radical term applies. This
convention applies not only to the L-terms mentioned be-
fore (besides ‘L-true’: ‘L-false’, ‘L-implication’, ‘L-equiv-
alence’, and ‘L-disjunct’) but also to others (‘L-exclusive’,
‘L-comprehensive’, ‘L-designation’, ‘L-fulfillment’, ‘L-de-
termination’ (of an attribute by a sentential function),
‘L-synonymous’, ‘L-universal’, ‘L-empty’, etc.).

The given characterizations of L-concepts are not defini-
tions of these concepts, but rather requirements which the
definitions to be construcied either in general or in special
semantics should fulfill. The nature of these requirements
and the problem of definitions for the L-concepts in general
semantics in accordance with the requirements will be dis-
cussed in the next section. Here we turn back to system S;;
we shall lay down definitions for L-terms with respect to S;,
hence in special semantics.

Semantical system S; (§ 8)

5. L-rules. If in a sentence &; » different atomic sentences occur as
components, then there are 2 distributions of the two truth-values
among these components. As long as we do not apply rule (4a), each
of these distributions may be regarded as a possible case. For each
of these distributions, the rules (4b) and (4c) determine a truth-value
for ©;. In the truth-table of ©;, constructed in the customary way
(see § 8), each distribution is represented by a line.

a. ©;is L-true in S; =p; S; is true by virtue of rules (4b) and (4¢)

for every distribution of the truth-values among the components;
in other words, the truth-table of &, shows ‘T’ on each line.
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b. &;is L-false in S3 =py ~&; is L-true; in other words, the truth-
table of &, shows ‘F’ on each line.

Since S contains 6 atomic sentences, a truth-table containing all of
them as arguments has 2° lines. In what now follows, by the truth-
table of a sentence ©;, we understand its truth-table with respect to
all 6 atomic sentences as arguments whether they occur in &; or not.
The truth-table of a class of sentences £ is (in accordance with Dg-1)
constructed by putting ‘T’ on just those lines on which the truth-
tables of all sentences of &; bear ‘T’.

c. Riis L-truein Sy = p; the truth-table of £; bears ‘T’ on each line.

d. R;is L-false in S; = py¢ the truth-table of &; has ‘T’ on no line.

e. T, T I;in S; =p¢ the truth-table of T; has ‘T’ on every line
on which the truth-table of I, has ‘T".

f. T;is L-equivalent to T; in Sy =p; the truth-tables of T; and T;
have ‘T’ on the same lines.

g T;is L-exclusive of T; in S3 =ps on no line of their truth-tables
do both have a ‘T’.

h. ; is L-disiunct with &; in S3 =p, on every line of their truth-
tables at least one of them hasa ‘T’.

It is easily seen that &; is L-true in S; if and only if the rules of Sy,
and, moreover, only the rules (4b) and (4c¢), suffice to show that &;
is true. Hence the given definition of ‘L-true in S;’ is in accordance
with the characterization given earlier and fulfills the requirement of
adequacy to be formulated later (§ 16). The same holds for the other
definitions of L-terms in S;. Further, it can be shown that the postu-
lates for L-concepts P14-1 to 13 are fulfilled, including the two con-
troversial ones (P14-14 and 153).

The definitions of L-concepts for the system Sy (§ 8) are perfectly
analogous, i.e. they may be formulated in exactly the same words.
The same holds for similar language systems containing only molecular
sentences and a finite number of atomic sentences logically independent
of one another, but not containing variables.
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§ 16. L-Concepts in General Semantics

Generalizing the result found in § 15 for Ss, a predicate or
concept is called adequate for L-truth if it holds for a sentence
©; if and only if the sentence of the metalanguage M saying
that & is true is L-true in M (D1). No complete solution of
the problem of defining an adequate concept of L-truth in gen-
eral semantics is given, but several ways believed to lead to
such a solution are outlined. One of these ways presupposes
M to contain logical modalities and hence to be non-exten-
sional (1a). In another one, M is split up into M, and M,
where M contains the L-semantics or the syntax of M, (1b).
In the two last cases (2a and b), M is supposed to contain the
concepts ‘descriptive’ and ‘logical’.

In our previous discussion we found a characteristic fea-
ture of the L-true sentences of a semantical system S; their
truth follows from the rules of S alone. This characterization
as it stands cannot be taken as a definition of ‘L-true in S’.
If we expand the phrase ‘the truth of &; follows from the
semantical rules of S’, we see that it does not belong to the
metalanguage M, in which the definition of ‘L-true in S’
has to be formulated, but to the metametalanguage MM,
i.e. the language in which the rules for M are formulated.
‘... follows from...alone’ means ‘... follows logically
from .. .’, or in our terminology, ‘. . . is an L-implicate of . . .".
Hence, the full formulation of the above phrase is like this:
‘“The sentence (in M) ¢®; is true in S’ is an L-implicate in
M of the rules of S”. Now, the rules of S are nothing else
than a definition of ‘true in S’; and if a definition is incor-
porated in a system (here in M), any sentence which is an
L-implicate of it is L-true in that system. Therefore we may
reformulate the above phrase in this way: ‘“The sentence
‘®; is true in S’ is L-true in M ”. This phrase, however,
speaks about M and hence belongs to MM but not to M.
Therefore it cannot be taken as a definiens for ¢ &; is L-true
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in §’. It rather expresses a requirement which must be ful-
filled for all sentences of S if the term ‘L-true in S’ is to be
in agreement with our intention and traditional use, or, as
we may say briefly, if the definition of ‘L-true in S’ is to be
accepted as adequate. Therefore we shall formulate the re-
quirement as a definition (in M M) of adequacy (in M).

D16-1. A predicate pr; in the metalanguage M of a seman-
tical system S is an adequate predicate for L-truth in S =py
if pr; is an adequate predicate for truth in S (§ 7) and %,
is a name (or a syntactical description) in M of a sentence
S of S, then pry(¥;) is true in M if and only if pr;(¥s) is
L-true in M.

If pr; fulfills this condition, we call its definition an ade-
quate definition for L-truth in S, and we call the property
designated by pr; an adequate concept of L-truth in S. The
definition D1 uses the term ‘L-true in M’ and thus presup-
poses that M has been constructed as a semantical system
and that, in addition to a definition for ‘true in M’, a defini-
tion for ‘L-true in M’ has been given in MM. In analogy
to the definition of adequacy with respect to L-truth, ade-
quacy with respect to each of the other L-concepts can be
defined.

So far we do not have a definition for ‘L-true in S’ in gen-
eral semantics but only a definition of adequacy which may
serve as a standard for the examination of any definition of
L-truth proposed either in general or in special semantics.
As far as special semantics is concerned, the task of defining
L-truth does not involve great difficulties. For each particu-
lar semantical system S we can lay down a definition for
‘L-true in S’ besides that for ‘true in S’, and likewise defini-
tions for the other L-concepts in such a way that they are
adequate. Only in general semantics do serious difficulties
arise. Here the problem is how to define L-concepts on the
basis of other semantical concepts in a general way such that



§16. L-CONCEPTS IN GENERAL SEMANTICS 8s

the application to any particular semantical system furnishes
adequate L-concepts.

There seem to be different ways of solving this prohlem.
For two of them we shall give some brief indications below;
a third one will be discussed later (in § 20). Further inves-
tigations are needed in order to find out the particular fea-
tures, advantages, and disadvantages of each of these and
possibly other ways.

Two ways (1) and (2) are here indicated, and in each of them two
alternatives (a) and (b). For each of these ways, the metalanguage M
must fulfill certain conditions.

1. M is constructed in such a way that M itself, and not only MM,
condains concepts describing logical deduction in M or in a part of M.
Then the characterization given earlier can be turned into a definition
of L-concepts in M.

1a. M is constructed as a non-extensional language (see Dio—21
and § 17) containing signs for logical modalities, e.g. ‘N’ for logical
necessity. Then the definit’ ns could be stated in the following way
(leaving aside here certain complications).

D16-Al. T;is L-true in S =p; N(T; is true in S).

D16-A2. I.’ T I,' inS =Dt N(I.-—-) L in S)

The definitions for the other L-terms are analogous. If M contains
a relation of designation for S applied also to propositions, then, in-
stead of DA1, DB1 might be taken into consideration.

D16-Bl. £, is L-true in § =p; Desg(T;, AV ~A).

Here, instead of ‘AV ~A’, any other sentence which is L-true in
M may be written. ‘Desg’ is here a modal, non-extensional term. In
order to make this method (1a) feasible, the task must first be solved
of constructing a non-extensional logic of modalities containing not
only (like Lewis’ system) the logic of propositions but, in addition, the
logic of functions up to a level higher than any level occurring in any
of the object languages to be covered by that system of general
semantics.

1b. M consists of two parts M, and M,, where M, contains the
radical terms of general semantics (‘designation’, ‘true’, etc.) and M,
contains the means of logical deduction in M, either in a syntactical
or in an L-semantical form. (Here it is necessary to split up M into
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these two parts because a language cannot contain the whole syntax
or the whole L-semantics of itself.) Thus, in M, we should define
either C-concepts (§ 28) with respect to M, or L-concepts with respect
to M. In the first case it would have to be done in such a way that the
C-concepts represent a formalization of logical deduction in M, (in
other words, that ‘C-true in M,’ is an adequate predicate for L-truth
in M,). In the second case, it would be a task of special semantics to
be solved by the means explained in § 15. Then we lay down the
definition DC1, form (a) for the first case, (b) for the second; and
analogous definitions for the other L-concepts.

D16-Cl. &; is L-true in S =p, the sentence of M, ‘S; is true in S’
is a. C-true (b. L-true) in M,. (More precisely, without the use of
quotes: There is a predicate pr; and an expression % in M, such that
the following holds: pr; is an adequate predicate for truth in S (§ 7),
A designates &; in M, (i.e., it is a syntactical description of &; in
M ,)), and the full sentence of pr; with the argument ¥, is C-true in
M,

This definition is itself in M; and hence in M. (It will have to be
examined whether an extensional language system M would do for
this method.)

2. Let us suppose that the system of general semantics formulated
in M already contains the concept ‘descriptive’, and hence also its
correlate ‘logical’. (Here it does not matter whether ‘descriptive’ is
defined on the basis of radical semantical terms, e.g. ‘designation’ and
‘true’, or is taken as an additional primitive term of the system of gen-
eral semantics; compare § 13.)

2a. We restrict ourselves to those object languages which contain,
for any descriptive constant a; occurring, a corresponding (logical)
variable v; (i.e. such that g, is a value-sign of v;; see § r1). (This re-
striction is the disadvantage of this method.)

D16-El. A sentential function ¥; is a logical sentential function cor-
responding to a sentence &; =ps ¥; is constructed out of &; by re-
placing all descriptive signs occurring in &; by corresponding (logical)
variables. (Example. &;: ‘R(a,b) V R(b,c)’; ¥;: ‘H(x,y) V H(y,2)".)

D16-E2. ©; is L-true in S =p; a (and hence any) logical sentential
function corresponding to &; is universal in § (D11-2) (in other words,
everything fulfills this sentential function).

The definitions of the other L-terms would be analogous. Let &;
be a logical sentence (i.e. a sentence not containing descriptive signs).
It follows from the definition that &; is L-true if and only if it is true,
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because a sentential function of degree zero is universal if and only if
it is fulfilled by the null sequence.

The method of basing the definition of the L-concepts on the dis-
tinction between logical and descriptive signs with the help of the
concept of the logical sentential function corresponding to a sentence
was first applied in [Syntax] § 34d, in the definition of ‘analytic in
language II’, rule DA 1Cb. This definition represents a formaliza-
tion of the concept of L-truth in the special syntax of a particular
language system. Tarski [Folgerung] has utilized this method for
definitions of L-concepts in general semantics; the definitions Ex and
2 above show the essential features of his procedure. This change of
the definition from a syntactical to a semantical one is an essential
improvement. In semantics we can say ‘“for every object . ..”, but
in syntax only ‘““for every descriptive sign”’; the latter formulation is
often not adequate because not all values of the variables in S are
necessarily designated by signs in S. Tarski expresses, however, some
doubt whether the distinction between logical and descriptive signs
and hence also between L- and F-truth is objective or perhaps more or
less arbitrary.

The formulations given here show only the chief features of the
definitions. The actual defu.tions will be more complicated because
of the fact that logical relations may hold between the designata of
the descriptive signs. [Suppose e.g. that the rules of designation state
that ‘a’ designates Chicago and ‘b’ also designates Chicago. Then
the sentence ‘a = b’ should be regarded as L-true because its truth can
be established by the use of the semantical rules alone. But the
sentential function ‘x = ' is obviously not universal. Suppose,
further, that the rules state that ‘Q’ designates horse and ‘P’ desig-
nates white horse; then ‘(x)(P(x) D Q(x))’ should be regarded as
L-true although “(x) (F(x) D G(x))’ is not universal. ]

2b. The restriction involved in method 2a can be avoided with the
help of the concept of the logical attribute determined by a sentence. In
special semantics, this concept is to be defined by a recursive definition
analogous to the definition of ‘ the attribute determined by a sentential
function’ (§ 11), but making use of the term ‘descriptive’ also. In
general semantics that concept could be taken as primitive, in addi-
tion to designation with respect to descriptive signs. On this basis,
truth and L-truth could be defined in about the following way.

D16-F1. ©; is true =p¢ the logical attribute determined by &;
holds for the sequence of the designata of the descriptive signs of &..
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D16-F2. ©; is L-true =p; the logical attribute determined by &;
is universal.

Examples. W, is the logical attribute determined by the sentence
©:; likewise W, for ©,.  &y: ‘(x)R(x,a)’, Wa: (\y, H) [(F2)H(2,9)];
©,: ‘P(a) V ~P(a)’, Wa: (Ax,F)(F(x) V ~F(x)). W, is universal,
W, is not; therefore &, is L-true, &, is not.

It was remarked earlier (at the end of § 12) that the radical
semantical relations, e.g. synonymity and equivalence, can
also be applied as holding between members in different
semantical systems. The same holds for L-relations, e.g.
L-implication and L-equivalence. A definition for an L-rela-
tion used in this wider way is adequate if it holds in just
those cases where the sentence of M which says that the cor-
responding radical concept holds follows from the rules of
the two systems and hence is L-true in M. Thus e.g. we may
find that we can show by merely referring to the rules of S,,
and S, that T;in S,, is equivalent to &;in S, (D12-C); then
T, in S,, is L-equivalent to T; in S,.

§ 17. Correspondence between Semantical and Abso-
lute Concepts :
We decide to apply some radical terms (e.g. ‘true’) not only
to expressions (e.g. ‘the sentence ‘P(a)’ is true in S’) but also
to the designata of those expressions (e.g. ‘the proposition P(a)
is true’). In the second case, no reference to a language system
is made; the concept is not a semantical but an absolute concept.
An analogous procedure is carried out for L-terms. A non-
extensional metalanguage is needed for this purpose. Modali-
ties, including Lewis’ concept of strict implication, are absolute
L-concepts, applied to propositions, not to sentences.

All semantical concepts are based on relations between
expressions of a language system S and entities in the realm
of designata of expressions of S. Some semantical concepts
are themselves relations of this kind, e.g. designation (§§ 7
and 12), determination of an attribute by a sentential func-
tion (§ 11), fulfillment of a sentential function by a sequence
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of entities (D11-1). Semantical concepts of a second kind,
although based on relations of the kind just mentioned, are
themselves attributed only to expressions, not to designata,
e.g. truth and the other radical concepts defined by it, and
the corresponding L-concepts. Now, for any semantical
concept M of this kind of degree # there is a corresponding
concept M, of degree n such that, whenever M, holds for n
expressions, then M, holds for the designata of these expres-
sions. (Here the wider use of the concept of designatum is
applied, as explained in § 12.) M, is not a semantical concept,
although related to a semantical concept. M, belongs to the
non-semiotical part of the metalanguage (or to the object
language). In contradistinction to the concepts in any of
the fields of semiotic, M, is not dependent upon language.
Therefore, we call M, the absolute concept corresponding
to the semantical concept M.. It seems convenient to use
the same term for the corresponding absolute concept as for
the semantical concept. r, rather, the same word; the terms
are nevertheless different because the semantical term con-
tains a reference to a semantical system (e.g. ‘equivalent in
S’) while the absolute term (‘equivalent’) does not. Hence
there is no ambiguity in the double use of the words, at least
not in full formulations. [Example. If two sentences ‘A’
and ‘B’ are equivalent in S, we shall say that their designata,
i.e. the propositions A and B, are equivalent (not with respect
to any system, but absolutely).] This consideration leads
to the following convention.

Convention 17-1. A term used for a radical semantical
property of expressions will be applied in an absolute way
(i.e. without reference to a language system) to an entity »
if and only if every expression %; which designates « in any
semantical system S has that semantical property in S.
Analogously with a semantical relation between two or more
expressions.
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The transference of semantical terms to the corresponding
absolute concepts can be carried out quite easily as far as
radical semantical concepts are concerned. The convention
is not itself a definition for the absolute terms in question; it
merely states under what conditions we will accept such
definitions. Hence it is of a similar nature to the require-
ments of adequacy for definitions of semantical terms as
discussed previously (§§ 7 and 16). To give an example, the
definition of ‘true proposition’ must be such that the follow-
ing theorem is provable on its basis:

T17-A. (A proposition) p is true if and only if the follow-
ing holds: for every S and every &;, if &; designates p in S,
then &; is true in S.

The following definition would obviously fulfill this re-
quirement:

D17-B. pistrue =p¢for every S and every &;, if &; desig-
nates p in S, then &; is true in S.

Since, however, the absolute concepts do not belong to
semantics, their definitions need not take the roundabout
way through semantics that DB does. They can be stated
in a straightforward and rather simple way (see D1 instead
of DB). We shall first give definitions for those absolute
concepts which apply to propositions while the correspond-
ing semantical concepts apply to sentences. These absolute
terms are merely different formulations for the sentential
connectives (e.g. ‘false’ for ‘~’), convenient because of
their analogy to semantical terms. In the following we use
the ordinary connectives (see § 6). For terminological re-
marks concerning the semantical and the absolute uses of
the same terms, see § 37, Radical Terms (2); for the term
‘true’, see § 37, ‘True’ (2).

D17-1. (A proposition) p is true =p; p.

D17-2. p is false =ps ~ p.

D17-3. g is an implicate of p =psp Dg.
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D17-4. p is equivalenttog =ps p =g¢.
D17-5. p is disjunct with ¢ =ps p Vg.
D17-6. p is exclusive of ¢ =p; ~ (p « ¢).

With respect to the absolute use of the terms ‘universal’,
‘empty’, ‘equivalent’, ‘symmetric’, etc., the definitions
given earlier (D1o-1 to 7) are in accordance with Conven-
tion 1. For these terms, we defined the absolute use first,
and then took it as a basis for the definition of their use for
semantical concepts (D1o-10 to 12).

The same method could also be applied to the terms ‘true’,
etc. Ir this case, we first define the absolute use of these
terms by D1 to 6, and then define their semantical use with
the help either of the absolute terms or of their definientia
(as in DC1 and 2). Two examples may be given:

D17-C1. ©;istruein S =p;thereis a (proposition) p such
that &; designates p in S, and p.

D17-C2. ;isfalsein § =p;thereis a p such that &, desig-
nates p in S, and ~ ».

In order to apply these definitions, S must contain rules
of designation in the wider sense, including propositions, as
explained in § 12. DCr is the same as D12-1.

In the case of the term ‘synonymous’ it seems advisable not to ap-
ply Convention 1. The corresponding absolute concept is identity.
It would seem strange to use the word ‘synonymous’ for this concept
(e.g. “The morning star and the evening star are synonymous”); it
seems natural to use instead ‘identical’ or ‘the same’.

We apply Convention 1 also for the absolute use of L-terms
(and F-terms, § 21). Thus a proposition p will be called
L-true if and only if every sentence designating p in some
system S is L-true in S. However, these absolute L-concepts
are non-extensional (i.e. not truth-functions, see D1o-20).
[Example. According to the convention, we shall not only
say, “The sentence ‘P(a) v ~ P(a)’ is L-true in S,”, but also,
‘“The proposition that P(a) v ~ P(a) is L-true”. But if in
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this latter sentence we replace the sentence ‘P(a) v ~ P(a)’
by the equivalent (Dg—4) sentence ‘P(a)’, the whole state-
ment becomes false.] Hence, for the absolute use of the
L-terms, we need a non-extensional language (D10—21), and,
more specifically, a system of logical modalities. We shall
not enter here into a detailed investigation of modalities and
of non-extensional language-systems in general; a discussion
of these problems is planned for a later volume of these studies.
Here we shall only briefly outline the use of absolute L-con-
cepts. These concepts will be used in the next section, but
will seldom be referred to in the remainder of this book. In
general, in this book, we have tried to frame definitions and
theorems in a neutral way, so as not to require the language
used — especially the metalanguage used for semantics and
syntax — either to be non-extensional or to be extensional.
Absolute L-concepts apply to propositions, not merely to
truth-values. We construe propositions in such a way that
L-equivalent sentences designate the same proposition.
Hence, the absolute concept of L-equivalence is the same as
identity among propositions (D13). [Example. The sen-
tences &, and &; in S3 (see § 15) are not identical but L-
equivalent; therefore we say that the proposition that Chi-
cago is large or New York is large is identical with (i.e. is the
same proposition as) the proposition that New York is large
or Chicago is large.] For the sake of brevity, we supplement
the word-language in the following by the customary connec-
tives and by variables, especially propositional variables ‘2°,
‘q’, etc., and variables for properties (or classes) of proposi-
tions ‘F’, ‘G’ etc. These variables are used also in operators;
‘(p)’ is short for ‘for every proposition p’, ‘ (dp)’ is short for
‘there is a proposition p such that’. We shall speak of the
disjunction of (the propositions of) a class F even if F is
infinite. This disjunction is the proposition that at least one
of the propositions of F is true; it is symbolized by ‘dj(F)’
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(D20). Analogously, the conjunction of F, symbolized by
‘cj(F)’, is the proposition that every proposition of F is true.

As an example, take an infinite realm of individuals a,, a,, etc. The
proposition (dx)P(x) is the disjunction of the infinitely many proposi-
tions P(a,), P(as), etc. Likewise, the proposition (x)P(x) is the con-
junction of the same propositions. It is to be noticed that we are not
speaking of infinite disjunctions or conjunctions of sentences. This is
sometimes done but seems hardly admissible (if, as is customary, the
language in question is restricted to expressions of finite length).
There seems, however, no objection against infinite disjunctions and
conjunctions of propositions once infinite classes of propositions are
admitted.

The absolute terms ‘L-true’ and ‘L-false’ mean the same
as the customary terms ‘necessary’ and ‘impossible’ in sys-
tems of modalities. The absolute term ‘L-implication’, for
which we use here the same symbol ‘ T as for the semantical
term, means the same as ‘strict implication’ in Lewis’ sys-
tem. For the following definitions, we presuppose the abso-
lute term ‘L-true’. In a modal logic, suitable rules would
have to be laid down for this term. We shall not construct
them here. With respect to the formulation of the following
definitions, the difference between ‘‘ the sentence ©; is L-true
in S” and “the proposition p is L-true” should be kept in
mind. Because of the analogy between the absolute and the
semantical L-terms, if T; designates p in S, then p is L-true
if and only if €, is L-true in S; and analogously for the other
L-terms. Therefore, theorems analogous to the postulates
and theorems in § 14 hold here. There are, however, two
points of difference which make the present theory simpler
. than L-semantics. First, there are no different L-equivalent
propositions; hence there is only one L-true and only one
L-false proposition. Second, negation, disjunction, and con-
junction of given propositions always exist, while the ana-
logue for sentences or sentential classes does not generally
hold.
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D17-10. p is L-false =p; ~ p is L-true.

D17-11. pis L-determinate =p; p is L-true or L-false.

D17-12. p L-implies ¢ (p T ¢) =p: p D¢ is L-true.

D17-13. p is identical with ¢ (p is L-equivalent to ¢;
p =q) =ptp = qis L-true.

D17-14. p is L-exclusive of ¢ =p; ~ (p.q) is L-true
(hence p . ¢ is L-false, hence p T ~q¢).

D17-15. p is L-disjunct with ¢ =ps p V¢ is L-true.

D17-16. g is L-dependent upon p =p; either p T’ ¢ or
P T ~q.

D17-17. p is L-complete with respect to the class F of
propositions =p¢ every proposition of F is L-dependent
upon p.

D17-20. The disjunction of the class F of propositions
(dj(F)) = o« (the proposition that) (dg)(F(g) « g).

D17-21. The conjunction of the class F of propositions
(ci(F)) =op« (the proposition that) (g) (F(g) D g).

T17-5. If p T gand ¢ T p, then p = q.

T17-8. If p e F, then p v dj(F).

T17-9. If F and G are classes of propositions and F C G,
then dj(F) T dj(G).

T17-11. If F is the null class, dj(F) is L-false.

T17-12. If every proposition in F L-implies g, then
dj(F) T q.

The application of C-terms (to be introduced later, in § 28) to desig-
nata is also possible but perhaps not very useful because they would not
become absolute but would even depend upon two language systems,
a semantical and a syntactical one. Example:

D17-F. A property F is C-universal with respect to a calculus K and
a semantical system S =p; there is a sentence &; which is C-true in K
and true in S and which designates in .S the proposition that every
individual has the property F.

It might be possible to make the concept dependent upon a calculus
only, perhaps in the following way.

D17-G. F is C-universal in K = pq there is a sentence &; such that
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©; is C-true in K and that for every true interpretation (D33-2) S of
K, & designates in S the proposition that every individual has the
property F.

But it seems impossible to avoid the reference to a calculus and
thereby come to an absolute C-concept.

§ 18. L-Range

A possible state of affairs of all objects dealt with in a system
S with respect to all properties and relations dealt with in § is
called an L-state with respect to S. A sentence or sentential
class designating an L-state is called a state-description. A given
L-state leaves no question in S open; every sentence in § either
admits or excludes that L-state. The class of the L-states ad-
mitted by &, is called the L-range of &; (Lr&;). Two postulates
for L-ranges are laid down (P1 and 2). L-states are proposi-
tions. Therefore, with the help of some absolute concepts de-
fined in § 17, some concepts of a general theory of propositions
are here defined (D1 to 5). With their help, three procedures
A, B, and C are explained for defining concepts of L-state and
L-range in such a way that the postulates P1 and 2 are ful-
filled. For this purp(se, a non-extensional metalanguage is
used. The procedure A deals with a system containing only
molecular sentences on the basis of a finite number of atomic
sentences (Sq, § 8). Here the L-states correspond to the lines
in the truth-table for the atomic sentences. The procedure B
applies to semantical systems in general. It is shown that if §
contains negation, every L-state is designated by a state-de-
scription (TB43). The procedure C is based on the concept of
atomic proposition.

A semantical system will, in general, contain not only true
but also false sentences. If a false sentence is not L-false,
hence not self-contradictory, it describes a situation which
is possible though not real. Let us compare the following
sentences: ‘“My pencil is blue” (&), ‘“My pencil is blue or
red” (&), “My pencil is blue or green” (&;). None of
them specifies precisely the color of my pencil; each admits
a plurality of colors as possible. Even ©; still admits all
the various shades of blue. But the range of possible colors
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admitted by & is narrower than those admitted by &, and
by &;; &, is therefore more precise. Between &, and &3,
there is no simple way of comparing preciseness. Their
ranges overlap, but none of them is contained in the other.

The concept of the range of possible cases admitted by a
sentence is only vaguely indicated by the foregoing explana-
tion. We shall try several ways of making it more exact in
subsequent discussions. We shall use for it the term ‘L-
range’ because it turns out to be an L-concept. Whenever
we understand a sentence we know what possibilities it
admits. The semantical rules determine under what condi-
tions the sentence is true; and that is just the same as
determining what possible cases are admitted by it. There-
fore, the L-range of a sentence is known if we understand it
— in other words, if the semantical rules are given; factual
knowledge is not required. Thus, in the above example, we
found certain relations between the L-ranges without know-
ing which color the pencil really had. Like the other seman-
tical concepts, the concept L-range will be applied to
sentential classes as well as to sentences. As an abbreviation
for ‘the L-range of T,;in S’, we write ‘Lr;T;’ or, briefly,
‘LrZ;’. Later we shall introduce a corresponding syntactical
concept under the term ‘C-range’ (§ 32).

The sentence & is true if my pencil has one of the blue
or one of the red colors. Generally speaking, a sentence
&, is true if and only if one of the possible states of affairs
in Lr&; is the real one.

The concept of L-range is useful for various purposes. It
may be taken as basis for the whole of L-semantics; all the
L-concepts which we have taken as primitive or defined in
§ 14 can be defined with its help. This procedure will be
shown in § 20 and practically applied in [II}. The concept
is also useful in the logical analysis of science in order to
characterize sentences and theories with respect to what
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they say and what they leave undetermined. Furthermore,
the concept of L-range may be taken as a basis for a theory
of probability (Wittgenstein, Waismann) or of the degree of
confirmation.

We shall now lay down two postulates for the concept of
L-range, which seem to be in accordance with the above
intuitive explanations. When we later discuss different ways
of defining a concept of L-range, we shall show that each of
them fulfills these postulates. The following considerations
leading to the postulates start from the concept vaguely ex-
plained above and hence are necessarily likewise vague. They
are to give merely the practical motivation for the choice of
the two postulates.

1. Suppose that ¥; > T;. Then every possibility ad-
mitted by T; must also be admitted by T;; hence, LrZ;
must be a sub-class of LrZ;. For, if a possibility is admitted
by &; but not by ¥;, then, in case this possibility were real,
¢; would be true and ¥; false. Since, however, ¥; T T;,
this cannot occur in any possible case. This suggests P1.

2. Suppose that LrE; C LrZ;. Then we know, merely on
the basis of the semantical rules, that every possibility ad-
mitted by T, is admitted by ;. If, now, T; were true, one
of the possibilities admitted by T; would be real; since this
same possibility is also admitted by T;, T; would likewise be
true. Thus we know, merely on the basis of the semantical
rules, that, if ¥; is true, T; is also true. Hence &; T Z;.
This leads to P2.

Postulates for L-range

+P18-1. If T, 2 T; (in S), then Lr¥T; CLrg,.

+P18-2. If LrT; C Lrg; (in S), then ; T T;.

The following theorems T1 to 9 are based on these two
postulates in addition to the earlier postulates, definitions,
and theorems concerning L-concepts (§ 14). L-equivalence
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coincides with identity of L-ranges (T2). The L-range of V
is the maximum L-range, in which every other L-range is
contained (Ts). It is that of all the L-true €, and only these
(T7). The L-range of V is the minimum L-range, which is
contained in every other L-range (T6). It is the L-range of
all the L-comprehensive T, and only these (T8), and of all
the L-false €, and only these, if there are any such (Tg).

T18-1. LrE; C Lr¥; (in S) if and only if T, ¥ I;.
(From Pr and 2.)

+T18-2. Lr¥; = Lrg; (in S) if and only if ¥, and F; are

L-equivalent. (From Tr, P14-9.)

T18-5. For every E; (in S), LrZT; C LrA. (From Ti4-
32,P1.)

T18-6. For every ; (in S), LtV C Lr¥;. (From Ti4-
42, P1.)

T18-7. LrZ; = LrA (in S) if and only if T, is L-true.
(From T2, T14-51b.)

T18-8. Lr¥; = LrV if and only if ¢, is L-comprehen-
sive. (From Ti4-102b, T2.)

T18-9. If S contains an L-false T;, then, for every T,
Lrg; = LrV if and only if E; is L-false. (From T8, Ti4-
107b.)

We shall later explain several ways of defining concepts
which may be taken as concepts of L-range and which fulfill
the postulates P1 and 2. The ways discussed in this section
(A, B, and C) take L-ranges as classes of propositions. In
preparation for them we shall now introduce some concepts
based both on the absolute concepts concerning propositions
explained in § 17 and on semantical concepts, and hence re-
quiring a reference to a semantical system S. The meta-
language M, in which we speak about S and propositions and
L-ranges with respect to S, must be non-extensional as ex-
plained in § 17. We shall also give some theorems. They
presuppose general theorems concerning propositions which
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are listed neither here nor in § 17 and could be fully developed
only in an elaborate non-extensional system of propositions
(logic of modalities) as indicated in § 17; many of the theo-
rems used but not stated here are analogues to theorems in
§ 14 concerning semantical L-concepts.

We say that p is based upon a class F of propositions
(pebas(F), D18-1), if p can be obtained by starting from prop-
ositions in F and applying the operations of negation and
disjunction (also to an infinite class of propositions, D17-20)
any finite number of times.

+D18-1. bas(F) (the class of the propositions based
upon F) =p the product of all classes G such that FCG and
G is closed with respect to negation and disjunction (i.e. if
q €G, then (~¢) €G, and if H C G, then dj(H) ¢G).

T18-15. For every F, bas(F) is closed with respect to
negation, disjunction, and conjunction.

T18-16. For every F, bas(bas(F)) C bas(F).

T18-17. If pe bas(F), then p is a disjunction of conjunc-
tions of propositions in F and their negations.

This theorem is analogous to the known theorem of the disjunctive
normal form for molecular sentences (see e.g. Hilbert and Ackermann,
Logik). It can be proved by induction with respect to the rumber of

times the operations of negation and disjunction are applied; this
number is finite, although the classes involved may be infinite.

T18-18. If a proposition is L-complete with respect to #
(D17-17), it is also L-complete with respect to bas(F); and
vice versa.

Proof. Let p be L-complete with respect to F. Then every proposi-
tion in F is L-dependent upon p. If ¢ is L-dependent upon p, ~q is
likewise; if every proposition in G is L-dependent upon p, then dj(G)
is likewise. It follows by induction that every proposition based upon
F is L-dependent upon p. Hence p is L-complete with respect to bas(F).

We say that p is designated in S (p € des(S), D2) if p is
designated by a sentence (not only by a sentential class) in S.
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D18-2. des(S) (the class of the propositions designated
in S) =p, the class of the propositions designated by sen-
tences in S.

D18-3. p is L-complete with respect to the semanti-
cal system S =p¢ p is L-complete (D17-17) with respect to
des(S).

T18-19. Each of the following conditions is sufficient and
necessary for p to be L-complete with respect to S.

a. p is L-complete with respect to bas(des(S)).
(From T18.)

b. For every ¢ in des(S), either p T gor p T ~q.

c. For every g designated by a T;in S, either p T ¢
or p © ~q. (From (b).)

d. For every ¢ in bas(des(S)), either » T g or
p T ~¢. (From (a).)

The realm of those propositions, in connection with a
system S, which we take into consideration in the following
discussions (including A and B) is bas(des(S)). It compre-
hends all propositions obtainable from those designated in S
by applying any of the ordinary connections (T15). (Later,
in C, we shall consider a still wider realm.)

D18-4. F is a selection class of propositions with re-
spect to S =p¢ F is a class of propositions containing for
every p in bas(des(S) ) either $ or ~p but not both and no
other propositions.

D18-5. p is a selection proposition with respect to
S =ps p is the conjunction of a selection class of propositions
with respect to S.

T18-20. Every selection proposition with respect to S is
L-complete with respect to S.

T18-22. If F is the class of all selection propositions with
respect to S, then dj(F) is L-true.

T18-24. If p e bas(des(S)) and is not L-false, there is at
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least one selection proposition ¢ such that ¢ is not L-false and

gTp.

Proof. Let d be the disjunction of all selection propositions. Then
d is L-true (T22). Hence p «d = p; hence p « d is not L-false. For
every selection proposition 7, consider the conjunction p «7. These
conjunctions cannot all be L-false because otherwise their disjunction
would be L-false; this disjunctivn, however, is p « d and hence not
L-false. Therefore, there is a selection proposition ¢ such that p « g is
not L-false. Hence, ¢ is not L-false and does not L-imply ~. There-
fore, since ¢ is L-complete with respect to .S (Tz20), ¢ T 2.

Now we are going to outline several procedures for defining
L-ranges as classes of propositions in a non-extensional
metalanguage. Since, however, the nature of propositions
and of non-extensional concepts is still controversial and some
logicians even reject non-extensional language systems, we
shall, in the next section, explain concepts which are in a
certain way analogous to the concepts of L-state and L-range
as here explained and which, therefore, may be taken as
substitutes for them, although they are definable in an
extensional metalanguage.

A. Systems with molecular sentences only

In the example at the beginning of this section, we spoke
of possible cases admitted by a sentence. We considered the
possible cases with respect to one object only, viz. my pencil.
But, in general, a system S has to do with many objects, and
hence we have to consider the possible states of affairs of all
the objects dealt with in § and with respect to all properties,
relations, etc., dealt with in S, while in the earlier example we
considered only colors. For brevity, we shall use the term
‘L-state’ for these possible states of affairs with respect to a
system S. Then Lr&; (i.e. the L-range of the sentence &)
will be a class of certain L-states; roughly speaking, the class
of the L-states admitted by ©;. The linguistic expression
for an L-state, as the earlier example shows, is a sentence or
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a sentential class; we shall call it later a state-description.
Therefore, L-states are propositions of a certain kind. Hence
the need of concepts concerning propositions and of a non-
extensional metalanguage, as explained previously, for the
discussion of L-states and L-ranges.

As an example for the application of the concepts to be
introduced, let us consider the system S, (§ 8). S; contains
two predicates ‘P’ and ‘Q’ designating the properties of
being large and of having a harbor respectively, and three
individual constants ‘a’, ‘b’, and ‘c’ designating Chicago,
New York, and Carmel respectively; S, contains further the
customary (extensional) connectives. Thus, Sy possesses six
atomic sentences. Let us construct their truth-table (§ 8)
as shown (partly) in the subsequent diagram.

‘P(a)’  ‘P()’ ‘P(c)’ ‘Q@@’ Qb Q¥

L3

recoppy
e s HHaY
A

e s ome s A
s mEEEA

e s e s WM S
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'ﬂt-’_]-
Dﬂat‘_iu

goo

Each line of the table represents one of the possible dis-
tributions of the two truth-values among the six atomic
sentences. Hence, there are 64 (=2°) lines. Each line corre-
sponds to one of the possible states of affairs of the three
objects with respect to the two properties involved; this is
what we call an L-state with respect to S,. We designate
them with ‘s’ ‘s,’, ... ‘se’. A class of six sentences, con-
taining for each atomic sentence &; either &; itself or ~&;
but not both, is called an afomic sentential selection in S,
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(DA1). Itis easily seen that there are 64 atomic sentential
selections in Sy, and that each of them is a state-description.
The state-description &, for any state s, (» = 1 to 64) is
that atomic sentential selection which contains those atomic
sentences which have the value T for s,, and the negations
of those which have F. Hcre, since the number of atomic
sentences in S, is finite and S, possesses a sign of conjunc-
tion, there is even a sentence &, as a state-description for
any sr, namely the conjunction of the sentences of &r. Thus,
for instance, &,, is the sentence ‘P(a)«P(b)«~P(c)+Q(a)
«Q(b)e~Q(c)’; it is a state-description for s;0. For any two
conjunctions &, and &, of the kind described, for different
L-states s, and s,, there is at least one atomic sentence &;
such that &, occurs in the one and ~&; in the other; hence
&, and &, are L-exclusive (TA1d, TA2d). Exactly one of
the 64 state-descriptions &, must be true; hence the dis-
junction of those 64 coniunctions is L-true (this leads to
TA11). Which of the state-descriptions is the true one can-
not be determined by logical analysis alone. Factual knowl-
edge, based on geographical observations, is required. These
observations show that Chicago and New York are both
large and provided with harbors, while Carmel is neither.
Thus, of the atomic sentences as listed in the table, the third
and the sixth are false, the others true. Hence, the conjunc-
tion ©,, mentioned above is true; all the others are false.
Therefore we call s, the real L-state (DA8); the other
L-states, although possible, are not real; their state-descrip-
tions are false.

If a sentence &, in S, is given, then, without knowledge of
the relevant facts, we cannot know whether & is true or not,
except in the case that &; is L-determinate. Nevertheless,
we can know, for any L-state s, (r = 1 to 64), whether or
not &; would be true within this L-state; that is to say,
whether or not &; would be true if s, were the real L-state.
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For, the semantical rules for the connectives suffice to de-
termine in the customary way the truth-value of any molec-
ular sentence for any line of the truth-table. Thus, for
instance, ‘P(a) .P(b) .P(c) .Q(a)’ is true within the first four
L-states s; to s, and false within the others. Now we take
as L-range of &; the class of those L-states which make &;
true; in other words, those which L-imply the proposition
designated by &; (DA6). Thus, for every sentence, we can
find its L-range with the help of the semantical rules alone
without referring to facts. Hence, the concepts of L-state
and L-range are both L-concepts; that is the reason why we
form their terms with the prefix ‘L’.

Every sentence in S, is a molecular sentence constructed
out of certain atomic sentences which are logically com-
pletely independent of each other. Therefore, on the basis
of well-known theorems for the ordinary (extensional)
propositional connections, the following holds for S,. Let
&, (r = 1 to 64) again be the state-description in conjunc-
tive form for s,, as described above. For every not L-false
sentence ©; in S, there is exactly one (non-null) class ®; of
certain of these conjunctions &, such that the disjunction
®; of the sentences of ; is L-equivalent to &; (this leads to
TA10). (D;is the so-called complete disjunctive normal form
for &;; for the procedure of its construction see, for instance,
Hilbert-Bernays, Grundlagen der Mathematik, 1, 57.) ©, ¢ &
if and only if &, © &;. Hence, Lr&; is the class of the
propositions designated by the sentences of ;. If not &,
eR;, S, T ~©;. Hence, for any sentence &; in S,, either
S, T &; or & T ~©;; hence, &, is L-complete with re-
spect to S, (TA1c, TAz2c, TAzc). Let &; and &; be any sen-
tences in Sy, and ®; and f; the classes corresponding to them
as described. Then &; T ©; if and only if &; C &;, hence if
and only if Lr&; C Lr&; (TAs). Thus the concept of L-range
here defined (DAG6) fulfills the postulates P1 and 2. On the
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basis of these considerations, we lay down the following
definitions. We add some theorems, based on these defini-
tions and on the earlier definitions and theorems in this sec-
tion and in § 17 (absolute concepts) and § 14 (L-concepts,
based on postulates P14-1 to 15) and on the known theorems
of propositional logic referred to above. The following defini-
tions and theorems concern the system S,; but they can be
laid down in the same way for any semantical system con-
taining only molecular sentences. [If the atomic sentences
of a system do not possess complete logical independence —
in other words, if some atomic sentential selections are
L-false — then some slight modifications are required; for
instance, DA2 and 3 must be restricted to not L-false
selections.]

D18-Al. R, is an atomic sentential selection in Sy =p¢ R
contains, for every atomic sentence &; in S,, either &; or
~&; but not both, and no other sentences.

D18-A2. ;is (an L-s:.te-description or briefly) a state-
description in Sy =p¢ T; is L-equivalent to an atomic senten-
tial selection in S,.

D18-A3. s, is an L-state with respect to Sy =p¢ s, is a
proposition designated by an atomic sentential selection in
S«. (Hence every state-description designates an L-state.)

D18-A6. LrgZ; (the L-range of T; with respect to Sy) =py
the class of the L-states which L-imply the proposition
designated by .

D18-A8. rs (the real L-state with respect to S,) =ps the
¢ such that p is an L-state and true.

D18-A9. V, (the universal L-range with respect to S,)
=p¢ the class of all (64) L-states with respect to S,.

D18-A10. A, (the null L-range with respect to S,) =py
the null class (of L-states with respect to S,).

The L-ranges V, and A, must not be confused with the
sentential classes V and A.
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T18-A1. For any atomic sentential selections ®; and ®;
(in S,) the following holds.
a. f;is not L-true.
b. R;is not L-false.
c. ®;is L-complete.
d. If ®; and ®; are different, they are L-exclusive.

T18-A2. For any state-descriptions ¥; and T; (in S,)
the following holds.
a. T;1is not L-true.
b. T;is not L-false.
c. Z;is L-complete.
d. €, and g; are either L-equivalent or L-exclusive.
(From TA1.)

T18-A3. For any L-states p and g (with respect to Sy)
the following holds.
a. p is not L-true.
b. p is not L-false.
c. p is L-complete (with respect to Sy).
d. If p and ¢ are different, they are L-exclusive.

T18-A5. T; T ; (in S,) if and only if Lrg; C Lrg;.

Thus the postulates P1 and 2 are fulfilled. Hence the
theorems based on those postulates hold here too.

T18-A7. g;is true (in S,) if and only if rs e LrZ..

- T18-A8. T;is L-true (in S,) if and only if Lr%; = V,.
T18-A9. T;is L-false (in S,) if and only if LrE; = A,.
T18-A10. If T, designates p (in Sy), then dj(LrZ;) = ».
T18-A11, dj(V,) is L-true.

T18-A14. Lr(~&;) =V, — Lr&..

T18-A15. Lr(®;.©;) = Lr&; X Lre;.

T18-A16. Lr(S; v @,) = Lr&; + Lr&;.

T18-A17. LrQ; is the product of the L-ranges of the sen-
tences of ;.

T18-A18. Lr(®; + &) = Lr®; X Lrg;.
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Wittgenstein uses the concept of the range of a proposition for in-
formal, intuitive explanations; he shows that L-truth (tautology),
L-falsity (contradiction), and L-implication are determined by the
ranges. ‘“The truth-conditions determine the range which is leit to
the facts by the proposition. Tautology leaves to reality the whole
infinite logical space; contradiction fills the whole logical space and
leaves no point to reality. Neither of them, therefore, can in any way
determine reality” ([Tractatus] 4.463). Wittgenstein explains the
concept of range for molecular sentences only. Our preceding discus-
sion is an attempt to define the concept in an exact way, likewise for
molecular sentences only. In the following we shall try to define it in
a general way.

B. Sysiems in general

Now we come back to general semantics. We shall try to
define concepts of L-state and L-range in such a way that
they become applicable to semantical systems of any kind,
including those containing variables and hence general sen-
tences. The aim is to define those concepts in such a way
that they are analogous, .s far as possible, to the concepts
defined above for the molecular sentences of system S, and
that they satisfy the postulates P1 and 2

The chief difficulty to be overcome in constructing a gen-
eral definition for L-state consists in the fact that what we
mean by an L-state with respect to a system S is not always
designated by a £;, a state-description in S (see the example
below, at the end of B). Hence we cannot apply here a pro-
cedure analogous to DA3. Instead, we require in the defini-
tion (DB1) two of the properties of L-states which we found
in the earlier discussion of S, (TA3b and c): first, every
L-state is logically possible, i.e. not L-false (D17-10); and
second, an L-state does not leave open any question within the
system, i.e. it is L-complete with respect to the system (D3).

+D18-B1. p is an L-state with respect to S =ps p ful-
fills the following three conditions. a. p e bas(des(S)). b. p is
not L-false. c. p is L-complete with respect to S.
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D18-B3. The L-range of the proposition p with re-
spect to S (Lr(p)) =ps the class of the L-states with respect
to S which L-imply .

+D18-B4. The L-range of the sentence &; with re-
spect to S (Lr@ ;) =ps the L—range of the proposition desig-
nated by &; in S.

For DBj5, compare TA17.

+D18-B5. The L-range of the sentential class £; with
respect to S (Lr®;) =p¢ the product of the L-ranges of the
sentences of R;.

D18-B7. V, (the universal L-range with respect to .S)
=p¢ the class of all L-states with respect to S.

D18-B8. A, (the null L-range with respect to S) =p¢
the null class (of propositions).

D18-B9. rs (the real L-state with respect to.S) =p¢the
conjunction of the class which contains, for every p in des(S),
either p, if p is true, or ~p, if p is false.

The adequacy of DBg will be shown by TB33 and 34.

+T18-Bl1. If p is an L-state with respect to S and
g e bas(des(S)), then either p ¥ gorp ¥ ~¢. (From DB1c,
Tiod.)

+T18-B2. If p is a selection proposition with respect to
S and not L-false, then p is an L-state with respect to S; and
vice versa.

Proof. a. From T20. —b. Let p be an L-state. Let F be the class
of all propositions in bas(des(S)) L-implied by p. For every ¢ in
bas(des(S)), either p T’ ¢ or p T> ~¢ (TB1) but not both (DB1b).
Therefore, F is a selection class of propositions (D4). p L-implies
every element of F, hence p T c;(F) 9 € F, hence cj(F) © p. There-

fore, p = cj(F) (T17—5) Hence, # is a selection proposition (Ds) and
not L-false (DB1b).

TBj says in effect that the L-states are the strongest not
L-false propositions.

+T18-B5. If ¢ € bas(des(S)) and ¢ is not L-false and
L-implies an L-state p, then ¢ = ».
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Proof. Either p T’ q or p T ~¢ (TB1). The second case is not
possible, because otherwise ¢ would L-imply ~¢ and hence be L-false.
Therefore, p T ¢, and hence, ¢ = p (T17-5).

T18-B6. If p and g are L-states with respect to S and
T p, then ¢ = p. (From TBgj.)
+T18-B7. Different L-states with respect to S are
L-exclusive.
Proof. Let p and ¢ be different L-states. Then either p T> ¢ or
# T ~¢q (TB1). The first case is not possible (TB6). Hence p T* ~¢;
hence p and ¢ are L-exclusive (D17-14).

The value of TBi1o lies in the fact that it refers to des(S),
not merely to bas(des(S)). Thus it shows a close connection
between the L-states and the sentences in S and thereby
prepares the way for the important theorem of state-
descriptions (TB43).

T18-B10. Every L-state with respect to.S is the conjunc-
tion of a class of propositions every one of which is either
itself designated in S or is the negation of a proposition
designated in S.

Proof. Let p be an L-state with respect to S. Then p ¢ bas(des(S))
(DB1a). Therefore, there is a class G (T17) such that p = dj(G) and
that every proposition in G is a conjunction of the kind described. If
all propositions in G were L-false, then p would be L-false, which is
not the case (DB1b). Therefore, there is a g in G which is not L-false
and is a conjunction of the kind described. ¢ ¢G; hence ¢ T dj(G)
(T17-8); hence ¢ T p; hence ¢ = p (TBs). Thus, p itself is a con-
junction of the kind described.

+T18-B12. If p e bas(des(S)) and is not L-false, then
there is at least one L-state (with respect to S) which
L-implies . (From T24, TB2.)
T18-B14 (lemma). If F and G are different classes of
L-states (with respect to S), then dj(F) and dj(G) are dif-

ferent.
Proof. There must be an L-state r which belongs to the one of the
two classes, say F, but not to the other, G. Therefore, for every p in G,

Do L “}lL‘adelb!y
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p T ~r (TB7). Hence, dj(G) T ~r (T17-12). On the other hand,
~r is not L-implied by dj(F) (because otherwise, since  * dj(F)
(T17-8), r T ~r; hence r would be L-false, which it is not (DB1b)).
Thus, dj(F) and dj(G) are different.

+T18-B15. Let p ebas(des(S)).

a. djLr(p)) = p.
b. Lr(p) is the only class of L-states with respect
to S which satisfies (a).
Proof. a.Every proposition in Lr(p) L-implies p; hence dj(Lr(p)) T
p (T17-12). Let g be p « ~dj(Lr(p)). We will show that ¢ is L-false.
Let us assume that this is not the case. Then there is an L-state
r such that » T ¢ (TB12) and, since ¢ T* , r T p; hence r ¢ Lr(p),
hence r £ dj(Lr(#)) (T17-8). On the other hand, ~dj(Lr(p)) is an
L-implicate of ¢ and hence of . Thus r is L-false and hence not
an L-state. Thus our assumption leads to a contradiction. Therefore,
g must be L-false. Hence, p T* dj(Lr)(p)) and dj(Lr(p)) = p. —
b. From TB14.

Now we shall show that the concept of L-range as defined
here (DB4 and s) satisfies the postulates P1 and 2 (TB18

and 19).
+T18-B18. If T; T T, then LrT; C LrT;. — Thisis Pr1.
Proof. Let T; T T;; let p and g be the propositions designated by
T and T; respectively; hence p T> ¢. Let r be an arbitrary element of
Lr¥;:. Then r is an L-state, and r T p. Hence, r T’ ¢, and r ¢ L1
This holds for every element of Lr¥;. Therefore, Lr¥;C LrT,.

+T18-B19. If Lr<; C LrI;, then T; © ;. — This is P2.

Proof. Let Lr¥,; C Lr;; let p and ¢ be the propositions designated
by ¥: and T; respectively. Then dj(LtT,) T dj(LrT;) (Tr7-9).
LrZ; = Lr(p); hence dj(Lr¥T;) = dj(Lr(p)) = p (TB1sa). Likewise
dj(LrZ;) = q. Therefore, p T* ¢, hence T T T;.

T18-B22. If p is L-true, then Lr(p) = V..

Proof. If p is L-true, then every L-state L-implies p; hence
Lr(p) =V,

T18-B23. dj(V,) is L-true.
Proof. Let p be L-true. Then Lr(p)=V, (TB22). Hence dj(V,)=7»
(TB1sa); hence dj(V,) is L-true.
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+T18-B24. Lr(p) = V,if and only if p is L-true.
Proof. a. From TB22. —b. Let Lr(p) be V,. Then p = dj(V,)
(TB1sa); hence p is L-true (TB23).

T18-B25. If p is L-false, then Lr(p) = A,.
Proof. Let p be L-false. If there were an element g of Lr(p), then g
would be an L-state and ¢ T ; hence ¢ would be L-false, which is not
possible (DB1b).

+T18-B26. Lr(p) = A, if and only if p is L-false.
Proof. a. From TBzs.— b. Let Lr(p) = A,. Then p = dj(A,)
(TB135a); hence p is L-false (T17-11).

TB29 and 30 are analogous to TB24 and 26 but deal with
¢ instead of propositions.

+T18-B29. Lr¥; = V, if and only if ¥; is L-true.
(From TB24.)

+T18-B30. Lr&; = A, if and only if T; is L-false.
(From TB26.)

T18-B33. rs is an L-state (with respect to S).

Proof. We have to show that rs satisfies the three conditions in
DBi1. — a. 15 € bas(des(S)) (T15). — b. rs is true, hence not L-false.
— c. Let p be an arbitrary proposition in des(S). If p is true, pis a
conjunctive component of rs, and hence an L-implicate of rs. If p is
false, that holds for ~p. Thus rs is L-complete with respect to S
(D18~2, D17-17).

T18-B34. 15 is the only true L-state with respect to S.

Proof. If p is an L-state different from rs, then rs and p are L-ex-

clusive (TB33, TB7). Hence, rs D ~p is L-true. Since rs is true, p is
false.

T18-B35. Let p ebas(des(S)). rs eLr(p) if and onlyif p
is true.
Proof. a.Let p be true. Then dj(Lr(p)) is true (TB1sa); hence at
least one L-state in Lr(p) is true. Therefore, rs e Lr(p) (TB34). —
b. Let rs ¢ Lr(). Hence, rs T p. Since rs is true,  must be true.

+T18-B36. Let T, bein S. rs e Lrg; if and only if T; is
true. (From TB3s.)
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A T; which designates an L-state with respect to S is
called an L-state-description or simply a state-description
in S. However, we shall not take this condition as a defini-
tion because it refers to L-states, i.e. to propositions of a
certain kind, and thereby it presupposes a non-extensional
metalanguage M. We shall rather formulate the following
definitions in such a way that they are independent of M’s
being extensional or non-extensional; this is done by using
no absolute concepts but only (L-)semantical concepts.
This is essential for the purposes of the next section, where
the concept of state-description will be used in one of the
procedures of defining L-range in an extensional language
(§ 19E). For the comparison of that procedure with the one
used here, the following theorems will be of special im-
portance. DB12 is analogous to the previous definition of
L-state (DB1). The analogy between state-descriptions and
L-states is of great importance; however, it holds only as
far as there are state-descriptions. While it easily follows
from DB12 and DB1 that every state-description designates
an L-state, the question arises whether also every L-state is
designated by a state-description. We shall see that this is
not always the case; it holds, however, under a certain con-
dition, which is fulfilled by the majority of the customary
systems (TB43).

+D18-B12. T; is a state-description in S =p; T; is
(a) in S, (b) not L-false, (c) L-complete in S.

+D18-B13. &; is a maximum state-description in
S =p¢ & is (a) a state description in S, and (b) L-perfect
(i.e. R contains every sentence in S L-implied by &, D14-7).

T18-B40. L-equivalent maximum state-descriptions are
identical. (From Ti14-120.)
T18-B41. For any L-state p with respect to S, there is

at most one maximum state-description in S designating p.
Proof. 1f R; and ®; designate p, they are L-equivalent. If they are
maximum state-descriptions, they are identical (TB40).
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In TB43 (and in several theorems in § 19E), we refer to
a system S containing negation. By this is meant a system S
such that all sentences in S are closed (i.e. without free
variables) and that to every sentence &; in S there is a nega-
tion ~@&; in S, constructed with a normal sign of negation
(i.e. one fulfilling the normal truth-table for negation). How-
ever, the theorems referring to a system containing negation
hold likewise for any system S which, for any sentence &; in
S, contains also another sentence ©;, whether constructed
with a sign of negation or not, such that &; and &, are L-ex-
clusive and L-disjunct with one another (hence L-non-
equivalent, D2o-11; compare Tz20-22). (These are the
characteristic features of the relation between a sentence
and its negation. The concepts of negation and of the other
propositional connections will be discussed in detail in [II].)

+T18-B43. Theorem of state-descriptions. Let S contain
negation. Then every L-state with respect to S is designated
by exactly one maximum s*ate-description in S.

Proof. Let p be an L-state. Then there is a class F of propositions
such that = ¢j(F) and F C des(S) (TB1o), since S contains nega-
tion. Let &; be the class of the sentences designating the propositions
in F. Then R designates cj(F) and hence p, and is a state-description.
Let &; be constructed out of &; by adding all sentences L-implied by
i Then &; is a maximum state-description, and, being L-equivalent
to 8, £; designates the same proposition p. &; is the only maximum
state-description designating p (TB41).

Further theorems concerning state-descriptions will be
proved in § 1gE.

If in the theorem of state-descriptions TB43 the condition that S
contains negation were omitted, then the theorem would no longer
hold generally. This is shown by the example of a system S’ of the
following kind. Let S’ contain a descriptive predicate ‘P’ and in-
dividual constants ‘a,’, ‘as’, etc., one for each individual of a denumer-
able realm. Let S’ contain only the following sentences; first, Sy:
“The class P is finite”, further the full sentences of ‘P’ with one in-
dividual constant each: ‘P(a1)’, ‘P(as)’, etc. Although & is a factual
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sentence and not L-false, there is no maximum state-description and
hence no state-description at all in S’ containing or L-implying &,.
This is shown as follows. If §: contains, in addition to &, only a
finite number or none of the full sentences of ‘P’, then every other
full sentence is not L-dependent upon &, and hence &; is not L-com-
plete. If &, on the other hand, contains an infinite number of the full
sentences in addition to &,, then ; is L-false. Thus, for any £;in §’,
if Spe R, K cannot be a state-description (DB12c and b). More-
over, &, is an L-implicate of ®; only if &, ¢ ;. — Let S” contain the
sentences of S” and, in addition, the negations of the full sentences of
‘P’. Let ®;be any class containing a finite number of the full sentences
and the negations of the remaining full sentences. Then &; is a state-
description in §” and ®; T So; &; + {So} is a maximum state-de-
scription containing &,.

C. Systems in general; atomic propositions

We shall here take into consideration a more comprehensive realm
of propositions in connection with a system S than that considered in
B. For certain purposes, this extension seems to be useful and inter-
esting. In B, we started from the propositions designated in S (des(S))
and applied to them the operations of negation and disjunction; thus
we obtained the realm of propositions bas(des(S)). Here we shall
start from certain propositions which we call the afomic propositions
with respect to S (atom(S)), and we apply to them the same opera-
tions. Thus we obtain the realm bas(atom(S)). This realm is, in
general, wider than the previous one because an atomic proposition
with respect to S is, in general, neither designated in S nor even based
upon propositions designated in S.

The way which will lead us to the cancept of atomic proposition
starts from a consideration of the fact that the sentences of a system S
which contains variables speak not only about those entities which are
designated by expressions in S but also about those to which the varia-
bles refer. This suggests the following definition.

D18-C1. The semantical system S covers the entity w =p¢ % is
designated (or determined, § 11) by an expression in S or is a value of
a variable in S.

Let us take as an example the system Sg (§ 11). According to the
rule of values (3C) for S, all towns in the United States are covered
by Se, but only three of them are designated in Ss. Sg contains an
atomic sentence ‘P(a)’ for the proposition that Chicago is large, but
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none for the proposition that Philadelphia is large. Although this
proposition is not designated in Se, we shall call it an atomic proposition
with respect to Sg because Philadelphia belongs to the objects covered
by Se. Thus any proposition which attributes a property covered by
Ss (both of them are designated by predicates in Sg) to an individual
covered by Sg will be called an atomic proposition with respect to Se.
With other systems we proceed analogously. For any descriptive
attribute (i.e. property or relation) I, we regard as its atomic proposi-
tions those which attribute  to some descriptive entity (or sequence
of entities) covered by S; this entity is called the argument entity in
the atomic proposition in question. Which entities covered by S may
be taken as argument entities for a given attribute H covered by §
is determined by the rules of formation of S. These rules state which
constants or variables may be used as argument expressions in connec-
tion with the predicate expression whose designatum or value H is;
the designata of these constants and the values of these variables are
then the argument entities admitted for H. The rules of formation
vary widely for different systems. [S may, for instance, contain a
predicate ‘R’, and the rules of formation of S may require that an
argument expression for ‘R’ consist of three signs (say, ‘a,b,c’ in the
sentence ‘R(a,b,c)’); the rulc: may, moreover, require that these
three signs belong to certain specified types with respect to a hierarchy
of types. Again, it may be that an expression consisting of any finite
number of such signs is admitted as argument expression for ‘R’; or
perhaps signs of all types on a certain level are admitted, or even signs
of many levels. It may be that there are no restrictions at all with
respect to degree, type, or level.| In an analogous way we find the
atomic propositions for the functions covered by .S (i.e. the designata of
functors or values of functor variables).

For the following definitions we presuppose that the concept of
atomic proposition has been defined in a suitable way for the system
S in question. This involves that every proposition p designated in S
is analyzed into atomic propositions in such a way that p is constructi-
ble out of these atomic propositions by iterated application of negation
and disjunction (which includes also conjunction, see T1s); in other
words, that p is based upon atomic propositions. [This takes care
also of universal and existential propositions because disjunction and
conjunction may be applied to infinite classes; see explanations to
Di17-20.] This requirement is laid down as postulate PC1 below.
The subsequent definitions presuppose PCr in the sense that they are
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intended to be applied only to a concept of atomic proposition fulfilling
this postulate.

P18-C1. des(S) Cbas(atom(S)).

The following theorem TCr shows that the realm of propositions
previously considered is a part of the new realm of propositions. In
general, it is a proper part; that is to say, some propositions in bas(atom
(5)), and frequently (e.g. for S;) a vast majority of them, do not be-
long to bas(des(S)).

T18-Cl1. bas(des(S)) Cbas(atom(S)). (From PCi, T16.)

The definition of L-state (DCz2) is analogous to the previous one
(DB1) but refers to the wider realm of propositions.

D18-C2. p is an L-state with respect to S =ps p fulfills the following
three conditions. a. p e bas(atom(S)). b. p is not L-false. c. p is
L-complete (D17-17) with respect to atom(S).

T18-C3. If p is an L-state with respect to S and ¢ ¢ bas(atom(S))
or ¢ ebas(des(S)), then either p T* ¢ or p T ~¢. (From DCzc,
T18-18; TC1.)

The terms ‘Lr(p)’, ‘Lr&,’, ‘Lrf,’, ‘V,’, ‘A;’, and ‘rs’ may here be
defined on the basis of ‘L-state’ in the same way as in DB3 to 9, ex-
cept that ‘des(S)’ is here replaced by ‘atom(S)’. Likewise all theorems
in B concerning those concepts (TB1 to 36) together with their proofs
have exact analogues here in C. The necessary modification consists
again in referring to atom(S) instead of des(S); accordingly, ‘L-com-~
plete with respect to S’ must be replaced by ‘L-complete with respect
to atom(S)’ (see D3); further, ‘p is a selection proposition’ (in
TB:2) is to be replaced by ‘p is an atomic selection proposition’ (i.e. a
conjunction of a class of propositions which contains, for every atomic
proposition &; with respect to .S, either &; or ~&; but not both and
no other propositions). In analogy to TB18 and 19, the result is ob-
tained that the concept of L-range as here defined fulfills the postu-
lates Pr and 2.

An L-state leaves no atomic propositions undetermined (DCzc).
In other words, if p is an L-state, then p determines for any attribute
H covered by S and every entity u covered by S and admitted as argu-
ment entity for H, whether or not H is attributed to # in p. In this
way, an L-state determines the extension of every concept (attribute or
function) covered by S. These considerations will later be taken as
basis for other procedures (§ 19K and L).

The definitions for ¢ state-description’ (DC 12) and ‘maximum state-
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description’ (DCx3) are analogous to the previous ones (DB12 and

13).

D18-C12. T; is a state-description in S =p; T; is (a) in S, (b) not
L-false; (c) the proposition designated by ¥ is L-complete with respect
to atom(S).

D18-C13. R;is a maximum state-description in S =p¢ K is a state-
description in S containing every sentence in S L-implied by &:.

While the analogues to TB40 and 41 hold here in C, the same is not
the case for the theorem of state-descriptions (TB43). In the proof
of this theorem the fact was used that for every proposition in des(S)
there is a sentence designating t. On the other hand, for a proposition
in the corresponding class atom(S), there is, in general, no sentence
designating it. Therefore, an L-state (DC2) with respect to S is, in
general, not designated by a T,, a state-description, in .S; and in many
systems, an overwhelming majority of L-states or even all of them are
without state-descriptions. [Take Sg (§ 11) as an example. Let n be
the number of the towns in the United States. There are 2n atomic
propositions and hence 22» L-states with respect to Sg. Only six of
the atomic propositions are designated in Sg. And only four of the
L-states have state-descriptions in Se, namely these: (a) the proposi-
tion that all individuals have (he properties P and Q, (b) all have P
and ~Q, (c) all have ~P and Q, (d) all have ~P and ~Q.] Thisisa
disadvantage of the present procedure C. On the other hand, an ad-
vantage of C in comparison with B consists in the fact that the con-
cept of L-state as here defined (DC2) seems perhaps to be in better
agreement with the original intuitive concept (vaguely explained at
the beginning of § 18), especially if we pay more attention to the con-
cepts and entities covered by .S and less to the sentences in S. [Con-
sider Sg again. Let A, be the true proposition that Chicago, New York,
etc. (referring here specifically to each town in the United States which
actually is large) are large, while the other ones are not, and that
Chicago, Boston, etc. (referring here specifically to each one which
actually has a harbor) have harbors, while the other ones have not.
Here in C, A, is called an L-state and, since it is true, the real L-state
rs with respect to Sg although there is no state-description for it; in B,
however, A, is not even regarded as an L-state with respect to S, be-
cause A, not e bas(des(Se)). Although we can (falsely) say in S, that
Chicago, New York, and Carmel are large and have harbors, the (like-
wise false) proposition A, that this is the case and that all other towns
are neither large nor provided with harbors is not designated in S,
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(because Sg lacks a sign of identity). This proposition A, is not re-
garded as an L-state in B; but it is so regarded in C, and, from a cer-
tain point of view, this seems perhaps more natural.j

§ 19. The Concept of L-Range in an Extensional Meta-
language
Several alternative procedures are explained for defining a
concept of L-range fulfilling the postulates P18-1 and 2. In
order to make possible the use of an extensional metalanguage,
here not propositions, as in § 18, but other entities are taken as
elements of L-ranges; namely, in procedure E state-descriptions;
in F and G sentences; in K and L certain relations, called state-
relations, corresponding to L-states. It is shown that the
semantical rules of a system S determining the meaning of the
sentences in .S, which previously were formulated as rules of
truth, may instead be formulated as rules of L-ranges determin-
ing the L-range of every sentence in S.

In the previous section we construed L-ranges as classes
of propositions of a certain kind, namely the L-states. This
required the use of a non-extensional metalanguage M. On
the question whether in general the use of an extensional
(truth-functional) or a non-extensional (so-called intensional)
metalanguage is preferable, logicians are at present far from
an agreement. The structure of an extensional language
is simpler, and some logicians go so far as to regard it as the
only acceptable form. On the other hand, a non-extensional
language seems to express certain things, e.g. modalities, in
a more direct and thereby technically simpler way; and many
logicians even believe that this form of a language is not only
preferable but necessary for certain purposes, e.g. for deal-
ing with modalities and semantical concepts like designation.
Much more investigation of languages of both kinds applied
to different purposes will have to be made before this con-
troversy is settled. The two preceding sections contain ten-
tative contributions to this problem from the one side, while
this section will attempt approaches from the other side.
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Here we shall discuss definitions for the concept of L-range
which make use of extensional concepts only. Therefore
these definitions, and the theorems based upon them, may
be formulated in an extensional metalanguage M. They do
not require, however, that M be extensional; they can be
used in an M of either kind; they are, so to speak, neutral
in this respect.

The aim of the following discussions is to find definitions
for concepts of L-range, which are in agreement with the in-
tuitive concept for which some vague explanations were
given at the beginning of § 18; in particular, the concepts
defined are to fulfill the postulates P18-1 and 2 for L-range.
Therefore, the concepts looked for, although extensional,
must show a close analogy to the non-extensional concepts
defined in § 18. The change must consist in replacing the
propositions as elements of L-ranges by something else that
corresponds to those propositions in some way. The pro-
cedures to be explained here are of two different kinds. Those
of the first kind take as elements of L-ranges something
within the object language in question, e.g. sentences or
sentential classes. The procedures of the second kind take
instead something belonging to the realm of entities spoken
about in the object language, e.g. relations between such
entities.

Procedures of the first kind: the elements of L-ranges are intra-
linguistic
E. State-descriptions as elements of L-ranges

If we wish to avoid L-states because they are propositions,
the most natural way seems to be to take state-descriptions
instead. We take here the concepts of state-description and
maximum state-description in the sense of D18-B12 and 13.
Then T18-B4o, based on these definitions, holds here too.
However, we will repeat those definitions and that theorem
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here with new numbers (DE1 and 2, TE8) in order to em-
phasize the fact that here we are in a new framework of an
extensional M. Then it will be possible for the proofs in this
section to avoid any reference to definitions or theorems in
§§ 17 and 18. Such references will be made only for purposes
of comparison, be it contrast or analogy, outside of the sys-
tematic construction. For the L-concepts here used, we refer
in the proofs to the postulates in § 14 (including the addi-
tional postulates P14—C2 and 3 concerning L-disjunctness;
see the remark on TE20, below) and to the theorems in § 14
based upon them.

+D19-El. T;is a state-description in S =p; T; is (a)
in S, (b) not L-false, (c) L-complete (in S).
+D19-E2. ;is a maximum state-descriptionin S =p;
R is (a) a state-description in S and (b) L-perfect (D14-7).
T19-El. If T;is a state-description in S and E; is in
S, then either ; T T, or T;and T; are L-exclusive. (From
DE1c, T14-88, D14-3.)
TE:2 says that the state-descriptions are the strongest not
L-false T in S (in analogy to T18-Bs).
T19-E2. If T, is a state-description and ¥;is not L-false
and E; T T, then T; and Tj are L-equivalent.
Proof. Either T, T* T; or T; and T, are L-exclusive (TE1). The

second case is not possible, because otherwise ¥; would be L-false
(T14-76). Hence, T T T, and T; and T, are L-equivalent.

T19-E3. If T, and T; are state-descriptions in S and
T: T T, then T; and T; are L-equivalent. (From TE2.)
T19-E4. Two state-descriptions in S are either L-equiv-
alent or L-exclusive of one another. (From TE1, TE3.)
T19-E7. Let : be a maximum state-description.
a. If &, T &, then ®; C 8. (From DEzb, T14-
116.)
b. If 8, T &, then &, € . (From (a).)
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T19-E8. L-equivalent maximum state-descriptions are
identical. (From DE2b, T14-120.)

T19-E9. Two different maximum state-descriptions in.S
are L-exclusive. (From TE4, TES.)

The following concepts are applied only to systems S
which contain negation (see explanation to T18-B43). DEj
has some analogy with D18-4 and 5.

D19-E4. ®, is a sentential selection in the class
®;in § =ps S contains negation, ®; is closed with respect to
negation; &; C &, and for every &, in £;, &; contains either
&; or ~&; but not both.

D19-E5. ®; is a sentential selection in the system
S =ps R:is a sentential selection (DE4) in Vin S.

T19-E13. Let S contain negation. f; is a sentential
selection in S if and only if, for every &; in S, either &; € ®;
or ~&; € ®; but not both. (From DEs, DE4.)

T19-E14. Let S contain negation. Then every sen-
tential selection in S is L-complete (in S).

Proof. Let &; be a sentential selection in S. Then (TE13), for
every &; in S, either &; T &, (P14-11), or ; T> ~S; and hence &;
and &; are L-exclusive. Therefore, & is L-complete (D14—4).

T19-E16. Let S contain negation. If ; is a sentential

selection in S and not L-false, then ®; is L-perfect.

Proof. Let &; be an arbitrary L-implicate of £:. Then either
S;eRior ~B; e R; (TE13). The second case is impossible, because
f: would L-imply ~&; and hence be L-false. Therefore, &; e ;.
Hence, &; is L-perfect (D14-7).

T19-E17. Let S contain negation. ®; is a maximum
state-description in S if and only if ; is a sentential selection
in § and not L-false.

Proof. a.Let R be a sentential selection and not L-false. ;1is a
state-description (TE14) and L-perfect (TE16), hence a maximum
state-description. — b. Let £ be a maximum state-description. For
every &; in S, either ® T &; or & T ~&; (TE1); hence either
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Sje Rior ~S; ¢ R, (TE7b). K;isnot L-false (DE1b); hence it cannot
contain both sentences. Thus &; is a sentential selection in § (TE13).

T19-E18. Let S contain negation. The class ®; of the
true sentences in S is a sentential selection and hence a maxi-
mum state-description in S. (From TE17.)

In our earlier discussion of L-states in a non-extensional
metalanguage, we found that if a proposition is not impossi-
ble there must be a possible state of affairs in which it would
hold; this is formulated in technical terms in Ti8-Bi2
(based on T18-24). The question arises whether the analogue
to T18-Bi2 holds with respect to state-descriptions. An
affirmative answer under the condition that S contains nega-
tion will be given by TE23. Before we try to construct a
proof for this theorem let us do some inexact reasoning in
order to show its plausibility. Applied to a true &., the
theorem is even trivial, because in this case f; (see TE18)
is a maximum state-description of the kind described. Now
let us assume that the theorem does not hold generally.
This would mean that there was a &,, false but not L-false,
hence not such that its falsity could be discovered by logical
analysis alone, and such that ®; was not contained in any
maximum state-description in S. The latter circumstance,
however, is of a purely logical nature, because no factual
knowledge is involved in finding out whether or not a given
class ®; is a maximum state-description in S and whether
or not ®; C ®;, where both are syntactically described. Thus
the non-existence of maximum state-descriptions for a given
R; could be ascertained, if at all, by purely logical means.
Let us assume we had found this result for a given f;. Then
it would follow that ; could not be true. Thus we should
have found by merely logical means that ®; was false,
although ®; was not L-false. This seems hardly conceivable.
Thus it seems plausible that the theorem should hold not
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only for any true ®; but also for any false, and not L-false,
;. — TE23 can be proved in a rather simple way in a non-
extensional metalanguage; it follows directly from T18-
B12 and T18-B43. Here, however, in an extensional meta-
language, the proof is not so simple. It is based on some
rather complicated, though plausible, additional postulates
concerning L-disjunctness. The following theorems prepare
the way for TE23.

For TE20 and 21, we make use of the fact that &; and ~&; are
L-disjunct and L-exclusive of one another (see explanation to Ti8-
B43 concerning negation). For the concept of L-disjunctness, the
system of the postulates P14-1 to 15 is not strong enough; the addi-
tional postulates Pr4-Ez and 3 are necessary for T20 and 21.

T19-E20. Let S contain negation.

a. If ®; is closed with respect to negation, the
sentential selections in ®; are L-disjunct with
one another. (From Pi4-E2.)

b. The sententia. selections in S are L-disjunct
with one another. (From (a).)

T19-E21. Let S contain negation. If every sentential
selection &; in §, such that ®; C ®;, L-implies &, then
f: T S

Proof. Let the conditions be fulfilled. Let ®; be not L-false; other-
wise the assertion follows simply from Pi4-15. Let us call (for the
moment) two sentences related to one another if the one is con-
structed out of the other by the addition of some number # of signs of
negation (including # = o, i.e. identity); we call the sentences evenly
or oddly related according to whether # is even or odd. Let & be the
class of all sentences in .S oddly related to the sentences of R;; like-
wise £ for the sentences evenly related; hence ; C £,”. Let 8; be
an arbitrary sentential selection in S such that £ C®;. Then & C ®;
and &/ C — R,‘ (DE4). Let &‘i' be R,‘ - R.‘"; hence R,‘ = ﬁ'.‘” -+ R/.
Evenly related sentences are L-equivalent. Therefore, R T R/;
hence R4 &/ T " + K/ which is R;. f; T S:; therefore,
i+ & T S Let the classes in MM, be the classes §; constructed
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in the way described, i.e. ®; — & for every sentential selection £
such that £;CR;. Then these classes are the sentential selections
in the class V — & — R/, which is closed with respect to negation.
Therefore, the classes in M, are L-disjunct with one another (TEzo0a).
For every ®; in M/, R: + K T Sy; hence &: T S; (P14-E3).

T19-E22. Let S contain negation. If every sentential
selection ®; such that ®; C ®; is L-false, then ®; is L-false.

Proof. If every 8; as described is L-false, it L-implies both &; and
~@&;. Therefore, ; does the same (TE21) and hence is L-false.

+T19-E23. Let S contain negation. If ®; is not L-false,
then there is at least one maximum state-description ®; such
that Ri C R,‘ and hence .Qj 7 K.

Proof. Let the conditions be fulfilled. There must be a sentential
selection &; in S such that £; C®;and that &; is not L-false, because
otherwise £; would be L-false (TEz22). &;is a maximum state-descrip-
tion (TExy).

The concept of L-range is now defined in analogy to D18~
B3 to s, replacing the reference to L-states by that to state-
descriptions. We take as elements of L-ranges only maxi-
mum state-descriptions because, under certain conditions,
they correspond uniquely to L-states (T18-B43).

+D19-E7. Lr%; (the L-range of ¥;in S) =ps the class
of the maximum state-descriptions ¥, in S such that T; © <.

We shall now examine whether the concept of L-range
defined by DE7 fulfills the postulates P18-1 and 2. TE27
shows that P18-1 is always fulfilled; TE36 shows that for
systems containing negation also P18-2 is fulfilled.

+T19-E27. If ;T T;, then LrT; C LrT;. — This is
P18-1.

Proof. Let T; T* T;, and let T; be an arbitrary element of LrT;.
Then T; is a maximum state-description such that T, T T;. Hence
T T Ty, hence Ty e LrT;. Thus LT, CLrT;.

T19-E28. If T; and T; are L-equivalent, then Lr%; =
LrZ;. (From TE27.)
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T19-E31. Let S contain negation. For every ;in S,
T; T pr(LrZ). [pr(M.) is the product of the classes in
Mm;.

P]roof. Let R; be T, or, if T; is a sentence, {T;}. Let &, be an
arbitrary element of pr(Lr®;). Let &; be an arbitrary sentential selec-
tion in S such that £: C ®;. We will show that &; T &;. If &;isL-
false, this is obvious (P14-15). If &; is not L-false, it is a maximum
state-description (TE17) and hence belongs to Lrf;, since &; T &..
Therefore, ©; ¢ f; and hence &; T* &;. Since this holds for every
R; as described, ®; T &; (TF21). This holds for every element of
pr(Lrf,); hence &; T pr(Lrf.).

T19-E32. Let S contain negation. For every ®;in S,
f; C pr(LrR,), and hence pr(Lrf;) T ..

Proof. For every &;in Lr®;, & T & and hence &; C &; (TE7a).
Hence, & Cpr(Lrf;).

T19-E33. Let S contain negation. &; e pr(LrZ;) if and
only if T S;.

Proof. a. For every & in Lr¥;, & T T: and hence & T* &;, and
hence &; ¢ & (TE7b). Ther: ‘ore, &; e pr(Lt¥;). —b. From TE31,
Ti4-21.

+T19-E34. Let S contain negation. Let &; be the class
of all sentences in S L-implied by £,.

a. T; is L-equivalent to pr(LrZ;). (From TE3:
and 32.)
b. &; = pr(Lr¥,). (From TE33.)

+T19-E36. Let S contain negation. If Lr¥; C Lrg;,
then ; T ;. — This is P18-2.

Proof. Let the conditions be fulfilled. Let &, be an arbitrary ele-
ment of pr(Lr¥;). Then &, belongs to every class in LrT; and hence
to every class in Lr¥; and hence to pr(Lr¥). Thus pr(LrT;) C
pr(LrI;), hence pr(LrT;) T pr(LrT;). T,is L-equivalent to pr(Lr<T;)
(TE34a), likewise I; to pr(LrT;). Therefore, T: T T;.

For a system which does not contain negation, TE36 does in general
not hold. As an example, consider the system S’ described at the end
of § 18B. Let &, be any of the L-false classes described. As previously
shown, there is no state-description in S’ L-implying ©,. Therefore,
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Lr®, is null and hence Lr&, CLr®;. However, in contradistinction
to TE36, &, does not L-imply R; because otherwise &, would be
L-false (P14~7), which it is not.

T19-E37. Let S contain negation. If Lr¥; = Lrg;,
then T; and ¥; are L-equivalent. (From TE36.)

T19-E39. If I, is L-false, Lr¥; is the null L-range (i.e.
the null class of sentential classes). (From DE7, DEib,
P14-7.)

+T19-E40. Let S contain negation. LrZ; is the null
L-range if and only if ¥, is L-false. (From TE3g; TE23.)

T19-E42. If T;is L-true, LrZ; is the universal L-range
(i.e. the class of all maximum state-descriptions in S). (From
Pig-14.) :

T19-E43. LrA is the universal L-range. (From Tig-
33, TE42.)

+T19-E44. Let S contain negation. Lrg; is the universal
L-range if and only if ¥;is L-true.

Proof. a. From TE42. —b. Let LrZ; be the universal L-range;
hence LrA C LrT;. Therefore, A T T; (TE36); hence ; is L-true

(T14-34).

F and G. Sentences as elements of L-ranges

The procedures F and G are ways of defining L-ranges as
certain classes of sentences. However, this is not done in
such a way that some or all of thdse sentences or anything
else could be regarded as corresponding to L-states. Never-
theless, the L-ranges as defined here correspond in a certain
way to the L-ranges as explained earlier (at the beginning
of §18); and the essential requirements, formulated in
P18-1 and 2, are fulfilled. The considerations leading to the
procedures F and G will be explained at the end of § 23.

D19-F1. LrZ; (in S) =p: the class of the sentences in S
not L-implied by ..
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T19-F1. LrA = the class of the sentences in .S which are
not L-true. (From DF1, T14-51a.)

T19-F2. LrV = A. (From DF1, T14—41.)

T19-F5. If §; © T;, then LrT; C Lrg;. — This is P18-1.

Proof. Let the condition be fulfilled, and & ¢ Lr¥;. Then &; is
not an L-implicate of T; (DF1), and hence not of T; (P14-5). There-
fore, Sre er;.

T19-F6. If Lr¥; C Lrg;, then T; T ;. — This is P18-2.

Proof. Let the condition be fulfilled. Then (DF1) every sentence
L-implied by ¥; is L-implied by ;. Therefore, every sentence identi-
cal with or an element of ¥; is L-implied by T; (P14-11); and hence
T; itself (Prg-12).

The procedure G is merely a modification of F, leading to
analogous results. DGr is not quite as simple as DF1. The
reason for stating DGr is chiefly its analogy to a certain
definition for ‘L-content’ to be explained later (D23—C1).

D19-G1. LrZ; (in S) = - the class of the sentences &; in
S such that &; is L-true or &; is not L-implied by T..

T19-G1. LrA = V. (From DGi, T14-51a.)

T19-G2. LrV = the class of the L-true sentences in S.
(From DGr1, T14—41.)

Theorems corresponding to P18-1 and 2 can here be proved
in analogy to F (T19-F5 and 6).

In comparison with E, the procedures F and G have two
advantages. First, the L-ranges are classes of sentences, not
classes of classes of sentences. Second, for the applicability
of these procedures there is no restricting condition like that
of the occurrence of negation (TE36). On the other hand,
if S contains negation and if further, for every state-descrip-
tion in S (in the sense of DEr), there is an L-equivalent
sentence in S, then the procedure E could be slightly modified
by taking these sentences as the elements of L-ranges; this
procedure would then perhaps be preferable to F and G.
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Procedures of the second kind: the elements of L-ranges are
extra-linguistic
K. Relations of predication as elements of L-ranges

We take as example the system S, as in § 18A. This sys-
tem covers three objects a, b, ¢, and two properties P and
Q. As explained earlier, an L-state with respect to S, is a
possible distribution of those properties among those objects.
To every distribution of this kind, there is a corresponding
relation relating each of the properties to those objects of
which it is predicated. Thus there is a one-one correlation
between the L-states s, (r = 1 to 64) and the corresponding
relations R,, which we call state-relations (DK1). The pro-
cedure K consists in taking state-relations instead of L-states
as elements of L-ranges. The subsequent diagram shows —

OBJECTS TO WHICH P AND Q BEAR THE STATE-RELATIONS R,

r P Q
I a,b,c a,b,c
2 a,b,c a,b
3 a,b,c a,c
4 8,b,c a
5 a,b,c b,c
10 a,b . a,b
64 —_ —_

for (some of) the L-states s, — of which objects P and Q are
predicated in s, (compare the diagram in § 18A), and thus
to which objects P and Q bear the state-relation R,. For in-
stance, the L-state s, was the proposition that the property
P holds for a, b, and ¢, and Q only for a. Therefore, the
corresponding state-relation R, is that relation which holds
between P and each of the objects a, b, and c, and between
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Q and a; hence it may be regarded as the class of the follow-
ing four ordered pairs: P;a, P;b, P;c, Q;a. Thus we may de-
fine: Ry =p¢ {P;a, P;b, Pic, Q;a}. (Here it is to be kept in
mind that we are speaking in an extensional language M;
therefore, no distinction is made between properties and
classes, or between relations and relation-extensions; coex-
tensive properties or relations are here identical.) In this
way, each of the 64 state-relations R, can be defined. Each
of them is a possible relation of predication; but only one,
namely the state-relation R,, corresponding to the real
L-state sy, is the relation of true predication, that is to say,
the relation which holds between a property F and an ob-
ject x if and only if F can truly be predicated of £ — in other
words, if x has the property F. This consideration leads to
the subsequent definition of ‘rs’ (DKz2).

D19-K1. H is a state-relation with respect to Sy =ps H is a
relation such that every first member of it is P or Q,and
every second member is a, b, or c.

D19-K2. rs (with respect to S;) =p¢ the state-relation H
such that H(F,x) if and only if F(x).

D19-K3. V, (the universal L-range with respect to S,)
=p¢ the class of the state-relations with respect to S,.

D19-K4. A, =p¢ the null class (of state-relations).

The rules of a semantical system S have the purpose of
stating the meaning of the sentences of S. So far, we have
formulated the rules of S as rules of truth, i.e. as rules stat-
ing for each sentence of S a sufficient and necessary condi-
tion for its truth. To know the L-range of a sentence &;
means to know what possibilities are admitted and what are
excluded by &,;. This, however, is the same as knowing
under what conditions &; would be true and under what
conditions it would be false. Thus, stating the L-ranges of
sentences is in effect the same as stating their truth-condi-
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tions. Therefore, instead of laying down rules of truth we
may lay down rules which determine the L-ranges of the
sentences of S; we call them rules of L-ranges. This pro-
cedure is of especial importance if we intend to take the
concept of L-range as basis for the definitions of the other
L-concepts (L-implication, L-truth, etc.), as will be done
in § 20; in this case, obviously, any procedure defining
L-range with the help of the other L-concepts (as in all pro-
cedures previously explained: A, B, C, E, F, and G) is inap-
plicable. The rules of L-ranges here, like the rules of truth
previously, presuppose rules of designation. The procedure
may be illustrated by the following rules for S,; the previous
rules of designation for S, (§ 8) are here presupposed.

Rules of L-ranges for S,

4a. Let &, be an atomic sentence pr,(in;), where pr; desig-
nates the property F and in; the individual x; Lr&; is the
class of the state-relations H with respect to S, (DK1) such
that H(F,x).

4b. Lr(~®,;) = — Lr®; (ie. the class of those state-
relations which do not belong to Lr&,).

4¢. Lr(®; v ;) = Lre; + Lre;.

4d. Lr(; . &) = Lre; X Lre;.

ge. Lr(&;D ©;) = — Lr®; + Lre;.

4f. Lr(e; = ©;) = (Lr&; X Lr®;) + (-Lr&; X —Lrs;).
Lr®; = the product of the L-ranges of the sentences of ..

Quine (4 System of Logistic, 1934) has construed the proposition
that x has the property F (or, in other words, that z is an element of
the class F) as the ordered pair F; . In his system, all propositions
have this simple predicative form. Here, we apply this device only to
the propositions designated by atomic sentences. Then it seems
natural to construe an L-state as a class of ordered pairs of the form
F; x. This yields the state-relations described above.

If we have to do with a system S different in structure from Sy, an
analysis on the basis of the rules of formation of S has to be made as
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described in § 18C in order to find the atomic propositions for the
descriptive concepts covered by S. Then every atomic proposition
is construed as an ordered pair, and the state-relations are the sub-
classes of the class of all these pairs. [Let S, for instance, contain a
descriptive predicate ‘R’ of degree three such that R(a,b,c) is an
atomic proposition. Then the corresponding ordered pair consists of
the relation R and the ordered triad a;b;c; hence it is R;(a;b;c). Like-
wise for higher levels; if, for instance, ‘M’ is a descriptive predicate
of second level and M(P) an atomic proposition, then the correspond-
ing pair is M;P. Let k(a,b) = c be an atomic proposition for the
descriptive functor ‘k’; then we may take as total argument entity the
pair (a;b);c, and hence as corresponding to the atomic proposition,
the pair k;((a;b);c).] If S contains variables, then as argument enti-
ties for atomic propositions not only entities designated in .S but also
those covered by S have to be taken. However, with respect to the
concepts (attributes and functions) different procedures are possible.
The analysis, and thereby the construction of state-relations, may
either be restricted to the atomic propositions for those descriptive
concepts which are designated in S, or it may be extended to all de-
scriptive concepts covered by S. [Let S, for instance, contain a predi-
cate variable ‘F’ which, accord’ng to the rules of values for ‘F’ in §
(§ 11), has certain colors as values; then we may either take all those
colors as first members of the state-relations, or only those for which
there are predicates in S. The rules of formation of S will then deter-
mine what entities are to be taken as second members.] The real
L-state rs is to be construed as that state-relation whose pairs corre-
spond to the true atomic propositions with respect to S.

L. Correlations of extension as elements of L-ranges

The procedure L is a simple modification of K. It may be
illustrated again for the system S,. In K, a state-relation
R, holds between the properties P and Q and certain individ-
uals, in correspondence to the atomic sentences of the L-
state s,. Here in L, a state-relation R,’ is a relation between
those properties and certain classes of individuals, namely
the classes of the relata of P and Q with respect to R, (see
the subsequent diagram). In K, for instance, R, holds be-
tween P and each of the individuals a, b, and c; thus, here
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in L, R/ holds between P and the class {a,b,c} ; furthermore,
R, holds between Q and a; hence R, holds between Q and
{a}. Therefore we define: R =p¢ {P;{abc}, Q;fa}}.
The same procedure may be described as follows. Accord-

CrAssES T0 WHICH P AND Q BBAR THE STATE-RELATIONS R,’

r P Q
X {a,b,c} {a,b,c}
2 {a,b,c} {a,b}
3 {a,b,c} {a,c}
4 la,b,c } ' al
s {a,b,c} {b,c}
10 {a,b) (a,b)
64 A A

ing to the earlier explanations (see § 18A, also the diagram),
in the L-state s, the property P holds for the individuals
a, b, and ¢, and Q holds for a; thus in s,, P has the extension
{a,b,c} and Q the extension {a}. Here in L, we take as the
state-relation R,’ corresponding to the L-state s, the rela-
tion which holds between P and Q and the extensions which
they have in s,. Therefore we may define: a state-relation is
a relation correlating with each of the properties P and Q
exactly one class of individuals (DL1). rs is here construed
as that state-relation which correlates with P and Q their
actual extensions. Both these extensions are {a,b} (this is
factual knowledge obtained by observations, see § 18A;
therefore it is not used in framing the definition for ‘rs’).
Since M is extensional, the coextensive properties P and
{a,b} are here regarded as identical, as the same class. Thus
rs is that state-relation which is a sub-relation of identity.
This consideration leads to DL2.
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D19-L1. H is a state-relation with respect to S; =p¢ H is
a many-one relation which correlates to each of the properties
P and Q as first members exactly one sub-class of {a,b,c} as
second member.

D19-L2. rs (with respect to S;) =p; the state-relation H
such that H(F,G) if and only if F = G.

D19-L3. V, =p; the class of the state-relations with re-

spect to S,.
D19-L4. A, =p; the null class (of state-relations).

It seems convenient here, as in K, to lay down rules of
L-ranges for S, instead of rules of truth.

4a. Let ©; be an atomic sentence pr,(in;), where pr, desig-
nates the property F and in; the individual x; Lr&; is the class
of those state-relations H (with respect to S,) which hold
between F and a class to which x belongs.

The rules 4b to f are here the same as in K.

The procedure L, here expla: ed for S4, can likewise be applied to
any other system S. First, on the basis of the rules of formation of S,
the atomic propositions for the descriptive concepts designated in .§
— or for all those covered by S— are determined, as described in C
and K. In other words, it is determined which entities (including
sequences of entities) are admitted as argument entities for each of the
concepts. Then, for any concept %, every sub-class of the class of enti-
ties admitted as argument entities for # is admitted as a possible
extension for . And a state-relation with respect to .S is a relation cor-
relating with every one of the concepts exactly one possible extension.
If S contains a hierarchy of types, then the possible extensions for a
concept # are simply all those concepts (which means here the same
as concept-extensions, since M is extensional) which are of the same
type as «. Thus the state-relations are here homogeneous (i.e. their
first and second members belong to the same type).
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§ 20. General Semantics Based upon the Concept of
L-Range
A system of general semantics, containing both L-concepts
and radical concepts, is constructed on the basis of the concepts
of L-range (for sentences) and of the real L-state rs as primi-
tives. Theorems are based on the definitions without the use
of postulates, among them theorems corresponding to all the
previous postulates P14-1 to 15 for L-concepts.

In §§ 18 and 19, several procedures have been explained
for defining concepts of L-range. Now we shall construct a
system of definitions in general semantics of a fundamentally
different kind. Here, we take the concept of L-range as primi-
tive and define the other L-concepts on its basis; we add the
concept of the real L-state (rs) as primitive, and construct
definitions also for the radical semantical concepts. If these
definitions in general semantics are to be applied to a par-
ticular semantical system S, the concept ‘L-range in S’
which here is primitive must then be defined. However, it
cannot of course be defined with the help of L-implication
or other L-concepts as was done in most of the procedures in
§§ 18 and 19. Instead we have to introduce the concept of
L-range in S by laying down rules of L-ranges for S, instead of
rules of truth, based on rules of designation. [This may, for
instance, be done in a way similar to those explained for S,
in § 19K and L.]

The following inexact considerations based on earlier ex-
planations (§ 18) suggest ways for making the subsequent
definitions. ©; is frue if and only if the real L-state rs is ad-
mitted by &; and hence belongs to Lr&;; this suggests D13
(in agreement with earlier considerations for the procedures
A and B, see T18-A7 and T18-B36). In order to fulfill the
requirement of adequacy (§ 16) we must define the term
‘L-true’ in such a way that it applies to a sentence &; if and
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only if the truth of &, follows from the semantical rules
which are here supposed to have the form of rules of L-ranges.
If we know the rules but not the relevant facts, then we know
the L-range for any given sentence &, but we do not know
which of the L-states is the real L-state. There is only one
case in which we nevertheless shall be able to ascertain that
©; is true, and that is the case in which Lr&; is V,, i.e.
the class of all L-states (D3). Only In the case in which
Lr®;is A, i.e. the null L-range (D4), are we in a position to
find out that &; is false by making use merely of the semanti-
cal rules (which tell us that Lr&; = A,) but not of any
factual knowledge (which would tell us whick is the real
L-state). Thus we can characterize the L-true sentences as
those with the L-range V, (D5) and the L-false sentences as
those with A, (D6) (in agreement with T18-A8 and ¢, and
T18-B2g and 30). For the definition of L-implicaion we
have to consider the question of the conditions under which
it would be possible to find sut with the help of the semanti-
cal rules alone that if &; is true &; must also be true. In
other words, if we know the L-ranges Lr&; and Lr&; but
do not know which L-state is the real L-state rs, under what
condition can we nevertheless know that, if rs ¢ Lr&,, then
rs € Lr&;? This is possible only if Lr&; C Lr&;; and there-
fore this condition is an adequate definiens for L-implication
(D7) (in agreement with Ti18-1, based on Pi18-1 and 2;
T18-As and Ti18-Bi8 and 19). L-equivalence is mutual
L-implication (P14-9) and hence characterized by the iden-
tity of L-ranges (D8) (in agreement with T18-2). Here, as
earlier, the concept of L-range will be applied to sentential
classes also. We regard ®; as true if and only if every sen-
tence of R; is true (Dg-1). Therefore an L-state makes ®;
true if and only if it makes every sentence of ®; true. Hence
we take as Lr®; the class of all those L-states which belong
to the L-range of every sentence of 8, or, in other words, the
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product of the L-ranges of the sentences of & (Di1b) (in
agreement with T18-A17).

Examples. In § 15 we analyzed five examples of sentences &, to
©:;, belonging to Ssand hence also to Sy. ‘P(a)’ was designated by ‘©,’;
we now designate ‘~P(a)’ by ‘@s’ and ‘Q(b)’ by ‘&;’. The applica-
tion of the rules of L-ranges for S, stated in § 19K yields the following
results. According to rule (4b), Lt&s = —Lr&,. Hence, according to
(4¢), LrS; = Li&; + (—Lr&;) = V,; and L&, = —Lr&, = -V,
= A,. Therefore, according to the preceding considerations and the
subsequent definitions, &, is L-true and &, L-false, in agreement with
the results in § 15. Further, Lrt&, = Lr&; + LrS,; hence Lr&; C
Lr&,; hence ©; T’ S LrS; = Lr&; + Lr€&; = Lr&;; hence ©; and
&, are L-equivalent.

In the following system we have two types of individuals.
The sentences & are the individuals of the first type; the
L-states are the individuals of the second type (for the sake
of simplicity we write ‘sentence’ instead of ‘individual of
the first type’ and ‘L-state’ instead of ‘individual of the
second type’). As primitive terms we take ‘LrSent’ (L-range
for sentences) and ‘rs’ as explained before. We might lay
down some postulates; but they would not be of great im-
portance. We shall see that all theorems wanted can be
proved merely on the basis of the definitions. Among these
theorems we shall find all the postulates of the previous
system for L-concepts (P14-1 to 15, occurring here as T20-
25, 27, 29, 33, 11, 12, 13, 14, 10, 20, IS, 16, 9,17, 18)' There-
fore, all the theorems based on these postulates (T14-1 to
50) also hold in the present system of definitions. [The some-
times disputed postulates P14-14 and 15 also result here
from definitions which seem simple and natural. This fact
seems to lend additional support to the choice of those postu-
lates. The same holds for P14-Er to 3; see below Dg’.]

The rules of formation of the metalanguage in which this
system is formulated are supposed to specify the types for the
two primitive signs in the following way. ‘LrSent’is a func-
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tor whose argument entities are individuals of the first type
and whose values are classes of individuals of the second
type; ‘rs’ is an individual constant of the second type. Hence,
the L-ranges are classes of L-states, and rs is an L-state.

‘LrSent’ is used only in the definition D1 for ‘Lr’ (L-range
for sentences and sentential classes); further on, only ‘Lr’ is
used. (It would also be possible to take ‘Lr’ as primitive
instead of ‘LrSent’, and lay down a postulate instead of
Di1.) We begin with definitions and theorems on the basis of
‘Lr’ alone. This includes the L-concepts. Then we shall
add ‘rs’ and thereby come to the radical concepts. Thus,
from a certain point of view, the L-concepts apnear simpler
than the radical concepts.

D20-1.
a. LI’@.‘ (1n S) =Dt LrSent@.-.
b. Lr®; (in S) =p¢ the product of the classes
LrSent®; for ~ll sentences ©; of fi.

T20-1 (lemma). If &; € &;, Lr®; CLr&;. (From D1.)

T20-2 (lemma). If Lr¥; C Lr&; for every sentence &;
of &;, then Lr&; C Lr®;. (From D1.)

T20-3. Lr(R; + ;) = LrR; X Lr&;. (From Dib.)

D20-3. V, (the universal L-range in S) =p, the class
of all L-states (i.e. the universal class of the second type of
individuals).

T20-5 (lemma). For every ¥, LrZ; CV,. (From D3.)

D20-4. A, (the null L-range in S) =p the null class

(of L-states).
T20-6 (lemma). For every T;, A, CLrZ;. (From Dg.)

+D20-5. ¢;is L-true (m S) =pt LrT; = V..
T20-9. If every sentence of &; is L-true, ®; is L-true.
(From Ds, D1.)
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+D20-6. T;is L-false (in S) =p¢LrT; = A,
+D20-7. &, T I; (inS) =pt Lrg; C Lrg;.
T20-10 (lemma). T; T T;ifand onlyif —Lrg; + Lrg;
=V,. (From D7, D3.)
T20-11. L-implication is transitive. (From D7.)
T20-12. If ;7 T; and T; is L-true, T; is L-true.
(From D7, Ds.)
T20-13. If ¢, ¥ T; and T, is L-false, T; is L-false.
(From D7, D6.)
T20-14. For every &;, &; T ;. (From D7.)
T20-15. If &; e R, then &; ¥ &;. (From Ti1, D7.)
T20-16. If T; T every sentence of &, then T; T R;.
(From T2, D7.)
+T20-17. If T; is L-true, then every ¥; ¥ ;. (From
Ds, D7.)
+T20-18. If g, is L-false, then ¥; T every ¥;. (From
D6, D7.)

+D20-8. ¥; is L-equivalent to T; (in S) =p
Lrg; = erj.
T20-19. T,is L-equivalent to T; if and only if T; ¥ T;
and §; T T.. (From D8, D7.)

D20-9. ¢; is L-disjunct with &; (in S) =p¢
Ll't.' + LI‘I,' = V,. ,

T20-20. If T, is L-true, T; and T; are L-disjunct (with
one another). (From Ds, Dg.)

D20-10. I; is L-exclusive of T; (in S) =p
Lr&; X erj = A,

D20-11. g; is L-non-equivalent to I; =p¢
Lre; = —er,-.

T20-22. g, is L-non-equivalent to ; if and only if T;
is both L-disjunct and L-exclusive of ¥;. (From D11, g and
10.)
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T20-23. If T, is L-non-equivalent both to ¥; and to
2, then T; is L-equivalent to ¥;. (From D11, D8.)

If the concept ‘L-disjunct’ is applied not only to two members but
to the sentences or sentential classes of any, possibly infinite, class D%
(see remarks to P14-E1 to 3), then D209 is to be replaced by the
following definition.

D20-9'. The elements (sentences or sentential classes) of IMN; are
L-disjunct with one another =p; the sum of the L-ranges of the ele-

ments of M; is V,.
On the basis of Do’ together with the other definitions stated above,

the postulates P14—E1 to 3 can easily be proved.

The following definitions of radical concepts make use of
‘rs’ also.
+D20-13. ¢;is true (in S) =psrs eLrZ;
T20-25. If T;is L-true, ¥, is true. (From D5, D13.)

D20-14. g;is false (in S) =p¢ T, is not true.

T20-26. T, is false if and only if not rs e Lr;, hence if
and only if rs ¢ —Lr¥,. (lrom Dig, D13.)

T20-27. If g, is L-false, ; is false. (From D6, T26.)

D20-15. T; is an implicate of T; (T; — T;) (in S)
=pr ¥; is false or ¥; is true (or both).

T20-28. T; — T; if and only if rse(—LrZ; + Lrg;).
(From D15, T26, D13.)

T20-29. If &; © T;, then T, —» ;. (From Tio, T28.)

D20-16. T; is equivalent to T; (in S) =p¢ both are
true or both are false.

T20-30. T;and T, are equivalent (to one another) if and
only if T; —» ¥; and T; —» .. (From D16, D1s.)

T20-31. If T;and T;are L-equivalent, they are equiva-
lent. (From Tig, T29, T30.)

D20-17. T;is disjunct with €, (in S) =p¢ at least one
of them is true.
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T20-32. T, and I; are disjunct (with one another) if
and only if rs e Lr¥; + LrZ;. (From D13, D17.)

T20-33. If T, and T; are L-disjunct, they are disjunct.
(From Do, T32.)

D20-18. g;is exclusive of T; (in S) =ps at least one of
them is false.

T20-35. If T, and ¥; are L-exclusive, they are exclu-
sive. (From Dio, 18, 14, 13.)

T20-36. If T;and T; are L-non-equivalent, then one of
them is true and one is false; hence they are not equivalent.
(From D11, 13, 14, 16.)

The definitions of radical terms on the basis of ‘true’ in
the present system (D14 to 18) are in accordance with the
definitions of the same terms in § 9. There we defined more
terms; their definitions (Dg-7 to 9) may be added to the
present system also. Then all theorems of the former sys-
tem (Tg-1 to 50) hold here too, because they are based only
on the definitions without postulates. IFurthermore, the
definitions in § 14 of other L-terms may here be added. Then
the present system contains those of § g and § 14; it may be
further supplemented by the definitions and theorems of
the next section.

§21. F-Concepts

If a sentence is neither L-true nor L-false, then we cannot
determine its truth-value by the help of the semantical rules
alone but we need some knowledge of relevant facts. There-
fore, the sentences of this kind are called factual (‘synthetic’,
in traditional terminology). An F-term (e.g. ‘F-true’, for
‘factually true’) is applied if the corresponding radical term
(‘“true’) holds but the corresponding L-term (‘L-true’) does
not. Some F-terms are defined in accordance with this con-
vention, and theorems are stated for them.

If the L-terms with respect to a semantical system S are
defined in such a way that the requirement of adequacy
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(§ 16) is fulfilled, then the L-determinate sentences (D14-1)
are those whose truth-values can be determined on the basis
of the semantical rules alone. For the other sentences, the
rules do not suffice; we must use some knowledge about
something outside of language, which we may call knowledge
of facts. Therefore the sentences which are not L-deter-
minate have factual content, i.e. they assert something about
facts, namely those facts upon which their truth-values de-
pend. Therefore we shall cal] these sentences F-determinate
(i.e. factually determinate) or simply factual (D1; compare
the terminological remarks in § 37). In traditional termi-
nology they are called synthetic (in the sense of being neither
analytic nor contradictory). If a factual sentence is true,
it is true by reasons of fact (as against merely logical reasons
represented by the semantical rules); it may therefore be
called factually true or F-true (D2). If a factual sentence is
false, we call it F-false (D3). On the basis of these considera-
tions we lay down the follo ving definitions for F-concepts.

+D21-1. ¢; is (L-indeterminate or F-determinate or)
factual (in S) =p¢ T, is not L-determinate.
+D21-2. ¢, is F-true (in S) =p; E; is true but not
L-true.
T21-5. T;is F-trueif and only if T;is factual and true.
(From D1 and 2.)
T21-6. R;is F-true if and only if every sentence of &;
is true and at least one of them F-true. (From D2, Dg-1,
T14-20.)

+D21-3. T; is F-false (in S) =p; T, is false but not
L-false.
T21-9. ¢, is F-false if and only if T; is factual and
false. (From Dr and 3.)
T21-10. g, is factual if and only if g, is F-true or
F-false. (From D1, 2, 3.)
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T21-11. g;is not both F-true and F-false. (From D2
and 3, Tg—2.)
T21-12. If R; is F-false, then
a. At least one sentence of ®; is false.
b. No sentence of ®; is L-false.
¢. No sub-class of ®; is L-false.
(From Tg-1; T14-11; T14-13.)

In an analogous way, we may introduce, for any L-term,
a corresponding F-term. If there is a radical term corre-
sponding to the L-term, then the F-term applies if the cor-
responding radical term applies but the L-term does not.
Hence in this case the definition for the F-term may be
stated in the form ‘F-... =p¢...and not L-...”. We
shall later define a few more F-terms.

On the basis of the definitions given, we have in general
the following classification of the semtences of a semantical
system S:

true false

A A
r N 7 N

L-true F-true F-false L-false

J

factual

This schema, however, often degenerates. In a particular
system, any one or two or three of the four kinds shown in the
schema may be empty.

The diagram also represents in general the classification
of sentential classes. Here, any one or two or three of the
four fields may be empty, except that of L-true classes, be-
cause in any system S A is L-true (T14-33) even if S does not
contain any L-true sentences. And in still another point
the diagrams for sentences and for classes (in S) may differ.
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There may be an L-false class in S even if there is no L-false
sentence in S.

Example. Let us construct the system Ss out of Sz (§§ 8 and 15)
by dropping the sign of disjunction ‘V ’ and the rules referring to it
(2c and 4c). Then all sentences of S; are factual. But besides the
L-true class A there are L-false classes, e.g. any class of the form
(&, ~&;}.

D21-5. T; is an F-implicate of &, (T; F-implies I;;
T F EI,-) (11'1 S) =pt T; —> IT; but not ¢; T z;.
T21-20. If T; ¥ T, then the following holds:
a (lemma). ¢;is false, or ; is true.
b. €. is not L-false.
c. T;is not L-true.
d. €;is F-false or ; is F-true.
(From Dgs, Dg-3; P14-15; P14-14; a, b, c.)

D21-6. I;is F-equivalent to T; (in S) =p¢ T, is equiv-
alent, but not L-equivalen:, to ;.

T21-25.

a. If T, 7T, and T, ¥ T, then T, and T, are
F-equivalent to one another.

b. If T,and ¥, are F-equivalent to one another,
each of them is an L- or an F-implicate of the
other, and at least one of them an F-implicate.

(From Tg-20b, P14—9, Ds.)

The converse of (a) does not hold generally, but only the
weaker theorem (b). While equivalence is the same as
mutual implication and L-equivalence is the same as mutual
L-implication, F-equivalence is a weaker concept than
mutual F-implication. F-equivalence holds also in the case
where F-implication holds in one direction and L-implication
in the other.

T21-26. If T; and T; are F-equivalent (to one another),
then the following holds:
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a (lemma). Both are true or both are false.

b. Not both are L-true.

c. Not both are L-false.

d. Bothare true and at least one F-true, or both are
false and at least one F-false.

(From Dg~4; T14-52; T14-53; (a). (b), (c).)

D21-7. T;is F-disjunct with ¢; (in S) =p¢ T; is disjunct
but not L-disjunct with T;.
T21-31. If T, and I; are F-disjunct (with one another),
then the following holds:
a (lemma). At least one of them is true.
b. Neither is L-true.
c. At least one is F-true.
(From Dg-5; P14-10; (a), (b).)

D21-8. T.is F-exclusive of T, (in S) =p¢ I, is exclusive
but not L-exclusive of T;.
T21-36. If T, and T; are F-exclusive (of one another),
then:
a (lemma). At least one of them is false.
b. Neither is L-false.
c. At least one is F-false.
(From Dg—6; T14-71; (a), (b).)

D21-10. ¥, is F-interchangeable with ¥; (in S) =p; ¥; is
interchangeable but not L-interchangeable with ;.

In analogy to the definitions given here, definitions for
other F-terms can be laid down corresponding to L-terms
and in most cases also to radical terms previously explaine
[e.g. ‘F-designation’, ‘F-fulfillment’, ‘F-determination’ (cf
an attribute by a sentential function), ‘F-synonymous’,
‘F-universal’, ‘F-empty’, ‘F-non-empty’, etc.; for the cor-
responding L-terms, see § 15.] (In those cases where only
the L-concept is important, while the radical concept is
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trivial, the F-concept would not have much interest; this
seems to be the case e.g. with ‘F-dependent’ and ‘F-com-
plete’, perhaps also with ‘F-comprehensive’.)

§22. Characteristic Sentences

For some quadruples of concepts (radical, L-, F-, and
C-concepts, the last belonging to syntax) characteristic sentences
are given. The radical, L-, F-, or C-concept holds in a certain
case if the characteristic sentence constructed for that case is
true, L-true, F-true, or C-true respectively.

The theorems of this section state sufficient and necessary
conditions for some radical concepts and the corresponding
F-, L, and C-concepts. (The C-concepts will be explained
later; they belong to syntax.) These conditions are not appli-
cable in all systems but only in those containing certain signs
(propositional connectives, universal or existential operator,
sign of identity); these signs occur in most of the language
systems dealt with in mod. rn logic.

Every one of the theorems containing the prefix variable
¢ X-’ is an abbreviated combination for four theorems; these
are found by substituting for ‘ X-’ the following four prefixes
in turn: the null prefix (yielding e.g. ‘true’ from ‘ X-true’),
the prefixes ‘L-’, ‘F-’; and ‘C-’. We use the customary
signs of symbolic logic (see § 6). For each of the four sets
of conditions there is one basic term, namely ‘ X-true’ (i.e.
‘true’ for the radical terms, ‘L-true’ for the L-terms, etc.),
applied to sentences only.

The combined condition for each quadruple of concepts
can be formulated in this way: ‘The sentence...is X-
true’. Thus, there is for the quadruple of concepts in ques-
tion, with respect to any case of application, a certain
sentence — we call it the characteristic sentence for these
concepts (with respect to that case) — such that the radical
concept holds in the case in question if (and only if) the
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characteristic sentence is true, the L-concept if it is L-true,
the F-concept if it is F-true (and in syntax the C-concept
if it is C-true). For the sake of brevity we omit the reference
to the semantical or syntactical system (i.e. the phrase ‘in S’
or ‘in K’ respectively).

The subsequent table does not contain the full formulation
of the theorems, but it gives the characteristic sentences for
the quadruples of concepts. The theorems can easily be con-
structed in analogy to the full formulation given for Tz and 2.
To simplify matters, the table does not use German letters
but signs of the object language in quotes. These are ex-
amples, but the theorems are meant as general; hence in the
place of ‘A’ or ‘B’ any closed sentence (i.e. one not contain-
ing a free variable) may be taken; instead of the examples
with ‘P’ and ‘Q’ analogous cases with predicates of any de-
gree; instead of ‘R’ any predicate of degree two; instead of
‘a’ and ‘b’ any individual constants.

Proofs for the theorems are not given here. They would
have to be based on the rules of the system in question with
respect to the signs referred to in the condition and on an ade-
quate definition for the concept for which the condition is
stated. The practical value of these theorems is that they
show a convenient way to find out whether or not in a given
case the concept in question applies. Each of the conditions
may also be taken as a definiens for the concept in question;
it could then be shown that the resulting definitions are
adequate. (With respect to T1 to 5 taken as definitions, the
disadvantage would be that the concepts would be defined
only for (closed) sentences, not for sentential classes.)

Full formulation of the first two theorems:

T22-1. A closed sentence &; is X-false if and only if ~&;
is X-true.

T22-2. Two closed sentences &; and ©; are X-equivalent
if and only if &;=&; is X-true.
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THEOREM CONCEPT CHARACTERISTIC
NUMBER SENTENCE
1, Concepts applicable to sentences.
T22-1 ‘A’ is X-false ‘~A?
T22-2 ‘A’ and ‘B’ are X-equivalent to one an-
other ‘AmB’
13T : : CA? ‘A ) B’
T22-3 B’ is an X-implicate of ‘A {‘~AVB'
T22-4 ‘A’ and ‘B’ are X-disjunct ‘AVB’
g A ' B ’
T22-5 ‘A’ and ‘B’ are X-exclusive {‘ ~(A+B)’
‘~AVY ~B’
T22-6 ‘A’ and ‘B’ are X-non-equivalent ‘~(A = B)’
2. Concepts applicable to predicates of
any degree #.
T22-10 | ‘P’ is X-universal ‘(x)P(z:) ! )
prs ‘(x) (~P(x))’
T2-11 | ‘P’ is X-empty {.= Eaehad
T22-12 ‘P’ is X-non-empty ‘(dx)P(x)’
T22-13 | ‘P’ and ‘Q’ are X-equiv. lent “(2) (P(x) = Q(2))’
T22-14 | ‘Q’is an X-implicate of ‘P’ ‘() (P(2) I Q(x))’
T22-15 | ‘P’ and ‘Q’ are X-disjunct ‘() (P(x) VlQ(x)))”
» ‘pr ITeY) - : ‘(x) P(x) Q(x
T22-16 P’ and ‘Q’ are X-exclusive () é~ (P() « O(=)))’
3. Concepts applicable to predicates of
degree two.
T22-20 | ‘R’ is X-symmelric ‘(=) 0 (R(z,9) I R(»,2))’
T22-21 | ‘R’ is X-non-symmeiric ‘~(x) () (R(x,3) I R(y,x);'
T22-22 | ‘R’ is X-asymmeiric ‘() () (R(z,9) I ~R(3,%))’
In an analogous way, characteristic sen-
tences for the other concepts of the
theory of relations may be set up (‘re-
flexive’, ‘transitive’, ‘one-many’,
etc.).
4. Concepts applicable to éndividual
constants. '
T22-30 | ‘a’and ‘b’ are X-synonymous ‘am=b’
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There are no characteristic sentences for ‘ X-determinate’,
¢ X-dependent’, ‘ X-complete’, ¢ X-comprehensive’, and ‘ X-
perfect’. For the first three of these, the radical concept is
of no interest since it is universal; hence, the F-concept is not
of much interest either, since it coincides with the nega-
tion of the L-concept. Only the L- and the C-concepts
have practical value here.

§ 23. L-Content

The concept of the L-content of a sentence &, (Lc@;) is re-
lated to that of the L-range. Two postulates for L-content are
laid down (P1 and 2). Several ways are shown for defining
a concept of L-content which satisfies the postulates. Accord-
ing to these definitions, an L-content is a class whose elements
are either in the realm of designata (namely, L-states;
DBi1) or in the realm of expressions (namely, sentences;
DF1, DGr).

We shall explain here the problem of an L-concept which
is in some respects closely related to the concept of L-range.
We shall not try to give here a definitive solution of this
problem any more than we did in the case of the concept
of L-range.

The term ‘content’ is sometimes used in a loose way
meaning something like the strength or assertive power of
a sentence. We say sometimes that the content of a sentence
includes that of another sentence but is larger than this,
or that the first sentence is stronger than the second, mean-
ing by this that the first asserts all that is asserted by the
second and, in addition, something more. We shall now try
to make this way of speaking more precise. We shall use the
term ‘L-content’, because it will turn out that it is an
L-concept and that there is a corresponding syntactical
concept for which we shall use the term ‘C-content’ (§ 32).
Like the other semantical concepts, this concept will here be
applied not only to sentences but also to sentential classes;
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as an abbreviation for ‘the L-content of ¥, in S’ we write
‘LegZ;’ or simply ‘Leg,’.

Before explaining different possibilities of defining con-
cepts of L-content, we shall lay down two postulates stating
properties which any concept of L-content (with respect to
a semantical system S) should have in order to be in accord-
ance with our intention. These postulates still leave open
not only different formulations of definitions but essentially
different concepts to be defined. Since it is customary to
speak of one content’s being contained in another one, we
shall construe the L-contents as classes; but we leave open
the question of what kind of entities are to be ‘aken as ele-
ments of these classes. The following considerations leading
to the postulates are necessarily vague; they are not in any
sense proofs for the postulates but give only practical justi-
fications for them by making plausible that the postulates
are in agreement with what we vaguely have in mind when
speaking about contents.

1. If the content of ¥; is partly or totally outside that of
T;, then T; asserts, at least partly, something not asserted
by .. This assertion might then be false even if T, is true.
Therefore, in this case, T; is not logically deducible from Z;.
To put it the other way round: if ¥; is logically deducible
from T,, the content of T; must be entirely within that of
T:. This, when expressed in our technical terms, is P1.

2. If the content of ; is contained in that of ¥;, then T;
does not assert anything that was not asserted by ;. Hence
it would be impossible that ; be true and T, false. And this
impossibility is based on logical grounds, namely on the
sense or content of T;and T;, not on any facts. Therefore T;
follows logically from ;. This leads to Pz.

Postulates for L-content
+P23-1. If T 7T I; (m S), then LCI,‘ C Lcg,.
+P23-2. IfLcg; C LeZ, (in S), then T; T ;.
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The following theorems are based on these two postulates
in addition to the earlier postulates, definitions, and theorems
concerning L-concepts (§ 14). L-equivalence coincides with
identity of L-contents (T2). The L-content of A is the
minimum L-content and is contained in any other L-content
(Ts5). It is that of all and only the L-true T (T7). The
L-content of V is the maximum L-content, in which any other
L-content is contained (T6). It is the L-content of all and
only the L-comprehensive T (T8) and of all the L-false T,
and only these, if there are any such (Tg). (For the sake of
brevity we omit references to a system S in the theorems.)

T23-1. Lcg; C Lcg; if and only if ;7 &;. (From
P1 and 2.)

+T23-2. LcZ; = LcT; if and only if T; and T, are
L-equivalent. (From T1, P14-9.)

T23-5. For every ¥;, LcAC Lcg;. (From Ti4-32, P1.)

T23-6. For every ¥;, LcZ; C LcV. (From Ti4-42, P1.)

T23-7. LcE; = LcA if and only if €;is L-true. (From
Tz, T14-51b.)

T23-8. LcZ; = LcV if and only if €, is L-comprehen-
sive. (From Tr14-102b, T2.)

T23-9. If S contains an L-false T, then, for every I;,
Le€: = LV if and only if g, is L-false. (From T8, Ti4-
107b.)

If we compare the concept of L-content with that of
L-range (§§ 18, 19) we find a striking analogy or, rather,
a duality, inasmuch as the relation of inclusion among
L-contents is always inverse to that among L-ranges (T20),
and hence identity of L-contents coincides with identity of
L-ranges (T21).

+T23-20. Lcg; C LeT,if and only if Lr T, € Lrg;. (From
Ti1, T18-1.) ‘

+T23-21. Lc®; = LeT; if and only if LrZ; = Lrg;
(From T20.)
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This result (T20) suggests a definition for ‘L-content’
which is in accordance with the postulates. If we suppose
that the metalanguage M contains the concepts ‘L-state’ and
‘L-range’ as explained earlier (D18-B1, 4 and 5), then we may
define Lc®; as the class of those L-states which do not
L-imply Z; or, in other words, the class of those L-states
which do not belong to Lrg;:

+D23-Bl. LcZ; (1n S) =ps —Lr%;.

This definition would accord well with our intention con-
cerning the concept of L-content. For the assertive power
of a sentence consists in its excluding certain states of affairs;
the more it excludes, the more it asserts (Karl Popper).
Hence the class of the L-states excluded by T; may well serve
as a representation of the assertive power of ;. The fol-
lowing theorems hold on the basis of DB1 and theorems in
§ 18B.

+T23-B1. LcT; C Lcg; if and only if T; ¥ ;. (From
DBi1, T18-B18 and 19.)

T23-B2. LcZ; =A, if and only if T;is L-true. (From
DB1, T18-B2g.)

T23-B3. LcZ; =V if and only if T; is L-false. (From
DB1, T18-B30.)

The concept defined by DB1 fulfills the postulates P1 and
2 (TB1). We need not base this concept of L-content on that
of L-range (as is done in DB1). We may instead introduce it
independently by rules of L-contents analogous to the rules
of L-ranges. The other L-concepts can then be defined on
the basis of L-content in analogy to the way in which we
defined them previously on the basis of ‘L-range’ (§ 20). If
we suppose that, in addition to ‘L-content’, the term ‘rs’,
designating the real L-state, is given, we may define here the
radical concepts too in analogy to D2o-13ff. Thus e.g.
T, is defined as true if the real L-state is not one of the
L-states excluded by ¥, and hence does not belong to LcT;:

+D23-B2. g, is frue (in S) =p¢not rs e LcZ..
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We have remarked previously that a concept ‘L-range’ based on
the concept ‘L-state’ — where an L-state is something not on the side
of the language but on the side of the designata — requires a non-
extensional metalanguage (§ 18). The same holds for a concept
‘L-content’ defined on the same basis. Further, we have discussed pos-
sibilities of defining a concept ‘L-range’ in an extensional language
(§ 19). An analogous procedure is possible with respect to ‘L-content’.

In the following we shall show two ways for defining a concept
‘L-content’ within an extensional language (DF1 and DG1) on the
basis of ‘L-implicate’ in such a way that our earlier postulates (P1 and
2) are fulfilled. It seems natural to characterize the assertive power
of T; by stating which sentences follow from ;. This leads to DF1.

+D23-F1. LcT; (in S) =p¢ the class of those sentences (in S)
which are L-implicates of T,.

+T23-F1. If T; T T, then LcT; C L. (From DFi, Pig-5.)

+T23-F2. If LcT; C LT, then T; P ;. (From DF1, Pis-8,
11, and 12.)

TF1 and 2 show that the concept ‘L-content’ as defined by DFx
fulfills the postulates Pr and 2 and hence is in accordance with our
intentions. Therefore, the theorems based above on P1 and 2 hold
here, too. Since in DF1 LcT; is defined as a sentential class, it has the
same status here as T; itself. The following theorems are based on this
special feature.

T23-F3. LcA = the class of the L-true sentences (of S). (From
DF1, T14-34.)

+T23-F4. LcT; = the class of the L-true sentences (of S) if and

only if T; is L-true. (From TF3, T14—51b, T2.)

T23-F5. LcV = V. (From DF1, T14—41.)

.T23-F6. LcT; = V if and only if T; is L-comprehensive. (From

TFs, D1g4-s, T2.)

T23-F7. If S contains an L-false T;, then for every T;, LcT; =
V if and only if T, is L-false. (From TF6, T14-107b.)

T23-F11. &;¢LcS;. (From DF1, P14-8.)

T23-F12. #;CLc®:. (From DF1, P14-11.)

T23-F13. ; and LcS; are L-equivalent. (From TF1x and 12,
P14-11 and 12; P14-12.)

T23-F16. Lc(LcT;) = LcT;i. (From DFr, Pi4-3.)

The following theorems show the close connection between the con-
cept ‘L-content’ as defined by DF1 and the concept ‘L-perfect’

(D14-7):
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T23-F20. Each of the following conditions is a sufficient and
necessary condition for ®; to be L-perfect:
a. LcR:CR..
b. Lc® P = .Q.'.
(From D14-7, DF1; TF12, (a).)
)T23-F21. For every ¥, LcT; is L-perfect. (From DFr, Ti4-
118.

The consideration that among the L-implicates of ; the L-true
sentences are not characteristic for the content of T because they are
L-implicates of every ¥; may suggest the following definition DGr as
an alternative to DF1. The resulting theorem TG16 also speaks, per-
haps, in favor of DG1; on the other hand, this definition is somewhat
less simple than DF1.

+D23-Gl. LcZ; (in S) =p; the class of those sentences (of S)
which are L-implicates of ¥; and not L-true.

The following theorems are based on this definition:

T23-G1 (lemma). If &; is not L-true, &; e Lc®;. (From
DGi, P14-8.)
T23-G2 (lemma). If LcR; CLcE;, then T; T K.

Proof. Let &: be the class of the L-true sentences of &;, and &, the
class of the non-L-true sentences of £;. Hence ®; = & + &, Then
frisL-true (P14-13); hence §; T &; (T14-36). K, CLcR; (P14-11),
hence 8; CLcT;, T T 1 (P1g4-12), and T; T 8; (P14-3).

T23-G3. If LcT,;CLcT,, then T; T T;. (For §; as T;, this
follows from TGz2; for a non-L-true &;, from TGr; for an T.-true &;,
from DG1, P14-14.)

T23-G4. If T; T T, then LcT;CLcT;. (From DGr, P14-35.)

+T23-G5. LcT; CLcT; if and only if T;  T;. (From TG3,
TGs.)

Hereby it is shown that the concept ‘L-content’ as defined here also
fulfills the postulates P1 and 2. Therefore the theorems based on P1
and 2 hold here, too. Further, we have here the following theorems:

T23-G10 (lemma). If &; is not L-true and &; ¢ &;, then
& ¢ LcR;. (From DGr, Pi14-11.)

T23-Gl11. If no sentence of &; is L-true, then £; CLc®:. (From
TGro.)

T23-G12 (lemma). If §;is not L-true, then there is an &; such
that &; ¢ ; and &, ¢ LcR;. (From P14-13, TGro.)

T23-G13. Lc&; T €. (From DG, P14-8, 11, 14.)
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T23-Gl14. LcA = A, (From DGr, T14-34.)
T23-G15 (lemma). If T; is not L-true, then not Lc¥; =
(From DG1, P14-8, TG12.)
+T23-G16. LcT; = A if and only if E; is L-true. (From TGrs,
P14-6.)
+T23-G20. LcV = the class of the non-L-true sentences. (From
DGz, T14-41.)
T23-G25 (lemma). T; T LcT;. (From DGi, P1g-12.)
T23-G26. If &; ¢ Ri, then Le®: T S;. (From DGi, Prg-11,
Pig4-14.)

T23-G27 (lemma). LcZT; T i (From TG26, P14-12, TG13.)
+T23-G28. T;and LcT; are L-equivalent. (From TGz3, 27.)
+T23-G35. Lc(LcT:) = LcT;.  (From DGi, Pig-11; TGas,

P14-5.)

A comparison of the theorems holding in each of the two ways just
explained for defining ‘L-content’ (DF1 and DG1) shows the follow-
ing. In the first case, the class of L-true sentences is contained in
every L-content (TF3, Ts); hence (provided there are L-true sen-
tences in S) there is no null L-content, in contradistinction to the
second case (TGi4). There is a certain relationship between TFs
and TG4, and between TF3 and TG2o. The two ways agree in cer-
tain features (e.g. TF13 and TG28; TF16 and TG35). On the other
hand, TF11 and TF12 do not hold in the second case.

The possibility of simple definitions for ‘L-content’ (DF1, DGI)
in combination with the relation between L-contents and L-ranges
(T20) suggests equally simple ways for defining ‘L-range’ in such a
way that Lr¥; is a sentential class. Because of Tzo0, we defined LcT;
above as the complement of LrT; (DB1), both on the side of the
designata. Now, on the side of the expressions of the object language,
we may take the inverse procedure and define Lr¥; as the complement
of LcT;, the latter either defined by DF1 or by DGr. Thus we come
to the two procedures F and G as explained in § 19.

Note on L-semantics (added 1958). The problems of the L-concepts are
discussed in greater detail in [Meaning]; the L-concepts are defined by a
method similar to, but simpler than procedure E in § 19. — If logical relations
hold between the primitive descriptive constants (as discussed in the last para-
graph in § 16, 2a), then these relations must be expressed by meaning postulates
(see [Postulates]).



D. SYNTAX

This chapter deals with pure syntax, i.e. the theory of syn-
tactical systems or calculi. The rules of a calculus determine
the procedure of formal deduction, i.e. of the construction of
proofs and derivations. We shall first use the ordinary termi-
nology (§§ 25 to 27) and then introduce the C-terminology (§ 28,
e.g. ‘C-false’ for ‘refutable’), which shows the close analogy
between syntax and semantics, especially L-semantics.

§ 24. Calculi

A syntactical system or calcwlus K is a system of formal
rules. It consists of a classification of signs, the riles of forma-
tion (defining ‘sentence in K’), and the rules of deduction.
The rules of deduction usually consist of primitive sentences
and rules of inference (defining ‘directly derivable in K’).
Sometimes, K contains also rules of refutation (defining
‘directly refutable in K’). If K contains definitions they may
be regarded as additioral rules of deduction.

The last two chapters (B and C) dealt with semantics and»
more precisely, with pure semantics, i.e. the analysis of
semantical systems, systems of semantical rules, in contra-
distinction to descriptive semantics, i.e. the analysis of the
semantical features of empirically given languages (§s).
Now we come to the third branch of semiotic, to syntax, the
field of investigation restricted to formal analysis without
referring either to the users of the language or to the desig-
nata of the expressions (§ 4). And here, again, not empiri-
cally given languages but systems of rules will be studied;
thus our field will be not descriptive syntax but pure syntax
(§ 5). The system of rules may either be freely invented or
constructed with regard to an empirically given language.
The relation to this language is in this case analogous to the
relation previously explained between a semantical system
and an empirically given language.
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A system of syntactical rules is called a syntactical system
or a calculus. Systems of this kind have been studied much
more than semantical systems. While the construction and
investigation of semantical systems has begun only in recent
years, calculi have been built and analyzed throughout the
development of modern symbolic logic during the last hun-
dred years, although the formulations have often not strictly
satisfied the requirement of formality. And much older
still is the method of postulate systems, dating back to
Euclid, which prepared the way for the method of calculi.
[For the distinction between a system of postulates or axioms
and a calculus, see [Foundations] § 16; compare § 37, ‘ Primi-
tive Sentence’, and § 38 (f).] For these reasons we may be
much briefer in the following exposition of the syntactical
method than we could in the explanation of semantics.

We shall describe the construction of calculi first in ordi-
nary terminology (in two formulations, formulation A with-
out ‘A’ (8§ 24 and 25), formulation B with ‘A’ (§ 26));
later we shall introduce the C-terms (§ 28). The latter are
convenient because of their analogy with semantical terms,
especially in investigations dealing with both syntax and
semantics. But we do not propose to abolish the ordinary
terminology entirely. Since it is customary and many of its
terms are well-established, it may be kept, at least for purely
syntactical studies.

The first steps of the construction of a calculus K are
similar to those of a semantical system. We must first give
a cdlassification of the signs of K, specifying as many classes
of signs as are necessary for the formulation of the syntactical
rules. Then we lay down the rules of formation for K, in
other words, the definition of ‘sentence in K’. There is a
difference between these rules and the rules of formation of
a semantical system. In the latter rules we may refer to the
designata of the signs, although it is not often done. But in
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the syntactical rules of formation this is not permitted; they
must be formal. They specify which expressions are sen-
tences by describing the kinds of signs occurring and the
order in which they occur. And the definitions of these
kinds, i.e. the classification of signs, must also be strictly
formal. The definition of ‘sentence in K’ is often given in
a recursive form; first some simple forms of sentences are
described, and then certain operations for the construction
of compound sentences out of the initial forms.

The essential part of a calculus consists of the rules of
deduction (or transformation). They describe how proofs
and derivations may be constructed; in other words, they
constitute definitions for ‘provable in K’ and ‘derivable in
K’ and sometimes other concepts. The customary procedure
is this. First, primitive sentences are laid down, either
by an enumeration, or by the stipulation that all sentences
of certain forms are admitted as primitive sentences. In
the latter case (primitive sentential schemata, see e.g.
[Syntax] § 11) the number of primitive sentences may be
transfinite. Secondly, rules of inference are laid down.
They can be formulated in this way: “&; is directly deriva-
ble from ®; if and only if one of the following conditions is
fulfilled”, and then each rule states a formal condition for
f; and &;. Thus, the rules of inference define ‘directly
derivable in K’. Sometimes, but not often, rules of refu-
tation are also laid down, defining ‘directly refutable in
K.

Further, a calculus K may contain definitions. The pur-
pose of a definition is to introduce a new sign on the basis of
the primitive signs of K and the signs defined by earlier
definitions; thus the order of the definitions is essential. A
definition may have the form either of a sentence (in the
case of a recursive definition, several sentences), called a defi-
nition sentence (or defining sentence or definitory sentence) or
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simply definition, or of a rule called a definition rule (or de
fining rule or definitory rule). A definition sentence in K may
be regarded as an additional primitive sentence in K, a
definition rule for K as an additional rule of inference for K.
A definition sentence may, for example, have the form
% =pr A, or A = Ay, or A, = YAy, a definition rule e.g.
¢¢ .. for ‘- - -’ where ‘for’ is short for ‘is short for’ or for
‘is directly C-interchangeable with’. % or ‘. ..’ is called the
definiendum; it contains the sign defined. %, or ‘- - -’ is called
the definiens; it contains only primitive signs and signs defined
by earlier definitions. In addition, the definiendum and the
definiens may and usually do contain free variables. If a defi-
nition is laid down, then it is permissible to replace the defini-
endum in any context by the definiens and vice versa, and to
do the same with any expressions constructed out of the defi-
niendum and the definiens by the same substitutions for the
free variables. In other words, any two expressions of this
kind are C-interchangeable; i.e. any two sentences containing
them and being otherwise alike are directly derivable from
one another. Definitions must fulfill certain requirements
(see [Syntax] §§ 8 and 29) in order to assure (1) translatabil-
ity in both directions, for introducing and for eliminating the
new sign; (2) the C-consistency of the calculus containing
the definition if the original calculus is C-consistent; (3) the
unique interpretation of the defined signs if the primitive
signs are interpreted. For the sake of simplicity, we will
leave aside definitions as parts of calculi in the following
discussions.
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§ 25. Proofs and Derivations

We distinguish between two terminologies for syntax: the
ordinary terminology, using the terms ‘provable’, ‘derivable’,
‘refutable’, etc., and the C-terminology, using instead ‘C-true’,
‘C-implicate’, ‘C-false’, etc. Within the ordinary terminology,
we again distinguish two versions, called formulations A and
B, B being characterized by the use of the null sentential class
A. In this section, formulation A, which is more frequently
used by other authors, is briefly explained. It will, however, not
be used further on in this book.

On the basis of the rules of deduction for a calculus K,
proofs and derivations in K are constructed. The explana-
tions of the method for these constructions can be given in
the form of definitions of the syntactical terms ‘proof in K,
and ‘derivation in K’. These definitions can be stated uni-
formly for all calculi (of the customary kind). Therefore we
may state them as definitions in general syntax, taking
‘sentence’, ‘primitive sent nce’, ‘directly derivable’, and
‘directly refutable’ as basic terms. In special syntax, these
four terms are defined separately for every single calculus,
as indicated above (see the examples in § 27).

There are two ways of formulating syntax, differing in the
use of the terms ‘proof’, ‘provable,’ ‘ derivation’, ‘ derivable’.
We call them formulations A and B. We regard both A and
B as versions of the ordinary terminology, from which we
shall distinguish the new C-terminology (§ 28). Formula-
tion A is based on the following definitions DA1 to 4. Formu-
lation B will be introduced in § 26. In § 27, some examples
of calculi will be exhibited in both formulations. After that,
only formulation B will occasionally be used, in addition to
the prevailing C-terminology. (For terminological remarks
concerning the terms ‘syntax’, ‘formal’, and ‘derivable’,

see § 37.)
D25-A1. A sequence R of sentences in K is a proof in
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K =p¢every sentence &, of R, is either a primitive sentence
in K or directly derivable in K from a class ., of sentences
which precede &, in R;.

D25-A2. &;is provable in K =p; ©; is the last sentence of
a proof in K.

D25-A3. A sequence R; of sentences in K is a derivation
with the premiss-class 8 in K =p; every sentence &, of Ry is
either an element of ®; or a primitive sentence in K or di-
rectly derivable in K from a class & of sentences which
precede &; in R:.

D25-A4. ©; is derivable from ®; in K =p; &; is the last
sentence of a derivation with the premiss-class &; in K.

The terms ‘refutable’, ‘decidable’, and ‘undecidable’ may
be defined here on the basis of ‘directly refutable’ and the
terms just defined, in the same way in which we shall define
them later in formulation B (D26-6 to 8).

A sequence consisting of only one primitive sentence is,
according to DA1, also a proof. This leads to TAr.

T25-Al. Every primitive sentence in K is provable in K.

Therefore, in analogy to the term ‘directly derivable’,
we might use the term ‘directly provable’ instead of ‘primi-
tive sentence’.

When a rule of inference states that &; is directly derivable from
&, if such and such a condition is fulfilled, the premiss-class £; may
be either finite or transfinite. The rule is accordingly called a finite
or a transfinite rule. Till recently, all rules applied in systems of
modern logic have been finite; ; usually contains one or two sentences.
In recent years, however, it has been found that transfinite rules can
be applied, and that they are useful and even necessary for certain
purposes. On the other hand, calculi containing transfinite rules are
more complicated than other ones and have in some respects funda-
mentally different features (on transfinite rules see [Syntax] §§ 14 and
34a, [Foundations] § 10). It is planned for a later volume of these
studies to explain and discuss the use of transfinite rules from the
point of view of syntax and semantics. [Up to the present, the appli-
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cation of transfinite rules has not been made in the form of proofs and
derivations, i.e. in sequences of sentences, but rather in a quite dif-
ferent form of deduction, e.g. in series of sentential classes (conse-
quence-series, see e.g. [Syntax] § 14) or without any sequence or
series, with the help of the concept ‘sentential class closed with respect
to direct derivability’. It will, however, be shown that the applica-
tion of transfinite rules can also be made in the form of transfinite
proofs or derivations. The definitions DA1 to 4 given above are then
sufficient to cover the use of transfinite rules also; by a (finite or
transfinite) sequence we understand a one-many correlation of sen-
tences with the ordinal numbers of a (finite or transfinite) initial seg-
ment of the series of ordinal numbers. Hence a proof or derivation in
which no repetition of sentences occurs may be regarded as a well-
ordered series of sentences. |

§ 26. The Null Sentential Class in Syntax

In formulation B, the null semtential class A is used in the
following way. Instead of (or besides) ‘primitive sentence’ we
say ‘directly derivable from A’; instead of ‘provable’, ‘deriv-
able from A’. In our s.bsequent discussions, formulation B
will occasionally be used in addition to the C-terminology,
which will be introduced later and then be used chiefly.

We cannot deal with syntax or, in other words, with formal
logic, with deduction, by merely speaking about sentences;
we have to speak about sentential classes also. (This fact is
often not sufficiently noticed.) When this is done, there is
no reason for not using the concept of the null class which
has proved itself so very useful in the theory of classes and
all its applications. We have seen the role of the null sen-
tential class A in semantics (Dg-7), especially in connection
with L-concepts (see e.g. Ti4—30ff). In syntax likewise, the
use of this concept leads to a simplification of definitions
and theorems.

According to D25-A3, a derivation with the premiss-class
A is a sequence %; of sentences such that every sentence of
®u is either a primitive sentence or directly derivable from
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a class of preceding sentences; hence, according to D25-A1,
it is the same as a proof (TA1).

T26-A1. R, is a proof in K if and only if R is a derivation
in K with the premiss-class A. (From D25-Ar and 3.)

T26-A2. ©;is provable in K if and only if &, is derivable
from A in K. (From TA1, D25-Az2.)

On the basis of these results it will be possible in general syn-
tax to define ‘ proof’ and ‘provable’ by ‘ derivation’ (D3 and 5).

T26-A3. Every primitive sentence (in K) is derivable
from A. (From T25-A1 and T26-Az2.)

Therefore we may use the term ‘directly derivable from
A’ instead of ‘primitive sentence’. This has the advantage
that the two parts of the rules of deduction assume the same
form. Seen from this point of view, a primitive sentence is
nothing else than the special case of a rule of inference where
R:is A. (As an example, see § 27, formulation IIIB of the
rules of deduction for K;.) In this way, we come to a slight
modification of the formulation A, explained in § 25; we call
it formulation B (of the ordinary terminology).

If we want to construct a system of general syntax, then the
preceding considerations suggest that in formulation B we
take ‘directly derivable’ as primitive term, in addition to
‘sentence’ and ‘directly refutable’. [Another concept for
which we shall later introduce the term ‘C-disjunct’ would
have to be taken as primitive also because it is not definable
by those mentioned; but we shall not make use of it at
present.] In special syntax, these terms are defined by the
rules of a calculus (see the examples in § 27); here we take
them as given. We take ‘directly refutable &;’ as primitive
because ‘directly refutable &,’ is definable by it, but not
vice versa. ‘Directly derivable’ is taken as a relation be-
tween a sentence and a class. We define ‘primitive sentence’
only in order to come into accordance with formulation A;
it will not be used, however, in subsequent definitions.
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D26-1. ©; is a primitive sentence (in K) =p; ; is di-
rectly derivable from A.
+D26-2. R, is a derivation with the premiss-class R
(in K) =ps R is a sequence of sentences such that every
sentence &, of RNy is either an element of &; or directly deriv-
able from a class ®., of sentences which precede &, in %;.
+D26-3. Ry is a proof (in K) =p; R, is a derivation with
the premiss-class A.
+D26-4.
a. ©; is derivable from ®; (in K) =p; ©; is the
last sentence in a derivation with the premiss-
class R;.
b. ®; is derivable from ®; (in K) =p; every sen-
tence of &; is derivable from f;.
c. T;is derivable from &; (in K) =ps T; is deriva-
ble from {&.}.
+D26-5. ¥;is provable (in K) =p; T;is derivable from A.
If &; has been laid dow. as directly refutable, then a
derivation leading from &; to &; could be regarded as a refu-
tation for ®; (corresponding to the modus tollens in tradi-
tional logic). This suggests the following definition for
refutable.
+D26-6. T, is refutable (in K) =p; there is a T; which
is directly refutable and derivable from ..
D26-7. T;is decidable (in K) =p; T;is either provable
or refutable.
D26-8. T;is undecidable (in K) =p; T, is not decid-
able.

We shall mention a few very simple theorems which follow
from the definitions given.

+T26-1. &; is provable if and only if &; is the last sen-
tence of a proof. (From Ds, 4, 3.)

+T26-2. Derivability is a. reflexive, b. transitive. (From
D4 and 2.)
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T26-3. If T; is provable and ¥; is derivable from E;,
then T; is also provable. (From Ds, T2b.)

§ 27. Examples of Calculi

Two calculi, X; and K, are given as examples, in both
formulations A and B. X, and K, are similar to the ordinary
propositional calculus, but K, contains, in addition, a rule of
refutation. A proof and two derivations in these calculi are
constructed as examples.

We shall construct two calculi K, and K, similar to each other
which possess the same signs and sentences as the semantical system
Ss (§8 8 and 15) and have, in addition, a close relationship to S; in
another respect that will be discussed later. Because of the accord-
ance with S;, we need not formulate the classification of signs and the
rules of formation here again; they have already been formulated in a
formal way for Sz. The rules of deduction are given in the two formu-
lations A (§ 25) and B (with ‘A’, § 26). The rules of deduction are
those of the propositional calculus in the form of Hilbert and Bernays
(see Hilbert and Ackermann, Grundziige d. theor. Logik). There is one
rule of inference (IITA2); it corresponds to the modus ponens of tra-
ditional logic. This rule is usually given in the form “From &,2&;
and &, ©; follows”, or, if there is no sign of implication but a sign of
disjunction, as in K,, “From ~&;V &; and &, ©; follows”. The
formulation given below is the same, only brought into the form of a
definition for ‘directly derivable’. A practical justification of the rules
of deduction of K, will be given later by a comparison of K, with S,

(§ 35)-

Rules of the calculus K,
I. Classification of signs of K,: the same as in S; (three individual
constants, two predicates, parentheses, ‘~’, ‘V 7).
II. Rules of formation for K,: the same as in S; (three forms of
sentences: atomic sentences, negations, disjunctions).
III. Rules of deduction for K;:
A. (Formulation A without ‘A’.)

1. A sentence &; in K, is a primitive sentence in K, =p; &; has
one of the following four forms:
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12, ~(G, V&) V&
1b. ~&; V(G VE)).
ic. ~GLV&)V (&, VESy).
1d. ~(~B V&)V (~(Bn V&) V(S V&)

2. One rule of inference. &; is directly derivable from & in
K, =p there is an &; such that ®; = {~SVS;, S;}.

4. Definitions of a. ‘proof in Ky’, b. ‘provable in K,’, c. ‘deri-
vation in K,’, d. ‘derivable in X,’ as in D25-Ar to 4 (D26~
4).

B. (Formulation B with ‘A’.)

2, ©; is directly derivable from &; in K, =p; &, and {; fulfill
one of the following five conditions.

K is: &; is:
2a. A ~(B V&) V&,
2b. A ~C: V(G VS))
2¢. A ~B,VS) V(B V&)
2d. A ~(~BVB) V (~ (B V) V (B VE))

2€. {(~BWVB;,8) | &

4. Definitions of a. ‘derivation’, b. ‘proof’, c. ‘derivable’, d.
‘provable’ as in D26-2 to 5 (and, if wanted, of e. ‘primitive
sentence’ as in D26-1).

The rules of the calculus K, consist of those of K, and, in addition,
a rule of refutation. For the latter, there is no distinction between
formulations A and B.

III. Rules of deduction for K.

Either ITIA1 and 2 or IIIB2 as for K.

3. Rule of refutation for K;. The class {‘P(a)’, ‘~P(a)’} (&)
alone is directly refutable in Ko.
(Instead of (3), the simple rule “V is directly refutable”
could be taken.)

4. Definitions of ‘derivation’, ‘proof’, ‘derivable’, ‘provable’,
‘refutable’ as in D26-2 to 6.

The following sequence of sentences is a proof in K, and hence also
in K3, in accordance with IITIA4a or IIIB4b respectively, as is easily
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confirmed by applying the following rules for the formulationsA and B:

sentence A B
i 1d| 2d
ii 1a|2a
iii iii,2 |z2¢
iv ib|2b
v iii)iv,2 | 2e

That the first sentence has the form required by (1d) or (2d) is easily
seen if we take ‘P(a) VP(a)’ as &;, ‘P(a)’ as ©;, ‘~P(a)’ as Sp.

~(~ (P(a)VP(a);VP(a))V (~ (~P(2)V(P(2)VP(a)))V(~P(a)VP(a))) (i)

~ (P(a)VP(a))VP(a)
~P(a)V(P(a)VP(a))
~P(a)VP(a)

Hence, ‘~P(a)V P(a)’ is provable in K, and in K;. An analogous
sequence of sentences with any other sentence &; in the place of ‘P(a)’
throughout would also be a proof, according to the same rules. There-
fore, every sentence of the form ~&,V &; is provable in K, and in K.

The following sequence of sentences is a derivation in K, and in K,
with the first sentence as premiss.

A B
premiss premiss P(b)V Q(c) (i)
1c 2c ~ (P()VQ(0)V (Q(c)V P(b)) (ii)
ii, i, 2 2e Q(c)V P(b) (iii)

Hence, ‘Q(c) VP(b)’ is derivable in K, and in K, from ‘P(b) VQ(c)’;
and generally for every &; and &€;, ©; V €; is derivable in K, and in K,

from &;V &;.
The following sequence is a derivation in K; and in K, with the first

two sentences as premisses.

A B
premisses Ppremisses { ~§(:;:) (sg
1b 2b ~ (~P(c)) V (~P(c) VQ(a)) (iii)

i, ii, 2 ze ~P(c) VQ(a) (iv)

iv,i, 2 2e Q(a) W)

ii)

"'("’P(a)VEP(a)VP(a)))V(~P(a)VP(a)) ?n;
1v

(v)
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Hence, ‘Q(a)’ is derivable in K, and in K; from {‘P(c)’, ‘~P(c)’};
and generally for every &; and &;, &, is derivable from {&;, ~&}.
Thus e.g. ‘P(a)’ and ‘ ~P(a)’ are derivable from any class of the form
{&;, ~&,} ; hence, according to D26-4b, {‘P(a)’, ‘~P(a)’} is derivable
from any such class. Therefore, according to the rule of refutation
1113 for K; and D26-6, for every &;, {&;, ~&;} is refutable in K,.

The terms ‘ primitive sentence’ and ‘ premiss’ must not be confused.
A primitive sentence is a feature of the calculus; when the calculus is
interpreted (to be explained later), the primitive sentences are asserted
as true. On the other hand, a premiss is a feature of a particular deriva-
tion in the calculus. Any sentence of the calculus occurs as a premiss
in some derivation. A premiss is not asserted; it is only investigated
with respect to its consequences. ‘Q(c) V P(b)’ is derivabie from the
premiss ‘P(b) V Q(c)’ (see example above) even if this premiss is false
in a certain interpretation.

The use of the term ‘derivable from A’ in formulation B instead of
‘provable’ in formulation A is by no means a reduction of the number
of primitive sentences to zero. (This misunderstanding has occasion-
ally occurred and led to great confusion, see e.g. Mind, vol. 47, 1938,
p- 357.) It is merely a change ‘n terminology, which leaves the num-
ber of the primitive sentences and even these themselves unchanged.
This becomes clear by a comparison of the two formulations A and
B for K;; the number of primitive sentences in both is four (for B, this
follows from IIIB2 and 4e).

§ 28. C-Concepts (1)

On the basis of ‘direct C-implicate’ (in the ordinary termi-
nology, ‘directly derivahle’) and ‘directly C-false’ (‘directly
refutable’) as primitive terms for a system of general syntax,
other C-terms are defined, among them ‘C-false’, ‘ C-implicate’,
‘C-true’, ‘C-equivalent’.

We shall later discuss the procedure of interpreting a calcu-
lus K by assigning designata to the expressions in K (§ 33).
This obviously leads outside of syntax, to the field of seman-
tics. But, although interpretations cannot be taken into
consideration within syntax, they may and often do influence
our practical decisions in the choice of the structure of the
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calculus, in other words, in the choice of the rules of forma-
tion and of deduction. Thus e.g. in constructing the calculus
K, (§ 27), we had in mind that interpretation of its signs and
sentences which is represented by the semantical system
Ss (§§ 8 and 15). It can be shown that every T;provablein K,
is true and, moreover, L-true in S;. If somebody were to pro-
pose an interpretation for K; such that one of the provable
sentences, e.g. ‘ ~P(a) vP(a)’ was false, we should not ac-
cept that interpretation as being in accordance with the
calculus K, (or, as we shall say later, as a true interpreta-
tion for K,). Although the rules of a calculus do not speak
about interpretations, they are nevertheless practically
meant in such a way as to restrict possible interpretations.
The provable sentences are intended to become true if we
go over from the pure calculus to interpretations. There-
fore it seems convenient to apply the term ‘C-true in K’
to them (for terminological remarks, see § 37, Prefixes).
Further, the refutable sentences or sentential classes (e.g.
{‘P(c)’,  ~P(c)’} in K,) are meant to become false. There-
fore we shall use for them the term ‘C-false’. And, if ; is
derivable from ¢; in K, then we should not regard an inter-
pretation as fitting for K unless it were such that if T, is
true, ¥; is also true, or in other words, such that ¥, is an
implicate of ¥;. Therefore if T; is derivable from T, we will
call T; a C-implicate of ¥;. (The definition will differ
slightly from this condition; see below.) In an analogous
way we use other C-ferms as syntactical terms corresponding
to radical terms of semantics. This C-ferminology will turn
out to be very convenient in our later discussions of rela-
tions between calculi and semantical systems. The follow-
ing table shows the correspondence (which, however, is not
in all cases a strict synonymity). (The C-terms in parenthe-
ses will not be used in what follows.)
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ORDINARY TERMS C-TERMS
1 derivable C-implicate
2 directly derivable direct C-implicate
3 provable C-true
A primitive sentence (directly provable) (directly C-true)
4 {B directly derivable from A direct C-implicate of A
5 refutable C-false
6 directly refutable directly C-false
7 equipollent C-equivalent
8 decidable C-determinate
9 undecidable C-indeterminate
10 incompatible C-exclusive
11 compatible non-C-exclusive
12 — (C-disjunct)

On the basis of the explanations given we shall now lay
down definitions for syntactical concepts in C-terminology.
As primitive terms for these definitions in general syntax we
take, in addition to ‘sentence’, ‘direct C-implicate’ and
‘directly C-false’. The first of these concepts covers the
concept of primitive sent. mces also because they are con-
strued here as direct C-implicates of A. (By making use
of ‘A’, the C-terminology is more similar to formulation B
of the ordinary terminology than to A.) We shall later give
some theorems (§ 29). They are based merely on the defini-
tions; postulates are not needed. This means that in general
syntax we do not impose any restrictions upon the choice
of the concepts of direct C-implication and direct C-falsity
with respect to any calculus. In other words, in constructing
a particular calculus K, we are entirely free in setting up
our rules of formation and deduction, i.e. we may choose any
expressions we want to as sentences, any relation between
sentences and sentential classes (including A) as direct C-
implication, any sentences or sentential classes as directly
C-false. It is true that if these choices are made in a certain
way the calculus will become C-inconsistent (D31-2), but
it is nevertheless a calculus. And although from the point of
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view of practical application it is of course important that a
calculus should not be C-inconsistent, not trivial, not too
poor in means of expression and means of deduction, in short,
should be suitable for the purposes intended, from the point
of view of general syntax no discrimination is made. The
different kinds of possible structures of calculi are distin-
guished and studied, but none of these kinds is excluded, not
even that of the C-inconsistent calculi.

We begin with definitions (similar to D26-2, 4, and 6) of
some terms of the ordinary terminology because they are
convenient auxiliary terms for the later definitions of C-
terms. For the sake of brevity, we often omit the phrase
‘in K’, especially in definientia and in theorems.

+D28-1. R, is a derivation with the premiss-class £
(in K) = pr M is a sequence of sentences such that every
sentence &; of M, is either an element of ®; or a direct
C-implicate of a class . of sentences which precede &;in R;.

+D28-2.

a. ©; is derivable from ®; (in K) =p; &; is the
last sentence in a derivation with the premiss-
class R;.

b. ®; is derivable from ®; (in K) =p every sen-
tence of ®; is derivable from &..

c. I;is derivable from &; (in K) =p; T; is deriva-
ble from {&,}.

+D28-3. T;is C-false (in K) =p¢ there is a T; which is
directly C-false and derivable from Z;.

According to our previous explanations we shall define ‘ ¥;
is a C-implicate of ¥, in-K’in such a way that it holds when-
ever T; would become an implicate of Z; in every true in-
terpretation of K. This, however, is not only the case if T;
is derivable from T, but also if T, is C-false irrespective of
<;, because in this case T; would become false and hence,
according to Tg-12, £, would be an implicate of ¥;. This is
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the reason for adding ‘or ¥; is C-false’ in the definiens of D4
below. But this addition and hence the distinction between
‘C-implicate’ and ‘derivable’ seldom, if ever, comes into
effect in practice, i.e. with respect to the calculi actually
constructed so far in logic or mathematics. For, in most of
these calculi, no rules of refutation are stated at all; hence
in these calculi ‘C-false’ (‘refutable’) is empty (T29-54).
And in nearly all or perhaps all of the few calculi where rules
of refutation are given, ‘directly C-false’ (‘directly refu-
table’) applies only to sentences or sentential classes from
which every sentence is derivable (e.g. in Kq, § 27). There-
fore (according to T29—55) for these calculi too the new con-
cept ‘C-implicate’ and the old one ‘derivable’ coincide.

We use ‘ T; © T,’ as an abbreviation for ‘ Z; is a C-impli-
cate of T;’, and ‘T; ¢ T;’ for ‘T, is a direct C-implicate of
T

+D28-4. T, © T; (T C-implies T;; T; is a C-impli-
cate of ;) (in K) =p¢ ~; is derivable from ¥; or T; is
C-false.

+D28-5. T,;is C-true (in K) =ps A © ..

For all practical purposes, that is to say, for all C-con-
sistent calculi (D31-3), ‘C-true’ as here defined coincides
with ‘derivable from A’ and hence with ‘provable’ (T31-36).

+D28-6. T;is C-equivalent to T; (in K) =pr T; © I
and I,' e T,

In order to show the connection between the C-terminology and the
ordinary terminology, the terms ‘primitive sentence’, ‘proof’, and
‘provable’ can be defined in the following way; but in the subsequent
discussions we shall seldom make use of these terms.

D28-10. & is a primitive sentence (or directly C-true) (in K) =p; &;
is a direct C-implicate of A.

D28-11. R is a proof (in K) =p¢ Ny is a derivation with the
premiss-class A.

D28-12, T; is provable (in K) =ps T; is derivable from A.

It would be possible to formulate here a requirement of adeguacy
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for C-concepts in analogy to that given previously for L-concepts
(§ 16). The analogy would, however, not be a strict one. If we try to
define an L-concept, say ‘L-true in .S, then the corresponding radical
concept, i.e. ‘true in S’, is given by the rules of S. On the other hand,
if we try to define a C-concept, say ‘C-true in K’, then no correspond-
ing radical concept is given. ‘True in K’ makes no sense because
‘true’ is a semantical concept and must therefore refer to a semantical
system, not to a calculus. And there is not one but many semantical
systems which we may connect with a given calculus as an interpreta-
tion for it. Therefore we have to refer to all true interpretations of K
in order to define adequacy. We might call a predicate pr; in M ade-
quate for a certain C-concept (say, C-implication) if, with respect to a
calculus K, it holds for all those ¥ or pairs of ¥, and only those, for
which it follows from the rules of X that the corresponding radical con-
cept (in the example, implication) holds in every semantical system
S which is a true interpretation for K. A requirement of this kind,
although not formulated explicitly, has guided our previous discus-
sions leading to the definitions of C-concepts D3 to 6.

We do not introduce here the concept ‘C-disjunct’ (corresponding
to ‘disjunct’, Dg-5). As was explained before, ‘L-disjunct’ is not
definable on the basis of ‘L-implicate’, ‘L-true’, and ‘L-false’ (§ 14).
Analogously, ‘C-disjunct’ is not definable by ‘C-implicate’, ‘C-true’,
and ‘C-false’; in other words, not definable on the basis of primitive
sentences, rules of inference, and rules of refutation. If the concept
‘C-disjunct’ is to be introduced at all, a new kind of rule of deduction
must be laid down, defining ‘directly C-disjunct’. It seems that this
has never been done; and it is doubtful whether it would have great
practical importance. But the fact that this syntactical concept is not
definable by those ordinarily used is, of course, theoretically impor-
tant; it will be explained in [II], together with the other asymmetries
mentioned before. If rules of the kind mentioned are taken into con-
sideration, ‘directly C-disjunct’ will be an additional primitive term
of general syntax. Then we might lay down the following definition.

D28-A. T; is C-disjunct with T; (in K) =py either there is a Ty
and a T such that T; is directly C-disjunct with T; and that I; is
derivable from ¥ and T; is derivable from T;, or T; is C-true, or ;
is C-true.

Further, the definitions of some of the other C-concepts must be
modified by use of the term ‘directly C-disjunct’ in order to make
them adequate.
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§29. Theorems Concerning C-Concepts
Theorems are given which are based on the definitions of C-
concepts in § 28 without using postulates. There is an analogy
between C-concepts and L-concepts to a certain extent.
The following theorems are based merely on the definitions
in § 28; postulates are not needed.

1. Theorems concerning derivability. These theorems serve
as preliminary steps for those concerning C-implication.

+T29-1. Derivability is a. reflexive, b. transitive.

(From D28-1 and 2.)

T29-2. If &; € R, then &; is derivable froma ®;. (From
D28-2.)

T29-3. If ®; CR;, then &; is derivable from ;. (From
T2, D28-2b.)

T29-5 (lemma). &;is derivable from {©;}. (From T2.)

T29-6 (lemma). {®;} is derivable from &;. (From
D28-2b, T1a.)

T29-8. A is derivable from every ¥,;. (From D28-2b.)

T29-9. If every sentence of ®; is derivable from T, then
R; is derivable from ¥;. (From D28-2b, c.)

T29-10. Every g; is derivable from V. (From T2, T3.)

T29-12. If every sentence (in K) is derivable from ¥;,
then every T; is derivable from ;. (From Tg.)

T29-13. If ¢, 32 Tj, then T; is derivable from ..
(From D28-1 and 2.)

2. Theorems concerning C-falsity

T29-20. If ¢; is derivable from ¥; and T; is C-false,
¢ is C-false. (From D28-3, T1b.)

T29-21. If T, is directly C-false, T; is C-false. (From
D28-3,T1a.)

T29-22. There is a C-false T; in K if and only if there
is a directly C-false ¥;in K. (From D28-3, T21.)
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T29-23. If &, ¢ f®: and &; is C-false, ®; is C-false.
(From T2, T20.)

T29-24. If ®; C ®; and &; is C-alse, ®: is C-false.
(From T3, T20.)

T29-25. Each of the following conditions is a sufficient
and necessary condition for V to be C-false in K :

a. Thereis a C-false 8, (but not necessarily a C-false
©,) in K.

b. There is a C-false €, in K.

(From T24; T23.)

T29-26 (lemma). If every directly C-false T in K is
such that every sentence in K is derivable from it, and if
T, is C-false, then every ¥; is derivable from T. (Proof.
Under the conditions specified, according to D28-3 and T1b,
every sentence is derivable from ¥;, and hence, according to
T12, every ¥, is derivable from ¥;.)

3. Theorems concerning C-implication

T29-30. If T; is derivable from ¢,, then T; @ ;.
(From D28-4.)
+T29-31. If T,is C-false, T; © every T,. (From D28-4.)
T29-32. C-implication is reflexive, i.e. T; © T;. (From
D284, T1a.)
T29-33. If ©; € R, then ®; © &;. (From T2, T30.)
T29-34. If ; C &, then &; © &;. (From T3, T30.)
T29-35. {&;} © ©;. (From Ts, T30.)
T29-36. &; © {©;}. (From T6, T30.)
T29-37. If T; & T, then T; © T, (From Ti3, T30.)
T29-40 (lemma). If T; © every sentence of &;, then
g © R (From D284, Tg, T31.)
+T29-43. If T; © T; and T, is CHalse, T; is C-false.
(From D284, T20.)
+T29-44. C-implication is transitive. (From D28-4,
Tib, T43, T31.)
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T29-45 (lemma). If ¥; © &;, then T; © every sentence

of 8;. (From T33, T44.)
+T29-46. E; © ; if and only if T; © every sentence of
®;. (From Tso, T4s.)

T29-49. Every ¥; © A. (From T8, T1.)

T29-50. V @ every T;- (From T33, T34.)

T29-51 (lemma). If ¥;is C-false, T; @ V. (From T31.)

T29-54. If there is no rule of refutation, i.e. no directly
C-false T; in K, then the following holds:

a. ‘C-implicate in K’ and ‘derivable in K’ co-
incide.

b. ‘C-true in K’ and ‘provable in K’ coincide.

(From T22, D28-4; (a), D28-11 and §5.)

T29-55. If every directly C-false ¥; in K is such that
every sentence in K is derivable from it, then the following
holds:

a. ‘C-implicate in K’ and ‘derivable in K’ co-
incide.
b. ‘C-true in K’ and ‘provable in K’ coincide.
(From D28-4, T26; (a), D28-11 and 5.) (The condition of
this theorem is fulfilled by most of the calculi which have
rules of refutation.)

T29-56. If ¢; © T, and E; © Tk, then ; @ T; + Ts.
(From T46.)

T29-57 (lemma). If R; © R;, then R; T & + K.
(From T32, Ts6.)

T29-58 (lemma). If ®; © ®; and & + &; is C-false,
then ®;is C-false. (From Tjs7, T43.)

4. Theorems concerning C-truth

+T29-70. If T; © ¢, and T; is C-true, T; is C-true.
(From D28-35, T44.)
T29-71. If ®; C R;and &;is C-true, &;is C-true. (From
T34, T70.)
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T29-72 (lemma). If every sentence of ®; is C-true, &

is C-true. (From T40.)

+T29-73. R;is C-true if and only if every sentence of
is C-true. (From T33, Ta4; T72.)

+T29-74. If T;is C-true, every ¥; © ;. (From D28-3,
T49, Ta4.)

T29-75 (lemma). If T,and g;are C-true, then ; © T,.
(From T74.)

+T29-76. A is C-true. (From T72.)

T29-77. If T; is derivable from A, then ¥; is C-true.
(From D27-4and 5.) [The converse does not hold generally;
but it holds if K is C-consistent (see T31-36).]

T29-78. If ®; is C-true, then &; © & + &;. (From
T3z, T31, Ts6.)

T29-79. If ®; + R, is C-false, and &; is C-true, then
is C-false. (From T78, T43.)

T29-80. If ®; + ®; © & and ®; is C-true, then ®; ©
©:. [Proof. If the condition is fulfilled, then either & is
derivable from &; + &; or &; + &; is C-false (D28-4). In
the first case, 8: © ®: + & (T78); hence &: © &, (T44).
In the second case, ®; is C-false (T79); hence ®: © S
(D28-4).]

T29-81. If {®;, ©;} © ©, and ®; is C-true, then
©; © ©;. (From T8o.)

5. Theorems concerning C-equivalence

+T29-85. C-equivalence is a. reflexive, b. symmetric,
c. transitive. (From D28-6, T32; Ta4.)

+T29-86. If both T;and T, are C-true, they are C-equiva-
lent to one another. (From T74.)

+T29-87. If both ; and T; are C-false, they are
C-equivalent to one another. (From T31.)

T29-88. &; and {&;} are C-equivalent to one another.

(From T3s, T36.)
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T29-89. If T, is C-false, it is C-equivalent to V. (From
Ts1, Ts0.)
+T29-90. T, is C-true if and only if ¥;is C-equivalent
to A. (From D28-5, T49.)

6. Theorems connecting the C-terms with the ordinary terms
¢ primitive semtence’, ¢ proof’, ‘ provable’ (D28-10 to 12)
T29-100. If T, is provable it is C-true. (From D28-12,
T77.)
T29-101. Every primitive sentence in K is a. provable
in K, and b. C-true in K. (From D28-10 and 12, T13;
T100.)

The C-concepts show an analogy with the L-concepts to a
considerable extent. (Concerning the limits of this analogy,
see comment on D31-1.) If among the postulates concerning
L-concepts (P14-1 to 15) we leave aside those which also
refer to radical semantical ~oncepts (because their relation
to C-concepts cannot be dealt with here in syntax) or to
‘L-disjunct’ (because we did not define the corresponding
C-concept, see § 28), then we find, for each of the remaining
postulates, an analogous theorem concerning C-concepts:
the analogues to P14-5to 9, 11 to 15 are T29-44, 70, 43, 32,
D28-8, T29—33, 40, 73, 74, 31. It is noteworthy that here,
for the C-concepts, we needed no postulates; all the theorems
in this section are based merely on the definitions.

Since analogues to the ten postulates mentioned hold for
the C-concepts, analogues to all theorems based only on
those ten postulates also hold for the C-concepts. Some of
these are among the theorems listed in this section.

The point in which the analogy between C-concepts and
L-concepts does not hold is this: any T;cannot be both L-true
and L-false, but it might be both C-true and C-false. This
will be discussed soon (see remarks to D30-6).
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§ 30. C-Concepts (2)

More definitions of C-concepts and theorems are added to
those in §§ 28 and 29. Among the C-concepts are ‘C-determi-
nate’, ‘C-indeterminate’, and ¢ C-comprehensive’, which should
not be identified with ‘C-false’. Examples in K, and K, (§ 27)
are given.

We shall now introduce more C-concepts, and state
theorems concerning them. This system of definitions and
theorems is a continuation of that in §§ 28 and 29. The defi-
nitions of some C-concepts in this section (D1 to 7) are
analogous to those of the corresponding L-concepts (D14-1,
D21-1,D14-2 to 5 and 7). Hence the analogues to previous
theorems also hold here, except those based on postulates
referring to radical concepts or to ‘L-disjunct’. ‘C-inde-
terminate’ (D2) does not correspond to a radical concept
but is a convenient abbreviation for ‘non-C-determinate’; it
corresponds to the L-concept ‘non-L-determinate’ (or ‘L-
indeterminate’) for which we have introduced the term
‘factual’ (D21-1). The C-concepts defined here are less
important than those defined in § 28; of more general in-
terest are only D1 and 2 and the paragraph after T44.

+D30-1. g, is C-determinate (in K) =p; T; is either
C-true or C-false.

T30-1. If K does not contain a directly C-false T;,
then ‘C-determinate in K’ and ‘C-true in K’ coincide.
(From T29-22.)

T30-4. If every sentence of K is C-determinate, then
every ¥, of K is C-determinate. (From T29-73, T29-23.)

+D30-2. ¢;is C-indeterminate (in K) =p; T, is not
C-determinate.
T30-6. T, is C-indeterminate if and only if g; is
neither C-true nor C-false. (From D1.)
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T30-7. If K does not contain a directly C-false T,
then ¥;is C-indeterminate if and only if T, is not C-true.
(From T29~22, T6.)

D30-3. T, is C-exclusive of T; (in K) =p; T; + L;
is C-false. (If T; or ; is a sentence &y, then {S;} is to be
taken as component of the sum.)

T30-11. If g;is C-false, T, is C-exclusive of every ;.
(From T29-24.)

T30-12. If T, and T; are C-exclusive and T; is C-true,
then ¥, is C-false. (From D3, T29-79.)

T30-13 (lemma). If ¢; is C-exclusive of A, T; is
C-false. (From T12, T29-76.)

T30-15. T;is C-false if and only if T;is C-exclusive of
A. (From Ti13, T11.)

T30-16. If T; © Tx and T; is C-exclusive of Ty, I, is
C-exclusive of T; [Proof. Under the conditions stated,
T; + i is C-false (D3); hence also &; + Ty + T; (T29~
24); hence also T; + T (T29-58).]

T30-17. If K does not contain a directly C-false T;,
then ‘C-exclusive in K’ is empty. (From T29-22.)

D30-4. T, is C-dependent upon ¥, (in K) =p; either
¢, © T;or T; and T; are C-exclusive.

T30-25. If T, is C-false, every ; is C-dependent upon
;. (From T29-31.)

T30-26. If T;is C-true and ¥;is C-dependent upon T;,
then g; is C-determinate. (From T29-70, T12.)

T30-27. 1If T;is C-determinate, then ¥, is C-dependent
upon every T;. (From T29-74, T11.)

T30-28. T; is C-determinate if and only if T; is C-de-
pendent upon A. (From D1, D28-5, T15, D3.)

T30-29. If ¢; @ T, and g, is C-dependent upon Ty,
then T;is C-dependent upon ;. (From D4, T29-44, T16.)

T30-30. If K does not contain a directly C-false I,
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then ‘C-dependent in K’ and ‘C-implicate in K’ coincide.
(From T17.)

D30-5. T;is C-complete (in K) =p¢ every E; (in K)
is C-dependent upon ¥.
T30-40. If T,is C-false, ;is C-complete. (From T25.)
T30-41. V is C-complete. (From T29-50.)
T30-42. If T; © T, and ;is C-complete, T;is C-com-
plete. (From T29.)
T30-43. Ifthereisa T;in K which is C-true and C-com-
plete, then every ¥; in K is C-determinate. (From T26.)
T30-44. The following conditions for a calculus K co-
incide:
a. A is C-complete in K.
b. Every ¥;in K is C-complete.
c. Every €, in K is C-determinate.
d. There is a T;in K which is C-true and C-com-
plete.
(From T29-46, T42; T28; T29-76, T43.)

The procedure most frequently chosen in general syntax
is the following (expressed in ordinary terminology, form-
ulation A, as in § 25). Only primitive sentences and rules of
inference are laid down, but no rules of refutation; in other
words, only ‘directly provable’ and ‘directly derivable’ are
defined, but not ‘directly refutable’. In order to reach,
nevertheless, the concepts ‘refutable’ and ‘(C-)inconsistent
calculus’, the following definitions are often laid down
in general syntax. D30-A1. E;is refutable (in K) =p
every sentence in K is derivable from ;. D30-42. A cal-
culus X is inconsistent =p; K contains a ¥; which is both
provable and refutable. This leads to the following theorem.
T30-A1. K is inconsistent if and only if every sentence
in K is provablein K. (E. L. Post, “Introduction to a Gen-
eral Theory of Elementary Propositions,” Am. J. Math. 43,
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1921; A. Tarski [Methodologie] p. 27f; Carnap [Syntax]
§8 48 and 59.) The corresponding definitions and theorem
in C-terminology would be like this. D30-B1. ¥;is C-false
in K =p; every sentence in K is a C-implicate of T;. D30-
B2. K is C-inconsistent =p; K contains a &; which is both
C-true and C-false. T30-B1. K is C-inconsistent if and only
if every sentence in K is C-true. DB2 seems natural; we
shall adopt it later (D31-1 and 2). But in contrast to the
customary view which I shared previously it seems to me at
present that DB1 is not suitable in general syntax; in other
words, it is not adequate in the sense explained above (§ 28).
An adequate concept of ‘C-false’ (‘refutable” cannot be
defined on the basis of ‘C-implicate’ (‘derivable’) and
‘C-true’ (‘provable’). In the special syntax of a particular
calculus it is quite permissible to define ‘directly C-false’ as
in DB1, or to define it in such a way that the condition of
DB1 for ‘C-false’ follows. But to adopt DBr1 in general
syntax would sometimes le 1 to undesirable consequences.
Let us consider a semantical system S,, containing only true sen-
tences, whether L- or F-true (as e.g. Ss in § g, containing only atomic
sentences; but S, may, in addition, contain signs of disjunction and
conjunction), or a system S, containing only L-true sentences. If
then we construct a calculus K, in accordance with S, i.e. such that
Sm is a true interpretation for it, we may choose any sub-class of the
true sentences of S,, as class of the C-true sentences of K,,; this will
be discussed more in detail in § 36. And there is no objection to con-
structing K,, in such a way that every true sentence of S,, that
is, every sentence of S,., becomes C-true in K,,. In the case of S, it
will perhaps seem more natural to construct a calculus K, such that
every sentence which is L-true in S, becomes C-true in K,,. Thus both
in Kn, and in K, every sentence is C-true. If we adopted DB1, which,
in combination with DB2, leads to TB1, we should have to call both
K, and K, C-inconsistent. This, however, seems quite inappropriate
in view of the fact that there is a true interpretation for either of them.

On the basis of these considerations, we do not adopt
DB1 as a definition for ‘C-false’. Since, however, the con-
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cept defined by DB1 has some interest nevertheless, we shall
introduce a term for it; we take the term ‘C-comprehen-
sive’ (D6) because this concept corresponds to ‘compre-
hensive’ and ‘L-comprehensive’ as defined earlier (Dg—g,
Di14-5). Then, on the one hand, we distinguish between the
two concepts ‘C-comprehensive’ and ‘C-false’, the latter
based on ‘directly C-false’ to be defined by rules of refuta-
tion. On the other hand, we shall find conditions under which
the two concepts coincide, namely if and only if the calculus
contains a directly C-false T; (T30-62). Under the same
condition the old concept of C-inconsistency (DB1 and 2)
and the new one (D31-2) coincide (T31-17).

D30-6. <,is C-comprehensive (in K) =p; T; © every
sentence in K.
T30-49. If T, © I; and T; is C-comprehensive, then T;
is C-comprehensive. (From T29-44.)
T30-50. V is C-comprehensive. (From T29-50.)
T30-51.
a. If T;is C-false, ¥; is C-comprehensive.
b. If T, is directly C-false, ¥, is C-comprehensive.
(From T29-31; T29-21.) [The converse of (a) does not hold
generally but only under certain conditions (see T6ob).]
T30-52. Each of the following conditions is a sufficient and
necessary condition for T; to be C-comprehensive:
a. ;¢ V.
b. T;is C-equivalent to V.
c. T; T every ;.
d. ;¢ every ,.
(From T29-46; T29-50, (a); T29-46; (c).)
T30-53. If T; is C-comprehensive, T; is C-complete.
(From Ts2d.)
T30-55. The following conditions for a calculus K co-
incide:
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a. Every C-comprehensive E; in K is C-false.
b. V is C-false in K.

c. There is a C-false &; in K.

d. There is a C-false ; in K.

(From Tso, Ts2a, T20—43; T29-25.)

T30-60. If K contains a (non-empty) rule of refutation
and hence a T; which is directly C-false, then the following
holds:

a. Vis C-false in K.

b. ‘C-false in K’ and ‘C-comprehensive in K’ co-
incide.

(From T29-22, Tss, Ts1.)

T30-61. If K does not contain a (non-empty) rule of
refutation and hence there is no directly C-false ; in K,
then the following holds:

a. There is no C-false ¥; in K.

b. V is not C-false but C-comprehensive in K.

c. ‘C-false in K’ .nd ‘C-comprehensive in X' do
not coincide.

d. ‘C-comprehensive in K’ and ‘C-complete in K’
coincide.

(From T29—22; Tso0; (b); T30, Ts2d.)

T30-62. ‘C-false in K’ and ‘C-comprehensive in K’ co-
incide if and only if K contains a (non-empty) rule of refuta-
tion and hence a directly C-false T;. (From T6ob; T61c.)

T30-63. ‘C-false in K’ either is empty or coincides with
‘C-comprehensive in K’. (From T61a, T6ob.)

The following theorem refers to calculi which on the basis
of older definitions, as discussed above (DB1 and 2), would
be called (C-)inconsistent, but not in our terminology.

T30-65. If K contains a T; which is both C-true and
C-comprehensive, then the following holds:
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a. Vis C-true in K.
b. Every ¥;is C-true in K.
(From Ts2a and d, T29-70.)

D30-7. R;is C-perfect =p; for every &;, if ®; © ©; then
@j €R;.

According to this definition, a C-perfect class &; is such
that any formal deduction (i.e. C-implication) with sentences
of ®; as premisses leads always again to a sentence of .

A. Tarski [Systemenkalkiil] has developed a detailed theory of the
C-perfect classes, which he calls systems, with many interesting re-
sults. He has applied the device of using Cc(R: + ;) as one of the
basic connections between perfect classes (see below, remarks on T84).

T30-80. ®; is C-perfect if and only if for every &;, if
R; © ®; then &; C &;. (From D7, T29-33, T29-44, T29-40.)

T30-81. The following classes are C-perfect:

a. The class of the C-true sentences (of K). (From
Dy, T29_73y T29_7°°)
b. V. (From D7.)

T30-83 (lemma). For every I;, the class of the sentences
which are C-implicates of ¥;is C-perfect. (From D7, T29-
40, T29-44.)

T30-84. 1f &; and ®; are C-perfect, ®; X &; is C-perfect.

Proof. If the condition is fulfilled and &, X R; @ ©x, then &; ¢ S,
(T29-34, T29-44) and likewise ®; © &Si. Therefore, &; ¢ £ and
@k € Ri (D7), hence & ¢ .Qi X Ri.

If & and &; are C-perfect, & + &; is not necessarily also C-per-
fect. Therefore, if one wants to deal with C-perfect classes only, the
class sum is not a suitable connection. But instead of &;+ &;,
Cc(f: + ;) (as defined by D32-B1) may be taken as a basic connec-
tion; this is C-perfect (T32-B21) and is C-equivalent to R:+ &;
(T32-B13). (See above, reference to Tarski.)

D30-8. K is a C-determinate calculus =p;every ¥; in
K is C-determinate.
T30-90. If K does not contain a directly C-false ¥, then
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K is a C-determinate calculus if and only if every ;in K is
C-true. (From Ti.)

T30-91. Each of the following conditions is a sufficient
and necessary condition for K to be a C-determinate cal-
culus:

a. A is C-complete in K.

b. Every ¥;in K is C-complete.

c. There is a ; in K which is both C-true and
C-complete.

d. Every sentence in K is C-determinate.

(From Ta4; for d: T4.)

Examples of application of C-concepis to the calculi K, and K, de-
scribed earlier (§ 27).

The formulation of the rules of deduction for K, and K is on the
whole the same as before, except that C-terms are used. Here also,
if we want to, we might distinguish formulation A without ‘A’ and
B with ‘A’. In formulation A, we simply have to replace ‘primitive
sentence’ by ‘directly C-true’ and ‘directly derivable’ by ‘direct
C-implicate’; in formulation B only ‘directly derivable’ by ‘direct
C-implicate’. For the following, we presuppose formulation B because
the definitions in § 28 are based on it. In Kj, there is no rule of refu-
tation; hence ‘directly C-false in K,’ is empty. In the rule of refuta-
tion for K3, we replace ‘directly refutable’ by ‘directly C-false’. Then
we may apply the definitions and theorems of §§ 28 to 30 which take
‘direct C-implicate’ and ‘directly C-false’ as primitive.

According to D28-1, the three sequences of sentences given in § 27
as examples of a proof and two derivations are still called derivations
here; the proof is a derivation with the premiss-class A. Hence the
following holds for both K, and K;. According to D28-2, 4, and s,
‘~P(a) V P(a)’ is derivable from A and a C-implicate of A and C-true.
‘Q(c) V P(b)’is derivable from and a C-implicate of ‘P(b) V Q(c)’. The
inverse holds, too, as can easily be shown by a derivation of the same
form with components exchanged. Hence, according to D28-6,
‘Q(c) VP(b)’ and ‘P(b) VQ(c)’ are C-equivalent. Because of the
third derivation, ‘Q(a)’ is derivable from and a C-implicate of {‘P(c)’,
‘~P(c)’} (Rs). By a derivation of the same form with any sentence
©: in the place of ‘Q(a)’ it can be shown that ®; & ©;. Hence, ac-
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cording to D6, &; is C-comprehensive and hence C-complete in a
trivial way (T53). It can be shown in the same way that any other
class of the form {&;, ~&;} is C-comprehensive (in K, and K3j).

In K,, because of the lack of a rule of refutation, ‘C-false’ is empty
(T29-22); ‘C-determinate’ and ‘C-true’ coincide (T1); ‘ C-exclusive’
is empty (T17); ‘C-dependent’ and ‘C-implicate’ coincide (T30);
‘C-comprehensive’ and ‘C-complete’ coincide (T61d). On the other
hand, in K,, because of its rule of refutation, the following holds.
‘C-false’ coincides with ‘C-comprehensive’ (T6ob); hence R; is
C-false; ‘P(c)’ and ‘~P(c)’ are C-exclusive of one another (D3);
and likewise are {‘P(c)’, ‘Q(a)’} and {‘~P(c)’, ‘Q(b)’} (T29-24).
K. contains sentential classes which are C-complete in a non-trivial
way, i.e. without being C-comprehensive, like £;. It can be shown that
any class containing each of the atomic sentences or its negation is
C-complete in K,, e.g. {‘P(a) ’, ‘P(b) ' ‘NP(C) % ‘NQ(a‘) ) ‘Q(b),r
‘~Q(c)’}.

§ 31. C-Concepts (3)
Further C-concepts are introduced. Some of them are prop-
erties of calculi (e.g. ‘C-inconsistent’, ‘C-consistent’, ‘C-
extensional’) or relations between calculi (e.g. ‘sub-calculus’,
‘coincident’, ‘isomorphic’).

We have previously found (§ 29) that the C-concepts are
in many respects analogous to the L-concepts in such a way
that corresponding theorems hold in both fields. This anal-
ogy, however, fails in one decisive point. Since every L-true
T; is true (P14-1) and every L-false ¥; is false (P14—2), no
T can be both L-true and L-false (T14-1). On the other
hand, K and T; may be such that €; is both C-true and C-
false in K; in this case we shall call T; C-ambivalent
in K (D1) and K a C-inconsistent calculus (D2). The
L-concepts are intimately connected with the radical con-
cepts. If e.g. ‘true in S’ is given, then there is no choice,
except in matters of formulation, for the definition of ‘L-true
in S’; there is only one adequate concept of ‘L-true in S’.
The same does not hold for the C-concepts with respect to a
calculus K. Their connection with the radical concepts is,
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to a certain extent, a matter of choice; it depends upon the
interpretation chosen for K. And the analogues for P14—1
and 2, and hence also for T14-1 do not hold with respect to
every interpretation but only with respect to a true interpre-
tation (T33-8f and d, T33-12). But a calculus may be
C-inconsistent, i.e. contain a C-ambivalent T;; then it does
not possess a true interpretation (T33-13).

For the reasons stated, not only the radical concepts but
also the L-concepts corresponding to the C-concepts to be
defined by D1 and 2 are empty; therefore they have not been
introduced.

+D31-1. ¢; is C-ambivalent (in K) =p¢ €; is both
C-true and C-false.

T31-1 (lemma). If T; is C-ambivalent, then the fol-
lowing holds:
a. I; Tevery I;.
b. Every T; (in K) is C-true.
c. Every &; © 2.
d. Every ¥, (in K) is C-false.
(From T29-31; (a), T29-70; T29-74; (c), T29-43.)
+T31-2. If there is a C-ambivalent T, in K, then every
¢; in K is C-ambivalent. (From Tib and d.)
T31-5 (lemma). If K is such that A is C-false, then A
is C-ambivalent. (From T29-76, D1.)
T31-6 (lemma). If K contains a T; which is both C-true
and C-comprehensive and if ¢; is C-false, then ¢; is
C-ambivalent. (From T30-65b.)

While the C-concepts defined so far are properties or re-
lations of ¥;in a calculus K, the concepts to be defined now
are properties of calculi and relations between calculs.

+D31-2. A calculus K is C-inconsistent =p; K con-
tains a C-ambivalent ;.

T31-15. If K is C-inconsistent, then:
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a. Every ¥;in K is C-ambivalent.

b. Every ¥;in K is both C-true and C-false.
c. There is a directly C-false T;in K.
(From D2, Tz; (a); (b), T29-22.)

T31-16 (lemma). If Ais C-false in K, then K is

C-inconsistent. (From Ts.)

+T31-17. If K contains a T; which is both C-true and
C-comprehensive and a ; which is directly C-false, then X
is C-inconsistent. (From T29-22, T6.)

T31-18 (lemma). If there is a directly C-false T; in K
and if V is C-true, then K is C-inconsistent. (From T30
50, T17.)

T31-19. If K contains &; and ¥; such that &; € I;
and £, is C-true and g; is C-false, then K is C-inconsistent.
(From T29-70, D2.)

T31-23. Each of the following conditions is a sufficient
and necessary condition for K to be C-inconsistent:

a. There is a C-ambivalent ¢, in K.
b. Every ;in K is C-ambivalent.
c. Every €;in K is both C-true and C-false.
d. Ais C-false in K.
e. There is a directly C-false ¥; in K and V is
C-true.
(From D2; T135a; (b); T16, T15b; T18, Ti5c and b.)
+T31-24. If every directly C-false ¥; in K is such that
every sentence in K is derivable from it, then each of the
following conditions is a sufficient and necessary condition for
K to be C-inconsistent:
a. There is a ¥, in K which is both provable and
C-false.
b. Every ¥, in K is both provable and C-false.
c. There is a directly C-false €; in K, and V is
provable.
(From T23, T29-55.)
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+D31-3. A calculus K is C-consistent =p; K is not
C-inconsistent.

T31-30. If K contains a T; which is not C-true, K is
C-consistent. (From T23c.)

+T31-31. If K does not contain a directly C-false ;, K
is C-consistent. (From T29-22, T23c.)

Hence any calculus of the ordinary kind, containing only
primitive sentences and rules of inference but no rule of
refutation, is C-consistent. But in many cases, in order to
fulfill the intention of the author of a calculus, we have to
add a rule of refutation tacitly assumed by the author, e.g. a
rule of the form III3 for K; (§ 27) or the simple rule “V is
directly refutable”. By an addition of this kind, those
calculi which usually are regarded as containing a contra-
diction become C-inconsistent.

T31-32. If every directly C-false ¥; in K is such that
every sentence in K is derivable from ¥; and if there is a T;
in K which is not provable, tuen K is C-consistent. (From
T24b.)

T31-35. Each of the following conditions is a sufficient
and necessary condition for K to be C-consistent:

a. No Z;in K is C-ambivalent.

b. There is a €; in K which is not C-ambivalent.
c. Ais not C-false in K.

d. There is a T; in K which is not C-false.
(From T23a; T23b; T23d; T23c, (c).)

T31-36. If K is C-consistent, then ‘C-true in K’ coin-
cides with ‘derivable from A (in K)’ (and hence with ‘prov-
able in K’). (From D28-5, D28-4, T35¢c; D28-12.)

Examples. We previously constructed the calculi K, and K, (§ 27;
C-terminology: § 30 at the end). Both are C-consistent. For K,, this
follows simply from the lack of a rule of refutation (T31). For K,, it
is shown in the following way. The rules of K, are those of the ordinary
propositional calculus; for this it is known that an atomic sentence,
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eg. ‘P(a)’ (&), is not provable. (From the analysis which will be
carried out in § 35, it follows that every sentence which is provable in
K, is L-true in Sy (§ 15); &, is not L-true in S;, hence not provable in
K,.) Therefore, &, is also not provable in K;. Only the class {‘P(a)’,
‘~P(a)’} (R)) is directly C-false in K,. In § 27 we saw that every
sentence is derivable in K, from a class of the form {&;, ~&,} and
hence also from £;; the same holds for K;. Thus both conditions in
T3z are fulfilled, and K, is C-consistent.

For an example of a C-inconsistent calculus see K¢ in § 35.

If a calculus K,, is given, and we take as sentences of an-
other calculus K, some (or all) of the sentences of K,, and
as rules of deduction for K, some (or all) of the rules of K,
then we call K, a direct sub-calculus of K,,. Here, the
rules of K, may be formulated in a way different from those
of K,; it is only required that direct C-implication in K, is
a sub-relation of the corresponding concept in K., and
direct C-falsity in K, a sub-class of the corresponding con-
cept in K,, (Ds). It is easy to see (T40 and 45) that in this
case the extension of C-implication, C-falsity, and other
C-concepts in K, is also contained in that of the correspond-
ing concepts in K,,, or, as we shall say, that K, is also a sub-
calculus of K,, (D6). Suppose that we construct K, as a
sub-calculus of K,, in the following way. As V, (the class of
the sentences of K,) we take any sub-class of V,, (the class
of the sentences of K,,), and we keep as C-implication and
C-falsity in K, the corresponding concepts in K,, as far as
they hold within V,. Then we shall call K, a conservative
sub-calculus of K,, (D7). If K, and K, are direct sub-
calculi of each other, in other words, if the direct C-concepts
in these two calculi coincide, we shall call them directly co-
incident calculi (D8). Although in this case the concepts
defined by the rules of deduction for the two calculi have
the same extension, the formulation of the rules may still
differ. If K,, and K, are sub-calculi of each other we shall
call them coincident calculi (Dg). In this case some
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C-concepts coincide (T65 and 69), while the direct C-con-
cepts may or may not coincide.
D31-5. K, is a direct sub-calculus of K,, =p;s the
following three conditions are fulfilled:
a. Every sentence in K, is a sentence in K,,.
b. If T; 2 T; in K, then likewise in K,,.
c. If €; is directly C-false in K,, it is likewise in
K.
T31-40. If K, is a direct sub-calculus of K,,, then the
following holds:
a. If T; © T,in K,, then likewise in Kn.
b. If T, is C-false in K,, then likewise in K,,.
(From Ds, D28-1, 2, 3, and 4.)

+D31-6. K, is a sub-calculus of K,, =p; the following
two conditions are fulfilled:
a. If ¢, @ I; in K,., then ¢; ¢ T; in K,,.
b. If T;is C-false in K, it is C-false in K,,.
T31-45. If K, is a direct sub-calculus of K,,, it is a sub-
calculus of K,.. (From T40, D6.)
T31-46. If K, is a sub-calculus of K,,, then for any in-
stance (i.e. ¥; or pair ¥;, T;) for which one of the following
concepts holds in K, the same concept holds in K,,:

a. Sentence. (From T29-32.)
b. C-true. (From D28-5.)
c. C-equivalent. (From D28-6.)
d. C-determinate. (From D3o-1, (b), D6b.)
e. C-exclusive. (From D303, D6b.)
f. C-dependent. (From D3o—4, D6a, (e).)
g. C-ambivalent. (From D1, (b), D6b.)
T31-47. If K, is a sub-calculus of K., then the follow-
ing holds:
a. If K, is C-inconsistent, K,, is also. (From D2,

(T46g.)
b. If K, is C-consistent, K , is also. (From D3, (a).)
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D31-7. K, is a conservative sub-calculus of K,, =p;
the following three conditions are fulfilled:
a. K, is a sub-calculus of K,,.
b. If T; © T,in K,, and T; and T, belong also to
K,, then T; ¢ T; in K,.
c. If T;is C-false in K,, and belongs also to K,,
it is C-false in K ,,.

T31-50. If K, is a conservative sub-calculus of K,,, then
for any instance (i.e. ; or pair ¥;, ¥,) which belongs to K,
and for which one of the following concepts holds in K, the
same concept holds in K,:

C-true. (From D28-3.)

C-equivalent. (From D28-6.)

C-determinate. (From D3o-1, (a), D7c.)

. C-indeterminate. (From D3zo-2, T46d.)

. C-exclusive. (From D3o-3, D7c.)
C-dependent. (From D3o-4, D7b, (e).)

. C-complete. (From D3o-s5, T46a, (f).)

. C-comprehensive. (From T30-52b, T46a, D7b.)
C-perfect. (From D3o0-7, D7b.)

. C-ambivalent. (From D1, (a), D7c.)

T31- 51 If K,is a conservative sub-calculus of K,,
then for any instance (i.e. ; or pair T;, T;) which belongs
to K, each of the following concepts holds in K, if and only
if the same concept holds in K,:

a. C-implication. (From D7a, Dé6a, D7b.)

b. C-alse. (From Dé6b, D7c.)
C-true. (From T46b, Tsoa.)
C-equivalent. (From T46c, Tsob.)
C-determinate. (From T46d, Tsoc.)
C-exclusive. (From T46e, Tsoe.)

g. C-dependent. (From T46f, Ts5of.)

h. C-ambivalent. (From T46g, Tsoj.)

T31-52. If K, is a conservative sub-calculus of K,,,
then the following holds:

Serppmo e Ty
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a. If K,, is a C-determinate calculus, K, is also.
(From D30-8, Tsoc.)

b. K, is C-inconsistent if and only if K, is.
(From T23d, Ts1b.)

c. Kn is C-consistent if and only if K, is. (From
D3, (b).)

D31-8. K,, and K, are directly coincident calculi
=py each of them is a direct sub-calculus of the other.

T31-60. K, and K, are directly coincident calculi if
and only if the following two conditions are fulfilled:

a. T;3¢ $;in K, if and only if the same holds in K,,.

b. ¥, is directly C-false in K, if and only if the
same holds in K,.

(From D8, D3.)

T31-61. If K,, and K, are directly coincident calculi,
then each of the C-concepts defined in §§ 28, 30, and 31 as
properties or relations of T has the same extension in K,,
and in K,. (This follows from T6o, because each of these
concepts is defined directly or indirectly on the basis of
‘direct C-implicate’ and ‘directly C-false’.)

D31-9. K, and K, are coincident calculi =p; each
of them is a sub-calculus of the other.

T31-65. K,, and K, are coincident calculi if and only
if the following two conditions are fulfilled:

a. C-implication in K,, and in K, coincide.
b. C-falsity in K, and in K, coincide.
(From Dg, D6.)

T31-66. If K, and K, are directly coincident calculi,
they are coincident calculi. (From T61, T6s.)

T31-67. K,, and K, are coincident calculi if and only
if each of them is a conservative sub-calculus of the other.
(From D7, T6s.)

T31-68. If K,, and K, are coincident calculi, they con-
tain the same sentences. (From T46a.)
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T31-69. If K,, and K, are coincident calculi, then each
of the following concepts has the same extension in K,, as
in K,: a. C-true, b. C-equivalent, c. C-determinate, d.
C-indeterminate, e. C-exclusive, f. C-dependent, g. C-com-
plete, h. C-comprehensive, i. C-perfect, j. C-ambivalent.
(This follows from Té6s, because all the concepts mentioned
(D28-5 and 6, D3o-1 to 7, D31-1) are defined on the basis
of ‘C-implicate’ and ‘C-false’.)

T31-70. If K,, and K, are coincident calculi, the fol-
lowing holds:

a. K,, is a C-determinate calculus if and only if
K, is. (From T68, T6gc.)

b. K,, is C-inconsistent if and only if K ,is. (From
D2, Tégj.)

c. K, is C-consistent if and only if K, is. (From
D3, (b).)

D31-10. K,, and K, are isomorphic calculi = p; there
is a one-one correlation H between the signs of K,, and those
of K, such that the following two conditions are fulfilled,
where T,/ and I, are those sentences or sentential classes in
K, which correspond to &; and , respectively in K,, on the
basis of H:

a. T/ e ¢ in K, if and only if T; © T in K.
b. ¢/ is C-false in K, if and only if ¥; is C-false
in K,,.

T31-80. Isomorphism of calculi is a. reflexive, b. sym-
metric, ¢. transitive. (From Dio.)

T31-81. If K,, and K, are isomorphic calculi with the
correlation H, then each of the following concepts holds for
an instance (i.e. §; or pair E;, ;) in K,, if and only if the
same concept holds for the instance in K, corresponding
to the first on the basis of H:a. C-true, b. C-equivalent,
c. C-determinate, d. C-indeterminate, e. C-exclusive,
f. C-dependent, g. C-complete, h. C-comprehensive,
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i. C-perfect, j. C-ambivalent. (This follows from Drio,
because all the concepts mentioned are defined on the
basis of ‘C-implicate’ and ‘C-false’.)

In some of the following definitions (D10 and 12) we make
use of the concept ‘closed sentence’ which is based on the
concept ‘free variable’ (§6). Thus it is assumed for these
definitions that the latter concept is available in the system
of general syntax, although we have not introduced it so far.
It seems that this concept — or another suitable concept
related to it — has to be taken as an additional primitive
concept in general syntax.

+D31-13. ¥, is C-interchangeable with %; (in K) =pq
any closed sentence &, is C-equivalent to every sentence &,
constructed out of &, by replacing either %, at some place
in & by ¥%; or ¥; by %, and there is at least one pair of
sentences &; and &; of this kind.

We add a few definitions and theorems concerning extensionality
because they are needed in later discussions (e.g. in [II]). (For ex-
planations of these concepts see [Syntax] § 65; T31-100 here is Theo-
rem 65-4b there.) We shall not go into further detail here because a
discussion of extensional and non-extensional semantical and syntacti-
cal systems and their features is planned for a later volume. For the
corresponding radical semantical concepts, see D1o—20 and 21.

D31-16. T;is C-equivalent to T;in relation to Ty =pt Ti + Ti T L,
and T, + T; © T;. (Compare remark on D3o-3.)

T31-90. T, and T; are C-equivalent (to one another) if and only
if they are C-equivalent in relation to A. (From D16, D28-6.)

D31-17. &; is C-extensional (in K) in relation to a partial sentence
©; occurring at a certain place in &; =p; &; is closed, and for every
closed &, and every T, if &; and &, are C-equivalent in relation to
T, then &; and the sentence constructed out of &; by replacing &; at
the place in question by &; are C-equivalent in relation to T;.

D31-18. A calculus X is C-extensional in relation to partial
sentences =y for every &; in K, if &; contains a closed sentence &;
at some place, then &; is C-extensional in relation to &; at that place.

T31-100. If K is C-extensional in relation to partial sentences and
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©&; and &; are closed and C-equivalent in K, then &; and &; are
C-interchangeable in K. (From D18, D17, Tgo.)

This theorem also holds for those non-extensional calculi (as e.g.
Lewis’ system of Strict Implication with propositional constants
added) in which every non-extensional connective a; fulfills the follow-
ing condition: if every two corresponding arguments in two full
sentences ©; and &; of a; are C-equivalent, then &; and &; are
C-equivalent.

We have previously (§ 22) stated conditions with the help
of characteristic sentences which hold not only for semantical
concepts but also for syntactical concepts if the prefix ‘C-’
is substituted for ‘X-’. Besides some of the C-concepts ex-
plained and defined in this chapter, there were also mentioned
some other C-concepts, e.g. ‘C-universal’, ‘C-empty’, etc.,
for predicates in general, ‘C-symmetric’, etc., for predicates
of degree two, ‘C-synonymous’ for individual constants.
The conditions given for these C-concepts may often suggest
a way of defining them with respect to particular calculi.
But the task of defining these concepts in general syntax and
even the simpler task of formulating the conditions in a gen-
eral form for those calculi which contain the signs required
for the characteristic; sentences involve some unsolved
problems not occurring in the task of formulating conditions
for the corresponding semantical concepts.

The difficulty consists in the specification of the signs whose occur-
rence is essential for the characteristic sentences. If e.g. T22-2 is ap-
plied to the L-concept, it says: “©&; and &; are L-equivalent in S if
and only if the sentence ©; = &; is L-true in S”’. But this will ob-
viously hold only if ‘=" fulfills a certain condition. Thus we must
add: “. .. provided ‘=’ is in S a sign of equivalence”. The same
condition has to be added for ‘equivalent’ and ‘F-equivalent’. And
analogous conditions have to be added in the case of other concepts
with respect to other signs or expressions, e.g. in T22-10: “. . . pro-
vided ‘(x)’ is a universal operator in S”’, and in T22-30: ““. . . provided
‘=" is a sign of identity in §”. Now it is easy to formulate these con-
ditions in semantics, i.e. to define the concepts ‘sign of equivalence’,
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‘sign of negation’, ‘sign of identity’, etc., in general semantics. For
instance, ‘a; is a sign of equivalence (negation, disjunction, etc.) in
S =py a; fulfills such and such a truth-table’, ‘a; is a sign of identity
in § =p¢ a; designates identity’ (or: ‘. . . =p¢ in; a; ing is true in §
if and only if in; and in, designate the same object’). But it is a prob-
lem how to formulate the corresponding conditions with respect to a
calculus in general syntax. The question can be put in this way: what
syntactical properties must a sign a; of K have in order to make sure
that in every true interpretation of K a; will become, say, a sign of
equivalence (or disjunction, or existence, or identity, etc.)? With
respect to the sentential connectives, this problem will be discussed
and solved in [II]. For other kinds of signs, a discussion is planned for
a later volume.

§ 32. C-Content and C-Range

Two postulates for ‘C-content’, in analogy to ‘L-content’,
are laid down; and likewise for ‘C-range’, in analogy to
‘L-range’. Several ways of defining ‘C-content’ and ‘C-range’
so as to fulfill those postulates are shown. Here, C-contents
and C-ranges are classes ~f sentences.

We have previously introduced the L-concepts ‘L-range’
(§§ 18, 19) and ‘L-content’ (§ 23) as correlations by which
to every ¥; (in a semantical system S) a class is correlated.
Different ways of defining these concepts have been ex-
plained, the chief distinction being whether the elements of
the classes taken as L-ranges and L-contents are on the side
of the designata (namely L-states or state-relations, see § 18
and § 19K and L for L-ranges and D23-B1 for L-contents)
or on the side of the object language (namely Z, e.g. state-
descriptions or sentences, see § 1gE, F, and G for L-ranges
and D23-F1 and D23-G1 for L-contents). We shall now
introduce corresponding C-concepts: ‘the C-range of T’ or
briefly ‘CrZ,’, and ‘the C-content of T’ or briefly ‘CcZ;’.
Since in syntax we cannot deal with designata, we can define
these C-concepts only in analogy to the second kind of
L-concepts just mentioned.
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With respect to each of the concepts ‘L-range’ and
‘L-content’ we first laid down two postulates (P18-1 and 2,
P23-1 and 2) and then looked for possible concepts to fulfill
these postulates. We shall do the same here. We lay down
the two postulates P32—Ax and 2 for ‘C-content’ in strict
analogy to P23-1 and 2, and likewise the postulates P32-Ex
and 2 for ‘C-range’ in analogy to P18-1 and 2. A duality
analogous to that between ‘L-content’ and ‘L-range’ (see
§ 23) is then found here between ‘ C-content’ and ‘ C-range’.
In order to exhibit this duality more clearly, we put the cor-
responding postulates or theorems side by side.

C-CONTENT C-RANGE

P32-Al. IfT; ¢ T;, then CcT, CCcTs.
P32-A2. If CcT;CCcTy, then T;: %5,

T32-Al. CcT; CCcT; if and only if
T e T;. (From PAr1 and 2.)
T32-A2. CcT; = CcT; if and only if
T and T; are C-equivalent.
(From TA1, D28-6.)
‘T32-A5. For every T:, CcA C Cc%;.
(From T29-49, PA1.)
T32-A6. For every T;, CcS; CCcV.
(From T2¢-350, PA1.)
T32-A7. Cc¥T;=CcA if and only if T;is
C-true. (From TA2, T29-90.)
CcT; = CcV if and only if T;
is C-comprehensive. (From
D3o-6, TAz2)
If K contains a directly C-false
T ;, then for every T, CcT; =
CcV if and only if T; is C-
false. (From TAS8, T30-60b.)

T32-A8.

T32-A9.

P32-El. If ¥; & I, then CrT; C CrT;.
P32-E2. If Cr¥, C CrT;, then T & T;.

T32-E1. Cr¥; C Cr¥; if and only if
T:e%Z;. (From PEr and 2.)
T32-E2. Cr¥; = Cr¥; if and only if
T: and T; are C-equivalent.
(From TE1, D28-6.)
T32-E5. For every ¥;, Cr¥: C CrA.
(From T29-49, PE1.)
T32-E6. For every T;, CrV C Cr¥y.
(From T2¢-50, PE1.)
T32-E7. Cr3T;=CrA if and only if T;is
C-true. (From TE2, T29-90.)
T32-E8. Cr¥; = CrV if and only if T;
is C-comprehensive. (From
D3o-6, TE2.)
T32-E9. If K contains a directly C-false
T;, then for every T;, Cr¥; =
CrV if and only if T; is C-
false. (From TES, T30-60b.)

Inclusion of C-contents coincides with the inverse of

C-implication (TA1). Therefore, identity of C-contents coin-
cides with C-equivalence (TA2). The C-content of A is the
minimum C-content, which is contained in every other one
(TAjs). It is the C-content of all the C-true ¥ (TA7), and
only these. The C-content of V is the maximum C-content,
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in which every other one is contained (TA6). It is the C-
content of all the C-comprehensive T (TA8), and only these;
and also of all the C-false ¥, and only these, if there are any
such, i.e. if K has a rule of refutation (TAg). The theorems
concerning C-ranges are analogous.

Theorems concerning relations between C-contents and
C-ranges (analogous to T23-20 and 21):

T32-1. Cc¥; CCcg; if and only if CrZ; CCrg;. (From
TA1, TE1.)

T32-2. CcZ; = Ccq;if and only if Cr¥; = Crg;. (From
Ti.)

In the following there are shown two possible ways of de-
fining a concept ‘ C-content’ which fulfills the postulates PA1
and 2. The first (DF1) is analogous to the definition D23-
F1 for ‘L-content’, the second (DG1) to D23-G1.

D32-F1. CcZ; =p: the class of those sentences (of K)
which are C-implicates of &,

T32-F1. CcZ; CCcZ; if and only if ; © T;. (From
DFI) T29—44) 32, 33, 40')

TF1 shows that the postulates are fulfilled. Therefore the
theorems based on the postulates hold here too. Further,
theorems hold here which are specific to this definition. A
few examples will be given.

T32-F3. CcA = the class of the C-true sentences (of K).
(From DF1, D28-3.)

T32-F4. CcZ; = the class of the C-true sentences (of K)
if and only if &;is C-true. (From TF3, T29—go, TA2.)

T32-F5. CcV = V. (From DF1, T29-50.)

T32-F6. CcZ; = V if and only if T, is C-comprehensive.
(From TFs, D3o-6, TA2.)

T32-F7. If K contains a directly C-false T;, then for
every &;, CcZ; = Vif and only if T;is C-false. (From TB6,
T30-60b.)
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T32-F11. &; ¢ Cc®;. (From DF1, T29-32.)

T32-F12. ®; CCc®;. (From DF1, T29-33.)

T32-F13. ¢; and CcZ; are C-equivalent. (From TF1rx
and 12, T29-33, T29—40; T29—40.)

T32-F16. Cc(CcZ;) = CcZ;. (From DF1, T29-44.)

The following theorems show the close connection between
the concept ‘C-content’ as defined by DF1 and the concept
‘C-perfect’ (D3o-7).

T32-F20. Each of the following conditions is a sufficient
and necessary condition for ®; to be C-perfect:

a. CCR,’ CR;.
b. CCR,‘ = R.’.
(From D30-7, DB1; TB12, (a).)

T32-F21. For every ¥;, Cc¥; is C-perfect. (From DF1,
T30-83.)

DGr gives an alternative definition for ‘C-content’. It is also in
accordance with the postulates (TGs).

D32-Gl. CcT, =ps the class of those sentences (of K) which are
C-implicates of ¥; and not C-true.

The following theorems are based on this definition. (The proofs
are analogous to those of the theorems with the same number in § 23.)

T32-G5. CcT;C CcT; if and only if T; © T;.

T32-G14. CcA = A,

T32-G16. CcT; = A if and only if T; is C-true.

T32-G20. CcV = the class of the non-C-true sentences.

T32-G28. T, and CcT; are C-equivalent.

T32-G35. Cc(CcT:) = CcT..

If we have a concept ‘C-content’ fulfilling the postulates PAx and
2, we can easily define a corresponding concept ‘C-range’ by taking
CrZ; as the complement of Cc¥;. Then, according to T1, this con-
cept ‘C-range’ will fulfill the postulates PE1 and 2. In this way,
DF1 leads to DF’1, DG1 to DG’x. DF’'t and DG’z correspond to the
definitions D1g~F1 and D1g-G1 for ‘L-range’.

D32-F’'1. Cr¥; =p¢ the class of those sentences (of K) which are
not C-implicates of ..
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T32-F'l. CrA = the class of the non-C-true sentences (of K).
(From DF'1, D28-35.)
T32-F'2. CrV = A. (From DF'1, T29-50.)

D32-G’1. Cr¥; =py the class of those sentences (of K) which are
either C-true or not C-implicates of T;.

T32-G’l. CrA = V. (From DG'r, D28-3.)

T32-G'2. CrV = the class of the C-true sentences (of K). (From
DG'1, T29-50.)



E. RELATIONS BETWEEN SEMANTICS AND
SYNTAX

The sentences of a calculus K may be interpreted by the
truth-conditions stated in the semantical rules of a system S,
provided S contains all sentences of K. Therefore, if this con-
dition is fulfilled, S is called an interpretation for K. Different
kinds of interpretations are distinguished. If the direct C-con-
cepts of K (and, hence, also the other C-concepts of K) are in
agreement with the corresponding radical concepts in an in-
terpretation S for K, then S is called a true interpretation for
K; otherwise, a false interpretation. If there is a similar agree-
ment with the L-concepts in S, S is called an L-true interpre-
tation for K. In this case, the rules of K and S suffice to show
that S is a true interpretation for K. Other kinds of interpre-
tations: L-false, L-determinate, factual, F-true, F-false, logical,
and descriptive interpretations. These concepts of different
kinds of interpretations are useful for the logical analysis of
science; for what is usually called the construction of a model
for a set of postulates is the same as the semantical interpreta-
tion of a calculus.

§ 33. True and False Interpretations

S is called an interpretation for K if S contains all sentences
of K. An interpretation S for K is called a true interpretation
for K if in any case where a direct C-concept (e.g. direct
C-implication) holds in K the corresponding radical concept
(e.g. implication) holds in S; otherwise, S is called a false in-
terpretation for K. If S is a true interpretation for K, then in
any case where a C-concept (e.g. ‘C-true’) holds in K the cor-
responding radical concept (e.g. ‘true’) holds in S (T8).

In this chapter, certain relations between semantical sys-
tems and calculi will be investigated, especially relations of
interpretation. Since these relations belong neither to seman-
tics nor to syntax, we are here in a wider field, which com-
prehends both pure semantics and pure syntax but goes
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beyond them (for terminological remarks, see § 37, Theory
of Systems).

A calculus K is constructed and analyzed within syntax in
a formal way. As long as we stay in syntax there do not
arise questions as to the meaning of the expressions and sen-
tences occurring in K, i.e. as to the designata of the expres-
sions and the truth-conditions of the sentences. But, if a
calculus K is given, we may go over to semantics and assign
designata to signs of K and truth-conditions to sentences of
K by semantical rules. Hereby sentences of K become in-
terpreted. And if we lay down a sufficient set of such rules
or, in other words, a semantical system S containing all the
sentences of K, then all these sentences become interpreted.
In this case we call S an interpretation for K (D1). S may
contain many more sentences than those of K, but it must not
contain fewer. We will call S, moreover, a true interpreta-
tion for KX if the semantical rules of S are in accordance with
the syntactical rules of K in s'.~h a way that if, according to
a rule of K, a direct C-concept holds in a certain case, then
the corresponding radical semantical concept holds in this
case in S (D2). This definition involves that every primitive
sentence of K is true in S (T8a). It will be shown that if this
condition is fulfilled an instance of any C-concept, whether
direct or not, becomes an instance of the corresponding radi-
cal concept. That is to say, if S is a true interpretation for
K, then every ¥; which is C-true in K becomes true in S;
and likewise every C-false ¥, becomes false; when C-impli-
cation holds, implication holds, etc. (T8).

Interpretations of calculi play an important role in the
method of science. In mathematics, geometry, and physics,
systems or theories are frequently constructed in the form
of postulate sets. And these are calculi of a special kind (see
[Foundations] § 16). For the application of such systems in
science it is necessary to leave the purely formal field and
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construct a bridge between the postulate set and the realm
of objects. This is usually called constructing models for the
postulate set or laying down correlative definitions for it
(‘Zuordnungsdefinitionen’, Reichenbach). It is easily seen
that this procedure, described in our terminology, leads from
syntax to semantics and is what we call here constructing
an interpretation for a calculus.

In the following, we lay down definitions but no postu-
lates, and add a few theorems based on the definitions. We
make use of the definitions and theorems concerning C-con-
cepts (§§ 28 to 31) and radical concepts (§ 10), and later (in
§ 34) also of the postulates, definitions, and theorems con-
cerning L- and F-concepts (§§ 14 and 21).

+D33-1. Sisan interpretation for K =p¢ K is a calculus
and S is a semantical system and every sentence of K is a
sentence of S.
While Ain K = Ain S, Vin K and V in S may be differ-
ent. Therefore we shall write simply ‘A’, but V.’ and ‘V,’.
T33-1. If S is an interpretation for K, then V. C V.
(From D1.)

+D33-2. S is a true interpretation for K =p¢ S is an
interpretation for K such that the following two conditions
are fulfilled:
a. If T,32 L;in K, then E; — T;in S.
b. If T;is directly C-false in K, T; is false in S.

As mentioned before (§ 27 at the end), here we leave aside the con-
cept ‘C-disjunct’. If it were to be used in a calculus K, then K would
have to contain special rules defining ‘directly-C-disjunct in X’. The
calculi constructed in modern logic and mathematics do not contain
rules of this kind. If, however, we also wanted to take into considera-
tion calculi containing such rules, then D2 would have to be supple-
mented by the condition “c. If T; and T; are directly C-disjunct in
K, then they are disjunct in S”.
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+T33-6. If S is a true interpretation for K and &; is

derivable from ®; in K, then &; — &; in S.

Proof. 1f the conditions are fulfilled, then there is in K a derivation
R with the premiss-class £ and &; as the last sentence (D28-2a).
According to D28-1, every sentence &; of R, is either a sentence of
R or a direct C-implicate of a class &= of sentences which precede
©;in Ri. Therefore the following holds. 1. The first sentence of R
is an implicate of &; in S (T10-15, D2a). 2. If every sentence which
precedes &; in Ry is an implicate of K, then &, is an implicate of &;
(T10-17, T10-16, T10-14b). The assertion follows from (1) and (2)
according to the principle of complete induction. (This proof holds
also if K contains transfinite rules of deduction and R is transfinite.
In this case, transfinite induction can be applied for the last step in
the proof, because R; is well-ordered; compare the remark at the end
of § 25.)

+T33-8. If S is a true interpretation for K, then for any
instance (i.e. T; or pair T;, T,) for which the concept (1) in
one of the following pairs of concepts holds in K, concept (2)
holds in S.

(1) INK (2) INS FroM

a. primitive sentence true Da28-10, D2, Tg~34.

b. derivable implicate T6, D28-2b and c.

c. provable true D28-12, (b), To-34.

d. C-false false D28-3, (b), To-11.

e. C-implicate implicate D284, (b), (d), To-12.
f. C-true true D28-s, (e), Tg-34.

8. C-equivalent equivalent D28-6, (e), Tg—20c.

h. C-exclusive exclusive D3o-3, (d), To-27.

(Thus e.g. T8b is meant to say: “If S is a true interpreta-
tion for K and ; is derivable from ¥; in K, then g; is an
implicate of E;in S”.)

T33-9. If S is a true interpretation for K and Z; is
C-comprehensive in K, then the following holds:

a. ; is equivalent in S to V;. (From D30-6,

T8e.) (T; is not necessarily comprehensive in
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S because that would mean: equivalent in S
to Vy.)

b. T; is true in S if and only if every sentence of
K is true in S. (From (a), Dg-1.)

c. T; is false in § if and only if at least one sen-
tence of K is falsein S. (From (b).)

d. If K contains a directly C-false ¥;, then E; is
false in S. (From D2, (c).)

e. If T;'is C-true in K, then every T; of K is true
in S. (From T8f, (b).)

T33-12 (lemma). If S is a true interpretation for K,
then K does not contain a C-ambivalent ¥,. (From D31-1,
T8f, T8d, To—2.)

+T33-13. A C-inconsistent calculus has no true interpre-
tation. (From D31-2, T12.)

+D33-3. S is a false interpretation for K =p; .S is an
interpretation for K but not a true interpretation for K.

+T33-20. S is a false interpretation for K if and only if
at least one of the following two conditions is fulfilled. (If
K does not contain a rule of refutation, then condition (b)
drops out and hence condition (a) is sufficient and necessary.)

a. There is a T; and a T; such that T; 3¢ T; in
K, and g, is true in S and F; is false in S.
" b. There is a T; such that ¥; is directly C-false
in K and true in S.
(From D3, D2, Tg-18.)

This means that S is a false interpretation for K if and only
if at least one of the rules of deduction in X is not in accord-
ance with S; that is to say, either a primitive sentence (of K)
is false (in S), or the application of a rule of inference to true
sentences leads to a false sentence, or a ¥; which is estab-
lished as directly C-false by a rule of refutation is true.

+T33-21. 1f S is an interpretation for K and if there is an
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instance (i.e. a E; or a pair T;, T;) for which both concepts
of one of the following pairs of concepts hold, then S is a
false interpretation for K.

ConcepT IN K CONCEPT IN § FroM

a. primitive sentence false T8a.

b. T; derivable from T T true, T; false T8b, To~18.
c. provable false T8c.

d. C-false true Tsad.

e. TieT; T, true, T; false T8e, To-18.
f. C-true false T8f.

g. C-equivalent non-equivalent T8g.

h. C-exclusive both true T8h, Dg-6.

§ 34. L-True and L-False Interpretations

An interpretation S for K is called an L-true interpretation
for K if direct C-implication in K becomes L-implication in .S
and direct C-falsity in K L-falsity in .S. Under these conditions,
the rules of K and S suffice to show that S is a true interpreta-
tion for K. ‘L-false interpretation’ is defined analogously, and
further L- and F-terms for other kinds of interpretations are
defined.

In accordance with our previous intentions with L-concepts
in general (§ 16), we shall define ‘L-true interpretation’ in
such a way that this concept holds for those cases where the
definitions embodied in the rules of K and S without any
reference to factual knowledge constitute a sufficient basis
for establishing that S is a true interpretation for K. Thus
in this case, according to D33-2a, if by virtue of the rules
of K T, 3¢ T;, then the rules of S must suffice to show that
Z; — T;in S, and hence T; T ¢;in S. And likewise (D33-
2b), if €, is directly false in K, it must follow from the rules
of S that g; is false in S, and hence ¥; must be L-false in S.
This consideration shows that D34-1 is in accordance with
our intention.

+D34-1. Sisan L-true interpretation for K =p; S is
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an interpretation for K such that the following two conditions
are fulfilled.
a. If T, 2 T;in K, then T, ¥ T;in S.
b. If ¥;is directly C-false in K, then ¥, is L-false
in S.
T34-1. An L-true interpretation is a true interpreta-
tion. (From D1, P14-3, P14-2, D33-2.)
+T34-6. If S is an L-true interpretation for K and &; is
derivable from &; in K, then ®; © &, in S.
(The proof is analogous to that of T33-6, making use of
Pi4-11, 12, and 5.)
+T34-8. If S is an L-true interpretation for K, then for
any instance (i.e. T; or pair ¥;, ¥;) for which the concept
(1) in one of the following pairs of concepts holds in K, con-
cept (2) holds in S.

(1) INK (2)INS FroM
a. primitive sentence L-true Da8-10, D1, T14-34.
b. derivable L-implicate T6, D28-2b and c.
c. provable L-true Da28-12, (b), T14-34.
d. C-false L-false D28-3, (b), P14-7.
e. C-implicate L-implicate D284, (b), (d), Prg-15.
f. C-true L-true D285, (e), T14-34.
g. C-equivalent L-equivalent D28-6, (e), P14—9.
h. C-determinate L-determinate D3o-1, (f), (d), D14-1.
1. C-exclusive L-exclusive D3o-3, (d), D14-2.
j. C-dependent L-dependent D3o-4, (e), (i), D14-3.

T34-9. If S is an L-true interpretation for K and F; is
C-complete in K, then the following holds.
a. Every T; in K is L-dependent upon &; in S.
(From D304, T8j.)
b. 1f Vg = Vp (i.e. if S does not contain other sen-
tences than K) ¥;is L-complete in S. (From
(a), T14-64.)
T34-10. If S is an L-true interpretation for K and ¥ is
C-comprehensive in K, then the following holds.
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a. Every T; in K is an L-implicate of T; in S.
(From T30-52d, T8e.)

b. If K contains a ; which is L-complete in S,
then T;is L-complete in S. (From (a), T14-
92.)

c. If K contains a ¥; which is L-comprehensive
in S, then ¥, is L-comprehensive in S. (From
(a), T14-106.)

T34-11. If S is an L-true interpretation for K and ¥, is
factual in S and belongs to K, then £, is C-indeterminate in
K. (From D2o-1, T8h, D30-2.)

T34-12. If S is an L-true interpretation for K and ®;
is L-perfect in .S and belongs to K, then £, is C-perfect in K.
(From D30-7, T8¢, D14-7.)

We shall define ‘L-false interpretation’ in such a way
that this concept holds for those cases where the rules of K
and S, without reference to facts, suffice to show that S is a
false interpretation for K. A consideration similar to that
for ‘L-true interpretation’ leads here to the following defi-
nition.

+D34-2. Sis an L-false interpretation for K =p; S'is
an interpretation for K and at least one of the following two
conditions is fulfilled.

a. Thereis a T, and a T; such that E,; © T;in K
and T;is L-true and T, L-false in S.

b. There is a T; which is C-false in K and L-true
in S.

It is noteworthy that the conditions for ‘true interpretation’
(D33-1), ‘false interpretation’ (T33-20), and ‘L-true interpreta-
tion’ (D1) need only refer to direct C-concepts, while that for ‘L-false
interpretation’ (D2) must make use of general C-concepts (‘C-im-
plicate’ and ‘C-false’). In order to show that this is necessary, let us

suppose, for instance, that K possesses two rules of inference R1 and
R2 such that R1 leads e.g. from &; to ©; and R2 from &; to &;, and
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that in S &, is L-true, &©; L-false, but &, factual. Then each of the
two rules separately does not lead in these two instances — nor, let
us suppose, in any other instance — from an L-true to an L-false sen-
tence. Nevertheless, the two rules combined lead from the L-true &,
to the L-false ©;, and therefore we want to call S an L-false interpre-
tation for K.

Generally, if S is a false interpretation for K, then there must be
a single rule of deduction in K for which S is a false interpretation
(T33-20), while in the case of an L-false interpretation it is not neces-
sarily a single rule which is responsible but sometimes only a combina-
tion of rules. This situation is analogous to the following: any false
8 necessarily contains a false sentence; but an L-false &; need not
necessarily contain an L-false sentence; it might be that every sen-
tence of R; is factual and only their combination makes the whole of
£ L-false (see example Sg in § 21).

T34-20. An L-false interpretation is a false interpreta-
tion. (From P14-1 and 2, T33-21e and d.)
+T34-21. If S is an interpretation for K and if there is an
instance (i.e. a T; or a pair T;, T;) for which both concepts
of one of the following pairs of concepts hold, then S is an
L-false interpretation for K.

ConceprT IN K CONCEPT IN § From
a. T;derivablefrom¥; | T:L-true, T; L-false || Daa, T29-30.
b. provable L-false Da8-12, (a), T14-33.
c. primitive sentence L-false (b).
d. directly C-false L-true D2b, T29-21.
e. C-true L-false D2a, T14-33.
f. e T T; L-true, T; Lfalse || T29~37, Dza.

+T34-25. Every interpretation of a C-inconsistent calcu-
lus is an L-false interpretation. (From T31-23d, T14-33,
D34—2b.)

The following definitions of L- and F-concepts for inter-
pretations are analogous to the definitions of the correspond-
ing L- and F-concepts for T (§ 21).



§34. L-TRUE AND L-FALSE INTERPRETATIONS 211

+D34-3. S is an L-determinate interpretation for
K =p¢ S is an L-true or an L-false interpretation for K.

+D34-4. S is an (L-indeterminate or) factual inter-
pretation for K =p; S is an interpretation for K but not an
L-determinate interpretation for K.

In the case of an L-determinate interpretation the rules of
K and S suffice to find out whether it is a true or a false in-
terpretation, while in the case of a factual interpretation
knowledge about facts is necessary.

D34-5. Sis an F-true interpretation for K =p; S'is
a true interpretation for K but not an L-true interpretation
for K.

T34-40. S is an F-true interpretation for K if and only
if S is a factual and a true interpretation for K. (From
Ds, D4, D3.)

D34-6. S is an F-false interpretation for K =p; S'is
a false interpretation for K but not an L-false interpretation
for K.

T34-45. S is an F-false interpretation for K if and only
if S is a factual and a false interpretation for K. (From D6,
Dg4, D3.)

T34-46. S is a factual interpretation for K if and only if
S is an F-true or an F-false interpretation for K. (From
Ts0 and 45.)

The definitions given furnish a classification of the inter-
pretations for any given calculus, which is perfectly analogous
to the classification of the sentences of a given semantical
system as exhibited by a diagram in § 21. There we found
that for a particular system any one or two or three of the
four kinds of sentences (1. L-true, 2. F-true, 3. F-false,
4. L-false) may be empty. As to the corresponding kinds of
interpretations for a particular calculus K, we have seen that
(1), (2), and (3) are empty if K is C-inconsistent (T34~25).
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Whether in any other case any of the four kinds may be
empty is not known. It seems doubtful whether there can
be a C-consistent calculus for which any of the four kinds
of interpretation is impossible (in a sufficiently rich meta-
language).

If the concepts ‘logical sign’ and ‘ descriptive sign’ (§ 13)
are available, either in general semantics or in the special
semantics of a particular system S, we may distinguish be-
tween logical and descriptive interpretations in the following
way.

D34-7. S is a logical interpretation for K =p; S is
an interpretation for K and every sign of K is logical in S.

D34-8. S is a descriptive interpretation for K =p¢ S
is an interpretation for K and at least one sign of K is descrip-
tive in S.

T34-50. If K,, and K, are coincident calculi and S is
an interpretation for K, of one of the kinds here defined
(a. interpretation, b. true, c. false, d. L-true, e. L-false,
f. L-determinate, g. factual, h. F-true, i. F-false, j. logical,
k. descriptive interpretation), then S is an interpretation
of the same kind for K,. (From T31-68 and 69.)

§ 35. Examples of Interpretations
Several calculi and semantical systems are outlined, as ex-
amples of the different kinds of interpretations defined in
§8 33 and 34.

Among the examples of systems constructed previously
there were the semantical systems S; and S, (§§ 8 and 15)
and the calculi K; and K, (§§ 27 and 30). We shall now ex-
amine the relation between K;, K;, and some similar calculi
on the one hand and S;, S,, and some similar semantical
systems on the other hand, in order to find out whether some
of these systems are interpretations for those calculi, and, if
so, to which of the kinds of interpretations defined above
they belong.
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K, represents the ordinary propositional calculus. S; shows
a close relationship to K;; but while Kj, as a calculus, applies
primitive sentences and rules of inference, S; applies truth-
tables. These two methods are sometimes regarded as on a
par, as alternative methods for representing the ordinary
propositional calculus. But in fact they are fundamentally
different. The method of primitive sentences and rules of
inference is formal and hence belongs to syntax. The method
of truth-tables states truth-conditions for the sentences and
hence gives an interpretation and belongs to semantics.
[There is, however, a formal method of value-tables (some-
times called matrices) analogous to that of the truth-tables
but not involving the concept of truth.] A system which,
like S;, applies truth-tables should therefore not be called
propositional calculus; a term like ‘propositional logic’
would seem more suitable. (A more detailed discussion of the
relation between propositional calculus and propositional
logic will be given in [II].)

For reference in the subsequent discussion of interpretations some
features of S;, S4, K,, and K, are listed here.

A. S; (§ 8) contains some atomic sentences and molecular sentences
with ‘~’and ‘V°.

B. S, (§ 8) contains the same atomic sentences as Sz but more
connectives.

C. S, contains all sentences of Ss.

( l)) Truth rules for the atomic sentences of S, see § 8, rules (3) and
4a).

; E. Truth rules for the atomic sentences of S, are the same as those
or Sa.

F. Truth rules for the molecular sentences of S, see § 8, rules (4b)
and (4¢); they correspond to the ordinary truth-tables.

G. Truth rules for the molecular sentences of Sy, see § 8, rules (4b)
to (4f); they correspond to the ordinary truth-tables. For the sen-
te;nsces which belong to S; also, the rules are in accordance with those
oI O3.

H. The L-concepts for S; and Sy are defined with the help of the
ordinary truth-tables (§ 15 at the end, rules s5a to g).
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M. K, and K, (§ 27; C-terminology: § 30 at the end) contain the
same sentences as S;.

N. K, and K; contain four forms of primitive sentences.

0. K, and K; contain only one rule of inference: “@&; is directly
derivable from (§ 30: a direct C-implicate of) {~S;, V&S;, Sk} .

P. K, contains no rule of refutation.

Q. Rule of refutation for Kq: “{‘P(a)’, ‘~P(a)’} (8)) is directly
C-false”.

Ss is an interpretation both for K, and for K, (D33-1, M); likewise
S¢ (C). It will be shown that they are true and, moreover, L-true
interpretations.

It can easily be seen that any sentence of the four forms of primitive
sentences (N) satisfies the ordinary truth-tables and hence is true in
Ss (F) and S (G); and, moreover, L-true (H, rule (5a)). Therefore,
for any sentence & of this kind, A — &; in S; and S.; and, moreover,
A T &,. Now we examine the rule of inference (0). If ~&; V &;and
&y are true in S, then ~&; is false (F, rule (4b)); if in this case &; were
false, ~&; V &; could not be true (rule (4¢c)); therefore &; is true.
Hence &; is an implicate of {~&;V&;, ©i} (Dg-3). Thus &S;is a
true inlerpretation for K, (P, D33~2). Likewise S, (E, G). For K, the
rule of refutation (Q) must also be examined. &, is false in S; (T9-1,
F rule (4b)) and in S, (E, G). Therefore condition (b) in D33-2 is
also fulfilled. Hence S; is a #rue interpretation for K.; and likewise Sq.

If we construct the truth-table (§ 15) with the arguments &; and
&, then we find ‘T’ for &, on lines (1) and (2), for &; on (1) and (3),
hence for ~&; on (3) and (4), for ~&; V &; on (1), (3), and (4), for
{~@LV&;, €} on (1) only. ThusS; has ‘T’ on every line on which
the class mentioned has ‘T’. Therefore &; is an L-implicate of this
class in Sgand S, (see rule (5e) for S, § 15). Previously we found that
the primitive sentences of K, are L-true in S; and Sy. Therefore, S;
is an L-true interpretation for K, (P, D34-1); and likewise S,. For K,
the rule of refutation (Q) must also be examined. The truth-table
for &, has ‘F’ on each line. Therefore, &, is L-false in S; and S, (H).
Thus condition (b) in D34-1 is also fulfilled. S;is an L-true interpreta-
tion for K,; and likewise S4.

We construct the calculus K; out of K, by adding ‘P(a)’ (&,) asa
primitive sentence. According to D, &, is true in S; if and only if
Chicago is large. Hence, &, is true. However, &, does not fulfill the
condition for L-truth in S; (H); hence &, is F-true in S; (D21-2). We
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know that &, is true in S; not by merely analyzing this sentence on the
basis of the semantical rules of Ss but by using, in addition, the result
of certain geographical observations. The other rules of K3, namely
those of K,, have already been examined. Thus S; is a true interpre-
tation for K; as it is for K,; but here, in contradistinction to K,, it is
not an L-true interpretation. Hence, S; is an F-true interpretation for
Ks (D34-5); and likewise S,.

We construct K, out of K, by adding ‘~P(a)’ (&;) as a primitive
sentence. By an analysis similar to that concerning &,, we find that
&, is false but not L-false and hence F-false in S;. Hence, S; is a false
interpretation for K, (T33-21a); and likewise S,. Sj is not an L-false
interpretation for K4 (D34-2). Therefore, S; is an F-false interpreta-
tion for K4 (D34-6); and likewise S,.

We construct K; out of X, by adding both &, and & as primitive
sentences. Then each of these sentences is C-true in K; (T29~-101b).
Hence R, the class of these two sentences, is also C-true in K; (T29-
73); but it is L-false in S; (as found above in the analysis of Kj).
Therefore, Ss is an L-false interpretation for K; (T34-21¢€); and like-
wise S4.

We construct Kq out of K; by adding the same two sentences &,
and &, as primitive sentences. Thea f; is C-true in K, also. On the
other hand, &, is directly C-false in K, (Q) and hence in K, and there-
fore also C-false in K¢ (T29-21). Thus, 8, is C-ambivalent in K,
(D31-1), and Ky is a C-inconsistent calculus (D31-2). Therefore every
interpretation for K, is an L-false interpretation (T34-25), e.g. S3 and
S« and any other semantical system containing the sentences of K.
For S;, this is easily seen by the same consideration as with K.

We have found L-false interpretations for K; and Ks. Kgis C-in-
consistent because it contains a C-ambivalent ;. Kj is, although
C-consistent (P, T31-31), similar to C-inconsistent calculi, because
8 is, although not C-ambivalent, i.e. both C-true and C-false, never-
theless both C-true and C-comprehensive in K5 (because every class
of the form {&;, ~&,} is C-comprehensive in K;; see examples at the
end of § 30). There are, however, L-false interpretations also for
calculi of other, so to speak, quite normal kinds, e.g. for K, and K;, as
seen by the following example.

We construct the semantical system Sy out of S; by taking the fol-
lowing rule instead of rule (4c) (F). A sentence of the form &;V &;
is true if and only if both &, and ©,; are true; in other words, we take
as the truth-table for ‘V ’ in Sy not the table of disjunction, as in S,
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but the table of conjunction (i.e. the table for ‘s’ in S;). We change
(H) in the same way for So. Then every sentence of the form &; V ~&;
is L-false in Sy (as &; ¢ ~&; is L-false in S;). On the other hand, in
K, and K,, &; V ~@,; is provable (the proof is similar to the example
in § 27, with an additional step using a primitive sentence of the form
(1¢)) and hence C-true (T29-100). Therefore, S, is an L-false inter-
pretation for K, and for K; (T34-21e). But K, and K, are C-consistent
(see examples for D31-3).

§ 36. Exhaustive and L-Exhaustive Calculi

K is said to be in accordance with S if S is a true interpreta-
tion for K. If, in addition, the C-concepts in K coincide with
the radical concepts or with the L-concepts in S, K is called,
respectively, an exhaustive or an L-exhaustive calculus for S.

In the last sections we regarded calculi as given and dis-
cussed the relations which semantical systems might have
to them as interpretations of various kinds. Now let us look
at the relation between calculi and semantical systems from
the other direction: let us suppose that a semantical system
S is given; under what conditions should we say of a calculus
K that it is in accordance with S? If S is given and we try to
construct K so as to fit to S, then that means that K is in-
tended to be a syntactical representation of some features
of S; these features must be such that they can be repre-
sented in a syntactical, that is to say, a formal, way. That
a certain sign of S designates a certain object and that a
certain sentence of S asserts a certain fact cannot be repre-
sented syntactically; these features are essentially semanti-
cal. But that a certain sentence &, of S is true, that &; is
an implicate of ©&,, that &, and &; are exclusive, can be
represented syntactically. These and similar features of S,
especially also those concerning L-relations, e.g. L-implica-
tion, can be mirrored in a calculus K and thereby formalized.
The formalization of the features mentioned would e.g. con-
sist in constructing K in such a way that &, becomes C-true,
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that &; becomes a C-implicate of &,, and that &, and &;
become C-exclusive.

We should obviously not accept K as being in accordance
with S, i.e. as a correct syntactical representation of features
of S, if some T; which is false in S were C-true in K, or if a
T, which is true in S were C-false in K, or if ; were true
in § and T; false in S but ; a C-implicate of T;in K. But
we need not explicitly exclude these cases. If we exclude the
corresponding cases for the direct C-concepts, as D1 does in
combination with D33-2, then the cases mentioned for the
general C-concepts are also excluded, as shown by T33-8.

D36-1. A calculus K is in accordance with a semantical
system S =p¢ S is a true interpretation for K.

Since the relation here defined is simply the converse of the
relation ‘true interpretation for’, we need not state special
theorems here; the theorems in § 33 can immediately be
applied. The concept defined does not involve that K covers
the whole of S; conditions of tiis kind will constitute other
concepts (D2 and 3). Here it is only required that K does
not, so to speak, contradict any features of S; it may cover
any part of S, however small. Therefore, for any semantical
system S there is a calculus — and indeed many calculi —
in accordance with it.

A simple though trivial way of constructing a calculus K such that
it is in accordance with a given system S and even contains all sen-
tences of S is to make ‘direct C-implication’ and ‘directly C-false’
empty — in other words, let K not possess any primitive sentences,
rules of inference, or rules of refutation; then, nevertheless, there are
derivations in K — though only trivial ones — and ‘C-true in K’ and
‘C-implicate in K’ are not empty (T29-76; T29-32, 49, and 50).

If we find out that certain sentences are true in .S — either
finding by a logical analysis that they are L-true or finding

by empirical investigation that they are F-true — then we
may select any number of them and construct K in such a
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way that they become C-true in K. This is done by taking
a suitable sub-class of these sentences, or if necessary all of
them, as primitive sentences (i.e. direct C-implicates of A)
in K. And likewise, if we find instances of implication (other
than with A), either L- or F-implication, in S, then we may
select any part of them and represent them by C-implication
in K. This is done by taking a suitable sub-class of the in-
stances selected, and if necessary all of them, as cases of
‘direct C-implication’, to be represented by rules of inference
in K. And finally, if we know instances of either L- or F-fal-
sity in S, we may represent any selection of them (in custom-
ary practice: none) by C-falsity in K. This is done by taking
a suitable sub-class of them, and if necessary all of them, as
directly C-false in K, to be represented by rules of refutation.
If we proceed in this way, then the resulting calculus K will
be in accordance with S. The selection of the extension of
C-implication (and thereby also of C-truth) and C-falsity is
essential for the nature of the resulting calculus and its re-
lation to S. Of a different nature is the problem of the choice
of suitable sub-classes as extensions for direct C-implication
(primitive sentences and rules of inference) and direct
C-falsity (rules of refutation) in such a way as to yield (at
least) the selected extensions of C-truth, C-implication, and
C-falsity. Whether this problem is solved in one way or
another may sometimes be of great practical importance;
but it does not affect the essential features of the resulting
calculus. If different ways are chosen, the resulting calculi
will be coincident (D31-9), although not necessarily directly
coincident (D31-8). )

While in constructing a calculus we may choose the rules
arbitrarily, in constructing a calculus K in accordance with
a given semantical system S we are not entirely free. Insome
essential respects the features of S determine those of K,
although, on the other hand, there is still a freedom of choice
left with respect to some features. Thus logic — if taken as
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a system of formal deduction, in other words, a calculus — is
in one way conventional, in another not. If, however, by
logic we understand the rules of logical deduction expressed
in the definitions of the L-concepts for a given semantical
system, then logic is not essentially conventional because the
L-concepts cannot be chosen freely if they are to fulfill the
requirement of adequacy (§ 16).

For discussions of the question of the conventional character of
logic see W. V. Quine, ““Truth by Convention”, Phil. Essays for A. N.
W kitehead, 1936, and [Foundations] § 12.

+T36-1. If K is in accordance with S, then K is C-con-
sistent. (From D1, T33-13.)

If a semantical system S is given, then among the calculi
which are in accordance with S there are two cases of special
interest: first, when the C-concepts in K coincide with the
radical concepts in S, and, second, when they coincide with
the L-concepts in S. In the first case, the C-concepts in K
have the maximum extension possible in a calculus in ac-
cordance with S; in this case we call K an exhaustive calculus
for S (D2); in the second case we call K an L-exhaustive
calculus for S (D3).

D36-2. K is an exhaustive calculus for S =p; the fol-
lowing two conditions are fulfilled:

a. ‘C-implicate in K’ and ‘implicate in S’ coincide.
b. ‘C-false in K’ and ‘false in S’ coincide.

T36-13. If K is an exhaustive calculus for S, then in each
of the following pairs of concepts concept (1) in K and
concept (2) in S coincide.

(1) INK (2)INS From
a. | sentence (Vg) sentence (V) D2a, Tg-142, T29-32.
b. C-true true Tog-35, D2a, D28-5.
c. C-equivalent equivalent To-20c, D2a, D28-6.
d. | C-exclusive exclusive Tog~27, D2b, D3o-3.
e. C-comprehensive comprehensive Dg—9, D2a, (2), D30-6.
f. C-interchangeable interchangeable Di1o-13, (a), (c), D31-13.
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T36-14. If K is an exhaustive calculus for S, then in each
of the following pairs of concepts the extension of concept
(1) in S is contained in that of concept (2) in K (i.e. for any
instance, T; or pair T;, T;, for which concept (1) holds in §
concept (2) holds in K).

T36-15. If K is an

Di14-7, T14a.)

(1)IN S (2)INK Frox
a. L-implicate C-implicate P14-3, Daa.
b. L-Afalse C-false P14-2, Dab.
c. L-true C-true P14-1, T13b.
d. | L-equivalent C-equivalent Ti4-2, T13c.
e. L-determinate C-determinate Di14-1, (c), (b), D3o-1.
f. L-exclusive C-exclusive Di4-2, (b), D3o-3.
g. L-dependent C-dependent Di14-3, (2), (f), D3o—4.
h. | L-complete C-complete D14-4, (g), T13a, D30-5.
i. L-comprehensive C-comprehensive D-14-5, (a), T13a, D30-6.

exhaustive calculus for S and &; is
C-perfect in K, then ®;is L-perfect in S. (From D3o-7,

T36-18. If K is an exhaustive calculus for .S, then the fol-

lowing is the case:

a. S is a true interpretation for K. (From D2,
D33-2, T29—37 and 21.)
b. K is in accordance with S. (From (a), D1.)
- €. K is C-consistent. (From (b), T1.)
d (lemma). Every £;in K is C-determinate. (From
Ti3b, D2b, D3o-1.)
e. K is a C-determinate calculus. (From (d),

D30-8.)

T36-20. If K,, is an exhaustive calculus for S, then K, is
an exhaustive calculus for S if and only if K,, and K, are
coincident. (From D2, D31-9.)

T36-21 (lemma). If every sentence which is true in S is
C-true in K and every sentence which is false is S is C-false
in K, then the following is the case:
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a. Every T, which is true in § is C-true in K.
(From Dio-1, T29-73.)
b. Every T; which is false in S is C-false in K.
(From T1o-1, T29-23.)
c. If Ty — Ij in S, then ;e Ej in K.
Proof. If the condition is fulfilled, then either I;is false or T; is true
(D10-3). In the first case $; is C-false (a), and T29-31 applies; in
the second ¥; is C-true (b), and T29-74 applies.

T36-22. K is an exhaustive calculus for S if and only if
the following four conditions are fulfilled together:

a. Every sentence which is true in § is C-true in K.
b. Every sentence which is false in S is C-false in K.
c. Every sentence of K belongs to S.

d. K is C-consistent.

Proof. If the four conditions (a) to (d) are fulfilled, the following
holds. 1. If T; @ T, in K, then T;— T, in S. [Otherwise T; would
be true and T; false (T9-18), hence T; C-true and T; C-false (T21a
and b), hence K C-inconsistent (T21-19).] 2. ‘C-implication in K’
and ‘implication in S’ coincide. (From (x), T21c.) 3. If T; is C-false
in K, it is false in S. [Otherwise T; would be true, and hence C-true
(T21a), hence C-ambivalent; hence K would be C-inconsistent.]
4. ‘C-false in K’ and “false in S’ coincide. (From (3), T21b.) 5. K is
an exhaustive calculus for S. (From D36-2, (2), (4).) The inverse
follows from T13b, D2b, T13a, T18c.

T36-23. K is an exhaustive calculus for S if and only if

the following three conditions are fulfilled together:
a. Every sentence of S belongs to K.
b. S'is a true interpretation for K.
¢. K is C-determinate.

Proof. 1.Let K be an exhaustive calculus for S. Then the conditions
(a) (from T13a), (b) (from T18a), and (c) (from Ti8e) are fulfilled.
2. Let the conditions (a), (b), and (c) be fulfilled. Then every sen-
tence which is true in S is C-true in K; because it is C-determinate
(c), and not C-false (b). Analogously, every sentence which is false
in S is C-false in K. Every sentence of K belongs to S (b, D33-1).
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K is C-consistent (b, T33-13). Therefore, K is an exhaustive calculus
for S (T22).

T36-25. If K is an exhaustive calculus for S,,, and S, is a
true interpretation for K containing only sentences of K,
then S,, and S, are equivalent systems. (Compare Dg-11.)

Proof. Let the conditions be fulfilled. Then S,, contains the same
sentences as K (T13a) and hence the same as S,. If ©; is true in S,
it is C-true in K (T13b) and hence true in S, (T33-8f). If &; is false
in S, it is C-false in K (D2b) and hence false in S, (T33-8d). There-
fore S., and S, are equivalent systems (Tg—70).

If a system S is rich in singular factual sentences, then in
most cases we do not have sufficient factual knowledge for
determining the truth-values of all sentences in S. Under
these conditions we are not in a position to construct an ex-
haustive calculus for S. Therefore, the construction of an
exhaustive calculus is usually attempted only in the follow-
ing two cases. 1. S contains no factual sentences. In this
case the concept ‘exhaustive calculus for S’ coincides with
the concept ‘L-exhaustive calculus for S’ to be defined soon.
2. S contains factual sentences also, but in such a way that
all of them are L-implicates of a small number of sentences
which are known (or assumed) to be F-true, e.g. a set of fun-
damental laws of a physical theory. In this case, in order
to construct K, as an exhaustive calculus for S, we first
construct K,, as an L-exhaustive calculus for S (see below)
and then build K, out of K,, by adding those fundamental
F-true sentences as primitive sentences.

Most of the calculi in practical use at the present time contain no
rules of refutation and hence no C-false ¥. Therefore, a calculus K
of this kind cannot be an exhaustive calculus for a system S (unless
S were to contain only true sentences) in the general sense defined by
D2. But K may be exhaustive for .S in the more restricted sense that
C-implication in K coincides with implication in S. If this is the case,
then the following of the previous theorems still hold for K and S,
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because they are based only on condition (a) of D2: T13a, b, c, ¢, f;
T14a, c, d, i; Txs; T18a, b, c; T2o0.

+D36-3. K is an L-exhaustive calculus for S =p; the

following two conditions are fulfilled:

a. ‘C-implicate in K’ and ‘L-implicate in S’ co-

incide.

b. ‘C-false in K’ and ‘L-false in S’ coincide.
+T36-30. If K is an L-exhaustive calculus for S, then
in each of the following pairs of concepts concept (1) in K
and concept (2) in S coincide.

(1)INK (2) INS From
a. sentence sentence D3a, T29-32, P14-8.
b. C-true L-true D3a, D28-5, T14-51a.
c. C-equivalent L-equivalent D3a, D28-6, T14-9.
d. C-determinate L-determinate D3o-1, D14-1, (a), D3b.
e. C-exclusive L-exclusive D3o-3, D14-2, D3b.
f. C-dependent L-dependent D304, D14-3, D3a, (e).
8. C-indeterminate factual D3o-2, D21-1, (a), (d).
h. C-complete L-complete D3o-5, D14-4, (a), D3a, (e).
i. C-comprehensive L-comprehensive D30-6, D14-5, (a), D3a.
j. C-interchangeable | L-interchangeable{| D31-13, Di14-6, (a), (c).
k. C-perfect L-perfect D3o-7, D14-7, D3a, (a).

+T36-34. 1f K is an L-exhaustive calculus for S, then the

following is the case:

a. S is an L-true interpretation for K. (From D3,

D34-1, T29-37 and 21.)

b. K is in accordance with S. (From (a), T34-1,

Di1.)

c. K is C-consistent. (From (b), T1.)
d. K is a C-determinate calculus if and only if
S is an L-determinate system. (From D30-8,
Di14-8, T30a and d.)
T36-36. If K,, is an L-exhaustive calculus for S, then
K, is an L-exhaustive calculus for S if and only if K,, and
K, are coincident. (From D3, D31-9.)
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If a semantical system S is given, then it is often more
important to construct an L-exhaustive calculus for S than
an exhaustive one. An L-exhaustive calculus for S represents
logical relations holding within S and especially logical deduc-
tion in S in a formal way. Thus it is a formalization of the
logic of S (as far as this logic is represented by L-implication
and L-falsity). (The problems of the formalization of logic
will be discussed in detail in [II].)

Here again we have to take into consideration the fact that most
calculi up to the present do not contain rules of refutation and hence
cannot be L-exhaustive for S (unless S does not contain any L-false
;). But we often find a calculus K which is in a restricted sense L-ex-
haustive for a certain S, such that C-implication in K coincides with
L-implication in S. If this is the case, then the following of the theo-
rems given above apply also to K and S, although K is not an L-ex-
haustive calculus in the strict sense for S: T3o0a, b, ¢, i, j, k; T34a, b,
c; T36.

For certain semantical systems, L-exhaustive calculi cannot be
constructed without using transfinite rules (§ 25, at the end). (See
[Foundations] § 10, at the end.)

Examples of exhaustive and L-exhaustive calculi. We again use the
systems S; and S, and the calculi K; and K, analyzed in § 35. We
found that both Sy and S, are true interpretations for K, and for Ky;

therefore, both K, and K; are in accordance with Sy and with S,.

Now it will be shown that K, is an L-exhaustive calculus for Ss.
The primitive sentences and the rule of inference in K. are those of
the ordinary propositional calculus. It is known for this calculus
1. that all the tautological sentences, i.e. those whose truth-table has
a ‘T’ on each line, and only these, are provable (and hence derivable
from A) in it, and 2. that &,; is derivable from a non-empty T in this
calculus if and only if the truth-table of &; has a ‘T’ on every line on
which that of T; has a ‘T’. Because of (1), ‘L-true in S,’ coincides
with ‘provable in Ky’ and hence with ‘C-true in K’ (T31-36; it was
shown in § 31 that K, is C-consistent). In other words, ‘L-implicate
of A in Sy’ coincides with ‘C-implicate of A in K,’. Because of (2),
for a non-empty I; ‘L-implicate of T;in Sy’ coincides with ‘derivable
from ¥, in K,’ and hence with ‘ C-implicate of T; in Ka’ (T29-55; that
K, fulfills the condition in this theorem has been shown in § 30).
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Therefore, generally, ‘L-implicate in S;’ coincides with ‘C-implicate
in Ks’. Finally, the class & which is directly C-false in K, has been
shown in § 35 to be L-false in S;. ¥; is C-false in K, if and only if £,
is derivable from ¥; in Ka (D28-3), hence if and only if T; T &, in
Ss (see above), hence if and only if T; is L-false in Sg (T14-58). There-
fore K is an L-exhaustive calculus for S; (D3).

In order to get an example of an exkaustive calculus for Ss, let us
construct K, out of K; by adding six factual sentences as primitive
sentences. First, we have to find out by observations which of the six
atomic sentences in K3 are, on the basis of their interpretation in S;,
true and which false (as we did with one of them, &,, in § 35). Then
we take as additional primitive sentences in Ky the true atomic sen-
tences and the negations of the false ones, hence six F-true sentences.
We give an abridged indication of the proof for the statement that K,
is an exhaustive calculus for Ss. 1. With respect to the ordinary prop-
ositional calculus and hence K; the following can be shown. If a
molecular sentence &; with n different components has ‘T’ on a cer-
tain line of its truth-table, then &; is derivable from the class £; of
the following n sentences: if a component of &; has ‘T’ on the line
in question, it belongs to &;; otherwise its negation belongs to f:.
2. If &; is true in S, it is provable and C-true in K,. (This follows
from (1). We take the line which ascribes to the components those
truth-values which they have in S;. Then all sentences of & are addi-
tional primitive sentences in K,. ©&; is derivable from &; in K, and
hence provable in Ky.) 3. If ©; is false in S;, it is C-false in Ky. (If

©&; is false ~&; is true in Ss and hence C-true in Ky (2). Hence €&; &
{S:, ~S;}. R, the directly C-false class in Kz and K,, is a C-implicate
of any class of the form just mentioned (§ 30). Therefore, &; € £1;
hence &; is C-false.) 4. Ky is C-consistent. (K2 is C-consistent; the
class of the additional primitive sentences in K, is not C-false in K,.)
5. Ky is an exhaustive calculus for S; (T36~22).
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§ 37. Terminological Remarks

These remarks concern either particular terms or general
terminological questions with respect to the formation of terms
(e.g. as names of calculi, for kinds of variables, etc.).

The new systematization of logic will make it necessary at some
time in the future to construct a new, systematic terminology. The
present stage is not yet ripe for such an enterprise. The terminology
will certainly depend upon the structure of the whole theory. We can-
not know whether the outlines of the structure as we see it today in
its two parts, syntax and semantics (or three parts, if we divide se-
mantics into radical semantics and L-semantics), will not undergo
major changes even in the near future, since everything is still in the
first stages of development. Thus, with respect to the choice of terms,
we cannot do more at the present moment than look for terms which
seem to fit into the framework . : we see it today, paying due regard
to terms which are in common use or used by outstanding authors.

In the terminological remarks in this section, reference will be
made to the following books, in addition to the bibliography.

Baldwin, J. M. Dictionary of Philosophy and Psychology. New York
and London, 3 vols., 1go1-05.

Cohen, M. R., and Nagel, E. An Iniroduction to Logic and Scientific
Method. New York, 1934.

Eisler, R. Handwirterbuch der Philosophie. Berlin, 1913.

Lalande, A. Vocabulaire technique et critique de la philosophie. Paris
(1902-23), 4th ed., 3 vols., 1932.

Langer, S. Introduction to Symbolic Logic. Boston and New York,
1937.

Quine, W. V. A System of Logistic. Cambridge, Mass., 1934.

Russell, B. [Principles] The Principles of Mathematics. Cambridge
(1903), 1938.
*If, in the following, different terms for a concept or different

Eneanings for a term are discussed, then that marked by an asterisk
is the one used in these studies.
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Absolute Concepts, see: Connections; Radical Terms (2); ‘True’.
C-, see: Prefixes.

Calculi (§ 24). Two possible ways of forming names for particular
caleuli: 1. with reference to expressions or signs occurring (e.g. ‘sen-
tential calculus’, ‘calculus of predicates’). II*. with reference to
designata (e.g. ‘propositional calculus’* or ‘calculus of propositions’,
‘functional calculus’® or ‘calculus of functions’, ‘calculus of classes’,
‘calculus of relations’, ‘calculus of real numbers’). II seems much
more usual, as the examples show. A name of this kind is given to a
calculus with regard to its chief interpretation, i.e. that which the
author chiefly has in mind. Although this is, strictly speaking, some-
thing outside of syntax and hence foreign to the calculus itself, the
designation may be used within syntax also if taken merely as a con-
ventional name for the calculus. If used with this caution, method IT
seems convenient for practical purposes.

‘Concept’. The word is used chiefly in three meanings:
I. Psychological meaning: a certain result or feature of a certain
mental activity. '
II. Logical meaning:
Ia, narrowest sense: property*.
IIb, wider sense: property or relation (attribute*).
IIc*, widest sense: property, relation, or function.
III. As ‘term’ or ‘expression’.

Connections (§ 6; [1I] § 3). Terms for propositional connections of
degree two. [They are relations between propositions, not sentences;
absolute, not semantical concepts; in distinction to the corresponding
radical relations (§ 9), see Radical Terms, 1.] Since there are no terms
in ordinary language for these concepts, we take into consideration:
a. the usage in symbolic logic; b. the suitability of a term as a root for
the corresponding L-term (constructed by prefixing ‘L-’).

1. ‘Implication’. Although the use of this term by Russell for the
propositional connection has sometimes led to misunderstandings, we
keep it because it is widely used and suitable as a root for the L-termt.
Other terms: ‘material implication’ (Russell); ‘conditional’] (Quine).
We may take into consideration terms used for L-implication (either
between propositions or between sentences) or its converse, to see
whether they suggest a suitable term for the connection, to be used
simultaneously as a root for the L-term. “Strict implication’ (Lewis),
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‘formal implication’ (Cohen-Nagel), ‘tautologous implication’, ‘logical
implication’, ‘necessary implication’ are themselves not suitable as
roots, but suggest again the root ‘implication’. ‘Entailment’ seems
possible but not better than ‘implication’. For the converse: ‘con-
sequence’ and ‘deducible’ seem suitable as roots for an L-term but
not acceptable for the connection (‘consequent’ seems possible for
both purposes).

2. ‘Disjunction’*. We keep the term because it is in general use.
Disadvantage: it has the connotation of exclusion. Other terms:
‘alternation’ (Quine, following Johnson; the same disadvantage);
‘logical sum’} (Russell).

3. ‘Conjunction’*. Generally used. Other term: ‘logical product’f
(Russell).

4. ‘Equivalence’*. Widely used; well in accordance with the mean-
ing ‘““the same truth-valuef.

5. ‘ Exclusion’*}. Other term: ‘non-conjunction’] (Sheffer). Other
terms for the corresponding L-concept: ‘incompatibility’, ‘inconsist-
ency’; they do not seem quite suitable for the connection (the second
is used in a different sense; see D31-2).

6. ‘ Bi-negation’(*) might be considered for the neither-nor con-
nection.

General remarks:

t The terms (1), (4), and (5) originally, in traditional logic and in
everyday language, have the meaning of the corresponding L-concepts.
This is sometimes confusing for the beginner. On the other hand, this
fact makes the terms suitable as roots for the corresponding L-terms.

1 This term, although suitable for the connection, does not seem
suitable as a root for L- and C-terms.

‘Consequence’, see: ‘Derivable’.

‘Derivable’ (D25-A4). Other terms: ‘consequence’, ‘deducible’.
These terms are used in two different meanings (leaving aside their
use in the sense of ‘provable’, which should certainly be avoided).

I: As “constructible (out of the premisses) with the help of the rules
of inference (of the calculus in question)”’.

II*: As “constructible (out of the premisses) with the help of the
rules of inference and the primitive sentences” (D25-A4, D26-4).

[Accordingly, ‘provable’ is to be defined as follows. I: ‘derivable
from the primitive sentences’; II*: ‘derivable from A’, D26~5.] Con-
cept II is much more important than I, more characteristic for the
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calculus in question. If, in the construction of a calculus, we wish to
make it possible to infer a certain sentence from certain other sen-
tences, then we often have the choice of doing this by laying down
either a primitive sentence or a rule of inference. This difference has
no effect upon the deductive power of the calculus and is therefore
unessential; but it changes concept I, while concept II is the same in
both cases. Therefore, if we want a term for only one of the two con-
cepts — otherwise we should have an unnecessary increase in the num-
ber of terms — it seems preferable to use it for IT*.

F-, see: ‘Factual’; Prefixes.

‘Factual’* (§ 21). Leibniz ‘vérités de fait’. Other terms: ‘syn-
thetic’ (Kant), ‘material’, ‘empirical’, ‘contingent’ (Leibniz).

‘Formal’, ‘formalization’ (§§ 4, 24). Among the many meanings in
which the term is used in modern logic, the following three seem es-
pecially important:

1. As ‘general’ (in distinction to ‘singular’).

II. As ‘logical’, ‘necessary’ (e.g. truth) (in distinction to ‘factual’,
‘contingent’). '

IIT*. As ‘in abstraction from meaning’, ‘ without reference to desig-
nata’ (‘syntactical*).

I is used e.g. by Russell in his distinction between ‘material impli-
cation’ (e.g. ‘P(a) D Q(b)’) and ‘formal implication’ (e.g. ‘ (x) (P(x) D
Q(x))’). Itis to be noticed, however, that a formal implication in this
sense is merely a universal material implication (the truth of ‘(x) (P(x)
D Q(x))’ is in general not more of a formal or logical nature in the
ordinary sense of these words than that of ‘P(a) D Q(b)’; it may like-
wise be contingent).

‘Function’. This term is used for many different concepts.

I. As ‘expression with free variables’ (§ 6). [Other terms: ‘open
expression’®, ‘functional’, ‘matrix’, ‘expressional function®.] Here
we may distinguish two kinds:

IA. As ‘expression of sentential form with free variables’. [Other
terms: ‘open sentence’, ‘sentential function’®, ‘propositional func-
tion’, ‘sentential (propositional, statement) matrix’ (Quine), ‘sen-
tential (propositional) functional’, ‘sentential (propositional) form’
(Sheffer, Langer).]

IB. As ‘expression with free variables, not of sentential form’.
[Other terms: ‘nominal function’, ‘functional’.]
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II. For the corresponding designatum (strictly speaking, the entity
determined by the expression, § 11).

ITA. As ‘attribute’™ (§6). EOther terms: ‘propositional function’,
‘attribute’, ‘concept’.]

IIB. [Other terms: ‘object function’ (‘Gegenstandsfunktion’),
‘correlation’*, ‘descriptive function’.]

Frege used the term ‘function’ in [Begriffsschrift] for I, later in
[Grundgesetze] for II. Russell mixes the two uses (perhaps following
Frege without being aware that Frege changed the meaning) as with
“proposition’ (which see). [For I: ¢, .. I shall call the expression a
propositional function” [Principles] p. 13; “By a ‘propositional func-
tion’ we mean something which contains a variable x, and expresses a
proposition as soon as . . .” [Princ. Math.] p. 38; “A function is what
ambiguously denotes . . .”’ [Princ. Math.] p. 39. For II: “The proposi-
tional function ‘x has the relation R to y’ will be expressed by the
notation xRy” [Princ. Math.] p. 26.] The term has been taken from
mathematics. There it is in general use for II; its occasional use for
I may be regarded as a loose way of speaking, i.e. as an abbreviation
for ‘function expression’. Therefore it seems advisable to use the
term ‘function’ in logic also primarily for IT* (or IIB), and to search
for a new term for I. At present, no other satisfactory term for I is
known; in this book, therefore, we use ‘expressional function’* for I
and ‘sentential function’ * for IA as long as no better term has been
found; the adjectives ‘expressional’ and ‘sentential’ will make it clear
that II is not meant.

Implication, see: Connections; Radical Terms.

L-, see: Connections; ‘Formal’; Negation . . .; Prefixes; ‘Tautolo-
gous’.

Negation of L-terms. With respect to a given radical concept, we
must distinguish between two negative L-concepts:

1. The L-concept corresponding to the negation of the radical con-
cept (‘L-non-...%);

2. the negation of the L-concept corresponding to the radical con-
cept (‘non-L-...7%).

Examples. 1. ‘A’ and ‘B’ are L-non-equivalent if ‘~(A = B)’ is
L-true and hence ‘A = B’ L-false. 2. ‘A’ and ‘B’ are non-L-equiva-
lent (i.e. they are not L-equivalent) if and only if ‘A = B’ is not
L-true; it need not be L-false but may be factual. In many cases the
radical term and its negation have little use (e.g. ‘exclusive’) or none
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at all (e.g. ‘determinate’, ‘dependent’, ‘complete’), while the corre-
sponding L-term and its negation are useful. It might be convenient
to use in these cases the simpler and more natural form ‘L-in . ..’ in-
stead of ‘non-L-...’. In this way we might use ‘L-indeterminate’
(instead of ‘non-L-determinate’) as negation for ‘L-determinate’
(D14-1; D21-1), ‘L-independent’ as negation for ‘L-dependent’
(D14-3), ‘L-incomplete’ as negation for ‘L-complete’ (D14—4), and
perhaps ‘L-inexclusive’ as negation for ‘ L-exclusive’ (D14-2) (hence in
the sense of ‘logically compatible’). The same convention might be
made for the corresponding C-terms.

‘ Postulate’, see: ‘Primitive Sentence’.

Prefixes. 1. The use of prefixes for semantical and syntactical terms
— quite aside from the question of which particular letters are chosen
—leads to a considerable increase in simplicity and uniformity of
theorems. Compare e.g. the following formulations. (As old terminol-
ogy that of [Syntax] is taken; the result would be similar with the

terminology of other authors.) )

Old Terminology New Terminology

“If an equivalence sentence is | “If an equivalence sentence is
true, the two components have | true, the two components are
the same truth-value; if itis valid, | equivalent; if it is C-true, they
they are equipollent; if it is ana- | are C-equivalent; if it is L-true,
lytic, they are L-equipollent.” they are L-equivalent.”

2. Choice of letters as prefixes. The prefixes are added to radical
terms in order to construct terms for the corresponding syntactical
concepts (‘C-’), for the L-semantical concepts (‘L-’), and for their
counterparts (‘F-’). They are added mostly to ‘true’ and ‘implicate’;
therefore it is chiefly these terms that we take into consideration.

a. ‘C-true’* (§28) for ‘true in a calculus’. Other possibilities:
‘F-true’ for ‘formally true’ (but this might be mistaken for
L-true); ‘D-’ for *‘deductively’; ‘S-’ for ‘syntactically’ or ‘in a
(syntactical) system’ (but ‘S-’ might be misunderstood as ‘se-
mantically’ or ‘in a semantical system’).

b. ‘L-true’* (§ 14) for ‘logically true’. Other possibilities: ‘F-true’
for ‘formally true’ (but this might be mistaken for C-true);
‘S-implication’ for ‘strict implication’; ‘N-true’ for ‘necessarily
true’; ‘A-true’ for ‘analytic’ (Kant).
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c. ‘F-true’* (§ 21) for ‘factually true’. For other possibilities, see
‘Factual’.

‘Primitive Sentence’™ (§ 24). Other terms: 1. ‘ primitive proposi-
tion’; if, however, ‘proposition’ is used for meaning II*, it is a se-
mantical term and cannot be used in the construction of a calculus;
2. ‘postulate’; 3. ‘axiom’. I prefer to make a distinction between
‘primitive sentence’ and terms (2) and (3), between a calculus and a
postulate (or axiom) set. The latter consists of a basic calculus with
a certain interpretation (both are usually tacitly presupposed) and a
specific calculus consisting of the postulates (see § 38(f) and [Foun-
dations] § 16).

‘Proposition’. The term is used for two different concepts, namely
for certain expressions (I) and for their designata (II).

I: As ‘declarative sentence’. Other terms: ‘sentence’™, ‘statement’
(Quine), ‘formula’ (Bernays).

II*: As “that which is expressed (signified, formulated, represented,
designated) by a (declarative) sentence” (§§ 6 and 18). Other terms:
‘Satz an sich’ (Bolzano), ‘Objectiv’ (A. Meinong), ‘state of affairs’
(Wittgenstein), ‘ condition’.

The philosophical dictionaric, give only meaning I for the term
‘proposition’. Lalande: “énoncé verbal . ..”, “I’énoncé d’un juge-
ment”, quoting Bosanquet: ‘“the unit of language which represents a
judgment”. Baldwin: ‘“a judgment expressed in words’. Eisler:
“Satz (wpdracis, propositio, enunciatio) ist . . . der sprachliche Aus-
druck fiir einen Gedanken”. Concise Oxford Dictionary (1931):
‘““statement, assertion, especially (Logic) form of words. . .”. Russell
sometimes uses the term with meaning I [*“An expression such as . . .
is not a proposition, ... the expression becomes a proposition”
[Principles] p. 13; “the fact that propositions are ‘incomplete sym-
bols’ ...” [Princ. Math.] p. 44; “a form of words which must be
either true or false I shall call a proposition”, Our Knowledge of the
External World, p. 52] and sometimes with meaning II [*. . . sym-
bolizes the proposition that . ..” [Princ. Math.] p. 15; “the symbol
. . . denotes one definite proposition’’ [Princ. Math.] p. 16; . . . what
we call a ‘proposition’ (in the sense in which this is distinguished from
the phrase expressing it) ...”, ... the phrase which expresses a
proposition . . .” [Princ. Math.] p. 44; *“ the propositions in the written
expression of which such symbols occur . . .” [Principles] Introd. to



236 APPENDIX

2nd ed. (1938), p. ix.] This makes his explanations often difficult to
understand.

Many authors, even in books and papers in the field of symbolic
logic, use some terms in the ambiguous way just indicated for ‘propo-
sition’, namely, sometimes for certain expressions and sometimes for
their designata (besides ‘proposition’, e.g. ‘function’ (which see),
‘propositional function’, ‘number’, and others). Further, the dis-
tinction between speaking about a sign (e.g. ‘“we substitute ‘R’ for
...”) and using a sign in order to speak about its designatum (e.g.
“the relation R is symmetric”) is often neglected and hence the quotes
in the first case are omitted. Each of these two inaccuracies, the am-
biguity of terms and the omission of quotes, would be harmless alone
(the reader would understand both “the proposition ‘P(a)’ ”” and ““the
sentence P(a)” as ‘“‘the sentence ‘P(a)’ ). But the two combined
make many formulations ambiguous and even incomprehensible.
(Does ‘“the proposition P(a)”’ mean “the proposition P(a)” or “the
sentence ‘P(a)’ ”’?)

It seems that at present many authors (perhaps the majority of
those in modern, as distinguished from traditional, logic) use the term
‘proposition’ with meaning II*. [For example,’Cohen and Nagel
(p. 28): “We have distinguished the proposition (as the objective
meaning) from the sentence which states it”’; Lewis and Langford:
‘‘the proposition . . .is the same with the fact that...” (p. 472),
‘““that sentence does name a fact . ..” (p. 475); Langer (p. 50): “any
linguistic statement of a proposition . . .”, “any symbolic structure,
such as a sentence, expresses a proposition, if . . .”; Quine (p. 32):
‘“‘propositions, not in the sense of sentences, but in the sense of what
sentences may be taken to symbolize’’; A. A. Bennett and C. A. Baylis,
Formal Logic (p. 47): ‘“Propositions are usually expressed by sen-
tences”’. ]

Some authors use the term ‘proposition’ for meaning I but with
the qualification that it applies to sentences only insofar as these are
not regarded from a merely formal point of view but as having a mean-
ing — in our terminology, sentences in semantics, not in syntax. This
use seems to go back to Aristotle. Following Schlick, I used the term
in this way in [Foundations]. But it now seems to me preferable to
use it in meaning IT, and then to use only one term (namely ‘sentence’)
for I both in calculi and in semantical systems.

¢ Propositional Calculus’, see: Calculi.
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‘Propositional Function’, see: ‘Function’.
¢ Propositional Variable’, see: Variables.

Quotes. I use quotes mainly in two ways.

1. By adding quotes to an expression (sign, word) of a language, a
name for that expression is constructed in the metalanguage for that
language. [Examples. a. In English as metalanguage for a symbolic
object language: ¢ ‘x’ is a variable”, *“ ‘a’ designates Chicago”’; b. In
English as metametalanguage: “ ‘equivalent’ is a semantical word”,
“we define ‘implicate’ ...”.] Concerning the necessity of distin-
guishing between an expression and its name, whether formed with the
help of quotes or in some other way, compare: Frege [Grundgesetze]
I, p. 4; [Syntax] § 42. The requirement of the distinction should of
course not be pedantically exaggerated. There is no objection to all
kinds of shorter and simpler formulations, provided the reader can
have no practical doubt as to what is meant. For examples of the con-
fusion caused by a lack of the distinction, see ‘Proposition’.

2. In a few cases, I include an expression (English word or phrase)
in quotes although I am not speaking about that expression but about
its designatum. This is done where the omission of quotes would look
strange because of the restrictior.: of English grammar. In these cases
a word like ‘concept’, ‘property’, ‘relation’, etc., is always added;
thereby it immediately becomes clear that it is not the expression but
its designatum which is being talked about. [Examples. I write “the
relation ‘implicate’ is . . .” instead of ‘the relation implicate is . . .”,
because the latter formulation looks strange and might even be mis-
understood, and because for the relation meant here, namely the con-
verse of implication, there is no simple noun in English; likewise ‘the
concept ‘logical’”’ instead of the ambiguous formulation ““the concept
logical” or the awkward “the concept logicality”.]

Radical terms.

1. Choice of terms. For the chief radical properties of sentences there
is practically no problem of the choice of terms; the terms ‘true’ and
‘false’ seem in accordance with general usage (see ‘True’). But the
radical relations between sentences (e.g. implication, exclusion, etc.,
§ 9) are hardly ever referred to in everyday life or in traditional logic
and only occasionally even in modern logic. Therefore, there are no
terms for them in common use. It seems convenient to take for them
the terms used for the corresponding relations between propositions
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(§ 17), i.e. the propositional connections (see ‘ Connections’). Here, it
sometimes seems convenient to use the adjectival form of the terms
also, especially for the symmetric relations. Two sentences are then
called (2) disjunct®, (3) conjunct (not used in this book), (4) equiva-
lent*, (5) exclusive*, in relation to one another (§ g). In the case of the
non-symmetric relation (1) (implication) it seems convenient to have
simple terms both for the relation and for its converse. We use: ‘&;
implies &;’ (because it is customary in modern logic, although not
in accordance with the ordinary meaning of the word) and (more
frequently) ‘@; is an implicate of &;’ (Dg-3); both these terms seem
suitable as roots for L- and C-terms.

2. Multiple use of the terms. We use many radical terms in four
different ways, namely, as designating relations between a. proposi-
tions (e.g. “A is equivalent to B”, D17-4); b. sentences (“‘A’ is
equivalent to ‘B’’’, Dg—4); c. attributes (“P is equivalent to Q”,
Dio-5); d. predicates (“‘P’ is equivalent to ‘Q’”’, Dio-11b). Since
the context always shows the nature of the members of the relation,
no confusion can arise from this multiple use. The relations of the
kinds (a) and (c) are absolute concepts, those of the kinds (b) and (d)
are semantical. This multiple use makes the practical application of
the terminology much easier; otherwise we should need four times as
many terms. And it is sufficiently in accordance with general use.

* Semantics’ (§§ 4, 7). The term was coined by Michel J. A. Bréal,
Essai de sémantique; science des significations, Paris, 1897 (English
translation, Semantics: Studies in the Science of Meaning, London,
1900). (Bréal used it from 1883 on; see Lalande.) Baldwin: “Se-
mantics (or Semasiology): the doctrine of historical word meanings”’.
The term is used by A. Korzybski (Science and Senity and many
papers) for a theory concerning the use of language, and especially the
causes and effects of, and cures for, certain misuses of language; thus
here the term corresponds more to our ‘pragmatics’. For Chwistek’s
use of the term, see ‘Syntax’. Other term with a similar meaning:
‘semasiology’ (used in linguistics, sometimes also in logic, e.g. by
Ajdukiewicz, covering semantics in connection with pragmatics).

‘Semiotic’ (§ 4). (Original meaning: medical theory of symptoms.)
Locke: ‘Znuewrwd’, a science of signs and significations. Other terms
used with a similar meaning: 1. ‘significs’ (V. Welby, What is Mean-
ing?, 1903; Baldwin: theory of signification, in all senses — verbal
sense, intention, worth; also used by a group of Dutch mathematicians,
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Brouwer, Mannoury, and others, with special emphasis on pragmatical
questions) ; 2. ‘sematology’ (Biihler). On the history of the words
‘semantics’ and ‘semiotic’ see R. A. Walker in Word 4 (1948), 78—97.

‘Sentence’, see: ‘ Proposition’.
Signs, see: Variables.

‘Syntax’, ‘Syntactics’ (§§ 4, 24). Sometimes used for the general
abstract theory of order and combinations (e.g. Cournot, Traité de
Venchatnement . . . , chap. I1, § 11 (Lalande); he mentions the German
word ‘Syntaktik’ used with this meaning). Morris ([Foundations]
p. 13ff) distinguishes between ‘syntactics’ (for the wider field of
formal (which see, meaning III) analysis of signs of any kinds, not
only in declarative sentences) and ‘(logical) syntax’ (for the part of
syntactics concerned with a formal analysis of declarative sentences
only). Other terms used with a similar meaning: 1. ‘Metamathemat-
ics’, used by Hilbert for the syntax of mathematics, and sometimes, e.g.
by the Polish logicians, used for the whole field of what we call syntax.
2. ‘Morphology’, used (besides ‘metamathematics’) by Tarski for
syntax, but sometimes also in a wider sense, including semantics.
3. ‘Semiotik’, used by H. Hermes (Semiotik: eine Theorie der
Zeichengestalten als Grundlage jir Uniersuchungen von formalisierien
Sprachen, 1938) for what we call pure general syntax; he seems to
understand the term ‘syntax’ only in the sense of ¢ descriptive syntax’.
4. ‘Semantics’, used by L. Chwistek (e.g. Math. Zeitschr. 14, 1922;
Erkenntnis 3, 1933) for a theory which seems to correspond to what we
call syntax; whether this theory also contains semantical concepts is
difficult to see because of a fundamental and thoroughgoing ambiguity
in his formulations (of the kind described above under ‘ Proposition’).
— The reason for the choice of the term ‘syntax’ for the field of formal
investigations is its close relationship to the branch of linguistics
usually called syntax, i.e. the theory of the construction of sentences
out of words. There is, however, this difference: the latter field is, on
the one hand, narrower than the former because it does not include
'the theory of formal deduction, and, on the other hand, wider because
it does not restrict itself to formal analysis but formulates rules which
refer to designata. Whenever a misunderstanding seems possible, one
might use the terms ‘logical syntax’ and ‘grammatical syntax’ for
the two fields.

‘Tautologous’, ‘tautology’. Two meanings: I: as ‘analytic’, ‘L-
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true’; II: as “true for each truth-possibility of the components on the
basis of the truth-tables for the connectives” (compare § 15; this cor-
responds to ‘L-true by NTT’ in [II] Di11-30). Wittgenstein intro-
duced the term into modern logic; he perhaps meant I, but he defined
it only with the help of the truth-tables, so that the concept defined is
really II. The former use of the term by the Vienna Circle in meaning
I frequently led to misunderstandings. Therefore it seems preferable
to use it for II, if at all.

Theory of Systems. It would be convenient to have a term for
the field in which semantical and syntactical systems are investigated.
This field contains pure semantics and pure syntax and, in addition,
the study of the relations between syntactical and semantical systems
(e.g. interpretation); the latter belongs neither to syntax nor to se-
mantics. Terms which might be considered: 1. ‘systematics’ (but the
adjective ‘systematical’ could hardly be used in this sense); 2. ‘sys-
temics’ (suggested by K. R. Symon); 3. ‘(logical) grammar’ (Witt-
genstein seems to use this term and likewise (logical) syntax’ for an
analysis which, in our terminology, combines syntactical and seman-
tical questions but also covers what we call descriptive syntax and de-
scriptive semantics, and perhaps even something of pragmatics). (If
I had known a suitable term, I should have taken it instead of ‘se-
mantics’ in the title of these studies.)

‘True’ (§ 7). 1. Some philosophers restrict the use of the term to
what we call factual truth. But the wider use, including logical, neces-
sary truth, is in accordance both with traditional use (e.g. Leibniz,
Kant, and many others: ‘necessary truths’) and with the generally
accepted use in modern logic. This wider use is also much more con-
veniént because the formulation of rules and theorems becomes much
simpler ([Foundations] p. 14).

2. In another respect, there are chiefly three possible domains of
application of the term ‘true’ (and likewise of ‘false’); it may be ap-
plied (I) to propositions (in traditional terminology, ‘judgments’ or
‘content of judgments’); (II) to sentences (in traditional terminology,
‘propositions’); (III*) to both. The concept I is non-semantical; it is
absolute in the sense of § 17 (see Dx7-1). II is the semantical concept
of truth (see § 7 or D20o~13 or D17-C1). [The name ‘the absolute
concept of truth’ has occasionally been given to II (e.g. by M. Ko-
koszynska) ; however, if this name is to be used at all, it seems to be
more appropriate for I.] Our use III* is deliberately ambiguous; see
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above: Radical terms, 2. Multiple use. In traditional philosophy and
logic, all three uses seem to occur (Lalande: “‘en parlant des jugements
ou des propositions qui les expriment”). In modern logic, also, the
use is not uniform. Many authors speak of ‘true propositions’; but
because of the ambiguity of this term (see ‘Proposition’) it is not clear
whether they mean I or II. Some accept I and reject IT explicitly
(e.g. Cohen and Nagel (p. 27): ‘““sentences . . . are not true or false.
Truth or falsity can be predicated only of the propositions they
signify’’). But there seems to be an increasing tendency to accept II
or ITI. It seems that III* is also the one used in everyday language,
although a clear decision on this question is hardly possible in view of
the lack of precision in that language. We may perhaps construe
phrases like ‘true statement’, ‘true report’, ‘true enunciation’, as
instances of II, and formulations of the form “it is true that...” as
instances of I.

Variables (§§ 6, 11). Two possible ways of forming designations for
kinds of variables (and analogously for kinds of constants, and for kinds
of signs, comprehending both): I, with reference to their value-expres-
sions (e.g. ‘sentential variable’, ‘predicate variable’, ‘functor vari-
able’); II. with reference to thei values (designata) (e.g. ‘ propositional
variable’®, ‘function variable’, ‘individual variable’®, ‘numerical
variable’, ‘real number variable’, ‘relation variable’). This question
is related to that of names for calculi (see Calculi). II seems in general
more usual; but in some cases the terms (formed with the terms for
designata given in § 6) would be unusual (e.g. ‘property variable’,
‘attribute variable’). The terms in II, when used in syntax, would be
taken from the chief interpretation for the calculus in question; they
would be used in this case as technical terms for certain syntactical
classes of variables and not understood as saying something about
designata (in the same way as terms like ‘predicate’, ‘numerical ex-
pression’, ‘sign of negation’, etc., are used in syntax). Disadvantage
of II: strange combinations like ‘“propositional variables and other
sentences”, “a predicate which is a variable is an attribute variable”,
etc. But II might, nevertheless, be preferable.
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§ 38. Outline of Further Semantical Problems

Here are listed some problems of semiotic and, especially,
semantics, which either could not be discussed sufficiently in
the present treatise or have not been mentioned at all. It is
planned to deal with some of them in subsequent volumes of
these studies.

a. General semantics and general syniax. It seems desirable to con-
struct general semantics and general syntax systematically. This
might be done in the form of systems of postulates in such a way that
first a system is constructed exhibiting the features which are common
to radical semantics, L-semantics, and syntax. This system might
then be branched out into three systems for the three theories men-
tioned. The use of the new concepts mentioned in (b) below may lead
to a simplification of these systems.

b. The propositional calculus and its interpretations. The system of
the ordinary truth-tables for the connectives is a semantical system
which we may call propositional logic. It is known to be a true in-
terpretation of the ordinary propositional calculus (see § 35) consist-
ing of primitive sentences and rules of inference. It can easily be shown
to be, moreover, an L-true interpretation. This interpretation will be
called the normal interpretation of the propositional calculus. It can
be shown that there are two kinds of true interpretations for the propo-
sitional calculus which are non-normal. Hence, the propositional
calculus is not, as seems to be generally believed, a full formalization
of propositional logic in the sense of not admitting further syntactical
determinations. If certain new syntactical concepts are used, which
are not definable on the basis of those ordinarily used, the proposi-
tional calculus can be supplemented in such a way that the normal
interpretation is the only true interpretation for it.

The introduction of the new concepts into the common foundation
of syntax and semantics will also have other consequences of a more
general nature. It will eliminate the lack of symmetry in this foun-
dation which we found at several places (e.g. §§ 9, 14, 28) and
thereby simplify the structure of the whole edifice of syntax and seman-
tics. (In [II], the propositional calculus and its interpretations will
be analyzed and the new concepts will be introduced.)

c. L-semantics. The distinction between logical and descriptive
signs and the distinction between logical and factual truth belong to
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the most important problems of logical analysis. Our previous dis-
cussion has shown the difficulties connected with the problem of a
general formulation of these distinctions (§§ 13 and 16). This problem
is very much in need of further investigation. The discussion might
perhaps distinguish between the two cases of an extensional and a
non-extensional metalanguage (see d).

d. Euxtensional and mon-extensional languages. Besides extensional
language systems, non-extensional (so-called intensional) ones should
also be studied as object languages both in semantics and in syntax.
(An extensional system contains only extensional connectives, i.e.
such as possess truth-tables, compare D1o-21 and 22.) Among non-
extensional connectives different kinds are to be studied, especially
those designating logical modalities (like those of Lewis’ system of
Strict Implication; compare §§ 17 and 18) and those designating
physical or causal modalities. Today no satisfactory and sufficiently
comprehensive system for the connectives of the first kind exists, and
no system at all for those of the second kind, it seems.

If and when a satisfactory non-extensional system is constructed,
it would be worth while to examine how it can be applied as meta-
language, especially for semantics, and whether this application would
have advantages in comparisoi. with an extensional metalanguage.
Certain conditions, especially in L-semantics, seem to point in this
direction (see § 16 at the end, §§ 17 and 18). But the situation is at
present not yet clear enough for a judgment.

e. Antinomies. Some of the so-called logical antinomies or para-
doxes belong to the field of semantics, e.g. the antinomy of the con-
cept ‘heterological’ and that of the concept ‘false’, usually called
‘“the Liar”. The modern analysis of these antinomies and of their
consequences for logic, especially by Russell, Ramsey, Godel, and
Tarski, has brought clarity concerning the nature of the antinomies,
shown ways of avoiding them, and led to further important results.
It seems that the problem and the results will gain clarity if looked
at from the present semiotical point of view, especially by distinguish-
ing between the semantical and the syntactical form of the antinomies.
(For their syntactical representation, compare [Syntax] § 60a—d.)

J. Postulate systems. Postulate systems (or axiom systems), whose
construction has been found so useful in mathematics, geometry, and
physics, are, regarded from the point of view of semantics and syntax,
combinations of two parts, a basic system and a specific addition. The
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basic system usually contains logical words like ‘not’, ‘and’, ‘every’,
etc.; these are not dealt with in a formal way but taken in their ordi-
nary meaning. Therefore this part of the system is semantical, though
not explicitly. The specific part, however, is taken in a formal way;
deductions are carried out without presupposing a particular interpre-
tation. Therefore this part is syntactical. What is usually called the
construction of a model for a postulate set is the construction of an
interpretation for this syntactical part (compare [Foundations] § 16).

Hence, the general theory of postulate systems, dealing with the
various kinds of such systems and with problems of consistency, in-
dependence, completeness, monomorphism, existence of models, etc.,
is a branch of general syntax and general semantics. Hence, when
general syntax and general semantics has been developed sufficiently,
the theory of postulate systems will be in a position to make use of
the concepts and theorems of these fields.

g. Truth, probability, degree of confirmation. For certain concepts
which are related to the concept of truth in some way it is first essential
to see their difference from the concept of truth, with which they are
sometimes identified erroneously, and second, to study their nature
and their relation to the concept of truth. Because of the fact that
strict verification for factual sentences is not possible, the concept of
verification has to be replaced by the concept of confirmation and the
concept ‘verified’ by ‘confirmed to such and such a degree’. Some-
times the concept ‘verified’ is taken as being the same as ‘true’ —
although the difference between these two concepts becomes obvious
from a semiotical analysis, since the first is pragmatical and the second
semantical. On the basis of this error, it is then believed that the con-
cept of truth has to be replaced by the concept of degree of confirma-
tion. Sometimes a second wrong identification is combined with the
first, namely, that of the concepts of probability (in the statistical sense,
as used in the mathematical calculus of probability and its applica-
tions) and of degree of confirmation. The second concept is pragmatical
(although there are corresponding syntactical and semantical con-
cepts), but the first is not- (Probability can be expressed either as a
semantical concept, applied to sentences or predicates, or as an ab-
solute, non-semiotical concept, expressible in the object language, ap-
plied to events, i.e. propositions or attributes.) On the basis of these
two identifications, the view is sometimes held that the concept of
truth has to be replaced by that of probability, while in fact these two
concepts are to be used one beside the other. Finally, the concept of
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probability was identified in previous stages of the development of the
theory of probability, and by some philosophers is still identified to-
day, with the concept of the degree of belief. This concept is, however,
a pragmatical, psychological concept.

It may be expected that the nature of these and related concepts
and their relations to one another will become more clear by an analy-
sis from the point of view of semiotic and its branches, making use of
the concepts to be developed in pragmatics, semantics, and syntax.

h. Philosophical problems. It has turned out to be very fruitful to
look at the problems of theoretical philosophy from the point of view
of semiotic, i.e. to try to understand them as problems which have to
do with signs and language in one way or another. Among problems
of this kind we may first distinguish between those problems — or
components in complex problems — which are of a factual, empirical,
rather than logical nature. They occur especially in the theory of
knowledge and the philosophy of science. If construed as problems of
semiotic, they belong to pragmatics. They have to do, for instance,
with the activities of perception, observation, comparison, registra-
tion, confirmation, etc., as far as these activities lead to or refer to
knowledge formulated in language. On the other hand, we have the
problems of logical analysis; th.y occur in what is known as logic and,
combined with problems of the first kind, in the theory of knowledge
and the philosophy of science. These problems belong either to seman-
tics or to syntax. The first is the case if the logical analysis takes into
consideration the meaning of the expressions (in our technical terminol-
ogy, their designata); the second, if the analysis is carried out in a
purely formal way.

Many sentences in philosophy are such that, in their customary
formulation, they seem to deal nit with language but merely with cer-
tain features of things or events or nature in general, while a closer
analysis shows that they are translatable into sentences of L-seman-
tics. Sentences of this kind might be called guasi-logical or crypto-
logical. By translating quasi-logical sentences into L-terms, the
philosophical problems involved will often become clearer and their
treatment in terms of L-semantics more precise. The same problems
can often also be formalized and then dealt with by syntactical meth-
ods if a suitable calculus corresponding to the semantical system in
question and formalizing its L-concepts is constructed. This way of
syntactical reformulation of philosophical problems has been dealt
with in [Syntax] Chapter V. The method of semantical formulation
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of philosophical problems is to be developed in an analogous way; it
may sometimes turn out to be more appropriate than the syntactical
method (compare § 39 below).

1. Application of semiotic in empirical science. A great number of
sentences in the books and papers in all branches of empirical science
do not belong to the object language but to the metalanguage; in other
words, they do not speak about the things and events of the field in
question but about the laws or other sentences of the field, which in
their turn deal with the events. The difference between these two
kinds of sentences is often not manifest in the ordinary formulation,
but can easily be exhibited by a simple analysis. (See the examples
of sentences of a treatise in physics in [Syntax] § 85, and examples
in psychology in S. S. Stevens, “Psychology and the Science of Sci-
ence,” Psychological Bulletin, vol. 36, 1939, Appendix I, p. 251.) If an
author in any field of science is conscious of this distinction between
metasentences and object sentences, and, within the first kind, of the
distinction between pragmatical, semantical, and syntactical sentences,
then many ambiguities and mutual misunderstandings in scientific
discussions might be avoided.

§39. Remarks on ‘‘Logical Syntax of Language’’

The modifications which the views explained in my earlier
book [Syntax] have to undergo, especially in view of semantics,
are here indicated. Most of the earlier results remain valid.
But certain concepts, especially the L-concepts, are now re-
garded as semantical, not syntactical; hence, the earlier at-
tempts at syntactical definitions for them are abandoned.

~ Many of the earlier discussions and analyses are now seen to be
incomplete, although correct; they have to be supplemented by
corresponding semantical analyses. The field of theoretical
philosophy is no longer restricted to syntax but is regarded as
comprehending the whole analysis of language, including syn-
tax and semantics and perhaps also pragmatics.

I wish to indicate how the views exhibited in my earlier book, Tke
Logical Syntax of Language, have to be modified as a result, chiefly,
of the new point of view of semantics. (The German original of the
book appeared in 1934, the English translation with additions in 1937.)

Parts I, I, and III of [Syntax] belong to special syntax. They deal
with two particular calculi called Language I and Language II. Here
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no decisive modifications have to be made. Today I should not call the
rules in § 14 rules of I but rather rules of a different though related
system, say I, containing transfinite rules; instead of ‘analytic in I’,
I should say ‘provable in I,". Analogously, §§ 34b to f give the rules
for system II,, defining ‘provable in II;, etc. By the way, the rules
for II; can be brought into a technically more simple but not essen-
tially different form by a procedure analogous to the method (origi-
nated by Tarski) of defining ‘true’ in semantics.

The principle of tolerance (perhaps better called “principle of con-
ventionality”), as explained in [Syntax] § 17, is still maintained. It
states that the construction of a calculus and the choice of its particular
features are a matter of convention. On the other hand, the construc-
tion of a system of logic, i.e. the definitions for the L-concepts, within
a given semantical system is not a matter of mere convention; here the
choice is essentially limited if the concepts are to be adequate (see
above, § 16). And if a semantical system S is given, then the con-
struction of a calculus K in accordance with S is also not purely con-
ventional; in some respects the features of K may be chosen arbitrarily,
in other respects they are predetermined by S (compare above § 36,
and [Foundations] § 12).

[Syntax] Part IV gives an outli.e of general syntax, which “is to be
regarded as no more than a first attempt” (|Syntax] § 46). Here, as
was to be expected, greater changes are necessary. Some definitions
(especially those for L-concepts) have to be abandoned. In general,
the syntactical discussions remain valid; but in many cases, they should
be supplemented by semantical discussions.

The most important change concerns the distinction between logical
and descriptive signs, and the related distinction between logical and
factual truth. It seems to me at present that these distinctions have to
be made primarily in semantics, not in syntax. They can then also be
formalized, i.e. represented by syntactical concepts with respect to a
suitably constructed calculus. But even this procedure is not entirely
independent of semantics, because the question whether or not a
given syntactical concept, e.g. ‘C-true in K’ is the formal represen-
tation of the corresponding L-concept, say ‘L-true in S’, is a question
which cannot be answered in syntax alone. Its answer depends not
only upon the syntactical features of K but, in addition, upon the
semantical features of S and its relation to K (K might, for instance,
be an L-exhaustive calculus for S, see D36-3). The syntactical L-con-
cepts defined in [Syntax] §§ 50 to 52 will in many cases be the formal
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representations of the corresponding semantical L-concepts, and the
syntactical P-concepts of the semantical F-concepts. But this corre-
spondence will not hold with respect to every calculus and every
semantical system. And it does not seem possible to define in general
syntax concepts which would correspond to semantical L-concepts
with respect to every system. Therefore I abandon the definitions in
§§ 50 to 52.

With respect to the concept of range ([Syntax] § 56) an analogous
remark holds. It is primarily a semantical L-concept (‘L-range’; see
above, §§ 18 and 19). In this case, however, a certain analogous con-
cept in general syntax is of some interest too (‘C-range’; see above,
§ 32), although in general it will not coincide with the concept of
L-range.

A second change is more one of emphasis and terminology than of
content. In [Syntax] §§ 34a and 47, I emphasized very much the dis-
tinction between two procedures of deduction, called derivation and
consequence series, the first using only definite rules; and the corre-
sponding distinction between two kinds of concepts and terms based
on these two kinds of procedure (called ‘d-concepts’ and ‘c-concepts’;
in the original, ‘a-Begriffe’ and ‘f-Begriffe’). At present, I prefer to
simplify the terminology by using the same terms for both kinds of
concepts. The chief reason is that I found in the meantime that the
same procedure, namely the construction of a sequence of sentences,
can be applied with both kinds of rules. This has been briefly indi-
cated above (see remark concerning transfinite rules at the end of § 25)
and will be explained in a later volume. Thus, the previous term ‘con-
sequence in K’ is now replaced by ‘derivable in K’; and the previous
term ‘derivable in K’ becomes ‘derivable in the sub-calculus of K
which contains only the finite rules of K’ or simply ‘derivable in K’
if K contains only finite rules.

The syntactical characterization of the propositional conmections
(‘junctions’) as given in [Syntax] § 57 holds for many calculi but not
for all; hence it is not adequate in general syntax. It is possible to
define the connections not only in semantics but also in general syn-
tax, but not on the basis of those concepts hitherto used by logicians.
The new syntactical concepts and the syntactical characterization of
the propositional connections with their help will be explained in vol.
IT of these studies (see above, § 38b). An analogous remark holds for
the characterization of universal and existential operators in [Syntax]
§ 55. But with respect to these operators, it seems doubtful whether
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they can be defined at all in general syntax, with respect to all kinds of
calculi.

I should prefer now to call the procedure called interpretation in
[Syntax] § 62 a transformation of one calculus into another (or a
translation or a correlation), in order to reserve the term “interpreta-
tion’ for a relation between a semantical system and a calculus (see
above, §§ 33ff).

I now regard extensionality as primarily a semantical concept (see
above, D1o—20 and 21); but there is a syntactical concept correspond-
ing to it (see above, D31-12 and 13). Thus the discussion of exten-
sionality in [Syntax] §§ 65ff remains valid in general; but it has to
be supplemented by a semantical discussion. The thesis of extensional-
ity is still held as a supposition ([Syntax] § 67); it can be applied to
the semantical concept of extensionality: intensional (i.e. non-exten-
sional) sentences are translatable into sentences of an extensional
language; translatability is here meant in the strong sense of
L-equivalence.

In [Syntax] § 71 (2) it was asserted that an analysis of language is
either formal, and hence syntactical, or else psychological. Today I
would say that, in addition to these two kinds of analysis (the second
is what is now called pragmatica!®, there is the possibility of semantical
analysis. Hence I no longer believe that “a logic of meaning is super-
fluous”; I now regard semantics as the fulfiliment of the old search for
a logic of meaning, which had not been fulfilled before in any precise
and satisfactory way.

Instead of the prefix ‘S-’ in [Syntax] § 71b I should now use ‘C-’
(compare above, §§ 22 and 37).

The concept of quasi-syntactical sentences plays a large role in the
discussions in [Syntax] §§ 63ff and Part V. It seems to me at present
that the concept of quasi-logical sentences (see above, § 38h) is more
important in connection with the same problems (non-extensional
sentences, especially modalities; philosophical problems in general).
But in many cases it will still be convenient to translate sentences of
this kind not only into L-semantical sentences but, in addition or in-
stead, into syntactical sentences with respect to a suitably constructed
calculus, in other words, to construe them not only as quasi-logical
but as quasi-syntactical. Therefore, the discussions in the sections
mentioned remain valid; but they should be supplemented by corre-
sponding semantical discussions.
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In [Syntax] Part V, mary examples of philosophical semtences are
translated into syntactical ones. It follows from the preceding re-
marks that they may first be translated into semantical sentences and
then, under suitable conditions, into syntactical sentences also. For
some of these examples, chiefly those which have to do with designa-
tion and meaning ( [Syntax] § 75, and examples 54, 55,and 56 in § 81),
the semantical translation seems more natural. Some of the examples
of this kind involve radical concepts (e.g. examples 7 and ¢ in § 75);
thus they are not quasi-logical. Some even refer to a speaker or his
activity (e.g. examples 15 and 16 in § 75); therefore, they belong to
pragmatics but involve semantical concepts also.

The explanation of the dangers of the material mode of speech —
which is now to include the quasi-logical sentences in addition to the
quasi-syntactical ones — in [Syntax] §§ 78-80 remains valid.

The chief thesis of Part V, if split up into two components, was like
this:

a. “(Theoretical) philosophy is the logic of science.”

b. “Logic of science is the syntax of the language of science.”
(a) remains valid. It is a terminological question whether to use the
term ‘philosophy’ in a wider sense, including certain empirical prob-
lems. If we do so, then it seems that these empirical problems will
turn out to belong mostly to pragmatics. Thesis (b), however, needs
modification by adding semantics to syntax. Thus tke wkole thesis is
changed to the following: the task of philosophy is semiotical analysis;
the problems of philosophy concern — not the ultimate nature of being
but — the semiotical structure of the language of science, including
the theoretical part of everyday language. We may distinguish be-
tween those problems which deal with the activities of gaining and
communicating knowledge and the problems of logical analysis. Those
of the first kind belong to pragmatics, those of the second kind to
semantics or syntax — to semantics, if designata (‘“‘meaning”) are
taken into consideration; to syntax, if the analysis is purely formal.

For the convenience of the readers of [Syntax], there is given below
a list for the translation of terms of [Syntax] (here in italics; the terms
of the German original are added in square brackets) into the present
terminology. The translation is not always a strict one. When two
new terms are given (as e.g. for ‘demonstrable’), they are sometimes
not synonymous but so closely related that both correspond practically
to the same old term.
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analylic [analytisch] — L-true!

axiom [Axiom] — postulate

compatible [vertriglich] — non-C-exclu-
sive, (C-inexclusive)

complete [vollstindig] — C-complete

consequence [Folge] — derivable?, C-
implicate?

consistent [konsistent] — C-consistent

content [Gehalt] — C-content

contradictory sentence [kontradiktorisch}
— L-false!

contradictory system [widerspruchsvoll]
— C-inconsistent 2

contravalid [widergiiltig] — refutable ?,
C-false?

demonstrable [beweisbar] — provable ?,
C-true?

dependent [abhingig] — C-dependent

derivable [ableitbar] — derivable?, C-
implicate?

delerminate [determiniert] — decidable?,
C-determinate?

direct consequence [unmittelbare Folge]
— directly derivable?

directly derivable [unmittelbar ableitbar)
—directly derivable?

cqzldpollml [gehaltgleich] — C-equiva-
ent

exlensional
sional

formation rules [Formbestimmungen] —
rules of formation

genus [Gattung] — syntactical genus

Gothic (symbols) [Fraktur] —German

incompatible [unvertriglich] — C-exclu-
sive

indeterminate [indeterminiert] — unde-
cidable?, C-indeterminate?

independent  [unabhingig] — C-inde-
pendent

intensional [intensional] — non-exten-
sional

inter pretation [Deutung] — (translation,
transformation, correlation)

irresoluble [unentscheidbar] — undecid-
able?, C-indeterminate?

[extensional] — C-exten-
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isogenous  [gattungsgleich] — C-isoge-
nous

function [Verkniipfung] — connection

junction symbol [Verkniipfungszeichen]
— connective

language [Sprache] — calculus, (lan-
guage system)

L-compatible [L-vertriglich]— non-L-
exclusive!, (L-inexclusive)

L-consequence [L-Folge] — L-implicate:

L-equipollent [L-gehaltgleich] —L-equiv-
alent?

L-incompaiible [L-unvertriglich] — L-
exclusive!

non-contradictory  (system)
spruchsfrei] — C-consistent *

P-consequence [P-Folge] — F-implicate !

P-contravalid [P-widergiiltig] — F-false?

perfect [abgeschlossen] — C-perfect

P-valid [P-giiltig] — F-true!

range [Spielraum] — C-range, (L-range!)

refutable [widerlegbar] — refutable 2, C-
false?

regressive (definition) [rekursiv] — re-
cursive

resoluble [entscheidbar] — decidable 2,
C-determinate?

resolution (method, problem of) [Ent-
scheidung] — decision

rules of consequence [Folgebestimmun-
gen] — (transfinite) rules of deduc-
tica

sentential calculus [Satzkalkiil] — propo-
sitional calculus

[wider-

S-symmetrical  [S-symmetrisch] — C-
symmetric

symbol [Zeichen] — sign

synonymous  [synonym] — C-inter-
changeable

synthetic [synthetisch] — factual!, (L-
indeterminate?!)

transformation rules [Umformungsbe-
stimmungen] — rules of deduction

truth-value table [Wahrheitswerttafel] —
truth-table

valid [giiltig] — provable 2, C-true ?
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Remarks:

1 This term t; belongs to semantics and is therefore defined in a
way quite different from the old syntactical term t, with which it is
correlated here. The syntactical term t, was previously intended to
represent a concept which is now seen to be semantical and hence is
designated by the semantical term t,. (This holds especially for the
old L-terms; the correspondence between the old P-terms and the
new F-terms is still less close.)

2 This new term t, (e.g. ‘derivable’, and likewise ‘C-implicate’)
corresponds to two old terms ti, (‘consequence’) and ty, (‘derivable’),
t1a being a c-term and ty, a d-term; the terminological distinction be-
tween c- and d-terms has been abandoned (see above remark on
[Syntax] §§ 342 and 47).

Most of the terms of [Syntax] not listed above are still used in the
same sense, or a similar one, as before; among them are ‘atomic sen-
tence’, ‘autonymous’, ‘bound variable’, ‘calculus’, ‘closed expres-
sion’, ‘conjunction’, ‘definite’, ‘derivation’, ‘descriptive’, ‘design’,
‘disjunction’, ‘equivalence’, ‘formal’, ‘formal mode of speech’, ‘free
variable’, ‘full expression’, ‘functor’, ‘general syntax’, ‘implication’,
‘indefinite’, ‘L-content’, ‘L-determinate’, ‘level’, ‘logical sign’,
‘L-synonymous’, ‘material mode of speech’, ‘molecular sentence’,
‘negation’, ‘object language’, ‘open expression’, ‘operand’, ‘operator’,
‘predicate’, ‘premiss’, ‘primitive sentence’, ‘proof’, ‘sentence’,
‘sentential function’, ‘truth-value’, ‘type’.
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PREFACE

The purpose of this book

In this volume, an application will be made of the method of
semantics developed in Introduction to Semantics, the first volume
of this series, Studies in Semantics. Among the characteristic fea-
tures of this method are the distinction between a calculus and its
interpretation, in other words, between syntactical and semantical
systems; and the use of L-concepts based on the concept of
L-range. The problem to be dealt with is that of the possibility
and the scope of the formalization of logic. This problem has long
been discussed, especially during the last hundred years, the
period of the development of modern logic. However, before the
method of semantics became available, no precise answer could be
given, and not even a clear an-! precise formulation of the question
was possible.

The task of the formalization of any theory, i.e. of its repre-
sentation by a formal system or calculus, belongs to syntax, not
to semantics. On the other hand, the question of whether a pro-
posed calculus formalizes a given theory adequately and com-
pletely is a matter of the relations between a calculus and an
interpreted system, and hence requires semantics in addition to
syntax. In this book, the theory to be formalized is logic. Cal-
culi representing logic in a formal way have been constructed and
thoroughly investigated by many logicians. The most important
and best known of these logical calculi are the propositional cal-
culus (called PC in this book), containing the propositional con-
nectives ‘not’, ‘or’, ‘and’, etc.; and, constructed on its basis, the
functional calculus (here called FC), containing general sentences
with terms like ‘every’ and ‘there is’. Our problem will be to de-
termine to what extent these calculi fulfill the task of formalizing
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logic, and more generally, to what extent any calculus of the cus-
tomary kind can fulfill this task. Contrary to the general belief,
not all essential questions concerning PC have so far found their
answer. For instance, the question whether PC completely for-
malizes all logical features of the part of logic covered by it, i.e.
of the connectives, has not been answered by previous investiga-
tions. It seems to be the tacit assumption of many that this ques-
tion is answerable in the affirmative. In this book, it will be
shown that the answer is negative; and more generally, that no
calculus of the customary kind can fulfill the task of a full for-
malization. However, a full formalization of propositional logic
will be shown to be possible by making use of new concepts. A
similar analysis of FC will be made, which leads to analogous
negative results. And there likewise a full formalization of the
logic of functions will be given by the construction of a new calcu-
lus. These results do not of course affect the value of the purely
formal method of constructing calculi; they rather make the
foundations of that method more secure.

The role of semantics in the development of logic

Semantics — more exactly, pure semantics as here conceived
— is not a branch of empirical science; it does not furnish knowl-
edge concerning facts of nature. It is rather to be regarded as a
tool, as one among the logical instruments needed for the task of
getting and systematizing knowledge. As a hammer helps a man
do better and more efficiently what he did before with his un-
aided hand, so a logical tool helps a man do better and more effi-
ciently what he did before with his unaided brain, that is, by
means of instinctive habits rather than through deliberate acts
guided by explicit rules.

Aristotle’s logic was the first logical tool of this kind. It did not
originate the human activity of drawing inferences; from the time
when language developed to the point of containing compound
and general sentences, man has deduced conclusions from prem-
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ises without once mentioning the mood Barbara. What was
new in Aristotle’s logic was not the activity but its systematiza-
tion, that is, the construction of explicit rules for it. This made
it possible to replace instinctive acts of inference by deliberate,
methodical acts, and to examine critically the inferences made
either instinctively or methodically.

The task of modern logic, as it has been developed since the
middle of the last century, is fundamentally the same. The dif-
ference is only one of degree with respect to technical develop-
ment, especially the multiplicity and efficiency of the tools. As
a result of this development it has become possible not only to in-
crease the safety and precision of the deductive method in realms
already known, but also to reach results which could not have
been obtained at all without the new tools. Although modern
logic has already made a great advance in the degree of system-
atization and explicitness, nevertheless it has been long in reach-
ing a full methodological understanding of its own procedures.
This development of moderrn ogic towards greater methodological
consciousness is still going on and provides many of the basic
problems for contemporary logical research.

Among the methodological tendencies or points of view in logic
and especially in modern logic, two are of special interest for our
present considerations. The one tendency emphasizes form, the
logical structure of sentences and deductions, relations between
signs in abstraction from their meaning. The other emphasizes
just the factors excluded by the first: viz., meaning, interpreta-
tion; relations of entailment, compatibility, incompatibility, etc.,
as based on meaning; the distinction between necessary and con-
tingent truth, etc. The two tendencies are as old as logic itself
and have appeared under many names. Using contemporary
terms, we may call them the syntactical and the semantical tend-
encies respectively. Theoretically they are not incompatible, but
rather complementary to each other; yet in the historical develop-
ment we find that logicians have sometimes emphasized one of
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them at the sacrifice of the other. Usually, however, both points
of view were combined without explicit distinction. It took many
decades, even after modern logic was under way, before each of
them was clearly recognized in its nature and represented by a
pure method of its own. The formal, syntactical method was the
first to be developed, and its emergence was stimulated by certain
trends within mathematics, namely, the generalization of algebra,
and the development of the postulational method especially in
geometry. The elaboration of the formal method in logic is chiefly
due to the works of Frege, Hilbert, and their followers. The main
features of this method have often been described and discussed.
The best description and analysis of its historical development
has been given by Milton B. Singer in a study which will, I hope,
soon be published. The development of the semantical method in
a form clearly distinguished from the syntactical method is still
in its first phases. Its origin in the Warsaw School of Logic and
the first steps made by Tarski towards its systematization have
been mentioned in the preface to Volume I of this series. Each of
the two methods has the function of making systematic and ex-
plicit certain procedures which have been practically applied in
traditional logic for the last two thousand years and, in a more
elaborate and exact way, in modern logic for the last hundred
years. Today it is generally recognized that the long-run tend-
ency of gradually increasing formalization has found its necessary
systematization in the modern syntactical method. In my opin-
ion an analogous necessity prevails for a systematization of the
long-run semantical tendency.

The decisive steps in the development of logic — e.g. Aristotle’s
syllogistic rules, Boole’s creation of symbolical logical calculi, and
the initiation of the syntactical method by Frege and Hilbert, to
mention only a few outstanding phases — all consist essentially
in the invention of the kind of tools described above, i.e. proce-
dures guided by explicit rules come to replace certain more or less
instinctive procedures in the activity of thinking and especially
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the activity of deductive inference. It isimportant to realize that
this development did not reach its end in the construction of the
syntactical method. Some essential features in the contemporary
work of logicians are guided by instinct and common sense, al-
though they could be guided by explicit rules. These rules, how-
ever, would be not syntactical but semantical. This will become
clear if we give a few examples from contemporary logical investi-
gations.

One of the important questions investigated in modern logic is
that of the completeness of given logical systems. Sometimes this
question is meant in a clearly syntactical way; it is the question
whether a given calculus is such that every sentence belonging to
it is either provable or refutable (i.e. its negation is provable). In
other cases, the question of completeness is meant in another
sense. Take for example Godel’s theorem of 1930 concerning the
completeness of a certain calculus (the so-called lower functional
calculus similar to FC, but containing predicate variables). He
formulates it in the following two ways: (1) “ Every formula (i.e.
sentential function of the calculus in question) which is univer-
sally valid is provable”’; (2) ““ Every formula is either refutable or
satisfiable.” We find two different kinds of terms occurring here.
The terms ‘provable’ and ‘refutable’ are obviously syntactical.
They are exactly defined on the basis of the rules of the calculus
in question; and those rules are explicitly stated in the form of
primitive sentences (axioms) and rules of inference. Thus we are
given everything required for an exact understanding and use of
these terms. Not so for the terms ‘ universally valid’ (“ allgemein-
giiltig”’) and ‘satisfiable’ (“erfiillbar”’). They are explained in the
following way: a formula (a sentential function of the calculus in
question) is called universally valid if it is true for all values of the
free variables; it is called satisfiable if there are values of the free
variables for which it is true. Clearly these two terms are not of a
syntactical but of a semantical nature. In a theory of semantics
they could be exactly defined on the basis of the concept of enti-
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ties satisfying a sentential function (this is the basic concept in
Tarski’s semantics, see ‘fulfillment’, Volume I, § 11). Godel’s
theorem is accordingly of a peculiar nature which is usually not
recognized: it combines syntactical and semantical concepts; in a
more exact formulation it would state a relation between a syn-
tactical and a corresponding semantical system. The terms
‘universally valid’ and ‘satisfiable’ play an important role in
contemporary logical investigations, especially in problems of com-
pleteness and in the so-called decision-problem (* Entscheidungs-
problem”). Other terms of a semantical nature which are
frequently used are ‘true’, ‘false’, ‘truth-value’, ‘ values of a vari-
able’, etc. The decisive point is this: while the syntactical terms
used by logicians are exactly defined and belong to a well-con-
structed and recognized theory (namely syntax), the same is not
true for the semantical terms. These are merely explained in an
informal manner, without a theory as framework for them. No
rules constituting semantical systems corresponding to the calculi
in question are given; although such rules would serve as a basis
for the semantical terms used. Thus the understanding and the
use of these terms is left to common-sense and instinct. It is
assumed that the reader knows how to interpret and use them on
the basis of his knowledge of everyday language. This assumption
is perhaps correct to some extent. Similarly, however, most people
know how to use the terms ‘all’ and ‘some’ before a logician ex-
pounds Aristotle’s rules to them. Once we concede that it is
essential for the development of logic to give explicit rules for all
terms which play a central role, then we see that the demand for
such rules in the case of the semantical terms is at least as urgent
as in the case of ‘all’ and ‘some’. It should be noted that the
semantical terms used in recent investigations do not merely
serve for incidental explanations or illustrations outside of the
theory dealt with, but are essential to that theory; this is shown
by the fact that they occur in the very formulations of the prob-
lems and the theorems.
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It should be clear that the foregoing remarks concerning cus-
tomary formulations in contemporary logic are not meant as a
criticism of the authors, but simply as a critical description of the
present status of the metalanguage commonly used by logicians.
I wish merely to call attention to the fact that this customary
language contains both syntactical and semantical terms. Once
we are aware of this fact, we can see that, in order to improve the
method of logic, we need a systematically constructed semantics
as urgently as we previously needed a systematically constructed
syntax (theory of proof). [Hilbert and Bernays, in Grundlagen
der Mathematik, vol. 1, distinguish between two theories, called
theory of proof (‘‘Beweistheorie’’) and set-theoretic logic (“‘men-
gentheoretische Logik”’) respectively. From their explanations
it becomes clear that, in our terminology, the first is syntax, the
second is semantics. The explanations given for set-theoretic
logic may indeed be regarded as the beginning of a systematiza-
tion of semantics. The fundamental difference between those dis-
cussions in the book mentioned which are syntactical and those
which are semantical would become clearer if the distinction
between expressions and their designata were observed more
strictly.]

The value of semantics for philosophy and science

In the course of these last few decades the importance of logical
analysis — sometimes called analysis of language, sometimes
analysis of knowledge — for theoretical philosophy and for the
methodology of science has been more and more widely acknowl-
edged. Many of us even hold the view — first emphasized by
Russell, and substantiated by his work — that logic is the very
foundation of philosophical and methodological investigation.
Hence, if it is true that the progress of logic in its present phase
requires the development of a systematic semantics, the indirect
value of semantics for philosophy and science becomes clear. It
is the purpose of these Studies to help in the construction of se-
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mantics — that was the special aim of the first volume — and
then to show possibilities of its application. The present volume
gives an example of an application to a fundamental problem in
logic; an application to philosophical problems in the narrower
sense is not here intended. Some very brief indications of the
relevance of semantics for certain philosophical problems have
been given in the appendix to Volume I (§ 38). That scientists in
talking about theories and hypotheses continually use concepts
which belong to L-semantics, has been shown by a few examples
in Volume I, pp. 61 f. A few first steps, still rather elementary
and tentative, towards an application of semantics to the meth-
odology of empirical science have been made in my Encyclopedia
monograph (see Bibliography). I am convinced that many other
workers will soon recognize the value of semantics as an instru-
ment of logical analysis, will help in developing and improving
this instrument, and will then apply it to the clarification and
solution of their special problems in various fields.

The next volume

In the next volume of these Studies in Semantics, I intend to
deal with modal logic, i.e. the theory of such concepts as logical
necessity, possibility, impossibility, etc. (see Volume I, § 38d).
It is amazing that modal logic, having been originated in its
madern form by C. 1. Lewis in 1918, has not made any essential
progress since then. There have been numerous publications in
this field, some of them, especially in recent years, with interesting
and fruitful results. However, all these investigations continue to
confine themselves to the same field as Lewis’ systems: they in-
vestigate the modalities in connection with the most elementary
logical system, namely propositional logic. It seems that as yet
the modalities have not been introduced into the more important
logic of functions. The construction of this more interesting but
also much more complex system, both in semantical and in syn-
tactical form, will be the chief task of the next volume. Then, in
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addition to logical modalities, other kinds of modalities will be
studied, among them the concepts of causal necessity, possibility,
etc. Further, the question will be discussed whether modal con-
cepts (in the widest sense, including all concepts which are not
extensional or truth-functional, compare § 12) are useful or even
necessary in certain special fields, e.g. in the metalanguage used
for semantics and perhaps in psychology, in statements concern-
ing believing, knowing, and similar propositional attitudes.
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FORMALIZATION OF LOGIC

§ 1. Introduction: The Problem of a Full Formaliza-
tion of Logic

The problem is whether — and in what way — it is possible
to construct a calculus as a full formalization of propositional
and functional logic, i.e. such that the principal logical signs
can be interpreted only in the normal way. New basic concepts
for syntax and semantics will be required for this purpose.

In Volume I of these Studies in Semantics, we have de-
veloped concepts of syntax referring to calculi and concepts
of semantics referring to semantical systems. Further,
there were concepts relating semantical systems and calculi,
especially the concepts of the different kinds of interpreta-
tions — true, false, L-true, L-false interpretations, etc.

If we look at a calculus from the point of view of semantics,
then we might say that it formalizes certain semantical
features of expressions. Thus e.g. the fact that a certain
sentence &, is true is itself of a semantical, not a syntactical,
nature. But it can be formalized, i.e. mirrored in a syntac-
tical way, if a calculus K is constructed in such a way that
&, is C-true in K. Analogously, the equivalence of &, and &;
may be mirrored by their C-equivalence in K. But L-con-
cepts also may be mirrored formally, e.g. L-truth by C-truth,
L-implication by C-implication. In general, we might define
the concept of a formalization of a semantical property in
the following way. A radical semantical property F of an
expression ¥; is formalized in K =p; 9; has the property F
in every semantical system which is a true interpretation for
K. And an L-semantical property F of % is formalized in
K =p¢ %; has F in every L-true interpretation for K. Analo-
gously for semantical relations.

Having a certain designatum is also a semantical property
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of an expression. It is easy to see that, in the case of a de-
scriptive sign, a property of this kind cannot in general be
formalized. Thus e.g. it is not possible to formalize the
property of ‘a’ designating Chicago and the property of ‘P’
designating the property of being large — in other words, it
is not possible to construct a calculus K in such a way that
in every true interpretation for K ‘a’ and ‘P’ have the
designata mentioned. If a true interpretation for K with
these designata is given, another true interpretation for K
with different designata can always be constructed.
Whether or not logic can be completely formalized is an
important question for the foundations of logic. If the ques-
tion is taken simply in the ordinary sense, as referring to a
formalization of logical deduction —in other words, to a
formalization of the relation of L-implication — then the
answer is of course in the affirmative. L-implication can in
general be formally represented by C-implication (concern-
ing some difficulties and qualifications, see [Foundations]
§ 10, at the end). But we will take the question here in a
stronger sense. If a calculus K containing the ordinary
connectives of propositional logic could be constructed in
such a way that it would formalize all essential properties
of these connectives so that it would exclude the possibility
of interpreting the connectives in any other than the ordinary
way, then we should say that K was a full formalization of
propositional logic. And if K should, in addition, impose the
ordinary interpretation on the universal and existential
operators, we should speak of a full formalization of func-
tional logic. The principal problem to be dealt with in this
book is the question whether, and how, a full formalization
of logic is possible, in the sense just indicated, which will be
made more precise later. It is well known — it was shown
first by E. L. Post — that the concept of L-truth within
propositional logic is formalized in the ordinary propositional
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calculus, which we call PC; the same holds for L-implication.
Further, it is easy to see that some essential logical properties
of the connectives reveal themselves in the L-truth of certain
sentences and in the L-implication between certain sentences
in which the connectives occur. [Thus, e.g., it is character-
istic of the sign of negation ‘ ~’ and the sign of disjunction
¢y’ that every sentence is an L-implicate of { &;, ~&;}, that
©. V &, is an L-implicate of &; and also of &;, that &; v ~&;
is L-true, etc.] Thus one might perhaps be led to the assump-
tion that PC is a full formalization for propositional logic.
The subsequent discussions (Chapter C), however, will come
to the surprising conclusion that this is not the case. We
shall find non-normal interpretations for PC — that is to
say, true and even L-true interpretations for PC in which the
connectives have an interpretation different from the normal
one as given by the normal truth-tables (NTT). And this
holds not only for PC but likewise for any other calculus con-
structed with the help of th.: customary syntactical concepts.
In spite of this, a full formalization will be found to be possi-
ble by the construction of a new calculus PC* (Chapter E).
This, however, requires entirely new basic concepts for syn-
tax. These concepts will be applicable not only to the propo-
sitional calculus but to calculi in general, and likewise to
semantical systems (Chapter D).

The investigation of propositional logic will take up the
greater part of this book. The results can then easily be ex-
tended so as to apply to functional logic (Chapter F). The
result is analogous. The ordinary functional calculus FC
(taken here with individual variables for a denumerable
field of individuals, without predicate variables) admits of
non-normal interpretations for the universal and existential
operators, as is well known. A new calculus FC* will be
constructed on the basis of PC* such that it imposes the
normal interpretation upon the operators.
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At several places in [I] (i.e. Volume I of these Studies; see
Bibliography) we found symptoms of a thoroughgoing lack
of symmetry in the foundations of semantics and syntax (e.g.
in [I] pp. 38f., 72, 77, and 172). We shall find that the in-
troduction of the new concepts will remove these defects and
thereby lead to a simpler and more uniform structure of the
system of concepts both in syntax and in semantics.

The development toward a formalization of logic begins, in a certain
way, with the very beginning of systematic logic, in Aristotle. Leibniz
emphasized the formal method in his construction of various calculi.
But his ideas were all but forgotten by his successors, until a new
development began about the middle of the last century with the
creation of symbolic logic. It was Frege (1893) above all who recog-
nized the importance of the formal method and carried it through in
an exact way, while simultaneously insisting that a logical system
should not be regarded merely as a formal calculus but should, in ad-
dition, be understood as expressing thoughts.

It is to be noted that we use the term ‘formal’ here always in the
strict sense of ‘“in abstraction from the meaning”, hence as synony-
mous with ‘syntactical’ (see [I] § 37, ‘Formal’, meaning III, and [I]
p- 10), in contradistinction to the weaker meanings: ‘“general” (mean-
ing I), and “logically valid” (meaning II). The difference between
IT and III might be described in this way: in using the term ‘formal’
in meaning II, abstraction is made from the meaning of the descriptive
signs but not from that of the logical signs. [Thus, for instance, the
sentence ‘P(a) V ~P(a)’ is called formally true (II) because its truth
is logically necessary on the basis of the meaning of ¢ V’ and ‘~’ (as
given by the truth-tables), independent of the meaning of ‘P’ and ‘a’.]
On the other hand, in the method which we call formal (in meaning
IIT) or syntactical, abstraction is made from the meaning of all signs,
including the logical ones. [For instance, in a suitable calculus, the
sentence ‘P(a) V ~P(a)’ is shown to be C-true (provable) on the basis
of rules which are formal in the strict sense III inasmuch as they do
not refer to the meaning of any signs, not even of the connectives.]
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Chapter A contains an analysis of the ordinary propositional
calculus PC. Different forms of PC are distinguished. The
four singulary extensional connectives (e.g. negation) and the
sixteen binary (e.g. disjunction) are syntactically character-
ized. Syntactical theorems concerning the connectives in PC
are proved. This chapter serves chiefly to prepare for the later
discussions in Chapters B and C.

§ 2. The Calculus PC,

PC, is the Hilbert-Bernays form of PC, with signs of negation
and disjunction as the only connectives.

In what follows, we shall use the C-terminology for syntax
((1] § 28). The following table shows the correspondence be-
tween the customary terms and the C-terms.

CustoMARY TERMS C-TERMS
derivable C-implicate

directly derivable direct C-implicate
provable C-true

primitive sentence direct C-implicate of A
refutable C{alse

directly refutable directly C-false
equipollent C-equivalent
decidable C-determinate
undecidable C-indeterminate

The correspondence of terms in the table above is here, with respect
to PC, a strict synonymity. Since PC does not contain a rule of refuta-
tion, ‘refutable in PC’ and ‘C-false in PC’ are both empty, ‘C-impli-
cate in PC’ coincides with ‘derivable in PC’, and ‘C-true in PC’
coincides with ‘provable in PC’ ([I] T29-54). Sometimes, but not fre-
quently, a rule of refutation has been added to PC. It seems that in
every calculus of this kind which has been constructed so far, every
directly C-false (directly refutable) ¥; is such that every sentence is
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derivable from it. Therefore, for these calculi as well, the coincidences
mentioned hold ([I] T29-55).

We shall use ‘PC’ as a common name for the different
forms of the ordinary propositional calculus. (We shall later
explain more in detail which calculi are meant as forms of
PC.) The different forms vary with respect to the choice of
primitive signs, primitive sentences, and rules of inference,
but they are known to agree with respect to possible results
of proofs and derivations. Hence, if two forms contain the
same sentences, they are coincident, although not directly
coincident, calculi ([I] D31-9 and 8).

As an example of a form of PC, we shall take here the one
constructed by Hilbert and Bernays (it is constructed out
of Russell’s form in [Princ. Math.] by a simplification due to
Bernays). It uses as primitive signs those of negationc
(‘ ~’) and disjunctionc (‘ v’) (the subscript ‘C’ will be ex-
plained in § 3). We call this form of PC the calculus PC,.
Another similar form will be called PC%; it contains further
connectives defined on the basis of the two primitives men-
tioned. PC; does not contain rules of refutation.

A general connective (D1) is a sign that can be applied
to any closed sentences as components (arguments). A
connective is said to be of degree = if it is applied to »
components. Connectives of degree one are also called sin-
gulary connectives, those of degree two binary. (As in [I],
the more important definitions and theorems are marked
by ‘+)

+D2-1. q; is a general connective of degree # in a
calculus K (or in a semantical system S) =p¢ K (or S) con-
tains closed sentences, and for every s-term sequence of
closed sentences in K (or S respectively) there is a full sen-
tence of a; in K (or S) with that sequence of components.

If a; is a singulary and a, a binary general connective, then
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we designate the full sentence of a; with the component &;
by ‘ax(®;)’ and the full sentence of a; with the components
©.: and &, by ‘a:/(S;,8;)’.
+D2-2. K contains PC, with neg. as sign of negationc
and disc as sign of disjunctionc =ps the calculus K fulfills
the following conditions:
a. negc is a singulary and dis; a binary general
connective in K.
b. The relation of direct C-implication (2 ) holds
in the following cases for any &,, &;, and &;
(but not necessarily only in these cases):

1. A 3 disc(negc(disc(©:,S.)),S)).
2. A 3 disc(nege(©:),disc(&:,&;)).
3. A 32 disc(negc(disc(8,,3;)) disc(&;,8)).
4. A 32 disc(negc(disc(negc(S:), ;) ), disc(negc
(disc(gk:gi)),disc(@h@i)))'
5. {©;, disc(nege(S:),©))} 2 S;.
By (1) to (4) all sentences of four specified forms are declared
to be direct C-implicates of A, in other words, primitive sen-
tences in K (see the customary formulation below). (5) is
the rule of implication. The definition does not exclude the
possibility that K contains still other rules of deduction, e.g.
further cases for direct C-implication or rules of refutation.
The customary formulation of the rules of deduction for PC; with
propositional variables is the following:
Primitive sentences of PC;:

a. ‘~(pVp) VP

b. ‘~pV(p V9.

c. ‘~(pvevigVvyp).

d ‘~(~pVQV(~ VA VEVY).
Rules of inference for PC;:

a. Rule of substitution. From &;, 6;(&()1@ directly derivable.
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b. Rule of implication (in disjunctive form). From &; and
~ &; V &;, ©; is directly derivable.

D2 is formulated in such a way — as is often done — that no propo-
sitional variables are required; such variables may or may not occur
in K. But K cannot have only propositional variables as ultimate
components for the connectives; it must also contain closed sentences
(see D1). In D2, not merely four sentences but an infinite number of
sentences are taken as primitive sentences (Dzb, 1 to 4); these are
the same sentences as those which, in the form just mentioned, are
constructed out of the primitive sentences by any substitutions.
Hence, in D2, no rule of substitution is necessary.

An example of a calculus containing PC, is K,, described in [I]
§§ 27 and 30.

§ 3. Propositional Connections; in PC

Syntactical concepts for the four singulary and the sixteen
binary propositional connectionsc are introduced (see table).
PC? is a calculus containing primitive signs of negation; and
disjunction; and defined signs for the other connections.

We shall summarize in this section some of the known
features of the propositional connections occurring in PC.
There are two customary ways of constructing a system for
the propositional connectives, one by the use of primitive
sentences and rules of inference, the other by the use of truth-
tables. The second method, however, gives truth-conditions
for the sentences and thereby interprets them. Hence, it
does not belong to syntax but to semantics. Therefore the
name ‘Propositional Calculus’ is appropriate only to a sys-
tem of the first kind. For a system of truth-tables, that
term, although customarily used, might better be replaced
by a term like ‘Propositional Logic’.

There is also a syntactical method analogous to that of the truth-
tables. It uses tables with arbitrary values (e.g. numerical values) or

unspecified values instead of truth-values. This method, in contra-
distinction to that of truth-tables proper, can also be used with any



§ 3. PROPOSITIONAL CONNECTIONSc IN PC 11

other number of values than two (so-called many-valued systems).
Instead of the term ‘truth-table’, the wider term ‘value-table’, which
does not prejudge the question of the interpretation of the values,
should be used; often the term ‘matrix’ is used. A system based on
formal tables of this kind is then a syntactical system, a calculus.
[For explanations of the formal method of value-tables (“‘method of
matrices”), see Lukasiewicz and Tarski [Untersuchungen], pp. 3, 4.

In propositional logic there are four singulary and sixteen
binary extensional connectives (see § 10). In a system of
PC, corresponding connectives are used. In the interpreta-
tion of PC most frequently used (we shall call it the normal
interpretation) the connectives are interpreted as the corre-
sponding extensional connectives; this is the reason for their
customary names (e.g. ‘sign of negation’, ‘sign of disjunc-
tion’, etc.) even in syntax. We shall use these names here,
but with the subscript ‘C’ added (see D2-2 and 3 and the
subsequent table, column (2)). It is, however, to be noted
that we do not intend by this to decide on the interpretation
of the connectives. If S is a true or even an L-true interpre-
tation for K, then a sign of negation in K is not necessarily
a sign of negation in S. [‘Sign of negation.’ is a syntactical
term to be defined in this section; ‘sign of negation’ is a
semantical term to be defined by Di1-23. Sometimes we
shall also write ‘connections¢’ in order to emphasize the syn-
tactical nature of this concept.] In examples, we shall often
make use of the customary signs ‘ ~’ and ‘ v’; in more exact
formulations in the syntax language, however, we make use
not of these customary signs, enclosed in quotation marks,
but of their syntactical names ‘negc’ and ‘dis¢’ (see D2-2),
thus leaving the particular shapes of the signs undetermined.

The table contains syntactical expressions referring to the
4 + 16 propositional connectionsc and connectives, i.e. signs
of connectionsg, with the exception of the few examples of
customary connectives in column (3), which belong, of
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course, to the object language. The reason for distinguish-
ing just four singulary and sixteen binary connectionsc is
of a semantical rather than a syntactical nature; it will be-
come clear in the later explanation of the semantical con-
cepts of the corresponding connections (§ 10).

SyNTACTICAL CONCEPTS OF PROPOSITIONAL CONNECTIONSg AND

ConNECTIVES IN PC

(1) (2) 3 ‘ (4) (s)
Connectionsc Connectives
Abbre- Custom-| Syntac-
viation Ordinary Name ary tical Expression in PC,
Symbol | Name
I. The four singulary connectionsc
cConn} | tautologyc cby &V~
cConn} | (identityc) cbs =9
¢Conn} | negationg ~ | cbs (negc) | ~&;
cConn} | contradictionc ob ~(&V~&,)
II. The sixteen binary connectionsc
cConn} | tautologyc cC1 &V~
cConn} | disjunctionc V | ce(disc) | & VS;
cConn} | (inverse implicationc) oG &; V~S;
¢Conn} | (first component) cCa S5
cConn? | implicatione D | cts(impe) | ~&: VS;
cConn} | (second component) cCs S;
oConn} | equivalencec = | ccr(eque) | ~(~Bi V ~&)) V ~ (& VS;))
cConn} | conjunctiong * | ces(cong) | ~(~B:iV ~&))
cConn} | exclusiong | cCs ~&;V ~E;
¢Conn}, | (non-equivalencec) cC10 ~~B;VS) VYV~ V ~&;)
cConnh | (negationc of second) cln ~S;
cConn?, | (first alone) otiz ~(~&; V&)
cConn}, | (negationc of first) oCis ~&;
cConn}, | (second alone) ol ~(&: V ~&;))
cConn}; | bi-negationc cC1s ~(@&:VS))
cConn}, | contradictiong cC1e ~(G V ~&y)




§ 3. PROPOSITIONAL CONNECTIONS: IN PC 13

The terms ‘sign of negationc in PC,’ and ‘sign of disjunc-
tionc in PC,’ have been defined in D2-2; ‘nege’ and ‘dis¢’
are used as names of signs of these kinds. We shall now de-
fine syntactical terms for the other connectionsc, listed in
columns (1) and (2) of the table with respect to PC; (D1 and
2; see the later example for D2(5)). The more general con-
cepts with respect to any other form of PC will be defined
in § 4.

+D3-1. (1) ©; is a sentence of Conn; (or a tautology.
sentence) with &; (as component) in PC, in K =5 K con-
tains PC, and &; is C-equivalent in K to disc(S;,negc(S;)).

(3) ©u is a sentence of Conn; (or a negation. sentence) with
©; (as component) in PC, in K =; K contains PC,; and &,
is C-equivalent in K to negc(&:).

(2) and (4) are analogous; see explanation below.

+D3-2. (1) ©; is a sentence of Conn} (or a tautologyc
sentence) with &; and &, (as components) in PC, in K
=p; K contains PC; and &, is C-equivalent in K to
disc(@:,negc(Sy))-

(2) © is a sentence of Conn (or a disjunction sentence)
with &; and &; in PC,; in K = K contains PC; and €, is
C-equivalent in K to dis¢(S;,S;).

(5) ©uis a sentence of Conn? (or an implication; sentence)
with &; and &; in PC; in K =, K contains PC, and &; is
C-equivalent in K to disc(negc(©:),S;).

(8) © is a sentence of Conng (or a conjunctionc sentence)
with &; and &; in PC, in K = K contains PC, and & is
C-equivalent in K to negc(disc(negc(S:),nege(S;))).
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(3), (4), (6), (1), (9) to (16) are analogous. Each of the
four definitions in D1 and the sixteen in D2 is constructed
in the following way. The terms in the definiendum are those
in columns (1) and (2) of the table; the sentence mentioned
at the end of the definiens is that described in column (5) of
the table on the line in question (where, for the sake of brev-
ity, ‘ ~&n’ is written for ‘negc(S,)’, and ‘S, VS, for
‘disc(Sm,Sn)’)-

D3 is a definition schema furnishing four definitions if the
numerals ‘1’ to ‘4’ are taken as subscripts in the place of
‘q’. Likewise, D4 furnishes sixteen definitions with ‘1’ to
‘16’ in the place or ‘r’. Subsequent definitions, theorems,
and explanations containing a subscript variable ‘g’ or ‘r’
are to be understood analogously.

+D3-3. a; is a sign (or connective) for Conn; (¢ = 1 to
4) in PCyin K =p¢K contains PC, a; is a general connective
in K, and, for any closed sentence &; in K, the full sentence
ax(®;) is a sentence for (Conn, in PC, in K.

+D3-4. a is a sign (or connective) for Conn® (r = 1 to
16) in PC, in K =p; K contains PC,, q, is a general connec-
tive in K, and, for any closed sentences &; and &; in K, the
full sentence a:(®;,&;) is a sentence for (Conn? in PC, in K.

If there is a sign for cConn, (¢ = 1 to 4) in PC; in K, we
shall use ‘cb,’ as a syntactical name for it; analogously,
‘cer’ (r = 1 to 16) for a sign for (Conn? (column (4) of the
table). Instead of ‘cbs’ we usually write ‘neg.’. Instead of
‘ce2’ we usually write ‘disc’; likewise, for r = 5, 7, or 8, we
usually use ‘imp¢’, ‘equ¢’, and ‘con¢’ respectively.

Examples, for r = 5. The sentence disc(negc(&5),8;), and like-
wise any other sentence which is C-equivalent to it, is called a sen-
tence of cConn} or a sentence of implicationc with ©; and &; in PC,
in K (D2(5)). Thus, if K contains PC;, it always contains implica-
tionc sentences, even if the signs of negationc and disjunctionc are
the only connectives. If K contains a general connective ay, such that
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its full sentence with any closed components &; and ©; is always
C-equivalent to the sentence disc(negc(©s),&;), then a; is called a
sign of cConn} (D4(5)) or of implicationc, and ‘ccs’ or ‘impc’ is used
as a name for it.

The expressions in column (5) of the table show how all
singulary and binary connections; can be expressed in PC;.
Therefore, these expressions may be taken as definientia
in definitions of signs for these connectionsc, on the basis of
the signs for negation. and disjunctionc as primitives.

Example. A definition of a sign of conjunctionc cts may be formu-
lated as follows: “cts(&:,&;) for negc(disc(negc(®:), negc(S;)))”.
Compare [I] § 24 concerning definition sentences and definition rules.
A definition rule is here regarded as an additional rule of inference,
which states that two sentences (e.g. ‘ADC.D’ and ‘AD ~
(~ CV ~D)’ in the above example) which differ only in two expres-
sions of the forms of the definiendum (‘C « D’) and the definiens
(‘~ (~ CV ~D)’) are direct C-implicates of each other.

The form of PC containing all the definitions indicated by
column (5) on the basis of PC; will be called PC} (D6).
Hence, PCY contains a connective for each of the 4 + 16
connections listed.

+D3-6. K contains PCY =p; K contains PC; and, in
addition, definition rules on the basis of the signs of nega-
tionc and disjunction, for signs for all other singulary and
binary connectionsc, with definientia as given in column (s)
of the above table.

‘a[b)’ in D7, and analogously in some of the subsequent
definitions, theorems, and proofs, means that (a), i.e. here
D3-7a, is to be read without the insertions in square brackelts,
while for (b), here D3-7b, these insertions are to be added
(or sometimes to be taken instead of the preceding expres-
sion).

D3-7a[b]. T;isa C-implicate of T;in K by PC, [PC?]
=p¢ K contains PC, [PC}] and Z; 2 €; in virtue of the rules
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of deduction as given in D2-2b [and, in addition, the defini-
tion rules of PC? as described in D3-6]. Analogously for any
other C-term defined on the basis of ‘C-implication’.

§4. Forms of PC

The general concept of a calculus containing any form of PC
and the concepts of the propositional connectionsc in a calculus
of this kind are defined.

Under what conditions shall we say that K contains a
form of PC? K need not contain all the 4 + 16 connectives
of PCY; it would suffice if K contained e.g. signs of negation
and disjunction (the primitives in PC;) or signs of negation¢
and conjunction: (the primitives in another form, PC,; see
below). Suppose that K, is a sub-calculus of a calculus K,,
containing PC?, and that some of the connectives in PC%
occur in K,. Then under suitable conditions we shall say
that K, contains a form of PC. First, we shall require that,
if T, 2 ¢;in K,, and E; and Z; belong to K, too, then
£ 2 T, in K,; in other words, that K, is a conservative

sub-calculus of K,, ([I] D31-7; PC? usually does not contain
rules of refutation). Second, K, must not be too poor a sub-
calculus; if it contained e.g. a sign of conjunctionc as the
only connective we should not say that it contained a form
of PC. K, must contain a sufficient set of connectives for
building sentences for all 4 + 16 connectionsc. This can be
formulated in a syntactical way by requiring that K, be a
sub-calculus of K,, containing for every sentence &; in Kn
a C-equivalent sentence. (Thus, e.g., if K, contains PC,,
this requirement is fulfilled, because for any sentence con-
taining any connectives of PCY there is a C-equivalent sen-
tence with the connectives of negationc and conjunctiong
only.) But we have to admit still other calculi. Suppose
that the connectives used in K, happen to be different from
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those in K, but in such a way that they correspond strictly
to those in K,; in other words, that K, is isomorphic to K,
(see [I] D31-10). In this case also we should say that K,
contained a form of PC. These considerations lead to Di.
It is to be noticed that K,, and K, may be identical; likewise
K. and K, and hence K,, and K,.

D4-1. A calculus K, contains (a form of) PC =p; there
are calculi K,, and K, such that the following conditions are
fulfilled:

a. K, contains PC%;
b. K, is a conservative sub-calculus of K,,;
c. for every sentence &; in K,, there is a sentence
©; in K, (and K,,) which is C-equivalent to &;
in K,,;
d. K, is isomorphic to K, by a correlation H.
The following definition is analogous to D3-7.

D4-2. T;is a C-implicate of T;in K by PC =p K
contains PC by being isomorphic by a correlation H with a
sub-calculus of a calculus K, containing PCY, and €} @ !
in K,, by PC?, where T/ is the correlate in K,, of &; by H
and g; that of T;. Analogously for any other C-term defined
by ‘C-implication’.

Now we can easily define the syntactical concepts ‘sign of
negationc’, etc., with respect to any form of PC.

D4-3. o, is a sign (connective) for (Conn} (g = 1 to 4) or
cConn? (r = 1 to 16) in PC in K =p; K contains PC by be-
ing isomorphic by a correlation H to a sub-calculus of a
calculus K,, containing PCY, and q; is correlated by H to a
sign for the same connectionc (i.e. (Conn; or cConn? re-
spectively) in PC, in K,,.

As previously in PCY, now in general in PC, we shall desig-

nate a sign for Conn; by ‘cb,’ and a sign for Conn? by
¢ )
CCf .
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A number of other forms of PC besides PC, are known. Thus e.g.
each of the following sets of primitive signs is a sufficient basis for ex-
pressing all connectionsc: signs for negationc and conjunctionc (PC,);
negationc and implicationc (PCs); exclusionc (PCq, shown by Sheffer),
bi-negationc (PCs, Sheffer). Suitable rules of deduction for these
forms have been constructed for PC; by Frege, for PC4 by Nicod and
Quine; for PC; by Quine.

The systems mentioned are only a few examples. For each of the
bases mentioned, there is an infinite number of different forms. Further,
there are other bases besides those mentioned. For instance, a sign of
negationc together with c¢s or ct12 or ctis yields a sufficient basis; each
of these systems is similar to PC; and to PC, since implicationc
and conjunctionc can easily be expressed or defined. [Definientia
for impc(©4,S;): c03(©;,&x), nege(c12(©:,S;)), and nege(ct(®;,8x))
respectively.

The following sections (§§ 5 to 9) contain theorems con-
cerning not PC in isolation but, rather, calculi containing
PC. This difference seems slight, but it is essential for the
later discussion of interpretation. Sometimes calculi are
constructed in symbolic logic which do not contain PC as a
part, but, so to speak, represent PC itself in a pure form,
i.e. as a calculus containing propositional variables as-the
only ultimate components (see ‘‘the customary formula-
tion”, at the end of §2). But in a calculus of this kind,
every sentence is open and is either C-true or C-comprehen-
sive (i.e. every sentence is a C-implicate of it, [I] D30-6).
This is a disadvantage for a discussion of interpretations.
The customary interpretation is L-true, and hence all sen-
tences in a pure form of PC become here L-determinate;
there are no factual sentences. Moreover, the most con-
venient and customary formulation of semantical rules for
the normal interpretation, namely the truth-tables, cannot
be directly used for such a form of PC, because the truth-
tables apply only to closed sentences (see remarks on the
rules of NTT, § 10). Therefore, for the discussion of inter-
pretations we shall have to take into consideration not pure

¥
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forms but calculi containing PC with or without proposi-
tional variables, but in any case containing closed sentences
and hence other constants in addition to the connectives (in
the simplest case propositional constants). For this reason,
the syntactical discussions in the following sections will
likewise refer not to a pure form of PC but to calculi contain-
ing PC with closed sentences. It is true that this will make
the theorems more complicated. It turns out that the re-
sults also depend to some extent upon certain features of the
calculus X in question outside of PC, e.g. upon the additional
rules of deduction of K. But it seems that by means of this
the results formulated in the theorems of this chapter are
more generally applicable. In the practical work in symbolic
logic and in the logical foundations of mathematics, we deal
in most cases not with pure forms of PC but with calculi
containing PC. Therefore it is important to see in what re-
spect the features of the more comprehensive calculus in-
fluence the properties of the propositional connections that
occur.

§ 5. Elementary Theorems Concerning PC

Some well-known elementary syntactical theorems con-
cerning the propositional connectionsc in PC are listed for
later reference.

Before we come to the discussion of our chief problem,
namely the normal interpretation of PC (§§ 10 and 11) and
the question of the possibility of non-normal interpretations
(beginning in § 15), we must study the syntactical features
of PC, independent of any interpretation. This is the task
of the rest of this chapter (§§ 5 to 9). The present section
lists only some elementary and well-known theorems for
the convenience of later reference. These theorems state
some examples of C-truth, C-implication, and C-equivalence.
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Proofs are not given because they are either known or easily
constructed with the help of those known. [Derivations for
the cases listed in T2 and 3 may be found by first construct-
ing a proof for the corresponding implicationc sentences with
the help of the conjunctive normal form; see e.g. Hilbert
[Logik], Kap. I, §§ 3 and 4.] Itis essential that the theorems
refer not only to the forms of PC but to any calculus K con-
taining such a form; the theorems hold for any sentences of
K no matter what other signs besides those of PC they may
contain. This is especially important for theorems like T2l.
Here, and in the further discussions as well, for the sake

of simplicity, we shall refer mostly to the special form PC,;.
But, as can easily be seen on the basis of D4-1, the results
hold likewise for any other sentences which are C-equivalent
to those mentioned here by PC, or PC} or any other form
with different primitive signs but the same connectives; and
they hold also for the correlated sentences in any other form
of PC. [Thus, for instance, if something is said about
disc(negc(®5),8;), i.e. ~&;V &;, in PC,, then the same holds
for &; D &;, for ~(&; «~@&;), etc., in PCY}, and for any cor-
responding sentences in any other form of PC.]

T5-1. If K contains PC,, then any sentence of one of
the following forms is C-#rue in K by PC;:

‘ a. disc(Sy,negc(Sy)).
b. disc(negc(S:),S)).

T5-2. If K contains PC; or (for (h) and (q) to (t)) PC?},
then in each of the following cases &; is a C-implicate of T;
in K by PC; or PCY, respectively.
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T5-3. If K contains PC, or (for

T is: ©; is:
a. diSc(@m, @m) @m
b. Sn disc(Gm,Sn)
C. @n disc(©m,@u)
e. {dbc(@m:@n)) nﬁgc(@m)} Sn
f. {diSc(@n, @n) ) negc(@n) } Sm
8. idiSQ(@,,‘, negc(g,.)),@..l Sm
h. ldiSc(@m,@n) » impC(@:-l, @n) } S,
i' t disC(@M! 6")1 diSC(@m, negC(@n)) } @m
k. {disc(@h disC(negC(@m)’Gn))y diso(@k, @m)} disc(@k,@»‘)
I. {©n,negc(@n)} any sentence (in K)
m. negc(disc(nego(@Sm), negc(Sn)))
n. negc(disc(nege(©nm), nege(©.))) Sa
q. conc(Sm,Sn) Cm
r. COﬂC(@m,@n) @n
t. {disc(@ ky impC(@m@u))’ disC(gky@m)} disc(@k’@n)

(n) to (u)) PCY, then in

each of the following cases ¥; and ¥; are C-equivalent in K
by PC, or PCY, respectively.

EpenvprETrags

T is: T;is:
Sm negc(negc(©Sn))
{Cmy €4} negc(disc(negc(Sn), negc(@.)))
disc(Sm,Sn) disc(Sn,Sm
{disc(negc(@m),S1), disc(negc(®n), &)} disc(negc(disc(Sm, Sx)), 1)
disc(SBm, disc(Ss,S,)) disc(Sn, disc(Sm, Sp))

disc(disc(Sm, Sn),S;)

dise (@m 3 @m)

conc(Sm, Sn)

(Om, Gal

conc(Sm,Sn)

impo(Sm, Sn)

disc(@.., @n)
{(impc(Sn, &1), impe(©n, S1)}

disc(Sm, disc(Ss, @;))
()

nego(disc(negc(@m), negc(&,)))
cong(Gm,Sn)

Conc(@ ny @m)
disc(negc(@m),Sn)
impc(negc(@m) 5 Sn)
impc(disc(©m,S4), &)
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§ 6. Extensible Rules

The concept ‘extensible rule of inference’ is defined. In it-
self it is not important, but it is needed for some later theorems.
In a first reading, this section may be left out.

If a calculus K contains PC and, in addition, other rules
of deduction, then it is not so much the additional primitive
sentences as the additional rules of inference which have an
influence upon the syntactical properties of the propositional
connectionsg in K. In the present section, the property of
extensibility which a rule of inference in a calculus con-
taining PC may or may not have will be defined and studied.
The results will be used in the later discussion.

Let us regard as an example the rule of substitution for
propositional variables (j), as it often occurs in calculi con-

taining PC. According to it, @j(é:) is a direct C-implicate
of &; in K. If now we add any closed sentence in K, say ©,
as a left-hand disjunctive component to each of those two
sentences, we get diS(:(@k,@j(é:)) and dis¢(&4,8;). It can
easily be seen that for these two sentences the relation of
C-implication in K still holds. The same holds generally for
any application of the rule of substitution even if &; is not
closed, provided only that &; does not contain a free variable
which occurs freely in &; or &, (see below, proof for T3a). We
shall formulate this result by saying that the rule mentioned
is extensible (with respect to a left-hand disjunctive com-
ponent).

We shall now define this concept in a general way. We
take ‘dis{(©i,R;)’ as designation of that sentential class
which we construct out of &; by adding &; as left-hand dis-
junctive component to every sentence of &; (thus e.g. trans-
forming {&,, &, ©3, ...} into {S, V&1, Gk V Sy, S V&S,
...}). The sentences of dis¢(®;,&:) are constructed out of
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“those of ®; by adding &; as right-hand disjunctive com-
ponent. Analogous designations are formed for other con-
nectionsc (and likewise for the normal connectives in a
semantical system; see § 10).

D6-1. A rule of inference R in a calculus K is (exten-
sible with respect to a disjunctive component, or briefly)
extensible =p; K contains PC; and for any &;, 8;, and &;
in K, if &, is a direct C-implicate of &; in virtue of R, and &;
is either closed (i.e. does not contain a free variable) or at
least does not contain a free variable also occurring freely
in &; or any sentence of ;, then dis¢(&,R:) ¢ disc(Sk,S;)
in K.

In an analogous way we may define ‘extensible with re-
spect to a left-hand implicative component’ by the condi-
tion that imp¢(&y,R:) o impc(©y,S;), and ‘extensible with
respect to a conjunctive component’ by the condition that
cong(&y,R;) 2 conc(S,;;. But these terms will be used
only here in T1 and 2. [In the case of disjunction; and con-
junction: we need not distinguish between extensibility with
respect to left-hand and with respect to right-hand compo-
nent, because these connectionse are commutative (Ts-3d
andr).]

The reason for the restricting condition with respect to
©; in D1 will be explained later (see remarks on T28-10).

T6-1. If a rule is extensible with respect to a disjunc-
tive component, then it is also extensible with respect to a
left-hand implicative component; and vice versa. (From
Ts-3s and t.)

We shall see later that certain theorems in general syntax
hold only for those calculi whose rules are extensible with
respect to a disjunctive component; and this is the reason
for introducing this concept. But there is no need in any
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theorem for an analogous condition with respect to a con-
junctive component, because every rule fulfills this condi-
tion (T2).

T6-2. If K contains PC, then any rule of inference of K
(and hence also any instance of C-implication in K with a
non-empty premiss class) is extensible with respect to a con-
junctive component.

Proof. Let &; be a direct C-implicate or a C-implicate of a non-
empty class £; in K, and &, any sentence in K. For every sentence
&; of &, ©; and &; are C-implicates of conc(S,&:) (Ts-2q and r)
and hence of con¢(S,R:) ([I] T29-33 and 44). Hence each of the
following items is a C-implicate of conc(S,R:): a. 8 ([I] T29-40);
b. {&s, ©;} (the same); c. conc(S4,&;) ((b), T5-3p)-

Many forms of PC contain the rule of implication (or
separation or abruption): “&; is a direct C-implicate of &;
and the implication¢ sentence of &; and &;”. In some forms
the implication; sentence is formed with the help of a sign
of implication; in other forms, as e.g. PC,, it is formed as
disc(negc(©;),®;). Thus we distinguish rules of implication
in implicative and in disjunctive form. :

T6-3. In any calculus containing PC, each of the follow-
ing rules, if it occurs, is extensible: a. the rule of substitution
for propositional variables; b. the rule of implication in im-
plicative form; c. the rule of implication in disjunctive
form.

Proof. a. Suppose that &; does not contain f{. as a free variable.
Then disc(&;,8; (‘@"_‘)) is the same as (diSc(@k,@i))(é:) and, hence,
is a C-implicate of disc(&x,S;). — b. From Ts-2t. — c. From Ts-2k.

T6-4. In any calculus containing PC, any definition
rule (of the customary form; see § 3) is extensible.

Proof. If an application of a definition rule leads from &; to &;,
then, for any &, an application of the same rule leads from disc(&:,Ss)
to disC(@k;@i)'

T6-5. If K contains PC, (either in the form given in § 2
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or in a form using propositional variables and a rule of sub-
stitution) or PC? (§ 3), then all rules of inference of PC; or
PC? in K are extensible. (From T3a, c, and T4.)

It can moreover be shown that, if K contains any form of
PC, then all rules of inference of PC in K are extensible. It
will be shown later that the rules of inference in the Lower
Functional Calculus FC, are also extensible (T28-10).

As remarked previously, the subsequent theorems in § 6
to g refer to PC, or PCY, but they hold likewise for any other
form of PC.

T6-10. Let K fulfill the following three conditions:

A. K contains PC,,

B. all rules of inference in K are extensible,

C. K either contains no rule of refutation or, if it
does, every directly C-false ¥; in K is such that
every sentence in K is derivable from it.

For any non-empty 8., &;, «nd &; such that &, does not con-
tain any free variable occurring freely in &; or in any sentence
of Ry, if ; o &; in K, then dis¢ (&4,R:) 2 disc (&4,S;).

Proof. Because of (C), ‘C-implicate in K’ and ‘derivable in K’
coincide ([I] T29-54a and 553). Hence, if & T ©;, then there is a

derivation D leading from &; to ©;. We transform D, into the se-
quence of sentences D, by adding & as a left-hand disjunctive com-
ponent to every sentence. (D, is not necessarily itself a derivation but
is the skeleton of a derivation D; which leads from dis¢(S:,R:) to
disc(©:,&;).) Every sentence &, in D, is either (a) a sentence of &; or
(b) a primitive sentence of K or (c) a direct C-implicate of a class &,
of preceding sentences in virtue of a rule of inference. In the case (a),
disc(S4,&)) is a sentence of dis¢(Sk,Rs). In the case (b), disc(S:,S))
is C-true in K (Ts-2c). The first sentence of D, belongs either to
(a) or to (b); therefore (a): it is a C-implicate of dis¢(Ss,R:) ([I]
T29-33 and 74). In the case (c), because of condition (B), disc(S:,S1)
is a C-implicate of dis¢(&y,R:), which is a class of preceding sentences
in D,;. Thus (8): for any sentence ©. in D; the following holds: if
every sentence preceding ©n. is a C-implicate of disé(S4,8:), then the
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same holds for ©m ([I] T29-40 and 44). According to the principle of
induction (transfinite induction if D, is a transfinite derivation; see
[1] § 25 at the end), it follows from (a) and (B) that every sentence of
D,, and hence also disc(&x,S;), is a C-implicate of dis¢(Sx,R5).

+T6-12. Let K fulfill the conditions (A), (B), and (C) in
Tro. If &; is closed and &; 2 &; in K, then any implica-
tion. sentence with &; and ©;, e.g. disc(negc(©,),8;), is
C-true in K.

Proof. Under the conditions stated, disc(negc(®:),8;) is C-true in
K (Ts-1b). Further, disc(negc(®:),&;) 2 disc(nege(©:),&;) in K, be-
cause ©; 2> ©; and negc(®;) is closed (T10). Therefore disc(negc(&:),
©;) is also C-true in K ([I] T29-70). Any other implicationc sentence
is C-equivalent to this sentence (D3-2 (5)) and hence also C-true.

The reason for the condition in Ti12 that &; be closed becomes
clear by the following counter-examples. 1. In a calculus containing
propositional variables, ‘¢’ is a (direct) C-implicate of ‘p’ (by sub-
stitution), but ‘~ pV ¢’ is not C-true. 2. In the functional calculus
(§ 28), ‘P(x)’ 2 ‘P(a)’, but ‘~P(x) VP(a)’ (or ‘P(x) D P(a)’), which
is C-equivalent to ‘(x) (P(x) D P(a))’, is not C-true.

In T12, &; is required to be closed. It would not suffice to require
that &; do not contain a free variable which does not occur as a free
variable in &;. This is shown by the following counter-example.
‘p’ ¢ ‘~p’ (by substitution); but ‘~pV ~p’, which is C-equiv-
alent to ‘ ~’, is not C-true.

_T12 is a theorem of general syntax. It may be called the general
deduction theorem. Tigb and T28-11 are special applications of this
theorem for the propositional and the functional calculi respectively.
A theorem similar to T28-11 has been called deduction theorem by
Hilbert and Bernays [Grundl. Math. I] p. 153.

T6-14. If K contains PC; or PCY and there are no other
rules of inference in K than those of PC, or PCY, then the
following holds:

a. For any non-empty ®;, &;, and &; such that &,
does not contain any free variable occurring
freely in &; or in any sentence of &;, if & 2 &;
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in K, then dis¢(&,R:) 2 disc(®:,&;). (From Ts
and 10.)

+b. If &; is closed and &; o &;, then any implica-

tionc sentence with &; and &; is C-true in K.
(From Ts and 12.)

The same holds also for the functional calculus (T28-11).

If, in constructing a calculus, one finds that some rule of
inference is not extensible, there is reason to doubt whether
the calculus fulfills the purpose for which it was intended.
It is then easy to transform the calculus in the following way
into a stronger one whose rules are extensible. A rule R say-
ing “8®; ;2 &; if such and such conditions are fulfilled” is
replaced by a rule R': “dis¢(&,R:) 32 disc(©1,8;) if &; does
not contain a free variable occurring freely in &; or in any

sentence of ®; and if such and such other conditions are
fulfilled”.

It is easy to see that any rule of the form R’ is extensible. If &, is
any sentence which does not contain a free variable occurring freely
in &, or in &; or in any sentence of R, then dis¢(disc(Sk,S1),R4)
3¢ disc(disc(©:,©1),&;), according to R’ (taking disc(©:,&:) in the
place of &,). Therefore, according to the associative law for disjunc-
tion (Ts-3k), dis¢(S.,disé(©,R:)) 2 disc(Sr,disc(©1,S;)).

For an example of the transformation of R into R’ see remarks on
T28-10 concerning rule (11’).

§7. General Theorems Concerning Disjunctiong

Some general syntactical theorems concerning disjunctionc
are proved. One of the results: under ordinary conditions,
two signs of disjunctionc are C-interchangeable (T4b).

The following theorems are proved with respect to the

signs of disjunctionc and negation; in PC;. According to
the previous discussion, they hold likewise for any other
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form of PC with respect to the connectionsc of cConnj (i.e.
disjunctionc) and Conn; (i.e. negationc), no matter whether
there are connectives for these connections¢ or not.

T7-1. If K contains PC, and any implication. sentence
with &,, and &,, e.g. disc(negc(®,),S,), is C-true in K,
then &, 2 &, in K. (From D3-2(5), D2-2b(s), [I] T29-81.)

+T7-2. Let K fulfill the conditions (A), (B), and (C) in
T6-10. Then the following holds:

a. dis¢(©,,&;) is a C-implicate in K both of &; and
of ;. (From Ts-2b,c.)

b. If &; and &; are closed, dis.(&;,S;) is a strongest
sentence in K with the property (a); that is to
say, if any &, is a C-implicate both of &; and
of &;, then dis¢(&;,&;) o ©:.

Proof for (b). If the conditions mentioned are fulfilled, both
disc(negc(®:),&:) and disc(negc(S;),S:) are C-true (T6-12). Hence
the class of these two sentences is C-true ([I] T29-72), and likewise
disc(negc(disc(©:,8;)),&:), because it is a C-implicate of that class
(Ts-3i, [I] T29-70). Therefore disc(©:,S;) 5 & (T1). _

T7-3. Let K fulfill the conditions (A), (B), and (C) in
Té6-10. Let &,, &, &;, and &; be any closed sentences in K
such that &; is C-equivalent to &/ and likewise &; to &;.
Then dis¢(&;,S;) is C-equivalent to disc(&),S)).

Proof. Since &; is C-equivalent to &}, disc(&,,&;) is C-equivalent
to disc(&:,8}) (T6-10), to disc(&},&:) (T5-3d), and further, because
of the C-equivalence of &; and &}, to disc(&),S!) (T6-10) and to
disc(®©}8;) (Ts5-3d).

Condition (A) in T4, below, refers to a calculus K contain-
ing PC, twice with two signs of disjunctionc. This is meant
in the following way. K contains two sets of rules of deduc-
tion as required in D2-2. The signs of negationc may or may
not be identical. If the first set of rules (four primitive
sentences and the rule of implication) refers, say, to ¢ ~’ and
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‘yv’, then the second refers either to ‘~’ and ‘v’’ or to
‘~'"and ‘v"”. In any case, according to D2-2a, the three
or four connectives are general connectives (D2-1), and hence
connectives of the two sets may occur within one sentence.

Condition (D) in T4 is fulfilled also by most of the non-
extensional (intensional) calculi constructed so far, e.g. by
Lewis’ calculus of Strict Implication and the numerous
similar calculi by other authors.

+T7-4. Conditions for K:

A. K contains PC, twice, with two different signs of
disjunctiong, dis¢, and disc,.

B and C, as in T6-10.

D. K is either extensional in relation to partial
sentences ([I] D31-18) or, if not, every non-
extensional primitive connective in K, say a,,
fulfills the following condition: if every two cor-
responding arguments in two full sentences &,
and &, of a; are C-equivalent, then &,, and &,
are C-equivalent.

a. If K fulfills the conditions (A), (B), and (C),
then for any closed &; and ©;, dis,(©:,8;) and
disc,(©;,8;) are C-equivalent in K.

b. If K fulfills the four conditions (A), (B), (C),
and (D), then disc;, and disc: are C-interchange-
able in K ([I] D31-13).

Proof. a.Let &;and &; be any closed sentences. Then disci(&:,S;)
is a C-implicate both of &; and of &, (T2a); and likewise disc:(&:,S;).
Therefore, the second disjunctionc sentence is a C-implicate of the
first (T2b), and the first of the second. Hence they are C-equivalent.

b. Since the two disjunctionc sentences mentioned are C-equivalent
(a), they are C-interchangeable (condition (D), [I] T31-100). But
their mutual replacement in a larger sentence is the same as a mutual
replacement of disc; and discz. Therefore these two signs are C-inter-

changeable.
We shall come back to T4 in a later discussion of possible
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interpretations for signs of disjunctionc. T4 holds also for
other forms of PC than PC;, and even for two different

forms.

§ 8. General Theorems Concerning Negation

Some general syntactical theorems concerning negationc are
proved. One of the results: under ordinary conditions, two
signs of negationc are C-interchangeable (Tgb).

+T8-1. Let K fulfill the conditions (A), (B), and (C) in
T6-10. Let &; be any closed sentence in K.

a. Every sentence in K which is a C-implicate both
of &; and of negc(&;) is C-true.

b. neg.(®;) is a strongest sentence which has the
relation to ©; stated in (a), that is to say, if &,
is such that every sentence which is a C-implicate
both of &; and of &; is C-true, then negc(&,) 2
&1

Proof. a. Let &; be a C-implicate both of &; and of negc(&:).
Then disc(S;negc(®s)) 3 &; (T7—2b). Therefore, since disc(Sy,
negc(®,)) is C-true (Ts5-1a), &; is C-true ([I] T29-70).

b. Let &, fulfill the conditions stated. Then disc(&:,;), being a
C-implicate both of &; and of &; (T7-2a), must be C-true. disc(negc
(negc(Sy)),©) is C-equivalent to disc(:,&1) (Ts5-3a, T7-3) and hence
is likewise C-true. Therefore negc(&:) 3 ©: (T7-1).

T8-2. Let K contain PC,.

a. If &, is C-true in K, negc(S;) is C-comprehen-
sive. ([I] D30-6).
b. If neg(®;) is C-true, &; is C-comprehensive.

Proof. a. Let ©; be C-true. Every sentence in X is a C-implicate
of {;, nege(®:)} (Ts-21) and hence a C-implicate of negc(®) ([1]
T29-81). Therefore, nego(®;) is C-comprehensive ([I] D3o-6).
—b. If negc(®) is C-true, negc(nego(®;)) is C-comprehensive (a),
and hence &; also (Ts-3a, [I] T30-49).
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It is to be noted that T2, unlike T3, does not impose re-
stricting conditions on K and &;.

T8-3. Let K fulfill the conditions (A), (B), and (C) in
T6-10. Let &; be any closed sentence in K.
a. If &, is C-comprehensive, negc(&;) is C-true.
b. If neg.(®;) is C-comprehensive, &; is C-true.

Proof. a. Let &; be C-comprehensive. Then &; 3 negc(&:)
([I] D30-6). Further, negc(S:) < negc(S) ([1] T29-32). Hence,
negc(®;) is C-true (T1a). —b. Let negc(®:) be C-comprehensive.
Tl;en negc(negc(©y)) is C-true (a), and hence also &; (Ts-3a, [1] T29-
70).

T4, below, is in a certain sense a counterpart to T1.

T8-4. Let K contain PC,.

a. Every sentence in K which C-implies both &;
and neg.(&,) is C-comprehensive.

b. Let K, moreover, fulfill the conditions (B) and
(C) in T6-10. Let &, be any closed sentence in
K. Then neg(&,) is a weakest sentence which
has the relation to ©; stated in (a); that is to
say, if &,; is such that every sentence which
C-implies both &, and &; is C-comprehensive,
then &, o negc(&,).

Proof. a. I{®; 5 ©;and ©; negc(:), then &; 3 {&:;, nege(S:)!
and &; 3’ every sentence (T5-21). —b. Let &, be negce(disc(nege(S:),
negc(©;))), which is a conjunctionc sentence with &; and &;(D3-2(8)).
Then &,, C-implies both &; and &; (T5-2m, n). Let &; fulfill the con-
dition stated in the theorem. Then &, is C-comprehensive. There-
fore, disc(negc(@i),negc(@)) is C-true (T3b). Hence, &; 3 negc(&:)

(T7-1).
T8-6. Let K fulfill the conditions (A), (B), and (C) in

T6-10.
a. If &; is closed and &; 3 ©;, then negc(&;) 2

negc(:).
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b. If ©; is closed and neg¢(®;) o nege(®,), then
&S; 'é" @j.

Proof. a. Under the conditions stated, disc(negc(®:),&;) is C-true
(T6-12). Hence negc(®;) 3 nege(s) (Ts-2f, [I] T29-81). —b. Un-
der the conditions stated, negc(negc(S:)) 3 nege(nege(&;) (a).
Therefore, since &, 5> negc(negc(S:)) and negc(nege(S;)) 3 S;
(T5-38), & 3 &; ([I] T29-44).

T8-7. Let K fulfill the conditions (A), (B), and (C) in
Té6-10. Let &; and &; be closed and C-equivalent. Then
negc(©,) and neg.(&;) are C-equivalent. (From T6a.)

T8-8. Let K fulfill the conditions (A), (B), and (C) in
T6-10. Let &; and &, be constructed in the same way with
the help of the signs of negation¢ and disjunction¢ but out
of different components, those of &, being &1, S;e, . . . Sin,
those of &; being &;, &;js, . . . Sja, all these components
being closed. Let any two corresponding components &,
and &;, (m = 1 to n) be C-equivalent in K. Then &; and
©; are C-equivalent. (From T7-3, T7, by inductive infer-
ence.)

The following counter-example shows that it is necessary to restrict
T7 and 8 to closed components. ‘P(x)’ and ‘(x)P(x)’ are C-equivalent;
but ‘~P(x)’, which is C-equivalent to ‘(x) (~P(x))’, is not C-equiva-
lent to ‘~(x)P(x)".

The following theorem, T9, requires the occurrence of two
signs of negation¢ in K. This is to be understood in analogy
to the occurrence of two signs of disjunction, as explained
previously in connection with T7-4.

+T8-9. Conditions for K:

A. K contains PC, twice with two different signs of
negationc, negc, and negc,.

B and C, as in T6-10.

D, as in T7-4.

a. If K fulfills (A), (B), and (C), then, for any
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closed &, negai(S;) and negc2(S;) are C-equiva-
lent in K.

b. If K fulfills (A), (B), (C), and (D), then negc,
and negc, are C-interchangeable in K.

Proof. a. Let &; be closed. Then every sentence which is a C-im-
plicate both of ©; and of negci(®;) is C-true in K (Tza); and every
sentence which is a C-implicate both of &; and of negc:(&;) is C-true
(T1a). Hence negca(®:) 3 negei(®;) (T1b) and vice versa (T1b).
Thus the two sentences are C-equivalent. — b. Proof analogous to that
of T7-4b.

§9. General Theorems Concerning Other Connec-
tions.

Some syntactical theorems concerning connectionsc in gen-
eral. One of the results: under ordinary conditions, two signs
for the same connectionc are C-interchangeable (T4b).

According to the definitions in § 4, any forms of PC cor-
respond in a certain way to PCY and hence to one another.
Thus it could easily be shown that if two calculi X,, and K,
contain PC and possess the same or corresponding com-
ponents, then any syntactical relation like C-implication,
C-equivalence, etc., which holds for certain sentences in K,,
by PC holds also for the corresponding sentences in K, by
PC. This is true even if K,, and K, contain different forms
of PC; and it is true no matter whether K,, and K, are en-
tirely separate calculi or are sub-calculi of one calculus K.
However, it does not immediately follow from this result
that any two corresponding sentences in K,, and K, as sub-
calculi of K are necessarily C-equivalent in K, not even if
K, and K, contain the same form of PC. That this is the
case has been shown above for disjunction; (T7-4a) and for
negation (T8-ga). It will now be easy to show the same for
the other connectionsc in general, because they are expressi-
ble in terms of disjunction¢ and negation,.
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T9-1. Let K contain PCY and fulfill the conditions (B)
and (C) in T6-10. Let &, ©;, ©;, and &; be any closed
sentences in K such that &, is C-equivalent to &; and &; to
&,

a. For any singulary connective cb, (¢ = 1 to 4) in
PC? in K, cb4(®,) is C-equivalent by PC} in K

b. For any binary connective ¢c¢, (r = 1 to 16) in
PC? in K, cc/(®,,8;) is C-equivalent by PC? in
K to ct,(8},8).

Proof for (b). Let &, be the sentence in K formed out of c¢,(&:,S;)
by eliminating the connective c¢, with the help of its definition rule
in PCP (D3-6); then &, and c¢,(S;,&;) are C-equivalent by PCY in K.
Let &} be formed analogously out of c¢,(&;,&}). Then these two sen-
tences are likewise C-equivalent. &, is constructed with the help of
signs of negationc and disjunctionc out of &; and &; as components,
and &; is constructed in the same way out of ©}and &; as components.
(The common form of &, and &} is that given in the table in § 3 in
column (5) on the line of cConn?) Therefore, &, is C-equivalent to
©; (T8-8). Hence, ct.(©:,©;) and c¢,(S},&;) are likewise C-equiva-
lent. — The proof for (a) is analogous.

T9-2. (Analogous to T8-8.) Let K contain PCY and
fulfill the conditions (B) and (C) in T6-10. Let &; and &; be
constructed in the same way with the help of any connec-
tives of PC? but out of different components, those of &,
being &,, Gy, . . . S;n, those of &; being &;1, Sja, . . . Sjp,
all these components being closed. Let any two correspond-
ing components &;,, and &;, (m = 1 to n) be C-equivalent
in K. Then &, and &; are C-equivalent. (From T1, by in-
ductive inference.)

The following theorem, T'3, is analogous to T7-4 and T8-9.
It refers to two sub-calculi X,, and K, of K, both containing
PC%. This is meant in the same way as explained previously
in connection with T7-4. Thus any one of the connectives of
PC? in K,, may or may not be identical with the correspond-
ing connective in K,. The theorem holds likewise if K,, and
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K, contain any other form of PC or even two different forms
of PC.
T9-3. Conditions for K:
A. K contains two sub-calculi X,, and K, both con-
taining PC%.
B and C, as in T6-10.
D, as in T7-4.

Let &,, be a sentence constructed with the help of connec-
tives of PC? in K, out of closed components, and &, be a
sentence constructed out of the same components in an analo-
gous way but with the corresponding connectives of PC} in
K,. Then &,, and &, are C-equivalent in K.

Proof. Let ©,, be the sentence formed out of &, by eliminating all
defined connectives of PCY occurring in it. Then &,, is C-equivalent
to ©n in K and hence in K. Let &, be formed analogously out of
Sa in K,. Then &, is C-equivalent to &, in K, and in K. &,, and
©, consist of the same components and have analogous forms, but
©,, contains the signs of negationc and disjunctionc of K and &,
those of K,. Now we can transiorm &,, into &, by first replacing one
occurrence of the sign of disjunctionc in K, after the other by that in
K, and then doing the same with the signs of negationc in Km and K.
Each step in this transformation leads to a C-equivalent sentence
(T7-4, T8-9); therefore &,, and &, are C-equivalent in K, and hence
also ©n and &,.

A corollary to T3:

+T9-4. Let K fulfill condition (A) in T3 and (B) and (C)
in T6-10. Let a,, be a sign of any singulary or binary connec-
tionc in PC? in K,,, and a, be a sign for the same connection
in K,. Then the following holds:

a. Two full sentences of a, and a, with the same
closed component or components are C-equiva-
lent in K.
b. If K fulfills, moreover, condition (D) in T%-4,
then a,, and a, are C-interchangeable in K.
Proof. (a) is a special case of T3. The proof for (b) is analogous to
that for T7-4b.



B. PROPOSITIONAL LOGIC

This chapter deals with propositional logic, i.e. the system
of the propositional connections based on the normal truth-
tables (NTT). It is a semantical system, in contradistinction
to the syntactical system PC. Radical semantical and L-seman-
tical concepts for the connections and for the concept of ex-
tensionality are defined.

§10. The Normal Truth-Tables (NTT)

The normal truth-tables (NTT) for propositional connec-
tions may be regarded as semantical rules stating the truth-
conditions for the full sentences of the connectives. A table is
given (p. 38) showing the four singulary and the sixteen binary
extensional connections with their characteristics, which cor-
respond to the value-columns in the truth-tables.

By the normal truth-tables — the system will here be
called NTT — we mean the customary truth-tables for the
singulary and binary propositional connections, regarded as
semantical rules (compare [I] § 8). A truth-table for a con-
nection of degree # lists in its first column the 2" possible
distributions of the truth-values T (truth) and F (falsity)
among the » components of a full sentence of that connec-
tion; in the second column, it gives the truth-value of a full
sentence for each of those distributions (see the later ex-
amples, truth-tables for negation and disjunction). We re-
strict ourselves, as is customary, to the singulary and binary
connections; all connections of higher degrees can be ex-
pressed by negation and disjunction, as Post has shown.

In this way, the truth-table represents a function — we
call it the characteristic function of the connection — which
correlates a truth-value to each of those distributions as
arguments. Thus, for instance, the characteristic function
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of disjunction correlates T to the distributions TT, TF, and
FT, and F to FF. It is convenient to order the distributions
of truth-values in the first columns of the truth-tables always
in the same way; we adopt the most frequently used lexi-
cographical order, with T preceding F (D2).

D10-2. The #-th distribution of truth-values for the de-
gree n (1 or 2) =ps the truth-value or sequence of two truth-
values here stated:

t-th DISTRIBUTION
for degree one | for degree two

-~

1 T TT
2 F TF
3 —_ FT
4 —_ FF

If the order of the distributions is thus established by
convention, we do not need the whole truth-table in order
to describe a characteristic sunction. It is sufficient to state
the truth-values in the order in which they occur in the sec-
ond column. This sequence of truth-values for a connection
is called its characteristic (comp. Wittgenstein [Tracta-
tus] 4.442, [Syntax] § 57). Thus we see, for instance, from
the two truth-tables below that the characteristic for nega-
tion is FT, that for disjunction is TTTF. We shall see soon
(§ 12) that all extensional connections, and only these, have
a truth-table and hence a characteristic function and a
characteristic. The characteristics of the singulary and
binary extensional connections are listed in column (5) of
the subsequent table. The connections are completely
characterized by their characteristics, and hence may be
defined with their help. Thus a connective will be called a
sign of disjunction if it possesses the characteristic TTTF.

The table that follows contains, further, the following
items, to be explained later. For every connection, as de-
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fined by the characteristic in column (5), the name is given
in column (2), the abbreviated name in column (1), a seman-
tical name for the connective in column (4). The terms in
columns (1), (2), and (4) correspond to those in the same
columns in the table in § 3, but here they have no subscript
‘C’. In this way the semantical terms of this table are dis-
tinguished from the syntactical terms of the previous table.

SEMANTICAL CONCEPTS OF PROPOSITIONAL CONNECTIONS AND CONNECTIVES

IN NTT
® | @ @ | @ (s)
Connections Connectives
Abbrevia- ' Customary | Semantical | Character-
tion Ordinary Name Symbol Name istic

I. The four singulary connections

Conn} tautology b TT
Conn} (identity) by TF
Conn} negation ~ bs (neg) FT
Conn} contradiction bs FF

I1. The sixteen binary connections

Conn} tautology () TTTT
Conn} disjunction \') c: (dis) TTTF
Conn} (inverse implication) G TTFT
Conn} (first component) € TTFF
Conn} implication D ¢s (imp) TFTT
Conn? (second component) Cs TFTF
Conn} equivalence = ¢z (equ) TFFT
Conn, conjunction . ¢s (con) TFFF
Conn} exclusion | Co FTTT
Conn,} (non-equivalence) Cio FTTF
Conn} (negation of second) tn FTFT
Conng (first alone) C12 FTFF
Connj}} (negation of first) C1s FFTT
Conn} (second alone) C1e FFTF
Conn}y bi-negation C1s FFFT
Conn} contradiction C1s FFFF
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Thus e.g. ‘sign of disjunction, in K’ is a syntactical concept
based on the rules of deduction of PC, (D3-2); on the other
hand, ‘sign of disjunction in S’ (D11-23) is a semantical
concept based on the rules of NTT, i.e. the truth-tables.
As examples of rules of NTT, stated in the customary

form of diagrams (truth-tables), we give here those for
negation and disjunction.

TrUTH-TABLE FOR NEGATION TRUTH-TABLE FOR DISJUNCTION
(2 neg(€;) & & dis(&,,)
N1, T F Dj1. T T T
N2. F T Dj2. T F T
Dj3. F T T
Dj4. F F F

We may regard each line in a truth-table as a representa-
tion of a semantical rule. We designate the two semantical
rules for negation, represented by the two lines of its normal
truth-table, by ‘N1’ and ‘N2’, likewise the four rules for
disjunction by ‘Dj1’ to ‘Dj4’, those for conjunction by ‘Cr’
to ‘C4’, those for implication by ‘I1’ to ‘I4’, and those for
equivalence by ‘E1’ to ‘E4’. Formulated in words instead
of diagrams, these rules are as follows.

+Rules of NTT for some of the connections; &; and &;
are any closed sentences.

N1. If ©; is true, neg(®;) is false.

N2. If &; is false, neg(®;) is true.

Djl1. 1f &; and ©; are true, dis(&;,S;) is true.

Dj2. If &; is true and ©; is false, dis(&;,8;) is true.
Dj3. If &; is false and &; is true, dis(&;,;) is true.
Dj4. If ©; and ©; are false, dis(&;,S;) is false.

In shorter formulation:
N1, 2. neg(&;) is true if and only if &; is false.
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Djl1 to 4. dis(&,,8;) is true if and only if at least one of
the two components is true.

Further:
Cl1 to 4. con(8;,8;) is true if and only if both compo-

nents are true.

I1 to 4. imp(&;,®;) is true if and only if &; is false or
©, is true or both.

El to 4. equ(®;,©;) is true if and only if both compo-
nents are true or both are false.

The rules of NTT for the other extensional connections can
be formulated in an analogous way on the basis of their
characteristics.

The following counter-examples show that it is necessary to restrict
the application of the truth-tables to closed seniences. 1. Propositional
logic. ‘p’ and ‘~p’ are both false (this is often overlooked because
of a confusion between propositional variables and propositional con-
stants), in spite of N2. And ‘pV ~p’ is true, in spite of Dj4. 2. Func-
tional logic (customary interpretation, open sentences interpreted as
universal, see § 28). If there is an individual which is not P, and an-
other one which is P and not Q, then ‘P(x)’ and ‘~P(x)’ (which is
L-equivalent to ‘(x) (~P(x))’) are both false, in spite of N2. Further,
‘Q(x)’ and ‘P(x) D Q(x)’ are false, in spite of I4. The necessity of the
restriction is often not noticed. Sometimes the truth-tables are even
explicitly formulated for open sentences, e.g. ‘p’, ‘¢’, ‘pV ¢’. [It may
be remarked that, in another sense, the truth-tables may be formulated
for open sentences, e.g. propositional variables. While it is incorrect
to formulate: “If ‘p’ is false and ‘g’ is false, then ‘p = ¢’ is true”, the
following is correct: “If p is false and ¢ is false, then p = gqis true”. In
the latter sentence, ‘p’, ‘¢’, and ‘="’ are regarded as belonging to the
English language. The sentence refers to the absolute concept of truth
for propositions ([I] § 17), not to the semantical concept of truth
for sentences. Therefore it cannot serve as a rule for a language
system. ]

Suppose that a semantical system S contains a binary
general connective (D2-1) a;. Under what conditions shall
we call a; a sign of disjunction in S? We shall not require
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that S contain just the rules of NTT as| formulated above.
S may contain rules formulated in an entirely different way,
provided only that they have the same effect upon the
truth-value of a full sentence a(&,,S;) as the rules of NTT.
Thus a, will be called a sign of disjunction in S if, for any
closed components &; and &;, ax(S;,&;) is true if and only
if at least one of the components is true, in other words, if
it possesses the characteristic TTTF. Here, however, two
cases must be distinguished. The condition mentioned may
be fulfilled either (a) by accident, so to speak, or (b) neces-
sarily. In case (a), the situation is such that we have to use
factual knowledge, namely of the truth-values of the sen-
tences involved, in order to find out whether the condition
is fulfilled. In case (b), factual knowledge is not required;
the rules of .S suffice for showing that the condition is ful-
filled. In case (b) we shall say that a; has TTTF not only
as a characteristic but also as an L-characteristic and that
it is not only a sign of disjunction but also a sign of dis-
junctiont. (In case (a), we might call a; a sign of disjunc-
tiong.) Analogously for the other connections. On the basis
of these considerations, we shall lay down definitions for the
connections.

§ 11. The Connections in NTT

The concepts for the connections can easily be defined with
the help of the characteristics. Thus, for instance, a; is a sign
of disjunction if it has the characteristic TTTF. We define,
in addition, corresponding L-concepts. If the semantical rules
suffice to show that a, has the characteristic TTTF, then this
is called its L-characteristic, and a; is called a sign of disjunc-
tiony. The definitions make use of the concept of L-range

([1] §8 18 to 20).

Our task is now to formulate general definitions for ‘charac-
teristic’, ‘ L-characteristic’, ‘(sign for) Conn}’, and ‘1 Conn}’



42 B. PROPOSITIONAL LOGIC

in accordance with considerations in the preceding section.
These definitions and, further, those for ‘extensional’ and
‘L-extensional’ (§ 12) can best be formulated if we make use
of the concept of L-range. It has previously been shown
(1] § 19; see the example for S,) how the semantical rules of
a system S can be formulated as rules for L-range instead of
rules for truth and how the L-concepts (‘L-true’, etc.) and
the radical semantical concepts (‘true’, etc.) can be defined
on the basis of ‘L-range’ ([I] § 20). Let us briefly summarize
the main features of the previous explanations and defini-
tions. By L-states with respect to S we mean either com-
pletely specified possible states of affairs of the objects dealt
with in S ([I] § 18), or other entities corresponding to them,
e.g. state-descriptions ([I] § 19). The L-range of a sentence
& — designated by ‘Lr&,,’ or, in what follows, also by
‘Rm’ —is the class of those L-states which are admitted
by &, i.e. those in which &,, would be true. If the rules of
S are formulated as rules of L-range, then the concept ‘L-
range in S’ is defined by these rules, that is to say, for every
©m in S, Lr&,, is determined by the rules. On this basis,
the following concepts can be defined (as in [I] § 20). ‘V,’
designates the universal L-range, i.e. the class of all L-states,
‘A, the null L-range. The L-range of a sentential class ®;
is the product of the L-ranges of the sentences of ®;. (For
the signs of the theory of classes, e.g. ‘¢’, ‘C’, ‘ 4+, * X,
¢~ etc., see [I] § 6 at the end.)

D11-5. ¢, is L-true (1n S) =pt Lr%; =V,.

D11-6. T;is L-false (in S) =pr Lrq; = A,.

D11-7. ;¢ T; (in §) =pr LrT; C Lrg;.

D11-8. ¢;is L-equivalent to ¥; (in §) =p¢ LrE; =
LI'I,'.

D11-9. ; is L-non-equivalent to ¢; (in S) =p
Lrg; = -LI'I,'.
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The definitions of radical concepts make use of ‘rs’ also,
which designates the real L-state. While the concept of
L-range, and hence also the other L-concepts just defined,
are determined by the rules of S, this is not the case for rs
and the radical concepts. In order to find out which L-state
is the real one, factual knowledge is required.

D11-12. g;is true (in S) =psrs e LrZ,.

The other radical concepts are defined on the basis of
‘true’ in the customary way (the definitions in [I] § 20 are
like those in [I] § 9).

T11-1. The L-range of &, is the product of the L-ranges
of the sentences of ;. ([I] D2o-1b.)

T11-6a [b]. (For ‘a[b)]’, see remarks preceding D3-7.)
Each of the following four conditions is sufficient and neces-
sary for T, and T, to be [L-lequivalent in S.

1. (R, XR,) + (=R, X —R,) contains rs [is
V.]. (From [I} D2o-16, [I] T20-26 [D8].)

2. Both R,, + (—-R,) and —R,, + R, (and hence
also their product) contain rs [are V,]. (From
(1).)

3. (R, +R,) X (=R, + (—=R,)) does not con-
tain rs [is A,]. (From (1).)

4. Both R, X —R, and —R,, X R, (and hence
also their sum) do not contain rs [are A,].
(From (3).)

T11-7a[b]. Each of the following five conditions is
sufficient and necessary for ¥, and T, to be [L-]non-
equivalent in S.

1. (Rn X =R,) + (=R, X R,) contains rs [is
V.]. (From [I] Tg-21, [I] T20-26 [Dog].)

2. Both R,, + R, and —R,, + (—=R,) (and hence
also their product) contain rs [are V,]. (From

(1).)



44 B. PROPOSITIONAL LOGIC

3. R. + (-R,)) X (=R + R,) does not con-
tain rs [is A,]. (From (1).)

4. Both R, X R, and —R,, X —R, (and hence
also their sum) do not contain rs [are A,].
(From (3).)

5. T, and ¥, are [L-]disjunct and [L-]exclusive.
(From (2), [I] D20o-17 [9], [I] D20-18 [10].)

Now we have to formulate the rules of NTT in terms of
L-range. Let us take Dj2 as an example; we call it the sec-
ond rule for disjunction (or Connj) in NTT. It says: “If
©; is true and &, is false, then dis(&;,S;) is true.” If, for a
connective a;, we find two sentences &; and &, such that &;
is true, ©; is false, and a;(®;,®;) (which we will call &)
true, then we say that a, satisfies the rule Dj2 with respect
to &, and &;. If, on the other hand, &; is true, &; is false,
but & is false, then we say that a, violates Dj2 with respect
to &; and &,. If a; satisfies Dj2 with respect to any closed
components, then we say simply that a, satisfies Dj2. The
condition which in this case must be fulfilled for any closed
©; and &, can also be stated in this way: “Either it is not
the case that &; is true and &; is false, or &; is true”, or:
“®; is not true or &; is not false or & is true”. This is, in
terms of L-range: “rse —R; or rseR; or rs eR;,”, or in
other words: “rs ¢ —R; + R; + R,”. If, for some &; and
©;, the class —R; + R; + R; is the universal L-range V,,
then we can know that it contains rs without knowing which
L-state is rs. Thus, in this case, we know from the rules of S,
without using factual knowledge, that a; satisfies Dj2 with
respect to &; and &;, and therefore we say that aj, L-satisfies
Dj2 with respect to &; and &;. If this is the case for any
closed &; and &;, we say that aj L-satisfies Dj2. If a; satis-
fies all four rules Dj1 to 4, then it has TTTF as a character-
istic and is called a sign of Connj or of disjunction in S. If
a; L-satisfies the four rules, then it has TTTF as an L-charac-
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teristic and is called a sign of ;Conn} or of disjunctiony in S.
On the basis of these considerations, we shall now lay down
the general definitions for connections. Sometimes, when
there is no danger of ambiguity, we write simply ‘&;’ for
‘ar(®y)’ or ‘ax(©,8;)’, i.e. the full sentence of a, with the
component or components under consideration, and hence
‘Ry’ for the L-range of that full sentence.

D11-14. q; satisfies the /-th rule (! = 1 to 4) in NTT
for Conn? (r = 1 to 16) with respect to &;, &;in S =py a; is
a binary general connective in S; ©&; and &; are closed and
have the #-th distribution of truth-values (D1o-2); a,(&;,&;)
has the #-th truth-value in the characteristic of Conn? as
given in column (6) of the table in § 10. Analogously for a
singulary connective.

D11-15. a; violates the #th rule (f = 1 to 4) in NTT
for Conn? (r = 1 to 16) with respect to &;, &; in S =p¢ a
is a binary general connective in S; &; and &; are closed and
have the ¢-th distribution of truth-values; a;(&;,&;) does not
have the ¢-th truth-value in the characteristic of Conn?.
Analogously for a singulary connective.

D11-16a [b]. (Auxiliary term for D17 and D21.) q; has
the [L-]characteristic value X (T or F) for:the #th dis-
tribution (¢ = 1 to 4) of degree two in S =p; q; is a binary
general connective in S; and if &; and &; are any closed
sentences in .S and & is the full sentence a;(&;,&;), then the
class specified below contains rs [is V,):

t VALUE X CLass

1 T —Ri+ (—=R;) + Rs

1 F —Ri+ (—-R;)) +(=Ry)
2 T —Ri+R;+R:

2 F —Ri+R; + (—Rs)

3 T Ri+ (~Rj) + R

3 F Ri+ (—=Rj) + (=R
4 T Ri+R;+ R:

4 F Ri+Rj+ (—Ry)
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Analogously for degree one (¢ = 1 or 2):

: l VALvE X I CLass

1 T —-Ri+ R

1 F —Ri 4+ (—Ry)
2 T Ri + Rl,-

2 F Ri+ (—Ry)

T11-9a [b]. If q; has the [L-]characteristic value X
(T or F) for the ¢-th distribution of degree two in S, and &;
and ©; are closed sentences which have the ¢-th distribution
of [L-Jtruth-values ([L-]truth or [L-]falsity), then 0x(&;,S;)
has the [L-]truth-value X. Analogously for degree one.

Proof for t =1, X =T, & = ax(€:,&;). —Ri+ (—R;) + Ry
contains rs [is V,] (D16afb]). Since &; is [L-Jtrue, —R; does not
contain rs [is Ag]; likewise —R;. Therefore, R, contains rs [is V,].
Hence, ©; is [L-]true (Ds). Analogously for the other values of ¢
and X.

T11-10. q; has the characteristic value X for the #th
distribution of degree two in S if and only if, for every closed
&, and &; which have the #-th distribution of truth-values,
0:(©;,&;) has the truth-value X. Analogously for degree
one.

Proof. 1. Toa. 2: Proof fort = 1, X = T. Suppose that, for every
closed &; and &; which have the first distribution and hence are true
(D10-2), the full sentence &, has the value T. In other words, either
&; and &; are not both true or & is true; either &; is false or &; is
false or &, is true; eitherrs e —R;orrs e —R;orrs e Ri;rs e —R; +
(—R;) + R;. Then a; has the characteristic value T (D16a). Analo-
gously for the other values of # and X.

D11-17a [b]. a; [L-]satisfies generally the ¢-th rule
(t = 1 to 4) in NTT for the binary connection Conn? (r = 1
to 16) in S =py a; has an [L-]characteristic value for the ¢-th
distribution which is the same as the ¢-th value in the charac-
teristic for Conn?, as given in column (6) of the table in § 10.
Analogously for a singulary connection (¢ = 1 and 2).
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T11-11. q, satisfies generally the /-th rule (¢ = 1 to 4)
for Conn? (r = 1 to 16) in NTT if and only if, for every
closed &; and &; in S which have the #th distribution of
truth-values, a,(®;,&;) has the -th truth-value in the charac-
teristic of Conn? and hence a; satisfies the #th rule with re-
spect to &;, &; in S. Analogously for degree one. (From
Di17a, Tio0, D14.)

D11-21a[b]. a, has ®; (a sequence of four truth-
values) as its [L-]characteristic in S = p; one of the follow-
ing conditions is fulfilled.

1. a, is a singulary general connective and has
[L-]characteristic values for the first and sec-
ond distribution of degree one, and ®; is the
sequence of these two truth-values in this order.

2. o, is a binary general connective and has
[L-]characteristic values for the first, second,
third, and fourth distribution of degree two,
and Ry is the sequence of these truth-values in
this order.

+D11-23a [b]. a; is a sign for the connection 1,;Conn in
S =ps a; has as its [L-]characteristic the characteristic given
in column (5) of the table in § 10 for Conn?. Conn; is also
called tautology (see column (2) of the tablein § 10), Conn;
negation, Conn} contradiction; further, Conn? tautology,
Conn; disjunction, Conn? implication, Conn? equiva-
lence, Conn conjunction, Conn} exclusion, Conn bi-
negation, Conn} contradiction. Analogously, ;Conn; is
also called negation;, ;Conn? disjunction,, etc.

It will be shown later (T12-28) that the signs for the con-
nectionsy; are [L-]extensional.

In some cases the term used for a connection is the same as that for
a semantical relation. (In this point, our terminology at present follows

the general use in spite of its disadvantages.) It is important to notice
the difference between the two concepts, e.g. between the connection
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of implication, for which there may be a sign (e.g. ‘D ’) in the object
language, and the semantical relation of implication ([I] Dg-3), which
is expressed in the metalanguage (e.g. by ‘implies’ or ‘ — ’), and like-
wise between the connection of equivalence (‘="’) and the semantical
relation of equivalence (‘equivalent to’). In the case of other connec-
tions, there is much less danger of confusion because, fortunately,
different terms are used. Examples: the connection of disjunction
(‘V?’) and the semantical relation of disjunctness ([I] Dg-5) (‘dis-
junct’); the connection of negation (‘~’) and the corresponding se-
mantical property of falsity (‘false’). — An analogous difference must
be observed in the case of L-concepts; here we put the ‘L’ at different
places. We must distinguish between the connection (sometimes we use
here the term ‘connectiony’) of implicationy, (‘J’, introduced by fts
truth-table) and the (L-)semantical relation of L-implication (‘L-im-
plies’, ¢ 7 ’); likewise between equivalencey, (‘=") and L-equivalence
(‘L-equivalent to’), between disjunctiony, ( V ’) and L-disjunctness, be-
tween negationy (‘~’) and L-falsity (‘L-false’). — Because of the
danger of the confusion mentioned, it might be advisable to consider
the use of other terms for the connections Conn? (implication) and
Conn; (equivalence) (perhaps Quine’s terms ‘conditional’ and ‘bi-
conditional’), and to reserve the terms ‘implication’ and ‘equivalence’
for the semantical relations.

We shall sometimes use ‘b,” (¢ = 1 to 4) (see column (4)
in the table in § 10) for a sign of Conn; (in most cases, for
LConn;) and ‘c,’ (r = 1 to 16) for a sign of Conn? (in most
cases, LConn?). Instead of ‘ bs’, we usually write ‘neg’ as the
semantical name of a sign of negation, and ‘negL’ as the
name of a sign of negationy,; further, ‘dis’, ‘imp’, ‘equ’, ‘con’
for signs of disjunction, implication, equivalence, and con-
junction respectively, ‘disy’, ‘impy’, ‘equi’, ‘cony’ for
signs of disjunctiony, implication;, equivalencey, and con-
junction;, respectively. These names of connectives are
mostly used for forming semantical descriptions of full sen-
tences; ‘negy(©,)’, for instance, designates the full sentence
of the sign of negation;, with &; as component.

T11-12a [b]. «q, is a sign for [L]Conﬁ: (m =1 0r 2)in
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S if and only if a; [L-]satisfies generally all rules (two for
n = 1, four for n = 2) for Conn; in NTT. (From D23,
D21, D17.)

The method here used for the definition of ‘L-characteristic’ (D21)
and ‘sign for LConn;’ (D23) with the help of the concept of L-range,
is analogous to that previously used in [Syntax] § 57 for the definition
of corresponding concepts in syntax. In syntax, however, this method
does not always lead to adequate concepts; this has been shown by
Tarski (see “Addition 1935 at the end of § 57). Therefore the
method is now transferred to L-semantics (compare [I] § 39, remarks
on [Syntax] § 57).

T11-17a [b]. Let S contain a; as a singulary general
connective and b, (¢ = 1 to 4) as a sign for (;Conn;.
is also a sign for (1;Conn, if and only if, for any closed &;,
ax(8;) is [L-]equivalent to b,(&,). Analogously for a binary
connective.

Proof for a[b]. b, has the [L-]characteristic for Conn} (Dz3),
say X1Xs. 1. If for any closed ©;, ©; (= aix(@y)) is [L-]equivalent
to &, (= b(Sy)), then both R; + (—R,) and —R; + R, contain rs
[are V.] (T6 (2)). If X, =T, then —R; + R, contains rs [is V.]
(D16); hence likewise (—R;4+ R, + (Ri+ (—R,)), which is
—Ri+ R;. Therefore, a; also has T as its [L-]characteristic value
for the first distribution (D16). If X; = F, then —R; + (—R,) con-
tains rs [is V,]; hence likewise (—R;+ (—Ry)) + (=R + Ry),
which is —R; + (—R). Therefore, a; also has F as its value for the
first distribution. Analogously for the second distribution (X, = T
or X; = F). Thus, a; has the same two [L-]characteristic values as
b,, and hence the same [L-]characteristic (D21), and hence is also a
sign for ;,Conn} (D23). — 2. If ax is also a sign for [1;Conn;, a; has
also the [L-]characteristic X1X,. Take for example TF. Then, for
any closed @.’, —-R;+ Rq’ R;+ ("‘Rq), —Ri 4+ Ry, and R; + (—Rk)
all contain rs [are V,] (D16); hence likewise (—R: + Ri) + (R: +
(—Ry), which is Ry + (—=R,), and (R: + (—Rki) + (-Ri+ R,
which is —Rj + R,. Therefore, &, and &, are [L- Jequivalent. Anal-
ogously for the other three characteristics (TT, FT, FF).

If, in constructing S, we lay down the rules of NTT for the
four singulary and the sixteen binary connectives, then we
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see from these rules of S, without using factual knowledge,
that those signs satisfy the rules of NTT and hence have the
characteristics as given in column (6) of the table in § 10.
Therefore, in this case, the signs L-satisfy the rules, have
L-characteristics, and are signs for the connections;. Since,
however, the details of the formulation of the rules are
inessential as long as they lead to the same results, we will
also say that S contains NTT if the rules of S are formulated
in any other way provided they give to the connectives the
same properties as the rules of NTT would do, in other words,
if they are such that they determine the same L-character-
istics and hence make the connectives signs for the connec-
tionsy. This consideration leads to D26. For the sake of
simplicity, we apply the definition only to systems whose
sentences are all closed.

D11-26. S contains NTT =p; all sentences of S are
closed; S contains a sign for each singulary or binary connec-
tiony, i.e. four signs pb, (¢ = 1 to 4) for LConn], and sixteen
signs ¢, (r = 1 to 16) for LConn? These signs are called
connectives of NTT in S.

If S contains NTT, we understand by the ultimate com-
ponents of &; with respect to NTT those sentences out of
which &; is constructed with the help of the connectives of
NTT, which sentences themselves, however, are not full
sentences of connectives of NTT. If &;is not a full sentence
of a connective of NTT, &; is itself its only ultimate com-
ponent. The ultimate components of ®; are those of the
sentences of ®;. Thus for instance, the only ultimate com-
ponent of dis(neg(®,),&,) is &;. If in this example &; is re-
placed by any other sentence, the resulting sentence is
always L-true (see below T13-25b(2)); therefore, dis(neg(&,),
©1), and likewise dis(neg(&.),8;) for any &, is L-true by
NTT. Thus this concept applies to those sentences which
can be shown to be true and hence L-true by merely apply-
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ing the normal truth-tables for the connectives occurring.
Analogously, we shall define ‘L-false by NTT’, ‘L-implies
by NTT’, and ‘L-equivalent by NTT’ in such a way that
these concepts apply to those cases where the rules of NTT
suffice to show that the corresponding radical concepts and
hence the L-concepts hold. For technical reasons, we first
define ‘L-implies by NTT’ by reference to the replacements,
and then the other concepts on the basis of this concept.
T25 shows that these definitions are in agreement with the
previous definitions for the L-concepts (D5 to 8).

D11-29. ¢;L-implies T; by NTT in S =p:¢ .S contains
NTT; & T jin S for any ¥ and ¥ which are constructed
out of T; and I; respectively in the following way: any ulti-
mate components of T; and of T; are replaced by any sen-
tences in S; if a component occurs at several places in T; and
T;, then it must be replaced, if at all, by the same sentence
at all places where it occurs in ¥, and E,.

D11-30. T, is L-true by NTT in § =p A p T: by
NTT.
D11-31. ¢; is L-false by NTT in S =p; T; T V by
NTT.
D11-32. ¢, is L-equivalent to T; by NTTin S =py
T E% T; by NTT, and T; E% T; by NTT.

T11-24. If S contains NTT, then the following holds:
a. An infinite number of sentences in S are L-true
by NTT.
b. An infinite number of sentences in .S are L-false
by NTT.
c. Vis L-false by NTT.

Proof. a. Given any sentence &@,, which is L-true by NTT (e.g. for
any &;, disp(negL(&), &)), its double negation (i.e. negrL(negL(Sm)))
is also L-true by NTT. — b. Given any sentence &, which is L-false
in NTT (e.g. con.(S;,negrL(&y))), its double negation is also L-false in
NTT.—c. From (b), [I] T14-11.
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T11-25.
a. If T;  ¢; by NTT (in §), then T; p Z;.
b. If £,is L-true by NTT, then ¥, is L-true.
c. If €;is L-false by NTT, then E; is L-false.
d. If €;is L-equivalent to ¥; by NTT, then g, is
L-equivalent to ;.

Proof. a. From D29, with replacement of the components by them-
selves. —b. From (a), [I] T14-51a. —c. From (a), [I] Pi4-7.—
d. From (a).

§ 12. Extensionality

A connection or connective is usually called extensional (or
a truth-function) if the truth-value of its full sentences depends
merely upon the truth-values of the components. We also de-
fine the corresponding L-concept (with the help of the concept
of L-range) in such a way that a connective is L-extensional if
the semantical rules suffice to show that it is extensional. A
connective is extensional if and only if it has a characteristic;
L-extensional if (but not only if) it has an L-characteristic.
Thus the connections listed in the table in § 10 are extensional
and under certain conditions L-extensional.

The connections which have truth-tables are often called
truth-functions, because the truth-value of a full sentence
depends merely upon the truth-values of the components.
Following Russell, we call connections of this kind and their
connectives extensional and a full sentence of such a connec-
tion extensional with respect to the components. For a sin-
gulary connective gy, the condition of extensionality can be
formulated in the following way: if &; and &; are any closed
sentences which have the same truth-value and hence are
equivalent, then a;(&;) and a;(&]), which we will call &,
and &; respectively, also have the same truth-value and
hence are equivalent. As in the case of many other well-
known concepts, we introduce here a distinction between an
L- and an F-concept dependent upon the distinction be-
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tween the case where the general condition for the concept
in question, here the condition for extensionality just men-
tioned, is fulfilled by the contingency of the facts, and the
case where it is fulfilled necessarily, that is to say, in such a
way that we can find out that it is fulfilled on the basis of
the semantical rules of the system in question without using
factual knowledge. In order to make this distinction, we
transform the condition of extensionality in the following
way: ‘“Either &; and &/ are not equivalent or &, and &;
are equivalent”; further, in terms of L-range (where ‘R’
is short for ‘Lr&..’): “Either rs ¢ (R; X —R)) 4+ (-R; X
R)) or rse((Re XR) + (=Re X =R}))” (T11-7a(1),
Tr11-6a(1)); “rs ¢ (R X —=R)) + (~R: X R)) + (Rx X R))
+ (=R X —R}))”. In general, factual knowledge is re-
quired in order to find out that the last-mentioned class
contains rs. Only in the case that this class is V, can we
know that it contains rs without knowing which L-state is
rs. In this case, we call a; L-extensional. If the condition
for extensionality is not fulfilled, we call the connective non-
extensional. [The term ‘intensional’ is often used in this
case. Since, however, this term is used in traditional logic
in another sense, it might be advisable not to use it here.]
If the class mentioned is null, then we know without the use
of factual knowledge that it does not contain rs and that
hence the connective is non-extensional; we call it in this
case L-non-extensional. These considerations lead to the
following definitions (D1 and 2); the definitions for binary
connections (D3 and 4) are analogous.

Conditions for extensionality, non-extensionality, and L-non-
extensionality which do not make use of the concept of L-range are
given in T1 and T2a,b below. It seems that a condition, and hence a
definition, for L-extensionality cannot be given in this simple way
(except in special cases where S contains certain connectives; see be-

low, T13-31b). This is the chief reason for applying the concept of
L-range in Dxb and D3b.
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D12-1a[b]. A singulary connection (and a general
connective for it) is [L-]extensional in S =p;if &; and &/
are closed and ©, is the full sentence with &;, and &, that
with &;, then (R; X —R)) + (=Ri XR)) + (Rx X R))
+ (=R X —R|{) contains rs [is V,].

D12-2a [b]. A singulary connection (and a general
connective for it) is [L-]Jnon-extensional (intensional) in
S =p¢ there are &;, &, &;, and &; such that &; is the full
sentence with &; and &; that with &, and each of the fol-
~ lowing four classes (and hence also their sum) does not con-

tain rs [is A,]: Ry X =R/, —=R; X R}, Ry X R, —R; X
-R;.

D12-3a[b]. A binary connection (and a general connec-
tive for it) is [L-]extensional in S =y if &;, ], &;, and
©; are closed and & is the full sentence with &; and &;, and
©; that with &; and &}, then (R; X —R)) + (-R; X R))
+ R; X =R) + (-R; X R)) + (Re X R)) + (=Rx X
—R|}) contains rs [is V,]. The class mentioned can also b
stated in the following form: ((R; + R/) X (-R; + —R)))
+ ((Rj + R)) X (-R; + =R))) + (Rx + —R}) X (-Rs
+Ry)).

D12-4a [b]. A binary connection (and a general con-
nective for it) is [L-]non-extensional (intensional) in S
=p¢ there are &;, &/, &;, &;, &, € such that &, is the full
sentence with &; and &;, and &; that with &; and &;, and
each of the following six classes (and hence also their sum)
does not contain rs [is A,]: Ri X —R}, —R; X R}, R; X
-R}, -R; X R}, Ry X R}, —R; X —R;.

The following theorem, Ti, states the condition for ex-
tensionality in the customary form. There is no analogue
to this theorem concerning L-extensionality (see, above,
the remark preceding D1).

+T12-1. A singulary general connective a; is extensional
in S if and only if the following holds. If &; and &; are any
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closed equivalent sentences, then a;(©;) is equivalent to
0x(®;). (From D1a, T11-7a(x), T11-6a(1).) Analogously for
a binary connective.
T12-2a [b]. Let a; be a singulary general connective in
S. Each of the following conditions, applying to every
closed &; and & with the full sentences &; and &;, is a suffi-
cient and necessary condition for a; to be [L-]extensional.
1. —Q; + Qy contains rs [is V,, or in other words,
Q.‘ C Qk] Here, Q.‘ = (R, X R,’) + (—R;‘ X
—-R)) = (Ri + (=R})) X (=R; + R)); hence,
—Qi = (Ri X ~R)) + (~Ri X R) = (R; +
R) X (-Ri + (=R)); Qv = Ry X R)) +
E)R,, X —R) = Re + (-R)) X (-Re +
L)
2. Each of the following four classes, and hence
also their product, contains rs [is V,]: R; + R}
+ Ry + (-R}),R; + R + (-Ry) + R}, —R;
+ (-R) + ki + (=R)), -R; + (-R) +
(—Ri) +R;

T12-3a [b]. A singulary general connective a; is [L-]
non-extensional in S if and only if there are closed sentences
©:, ©; such that &; and &; are [L-Jequivalent, and a.(&,)
and a,(©]) are [L-]non-equivalent. (From D2, T11-6(4),
T11-7(4).) Analogously for a binary connective.

T12-4. Let o, be a singulary general, L-extensional
connective. If &; and &) are closed and L-equivalent,
0x(©;) and a;(&) are L-equivalent. Analogously for a
binary connective.

Proof. Let &; and &; be the full sentences. If &; and &; are
L-equivalent, R; = R} (D11-8). Since a; is L-extensional, the class
mentioned in Dib is V,, hence also (Rx X R{) + (—Ri X —Rj).
Therefore, Ry = R{; hence &; and &; are L-equivalent.

T12-6. If a connective a; in S satisfies a certain rule for
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a connection in NTT with respect to some components and
violates the same rule with respect to others, then a; is non-
extensional.

Proof. Let a; be a singulary connective (the proof for a binary one
is analogous). Let a, satisfy the f-th rule for Connj with respect to
&; and violate the same rule with respect to &;. Then (D11-14 and
15) &; and &} have the ¢-th distribution of truth values and hence are
equivalent, while the full sentences have not the same truth-value
and hence are non-equivalent. Therefore, ay is non-extensional (T3a).

T12-12a [b]. Let S contain at least one [L-]true sen-
tence and at least one [L-]false sentence and a; be a singulary
general connective. Then the following holds:

1. For any ¢ (1 or 2), a; has at most one ¢-th
[L-]characteristic value (D11-16).
2. oy has at most one [L-]characteristic.
Analogously for a binary connective.

Proof for a [b] (1). Let &; be [L-]true and &; [L-]false in S. Let
©: and &; be the full sentences. If for £ = 1, a; had both T and F as
an [L-]characteristic value, then &; would be both [L-]true and
[L-Jfalse, which is impossible. (More exactly, on the basis of our
definitions in terms of ‘L-range’: both —R; + R, and —R; 4+ (—Ry)
would contain rs [be V,] (D11-16a[b]); since &; is [L-]true, R; con-
tains rs [is V,]; hence —R; does not contain rs [is A,]; hence both
R; and —R; would contain rs [be V,], which is impossible. Analo-
gously for ¢ = 2, with &;. — a[b](2) from a[b](1).

T12-13. Let S contain at least one true and at least one
false sentence and a, be a singulary general connective. If
ax, is extensional, then it has one and only one characteristic.
The same holds for a binary connective.

Proof. Let &, be true and & false in S, and a; be extensional.
Let & be ax(&)), and Sie ax(&S,). We distinguish two cases: 1. Sy
is true; 2. it is false. 1. For any closed &;, either ©; is false or &; is
true and hence equivalent to ©;, and hence a,(&;), which we call S;,
is equivalent to &, (T1) and hence also true. Therefore, rs ¢ —R; +
Ry. Since this holds for any &;, a; has the characteristic value T for
the first distribution of degree one (D11-16a). 2. It can be shown
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analogously that, if &, is false, a; has the characteristic value F for
the first distribution. It can be shown in an analogous way with &,
that ax has T or F as its characteristic value for the second distribu-
tion. Therefore, a; has a characteristic (D11-21a) but not more than
one (T12a (2)).

It is to be noted that no strict analogue to T13 holds
for L-concepts. Let a; be L-extensional. Then it is exten-
sional and hence has a characteristic (T13). It does not,
however, necessarily have an L-characteristic. Since aj is
L-extensional, the semantical rules without factual knowl-
edge suffice to show that a, has one of the characteristics;
but they do not necessarily suffice to find out which one.
And only if they do is that characteristic an L-characteristic
for a;. If they do not, then ai, though L-extensional, has
no L-characteristic.

Example of an L-extensional connective without L-characteristic-
Let a, be a singulary general connective in S. Let W be the condition
that Mt. Washington is less tha 1 4000 ft. high, and R be the class of
those L-states in which W holds. Let the following rule of L-range be
laid down for the full sentence &, of a, with any component &;:
Ri= (Ri X Ry) + (—R; X —Ry). Thus rs eR; if and only if
either rs ¢ R; and rs € Ry, or not rs ¢ R; and not rs ¢ R,,. Thus &; is
true if either &; is true and W holds, or &,; is false and W does not hold.
Hence, if &; means (designates the proposition) A, ax(&;) means: A if
and only if W. Let &, and &; be equivalent and &; be a,(&;). Then
either both &; and &; have the same truth-value as W, in which case
©: and &, are both true; or both have a truth-value different from
that of W, in which case &, and &; are both false. Thus, in any case,
the full sentences are equivalent. Therefore, a, is extensional (T1).
Since this has been found without factual knowledge, a; is L-exten-
sional. [This latter reasoning is rather vague. The same result is
shown in the following more exact way on the basis of Dib. The rule
given for R, holds generally. Therefore, R; = (R; X Ry) + (—R;
X —R,). By substituting these values for R; and R; in the expres-
sion of a class in D1, after a simple transformation we find that class
to be (RiX —R})+ (—R; X R) + (R; X R})) + (=R; X —R}),
which is V,. Hence, a, is L-extensional (D1b).] Without using factual
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knowledge, we know that a; has a characteristic, but we do not know
which one. By empirical investigation, measuring the height of Mt.
Washington, we find that W does not hold. It follows that every full
sentence of a; with a true component is false, while that with a false
component is true. Hence, a; has the characteristic FT and is a sign
of negation. But FT is not an L-characteristic of ax, and a; is not a
sign of negationr. (If we wish to use F-terms, we might say that a:
has an F-characteristic and is a sign of negationg.)

T12-16a [b]. Let every sentence in S be [L-]true. Then
for any singulary general connective a; in S, the following
holds:

1. ax has T and not F as its [L-]characteristic value
for the first distribution.

2. a; has (vacuously) both T and F as [L-]charac-
teristic values for the second distribution (which
does not occur).

3. aj [L-Jsatisfies generally the first rules for Conn}
and Conn} (see the table in § 10).

4. The second rule for any singulary connection is
not applicable and hence is generally [L-]satis-
fied by a,. '

5. a; has both TT and TF as [L-]characteristics.

6. a; is a sign for both (1;Conn} and (1;Connj.

7. S contains no sign for Conn} or Conn} (and
hence none for .Conn; or .Conn}).

8. ais[L-]extensional.

Proof for a [b). 1 and 2. For any &;, with the full sentence ©x,
both &;and &, are [L-]Jtrue. Hence both R;and R; containrs [are V,],
while both —R; and —R; do not contain rs [are A,]. Hence,
—Ri+ Ry, Ri+ Ry, and Ri + (—Ry) containrs[areV,], but —R; +

—R;) does not. Hence (D11-16a [b]), ax has T, but not F, as its
EL—]characteristic value for the first distribution and both T and F
for the second. 3. From (1), Di1-17a [b]. 4. From (2). 5. From
(1), (2), Dir-21a [b]. 6. From (5), D1r-23a [b]. 7. From (1),
Dri-23a [b]. 8a. All sentences of S are equivalent to one another,
hence also all full sentences of a;. Hence, a; is extensional (Tr1).
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8b. All sentences of S are L-true and hence have the L-range V,;
hence also any full sentences &, and &;. Therefore, Rx X Ry = V,,
and hence likewise the class mentioned in D1. Therefore, a; is L-ex-
tensional (D1b).
The proofs for the following theorems, T17, 20, and 21,
are analogous to that for T16.
T12-17a [b]. Let every sentence in S be [L-]Jtrue. Then
for any binary general connective a; in S, the following

holds:
1 L]

2.

8.

a; has T and not F as its [L-]Jcharacteristic
value for the first distribution.

a; has (vacuously) both T and F as [L-]charac-
teristic values for the second, third, and fourth
distributions (which do not occur).

. a; [L-]satisfies generally the first rules for the

eight connections Conn? to Connj (i.e. those
whose characteristic begins with T).

. The second, third, and fourth rules for any

binary connection are not applicable and hence
are generally [L-]satisfied by qj.

. a; has simultaneously those eight [L-]charac-

teristics which begin with T.
ax is a sign simultaneously for the eight connec-
tions (1;Conn? to (;ConnZ.

. S contains no sign for any of the connections

Conn? to Conn? (and hence none for the corre-
sponding connectionsy,).
a; is [L-Jextensional.

T12-20a [b]. Let every sentence in S be [L-]false. Then
for any singulary general connective a; in S the following

holds:
1.

2.

az has F and not T as [L-]characteristic value
for the second distribution.
a; has (vacuously) both T and F as [L-]charac-
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teristic values for the first distribution (which
does not occur).

ar [L-Jsatisfies generally the second rules for
Conn; and Conn}.

. The first rule for any singulary connection is

not applicable and hence is generally [L-]satis-
fied by a;.

5. a; has both TF and FF as [L-]characteristics.
6.
7. S contains no sign for Conn] or Conn; (and

ax is a sign for both [1;Conn; and [r;Connj.

hence none for the corresponding connectionsy,).
a; is [L-]extensional.

T12-21a [b]. Let every sentence in S be [L-Jfalse. Then
for any binary general connective a; in S the following holds:

l.

2.

ar has F and not T as its [L-]characteristic value
for the fourth distribution.

a; has (vacuously) both T and F as [L-|charac-
teristic values for the first, second, and third
distributions (which do not occur). :

a; [L-]satisfies generally the fourth rules for the
eight connections Conn? with even r (i.e. those
whose characteristic ends with F).

The first, second, and third rules for any binary
connection are not applicable and hence are
generally [L-]satisfied by a;.

a; has simultaneously those eight [L-]charac-
teristics which end with F.

. aj is a sign simultaneously for the eight connec-

tions 1;Conn? with even r.

S contains no sign for any of the connections
Conn? with odd r (and hence none for the cor-
responding connectionsy).

a is [L-]extensional.



§ 12. EXTENSIONALITY 61

+T12-25a [b]. If a; is a singulary or binary general con-
nective in S and has an [L-]characteristic, then a; is [L-]ex-
tensional.

Proof fora [b]. Let a, be a singulary general connective (the proof
for a binary connective is analogous) which has an [L-]characteristic.
Let ©&; and &; be any closed sentences with the full sentences &; and
©; respectively. Let the four classes mentioned in T2(2) be k;, ks, ks,
and ke If the first truth-value in the [L-]characteristic of a; is T,
both —R; + R, and —R; + R; contain rs [are V,] (D11-162 [b]),
and hence both ks and k4 contain rs [are V,]. Likewise, if the first
value is F, then —R; + (—Ry), —R; 4 (—R}), kq, and ks contain rs
[are V.]. If the second value is T, then Ri + Ry, R; + Ry, ky, and ks
contain rs [are V,]. If the second value is F, then R, + (—Ru),
R! 4+ (—R}), ko, and k; contain rs [are V. Thus, in the case of each
of the possible [L-]characteristics TT, TF, FT, and FF, each of the
classes k; to kq contains rs [is V,]. Hence ax is [L-]extensional
(Tza [b](2))-

+T12-26. If a; is a singulary or binary extensional con-
nective, then aj has a characteristic. (From T13, T16a(s),
T17a(s), T20a(5), T21a(s).

This is the converse of T25a. An analogue to T26 for
L-concepts, which would be the converse of T25b, does not
hold (see the remark on T13 and the counter-example).

T12-28a [b]. If a; is a sign for (11Conn! (¢ = 1 to 4) or
for (1;Conn2 (r = 1 to 16), then ay is [L-]extensional. (From
Di1-23, T2s.)
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§ 13. Theorems Concerning Particular Connections

Some theorems concerning negation, disjunction, conjunc-
tion, implication, equivalence, and the corresponding connec-
tionsy, (negationy, etc.) are stated. Some of these theorems
state sufficient and necessary conditions for a sign to be a con-
nective for one of these connections (Ts, T13, T14); the L-
ranges of full sentences (T15); relations between the connec-
tions) and certain radical EL-]concepts, e.g. [L-]true (T2o,
T25 to 28); sufficient and necessary conditions for [L-]exten-
sionality (T31) and [L-]non-extensionality (T32).

T13-3a [b]. a, [L-]satisfies generally the rule N1 for
negation in NTT in S if and only if a; is a singulary general
connective in S, and for any closed &; with the full sentence
€ the following condition (stated in three forms) is ful-
filled:

1. —=R; + (=R;) contains rs [is V,]. (From
Di1-17a[b), D11-16a [b].

2. R; X R; does not contain rs [is A,]. (From
(1).)

3. ©; and ©; are [L-]exclusive. (From (1) [(2)],
(1] D20-18[10].)

T13-4a [b]. a; [L-]satisfies generally the rule N2 in
NTT in S if and only if a; is a singulary general connective
in S, and for any closed &; with the full sentence &, the
following condition (stated in three forms) is fulfilled:

1. R; + R, containsrs[is V,). (From D11-17a[b],
Di11-16a [b].)

2. —R; X —R; doesnot containrs [isA,]. (From
(1)

3. @.[ aild ©; are [L-]disjunct. (From (1), [I] D2o-
17[9].)

+T13-5a [b]. o, is a sign of negation(y; in S if and only
if a; is a singulary general connective in S, and for any
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closed &; with the full sentence &, the following condition
(stated in three forms) is fulfilled:
1. Both R; + R; and —R; 4+ (—=R;) (and hence
also their product) contain rs [are V,, and hence
R; = —R;]. (From Ti1-12, T3(1), T4(1).)
2. &; and ©; are [L-]disjunct and [L-]exclusive.
(From T3(3), T4(3).)
3. &; and ©; are [L-Jnon-equivalent [and hence,
Ri = —R;]. (From (2), Tr1-7(5) [and D11-9}.)

T13-10a [b] (lemma). A binary general connective a;
in S [L-]satisfies generally one of the rules in NTT men-
tioned below (Dj1 to 4 for disjunction, C1 to 4 for conjunc-
tion, I1 to 4 for implication, E1 to 4 for equivalence) if and
only if, for any closed sentences &; and &; with the full sen-
tence ©y, the class specified below for that rule contains rs
[is V,). (From D11-23, D11-21, D11-17, D11-16.)

RuLe Crass

1. Dj1 —Ri+(—=R,)+ R,

2. Dj2 —~Ri+R;+R:

3. Dj3 Ri+(~R)) +Rs

4. Dj4 Ri+R;+(—Ry¥)

5. Cx —R;+(—R,)+Rg

6. C2 —Ri+ R;+ (—Ry)

7. Cs3 Ri+ (—R;) + (—Ry)

8. Ca Ri+R, 4+ (~Ry)

9. It —Ri+(-Rj)+R:
10. 12 —Ri+R; 4+ (—Ry)
11, I3 Ri+ (—R;)) +Rs
12. I4 Ri+R;+R;

13. Ex —Ri+(—R)+ R
14. Ea2 —Ri+ R, 4+ (—Ry)

15. E3 Ri+ (—R;) +(—Ry)

16. E4 Ri+R;+R;

+T13-13a [b]. A binary general connective q; is a sign
for (rjConn2 (r = 2, 5, 7, 8) in S if and only if, for every
closed &; and &; with the full sentence &;, the two classes
specified below (and hence also their product) contain rs
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[are V,, or, in other words, if and only if the condition A
stated below is fulfilled]. (From Tr11-12, Tr10.)

r | CONNECTION CLASSES A

2| disjunction | —(Ri+ R))+ Riand R;+R;+ (=Ri) | Rpy=Ri+R;

5| implication | (Ri X —R,) 4+ Riand —Ri+ R; 4+ (=Ri) | Ry = —Ri+ R;

7| equivalence | (R; X —R;) + (—=R; X R;) + Ri and Ri=(R;XR))
(RiXRj))+ (—Ri X =R;) + (—Ry) +(—=RiX —=R))

8| conjunction | —(Ri X Rj) + Riand (Ri X R;) + (—Rys) | Ra= R; X Ry

+T13-14a [b]. A binary general connective a; is a sign
of conjunction (1jin S if and only if, for every closed &; and
8, ,(8,,8;) is [L-Jequivalent to {&,, &;}. (From T13(8),
[1I] D2o-1b, T11-6(2).)

The following theorem states the L-ranges of full sentences
of some connectionsy, in terms of the L-ranges of the com-
ponents.

+T13-15. For any closed &; and &; in S, the following
holds if S contains the connectives referred to:

1. Lr(negn(&;)) = —R;. (From Tsb(1).)

2. Lr(disn(®4,8;)) = R; + R;. (From T13b(2).)

3. Lr(imp;,(@,‘,@j)) = —Ri + R,‘. (From T13b
(5).)

4. Lr(equi(®,,®;) = (Ri X R;) + (-R: X —Ry).
(From T13b(7).)

5. Lr(cony(&;,8;)) = R; X R;. (From T13b(8).)

+T13-20a [b]. For any closed &; and &; in S, the follow-
ing holds if S contains the connectives referred to. [If S
contains NTT, then the relations stated hold also for the
L-concepts by NTT (D11-29 to 32).]

1. neg11(®;) is [L-]Jtrue if and only if &; is [L-]

false.
2. neg1)(®;) is [L-]false if and only if &; is [L-]

true.
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3. dis(11(®;,®;) is [L-]true if and only if &; and &;
are [L-]disjunct.

4. dis(11(Sy,S;) is [L-]false if and only if both &;
and &; are [L-]false.

5. con1y(&;,&;) is [L-]true if and only if both &;
and ©; (and hence {&;, &,}) are [L-]true.

6. con(L1(©,,S;) is [L-]false if and only if &; and
©; are [L-]exclusive.

7. imp1)(&,&;) is [L-]true if and only if &.;7,&;.

8. imp1.1(©,,®;) is [L-false if and only if &; is
[L-]true and &; [L-)false.

9. equ1)(©;,©;) is [L-]true if and only if &; and
©; are [L-Jequivalent.

10. equ(11(®;,©;) is [L-]false if and only if &; and
©; are [L-]non-equivalent (and hence [L-]dis-
junct and [L-]exclusive).

Proof. (a) can easily be shown with the help of the characteristics
of the connections involved, or, in other words, with the rules of NTT.
— Proof for (b). Let the full sentence in each case be &;. 1. &; is
L-true if and only if Ry is V, (D11-5), hence if and only if R; is A,
(Tsb(1)), hence if and only if &; is L-false (D11-6). 2. Likewise from
Di11-6, Tsb(1), D11-5. 3. &i is L-true if and only if Ry = V,, hence
if and only if R; + R; = V, (T13b), hence if and only if &; and &;
are L-disjunct ([I] D20-g). 4. ©;isL-falseif and only if R; 4+ R;=A,
(D11-6, T13b(2)), hence if and only if both R; and R; are A,, hence
if and only if both &; and &; are L-false. (5) from Ti4b. (6) from
Ti4b, [I] D2o-10. 7. &, is L-true if and only if —R;+ R; =V,
(T15(3)), hence if and only if R;C R;, hence if and only if &; 7> &;
(D11-7). 8. &4 is L-false if and only if ~R;+ R; = A, (T15(3)),
hence if and only if R; = V, and R; = A,, hence if and only if &; is
L-true and &; L-false. 9. &, is L-true if and only if (R; X R;) +
(=Ri X —R;) = V, (T15(4)), hence if and only if &; and &; are
L-equivalent (T11-6b(1)). 10. &, is L-false if and only if (R; X R;)
+ (—Ri X —R;) = A, (T15(4)), hence if and only if &; and &; are
L-non-equivalent (T11-7b(4)), and hence L-disjunct and L-exclu-
sive (Tx1-9b(5)). — Since the relations hold for any components &;
and &;, they hold also for the L-concepts by NTT.
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If S contains signs for the connections(y; involved, then
theorem T20 gives sufficient and necessary conditions for
certain radical, L-, and F-concepts, namely for (L-, F-) falsity
(1), disjunctness (3), implication (7), and equivalence (g).
This is the method of the so-called characteristic sentences,
which has been previously explained ([I] § 22, especially
T22-1 to 4) but can be exactly formulated only now that
definitions for the connections have been given.

The parts (a) of the following theorems T25 to T28 are
quite elementary and well-known. They can easily be proved
with the help of truth-tables (i.e. on the basis of the semanti-
cal rules of NTT). Therefore we refer in the proofs to the
parts (b) only.

T13-25a [b]. If S contains the connectives referred to,
each of the following sentences is [L-]#rue in S for any closed
©n [and, moreover, L-true by NTT, if S contains NTT]:

1. dis;L1(Smnegr1(Sn)).
2. disgr)(negL1(Sm),Sm).

Proof for b. For each of the sentences stated, the L-range can easily
be found to be V,, with the help of Tr5. Therefore, |the sentence is
L-true (D11-5). For example, the L-range for (1) is found to be R+
—Rpm, which is V,. If S contains NTT, then each of the sentences is,
moreover, L-true by NTT (D11-30) because it is L-true for any Sa.

T13-26a [b]. If S contains the connectives referred to,
then in each of the following cases T [L-]implies T; for any
closed &, and &, [and, moreover, T; L-implies T; by NTT
if S contains NTT].

| T I Ty
1. Sn dis(1)(Sm, Sa)
2. S, - dis[1)(Sm, S4)
3. con(L)(Su, Sn) ©Gm
4. con[L}(Sm, Sa) Sn

Proof for b. In each case, by determining the L-ranges with the
help of T15 and Ti1-1, it is easily found that R;C R;; therefore,



§ 13. THEOREMS CONCERNING CONNECTIONS 67

Ty T; (D11-7). For instance, in (1), Ri = Rm, Rj = R + R4
(T15(2)). For L-implication by NTT, see D11-29.

T13-27a [b]. If S contains the connectives referred to,

then in each of the following cases ¥; and ¥; are [L-Jequiva-
lent for any closed ©,, and &, [and, moreover, L-equivalent

by NTT if S contains NTT].
I T l T;
1. negr1)(neg(1)(Sm)) (=
2. imp(L)(Sm, Gn) distry(neg(L)(Sm), Sa)
3. conL)(Sm, Sn) m ©n

Proof for b. In each case with the help of Tr5 and Tr1-1, it is
found that R; = R;; therefore, T; and T; are L-equivalent (D11-8).
For instance, in (1), R = — (—Rm) = Rm, R; = Rn. For L-equiv-
alence by NTT, see D11-32.

T13-28a [b]. If S contains the connectives referred to,
the sentence coniy)(Sm,negL1(Sns)) is [L-]false for any
closed &, [and, moreover. L-false by NTT if S contains
NTT].

Proof for b. The L-range of the sentence is R, X —Rm, hence A,
(T15). Therefore the sentence is L-false (D11-6). For L-falsity by
NTT, see D11-31.

T13-31a [b]. Let S contain a singulary general connec-
tive a; and signs of equivalence(; and implication(y;. Then
each of the following conditions is a necessary and sufficient
condition for a, to be [L-]Jextensional:

1. For any closed &, and &; with the full sentences
©: and &, equL)(S:,&)) 73 equ 1Sk, Sy)-

2. For any ©;, &), &, and &; as in (1), imp(y;
(equ11(®:,©)), equL)(S,Sy)) is [L-]true.

(1) holds analogously for a binary connective, with
fequL:(©,©), equ1(8;8)} 73 equiwi(Se, ).

Proof. a(1). a) is extensional if and only if &; and &; are
not equivalent or &; and &} are equivalent (T12-1), hence if and only
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if equ(&;,©)) is false (T20a(10)) or equ(®:,&y) is true (T20a(g)),
hence if and only if equ(&;,&;) — equ(©:,Ss) ([I] (Dg-3)). — b(x).
ai is L-extensional if and only if ((Ri X Rj) + (—RiX —R}) C
((Re X Ry) + (—Rx X —Ry)) (T12-2b(1)), hence if and only if
Lr(equ (&:,&7) € Lr(equL(&:,&h) (T15(4)), hence if and only if
equ(©:,&)) 7 equ(&,,&p) (D11-7). — a b](2) from a[b](1), T20a
[b1(.

T13-32a [b]. Let S contain a singulary general connec-
tive o, and a sign of equivalence(r;. a; is [L-Jnon-exten-
sional if and only if there are closed &; and &;, with full
sentences of ar S, and &, such that equLy(S;,S;) is
[L-]true and equ(ni(©:,S;) is [L-lfalse. (From Ti2-3,
T20(9) and (10).) Analogously for a binary connective.

T13-35a [b]. Let S contain a sign of negation ;. Then,
for any closed &; and &; with full sentences of negationy,
©y and ©;, the following holds:

1. & 3 & if and only if &; 33 &;.
2. ©; and ©; are [L-Jequivalent if and only if &;
and &; are [L-Jequivalent.
Proof. a(1). From rules N1 and 2 in NTT, and [I] Dg-3. — b(1).
From Ti15(1), D11-7. — (2) from (1).

T13-38a [b]. Let S contain a sign of disjunction ;.
For any closed &;, &;, &; in S, if &: 73 &; then dis(L)(&S;,
&;) 3 dis(11(&;,&;). (a. From rules Djr to 4 in NTT. —
b. From Ti5(2), D11-7.)

T13-39. Let S contain a sign of disjunctiony. Let &;, &;
and the sentences of ®; be closed. Let & be the class con-
structed out of ®; by replacing each sentence &, in &; by
disp.(Gn,S;). If & I &, then T disp.(€),8;). '

Proof. R, is the product of the classes Rn + Ry, one for each
sentence @, in ®; (T15(2)). Hence, Ri = Ri+ R;. If & P&
R;C R; (D11-7), hence R; + R; C R; + R;, hence £: > disr(&;,S;).



C. INTERPRETATIONS OF PC

The possibilities of true interpretations for PC are examined.
The system NTT is an L-true interpretation for PC. It is
called the normal interpretation for PC (§ 14). The analysis
leads to the result that there are two kinds of true non-normal
interpretations for PC (§§ 15-17). Therefore, PC is not a full
formalization of propositional logic (§ 18).

§ 14. NTT as an L-true Interpretation for PC

The well-known fact that the two customary methods for
dealing with the propositional connectives — PC and NTT —
lead to the same results is here formulated and proved in our
terminology. It is shown that, under certain conditions, a
system S containing NTT is an L-true interpretation for a
calculus K containing PC (T4).

In this chapter, C, we shall discuss the possible true inter-
pretations of PC, or, more precisely, of the propositional con-
nectives of PC. We shall leave aside here the problem of the
interpretation of the propositional variables, although with
respect to C-extensional calculi ([1] D31-18), which are most
frequently used, it is rather simple. [For the semantics of
variables in general, see [I] § 11. It is planned to discuss the
problem of interpretations for propositional variables in a
later volume, in connection with the discussion of extensional
and non-extensional systems.] Therefore, the discussion in
this chapter will refer only to calculi containing PC without
propositional variables. [As we have seen in § 10, the truth-
tables apply only to closed sentences and therefore not to
forms of PC with propositional variables.] For the sake of
simplicity, we refer in this chapter only to the forms PC, and
PCP. On the basis of the definitions in § 4, the results hold
likewise for any other form of PC.
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The following theorem, T1, says in effect that the defini-
tions of other connectives on the basis of neg. and dis¢ in
PC%, as described in the table in § 3, are in agreement with
NTT.

T14-1 (lemma). Let K contain PC,. Let S contain the
sentences of K and contain NTT (D11-26) in such a way
that the signs neg; (‘ ~’) and dis¢ (‘ v’) in K are simultane-
ously the signs of negationy, and disjunctiony, in NTT in S.
Let ©} be the sentence given for cConn} (¢ = 1 to 4) in
column (5) of the table of connections in § 3, and likewise
©? that for (Conn? (r = 1 to 16), the components &; and
©; being any closed sentences in K. Then &} and b,(&;) are
L-equivalent by NTT in S, and likewise &2 and ¢,(®;,S;).

This theorem is well-known. It can easily be verified by showing
with the help of truth-tables that in each case the two sentences have
the same L-characteristic. On the basis of our definitions, it can be
shown by determining the L-ranges of the two sentences; it turns out
that they are identical, and hence the sentences L-equivalent (D11-8).
Thus e.g. for r = 5, Lr(dis(neg(&:),8;)) = —Ri+ R; (T13-15(1)
and (2)); and likewise Lr(imp(&;©,)) = —R:+ R; (T13-15(3)).
Since the two sentences are L-equivalent whatever the components
©: and &; may be, they are L-equivalent by NTT (Di11-32).

The following theorem, T2, says in effect that the rules of
deduction in PCY are in agreement with NTT. [It is to be
noted that the conditions involve that all sentences in S be
closed (C, D11-26), and hence also all sentences in K (B).]

T14-2 (lemma). Let K and S fulfill the following con-
ditions:

A. K contains PC, or PC>.

B. All sentences in K belong to S.

C. S contains NTT in such a way that the sign for
a connectionc of PC in K is simultaneously the
sign for the corresponding connectiony, of NTT
in S (ie. ¢bgin K = byin S (g = 1 to 4), and
ctinK = ¢,in S (r = 1 to 16).
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Then the following holds:

a. If &, is a primitive sentence in K in virtue of
(the primitive sentence schemata of) PC,, then
®&; is L-true by NTT in S.

b. If & 52 &; in virtue of the rule of inference of
PC,, then 8, 3 &; by NTT in S.

c. If &; 32 &; in virtue of one of the definition
rules of PCY, then &; - &; by NTT in S.

The proofs are well-known. They can easily be given by an analy-
sis of each of the rules of deduction in PC?. They are usually given
on the basis of the truth-tables NTT. On the basis of our definitions,
they are given by determining the L-ranges with the help of T13-15(1)
and (2).

a. For every primitive sentence, the L-range is V,.—b. If
R 32 S; according to D2-2b(s5), then Ri= R;X (—=Ri+R;)
(T1r-1) = Ri X R;; hence RyC R;; hence & 7*&; (D11-7). —
c. From T1. — The L-concepts hold by NTT (D11-30 and 29) be-
cause they hold for any comporents.

+T14-3. Let K and S fulfill the three conditions (A) to
(C) in T2. Then the following holds:

a. If T o T, in K by PC (i.e. either PC, or PC}),
T: 7 by NTTin S. (From T2.)

b. If ,is C-true in K by PC, ¥;is L-true by NTT
in S. (From (a).)

+T14-4. Let K and S fulfill the following conditions:
A, B,C, asin T2.
D. K does not contain other rules of deduction
than those of PC, or PC%.
Then S is an L-true interpretation for K.
Proof. From T3a and [I] D34-1, because K does not contain rules
of refutation (D).
+T14-5. Let K and S fulfill the following conditions:
A, B,C, asin T2.
D. K contains all sentences of S.
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Let ®; be non-empty and finite, and ¥; and T; be finite.
Then the following holds:
a. If ©; is L-true by NTT in S, then &; is prova-
ble and hence C-true by PC (Ds-2) in K.
b. If 8; 7 &; by NTT in S, then &; is derivable
from ®; and hence a C-implicate of ®; by PC
in K.
c. If & o T by NTTin S, then T; o T, by PC
in K.

Proof. a. As is well-known, a proof for &; in K under the condi-
tions stated can be constructed with the help of the conjunctive nor-
mal form (see Hilbert [Logik] Kap. I, § 3). —b. Let &; be a sentence
constructed so as to be C-equivalent to ®; by PC in K (e.g. a con-
junctionc of the sentences of £;). Then &; is L-equivalent to £: by
NTT in S (T3a). Hence, if the condition in (b) is fulfilled, &; 7* &;
by NTT. Therefore, impy(&,,&;) is L-true by NTT in S (T13-20b(7)).
Hence likewise disy.(neg.(©:),&;) is L-true by NTT in S (T13-27b(2))
and C-true in K (a). It is the same sentence as disc(negc(&:),S;) (C).
Therefore, &; 2 &; in K (T7-1), and & 2 S;in K. —c. If T;isa
non-empty, finite §;, and T; is &;, the assertion is the same as (b). If
i is A, and ; is &;, and T; 7> T; by NTT, then T, is L-true by
NTT in § (D11-30) and hence C-true in K (a); therefore T; o> T; in
K. If T;is R;, and T; 7 T; by NTT, then for every sentence &; of
R;, i > ©i by NTT, and hence T; 2 ©i in K. Therefore T; 2 T;
in-K ([I] T29-40).

Tsc shows that, under the conditions stated, K is an
L-exhaustive calculus for S ([I) D36-3) as far as C-implica-
tion among finite ¥ is concerned (i.e. leaving aside infinite
classes and L-falsity).

In the customary terminology, PC is said to be a complete calculus.
This is sometimes meant in the sense that every sentence which is
L-true by NTT (“tautology”) is C-true (“‘provable”) (Tsa), some-
times in the sense that, in the form of PC with propositional variables
as the only ultimate components (see § 2 at the end and § 4 at the
end), every sentence is either C-true (“provable”) or C-comprehen-
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sive (usually called ““refutable’). For proofs of completeness in the one
or the other sense, see Quine, Journ. Symb. Log., vol. 3, 1938, pp. 371,
and his references to other authors: Post (1921), Hilbert and Acker-
mann (1928), Lukasiewicz (1931), Hilbert and Bernays (1934), Kalmar
(1935), Hermes and Scholz (1937). We shall see later that, in a stricter
sense of completeness, PC is not complete.

§ 15. Non-Normal Interpretations of Signs of Nega-
tion; and Disjunction;

The concepts of normal and L-normal interpretations for the
connectives in a calculus are defined with the help of NTT (D1).
It is shown that, under certain conditions, if a calculus con-
tains two signs for the same connectionc and the first has a
normal or L-normal interpretation, then the second has, too
(T1 and 2). (This result might mislead us into the erroneous
assumption that non-normal interpretations are impossible.)
A non-normal interpretation of a connective would involve the
violation of a truth-table. Therefore, the consequences of sup-
posed violations of the single rules in NTT for disjunction (Dj1
to 4, § 10) and negation \ N1 and 2) are examined. Some of the
results: Dj1, 2, and 3 are generally satisfied (T4); if N1 is once
violated, then it is always violated and all sentences are true
(Ts); if N2 is once violated, then the sign of negationc is non-
extensional (T7); if Djg4 is once violated, then the signs of dis-
junctionc and negationc are non-extensional (T8).

We have already defined the syntactical concepts of signs
for connections¢ in a calculus, e.g. ‘sign of disjunction¢ in
K’, and the semantical concepts of signs for connections in
a semantical system, e.g. ‘sign of disjunction (or disjunc-
tiony,) in §’. Now we shall define a related concept which —
like the concept of interpretation — refers both to a calculus
and to a semantical system and hence belongs neither to
syntax nor to semantics but to the combined field which we
have called the theory of systems (compare [I] § 5 at the end
and § 37). If, for instance, ay is a sign of disjunctionc in K
and simultaneously a sign of disjunction (or of disjunctiony)
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in a true (or L-true) interpretation S for K, then we shall
say that a, has a normal (or L-normal, respectively) inter-
pretation in S. D1 formulates this for connections in general.

+D15-1a [b]. The connective a; in K has an [L-]normal
interpretation in S =p; S is an [L-]true interpretation for
K; a; is a sign for cConn! or Conn? in K (D4-3) and simul-
taneously a sign for the corresponding connectionr; (;Conn}
or (1;Conn? in S (D11-23a [b]).

We shall now show that under certain conditions, if one
sign for a certain connection in K has an [L-]Jnormal inter-
pretation in S, then the same holds for any other sign for the
same connection in K (T1 and 2).

+T15-1a [b]. Let K fulfill the following conditions:

A, as in T8-9 (two signs of negationc, nege and
negcz).
B and G, as in T6-10.
Then the following holds: If negc has an [L-Jnormal inter-
pretation in .S, then also negc,.

Proof for a[b]. Let the conditions be fulfilled and &; be a closed
sentence in K. Then n m(J@.-) and negcy(&;) are C-equivalent in X
(T8-ga). Since S is an |L-|true interpretation for K (D1), the two
sentences are [L-]equivalent in S ([1], T33[34]-8g). Since negc, has
an [L-]normal interpretation, it is a sign of negation; in S (D1).
Therefore, negcs is also a sign of negationy; in S (T11-17) and hence
has an [L-]normal interpretation.

+T15-2a [b]. Let K fulfill the following conditions:
A. K contains two sub-calculi K,, and K,, both
containing PC%.
B and G, as in T6-10.
D. an and a, are connectives for the same connec-
tionc of PC? in K,, and K,, respectively.
Then the following holds: If a,, in K has an [L-]normal in-
terpretation in S, then a, likewise. (From Tg-4a, Tr1-17,
in analogy to T1.)



§ 15. NON-NORMAL INTERPRETATIONS 75

We shall now study the question of the possibility of non-
normal interpretations for the connectives of PC. If we try
to answer this question without closer investigation, we
might be tempted to guess a negative answer. It will be
shown that for conjunctionc a non-normal interpretation is
indeed impossible. And we might perhaps believe that if a
non-normal interpretation for another connection were pos-
sible, then in a calculus containing two connectives for this
connection one could be interpreted normally and the other
non-normally. Our previous result that this latter case can-
not occur (T1 and 2) might thus lead us to the assumption
that non-normal interpretations are impossible. These con-
siderations, however, turn out to be erroneous; we shall find
non-normal interpretations.

Let K contain PC, or PCY and a; be a sign for the connec-
tion cConn? in K. Let S be a true interpretation of K such
that the following is the case (provided this is possible; that
will be discussed later): a; is not a sign for Conn? in S and
hence has a non-normal interpretation in S (D1). Then at
least one rule for Conn?, represented by a line in the truth-
table for this connection, will be violated by ai in S in at
least one instance, i.e. with respect to at least one pair of
closed sentences as components. This violation of a normal
truth-table by a; is not necessarily such that a; has another
truth-table in S. Let us suppose that a certain rule for Conn?
in NTT states the value F for the value distribution TF of
the components. Then it may happen that for some in-
stance with the values TF the full sentence of a; is indeed
false, while for another instance with the same values TF it
is true. If this happens, a; has no truth-table in S, neither
the normal nor another one; the truth-value of a full sen-
tence of a; is not a function of the truth-values of the com-
ponents; a; is non-extensional (D12-2, T12-6).

In order to find possible non-normal interpretations for
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signs of negation. and disjunction, we shall now study the
possibilities of a violation for each of the rules for disjunction
(Dj1 to 4) and negation (N1 and 2) in NTT, and analyze
the consequences of these violations. It will first be shown
that Dji, 2, and 3 cannot be violated (T4). Then Djs, N1,
and N2 will be analyzed.

As has been remarked previously, we must distinguish
between the concepts ‘sign of negation; in K’ and ‘sign of
negation (or negationy) in S’, the first being syntactical, the
second and third semantical. This distinction is of especial
importance in the cases now to be studied, where rules of
NTT are violated. If a sign of negation; in K violates in S
one of the rules N1 and Nz, then it is not a sign of negation
in S.

For some of the theorems in this and the following sec-
tions, we state two procedures for the proof, marked by ‘I’
and ‘II’. Procedure I is rather simple; it is based on the
formulation of the rules of NTT (e.g. Dj1 to 4) as given in
§ 10. Procedure II is more exact and more technical; it is
based on the definitions in § 11 in terms of L-range. I ap-
plies only to radical concepts; if a theorem refers both to
radical and to L-concepts (usually by ‘a [b]’), then II applies
to both. The results concerning non-normal interpretations
will be chiefly in radical terms. Therefore a reader who is
chiefly interested in those results and not in the general
theory of true and L-true interpretations of PC, and who
wants to travel an easy road to these results without tech-
nicalities, may skip part II in the proofs.

T15-4a [b]. Let K contain PC,. Let S be any [L-]true
interpretation for K. Then dis¢ in K [L-]satisfies generally
the rules Dji1, 2, and 3 of NTT.

Proof for a[b]. Let ©; and &; be any closed sentences in K, and
& be disc(S:,8;). Then & is a C-implicate in K both of &; and of
&; (Ts-2b, c), and hence an [L-Jimplicate in S both of &; and of &;
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( {I] T33[34)-8e). I, for (a). Therefore, if &; is true in S, S, is true
(L1} To-10); thus Dj1 and Dj2 are generally satisfied (T11-11). And
if &, is true, &, is true; thus Dj3 is generally satisfied. — II, for a [b].
Since &; 73 Sk in S, —R; + R, contains rs [is V,] ([I] T20-28[10]).
Likewise, —R; + Ry contains rs [is V,]. Hence, also —R: + (—R;)
+ Ri, —R; + R; + Ry, and R; + (—R;) + R, contain rs [are v.j
Therefore, disc has the [L-]characteristic value T for the first, second,
and third distribution in .S (D11-16). Since the first, second, and third
values in the characteristic of disjunction are T (see column (5) in the
table in § 10), disc [L-]satisfies generally Dj1, 2, and 3 (D11-17).

T15-5. Let us suppose that K and S fulfill the following
conditions (without asserting that this is possible):

A. K contains PC,.

B. S is a true interpretation for K.

C. negc in K violates the rule N1 of NTT at least
once in S, say with respect to &,.

Then the following holds:

a. Both &, and neg(&,) are true.

b. Every sentence of K is true in S.

c. negc always violates Ni.

d. N2 is not violated by negc, nor Dj2, 3, and 4
by disc; but these rules have no instances of
application.

Proof. 1.a. N1 (§ 10) applied to negc says that, if &; is true in S»
negc(®;) is false. Hence, the violation of N1 with respect to &, (C)
means that both &; and neg¢(&,) are true. —b. {&,, negc(&y)} is
true ((a), [I] Dg-1). Every sentence of K is a C-implicate of this class
in K (Ts-21) and hence an implicate of it in § (B) and hence also true
in S. — c. For every closed &; in K, both &, and negc(&:) are true
in S (b); hence N1 is always violated. —d. From (b). — II. a. Since
negc violates N1 with respect to &, (D11-15), &,; has the first dis-
tribution, i.e. T (D1o-2), and negc(&,) does not have the first value
in the characteristic for negation, which is F; thus it too has T. —
b. From (a) (as in I). —c. From (b). —d. From (b), T12-16a(4),
T12-17a(4).

T15-6 (Corollary). If K contains PC, and S is a true
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interpretation for K and at least one sentence of K is false
in S, then negc in K generally satisfies the rule N1 in S.
(From Tsb, Tr1-11.)

T15-7. Let us suppose that K and S fulfill the following
conditions (without asserting that this is possible):

A and B, asin Tj.

C. negc in K violates the rule N2 of NTT at least
once in S, say with respect to &;; let &; be
disc(@1,negc(©)).

Then the following holds:

. Both &, and neg.(©) are false.

. negc in K generally satisfies N1 in S.

©; is true.

. disc in K violates Dj4 with respect to &,
negc().

negc(&;) is false.

negc(negc(s)) is true.

neg. satisfies N2 with respect to neg.(Ss).

. negc in K is non-extensional in S.

If K, moreover, fulfills the conditions (B) and
(C) in T6-10 and contains another sign of nega-
tionc, neg¢, then this sign too violates N2 and
, is non-extensional in S.

Proof. a. From (C), in analogy to Tsa.—b. From (a), T6. —
¢. &; is C-true in K (Ts-1a), and hence true in S (B). — d. From (a),
(c). —e. From (b), (c), (IT: T11-11). — f. negc(negc(Ss)) is C-equiv-
alent to &; in K (Ts-3a), hence equivalent to it in .S (B), and hence
true (c). —g. From (e), (f). —h. From (g), (C), T12-6. —i. For
any closed &;, nego(©s) and negc(S;) are C-ec;uivalent in K (T8-9a)
and hence equivalent in S (B). Therefore negc satisfies and violates
N2 with respect to the same sentences as negc.

T15-8. Let us suppose that K and S fulfill the following
conditions (without asserting that this is possible):
A and B, as in Ts.

aoop

L X
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C.

dis¢ in K violates the rule Dj4 of NTT at least
once in S, say with respect to &,, ©,.

Then the following assertions (a) to (g) hold:

a.
b.
c.
d.

e.

f.
g

Both &, and &; are false, dis.(©1,S;) is true.
&, and &, are different.

negc in K generally satisfies N1 in S.

neg.(©,) is false; hence, neg. violates N2 with
respect to &,; the same holds for &.,.
disc(negc(®,),S.) is false; hence, disc satisfies
Dj4 with respect to negc(&,), ©.; the same
holds for &, neg.(&,).

dis¢ in K is non-extensional in S.

negc in K is non-extensional in S.

If K, moreover, fulfills the conditions (B) and (C) in T6-10,
then, in addition, the following assertions (k) to (n) hold:

k.

m.

If K contains another sign of disjunctionc, say
dis¢, then this sign, too, violates Dj4 and is
non-extensionai.

If K contains another sign of negationg, say
nege, this sign, too, violates N2 and is non-
extensional.

Every sentence &; which is a C-implicate in X
both of &, and of &, is true in S.

n. &;isnot a C-implicate of &, in K; nor &, of S,.

Proof. a. From (C), in analogy to Tsa. —b. If &, were &,, then
&,, being a C-implicate of disc(&,,&,) in K (Ts-2a), would be a C-
implicate of disc(&;,S:) in K and hence an implicate of this sentence
in S (B), and hence true in S like this sentence (a). But &, is not true
(a). Therefore &; must be different from &,. — c. From (a), T6. —
d. &, is a C-implicate of {disc(©,,S:), negc(&1)} in K (Ts-2e) and
hence an implicate of this class in S (B). disc(€,,&.) is true (a); if
now negc(®,) were true, the class mentioned would be true and hence
&, too. But this is not the case (a). Therefore negc(®;) cannot be
true and must be false. Since &, is false (a), N2 is violated. The
reasoning for negc(®,) is analogous. —e. &; is a C-implicate of
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{disc(©,,S), disc(negc(©1),S:)} in K (T's-2h), and hence an implicate
of this class in S (B). The first element of the class is true (a); if now
the second were true, ©, would be true; but it is not (a). Therefore,
disc(negc(©1),8:) must be false. Hence, Dj4 is satisfied in this case
(d, a). The reasoning for disc(&;,negc(S.)) is analogous. — f. From
(e), (C), T12-6. — g. From T7h because N2 is violated (d).

k. From (C), T7-4a (the proof is analogous to that of T7i). — L
From (d), T8-ga. — m. If &; is a C-implicate both of &; and of &S,
it is a C-implicate of disc(&,,8;) in K (T7-2b) and hence an implicate
of this sentence in S (B) and hence true because disc(S,,&,) is true
(a). — n. If &, were a C-implicate of &, in K it would be true in §
(m). But it is not true (a). Analogously for &,.

T15-9. Let K contain PC,.
a. If negc in K has a normal interpretation in S,
then dis. likewise.
b. If disc in K has a normal interpretation in S
and at least one sentence of X is false in S, then
negc also has a normal interpretation in S.

Proof. a. Let negc have a normal interpretation in S. Then it is
a sign of negation in § (D1) and hence does not violate N2 with re-
spect to any sentence (T11-12a, T11-11). Therefore, disc does not
violate Dj4 in any case (T8d) and hence generally satisfies Dj4 (T11-~
11). Further, disc generally satisfies Dj1 to 3 (T4). Hence, it is a
sign of disjunction in S (T11-12a) and has a normal interpretation
(D1). —b. Let the conditions be fulfilled. Then (in analogy to (a))
disc does not violate Dj4 in any case (D1, T11-12a, T11-11). There-
fore, negc generally satisfies N2 (T7d, Tr1-11), and also N1 (T6).
Hence, it is a sign of negation (T11-122).
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§16. Non-Normal Interpretations in General

The possibilities of non-normal (true) interpretations for
all singulary and binary connectives in PC are examined with
the help of NTT (see table). It is found that the sign of con-
junctionc and some other less important connectives always
(i.e. in any true interpretation for a calculus K containing PCY)
have a normal interpretation (T1). If the sign of negationc
has a normal interpretation, then every other connective has
too (T3). We distinguish two kinds of non-normal interpreta-
tions; in the first kind, every sentence (in K) is true (in S); in
the second kind, at least one is false. For any case of the first
kind, the following holds (T6; columns (5) to (7) of the table):
the singulary connectives nos. 1 and 2, and the binary nos. 1
through 8 have a normal interpretation, but the others have
not; all connectives are extensional. For any case of the sec-
ond kind, the following holds (T7, columns (8) to (10) of the
table): the singulary connectives nos. 1, 2, and 4 and the
binary nos. 1, 4, 6, 8, and 16 have a normal interpretation;
the others have a non-normal interpretation and are non-
extensional.

So far, we have discussed the question of interpretations
only for signs of negation; and disjunction,. Now we shall
examine other connectives in PC. In column (2), the table
that follows lists again the connections in a calculus K con-
taining PC, as they were previously listed in the table in
§ 3. Column (3) here repeats column (5) of the previous
table; it gives expressions for the connectionsc in PC,,
which are taken as definientia for the defined signs in PC%
(D3-6) on the basis of negc and disc. Column (4) repeats
column (5) of the table in § 10; it gives the characteristics
for the corresponding connections on the basis of the rules
of NTT. Columns (5) to (10) give a survey of some of the
results concerning non-normal interpretations, as stated in
the subsequent theorems, especially T6 and 7.



NON-NORMAL INTERPRETATIONS OF PROPOSITIONAL CONNECTIVES OF PC

o @ ® W |[0]o|o|®]| o]
Non-Normal Interpretations
st kind (T6 second kind (T7)
(a{ sentencé tr)uc) (not all sentences
true)
Charac-
teristic which which
Name of for the rule | exten- rule | exter
Connectiong | Definiens for the | Signin [normal] vio- |sional jnormal| vio- |siona
No. in K Sign in K NTT |ornot| lated |ornot|ornot| lated |orno
I. The four singulary connectionsc
q
1 | tautologyc &SV~ TT n - e n - e
2 | (identityc) & TF n - e n - e
3 | negationg ~B; FT - 1 e - 2 -
4 | contradictiong | ~ (& V ~ &) FF - 1 e n - e
II. The sixteen binary connectionsc
r
1 | tautologyo & V~&; TTTT n e n - e
2 | disjunctiong &V S TTTF n - e - 4 -
3 | (inverseimpli- | &V ~ &; TTFT n e - 4 -
cationg)
4 | (first compo- | & TTFF n - e n - e
nent)
§ |implicatione | ~ &V &; TFTT n - e - 4 -
6 | (second com- | &; TFTF n - e n - ¢
ponent)
7 |equivalencec | ~(~&V~&,)| TFFT n - e - 4 -
V~ (&Y &)
8 |conjunctiong | ~(~ &V~ &;)| TFFF n - e n - e
9 | exclusiong ~ &V~ FITT - 1 e - 4 -
o |(non-equiva- | ~(~&;V &) FTTF - 1 e - 4 -
lencec) VA&V~ &)
1 | (negationg of | ~ &; FTFT - 1 e - 4 -
second) .
2 | (first alone) ~(~&V &) FTFF - 1 e - 2 -
3 | (negationc of | ~ &y FFIT - 1 e - 4
first)
4 | (second alone) | ~(&;V ~ &) FFTF - 1 e - 3 -
5 |bi-negationc | ~(&;V &) FFFT - e - 4 -
6 | contradictiong | ~ (& V ~ &) FFFF - 1 e n - e
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Conjunctionc and disjunction are often regarded as play-
ing completely symmetrical roles in PC (the so-called dual-
ity). However, we now find (T1) that for conc, in contra-
distinction to disc, only a normal interpretation is possible.
Thus the supposed symmetry, although it is perfect within
NTT, holds in PC only to a certain extent. The reason is
that the rules of deduction in any of the ordinary forms of
PC, in contradistinction to NTT, are in a certain sense in-
complete with respect to disjunction: but not to conjunc-
tion.. This will become clearer later.

+T16-1a [b]. Let K contain PCY, and S be an [L-]Jtrue
interpretation for K. Then each of the following connectives
in K (see tables here and in § 3) is a sign for the correspond-
ing connection(y; in S and hence has an [L-Jnormal inter-
pretation in S:

1. Two singulary connectives: ¢b; and ¢b,.

2. Four binary connectives: ¢c, for r = 1 (tau-
tologyc), 4 (first component), 6 (second com-
ponent), 8 (conjunctionc).

Proof for a [b]. 1. Let &; be any closed sentence in K, and &, be
chi(&;). On the basis of the definition-rule for ¢b; (see D3-6), &y is
C-equivalent in K to disc(&;,negc(®;)) (see column (3) of the table,
line I1), and hence C-true in K like the latter sentence (T5-1a) and
hence [L-]true in S. Therefore, Ri contains rs [is V,], and hence
likewise —R; + Ry and R; 4+ Ry. Therefore, cb; has T as the [L-]
characteristic value both for the first and the second distribution
(D11-16), and hence has TT as its [L-]characteristic (D11-21) and
is a sign for jConn} (Dr1-23) and has an [L-]normal interpretation
(D1s-1). — Let &; be closed and &; be cb:(S;). & is C-equivalent
in K (D3-6) and hence [L- |equivalent in S to ©;. Hence, both —~R; +
R: and R; + (—R,) contain rs [are V,] (T11-6(2)). Therefore, cbs
has T as the [L-]characteristic value for £ = 1 and F for ¢ = 2 (D11-
16), and hence has TF as its [L-]characteristic (D11-21) and is a sign
for [1jConn} (D11-23) and has an [L-]normal interpretation (D15-1).
— 2. The proof for ct; is analogous to that for ¢bi. The proofs for ctq
and c¢s are analogous to that for cbs. — Proof for cts (= conc). Let
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©; and &; be closed, and &; be conc(&:,S;). S: and {S;, S;} are
C-equivalent in K (T5-3b) and hence [L-]equivalent in S. There-
fore, conc is a sign of conjunctiony; in S (T13-14).

+T16-2a [b]. If K contains PCY, and negc and dis¢ in K
have an [L-]normal interpretation in S, then every other
connective of PCY in K also has an [L-]Jnormal interpretation
in S.

Proof for cts (= impc); the proofs for the other connectives are
similar. Let &; and &; be any closed sentences in XK. Let &, be
negc(S;), ©; be disc(&4,S;), ©, be impc(©4,S;). (For ‘I’ and ‘11,
see remark preceding T1s-4.) — I, for (a). ©; is true for the first,
third, and fourth distribution, false for the second (this follows easily
from the rules N1 and 2, Dj1 to 4). The same holds for &,, since &,
and &, are C-equivalent in K according to the definition of impc
(D3-6), and hence equivalent in S, which is a true interpretation for K
(D1s-1a). Therefore, impc has the characteristic TFTT and hence
is a sign of implication in S and has a normal interpretation in S
(D1s-1a). — II, for a [b]. Each of the following classes contains rs
Lis V] (T13-5, T13-10(1) to (4)): Ri + Rs (ki), —=Ri + (=Ry) (ka),
—Ri+ (—R;) + Ri (ks), —=Re + R; + Ri (ki), Re + (—R) + Ri
(ks), Re + R; + (—R}) (ke). S, and &; are [L-]equivalent (see I);
hence R, + (—Rj) (ky) and —R, + R; (ks) contain rs [are V,]
ETI 1-6(2)). Therefore each of the following classes also contains rs

isV,]: =Ri+ (—R;)) + R, (= ka + ks + k), —=Ri + R; + (=R;)
(=ks+ke+ke),Ri+ (—R) + Ry (= ki + ks + k1), Ri + R; +R,,
(= ky + ka + ky). Hence, impc has the [L-]characteristic value T
fort = 1 (D11-16), Ffort = 2, T for ¢t = 3, T fort = 4. Thus it has
the [L-]characteristic TFTT (D11-21) and hence is a sign for (,Corr?
(= implicationy;) and has an [L-]normal interpretation in S (D15-1).

+T16-3. If K contains PCY?, and neg¢ in K has a normal
interpretation in S, then every other connective of PC® in K
also has a normal interpretation in S. (From Tis-9a, T2a.)

+T16-4 (Corollary). If K contains PCY, and disc in K has
a normal interpretation in S, and at least one sentence of K
is false in S, then every other connective of PCY in K also has
a normal interpretation in S. (From T1s-gb, T3.)
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On the basis of the previous discussion of non-normal in-
terpretations for neg. and disc we can now characterize in
general the kinds of non-normal interpretations of connec-
tives. There we found two kinds of cases where the rules of
NTT for negation or disjunction are violated: there is either
a violation of N1 alone (T15-5) or a simultaneous violation
of N2 and Dj4 (T15-7 and 8). In a case of the first kind all
sentences of K are true in S, while in a case of the second kind
at least one is false. This difference yields a convenient way
of defining the two kinds. Theorems T6 and 7, below, state
some properties of cases of the two kinds without asserting
the existence of such cases. These two kinds exhaust all
possibilities for non-normal interpretations for any connec-
tive of PC in K. In columns (5) to (10) of the table, some of
the results stated in T6 and 7 are listed.

+T16-6. Let K and S fulfill the following conditions
(non-normal interpretation of the first kind):
A. K contains FCY.
B. S is a true interpretation for K.
C. All sentences of K are true in S.
Then the following holds:
a. The following ten connectives in K do not have
a normal interpretation in S: ¢b, for ¢ = 3 and
4; c¢, for r = g to 16.
b. The other connectives in K have a normal in-
terpretation in S: ¢b, for ¢ = 1 and 2; cc, for
r =1to8.
c. Every connective in K is extensional in S.
(a. From Tri2-16a(7), Ti2-17a(y). b. Form
T12-16a(6), T12-17a(6). c. From Ti2-16a(8),
Ti2-17a(8).)
+T16-7. Let K and S fulfill the following conditions (non-
normal interpretation of the second kind):
A, B, as in T6.
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At least one sentence of K is false in S.
At least one of the connectives of PC in K has
not a normal interpretation in S.

Then the following holds:

a.

b.

cl

d.

e’

An infinite number of sentences of K are false
in S.

An infinite number of sentences of K are true
in S.

negc in K violates N2, but generally satisfies
Ni.

negc in K is non-extensional.

The three other singulary connectives in K
(cbq for ¢ = 1, 2, 4) have a normal interpreta-
tion in S.

The following eleven binary connectives c¢, in
K violate a rule for Conn? in NTT and hence
donot have a normal interpretationin S: r = 2,
3,5,7,0, 10, 11, 12, 13, 14, 15. Forr = 2, 3,5,
7, 9, 10, 11, 13, 15, at least the fourth rule is
violated; for r = 12, the second; for r = 14, the
third.

The connectives of K mentioned in (f) are non-
extensional in S.

The five other binary connectives in K (¢c, for
r = 1, 4, 6, 8, 16) have a normal interpretation
in S.

Proof. Let the conditions (A) to (D) be fulfilled. Then the follow-
ing holds. — 1. negc generally satisfies N1 (T15-6). — 2. negc in K
does not have a normal-interpretation in S (C, T3). — 3. negc violates
N2 at least once (1, 2), say with respect to &;. — 4. &, and negc(&)
are false in S ((3), T15-7a). Let &; be disc(Sy,negc(S,)), and &, be
disc(Ss,negc(©s)). — 5. ©s is true (T15-7¢). — 6. negc(Ss) is false
(T15-7€). — 7. &, is C-true in K (Ts-1a) and hence true in S (B). —
8. negc(®,) is false in S (7, 1). — 9. An infinite number of sentences
in K are C-equivalent to &, in K (e.g. &, with negc added 21 times),
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hence equivalent to &, in S (B), hence false in S (4). This is (a). —
10. An infinite number of sentences are C-equivalent to &; in K and
hence true ((B), (5)). This is (b). — 11. (c) from (3), (1). — 12. (d)
from (3), Ti5-7h. — 13. For any closed sentence &; in K, disc(S;,
negc(®:)) is C-true in K (T5-1a) and hence true in S (B). negc(disc(S;,
negc(®y))) is false in S (1). cby(&;) is C-equivalent in K and hence
equivalent in S to the sentence just mentioned (see column (3) of the
table, line I4) and hence is also false in S. Therefore, cbs has the
characteristic value F both for £ = 1 and ¢ = 2, and hence the char-
acteristic FF, and hence is a sign for Connj in S (D11-23a) and has a
normal interpretation in S (D15-1a). — 14. (e) from T1a(1) and (13).
— 15. Let ¢&, (r = 1 to 16) be c¢.(S),negc(&y)). ¢S, is C-equivalent
in K and hence equivalent in S to the sentence given in column (3) of
the table, but with &, instead of &; and negc(&,) instead of &; (‘ ~’
and ¢V’ are negc and disc in K). Each of these sentences, in turn, can
easily be transformed (chiefly by virtue of Ts-1 and 3) into a certain
other sentence which is C-equivalent to it in K and hence equivalent
toitinS. In this way we find (line II3 of the table) that ¢&; is equiva-
lent in S to disc(&;,negc(negc(®1))) and further to &, and hence is
false in S (4); ¢©s is equivalent to negc(@;) and hence false (4); ¢Sr is
equivalent to negc(©s) and Fence false (6); ¢ is equivalent to S
and hence true (5); c®u is equivalent to &, and hence false (4); s
is equivalent to negc(&,;) and hence false (4); c©is is equivalent to
negc(s) and hence false (6). ©; and nego(©,) are both false (4) and
hence have the fourth distribution of values (D1o-2). Therefore the
fourth characteristic value of ccs is F (T11-10), since ¢©; is false; the
same holds for ct, with r = 5, 7, 11, 13, 15; but that for ¢ty is T. —
16. The fourth value in the characteristic for Conn®forr = 3, 5, 7, 11,
13, 15 is T, that for Conn}} is F. — 17. For r = 3, 5, 7, 10, 11, 13, 15,
ct, violates the fourth rule for Conn} in S. — 18. ¢cts(&,&) is equiv-
alent to negc(©;) (in analogy to (13)) and hence false (4). — 19. &;
is false (4); hence ctp (18) violates the fourth rule for Conn} (in analogy
to (x5), (16), (17)). — 20. Let us analyze the sentences ct.(negc(Ss),
negc(©s)), which we call ¢&,. ¢B;is C-equivalent in K (in analogy
to (15)) and hence equivalent in S to &, and hence is true in S (7);
the same holds for ¢S and ¢®7; ¢Ss is equivalent to Ss and hence
true (5); the same holds for c&11, c©rs, and cSys; cSyo is equivalent
to negc(©,) and hence false (8). — 21. Since both components in
¢S, are false (6), they have the fourth value distribution. The fourth
value in the characteristic for Conn? for 7 = 3, 5, 7, 9, 11, 13, 15 is T,
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that for r = 10 is F. Thus, forr = 3,3, 7, 9, 10, 11, 13, 15, o, satis-
fies the fourth rule for Conn} with respect to the components men-
tioned. — 22. ¢012(S5,S1) is equivalent to negc(disc(negc(Ss),S1))
and further to negc(®;) and hence is false (4). — 23. Since &, is
true (5) and &, is false (4), they have the second distribution. The
second value in the characteristic for Conn;} is T. Hence, cti1a (22)
violates the second rule for Conn2. — 24. ct12(Ss,negc(Ss)) is equiv-
alent to ©; and hence is true (5). — 25. The components mentioned
(24) have the second distribution. The second value in the character-
istic for Conn,} is T. Hence, cty2 satisfies the second rule for Conn,}
with respect to the components mentioned. — 26. c¢14(©1,©s) is equiva-
lent to negc(&,;) and hence false (4). — 27. The third value in the
characteristic for Conn} is T. Hence, ct14 violates the third rule for
Conn} (26). — 28. ctiu(negc(@s),Ss) is equivalent to &; and hence
true. (5). — 29. The third value for Conn} is T. Hence, cti4 satis-
fies the third rule for Conn}, in this case (28). — 30. For each of the
connectives c¢, for r = 3, 5, 7, 9, 10, 11, 13, 15 in K, the fourth rule
for the corresponding connection Conn} in NTT is sometimes vio-
lated (17, 19), sometimes satisfied (21). For ctis, the second rule is
sometimes violated (23), sometimes satisfied (25). For ctu, the third
rule is sometimes violated (27), sometimes satisfied (29). — 31. (f)
from T15-7d (for r = 2) and (30). — 32. (g): for 7 = 2, from T13-7d
and T15-8f; for the rest from (30) and T12-6. — 33. ctie in K has a
normal interpretation in S; the proof is analogous to that for cbs (13).
— 34. (h) from T1a (2) and (33).

+T16-8. If K contains PCY and one of the connectives
c¢, for r = g through 15 has a normal interpretation in S,
then every other connective of PC} in K also has a normal
interpretation in S.

Proof. 1If one of the other connectives had a non-normal interpreta-
tion, then it would be a case either of the first or the second kind. In
both cases all connectives mentioned would have a non-normal in-
terpretation (T6a, T7{).

neg: (T3) and the seven binary connectives mentioned
in T8 are the only connectives of PC} in K having the prop-
erty stated in T8. Every other connective has a normal in-
terpretation in at least one of the two kinds of non-normal



§ 17. EXAMPLES OF NON-NORMAL INTERPRETATIONS 89

interpretations (T6 and 7; compare columns (5) and (8) in
the table).

§17. Examples of Non-Normal Interpretations

In §16 two kinds of non-normal interpretations for the
connectives in PC were studied without showing that these
kinds are non-empty. This is shown here by the construction
of examples for true and, moreover, L-true interpretations of
both kinds.

The two kinds of non-normal interpretations for the con-
nectives of PC which were referred to in T16-6 and 7 exhaust
all possibilities of non-normal interpretations; this is seen
from the conditions (C) in the two theorems. Thus there are
at most these two kinds. But so far we have not seen whether
there really are non-normal interpretations of these kinds.
This will now be shown by examples.

For the following examples we shall take a calculus K and
two semantical systems S and S’ which fulfill the following
conditions:

A. K contains n propositional constants, say ‘A,’, ‘A,’,
LA

B. K contains PC, or PC?,

C. K contains no other sentences than the molecular sen-
tences constructed out of the propositional constants with
the help of the connectives of PC (hence no variables, and
only closed sentences).

D. K contains no other rules of deduction than those of
PC (hence no rule of refutation; all rules of inference are
extensible).

E. The sentences of S are those of K. Hence, S is an inter-
pretation for K.

F. S’ contains n 4 2 atomic sentences, say ‘A;’, ‘A;’,

A, AL (8)), ‘Asts’ (©2) such that the following
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holds: a. Each of the atomic sentences is L-independent of
the rest (they may e.g. be full sentences of a predicate for
n + 2 different objects). — b. Hence, all are factual. — ¢. &,
is true, and hence F-true. —d. &; is false, and hence F-
false. — e. Let &; be an L-true sentence in §’ (e.g. dis(&;,
neg(&,)), compare (G)). [The truth-rules for the atomic
sentences in S’ are supposed to be given so as to fulfill (F);
in any other respect they may be chosen arbitrarily. We do
not give them because their details beyond (F) are irrelevant
for the nature of the interpretations in the examples.]

G. S’ contains NTT. Hence the connectives of NTT in §’
are signs for the connectionsy..

H. If &;is a sentence of K and hence of S, then we desig-
nate by ‘©;’ the corresponding sentence in S, that is to say,
the sentence constructed out of &; by replacing each propo-
sitional constant that occurs, say ‘A:’ (k = 1 to n), by the
corresponding atomic sentence in ', ‘A;’, and replacing each
connective that occurs by the corresponding connective in
S’. [Hence, if ©; is negc(®;), ©; is negL(®;), and if &; is
disc(®;,8s), ©; is disL(©},8;).] If R is a sentential class in
K and S, then we designate by ‘®;’ the class of the corre-
sponding sentences in S’.

In the following examples, the systems K and S’ remain
always the same. S differs from example to example. In each
case we shall describe the system S by stating a translation
of the sentences of S into some sentences of S’. The transla-
tion is meant in this way: the truth-rules in S state for the
sentence &; the same truth-condition as the rules in S’ state
for the sentence ©&;, into which ©; is translated. Therefore,
if any radical or L-concept holds for &; in §’, then the same
concept holds for &;in S. [If we use the concept of L-equiv-
alence also for sentences in different systems (compare
remark at the end of [I] § 16), then &; and &; are L-equiv-
alent.] If we were to translate every sentence &;in S into



§ 17. EXAMPLES OF NON-NORMAL INTERPRETATIONS 91

the corresponding sentence &; in §’, then S would be an
L-true interpretation for K, and each connective in X would
have an L-normal interpretation in S. Therefore, in order
to construct non-normal interpretations for the connectives
in K, other translations have to be made. In each of the
examples it will be shown that S is an L-true interpretation
for K such that at least one connective in K has a non-normal
interpretation in S. The first two examples of interpreta-
tions are rather trivial, but they suffice to show in a simple
way that both kinds of non-normal interpretations pre-
viously explained are not empty.

First example: an L-true, non-normal inierpretation of the
first kind. We translate every sentence in S into &; (F(e)).
Then the following holds: a. Every sentence in S is L-true.
b. S is an L-true interpretation for K. c. negc in K violates
N1 in S. d. S is a non-normal interpretation of the first
kind.

Proof. a. Every sentence in S is L-equivalent to an L-true sentence
and hence L-true. —b. For every T; and T; in S, T; and T; are
L-true (a), and hence T; 7> ;. Thus condition (a) in [1] D3g-1 is
fulfilled. Condition (b) in the same definition is always fulfilled be-
cause of (D). Hence, S is an L-true interpretation for K. — c. For
any &; in K, both &; and negc(&;) are true (a). — d. From T16-6.

Second example: an L-true, non-normal interpretation of
the second kind. A sentence &, of S is translated, if it is
C-true in K, into &; (which is L-true, see (F(e)), otherwise
into neg(®;) (which is L-false). Then the following holds:
a. Sis an L-true interpretation for K. b. negcin K violates
N2 in S. c. S is a non-normal interpretation of the second
kind.

Proof. a. Let the conditions be fulfilled, and &,; be a direct C-impli-
cate of R; in K. If & is C-true in K, &, is C-true in K and is hence
translated into an L-true sentence in S’; therefore, in this case, &; is
L-true in S, and hence an L-implicate of &;in S. If, on the other hand,



92 C. INTERPRETATIONS OF PC

£ is not C-true in K, then it contains a sentence which is not C-true
in X ([I] T29-73) and which therefore is L-false in S. Hence, in this
case, R itself is L-false in S, and therefore ®; 7> ;. Thus S is an
L-true interpretation for K. —b. Let &, be a sentence in K such that
neither &, nor negc(&,) is C-true in K, e.g. one of the propositional
constants. Then both &, and negc(&,) are L-false in S. Thus negc
violates N2 with respect to &,. — ¢. From T16-7.

Let us suppose that S/, in addition to the extensional con-
nectives of NTT, contains non-extensional connectives, e.g.
signs for logical necessity and for logical (strict) implication
(compare [I] §§ 16 and 17). Let us designate the full sen-
tence of the sign of necessity with &; as component by
‘nec(®;)’. Then we might translate every sentence &, in S
into nec(®,,). This is essentially the same interpretation as
that in the second example, because here, too, the C-true
sentences in K are L-true in S, and the other sentences in K
are L-false in S. imp.(S;,®;) is hereby translated into
nec(impL(®;,®;)), which is L-equivalent to (and may be
taken as definiens for) the sentence of logical (strict) impli-
cation with &; and &; as components. Hence the chief sign
of implication. in a sentence in K is here interpreted as the
non-extensional connective of logical (strict) implication.
This is possible because we have here no factual components.

As we have said, the two examples given are of a trivial
nature. Now we shall construct examples of non-trivial non-
normal interpretations. We shall not define the concept
‘non-trivial interpretation’. The triviality meant here con-
sists in the fact that too many sentences of K are interpreted
in S as saying the same, i.e. are L-equivalent in S. There-
fore it seems natural to take the following as a sufficient
(though not necessary) condition for S to be a non-trivial
interpretation for K: S is an ioterpretation for X, and for
any ¥;and E;in KX, if ; and T; are not C-equivalent in K,
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they are not L-equivalent in S. The following examples
fulfill this condition.

Third example: an L-true, non-normal interpretation of the
first kind. We translate every sentence ©; in S into dis.(&),
&)). (For ‘©}’, see (H); for ‘&,’, (F).) Then the following
holds: a. Every sentence of .S is true. b. S is an L-true in-
terpretation for K. c. negc in K violates N1 in S. d. S'is
a non-normal interpretation of the first kind.

Proof. a. &, is true in S’ (F(c)). Hence, for every &;, disi(S},&,)
is true in 8" (NTT). Hence, because of the translation, &; is true in
S.—Db. Let &; be a primitive sentence (i.e. a direct C-implicate of
A, see [1] D28-10) in K. Then &; is L-true by NTT in &’ (T14-2a),
and hence likewise dis;,(&;,&;) (T13-26b(1)). Therefore, because of
the translation, & is L-true in S. Let Tm not be A, and Tm 32 S, in
K. Then T, 7 &, by NTT in &' (T14-2b,c). Let T, be that sen-
tence or class into which ¥,, is translated. [If T, is a class, T,, is the
class constructed out of T, by replacing every sentence &, of T, by
disL(Gm,@1).] Then T, T disL(®,S;) in ' (T13-38b and 39).
Therefore, because of the translation, T, 7> ©, in S. Hence, S isan
L-true interpretation for K. —c and d. As in the first example.

Fourth example: an L-true, non-normal inter pretation of the
second kind. A sentence &; in S is translated, if it is C-true
in K, into &, and otherwise into conp(&;,&,;). Then the
following holds: a. If & is a primitive sentence in K, it is
L-true in S. b. If T, is not A, and ¥,, ;2 &, in K, then
T, S, in S. c. §is an L-true interpretation for K.

d. negc in K violates N2 in S. e. S is a non-normal inter-
pretation of the second kind.

Proof. a. If &, is a primitive sentence in K, it is C-true in K and
hence translated into &;, which is L-true in S’ (T14-2a). Therefore
©y is L-true in S.—b. Let T not be A, and T 32 Sa. Then
Zm 7> S by NTT in ' (T14-2b,c). We may assume that neither
&, nor any of the sentences of T are C-true in K; any other case can
easily be reduced to a case of this kind. Then &, is translated into
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con(S,,S.). Let Tw be that sentence or class into which T, is trans-
lated. [If T.. is a class, T, is the class constructed out of T,, by re-
placing every sentence &,, of T by cony(S,,Ss).] T L-implies the
following ¥: T, ([I] P1g-11, T13-26b(3), [I] P14-12), and hence
©. (see above, [I] P14-5), further &, (T13-26b(4)), and hence
cony(©,,Ss) ([I] Pi4-12, T13-27b(3)), into which S, is translated.
Therefore, Tw 7> ©, in S. —c. From (a), (b), [1] D34-1.—d. Let
©. be a sentence in K such that neither & nor negc(S.) is C-true
in K, e.g. one of the propositional constants. Then &,, is translated
into con(S,,S;). This sentence is false in S’ (NTT), since &, is
false in S’ (F(d)). Therefore &, is false in S. negc(Sm) is translated
into conp(negy(S,),Ss), which is likewise false in S’. Therefore,
negc(®m) is false in S. Thus negc violates N2 with respect to S,
—e. From T16-7.

§ 18. PC is not a Full Formalization of Propositional
Logic
L-truth and L-implication in propositional logic, i.e. in a
system containing NTT, are exhaustively represented in PC
and thereby formalized. But not all logical properties of the
connectives in NTT are represented in PC. If we could find a
calculus K containing the connectives in such a way that every
connective could only be interpreted normally (i.e. such that
it would have a normal interpretation in any true interpre-
tation of X and an L-normal interpretation in any L-true
interpretation of K), then we should say that K isa full formali-
zation of propositional logic. PC does not fulfill this require-
ment. The problem is whether any other calculus does.

The rules of NTT give an interpretation for the proposi-
tional connectives (more precisely, for the singulary and
binary extensional connectives) and thereby constitute prop-
ositional logic. The rules PC are constructed as a calculus
for propositional logic; that is to say, they have the purpose
of representing the logical properties of the connectives of
propositional logic as far as these properties can be repre-
sented by a calculus, i.e. by the use of the formal syntactical
method.
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Let us examine the question whether PC fulfills this pur-
pose. It seems to be the generally accepted opinion that it
does. And, at the first glance, there seem to be good reasons
for this opinion. In order to be more concrete, let us regard
a calculus K and a semantical system S fulfilling the follow-
ing conditions:

A. K contains PC?, and no other rules of deduction.

B. K contains only the following sentences: 1. 7 proposi-
tional constants; 2. the molecular sentences constructed out
of them with the help of the connectives of PC.

C. The sentences of S are those of K.

D. S contains NTT in such a way that the sign for a connec-
tiong in K is simultaneously the sign for the corresponding
connectiony, of NTT in S.

E. The truth-rules for the propositional constants in §
are such that these sentences are mutually L-independent
and hence factual (the further details of these truth-rules are
irrelevant for the following discussion).

If a calculus is constructed as a formalization of logic
within a certain region, then it is often regarded as its chief
or even as its only purpose to present some or all L-true sen-
tences of the region in question as C-true. In the case of K
and S as specified, this task is fulfilled. Not only some but
all L-true sentences of S are C-true in K (T14-5a), and no
others (T14-3b). Thus C-truth in K is an exhaustive formali-
zation of L-truth in S. Further, the formalization of logic,
and analogously that of an empirical theory, in a certain
region has a second task, which is sometimes overlooked; the
calculus has to supply, in addition to suitable proofs, suitable
derivations. In the case of a formalization of logic, some or
all instances of L-implication have to be represented as in-
stances of C-implication in the calculus. In our case, this
second task also is fulfilled; C-implication in K has the same
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extension as L-implication in S (T14-5¢, T14-3a). In other
words, the rules PC constitute an exhaustive formalization
of logical deduction by NTT. Thus the rules PC, both in
proofs and in derivations, yield all those and only those
results for which they are made. What else could we require
of them?

The statements just made concerning PC and its relation
to NTT are correct. But the conclusion which seems to be
generally, though tacitly, drawn from them — namely, that
PC is a complete formal representation of propositional logic,
i.e. of the logical properties of the propositional connectives
in NTT — is wrong. This is shown by the possibility of non-
normal interpretations. Thus, for instance, it belongs to the
logical properties of disjunction in propositional logic that
a sentence of disjunction with two false components is false
(rule Dj4 in NTT, § 10). This property is not in any way
represented in PC; this is shown by examples of true (and
even L-true) interpretations of a calculus containing PC, in
which the rule Dj4 is violated.

A full formalization of NTT would consist in a calculus K
of such a kind that any connective of PC in K would have a
normal interpretation in any true interpretation for K and
an L-normal interpretation in any L-true interpretation for
K. The problem is whether a full formalization of NTT in
this sense is possible.

Note (added 1958). The existence of non-normal interpretations of PC was
pointed out already by B. A. Bernstein, though in a less exact way. This was
called to my attention by Church. The problem is further discussed in Church’s
two papers and in his [Logic] pp. 117 f.
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If a full formalization of propositional logic is to be effected,
new syntactical concepts must be used (§ 19). If rules of refu-
tation are used and thereby ‘ C-false’ is defined, the non-normal
interpretations of PC of the first kind can be eliminated (§ 20).
A more decisive change is made by the introduction of the
junctives, i.e. of sentential classes in conjunctive and in dis-
junctive conception. Radical semantical concepts (§ 21) and
L-concepts (§ 22) are defined for junctives. Further, junctives
are applied in syntax; C-concepts are defined for them (§ 23).
Their use in syntax makes possible a new kind of deductive
rules, the disjunctive rules (§ 24). In this chapter, the general
features of junctives and of calculi and semantical systems
containing junctives are studied, leaving aside propositional
logic and PC.

§19. Syntactical Concopts of a New Kind are Re-
quired

A calculus of the customary kind, consisting of primitive
sentences and rules of inference, states conditions for C-impli-
cation (and C-truth) only. Therefore, it can formalize only
those L-concepts which are definable on the basis of L-impli-
cation. ‘L-true’ belongs to these concepts, but ‘L-exclusive’
and ‘L-disjunct’ do not. Hence they cannot be formalized
without the help of syntactical concepts of a new kind. The
two concepts mentioned occur in the principles of contradiction
and of the excluded middle. Therefore, these principles cannot
be represented in PC. In a non-normal interpretation of the
first kind, the first principle is violated; in one of the second
kind, the second principle.

We found that PC does not completely fulfill its purpose;
it is not a full formalization of propositional logic. This de-
fect is by no means a particular feature of PC, however, but
is based on general features of the customary method of



o8 D. JUNCTIVES

constructing calculi. This method consists in laying down
rules for C-implication. Hence, on the basis of this method,
a calculus can exhibit only those syntactical properties and
relations of sentences which are definable by C-implication,
above all C-truth. Therefore, a calculus of this customary
kind, if constructed for the purpose of formalizing the logic
of a certain region, can formalize only those logical proper-
ties and relations of sentences which are definable by L-im-
plication, among them L-truth. We shall now examine some
elementary logical relations with respect to the question
whether they are definable by L-implication or not.

(a) (b) (©) () (e)

CONDITIONAL It is not the SYNTACTICAL
RELATION case that SEMaNTICAL CONCEPTS CONCEPTS

If ©;is {then ©,is| ©;is (and &,is| Radical Concepts | L-Concepts | C-Concepts

I.

true | true true | false | S implies &, L-implies | C-implies

2. true| false true | true @ is exclusive of &, | L-exclusive | C-exclusive

3.

4

false| true false | false | &; is disjunct with | L-disjunct | C-disjunct
©; .
false| false | false | true | &, is an implicate | L-implicate | C-implicate
of &;

There are four elementary relations between two sentences
which can be formulated by conditional statements with
respect to their truth-values (see table, column (a)), or, more
exactly, by statements excluding one of the four possible
distributions of truth-values (column (b)). To the radical
concepts (column (c), compare [I] Dg-3, 6, and §) there are
corresponding L-concepts (column (d), compare [I] § 14;
for ‘L-disjunct’, compare remarks in [I] § 14 and [I] D2o-17).
There could be corresponding syntactical C-concepts (col-
umn (e)) However, with respect to a calculus of the cus-
tomary kind we have only ‘C-implies’ and its inverse
‘C-implicate’, while ‘C-exclusive’ and ‘C-disjunct’ are not
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definable by C-implication. Therefore the concepts ‘L-ex-
clusive’ and ‘L-disjunct’ cannot be formalized in a calculus
of the customary kind. We shall see that the circumstance
that these two concepts are not represented is responsible for
the possibility of non-normal interpretations of the first and
second kind for the propositional connectives.

If we find that a certain calculus which has been con-
structed with regard to certain interpretations admits also
of undesired interpretations, then we have to make the calcu-
lus stronger. In a situation of this kind, one usually thinks
first of adding new primitive sentences or new rules of in-
ference. But the defect here discussed cannot be removed in
this way. It is well known that the rules of PC are already
complete with respect to primitive sentences and rules of
inference. Therefore, a full formalization of NTT, if it is
at all possible, requires syntactical concepts of a new kind.

If a form K of PC is const-ucted with propositional variables as
the only atomic sentences, then K is complete in the following sense
with respect to direct C-implication, or, in other words, with respect
to primitive sentences and rules of inference. If we construct a new
calculus K’ out of K by declaring any sentence &; of K as an addi-
tional primitive sentence, then &; is either already C-true in K or not.
In the first case the addition is superfluous, because K’ is coincident
with K ([I], D31-g). In the second case K’ becomes rather trivial
because every sentence is C-true in K’, even those which are L-false
in the normal interpretation. [In the customary terminology, K’ is
called contradictory or inconsistent in this case; but it is not C-incon-
sistent in our sense and still has true interpretations; see [1] D31-2
and remarks on [I] T31-31.] The same holds for the addition of a
rule of inference.

If we take K and S as discussed in § 18 (fulfilling the conditions A
to E), then any addition of a primitive sentence or a rule of inference
would have the effect that there would be at least one &; such that it
was F-true in § and C-true in K, or ¥; and ; such that T; 2 T; in

S and T; 2 T; in K, in contradiction to the intention of formalizing
propositional logic.
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In propositional logic, the sign of negationy, fulfills the fol-
lowing two principles (taken here in their semantical, as dis-
tinguished from their absolute, form) (T13-5b(2)).

A. Principle of (Excluded) Contradiction. For any closed
sentence &;, &; and negL(S;) are L-exclusive. That is to
say, the two sentences cannot both be true. (This is due to
the rule N1 for negy; see T13-3b(3).)

B. Principle of Excluded Middle. For any closed sentence
&, ©; and negL(&,) are L-disjunct. That is to say, the two
sentences cannot both be false. (This is due to the rule N2
for negy; see T13-4b(3).)

Do these two principles also hold for PC? In other words,
are the two properties of negy, which the principles state rep-
resented in PC? It seems to be the general belief that they
are, because negc(conc(S;,negc(®,))) and disc(S:,neg:(S;))
are C-true by PC. But the circumstance mentioned above,
that ‘C-exclusive’ and ‘C-disjunct’ are not definable by
‘C-implicate’ and hence not definable with respect to PC,
may evoke some doubt. And, in fact, the two principles do
not hold for PC. Neither their validity nor their invalidity
is assured by the rules of PC, because in some L-true inter-
pretations, namely those with an L-normal interpretation of
the connectives, the two principles hold, while in others they
do not. In a non-normal interpretation of the first kind
(T16-6), &; and negc(@,) are always both true; hence A is
always violated, while B is always fulfilled. In a non-normal
interpretation of the second kind (T16-7), &; and negc(&:)
are sometimes — not always — both false, and always at
least one of the two is false; hence B is sometimes violated,
while A is always fulfilled. The C-truth of neg(conc(&;,negc
(&,))) does not represent A; it would do so only if the L-
normal interpretations of the connectives were assured by
PC, which they are not; the same holds for dis.(&;,negc(&))
and B.
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§20. C-Falsity

One new syntactical concept which might be added to those
used in customary calculi is ‘C-false’. It is defined on the
basis of ‘directly C-false’, which is defined by rules of refuta-
tion. By adding a rule of this kind to PC, the non-normal
interpretations of the first kind can be excluded.

Let us first discuss calculi in general and later apply the
result to PC. The rules of a calculus of the customary kind
determine only C-implication and thereby C-truth, but not
C-falsity, which is not definable by C-implication. There-
fore, if we look for new syntactical concepts, to be added to
the customary ones, it seems natural to take C-falsity. We
have seen previously that rules of a new kind are necessary
for the introduction of this concept; we have called them
rules of refutation ([1]) § 26). The rules of refutation of a
calculus K define ‘directly C-false in K’. On the basis of
this concept, we lay down the following definition ([I]
D28-3):

+D20-1. T;is C-false in K =p¢ there is a directly C-false
¥; which is derivable from ;.

The rules of deduction of the customary kind are not sufficient for
formalizing falsity. Suppose we wish to make sure that the sentence
@, in K is false in every true interpretation for K. On the customary
basis, we cannot reach this aim even if K contains PC. We might
perhaps try to do it by taking negc(@,) as an additional primitive
sentence. This would indeed assure that negc(&;) was true in every
true interpretation for K. But this does not help, because, as we have
seen, the rules of PC do not exclude true interpretations in which
negc(®,) and &, are both true.

By adding a suitable rule of refutation to PC we can ex-
clude the possibility of non-normal interpretations of the
first kind and hence assure the validity of the principle of
contradiction. Let us consider a system S and a calculus K
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as explained in § 18 (fulfilling the conditions A to E). Ac-
cording to our intention to formalize the logic in S, we wish
to construct a calculus K’ out of K by adding a rule of
refutation in such a way that all those T which are L-false
in S, and no others, are C-false in K’. The ¥ which are
L-false in S are those which are L-comprehensive in S ([I]
T14-107b), and hence those which are C-comprehensive in
K ([I] D30-6) because L-implication in S coincides with
C-implication in K. But it would be unnecessary to declare
all C-comprehensive T as directly C-false. It would suffice
to take any one C-comprehensive sentence, say conc(&;,
negc(©1)), and lay down a rule in K’ stating that this sen-
tence is directly C-false; then all C-comprehensive T would
be C-false in K’. But even this rule would be stronger than
necessary. All we have to assure is that at least one sentence
of K’ becomes false. This cannot be done by a rule saying
‘““at least one sentence of K’ is directly C-false”, because we
must have a rule of refutation defining ‘ directly C-false’ be-
fore we can make an existential statement concerning this
concept. The simplest way is to lay down the following
rule, Rr1.

+R20-1. V (and only V) is directly C-false in K'.

Then in every true interpretation for K’, V is false, and
hence at least one sentence is false ([I}] Tg-1). Thus, rule R1
excludes non-normal interpretations of the first kind for K'.

A rule of refutation like Rr is useful in connection with
many calculi. Tr1 shows that under certain conditions,
which are also fulfilled by K and § as just discussed, the ad-
dition of R has the effect that L-falsity in S is exhaustively
formalized in K.

+T20-1. Let the calculus K and the semantical system S
contain the same sentences, and C-implication in K coincide
with L-implication in S. Let K contain no rule of refutation,
and K’ be constructed out of X by adding the rule of refuta-
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tion R1. Let S contain at least one L-false ;. Then C-fal-
sity in K and L-falsity in S coincide.

Proof. Let the conditions be fulfilled. Then ¥; is C-false in K’ if
and only if V is derivable from T; in K’ (D1) and hence in K, hence if
and only if T; 2 VinK ([I] T29-54a), hence if and only if T T Vin
S, hence if and only if T; is L-comprehensive in S ([I] Di14-5), hence
if and only if ¥ is L-false in S ([I] T14-107b).

On the basis of ‘C-false in K’’ other concepts can be de-
fined, among them ‘C-exclusive in K’ ([I] D30-3). It can
then be shown that, on the basis of rule Ri, for any &;, &;
and negc(®;) are C-exclusive in K’. Thus the principle of
contradiction holds for K'.

Later we shall introduce other syntactical concepts. With
their help, ‘C-false’ will be definable on the basis of ‘C-im-
plicate’ (D23-6). Therefore, the concept ‘directly C-false’
will no longer be necessary. Rules of refutation, as e.g.
rule R1 above, will then be replaced by rules concerning
‘direct C-implicate’ (e.g. K24-1) and thereby become anal-
ogous to the other rules of deduction.
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§21. Junctives in Semantics

A sentential class is usually construed in the conjunctive
way, i.e. as joint assertion of its sentences. Accordingly, ®; is
regarded as true if and only if every sentence of ; is true.
However, a disjunctive conception is likewise possible. Accord-
ing to it, £, is called true if and only if at least one sentence of
8 is true. The customary one-sided use of the conjunctive
conception only is responsible for a lack of symmetry in the
ordinary structure of syntactical and of semantical concepts.
We begin here using both conceptions. If ; is meant in the
conjunctive way, it is called a conjunctive and designated by
‘R7’; if meant in the disjunctive way, it is called a disjunctive
and designated by ‘®Y’. Conjunctives, disjunctives, and sen-
tences are together called junctives. Definitions and theorems
concerning radical concepts (‘true’, etc.) with respect to junc-
tives are stated.

In accordance with the customary use, we have construed
sentential classes in such a way that asserting ®; means the
same as asserting all sentences of ®;. Therefore we have
called ®; true if and only if all sentences of R; are true
(1] Dg-1). Consequently, on the basis of NTT, a finite sen-
tential class is L-equivalent with the conjunction of its
sentences (e.g. {€1, ©;} is L-equivalent with cony(&,8),
Ti3-14b). And to say that & logically follows from &; (in
our terminology, that ® 7 ;) means that, if every sen-
tence of &, is true, &, is necessarily also true.

It would obviously also be possible, although not usual,
to construe sentential classes in such a way that to assert
R; would mean the same as to assert that at least one of the
sentences of ®; holds. If we adopted this way of using sen-
tential classes, we should call &; true if and only if at least
one sentence of ®; was true. And a finite class would, in this
case, be L-equivalent with the disjunction;, of its sentences.

The conjunctive conception of sentential classes seems
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very convenient. We shall not replace it by the disjunctive
conception but rather use both, distinguishing them with the
help of two special signs. As previously, we shall use ‘8’
with a subscript, e.g. ‘®,’, as the designation of a class of
sentences. f;is a sentential class; it is determined, as every
class is, with respect to the question of what elements (here
sentences) belong to it; however, we shall regard it now as
neutral with respect to the question how its assertion is to be
construed. By ‘R;’ (read “f.-con”) we designate the class
R: as construed in the conjunctive way; by ‘&’ (read
“®-dis”) we designate the class &; as construed in the dis-
junctive way. & is called a conjunctive sentential class or,
briefly, a conjunctive, &} a disjunctive class or, briefly, a
disjunctive. Conjunctives, disjunctives, and sentences
(these we include for the sake of convenience in the formula-
tion of definitions and theorems) are together called junc-
tives. We have previously used ‘®’ both for the neutral
classes (e.g. “ R is a sub-'ass of ®,”) and for the conjunc-
tives (without this name) (e.g. “®: 7 #1”); we shall use it
in the remainder of this book for the neutral classes only.
We have previously used ‘T’ for sentences and sentential
classes; we shall use it now for junctives in general. (Hence,
“if T,isfalse . ..” is to mean “if &; or &; or &) is false . ..”.)

It turns out that the customary tacit restriction of sen-
tential classes to the conjunctive use is in fact the source of
the lack of symmetry in the foundations of syntax and se-
mantics, which we have often found in our previous discus-
sions (e.g. in [I] pp. 381, 72, 77, and 172; see, above, the
remark concerning disjunctionc and conjunctionc at the be-
ginning of § 16). By the use of both kinds of junctives, the
foundations of semantics and likewise those of syntax will
gain a perfect symmetry with respect to (L-, C-) truth and
falsity, disjunction and conjunction, existential and uni-
versal sentences, etc.



106 D. JUNCTIVES

The explanations above lead to the subsequent definitions
for concepts applied to junctives: first their elements (D1
and 2, not often used), then truth (D3 and 4). For our pur-
poses, it is not necessary to introduce the junctives them-
selves by explicit definitions. We simply assume that to
every sentential class ®; two entities are correlated, which
we designate by ‘®;’ and ‘®;’. And we shall define semanti-
cal concepts and later syntactical concepts applied to these
entities by referring to the sentential class &;.

An explicit definition of the junctives can easily be given if we con-
strue them as ordered pairs. £; might be regarded as the pair whose
first member is &; and whose second member is the connection of con-
junction (hence as f:;e); analogously f} with disjunction. This pro-
cedure, however, presupposes that conjunction and disjunction are
regarded as entities, say as relations between propositions; in other
words, it presupposes the occurrence of (binary) connection variables
in the metalanguage. But this difficulty can easily be avoided by tak-
ing any other two entities as second members of the pairs, e.g. the
numbers o and 1, or the sentential classes V and A. In the latter case,
R = &;V,and & = K;A . Here, the pairs are homogeneous.

D21-1. x € R =prX € R
D21-2. x ¢ R\: =ptX € K.

+D21-3. &; is true (in S) =p; every sentence of ®; is
true.

- +D21-4. R is lrue (in S) =p; at least one sentence of &;
is true.

Dr1 and 2 state that the elements of a conjunctive or dis-
junctive are the elements of the corresponding (neutral)
sentential class; hence they are sentences. D3 and 4 take
the place of [I] Dg-1. The other definitions in [I] § ¢ (for
‘false’, ‘implicate’, ‘equivalent’, etc.) are maintained in their
previous form. Thus all radical semantical concepts can
now be applied to junctives.

Junctives of higher levels could also be used, i.e. junctives contain-
ing other junctives as elements. We may even admit inhomogeneous
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junctives, whose elements belong to different levels. Recursive defini-
tion for the level of a junctive:

D21-Al.

a. The junctive I; belongs to the first level = p; every ele-
ment of T; is a sentence.

b. The junctive T; belongs to the level # + 1 =ps at least
one element of T; belongs to the level # and none to a
higher level.

The following definitions for ‘true’ (DA3 and 4) are analogous to
D3 and 4. Thus the other radical concepts can also be applied anal-
ogously.

D21-A3. T} is true =py every element of T; is true.
D21-A4. T is true =p¢ at least one element of I; is true.

In the following discussions we shall restrict ourselves to junctives
of the first level.

The following theorems are based on the definitions D1
to 4. Those concerning conjunctives correspond exactly to
certain theorems in the pre -ious system ([I] § 9). Analogous
theorems concerning disjunctives are added here; their
proofs need not be given here, because they are analogous to
the proofs for conjunctives, referring to the corresponding
definitions and theorems for disjunctis.es.

+T21-1. ®; is false if and only if at least one sentence of
R, is false. ([I] To-1.)

+T21-2. &) is false if and only if every sentence of &, is
false.

T21-5. T; — &; if and only if T,implies every sentence
of ®;. ([I] To-17.)

T21-6. 8] — T, if and only if every sentence of ®; im-
plies T;.

The following theorems concern the null conjunctive A®,
the null disjunctive A", the universal conjunctive V*, and
the universal disjunctive V', with respect to a semantical
system S.
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T21-11. A° is true. ([I] To-32.)
T21-12. A'is false. (From T2.)
T21-15. T, is true if and only if A* — ;. ([I] To-35.)
T21-16. T, is false if and only if T; — A".
T21-19.
a. V* is true (in S) if and only if every sentence in
S is true. ([I] To-42a.)
b. V* is false if and only if at least one sentence
in S is false. ([I] T9-43a.)
T21-20.
a. V'is true if and only if at least one sentence in
S is true. (From D4.)
b. V¥ is false if and only if every sentence in .S is
false. (From T2.)
T21-23. A* — V" if and only if at least one sentence
in S is true. (From Tis, T20a.)
+T21-24. V* — A’ if and only if at least one sentence
in S is false. (From T16, Tigb.)

§22. Application of L-Concepts to Junctives

The two ways explained in [I] for introducing L-concepts
are here adapted to junctives. 1. Eighteen postulates (P to
15) are stated (corresponding to [I] P14-1 to 15), containing
some of the L-concepts as primitives. A few theorems are
based upon these postulates; among them: A is L-true (T22),
AY is L-false (T23). 2. The concept of L-range is applied to
junctives (Dr and 2). On its basis, radical and L-concepts for
junctives can be defined as previously (D11-5 to 8, and 12;
(1] § 20). In this system, the postulates of the first system are
provable. - ‘

In [I], the L-concepts were introduced in two different
ways. Both of them can easily be adapted to junctives.
The first way ([I] § 14) consisted in laying down fifteen
postulates. Three of them ([I] P14-11 to 13) concern the
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relation between sentences and sentential classes; they must
now be split up for conjunctives and disjunctives. The
other postulates remain unchanged. Thus we come to the
following system.

P22-1 to 10 (= [I] P14-1 to 10).
+P22-11.

a. If S, € Ry, then 7 T &;.

b. If &; ¢ &;, then &; 7 &}.

+P22-12.
a. If ¥, L-implies every sentence of &;, then
T R;.
b. If every sentence of ®; L-implies T;, then
«Q‘,’ —L') Ej.
P22-13.

a. If every sentence of R; is L-true, & is L-true.
b. If every sentence of ®; is L-false, & is L-false.
P22-14 and 15 (= [I] P14-14 and 15).

We give a few theorems based on these postulates. Those
concerning conjunctives correspond exactly to theorems in
the previous system. We add here theorems concerning dis-
junctives. They and their proofs are analogous to those con-
cerning conjunctives. ‘

T22-1. &, and {&,}* are L-equivalent. ([I] T14-9.)
T22-2. &; and {&,}" are L-equivalent.

+T22-3. &;, {©}°*, and {©,}" are L-equivalent to one
another. (From T1 and 2.)

T22-6. If 8, C 8, then 8 p &;. ((I] T14-10.)

T22-7. If &; C &, then & T R

T22-8. If a sentence of ®; is L-false, ®; is L-false.
((1] T1g-11.)

T22-9. If a sentence of &; is L-true, &) is L-true. (From
Pi1b, P6.)



110 D. JUNCTIVES

T22-10. &; is L-true if and only if every sentence of &
is L-true. ([I] T14-20.)
T22-11. ®} is L-false if and only if every sentence of &
is L-false. (From Pi3b; P7, P11b.)
+T22-14. T; p &; if and only if ; L-implies every sen-
tence of ®;. ([I] T14-22.)
+T22-15. & + T;if and only if every sentence of ®; L-im-
plies ¥;. (From P12b; P11b, Ps.)
T22-16.
a. 8 o ®i. (From Pira, Pr2a.)
b. 8% » &}. (From P11b, P12b.)
T22-17. L-implication is reflexive; i.e., for every I,
T; 7 T (From P8, T16a,b.)
T22-18. If &; T8 (in S), then { ©,, i} ° T {e;, @k}'-
Proof. {&,,S,}* L-implies &; (P11a) and hence &; (Ps), and like-
wise &, and hence {&S;, &;}* (P12a).

T22-19. If &; 3 ©;(in S), then {&;, &:}" 7 {©), &i}".

Proof. {&;,&}" is an L-implicate of &, (P11b) and likewise of
©;, and hence of &; (Ps), and hence of {&;, S:}" (P12b).

T22-20. Every €; p A*. (1] T14-32.)
. T22-21. A" 7 every E;. (From P12b.)
+T22-22. A* is L-true. ([I] T14-33.)
+T22-23. A'is L-false. (From P13b.)
+T22-24. I;is L-true if and only if A*p T;. ([I] T14-
1a.
’ +)T22-25. T; is L-false if and only if ¥; 3 A*. (From
Tz23, P7; P15.)
We found previously that, within the customary frame-
work of concepts concerning sentences and sentential classes,

‘L-true’ can be defined on the basis of ‘L-implication’
([I] D14-B1) but ‘L-false’ cannot. T24 and 25 show that this
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asymmetry disappears if junctives are used. The same
holds for the corresponding C-terms in syntax (see, below,
D23-5 and 6).

T22-30. V* 3 every &; and every ;. ([I] T14-42.)

T22-31. Every &; and every & o V'. (From P1ib,
T7.)

T22-32. V* ;> every non-empty ;. (From Priia,
Pi1b, Ps.)

T22-33. Every non-empty &; p V'. (Irom Pria,
Pi1b, Ps.)

The second way of the introduction of the L-concepts ex-
plained in [I] made use of the concept of L-range (1] § 20;
compare above § 11). This system can easily be modified so
as to apply to junctives. Since we have previously based our
system of propositional logic on the concept of L-range
(§ 11), we shall use in our subsequent discussions of propo-
sitional logic containing junctives (§ 25) the system now to
be explained. As its basis, we simply take the definition for
the L-range of sentential classes (Tr11-1; [I] D2o-1b) here
applied to conjunctives (D1) and add en analogous definition
for disjunctives (D2).

+D22-1. Lr®; (in S) =py the product of the L-ranges of
the sentences of 8.

+D22-2. Lr&} (in S) =p; the sum of the L-ranges of the
sentences of 8.

The previous definitions for the L-concepts based on the
concept of L-range remain unchanged ([I] § 20, some of them
stated above as D11-5 to ¢). Further, our present system
is to contain the definition of ‘true’ (Di1-12), based on
‘L-range’ in connection with ‘rs’, and the definitions of the
other radical concepts based on ‘true’ ([I] Dzo-14 to 18).
The resulting concept of truth for junctives is in accordance
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with D21-3 and 4 (T40 and 41 below); therefore, the theo-
rems in § 21 are valid in the present system.

T22-40. R; is true if and only if every sentence of f; is
true. (From D1, D11-12.)

T22-41. &) is true if and only if at least one sentence of
R;is true. (From D2, D11-12.)

In [I] § 20 we have seen that the system based on the
concept of L-range contains among its theorems all the
postulates of the earlier system concerning L-concepts ([I]
P14-1 to 15). Therefore, our present system contains as
theorems those of the postulates stated above which corre-
spond to [I] P14-1 to 15; these are P22-1 to 10, 113, 12a, 13a,
14 and 15. But the same can easily be shown for the rest
also, that is, P11b (D2, D11-7), P12b (D2, D11-7), and P13b
(D2, D11-6). Thus the present system contains all postu-
lates P22-1 to 15, and all theorems based upon them (T1,
etc., above).

T22-46. (Lemma for T23-11b.) If S contains T; and
T;, and T; is not an L-implicate of T; in S, then there is a
class M, of junctives in S which fulfills the following con-
ditions:
a. T; e My
b. If T e My and T 3> T, in S, then T, ¢ M.
c. R, ¢ M, if and only if every sentence of &, ¢ ;.
d. ®. ¢ M, if and only if at least one sentence of
m € M.
e. Not T; ¢ M;.

Proof. Let T; not L-imply ¥;. Then not R;C R; (D11~7). Hence
there is an s; such that the following holds: 1. s; ¢ R;; 2. s; note R;.
Let M, be the class of all junctives T, in S such that s; ¢ Ry. Then
M, fulfills the conditions (a) to (e). (a) follows from (1). If s; ¢ Ra
and R, C R,, then s; ¢ R,; hence (b). (c) follows from Dx; (d) from
D2; (e) from (2).
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§23. Junctives in Syntax

If a conjunctive (or a sentential class) occurs as a C-implicans,
we cannot eliminate it by referring to sentences only; likewise
with a disjunctive as C-implicate. A rule of deduction stating
a disjunctive as direct C-implicate is called a disjunctive rule.
Definitions for ‘C-implicate’, ‘C-true’, ‘C-false’, ‘C-equiva-
lent’ for junctives are given (D4 to 7). These definitions have
a form quite different from that of the former definitions for
C-concepts ([I] §28). But they fulfill the requirement of
adequacy; that is to say, ; is C-true in K if and only if T is
true in every true interpretation for K, and analogously for the
other C-concepts (T15 to 18). And the new C-concepts are in
accordance with the old ones as far as the latter go (T41).

So far we have explained the use of junctives only in se-
mantics. But they may also be used in syntax. Here their
use leads to a new kind of rules of deduction. We shall see
later that, by adding rules of this new kind to PC, it will be
possible to exclude all noi. normal interpretations and thus
to reach our aim, a full formalization of propositional logic.
In this and the next sections, however, we are not concerned
with PC but with the use of junctives in calculi in general.

Against the use of junctives in the construction of a calcu-
lus, the objection might perhaps be raised that it involves a
fundamental change in the method of dealing with calculi.
Whereas in the usual method we seem to have to do merely
with sentences and therefore can carry out all operations,
namely proofs and derivations, entirely within the object
language, after the introduction of junctives we shall have
to operate in the metalanguage. In fact, however, there is
no fundamental change of this kind. A closer examination
shows that, in dealing with any calculus, even one of the
usual kind, we must always make use of the metalanguage.

The metalanguage is first necessary for stating primitive sentences.
Simply writing them down would not do, because in this way they
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would be merely asserted but not specified as primitive. As to the
rules of inference, it is even more obvious that the metalanguage is
necessary for their formulation. Furthermore, if a derivation is to be
given, it is necessary to indicate which of the sentences in the series are
meant as premlsses Instead of saying exphcxtly ““The first ten sen-
tences of this series are taken as premisses”’, we may, of course, use
any other way of indicating the same on the basis of a suitable con-
vention, e.g. by drawing a line under the tenth sentence. But then
this line is a sign in the metalanguage, as are the assertion-sign and
the 51gns ‘Pp.’, ‘Dem.’ in [Prmc Math ], the lines y fm——=
etc., in Frege’s proofs, the signs‘.".” and ‘q.e.d.” sometimes used m
mathematical proofs, and the like And, further, it is necessary to
speak about sentential classes, not only about sentences. This fact is
often concealed by the customary way of formulation, which says
“derivable from such and such premisses” instead of ‘“derivable from
the class of such and such premisses”. The sentential classes in the
usual method of calcul’ are what we now call conjunctives. The only
new feature in the new method is the use of disjunctives in addition
to conjunctives. Thus there is no fundamental change in method.

The radical semantical concepts are based on the concept
of truth ([I} § 9). Thus, for the application of these concepts
to junctives, it suffices to define ‘true’ for junctives (D21-3
and 4). For the application of the syntactical concepts, an
analogous procedure is not possible. First, not even analo-
gous theorems hold. In contradistinction to D21-4, &) may
be C-true, for instance by being declared directly C-true,
without any sentence of &; being C-true. Further, ‘C-true’
is not a sufficient basis for the definition of the other C-terms.
We have seen that in the previous system of syntax ([I],
§§28 to 32) many C-terms can be defined on the basis of
‘C-implicate’ but some cannot (e.g. ‘C-false’, ‘ C-disjunct’,
‘C-exclusive’, [I] §§ 28 and 30). Now we shall see that, if
junctives are used, ‘C-implicate’ is a sufficient basis for the
other terms. Therefore, we have to introduce the junctives
in syntax in connection with the concept of C-implication.

In the usual method of calculi, a sentential class, corre-
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sponding to what we now call a conjunctive, is most often
used as a C-implicans, i.e. as a class of premisses from which
something is derived. In a case of this kind the reference to
a sentential class is necessary; it cannot be replaced by a
reference to sentences. Sometimes a sentential class occurs
also as a C-implicate (‘consequence-class’, [Syntax] § 48).
But in a case of this kind a reference to sentences would
suffice. [Instead of saying: “®; (or, in the present terminol-
ogy, ®;) is a C-implicate of T,”, we may say: ‘‘Every sen-
tence of ®; is a C-implicate of T;”, in analogy to T21-5.]
Now we use disjunctives in addition to conjunctives. For
them, the converse holds; reference to a disjunctive as
C-implicans can be replaced by a reference to sentences, but
reference to a disjunctive as C-implicate cannot. [Instead
of saying: “ T, is a C-implicate of &), we may say: “ T, is
a C-implicate of every sentence of £,”, in analogy to T21-6.]
A rule of deduction of the form “ &} is a direct C-implicate
of T,;” cannot be expresse.. with the help of the usual syn-
tactical concepts. We call a rule of deduction of this new
kind, stating a disjunctive as a direct C-implicate of some-
thing, a disjunctive rule (of deduction).

If junctives are used, all rules of deduction of a calculus
K can be stated in the same form, namely as parts of the
definition for ‘direct C-implicate in K’. We shall see that
rules formulated in this way fulfill their purpose; that is,
they have the effect that a certain intended result holds
for every true interpretation of K. In order to show this, we
must first define ‘true interpretation’ for systems containing
junctives (D1a). The definition is similar to, but simpler
than, [I] D33-2. The definition for ‘L-true interpretation’
(D1b) is analogous.

+D23-1a[b]. S is an [L-Jtrue interpretation for
K =p; S is an interpretation for K ([I] D33-1), and for
every T;and €;,if T, 2 T;in K, T g T;in S.
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The C-concepls for junctives, in order to fulfill the require-
ment of adequacy ([I] § 28), must be defined on the basis of
‘direct C-implication’ in such a way that they apply in all
those cases and only those in which the corresponding radical
concepts apply in every true interpretation. [For instance,
the definition of ‘C-true’ must be such that the following
holds: ;is C-true in K if and only if €, is true in every true
interpretation for K.] This condition of adequacy, how-
ever, uses semantical concepts and hence cannot itself be
taken as a definition for the C-concepts. The task is to de-
fine these concepts in a purely syntactical way but such that
the semantical condition just stated is fulfilled.

T23-1. Let S be a true interpretation for K. Let
be the class of those junctives in K which are true in S.
Then M, fulfills the following conditions:
b. If &; < T,;in K, then, if T; e M, T; e Da. (From
D1ib, [I] To-10).
C. fa ¢ My if and only if every sentence of 8 ¢ M.
(From D21-3).
d. 8~ ¢ M, if and only if at least one sentence of
R € My (From D21-4).

Our aim is to define C-implication so as to fulfill the con-
" dition of adequacy: E; @ ¥; in K if and only if, in every
true interpretation for K, T; — T;, and hence, if T; is true,
T; is true. Therefore we require in the following definition
(Dg4) that for every 3, fulfilling the conditions (b), (c), and
(@) in Tz, if T; e Mi, T; « My. It will be seen later that
these conditions are in fact sufficient to make the definition
adequate (T1sa).

+D23-4. T, is a C-implicate of T, (T; 2 Ty) (in K)
=p¢ T; belongs to every class M, of junctives which fulfills
the following conditions:

a. T e .
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bo If Im € mk and Im 'd_c’ In, then In € mk.
c. Ra. ¢ M if and only if every sentence of R, ¢ M.
d. & ¢ M, if and only if at least one sentence of
Kn € My
T23-3. If T; 2 T; in K, then E; o E; in K. (From
Dg4a,b.)
+T23-4. C-implication is transitive, i.e. if T; 2 ; and
Loy, then g; 2 T
Proof. Let T2 T; and T; 2 i Let (a;) be: Ti e Dh; (ay):
T; e D; (a1): Ty e Py; (b), (¢), (d) as in D4. From the assumptions
stated, we obtain by D4 the following. If I, fulfills (a.), (b), (c), and
(d), then also (a;); if (a;), (b), (c), and (d), then also (a;). Hence, if
M fulfills (as), (b), (c), and (d), then also (a;). Thus T; -2 i (D4).

+T23-5. C-implication is reflexive, i.e. T; » Ti. (From
Dg4.)

Adequacy requires correspondence between C-concepts
and radical semantical concepts. Therefore, the following
definitions (D3, 6, and 7) are framed in analogy to T21-15
and 16, and [I] Tg-20b. We shall see later that the concepts
thus defined are indeed adequate (T16, 17, and 18).

+D23-5. Z;is C-true (in K) =p; A° 2 T

+D23-6. g, is C-false (in K) =pt & 2 A

+D23-7. T, is C-equivalent to T; (in K) =pr Ti 2 I
and T; < ZT..

Thus here, not only ‘C-true’ but also ‘C-false’ is definable
on the basis of ‘C-implication’.

+T23-11a [b]. If Sisan[L-]true interpretation for K and
I.‘? I,-inK,then E,-ﬁ_-g T,‘inS.

Proof for (a). Let the conditions be fulfilled, and M be the class
of the junctives in K which are true in S. Then I, fulfills the condi-

tions Dgb,c,d (T1). —1. Let T; be false in S. Then T; — Iy
([1] To-12). — 2. Let T; be truein S. Then T; ¢ M;. Hence, M, ful-
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fills also D4a. Therefore, T; ¢ M (D4); T; is true; T — T; ([1] To-
13). — Proof for (b). Let the conditions be fulfilled. Let S’ be the
sub-system of S which contains the junctives of K only. Then S’ is
also an L-true interpretation for K. For the sake of an indirect proof,
let us suppose that ¥; is not an L-implicate of ¥; in S’. Then there
would be an R, which fulfills the conditions (a) to (e) in T22-46 with
respect to ', T;, and T;. Then M would fulfill the conditions (a),
(c), and (d) in D4 with respect to T; and K. But it would also fulfill
Dyb; for, if Tm €Dy, and T 32 T in K, then T 7 Ta in S’ (D1b),
hence Tn e Mi (T22-46b). Therefore, since T; 2 T;j, T; e P (Da);
but also T; not ¢ M (T22-46e). Thus our supposition is impossible.
Ti 7 T;in 5 and hence in S.

T23-13 (lemma). Let M be a class of junctives in S
which fulfills the conditions (c) and (d) in D4.
a. If every sentence in M, is true (in S), then every
junctive in 9 is true.
b. If every sentence in S which does not belong to
M, is false (in S), then every junctive in S
which does not belong to M, is false.

Proof. a. Let the conditions be fulfilled. Let &; ¢ M. Then every
sentence of £; ¢ D (c) and hence is true. Therefore, 7 is true (D21-3).
Let 87 ¢ D. Then at least one sentence of £ ¢ P (d) and hence is
true. Therefore, 87 is true (D21-4). — b. Let the conditions be ful-
filled. Let £ not ¢ M. Then there is a sentence &; of &; such that
©; not €My (c), and hence &, is false. Therefore, K7 is false (T21-1).
Let &) not ¢M:. Then every sentence of §; not e M. (d) and hence
is false. Therefore, &) is false (T21-2).

T23-14 (lemma). If T; and T; are junctives in K and
not ¢; = T; in K, then there is a system S such that the

following holds:
a. S is a frue interpretation for K,
b. T;is truein S,
c. g, is falsein S.
Proof. Let K, T;, and T; fulfill the conditions. Then, according to

D4, there is a class M, such that x. M, and T; fulfill the conditions
D4a, b, ¢, d; 2. not T; ¢D. Now we construct S in the following
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way: 3. S contains the same sentences as K'; 4. every sentence (not
conjunctive or disjunctive) of M is true in .S; 5. every other sentence
is false in S. [Since, in constructing a semantical system, we can
freely choose the truth-conditions for the sentences, we can obtain
the results (4) and (s) simply by laying down, for instance, the rules
that any sentence of I, designates the L-true proposition, i.e. that
it is true if and only if A or not A, and that any other sentence is true
if and only if A and not A.] Then the following holds: 6. Every junc-
tive in M is true in S ((1), (4), T13a). 7. Every other junctive in
S is false ((1), (5), Ti3b). 8. Let T, and T, be any junctives in K
and hence in S such that T,. T T,.. We distinguish two cases, A and
B. A. Let ¥, not ¢eMy. Then T, is falsein S (7),and hence T,, — T,
([I] Do-3). B. Let T ¢ M. Then Tn ¢ M4 ((1), Dgb) and hence is
true (6). Therefore, T, — T,.. 9. (a) from D1, (3), (8). 10. T; ¢ M
((1), D4a), and hence is true (6). This is (b). 11. (c) from (2), (7).

+T23-15. ¥; 2 T;in K if and only if, for every true in-
terpretation S for K, T; — I;in S.
Proof. 1. From T11a. — 2. If T, = T;in every true interpretation

for K, then there is no true :1terpretation in which ; is true and ;
false ([1] Tg-18). Therefore, T 2 T;in K (T14).

+T23-16. T, is C-true in K if and only if ¥; is true in
every true interpretation for K. (From Ds, T1s, T21-15.)
+T23-17. ¢, is C-false in K if and only if ; is false in
every true interpretation for K. (From D6, T1s, T21-16.)
+T23-18. T;is C-equivalent to T; in K if and only if T;
is equivalent to ; in every true interpretation for K. (From
D7, T1s, [I] To-20b.)
+T23-19. If S is an L-true interpretation for K, then the
following holds:
a. If ,is C-truein K, it is L-true in S. (From Ds;,
Ti1b, T22-24.)
b. If T;is C-false in K, it is L-false in S. (From
D6, T11b, T22-25.)
c. If T;and T; are C-equivalent in K, then they
are L-equivalent in S. (From D7, T11b, P22-9.)
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+T23-21. If T, 2 T; and T; is C-true, then ; is also

C-true. (From Dg, T4 )
+T23-22. If T; 2 T, and T; is C-false, then T is also

C-false. (From D6, T4)

Once the correspondence between C-concepts and radical
concepts is proved (T3 to 18), further theorems concerning
C-concepts in analogy to those concerning radical concepts
can easily be proved (e.g. T23 to 26).

+T23-23. T; 2 & (in K) if and only if T; o every sen-
tence of R;. (From Tis, T21-5.)

+T23-24. &7 2 I; (in K) if and only if every sentence of
®: 2 T;. (From Ti1g, T21-6.)

T23-25. Every ¥ 2 A*. (From T23.)

T23-26. A* o every ;. (From Tz4.)

T23-27. 1If z, is C-true, every T; 2 ¥;. (From Ds,
Tzs, T4.)

T23-28. If ; is C-false, T; 2 every ;. (From D6,
T26, T4.)

+T23-30. A* is C-true. (From Ds, Ts.)

+T23-31. A'is C-false. (From D6, Ts.)

+T 3-34. g;is C-true (in K) if and only if every T; o ;.
(From Dg, T27.)

+T23-35. T;is C-false (in K) if and only if T; o every
Z;. (From D6, T28.)

The definition for ‘C-implication’ given here (Dg4) for
calculi containing junctives has a form quite different from
the definition of the same term for calculi of the customary
kind ([I] D28-4). Nevertheless, the new concept is in accord-
ance with the old one, as far as the latter goes. This is shown
by T41, based on the lemma T4o.

T23-40. (Lemma.) Let the calculi K, and K, and the
class M, fulfill the following conditions A to E.
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A. K, is a calculus of the customary kind (as de-
scribed in [I] § 28), i.e. the rules of K,, refer
only to sentences and sentential classes but not
to junctives.

B. K, is a calculus with junctives, containing all
sentences of K,,.

C If T < @,-inK,,., then I: s @j in K.. (If T
is ®; or &;, ‘T;’ means ; or ©; respectively.)

D. If &, is directly C-false in K, T; 2 A”in K,.

E. M, is any class of junctives in K, fulfilling the
conditions (b), (c), and (d) in Dg4.

Then the following holds:

a. If ¥;is derivable from ¢; in K,, (in the sense
of [I] D28-2) and T° ¢ My, then T; ¢ M.

b. AY not e Emk.

c. If T;is C-false in K,,, T; not ¢ M;.

d. If g g T;in Kn, and Ti € My, then E; e D

e. A* eIy

f. If ;is C-true in K,,, then T; ¢ M,.

Proof. a. Let &; be derivable from ®; in Km. Then there is a
sequence of sentences R; ([I] D28-1) which fulfills the following con-
ditions (F) and (G). F. For every sentence ©, in R, not belonging
to 8, there is a sub-class £, of the class &, of the sentences preceding
©. in Ry such that 8, 32 Sa in Ka. G. ©; is the last sentence in R
Let 8: ¢Mi. Then every sentence of §; and hence the conjunctive
of every sub-class of ; belong to M (E(c)). If Sn is the first sentence
of N; which does not belong to &;, then &, is a direct C-implicate in
K, of a sub-class of £; (F) and hence &,, ¢ T (C, E(b)). Let &, be
any sentence in &; but not in &; and let &, and . be as above (F).
Then, if every sentence of ®, belongs to Mi, K3 e (E(c)) and
©n ¢ DMy (E(b)). Therefore, by induction, every sentence of R; be-
longs to My, hence also S; (G). Let &; be derivable from &; in K.
Then, for every sentence &; of &;, ©; is derivable from &; in K.
([T] D28-2b) and, according to the result just found, 8} 2 &; in K.,
and hence R} =2 ®7 in K, (T23). The results hold likewise for ©; in-
stead of & ([I], D28-2c). — b. From (E), D4d, since A has no ele-
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ment. — c. Let ¥; be C-false in K. Then ([I] D28-3) there is a
directly C-false ¥, which is derivable from I; in Km. If T} were an
element of M;, then T, would also be one (a). Further, T, ;2 A” in
K, (D); hence (E(b)) A would be an element of My, which is impossi-
ble (b). Therefore, T* not ¢ M. —d. Let T; 2 T, in K. Then
([1] D28-4) either T; is derivable from T; or T; is C-false in Km. Let
T? e Di. Then T; cannot be C-false in K, (c). Hence T; is derivable
from T;; hence T; eM. (a). —e. From (E), Dgc. —f. Let T; be
C-true in K,.. Then A 2 &; in K ([I] D28-5). Therefore, since
A® ey (e), T; e Py (d).

+T23-41. Let K,, and K, fulfill the conditions (A), (B),
(C), and (D) in T40. Then the following holds:
a. If T; 2 ;in K, then T} 2 T in K.
b. If g; is C-true in K,,, T; is C-true in K,.
c. If g;is C-false in K,,, T} is C-false in K.
Proof. a. From T4od, D4. —b. Let T; be C-true in K,.. Then
A2 T;inkK, ([1] D28-5). Hence A*2 T} in K, (a); hence Tj is
C-true in K, (D5). —c. Let T; be C-false in K,,. Then A" belongs
to every class M, which contains T and fulfills (b), (c), and (d) in
D4, because there is no such M (T4oc). Hence T; o> AY (D4), and
T; is C-false (D6).

§ 24. Rules of Deduction for Junctives

In a calculus of the ordinary kind (without junctives), the
statement of the primitive sentences as well as that of the rules
of inference can be formulated as parts of the definition of
‘direct C-implicate’, while the formulation of the rules of
refutation requires a new basic concept ‘directly C-false’
([1] § 28). In a calculus with junctives, all rules of deduction
can be formulated as conditions for direct C-implication. To
these rules belong those just mentioned and, furthermore,
several kinds of disjunctive rules. Among them, the rule
“Ve 32 A’ (R1) is of special interest. It has the effect that,

in every true interpretation, at least one sentence is false (T18e).

Let us consider how rules of deduction of different kinds
can be formulated in such a way that they state conditions
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for direct C-implication. The purpose of laying down a rule
of deduction in a calculus X is to make sure that certain con-
ditions with respect to the truth and falsity of the sentences
in K are fulfilled in every true interpretation for K. It will
be shown that the rules described serve this purpose.

1. Suppose we wish a certain sentence, say &, to be a
primitive sentence in K. Our aim herein is to make sure that
©, becomes true in every true interpretation for K. If we
lay down the rule: “A® 22 &,”, this aim is reached (T1a).
A similar rule is used if every sentence of a certain kind is
intended to become true (Tib); there may be an infinite
number of such sentences.

T24-1.

a. If A® 33 &;in K, then in every true interpreta-
tion for K, &; is true.

b. If A* 2 & in K, then in every true interpreta-
tion for K, &} is true and hence every sentence
of R, is true.

Proof. Let S be a true interpretation for K. a. Let A® 2 ©; in K.
Then A*— @, in § (D23-1), and hence @, is true in S (T21-15). —
b. Let A* 32 8 in K. Then &5 is true in S (as in (a)), and hence
every sentence of &; is true (D21-3).

2. A rule of inference of the ordinary kind is formulated
here in the ordinary way, except that a conjunctive is taken
instead of the class of premisses, e.g. “®;52 &.”. Here it
is easily seen that the purpose is fulfilled (T3a). Analogously
for a class of several conclusions (T3b).

T24-3a [b]. Let & ;2 &;[®;]. Let S bea trueinterpreta-
tion for K, and all sentences of & be true in S. Then &;
[every sentence of #,] is true in S.

Proof for a [b]. Let the conditions be fulfilled. Then R} — &;
[®:] in S (D23-1). & is true in S (D21-3). Therefore &; [R3] is
true ([1] To-10) [and hence every sentence of ®; (D21-3)].
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3. Disjunctive rules

a. Suppose we want to ensure that, in every true inter-
pretation for K, at least one of a given class of sentences,
say R, is true. Then we lay down the rule: “A°* 2 &]”
(Ts). Here, we may call 8] a primitive disjunctive, in analogy
to the term ‘primitive sentence’. If those sentences are
finite in number, and each of them is known, say &,, s,
and ©s, then the rule is: “A° -2 {&,, &, &5}"".

+T24-5. Let A* 22 & in K, and S be a true interpreta-
tion for K. Then at least one sentence of ®; is true in S.
(From D23-1, T21-15, D21-4.)

Example of a primitive disjunctive. Hempel (‘A Purely Topological
Form of Non-Aristotelian Logic”, Journ. Symb. Logic, vol. 2, 1937,
p- 97; shorter representation in Erkemntnis, vol. 6, 1937, p. 436) con-
structs a language T of the following kind. T contains neither variables
nor connectives. There are certain classes of three sentences each —
we call the class of these classes I — such that there is a true sen-
tence in each of these classes. Hempel constructs a calculus — we call
it K — for the language T. He remarks correctly that a rule of the
ordinary kind determining the concept of direct consequence or con-
sequence (i.e. direct C-implication or C-implication) does not suffice
to represent the fact that there is a true sentence in every class of ;.
Therefore, he lays down a rule (6.6, p. 106) concerning not ‘conse-
quence’ but the concept ‘closed system’ (in our terminology, ¢ C-com-
plete, C-perfect sentential class’, [I] D3o-5 and 7). Although this
rule is stronger than a rule of the ordinary kind, it does not suffice to
ensure that, in every true interpretation for K, there is a true sentence
in every class of M,. (The reason for this is that there is not neces-
sarily a state-description in S for every L-state; see [I] § 18 at the
end.) This can, however, be done by the following disjunctive rule:
“For every class ®; of My, K is a primitive disjunctive in K (i.e.
A 2 8.

b. Disjunctive rule of inference. Suppose we want to en-
sure that, if €, is true in any true interpretation S for K, at
least one of the sentences of a certain (finite or infinite)
class ®, is also true. We do this by the rule: “ T; 2 8;”.

T24-7. Let T; 2 &7 in K. Let S be a true interpreta-
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tion for K, and ¥, be true in S. Then at least one sentence
of & is true in S. (From D23-1, [I] Tg-10, D21-4.)

c. A rule of refutation has the purpose of ensuring that one
or several sentences are false in every true interpretation. If
we want &, to become false, we lay down the rule of refuta-
tion: “ &, 52 A*”. If every sentence of a given class & is to
become false, we state the rule: “®] 72 A"”. If at least one
of the sentences of &1 is to become false, we state: “®] 72 A"”.

+T24-9. Let ¥; ;2 A’ in K. Let S be a true interpreta-
tion for K. Then the following holds:

a. T;isfalsein S. (From D23-1, T21-16.)

b. If T;is &7, then every sentence of f; is false in
S. (From (a), T21-2.)

c. If T;1is &7, then at least one sentence of ; is
false in S. (From (a), T21-1.)

The following rule R1 is a special case of a disjunctive
rule of refutation (the last kind discussed above, Tgc).

+R24-1. V* 2 A",

This rule does not refer to any particular form of sentences,
and therefore it is possible to use it in connection with any
calculus whatever. It turns out that, for many calculi, the
addition of this rule is useful. This is the case if a calculus K
contains sentences which, though false in the interpretation
intended for K, are not C-false in K but only C-comprehen-
sive (D1, corresponding to [I] D30-6). By adding R1, these
sentences become C-false and hence false in every true in-
terpretation (T18c, f).

D24-1. T;is C-comprehensive in K =p¢ T; 2 every
sentence in K.

T24-11. ¥; is C-comprehensive (in K) if and only if
Z; 2 V'. (From D1, T23-23.)

T24-12. If T;is C-false (in K), it is C-comprehensive.
(From D1, T23-28.)
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T24-13. In any calculus, the following junctives are
C-comprehensive:
a. V. (From Ti1, T23-5.)
b. A". (From D1, T23-26.)
T24-14. If V* is C-false in K, then every C-compre-
hensive junctive in K is C-false. (From T11, T23-22.)
+T24-18. If K’ is constructed out of K by adding the
rule R1, then the assertions (a), (b), (c) hold. If, moreover,
S is a true interpretation for K’ containing no other sentences
than K’, then, in addition, the assertions (d), (e), (f) hold.
(V is the universal sentential class in K, in K/, and in S.)
a. V' > A"in K.
b. V*is C-false in K’.
c. T, is C-false in K’ if and only if ¥;is C-com-
prehensive in K.
d. V°®is false in S.
+e. There is at least one false sentence in S.
f. If T;is C-comprehensive in K, it is false in S.

Proof. a. From T23-3.—b. From (a), D23-6.—c. If ¥; is
C-false in K’, it is C-comprehensive in K’ (T12) and hence in K. (The
class of C-comprehensive junctives is not increased by Ri, because
the two junctives involved are C-comprehensive anyway; see Tr13
a,b.) If T;is C-comprehensive in K, it is C-comprehensive in K’ and,
hence, C-false in K’ ((b), T14). —d. From (b), T23-r7. —e. From
(d), T21-19 b. — f. If T, is C-comprehensive in X, it is C-false in K’
(c), and hence false in .S (T23-17).

T18b and e show that the effect of R1 in a calculus with
junctives is the same as that of the rule of refutation without
a disjunctive: “V is directly C-false” (Rzo-1) in a calculus
of the ordinary kind. There is, however, a difference between
the two rules. R24-1 is part of the definition of ‘direct C-im-
plicate’ and does not involve ‘directly C-false’ as an addi-
tional basic concept, as Rzo-1 does.

We shall apply R1 in order to supplement PC (§ 26). This
will exclude one kind of non-normal interpretation of PC.



E. FULL FORMALIZATION OF PROPOSITIONAL
LOGIC

The junctives introduced in the preceding chapter are here
used for the construction of a new system of propositional
logic (§25) and a new propositional calculus, called PC*
(§ 26). PC*, in contradistinction to PC, is a full formalization
of propositional logic (§ 27).

§ 25. Junctives in Propositional Logic

On the basis of the systems of radical and L-concepts for
junctives (§§ 21 and 22), the previous system of propositional
logic (§§ 11 to 13) is adapted to junctives. Among the results:
a conjunctiony, is L-equivalent with the conjunctive of the
co;’pponents (T3b), a disjunctiony, with the disjunctive (T4b).

In the'last chapter the junctives were introduced, and
their use in semantics and syntax was discussed in general.
Now we are coming back to propositional logic and propo-
sitional calculus, in order to find out what changes these
systems undergo if junctives are used.

As a system of semantical concepts for junctives, we shall
use that discussed at the end of § 22, based on D22-1 and 2.
As explained in § 22, this system comprehends all theorems
of § 22 (including P22-1 to 15, regarded as theorems) and
of § 21; further, it comprehends the genera) definitions and
theorems of § 11 (up to D11-12) and of [I] § 18 modified by
replacing any reference to a sentential class &; by a reference
to the corresponding conjunctive ®;. Then we add, as a
system of propositional logic based on NTT, the pertinent
definitions and theorems in § 11 (from Di1-14 on), § 12,
and § 13, with the same modification. On this basis, we
shall state here a few more theorems concerning connectives
of NTT and junctives.
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+T25-3a [b]. If S contains a sign of conjunction r,;, and
®; and &; are closed, then {&,, &;}* is [L-Jequivalent to
con(11(S;,&;). (Corresponds to T13-14.)

+T25-4a [b]. IfS contains a sign of disjunction 1}, and &;
and &; are closed, then {®&;, &;}" is [L-Jequivalent to
dis(11(&:,&;). (From T13-13(2), D22-2, T11-6(2).)

Analogous theorems hold for conjunctives and disjunctives
with any finite number of elements.

T25-7a[b]. If S contains a sign of negation(y;, then,
for any closed &;, {©:, neg1.1(S;)}* is [L-Jfalse. (From T3,
T13-28(1).)

T25-8a[b]. If S contains a sign of negationy;, then,
for any closed &;, { &, neg1(&,)}" is [L-]true. (From Ty,
T13-25(1).)

§ 26. The Calculus PC*

The calculus PC} with junctives (D1) is constructed out of
PC,; (D2-2) by adding two rules, a disjunctive rule of inference
(6) and a disjunctive rule of refutation (7). PC{P (D2), in
analogy to PCY (D3-6), contains definitions for the other con-
nectives. The general concept of forms of PC* is defined (D3).

Now we shall make use of disjunctive rules in order to
supplement PC so as to exclude the possibility of non-normal
interpretations for the connectives. We call the resulting
calculus PC*. It will be shown (§ 27) that this calculus ful-
fills the purpose.

The first kind of non-normal interpretation (T16-6) is
such that all sentences become true, even those which are
C-comprehensive and hence L-false in the intended (L-nor-
mal) interpretation. We have seen that, if any calculus pos-
sesses this unwanted feature, it can be removed by the
addition of R24-1 (see T24-18¢, f). This is rule (7) in PC}
(D1 below).
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The second kind of non-normal interpretation (T16-7) is
such that rule Djs4 of NTT (§ 10) is violated. This means
that PC does not exclude a true interpretation in which two
closed sentences &; and ©; are false but, nevertheless, their
disjunction. sentence disc(&;,&;) is true. On the other
hand, in the system of propositional logic on the basis of
NTT, if a disjunction of closed sentences is true, at least one
of the two components is true, and hence their disjunctive
is true; in other words, dis(&,,&;) — {&;, &;}". In order to
ensure that this should be the case in every true interpreta-
tion, we have merely to add a corresponding disjunctive rule:
“disc(©:,©5) 2 {Ss, ©;}", for closed &; and &;”. This is
rule (6) in PC} (D1).

As an example of a form of PC, we have previously stated
PC, (D2-2). The corresponding form PC} consists of the
same rules (with conjunctives instead of classes) and, in
addition, the two disjunctive rules (6) and (7) just men-
tioned.

+D26-1. K contains PC} with neg. as sign of nega-
tionc and disc as sign of disjunctione =p¢ K fulfills the fol-
lowing conditions:

a. negc is a singulary and dis; a binary general
connective in K.

b. The relation of direct C-implication holds in
the following cases for any &;, ©;, and &, (but
not necessarily only in these cases):

1,2, 3, 4, as in D2-2b but with ‘A®’ instead of
‘A°.
5. {©;, disc(nege(S:),85)}° » ;.
6. disc(©,,8;) 2 {S;, &;}", where &; and &;
are closed.
7. V' 2 AV
In analogy to ‘PC2’ (D3-6), we define ‘PC}P.
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+D26-2. K contains PC!® =p¢ K contains PC? and,
in addition, definition rules on the basis of neg; and dis. for
signs for all other singulary and binary connectionsc, with
definientia as given in column (5) of the table in § 3.

The general concept of forms of PC* (D3) is defined in
analogy to D4-1.

D26-3. A calculus K, contains (a form of) PC* =y
there are calculi K,, and K, such that the following condi-
tions are fulfilled:

a. K, contains PCP.

b. K, is a conservative sub-calculus of K, ([I]
D31-7).

c. For every sentence &; in K, there is a sentence
©;in K, (and K,) which is C-equivalent to &;
in K,,..

d. K, is isomorphic to K, by a correlation H.

§27. PC* is a Full Formalization of Propositional
Logic
The interpretations for PC* are examined. It is found that
the connectives negc and disc in PCT have a normal interpre-
tation in any true interpretation for PC} and an L-normal in-
terpretation in any L-true interpretation for PCY (T1). The
same holds for all 4 + 16 connectives in PCTP (Ts), and like-
wise in any other form of PC* (Tg). Thus PC* is a full formali-
zation of propositional logic.

Now it will be shown that the connectives in PC* can only
be interpreted normally.

+T27-1a [b]. If K contains PC} and S is an [L-]true in-
terpretation for K containing only the sentences of K, then
negc and dis¢ in K have an [L-]Jnormal interpretation in S.

Proof. Let Kn, be a calculus of the ordinary kind (without rules of
refutation) corresponding to K (i.e. the relation between K. and K
is that described for K. and K, in T23-40 A, B, C; D is fulfilled
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vacuously). Then, K. contains PC,. Therefore, analogues to all
previous theorems concerning PC; hold for K (T23-41). — I, for (a)
(see remark preceding T15-4). Let &; and &; be any closed sentences
in X and S. disc(®4,S)) R {1, S;}" in K (D26-1b(6)); therefore
disc(84,8;) — {&;, S;}" in S (D23-1a). Hence, if disc(©;,&;) is true
in S, {&;,&;]" is also true, and at least one of the two sentences is
true (D21-4). In other words, if both sentences are false, disc(&;,S;)
is false. Thus disc generally satisfies rule Dj4 in NTT. Further, disc
generally satisfies Dj1 to 3 (T15-4a). Hence, disc is a sign of disjunc-
tion in S (T11-12a) and has a normal interpretation (D15-1a). negc
in K cannot violate N2 in S because otherwise disc would violate Dj4
(T15-7d). In consequence of rule (7) (D26-1b(7)), at least one sen-
tence in S is false (T24-18¢). Therefore, negc generally satisfies N1
(T15-6), is a sign of negation in S, and has a normal interpretation. —
I, for a [b]. Let ©, be disc(®S;). Because of rule (6), &: 3 (S,
&;}" in S (D23-1). Therefore, —Ri + R; + R; contains rs (D22-2,
[I] T20-28) [is V, (D22-2, [I] T20-10)]. Hence, disc generally
[L-)satisfies Dj4 (T13-10(4)), and likewise Djr, 2, and 3 (T1s5-4).
Hence, disc is a sign of disjunction) in S (Tr1-12). Let &, be
negc(®s), and &, be disc(S;,S,). Then, because of rule (6) as above,
—R, + Ri + R, contains rs {is V,]. &, is C-true in K (T5-1a), and
hence [L-]true in S (T23-16 [T23-192]). Hence R, contains rs [is
V.]. Therefore, R; + R, contains rs [is V,]. Let fn be {S;, S.}°.
®a 2V* in K (Ts-2], T23-23); hence ®a 3 V* in S (T23-11). Be-
cause of rule (7), V* is [L-]false in S (T24-18d [T22-25]). There-
fore, & is [L-ifalse ([1] To-11 [P22-7]). Hence, Ri X R, does not
contain rs [is A,] (D22-1); hence, —R; + (—R,) contains rs [is V,].
We found previously the same for R; + Ra.. Therefore, negc is a sign
of negationqy) in § (T13-5).

Note on T1. If K contains two sub-calculi of the form PCY,
and S is an [L-]true interpretation for K, then obviously, according
to T1, both signs of negationc and both signs of disjunctionc have an
[L-]normal interpretation in S. But the same result is obtained if
only one of the sub-calculi has the form PC} while the other has the
ordinary form PC, without disjunctive rules, provided that K fulfills
the conditions (B) and (C) in T6-10. This follows from T1s5-1 and 2.

+T27-5a[b]. If K contains PC!® and S is an [L-]Jtrue
interpretation for K containing only the sentences of K,
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then all connectives of PC}" in K have an [L-]Jnormal inter-
pretation in S. (From T1, T16-2. Analogues to previous
theorems concerning PC? hold here; see proof for T1.)

+T27-9a [b]. Let K contain any form of PC*. If Sis an
[L-Jtrue interpretation for K containing only the sentences
of K, then every connective of PC* in K has an [L-Jnormal
interpretation in S.

Proof fora [b]. Let the conditions be fulfilled, and K, be K. Then
there are calculi X, and K, fulfilling the conditions (a) to (d) in
D26-3. Let us further make the following assumptions. (They do not
restrict the generality, except that we refer only to a binary connective;
the consideration for a singulary connective would be analogous.)
A. Let S, be S; hence S, is an [L-]true interpretation for Kj.
B. Let a, be a sign in K, and hence in K, and let it be the sign for
cConn? in PCIP in K,.. C. Let S, and &, be any closed sentences
in Ka. D. Leta,, &,, and &, be the H-correlates (according to D26-
3d) in K, to a,, ©,, and &, respectively. E. Let the system S, be
constructed in such a way that the following conditions (a) and (b)
hold; then (c) holds too. a. S, contains the same sentences as K,.
b. The truth-condition stated by the rules of S, for any sentence in
K, is the same as that stated by the rules of S, for the H-correlate of
that sentence in K,. €. Any sentence in S, is equivalent and even
L-equivalent to its H-correlate in §,. (Concerning the application of
semantical relations to items in different systems, see remarks at the
end of [I] § 12 and of [I] § 16.) F. Let the system S, be constructed
in such a way that the following conditions hold: a. Sa contains the
same sentences as K. b. For any sentence in S» which belongs also
to S, the same truth-condition is laid down in S, as in S,. ¢. For
any sentence in S, which does not belong to S,., the same truth-
condition is laid down in S» as for a sentence in S, which we choose
arbitrarily among those which are C-equivalent to it in K, (D26-3c);
hence the two sentences are L-equivalent in Sn.

On the basis of these assumptions, the following holds:

1. a, is a sign for cConn? in K,. (From B, D, D4-3.) — 2. S, is

[L-f]true interpretation for K,. (From A, D26-3d, E.)—3. If a
sentence in K,, is C-equivalent in K to each of several sentences in
K,, then these sentences are C-equivalent to one another in K, and
hence also in K, (D26-3b), and EL-]equivalent to one another in S,
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(2) and hence also in S, (F(b)). — 4. If a sentence &; in K,, which
does not belong to K, is C-equivalent in K. to a sentence &; in K4,
then there is a sentence &, in K, (namely, that chosen according to
F(c)) which is [ L- Jequivalent to &; (F(c)) and to &; in S (3); hence &;
is [L-]equivalent to &; in Sp. — 5. If Ti 2 T;in Km, then T 3 T;in
Sm. (Proof. There are ; and T;in K, such that T;is C-equivalent to
Tk in Km (D26-3c) and likewise T;to Ti. Then T is [L- Jequivalent
to Ti in Sm (4), and likewise T; to T;. Since T; 2 T;in Km, T 2 s
in K (T23-4), and hence also in K, (D26-3b). Therefore T, o Tiin
Sa (2); hence Ti 3 T; in Sm ([I] To-14b [P22-5]).) —6. Sm is an
[L-]true interpretation for K. (From D23-1, T23-3, (5).) — 7. n is
a sign for (1jConn? in S, (from D26-3a, F(a), (6), B), and hence in
Sa (F(b)). — 8. 0a(S,,S;) in S, is [L-]equivalent to a,(&,,&;) in
Sp. (From D, E(c).) — 9. a, has the same [L-]characteristic in S, as
an in S.. (From E(c), (8).) —10. @, is a sign for ;Conn? in S,.
(From (g), (7).) — 11. a, in K, (= K) has an [L-]normal interpre-
tation in S, (= S). (From Dis-1, (1), (10).)

It has previously been explained (at the end of § 18) under
what condition a calcults may be called a full formalization
of propositional logic as represented by the rules NTT. Ti,
5, and 9 show that any calculus containing the special forms
PC?¥ or PC* or in general any form of PC* fulfills that con-
dition.

We have formerly seen (§ 19 at the end) that the follow-
ing two principles hold in the propositional logic, but that
their validity is not assured by PC:

A. Principle of (Excluded) Contradiction. A sentence and
its negation cannot both be true.

B. Principle of Excluded Middle. A sentence and its nega-
tion cannot both be false.

It follows from the preceding results that the validity of
both principles is assured by PC*; that is to say, the princi-
ples hold in any true interpretation of a calculus containing
PC* with respect to negc in PC*. In the case of PCY, this
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can easily be seen directly on the basis of the rules (see
D26-1).

Let K contain PC7 and hence PC;. Let S be a true interpretation
for K, and &; be any closed sentence in K. Then every sentence, and
hence also V, is a C-implicate of {&;, negc(&,)} in PC, (T's-21). There-
fore, V*, and hence, according to rule (7) (D26-1), A" is a C-implicate
of {&;, negc(S;)}* in K. Hence, this conjunctive is false in S (T23-11a,
T21-16), and at least one of the two sentences &; and negc(&,) is
false in S (T21-1). This is A. Further, disc(&;,negc(&;)) is C-true
in K (Ts-1a). Hence, according to rule (6), {&;, negc(S;)}" is C-true
in K and true in S. Therefore at least one of the sentences &; and
negc(®;) is true in S (D21-4). This is B.
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§ 28.

The problem of the possibility of a full formalization of
functional logic (with respect to predicates of first level only)
is discussed. The ordinary form FC, of the (lower) functional
calculus is not sufficient for this purpose (§ 28). With the help
of transfinite junctives (§ 29), the calculus FCT is constructed
(§ 30). This calculus is a full formalization of functional logic
(§ 31). Finally, an alternative to the use of junctives is ex-
plained, based on a concept called ‘involution’; with its help,
a calculus FC?* is constructed, which is likewise a full formali-
zation of functional logic (§ 32).

The Functional Calculus (FC)

As logic of functions, we take a system with predicates of
first level and a denumerable set of individuals, all of them des-
ignated by individual constants. The rules of a special form
(FCy) of the ordinary lower functional calculus (FC) are laid
down (D1 and 2). The concepts of normal interpretations for
the universal and the existential operators are defined (D6
and 7). A true interpretation of FC, is indicated in which the
operators have a non-normal interpretation. Therefore, FC is
not a full formalization of functional logic. — The result of
substituting an individual constant for a free individual vari-
able in &; is called an instance of &, (D3).

In the previous chapters we have studied the ordinary
propositional calculus PC. By using junctives, we have
transformed it into a new calculus PC*, which is a full for-
malization of propositional logic. Analogously, we shall now
study the ordinary functional calculus FC, and transform
it into a new calculus FC*, which is a full formalization of
functional logic. Here the use of transfinite junctives will be
necessary.

For the sake of simplicity and brevity we shall restrict the
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following investigation in several respects. We shall analyze
only the lower functional calculus (containing predicates of
the first level only). We shall discuss only one form of it;
we shall call it FC; because it is analogous to the form PC,
of PC (D2-2). As in the case of PC, the results found for
FC, hold in an analogous way for the other forms of FC also.

The form FC,; to be explained below is, in its essential features,
the form constructed by Hilbert and Bernays; see Hilbert and Acker-
mann [Logik], Kap. ITI, and Hilbert and Bernays [Grundl. Math. I},
§ 4. We simplify this form here by using individual variables as the
only variables. We discard propositional variables (see §2) and
predicate variables; instead of Hilbert’s primitive sentences we have
then to use primitive sentential schemata (as in PC;; see § 2). The
inclusion of these two kinds of variables would not, however, cause
any difficulty in establishing a full formalization.

We presuppose a system of functional logic; the task will
be to give a formalization, and if possible a full formaliza-
tion, of this functional logic. We suppose that the realm of
individuals, i.e. the realm of values for the individual vari-
ables, is denumerable (i.e. there is a one-one correlation be-
tween the individuals and the natural numbers). Further,
we presuppose that every individual is designated by an
individual constant in the system (e.g. ‘a’, ‘b’,...). [In-
stead of individual constants, individual expressions might
be used, as e.g. the so-called accented expressions ‘o’, ‘o’’,
‘o’"’, etc., as used by Hilbert in another system, and in
[Syntax] in languages I and II; see [Syntax] § 3.]

The calculus FC is a calculus of the ordinary kind; that
is to say, we deal here not with junctives but with sentences
and sentential classes only. Later we shall again make use
of junctives.
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The Calculus FC,

1. Classification of signs

a. Sign of negation (negc), sign of disjunction (disc),
parentheses, comma (as in PC,).

b. Individual constants.

c. Individual variables ().
(b) and (c) are called individual signs (in).

d. Any number of predicates of any degree.
(pt” is the class of predicates of degree #.)

e. The existential sign ‘A’ (its name in the metalanguage
is also ‘d’).

2. Rules of formation

+D28-1. An expression in FC, is a sentence in FC; =p;
it has one of the following forms (a) to (e).

a. pr’(ing, inge. ims, . . . ing,) (an atomic sentence
consisting of a predicate of degree » with # in-
dividual signs as arguments).

b. negc(©,).
dlsC(@l)@J)

d (tk) (@l)

€. (H‘b) (@u)

3. Rules of deduction

+D28-2. Direct C-implication in FC, holds in the fol-
lowing cases (1) to (5), (8) to (13), and only in these.
1 to 5, as in PC;; see D2-2.

8. A 2 disc(negc((ir)(©1)),S5)-
9. A - disc(negc(&:), (Tin) (&))-
10. &; 2 ©; (i::..)) where in,, is not a variable which

would be bound at one of the places of substitu-
tion after the substitution.
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11. djsc(@i’@i) d_C) disc(@ii (im) (6:))1 prOVided im
does not occur as a free variable in &;.

12. disC(negC(@i),gi) EE diSC(negC((Him) (@i))rgj)r
provided i,, does not occur as a free variable in
S;.

13. &; ;2 ©; where &; contains as part a sentence
& of the form (in)(&;) or (Hin)(S,), and &;
is constructed out of &; by replacing &, with

(i) (@,,(:")) or (Ti,) (S, (:':)) respectively; here,
i, may be any variable not occurring in &,.

Explanation. (8) and (g) correspond to the following two primitive
sentences in Hilbert’s system, written with a predicate variable ‘F’
and with ‘D’ as a defined sign of implicationc: ‘(x)(F(x)) D F(x)
and ‘F(x) D (dx)(F(x))’. (10) is the rule of substitution. @"(ilt:..) is
the sentence constructed out of &; by substituting in. for i at all
places where ix occurs as a free variable in &;. (11) and (12) are the
rules of insertion for the universal and the existential operator. (13) is
the rule for replacing one bound variable by another.

D28-3. ©, is an instance of &; with respect to i in
FC, (or in FCY, § 30) =pr ©, has the form @"(i::,.) where in,, is
an individual constant.
 Examples. ‘P(a)’, ‘P(b)’, etc., are instances of ‘P(x)’ with respect
to ‘z’. Of ‘P(x) VQ(y)’, “P(a) VQ(y)’ is an instance with respect to
‘x’, ‘P(x) V Q(a)’ with respect to ‘y’. If i, does not occur as a free
variable in &; (e.g. ¢’ in ‘R(a,b)’, ‘R(a,y)’, ‘(x)R(a,x)’), then &;
itself is the only instance of &;.

D28-4. {&;(*)} (in FC; or FC}) =p; the class of the
instances of &; with respect to i. '

In T4, we list some examples for C-implication in FC,, for

reference in subsequent proofs.
T28-4. In each of the following cases, &; is a C-implicate

of S; in FC;.
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S is: S; is:
a. (i (&) @,(;;mz
b. @p . (ik) (@D
c. &(i ) (#@ix) (&)
d. (@iv) (S5) negc((ix) (negc(&5)))
e. (d) in inverse order
f. (BI(CM)] nege((3ix) (nege(Sy)))
8. (f) in inverse order

Proofs. In each of the cases described, disc(negc(©:),S;) is known
to be provable in FC, (see e.g. Hilbert [Logik], Kap. iii, § 6, or, for a
slightly different calculus, Whitehead and Russell [Princ. Math.],
vol. I, #10), and is hence C-true in FC, ([I] T29-100). Therefore,
since FC; contains PCy, ©; 2 &; (T7-1).

Let S be a semantical system containing individual vari-
ables and individual constants; S may, for instance, contain
the signs and sentences of FC,. The values ([I] § 11) of the
individual variables are called the individuals in S. We pre-
suppose here that all individual constants in S are value
expressions for the individual variables. Therefore, the
designata of the individual constants in S belong to the in-
dividuals; we call them directly designated individuals.
(Other individuals in S may either be designated by complex
individual expressions, e.g. full expressions of functors, or
not be designated at all in S.) Analogously, we call those
attributes which are designated by predicates in S directly
designated altributes in S.

By the normal interpretation of FC we mean that which is
ordinarily used. According to it, ‘(x)(P(x))’ means ‘for
every x, x is P (i.e. x has the property P)’, and ‘(dx) (P(x))’
means ‘for at least one x, x is P’. Hence, if the operators
have a normal interpretation in S, then ‘(x)(P(x))’ is true
in S if and only if every individual in S has the property de-
termined ([I] § 11) by the sentential function ‘P(x)’; and
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‘(dx) (P(x))’ is true if and only if at least one individual has
that property. This consideration leads to the following
definitions D6 and 7.

+D28-6. The universal operator in FC; has a normal
interpretation in S =p, S is a true interpretation for FC,,
and any closed sentence of the form (ix)(&,) is true in S if
and only if every individual in S has the property deter-
mined by &,.

+D28-7. The existential operator in FC, has a normal
interpretation in S =p¢ S is a true interpretation for FC,,
and any closed sentence of the form (Jix)(&,) is true in S
if and only if at least one individual in S has the property
determined by &,.

It is easy to see that there are true interpretations for FC,
in which the operators have a non-normal interpretation,
even if the connectives have a normal interpretation. Thus,
e.g., S; may be a true interpretation of such a kind that the
connectives have a normal interpretation in S;,while ‘(x)P(x)’
is interpreted in S, as ‘“every individual is P, and b is Q”,
and ‘ (dx)P(x)’ as “at least one individual is P, or b is not
Q”. (For this example, see [Syntax] § 62.) Therefore FC,
is not a full formalization of the logic of functions.

. The rest of this section is of less importance; the results
will not be used in the subsequent sections. T1o shows that
some of the previous theorems which contain the condition
of extensibility (D6-1) hold also for FC; and hence for many
other calculi constructed on the basis of FC,.

T28-10. The rules of inference in FC; (D2(5), (10) to
(13)) are extensible.

Proof. For (5): T6-5. — The proof for (10) is analogous to that for
T6-3a. — For (11). From disc(S,disc(©,,&;)), C-implication leads,
step for step, to the following sentences, under the conditions required
for i, (in rule (11)) and for &; (in D6-1): disc(disc(S,S:),S;) (Ts-3k);
disc(disc(Sx,S:), (im)(&)) (rule (11)); disc(Sedisc(®(im) (€1)))
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(Ts5-3k). — For (12). From disc(S:,disc(negc(®),8;)), C-implica-
tion leads to the following sentences, under the conditions required for
imand @;: disc(negc(®y), disc(Gw&))) (T5-3)); disc(nege((Tim) (S4)),
disc(®,&;)) (rule (12)); disc(Ss,disc(negc((Him) (&:)),S5)) (Ts-3))-
— For (13). Between the disjunctionc sentences, direct C-implication
holds, by rule (13) itself.

If K contains a form of FC with predicate variables and contains a
rule of simple substitution for predicate variables and a rule of sub-
stitution with arguments for predicate variables, then these rules can
easily be shown to be extensible. The proof is analogous to that for
T6-3a.

Let us consider a calculus K containing the following rule (11),
which is simpler but weaker than (11). Rule (11'): &; 32 (im) (®)).
This rule is not necessarily extensible. It is so if K permits the opera-
tion known as “shifting the universal operator”, i.e. if (im)(disc(S:;,
S)) 2 disc(S;,(im) (&) in K provided that i, does not occur as a
free variable in &;. This is, for instance, the case in the calculus called
language II in [Syntax], because of PS II 19 ([Syntax] § 30). There-
fore the rule R II 2 ([Syntax] § 31), which corresponds to rule (11")
above, is extensible, as is shown by [Syntax] Theorem 32.2a. Hence
T1o holds also for language II.

The reason for the restriction with respect to free variables in the
definition for ‘extensible’ (D6-1) can now be explained by an example
in FC. If we take the rule (11’) just mentioned, then ‘P(x)’ 32
‘(x)P(x)’. On the other hand, ‘ ~P(x) V (x)P(x)’ (&) is certainly not
a C-implicate of ‘~P(x) VP(x)’ (&,), because &, is C-true while S,
is C-equivalent to ‘(x) (~P(x) V (x)P(x)) ’ and hence to ‘(x) (~P(x))
V (x)P(x)’ and is therefore C-indeterminate. (In the normal interpre-
tation, &, is false if some individuals are P and some are not.) This
shows that the restriction in D6-1 is necessary. On the other hand, it
can be shown that the restriction is strong enough. It suffices to re-
quire that any free variables in &, i.e. the component added, do not
occur freely in the rest, without requiring that &; be closed; because
‘P(y) VQ(x)’ (where ‘P(y)’ takes the place of &;) is C-equivalent to
‘0)(PG)) V Q).

Earlier (at the end of § 6), a procedure was indicated for transform-
ing a non-extensible rule into an extensible one. As an example, let
us suppose that a calculus K contains rule (11’) in such a way that
(z1') is not extensible, e.g. by containing only the rules of deduction
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of FC; (D2) but with (11’) instead of (11). Then the procedure de-
scribed earlier would transform (11’) into the extensible rule (x1).

+T28-11. If K contains FC; and there are no other rules
of inference in K than those of FC,; (D2(s),(10) to (13)), then
the assertions (a) and (b) in T6-14 hold for K. (From Tio,
T6-10, T6-12.)

Ti1 may be called the deduction theorem for FC, (see re-
mark on T6-12). Tio holds also for the other forms of FC
and for the customary forms of the higher functional calculus.
Therefore T11 holds for very many calculi in practical use.
Many postulate systems are constructed on the basis of the
(lower or higher) functional calculus; the postulates (axioms)
are additional primitive sentences (see [Foundations] § 16);
in most cases there are no additional rules of inference.

§ 29. Transfinite Junctives

If the rules of deduction defining the concept of direct
C-implication (or direct derivability) are such that in any
given case we can find out by a finite number of steps whether
or not that concept holds, then that concept and those rules
are called definite; otherwise, indefinite. An indefinite rule
usually refers to a transfinite junctive. This is, in the cases of
indefinite rules used by logicians so far, a transfinite sentential
class (or conjunctive) as C-implicans. But it is also possible
to use a disjunctive rule with a transfinite disjunctive as C-im-
plicate. The use of indefinite rules referring to transfinite
junctives will be necessary for solving the task of a full formali-
zation of functional logic.

In this section we shall discuss indefinite rules and trans-
finite junctives because we shall later find them necessary for
the construction of a calculus which is to be a full formaliza-
tion of functional logic (§ 30).

A concept is called definite (or effective) if its definition
provides a so-called method of decision (Entscheidungsver-
fahren), i.e. a method by whose application we can decide in
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any given case in a finite number of steps whether or not the
concept holds ([Syntax] § 15). If a concept is not definite, it
is called indefinite. If one of the basic concepts defined by
the rules of a calculus K (usually ‘sentence’ and ‘directly
derivable’, including ‘primitive sentence’; sometimes also
‘directly C-false’) is definite, we call the rules defining that
concept definite. If all rules (rules of formation and rules of
deduction) of K are definite, we call K a definite calculus;
otherwise, an indefinite calculus. All calculi of the cus-
tomary kind are definite. But indefinite calculi seem to be
admissible and convenient and even necessary for certain
purposes.

The above remark concerning the concept ‘definite’ is meant as a
rough explanation only. Within an arithmetized syntax (Godel’s
method, see [Syntax] § 19) an exact definition can be given. In this
method, expressions are correlated with natural numbers; therefore
properties and relations of expressions, e.g. the basic concepts of a
calculus mentioned above, are correlated with functions of natural
numbers. A syntactical concept is definite if the correlated arithmeti-
cal function has a certain property for which several exact definitions
have been given which have been shown to coincide with one another:

‘AM-definable function’ (Church and Kleene), ‘general recursive func-
tion’ (Herbrand and Gédel), ‘computable function’ (Turing; see

Journ. Symb. Log., vol. 2, 1937, p. 153).
Concerning indefinite rules which have been used by logicians, see,

below, the comment on D30-3 (14). Concerning the question whether
indefinite rules are admissible, see [Syntax] §§ 43 and 45. An example
of a task which cannot be solved without the use of indefinite rules is
that of constructing an L-exhaustive calculus ([I] D36-3) for arith-
metic (see [Syntax] §§ 14 and 34a, [Foundations] § 10 at the end).

If indefinite rules of deduction for calculi are admitted,
then the rules may refer not only to sentences or finite sen-
tential classes but also to transfinite sentential classes. We
call a rule of deduction which refers to a transfinite sentential
class or junctive a transfinite rule.

All indefinite rules of deduction which logicians have used
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so far seem to be transfinite. Most, if not all, are rules of
inference (i.e. of the form * ; is directly derivable from ;")
of such a kind that the C-implicans ( ;) is a transfinite class
while the C-implicate (Z;) is a single sentence. The reason
for this fact is that the sentential classes have always been
taken in the sense which we call now conjunctive, and that
the use of a conjunctive is essential only as a C-implicans, not
as a C-implicate (§ 23). Now we also use disjunctives; and
their occurrence is essential if they are used as C-implicates.
Therefore it is now possible to extend the scope of the deduc-
tive method still more, by using transfinite rules of a new
kind, with a transfinite disjunctive as C-implicate.

Incidentally, in (interpreted, not formalized) logic as rep-
resented in L-semantics there are analogous possibilities for
the extension of the scope of logical deduction by using a
transfinite conjunctive as L-implicans and a transfinite
disjunctive as L-implicate.

§30. The Calculus FC*

We construct the calculus FC} (D3), which is similar to FCy;
the difference is that FC} is a calculus with junctives and con-
tains three more rules of deduction. These are the two dis-
junctive rules which PC} contains in distinction to PC, (D26-
1(6) and (7)), and a rule (D3(14)) stating that &; is a direct
C-implicate of the transfinite conjunctive of the instances of
©.. In FC{, a universal sentence is C-equivalent to the con-
junctive of the instances of its operand (Tzc); an existential
sentence is C-equivalent to their disjunctive (T3c).

With the help of junctives, a calculus FC* can be con-
structed out of FC such that FC* represents a full formali-
zation of functional logic. For the sake of brevity, we shall
restrict our discussion to the form FC¥ corresponding to FC,.
The classification of signs and the rules of formation of FC}
are the same as those of FC; (D28-1). The rules of deduc-
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tion of FC} (see D3, below) contain those of FC; (D28-2),
with conjunctives instead of sentential classes; further, three
rules (6), (7), and (14) are added. The rules (6) and (7) are
those which we added earlier to PC, in order to construct
PC? (see D26-1b(6) and (7)). (14) is a new rule for the uni-
versal operator, with a transfinite conjunctive as C-implicans
(see D28-4). It will be seen later (§ 31) that, on the basis of
these rules, not only the universal operator but also the ex-
istential operator has a normal interpretation in any true
interpretation for FC}.

Rules of deduction for FC*%

+D30-3. Direct C-implication in FC} holds in the
following cases (1) to (14), and only in these.

1 to 7 as in PC*, see D26-1b.

8 to 13 as in FC,, see D28-2, but with ‘A*’ instead
of ‘A’ in (8) and (g).

14. {@.’(‘E)}' R‘ ©i.

Rule (14) refers to a transfinite conjunctive. Therefore, a rule of
this kind can be established without the use of junctives by reference
to a transfinite sentential class. In this way a transfinite rule corre-
sponding to (14) was first proposed by Tarski (1927) and Hilbert
(1931); see references in [Syntax] § 48, and further Tarski, Journ.
Symb. Log., vol. 4, 1939, p. 105. I have used a corresponding rule for
language I ([Syntax] § 14, rule DC2) and made more extensive use of
transfinite rules also for variables of higher levels (rules of consequence
for language II, [Syntax] § 34a—d, f); see also Rosser, Journ. Symb.
Log., vol. 2, 1937, p. 129.

The following syntactical theorems (T1, 2, 3) will be used
later for showing that, in every [L-]true interpretation for
FC?, the operators have an [L-Jnormal interpretation (T31-1
and 2).

T30-1.
a. If &, (or &) 3 &;in FC,, then &; (or &5, re-
spectively) @ ©; in FC]. (From T23-41a.)
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b. If &;is C-truein FCy, it is C-true in FC}. (From
T23-41b.)
+T30-2. For any &; and i,, with &; = {& (")}, the fol-
lowing holds in FCY}:
a. (ip) (@.) < 3.
b. 87 2 (i,)(S)).
c. (i,)(®,) and & are C-equivalent.
Proof. a. (i,)(©;) C-implies every element of &; (T28-4a, T1a),
and therefore R} (T23-23). —b. &7 72 S: (D3(14)). Therefore,
®: 2 @) (&) (T28-4b, T1a, T23-3, T23-4). — c. From (a), (b).

+T30-3. Let i, be the only free variable in &;, and let £;
be {@s(*)}. Then the following holds in FC}:
a. & < (di,)(S).
b. (Ti,)(&) 2 &
c. (diy)(®,) and 8} are C-equivalent.

Proof. a. Let M be any class of junctives such that & ¢ DM and
that the conditions (b), (c), and (d) in D23-4 are fulfilled. We have
to show that (di,)(S.) ¢ M. Since RY € My, at least one element of
8 e M, (d); thus there is an in,, such that @‘(ilr:,) e M. @e(i',{“) <
(Hiy)(©:) in FC; (T28-4c). Hence, (Hi,)(S:) ¢ D (T23-40d). —
b. Let M: be any class of junctives such that (di,)(S;) e s and

.that the conditions (b), (c), and (d) in D23-4 are fulfilled. We have
to show that £Y ¢ M. Let S, be any closed sentence, and &S, be
disc(Sm,negc(Sa)). Then &, is C-true in PC, (Ts-1a), hence in FC,
(D28-2), hence &, € My (T23-40f). Sa i {Sm, negc(@m)}Y (D3(6));
hence this disjunctive belongs to M (condition (b) for M:). There-
fore, for any closed S, either Sy, or negc(Sm) € Px (condition (d)).
Now we shall show that at least one sentence of ®; belongs to ;.
For the purpose of an indirect proof, let us suppose that no sentence
of & belonged to M. Then, according to the result just found, for
every sentence &; in R;, negc(&;) would belong to My, since &S; is
closed. Let ; be the class of these negationsc of the sentences of R:.
Then R} would belong to M (condition (c)). Let &; be (i,) (negc()).
Then 87 32 ©; (D3(14)); hence &; would belong to My (condition
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(b)). On the other hand, (Hi,)(S:) 2 negc(&;) in FC; (T28-4d).
Therefore, nego(S;) ¢ My, (T23-40d). Hence, {S;, negc(S;)}* would
belong to M, (condition (c)). Every sentence is a C-implicate of
{&;, negc(&;)} in PC, (Ts5-21) and hence in FC; and, hence, would
belong to M (T23-40d) in contradiction to our supposition that no
sentence of & belongs to M. Therefore this supposition is false; at
least one sentence of £; ¢ M:. Hence KY ¢ M (condition (d)). —
c. From (a), (b).

T3b is especially noteworthy: an existential sentence
C-implies the disjunctive of the instances of its operand.
Thus we find a transfinite disjunctive as a C-implicate in
FC?, although the two disjunctive rules in PC} refer only to
finite disjunctives (with two and no elements respectively;
see D26-1, rules 6 and 7) and no new disjunctive rule is added
in FC} (D3). This is brought about by the particular form
of the definition of C-implication for junctives (D23-4).

Instead of the transfinite conjunctive rule for the uni-
versal operator in FC} (D2, rule 14), we could use the follow-
ing transfinite disjunctive rule for the existential operator.

Rule 14. (Tiy)(&) = {@.-(“‘)} where i is the only free
variable in &;. (As to the reason for the restricting condition,
see, below, remark on D31-2.)

Rule (14’) leads to the same results as rule (14) (that is to
say, FCT and the calculus containing (14') instead of (14)
are coincident calculi [I] D31-g).
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§31. FC} is a Full Formalization of Functional Logic

In any [L-]true interpretation for FCY, the universal opera-
tor has an [L-]normal interpretation (T1); that is to say, a
universal sentence is [L-]equivalent to the conjunctive of the
instances of its operand (D1). Likewise, in any [L-]true in-
terpretation for FCY, the existential operator has an [L- Jnormal
interpretation (T2); that is to say, an existential sentence is
[L-Jequivalent to the disjunctive of the instances of its operand
(D2). Hence, FC} is a full formalization of functional logic.

As we have said earlier (§ 28), we presuppose a system of
functional logic of such a kind that every individual in it is
directly designated. Therefore, a universal sentence (i) (&)
is true if and only if every instance of &; is true. Hence, if
we use junctives, the universal sentence is true if and only
if the conjunctive of the instances of &; is true; both are
L-equivalent to one another. Analogously, the existential
sentence (dix)(&;) (if it is closed) is true if and only if at
least one instance of &; is true; it is therefore L-equivalent to
the disjunctive of the instances. On the basis of these con-
siderations, we can define the concepts of normal interpreta-
tions of the operators (D1a, D2a) with respect to FC}. These
definitions are simpler than the former ones with respect to

-FC; (D28-6 and 7). It is easy to see (with the help of D21-3
and 4) that the new concepts are in accordance with the
previous ones. Further, the concepts of L-normal interpre-
tations are here easily definable (D1b, D2b).

+D31-1a[b]. The universal operator in a calculus K
(containing a form of FC or FC* with junctives) has an
[L-]normal interpretation in S =p; S is an [L-]true in-
terpretation for K, and for every &, and i; in K such that
iz is the only free variable in &, (ix) (&) is [L-]Jequivalent to
{&{")}"in .

+D31-2a [b]. The existential operator in a calculus K
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(containing a form of FC or FC* with junctives) has an
[L-]Jnormal interpretation in S =p; S is an [L-]true in-
terpretation for K, and for every &; and i; in K such that
i is the only free variable in &;, (ix) (&) is[L-Jequivalent to
{@(*)} in S.

The following counter-example shows that the condition that iy is
the only free variable in &, is essential for D2. In functional logic,
‘(dx)R(x,y)’ is not L-equivalent to the disjunctive of the instances
‘R(a,y)’, ‘R(b,y)’, etc. The existential sentence is L-equivalent to
‘()(dx)R(x,y)’, while the instances are L-equivalent to ‘(y)R(a,y)’,
‘(y)R(b,y)’, etc., respectively, and hence their disjunctive is L-equiva-
lent to ‘(dx)(y)R(x,y)’. This sentence is stronger than ‘(y)(Hdx)
R(z,y)’.

The same condition in D1 is not essential (the proof for T1 makes
no use of it) but has been added merely for the sake of analogy.

+T31-1a [b]. If S is an [L-]true interpretation for FC},
then the universal operator in FC¥ has an [L-]normal in-
terpretation in S.

Proof fora [b]. Let.Sbean [L-]true interpretation for FC3I. Then,
for any &; and i in FCY, (i) (&) and {@‘.(‘*)}' are C-equivalent in
FCT (T30-2¢c) and hence [L-]equivalent in S (T23-18 [19c]). Thus
the universal operator has an [L-]normal interpretation in S (D1).

It is easy to see that a transfinite rule is necessary in order
to assure the [L-Jnormal interpretation of the operators in a

calculus K containing FC. (ix)(®,) and {@;("‘)}' must be

C-equivalent in K. The rules of FC, suffice to make every
instance of &;, and hence also their conjunctive, a C-impli-
cate of (i)(®,). The problem is how to make the universal
sentence a C-implicate of the conjunctive of instances. The
universal sentence is not an L-implicate of any proper sub-
class of the conjunctive, since from the fact that some in-
dividuals have a certain property we cannot infer that all
have it; still less is it an L-implicate of any finite sub-class.
Here, therefore, a transfinite rule is necessary which makes
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use of the whole transfinite class of instances, as rule (14) in
FC? (D30-3) does and the alternative rule (14’) mentioned
above.

+T31-2a[b]. If S is an [L-]true interpretation for FC¥,
then the existential operator in FC} has an [L-Jnormal in-
terpretation in S.

Proof for a [b]. Let S be an [L-]true interpretation for FC}. For
any &; and i, in FC] such that i is the only free variable in &;,

(i) (&) and (& ..(i")}" are C-equivalent in FC¥ (T30-3¢) and hence
[L-Jequivalent in S (T23-18 [19c]). Thus the existential operator
has an [L-]normal interpretation in S (D2).

T1 and 2 show that FCY is a full formalization of functional
logic.

An existential sentence can be transformed in FC, into a
C-equivalent sentence with a universal operator and two
signs of negationc (T28-4d,e). Therefore, if the universal
operator and the sign of negation. have an [L-]Jnormal in-
terpretation, then the same holds for the existential operator.
On the other hand, a universal sentence can be transformed
into a C-equivalent sentence with an existential operator and
two signs of negationc (T28-4f, g). Therefore, if the existen-
tial operator and the sign of negation. have an [L-Jnormal
interpretation, then the same holds for the universal operator.
Thus we have seen that in FC} (D30-3), where neg. has
always an [L-Jnormal interpretation because of the sub-
calculus PCY (T27-1), the rule (14) for the universal operator
suffices to assure the [L-Jnormal interpretation not only for
this operator (T1) but also for the existential operator. (T2).
Likewise, the rule (14’) for the existential operator (see § 30
at the end), taken instead of (14), would suffice to assure the
[L-]normal interpretation for both operators.
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§32. Involution

An alternative to the use of junctives is outlined. It con-
sists in the introduction of the concept of involution (D1) and
the corresponding L- and C-concepts (D2 and 6). A calculus
FCt* is given in the form of a definition for ‘direct C-involu-
tion’ (D12). This calculus corresponds to FC}; however, it
refers not to junctives but only to sentences and sentential
classes. FC}* is, like FCY, a full formalization for functional
logic.

An alternative to the use of junctives will briefly be ex-
plained here, a semantical and syntactical terminology
which allows the formulation of the same things we have
formulated above in terms of junctives.

We have previously introduced junctives in syntax in
connection with the concept of C-implication (§ 23). We
have seen that the reference to a conjunctive ®; is essential
only when it occurs as a C-implicans, while its occurrence as
a C-implicate can always be avoided by a reference to the
sentences of ;. On the other hand, the reference to a dis-
junctive &7 is essential only when it occurs as a C-implicate.
This suggests the introduction of a term, say ‘C-involution’,
for the special case of the relation of C-implication between
a conjunctive and a disjunctive. Therefore, we shall intro-
duce ‘involution’ (D1) in such a way that ‘®;involves &;’
means the same as previously ‘&; implies &;’; the terms ‘L-
involves’, ‘F-involves’, and ‘C-involves’ will be used in an
analogous way. However, ‘involves’ will not be defined in
terms of junctives. We shall use it in a metalanguage which
does not refer to junctives but only to sentences and neutral
sentential classes. These classes are neutral in the sense that
they are construed neither conjunctively nor disjunctively.
Therefore, the concept of truth is not applied to sentential
classes but only to sentences. This concept is taken here as
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basic (in D1); the other radical concepts may be defined as
previously ([I] § 9) but with respect to sentences only.

D32-1. ®;involves &; (&; is an involute of ®;; &; < &;)
(in S) =p¢ at least one sentence of &; is not true or at least
one sentence of R; is true.

We define this and the following concepts with respect to
sentential classes only. We make the general convention that
the application of one of these concepts to a sentence &; is
an abbreviation for its application to {&,}.

T32-1. ©; 4 ©;if and only if &; — &;.

Proof. &;— &; if and only if {&,} - {&;} (convention), hence if
and only if &; is false or &; is true (D1), hence if and only if &; — €;
((1]Dg-3).

On the basis of D1 and T1, ‘involution’ can now be applied
to T, i.e. to members which are either sentences or (neutral)
sentential classes.

The concept of L-involution could be introduced either by
a reformulation of the postulates for L-concepts (§ 22, [I]
§ 14) or on the basis of the concept of the L-range of a sen-
tence (Lr&,, §§ 11 and 22, [1] § 20). We shall indicate here
the second way. L-implication corresponds to inclusion of
L-ranges (D11-7); hence & + &5 if and only if the product
of the L-ranges of the sentences of ; is contained in the sum
of the L-ranges of the sentences of &; (D22-1 and 2). This
leads to Da.
D32-2. &; L-involves &; (®; is an L-involute of &;;
®: 71 #;) (in §) =py the product of the L-ranges of the sen-

tences of ®; is contained in the sum of the L-ranges of the
sentences of ;.

In the syntax of junctives, the rules of deduction of a
calculus K are formulated as a definition of ‘direct C-impli-
cation in K’ (§ 23). On the basis of this concept, C-implica-
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tion (D23-4) and the other C-concepts are defined in such a
way that they fulfill the requirement of adequacy, i.e. that
they hold in all those cases, and only those, in which the
corresponding radical concepts hold in every true interpre-
tation for K. An analogous procedure can be applied for the
introduction of ‘C-involution’. Here, the rules of deduction
define ‘direct C-involution’ (¢ J7). We have to begin with

a definition of ‘true interpretation’, analogous to D23-1.

D32-5a [b]. S isan [L-]true interpretation for K =p;S
is an interpretation for g ([I] D33-1), and for every ¥, and
T;, if T, ;g I; in K, T H—j T; in S.

The definition of ‘ C-involution’ is analogous to D23-4 but
simpler.

D32-6. &; C-involves ®; (®; is a C-involute of 8;;

f: o &) (in K) =p every class £ which fulfills the follow-

ing conditions, (a) and (b). contains at least one sentence of
K.

a. §; C K.

b. For every 8, and 8,,if 8 C R and R» J Rn,

then at least one sentence of &, ¢ K.

&1 1in D6 corresponds to M, in D23-4. In analogy to T23-1,
it can here easily be seen that, if & is the class of the sen-
tences in K which are true in a true interpretation S for K,
then &, fulfills the condition (b) in D6. Further, in analogy
to T23-11: If S is an [L-]true interpretation for K and
T4 in K, then T; o % in S. Hence D6 fulfills the re-

quirement of adequacy. The same holds for D7 and 8.
D32-7. &;is C-true (m K) =psr A ‘(':‘{ S;.
D32-8. &;is C-false (in K) =p¢ & J A.
Any sentence or rule in the metalanguage (semantics or

syntax) formulated in terms of junctives can easily be
translated into a sentence or rule formulated in terms of in-
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volution. For instance, a sentence stating the relation of
implication (or L-implication, or C-implication, respectively)
between two junctives is translated into a sentence stating
the relation of involution (or L-involution, or C-involution,
respectively) in the following way. ‘@&,’ remains unchanged;
‘®:’ as (L-, C-) implicans and ‘8}’ as (L-, C-) implicate are
replaced by ‘®,’; ‘®;’ as (L-, C-) implicate and ‘R’ as (L-,
C-) implicans are replaced by ‘every sentence of &;’.

As an example of the formulation of the rules of deduction
of a calculus K as a definition for ‘direct C-involution in K,
we shall state the rules for the calculus FC}*. This calculus
corresponds to FCT (D30-3) in the sense that its rules result
if we translate the rules of FC} from the syntax language of
junctives into the syntax language of involution in the way
just indicated. Therefore the calculus FC}* is likewise a full
formalization of functional logic.

D32-12. Direct C-involution in FC}* holds in the
following cases, (1) to (14), and only in these.
1 to 5 as in D2-2b but with * b " instead of ‘32’.

6. disc(&:,®;) - {&;, &;}, where &, and &; are

closed.
7.V 4 A.

8 to 13, as in D28-2, but with = ’ instead of ‘.
i
14. {@,-( *)} e
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