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PREFACE

Tex aim of this'book is, as its title implies, to give the reader
an introductory course in Projective Geometry. It aims, there-
fore, at removing the Euclidean prejudices which the study of
elementary Geometry begets, and at substituting for them what
may be called the Projective mentality ; at the same time it
seeks to familiarize the reader with most of the important
methods used in the subject. Since these include not only what
are called pure or Synthetic methods, but also the Algebraic
method, the latter is included in the book. And in order that
the subject-matter may be kept as simple as possible until
facility in the use of these methods is attained, the work is con-
fined to two-dimensional Projective Geometry.

In the first six chapters of the book, after a short historical
introduction, the synthetic method is developed as far as the
investigation of the more complex properties of the conic. In
the next two chapters coordinate systems are introduced pro-
fectively, and the Algebraje method is developed. This intro-
duction of coordinates m&kés possible the definition of metrical
concepts, and these are discussed in the ninth and tenth chap-
ters, their true place in the scheme of Geometry being shown.
After a short treatment of the theory of transformations,
the work is brought to a close by a chapter which indicates
the possible developments of the subject from the point
reached. ‘

It cannot with truth be said that the book has been written in
order to ‘supply a long-felt want’. There seems, unfortunately,
to be very little demand for the teaching of Projective Geo-
metry in this country. In default of this excuse, therefore, the
authors must fall back on another, namely the hope that their
work may do something to stimulate a demand for more wide-
spread familiarity with the subject. It is surely time that
scholarship candidates in Mathematics and first-year Univer-
sity students should be allowed to know that the classical Geo-
metry which they assimilate occupies but a subsidiary place in
the scheme of Geometry. An acquaintance with Projective
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Geometry shows them what things are fundamental and what
are subsidiary in that scheme; it prepares them too for
Geometries even more general than Projective Geometry,
and for some at least of the subtleties of modern mathematical

Physics. C. W. O’H.
14 September 1936 D.R. W.
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CHAPTER 1
HISTORICAL AND CRITICAL

1.1. Historical Outline

It is not a waste of time to begin the subject of Projective
Geometry with a short study of its history, and there are two
reasons for doing this. The first is that Projective Geometry
has behind it a very long history which is well worth knowing
for its own sake. The second is that the reader who takes up
the subject already knowing something of its history is better
equipped to understand it, since he has at least seen in what
direction the logical development of the subject is going to take
him. In such a book as this it is, naturally, impossible to give
a detailed account of the history, but enough can be said to
indicate the main courses along which it has developed, and to
show the significance of the more important turning-points in
those courses.

Looking back from the standpoint of our present-day know-
ledge, we can distinguish three important lines along which
(Geometry has developed. In the earliest period, which extends
from the time of the Greek geometers or earlier up to the middle
of the seventeenth century, only two of these appear. The work
of Euclid may be taken as typical of the first of these two. His
object was to elaborate a science of the measurement of physical
space, and to this end, starting from intuitional ideas of such
terms as point, line, and distance or length, and their properties,
he deduced a number of geometrical theorems which he classi-
fied. It should be noticed that to Euclid and those who followed
him the notion of distance was fundamental and all-pervasive;
it was taken to be so obvious an idea that it did not need to be
defined, and it underlay everything in his geometrical science.
This will be better realized when it is remembered that the
Geometry which is still taught to-day in schools differs very
little from that first elaborated by Euclid. Because of this
fundamental importance in his Geqmetry of the notion of
distance, the line of development of which Euclid is typical is

called the line of metrical development.
4101 B



2 PROJECTIVE GEOMETRY

An examination of the work of Pappus (c. 200 B.c.) shows
that he was interested in a type of theorem that is not concerned
with distance, but with such things as concurrence of lines and
collinearity of points. This type of theorem may be called for
the present the Projectiye type, and for this reason the second
line of development is €alled the line of projective development.
It must not, however, be thought that Pappus excluded from
his Geometry the notion of distance; he and his followers did
not hesitate to use metrical ideas in proving these non-metrical
theorems. At the time, and indeed for many centuries, the
distinction between the two tiypes of theorem was not seen.

If the subsequent history of the metrical line of development
be followed, it will be found that very early in the history of
Geometry geometers directed their efforts towards one parti-
cular object in addition to the general aim of proving new geo-
metrical theorems. This was to remove what had come to be
considered a blemish on Euclid’s system. Euclid himself, and
all who came after him, had found it absolutely necessary to
assume some sort of ‘parallel postulate’t in order to deduce
any theorems about parallel lines. The necessity of assuming
such a postulate was looked upon as a fault in the system, and
geometers were convinced that somehow or other it could be
proved from the other axioms. Outstanding amongst those who
attempted to do this was Saccheri (1733). His method was the
well-known method of reductio ad absurdum, and in following it
he unwittingly investigated what is now sometimes known as
non-Euclidean Geometry. With him must be mentioned Loba-
tchewskij (1829) and Bolyai (1833) who, convinced by the un-
successful attempts of geometers to prove the parallel postulate
that it was definitely not deducible from the other axioms of
elementary Geometry, built up a system of metrical Geometry
based on the logical alternative to the parallel postulate.

So far, two of the main lines of development of Geometry
have been noticed, and with Descartes (1637) the third begins.
Descartes introduced into the study of metrical Geometry a

t In modern text-books of Geomeotry which are in use in schools the postu-
late known as Playfair’s Axiom is usually assumed. This runs: Through any
point not on a given line, one and only one line can be drawn parallel to the given
line.
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method which is now known as Coordinate Geometry or Analytical
Geometry. The essence of this method is that the concepts of
elementary Geometry are expressed in algebraic language, and
the various theorems are proved therefrom by the application
of the laws of Algebra. It is quite clear that Descartes thought
the traditional geometrical methods cumbrous and unphilo-
sophical, since they all seemed to him to depend on the happy
intuition of & construction which would lead to the proof of the
desired theorem. For this apparently haphazard method he
wished to substitute the universally applicable, certain, and
abstract method of proof by Algebra. Descartes’s new method
was still a metrical method, although it marks the beginning of
a new line of geometrical development; to distinguish it from
what has just been considered, it will be called the Metrical-
Analytical line, and Euclid’s the Metrical-Synthetic line.

A question naturally arises here: is it licit to call by the name
of Geometry such a method as the analytical method? As an
historical fact, mathematicians were very sharply divided in
their opinions, and it was because of this that there arose the
terms Pure (or Synthetic) Geomelry, and Analytical Geometry.
Those on the extreme right would not admit that any proof of
a geometrical theorem by algebraic methods was a valid proof,
though they admitted that these methods might be used to
suggest problems for the pure geometer. Those on the extreme
left did not indeed condemn the methods of Pure Geometry as
invalid, but they certainly despised them as elephantine.t

The next critical phase in the development of metrical
Geometry occurs with the publication of Poncelet’s work (1822).
Although he was convinced of the autonomy of Pure Geometry,
so that his contribution to Geometry is really an advance along
the Metrical-Synthetic line, he did not disdain to learn some-
thing from Analytical Geometry. Analytical Geometry, we
have seen, took over from Pure Geometry the fundamental
ideas, and translated them into algebraic language; Poncelet,

1 An interesting example of the division of opinion is shown in the editorial
policies of two of the leading mathematical journals of & century or more ago.
Crelle’s Journal would never admit to its pages dny algebraic proof of a geo-

metrical theorem; Liouville’s Journal, on the other hand, refused to print
anything but algebraic proofs of geometrical theorems.
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however, took over from Algebra and Analytical Geometry, and
translated into pure-geometrical terms, certain ideas and prin-
ciples which it seems hard to believe the pure geometer would
have discovered for himself until very much later. This point,
because of its importance, needs to be illustrated by a concrete
example. ;K

In Algcbra, until the theory of complex numbers was founded
on a firm basis, all that could be said of a quadratic equation
was that it had two distinct, or two coincident, or no roots.
But once complex numbers had been admitted with full rights
into Mathematics, it could be said that every quadratic equation
without exception had two roots. Now it will easily be seen
that the problem of finding the points common to a straight
line and a conic by methods of Analytical Geometry leads
always to the solution of a quadratic equation. Hence, once
complex numbers were placed on the same level as other
numbers, the analytical geometer became convinced that any
conic and any straight line always had two points, distinct or
coincident, in common. This conviction was not overthrown by
its apparent contradiction with the inference to be drawn from
the figure on paper; in fact, it led the analytical geometer to the
further conviction that the points which he could draw physi-
cally on paper were not all the points of which Geometry should
treat. In passing, it should be realized that this in itself was an
important step forward, for it meant that mathematicians were
beginning to get a more abstract idea of the terms point and line.

Poncelet’s advance on his predecessors was to take over this
analytical discovery into Pure Geometry, and to state definitely
as a principle that any conic and any line had a pair of common
points, and that from any point two tangents could be drawn to
a conic. These new complex poinis were taken over into Pure
Geometry and their interrelations discussed by pure-geometrical
methods in just the same way as the other points of the geo-
metrical field, even though they could not be represented by
marks on paper. This did not, as a matter of fact, exhaust
Poncelet’s contribution to Geometry, but the remainder of his
work belongs rather to the projective line of development, to
which we now return.
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It has been said about Pappus, whosc name is the first to
occur in the second, or Projective, line of development, that
while the theorems he collected were non-metrical, his proofs
of them were based on metrical theorems. It can also be said
that all investigation of theorems of this type was for a long
time marred by the fact that they were proved metrically.
Development along the projective line was thus a mixed or
hybrid development, and it is perhaps because of this that
progress was slow. Even the contributions made by Desargues
(1593) and Pascal (1623), though they were purely projective
and non-metrical theorems, were proved metrically.

It was not until the publication of Geometrie der Lage (1847)
and Beitrige zur Geometrie der Lage (1856) by von Staudt that
Projective Geometry began to emerge as a geometrical science
entirely independent of the notion of distance. It is scarcely
an exaggeration to say that von Staudt’s work began to open
mathematicians’ eyes to the real nature of Geometry, and made
them begin to suspect that length, hitherto looked upon as a
fundamental geometrical notion, was not so in fact. An English
mathematician, Cayley (1859), brought von Staudt’s work to
completion by showing that distance or length could be defined
in simpler terms, and moreover that what had hitherto been
accepted as the idea of distance was in fact only a particular
case of the much more general projective definition. This led to
the further and not less important conclusions that not only was
the Metrical Geometry which had been studied since the time of
Euclid merely a part of the more general science of Projective
Geometry, but that the non-Euclidean Geometries elaborated
by Lobatchewskij, Bolyai, Riemann, and others were also only
sub-sciences of Projective Geometry. In fact, Cayley was led
to declare that ‘Projective Geometry is all Geometry’.

Cayley’s work was done by algebraic methods, and it was left
to Klein (1872) to translate it into the language of Pure
Geometry. Thenceforward, Projective Geometry, whether pure
or analytical, gradually came to be recognized as the funda-
mental geometrical science of the simplest type, and Metrical
Geometry as the expression in other terms of some of its
theorems. It is interesting to note that in Cayley’s general
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projective definition of distance was contained the solution of
a number of problems in the very modern Theory of Special
Relativity; so that, as often happens, the pure mathematician
had anticipated the needs of modern physical science.

With the completion,of the work of Cayley and Klein it can
safely be said that all #he most important results and principles
of Projective Geometry were finally made explicit. But develop-
ment was not on that account arrested. For there still remained
the task of ordering the science of Projective Geometry hier-
archically. That is to say, its propositions had to be classified
and arranged in order of dependence, and the fundamental, un-
proved initial propositions stated and reduced to their simplest
terms. This process has gone on almost to the present day.
But even so there remained one more important development.
For it remained to show that the lines and points of which
Projective Geometry speaks were not necessarily the particular
ones which had helped the historical development, but rather
any objects of which the initial propositions of Projective
Geometry are true. This particular result has only come about
through the awakened interest in the philosophy of Mathematics
which the past half-century has shown. Mathematicians have
now realized that Geometry deals not with the points and lines
of physical space necessarily, but with something much more
abstract; it is no longer their aim to measure physical space;
that task is now left to the physicist, who may or may not find
the mathematician’s theorems of value in performing it.

1.2. The Characteristics of a Mathematical Science

At the end of the foregoing paragraphs it was said that
Geometry no longer concerned itself necessarily with the points
and lines of physical space. It is necessary to explain this state-
ment carefully, for plainly it is essential that the reader should
know from the outset what sort of objects Projective Geometry
is dealing with. In order to do this we consider for a moment
what a science is, and how a branch of Mathematics differs
from other sciences.

In Physics we start from certain observed facts, usually the
results of experiments in the laboratory. From these results,
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and from the admitted principle of uniformity in nature, we
argue to the causes of the observed facts, and so formulate
physical theories to account for them. We may also argue from
them that certain other experiments, not yet performed, will
have certain results.

In History, similarly, we start with recorded facts; from these
we can sometimes argue that certain unrecorded facts must
have occurred, and we may also trace the effects of these re-
corded facts, even though they are not recorded as effects.

In both these examples, and indeed in any example of a
science that may be chosen, two parts are clearly distinguish-
able; the first may be conveniently called the initial proposi-
tions; the second is the process of inference from these initial
propositions.

In any branch of Mathematics the same two parts can be
distinguished, for there too are initial propositions and infer-
ences drawn from them. But, in a branch of Mathematics, the
initial propositions are not statements of observed or recorded
facts; indeed, they are not statements of physical fact at all.
It is true that they may have been suggested by observed facts,
but, nevertheless, the initial propositions of Mathematics are
always, in essence, propositions about ideas or concepts whose
full connexion with physically existing reality is a matter of
secondary importance to the mathematician.

To the Greek geometers, and indeed to the geometers of many
subsequent centuries, the points and lines of Geometry were the
points and lines of physical space, and the science of Geometry
was a set of deductions from certain observed facts about them.
Nobody ever pretended that it was anything else. It was only
as a result of Poncelet’s work that mathematicians began to see
that when they used the words point and line they were really
talking of something more general and more abstract than their
predecessors had done. For nobody believed that the newly
introduced complex or ‘imaginary’ points were points of
physical space; nevertheless they were points in the sense in
which Geometry made use of the term. And so, after Poncelet’s
time, the terms point and line stood for things of which the

points and lines of physical space were but particular cases.
L]
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But the real opportunity of framing a completely abstract
and mathematical definition of the terms had occurred earlier,
and been missed, when Descartes introduced Analytical Geo-
metry into Mathematics. Indeed, the full significance of
Analytical Geometry was not realized by mathematicians for
two and a half centyries. They are not to be blamed for this,
for the point is somewhat subtle; nevertheless it is worth trying
to grasp.

To Descartes the coordinates (x,y) of a point were but a
label distinguishing that point from the rest. Similarly, the

equation le+my+n = 0

was an equation which was associated with a certain line, and
which distinguished it from all the rest. Had he made a slight
addition to his terminology he might have reached a conclusion
which would have prevented all the subsequent acrimony be-
tween analysts and synthetists, and which would also have
anticipated modern work.

Let us suppose that in addition to speaking of ‘the point
(,y)’ he had also spoken of ‘the line [, m,n]’, meaning thereby
the line whose equation is

lz+my+n = 0.
[?,m,n] would then have been a label attached to a line in just
the same way that (z,y) was alabel attached toa point. Analyti-
cal Geometry would then have dealt with number-pairs—Ilabels
attached to points—and number-triples—labels attached to
lines. But another point of view would have been possible; for
instead of considering spatial Geometry as the principal science
and Analytical Geometry as but its algebraical translation,
Analytical Geometry could have been looked on as the principal
science—the science of these number-pairs and number-triples
—and spatial Geometry as merely a spatial representation of
it. It is quite clear that either of the two can be considered the
principal science, and the other as the ancillary science, and
that neither has any real claim to priority. It is quite clear too
that any theorem about spatial points and lines can be trans-
lated into a theorem about number-pairs and number-triples,
and vice versa. The real, abstract, science of Geometry is the
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same whichever of these two kinds of things is supposed to be
its object, for ultimately the reasoning processes involved are
exactly the same in form. And if somebody else had thought of
some other way of representing spatial points and lines, the
very things used to represent them could have been looked on as
the objects of a new science, and the reasoning processes about
them as a science in its own right.

It is clear then that Analytical Geometry, considered as a
science concerned with number-pairs and number-triples, and
Synthetic Geometry have equal claims to be considered as
sciences in their own right; and, on account of their similarity,
have equal claims to be called Geometry. The first principles of
Geometry—the ¢nitial propositions of which we spoke above—
can be formulated in terms of either of the two, and the subse-
quent reasoning can with equal validity be in terms of either of
the two. Now because of all this, it follows that the whole
complexus of points and lines of Synthetic Geometry with their
interrelations and the whole complexus of number-pairs and
number-triples of Analytical Geometry with their interrela-
tions must have some property or properties in common. It is
precisely on account of this which is in common between them
that there is a science common to the two sets of things. And if
there is a third set of things into terms of which Geometry can
be translated, this third set has something in common with the
other two; and so on. Clearly, Geometry is concerned with what
is common to the various possible sets of things and not with
the particular properties of each set which differentiate it from
the others.

Now though it would be possible to enunciate Geometry in
terms of either the points and lines which Euclid thought of, or
the number-pairs and number-triples which Descartes might
have thought of, or in terms of any other adequate set of things,
to do so would be cumbrous. It would be rather like stating
Geometry in two or more different languages at once. We
therefore agree to use terms which by convention mean any of
these different things which we know have something in com-
mon, just as we have agreed in ordinary everyday language to

- use the term animal indifferently of cats, dogs, and elephants.
4191 o
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Instead of having to speak of points and number-pairs, we
agree to use the term point indifferently not only of both of these
but of any other objects which can play the role these play in
Geometry; similarly the term Zine is used to signify anything
which can play the role which number-triples play. In other
words, the meaning a,pé:chcd to the words point and line has at
one and the same tirhe been made wider and more abstract.

This modification of the meaning of these terms must be
carefully noted, and two mistakes avoided. On the one hand,
it is not true that in modern Geometry the terms mean some-
thing entirely different from what they meant, say, to Euclid;
on the other hand, there has been a very definite and important
change in their meanings. They have, in fact, been generalized.

Having now seen what meaning is attached to the terms
point and line in the science of Geometry, we return to the
question of the initial propositions. Plainly, these will be pro-
positions about points and lines in the geometrical sense of those
terms, and not in any other sense. But since the terms stand
for a much wider class of things than physical points and lines,
the initial propositions cannot merely be statements of observed
physical facts. Indeed, the mathematician as such is not very
much concerned whether or not his initial propositions have any
physical application. In this, Geometry resembles every other
mathematical science, and it is precisely here that Mathematics
differs from other sciences. In Physics, for instance, the initial
propositions are very definitely statements of physical fact; in
Mathematics they may or may not be, and the mathematician
is not concerned even to know whether they are or not.

It may occur to the reader to suggest that since the initial
propositions of a mathematical science are as abstract as the
foregoing remarks imply, it is open to the mathematician to
lay down any arbitrary set of propositions as the initial pro-
positions of a new branch of Mathematics. Even apart from
the question whether such an arbitrarily founded science would
be fruitful, there is an important condition to be fulfilled by the
initial propositions, and this prevents an entirely arbitrary set
being chosen. For it is essential that they should be self-con-
sistent; that is to say, they must not lead to contradictions.
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This is equivalent to saying that a set of initial propositions
must not be such that the contradictory of any one of them can
be logically deduced from the rest. The necessity of this con-
dition need not be enlarged upon. In Physics and all other
natural sciences it is automatically fulfilled, but because
Mathematics is not one of the natural sciences, the mathemati-
cian must see to it before he starts his work that his initial
propositions are consistent.

To do this, he must prove what is called an existence-theorem.
This is done by finding a set of things of which his initial pro-
positions are true, for if they arc simultaneously true in even
one such case, they cannot be inherently self-contradictory. In
other words, he must know of at least one particular instance of
the general concepts with which his science deals.

In the second half of this chapter an attempt has been made
to sketch the logical and conceptual basis on which a mathe-
matical science rests, and in the following chapters the science
of Projective Geometry is worked out in accordance with the
principles here laid down. The full significance of what has been
said will appear more clearly as the subject is developed, and
the reader will be well advised to return to this section in the
course of his reading.



CHAPTER II
THE PROPOSITIONS OF INCIDENCE

ProseoTIvE GEOMETRY does not start where elementary Geo-
metry leaves off; thapis to say, it does not presuppose any of
the results of elementary Geometry. It stands by itself, and
is developed logically from its own initial propositions. The
reader will find, however, that the two subjects are not entirely
unconnected, for it will appear that elementary Geometry is
a particular case of Projective Geometry. As a consequence of
the fact that it is not dependent on elementary Geometry he must
not expect to find that the initial propositions are familiar to him
from what he already knows. Indeed, it is only at the end of the
development that he will see elementary Geometry emerging.
But it must not be supposed that the only aim of Projective
Geometry is to establish the results of elementary Geometry;
it does this incidentally, but at the same time it shows them
in their true perspective, for it shows clearly what places in the
hierarchy of Geometry this and other Geometries occupy.

In this chapter are laid down the first few of the initial pro-
positions of Projective Geometry, and the first elementary
deductions from them are made.

2.1. Undefined Elements and Initial Propositions
Projective Geometry deals with two kinds of things to which
are given the names of point and line.t No definition of these
terms is given save that which is implied by the initial pro-
positions. These state certain relations between points and
lines, and since there is contained in them the only definitions
of the terms, any things between which the relations stated by
them can exist are amongst the possible sets of objects studied
by the science.
The first three of the initial propositions are termed the
initial propositions of incidence:
2.11. The Initial Propositions of Incidence}

t Butsee 2.7.
1 In order to distinguish initial propositions clearly from propositions which
are deduced from them, they are printed always in heavy type.
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2.111. There is at least one line on which are both of two
distinct points.

2.112. There is not more than one line on which are both
of two distinct points.

2.113. There is at least one point which is on both of two
distinct lines.

2.12. Remarks on the Propositions of Incidence

(@) The propositions of incidence speak of but one kind of
relation between a point and a line, and to this relation is given
the name of being ‘on’. While they do not state how many
points have this relation to any particular line, the first two
state that two different points always have it to one and only
one line. The third states that of all the points which are
severally on two different lines, there is at least one which is
on both.

(b) As in elementary Geometry, it is convenient to refer to
points by means of Roman capital letters: 4, B, C, etc. In
addition to this usage, lines will be referred to by means of
small letters: a, b, c, etc.

(c) Because a point P is on a line g, there is a converse rela-
tion between g and P, and to this relation a name must be given.
For reasons which will appear very soon, it is most convenient
to say that if a point P is on a line g, then the line ¢ is on the
point P. This may be put formally as a definition.

DErINITION. A line g is said to be on a point P if and only
if the point P is on the line ¢.}

(@) It may occur to some readers to object at this point that
the statement made earlier on that elementary Geometry is a
particular case of Projective Geometry cannot be true. For it
may be argued that since in elementary Geometry pairs of
lines can be found which are not on a common point, namely
parallel lines, the initial proposition 2.113 is not true in ele-
mentary Geometry. Hence since one of the initial propositions
is not verified, elementary Geometry cannot be a particular
case of Projective Geometry.

t Many text-books do not adopt this terminology ; instead they speak of &
line ‘passing through’ a point.
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The real answer to this difficulty lies in the fact that since
elementary Geometry is based on the fundamental notion of
distance it can only consider points which are at a finite distance
from the points under consideration. Hence in elementary
Geometry all that cay be asserted with certainty is that parallel
lines are lines whiqz/:re not on a common point at a finite
distance; whether or not they are on a point which is not at a
finite distance, elementary Geometry is incapable of saying.
And so it cannot assert categorically that parallel lines are not
on a common point. While what has been said cannot pretend
to be a full answer to the difficulty raised, it at any rate con-
tains the substance of the answer, and indeed all that can use-
fully be said at this point. Later on, the reader will see for
himself the full answer, and he will see too that what has been
said is not merely a verbal quibble.

2.2, Existence Theorems

In order to show that the propositions of incidence are not
mutually contradictory, it is necessary to prove an existence
theorem. As has been explained in the preceding chapter, to do
this two sets of objects to which can be given respectively
the names ‘points’ and ‘lines’ must be shown to exist, having
relations between them to which can be given the name of ‘on’.
‘When this has been done, it is necessary to prove that with these
interpretations of the terms point, line, and on the initial pro-
positions of incidence are verified. Such a set of objects will
then be called a representation or a verification.

A number of representations are given, not so much with the
idea of convincing the reader by repeated argument that the
initial propositions of incidence are compatible, as of showing
him the variety of different kinds of things to which the con-
cepts of Projective Geometry are applicable.

2.21. The Algebraic Representation

(@) A number-triple (x,y,z), where z, y, and z are any numbers
whatever, with the sole proviso that not all of them are zero,
will be called a ‘point’. Since, however, not the numbers them-
selves but only their ratios are considered, the number-triple
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(kx, ky, kz), where k is any number different from zero, is not
considered to be different from (z,y, 2).

(6) A number-triple[l, m,n], where I, m,and n are any numbers
not all equal to zero will be called a ‘line’. As before, the triple
[¥1, km, kn], where k is any number different from zero will not
be considered different from [/,m,n]. To distinguish ‘lines’
from ‘points’ the number-triples representing the former will
be enclosed in square brackets.

(¢) A ‘point’ (x,y,2) will be said to be ‘on’ a ‘line’ [I,m,n] if
and only if le+my-+nz = 0.

(d) It remains to show that with this representation of the
terms the propositions 2.111-2.113 are verified.

First, let (z,y,2) and (z',%',2’) be two different points, so that
not all of the equations

zle’ = yly' = 22
are true; that is to say, not all of the expressions
(2’ —2y'), (a'—x2'), (xy'—ya')
are equal to zero.

Suppose now that
l= (yz'—zy"),
m = (zx'—x2'),
n = (xy'—yz'),

80 that not all of the numbers I, m, n are zero. Then the line
[}, m,n] is on both of the points (x,y,z) and (z',y’,2’), for it is
easily verifiable by direct substitution that

lx+my-+nz = 0,
and lz'+my' +nz’ = 0.
Hence, on two distinct points there is at least one line, and so
proposition 2.111 is verified.

Secondly, suppose that [I',m’,n'] is a line distinct from
[Z,m,n], and that this too is on both of the points (x,y,2) and
(#',y’,2’) which are by supposition distinct. Then

Ve+m'y+n'z= 0,
and N Ve +m'y'+n'2' = 0.
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When these two simultaneous equations are solved for ', m’,
and 7’, it is found that
U= klyz —2y'),
m' = k(zx'—z2'),
n = k(xy'—y'),
where & is an arbitrary constant. That is to say, U = ki,
m' = km, and n’ = kn, so that [I,m,n] and [I',m’,n] are not
distinet lines. Hence, on two distinct points there is not more
than one line, and so proposition 2.112 is verified.
Finally, let [I,m,n] and [I',m’,n'] be two distinct lines, so
that not all of the numbers
(mn'—nm'), (nl'—In'), (Im'—ml’)
are zero; then since under these conditions the simultaneous
equations lotmy+nz = 0,
Vz+m'y+n'z=0
have a solution, namely
z = k(mn'—nm’),
y = k(@nl'—Wn'),
z = k(lm'—ml'),
and not all of these numbers are zero, there is a point (z,y, 2) on
both of the lines. Hence, there is at least one point on both of two
distinct lines; that is to say, proposition 2.113 is verified.
When these three results are combined, an existence theorem
for the three initial propositions of incidence emerges, and so
those propositions cannot be mutually contradictory.

The roader who is familiar with what is known as general homogencous
coordinate Geometry will recognize in the algebraic representation
someothing similar to this part of Analytical Geometry, but a very funda-
mental distinction between the two must bo noticed. In the algebraic
representation the ‘points’ and ‘lines’ are numbor-triples, and nothing
more; that is, they are essentially only sets of numbors. Because of the
laws of algebra it is possible to find a relation between ‘points’ and
‘lines’ to which is given the name ‘on’. In other words, certain algebraic
properties of number-triples are renamed with geometrical names. But
in general homogeneous coordinate Geometry the process is reversed.
Here points and lines are tho fundamental things, and they are labelled
by means of number-triples; the geomotrical relations between the points
and lines are interpreted as algebraic relationships between the number-
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triples by means of which they are labelled. In other words, certain
goometrical properties of lines and points are renamed with algebraic
names. The algobraic representation is the application of Geometry to
Algebra; general homogencous coordinate Geometry, on the other hand,
is the application of Algebra to Geometry.

2.22. A Representation from Elementary Solid Geometry
In this representation the diameters of a sphere are ‘points’,
and the great-circles of the same sphere are ‘lines’. A ‘point’
will be said to be ‘on’ a ‘line’ if the diameter of the sphere
representing the point is also a diameter of the great-circle
representing the line. Elementary geometrical considerations
establish the truth of the following results:
(@) therc is at least one great-circle which has two different
diameters of the sphere as diameters of itself,
(b) there is not more than one great-circle which has two
different diameters of the sphere as diameters of itself,
(c) there is at least one diameter of the sphere which is also
a diameter of each of two different great-circles.
In these three rcsults the propositions 2.111-2.113 are
verified.

2.23. A Physical Representation

At the inaugural meeting of a Lunch Club the members
decided to formulate the following rules:

(1) Periodical lunches were to be given by the club, and they
were to be attended only by members of the club.

(2) Every member of the club was to meet every other
member at least once, but not more than once, at one of the
club’s lunches.

(3) The lists of members selected by the Secretary to attend
any two lunches were never to be entirely different, at least one
member was to be present at both.

(4) The President, the Treasurer, and the Secretary were to
be the only members present at the first lunch, and at all
subsequent lunches there were to be at least three members
present.

How many members were there in the club?

How many lunches were given?
4191 D



18 PROJECTIVE GEOMETRY

How many members were present at each of the remaining
lunches ?

How many lunches did each member attend ?

That the above problem is a representation of the proposi-
tions of incidence may seem at first sight to be somewhat far-
fetched, nevertheless/it is true. In order to show that it is a
representation it is first of all necessary to show that the rules
agreed upon could, in fact, be kept, and that they did not
impose an impossible set of conditions. It is left to the reader
to show that they were not impossible, and that the four
questions have definite answers; this is an interesting problem
in logic. Once it is solved it is easy to show that the whole
thing is a representation of the propositions of incidence.

If a member of the club be a ‘point’ and a club-lunch be a
‘line’, and if by definition a ‘point’ is on a ‘line’ when the
member in question is present at the lunch in question, then the
following propositions are verified:

(@) two distinct points are on at least one line, by Rule (2);

(b) two distinct points are on not more than one line, by Rule

(2) also;
(c) there is at least one point which is on both of two distinct
lines, by Rule (3).

2.24. The Drawn Figure as a Representation

It is customary in elementary Geometry to illustrate theorems,
constructions, and the like by figures drawn on paper, and it is
natural to ask whether Projective Geometry can be illustrated
in the same way. This question is really equivalent to the
following. Are dots made on paper and marks made with a
pencil drawn across the paper in contact with a straight-edge
valid representations of the points and lines of Projective
Geometry, when the obvious convention is made about the
relation ‘on’? In order to have names for these two kinds of
marks let us call them, for the moment, drawn points and
drawn lines respectively.

Now in elementary Geometry the drawn figure fulfils two
functions. In the first place it is a help to the imagination, in
that it enables the mind to concentrate on the work in hand;
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indeed it may suggest methods of proof and so on. In the second
place it is an approximate representation, and this statement is
best illustrated by an example. It is proved in elementary
Geometry that the sum of the angles of a triangle is equal to
two right angles; if a triangle be drawn on paper, and the angles
between the drawn lines be measured and added together, it is
found that their sum is approximately two right angles. Owing,
however, to the deficiencies of the instruments used to measure
the angles, they can only be measured to a known degree of
accuracy, 8o that the sum is only known to lie within certain
limits; usually it is found that these limits enclose two right
angles. Nearly every theorem in elementary Geometry has the
same sort of approximate verification in the drawn figure. But
besides these two, the drawn figure is sometimes made to fulfil
another and an illegitimate function in elementary Geometry.
It is, for instance, nearly always taken for granted that the
diagonals of a parallelogram necessarily intersect and are not
parallel, merely because the drawn diagonals intersect. That
is to say, inferences are made from the figure, when they should
be made from the data of a problem.

In Projective Geometry it is plain that if in some sense drawn
lines and drawn points are a representation of points and lines,
then the drawn figure can fulfil the first of these functions
exactly as in clementary Geometry. But when we come to
inquire whether it can fulfil the second function, that of being
at least an approximate representation, it becomes obvious that
the question is without meaning. For measurement of distance
and angle does not figure in the initial propositions, and there
can be approximation only where there is measurement. The
question ‘Are drawn points and drawn lines valid representa-
tions of the points and lines of Projective Geometry ?’ is im-
possible to answer either affirmatively or negatively, and the
answer that they are an approximate representation is nonsense.
Hence it appears that no use can be made of the drawn figure,
since we cannot be certain that it is a valid representation.
Nevertheless, a glance at the remaining pages of this book will
suffice to show that drawn figures are used, and this use is
justified, not by @ priori considerations of the nature of drawn
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points and drawn lines, but rather by a posteriori considerations.
For it is found, in practice, that a careful and reasonable use
of drawn figures does not lead to absurd results, and that it
does fulfil the first and main function of a drawn figure, in that
it helps the mind to concentrate on the problem as a whole, and
suggests new resulty for proof. The third and illegitimate
function of the figure is as illegitimate in Projective Geometry
as in elementary Geometry.

2.3. First Deductions

TeEOREM. There is only one point which is on both of two
distinct lines.

Let I and m be two distinet lines, then by 2.113 there is a
point P which is on both of them.

Suppose now that there is a second point @, distinct from P,
which is on both / and m. That is to say, there arc two distinct
lines ! and m which are both on the two distinet points P and Q.

But this conclusion contradicts 2.112, which states that on
two distinct points there is not more than one line.

Hence the supposition that a second point ¢, distinct from
P, is also on ! and m must be false, and this proves the theorem.

2.31. The Principle of Duality

So far, there are the three initial propositions of incidence,
and one theorem which has been deduced from them. These
four propositions are now set out together:

(2.111) On two distinct points there is at least one line.

(2.112) On two distinct points there is not more than one line.

(2.113) On two distinct lines there is at least one point.

(2.3) On two distinct lines there is not more than one point.

It will be seen that by interchanging the terms point and line
the first two of these propositions are changed into the last
two, and vice versa. This fact has important consequences.

Let us suppose that there is a proposition about points, lines,
and the relation on which is deducible from the propositions
2.111-2.113; then by interchanging the terms point and line
in the enunciation, a proposition is obtained which is plainly
deducible from the propositions 2.111, 2.113, and 2.3. For the
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necessary proof is obtained by making the same interchange in
the original proof. But sinco 2.3 is deducible from the other
three, the new proposition must also be deducible from them.

Hence if any proposition about lines, points, and the relation
on is deducible from the propositions of incidence, the proposi-
tion obtained by interchanging the terms line and point is also
deducible from the propositions of incidence.

As Projective Geometry proceeds it becomes necessary to
define new terms which are complications of the elementary
concepts contained in the propositions of incidence; at the same
time corresponding terms will also be defined, the definitions
being obtained by the above-mentioned interchange. In this
way a vocabulary of corresponding terms will be elaborated,
and such pairs of terms will be said to be dual terms. In the
terms point and line we have a first pair of dual terms. The
process of changing a proposition by substituting for every
torm its dual term is called dualizing a proposition. Hence if
any proposition is deducible from the propositions of incidence,
its dual is also deducible from them.

This important result is known as the Principle of Duality.

Projective Geometry, however, is not based on only the pro-
positions of incidence, for other initial propositions are added
as the work proceeds. It will be necessary then, if the Principle
of Duality is to be preserved, either to add also the dual of
every other initial proposition, or to prove it. It will be found,
as & matter of fact, that with the initial propositions which are
to be added, it is an casy matter to prove the required dual
propositions.

2.4. Extension

In elementary Geometry it is taken for granted that the
number of points on any line is not finite, and it is natural to ask
whether anything of the same sort is true in Projective Geo-
metry. The initial propositions of incidence, however, do not
enable us to give any definite answer to the question ‘How
many points are there on the line?” For in the representation
given in 2.23 there are only three points on any line, while in
the algebraic representation there is not a finite number of
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points on any line; yet both of these are compatible with the
propositions of incidence. Indeed, it is not difficult to construct
a representation in which there are any desired finite number of
points on a line.t Hence it is possible to say, roughly, that the
propositions of incidenge are compatible with there being any
number of points, ﬂm'/gir infinite, on a line. Incidentally, this
may help to show the reader that in Projective Geometry the
terms point and line have a much wider significance than they
have in elementary Geometry.

Now it does not require much thought to see that the proposi-
tions of incidence are compatible with even simpler systems than
that given in 2.23. They are true, for instance, of the following
systems:

(i) a system consisting of three points which are not all on
the same line, and the three lines which are on pairs of
these points;

(ii) a system consisting of » points all on one line, one other
point not on this line, and the n lines each of which is on
this special point and one of the other » points.

The discussion of these extremely simple systems is not very
fruitful, and so we shall lay down, provisionally, two initial
propositions which will exclude them. These propositions will
be the following: Not all points are on the same line, and There
are at least three points on every line.

If we call the totality of points and lines in any system the
Jield, it will be seen that the above propositions state something
about the extent of the field, and so they are called propositions
of extension. The effect of the two propositions of extension
here stated is to put, as it were, & lower bound to the simplicity
of the field. This is merely a matter of convenience, for it
obviates the necessity of constantly stating annoying and
trivial exceptions to general theorems which are true in the less
simple fields. But it must be noticed that these two proposi-
tions of extension are not definite, that is to say, they do not
state that the field has any definite extension; they merely say

1 But there is one proviso. If there are, say, n points and no more on one

line, there are n points and no more on every line. See Ex. 3 of the examples
which follow.
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that it must not be too simple. For the present they will suffice,
but later more definite propositions will be substituted.

2.41. Provisional Initial Propositions of Extension

2.411. Not all points are on the same line.
2.412. There are at least three points on every line.

In accordance with what has been said about the Principle of
Duality, it is necessary to prove the duals of these two proposi-
tions and to show that they are compatible with the propositions
of incidence. These theorems are not difficult, and they are
left to the reader as examples.

ExAMPLES

1. Using the propositions of incidenco and 2.411, show that not all
liness are on the samo point.

2. Using the propositions of incidence, 2.411 and 2.412, show that
there are at loast three linos on every point.

3. Show that if there are precisely n points on ono line, then

(i) thero are precisely » points on cvery line,

(ii) there are precisely n lines on cvery point,

(ifi) there are procisoly n2—mn-1 points in all,

(iv) there are precisely n®—n-+1 linos in all.

4. Show that tho gcomotrical reasoning used to solvo the last examplo
providos a solution of the puzzle quoted in 2.23.

5. Show that the provisional propositions of oxtension are compatible
with the propositions of incidence by showing that thoy are verified
in (i) the algebraic representation, and (ii) tho representation of 2.23.

2.42. A Note on 2.412

The second of the propositions of extension states that there
are at least three points on every line, but in the work which
follows it is assumed in every theorem that there are sufficient
points on every line to make the theorem significant. Thus if
there is a theorem about six points on a line, it would be a
meaningless theorem in a field where there are only three points
on every line. Strictly speaking, the enunciation of such a
theorem should be qualified by the phrase ‘Provided there are
at least six points on every line’. These qualifications will,
however, be syi;irtematically omitted, for it is plain that they are
implied.
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2.5. Notation

In 2.12 (b) it was remarked that capital letters would be used
to designate points and small letters to designate lines, and
these beginnings of the notation used in Projective Geometry
are now developed.

The first two propositions of incidence ensure that there is
a unique line on two distinct points. Hence there is no ambiguity
in referring to the line on the two points 4 and B as the line
AB. This usage is familiar from elementary Geometry.

Dually, by 2.113 and 2.3 there is & unique point on two dis-
tinet lines @ and b, and this point will be referred to as the
point ab.

Often, however, it will be necessary to speak of the common
point of two lines which are known only as, say, XY and 4B;
and though it might be possible, with care, to spcak of the point
XYAB, it is not very desirable to do so. Instead, we use the
notation: ‘the point (ﬁ;} and, dually, ‘the line (:g)

The reader may find it useful in his written work to shorten
the phrases ‘The point P is on the line ¢’ and ‘The line  is on the
point Y~ to the symbolic statements

Plg and =z|Y,
respectively. The negative statements ‘The point P is not on
the line ¢’ and ‘The line « is not on the point Y’ may be

shortened to Pfq and =z|Y

respectively. This notation is not adopted in this book.
‘What has been said is completed by giving definitions of the
two dual terms collinear and concurrent.

2.51. DEFINITION
Three or more points which are all on the same line are said
to be collinear.

2.52. DEFINITION
Three or more lines which are all on the same point are said to
be concurrent.t

t The etymologically dual term is cop ! or tual ; it seems to
savour of pedantry to prefer one of these to the well- known term concurrent,
even though this has in it an erroneous suggestion of motion.
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2.6. Figures, Theorems, Constructions
2.61. Figures

In elementary Geometry, the term figure is used to signify
indifferently either the drawn figure or an assemblage of lines
and points, and there is no reason to make any careful distinc-
tion between the two. But in Projective Geometry, whose
connexion with the drawn figure is rather tenuous, the term is
restricted to the second of these two meanings. For conveni-
ence, figures are classified into point-figures, line-figures, and
mixed figures; the following definition gives the principle of
this classification.

2.611. DErFINITION. Any set of points and lines is termed @
figure; if it consists of points only, it is termed @ poini-figure; if
it consists of lines only, it is termed a line-figure; otherwise it 8
termed a mized figure.

2.612. DErFINITION. A potni-figure all of whose points are
collinear 1s termed a collinear point-figure.

2.613. DErFINITION. A line-figure all of whose lines are con-
current 18 termed a concurrent line-figure.

2.614. Simple Figures. The following is a list of some of
the simpler figures which occur in Projective Geometry:
la. The Point.
1b. The Line.
2. The Point-on-Line. A self-dual figure consisting of a
single point and a single line, the point being on the line.
3. The Point-and-Line. Self-dual. As 2, except that the
point is not on the line.
4a. The Point-pair. A point-figure consisting of two distinct
points.
4b. The Line-pair. The dual of 4a.
5a. The Point-pair on @ line. This is 4a, together with the
line on the point-pair.
8b. The Line-pair on @ point. The dual of 5a.
6a. The Three-point. A point-figure consisting of three non-
collinear points.
an B
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6b. The Three-line. The dual of 6a.

7. The Triangle. A mixed, self-dual figure consisting of
three non-collinear points, together with the three lines
which are on pairs of these.

The triangle is an extremely important figure in the sequel;
in order to be able tz:fer to its constituent parts, the three
points are called the points or vertices of the triangle, the three
lines are called the lines or sides of the triangle. It should be
noted that there are only three points in a triangle; any other
points on any of the sides are not points of the figure.

The side BC of a triangle A BC will be said to be opposite to
the point 4, and vice versa. Similarly, B is opposite to C4, C
to AB.

2.62. Theorems

The word theorem has been used before this, and it is taken
for granted that its meaning is known; if, however, a formal
definition of the term be needed, the following will suffice:
A theorem is any true statement about the poinis and lines of the
Jield.

The word #rue merits notice; a proposition is said to be true
in Projective Geometry if it is a logical consequence of the
initial propositions. A proposition may be true of a certain
representation without being true in Projective Geometry; but
a proposition cannot be true in Projective Geometry without
being true of all the representations. Thus the proposition
‘There are only three points on a line’ is true of the representa-
tion of 2.23, but it is not a theorem of Projective Geometry;
whereas the proposition ‘Two lines have only one point in
common’, being a theorem of Projective Geometry, is true in all
the representations.

Some cautions must be given about the proving of theorems.
The proof must proceed by strictly logical deduction from the
initial propositions or from theorems already proved. Hence

(i) To say ‘It is obvious from the figure that . . .’ is not a
sound reason for the statement which this phrase precedes. At
best, this only shows that the conclusion is true in a representa-
tion, not that it is true in Projective Geometry; and even this
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.
assumes what has not been proved, namely that the drawn
figure is a representation.

(ii) Reasoning which is based on considerations of length or
angle, in any form whatever, is not logical deduction, for these
terms are not yet defined. When they are defined they may be
used like any other term.

(iii) Propositions which are true only under certain condi-
tions should not be stated as theorems without stating the
conditions definitely.

2.63. Constructions

In elementary (GGeometry there are, besides theorems to be
proved, exercises known as constructions. In these some figure
is given, and it is necessary (i) to give practical rules for deter-
mining by means of ruler and compass certain points and lines
or some other figure which has some specified property, and (ii)
to prove that the figure so determined has the desired property.

From what has already been said, it will be plain that the
first of these two cannot be a part of any constructions which
appear in Projective Geometry. Its place is, however, taken
by something else. In a construction in Projective Geometry
a figure is given, and it is necessary (i) to specify exactly some
other figure (by stating relations which exist between it and the
given figure) which has some desired property, and (ii) to prove
that this figure has the desired property.

2.7. Projective Geometry of Many Dimensions

At the beginning of this chapter it was stated that Projective
Geometry deals with two kinds of things, namely poinis and
lines, and that it discusses the relations which exist between
them as a consequence of the relations of incidence. While this
statement is true, it is not the whole truth, for the Projective
Geometry of points and lines is not the whole of Projective
Geometry; it is only that part known as two-dimensional Pro-
jective Geometry.

It would have been possible to start with three different
kinds of things, points, lines, and planes, and after stating
propositions of incidence about these, to have discussed their
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interrelations. This would have been three-dimensional Pro-
jective Geometry. And in complete generality it would have
been possible to start with n kinds of things, which might have
been called 7,’s (points), 7}’s (lines), 7y’s (planes), 73’s, 7},’8,...,
T,,-1’s; this would have been n-dimensional Projective Geometry.
It will be plain that fhese Projective Geometries are classified
according to the number of different kinds of things they deal
with; and that a Projective Geometry dealing with & different
kinds of things is called %-dimensional Projective Geometry.

Suppose now, for simplicity’s sake, that we proposed to study
three-dimensional Projective Geometry. It would obviously
be desirable to spend some time in studying the interrelations
of only those points and lines which are on a single plane. Of
this restricted field of points and lines the initial propositions
of incidence, 2.111-2.113, would be true, and the Projective
Geometry of the plane would be two-dimensional Projective
Geometry. Similarly, in n-dimensional Projective Geometry
the study of the interrelations of the 7i’s, 1}’s, 1}’s,..., T}—’s
which are on a 7} is the same as the study of k-dimensional
Projective Geometry.

All this has been mentioned, not for the purpose of mystifying
the reader, but rather in order to show him two important
things. First, that what is given in this book, namely two-
dimensional Projective Geometry, is only a part of the whole
subject. Secondly, that neverthelessitis an extremely important
part. For in two-dimensional Projective Geometry most of the
basic ideas are developed which pervade the whole subject. It
is better to become acquainted with these ideas in the simplified
field of points and lines only, rather than in the more compli-
cated fields with which the higher dimensions are concerned.
Once these ideas are familiar, it is not a difficult matter to pass
on to higher dimensions. To do so is indeed the natural general-
ization to which the elementary two-dimensional work points
the way.
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ExaMPLES

1. Show that if the point 4 is on the line BC, then the point B is on
the line CA, and the point C is on the line 4 B.

2. Show that if the three points 4, B, C are not collincar, thon the
Jines BO, CA, A B are not concurrent.

3. Show that the points az, bz, cx, dz,... are collinear.

4. State the duals of the last three examples, and prove them without
appeal to the principle of duality.

5. Show that the initial proposition 2.113 is a consequence of 2.111,
2.112, and 2.3.

6. If A, B, C, D are four points, no three of which are collinear, show
that there are three and only three points, I, F, G, each of which is
collinear with two pairs of the four given points.

7. In the last example show that if there arc only three points on
every line, then E, F, G are collinear. (The reader is advised to try to
draw a figuro illustrating this.)

8. In the Algebraic Representation show that the necessary and
sufficient condition that the three distinct points (%y,%1,2)s (T2 Y2 22)s
and (g, ¥,,23) should be collincar is that

T Y% oz
Zy, Yy 2| =0.
T3 Ys 2

9, Show that, in the Algebraic Representation, the three points

(%, 9,2), (£.79,0), and (lw+2€,ly+Ay, lz-+AL) are collnear.



CHAPTER III
PERSPECTIVITY AND PROJECTIVITY

3.1. Perspective Figures

3.11. DErFINITION /

Two point-figures ABCD...., A'B'C'D’.... are said to be
centrally perspective on the point O, or in central perspective from
the point O, if the lines AA’, BB', CC’ are all on O.

The point O is called the centre of perspective.

3.12. DEFINITION

Two line-figures abed...., a’'b’c'd’.... are said to be axially per-
8pective on the line o, or in axial perspective from the line o, if
the points aa’, bb’, cc',... are all on o.

The line o is called the axis of perspective.

The terms central(ly) perspective and axial(ly) perspective are,
plainly, dual terms; so also are centre of perspective and axis of
perspective.

3.13. Triangles in Perspective

The consideration of figures in perspective is divided into
two parts:

(i) perspective point-figures whose points are not all col-

linear, and the dual of this;

(ii) perspective point-figures whose points are all collinear,

and the dual of this.

The second part is of g}eater importance, and the first is
only considered in so far as it helps in the consideration of the
second.

The simplest figure whose points are not all collinear is the
triangle, and perspective triangles are therefore considered
here. In fact it is not necessary to consider any other types of
figure in perspective in this first part.

Since the triangle is a mixed figure, consisting of points and
lines, it would appear at first sight that two triangles could be
centrally perspective, or axially perspective, or both, or neither.
In 1639 Desargues published a theorem in elementary Geometry
which stated that any two triangles which were centrally per-
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spective were also axially perspective, and vice versa. This
theorem can be easily deduced from the initial propositions of
incidence and extension in the Projective Geometry of three
or more dimensions, but it is not a consequence of the corre-
sponding propositions in the Projective Geometry of two dimen-
sions. In fact there are systems of points and lines in which all
the initial propositions so far stated are verified, but in which
Desargues’s theorem is not verified. Similarly there are systems
in which not only the initial propositions of incidence and exten-
sion but also Desargues’s proposition are all verified.

Since one of the objects of this book is to provide an intro-
duction to Projective Geometry of three or more dimensions, no
useful purpose will be served by considering systems in which
Desargues’s proposition is not true, for these cannot occur as
sub-systems in a Geometry of more than two dimensions. We
therefore confine ourselves to those systems in which it is true,
and this is tantamount to laying down Desargues’s proposition
as an initial proposition. When this has been done, it will be
necessary to show that it is compatible with the other initial
propositions; this is done by showing that it is verified in the
algebraic representation; it will also be necessary to prove the
dual of Desargues’s proposition.

3.14. Desargues’s Proposition

If two triangles are centrally perspective, they are also
axially perspective.

Fia. 1.
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In the figure the two triangles ABC, A’'B'C’ are centrally
perspective on the point O and axially perspective on the line o.

3.141. Verification in the Algebraic Representation. Let 4, B, C
be (21, ¥y, 21)s (Tg. Y, 25), and (23, Y3, 23) respectively, and 4’, B’, C’ be
(21, y1» 21)s (%hs Y2y 25), and &}, y3, 25) respectively. Let O, the centre of
perspective, be (£,7,{). /
Since 0, A, A’ are collinear, O, B, B’ are collinear, and 0, C, C" are

collinear, numbers Ay, A{, A,, AJ, Ay, Aj exist such that

€ = Mz +A 2] = L@+ Aqap = A+ A,

N = A +A = Ly +Ays = Ay +Ai g,

{ = Mz A2 = Ltz = h5nt+Az.

Hence Nry—Agzy = —Nai+A 2,
AYs—AYs = —Mys+Ays (1)
and Apzp—Agzy = —Aj23+ 2520

and there arc two similar sets of three equations.
Consider now tho point
Ao @y—A3 75, Ag Y3 —As Y3 Ay 2 — A3 29)-
Not all of these numbers are zero, for thon either B and C would coin-
cide, or A; and A; would both be zero and so B’ and ¢’ would comncide.
This point plainly lies on BC; but from the equations (1) it can also
be specified as
(=Nay+ Nas —Aya+Asys —Ayza+-25753),
so that it also lios on B’C’. Hence it is the point 4”.
Similarly, B” is
A3 @s—A 21, A Y3 — A1 1, AsZa— A, 21),
and C” is (A @y —Ag Tgy Ay Y1 —Ag Yo Ay 21— Ay 25)-
It remains to show that 4”, B”, and C” are collinear. This will be so
if the doterminant '
AeZy—As%s AaYa—A¥s AgZ—As2,
MTs—Ax HYs—Ay Asz—A2
Axi—=Aety MYi—A¥s Azn—Az
vanishes. On adding the second and third rows of this determinant to
the first, it is easily secn that it does, in fact, vanish; hence A”, B”, and
C” are collinear.
Desargues’s proposition is therefore verified in the algobraic repre-
sentation.

3.142. Dual of Desargues’s Proposition

THEOREM. If two triangles are axially perspective, they are
also centrally perspective.

Suppose ABC, A'B’'C’ be two axially perspective triangles;
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that is, suppose there exists a line I and on it three points 47,

v o ”s . (BC\ pu. .. [CA
B”", C”", such that 4" is the point (B’O’)’ B" ig the point (C’A')’
" . AB
C" is the point (A’B’)'

Fig. 2.

Suppose now that ABC and A’B’C’ are not centrally per-

spective. Let O, be the point (‘;‘;,), and O, be the point

(jj,), so that by supposition O, and O, are not coincident.

Let C; be the point (0 , distinet from C’, by supposition.

1
B'C

Then the triangles 4ABC, A’B'C; are centrally perspective
on Oy, and so by Desargues’s proposition they are axially perspec-
tive also.

'A'B\ . B'CY . . .
But (AB) is on [, and (BO’) is on 7, hence [ is the axis of

perspective of 4BC, A'B’C;. Now AC and ! are on B”, and
therefore A'C, and [ are on B”.

Since, however, 4’C’ is also on B”, the two lines 4’C, and
A'C' have the two points 4’ and B” in common; by 2.112 they
are therefore not distinet lines, and so €’ and C; must coincide.
- Hence 0, and O, must also coincide, so that A BC and 4'B'C’

are centrally perspective.
an -
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ExaMPLES

1. Using the dual of Desargues’s proposition as an initial proposition,
prove Desargues’s proposition.
2. If ABC, A’B’C’ are two perspective triangles show that the three

. BC)\ (C'4 A’B) .
points ( B 0,), ( o A')’ an ( AB are collinear.
3. If ABC, A’B’'C’ Are two triangles which are contrally perspective

i

(jg,) respectively, show that the following pairs of triangles are also

on O, and if 47, B”, C” are the collinear points ( ;g,), (

perspective:
(i) CC’B” and BB'C”,
(ii) AA’C” and CC’A”,
(iii) BB’A” and AA’B”,
(iv) OBC and A'B"C”,
(v) OCA and B'C"A’,
(vi) OAB and C’A"B’,
(vil) OB’C’ and AB"C”,
(viii) OC’A’ and BC’"A’,
(ix) 0A’B’ and CA"B’.
State the centro and axis of perspective of each pair.

4. The triangles ABC, A’B’C’ are perspective on O and o as centre and
axis of perspective. 1f the triangles BCD and B’C'D’ are perspective
on the same centre and axis, show that both of the pairs of triangles
ABD, A’B’'D', and ACD, A’C’D’ are perspective on O and o.

3.2. Projectivity
3.21. Collinear Point Figures in Central Perspective

Let ABCD... be a set of points on a line I, and A’B'C'D’...
another set on a line m, distinct from I. If these two figures
are centrally perspective on the point O, then 44’, BB’, CC’,
DD',... are all on O. The two figures are clearly related, and the
relation between them is called a central perspectivity. The fact
that there is a central perspectivity between ABCD... and
A'B'C'D'... is expressed by writing

(4BCD..) 2 ma'BOD..).
Clearly the definition of a central perspectivity implies that
also m(4'B'C'D".) 2 14BCD..).
The relation of central perspectivity is not only a relation
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between the two figures ABCD..., A'B'C'D'..., each taken as a
whole, it implies & relation between each pair of corresponding

D
Fia. 3.

points in the two figures, so that A and 4’ are related, B and B’

are related, and so on, and all these pairs are related in the same

way. The relation between each pair is that of being collinear

with the point O. The statement

Y4BcD..) 2 ma'BoD..)

implies these separate relations by the order assigned to the
letters on each side of the relation.

Fic. 4.

What has been said applies, mutatis mutandis, to axial per-
spectivity of concurrent line figures.
The accompanying figure illustrates the relation

Liabed..) % M@bed...).
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3.22. Successive Perspectivities
Suppose that

c
o(4,4,45.) . b(B, B, B,..),

and b(B/éz By.) A (0,60,
it is natural to ask whether there exists a point B such that
B
¢(C G, Gs...) x a(d,A4,4,...),

in other words, whether two successive perspectivities are
equivalent to one. To this question only a partial answer can
be given at present. Later, it will be shown that unless the three
lines @, b, and ¢ are concurrent, and the three centres of per-
spectivity 4, B, and C are collinear, the two perspectivities are
not equivalent to a single perspectivity. For the present, it is
shown that if the three lines a, b, and ¢ are concurrent, then
there exists a third centre of perspectivity on which ¢(C, C,C;...)
and a(4, 4, 4;...) are perspective.

3.221. TeEOREM. Ifa,b, and c are three concurrent lines, and if

c
o(4,4545..)  b(B; B, By..),

A
and b(B, By B,...) 1 ¢(C,C,Cy..),
then there exists a point B collinear with C and A such that
B
(C1CCy...)  a(4;4,4s..).

Since the lines a, b, and ¢ are concurrent at the point V, the
triangles A, B, C, and A4, B,C, are centrally perspective on V;
hence by Desargues’s proposition they are axially perspective.

But by supposition (A1 B:) is the point C,
4,B

and (31 01) .

B,C, is the point 4;

C A, . .
hence (Cz A) is on the line AC.
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Similarly, since the triangles 4, B,C, and A3 B;C, are cen-
trally perspective on V they are axially perspective on AC,

and so (g:ﬁ:) is on the line AC.

Hence the lines 4,C,, 4,C,, A3C; are concurrent at a point
B on AC,; that is to say

B
¢(C,C,Cs...) ut a(4,4,4,..).
3.222. TuroreM. If A, B, and C are three collinear points,

and if
A(@,0,a5...) 7 B(bibyb...

and B(bybybs...) ; (0103 C5...),
then there exists a line b concurrent with ¢ and a such that
b
C(c,ce05...) x Ao, aya,...).

This theorem is the dual of the preceding theorem; the same
figure illustrates it.
Ex. Show that if
a(4, 4, 4,...) 7‘% b(B, B, B,...),

b(B, B, B,...) 7“% o(C,C, Cs.n),s
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B
and o(Cy Gy Cyerr) x Ay Ag Ay...)s

and if the three points 4, B, and C are collinear, then the three lines
a, b, and ¢ are concurrent. Dualize this theorem.
3.23. Three or More Successive Perspectivities

It has been said tha/é‘:vo successive perspectivities do not
necessarily reduce to one, and it might be expected from this
that three successive perspectivities do not necessarily reduce
to two, and so on. This, however, is not so, and the next stage
in the inquiry into the theory of perspectivity is to show that
three or more successive perspectivities are always equivalent
to at most two. To prove this important theorem it is first
necessary to prove a subsidiary one. The subsidiary theorem
and the main theorem are proved in the next two sections.

3.231. TumorEM. If
v
a(d, A, 4;...) 7% b(B, B, B;...)

and b(B, By By.) 2 o(C,CyCy..),

and if b’ be any line concurrent with a and b, then there exists a
point Vi collinear with V; and V, and a collinear point-figure
Bi B; B;...on b', such that

V' ’ ’ ’ ’
(4,4, 4,..) 1 ¥'(B]B;B;.)

and b'(B, B} B;...) ;’; ¢(C, Cy C...).
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Let B; B; B... be the point-figure on b’ perspective with
C,C,C;... from the centre V,. Then plainly
V ’ ’ ’ ’
b(B, B, B,...) 7: b'(B; B; Bs...).

But also, /4
a(d,4,4,...) 7; b(B, B, B,...),

and so, since the lines a, b, and b’ are concurrent, it follows
from Theorem 3.221 that there is a point V; collinear with
¥; and ¥, such that

VI ’ ’ ’ ’
a(4,4,4,...) 7{ b'(B; By B;...).
This proves the theorem.
3.232. TueoREM. If

¥,
a(d;4,4,..) 1 b(B, B, By.),
b(B, B, By...) 17’3 o(Cy CyCy-r),

o(C,CyCy.) 2 d(D, D, D),

V.
m(M, M, My..)) V7 (N, N, ..,

then there exist a line x and points U and V such that
U
a(4,4,4,...) x z(X, X, X;...)

and (X, X, Xy) © (N, 5.

The theorem states that any number of perspectivities can
always be reduced to two, but it is plainly only necessary to
prove that three successive perspectivities can always be re-
duced to two, for if this is proved, it is possible to reduce any
number successively until there are only two.

Accordingly, for the above theorem may be substituted the
following:

14
If a(4;4,4,..) 7} b(B, B, B,...),

B(B, By By...) 1 ¢(C,C;Cp..),
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Y
and ¢(C, C; Cs...) 7; d(Dy, D, D,...),
then there exist a line x and points U and V such that
U
a(d,4,4,.,.) x z(X, X, X,...)

and w(X1X3£..) Y 4p,D,D,..).

Firstly, if the lines a, b, ¢ are concurrent, the first two per-
spectivities may be reduced to one by 3.221. Similarly, if the
lines b, ¢, and d are concurrent, the last two perspectivities may
be reduced to one; hence these cases may be dismissed.

Three cases now remain to be considered:

(i) no three of the lines @, b, ¢, and d concurrent,
(ii) @, b, and d concurrent,

(iii) @, ¢, and d concurrent.

Suppose first that no three of the lines a, b, ¢, and d are con-
current.

Fia. 7.

Let 7} be the common point of @ and b, and 7}, that of ¢ and
d. Let  be the line T} 7},
Let X, X, X,... be points on x such that

v
dCCGy) 2 2(X X,y Xy,
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so that also I
(X, X, X,...) 7‘2 b(B, B, B;...).

But since v
b(B, B, B,...) 7% a(d,4,4,...),

it follows by 3.221 that there is a point U such that
oA 4,45.) O (X, X, X,..).

By exactly similar reasoning there is a point ¥V such that
#(X, X, Xy..) ¥ d(D,D, D)

Hence there is a line 2 and two points U and ¥V such that

U
(4,4, 4,..) 1 #(X, X, X,..)

and #(X, X, X,..) % d(D,D,Dy..).

Secondly, suppose that a, b, and d are concurrent. Let 4’ be
on bc but not on ¥;. Then by 3.231 there exist a point V; and
points Bj, B;, Bj,... on b’ such that

Vi viin o
o(4,4,4,..) ! b'(B] B; B;...

and b'(B{ By By..) 2 o(CiCyCp.n).

But no three of the lines a, b’, ¢, d are concurrent, and so the
previous part of the theorem is applicable; hence there exist a
line « and points U and V satisfying the required conditions.

The third case, when a, ¢, and d are concurrent, is treated in
exactly the same way. In place of c a line ¢’ is substituted and
the first part of the theorem again used.

3.233. TurorEM. If
A(a,0,05...) ’7’; B(bybybs...)

and B(bybybs...) ’;g 0(c,04C5...),
4101 , G
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and if B’ be any point on AB but not on v,, then there exist a
line v; on v, v, and @ concurrent line-figure b{ by b; ... such that

A(a,0503...) ’7’; B'(b] b3b;...)

and B'(b]b5b3...) ;’g 00, € C5...).

3.234. Turorem. If
A(@,0,05...) °* B(bybyb,...),

B(by by bs...) ClcycC5...),

D(dydydy...),

..........

)
M(mymyms...) 7{ N(nynyms...),
then there exist a point X and lines u and v such that

u
A(a;a,a,...) = X(x, %5 25...),

and X(xy 25 25...) ; N(n,nyn,...).

These last two theorems are the duals of the two preceding
ones. It will be useful practice for the reader if he proves them
on their own merits, and not merely by appeal to the principle
of duality.

3.235. Collinear Point-figures on the same Line

In Theorem 3.232 it was assumed that the line n, on which was
the final collinear point-figure of the sequence considered, was
distinet from the line a, the first of the sequence. If, however,
@ and » are not distinct, a slight change has to be made in the
theorem, which then reads:

If a(A,A,A,...) and a(A]A;A3...) are two collinear point-
figures on the same line which are connected by a sequence of
perspectivities, then the sequence may be reduced to one of three
perspectivities at most.

The formal proof of this theorem is left to the reader.
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3.24. Definition of Projectivity

In 3.21 it was pointed out that a relation exists between two
collinear point-figures which are centrally perspective, and that
this relation between the two figures implies relations between
corresponding points of the two figures. If now

U
(4,4, 45..) ~ b(B, B, B;..),

and b(B, By By..) ¥ (€10,

it is .clear that the two figures 4,A4,4;... and C;C,C;... are
related, although the relation between them is not, in general,
a perspectivity. The relation between two collinear point-
figures which are connected by a finite number of perspectivities
is called a projectivity, and by 3.221 a perspectivity is a particular
case of a projectivity.

A projectivity between two collinear point-figures 4, 4, 4,...
and B, B, B;... is symbolized by writing

a(d, 4, 4,...) ~ b(B; By By...).

Just as a perspectivity is not only a relation between the two
figures in perspective, each taken as a whole, so a projectivity
is not only a relation between the two figures each taken as a
whole. It implies that to each point of one figure there corre-
sponds a single, determinate point of the other, and vice versa;
in the case contemplated above, A, and B, are related, 4, and
B, are related, and so on, and all these pairs are related in the
same way. The relation between each pair is that determined
by the perspectivities which specify the projectivity.

It is plain from what has been said that a projectivity can
exist between two point-figures which are on the same line.

This also applies, mutatis mutandis, to projectivities between
concurrent line-figures. No distinguishing adjective is used to
differentiate between projectivities between collinear point-
figures and projectivities between concurrent line-figures.

Now that the term projectivity has been defined, it may be
used to restate Theorems 3.232 and 3.235 and their duals.
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3.241. THEOREM. A projectivity between two collinear point-
Jigures on different lines can aluways be specified as a sequence of
at most two perspectivities.

3.242. THEOREM. A projectivity between two concurrent line-
Jigures on different poinis can always be specified as a sequence of
at most two perspectivities.

3.243. TamorEM. A projectivity between two collinear point-
Jigures on the same line can always be specified as a sequence of at
most three perspectivities.

3.244. TuEOREM. A4 projectivity between two concurrent line-
Jigures on the same point can always be specified as a sequence of at
most three perspectivities.

3.245. Projectivities between Point-figsures and Line-
figures.

So far, only the notions of a projectivity between two
collinear point-figures and a projectivity between two con-
current line-figures have been considered. It is convenient,
however, to supplement these by the notion of a projectivity
between a collinear point-figure and a concurrent line-figure.

o)

3

Fic. 8.

Let 4; A, 4;... be a collinear point-figure on the line @ and O
any point not on a; let O4,, O4,, OA,,... be a,a,as..., a con-
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current line-figure. Then if K, K, Kj... be a collinear point-
figure and ;4 4.4,.) ~ KK, K, Ks..)
in the sense already defined, the concurrent line-figure a, a, as...
is said to be projective with the collinear point-figure K, K, K;... .
The relation is expressed by writing

O(a,aa;...) ~ k(K, K, Kj...).

The principle of duality leads us to formulate the definition
of a projectivity between a collinear point-figure and a con-
current line-figure, and having formulated this dual definition,
we can then prove (for it must be proved) that

O(a,a,a,...) ~ (K, K, K,...)
implies k(K,K,K,...) ~ O(a,0,0a;...).

ExAMPLES

1. @, b, and ¢ are three concurrent lines; U, V, and W are three
collinear points. Show that if

U
a(4,4,44..) 5 b(B; By By..).
If
b(B, By By..) . o(Cy Gy,

and oA, 4, 45..) W BB} B} Bi..),
then there is a point X collinear with U, V, and W and such that
’ ’ ’ X
b(B;{ B, B....) x ¢(C, 0, Cy...).

2. Show that if U
a(A4,4,4,..) ~ b(B, B, B;...),
14

b(B, B; B;...) = ¢(C, C; Cs...),

and if b’ be any line other than a, ¢, and UV, then there exist points
U’, V’ on UV such that

U' 7/ ’ ’ ’
a(4, 4, 4,...) x b(B,B;B;..),

and b'(B; B, B}...) ; ¢(CC,Cy...).

3. Show thatif  A(a,agas...) ~ B(b bybs...)
and B(b, by by...) ~ C(cy c3ts...),
then A(ay agag...) ~ C(cy cy¢4...). Dualize.



46 PROJECTIVE GEOMETRY
4. Show that if A(ayaya;...) ~ b(B; By By...)

and b(B; B; B,...) ~ ¢(C,C,C...),

then A(a; aya4...) ~ ¢(Cy0,C,...). Duslize.
5. Show thatif  A(a,a,as...) ~ B(b, by bs...)

and B(b, by by...) ~ ¢(C,C, C...),

then A(aytyag...) ~ ¢(C, CyC...). Dualize.
6. Show that if .4&4/:, as...) ~ b(B; B, B,...)

and b(B, B, Bg...) ~ C(cy c3¢4...),

then A(a,aya3...) ~ C(c; ¢y ¢4...). Dualize.

7. Is it true that A(a,aya,..) ~ A(a,a;a,...)? Justify the answer
given.

3.25. Perspectivity and Projectivity in the Algebraic Repre-
sentation

If (2, 93, 2,) and (2], ¥{, 2{) be any two points, then any point on their
jom I8 Az FA 2l A g A Y Az A2
The numbers (A;, A{) will be termed the coordinates of the point

M2y +A 20, Ay +A 0 Az +A1 %)
relative to the base points (z;,Y;,2,) and (21,1, 21). 1t can easily be verified
that the point whose coordinates are (kAy, kA{), where k is any constant
other than zero, is the same as the point whose coordinates are (A, A7),
provided the same base points are used. To avoid cumbrous phrase-
ology, we shall refer in future simply to the point (A, A]).
3.251. Perspectivity

Let (A;,A]) be any point on a line I, on which the base points are
(%1, 91,21) and (2], y1, 2])-

Let (Ay,A]) be any point on a line I, on which the base points are
(%9 Y3, 2) and (23,3, 23).

We now ask what is the algebraic relation connecting the four
numbers A, Aj, Ay, A; which is the counterpart of the geometrical relation
known as central perspectivity on the point (£, 7, {).

Now if the three points (A, A]) on I, (A;,A5) on I,, and (£,7,() are
collinear,

¢ n 4
AzHNE MMy Az Al -0
Az 2 Ay Ny Aze+Aiz
that is, A\ Ag+ BA; Aj+ O A;+DAjA; = 0, where

€ 7 L
A=z y 2z|=EUhr%—Y2)+9@2—22)+{(@Y:—2y) (1)

Ty Yz %

£ 7 ¢
B=|z, y 2 EE(yxzé—yézl)+n(21ﬁé—-z;-’tl)-i-l(%y&—z&yx), (2)

i Yo%

-
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I S
O =2 yi 2|=~EWiz—ya2) (e, —22)+ (@ y—2,%1), (3)
T2 Y 2
N 4
D=|af yi =
% Yoa
When £, 7, and { are eliminated from these oquations, the cquation
A Y=t HT—HT T YT Y
B yizm—yz  5i%m—unt Y-y =0 (5)
C ylzm—yp2l 2% —2:3] X[ Y—T3Y]
D ylm—yiz  dm—zma  xy—wy]

Eyig—yiz) (el o —za) H({ ye—2sy)).  (4)

remains, and this may be written

AP1+BP2+ CPa""DP( =0,
P1s Pas Pss and py being the minors of 4, B, C, and D in the above dotor-
minant.

Hence, if there is a central perspectivity betweon the points (A}, A])
on [, and points (A, A7) on I, then there are four numbers 4, B, C, and
Dsuchthat gy A+ BAX+CNA+DXX = 0, 8)
and Ap,+ Bpy+ Cpy+Dpy = 0. (7

It should also be observed that AD— BC # 0, for were this so, we
could write 4/C = B/D = k, and the cquation (6) would reduce to

(CAa+DXN)(kAy X)) = O,
and plainly this equation cannot be satisfied by all pairs of points in the
perspectivity.

Conversely, if the two equations (6) and (7) are satisfied, and if
AD—BC # 0, there is a perspectivity botween points (A;,A{) on [, and
points (A;,A;) on I,. No difficulty should be experienced in proving this.

The following theorem may therefore be enunciated:

The necessary and sufficient condition that there should be a central
perspectivity between points (A, A}) on 1, and points (A, A;) on 1 is that
there should be four bers A, B, C, and D, such that AD— BC # 0, and

AX A+ BA A+ CM A, +DAA; = 0,
Ap,+ Bpy+ Cps+ Dp, = 0.

3.252, Projectivity

A projectivity botween points on a line !, and points on & line I, is
defined as a sequence of perspectivities, and this can, in fact, be reduced
to a sequence of two perspectivities if the two lines are distinct. Suppose
then that a perspectivity is specified between points on /, and points
on l,, and that a second perspectivity is specified between the points on
1, and those on I,.

Let the base points on I, and I, be as before, and let those on I; be

(%3, Y3, 23) and (x5, Y3, 23).
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Since there is a perspectivity between points on 7, and I,, numbers
A, B, C, and D exist such that AD— BC # 0, and

AN A+ BM A+ OX A +DXX; = 0 1)

and Ap,+ Bpy+ Cpg+Dpy = 0. 2)
Similarly, there are n ers E, F, G, and H, such that EH— FG # 0,
and B, A:‘ij\a XN+ G A+ HXX, = 0 (3)
and Eo,+ Foy+ Gog+Hoy = 0. (4)

‘When A, and ] are eliminated from equations (1) and (3), the resulting
equation is
(BE—AQ)A Ay +(BF— AH)\) Aj+(DE—CQ)N Ay + (DF —CH)N A, = 0,
and this may be written

aly A3 +bA A0 Ay +-dAL A; = 0.

Further, the expression ad—be is equal to (4D— BC)(EH— F@), and
therefore it cannot vanish.

Hence, if there is a projectivity between points (A,,A{) on I,, and points
(A3 A7) on I, then there are four numbers a, b, ¢, and d, such that
ad—be # 0 and

aA g+ X+ X Ag+dAL N = 0. . (5)

The converse theorem is also true, for if the oquation (5) be satisfied,
and if ad—be # 0, then there are eight numbers 4, B, C, D, E, F, G,
and H, such that neither (4D— BC) nor (EH— F@) vanishes and, in

addition, a = BE—AG,
b= BF—AH,
¢ = DE—-CQG,
d = DF—CH,

Ap,+ Bp;+Cps+Dp, = 0,
Eo,+ Foy+ Gog+Ho, = 0.

In fact, it will be found that there are an infinity of solutions of these
equations. Hence the relation implicd by equation (5) can be specified
as a sequence of perspectivitios; hence it is a projectivity.

The following theorem may therofore be enunciated:

The necessary and sufficient dition that a projectivity should exist
between points (A, A}) on a line 1, and points ()\,,/\a) on a lme 1, is that
there should be four bers a, b, ¢, and d, such that ad—bc # 0, and

ady Ay +bA; A +-eA{ A3 +dA ] = 0.
3.3. Projectivity of Ranges and Pencils
In considering perspectivities and projectivities between

collinear point-figures, we have so far taken these figures to be
merely selections of points from the whole set of points on the
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line. In order to simplify the work, we now pay special atten-
tion to one particular collinear point-figure, namely that con-
sisting of all the points on a line. Similarly, we pay special
attention to the concurrent line-figure consisting of all the lines
on a point.

DeriNiTiON. The point-figure consisting of all the points on
a line 18 called a range of points on a line, or, simply, a range; the
line on which a range s, is called the base of the range.

DerFintTION. The line-figure consisting of all the lines on a
point 18 called a pencil of lines on a point, or, simply, a pencil; the
point on which a pencil 8, 13 called the base of a pencil.

Since the range is a collinear point-figure, all the theorems
about perspectivity and projectivity of collinear point-figures
are true of ranges.

3.31. Projectivities between Ranges

A projectivity between two ranges on different bases sets up
relations between the points of one and the points of the other
in such a way that to one point of one there is made to corre-
spond a unique point of the other, and vice versa. A question
here presents itself: Can a projectivity between a range on the
base a and a range on the base b exist in which certain arbitrary
points 4, 4, A3 A,... chosen on a correspond to arbitrary points
B, B, B; B,... chosen on b?

A partial answer to this question is given in the following
theorems.

3.311. TuaroreM. There is a projectivity between a range on o
base a and another range on a base b in which three arbitrarily
chosen distinct points on the first range correspond to three arbi-
trarily chosen distinct points on the second.

Let A, A, Ay be three arbitrarily chosen points of the range
on a, and B; B, B; be three arbitrarily chosen points of the
range on b.

Let U be any point on 4, B,, and ¢ any line on B,, other than
b. Then points C,, C, exist such that

U
a(A4;,4,45) ~ (B, C, Cy).
401 "
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Let V be the point (Bz G, Then, clearly,
B,C,
14
(B, G, Gy) ~ b(B, B, By),
80 that a(A,/yzA,) ~ b(B, B, By).
v

Fie. 9.

Hence the projectivity which is specified by the perspectivities
on U and V has the required property, and the theorem is proved.

It is clear that the two perspectivities specifying the pro-
jectivity are by no means unique.

3.312. TuEOREM. There is a projectivity between a pencil on a
base A and another on a base B in which three arbitrarily chosen
distinct lines of the first pencil correspond to three arbitrarily
chosen lines on the second.

If certain ideas which are elaborated in the next chapter
were now at our disposal, it could be proved that Theorems
3.311 and 3.312 are not in general true when the word three is
changed into four. In fact, it could be proved that if 4, B, and
C are three arbitrary points of one range and 4’, B’, C’ are
three arbitrary points of a second range, and if a projectivity is
set up which makes 4, B, C correspond to 4’, B, (", then by
whatever perspectivities the projectivity 18 specified certain points
of the first range will always correspond to certain other points
of the second. That is to say, there are points D, B, F,... which
will always correspond to certain points D', E’, F’,.... In the
Algebraic Representation it is found that if in a projectivity
three points of one range are chosen to correspond to three
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points of another, then the point corresponding to any other
point is fixed—however the projectivity be specified.

These facts lead us to lay down an initial proposition which
states that if there are two differently specified projectivities
in each of which three points 4, B, C of one range correspond
to 4’, B’, (" of the second, then the two projectivities are
entirely equivalent; that is to say, if in one of the projectivities
D, E, F,.. correspond to D', E’, F',..., then in the other
D, E, F,... correspond to D', E', F',....

3.313. The Projective Proposition

If 4,B,C, D are four points of a range, and 4’, B’,C" are
three points of another range, then there is a unique
point D’ of the second such that any projectivity in
which (ABC)~ (A'B'C’) is also a projectivity in which
(ABCD) ~ (A'B'C'D’).
3.314. Verification in the Algebraic Representation

Let (A, A]) be a typical point on a line I,, and (A, A7) a typical point on
a line I,. By 3.252, if a projectivity exists between the two ranges, the
coordinates of corresponding points are connected by an algebraic
relation of the type

ady A +bA Aj A A +dA A, = 0 (ad—be # 0).

Suppose now that three points (x;,}), (8;,B1), and (yy,71) on 1, corre-

spond respectively to the three points (g, o3), (Be, B2), and (ye, y3) on I,

Then ao oty +boy of +cof oy +da o = 0,
B, Ba-+bP, B+ oBi B+ i By = O,
and ay, ya+by it eyiyet+dyiy = 0;

from these three equations the ratios of the four numbers a, b, ¢, d can
be determined uniquely.

Let (3,,8]) be any fourth point on I; then since a, b, ¢, d are known—
apart from a constant factor—it follows that (8,, 83), the corresponding
point on J,, is uniquely determined from the equation

ad, 8,+bd, 8;+¢d]8,+dd{8; = 0,
however the projectivity be specified in terms of perspectivities.

The Projective Proposition is therefore verified in the Algebraic Repre-

sentation, and so it is compatible with the other initial propositions.

3.315. Dual of the Projective Proposition

TaEOREM. If @, b, ¢, d, are four lines of a pencil and a',b’, ¢
are three lines of another pencil, then there is a unique line d' of
the second such that any projectivity in which (abc) ~ (a'b’c’) is
also a projectivity in which (abed) ~ (a'b’c’d’).
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Let U and V be the bases of the two pencils, and suppose
that there are two lines d’ and d” on V and that there are two
projectivities, in one of which

) U(abed) ~ V(a'b'c'd’),
and in the other Utdhed) ~ Viab'e'd”).

Let 2 and y be any'two lines; let the points za, b, z¢, xd be
A, B, C, D respectively; and the points ya’, yb', yc', yd’, yd” be
A',B,C',D,D"

Then clearly there are two projectivities, in one of which

z(ABCD) ~ y(A'B'C'D’),
and in the other
2(ABCD) ~ y(A'B'C'D").

This contradicts the Projective Proposition, hence the sup-
position that d' and d” are distinct is false. This proves the
theorem.

3.32. Elementary Deductions from the Projective Pro-
position
A number of important theorems can be deduced at once
from the Projective Proposition, and great use will be made of
them in the sequel.

3.321. TuroreM. If X is the common point of two lines a
and b, and if a projectivity between the range on a and the range
on b 18 such that the point X, considered as a point of a, corresponds
to the point X, considered as a point of b, then the projectivity is a
perspectivity: that 18, the lines on pairs of corresponding points
are all concurrent.

Let 4, and 4, be any two points on @, and let B, and B, be
the points corresponding to them in the projectivity.

., [A; B,

Let ¥ be the point (A'B .

Then the central perspectivity on V between the two ranges
involves the relation

14
a(4,4,X) 1 b(B, B, X).

But the projectivity also involves, by supposition,
a(4, 4, X) ~ b(B, By X).
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Hence, by the Projective Proposition, the projectivity is

equivalent to the perspectivity.
3.322. THEOREM. If z is the line on two points A and B,
and if a projectivity between the pencil on A and that on B 18 such
that the line x, considered as a line of the pencil on A, corresponds
to the line z, considered as a line of the pencil on B, then the pro-
Jectivity reduces to a perspectivity; that is, the common points of
corresponding lines of the two pencils are collinear.

The somewhat long enunciation of these two theorems may
tend to make the reader lose his grasp of their significance, and
80 they are re-enunciated in less careful words.

A projectivity between two ranges, in which the common point
18 self-corresponding, is always a perspectivity.

Or, with even greater economy:

A projectivity with a common self-corresponding point is a
perspeclivity.

This theorem is constantly in use when it is desired to prove
that three or more lines are concurrent; for the lines which are
on pairs of corresponding points in a perspectivity are con-
current at the centre of perspective. The dual theorem is used
for the dual purpose.

3.323. Pappus’s Theorem
If A, B, C are three points on a line z, and A', B', ¢’
are three points on a line y, and if A", B", C" are the points

BC'\ (CA"\ [AB' . v o " .
( B’C’)’ ( o A) ( )reapectwely, then A", B",and C” are collinear.

"\4'B
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Let O be the point zy, and B;, C, the points (BC ), (C A)

48)\BC
respectively.
Then Y4'BC0) 2 (0"B'B,4)
and walBeo) ¢ (Bo,0a),
henoe (C"B'B,4) ~ (B'C,C'A).

But this is a projectivity between ranges on different bases in
which there is a common self-corresponding point 4. Hence
it is a perspectivity, by the last theorem. Hence B"C”, B'C,
B, C" are concurrent, but the common. point of the last two
lines is A”. Hence A", B", C” are collinear.

The reader should notice how this theorem is proved, and should study
carefully the figure accompanying it. Pappus’s theorem is not very
difficult, but time is often wasted in futile attempts to reproduce the
proof. Of the many available ways of proving the thcorem, that given
here has been chosen as being the most ‘automatic’. It will appear later
on as the proof of another important theorem.

1t is left to the reader to state the dual of Pappus’s theorem;
it is useful practice to prove it without using the principle of
duality.

The line A”B"C" in Pappus’s theorem is called the Pappus
line of the two sets of three collinear points A, B, O, and 4’,
B, C'.

3.324. Utility of Pappus’s Theorem

At first sight, Pappus’s theorem appears to have little bearing
on the work that has preceded it, nor does it answer any question
which that work has raised. Nevertheless, it is of great value in
that it provides a simple method of determining corresponding
points in a projectivity when three pairs of corresponding points
are known. One way of doing this is already known, namely
by setting up two perspectivities; but this is cumbrous. The
following theorem is the foundation of a simpler method.

THEOREM. If

(i) 7 be the Pappus line of two sets of three collinear points
A, B, Cand A’, B', C' on x and y respectively,
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(ii) D be any other point on z, and D" the point common to
A'Dandl,
(iii) D’ be the point common to y and AD",
then (A4BCD) ~ (A'B'C'D’).

Fia. 11.

Let F be the point common to A4’ and I.

Then #(4BCD) & yF o BD"),
but UFC"B'D") & ya'BOD),
hence “(ABCD) ~ y(4'B'C'D).

The reader will have no difficulty in devising a construction
for finding corresponding points in a projectivity in which three
pairs of corresponding points are given.

3.325. The Permutation Theorem

TazorzM. If o4 BOD) ~y(4'B'O'D),
then also 2(ABCD) ~ y(B'A'D'C’).

Let V be any point not on z, and z any line other than , and
suppose z(4BCD) 712 2(4"B"C"D").

Let U be the point ( c4 then UV is the Pappus line of the

BD")
two sets ABC and B"A"D".

AA" . cAa”\ .
For (BB") is ¥, and (B . is U.
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Hence in the projectivity in which (4.BC) ~ (B"A"D") the
point corresponding to D is C”, for CC"ison ¥V and DD"ison V.

Henoe (ABCD) ~ (B'A"D"C").
Now (B4"DYC") T (BADC)

Fra. 12.
and (BADC) ~ (B'A’'D'(C"),
so that (ABCD) ~ (B'A'D'C").

The permutation theorem is constantly in use in subsequent
work.

ExAMPLES
1. If a(4; 4, 45..) 2 BB, B, By..),
4
and b(B, B, By..) & o(C,CiCy..),
and ACLC,Cy) 2 aldy 4y 4y,

show that a, b, and ¢ are concurrent, and that 4, B, and C are collinear,
Dualize.

2. If the lines joining three pairs of corresponding points of two
ranges in a projectivity are concurrent, show that the projectivity is a
perspectivity.

3. ABCD and A’B’C’D’ are two sets of four points on = and y
respectively. If I is the Pappus line of ABC and A’B’C’ and also of
ABD and A’ B’D’, show that it is also the Pappus line of BCD and B’C’D’
and of ABD and A’B’D’.

4. ABC and A’B’C’ are two sets of three collinear points and
A”, B”, C” are the points (gg,), (g‘:;")’ and (gg,) respectively. Show
that the Pappus line of A’B’C’ and A”B"C”" is ABC.
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5. In a certain projectivity between two ranges, A BC correspond
respectively to A’B’C’, and 1 is the Pappus line of these two sets. If
DEF correspond to D’E’F’ rospectively, show that [ is also the Pappus
line of these two sets.

6. If in the last example X is the point common to the line  and the
base of the first range, what point in the second range corresponds to X?

7. If ABC and A’B’C’ are two sets of three collinear points, and if
AA’, BB’, CC’ are concurrent, show that the Pappus line of ABC and
A’B’C’ and these two lines are concurrent.

8. Prove the converse of the last example.

9. State the dual of Theorem 3.324, and prove it without appeal to
the principle of duality.

10. State the dual of Theorem 3.325, and prove it without appeal to
the principlo of duality.

3.4. Cobasal Ranges and Pencils

Strictly speaking, there is but one range of points on a line
and one pencil of lines on a point, and therefore to speak of
more than one range or pencil on a given base is a contradiction
in terms. Nevertheless, these expressions are used, and they
are used with a very definite meaning and for a definite purpose.

It will be quite clear that a projectivity can exist between a
range and itself, and if 4, B, C, A’, B’, C' are points of the
same range, it is possible to set up a projectivity in which the
points A, B, C correspond to the points A’, B’, €' in just the
same sort of way as any other projectivity is set up. A little
thought will show that if we are going to speak of a projectivity
between a range and itself, we shall have to be constantly
qualifying terms and using cumbersome language; moreover the
terminology used when speaking of ranges not on the same base
in projectivity will not be applicable without qualification to
a projectivity between a range and itself. For these and other
reasons we are led to speak not of a projectivity between a
range and itself, but between one range and another range on
the same base. The two ranges are not really distinct, but it is
a help to thought and language to think of them as distinct.
Just as in Algebra it is usual to say that the equation

2?2—2x+1=0

has two roots, which we say are equal, so here we say that on
the one base there are two (or more) coincident ranges and these

ranges are called cobasal ranges.
4191 1
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The term cobasal pencils has a similar meaning, and is used
for similar reasons.

3.41. Projectivities between Cobasal Ranges and Pencils

TreorREM. If A, B, € are three poinis of a range, and A’,
B', C' are three points%f a cobasal range, then a projectivity in
which A and A', B and B’, C and C’ correspond is unique.

Let A", B", C" be three points on another line perspective
with 4’, B’, C".

By considering the projectivity in which (4BC) ~ (4"B"C")
the proof of the theorem becomes plain. The details are left to
the reader. :

3.42. The reader may find it helpful in thinking of projectivi-
ties between cobasal ranges to ascribe colours to the difforent
ranges, even though in formal written work the practice might
be deprecated. Thus there will be (say) a red range and a blue
range on a certain base, and because of a projectivity, to each
red point there corresponds a definite blue point, and vice versa.

The theorem of the last section shows that when three dis-
tinct red points are specified as corresponding to three distinct
blue points, the projectivity is completely determined, that is
to say, the blue point corresponding to any other red point is
determined. }

A question naturally arises here. Are there any red points,
say 4, B, C,... which correspond to the same blue points
A, B, C,...? Informal language, if a projectivity exists between
two cobasal ranges are there any points which are self-corre-
sponding? This question is answered in the next section.

3.43. Self-corresponding Points of Cobasal Ranges in
Projectivity
3.431. TurorEM. If in a projectivity between two cobasal
ranges there are three self-corresponding poinis, then every point
18 a self-corresponding point.
t Another helpful way of considering a projectivity between cobasal ranges
is to think of one range as a range of clectric lights and the other as a range of
switches. When a projectivity exists, the switch at the point 4 switches on the

light at 4’. But the switch at 4’ does notswitch on the light at A—except under
certain special circumstances which will be investigated in the next chapter.
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Let 4, B, C, be the self-corresponding points.

Now there is a projectivity between two cobasal ranges, the
identical projectivity, in which

(ABCDEF..) ~ (ABCDEF...),
and plainly, in this projectivity, every point is self-corre-
sponding.

But a projectivity is determined uniquely when three pairs
of corresponding points are specified, hence if there is a pro-
jectivity in which (4 BC) ~ (A BC) it cannot be other than the
identical projectivity. Hence every point is a self-corresponding
point.

3.432. THEOREM. There are projectivities between cobasal ranges
in which there are only two self-corresponding points.

Let z be the base of the cobasal ranges.

Let y be any other line, and let 7' be the common point of
z and y.

Let U and V be any two points neither of which is on z or
y, and which are not collinear with 7'.

Let X be the point common to UV and 2.

Let ABCD... be a range on y.

Consider the two ranges z(4'B'C'D’...) and 2(A"B"C"D"...),
defined by the perspectivities

yaBep..) I warpon..),
YABCD..) J aa'BroDr..),
sothat  (4'B'C'D'..) ~ a(4"B"C"D"..).
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Then clearly X and 7' are self-corresponding points.

Moreover there are points on # which are not self-correspond-
ing. Hence by the previous theorem there cannot be more
than two self-corresponding points.

3.433. TaEOREM. Thgfe are projectivities between cobasal ranges
tn which there 8 only lone self-corresponding point.

This theorem is very similar to the last, and the only differ-
ence in the preliminary construction is that the points U and V
must be collinear with 7'.

3.434. The Number of Self-corresponding Points

The last three theorems have shown thatif a projectivity exists
between two cobasal ranges (i) there cannot be more than two
self-corresponding points unless all points are self-corresponding,
(ii) there can be two self-corresponding points without all points
being self-corresponding, (iii) there can be only one self-corre-
sponding point. It is impossible to say definitely at this stage
whether there can or cannot be projectivities between cobasal
ranges in which there are no self-corresponding points. To
answer this question definitely it would be necessary to lay down
. an initial proposition on extension in place of 2.412, and more
definite than 2.412. This will be done eventually, but for the
present there is no need to enter into a further discussion of the
question of extension.

In working examples the reader may always assume that in
the projectivities between cobasal ranges with which he deals
there are two self-corresponding points. These two may be
coincident (as in Theorem 3.433), and this possibility should not
be overlooked.
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ExampLES

1. Show how two establish a projectivity between two cobasal ranges,
given (i) three pairs of corresponding points, (ii) two pairs of corre-
sponding points and one self-corresponding point, (iii) two distinct self-
corresponding points and one other pair of corresponding points.

2. Given that in a certain projectivity between two cobasal ranges the
two self-corresponding points are coincident, show that the projectivity
is uniquely determined if the coincident self-corresponding points are
known, and one other pair of corresponding points is known. (Use 3.433.)

3. If X and X’ are the distinct self-corresponding points of a pro-
jectivity between two cobasal ranges on the line z, and if 4, A’ and B, B’
are two pairs of corresponding points, show that there is a projectivity
between cobasal ranges in which 2(XX’'4A4’) ~ x(XX'BB’).

4. Show that if X(XYAB) ~ k(XY BA), then X(XYAB) ~ k(YXAB).

5. If there are two distinct self-corresponding points in a projoctivity
between two cobasal ranges, show that the projectivity may be specified
by two perspectivities.

6. ABC is a triangle, and P, @, R are threc points not on any of its
sides. Show that if the self-corresponding points of a certain pro-
jectivity are known, then a triangle A’ B’C’ can be constructed such that

(i) A’ ison BC, B’ison CA, C’is on AB; and

(ii) B’C’ison P, C’A’ison @, and A4’B’ is on R.

How many triangles are there which fulfil thesc conditions ?



CHAPTER IV
THE FOUR-POINT AND THE FOUR-LINE

4.1. Definitions and Elementary Properties
4.11., The Simple }éur-Point

DEFINITION. Any set of four points, no three of which are
collinear, 18 termed a simple four-point.
4.12. The Simple Four-Line

DEFINITION. Any set of four lines, no three of which are con-
current, 18 termed a simple four-line.

The four-point and the four-line are, plainly, dual figures.
4.13. The Complete Four-Point

D

A

D;
A

Fia. 15.

In the figure 4,, 4,, 4,, A3 are the points of a simple four-
point.

() Since any four things can be associated in pairs in six
different ways, there are six lines associated with any simple
four-point, each of the lines being on two of the points. In the
figure Ay A,, A, A3, Ay A, A1 Ay, AyA,, A, A, are the six lines
in question. They are called sides of the four-point.

(b) These six sides can be arranged in three pairs; two sides
will belong to a pair if and only if their common point is not a
point of the four-point. Two sides which belong to the same pair
are called opposite sides.

(¢) The common point of a pair of opposite sides will be called
a diagonal point; there are thus three diagonal points in all.

In the figure, 4,4, and A, 4; are opposite sides and their
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common point D, is a diagonal point. The other pairs of opposite
sides and the corresponding diagonal points are:

AyA, and 4, 4,; D,
AyAgand 4, A,; D,

(d) The method of assigning the letters to the various points
should be noticed. The four points of the four-point are
Ay A; A, Ag; in naming any pair of opposite sides, all the suffixes
0, 1, 2, 8 are mentioned; the suffix of the diagonal point associ-
ated with any pair of opposite sides is the suffix of the letter
associated with 4, in that line of the pair which is on 4,

DEFINITION. The four points of a simple four-point, together
with the six sides and the three diagonal points is termed a complete
Sfour-point.

What has been said in this section can all be dualized;
associated with a simple four-line are six points which can be
classified into three pairs, and three diagonal lines. This leads
to the definition of the complete four-line as follows:

DeriNtTioN. The four lines of a simple four-line, together
with the siz points and the three diagonal lines, is termed a com-
plete four-line.

4.131. Elementary Properties

The following elementary properties of the complete four-
point, and their duals, are simple consequences of the defini-
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tions, and are scarcely worth enunciating as theorems. The
reader should satisfy himself that they are true, and that not by
merely verifying them in the drawn figure.
(@) No two of the six sides of a complete four-point can
coincide. /
(b) No four of the gix sides can be concurrent.
(¢) A diagonal point cannot coincide with any of the four
points of the four-point.
(d) nor can it be on three of the sides.
(e) None of the four points of a complete four-point can be
collinear with a pair of diagonal points.

4.14. The Four-Point in the Algebraic Representation
Let (2o, Y0r20)s (T1,Y1521)s (%2:Y2022), (T3,Y2r23) o the four points
A,, Ay, Ay, and A4 respectively.
Then the six sides of the four-point are:
Ao Ay [Yo21—Y1 %0 ZoT1—21 T TlY1—T1 Yol
Ay Ag; [Yz 23— Y322 23 Ta—23 %2 Ty Y3— T3 Yals
Ay Az [Yo2za—Y2%0 Z0Te—22T0s ToY2—T3Y0)s
Ay Ag; [Y123—Ys 21 21 Ta— 23 Ty Ty Yo — T3 Y1),
Ay Ag; [Yo2s—Ys20s %0Ts—23%0s ToYs—TsYo)s
Ay Ay; [Y122— Y221, 21 Ta—22 Ty, Ty Ya— T Yy ]-
In order to find the diagonal points, the common points of these pairs
of lines may bo found in the usual way, or more simply thus:
Numbers Ay, Ay, As, Ag oxist such that the three equations
AoZo+A 2+ A, 2,423 75 = O,
Xo%otM Y1 HAeYe+Asys = 0, (8))
ozt A2+ 24523 = O
are satisfied. The ratios of Ay, A, Ay, A; may be detormined from these
equations by the elementary theory of determinants; none of them can

be zero, since no three points of the four-point can be collinear.
From the equations (1) it follows that

AZo+A 2y = =X T — A3 @5
Xttt = =A%~ Ys (2)

AoZo+A1zy = —Agzg—A32s.
Consider now the point (Agxy+A; %1, A Yo+A %1, AgZe+A; 2,). Since
not all these numbers are zero (sce 3.141), it is plain that this point is

collinear with (xy, ¥, 2o) and (2;,¥;,2,). But, from the equations (2), this
point may be specified as (Ay @y +A3 T3y Az Y3 +As ¥ss As23+2523), and this
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spocification shows that it is also collinear with (2, ¥,, 2,) and (s, ¥, 25).
Hence it is the diagonal point D,.

Similarly the other diagonal points may be found. Honce

Dyisthepoint  (Ag2o+Ay 1, Ao +A ¥1s Ao2zo+A121),

or  (Aa%p+As®s A Ya+AsYsr A2 Za+As2a);
Dpisthepoint  (Ago+As%as AoYo+Ae¥as Ao2Zo+As2s),

or (A% +A3 %, Ay Y1+ A5 Yse A 21+HA523);
Dyisthepoint  (Ag2o+A3 %5 ApYo+A3 Yss AgZo+As2s)s

or (Ao +A % A Y1 HA2 Y A 21 H A 2,).
4.15. Diagonal Points

The initial propositions so far laid down do not make it
possible to deduce that the diagonal points of a four-point are
collinear or that they are not collinear. They are in fact com-
patible with both of these possibilities. For instance, in the
finite Geometry in which there are only three points on every
linet the whole field consists of one complete four-point in
which the three diagonal points are collinear. On the other
hand, in the Algebraic Representation there is no complete
four-point whose diagonal points are collinear.

It is possible to prove, with the material at our disposal, the
following proposition and its dual: If the diagonal points of any
one complete four-point are collinear, the diagonal points of every
complete four-point are collinear. From this, the negative pro-
position follows at once: If the diagonal poinis of one complete
four-point are mot collinear, then the diagonal points of every
complete four-point are not collinear.

The study of systems in which the diagonal points of every
four-point are collinear is less simple than the study of those
in which they are not; moreover it is best left until the simpler
systems have been investigated. Hence, in this book we confine
ourselves to systems in which the diagonal points of a complete
four-point are not collinear. To do this, we could lay down the
initial proposition: There i3 one complete four-point whose
diagonal points are not collinear. We should then go on to prove
the second of the propositions stated above. To save time,
however, we lay down instead an initial proposition which is
equivalent to these two.

t See 2.23.
a9 K
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4.151. The Harmonic Proposition.t There is no com-
plete four-point whose diagonal points are collinear.
4.152. Verification in the Algebraic Representation
Let (%o, Yo» 20)s (210 Y1, 21)s (®2s Y0 22)s (T3, Y3y 25) be the points 4,, 4,,
A,, Ay, as in 4.14. Then if X, A,, A, A; have the meanings there assigned,
the diagonal points are:
D, Qoo +21 21 AoYo+A1 Y1, AoZo+44 1),
or (A +As s A ¥s+AsYs Arza+A32);
D, Qoo+25 205 Ao Yo +AaYas ApZo+A325),
or (A @+As@s Ay +AsYs M2 +Asz);
D, (o Zo+A3 25 Ao Wo+A3Uss AoZo+As25),
or (A 2+ %s A %1 TAYs A 21 +Ap20).
Suppose now that the threo diagonal points arc all on the line [I,m,n].
Let ko == lzy+my,+nzy,
ky = lzy+ my,+nz,,
ky = lwy+myy+nz,,
kg = lxg+mys+nz,.
Now since all the diagonal points are on [I, m,n], it follows that
Aoko+A ky = 0; Agky+Agks = 0;
Xoko+Ask, = 0; Aky+Agks = 05
Aoko+Agks = 03 A kA ky = 0;
and from these six equations that
Aoky = Ay By = Agley = Agky = 0.
Now since none of tho numbors Ay, Ay, Ag, A; can be zero,
ko =ky =ky = kg = 0;
lxg+myg+nzy = 0,
ley+my, +nz; = 0,
lzy+my,+nz, = O,
lzs+my;+nez; = 0.
But this implies that all the points 4,, 4, 4,, 4, are collinear, and this is
contrary to the definition of a four-point. Hence the supposition that
the three diagonal points are collinear is false.

The Harmonic Proposition is therefore verified in the Algebraic
Representation.

that is to say,

+ The word harmonic probably appears to be used here, and elsewhere in this
chapter, for no reason at all. It was applied to certain properties of the four-
point when these were being investigated metrically, and its aptness can only
be explained in metrical or analytical terms. The word is retained simply
because of its historical associations.
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4.153. Dual of the Harmonic Proposition
THEOREM. There is no complete four-line whose diagonal lines
are concurrent.

Fie. 17.

Let a,, a,, a,, a; be any four-line, and d,, d,, d; its three
diagonal lines.
Then its six points are, in pairs, aya,, a,a5; oy @,0;;
0y Ay, Q) @y,
Consider the four-point whose points are specified as follows:
A, is the point a, a,;
4, is the point a, a,;
A, is the point a,a,;
A, is the point a,a,.
No three of these points are collinear.
The six sides of this four-point and the three diagonal points
may be tabulated thus:
A, A, is the line a,
Ay Ag is the line a,,
Ay A, is the line d,
A, Ag is the line d,
Ay Ag is the line ag
A, A, is the line a,
(The reader should verify that these statements are true, by
finding the reasons for them, and not merely by reference to
the figure.)

} D, is the point a,a,, on d,;
} D, is the point d,dy;

} D, is the point aga,, on d,.
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Now since D,, D,, D; are not collinear, and since D, and D, are
on d,, it follows that D,is not on d,. But D, is the common point
of dy and dy; and so d,, dg, and d, are not concurrent.

Hence the diagonal lines of a four-line arc never concurrent,
and so the theorem is V‘fwed.

4.16. The Diagonal Triangles

Since the diagonal points of a complete four-point are not
collinear, they are the vertices of a triangle; dually, the diagonal
lines of a complete four-line are the sides of a triangle. To these
triangles a special name is given.

DerrviTION. The triangle whose vertices are the diagonal
points of a complete four-point is lermed the diagonal triangle of
the four-point.

The triangle whose sides are the three diagonal lines of a com-
plete four-line is termed the diagonal triangle of the four-line.

4.17. The Harmonic Points

The sides 4,4, and 4, A4, of a four-point are both on the
diagonal point D,. Hence, since D, is not on D, D;, the common

9 =)
A Hy A, "D,

point of 4,4, and D, D, is distinct from D,; and, similarly, the
common point of 4,4, and D, D, is distinct from D, and from

4o 4y . On each of the six sides of the four-point there is
D, D,
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therefore such a point, and to them are assigned the letters
H,, H|, H,, H;, H,, Hj, in the following way:
H, is on 4,4, and is the point (A 04 ),
D, D,
Hjis on 4,4, and is the point (A )
238

H, is on 4,4, and is the point
H;is on A, A, and is the point
H,is on A, A, and is the point (A"As),

4,4,
Hjis on 4, 4, and is the point (DlDz).

To these six points is given the name of harmonic points of
the four-point; dually, there are harmonic lines of a four-line.

DEFINITION. The point common to a side of a four-point and
the line on the two diagonal points which are not on that side is
termed a harmonic point of the four-point.

The line on a point of a four-line and on the common point of
the two diagonal lines which are not on that point is termed a
harmonic line of the four-line.

There is an important theorem about the harmonic points of
a four-point; this is given at once.

4.171. TurEOREM. The six harmonic points of a four-point
are the points of a four-line.

Since the lines 4, H;, A, H;, and 4,D, are all on the point
Ag, the triangles 4,4, A, and D, H; H, are centrally perspective
on the point 4;. Hence they are axially perspective.

Now (‘; g) is the point D, and (g, ‘14):) is the point D,.
Hence the common point of 4, 4, and H; H; is on D, D,. That
is to say, H,, H;, H; are collinear.

It may be proved in a similar way that (i) H,, H,, and Hg,
(ii) H,, H;, and H, and (iii) H,, H,, H, are collinear.

This shows that the six harmonic points are in threes on four
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distinet lines, no three of which are collinear. The theorem is
therefore proved.

4.172. TEEOREM. The siz harmonic lines of a four-line are the
sides of a four-point.

4.2. Harmonic Tetrxfs

DErFINITION. The two pairs of points consisting of (1) two
diagonal points of a four-point and (2) the two harmonic points
collinear with them are termed a harmonic point-tetrad.t

DEriNITION. The two pairs of lines consisting of (1) two
diagonal lines of a four-line and (2) the two harmonic lines con-
current with them are termed a harmonic line-tetrad.

Thus with the ordinary lettering which has been used for the
four-point, the following are harmonic point-tetrads:

(D, Dy, H, H,), (Dy Dy, Hy Hy), and (D, D,, Hy Hj).

It is clear from the definition that if (XY, LM) is a harmonic
tetrad, then (XY,ML), (YX,LM), and (YX,ML) are also
harmonic point-tetrads.

Where there is no danger of ambiguity, the qualifying words
point and line in the terms harmonic point-tetrad and harmonic
line-tetrad will be omitted.

4.21. Permutation Property of Harmonic Tetrads

TrrorEM. If(XY,LM) is a harmonic tetrad, then (LM,XY)
18 also a harmonic tetrad.

Fic. 18.

1 A harmonic point-tetrad is sometimes called & harmonic range. The dual
term is a harmonic pencil. These names are not used here.
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With the lettering usually applied to the complete four-point,
(Dy Dy, Hy Hy) is & harmonic tetrad.

Consider the four-point whose points are H, Hy Hy H;. Then
the diagonal points of this four-point are H,, H,, and D,.

The harmonic points on the line H, H; are D, and D;.

Hence (H, H;, D, D) is a harmonic tetrad.

This proves the theorem.

4.22. The Unicity Theorem

A harmonic point-tetrad has been defined as a set of four
collinear points which fulfil certain conditions, but it has not
yet been proved that these conditions are not fulfilled by any
arbitrary set of four collinear points. In the following theorem it
is shown that the harmonic tetrad is, in fact,something special and
that not every set of four collinear points is a harmonic tetrad.

Tueorem. If X, Y, and L are three distinct collinear points,
then there is a unique point M, collinear with them, such that
(XY, LM) is a harmonic tetrad.

Let X, Y, and L be any three collinear points.

Let 4, and 4, be any two distinct points not collinear with
them. Let 4, and 4, be points on 4,X, 4,Y respectively,
such that 4,, 4,, and L are collinear. Let A3 be the point

(47)

Let the points A7, 43, 4; be defined similarly, relative to the
point 4.
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Now the triangles 4,4,4, and AjA;A; are axially per-

. . AgA,\ [Ag4,\ (4,4, . .
spective, since ( 4 A{)’ ( 4,4 ( A4 are the collinear points

X, Y, and L respectively. Hence the lines 4,4, 4,4;, and
A, A are concurrent. /

Similarly, the triangles 4, 4, A; and A] A, A; are axially per-
spective, so that the lines A, A;, 4, 4,5, A;A; are concurrent.

Hence the triangles 4,4, 45 and Ay A; A5 are centrally per-
spective, and they are therefore axially perspective also.

Hence the point (j‘,’j?) is collinear with X and Y: let this
point be M. o

But X and Y are diagonal points and L and M are harmonic
points of both of the four-points 4,4, 4,4, and 434, 4; 4;.
Hence the fourth point M of a harmonic tetrad, of which one
pair is X, ¥, and the third point is L, is the same, however the
four-point is constructed, and this proves the theorem.

The dual theorem is:

THEOREM. If x, y, and 1 are three distinct concurrent lines,
then there is a unique fourth line on their common point such that
(xy, Im) is a harmonic tetrad.

4.221. Harmonic Conjugates

The theorem just proved shows that if X and ¥ are one of the
pairs of a harmonic tetrad, then corresponding to every point
L there is a unique point M such that (XY, LM) is a harmonic
tetrad. It is useful to have a name for such pairs of points.

DerinitioN. If X, Y, L, M be four collinear points, and
(XY, LM) be a harmonic tetrad, then L and M are said to be
harmonic conjugates relative to the pair X, Y.

If z, y, 1, m be four concurrent lines, and (xy, Im) be a harmonic
tetrad, then 1 and m are said to be harmonic conjugates relative to
the pair z, y.

It is plain that if L and M are harmonic conjugates relative
to X and Y, then X and Y are harmonic conjugates relative to
Land M.

The phrase ‘relative fo’ which is used in the above definitions,
is deserving of some notice, for it will frequently occur. To say
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that L and M are harmonic conjugates is a meaningless form
of words unless another pair of points is mentioned with which
this pair forms a harmonic tetrad. L and M can only be har-
monically conjugate when there is another pair of points to
which they are related in such a way that the two pairs form
a harmonic tetrad. Harmonically conjugate is an example of a
relative term, that is, a term which does not acquire precise
meaning unless taken in conjunction with another term, the
choice of which is, within certain limits, arbitrary.

4.222. Singular Harmonic Tetrads

Given three collinear points X, ¥, L there is a unique
fourth point M, collinear with the other three, which is the
harmonic conjugate of L relative to X and ¥. It is not a
completely trivial question to ask what the harmonic conjugate
of Y is, relative to X and Y; in fact, later on, the answer to
this question is important.

It is an easy matter to verify, by carrying out the construc-
tion of 4.22, that the harmonic conjugate of Y relative to X and
YisY.

Similarly, the harmonic conjugate of X relative to X and ¥
is X.

A tetrad such as that just considered, in which three of the
points are coincident, is aptly called a singular harmonic tetrad.
Dually, there are singular harmonic line-tetrads.

In the paragraphs which follow immediately it is consis-
tently supposed that the harmonic tetrads dealt with are not
singular.

4.23. Projective Properties of Harmonic Tetrads

It has been shown that not every set of four collinear points
is a harmonic point-tetrad, and, dually, that not every set of
four concurrent lines is a harmonic line-tetrad. It follows that
a harmonic tetrad has special properties which distinguish it
from other tetrads, and it is therefore natural to ask whether
a tetrad (point- or line-) which is projective with & harmonic
tetrad (point- or line-) is itself harmonic. This general question
is answered in the theorems which follow, and in them the pro-

jective properties of the harmonic tetrad are investigated; it is
4191 L



74 PROJECTIVE GEOMETRY
these projective properties which make the harmonic tetrad
important in Projective Geometry.

4.231. Turorem. JIf (XY,LM) is a harmonic point-tetrad,

the
8 (XYLM) ~ (Z}YML) ~ YXLM)~ (YXML).

Fic. 18.

With the usual lettering of the complete four-point,
(D, Dy, H, H) is a harmonic tetrad.

’ H’ 4
Now (D, D;H, H;) 7(3 (D, Dy H, H;),

’ H ’
but (D, D;H, Hy) 7§3 (D, Dy H{ H,).

Hence, if (XY, LM) is a harmonic tetrad,
(XYLM) ~ (XYML).

The other results follow by applying the permutation theorem
(3.325).

4.232. TuroreM. If X,Y, L, and M are four distinct collinear
points, and if (XYLM)~ (XYML), then (XY,LM) is a har-
monic tetrad.

Suppose that (XY, LM) is not a harmonic tetrad. Let Y’ be
the point such that (XY’, LM) is a harmonic tetrad.

Then by the last theorem (XY'LM)~ (XY'ML); and by
supposition (XYLM) ~ (XYML).
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Now these two projectivities have three pairs of correspond-
ing points in common, hence they arc the same projectivity.

Tt follows that (XYY'LM) ~ (XYY'ML). But this is a pro-
joctivity in which there are three distinct self-corresponding
points, and it is not a projectivity in which every point is self-
corresponding. This is a contradiction in terms. Hence Y’ must
coincide with Y. That is to say, (XY, LM) is & harmonic tetrad.

The last two theorems may be re-enunciated as one:

4.233. Necessary and Sufficient Condition for a Har-
monic Tetrad

THEOREM. The necessary and sufficient condition that the four
distinct collinear points X, Y, L, and M should form a harmonic
tetrad (XY, LM) s that

(XYLM) ~ (XYML).

THEOREM. The necessary and sufficient condition that the four
distinct concurrent lines x, y, I, and m should form a harmonic
tetrad (xy,lm) s that (xylm) ~ (xyml).

It is now possible to prove the full projective properties of
harmonic tetrads. This is done in the following theorem.

4.234. THEOREM. If a tetrad ts projective with a harmonic
tetrad, it 13 ttself a harmonic tetrad.

Conversely, any two harmonic tetrads are projective with each
other.

The enunciation does not specify whether the tetrads in
question are point-tetrads or line-tetrads. In the proof which
follows that case only is considered in which one is a point-
tetrad and the other a line-tetrad; the proofs of the other cases
are entirely similar.

Suppose first that (XY, LM) is a harmonic tetrad, and that
(XY LM) ~ (xzylm), where z, y, , and m are four concurrent lines.

Then by the last theorem (XYLM)~ (XYML), and from
this it follows that (zyim) ~ (xyml).

Hence by the last theorem (xy, Im) is a harmonic tetrad.

Conversely, suppose that both (XY,LM) and (zy,lm) are
harmonic tetrads. If it is not true that (XY LM) ~ (xylm), let
m* be the line on the same point as the other four, and such
that (XY LM) ~ (xylm*).
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Then by the first part of the theorem (xy,!m*) is a harmonic
tetrad. That is to say, m and m* coincide. This contradicts the
supposition that m* is not the same line as m. Hence

(XY LM) ~ (zylm).
The theorem is thus /péoved.

4.24, Harmonic Tetrads in the Algebraic Representation

The object of this paragraph is to answer the guestion: Given four
collinear points X, ¥, L, M, whose coordinates relative to some base
points are, respectively, (@, p1)s (s, 13)s (p3» pt3), and (g, ug), what is tho
necessary and sufficient algebraic condition that (XY, LM) shall be a
harmonic tetrad ?

The usual notation for the four-point in the Algebraic Representation
being supposed, it is not difficult to verify that the harmonic points
H, and Hj are, respectively, (AgZo—A; @1, Ag¥Yo— A1 ¥1> AoZo—A, 2;) and
As 2y —As 5, Ay Y —As Y3, Ag 23— A5 23)-

Hence the harmonic tetrad (D,,D,, H, H}) consists of the following
points: (AgZo+A%z AoYot+ArYes A%t Az2a)y (AoZod-Asss Ao¥o+tAs¥s
QzotAszs)y A@o—A @ AYo—h Y AZe—Az). and (A @p—As s,
A2 Ya—A3 Y3, Az 23— A 23).

If now tho points D, and D; be taken as base points, these four points
have the coordinates (1,0), (0, 1), (1,1), and (1, —1) respectively.

Suppose now that the points X, Y, L, and M have coordinates (p,, u1),
(220 12)s (g po3)> AN (p24, pg) relative to some base points. Then since the
necessary and sufficient condition that (XY, LM) is a harmonie tetrad
is that (XY LM) ~ (D, Dy H, H}), a necessary and sufficient condition is
that thore should be numbers a, b, ¢, and d such that ad—be ¥ 0, and

apy +bp; =0,
cl,l.,+dy.; = 0,
apg+bps+ops +du; = 0,
apy+bpi—cpy—dpg = 0,
by 3.252; that is to say, that
mop O 0
0 0 p o4 =0,
Bs B Ms M
Ba pi —pe —p4
This determinant, on being simplified, is found to be
(e s — 11} pos) (e o — i o)+ (pon i — o1 pra )i ps— i pis)s
and so the equation may be written in the form
(paps—pi pa)papa—papa) _ _
(pey pa— 121 praps i — 23 pha)
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Hence the following theorem may be enunciated:
The necessary and sufficient condition that four distinct collinear points

X, Y, L, M, whose coordinates relative to some base points collinear with
them are (py,p3), (pos i) (oo p3)s and (g, i) respectively, should be a
harmonic tetrad (XY, LM) is that

(paps—pi po)prapa—piapa) _ 4
(1 = ) e —ptipss)

EXAMPLES

1. With the usual notation applied to the four-point, show that
(Ag4,, D, H,) and (4, A;, Dy H{) are harmonic tetrads. Hence enumer-
ate nine harmonic tetrads associated with the four-point.

2. x and y are two lines and V is a point not on either, and I, », n are
three lines on V. X, X,, X, Y, Y,, Y, are the points lz, mux, nz, ly, my,
ny respectivoly. 1f Z,, Z,, Z; are points on I, m, n respectively, such
that (VX,,Y,Z%,), (VX,,Y,Z,), and (VX Y;Z,) aroc all harmonic
tetrads, show that Z,, Z,, Z,, and zy are collmcar.

3. 4, B, C, D, X, and Y are six collinear points, and 4°, B, ¢’, D’
are the harmonic conjugates relative to XY of the points 4, B, C, D
respectively. Show that (ABCD) ~ (A’B’C’D’), and that X and Y are
the self-corresponding points of the projoctivity.

4. Show that the four-line whose six points arc the harmonic points
of a four-point has the same diagonul triangle as the four-point.

5. ABC is any triangle; A’ and 4” are two points on BC such that
(BC, A’A”) is a harmonic tetrad. The points B’ and B” on C4, ¢’ and
C” on AB are similarly defined. Show that corresponding sides of the
three triangles 4 BC, A’B’C’, A” B"C” arc concurrent.

6. ABC is any {rianglo, and O any other point. A’, B’, C’ are the
points (ﬁg), (10;3), (gg) respectively, and A”, B”, C” are points such
that (BC,4’A"), (CA, B’'B”"), (AB,C’C”) are all harmonic tetrads.

Show that (i) A”, B’, C’ aro collinear, and that there are two other,
similar, sets; (ii) 44, BB”, OC” are concurrent, and that there are two
other, similar, sets; and (iii) A”, B”, C” are collinear.

7. Show that the diagonal trianglo of a four-point is perspective with
any triangle whose vertices are any three of the four points of the four-
point.

8. If (ABCD) ~ (BCDA), show that (4C, BD) is a harmonic totrad.
Show that the converse is also true.

9. If two harmonic point-tetrads on two different lines have a point
in common, show that they are perspective in two different ways.

10. Given four points X, Y, Z, A, no three of which are col-
linear, construct a four-point 4 BOD whose' diagonal points are X, ¥,
and Z.

How many four-points satisfy the conditions ?
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4.3. Involutory Hexads

The harmonic tetrad is a set of four collinear points which is
defined in terms of concepts which arise from the consideration
of the four-point; the involutory hexad is a set of six collinear
points which arises in & similar way. In a certain sense the
harmonic tetrad is a particular case of the involutory hexad,
but this is not the real reason why the latter is important in
Projective Geometry. Its real importance lies in the fact that
it leads on at once to the notion of the snvolution, without which
Projective Geometry would be cxtremely handicapped.

4.31. DEFINITIONS
A set of six collinear points such that each is on one of the six
sides of a complete four-point is termed an involutory point-hexad.

Fia. 20.

In the figure X, X,, X,, X;, X;, X; are the six points. The
method of assigning suffixes will be easily understood.

A set of six concurrent lines such that each is on one of the six
points of a complete four-line is termed an involutory line-hexad.

The words point and line in the terms point-hexad and line-
hexad will be omitted when no ambiguity arises.

Since the six sides of a four-point can be classified into three
pairs, the six points of an involutory hexad can also be classified
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into three pairs. This fact will have been realized by the way in
which suffixes and dashes have been assigned to the points.
Thus X, and X3, X, and X;, X; and X are the three pairs. The

fact that three pairs of points constitute an involutory hexad is
expressed by writingt (X, X, X,, X1 X; X3).

It is clear that if (X, X, X;, X; X, X;)is an involutory hexad,
ten (XX, X, X, X3 X)), (X Xi Xy XX, X)),

(X, X, X35, X1 X, Xy), (X, X, X5, X1 X, X,),
(X1 X, X3 X, X, X,), (X1 X, X,, X, X, X3),
and (X1 X5 X3, X, X, X3)
are also involutory hexads.

The same questions arise about involutory hexads as arose
about harmonic tetrads. These are: (1) Are any six collinear
points an involutory hexad ? (2) If there are six collincar points,
and there is a projectivity between them and an involutory
hexad, are they themselves an involutory hexad? (3) What
is the necessary and sufficient condition that six points should
be an involutory hexad? These questions are answered in the
theorems which follow.

1 The reader will probably find it more helpful in written work to symbolize

an involutory hexad by tho scheme [;‘, §§ §‘:] He may also find it helpful
1 2 3.

to name the three pairs of points: Father, Mother; Brother, Sister; Uncle, Aunt.

The initial letters of these words will be the letters assigned to the points, so

that the hexad will be [FBU

MS. A]' This device is not so childish as it may appear
at first sight.
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4.32. The Unicity Theorem
TurorEM. If X, X,, X4, X1, X; are five distinct collinear points,
then there is a unique point X; collinear with them, such that

(X X, X5, X1 X5 X3)
18 an involutory hexad.

Fic. 22.

Let 2 be the line on the five given points.

Let 4, be any point not on z, and 4, any other point on
4,X,. )

Let A, be the point (j;)X;:), and A, the point (j:§1 .

Let Aj be another point not on z, and distinct from 4,. Let
Aj, A;, Aj be three points defined in a similar way, relative to
Ay, as 4y, A,, A3 were defined relative to 4,.

The proof of the theorem now proceeds very similarly to that
of 4.22. The outline only is given here; the details may be
filled in by the reader.

The triangles 4,4, A; and A; 47 A3 are axially perspective,
and so they are also centrally perspective. Similarly, the triangles
Ay A, A, and Ay Ag A; are axially perspective, and so they too
are centrally perspective.

Hence the triangles 4, 4, A, and 4] A; A; are centrally per-
spective, and so they are axially perspective, and z is their
axis of perspective. That is, the common point of 4,4, and
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AjA; is on x. This point is the unique sixth point of the in-
volutory hexad.

4.33. Necessary and Sufficient Condition for an Involu-
tory Hexad
THEOREM. The necessary and sufficient condition that six
collinear poinis X,, X,, X3, X1, X3, X3 should form an involutory
hexad in which X, and X,, X, and X3, X; and X3 are pairs

is that (X, X, X, X}) ~ (X} X; X} X,),
or (Xlxzxaxé)"’ (XiXéXéXg),
or (X, X, X, X5) ~ (X, X} X} X,).

Fia. 20.

First suppose that (X;X,X, X;X;X;) is an involutory
hexad. Then

’ ‘A ’
(X, X, X, X)) 0 (D14, 4,X;)
A ’ ’ ’
(X, X3 X X)),
But by the permutation theorem (3.325)
(X, X3 X3 X5) ~ (X1 X3 X3 X)),
hence (X X X X)) ~ (X1 X X3 X))

The other two results are proved similarly. Hence the condi-

tions are necessary.
4191 . '
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Next suppose that
(X X, X3 X3) ~ (XiXéX.*lxXx),
and that the six points are not an involutory hexad. Suppose

then that (X; X, X;, X; X, X3) is an involutory hexad. Then
by the first part of the theorem

(X X, X3 X;) ~ (X3 X5 X3 X,).
Hence (X1 X3 X3 X,) ~ (X1 X3 X3 Xy);
but this last projectivity has three self-corresponding points,
so that X3 and X3 must coincide. Hence the six points form an
involutory hexad.

This proves that the first of the conditions mentioned is
sufficient, and it may also be proved in a similar manner that
either of the others is sufficient.

The theorem which has just been proved is of very great
importance in the work which follows; it occurs again, with a
slightly different enunciation in the theory of involutions, and
it will constantly be encountered in the theory of conics.

4.34. Projective Properties
It is easy to see that if
(X, X, X3, X1 X3 X;3) and (L1 1,, Y1Y,Y5)
are two involutory hexads, there is not necessarily a projectivity
such that
(X X, X X3 X, X3) ~ (M LYY Y, Y5).
For in the projectivity in which (X, X, X;) ~ (1; ;Y;), X; and
Y; need not necessarily be corresponding points, since ¥; may
be chosen arbitrarily; and even if they are, X, and ¥, need not
necessarily be corresponding points, for a similar reason. But
if these five pairs of points be, in fact, pairs of corresponding
points in a projectivity, then it can easily be proved that the
sixth pair, X3 and Y3, are also a pair of corresponding points in
the projectivity.
The converse of the theorem, namely, that if
(X, X, X5, X1 X, X3)
be an involutory hexad, and if there be a projectivity in which
(X X X3 X1 X, X3) ~ (ML Y, Y1 Y, Xy),
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then (Y, Y,Y;, Y, Y, Y5) is also an involutory hexad, is an easy
corollary of 4.33. Both of these are left to the reader.

4.35. Singular Involutory Hexads

In all that has been said about involutory point-hexads it
has been tacitly supposed that the line on which the six points
are is not on any of the diagonal points, and something must be
added in order to cover the cases when it is.

In the first place, suppose that the line is on one, but only
one, diagonal point, and, for definiteness, suppose this is the
point D;. It is at once obvious that there are now not six, but
five, distinct points; nevertheless, it is also obvious that the
point D, can be looked on as two coincident points, one of which
is on 4y A,, the other on 4,4, There is therefore still an in-
volutory hexad, but one of the constituent pairs is a pair of
coincident points; D), is the coincident pair X; and X];.

Next, suppose that the line is on two diagonal points D, and
D,. As before, each of these may be looked on as a pair of
coincident points, and the involutory hexad consists of one
pair of distinet points and two pairs of coincident points.

Involutory hexads in which one or more pairs are pairs of
coincident points may be called singular involutory hexads. The
reader will easily prove that there cannot be more than two
pairs of coincident points. All the theorems about involutory
hexads are true of the singular cases, and the reader should
verify this.

The four points which constitute the singular hexad in which
there are two pairs of coincident points together form a harmonic
tetrad, and so the remark that the harmonic tetrad is, in a
certain sense, a particular case of the involutory hexad is
justified. But the full significance of this will be more obvious
when the notion of the involution has become familiar.

4.4. Involutions

If X,, X,, X; are three collinear points, and X;, X;, X3 are
any other three points collinear with the first three, there is
a projectivity in which (X, X, X,) ~ (X7 X3 X3), and this pro-
jectivity is completely determined. If now the two sets of
three points together form an involutory hexad, it is natural
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to suppose that the projectivity has special properties which
distinguish it from other projectivities. This is, in fact, true,
and the following theorems bring out the properties of such a
projectivity. First of all, however, it is useful to have a name
for a projectivity betwéen cobasal ranges or pencils in which
three pairs of corres;Zréxding points are the three pairs of an
involutory hexad.

4.41. Definition

Any projectivity between cobasal ranges or cobasal pencils in
which there are three pairs of corresponding points which are the
three pairs of an involulory hexad is termed an involution.t

The name involution is primarily a name for the projectivity
between two cobasal ranges or pencils, and so we speak of two
ranges in involution, meaning thereby that there is an involu-
tion between them. In a secondary sense the word involution
is sometimes applied to the two ranges between which there is
an involution; it will be found that there is no ambiguity in
this usage.

4.42. The Fundamental Theorem on Involutions

TaEorEM. If X, and X1, X, and X;, X3 and X; be three pairs
of corresponding points in a projectivity, the necessary and sufficient
condition that this projectivity be an involution is that

(X X, X Xy) ~ (X X3 X3 X)),

First suppose that the projectivity is an involution so that
there are three pairs of corresponding points which form an
involutory hexad. Let this hexad be (¥,Y,Y;, Y;Y;Y3). Then

ONYLY YY) ~ XY Y3 H L)

Consider now the five points 13, Y,, X,, Y3, ¥5; let X3 be
a sixth point such that (¥;Y,X,, Y;Y;X5) is an involutory
hexad. Then (7Y, X,¥]) ~ (¥;7; X: 1))

But by suppf)sition
MY X, Y;)~ (Y1Y; X3 1),
so that (¥, Y, X3, Y1 Y; X3) is an involutory hexad.

1 The name was that given by Desargues (1639) when he studied involutions
metrically. The reason for the name is a little obscure, and it is certainly not
a very apt term. It is retained because it is now universally used. As the sequel
will show, the term reciprocal projectivity would perhaps be more apt.
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Similarly, it may be proved that (¥;X,X;, Y;X,;X;) and
finally (X, X, X,, X; X; X;) are also involutory hexads.

Hence any three pairs of corresponding points in the pro-
jectivity form an involutory hexad.

Hence, by 4.33, for any three pairs of corresponding points

(X, X, X3 X3) ~ (X, X, X, X))

This proves the necessity of the condition.

The sufficiency of the condition follows at once from 4.33,
for if (X, X, X, X;) ~ (X1X,X;X,), then (X, X, X, X; X; X3)
is an involutory hexad, and the projectivity is an involution.
4.421. Definition

A pair of corresponding- points in an involution i8 termed a
pair of mates of the involution.

4.422. Remarks on Theorem 4.42

The theorem just proved shows that pairs of mates of an in-
volution have a remarkable property, which is probably most
simply explained by using the ideas suggested in 3.42. There
it was suggested that cobasal ranges should be thought of as
possessing distinguishing colours. A projectivity sets up a
correspondence between red points and blue points. In a general
projectivity a red point A corresponds to the blue point B,
say; but the red point B does not necessarily correspond to the
blue point 4. When the projectivity is an involution, however,
Theorem 4.42 shows that if the red point 4 corresponds to the
blue point B, then the red point B corresponds to the blue point 4.
There is thus a reciprocal correspondence in an involution.

4.43. Another Sufficient Condition

THEOREM. If in a projectivity between cobasal ranges a pair

of distinct points correspond reciprocally, that is to say, if
(4B...) ~ (BA4...),
then the projectivity is an involution.

Let C be any other point of the first range and D the corre-
sponding point of the second. Let X be that point of the second
range which corresponds to D, considered as a point of the first
range.} .

1 If the reader will substitute red and blue for first and second respectively,
the thought underlying this formal language will become clearer.
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Then (ABCD) ~ (BADX).
But, by the permutation theorem,
(ABCD) ~ (BADC),

so that X and C are the same point.
Similarly, if E be aféﬂ other point of the first range and F
the corresponding point in the second,

(ABEF) ~ (BAFE).
Hence (ACEB) ~ (BDFA),

and so, by the previous theorem, the projectivity is an in-
volution.

4.431. Note on the Sequence of Theorems

It is clear that an involution could have been defined as a
projectivity in which there is a pair of distinet points which
correspond reciprocally. It could then have been shown that
in an involution every pair of corresponding points correspond
reciprocally, exactly as in 4.43. From this result it is a simple
conclusion that three pairs of mates in an involution together
form an involutory hexad.

This line of approach to the subject is in many ways more
satisfying, since it starts with something much simpler than
the involutory hexad, and leads up to the connexion between
involutions and involutory hexads. It has not been adopted
here in order that the theory of involutions might appear as
an immediate extension of the matter preceding it.

4.44. Self-corresponding Points of Involutions

Since an involution is a special case of a projectivity, it is
natural to inquire about the self-corresponding points, if there
are any, of an involution. In the following theorems this
inquiry is undertaken.
4.441. TueoreEM. If X and Y be any two distinct points, then
the pairs of points which are harmonic conjugates relative to X
and Y are pairs of mates in an involution of which X and Y are
the self-corresponding points.

Let A and A4’ be any pair of conjugate points relative to
XandY.
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Consider the projectivity in which (XY A4) ~ (XY A’'), and
suppose that in this projectivity (XY AA4') ~ (XYA'A").

Now (XY,A44’) is a harmonic tetrad, therefore by 4.23
(XY,A’A") is a harmonic tetrad. Hence A" is the same point
as 4.

Hence in the projectivity 4 and A’ are reciprocally corre-
sponding points, and the projectivity is therefore an involution,
by 4.43.

Let B and B’ be another pair of corresponding points, so that
they are, by 4.43, reciprocally corresponding points.

Then (XY BB') ~ (XY B'B), that is to say, by 4.24, B and
B’ are harmonic conjugates relative to X and Y.

Similarly, any pair of mates are harmonic conjugates relative
toXandY.

Hence the pairs of points harmonically conjugate relative
to X and Y are pairs of mates in an involution whose self-
corresponding points are X and Y.

4.442. TrEorEM. If an involution have a pair of distinct
self-corresponding points, then every pasr of mates of the involu-
tion 18 a pair of harmonic conjugates relative to the self-correspond-
tng points.

Let X and Y be the self-corresponding points of the involu-
tion, and let 4 and A4’ be a pair of mates.

Then (XYAA’') ~ (XYA’A), and so, by 4.24, A and A’ are
a pair of harmonic conjugates relative to X and Y.

4.443. TurorEM. If an tnvolution have one self-corresponding
potnt, then it has a second, distinct from the first.

Let X be the self-corresponding point, and let 4 and 4’ be
any pair of mates of the involution.

Then the involution is & projectivity in which

(XAA4') ~ (XA'A).

Suppose that Y is the harmonic conjugate of X relative to
AA’, and suppose that Y’ is the mate of ¥ in the involution.

Then (XYAA'Yy ~ (XY'A'A).

But (XY,AA’) is a harmonic tetrad, and so, by 4.23,
(XY’,A’A) is also a harmonic tetrad; hence Y’ and Y are the
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same point. Therefore Y, which must be distinct from X, is also
a self-corresponding point of the involution.

4,444, Summary

It has been proved that there are involutions which have two
self-corresponding pcjz;, and that no involution can have a
single self-corresponding point. It is therefore natural to ask
whether there can be involutions which have no self-correspond-
ing points. This question cannot be answered definitely, for
there are some systems in which every involution has two self-
corresponding points, and there are others in which some invo-
lutions have no self-corresponding points. Both types of system
are compatible with the initial propositions so faradopted. Later
an initial proposition about extension will be added, and this
will exclude all systems of the second type.

4.45. Conditions Determining an Involution

A projectivity is completely determined when three pairs of
corresponding points are known, and these three pairs may be
chosen arbitrarily. But if the projectivity is to be an involution,
then obviously the three pairs cannot be chosen arbitrarily, for
they must form an involutory hexad. The following theorem
shows that when two pairs of mates are known, the involution is
completely determined.

THEOREM. An involution is completely specified when two
pairs of mates are known; either or both of the pairs may be
coincident.

Let 4 and 4’, B and B’ be the two pairs of mates.

Suppose there are two involutions in which these two pairs
are pairs of mates.

Let C and C’ be any other pair of mates in the first involution,
and let C” be the mate of C in the second involution.

Then (ABC, A’B'C") and (ABC, A’ B'C"") are both involutory
hexads; hence, by 4.32, " and C” are the same point.

This shows that the two involutions are identical.

4.46. Common Mates of Two Involutions

A problem that is continually occurring in subsequent work
is the following: If there are two different involutions on
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a line, what pairs of mates are the same in the two involu-
tions ?

The following theorem shows that if the two involutions are
really different, then there is one and only one pair of mates
common to the two. By the time this theorem is needed, an
initial proposition of extension will have been added which will
ensure that every projectivity has two self-corresponding points,
distinet or coincident. But since this initial proposition has
not yet been laid down, the following theorem is enunciated
conditionally.

THEOREM. If every tnvolution has two self-corresponding
poinis, then there is one and only one pair of points, distinct or
coincident, which is a pair of mates in both of two involutions on
the same line. ‘

It is clear from the last theorem that two different involutions
cannot have more than one pair of mates in common.

Suppose now that X and X' are the self-corresponding points
of one involution and that ¥ and Y’ are those of the other.

If one of the first pair coincide with either of the second, this
is the pair of (coincident) mates common to the two involutions.
Suppose, however, that the four points are all distinct.

Consider the involution in which X and X’ are a pair of
mates and ¥ and Y’ are a pair of mates. Let Z and Z’ be the
self-corresponding points of this involution.

Then, by 4.442, (XX’, ZZ’) is a harmonic tetrad, hence Z and
Z' are a pair of mates in the first involution. By entirely similar
reasoning Z and Z’ are also a pair of mates in the second
involution.

This proves the theorem.

4.47. Involutions in the Algebraic Representation

If (A, A]) and (A,, A;) are the coordinates of two points on a line relative
to some chosen base points, and if these two points are a pair of corre-
sponding points in a projectivity, then there oxists an algebraic relation

aA A +BA A A A +dA A, = 0 (ad—be £ 0)

connecting A, Af, Ay, Aj.

If now the projectivity be an involution, then every pair of corre-
sponding points is a pair of reciprocally corresponding points, and so

aAg A +BAA[+ AL A +dA A, = 0.
4191 N
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Subtracting these two,
(b—)A X+ (e—b)A[ A, = O,

or (B—c)A A—A{A,) = 0.

But (A, \;—A{A;) does not vanish, and so b = c.

Honce, if a projectivity specified by the equation

A Ag+BA A HEA Ay 4-dA A, = 0 (ad—be # 0)

be an involution, then b = c. :

Conversely, in any projectivity in which b = ¢ cvery pair of points
is a pair of reciprocally corresponding points, so that the projectivity is

an involution.
The two results may be stated as one, thus:

The necessary and sufficient condition that a projectivity specificd by

the equation
ady Ay +0A Ao+ el Ay +dA A, = 0 (ad—be +# 0)

should be an tnvolution is that b = c.

4.5. Concurrence and Collinearity in Triangles

In elementary Geometry it is proved that the three medians
of a triangle are concurrent; this theorem is only onc of a number
of such theorems, which assert that three lines, onc on each of
the points of a triangle, are concurrent provided certain condi-
tions are satisfied. Similarly, there are theorems which assert
that three points, one on each of the sides of a triangle, are
collinear. There are two theorems in metrical Geometry, known
as Ceva’s and Menelaus’s theorems, which state general condi-
tions for the concurrence of such lines and the collinearity of
such points, but these theorems state metrical conditions, and
therefore they cannot be given here, for the term length has not
been defined. But it is to be expected, since concurrence of
lines and collinearity of points are notions which do not involve
the notion of length, that non-metrical conditions can be stated.
In the following two theorems, which are dual theorems, neces-
sary and sufficient conditions are stated for the concurrence of
lines on the points of a triangle, and the collinearity of points
on the lines of a triangle. The theorems are a simple corollary of
the work that has been done on involutions, and for that reason
they are included here. It will be found that all problems of
concurrence and collinearity in triangles can be solved by
their use.
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/4.51. TaEOREM. If
(i) ABC is a triangle whose sides BC, CA, AB are the lines
a, b, ¢ respectively,
(ii) 7, m, n are three lines on A, B, C respectively,
(iil) @ vs any other line distinct from these six,
(iv) 4', B, C', A", B", C" are the six collinear points azx, bz,
cx, lx, max, nx respectively,
then the three lines 1, m, n are concurrent if and only if A’, A”;
B', B"; C', C" are pairs of mates in an involution.

The details of the proof of this
theorem are left to the reader, and
only the outline is given here.

First suppose that I, m, n are
concurrent, and that O is their
common point. Then the neces-
sity of the condition at once
follows from the fact that the six
points are an involutory hexad
agsociated with the four-point
ABCO. '

Next suppose that the condition
is fulfilled, but that I, m, and n
are not concurrent. Let O be the point mn, and I’ the line
AO. Further, let K be the point «I’. Then by the first part
of the theorem (4'B’C’, KB"C”) is an involutory hexad, and
so K and A" are the same point. That is to say [ is on O, and
the three lines are concurrent.

4.52. TeEOREM. If
(i) ABC 1s a triangle whose sides BC, CA, AB are the lines
a, b, ¢ respectively,
(ii) L, M, N are three poinis on a, b, ¢ respectively,
(iii) X 48 any other point distinct from these six,
(iv) o', b', ¢/, a”, b”, ¢" are the concurrent lines AX, BX, CX,
LX, MX, NX respectively, .
then the three points L, M, N are collinear if and only if a’,a";
b',b"; ¢, c” are three pairs of mates in an involution.
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ExaMPLES

1. Prove Theorem 4.32 when A4, and A; coincide but 4, and A4
do not.

2, If (X, X, X,, X{X;X;) is an involutory hexad, and if V' is any
point not eollinear with these six, show that

(VX /VX,, VX, VX, VX, VX))

is also an involutory hexad.

3. X and X', Y and Y’ are two pairs of matos in an involution in
which M and N are the self-corresponding points, Show that X and Y,
X’and Y, M and N are three pairs of mates in another involution.

v
4. If @A, 4,4, 4,...) x Y(By B By B,...)
II
and (A, Ay Ay Apr) 1 YOOy CyCpun)s

determine a necessary and sufficient condition that the projectivity
Y(By B, By By...) ~y(C1 G, 03 Cy..)
shall be an involution.
5. If I is the Pappus line of the projoctivity
(X, X, X X)) ~ y(V1 Y, X515...),

and if y(¥;Y,Y;Y,...) %I(ZIZ, Zy Zg...), show that the projectivity
(X, X, Xy Xyoo) ~ (2, Zy Zy Z,...) is an involution if and only if U
isonl.

6. Prove the dual of Theorem 4.22 without appcaling to the principle
of duality.

7. A and A’ arc a pair of mates in an involution. Assuming that every
involution has two self-corresponding points, dovisc a construction for
finding a second pair of mates, B and B’, such that (44’, BB’) is a
harmonic tetrad.

8. If (XYABCD) ~ (XYBCDA), show that 4,C and B, D are two
pairs of mates in an involution whose self-corresponding points are
X and Y.



CHAPTER V
THE CONIC
5.1. Introductory
5.11. Notation

It will be found, in dealing with the conic, that it is often
necessary to speak of projectivities between a set of concurrent
lines, say XA, X B, XC,... and some other set of points or lines.
In symbolizing such projectivities it would be legitimate, though
cumbrous, to write X (X4, X B, XC,...) ~ .... Similarly it would
be cumbrous to say: ‘Let @ be the line X4, b be the line X B,
ete.’, and then to write X (abc...) ~ ....

To obviate these difficulties, an addition is made to the
notation already in use. By the set of symbols X(4BC...) is
denoted the set of concurrent lines X4, XB, XC,.... No con-
fusion will arise between this and the set of symbols 2(4 BC...).
It should be noted that the points 4, B, C, in X(4BC...) need
not be collinear.

With this a modification of the existing notation is made.
Hitherto the symbol X has been used to denote a perspectivity,
and the symbol ~ to denote a projectivity that is not a per-
spectivity. In future the symbol ~ will be used for both, and
the fact that a projectivity is a perspectivity will be denoted if
necessary by placing a letter (large or small) over the sign ~.

Thus £ will denote a central perspectivity on the point O,
and 2 will denote an axial perspectivity on the line o.

5.12. A Provisional Initial Proposition of Extension

We have so far been content with the indefinite initial pro-
positions of extension: Not all points are on the same line, and
There are at least three points on every line. To enter into a
discussion of the question of extension at this point would not
be very fruitful, and it would take us a long way from the line
of development that is being followed. At the same time, to
attempt to study the conic having only the above indefinite
initial propositions of extension would be very laborious, for
it would entail the constant enumeration of exceptions to
general theorems. Moreover, it would be seen, when the time
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came for the complete discussion of cxtension, that most of
these exceptions were in reality trivial. Hence it is convenient
and useful at this point to lay down a provisional proposition of
extension as follows:

5.121. Every projectivity between cobasal ranges has
two self-corresponding points which are either distinct

or coincident.
ExAMPLES

1. Show that the dual of 5.121 follows from 5.121.

2. Show that 5.121 is verified in the Algebraic Representation.

The reader may be surprised to find that 5.121 is called a
proposition of extension, and not a second projective pro-
position. The full reason for this cannot be given here, but
it can be explained at least roughly. Let us suppose first of all
that we are dealing with a field in which 5.121 is verified, so
that every projectivity between cobasal ranges has two distinct
or coincident self-corresponding points. Now suppose that
instead of considering the whole field, we consider only a part
of it, yet a part in which every one of the initial propositions
so far laid down is verified, with the exception of 5.121. It is
quite plausible to suppose that in thus cutting off from our
consideration a part of the original field, we get rid of the
self-corresponding points of some of the projectivities between
cobasal ranges in the part that is left. And so it may be seen,
in a rough sort of way, that the effect of 5.121 is to ensure
that the field is extensive enough to include the double points
of every projectivity between cobasal ranges.

5.13. Loci and Envelopes

DerinITION. 4 locus is a point-figure to which a point does
or does not belong, according as it does or does not satisfy some
given condition.

DxFINITION. An envelope is a line-figure to which a line does
or does not belong, according as it does or does not satisfy some
gtven condition.

It should be noticed that in Projective Geometry a locus
is not ‘the path traced out by a point moving according to some
given law’; points do not move.
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The repeated alternatives ‘does or does not . . . does or does
not . . .’ in these definitions are important. In proving that a
certain point-figure is the locus corresponding to some given
condition it is necessary to prove two things: (i) that every
point of the figure satisfies the condition, and (ii) that no other
point satisfies the condition. This is what is implied by the
repeated alternatives. It is therefore insufficient to prove that
every point satisfying the condition is @ point of the figure which is
asserted to be the locus. Dual remarks apply to envelopes.

5.2. Definition and Basic Properties of the Conict
DErFINITION. A point-conic is the locus of the points which are
common to pairs of corresponding lines of two pencils between
which there is a projectivity.
The bases of the two pencils are called the generating bases.

Fia. 24.

DEeFINITION. A line-conic is the envelope of the lines which
are on pairs of corresponding points of two ranges between which
there is a projectivity.

The bases of the two ranges are called the generating bases.

1 The namo conic is given to theso loci and envelopes for historical reasons.
The properties of plane sections of the right circular cone were investigated
very early in the history of Mathematics, and to these curves was given the
name conic section. Later, these curves were defined by the familiar focus-and-
directrix property (SP = ePM) instead of being defined as sections of a cone,
and the name was shortened to conic. The name is taken over into Projective
Geometry because eventually, when certain metrical ideas are introduced, it
can be proved that these loci and envelopes can be identified with loci and
envelopes having the focus-directrix property.
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F¥ic. 25.

5.21. Non-singular and Singular Point- and Line-conics

The definition of the point-conic makes no stipulation about
the two pencils by which it is specified; while there may be
no particular relation between them beyond the projectivity
spoken of, they may, on the other hand, be specially related, as
for instance when they are cobasal. It is therefore necessary to
classify point-conics, and this is done here.

(i) Point-conics specified by a projectivity between pencils
which are not cobasal and whose common line is not self-
corresponding. These point-conics are called non-singular point-
conics. All other point-conics are singular point-conics.

(ii) Point-conics specified by a projectivity between pencils
which are not cobasal but whose common line is self-corre-
sponding. According to the definition of the point-conic, every
point on this common self-corresponding line ig a point of the
locus. The points common to other pairs of corresponding lines
are all collinear by 3.322. Ilence the locus consists of two ranges
of points on different bases.

(iii) Point-conics specified by a projectivity between two
cobasal pencils which have two distinet self-corresponding
lines. It is clear that every point on each of the two self-corre-
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sponding lines is a point of the locus. The only point common
to other pairs of corresponding lines is the common base of the
two pencils. Hence the locus consists of two ranges of points on
different lines.

(iv) Point-conics specified by a projectivity betwcen two
cobasal pencils which have two coincident self-corresponding
lines. Hence the locus consists of two cobasal ranges, or two coin-
cident ranges of points.

There is a dual classification of line-conics.

What has been said is not sufficient to show that the non-
singular point-conic is not, as a matter of fact, a pair of ranges;
that it is not is a simple consequence of a theorem which is
about to be proved.

5.22. Elementary Deductions

Before making any deductions from the definitions of ‘the
point-conic and the line-conic, an addition is made to the
terminology in use.

DerintTiON. If A be any point of a point-conic, then the
point-conic is said to be on A, and A 13 said to be on the point-
conic.

DEerinITION. If @ be any line of a line-conic, then the line-
conic 18 said to be on a, and a is said to be on the line-conic.

The following theorems are elementary deductions from the
definitions of point-conic and line-conic.

5.221. TeEOREM. Every poini-conic ts on its lwo generating
bases.

Let U and V be the two generating bases of a point-conic.

Consider the pencil on U; one of its lines is the line UV.

The line corresponding to this in the pencil on ¥ is some line
VX, say. Now Visonboth UV and VX, hence V is on the point-
conic. Similarly, U is on the point-conic.

5.222. TuroreM. If U, V, A, B, C are five points, no four of
which are collinear, then there is one and only one point-conic
which is on A, B, C, and whose generatirg bases are U and V.

Since no four of the five points are collinear, of the three
4191 o
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pairs of lines UA, VA; UB, VB; UC, VC, at most one pair
can coincide, and the rest are distinct.
Consider the projectivity specified by
U(ABC...)~ V(ABC...).

Three pairs of corre‘sjzélding lines being here specified, the
projectivity is determined. Hence there is a point-conic
satisfying the conditions, and it is unique.

The reader should investigate why it is that the theorem breaks

down when four of the five points are collinear; there are two cases to
consider.

5.223. TuarorEM. Two distinct poinis on a non-singular point-
conic cannot be collinear with a generating base.

Let U and 1" be the gencrating bases of a non-singular point-
conic.

(i) Let A be any other point on the conic. Then it is asserted
that 4, U, and V are not collinear.

For if they were, the lines U4 and VA being corresponding
lines in the two pencils, these pencils would have a common self-
corresponding line, and so the point-conic would be singular;
this contradicts the supposition.

(ii) Let A and B be two points on the point-conic distinct
from both U and V. Then it is asserted that U, 4, and B are
not collinear.

For if they were, the lines V4 and ¥ B would both correspond
to the same line in the pencil on U, and this is impossible.

The theorem is thus proved.

Incidentally this theorem proves also that a non-singular point-conic

does not consist of two ranges of points, and so a non-singular point-
conic differs from a singular point-conie.

5.23. The First Basic Theorem '

At first sight it would appear that the two generating bases,
which, by 5.221, are on the point-conic, are points on the point-
conic which have some special properties distinguishing them
from the rest. The next theorem shows that this is not so.

THEOREM. Any two distinct points on a point-conic can be the
generating bases.



THE CONIC 99

Let U and V be the generating bases of a non-singular point-
conic, and let 4, B, C; D,... be any other distinct points on it. It
will be shown that 4 and B can be taken as the generating
bases.

Fia. 26.

Let « be the line CD, so that by 5.223 neither U nor ¥V is on .

¢ o o4n . CD\ [CD\ ([CD\ [CD

Let A', B’, A", B" be the points (A ), (BU)’ (A ), (BV)
respectively, so that by 5.223 4’, B’, C, D, A", B" are all
distinet.

Then U(ABCD) ~ z(4'B'CD),
and V(4BCOD) ~ x(A"B"CD).

But by the permutation theorem

2(A"B"CD) ~ 2(B"A"DC).
Hence, since by the definition of a point-conic
U(ABCD) ~ V(ABCD),
it follows that  2(4'B'CD) ~ 2(B"A"DC).

Now this is a projectivity between two cobasal ranges in
which there is a pair of reciprocally corresponding points, and
so by 4.43 it is an involution in which 4’ and B”, B’ and 4”,
C and D are pairs of mates.

Hence 2(A'A"CD) ~ x(B"B'DC).
But 2(A'A"CD) ~ A(UVCD),
and 2(B"B'DC) ~ z(B'B"CD)

~ B(UVCD).
Hence A(UVCD) ~ B({UVCD).
Similarly, A(UVCE) ~ B(UVCE),

and so A(UVCDE...) ~ B{UVCDE...).
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Hence 4 and B can be taken as the generating bases of the
point-conic.

In this proof it has been assumed that the point-conic is non-
singular; the thecorem remains true when it is singular, but the
proof is then extremely easy, and it is left to the reader to prove
it for himself.

5.24. The Second Basic Theorem

The second basic theorem about the point-conic is an imme-
diate consequence of the first, and the proof can be omitted. It
is enunciated because it is constantly being used, while the first
basic theorem is, by comparison, seldom used.

TBEOREM. The necessary and sufficient condition that six
points A, B, C, D, E, F should all be on a point-conic s that
A(CDEF)~ B(CDEF)
The sufficiency of the condition is proved by the method of
reductio ad absurdum.

5.25. Other Deductions from the First Basic Theorem

5.251. THEOREM. On five points, no four of which are collinear,
there is one and only one point-conic.

This is an immediate deduction from 5.222 and the first
basic theorem.

5.252. TrEOREM. No three points of a non-singular point-conic
are collinear.

This is an immediate deduction from 5.223 and the first

basic theorem.
ExaMpPLES

1. A, B, C, D s a four-point, and X, Y, Z, W are any four points on
a line 2. Find the locus of a point P such that P(ABCD) ~ (XY ZW).

2. Prove the dual of the first basic theorem without appeal to the
Principle of Duality, and draw an appropriate figure.

3. Show that if every point-conic which is on four points 4, B, C, D
is singular, then at least three of these points are collinear.

4. abed is a simple four-line. How many singular line-conics are
there on these four lines? Dualize.

5. Ranges 2(X; X, X,...) and y(¥;Y,Y;...) are centrally perspective on
a point Z. X’ is any point on %, Y’ any point on y; P, is the point

(;I, ;") Show that the locus of P, is a point-conic. Under what circum-
%'
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stances is this point-conic singular? (This is known as Maclaurin’s con-
struction for the point-conic.)

Give & dual construction for a line-conic.

6. Show that if there aro precisely n points on every line of the field,
then

(i) there are precisely n points on every non-singular point-conic,

(ii) there are precisely » lines on every non-singular line-conie,

(iii) there are precisely n point-conies (singular and non-singular) on

every simple four-point,

(iv) there are precisely n line-conics (singular and non-singular) on

every simple four-line.

7. A certain figure is asserted to be the locus corresponding to a given
condition. Show that it is necessary and sufficient to prove that (i) every
point of the figure is a point of the locus, and (ii) every point of the locus
is a point of the figure.

5.26. The Point- and Line-conic in the Algebraic Representation

Let [, my,n,), [1], m{,n]] be two lines on a point U, so that any other
line on U is [A; L, +A1 Y, Ay +A7 i, Ay my +Ain{] and its coordinates are
(A, A}) relative to these base lines.

Similarly, let (A, A3) be the coordinates of a line on V, relative to the
base lines [I,,m,, n,] and [#, mj, nj].

Let (z,y,2) be the common pomt of the two lines (A;.A]) and (A, A7),
w0 thet A ztmyy+ng2)+ Mo+ miyt nz) = O )
and Al T+myy+ny2)+ Al x +myy+nyz) = 0. (2)

If now the lines (A;, A{) on U and (A, A;) on V are a pair of correspond-
ing lines in a projectivity between the two peneils, there are numbers
a, b, ¢, and d such that ad—bc # 0 and

aXy s +bA A+ cA{ Ay +HdAAG = 0. (3)
When A,, A, A,, and Aj are climinated from the equations (1), (2), and
(3), the equation
a(ljz+miy+ni2)(le+myy+njz)+
+o(liz+m{y+niz)(lyx+myy+nyz)+
+o(lyz+myy+m2)led my+njz)+
+d(lyx+myy+n, 2)(lgz+mey+nyz) =0 (4)
is left.
This equation may be written in the form
Ax?+ By*+ C22+ 2Fyz+2Gzz+2Hxy = 0. (5)

Now from the definition of a point-conic (2, y, 2) is a point on a point-

conic. Hence every point (z, ¥, z) on a point-conic is such that

Aax3+4 Byt + C22+2Fyz+2Gzx+ 2Hzy = 0,
where the coefficients 4, B, etc., are detormined by the projectivity which
specifies the point-conic. ’

Suppose now that (z,y,2) is any point satisfying (5). Then clearly
(2,9, 2) satisfies (4). That is to say, there are numbers A, A{, A;, and A;
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which satisfy (1), (2), and (3). Hence (z,y,2)is the common point of
two corresponding lines in the projectivity between the pencils on U
and V.

We may therefore say that in the Algebraic Representation all the
points on a point-conic satisfy an equation similar to (5), and that all the
points which satisfy this ogp{a.tion are points of the point-conic.

The complementary theprem, that every equation of the form given is
satisfied by the points of some point-conic is more complicated, and it is
not proved here.

Dually, there is the thcorem that in the Algebraic Representation all
the lines of a line-conic satisfy an equation of the form

Al24 Bm?+Cn2+4-2Fmn+2Gnl+2HIm = 0.

5.3. The Incidence of Lines and Point-conics, and Dual

5.31. Fundamental Theorem of Incidence

In 5.242 it was proved that no three points of a non-singular
point-conic were collinear; this theorem is only a part of a more
general theorem which is now proved.

THEOREM. Every line of the field has two and only two points
in common with a non-singular point-conic.

Let 2 be any line of the field, and let U and V be any two dis-
tinet points of the point-conic not on z.

Let U(u, uyu,...) ~ V(v,057;...) be the projectivity between
thg two pencils which specifies the point-conic, so that u;v,,
Uy Vg, UgVs,... aTe points on the point-conic.

Let X,, X,, X,,... be the points xu,, zu,, Zus,..., and let
X, X3, X3,... be the points xv,, vy, 2v,,.... Then

(X, X, X,...) ~ 2(X1 X; X5...),
and since this is a projectivity between cobasal ranges, it has, by
5.121, two self-corresponding points. Let these be X, and X,

Then plainly the point «, v, is X,,, and «,,v,, is X,

Hence there are two points (which may, however, coincide)
on z which are also on the point-conic.

Clearly there cannot be more than two, by 5.242.

The theorem just proved deals only with non-singular point-conics;
the corresponding theorem for tho singular cases runs: .

TaeoreM. Every line of the field, with certainly one exception, and
possibly two, has two and only two poinis in common with a singular point-
conic. The exceptional lines have all their points in common with the singular
point-conic.
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5.32. Tangents to a Point-conic

In the proof of the last theorem it was stated in passing that
the two points which a line has in common with a non-singular
point-conic might be coincident. Before discussing the implica-
tions of this coincidence, it is important to prove that there are
such lines.

5.321. THEOREM. On every pownt of a mon-singular point-
conic there is one and only one line which is on two coincident
points of the point-conic.

Let 4 and B be two points of a non-singular point-conic;
then there is a projectivity between the two pencils on 4 and B,
the common points of corresponding lines being the points of
the point-conic.

Consider the line 4B of the pencil on 4.

To this corresponds some line on B, BX say.

Suppose now that D is a point on BX distinct from B, and on
the point-conic. Then, by the definition of a point-conic, 4.0 is
the line on 4 corresponding to BD, i.e. to BX.

But, by supposition, 4B corresponds to BX; hence there is
no other point than B on BX which is a point of the point-conic.
This shows that there is a line on B which satisfies the conditions
of the theorem. :

It rcmains to show that BX is the only line on B which
satisfies the conditions.

Suppose then that there is another, BY say. Then both of the
lines BX, BY correspond, in the projectivity, to the line A B of
the pencil on 4. This being impossible, the second part of the
theorem is also proved.

DEFINTTION. Any line which s on two coincident poitnts of o
non-singular poini-conic is termed a tangent to the point-conic;
the point common to a tangent and a point-conic i8 termed the point
of contact of the tangent.

An immediate consequence of the last theorem is the
following.

5.322. TuoreM. If 4, B, O, D, and P be five distinct points
on a non-singular point-conic, and if AA’, BB', CC', DD’ be the
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tangents to this point-conic on A, B, C, and D respectively,
then
P(ABCD) ~ A(A’BCD) ~ B(AB'CD)
~ C(ABC'D) ~ D(ABCD').

In order to enunci,a% the last theorem it was necessary to
name another point on each tangent; but, to save this trouble,
in future we shall write

P(ABCD) ~ A(ABCD) ~ B(ABCD)
~ C(ABCD) ~ D(ABCD),
provided there 13 no danger of ambiguity. The lines A4, BB, CC,
DD denote the tangents to the point-conic at 4, B, C, and D
respectively.

5.33. Duals of the Preceding Theorems

The results of the last paragraphs are important enough to
merit the explicit statement of the dual results.
5.331. THEOREM. Every point of the field is on two and only
two lines of a non-singular line-conic.

5.332. TeEorEM. Every point of the field, with certainly one pti
and possibly two, is on two and only two lines of a singular line-conic. All
the lines on the exceptional points are lines of the line-conic.

5.333. TurorEM. On every line of a non-singular line-conic
there. is one and only one point which is on two coincident lines of
the line-conic.

DErFINITION. Any point which is on two coincident lines of
a non-singular line-conic s termed a tangent-point to the line-
conic; the line of the line-conic which is on the tangent-point is
termed the line of contact of the tangent-point.

5.334. THEOREM. If a, b, ¢, d, and p be five distinct lines on a
non-singular line-conic, then
p(abed) ~ a(abed) ~ b(abed) ~ c(abed) ~ d(abed).

In the enunciation of this theorem, aa, bb, etc., denote the

tangent-points to the line-conic on a, b, ete.

5.4. Desargues’s (Conic) Theorem, and Pascal’s Theorem

In this section of the chapter are proved two extremely
important theorems about the conic. They are named after
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their discoverers, who, however, employed metrical ideas in
their proofs.
5.41. Desargues’s (Conic) Theorem

TerorREM. If AyA,A,A; be a four-point, and x any line
distinct from the six lines of this four-point, then every potni-conic
on AgA, A, Ay 18 also on a pair of mates of an involution on x.

Fia. 27.

With the usual convention, let X,, X,, X,, X;, X3, X3 be the
points common to the six sides of the four-point and the line z.

Let Y and Y’ be the two points common to « and any non-
singular point-conic on the four points of the four-point.

Then A A, A, YY) ~ 2(X, X, YY);
also A,(A, 4, YY) ~ 2(X X YY)
~ (X, X, 7'Y),

by the permutation theorem.
Hence, since 4y(A4,43YY’) ~ Ay(A4,4,YY’),
(X, X YY) ~a(X; X3 Y'Y).

By 4.43 this projectivity is an involution in which X, and Xy,
Xgand X3, Y and Y’ are three pairs of mates.

Hence Y and Y’ are mates in an involution of which X, and
X3, X, and X3 are two pairs of mates. Similarly for any other
point-conic on the four-point.

It may be noticed that X, and X; and the other two pairs of
the involutory hexad are themselves pairs of points common to
« and a point-conic on the four-point. The point-conics in
question are the three singular point-conics on the four-point
AgA A A,

4191 P
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It will be recognized that this theorem was virtually proved
in 5.23.

5.42. Singular Cases of Desargues’s Theorem

There are two other theorems, similar to Desargues’s (conic)
theorem. These can beﬁ:ovcd by considering, not a simple
four-point on a point-conic, but singular four-points, that is,
four-points in which two or more of the points coincide. They
are, in a sense, singular cases of Desargues’s thcorem.
5.421. TarorREM. If A, A, A, be a three-point, t any line on A,,
and x any other line not on any of the points of the three-point,
then any poini-conic on the three-point, such that t is a tangent to
1t 18 also on a pair of mates of an involution on .

Fia. 28.

This is proved in exactly the same way as Desargues’s
theorem, by considering the singular four-point (4,)4, 4,45,
in which 4, and 4, coincide, but the line 4, 4, is fixed as ¢.

The figure shows the assignment of the various letters.
5.422. TaEorREM. If A, A, be a point-pair, and ¢, and t, be
two lines on A, and A, respectively, each being distinct from

AilA)
Fia. 29.
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A, A,, and if x be any other line, then any point-conic on A,
and Ay, such that t, and t, are tangents to it, 18 also on a pair of
mates of an involution on x, and one of the self-corresponding points
of this involution is the common point of x and A, A,.

The method of assigning the letters in the figure will make
the mcthod of proof clear. S is a self-corresponding point of
the involution.

ExAMPLES

1. z is a line on which is an involution, and P, @, R are three distinet
points not on z, and not collinear. Show that all point-conics on P, @, R
and a pair of mates of the mvolution are also on & certain other point S.

2. P, Q, R, S are the pomnts of a simple four-point, and # is & lino which
is not on any of them. Show that there are two and only two point-
conics on these four points to which ¢ is a tangent. What significance
has this theorem when ¢ is on one or more of tho diagonal points of the
four-point PQRS?

8. ABC is a triangle, z a linc distinet from its sides, and O a point not
on any of these four lincs. A’, B’, ¢’ are the common points of = and
BC, CA, AB respectively. A” is the socond of the two points common
to z and the point-conic on 4, B, C, 0, A’. B”, C” are similarly defined.
Show that 44”, BB”, CC” are concurrent.

4. A, B, O, D, E are five points no three of which are collinear, and
x is a line on 4. Use Desargues’s theorem to find the other point on z
which is on the point-conic on the five points.

5. ABCD and A’B’C’D’ are two simple four-points, and # is any line
not on any of theso eight points. Show that there is, in general, onc and
only one point-pair X, X’ on « such that the six points ABCDXX' are
all points of a point-conic, and the points 4’B’C’D’X X’ are all points of
another point-conic.

6. a, b, ¢ are threo non-concurrent lines on the points 4, B, C
respectively. @ and b are tangents to & point-conic on 4, B, C. Find a
second point on ¢ which is also on the point-conic.

7. D and E are two diagonal points of a complete four-point WXY Z.
Show that any point-conic on this four-point is also on a pair of points
on DE which are harmonic conjugates relative to D and E.

8. The usual notation for the points associated with a complote four-
point being supposed, show that the six points 4,4, H, H, H; H; are all
on a non-singular point-conic, and that 4,43 H, H; H; H; are all on a
non-singular point-conic.

5.43. Pascal’s Theorem
TerorEM. If A, B, C, A’, B', U’ be six poinis on a
non-singular point-conic, and if A", B", C" be the points
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(BC,), (CA’), (AB,)‘respectively, then A", B" and C" are col-

B'Cl’\C'4)’ \4’B,
linear.
Tra. 30.
. . [BC" . . [C'A

Let B, be the point ( 4 B’)’ and C; the point ( B 0).
Then B(A'B'C’'A) ~ (C"B'B, 4),

and C(A'B'C’'4) ~ (B"C,C'4).
But B(A'B'C’'A) ~ C(A’B'C’'A),

hence (C"B'B,A) ~ (B"C,C'A).

This being a projectivity between ranges on different bases,
and there being a common self-corresponding point, it must be
a perspectivity.

Hence B"C”, B'C,, B;C’' must be concurrent. But the
common point of the last two of these three lines is A", hence
A", B", and C” are collinear.

If this theorem and its proof be compared with Pappus’s
theorem (3.323), the similarity can hardly escape notice. In-
deed, Pappus’s theorem is only a particular case of Pascal’s
theorem.

Pascal’s theorem is sometimes enunciated thus: If a hexagon
be inscribed in a (potnt-)conic, the iniersections of pairs of opposite
sides are collinear. If the obvious meanings be ascribed to the
terms hexagon, inscribe, intersect, and if the hexagon considered
be AB'CA’'B(", it will be seen that this enunciation is equiva-
lent to that given. For the opposite sides of this hexagon are
AB’ and A'B, B'C and BC’, CA’ and ('4.
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5.431. Converse of Pascal’s Theorem

TreorEM. If A, B, C, A’, B', (" be six poinis, no three of
which are collinear, and if A", B", C" be defined as in Pascal’s
theorem, and be collinear, then A, B, C, A’, B’, C' are all on a
non-singular point-conic.

This theorem is proved by the method of reductio ad absur-
dum. With this indication, the reader should find no difficulty
in proving it.

5.432. Dual of Pascal’s Theorem and its Converse

TarorREM. If @, b, ¢, &, b', ¢’ be siz lines on a non-singular
line-conic, and if a”, b”, ¢" be the lines (bf;l), (c?)’ (a{;’) re-

be/” \cal’ \a
spectively, then a”, b”, ¢” are concurrent.

It will be found useful to draw a figure appropriate to this
theorem.

TaEOREM. Ifa,b,c,a’, b, c' be six lines, no three of which are
concurrent, and a”, b", ¢" be defined as in the dual of Pascal’s
theorem, and be concurrent, then a, b, ¢, a’, b', ¢’ are all on a
line-conic.

5.433. Utility of Pascal’s Theorem and its Converse

It will be found that the converse of Pascal’s theorem is often
the simplest method of proving that six points are all on & point-
conic, although there are always two other methods of doing
this. The dual theorem is useful for the dual purpose.

The converse of Pascal’s theorem is also a very convenient
method of determining other points on a point-conic, five of
whose points are known. This construction is important enough
to merit a formal enunciation and proof.

ConstrUCTION. A4, B, C, D, E are five points, no three of
which are collinear; EF is any line on E, but not on any of the
other four points. Determine the other point on EF which is on
the point-conic on ABCDE.

.. [4 ., [BC
Let L be the point ( Dg)’ and M the point ( B )

. . [CD T[4
Let N be the point ( LM),a.ndX the point (Ellv\:)
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Then X is the required point.

. . AB\ (B CD
For L, M, N are, respectively, the points ( D E)’ ( 7 ;), (X A)’

and these points are collinear by construction, hence A BCDEX
are all on a point-conic.

5.434. Singular Cases of Pascal’s Theorem. Just as
with Desargues’s theorem so with Pascal’s theorem there are
singular cases. These arise when there are not six points but
five or less on the point-conic, and these are counted as six by
considering one, or more, as pairs of coincident points. The
line joining coincident points will then be the tangent to the
point-conic at the point in question.

In distinguishing the various possible cases that can arise
it is useful to consider the six points in the cyclic ordering
AB'CA’BC’A. Two or more points will be consecutive if they
are consecutive in this ordering. It can easily be verified that
the following assertions are true.

(i) If two non-consecutive points are coincident, Pascal’s
theorem is true, but trivial.

(ii) If more than two consecutive points are coincident, the
theorem is again true, but trivial.

(iii) It is true and not trivial when one or more pairs of con-
secutive points are coincident, so long as these pairs have
not a common point. (If they had, more than two con-
secutive points would be coincident, and so, by (ii), the
theorem would become trivial.)

This leaves four non-trivial theorems:

(@) When e.g. 4 and B’ are coincident.
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(b) When e.g. 4 and B’ are coincident and C' and A4’ are

coincident.

(c) When e.g. 4 and B’ are coincident and 4’ and B are

coincident.

(d) When e.g. A and B’ are coincident, C' and 4’ are coin-

cident, B and C’ arc coincident. '

All these non-trivial theorems are proved just as Pascal 8
theorem itself is proved, and it is a uscful exercise to work out
a complete proof. The last of the four types of theorem can be
stated in other terms thus:

5.435. THEOREM. If the sides BC, CA, AB of a triangle are
tangents io a non-singular point-conic, and their points of contact
are A', B', C' respectively, then the two triangles ABC, A'B'C’
are perspective.

ExAMPLES

1. X, Y, Z are three collinear points, and P and @ are two other points
not collincar with them. Show that the other six interscctions of the
six lines PX, PY, PZ, QX, QY, QZ are six points of a point-conic.

2. A,4, A, A,is a four-point which is on a point-conic. Show that the
common point of tangents, whose points of contact are two of the points
Ay A, Ay Ay, is collinear with two of the diagonal points of the four-
point.

3. Ay A, A, A, is a four-point which is on & point-conic, and aya, a,a, !
is tho four-line composed of the four tangents to the point-conic at
A,, A,, 4,, and A, respectivoly. Show that the four points D,, D,,
a, a,, and a, ag are collinear. Dualize.

4. In the last example show that the six points 4,, 4,, 4,, 4,, a,a,,
a,a, are all on a point-conic. Hence show that a, @, and a, a; are harmonic
conjugates relative to D, and Ds.

5. Use Pascal’s thoorem to show that threc tangents to a non-singular
point-conic cannot be concurrent. Dualize.

6. With the usual notation, X, X, X; X| X! X} is an involutory hexad
associatod with a four-point, and Y,Y,Y;Y{YY}; are, respectively, the
harmonic conjugates of these points rolative to the two points of the
four-point with which each is collincar. Show that ¥,Y,Y;Y Y ;Y3 are
all on a point-conic. Under what circumstances is this point-conic
singular ?

7. Use Pascal’s theorem to prove Ex. 8 of the last set of examples.

8. ABC and A'B’C’ are two perspective triangles. Show that the six

woints (5,): () () (50): (30 (G7) aromtion s on

singular point-conic. Dualize.
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9. Given two tangents to a point-conic with their points of contact
and one other point on the point-conic, find the second point of the point-
conic which is on a line on the given point.

10. Given four points 4, B, C, D of a point-conic, and d the tangent
to the point-conic at D, determine (i) the second point of the point-conic
which is on any line on 4 ,(1i) the second point of the point-conic which
is on any line on D.

11. 4 is a point, and x a line not on it. P, P, P; P, P; P, are six dis-
tinct points on a point-conic which is non-singular. The common points
of 2 and the six lines AP, AP,,..., AF; are @, Q,@3...Qs. R, R,...R,
are six points, one on each of these lines, such that

(AP, Q By) ~ (AP, Q, R,) ~ (AP; Q3 By) ~ .. ~ (APu Qs Ry).
Show that the six points R, R, ... B¢ are all on a non-singular point-
conic.

5.5. Pole and Polar
5.51. TrEOREM. The locus of the harmonic conjugates of a point,

relative to pairs of points of a non-singular point-conic which are
collinear with it, is a range of points.

Fia. 32,

Let 4 and A’ be a pair of points on a non-singular point-conic
and collinear with P; and let A4, be the harmonic conjugate of
P relative to 44’.

Let T be the common point of the tangents at 4 and A’.
Similarly, let B and B’ be another pair of points on the point-
conic, collinear with P; and let B, be the harmonic conjugate
of P relative to BB'.

. AB\ (AB
Let X and Y be the points <A'B’)’ (A’

X, Y, and P are the diagonal points of the four-point 44’BB’.

) respectively, so that
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Then, as a consequence of a singular case of Pascal’s theorem
(type (c)), the three points (‘i‘j ), ( lgj’)’ (j%) are collinear.
That is, 7', X, Y are collinear.

But X, Y, A,, B; are collinear, hence B, is collinear with
A and 4,.

Similarly, if CC” be any other pair, then the appropriate point
C, is collinear with 7" and 4.

Hence all points of the locus are on 7'4,.

Suppose now that L, is any point of 74,, and that LL’ is
the pair of points on the point-conic collinear with P and L,.

Then by what has just been proved (PL,, LL’) is a harmonic
tetrad. Hence every point of the range on T'4 is a point of the
locus, and vice versa.

The proof just given has tacitly supposed that P is not on the
point-conic. If P is on the point-conic, it is easily verified that
the locus is the tangent at P. (See 4.222.)

5.511. DeriNiTION. If p be the base of the range which is the
locus tn the preceding theorem, then p ts said to be the polar of P,
and P the pole of p, relative to the point-conic in question.

Notice that pole and polar are not dual terms.

5.512. TuroreM. The envelope of the harmonic conjugates of
a line relative to pairs of lines of a non-singular line-conic which
are concurrent with it 1s a pencil of lines.

5.513. DeFINITION. If P be the base of the pencil which is the
envelope in the preceding theorem, then P is said to be the pole
of p, and p the polar of P relative to the line-conic in question.

Here again polar and pole are not dual terms; but ‘pole and
polar relative to a point-conic’ is the dual of ‘polar and pole
relative to a line-conic’. The apparent ambiguity will shortly
be removed.

5.52. Elementary Properties of Pole and Polar

5.521. TurorEm. If P and p be pole and polar relative fo a
non-singular point-conic, and if A and B be the two poinis common
to p and the poini-conic, then the tangents at A and B are both
on P.

4101



114 PROJECTIVE GEOMETRY

Suppose that 4 P is not a tangent to the point-conic. Let 4’
be the other point of the point-conic on A P, and let 4” be such
that (44’, A"P) is a harmonic tetrad.

Then 4" is on p. That is p and AP are the same line.

This is absurd exce}}?/ when P is on the point-conic. Hence
when P is not on the point-conic the theorem is true.

And when P is on the point-conic the theorem is plainly true.

As direct corollaries of this theorem, the following may be
enunciated:

5.522. TuroreMm. If P and P’ are distinct points, their polars
relative to any non-singular poini-conic are distinct.

5.523. TurorEM. Two and only two tangents to a point-
conic are on any point which is not on the point-conic.

5.53. Projective Properties

In this section certain deeper properties of pole and polar are
investigated. These investigations give an answer to the
general question: ‘Given a set of points which has certain pro-
jective properties, what projective properties has the set of their
polars relative to any non-singular point-conic?’ It is to be
expected that the polars will have dual properties; this is, as a
matter of fact, the answer. Before coming to the investigation
proper two preliminary theorems are needed.

5.531. TaeorEM. If the polar of P relative to any non-singular
point-conic 18 on Q, then the polar of Q relative to the same poini-
conic 18 on P.

Let R and S be the two points of the point-conic which are
collinear with P and Q.

Then because @ is on the polar of P, (RS, PQ) is a harmonic
tetrad. But this shows that P is on the polar of @.
5.532. Tueorem. If P, Q, R, S,... be collinear points, then
their polars relative to any mnon-singular poini-conic are con-
current lines.

Let p, ¢, 7, 8,... be the polars, and let X be the point pg.

Then by the last theorem the polar of X is on both P and Q.
Hence it is also on R, §,...,
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By the last theorem the polars of R, 8S,... are therefore on X.

That is to say, p, g, 7, 8,... are all eoncurrent.

5.533. TerEoreM. If P, Q, R, S are four collinear points on
the line z, and p, q, r, 8 are the four concurrent lines on the point
X, which are their polars respectively relative to a non-singular
point-conic, then 2(PQRS) ~ X (pgrs).

Let 4 and B be the points of the point-conic which are on z.

Let P’, @', R', S’ be the harmonic conjugates of P, @, R, S
respectively, relative to 4.B.

Then X P, XQ', XR', X8’ are the polars of P, @, R, S respec-
tively, i.e. they are the lines p, g, 7, s.

Hence X(pgrs) ~ z(P'Q'R'S’).

But Pand P’, Q and @', R and R’, 8 and S’ are mates in an
involution, of which the double points are A and B; so that

z(PQRS) ~ x2(P'Q'R’'S’).

Hence 2(PQRS) ~ X (pgrs).

The reader should verify that this proof remains valid when one, or
two, of the points PQRS arc on the point-conic.

The following important theorems are direct consequences
of the preceding theorems. In order to avoid prolix enuncia-
tions the following convention is used: by A, B, C, D,..
P, g, 7, S,... are denoted the poles and polars of a, b, ¢, d,...
P, @, R, 8,... relative to a definite non-singular point-conic.
The truth of these theorems should be verified.

5.534. TurEorEM. If
2(X, X, X;..) Ly LY.,

then X (2, 25 24...) 2 Y (4, Y3 Ys.0-)-
5.535. TeEOREM. If P, B, F,,... be collinear points on the re-
spective lines of the pencil X (v, %, x;...), then py, p,, Ps,... are con-
current lines on the respective poinis of the range (X, X, X,...).
5.536. TeEOREM. If

(X, X, X,...) ~ y( Y Xs.) ~ Z(2,223...) ~ W(w, wyw;...),
then. :

X(z,2325...) ~ Y1 92¥s..) ~ 221 Zy Zg...) ~ w(W W, W...).
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5.537. TuroreMm. If P,Q,R,S,T,U are six poinis on a point-
conic, then p, q, 7, 8, t, u are six lines on a line-conic. The line-
conic is or is not singular according as the potni-conic i3 or is not
singular.

If x is the tangent to 7@ point-conic on any one of these points,
then X 1s the tangent-point to the line-conic on the corresponding line.

This theorem can be proved in two ways at least. The first
way is to make use of the definition of the point-conic, in virtue

of which P(RSTU) ~ Q(RSTU),
so that p(rstu) ~ g(rstu).

The second way is to use Pascal’s theorem and the converse of
its dual.

5.54. Equivalence of the Point-conic and Line-conic

5.541. TurorEM. The set of all tangents o a non-singular
point-conic is @ non-singular line-conic, and the set of all tangent-
points to a non-singular line-conic 8 a non-singular poitnt-conic.

The two parts of the theorem are plainly dual, and only the
first is proved here.

Let P, @, R, S, T, U be any six points on a non-singular
point-conic.

By 5.537 their polars relative to any non-singular point-
conic are all lines on a line-conic.

In particular, therefore, their polars relative to the point-conic
which they are on are lines on a line-conic.

But these polars are the tangents to the point-conic in
question, hence any six tangents to a point-conic are lines on a
line-conic, and this line-conic cannot be singular.

Hence all the tangents to a non-singular point-conic are lines
on a non-singular line-conic, and there can be no lines on this
line-conic which are not tangents to the point-conic.

This important theorem, whose existence the reader has
probably suspected, leads to the definition of the term conic, as
distinct from point-conic and line-conic.

5.542. DeriNITION. The mixed self-dual figure consisting of a
non-singular point-conic and the non-singular line-conic which is
the set of tangents to it is known as a conic (non-singular).
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5.543. Classification of Conics. Itis now no longer necessary
to distinguish carefully between point-conics and line-conics,
and even the singular conics will not be distinguished in this
way in future. It is worth while at this stage to make a list of
the various types of conics.

Type 1. The non-singular conic. A mixed, self-dual figure.

Type II. Singular conics of the first class.
(@) Two ranges of points on different bases.
Point-conic. Not self-dual.
(b) Two pencils of lines on different bases. Line-
conic. Not self-dual.

Type III. Singular conics of the second class.

(@) Two ranges of points on the same base. Point-
conic. Not self-dual.

(b) Two pencils of points on the same base. Line-
conic. Not self-dual.

This classification is important, for it is the only division
which is inherent in the nature of conics. Later it will be possible
to classify conics of Type I into sub-classes, but these classi-
fications are all relative to some arbitrarily chosen standard
external to the conic itself.t

5.544. Duality of Pole and Polar. There remains one
theorem to be proved. If P is any point, and its polar relative
to the points of a conic is p, is its polar relative to the lines of the
conic also p? It is not at once obvious that it is, nor has it yet
been proved.

THEOREM. If P be any point, and p be its polar relative to the
points of a conic, then p 18 also s polar relative to the lines of the
conic.

The theorem is obviously true if P be on the conic. Suppose
then that it is not on the conic. Let x and y be the two tangents
to the point-conic of the conic which, by 5.523, are on the point
P;let X and Y be their points of contact. Then the polar of P
relative to the point-conic is XY

t+ Thus we could, even now, classify conics' of Type I into (a) those which

are on an arbitrarily chosen line «, and (b) those which are not. But this is &
classification relative to x.
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Consider now the line-conic alone. « and y are two lines of
this, and X and Y are the tangent-points on them. The polar
of X relative to the line-conic is «, and y is the polar of Y.

Hence the pole of XY relative to the line-conic is xy, i.e. P;
and this is the same as spying that XY is the polar of P relative
to the line-conic. j

This proves the theorem, and removes the slight ambiguity
which so far has been involved in the use of the terms pole
and polar.

5.545. Conjugate Points and Lines. DEriNrriONs. If the
polar of P relative lo a conic is on Q, then P and Q are termed
conjugate points relative to the conic.

If the pole of p relative to a conic is on ¢, then p and q are termed
conjugate lines relative to the conic.

This new term is frequently useful in dealing with conics.

ExamprLES

1. ABCDE arofive points on a non-singular conic. Show that the neces-
sary and sufficient condition that 4B and CD should be conjugate lines
relative to the conic is that E(A B, CD)should be a harmonic line-tetrad.

2. P is a point not on a certain conic. Show that pairs of lines on P
which are conjugate relative to the conic are mates in an involution,
What are the self-corresponding lines of this involution?

3. P is a point not on a certain conic. The two tangoents to the conic
which are on P havo X and Y as their points of contact. Show that XY
is the polar of P. Why was it impossible to adopt this as a definition
of the term polar instead of 5.511?

4. Pis a point not on a certain conic. 4,437, 4,45, 43 A4;,... are pairs
of points on the conic collinear with P. T, is the common point of the
tangents at 4, and A7; T, Ty,... are defined similarly. Show that the
locus of the points T' is the polar of P.

What objection was there to adopting this as a definition of the term
polar, instead of 5.5111%

6. X, Y, C are three distinct points on a conic, and Z is the pole of
XY relative to this conic. ZT is any line on Z. Show that (g‘;) (g’,;,)
are conjugate points relative to the conic.

6. X, Y, Z, W are four distinct points on a conic; 4 and B are the
poles of XY and ZW relative to this conic. Show that

AXYZW) ~ B(XYZW).
Hence show that A BXY ZW are six points on & second conic.

(This theorem has already been proved in another way. See 5.435,
Ex. 4.)
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7. Ay A4, 44, Ag are four distinet points on a conic. 1f Dy, D,, D, be the
diagonal points of the four-point 4,4, 4, 4,, show that D, is the pole
of D,D,.
8. ABC, A’B’C’ are two triangles centrally perspective on O and
axially perspective on o.
Show that if A BCA’B’C’ are six points on a conic, the following pairs

aro pole and polar relative to this conic: (i) O and o; (ii) (;g,) and 44';
(iii) (C(';:j’) and BB’; (iv) (;f,g,) and CC’.

5.6. Ranges and Pencils on a Conic

DEriviTIONS. The set of points on a nmon-singular comic s
termed a range on a conic.

The set of lines on a non-singular conic is termed a pencil on a
conic.

The notion of ranges on a line led to the notion of projectivi-
ties between ranges and thence to important results, and in just
the same way the notion of ranges and pencils on a conic leads
to further results about the conic. The first task, obviously, is
to define projectivity between ranges on a conic and other
ranges.

Before doing this it is necessary to introduce an addition to
our notation.

A range on a line z is denoted by z(4 BC...); it will obviously
be convenient to have a similar notation for ranges (and pencils)
on a conic. We therefore use Greek capital letters to denote
conics, and to avoid ambiguity only those Greek capitals which
are different from Roman capitals, namely, I', A, 0, E, II, 3,
D, ¥, Q. It will be found that these are quite sufficient.

By ®(ABC...) is meant the range 4BC... on the conic ®.
By ®(abc...) the pencil abe... on ®.

5.61. Projectivity
5.611. DErFINITIONS. A rc'mge ®(ABC...) on a conic will be
savd to be perspective with a range x(A'B'C’...) on a line if and
only if there is a point O on the conic, but not on X, such that
AA’, BB',CC'... are all on O.

A pencil ®(abce...) on a conic will be said to be perspective with
a pencil X(a'b’c’...) on a point if and only if there is a line o on the
conic, but not on X, such that aa’, bb’, cc'... are all on o.
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5.612. DEFINITIONS

(@) A range ®(ABC...) on a conic will be said to be projective
with a range x(A'B'C'...) on a line if and only if there
exists a range y(A"B"C"...) such that

y(A"B"¢"...) ~ x(A'B'C"...),
and O(ABC...) 18 lperspective with y(A"B"C"...).
(b) There 1s also said to be a projectivity between the two ranges.
“(¢) Two ranges®(ABC...),®'(A'B'C'"...) on different conics are
said to be projective if both are projective with the same
range on a line.

(d) Two ranges ®(ABC...), D(4A’B'C'...) on the same conic are
said to be projective if both are projective with the same
range on a line.

ExamMPLES

1. Give a reason for the insistence on the fact that in a perspectivity
between a range on a conic and a range on a line, the centre of perspec-
tive must be on the conic.

2. Frame suitable definitions for projectivitics between

(a) a range on a conic and a pencil on a point,

(b) arange on a conic and a pencil on the same or another conic,

(c) a pencil on a conic and a range on a line.

3. Show that if ®(4BC...) Q z(A’'B’C’...), where O is a point on the
conic but not on z, then the two points common to ® and x are common
self-corresponding points.

4. Show that a projectivity between a range on a conic and a range
on a line is completely determined when three pairs of corresponding
points are given.

5. Show that if the common points of z and ® are U and V, and
®(UVABC...) ~ 2(UVA’B’C"...), then there is a point O on @ such that
AA’, BB, OC’ are all on O; that is, the projectivity is a perspectivity.

6. Show that in a projectivity between two ranges on the same conic
there cannot be more than two self-corresponding points, and that there
are always two, which may not, however, be distinct.

7. If a, b, c,... are the tangents to a conic ® at the points 4, B, C,...,

show that D(ABC...) ~ (abe...).

8. If ®(ABCD...) ~ ®(A’B’C’D’"...) and X be any point on @, show
that X(ABCD) ~ X(A’B'C'D’).

9. Show that ®(ABCD) ~ ®(BADC).

5.62. Self-corresponding Points and Lines
The first important consequence of the idea of projectivities
between ranges on & conic and other ranges is that it makes
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possible a construction for determining the self-corresponding
points of a projectivity between cobasal ranges.t
5.621. TeEOREM. If
D(ABC..) ~DA'B'C...)

then the Pascal line of the two triads ABC, A'B'C’ is identical
with the Pascal line of any other two corresponding triads DEF,
D'E'F'.

Further, if R and S are the points common fo this Pascal line
and ®, then R and S are self-corresponding points of the pro-
Jectivity, and they are the only ones.

The second part of the theorem is proved first, and from it
the first part is deduced.
Let 7 be the Pascal line of the two triads ABC, A'B'C’, so

that  is the line RS.
” " ” 2 BC’ OA, AB’
Let A”, B”, C" be the points (B’C’)’ (C”A)’ (A’ ) respec-
tively, so that these three points are on 1.

.. (RS
Let X be the point ( 4 A’)'
Then ®(RABCS) A yrXC"B'S),
and O(RA'B'C'S) A (RXC"B'S),
and so ®(RABCS) ~ ®(RA'B'C'S).

+ Tho moaning of the word base can now be.extended so as to include not
only points (the bases of pencils) and linoes (the bases of ranges), but also conics
(the bases of ranges and pencils on conics).

4101 R
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Hence in the projectivity determined by the three pairs of
corresponding points 4 and 4’, Band B’, C and C’, R and S are
self-corresponding points. It is clear that they are the only ones.

Similarly, if D and D', E and E’, F and F’ are three other
pairs of corresponding points in the projectivity, their Pascal
line is on two self-corrésponding points of the projectivity. But
there cannot be more than two self-corresponding points in a
projectivity, hence RS is the Pascal line of DEF and D'E'F’.

This proves the first part of the theorem.

The dual theorem should be proved independently, and an
appropriate figure should be drawn.

The theorem just proved provides an casy method of deter-
mining the self-corresponding points of two ranges on the same
conic. The next theorem may be used to find the self-corre-
sponding points of two ranges on the same line.

5.622. TuEorEM. If
(i) 2(ABC...) ~ x(4'B'C"...),

(ii) @ be any non-singular conic and O any point on it but not

onx,

(iif) ®(4, B,0,..) 2 5(4BC..)

and o4, B.0;.) Lo BC..),
(iv) R and S be the self-corresponding points of these two ranges
on O,
(v) T and U be points on x collinear with R and O, S and O
respectively,
then T and U are the self-corresponding points in the pro-
Jectivity x(ABC...) ~ x(4'B'C"...).

The proof of this theorem is left to the reader.

The line joining the two self-corresponding points in a pro-
jectivity between two ranges on a conic is often called the axis
of the projectivity. The dual term is centre of projectivity, but
this latter must be carefully distinguished from a centre of
perspectivity.

5.623. A Note on Constructions. The problem, or construc-
tion:

Given three pairs of corresponding poinis in a projectivity
between two cobasal ranges, find the self-corresponding points,
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can evidently be solved by means of the last theorem. It should
be noticed, however, that in solving it a conic @ is an integral
part of the construction.

So far, no construction has involved more than points and
lines, and this construction is therefore very different. There is
no logical objection to using conics in problems and construc-
tions, but it is better to avoid using them when possible. This
advice can be justified by remembering that the conic is a very
complex construct; points and lines are the simple elements.
A construction is better when it uses simpler materials.

5.63. Involutions on Conics

DErFINITION. A projectivity between two ranges on a conic, in
which there is a pair of reciprocally corresponding points, is termed
an involution.

That is, if ®(4B...) ~ D(BA...) the projectivity is an in-
volution.

Involutions between pencils on conics are defined dually.

The properties of involutions on a conic are proved in the
following theorems.

5.631. THEOREM. Every pair of corresponding points in an
snvolution on a conic 18 a pair of reciprocally corresponding points.
Distinguish the two ranges by calling one thefirst range, the
other the second.
Let 4 and B be the pair of reciprocally corresponding points.
Let C in the first range correspond to D in the second.
Let D in the first range correspond to X in the second.

Then ®(ABCD...) ~ ®(BADX);
but by the permutation theorem
®(ABCD) ~ ®(BADC).

Hence X is C, and so every pair is a pair of reciprocally
corresponding points.

5.632. TaEOREM. The lines which are on pairs of mates of an
involution on a conic are concurrent.

Let A and 4’ be a pair of mates of the involution.

Let 7 be the axis of the involution, and let 4, be the point
on ! which is collinear with 4 and A4’.
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Let P be the harmonic conjugate of 4,, relative to 4 and A4'.
Let B and B’ be another pair of mates.
A

Then ( 4

. AB).
tion, ( e B') is also on 5/

,1;) is on /; and since the projectivity is an involu-

Fio. 34.

These are two of the diagonal points of the four-point 44’ BB’.
The third is plainly P.

Hence BB’ is on P.

Similarly, the line on any other pair of mates is on P.

This proves the theorem.

5.633. TuEOREM. If
®ABC..)~D(A’'B'(C'...)
and if AA’', BB', CC' are concurrent, the projectivity is an
involution.
Let O be the point of concurrence of A4’, BB, CC".
Consider the involution in which 4 and 4’, B and B’ are two
pairs of mates.
Then in this involution, by the last theorem, C and ¢’ must
be a pair of mates.
Hence the projectivity
®(ABC...)~®(A'B'(C..)
is an involution.
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ExAMPLES

1. 4 and A’ are mates of an involution on a conic, and R and S are
the self-corresponding points. If ¥ is any other point on the conic, show
that H(AA’, RS) is a harmonic tetrad.

2. X and Y are two points on a conic, and Z is the polar of XY relative
to this conic. 4 and A’ are two points on the conic and collinear with Z.
Show that 4 and A’ are mates in an involution of which X and Y are the
self-corresponding points.

3. I, m, n are three non-concurrent lines, P and @ are two points on
7, but not on ! or m. Show how to construct two lines 7 and s each on the
point Im such that (Im,rs) and (PQ, RS) are both harmonic tetrads,
where R and S are the points nr, ns respectively.

4. P, Q, R, S aro four points on a conic ®. Find a fifth point 7' on ®
such that O(PQRT) ~ O(PQTS).

How many points satisfy the condition ?

5. If ®(PQABC...) ~ ®(PQA’B’C’...) and if Z is the pole of PQ
relative to @, show that A’, B’ and Z arc collinear if and only if 4, B,
and Z are collinear.

6. If ®(ABC...) ~ ®(A’B’C"...) and the projectivity is not an involu-
tion, show that the envelope of lines on pairs of corresponding points is
a conic.

7. P, @, R are three points not on a conic ®. Show how to construct a
triangle A BC whose sides BC, CA, A B shall be on P, @, R respectively
and whose points shall be on ®. How many such triangles are there ?

8. Give a suitable definition of the harmonic conjugate of the point
A on a conic @, relative to two other points on the conic.

Show that mates in an involution on a conic ® are harmonic conjugates
relative to the self-corresponding points.

9. Show that overy involution on a conic has distinct self-correspond-
ing points.



CHAPTER VI
FURTHER THEOREMS ON CONICS

In the preceding chapter the five principal methods of dealing
with the conic in synthetic Projective Geometry were elabor-
ated. These five are enumerated here for convenience:
(i) Projectivities between pencils or runges whose bases are
points or lines on the conic.
(ii) Desargues’s theorem and its converse.
(iii) Pascal’s theorem and its converse.
(iv) Theory of poles and polars.
(v) Ranges and pencils on the conic as base.
In this chapter these methods are applied in various ways in
order to prove certain well known theorems about the conic.

6.1. Pencils and Ranges of Conics

6.11. Conics on Four Distinct Points or Lines

If 4, A,, 4,, A, are four points, no three of which are col-
linear, and if X is any fifth point, then there is one and only
one conic on these five points.

The set of all conics on the points 4,, 4,, 4,, 4, is termed a
pencil of conics on four points, or a pencil of conics of Type 1.

Given any fifth point X, other points of the conic on 4, 4,,
A,, Ay, X can be found by any of the first three of the methods
enumerated above.

Given any line [, not on any of the four points, then every
conic of the pencil is, by Desargues’s theorem, on a pair mates
of an involution on I. In particular, 7 is on two and only two
conics of the pencil.

Dually, if a,, a,, a,, a; are four lines no three of which are
concurrent, the sot of conics which are on these four lines is
called a range of conics on four lines, or a range of conics of
Type I.

There is one and only one conic of the range on any fifth line 7;
two and only two on any point X not on any of the four lines.

Various singular cases of pencils and ranges of conics arise,
and two of these are considered in the following paragraphs.
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6.12. Conics on Three Distinct Points and a Line on one
of them

If A,, A,, A, are three distinct non-collinear points, and ¢ is
a line on one of them, and if X be any fourth point, then there
is one and only one conic on these four points and on ¢.

The set of conics on 4,, 4,, A, and on ¢ is termed a pencil of
conics on three points and having single contact at one of them,
or, more simply, a pencil of conics of Type 11. It may be looked
upon as a singular case of Type I, wherein 4, and 4, are coin-
cident, but the line 4,4, is determined as ¢.

Given any fourth point X, other points of that conic of the
pencil which is on X may be found by any of the first three
methods enumerated.

Given any line 7 not on any of the three points, there are two
and only two conics of the pencil on I.

The dual of the pencil of Type 1l is the range of Type II.

Any two conics of the pencil are said to have single contact
at 4.

6.13. Conics having Double Contact

1f we now suppose that not only 4, and 4, coincide, but also
A, and A;, and that the lines 4,4, and 4,4, are determined
as ¢, and £, respectively, we have a second singular case of a
pencil of conics.

If 4, and 4, are points on ¢, and ¢, respectively, then the set
of all conics on 4,, 4,, t,, and ¢, is termed a pencil of conics
having double contact, and sometimes a pencil of conmics of
Type V.

Singular cases of Pascal’s or Desargues’s theorem establish
the result that on any point X, not on 4, or 4,, there is one and
only one conic of the pencil.

A singular case of Desargues’s theorem establishes the result
that on any line [, not on 4,, 4,, or ¢, t,, there is one and only
one non-singular conic of the pencil.

It may also be verified that the pencil of conics having double
contact is a self-dual figure.

Other singular cases of pencils of conics exist, but their dis-
cussion is omitted here.
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ExAMPLES

1. Enumerate the singular conics of the threo types of pencils.

2. Explain the apparent exception to Desargues’s theorom contained
in tho statement: There is one and only one non-gingular conic of a pencil
of conics having double conz7e{ on any line not on 4,, A,, or t,t,. Why are
there not two ?

h

6.2. Further Theory of Poles and Polars

The following group of theorems about poles and polars is
selected as being useful in application, and important enough
to merit explicit proof.
6.21. THEOREM

If D, D, D, be the diagonal triangle of the four-point Ay A, A, A,
then D, Dy vs the polar of D, relative to any conic of the pencil on
AgA A, A,

F1a. 35.

Let @ be any non-singular conic on 4,4, 4, 4,.

Then, with the usual lettering used for the four-point, H, is
the harmonic conjugate of D, relative to 4,4,, and Hj is the
harmonic conjugate of D relative to 4, 4.

Hence, by the definition of polar, H, Hy is the polar of D,
relative to ®@.

But H Hj is D,D,, and ® is any non-singular conic of the
pencil. Hence the theorem is proved.

It should be noticed that, in addition, D, is the pole of D, D,
relative to @, and D; the pole of D, D, relative to ®.

The triangle D, D, D, therefore has the remarkable property
that each side is the polar, relative to ®, of the opposite point.
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Such a triangle is called a self-polar triangle relative to®. Other
properties of self-polar triangles will be investigated later.

6.22. THEOREM
If two four-points AgA;A,A; B,B,B,B, have the same
diagonal points D, D, D,, then there is a comic which is on the
eight points AyA, A, A3 By B, B, B;.
D

Fr1e. 36.

Let H,H,H,H;H,H; be the harmonic points of the four-
point 4,4, 4,4, and K, K, K; Ky K; K3 those of By B; B, B,.
Suppose first that B, is not on any of the sides of 4,4, 4, 4.

Consider the conic on 4,4, 4, 4, B,,.

Since D), is the pole of D, D, relative to this conic, and since
K, is the point on D, D, which is collinear with B, and D;, and
since, further, B, is the harmonic conjugate of B, relative to
B, K, it follows that B, is on the conic.

Similarly, B, and B, are on the conic.

This proof breaks down when B, is on one of the sides of 4,4, 4, 44,
but when this is so, it is & simple matter to show that B;, B,, and B, are
also on sides of 4,4, A, A;. Not only this, but that the two four-points
have a pair of opposite sides in common. When B, is on one of the sides
of Ay A, A, A4 there is therefore a singular point-conic on the eight points.

6.23. THEOREM
If Ay A, A, Ag be a four-point, and X be any point not on one
of its sides, then the polars of X relative lo conics of the pencil on

4,44, A, are all concurrent.
4190 8
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Consider the non-singular conic ® on 4,4, 4,4, X.

Let X T be the tangent to ® at X.

By Desargues’s theorem, conics of the pencil are on pairs of
mates in an involution on X7, and X is one of the self-corre-
sponding points of this vizﬁolution.

Let X’ be the other, and let ¥ be any non-singular conic of the
pencil other than ®.

Let R and R’ be the pair of mates of the involution on X7
whichison V.

Then (XX’, RR') is a harmonic tetrad.

Hence the polar of X relative to ¥ is on X'.

But the polar of X relative to ®is on X’.

Hence all the polars of X relative to conics of the pencil are
on X'.

The point-pair XX’ has the property of being a conjugate
point-pair relative to every conic of the pencil.

6.24. THEOREM

If ABC be any triangle and A’, B', C’ be the poles of BC, CA,
A B relative to any non-singular conic @, then the triangles ABC,
A'B'C’ are perspective.

Fia. 37.

Let a, b, ¢, a’, b’, ¢’ be the lines BC, CA, AB, B'C’, C'4’,
A'B’ respectively; these are the polars of 4, B', (', 4, B, C
respectively.

Let B", X, Y be the points bb’, ac’, ab’ respectively.

Let z be the line 4'C, so that z is the polar of X.
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Then B(A'B'AX) ~ b'(aba'z),
and b'(aba’z) is b'(Y B"C'A").
Now b(YB"C’'A’) ~ C(YB"C'A")
~ C(4'C'B"Y).
This last pencil is identical with C(4'C’AY).
Hence B(4'B'AX) ~ C(A'C'AY),
or B(A'B'AC) ~ C(A'C'AB).

These two pencils have the common corresponding line BC,

hence they are perspective. Hence (BB is on A4’; and so

00’)
the triangles are perspective.

6.25. Hesse's Theorem

THEOREM. If 4,4, A, A, be any four-point, amZ if two pairs
of opposiie sides are pairs of conjugate lines relative to a conic P,
then the third pair of sides i3 also a pair of conjugate lines relative
to ®.

The theorem is a direct consequence of the previous theorem

and is in fact merely a restatement of it. It is obtained by

3
considering the four-point 4, B, C, (gg,)
6.26. THEOREM

If the sides BC, CA, AB of a triangle are tangents to a conic
D at A’, B', O’ respectively, then the triangles ABC, A'B'C’ are
perspective.

This is a particular case of 6.24. It has already been noticed
in the discussion of the singular cases of Pascal’s theorem
(5.434).

ExampLES

1. @ is a conic, and P, @, A are three distinct non-collinear points not
on it. X and Y are two points on ® collinear with 4. Show that there is
a second pair of points X’ and ¥’ on @ and collinear with 4 such that
XYX'Y'PQ are all on a conic.

Discuss the case when 4 and P, A and @ are both pairs of conjugate
points relative to .

2. P, Q, A are three distinct non-collinear points, and a is a line not on
any of them. Show that conics on P and @, relative to which 4 and @
are pole and polar, form a pencil on four points.



132 PROJECTIVE GEOMETRY

3. If A and a are polo and polar relative to every non-singular conic
of a pencil on four points, show that A4 is a diagonal point of the four-
point.

4. IJKL are four points on & conic ®. P is the polar of IJ relative
to @, @ that of KL. Show that the poles of IJ and KL relative to the
conic on IJKLPQ are on P4. (See 5.545, Ex. 6.)

5. Ay A, A, Ay is a fourpoint, @ any conic on 4, and 4,. Show that
any conic of the pencil on (4,4, 4, 4, is on a second pair of points B and
B’ of ® which are collinear with a certain point on 4, 4.

6. ABCDE are five points, no threo of which are collinear. z is a
line not on any of thom. Give a construction for determining the points
on z which are also on the conic on ABCDE.

7. AB and ! are two conjugate lines relative to a conic ®; A’ and B’
are points on I which are conjugate to 4 and B respectively relative to ®.
Show that the point (gg,) ison ®@.

8. ABC is a three-point on & conic ®, and RS is a line conjugate to

. . RS) (RS) .
BC relative to ®. Show that the points ( ca) \up) ore conjugato

relative to ®.

9. XY ZPQ are five points, no three of which are collinear. Show that
the sot of conics which are on X, Y, and Z, and relative to which P and
@ are conjugate, is a pencil on four points.

6.3. Conics and Triangles
Under this heading are grouped a number of theorems which,

though they might be spread about under different headings,
are more convenient when found together.

6.31. THEOREM

If two triangles ABC, A’B'C’ are both self-polar relative to a
conic @, then the six poinis A, B, C, A', B’, C' are all on a second
conic ¥

Let BC, CA, AB, B'C’, C'A’, A’'B' be a, b, ¢, o', V', ¢’ re-
spectively, so that these lines are the polars, relative to ®, of
A, B, C, A’, B, (' respectively.

Let U, V, X, Y be the points ab’ ac’ (BC) (BO) respec-

’ *TT\ACe) \AB

tively. The polars of these collinear points are AY, AX, AV,
AU respectively.

Now A(BCB'C') ~ a(BCYX)

~ A(CBVU).
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But C, B, V, U are collinear, so that
A(CBVU) ~ A'(CBVU)
~ A'(BCUYV).

This last pencil is 4’'(BCB'C").

Hence 4'(BCB'C’') ~ A(BCB'(C’), and so the six points are
on a second conic.

The converse of this theorem will be proved later (6.422).
As a corollary the following theorem can be proved.

6.311. TurorEM. If D,D,D, be the diagonal triangle of the
Sour-point Ay A, A, Ay, and if x be any line not on any of these
seven points, then the poles of x relative to conics of the pencil
on Ay A, A4, A4 are all on a conic.

Two non-singular conics of the pencil are on z; let I and J,
on z, be the points of contact of these two conics.

Let @ be any other non-singular conic of the pencil. It is on
two points L and L/, say, on z, such that (IJ, LL’) is a har-
monic tetrad.

Let the tangents at L and L’ to ® have the common point 7'.

Then IJ is the polar of T relative to @,

T w J ” P,
and Ty w I ” D,
so that T'1J is a self-polar triangle relative to ®.
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But, by 6.21, D, D, D, is also a self-polar triangle relative to ®.
Hence T is on the conic on I1JD, D, D,.

6.32.”The Eleven-point Conic

The conic on the five points D,, D,, D,, I, J spoken of in the last
paragraph has certain interesting properties, and six other
points on it can be specified at once. That is to say, given a four-
point, and a line not on any of these points nor on the diagonal
points, there is a conic determined by this four-point and this
line, and eleven points of this conic can be specified.

The conic may be aptly spoken of as the eleven-point conic
relative to the four-point and the line.

The reader may justly ask why this is included in the section devoted
to conics and triangles. The reason is as follows. The four-point
AyA,4,A; may be looked upon as a triangle 4, 4,4,, and a fourth
point 4, D, D, D; will then be three points on the sides 4, A4, 4;4,,
A, A, of the triangle, and the lines 4, D,, 4, D,, A; D, are concurrent at
A,. The eleven-point conic is usually spoken of as the eleven-point conic
relative to a triangle (4, 4, 4,), a line (z), and a point (4,). Once it has
been realized that all questions about concurrence and collinearity in
triangles are really questions about four-points and four-lines respec-
tively, much has been gained.

TrEOREM. If
(i) AgA4, A, 4; be a four-point whose diagonal points are
D, D, D,,

(ii) x be a line not on any of these seven points,

(iil) X, X,X,X,X,X; be the involutory hexad on z deter-
mined by the four-point, and I and J be the self-corre-
sponding points of the associated involution,

(iv) ¥, Y,, Y, Y., Y,, Y, be the harmonic conjugates of X, X,
X,, X;, X,, X, relative to the pairs of points of the four-
point collinear with each,

then 1, J, D, D,, D, Y,,Y,, Y,, Y, Ys, Y5 are all on a conic.

It is necessary to prove that the six points Y, Y,Y;Y,Y, Y3
are on the conic on IJD, D, D,.

Let P be the point on 2 collinear with 4, and ;.

Let @ be the harmonic conjugate of 4,, relative to the pair
PY,. Consider that conic ® of the pencil on 4,4, 4, 45 which
is on Q. Then since P is the harmonic conjugate of Y; relative
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Fic. 39.

to 4, @, and since X, is the harmonic conjugate of Y] relative to
A, 4, PX,, ie. z,is the polar of ¥ relative to ®. Hence, by
6.31, Y, is on the conic on D, D, D, 1J.

Similarly, all the other five points are on the same conic,

6.33. TuroreM. If

(i) @ be any non-singular conic,
(ii) ABC be a triangle whose points are on P,
(iii) X, Y, Z be three collinear points on BC, CA, AB re-
spectively,

(iv) R and S be the two points on ® collinear with X, Y, Z,

then ®(ABCR) ~ x(XY ZS), where x 18 the line XY .

Fia. 40.

Let T be the point on @ collinear with 4 and X. Then
2 XYZS) ~ A(XYZS)
~ A(TCBS)
~ O(TCBS).
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Now since there is an involution on ® such that 4 and 7', R

and 8, B and C, are three pairs of mates,
®(TOBS) ~ ®(ABCR).

Hence 2(XYZS8) ~ ®(ABCR).
6.34. THEOREM /5

If A, B, C, A’, B', (! be six points on a non-singular conic,
then the siz sides BC, CA, AB, B'C’', C'A’', A'B’ of the two
triangles ABC, A’ B'C’ are on a second conic.

Let a, b, ¢, @', V', ¢’ be the lines BC, CA, AB, B'C’, C'4’,
A’ B’ respectively.
Let X, Y, Z be the points c'a, ¢'b, c'c respectively, and X',
Y’, Z' the points b'a, b'b, b’c respectively.
It follows from the last theorem that
¢(XYZB') ~ ®(4ABCA')
and V(X'Y'ZC)~DABCA"),
8o that ¢(XYZB')~V(X'Y'Z'C').
But these last two ranges are, respectively,
¢'(abca’) and b'(abea’),
and so ¢'(abca’) ~ b'(abea’).
From the definition of a line-conic it follows that a, b, c,
a', b, ¢’ are all on a conic.
The dual of this theorem is its converse.
/6.35. TugoreM. If
(i) ABC be any triangle and ® be any non-singular conic not
on any of its points or sides,
(i) X and X' be points on BC such that AX and AX' are on ®,
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(iii) Y and Y’ on CA, Z and Z' on AB be points similarly
defined, .
then X, Y, Z, X', Y', Z' are six poinis on a conic.

Let P, @, M, N be the points (CZ'), (CZ) (OZ ) (CZ')

BY')’ \BY)' \BY’)’ \ BY
respectively.
A . AN\ (YZ'\ (AM\ (Y'Z
Lot B, 8, B, § be the points (BC’)’ (BC)’ (BC)’ (BC)
respectively.

Consider the range of conics on the four-line whose points are
BCMNPQ.

The pairs of tangents on the point 4 to conics of this range
are mates in an involution on 4.

Now the singular conics of this range are the pencils on the
three point-pairs B, C; M, N; P, Q.

Hence AB and AC, AR and AR’, AX and AX’ are three
pairs of mates of the involution.

It follows that B and C, R and R’, X and X’ are pairs of
mates in an involution on BC.

Consider now the four-point ANZ'Y; two of its diagonal
points are B and C, while R and § are the two harmonic points
collinear with them.

Hence (BC, RS) is a harmonic tetrad.

Similarly, (BC, R’'S’) is a harmonic tetrad.

Hence (BORS) ~ (BCS'R')

~ (CBR'S’).
4191 T
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It follows that S and 8’ are mates in the involution also.
Altogether, there is an involution on BC, in which X and X’,
Rand R’, Sand 8, B and C are pairs of mates.

Now any conic on YY’ZZ' is on a pair of mates of an involu-
tion on BC, and in this &i}%olution Band C, § and 8’ are pairs
of mates. It is therefore/identical with the previous involution,
and so there is a conic on XX'YY'ZZ'.

The dual of this theorem is its converse.

6.4. Conic Constructions

Under this heading are collected certain problems in which
it is required to construct a conic, but in which the data require
something more than the direct application of Desargues’s or
Pascal’s theorem. In general, the method is to reduce the prob-
lem to a simpler one in which either of the above theorems may
be applied. The problems are enunciated as theorems, and the
proof is often left to the reader once the construction has been
given,

6.41. Data involving Poles and Polars

In general, it may be taken that to be given a line and a point
which are polar and pole is equivalent to being given two points
on the conic. Thus sufficient data are the following:

(i) a pole and polar, and three points on the conic;

(ii) two poles and polars, and one point on the conie.

If three poles and polars are given, there is in general no
golution to the problem, unless the triangle formed by the
poles and that formed by the polars are perspective.

6.411. TeeorEM. If A, P, Q, R be four points, no three of
which are collinear, and o be any line, not on any of these four
points, then there is one and only one conic on P, @, and R
relative to which A and a are pole and polar.

Let X be the point on a collinear with 4 and P and Y be the
point on a collinear with 4 and Q.

Let P’ and @' be points such that (4X, PP’), (AY, QQ’) are
harmonic tetrads.

Then the conic on PQRP’'Q’ fulfils the conditions, and it is the
only one which does so.
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The following cascs should be examined:
(i) aon A.

(ii) @ on P or Q or R, but not on A.

(iii) @ on P and @, or Q and R, or R and P, but not on 4.

(iv) A4, P, Q collinear.

These are not covered by the theorem.

6.412. TueoreM. If A, B, P are three non-collinear points,
a and b two lines not on any of these three points, then there is one
and only one conic on P and relative to which A and a, B and b are
two poles and polars.

The method used in 6.411 may be applied here. The following
is an alternative method.

Let X be the point ab.

Let 4’ and B’ be points on @ and b respectively which are
collinear with 4 B.

Let R and S be the double points of the involution on 4B
in which 4 and A’, B and B’ are two pairs of mates.

Then any conic relative to which 4 and a, B and b are poles
and polars must be on R and S, and moreover X R and X 8 must
be tangents to it.

Hence all these form, together, a pencil of Type V, i.e. they
have double contact.

The theorem now reduces to the proof that there is one and
only one conic of the pencil on P.

The case when 4, B, and P are collinear is not covered by the theorem
and should be examined. The case when a and b are on B and A
respectively involves the fact that XA B is self-polar relative to the
required conic; cases involving self-polar triangles are treated later.

6.413. TueoreM. If ABC, A'B'C’ are two perspective triangles
and no three of these points are collinear, then there is one and
only one comic relative to which A and B'C’, B and C'A’, C
and A’ B’ are poles and polars.

From the work done in the preceding theorem it is only
necessary to prove that there is one and only one conic of a
- pencil of Type V relative to which a given line and point are
polar and pole.

6.42. Cases involving Self-polar Triangles

6.421, TurorEM. If ABC be a triangle and P and @ be two
other points, one at least of which is not on any of the sides of the
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triangle ABC, then there is one and only one conic on P and @Q,
and relative to which ABC is a self-polar triangle.

Let P be the point not on any of the sides of 4 BC.

Let RST be the three other points of that four-point whose
diagonal triangle is ABC,‘éA?:i one of whose vertices is P.

Then the conic on PQRST is the required conic, by 6.21.

That this conic is unique is left to the reader to prove.

The case when both P and @ are on sides of ABC should be
examined.
6.422. TurorEM. If A, B, C, A', B', C' be six poinis on a
non-singular conic, then there ts one and only one conic relative to
which ABC and A' B'C' are both self-polar triangles.

Y X
ey e

. % M A
g : \
{ ;
»

(AN %
____________________ y
L

Fia. 43.

Let BC, CA, AB, B'C', C'A’, A’B' be a, b, ¢, o', V', ¢’ re-
spectively.

Let A" be the point aa’, a” the line 4A4’.

Let X and Y be the points a”a, a"a’ respectively.

Let M and N on @ be the self-corresponding points of an
involution in which B and C, A” and X are two pairs of mates.

Let M’ and N’ be similarly specified points on a’.

Let @ be the conic on ABCA'B'C".

Consider that conic on MNM’'N’ which is also on AM; let
it be V.

Since (4"X, MN) and (A"Y,M’N’) are harmonic tetrads,
XY,i.e.a", is the polar of A" relative to ¥, and the point-pair
B, C is a conjugate pair relative to it.

Since also (BC, M N) is a harmonic tetrad, and AM is on ¥,
AN is also on it. Hence M N, i.e. a, is the polar of A relative to
¥, that is, ABC is a self-polar triangle relative to ¥'.
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Now for similar reasons B’ and C’ are conjugate points rela-
tive to ¥, and the pole of B’C’ must be on a”. That is, there is
a point K on a” such that KB'C" is self-polar relative to ¥.

But by 6.31 ABCKB’'C’ must be on a conic, and this conic
cannot be other than ®. Hence K is 4’.

Hence ¥ fulfils the requirements.

Plainly, also, it is the only conic which does so.

6.43. Data involving Lines and Points

A different class of problem is typified by the following:
Given two points and three lines, not specially related, construct
a conic which shall be on all five.

There are four cases of this problem; the data in these are:
(i) four points and one line,

(ii) three points and two lines,

(iii) two points and three lines,

(iv) one point and four lines.

It will be realized that (iii) and (iv) are the duals of (ii) and
(i) respectively, and so consideration of this type of problem is
limited to the consideration of (i) and (ii).

6.431. TarEOREM. If AjA, A, A, is a four-point and x any
line, not on any of these poinis, there are two and only two conics on
AgA; 4,45 and 2.

Let X, X, X,, X, X, X3 be the involutory hexad on « deter-
mined by the four-point.

Let U and V be the self-corresponding points of the involu-
tion in which these are mates.

Then the conics on A,4,4,4,U, AjA, 4,43V are the
required conics, and they are the only two. The proof is left to
the reader.

The following cases, covered by the theorem, deserve attention:

(i) when z is on one and only one diagonal point of the four-point;

(ii) when « is on two diagonal points.

The following cases, not covered by the theorem, should be in-
vestigated: .

(i) = on one and only one of the four points;

(ii) z on two of the four points.
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6.432. TuroreM. If A, B, C are three poinis and z, y two
lines mot on any of them, and if no three of the points 4, B, C, xy
are collinear, then there are four and only four conics on A, B, C,
x, and y.

’x

Let 2z be the line BC, X and Y the points 2z, zy.

Let Z be the point xy.

Let U and V on z be the self-corresponding points of the
involution in which B and C, X and Y are mates.

Let L be the point (A V), and let D be the harmonic conjugate

zZU

of A relative to LV.

Then V is a diagonal point of the four-point 4 BCD, and the
other two diagonal points are on ZU.

Consider now the pencil of conics on A BCD.

Relative to any conic of the pencil, ¥ and ZU are pole and
polar.

Now « and y are harmonic conjugates relative to ZU and
ZV, hence any conic of the pencil which is on x is on ¥ also.

Two conics of this pencil therefore fulfil the conditions.

By interchanging the roles of U and V in the construction,
a second pencil of conics is obtained ; of this pencil two more
conics fulfil the required conditions.

There are therefore four conics which fulfil the conditions.
It is plain that there are only four.
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The following cases, not covered by the theorem, should be examined:
(i) 4, B, C, and xy collinear;
(ii) 4, B, and C collinear, but not collinear with xy;

(iii) B, C, and xy collinear, but not collinear with 4;

(iv) 4 on z, B and C not on y;
(v) Aonz, Bony;

(vi) 4, B, and C on z;

(vii) B and C on y, 4 not on y.

It will be found that in the last case no conic satisfies the conditions

unless B and C coincide.

ExAMPLES

1. ABC is a triangle and x a line not on any of its points; X, a point
on z, is not on any of the sides of the triangle. Give a construction for
finding a conic ® on 2 and X and relative to which 4 BC is self-polar.

2. If in the last example X is not on z, and if ¥ and Z are points on
« which are also on a conic on 4, B, C, X, show that # and X are polar
and pole relative to the conic which has A BC and XY Z as self-polar
triangles. Show that this conic is the only one which has 4 BC as a self-
polar triangle, and relative to which X and z are pole and polar.

8. Give a construction for finding points of a conic which shall be on
two given points and a given line, and relative to which a given point
and line shall be pole and polar. How many conics satisfy the con-
ditions ?

4. Give a construction for finding points of a conic which shall be on
a point X and a line «, and relative to which 4 BC shall be self-polar.
How many conics fulfil the conditions ?

5. Use the converse of the theorem that the points of two triangles
which are self-polar relative to a conic ® are on a conic ¥, to prove that
if the points of two triangles are on one conic the sides are on a second
conic.
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1. A, B,C; and 4, B;C; are two triangles perspective on the point X ;
Ay B3C, and A, B, C, are perspective on X,; 4, B, C, and 4, B,C, are
perspective on X, If X, X,, X, are collinear, show that the triangles
A, A A;, B, B, B, C,C, ?,%are perspective in pairs on three collinear
centres.

Hence show that if three triangles are perspective from the same
centre, the three axes of perspective are concurrent.

2. (PQ,AB) is & harmonic tetrad on a line z, and ¢ is any non-
singular conic. The four-line formed by the two pairs of tangents to
@ on 4 and B has WXY Z as its other four points. Show that PQWXYZ
are six points on a conic.

A’ and B’ is another pair of harmonic conjugates relative to P and @,
and W/X’Y’Z’ are defined in a similar way. Show that the ten points
PQWXYZW’'X'Y'Z’ are all on the same conic.

3. If two different pencils of conics on four points have a conic in
common, show that the two four-points havo the same diagonal points.

4. ABC, A’B’C’ are two triangles perspective on X and . 47, B”, C”
are the three points on z collinear with 4 and 4’, B and B’, C and C’
respoctively. If (XA”,44’), (XB”, BB’), (XC”,CC’) are all harmonic
totrads, show that A BCA’B’C’ are all on a conic.

5. a(0A, A, 4;) ~ b(0OB, B, By) ~ ¢(00,C,C5) ~ d(0D,D,D,) and
A, B,C, D, are all on a line XY. Show that if 4, B,C, D, XY are six
points on a conic, A3 B3 C; D, XY are six points on another.

6. Three conics @, ¥", () are on two points I and J. P, and @, are the
other two points on both ¥" and Q, P, and @, those on Q and ®, P, and
Q; those on ® and ¥'. Show that P, Q,. P, @,, F; @, are concurrent.

7. X, Y, Z are the three points on a line m which are also on the sides
BC, CA, AB of a triangle ABC. X'Y’Z’ are similar points on a line m’.
0,0,030, are the points of contact with m of the four conics on
A4, B, C, m, and m’; Of O3 O; Oy are similar points on m’. Show that

m(XYZO0,0,030,) ~m'(X'Y'Z'0; 0; 0; 07).

8. 4,4, A4, is any triangle and z a line not on any of its vertices.
X, X,X;on xare collinear with 4, 4,;, A4;4,, 4, A, respectively. I and
J are any other distinct points on z.

Y, and Y| are the self-corresponding points in an involution on z in
which X, and X, I and J are two pairs of mates. Y; and Y3, Y; and Y}
are similarly defined.

Show that (i) ¥;Y,Y,Y{Y Y} is an involutory hexad, (ii) the six
lines 4, Yy, A, Y1, A, ¥,, A, Y;, A,¥,, A,Y; are six lines of a four-point
B,B,B;B;. -~

9. A, 4,44, 2, X,,X,,X;, I,and J are as specified in the last example.
Xj, X3, X3 are the harmonic conjugates of X,;, X;, X, respectively rela-
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tive to I and J. T is any point on the conic on 4, 4; 44 IJ. Show that
. TX{) (TX;) (TX{,
the points (A,A, '\4,4,)" \4, 4,

10. 4,4, 4,, z, X;, X,, X,, I, and J are as specified in Example 8;
X3, X3, X; are as specified in Example 9. M,, M,, M, are the harmonie
conjugates of X,, X,, X; relative to 4,4y, A;4,, 4, A, respectively.
Show that M, Xj, M, X3, My X} arc concurrent.

11. If P is the common point of the three lines M; X{, M, X3, My X3 in
the last example, show that PI, PJ are tangents to the conic on
A, A A, 1J.

12. A conic @ is on the sides of a triangle A BC which is self-polar
relative to a second conic ¥'. x is any other line on ® and X is its pole
relative to ¥'. y and z are the two tangents to ® which aro on X. Show
that the triangle zyz is self-polar relative to ‘F'.

13. @,, ®,, and @, are three conics. @, and ®; have double contact
and X, X arc thoir common points; ®; and @, have double contact and
X,, X} aro their common points; @, and ®, have double contact and

, . . X, X;) (X, X;)
X,, X3 are their common points. Show that ( X, X; and X, X; are

) are collinear.

harmonic conjugates relative to X, and X{.

14. P and Q are two points not on a line z. R and R’ are a typical
pair of mates of an involutionon z. U and V are tho other two points of the
four-line PR, PR’, QR, QR’. Show that the locus of U and V is a conic.

When and how is this conic singular ?

15. If x(ABA,;A,A,..) ~x(ABB, B, B;...), find a third range
#(C, G, Cs...), such that both the projectivities

(A, A4, 45...) ~ 2(C,C;Cs...)
and #(B, B, By...) ~ (0, C; Cy...)
are involutions.

Is this third range unique ?

16. z and y are two lines conjugate relative to a conic. P and @ are
two points on z; P’ and @’ are two points ony. If P and P/, @ and Q' are

both conjugate rolative to @, show that (PP ison @.

QQ’)
17. Two conics ® and ¥ are each on the sides of a triangle ABC.
Show that the six points of contact are all on a third conic Q. Dualize
this result, and also cxamine singular cases.
18. A, B, C are any three points on a conic ®. T is the polar of BC

relative to ®. Show that if T'U be any line on 7', the points ( Cg) ( Ag)

are conjugate relative to ®. Dualize.

19. 4, B, C, P, Q are five points no three of which are collinear.
Show that the set of conics on 4, B, and C and relative to which P and
Q aro conjugate points is, in general, a pencil on four points.

Hence devise a construction for a conic on four points and relative to
which two other points are conjugate points,

4101 v
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20. z and y are two lines, P and @ are two points not on either. Find
the locus of poles of PQ relative to conics on z, y, P, and Q.

Examine the case when PQ, z, and y are concurrent.

21. (X, X, X;...) ~ y(Y,Y,Y;...), and Z, Z, Z,... is a range on a third
line 2z such that X,Y; Z, are collinear, X, Y, Z, are collinear, and so on.
Show that, in general, it is ngt'true that

22y £y Zy...) ~ y(1 Y, ¥ye.).

Undoer what conditions is it true?

22. 4, B, C, D, P, Q are six points, no three of which are collinear.
There is a unique conic on 4 BCD relalive to which P and @ are con-
jugate points. Give a construction for the polar of P relative to this
conic.

23. A BCD are the points common to two conics ® and ®’. abcda’d’c’'d’
are the cight tangents to these conics at these points. Show that those
eight lines are all on a third conic.

24. p and g are conjugate lincs relative to a conic ®. P and P’ are the
common points of p and ®, @ and @’ those of ¢ and ®. Show that
O(PP’,QQ’) is a harmonic tetrad.

25. O is a point, ® a conic not on it, X, Y, Z, W four points on a line z.
R and R’ are the common points of ® and a typical line p of the pencil
on O. § is a fourth point on this line such that

p(ORR'S) ~ (XY ZW).
Show that the locus of § is a conic which has double contact with @,
except whon (Y Z, XW) is a harmonic totrad.

26. 4,4,4,A, is a four-point and @ is any conic on its diagonal
points. With the usual convention for assigning letters, ¥;Y,Y; Y Y, Y3
are the six other points on @ which are on the sides of the four-point.
X, X, X, X{X;X; are the harmonic conjugates of thesc relative to the
pairs of points of the four-point with which they are collinear. Show
that these six points are collinear, and that the self-corresponding points
of the involution in which they are mates are on ®.

27, X\ X, X322, ZyZy Z] Z; Z; are nine collinear points such that
(X3 X3 Zy ZY), (X3 Xy, Zy Z3), (X, X,, Zy Z3) are harmonic tetrads. Show
that (Z, Z, Zy, Z3 Z3 Z3) is an involutory hexad.

28. A non-singular conic is on the points of the triangle A BC and on
the sides of A’B’C’. Show that there is another conic on the points of
A’B’C’ and on the sides of 4BC.



CHAPTER VII
THE NON-HOMOGENEOUS MESH GAUGE

In the preceding chapters of this book the subject of Projective
Geometry has been studied by what is usually known as the
Synthetic method. This method consists in the direct deduc-
tion, by the ordinary processes of deductive logic, of the conse-
quences of the initial propositions laid down, no special tech-
nique being evolved to simplify the process. Now although it
is possible to continue the study of Projective Geometry by the
Synthetic method far beyond the point we have reached, it is
convenient to introduce here a new method which can be used
along with it. This new method is, in fact, the application of
algebraic language and symbolism to the concepts of Geometry
in a way similar to that in which Descartes and those who
followed him applied Algebra to elementary Geometry. There
is, however, a very important difference between Algebraic
Projective Geometry and what is usually known as Analytical
or Coordinate Geometry; this difference will be noted and
commented on in due course.

This chapter and the succeeding one are taken up with the
foundations and elaboration of the new method; incidentally,
the question of extension is reviewed, and a final and definitive
initial proposition of extension laid down. The reader may find
that the introduction to the algebraic method is long and at
times a little uninteresting, but it has been thought better to
study the question thoroughly, rather than to sacrifice rigour
to inferest.

7.1. Number-Systems

It is necessary to consider first some basic and rather abstract
ideas which belong properly to the subject of Algebra, and have,
at first sight, no bearing on what has gone before. In all that is
to be said it is taken for granted that the reader is familiar
with the concept of compler numbers, and with the elementary
properties of complex numbers. That is to say, it is assumed
that he knows not only what a complex number is, but also
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what is meant by the sum, difference, product, and quotient of
two complex numbers.

7.11. Simple Number-Systems

We now ask the question: Are there any sets of numbers
which can be selected /from the whole domain of complex
numbers such that, if @ and & are any two numbers of the set,

then
(1) a+b is also a number of the set,

(2) a—b is also a number of the set,
(3) axb is also a number of the set,
and (4) a=b is also a number of the set, except, obviously,
when b is zero?

Not every arbitrarily chosen set of numbers has all these pro-
perties; it is easy to prove that, for instance, the set consisting
of all the positive integers does not possess them.

On the other hand, it is not difficult to prove that such sets
can, in fact, be selected; the simplest of them all is the set
consisting of the number zero only. In addition to this trivial
example, the following are given; it is not difficult to show that
they have the properties enumerated:

(1) the set consisting of all the rational numbers (positive

and negative, zero included);

(2) the set consisting of all the numbers of the form a+-b+v2,

where a and b are rational numbers;

(3) the set consisting of all the numbers of the form

a-+bV3--cv5+dv15,
where a, b, ¢, and d are rational numbers;

(4) the set consisting of all the real numbers;

(5) the set consisting of all the complex numbers.

The examples given do not exhaust all the possibilities nor
even all the types of possible sets. In the sequel we shall require
a name for these sets of numbers, and so we call them systems
of numbers, or, more simply, number-systems.

Now of the numbers belonging to a number-system the
following propositions are plainly true:

I. If a and b are numbers of the system, then there i8 a unique
number of the system which is their sum.
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IL. If a, b, and c are numbers of the system and a+b = c,
then b+a = c.

IIL. There is a unique number, 0, of the system, such that if
a 18 a number of the system, then a+0 = a, for every a.

IV. If a, b, and ¢ are any three numbers of the system, then
a+(b+c) = (a+b)+ec.

V. If a and b are any two numbers of the system, then there
18 & unique number, c, of the system, such that a-c = b.

VL. If a and b are any numbers of the system, then there is a
unique number of the system which is their product.

VIL. If a, b, and c are numbers of the system, and if a x b = c,
thenbxa =c.

VIII. There is a unique number, 1, of the system, such that if
a 18 a number of the system, a X 1 = a, for every a.

IX. If a, b, and ¢ are any three numbers of the system, then
axX(bxc)= (axb)xe.

X. If a, b, and ¢ are any three numbers of the system, then
aX(b+4c) = (axb)+(axc).

XI. If a is any number of the system other than zero, and b is
any number whatever of the system, then there is a unique number
¢ of the system, such that a X ¢ = b.

These propositions will be recognized as the fundamental
propositions on which the whole of Algebra is based, although
they do not ensure that all algebraic processes can be carried
out in any particular number-system. For instance, if the
number-system is that consisting of all rational numbers, the
process of extracting the square root of a number will not
always be possible.

7.12. Generalized Number-Systems

Having noticed the basic properties of number-systems, we
now make use of them to introduce deeper ideas. The process
which is undertaken is that of generalizing the concepts of
number and number-system.

It will be observed that a number-system is a set of entities—
numbers—whose members are interrelated by two types of
relation, which may be called the sum-relation and the produci-
relation. For if a+4b = ¢, the number ¢ bears to the two
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numbers @ and b the relation of being their sum; and ifa xb = d,
the number d bears to the two numbers a and b the relation of
being their product. These two relations are, respectively, the
sum-relation and the product-relation. Of them the eleven
propositions of the preceding section are true.

We now ask the question : Is it possible to find sets of entities,
other than the number-systems we have been considering,
interrelated by two types of relation, similar to the sum-rela-
tion and product-relation, and of which propositions similar to
those of the preceding section are true? If it is possible to do
80, then we are in a position to lay down the initial propositions
of a completely abstract science, of which the number-systems of
7.11 are representations. 1If it is impossible to do so, then there
is nothing to be gained by attempting to conceive of something
more abstract than these number-systems; but it is our aim to
show that a certain set of points on a line is (when suitable
analogues of the sum-relation and product-relation have been
specified) a representation of the more abstract concepts.
Without waiting to find out if this is possible or not, we lay
down the definition of an abstract number-system as follows.

DeriNviTION. A set of entities, identifiable by the symbols
a, b, ¢, d,..., 18 said to be a representation of an abstract number-
system if and only if the following propositions are true:

1. If a and b are any members of the set, then there is a unique
member, ¢ say, of the set, related to them by what i8 termed the
S-relation. This S-relation is precisely specified for every pair
a and b, and it is symbolized by writing a+b = c.

IL. If a and b are any members of the set, and if a+b = c, then
b+4a = c.

III. There is a unique member, Z, of the set, such that if a is
a member of the set, than a+Z = a, for every a.

IV. If a, b, and c are any members of the set, then

a+(b4c) = (a+b)+e.

V. If a and b are any two members of the set, then there is @
unique member, c, such that a+c = b.

VI. If a and b are any members of the set, then there is a unique
member, d say, related to them by what is termed the P-relation.
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This P-relation is precisely specified for every pair a and b, and
it 18 symbolized by writing a X b = d.

VII. If a and b are any members of the set, and if axb = d,
thenbxa = d.

VIII. There is a unique member, U, of the set, such that if a is
a member of the set, a X U = a, for every a.

IX. If a, b, and c are any three members of the set, then

aX(bxc) = (axb)xec.
X. If a, b, and c are any three members of the set, then
aX(b+c) = (@axb)+(axc).

XI1. If a is any member of the set other than Z, and b is any
member of the set whatever, then there is a unique member, c, of
the set such that a X ¢ = b.

It is plain that these eleven propositions, stated as they are in
abstract form, are a set of initial propositions, and since we
already have an existence theorem for them in the simple
number-systems of 7.11, they can, in fact, form the basis of
a possible science. There, entity was interpreted as number,
S-relation as sum, and P-relation as product. The way is now
open to inquire whether a set of entities, apparently quite un-
connected with the numbers of 7.11, satisfy these initial pro-
positions when appropriate meanings are given to the terms
S-relation and P-relation.

One further point may be noticed here. If we find such a
set of entities, by what name arc they to be called? There
seems to be no reason for not calling them number-systems. It is,
of course, open to the reader to reserve the term number for the
entities of 7.11, and to invent some new term, such as ‘abstract
number’, for other representations of 7.12. But no useful
purpose is served by such a verbal distinction as this; it is
rather like reserving the term animal for the familiar dog, cat,
horse, ete., and using some other term to denote unfamiliar
animals like the Teratoscincus Scincus. For the truth is that
the numbers of 7.11 have the properties which Mathematics
takes cognisance of, solely because they are, in fact, representa-
tions of the initial propositions of 7.12.

In the same way, no useful purpose is served by distinguishing
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between S-relation and sum, and between P-relation and pro-
duct, and henceforward the simpler terms will be used.

7.2. A Geometrical Number-System

The object of this sectizr{ is to show that there is a geometrical
representation of the cohcepts of the last section. In order to
do this it will be necessary (1) to choose a suitable set of
entities, (2) to specify what is meant by the sum and product of
a pair of these entities, and (3) to show that the eleven initial
propositions are verified.

7.21. The Gauge-points and the Open Set on a Line

Let I be any line of the field, and let 4,, 4,, and 4, be any
three arbitrary but distinct points on it; in subsequent work it
will be necessary to refer to these points, and so they are called
the gauge-points.

The set of all points on the line I, with the exception of the
point A, will be called the open set on the line.

The open set on the line I is chosen as the set of entities for
the representation of the initial propositions of 7.12.

7.22. The Sum and Product of a Pair of Points

DzerixnrrioN. The sum of any two points, A, and A,, of the
open set 18 defined to be a mate of A, in the involution in which

(1) 4, is a self-corresponding point, and

(2) 4, and A, are a pair of mates.t

DerintTiOoN. The product of any two points of the open set,
A, and A,, both of which are distinct from A, is defined to be the
mate of A, in the involution in which

(1) 4y and A, are a pair of mates, and

(2) 4, and A, are a pair of mates.

If either or both of the points A,, A4, coincide with A, their
product is defined to be the point A,.

It should be noted that both of the terms sum and product of
a pair of points are relative terms (see 4.221); they are meaning-
less unless gauge-points have been specified.

1 The suffixes attached to letters labelling points of the open set are not
necessarily numbers; any distinguishing suffix is sufficient for the purpose.
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If A, is the sum of 4, and A, relative to the gauge-points
Ay, 4,, and 4, the involution specifying this relation may be
symbolized by the scheme (j"j”j“’). The accompanying

24ty <l
figure illustrates the definition; from it the reader will be able
to elaborate a formal construction for determining the sum of

two points relative to any gauge-points.

Ao Ay AxA; Ao
F1a. 45.
The involution specifying the product of two points may be
symbolized by the scheme (‘j‘j”j“), where A, is the product
257 T w,

of A, and 4,. The accompanying figure illustrates this.

A A] Ay A A, Ag
Fia. 46.

The symbolic propositions 4,4+4, = 4, and 4,x4, = 4,
will henceforward bear their obvious meanings in terms of the
above definitions, and the symbols (4,+4,) and (4,%x 4,) will
denote the points which are, respectively, the sum and product
of A4, and 4,,. .

Before verifying the eleven initial propositions, it is necessary
4101 x
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to prove two theorems about the sum-relation and product-
relation; these theorems are given below, and the reader will
find that the formal proof of them is an almost immediate
consequence of the definitions.
7.221. TeEorEM. If

A,4+A4, =4, A, +A4,=A4, A +A4A,=4,.,
orif A +A,=A4, A+A,=4, A+4,=A4,..,

then (A AgA Ay A,.) ~ (A A, 4,4,4,.).
Au
] A
A A
- n A 0 9
0
Fia. 47.

7.222. TeEOREM. If

A, x4,=A4,, A, x4,=A4, A, x4,=4,..,
orif AxA,=A4, AxA,=A4, AXA,=A4,..,
then (A,4,4,4,4,4,.)~ (A,4,4,4,4,4,..).

Fia. 48.
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7.23. Verification of the Initial Propositions

The following eleven theorems show that the eleven initial
propositions of 7.12 are verified. Most of them are extremely
simple.

7.2301. TureoreM. If A, and A, are any two points of the
open set, then there is a unique point of the open set which is
their sum.

7.2302. Tamorem. If A, and A, are any two points of the
open set, and if A,+A4,= A, then A +A, =4,

7.2303. TuroREM. There is a unique point of the open set,
namely A,, such that if 4, 18 any point of the open set,
A, +4,=A4,.

These three theorems are simple consequences of the defini-
tion of the term sum.

7.2304. Trmrorem. If A,, 4, and A, are any three points of
the open set, then A,+-(A,+A4,) = (A,+4,)+A,.
Suppose that
A,+4,=4, A,+A,=A4, and 4,+4,=A4,.
Then since 4,44, = 4, and 4,44, = 4,, by 7.221,
(AonAuAy) ~ (AwAerAu)' (1)
Since also 4,44, = A,, by the definition of the term sum,
(AmAOAuAyAJ:) ~ (AwAuAOAzAu);

and so, from (1), it follows that

(A4,4,4,4,)~ (4,4,4,4,). (2)
But since 4,+4, = 4,,
(AonAcAqu) ~ (AwAsAoAzAu)' (3)

This last involution is plainly identical with the projectivity
(2); that is to say, 4, and 4, are mates in the involution (3),
Hence 4,+4, = 4,, or
Am+(Ay+Az) = (Az+Ay)+Ag:
and this proves the theorem.
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7.2305. TamoreM. If A, and A, are any two points of the
open set, then there is a unique point A, also of the open set, such
that A,+A4, = A,.

This theorem is a simple consequence of the definition of the
term sum. /

7.2306. TuEOREM. If A, and A, are any two points of the
open set, then there is a unique point of the open set which 18 their
product.

7.2307. TueorEm. If A, and A, are any two points of the
open set, and if A, x4, = A, then A, x4, = 4,.

7.2308. THEOREM. There is a unique point of the open set,
namely A,, such that if A, is any point of the open set, then
A,x4,=A4,.

The last three theorems are simple consequences of the defini-
tion of the term product; but in verifying them the reader
should not omit to notice the second half of the definition.

7.2309. Taeorem. If A,, A, and A, are any three points of
the open set, then A, x (A,XA4,) = (A, xA4,)XA,.

When one or more of the points mentioned coincides with
A,, the theorem is trivial. When this is not so, the proof pro-
ceeds in a similar way to that of 7.2304, save that 7.222 is used
in place of 7.221. The details are left to the reader.

7.2310. TurorEM. If A, A, and A, are any points of the
open set, then A, X (4,4 A4,) = (A, X 4,)+(4, %X 4,).
The theorem is trivial if 4, coincides with 4,, and so this case
is at once excluded.
Suppose thenthat 4,44, = 4,, A, X4, = 4,4, X4, = A4,
and 4,X 4, = 4,; then by 7.222
(AonAl AquAr) ~ (AonAzAaAlAu)' (1)
But since 4,44, = 4,,
(AonArAyAz) ~ (AwArAOASAy)’
and hence, from (1),
(A,404,4,4,) ~ (AwAquAIAa)'
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That is to say, 4,+4,=A4,, or
A, X (A,44,) = (A, X A,)+ (4, X A4,),
and this proves the theorem.

7.2311. TaeorEM. If A, is any point of the open set other
than the point Ay, and A, is any point whatever of the open sef,
then there is a unique point A_, also of the open set, such that
4,x4,= A,

This theorem is a simple consequence of the definition of the
term product.

The eleven propositions of 7.12 are thus verified of the open
set of points on a line, when the sum-relation and product-
relation are interpreted according to the definitions which have
been given. This extremely important result is worth stating
as a formal theorem.

7.24. THEOREM

The open set of points on a line is a representation of the abstract
number-system of 1.12, when the sum-relation and product-relation
are interpreted according lo the definitions in 7.22.

ExAMPLES

1. ® is any non-singular conic, and F,, I3}, and P, are any three
distinct points on it. If these are the gauge-points on ®, and if the terms
open set, sum of two points, product of two points arc defined analogously
to the corresponding torms for the line, prove the analogues of Theorems
7.221 and 7.222.

2. Hence show that the open set of points on a non-singular conic is
a representation of the abstract number-system of 7.12.

3. Prove analogues of Theorems 7.2304, 7.2308, and 7.2310, without
appealing to the theorems proved in Example 1.

7.3. Extension

The preceding sections have shown that the open set of points
on any line of the field is a representation of the abstract
number-system, and this result enables us to lay down a final
and definitive initial proposition of extension. It is essential
to do this before introducing the algebraic method; it is more-
over convenient to dispose finally of the question of extension
at this point. In order to do this it is necessary to introduce the
notion of isomorphism.
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7.31. Isomorphism

DzriNrrioN. Two representations of the abstract number-
system are said to be isomorphic if and only if to every entity in
one there corresponds one and only one entity in the other, and
vice versa, in such a way that if A and B are two entities in one
which correspond respectively to A’ and B’ in the other, then

(i) A+ B corresponds to A'+ B’, and

(ii) 4 X B corresponds to A’ X B’'.

It will be seen from this definition that if two number-

systems are isomorphic, there is complete parallelism between
them, in the sense that if any operations consisting of successive
sums and products are performed on the entities of one, and if
the corresponding operations are performed on the correspond-
ing entities of the other, the results will be corresponding
entities.
7.311. TreorEM. If ! and m are any two distinct lines of the
field, and on them gauge-points L,, L,, L, and My, M,, M,
respeclively, are chosen, then the open sets on | and m are iso-
morphic.

Consider the projectivity in which

ULy Ly L,) ~ m(My My M, );
by means of this projectivity, every point of the open set on I
is made to correspond to a unique point of the open set on m,
and vice versa. The first condition of isomorphism is therefore
fulfilled.

Let L, and L, be any two points on 7, and suppose that
L,+L,= L, and L,x L, = L, Further, suppose

(LyLy L, L, Ly Lp Lq) ~ m(My M, M, M, M, M. M,).
Then since
WL,LyL,L,L,)~YL,L,L,L, L)
and UL,LyL,L,L, L)~ ULyL,L,L, L, L,),
it follows that
m(M, My M, M, M) ~ m(M, M, My M, M,)
and  m(M, M, M, M, M, M) ~ m(My M, M, M, M, },).
That is to say, M,+M, = M, and M,+ M, = M, Hence the
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second and third conditions for isomorphism are fulfilled, and
the theorem is proved.

7.32. Isomorphism with Simple Number-Systems

The open set of points on any line of the field being a repre-
sentation of the abstract number-system, the question at once
arises: Is this set of points isomorphic with any of the simple
number-systems of 7.11? A precise answer to this question
would settle the question of extension at once; but it is impos-
sible to give a precise answer to it, for the initial propositions of
Projective Geometry are compatible with its being isomorphic
with any one of a variety of simple number-systems. It is
therefore necessary to lay down as an initial proposition the
isomorphism of the open set with some chosen simple number-
system. This will be an initial proposition of extension.

For our purposes it is simplest to choose as the initial pro-
position of extension the isomorphism of the open set with the
set of all complex numbers. Some reasons why this choice is
made are given below.

If, in studying Algebra, we confine oursclves to the real numbers, that
is to say, if we study the Algebra of the Real Number-System, it is
necessary to say that many problems have thcrein no solution. For
instance, the quadratic equation 2441 = 0 has no roots in the
system. It is thorefore necessary to be constantly enumerating excep-
tions, and stating conditions. But if we study the Algebra of the Complex
Number-System, it is casily proved that therein every algebraic equation
has a root, and so, roughly, that every significant elementary problem
has a solution. Moreover, the history of Mathematics shows that the
introduction of complex number into Algebra enabled mathematicians
to increase considerably their knowledge of the Real Number-System.

In just the same sort of way, if we agreed to lay down as an initial
proposition of extension the isomorphism of the open set with e.g. the
real number-system, we should find that some problems were without a
solution. Not every line, for instance, would have points in common
with an arbitrary non-singular conic. In consequence we should have
to hedge our theorems about with conditions, and progress would be
rotarded. But if we agree to lay down that the open set shall be iso-
morphic with the set of all complex numbers, we may confidently expect
that all elementary problems in Geometry will have a solution, and that
there will be no necessity to enumerate irritating exceptions. Moreover,
as in Algebra, the study of the consequences of this initial proposition
of extension will give us knowledge of other systems which we could
not obtain otherwise.
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7.33. Initial Proposition of Extension
The open set of points on a line is isomorphic with the
set of all complex numbers.

As before, it will be necessary to prove that this particular
initial proposition of [Z:ension is compatible with the initial
propositions laid down up to this. This is done by proving an
existence theorem; we show that there is a representation of the
other initial propositions of which this initial proposition is
also true. As usual, we choose the Algebraic Representation
for this purpose.

7.331. Verification in the Algebraic Representation
TrgorEM. In the Algebraic Representatwn the open set of poinis on a

line 18 isomorphic with the pl Y

Let (g, Yg» 20)s (X1, Y1521), and (T Yoy 2,,) be three distinet collinear
points in the Algebraic Representation, so that numbers p and g exist
such that @, = pry+9z,, ¥; = PYo+9Y., and 2z, = pzg+4qz,. Plainly
there is no loss in generality if it be supposed that p and g are unity.

These three points are taken as the gauge-points 4,, 4,, 4,, and any
other point on the line is (AZg+pes AYp+pY s A2o+p2,,).

If now we take the points 4, and 4, as reference points, the coordi-
nates of any point on the line relative to these reference points are
(A, ). In particular, the coordinatos of 4y, 4,, and A4, are, respectively,
(1,0), (1,1), and (0, 1), and any point of the open set has coordinates
(1, k), where k is any complex number.

Tho open set may therefore be put into correspondence with the
complex number-system by making the point (1,k) correspond to the
number k, and vice versa. The first condition for isomorphism is there-
fore fulfilled.

Further, if the two points (A, u) and (p, o) are mates in an involution,
then numbers a, b, and ¢ exist such that

alp+b(Ao+pp)+cpo = 0,

where ac—b? # 0

Firstly, suppose that (i) 4,, is a self-corresponding point, and (ii) the
points (1,z) and (1,y) are matos in this involution. It is easily verified
that these conditions entail (i) ¢ = 0, and therefore b # 0, and (ii)
a = —b(z+y). The involution is therefore specified by the equation

—(z+yp+Qo+pp) = 0,
and the mate of (1,0) in this is (1,2+y). Hence the sum of the two
points (1,2) and (1, y) is (1,24 y); the second condition for isomorphism
is therefore fulfilled.
Secondly, suppose that (i) 4, and 4, are mates, and (ii) the points
(1,z) and (1,y) are mates in the involution. It may be verified that
these conditions entail (i) b = 0, and therefore ac # 0,and (ii)a = —cxy.
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The involution is therefore specified by the equation —ayAp+puc = 0,
and the mate of (1,1) in this is (I,2y). Hence the product of the two
points (1,z) and (1,y) is (1,2y), and therefore the third condition for
isomorphism is fulfilled. The theorem is therefore proved.

7.332. Duality. In order to maintain the Principle of
Duality it is necessary, as usual, to prove the dual of the
initial proposition of extension. The reader should find no
difficulty in doing this, once he has, by dualizing, elaborated
definitions of gauge-lines on a point, sum of two lines, product of
two lines. It is then only necessary to prove that the open set
of lines on a point is isomorphic with the open set of points on
a line.

7.4. The Algebraic Method

We are now in a position to introduce the algebraic method,
and the first step in this is to attach algebraic labels to the
points of the field. In the first six chapters of this book it
was found necessary, as in every treatise on Geometry, to
attach labels to the various points and lines which were con-
sidered in any theorem. Their function was simply to identify
the points and lines in question, and so alphabetical labels were
sufficient for the purpose. Moreover, the practice of labelling
points never pretended to be exhaustive; only those were
labelled which were relevant to the theorem considered.

It is now our purpose, however, to undertake a much more
comprehensive system of labelling. In this every point of the
field will receive a label, and this label will be not merely an
empty symbol useful for purposes of identification only but one
which gives certain information about the relations of the point
to other points of the field.

7.41. Labelling the Points on a Line

We begin by assigning a simple form of label to the points on
a line. Let ! be any line, and on this, let 4,, 4,, and 4, be the
gauge-points. Now since the open set on this line is isomorphic
with the complex number-system, and since in this isomorphism
the point A4, correspondst to the number 0, and 4, to the

+ This correspondence of 4, and 4, to 0 and 1 respectively is not a conse-
quence of Theorem 7.331, but of Theorems 7.2303 and 7.2308.
a9
Y
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number 1, it is only natural to assign the label 4, to the point
which corresponds to the number z. In this way, to every
point of the open set is attached a label of the form 4. More-
over, because of the isomorphism,

z+Ay = Aa:-w
and A,xA,=A4,,

Two important features of this system of labels must be
noticed. First, the labels have nothing to do with the notion
of distance, for the simple reason that distance has not yet been
defined; it is, however, worth remarking that number has been
introduced into Geometry without appeal to the notion of
distance. Secondly, the label attached to any particular point
is entirely dependent on the choice of the gauge-points, and it
will, in general, vary when the gauge-points are varied. In
other words, the label attached to any particular point is its
label relative to the gauge-poinis.

7.411. The Determination of Particular Labels. The
reader may feel that at this point two questions call for an
answer. They are: (1) Given any number, z say, how is it
possible to determine the point whose label is 4,? (2) Given
any arbitrary point, how is it possible to determine what label
is attached to it ?

(1) If zis a rational number, the point A, may be determined
by a finite number of repetitions of the constructions for sum
and product. For by successive applications of the construction
for the sum of two points, the points 4,, 45, 4,, 4;, A,... can
be constructed, and if z = m/n, where m and = are integers,
A, is easily found from these.

If z is not a rational number, it may be possible to give a
construction for determining 4, if constructions using conics
are employed. But conics are not the only type of locus, and
though we have not done so, it is possible to define more com-
plicated loci and to study their properties, and with their aid to
determine all the other points. The answer to the question is
therefore: With the knowledge at present at our disposal it
may not be possible to determine the point 4,.

(2) To the questioner who asks ‘What is the label of this
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particular point?’ the answer must be given: ‘If you will tell
me exactly which point you mean, i.e. give me a construction
by means of which I can be certain which point you are talking
about, I will tell you its label.” Any construction which will
identify it will give its relation to the gauge-points, and when
this is known its label is determinable.

7.42. Dropping the Pilot

In the process of labelling the points of the open set we have
used labels consisting of a letter of the alphabet, to which a
numerical suffix was attached. It is plain, however, that the
important and significant part of this combination is the suffix,
and that the letter plays no useful role whatever. This being so,
the useless letter may without loss be omitted : instead of speak-
ing of the points 4,, 4;, 4;, 4,, etc., we may therefore for the
future speak of the points 0, 1, §, z, etc. The effect of this
technical simplification is that every point of the open set has
now & number-label instead of a suffixed letter-label.

At the same time we may change the label of the gauge-point
A, to w. More will be said about this point later, but the
reader has probably realized that in some sense it corresponds
to the improper number co. For the present we shall call it the
unlabelled point, not because it has no label at all, but because
its label is altogether outside the numerical labelling system
which has been elaborated.

7.43. Complex Points

It may occur to the reader to ask what significance is to be attached
to points whose labels are ‘strictly complex numbers’, i.e. numbers of
the form -4y, where z and y are real numbers, 2 = —1, and y is not
zero. The question may be put in another way: Is there any essential
difference between points whose labels are real numbers, and those
whose labels are not real numbers? The answer is that there is no
essential difference whatever; in fact, if the gauge-points are changed
in a suitable way, points which before had real-number-labels can be
made to have labels which are not real numbers.

The preoccupation of mathematicians in past years with the Geometry
which is apparently applicable to the physical space in which we live
led them to make a sharp, but unnecessary and misleading distinction
between so-called real points and so-called iémaginary points in the
conceptual space studied in Analytical Geometry. The method by which
number has been introduced into Projective Geometry, and the nature
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of Projective Geometry itself, should convince the reader that points
with so-called imaginary labels are on precisely the same footing as
points with real labels. The only difference between them is in their
labels; this difference has as much significance as the difforence between
points whose labels are odd integers and those whose labels are even
integers. The precise label which a point has is entirely dependent on
the choice of the gauge-p/zél?;.

7.44. Labelling the Field

Hayving labelled the points of a single line we now amplify the
process in order to attach labels to other points of the field.

&
Y

urtabellea Line

Fia. 49.

Let I and m be any two distinct lines of the field, and let O
be their common point.

On ! choose three gauge-points X,, X, and X, in such a way
that X, coincides with 0. Similarly, on m choose three gauge-
points ¥;, ¥}, and ¥, in such a way that ¥; coincides with O.

Suppose the open sets on these lines labelled in the way
described above.

Let P be any point of the field not on the line X Y,; let 2 be
the label of the point on I which is also on PY_; let y be the
label of the point on m which is also on PX,,.

Then to the point P is given the double number-label (x,y).
Points on the line ! will have labels of the form (0, ), and points
on the line m will have labels of the form (z, 0); these replace the
temporary labels first attached.

It is clear that two distinct points of the field have different
labels, and that points with different labels are distinct.
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The points of the line XY, do not receive any label in this
system, and for this reason the line is termed the unlabelled line.

This system of giving double number-labels to all the points
of the field save those of the line XY, is called the non-homo-
geneous mesh system, or the non-homogeneous mesh gauge. The
significance of the qualifying word non-homogeneous will become
clearer in due course.

There are certain terms connected with the non-homogeneous
mesh gauge which are in normal use; these are defined below.

DeriNiTIONS. The double number-label atiached to any point
18 called the coordinates of the point; the first of the two numbers is
called the z-coordinate; the second, the y-coordinate.

The lines 0X,,, OY, are termed the axes of coordinates; the
first 18 the x-axis; the second, the y-axis.

The point O is called the origin of coordinates.

7.441. The Unlabelled Line. The non-homogeneous mesh
gauge leaves the line XY, unlabelled, nor can this line be
included by any extension of the labelling system as it stands.
This line is sometimes spoken of as the ideal line, or the vanish-
ing line, and there are other terms in use. None of them is
adopted here, since they imply that this particular line is some-
thing rather special in itself; the truth is, however, that it is
in no way special. It is just as much a line of the field as any
other line; it is the labelling system which breaks down on this
line, and with another choice of axes and gauge-points, another
line would be thus apparently singular. It is only singular
relative to the labelling system; it is not singular in itself.

The fact that the labelling system is thus defective has im-
portant consequences later, but it makes it desirable that a
system free from this defect should be devised. This will be
done in the next chapter. It is convenient, however, to make
some use of this labelling system, even though it is defective;
and this is done in the following sections.

7.5. The Algebraic Specification of the Projectivity

Since the work to be done on the projectivity is concerned
only with the points on a single line, it is easier to use the single
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number-labels of 7.41, relative to gauge-points on the line,
rather than the double number-labels of 7.44.

The problem being attacked may be stated in general terms
thus: If there is a projectivity between a range on a line and
a range on another or the same line, and if, in this projectivity,
points whose labels art?:, ¥, 2, 1,..., correspond to points whose
labels are z’, ¥, 2/, ¢,..., what algebraic relation connects x
with z’, ¥y with 3’, and so on? In the language of analysis,
what function of z is z’?

Four simple theorems, three of which are restatements of
known results, are prefixed to the theorem which answers this
question.

7.51. THEOREM

If  and m are two distinct lines of the field, and if gauge-points

Ay, 44, A, are chosen on I, and By, B,, B, on m, then
Z(ADAIAwAz) ~ m(Bo Bl Bw Bz)
Jor every x.

This is an immediate consequence of the definition of iso-
morphism.
7.52. THEOREM

If l and m are the same or distinct lines of the field, there is a
projectivity in which

W4,4,4,4,4,..)~m(B,B,B,,B,,B,,..)

Case 1. If | and m coincide, and the gauge-points also coin-
cide, this theorem is a restatement of 7.221.

Case 2. If | and m do not coincide, it is a consequence of
Case 1 and the preceding theorem.

Case 3. 1If I and m coincide, but the gauge-points do not, it
is a consequence of Case 2 and the preceding theorem.

7.53. THEOREM

If 1 and m are the same or distinct lines of the field, there is a
projectivity in which

(4,4,4,4,4,..) ~m(B, B, B, B, B,...),

provided t # 0.

Case 1. If I and m coincide, and the gauge-points coincide,
this theorem is a restatement of 7.222.

Cases 2 and 3. As in the preceding theorem.
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7.54. THEOREM

If 1 and m are the same or distinct lines of the field, then there is

a projectivity in which
UA,A404,4,A,4,4,..) ~m(B, B, B, B, By, By, By,...),
provided ¢ # 0.

Case 1. If I and m coincide, and the gauge-points coincide,
this is the definition of the product of two points. The projec-
tivity is, in fact, the involution specifying the product.

Cases 2 and 3. As in the previous theorems.

We are now in a position to prove the theorem to which this
preliminary work has been leading.

7.55. THEOREM

If A, A,, A,, and A, are four distinct collinear points, all of
which are distinct from A, and if B, By, B,, and B, are four
other distinct collinear points, all of which are distinct from B,
then the necessary and sufficient condition that

YA, A,A,A)~ m(B, B, B, By)
18 that four numbers a, b, ¢, and d should exist such that
ad—bc # 0,
, __ax+b , _ ay+b
"=ty Yoy
2 = G_/Z_ib V= ‘Et__té
cz+d’ cl+b°

The sufficiency of the condition is proved first. Suppose then
that ad—bc £ 0, and that the four equations (1) are satisfied.

By 7.52, [(4,4,4,4,) ~ YA, Ag A, A;), where

and
(1)

d d d d
°‘=x+? B=y+2’ ’y=z+(—:, 8=t+z

By 7.53, 4,44, A5) ~ WA Ay A, Ag), Where

 o? _ Be?
E_m, {_m), ete.

By 7.54, l(AEA;A.”Ao) ~ l(AllsA'll{Al/’r] Allﬂ)'
By 7.62, l(AlchllellnAlw) ~ l(AAAp A,,A,,), where

1 a 1, a
A-—:—I—a—, }L—Z—i-'c', etc.
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Hence 4,4,4,4) ~UA44,4,4,).
_ a+c_ oactbe—ad _ax+b _ ,
But A= e e T eatd

and, similarly, p =y, v =2, 7 =t

Hence I(4, A4, A A/~ (A, A, A, A,), and so the condition
is sufficient.

It will be noticed that this proof is only valid when ¢ # 0;
when ¢ = 0, the proof is as follows.

UA, A, 4,4) ~ YA, Ag A, A;), where a=z+§, ete.,

UA,AgA,As) ~ V(A Ay A, Ay), Where e=%"‘,etc.,

that is to say, I(4,4,4,4,) ~U4,4,4,4,)).

We have assumed throughout the proof that the same base
and gauge-points are retained throughout; the transference to
other gauge-points on the same or a different base is effected
in the obvious manner.

The necessity of the condition follows at once from this by
reductio ad absurdum. For suppose that

(A4,4,4,4)~ A, A4,4,4,),
and that a, b, ¢, and d arc four numbers satisfying the equations
o = ax-+b , _ay+b , _ az+b

atd’ ¥ Tyta T et
Suppose also that "= gt_—l-f.
ct4-d

Then, by what has just been proved,
Z(Az Aﬂl Az At) ~ Z(Az'A;v' Az'At")x
that is to say, A, and 4,. coincide. Hence
y = @b
ct+d’
and it is clear that ad—bc # 0.
This theorem may be expressed more fully as follows.

7.56. THEOREM
If a projectivity between two ranges on the same or different
ranges i8 symbolized by
l(Aw Ap A= A"AZA‘...) ~ m(Bp' Bw Bzf Byl th B"...),
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then numbers a, b, ¢, and d exist such that ad—bc # 0, and

o = ax-+b , __ay+b o = az-+b
~ cx+d’ y= cy+d’ “ eztd’
, _ at+b ,_ @ _—d
Vt=gva> Y= ?P=4

Conversely, if any three of the last six equations are satisfied, then
U4,4,4,4,4,4,.)~m(B, B, B, B,B,B,..),
and the other three equations are also satisfied.
The details of the proof of this theorem are left to the reader.
The value of p’ is found by tracing the points corresponding to

A4, in the first range through the various projectivities of the
last theorem. p is found in a similar way.

7.57. The Equation of a Projectivity

The theorems just proved show that, in general, if z is the
label of any point of a range, and 2’ is the label of the point
corresponding to it in a projectivity, then

, _ ax+b
Y= wrd ()
or cxx' —ax-+dx'—b = 0. (2)

Corresponding to every such equation there is a projectivity,
and corresponding to every projectivity there is an equation of
this type. We therefore speak of it as the equation of the pro-
jectivity. It is plain that it may also be written in the form

__ —da'+b

T ed’—a

&)

The equations (1) and (3) show that z is a one-valued function
of 2/, and that 2’ is a one-valued function of x. It is interesting
to notice that the equation of the projectivity is the most
general equation between two variables, such that each is a
one-valued analytic function of the other.

7.58. Self-corresponding Points
If the two ranges between which there is a projectivity are

cobasal, and if the same gauge-points are chosen for both, the
an PA
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self-corresponding points of the projectivity are those points
whose labels satisfy the quadratic equation

cx?+(d—a)r—b = 0.
This is obtained by putting # = 2’ in (2). Exceptional cases
arise when the unlabgelled point is one (or both) of the self-
corresponding points of the projectivity. The conditions for
this are left as examples for the reader.

ExAMPLES

1. Determino the necessary and sufficient algebraic condition that a
projectivity shall be an involution.

2. Determine the neccessary and sufficient condition that 4, shall be
a self-corresponding point of a projectivity. (The following ‘proof’ is
insufficient: The necessary and sufficient condition that one root of the
quadratic equation cx?+(d—a)r—b = 0 should be ‘infinity’ is that
¢ = 0; hence this is tho required condition that 4, be a sclf-corrospond-
ing point.)

3. Determine the necessary and sufficient condition that the two self-
corresponding points of a projectivity shall coincide. Hence prove
algebraically that the self-corresponding points of an involution are
always distinct.

4. What is the equation of the projectivity f(4,4g4,) ~1(Ag 4, A4,)?
Dotermine tho self-corresponding points.

5. What is the equation of the involution

UA,A,A,Ap) ~UA, A A54,)1
Show that B+« = 0.

6. Find the harmonic conjugate of 4, relative to 4, and 4,,.

7. Prove algebraically that if 4, and A4; arc harmonic conjugates
relative to 4, and 4,, then 4, and 4, are harmonic conjugates relative
to 4, and 4;.

7.6. Loci

The general problem of which particular instances are studied
in this section may be stated thus: Given a locus in the field,
what relation exists between the non-homogeneous coordinates
(relative to some axes and gauge-points) z and y of any labelled
point of the locus? Conversely, given a relation between two
variables x and y, what is the locus of points whose coordinates
satisfy this relation?

The relation between the coordinates x and y is ugually in the
form of a single equation, f(z,y) = 0, but this is by no means

necessary.
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DeriNiTION. If there is an equation f(x,y) = 0, such that
(1) the coordinates (x,y) of every labelled poini of a certain
locus satisfy this equation, and
(ii) every point whose coordinates (x,y) satisfy this equation is
a point of the locus,
then the equation f(x,y) = 0, or any equivalent of it, i termed the
equation of the locus, and the point (x,y) 18 said to satisfy the
equation.
DEFINITION. If there are two equations, x = xz(l) and y = y(2),
such that
(i) the coordinates (x,y) of every labelled point of a certain
locus satisfy these equations, and
(ii) every point whose coordinates (x,y) satisfy these equations
18 a point of the locus,
then the equations are termed the parametric equations of the
locus, and the point (x,y) of the locus is said fo correspond to the
value t of the parameter.
In what follows, the only loci considered are the line and the
conic. A general theorem is prefixed.

7.61. THEOREM

If fx,y) = 0 and g(z,y) = 0 are the equations of two loci,
then those labelled points which are common to the two loci are
poinis whose coordinates are solutions of the simultaneous equa-
tions f(x,y) = 0, g(z,y) = 0, and vice versa.

This theorem should not require formal proof.

7.62. The Equation of the Line

THEOREM. The equation of any line of the field, other than the
unlabelled line, 13 of the form

lx+my+n = 0,

where not both of 1 and m are zero.

Conversely, any locus whose equation is of this form is a line.

(1) Consider any line on Y,, other than the unlabelled line,
and suppose it is also on the point (k,0). From the defini-
tion of the non-homogeneous mesh gauge it is plain that the
z-coordinate of every point on this line is %, and that every
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point whose z-coordinate is k is on this line. Hence the equation
of the line is 2—k = 0, and this is of the form specified.

(2) Similarly, any line on X, other than the unlabelled line
has an equation of the form specified.

Fia. 50.

(3) Let p be any line not on X, or Y, and consider the
perspectivities

Y,
p(PQRS..) = X, X, X, X,..),

p(PQRS...) XN"’ m¥,Y,7,7,.).
It follows at once that (i) the coordinates of P, @, R, 8,... are
(@1,91), (X2,Ys), (5,95), (4 9s)..., and (ii)
UX, X, X, Xpo) ~m(Y, Y, Y, Y, ..)
Moreover, in this projectivity, the point X, corresponds to the
point ¥, and so numbers a and b exist such that
z, = ay,+b, z, = ay,+b, ete,
and, in general, if (z,y) are the coordinates of any point on p,
z = ay-+b. .
Further, suppose that (£, ) is any point such tha;
¢ = an+b;
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then clearly X, and Y, are corresponding points in the above
projectivity, and so the point is on p. Hence the equation of

the line is w—ay—b = 0,

and this is of the form specified.

This proves the first part of the theorem, namely, that every
line other than the unlabelled line has an equation of the form
lz+my+n = 0; it does not show that every locus whose equa-
tion is of this form is a line.
 Consider then any locus whose equation is lx+my-+n = 0;
let (2;,%,) and (x,,¥,) be any two distinct points on this locus.
Let p be the line on these two points, so that the equation of
p is (say) l'z+m'y+n’ = 0. It follows that

la,+my,+n = 0,
lzy+my,+n =0,
Uy +m'y,+n' = 0,
Vaygt+m'y,+n' = 0.

From these equations it follows at once that

' m

l m n

’

and this implies that lz+my+n = 0 and I'z+m'y+n' = 0 are
equations of the same locus. Hence every equation of the form
la+my-+n = 0 is the equation of a line.

7.621. Particular Cases. The general equation of the line
found in the last section may be put into a more convenient
form in certain particular cases. These are given in the follow-
ing theorems.

TrHEOREM. The equation of the line on the points (a, 0) and
(0, b), where ab 0, is

z ¥ _
a+ b 1.
THEOREM. The equation of the line on the origin and the point
(@, b), where not both of a and b are zero; is

bx—ay = 0.
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TuroreM. If the points (xy, y,) and (z,, y,) are distinct, the

equation of the line on the two is
Y2~y (@—1)— (T — 2, )(y—y1) = 0.
All three theorems are proved by assuming that
fz+my+n =0

is the equation of the line in question and writing down the
condition that the points named shall be on it. Alternatively,
the third of the three may be proved in this way; the other two
are particular cases of the third.

7.622. Parametric Form. THEOREM. Theequationsx = Ir+-a,
y = mr-+-b are parametric equations of a line in the field (in
terms of the parameter r). Conversely, any line of the field has
parametric equations of this type.

The proof of this theorem should present no difficulty after
what has already been proved.

ExamrLES

1. Why is it impossible to give an equation for the unlabelled line ?

2. Show that the necessary and sufficient condition that the three
points (2,,%,), (%3, ¥;), and (23, y;) should be collinear is that
z oy 1
Ty Yy 1
3 Yy 1

3. Show that the equation of the line on the points (,,y,) and
(3 y5) is

= 0.

z y 1
z oy 1
Z Yy 1

4. Show that for all values of A the point (A, +{1— A}z, Ay, +{1—A}y,)
is collinear with the points (z,,%,) and (z,,y,). Conversely, show that
any point not on the unlabelled line, and collinear with (z,, %,) and (2, ¥s)
has coordinates (Az; +{1 —A}ry, Ay; +{1—A}ys).

5. Find the coordinates of the point common to the two lines whose
equations are lx+my+4n =0 and l'z+m’y+n’ = 0. Show that if
Im’—ml’ = 0, there is no point (z,y) common to these two lines unless
In’—nl’ = 0. Why is it that this fact does not contradict the initial
proposition that two distinct lines have a common point ?

6. Show that any line on the common point of the two lines whose
equations are lz+my+n = 0 and l'z4+m'y+n’ = 0 is

Az +my+n)+pl'z+m’y+n’) = 0,

= 0.
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7. Show that the necessary and sufficient condition for the con-
currence of the three lines whose equations are
let+-my+n =0, Vz+m'y+n' =0, and Vz4+m'y+n" =0

is that 1 m n
UV m’ n |=0.
UV m" n

8. Usc Example 4 to determine the coordinates of the diagonal points

of the simple four-point

(%05 Yo)s (%1, %1)s (%35 Ya2)s (T3, Y3)-
Detormine also the coordinates of the harmonic points.
7.63. The Equation of the Conic

THEOREM. The equation of any point-conic, singular or non-
singular, other than the singular point-conic consisting of two
coincident ranges on the unlabelled line, is of the form

ax?+2hay+by*+2gx+2fy+c = 0.
Conversely, any locus whose equation is of this form i3 a point-conic.

(i) Suppose that the conic is singular, and that it consists of
the ranges on the two lines whose equations are lx4my-+n = 0
and Vz+m'y+n' = 0. (These two lines may be identical.)
Then the equation of the conic is

(le+-my+n)(V'z+m'y+n') = 0,
and this is of the form specified.

(ii) Suppose that the conic is singular, and that it consists
of one range on the unlabelled line, and one on the line whose
equation is lz+my—+n = 0. Then its equation is lx+my+4-n = 0,
and this is of the form specified.
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(iii) Finally, suppose that ® is a non-singular point-conie.
Let P and @ be two distinct points on it which are not on the
unlabelled line or the x-axis. Let (¢, ) and (¢, ') respectively
be the coordinates of these points.

Consider the perspectirities

o4.) R yx,.), }

o4..) L ux,.).
From these it follows at once that
UX,...) ~ UX,...),

_ootB

p= yo + 85

Now if (z,y) are the coordinates of 4, since 4, P, and X are
collinear,

1)

and hence that
where ad—By # 0. (2)

z y 1
£ n 1|=0; thatis, p= p;:sy
p 0 1
Similarly, o= ’i"‘i"f;ﬂ .
Y—n

It follows from (2) that
w—8y _ dn's—Ey)+-Bly—n’)
y—n  y('z—Ey+8y—)’
or y(nx—&y)(n'z—E'y)+8(nx—Ey)y—n')—
—a(n'z—£Y)y—n)—Bly—n)y—n") = 0,
or yny'@®+@n—an’'—yén' —y& )yt (v6€' +86—of'—Bly*+
+4n'(a—8)z+ (867" —of'n+Bn+Bn"Yy—Bnn’ = 0, (3)
so that the coordinates of every point on the point-conic satisfy
an equation of the type specified.

On the other hand, if (x,y) be any point satisfying (3), it
follows at once, by reasoning in the reverse direction, that X,
and X, are corresponding points in the projectivity (1), and
hence that the point (z,y) is on the point-conic.

Hence the equation of every point-conic with the single excep-
tion mentioned is of the form specified.

The converse part of the theorem is more complicated than
the corresponding part of 7.62.
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Consider the equation ax®+-2hxy+by?+2gx+2fy+-c = 0.
(i) If the left-hand side of this equation factorizes, and its fac-
tors are lx+my-+n and 'z+m'y+n', then the equation is plainly
that of the locus consisting of the two lines lx+my+n = 0
and l'z+m'y-+n' = 0, and this is a point-conic.

(ii) If the left-hand side does not factorize, let (z,,,), (%3, ¥s),
(3, ¥s), (%4,9,), and (x5, 55) be any five distinet points on the
locus whose equation this is. Then

ax24-2hx, y,+byi+29x,4-2fy,+c =0 (v=1,2,3,4,5),

and these five equations determine uniquely the ratios of the
coefficients a, b, ¢, f, g, and A in terms of x;, y;, etc. (If the left-
hand side factorizes, there is not necessarily a unique solution.)

Now on these five points there is a point-conic; let its equa-
tion be a'z?+2h'zy+b'y2+29'c+2f'y+¢’ = 0. Hence

a'x2-2h'x, y,+b'yi+-2¢'x,+2f'y,+c =0 (v=1,2,8,4,5),
and these five equations determine uniquely the ratios of the
coefficients a’, &', ¢’, f', ¢’, and &’ in terms of z,, ¥, etc.

It is plain that as a consequence the two equations are equi-
valent, and hence that the equation

ax?4-2hwy4-by®-- 292+ 2fy+c = 0

is the equation of a point-conic.

7.631. Singular Point-conics. In this section the criterion
whereby the equation of a singular point-conic may be dis-
tinguished from that of a non-singular point-conic is given.

THEOREM. The necessary and sufficient condition that
ax?+2hxy+by?+-2gx+2fy+c = 0

should be the equation of a singular point-conic is that
a kb g
A b f
g f ¢

The necessity of the condition is proved first. Suppose then
that the conic is singular, and that it consists of the two lines
whose equations are lx+my+n = 0 and l’x+m’y+n’ =0,

queL A8

= 0.
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Then the equation is equivalent to
(z+my+n)(l'z+m'y+n') = 0,
that is to say, a = kll', b = kmm’, ¢ = knn', f = }k(mn'+m'n),
g = }k(nl'4+n'l), and b = //Ic(lm’-}-l’m), and so the determinant
in question is

w, 3(Im'+U'm),  Hnl'4+n'l)
k?| 3(Im'+1'm), mm', {(mn'+m'n) |.
$(ml'4+n'l), Emn'4+m'n), nn'

It is easily verified that this determinant in fact vanishes.

Hence the condition is necessary.
If, on the other hand, the determinant vanishes, then either

(i) there are unique numbers £ and n such that
aé+hy+g = h+by+f = gé+fnte =0,

or (ii) a/h = h/b = g|f.

In the first case, since

ag®+2hén+bn?+ 296+ 2fn+c

= {(aé+hn+g)+n(hé+by+f)+9€+f+-c,

the point (£,7) is on the conic. And if (¢',7’) is any other
point on the conic, it is easily verified that every point collinear
with these two is also on the conic; hence the conic is singular.

In the second case, ab = k% and af = gh, and so, if a # 0,

a(ax?-2hxy+by*+ 2gz+2fy--c)

= a?x?+ 2ahxy—+h%*?+ 2agx+ 2ghy+-ac
= (ax+-hy)*+2g(ax+hy)+ac.

This expression can plainly be factorized into two linear factors;
hence the equation ax®-+ 2hxry+by?+2gx+2fy+c = 0 is that
of a locus consisting of two ranges on distinet or coincident
lines; the conic is therefore singular.

But if @ = 0, then b = g = 0, and the equation of the conic
reduces to by?+42fy-c¢ = 0; the left-hand side of this equation
being factorizable, it is the equation of a singular conic.

7.632. Tangents, Pole and Polar. THEOREM. If
ax?+2hxy+-by*+ 292+ 2fy+c = 0

be the equation of a non-singular conic, then
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(i) of (1, 9,) be the coordinates of any point on the conic, the
equation of the tangent on (xy,¥,) i8
axzy +h(xys +yz,) +dyy +9(@+,)+fy+y1)+c = 0,
(ii) f (21, y,) be the coordinates of any point not on the conic,
the equation of the pair of tangents to the conic which are on
(xy, 91) 18
(ax®+2hxy+by?-+- 29+ 2fy 4-c) X
X (az3+ 2h@y yi+by3+ 2921+ 2y, +0)—
— (aawy+Wzyy +yz, )+ byys +glz+a ) +Hfly+il+o) = o,
(iii) the equation of the polar of any point (x,,y,) relative to
the conic s
axz,+h(xy, +yz,) +byy+9(+2) +fy+y)+e = 0.

The three theorems are taken together because the first two
make use of the same principle, and the third is an immediate
deduction from them.

Consider any line p which is on the point (z,,y,). (It is not
at this stage supposed that this point is on or not on the conic.)
Let (x,y) be the coordinates of any point on p; then the co-
ordinates of any point collinear with these two are

(&xi% %yir#_yl).
Ap M )
and if this point is on the conic,

AN+ py )+ 2h(Ax+ pary ) Ay -+ 1y, ) +b Ay + py,)*+
+29(Az+pay )A+p)+ 2f Oy +py,) A+ p) oA+ p)? = 0,
or A ax?+ 2hay+by?+ 292+ 2fy-+c]+
+ 20 ey +h(zys +yan)+byy: +o@—+x,) +fy+y1)+e]+
+pHaal+ 2k, 1 +byi+ 29+ 2y He] = 0. (1)
This is a quadratic equation for determining the ratio of A
to u, and so for determining those points on p which are on the
conic. We make use of it in two different ways in what follows.
(i) Suppose first that the point (x,,y,) is on the conic, so
that one of the values of A/u is zero. If, in addition, the line p is
a tangent, the other value of A/u is also zero; for if it were not,
there would be a point on p, distinct from (z,,¥,), on the conic.
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The condition that both the values of A/u shall be zero'is that
axi+2ha, y,+byi-292, 42y, +c = 0,
and  azz,+h(zy,+y2,)+byy, +9(@+2,)+fy+y,)+ec = 0.
The first of these equ;)éns merely shows that (z;,,) is on
the conic, but the second is a relation between the coordinates
(=, %) of any point on p, the tangent. It is the equation of a line,

and so it is the equation of the tangent on (z;,,).

This proves the first part of the theorem.

(ii) Suppose next that (z,y,) is not on the conie, then if p is
either of the tangents to the conic which are on (y,¥,), both
values of the ratio A/u are equal, and so

(az®-+2hay+by?+ 292+ 2fy+c) X
X (axi+ 2ha, y, +byi+- 292, + 2y, +o)—
— (0w, + By, +y=, ]+ byy, +glx+2, ]+ fly+-y,]+¢)% = 0.
This last is a relation between the coordinates (z,y) of any

point on either of the tangents; it is the equation of a point-
conie, and so it is the equation of the pair of tangents.

(iii) If F(z,y) = 0 and G(z,y) = 0 be the equations of any
two loci, it is plain that the locus whose equation is

AF(x, y)+FG(x’y) =0

is on all the points common to the two loci. We use this fact to
determine the equation of the polar of any point (x,y) relative
to the conic. For if P be any point, and @ and R be the points
of contact of the two tangents to the conic on P, then QR is
the polar of P.

The equation

Aax?+-2hxy+-by* 292+ 2fy+-c)+
+ (aa?+2hay +by?+ 292+ 2fy+c) X
X (ax3+2ha, y;+byi+ 292, +2fy, +c)—
— (022 +h[oy +y 1 +byy gzt ] +Hfly+y]+0)? = 0
is that of a locus on the points common to the conic and to the

two tangents to the conic which are on (2;,%;). It is plainly the
equation of a conic; moreover, if

—A = axi+2hx, y,+byi+ 2921+ 2y, +c,
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it reduces to

(azzy+h[zy; +y2; ]+-byys +glo+2: ]+ ly+y]+e)* = 0.
This is the equation of a pair of coincident lines, each of which
is therefore the polar of (z,,y,). Hence

axz,+h(xy, +y2,)+byy, +9(+2) +fY+y)+ec = 0

is the equation of the polar of (z,,,) when that point is not on
the conic. The first part of the theorem shows that it is also
the equation of the polar of (z,,y,) when that point is on the
conic. Hence the theorem is proved.

7.7. The Non-homogeneous Mesh Gauge and Elementary

Geometry

By means of the non-homogeneous mesh gauge, a label has
been given to every point of the field save the points of the
unlabelled line. This system of labels has enabled us to apply
Algebra to Geometry, but even in the limited amount which
has been done in this chapter, the unlabelled line has shown
itself to be a source of trouble. Whenever it or any point on
it was mentioned special treatment was required. For this
reason a labelling system without this defect will be elaborated
in the next chapter.

But the work done with the non-homogeneous mesh gauge
serves to give us a first hint about elementary Geometry. The
reader cannot have failed to notice the extreme similarity
between the Algebraic Projective Geometry, which uses the
non-homogeneous mesh gauge, and the ordinary algebraic treat-
ment of elementary Geometry known as Analytical Geometry.
There is, 80 to speak, isomorphism between the two. And since
the non-homogeneous mesh gauge leaves one line and all the
points on it out of consideration, this suggests that elementary
Geometry may be all along doing the same thing. It is true
that this line is sometimes ‘added’ to the field of elementary
Geometry under the name of the ‘line at infinity’, but it is
nevertheless not amenable to treatment in the same way as
other lines, since none of its points are at a finite distance from
the rest of the field. The mesh gauge of elementary Analytical
Geometry fails to label the points on the ‘line at infinity’, simply
because that mesh gauge is defined in terms of length. Hence
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the ‘line at infinity’ always remains exceptional in elementary
Geometry. Hence too there are such anomalies as parallel lines,
circular points at infinity, and other puzzling things.

It is not possible to do moye here than adumbrate the explana-
tion of the apparently e/é-;tional things in elementary Geo-
metry; in a later chapter/the relations between it and Projective
Geometry are more fully discussed.

7.8 The Non-homogeneous Mesh Gauge and Cartesian Co-
ordinates

The similarity between the non-homogeneous mesh gauge and what
are called in Analytical Geometry Cartesian coordinutes makes it neces-
sary to emphasize the radical differences between the two.

In Cartesian coordinates the points on the z-axis and the points on
the y-axis are given number-labels by a moethod which involves the
notion of distance ; the two axes are chosen at right angles to each other,
and this choice involves the notion of angle. Further, if it be allowed
that in elementary Analytical Geometry there is an unlabelled line, this
line is fixed definitely and cannot be chosen at will.

In the non-homogeneous mesh gauge the points on the axes are given
number-labels by a process which makes no appeal to the concepts of
distance or angle, and the unlabelled line may be chosen to be any line
of the field whatever.

The similarity between the two in the algebraic processes involved,
and even to some extent in the terminology in use, is a similarity only
in form ; the thought underlying this external form is different.

ExaMpLES

1. Show that with the recently added initial proposition of extension
two non-singular conics always have four distinet or coincident points
in common,

2. Write down the equation of the pair of tangents on the origin to
the conic whose equation is ax?+2hzy +by®-+ 292+ 2fy+c = 0.

3. If ax®+ 2hxy+by®+ 292+ 2fy-+c = 0 is the equation of a pair of
distinet lines, determine the coordinates of their common point.

4. Deotermine a necessary and sufficient condition that the line
lx-+my+n = 0 shall be a tangent to the conic whose equation is
a3yt = k2

5. Determine a necessary and sufficient condition that the two points
(=,,%,) and (x5, y;) shall be conjugate points relative to the conic whose
equation is ax®+ 2hay+-by?+ 2gx+2fy+c = 0.

8. If ax®+2hzy+byd+2gxz+2fy+c = 0 is the equation of a non-
singular conic, determine a necessary and sufficient condition that the
z-axis shall be a tangent to it, and that X, shall be its point of contact.

7. Show that the unlabelled line is the polar of the origin relative to
the conic whose equation is x#-+y® = k5.



CHAPTER VIII
THE HOMOGENEOUS MESH GAUGE

8.1. Homogeneous Coordinates on a Line

IN developing the non-homogeneous mesh gauge in the last
chapter we first gave number-labels to the points of a line,
and later extended the labelling system to other points of the
field. The homogeneous mesh gauge is developed in the same
way, labels being first attached to the points of a line only.

The homogeneous coordinates of a point on a line are defined
in the following way:

If 4y, 4,, and 4, are gauge-points on the line, then (i) to any
point A4 of the open set (z being its number-label in the sense
of the last chapter) is attached a double label (x,,x,), where
y/xy = x; (ii) to the point 4, is attached the label (r,0),
where r is any number whatever.

It is clear that the double number-label attached to any
point is not unique, and that if (a,, a,) is a suitable label for a
given point, then (ka,, ka,) is equally suitable, provided % + 0.
This ambiguity causes no ambiguity in the work done with the
homogeneous coordinates.

It may be observed that (i) every point of the line, 4, in-
cluded, has been labelled, and (ii) to every possible number-
pair (a,,a,), with the single exception of the pair (0, 0), there
corresponds a point on the line.

Now though by this means A4, has been included in the
labelling system, it is not therefore obvious that it is not still
an apparently exceptional point. The first of the following
theorems, which deal with the projectivity in terms of homo-
geneous coordinates, shows that in this labelling system 4, is
on exactly the same footing as all the other points.

8.2, The Projectivity on a Line
8.21. The Equation of a Projectivity
THEOREM. The general equation of a projectivity between two

ranges 19 axy ] +-b2) 23+ cxy 21 +dwy 25 = 0,
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where (x,x,) are the homogeneous coordinates of any point of one
range, and (xq,x,) are the homogeneous coordinates of the corre-
sponding point of the other, and bc—ad # 0.

The enunciation includes, in reality, two theorems: first, that
if there is a projectivit;/gztween two ranges, the homogeneous
coordinates of every pair of corresponding points are related by
the equation axz,x;-+bz, x;+cx,z;+dz, 25 = 0, and, secondly,
that if two ranges of points are thus connected in pairs, the
correspondence is a projectivity.

First then, suppose that there is a projectivity between the
two ranges. Then, by 7.56 and the definition of homogeneous
coordinates, if (z,,%,) and (z;,%;) are a pair of corresponding
points, both of which belong to the open set, numbers a, b, c,
and d exist, such that

o4 k2
xz z5

+b“l+c”‘1+d~. 0,

and bc—ad # 0.
Since neither of z,, «, is equal to zero, it follows that

Az, &1+ by o+ cxy 21+ dxy 7y = 0.

The equation is therefore true for all such pairs.

It remains to show that the equation is still satisfied when
A, is one or both of a pair of corresponding points.

By 7.56, if A, is the point of the first range corresponding

to 4, of the second, »p = —c/a, and so the homogeneous
coordinates of 4, are (—c,a). Clearly the equation is satisfied
when 2, = —¢, #, = a, and z; = 0.

Similarly 4, in the first range corresponds to 4, in the
second, where the homogeneous coordinates of 4, are (—b, a),
and the equation is satisfied in this case also.

Finally, if 4, in the first range corresponds to 4, in the
second, @ = 0, and so the equation of the projectivity is
b, x3+cx, 2, +dw, z; = 0, and this equation is plainly satisfied
when z, = z; = 0.

The first part of the theorem is therefore proved. The second
part is proved by reductio ad absurdum; the details are left to
the reader. The theorem shows that there is no need to pay
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special attention to the point A, when dealing with a pro-
jectivity in homogeneous coordinates.

8.22. Second Form of the Equation of a Projectivity
TurorEM. The algebraic relation between the homogeneous
coordinates of a pair of corresponding points in a projectivity may
be expressed by equations of the form
kxll. = w1+ﬂx2’
kxy = yx,+-8x,,
where k # 0 and By—ad £ 0.
This theorem is a very simple consequence of the last.

8.23. Self-corresponding Points

THEOREM. If ax,xy+bw, x5+, +dx, 2z, = 0 be the equation
of a projectivity between two cobasal ranges, each referred to the
same gauge-points, then the self-corresponding poinis of the pro-
Jectivity are

(i) (—b—c+y/(b+c)*—4ad, 2a) and
(—b—c—4/(bFc)*—4dad, 2a)
if neither a nor d is zero,

(ii) (—d,b+c)and (1,0) ifa = Oand d +# 0,

(iii) (b+c, —a) and (0,1) if @ 5= 0 and d = 0,

(iv) (0,1) and (1,0) if @ = d = 0.

If (z,,,) is a self-corresponding point of the projectivity,

ax, &, +bxy Xp+cxy Ty +-dry 2, = 0,

or ax}+(b+c)x, 2, +dag = 0.

This last is a quadratic equation for determining the ratios
of z, to x,, and the results follow at once from the theory of the
quadratic equation.

8.24. Condition for an Involution

TuEoREM. The necessary and sufficient condition that the
projectivity between two cobasal ranges, referred to the same
gauge-points whose equation 18 ax, x;-+bx, x2+cx2 & +dzyzg = 0,
8shall be an involution is that b = c.

First suppose that the projectivity is an involution. Then its
4101 Bb
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equation must remain unaltered by the interchange of (x,,z,)
and (z,z;). Hence b = c.

Next suppose that b = ¢, then since the equation remains
unaltered by the interchange of (z,,z,) and (z;, z,) the projecti-
vity must be an involut?zrh.

ExAMPLES
1. Show that («,1) and (1,a) are mates in the involution in which
(1,1) and (—1, 1) are self-corresponding points.
2. Determine a necessary and sufficiont condition that the projectivity
whose equation is ax, x]+bx; 2} 4-cx, x4 dey x; = 0shall have coincident
self-corrosponding points.

8.3. The Cross-ratio

Suppose that P, @, R, and § are four distinct collinear points
whose homogeneous coordinates relative to some gauge-points
are respectively (z,,¥,), (%, ¥s), (%5,¥s), and (24, ,). Similarly,
suppose that P, @', R, and 8’ are four other distinct collinear
points with coordinates (zy,%;), (%3, ¥s), (Zs,%s3), and (z4,¥,).

The necessary and sufficient condition that

(PQRS) ~ (P'Q'R'S)
is that four numbers @, b, ¢, and d should exist, such that
azx,z,+bx,y,+cy,x,+dy,y, = 0 (v = 1,2,3,4) and bc—ad # 0.
An equivalent statement of this necessary and sufficient con-
dition is that
T Y1 Y% 1Y
Ty TyYs Yoz Yol
Z3%; sYs Ys¥s YsYs
Ty%a TeYs Ya%s YaYs
this being a simple deduction from the first condition.

Neither of these two statements of the necessary and sufficient
condition for projectivity is, in practice, very convenient to use,
but from the second it is possible to deduce, by mere Algebra,
a very simple and convenient condition. As, however, this
deduction is not a very interesting piece of work, it is deduced
from geometrical considerations in the following theorem.

THEOREM. The necessary and sufficient condition that the four
distinct points whose homogeneous coordinates are respectively
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(%1, Y1)s (€2, Y2)s (%3,Y3), and (x4, y,) should be projective with four
other points whose coordinates are respectively (21,y1), (%3,¥s),
(%3, y3), and (x4, ya) 18 that
(#1Y5—23Y1) (@2 Ya—%a¥) _ (@195~ 3 91)(%2Ya—2aYn)
(1 Ya—2 Y1) @ Ys—T3Ys) (X1 Ys— 2 Y1) (X2 Y3 —23Y3)
Let the first four points be P, @, R, and 8§ respectively, and
let T be a point such that
(PQRS) ~ (A4,4,4, 7).
Then if (z,y) be the coordinates of 7', it follows that
0 =z 0 w
z, O Y O

=0,
T3 X3 Y3 Ys
Txy YTy TYy YYa
or
2xy|%y O y1|+ay,| 0 2y y1|—y2g| 0 O 3| —yy,|0 z, O
0y, 0 z, 0 0 Ty Yy O z, 0 y,|=0,
T3 Ys Ys T3 X3 Y T3 Y3 Y3 T3 T3 Ys
or
(%4 Yo—22 Yo) (X1 Ys— X3 Y1) — Y(Ta Y1— %1 Ya) (@2 Ys—23Y2) = O.
Hence Y _ (@1Ys— 239X Ys— %4 Ys)

T (XY Y1) (@ Ys— 3 Ys)
If now the second four points be P’, @', R’, and 8’ respec-
tively, and if (PQRS) ~ (P'Q'R'S’), it follows that
(PQRS) ~ (404,4,7),
and hence, by precisely similar reasoning, that
Y _ @193—2391)(%2 91— %4 95)

T (@ys—9) @3 Ys—3ys)
Hence

(1 Ys—23 Y1) (X2 Ya— %4 Ys) — (%1 Ys—23 Y1) (@3 Ya—%4Y2)
(@1 Y4209 (@2 Ys—23Y0)  (@1Ya—24Y1)(@2Ys—2393)
and so the condition is necessary.
Suppose, on the other hand, that the condition is fulfilled.
Then if (PQRS) ~ (4,4, 4, T) the coordinates of the point 7'

are

({1 Y= Y1 X2 Ys—23 Yo}, {21 Ys— 23 Y1 HEa Ya—% Yo})-
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And if (P'Q'R'S’') ~ (4,4,4,U), the coordinates of U are
({z1yi—2yiHos ys—2s Yz} {21 s —2s y1}{me ya—2aya})-
But the initial supposition shows that 7' and U are the same
point, and so (PQRS) ~ (P'Q'R'S").
Hence the condition is gufficient, and the theorem is proved.
The expression
(_%?/3"“’31/1)(‘”2?!4"%?/;)
(#1Ya— 24 41)(€2 Y3— T3 Y5)
occurring in this theorem is of the utmost importance in what
follows, and it is therefore essential to have a name for it; it is
called the cross-ratio of the four points in question. The follow-
ing is a formal definition.

DerFiniTioN. If P, @, R, and S are four distinct collinear
points, and if their homogeneous coordinates relative to some
gauge-poinis are respectively (1,y1), (%2, Ya), (¥3,¥s), and (x4, Ya),
then the function

(%1 Y3—23 Y1) (@2 Y4 —Z1Ys)

(@1 Y4—24 Y1) (X2 Y3—Z3Ys)
18 termed the cross-ratio of the four points, in that order.

The symbols R(PQRS) or R{(z1, 1), (%3, Y2); (€3 ¥s), (%4 ¥a)}
are used to denote the cross-ratio of the four points. If the
non-homogeneous coordinates of the four points are z,, z,, 23,
and z, respectively, the cross-ratio is symbolized by

RZ(Zl, 29 %3, 24)-

It is easily verified, by direct substitution of the corresponding*
homogeneous coordinates, that

(21—23)(2,—2,)

(220 2, 2y) = (2N

Bles 72074 (71—24)(2:—23)
(The fact that all four points have non-homogeneous coordi-
nates implies that none of them coincides with 4,.)

8.31. Some Practical Notes.
(1) Structure of the Cross-ratio.
(21—23)(2:—24) .
(21—24)(25—723)
It is important to be able to write this fraction rapidly and

Rl(2y,22,23,2) =
-
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accurately, and so its structure should be carefully noticed.
The numerator is the product of the differences of alternates;
the denominator is the product of (i) the difference of extremes,
and (ii) the difference of means. A practical way of memorizing
this structure is by means of the following diagram, whose
significance is plain: <
Z, 2y 23 2,
0 7o,

Neither of these is of very much help when homogeneous
coordinates are being used, but in practice it is wiser (because
safer) to use non-homogeneous coordinates whenever possible.
The only difficulty that can arise with these is when 4, is one
of the four points whose cross-ratio is sought. A method of sur-
mounting this difficulty is given in the next paragraph.

(2) Limiting Forms. The reader should verify the following
four propositions:

(a) RZ(A QRS) = lim (zl za)(za—z4) z_ '__‘_z_d

00 (zl—z4)(zz_zs) 2 —‘zs

®)  R(PA4,RS) = lim B B)ET%) _ 4=,

o (zl“ZA)(z2—zs) 27—z,

(21— 23)(2e—2y)  29—2,,
I

— (2y—23)(25—2,) _ 21 —23
@ BPORL) = I a2 ~ =2
The verification is accomplished by showing that in each
case the homogeneous form of the cross-ratio is equal to the
limit given. This gives a method of using non-homogeneous
coordinates for the cross-ratio, even when one of the points
is 4,
For this reason it is permissible to write, for instance,

Rl(2y, 25,00, 2,), meaning thereby the fraction 2—%4, Tt is even

1—%
(21 —00)(23—24) for this cross-ratio, provided
(21—24)(23—0)
we do not attempt to manipulate the symbol co as if it were
a number; it is, however, better to avoid this last usage in

formal work.

permissible to write



180 PROJECTIVE GEOMETRY

(38) Consistency. Some writers adopt a different definition
of the cross-ratio. For example, Rl(z,,2,,%;,2,) is sometimes
defined as F1—%)(Ba—%),

(21—24)(23—25)

The definition adopted in this book is in agreement with
that of standard modemAv‘:iters on the subject, and it fits in
best with the developments made in the next chapter. But if
the reader consults other works on Projective Geometry, he
should make certain which definition the writers use.

ExaMPLES
1. Evaluate R(0, «,t,1), and RI(0, o,, —%).
2. If 1, p, and p® are the roots of the equation *—1 = 0, show that
t—
Rz(lvpy ’P’s t) = %;‘l%)'-
3. Show that if (PQBCDE...) ~(PQB’C’'D’E'"...), then
R(PQBB’) = R(PQCC’) = R(PQDD’) = R(PQEE’), ete.

4. Prove that the converse theorem is also true.
5. If the equation of the projectivity in Ex. 3 is

axx’+bxy’ +cyx’+dyy’ = 0,

show that RI(PQAA’)+R(QPAA’) = é’-:;i—bfad

8.32. Permutations

There are twenty-four ways in which the four letters PQRS
can be permuted amongst themselves, but though the value of
the cross-ratio of four points is not independent of their order,
there are not, in fact, twenty-four different values of the cross-
ratio. By the permutation theorem of 3.325

(PQRS) ~ (QPSE) ~ (SRQP) ~ (RSPQ),

and so the cross-ratios corresponding to these four permuta-
tions are equal. In this way the twenty-four arrangements of
the letters can be grouped into six sets of four, and there are
in fact six different cross-ratios. Given one of these six, it is
possible to deduce from the following theorems the other five.

8.321. THEOREM.
R(PQRS) = R(QPSR) = R(SRQP) = R(RSPQ).
This is a consequence of the permutation theorem (3.325)

and 8.3.
The theorem may be stated in words thus: If any pair of
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letters be inierchanged, and the remaining pair be also inter-
changed, the value of the cross-ratio 8 unaltered.

8.322. Turorem. If R(PQRS) = A, then
R(QPRS) = B(PQRS) = R(RSQP) = R(SRPQ) = 1.

There is no loss in generality if the points P, @, R, S are
taken as 0, 1, c0, and ¢ respectively. Then RI(PQRS) = (t—1)/t,
and R(QPRS) = t/((—1). This proves the first result; the rest
follow by the last theorem.

The theorem may be partially stated in words thus: If either
the first pair or the second pair be interchanged, the new cross-ratio
18 the reciprocal of the old.

8.323. TuroreM. If RI(PQRS) = A, then
R(SQRP) = R(EPSQ) = R(QSPR) = R(PRES) = 1-A.

The theorem may be proved in the same way as the last. It
may be partially stated in words thus: If either the outer pair or
the inner pair be interchanged, the sum of the old cross-ratio and
the mew cross-ratio s unity.

The six possible values of the cross-ratio may now be all
deduced by successive application of the last two theorems.
They are: A, 1/A, 1—1/, A/(A—1), 1/(1—]), and 1—A.

The proof that this is so is best shown by a schematic diagram,
as under. In this —C— denotes a permutation which changes
a cross-ratio A into (1—A); —R— denotes a permutation which
changes a cross-ratio into its reciprocal. (G for complement,
R for reciprocal.)

(01, %3, T3, xa)\ R/(A)\

R G S/ N
(3, Tgy Lyy ) (xn Tg, Tgy XTy) (I/A) @ ?A)

R

| i
(24, Ty, @y, T5) (1, T3y T, Ty) (I—— X) (ITA)

AN
% R o
(203, T4 X3y T3) \ __i_i)/
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8:33. Cross-ratios of Singular Tetrads
The cross-ratio of four collinear points has been defined only
when the four points are all distinct. It is natural to make an
attempt to generalize this definition so as to cover the cases
when the four points are pot all distinct, i.e. when they form a
singular tetrad. /m
The cross-ratio Rl(xy, %y, 5, 2,) is, by definition, the fraction
_—(x,-—xa)(xz—.n); the obvious generalization is to say that the
(@ —24) (3 —235)
cross-ratio of any four points, distinct or not, is the fraction
just written down. This is, however, impossible, since the
fraction is not always significant when two or more of the four
points coincide. Subject to a proviso to be made almost
immediately, the definition is given: If the tetrad (xy, %y, %3, 24)
18 singular, its cross-ratio s defined to be the fraction
(2y—23)(wy—,)
(@ —24)(@y—a5)”
provided this s significant.

The following cases should be noticed:

(i) If three or more of the points coincide, the fraction
assumes the indeterminate form 0/0.

(ii) If the first pair or the second pair coincide, and, a
fortiori, if the first pair coincide and the second pair
coincide, but separately, the value of the fraction is unity,

(iii) If the first and the third coincide, or the second and the
fourth coincide, and, a fortiori, if each pair coincide
separately, the value of the cross-ratio is zero.

(iv) In all other cases of coincidence the fraction assumes
the meaningless form 1/0.

The proviso mentioned above is noticed here; Theorem
8.3 is not true of singular tetrads, and must never be applied
to them. Thus, if P, @, R, and S are four distinct collinear
points, R(PPRS) = R(PQRR) = 1, but it is not true that
(PPRS) ~ (PQRR); similarly, R(PQPS) = R(PQRQ) = 0,
but it is not true that (PQPS) ~ (PQRQ). Caution must
therefore be exercised when the cross-ratios of singular tetrads
are in question. In what follows it will always be supposed




THE HOMOGENEOUS MESH GAUGE 193

that a cross-ratio is that of a non-singular tetrad, unless the
contrary is explicitly stated.
The following theorem is sometimes of value.

TarorEM. If RI(PQRS) is equal to zero or unity, the tetrad is
singular.

8.34. The Cross-ratio of a Harmonic Tetrad

THEOREM. The necessary and sufficient condition that the four
distinct collinear points P, @, R, and S should form a harmonic¢
tetrad (PQ, RS) is that RI(PQRS) = —1.

First suppose that R(PQRS) = —1. Then, by 8.322,

R(QPRS) = —1.
Hence by 8.3, (PQRS) ~ (QPRS), so that (PQ, RS) is a har-
monic tetrad. The condition is therefore sufficient.

Next suppose that (PQ, RS) is a harmonic tetrad, so that
(PQRS) ~ (QPRS). It follows that if RI(PQRS) = A, A = 1/A,
so that A = 4-1. But since the tetrad is not singular, A 3£ 1;
that is to say, A = —1, and so the condition is necessary.

8.35. The Multiplication Theorem

TrEOREM. If the five collinear points O, U, P, @, R are all
distinct, then RI(OUPQ). R(OUQR) = R(OUPR).

Choose gauge-points on the line so that none of the points
is the unlabelled point; there is no loss in generality if these are
80 chosen that O and U have the labels 0 and 1 respectively.
Let p, ¢, and r be the labels of the other points.

Then

- (=p)(1—g) (=9)(1—7)

ROUPQ)- BOVRR) = (—p)1=p) (=ni(1=g)
_ (=p)(—1)
(—r)(1—q)
= RI(OUPR).

This proves the theorem.

8.36. Theorems involving the Mesh Gauge
The theorems on cross-ratios have so far been confined to
the points on a single line; the two theorems which follow deal

with the cross-ratio of four collinear points in terms of their
4101 oe
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non-homogeneous coordinates relative to some non-homogene-
ous mesh gauge imposed on the field.

8.361. THEOREM. If the non-homogeneous coordinates of four
distinct collinear points P, Q, R, and S are, respectively, (x,,y,),
(%2, Y2), (%3, 93); and (24, ¥3), then

R(PQRS) = Rl(wy, %y, %3, %4) = RU(Yy1, Y2, Ys. Ya)s
provided these cross-ratios are significant.

The two cross-ratios cannot both be indeterminate, and one
of them will be indeterminate only if the four points are all on
a line whose equation is z = k or y = k.

The reader should have no difficulty in proving this theorem
if he bears in mind the definition of the non-homogeneous
coordinates of a point of the field.

8.362. TuroreM. If P, @, R, and S are four distinct points on
the line whose parametric specification 8 x = lr+a, y = mr+-b,
and if the values of the parameter r corresponding to these four
points are respectively ry, 1y, T3, and ry, then
R(PQRS) = Rl(ry,73,73,7,)-
1 and m cannot both be zero; suppose then that I 7 0. Then
by the previous theorem
R(PQRS) = Ri(lry+a,lr,+a,lrs+a,lr,+a),

= Rl(lry, lry, Irg, lr,) by 7.221,

= Rl(ry,75, 75,74 by 7.222.
This proves the theorem if I 5 0; if { = 0, the proof is entirely
gimilar, save that it starts from

Rl(mry+b, mry+b, mry+b, mr,+b).

ExaMPLES

1. Show that if the collinear points O, U, P, @, R are distinct, and
if R(OUPQ).R(OUQR).R(OURT) = 1, then T coincides with P.

2, Examine the conditions under which Theorem 8.35 is true when
one or more of the points coincide.

3. If R(ABCP) = ), and R(4ABCQ) = p, show that

R(BCPQ) = R(0,1,A,p).

4. If Rl(xy,%q,%5 ©) = RUYys Y2, Y5, ), show that the three points
whose non-homogeneous coordinates are (z;,y,), (s, ¥3), and (s, y;) are
collinear.
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8.4. The Homogeneous Mesh Gauge

In 8.1 the homogeneous coordinates of a point on a line,
relative to gauge-points chosen on the line, were defined; in
this section the labelling system is extended to all the points
of the field.

8.41. The Triangle of Reference
Choose any four-point XY ZI in the field, and let X, ¥,

and Z, be its diagonal points, X, being the point (g) Y, the

. (YT . (2]
point ( 7 X)’ and Z, the point (X )

Fia. b52.

Gauge-points are now chosen on the three lines YZ, ZX,
and XY as follows:
(i) on YZ, gauge-points X,, X;, and X, coinciding with
Z, X,, and Y respectively;
(ii) on ZX, gauge-points ¥, ¥;, and Y, coinciding with X,
Y, and Z respectively;
(iii) on XY, gauge-points Z,, Z,, and Z,, coinciding with
Y, Z,, and X respectively.
The triangle XYZ so gauged will be called the triangle of
reference; the point I will be called the gauging point.
Before making use of the triangle of reference to label the
points of the field it is necessary to prove a preliminary theorem
about it,
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8.411. TumoremM. If X', Y', and Z' be three poinis on the
sides of YZ, ZX, XY of a’triangle of reference, and distinct
from its points, the mecessary and sufficient condition that the
three lines XX', YY', ZZ' should be concurrent is that

R(X, Xw‘XIXI)'?(VOYw Y'Y,).R(%,2,2'Z,) = 1.

The necessity of the condition is proved first. Suppose then
that the lines XX', YY', ZZ' are all on the point P.

(i) Suppose first that P coincides with Z. Then each of the
tetrads mentioned in the enunciation is singular, and its cross-
ratio is unity; the theorem is therefore true.

(ii) Suppose next that P and I do not coincide, but that P
is on one of the lines XX, YY,, ZZ,. For the sake of definite-
ness take it to be on XX, ; then X’ and X, coincide.

wix
Fic. 53.

Hence (LY, Y'Y) X (XX,PI)Z (2,2,2'2,),
and so RXY, YY) = R(Z,Z,Z'Z,),
or RO,Y, Y'E,). (%0 2, 2 %;) = 1.

Hence, since RI(X, X, X'X,) =1,

R(X, X, X'X,). R(Y, Y, Y'Y,). R(Zo 2, Z'Zy) = 1.
(iii) Lastly, suppose that P is not on any of the lines XX,

YY,, ZZ,, so that none of the pairs X, and X', Y; and Y’, Z,
and Z’ coincide.
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Fia. 54.

. (YY' ” . (YZ
Let R be the point ( 7 Z,)’ and X" the point ( X ) Then

T, %Y X (22, R & (X,X,X"X)),
so that R(Y,Y,Y'T,) = R(X,X,X"X,). (1)

Also (2,2,2'%Z) Z v PR) X (X, X,X'X"),
and so
R(2,2,%'Z,) = R(X, X, X'X"),
= R(X, X, X'X,). R(X,X,X,;X"), by 835,
= R(X, X, X'X,). R(X,X,X"X,), by 8321,
= R(X, X, X'X,). R, LYT),  by()
Hence
R(X, X, X'X,). R Y, Y'Y,). R(Z Z, Z'Zy) = 1.
This proves that the condition is necessary. That it is also
sufficient follows at once by the reduciio ad absurdum argument.
It is perhaps worth noticing that the above theorem is the
equivalent in Projective Geometry of the metrical theorem
usually known as Ceva’s theorem. The companion theorem,
Menelaus’s theorem, has also a projective equivalent, and,
though it is not needed, it is enunciated here. The proof is
left as an exercise to the reader.

8.412. TmgorEM. If X', Y', and Z' are, respectively, on the
sides YZ, ZX, and XY of a gauged triangle of reference XY Z,
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and are distinct from X, Y, and Z, then the necessary and sufficient
condition that they should be collinear is that
R(X, X, X'X,). R, Y, Y'Y,).R(Z,Z,Z'Z,) = —1.

8.42. Labelling the Points of the Field

If (y,2) are the hompé::eous coordinates of the point X’ in
8.411, relative to the gauge-points X, X,, and X, then neither
¥ nor z is zero, and R(X, X, X'X,) = y/z. Similarly, if (z,z)
and (zx, ?) are the homogeneous coordinates of ¥’ and Z’ respec-
tively, relative to the gauge-points collinear with them, then
R%Y,Y'Y,) = z/z, and R(Z,Z,2'Z,) = «/t. The theorem
just proved states that the necessary and sufficient condition
that XX’, YY’, and ZZ’ should be concurrent is that

y.z.x 1,
z2.x.t
that is to say, { = y.

In other words, given three numbers z, y, and 2z, none of
which are zero, there is a unique point P, common to the three
concurrent lines XX’, YY’, and ZZ’, where X’ is the point
(y,2) on YZ,Y' the point (z,x) on ZX, Z' the point (z,y) on XY.
Conversely, given any point P, not on YZ, ZX, or XY, there
are three numbers z, y, and z, such that X’ is (y,2), Y’ is (2, %),
and Z’ is (x,y). These facts are used in the definition of the
homogeneous mesh gauge, which is now given.

DEriniTION. If XYZ is a gauged triangle of reference, the
homogeneous coordinates of any point of the field relative to this
triangle of reference are defined as follows:

(i) if P be any point on YZ, and if its homogeneous co-
ordinates relative to Xy, X, and X, be (y, z), its homogeneous
coordinates relative to the triangle of reference are (0,y,2);

(ii) if P be the point (2,x) on ZX, its homogeneous coordinates
relative to the triangle of reference are (z,0,z);

(iii) +f P be the point (z,y) on XY, its homogeneous coordinates
relative to the triangle of reference are (x,y,0);

(iv) of P be any point not on YZ, ZX, or XY, and if (y,2),
(2, ), (2,y) be the coordinates of the points X', Y', and Z'
respectively, then the homogeneous coordinates of P rela-
tive to the triangle of reference are (2,y,2).
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8.43. Observations on the Definition

(i) In the above definition the homogeneous coordinates of
the three points X, Y, and Z are defined twice over. For
example, the coordinates of the point X are defined in (ii) and
(iii). It is important to notice that both definitions give the
same coordinates for these points. X has coordinates (1,0,0);
Y, (0,1,0); Z, (0, 0,1).

(ii) In the homogeneous mesh gauge, a triple number-label
is given to every point of the field. It is clear that this label is
not unique, and that if (z,y,2) is a suitable label for a certain
point, the label (kx,ky,kz) is equally suitable, provided k is
different from zero.

(iii) If P and @ are two different points, their homogeneous
coordinates relative to any triangle of reference are plainly
different.

(iv) If (z,y,2) is any triple number-label other than the label
(0, 0, 0), there is a point of the field whose homogeneous coor-
dinates are (x,y,z). There is no point whose homogeneous
coordinates are (0,0, 0).

(v) If (x,9,2) and (z',¥’,2') are two different labels, and if
each is different from (0, 0,0), they are the labels of different
points of the field, unless z/z’ = y/y’ = z/7'.

(vi) It has already been noticed that the homogeneous coor-
dinates of the points X, Y, and Z are, respectively, (1,0,0),
(0,1,0), and (0,0,1). It is easily verified that the coordinates
of the points X,,Y], Z,, and I are, respectively, (0,1, 1), (1,0,1),
(1,1,0), and (1,1,1).

8.44. Homogeneous Equations

The utility of the non-homogeneous mesh gauge lay in the fact
that the condition to be fulfilled by the points of a locus could
be expressed as an equation between the coordinates of those
points, and the same is true of the homogeneous mesh gauge.
But the reader who is familiar with homogeneous coordinates
in Analytical Geometry will be aware that not every equation
connecting three variables z, y, and 2z is usefully significant
there; in fact, only those equations of the type known as homo-
geneous equations are of any value. The same is true of the



200 PROJECTIVE GEOMETRY

homogeneous mesh gauge in Projective Geometry. For the sake
of the reader who is not familiar with the use of homogeneous
coordinates, this point is explained in detail.

In the non-homogeneous mesh gauge any equation of the

form f(x,y) = 0, where f(x,y) is an algebraic function, is the
equation of some ]ocu%@d not every point of the field satisfies
it. But the corresponding proposition for the homogeneous
mesh gauge is not true. For consider any algebraic equation
Jflx,y,2) = 0, and suppose that the point P, (2o, ¥y, %), satisfies
it; it is not difficult to see that usually the point (kz, ky,, kz,)
will not satisfy it; that is to say, the point P both satisfies and
does not satisfy it. The equation 22+y-+2—3 = 0, for instance,
is satisfied by the point (1, 1,1) but not by the point (2,2, 2),
though these are the coordinates of the same point. Moreover,
it may be shown that if P is any point of the field other than
(0,1, —1) there is a specification of P which satisfies the equa-
tion, and there is also one which does not. Hence every point
of the field save one satisfies the equation and yet does not
satisfy it; the remaining point does not satisfy it. In other
words, the equation is valueless as the expression of a relation
between the coordinates of points on a locus. The only kind of
equation which can possibly be of any value is an equation such
that if (zy, y,, 2,) satisfies it, then (kx,, ky,, k2,) also satisfies it,
for all values of k other than zero. Such equations exist, and
are called homogeneous equations.
. DEFINITION. An algebraic function f(x,y,z) is said fo be
homogeneous if and only if for all values of z, y, and z, other than
simultaneous zeroes, the value of the fraction f(‘l;fx—’*_’;y’z ])?z) 8 a
constant depending only on the value of k.

An algebraic equation f(z,y,z) = 0 is said to be homogeneous
if and only if f(z,y, z) ts @ homogeneous function.

The following theorem is an immediate consequence of this
definition.

TreoREM. If f(2,y,2) = 0 is a homogeneous equation, and
if (g, Yo» 20) SAtisfies it, then (kxy, ky,, kz,) also satisfies it, for every
value of k other than zero.

In practice, the only homogeneous functions which need to
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be considered are polynomials, and a polynomial in the variables
z, y, and z is homogeneous if and only if every term of it is
of the same degree in z, y, and z. In the sequel we shall be
concerned only with polynomials of the first and second
degrees. These will occur, respectively, in (i) the linear equation
lz+my-+nz = 0, and (ii) the quadratic equation
ax?+-by?+-cz®+ 2fyz -+ 2gzx+ 2hxy = 0.
8.5. Loci in the Homogeneous Mesh Gauge
DErINITION. If there is an equation f(x,y, z) = 0, such that
(i) the homogeneous coordinates (kx,ky,kz) of every point of
a certain locus satisfy this equation, for all values of k other
than the value zero, and
(ii) every point whose homogeneous coordinates (kx,ky,kz)
satisfy this equation, for all values of k other than the value
zero, 18 a point of the locus,
then the equation f(z,y,2) = 0, or any equivalent of it, is termed
the equation of the locus, and the point (xz,y,z) 8 said to satisfy
the equation.

This definition should be compared with the corresponding
definition for the non-homogeneous mesh gauge (7.6). As has
been pointed out above, the equation of a locus is in reality an
algebraic statement of the condition of a locus, and a definition
of it might have been framed along these lines.

The equations of the line and the point-conic, which are now
given, can be deduced from the corresponding equations in the
non-homogeneous mesh gauge, but the process, though not
intrinsically difficult, is a little complicated; it seems easier
and more natural to deduce them anew from first principles.
8.6. The Equation of the Linet
8.61. THEOREM

The equation in homogeneous coordinates of any line of the
field is of the form lo+my+nz = 0,
where not all of I, m, and n are zero.

+ It will probably have been already realized that it is not strictly accurate
to speak of the ‘equation of a line’; the locus in question is the range of points
on the lino, and so the equation is the equation of the range of points. The
distinction is pointed out because it is needed later.

4101 pd
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(i) XY Z being the triangle of reference, let P be any point
other than these three; let (x,,¥,,%,) be the coordinates of P.
Then from the definition of homogeneous coordinates, any
point on the line X P, distinct from X must have coordinates
(%, Yo, 20)-

Hence the coordiryées (z,9,2) of any point on XP, other
than X, must satisfy the equation z,y—y,2 = 0; moreover, this
equation is satisfied by the coordinates of X, (1,0,0). Hence
the coordinates of every point on the line XP satisfy this
equation.

Further, any point which satisfies this equation must have
coordinates (%, ¥, 2,), and from the definition of homogeneous
coordinates, this is on XP.

Hence the equation of X P is zyy—y,2 = 0, and this is of
the form specified.

Similarly, the equation of any line on Y or Z is of the form
specified.

(ii) Consider now any line @, not on X, ¥, or Z. Let L, M,
and N be the three points common to @ and YZ, ZX, XY
respectively; let their coordinates be (0,7, —m), (—=,0,1),
(m, —p, 0) respectively.t

Let P, (z,y,2), be any point on a other than L, M, and N, and
let L', M’', N’ be, respectively, the points (0,y,2), (,0,2), and

1 It is a consequence of the projective equivalent of Menelaus’s theorem

(8.412) that p = I; this fact is not used in the proof, but appears as a subsidiary
result.
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(z,9,0), so that X, P, and L’ are collinear, ¥, P, and M’ are
collinear, Z, P, and N’ are collinear.

Then MNPy X (LzYL),

hence
R(LMNP) = R(LZYL') = R(LX, X, L)

= R((n, —m), (0,1), (1,0), (y,2))
..My
= (my+nz)’
Similarly, since  (LMNP) L (ZMXM"),
R(LMNP) = @Z@
and also, since (LuNP)Z (YXNN),
R(LMNP) = ¥,

It follows that
oy _ (atne) _ —my
(my—+nz) e px

From these two equations it can be at once deduced that
p =1, and that lz+my-+nz = 0, and since the points L, M,
and N also satisfy this last equation, every point on a satisfies
the homogeneous linear equation

lx+my~+nz = 0.

It remains to show that every point which satisfies this
equation is a point on @; this is done by the method of reductio
ad absurdum.

Suppose then that (z,, ¥, 2,) satisfies the equation, but is not
on a. Let @ be the point on @ which is collinear with this point
and X; then the coordinates of Q must be (¢, y,, 2,), where ¢ is
some number different from x,.

Now since Q is on a,

lt+myy+nzy = 0,
but, by hypothesis, lr,+my,+nz, = 0,
hence l(zy—t) = 0,
and since ! # 0, it follows that ¢ = x,. As this is contradictory
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to the supposition that ¢ # x,, that supposition must be absurd.
Hence (2, ¥y, 2,) 18 on a.

It follows that the equation of any line of the field is of the
form lz+my+nz = 0.

8.62. THEOREM 4

Any locus whose equation is a homogeneous linear equation
18 a line of the field.

This theorem is the converse of the last.

Consider the equation lz+my-+nz = 0. Let (xy,¥,,2,) and
(%1, 91, 24) be two distinet points on it, so that

lzg+myy+nz, = 0,
and lz,+my,+nz, = 0;
it follows that
1 _ m _ n
Yoz1—Y1%)  (20%1—2:%) (@Y1 —21 90)”

If now l'z4m'y+n'z = 0 is the equation of the line on
(%0, Yo, %) and (%,,%,,2,), it may be proved in precisely the
same way that

4 m’ n

Hor—t120)  (2®1—21%0)  (Zo¥1—%1 %)
from these two equations it follows that I/l' = m/m’ = n/n/, so
that the two equations lz+my-+nz = 0 and l'z+m'y+n'z = 0
are equivalent. Hence the former is the equation of a line of
the field.

The following theorems are important enough to merit formal
enunciation, but since they are simple consequences of previous
work they are left to the reader as examples.

8.63. THEOREM
The equation of the line on the two distinct points (x,, Yo, %) and
(%1, Y1,%1) 18
(Yo21—Y120)%+ (2021 —21 To)Y + (B Y1— %1 Yo)2 = O,
or z Yy =z
Zy Yo 2 |=0.

Y YN A
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8.64. THEOREM
The necessary and sufficient condition that the three distinct
POints (X1, Y1,21)s (%2, Yo, Z0), (X3, Y3, 25) should be collinear is that
T Y &
Ty Yo % =0

T3 Ys 23
8.65. THEOREM

If (%o, Yos 20) and (21,4, 2,) be two distinct points, then
(1) (Mo+pxy, XY+ pyy, A2og+p2,) are the coordinates of a point
collinear with them, for all values of A and p, save only the
single pair A = p = 0, and
(ii) the coordinates of any point collinear with these two may be
expressed in the form (Axy+pwy, Ayg~+py,, A2g+pzy).
8.66. THEOREM
If P, B, P, and P, be four distinct collinear points, having
respectively the coordinates (x,,9,,2,), (Za,Yss2a), (T3, Y3, 23), and
(%4, Y 24), then the cross-ratio R(P, P, P, P,) is equal to whichever
of the following cross-ratios are significant:
RZ{(yls 21), (y2s za): (ys, za): (y4’ zd)};
Ri{(21,21), (22, %2), (23, %3), (20, %a)}s
R{(1,91)s (@2, ¥2)s (X3, Ya)s (X4, ¥a)}-
It should be noticed that at least one of the above cross-
ratios must be significant.
8.67. THEOREM
If (2',y',2') and (2",y",2") be two distinct poinis, and if
P, B, P, and P, be four distinct points collinear with these, P,
having coordinates
@' +pn ", A Y +pny", A2 +pp2") (0= 1,2,3,4),
then RU(PRFKP) = R{Q}Ay, 1), Qg pa), (s, 13)s (Ags pra)}-

ExAMPLES

1. Determine the equation of the line on the points (1,0, —1), and
(—1,1,0)in the form lz+my+nz = 0, and show that the point (0, 1, —1)
is also on it.

2. Find the coordinates of the point common to the distinct lines
whose equations are l, z+m,y+n,z = 0 and L,z+myy+n,z = 0.
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3. Show that the necessary and sufficient condition that the three
distinet lines l,z+m,y+n,2 == 0 (v = 1,2,3) should be concurrent
is that
L m o
Iy my my
Iy mg my

4. For what values of £ are the three points (¢,n, —m), (—n,%1),
(m, —1,t) collinear? Show that if these three points are collinear and
t # 0, the point (!, m,n) is collinear with them.

5. Determine the coordinates of tho three diagonal points of the four-

point (g, Yos 2o)s (¥1:Y1s21)s (Fas Y2s 22)» (T30 Y3 25)-
6. Verify algebraically tho harmonic proposition (4.151) that there
is no non-singular four-point whose diagonal points are collinear.

8.7. The Dual Mesh Gauge

In the last chapter no attempt was made to define a mesh
gauge which was the dual of the non-homogeneous mesh gauge
there studied. This was not because it was impossible, but
because it would have fulfilled no useful purpose to do so. It is,
however, extremely useful to elaborate a system of coordinates
which is the dual of the homogeneous mesh gauge, for if this
is done, the algebraic method becomes a much more flexible
instrument for the study of Projective Geometry. For this
reason the dual system is now developed; it follows exactly
the same lines as the development of the homogeneous mesh
gauge in the earlier stages of this chapter.

= 0.

8.71. Labelling the Lines on a Point

Gauge-lines [, [;, and [, are chosen on any point P, and the
open set of lines on P is labelled, each with a single number-
label; this is the dual of the process of labelling the points of the
open set on a line, as in the last chapter.

Double number-labels are now given to all the lines on P in
exactly the same way as double number-labels were given to
the points of a line in 8.1. That is to say, (i) to a line whose
single number-label is z, the double number-label (z,,,) is
given, where z,/x, = z, and (ii) to the line [, the double number-
label (r, 0) is given, where r is any number different from zero.

It is plain that with this labelling of the pencil of lines on a
point, the duals of Theorems 8.21, 8.22, 8.23, and 8.24 are all
true, and, in addition, the following self-dual theorem.
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THEOREM. The general equation of a projectivity between a
range and a pencil i8 ax,l,+bx,l,+cxyl,+dzyly, = 0, where
(1, %,) 18 the double number-label of any point of the range, and
(21, 1,) 18 the double number-label of the corresponding line of the
pencil, and bc—ad # 0.

The cross-ratio of any four concurrent lines is now defined,
and the duals of Theorems 8.3, 8.321, 8.322, 8.323, 8.34, and
8.35 are true. The following self-dual theorem is also a con-
sequence of the definition.

TaroreM. If B, B, B, and B, be four distinct collinear
points, and 1y, 1y, 1y, and 1, four concurrent lines, the necessary
and sufficient condition that (P, P, Py Py) ~ (1,1,131,) is that

R(A R, F) = Rl 11).
8.72. Labelling the Lines of the Field

In order to label all the lines of the field a triangle of reference
is first defined.

Choose any non-singular four-line Imns in the field, and let

1, m,, and n, be its diagonal lines, /; being the line ("l:n), m, the

line ("“), and n, the line (m)

nl Im,

Fia. 56.

Calling the three points mn, nl, and Im, L, M, and N respec-
tively, gauge-lines are now chosen on these three points as
follows:

(i) on L, gauge-lines [,,1,, and [, coinciding with =, 7,, and
m respectively;
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(ii) on M, gauge-lines my, m;, and m,, coinciding with
1, m;, and n respectively;

(iii) on N, gauge-lines n,, »;, and n,, coinciding with m, n,,

and [ respectively.

The triangle LMN (l#fin) so gauged will be called the triangle
of reference for the dual gauge, and the line ¢ will be called the
gauging line.

The dual of Theorem 8.411 can now be proved, and from it
will follow, exactly as from 8.411, that any line of the field p,
not on L, M, or N, determines three numbers A, u, and v, whose

ratios are unique and which are such that (i) the line (Z;) has

the label (u,v) in the labelled pencil on L, (ii) the line (7:?) has
the label (v,A) in the labelled pencil on M, and (iii) the line
(’:f:) has the label (A, ) in the labelled pencil on N. This is

l
illustrated in the accompanying figure.

Fia. 57.

Homogeneous coordinates of any line of the field are now
defined, the definition being the dual of that given in 8.42.

ExAmMPLES

1. Prove the dual of Theorem 8.411 without appeal to the principle
of duality.

2. Prove the dual of Theorem 8.412 without appeal to the principle
of duality.
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8.73. Envelopes in the Dual Homogeneous Mesh Gauge
DrrinrrioN. If there is an equation F(A, p, v) = 0, such
that
(i) the homogeneous coordinates (kA ku,kv) of every line of a
certain envelope satisfy this equation, for all values of k
other than the value zero, and
(ii) every line whose homogeneous coordinates (kA, ku, kv) satisfy
this equation, for all values of k other than the value zero,
8 @ line of the envelope,
then the equation F (A, u,v) = O or any equivalent of it is termed the
equation of the envelope, and the line (A, u,v) i8 said to satisfy the
equation.

This definition is the dual of the definition of 8.5, and from
the principle of duality the following theorems are true:

8.731. TuaeoreM. The equation in dual homogeneous coordi-
nates of the pencil of lines on any point of the field is a linear
homogeneous equation.
8.732. TuEOREM. Any envelope, whose equation is a linear
homogeneous equation, 18 @ pencil of lines on some point of the
field.
8.733. TurorEM. The equation of the pencil on the common
point of two distinct lines (Ay, po, vo) and (A, piy, v;) 48
(ov1—p1 Vo)At (Vo Ay —v1 Ao )+ (Ao py—A; polv = O,

A p v

Ao po v |=0.

Ny
8.734. TrEOREM. The necessary and sufficient condition that
the three distinct lines (Ay, ptq,v1)s (Ags Bos Vo), (Ag, pig, vs) Should be
concurrent 18 that

or

A oo

Ay po vy [=0.

As K3 Vs

8.735. THEOREM. If (Ag, wo, vo) and (A;, py, v,) be two distinct
lines, then

(1) (PAo+9As, Pro+aps, PYo+qvy) are the coordinates of a line
an Be
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which is on their common point, for all values of p and q,
save only the single pair p = q = 0, and

(ii) the coordinates of any line which is on the common point of
these two may be expressed in the form

(PAg+9X1, Ppro+qps PVo+avy)-

8.736. TuroremM. If I, I, I3, and 1, be four distinct con-
current lines, having respectively the coordinates (A, py,vy),
(Ags g5 vo)s (Ag, g, v3), and (Ay, g, v4), then the cross-ratio Ri(l,1,151,)
18 equal to whichever of the following cross-ratios are significant:

Rz{(l‘vv:l), (125 vo)s (13sv3)s (145 "4)}§
R{(v1: A1), (2, A9); (va, Aa)s (Vs AL}
Rl{()‘b B1)s (Ags o)y (Ags pg), (g, i)}

8.737. TuxroreM. If (A, p, v) and (X', p', V') be two distinct
lines, and if 1,, 1y, U3, and 1, be four distinct lines on the common
point of these two, | having coordinates

(Du A0 X, Dy ptaup's Puv+4a,v') (n=1,2,8,4),

R 11l = R{(21, ¢4)s (92 22)s (03, 25)s (Par20)}-

The preceding theorems, 8.731-8.737, are the duals of
Theorems 8.61-8.67 respectively; the reader should examine
them carefully, and satisfy himself that they are true; it is a
useful exercise to prove the first two of them without appealing
to the principle of duality.

then

8.74. Simultaneous Dual Mesh Gauges

The simplicity and beauty of the algebraic method in Pro-
jective Geometry is the result, in large measure, of the simul-
taneous use of the two dual mesh gauges which have been
defined in this chapter. To achieve this, then, it is plainly
necessary to impose two mesh gauges simultaneously on the
field; in one of these, every point of the field is labelled, in
the other, every line. When this has been done, the relations
between the two must be found; that is to say, given the
coordinates of a point in the first mesh gauge, the equation of
the pencil on it in the second must be found, and vice versa,
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and given the equation of a line in the first mesh gauge, its
coordinates in the second must be found, and vice versa.

To avoid confusion in dealing with two mesh gauges simul-
taneously, the following additions to terminology and notation
are made.

(i) The mesh gauge wherein every point of the field is labelled
will be called the point mesh gauge, or the system of point
coordinates; the dual mesh gauge wherein every line of the field
is labelled will be called the line mesh gauge, or the system of line
coordinates; the term complete mesh gauge, or simply, mesh gauge,
will denote both of these two simultaneously.

(ii) A triple number-label which is the coordinates of a point
will, as heretofore, be enclosed in round brackets; a triple
number-label which is the coordinates of a line will in future be
enclosed in square brackets, thus: [A, p,v].

In imposing the two mesh gauges on the field it is obviously
possible to choose two arbitrary triangles (that is, triangles
not specially related) as the triangles of reference for the two
mesh gauges. If this is done, there is no gain in generality, and
there is a distinct loss in simplicity; we therefore choose the
same triangle of reference for both.

‘i ~
/ ) Y (ou) L z

Let XY ZI be any non-singular four-point; the triangle XY Z
is taken as the triangle of reference for the point mesh gauge
the point I as the gauging point. For the line mesh gauge the
non-gingular four-line /mn¢ is chosen, where I, m, and n are,
respectively, the lines YZ, ZX, and XY, and ¢ is the line whose
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equation is (in the point mesh gauge already set up) x4y-+2 = 0.
The triangle XYZ (lmn) is the triangle of reference for this
mesh gauge, the line ¢ the gauging line.

It will be noticed that the line ¢ is on three of the harmonic
points, (0,1, —1), (—1,0;1), and (1, —1,0), of the four-point
XY ZI, and that the pbint I is on three of the harmonic lines,
[0,1,—1],[—1,0,1], and [1, —1, 0], of the four-line lmns.

The following theorem gives the relations between the two
mesh gauges.

8.741. TuEOREM. In the complete mesh gauge sel up,
(i) the base of the range whose equation in the point mesh gauge
8 M+py-+vz = 0 has coordinates [A, u,v] in the line mesh
gauge, and vice versa, and, dually,
(ii) the base of the pencil whose equation in the line mesh gauge
18 Az+puy-+vz = 0 has coordinates (x,y,z) in the point
mesh gauge, and vice versa.

Consider the labelled pencil of lines on X, and the labelled
range of points on YZ. There is a perspectivity between these
two, and in this perspectivity,

(1) the line [0, 1,0] corresponds to the point (0,0, 1),

(2) the line [0, 0, 1] corresponds to the point (0, 1,0), and

(3) the line [0, 1, 1] corresponds to the point (0,1, —1).
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Hence if, in this perspectivity, the line [0, u,v] corresponds
to the point (0,y,2), and the equation of the perspectivity is

apy~+-buz+cvy+dvz = 0,
the conditions (1), (2), and (3) above entail that b =¢ = 0,
and a = d, so that the equation is py+vz = 0.

Hence the line [0, p, v] corresponds to the point (0,v, — ).

Similarly, in the perspectivity between the pencil on ¥ and
the pencil on ZX, the line [A,0,v] corresponds to the point
(—»,0,A); and in the perspectivity between the pencil on Z
and the range on XY, the line [A, u, 0] corresponds to the point
(F‘: _A: 0)

Take now any line whose equation in the point mesh gauge
is Az+py+vz = 0. This line is on the points (0,v, —pu),
(—w,0,2), and (u, —A, 0); hence, by what has just been proved,
the lines on X, Y, and Z respectively which determine its
coordinates in the line mesh gauge are [0,u,v], [A,0,v], and
[A, i, 0]. That is to say, its coordinates in the line mesh gauge
are [A, p,v].

This proves the first part of the theorem; the second part is
the,dual of this.

This theorem may be stated in another way thus:

8.742. TurorEM. In the complete mesh gauge the necessary
and sufficient condition that the point (x,y,z) should be on the
line [A, p,v] is that Ax+py-+vz = 0.

8.743. The Complete Mesh Gauge and the Algebraic Repre-
sentation. 1t should not be nocessary at this stago to point out that the
completo mesh gauge is something different from the Algebraic Repre-
sentation, though there are formal likenesses between the two. (See
the end of 2.31.) The fact that it is now possible to refer to points and
lines by triple number-labels does not mean, however, that we have
now only one possible representation of Projoctive Geometry, namely
the Algebraic Representation; but it does mean that now, because of
the initial proposition of extension added in the last chapter, we are
confined to those representations which are isomorphic with the
Algebraic Representation.

ExAMPLES

1. Prove part (ii) of Theorem 8.741 directly, and without appealing
to the principle of duality.
2. Determine the coordinates of the line on both of the points
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(21, ¥,2,) and (2, Y5, 2;). Determine also the coordinates of the point on
both of the lines [A,, 1, v,] and [Ag, g, v5].

3. P is the point (a,b,c); show that three of the harmonic points of
the four-point XYZP are all on the line [a~1,b-1,¢"!]. Show also that
three of the harmonic lines of the four-line, [1, 0, 0], [0, 1, 0], [0,0, 1], and
[a,b,c], are all on the poiat (a~1,b1,¢1). Does the second proposition
follow from the first by the principle of duality ?

4. AygA, A, A, is a non-singular four-point whose diagonal points
are D,, D,, and D, and whose harmonic points are H,, H{, H,, H;, Hy, H}.
A complete mesh gauge is set up as follows: (i) the triangle of reference
XYZ for the point mesh gauge is the triangle 4, 4, A, (in that order),
and the gauging point is A,; (ii) the triangle of reference LMN for tho
line mesh gauge is the triangle D; D, D; (in that order), and the gauging
line is the line on H,, H,, and H,. Show that in this mesh gauge the
necessary and sufficient condition that a point (z, y, 2) shall be on a lino
[A, p,v] is that

#A—p—v)+y(p—v—2A)+2v—A—p) = 0.
Determine also, in this mesh gauge, the coordinates of the linc on both
of the points (#,,¥;,2,) and (2, Yy, 2s).

8.8. The Equations of the Conic

The conic is a self-dual figure consisting of a point-conic and
the set of all tangents to it, this last forming a line-conic. The
same conic is therefore associated with two equations; one of
these is the equation of the point-conic, in the point mesh gauge,
the other is the equation of the line-conic, in the line mesh
gauge. The first will be called the point equation, the second
the line equation. The two are not alternative forms of the
same equation; one is the equation of a locus, i.e. a point-figure,
the other is the equation of an envelope, i.e. a line-figure.

8.81. The Point Equation
THEOREM. The point equation of any conic is of the form
ax?+by?+-c2?+-2fyz-2gza+-2hay = 0.

Let ® be any point-conic, P and @ any two distinct points
on it. Then there is a projectivity between the pencils on these
two points such that the common points of corresponding lines
are all on @.

Let [1),my,ny] and [y, my,n,] be any two distinct lines on
P; then any line on P has coordinates

[Ny + puly, Army - pmg, Ay +- g



THE HOMOGENEOUS MESH GAUGE 215

Take now two distinet lines [I3, mg, n,] and [I,, my,n,] on Q,
and choose their coordinates in such a way that in the pro-
jectivity between the two pencils the line

[N+ ply, Amg+pmy, Ang+pm,] on @
corresponds to the line

[AL + uly, dmy + pmg, Ay +-un,] on P.
It is plainly possible to make this choice.
Now the common point of these two is (z, ¥, 2), where
kr = X¥(my ng—mgny)+Ap(my ng—mg ny+my ng—mgny)+
+pu2mynyg—myn,), (1)
ky = X¥(nyly—ngly)+Ap(nyls—ngly+ny ly—ng b))+
+p¥(nyly—mnyly), (2)
kz = X2(ly my—1lymy)+Ma(ly mg— Iy mgt-1y my—1ymy) +
+p¥(lymy—lym,), (3)
and k # 0.
This point (z,y,2) is a point on @, whatever be the values of
A and p. Hence, if A and u be eliminated from-the three equa-
tions above, an equation will be obtained which is satisfied by
all the points on ®.
Rewriting the three equations in the form

kr = a3y M +ayp Apt-ay5 42,
ky = @y A+ Apt-ao5 2,
bz = a5 A*+-ag, Ap+ag p?,
and denoting by A,, the minor of a, in the determinantt
la|, we have
(Apr+Ayy+A52)( A2+ A y+Ags2)
= (412 +Apy+442)%
and this is a homogeneous quadratic equation, that is, it is of
the form specified.
It remains to prove that any point which satisfies the equa-
tion is a point of ®. Suppose then that (x,, y,,2,) satisfies the
equation.

1 This determinant is not, in general, zero.
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Write Ay %o+ An Yot Ag 2o = Ak,

Ay gt Age Yot Agaze = Muk’,
Ayt Az yot+Asszo = p?k';
this is permissible since (x,, ¥,,2,) satisfies the equation.

Then clearly the eczﬁ(;ions (1), (2), and (3) are satisfied for
some value of k by #,, y, and z,. That is to say, the point
(%9, Yo» 2o) is the common point of two corresponding lines of the
pencils on P and @; hence it is on ®.

Hence the equation of any point-conic is a homogeneous
quadratic equation.

8.82. The Line Equation
THEOREM. The line equation of any conic is of the form
Al?4- Bm?4- Cn24-2Fmn-+2Gnl+2HIm = 0.
This is the dual of the last theorem.

8.83. The Converse Theorems

TuarorEM. Any locus whose (point) equation is a homogeneous
quadratic equation 1s a point-conic.

THEOREM. Any envelope whose (line) equation is a homo-
geneous quadratic equation is a line-conic.

The first of these two theorems is proved in precisely the same

way as the second part of Theorem 7.63; the second is the dual
of the first.

8.84. Singular Conics
THEOREM. The necessary and sufficient condition that the point-
conic whose equation 18
ax?+by?+-cz®+2fyz+ 2gzx+2hay = 0

should be singular is that the determinant
a b g
h b f
g [ ¢

should vanish.
THEOREM. The necessary and sufficient condition that the line-
conic whose equation 8
Al Bm®+Cn2-++2Fmn-+2Gnl+2HIm = 0
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should be singular is that the determinant
A H @
H B F
G F C

should vanish.

The proof of the first of these theorems is very similar to
that of Theorem 7.631; the second is the dual of the first.

8.85. Tangents and Points of Contact
THEOREM. If ax®+by®+cz®+-2fyz—+2gzx—+2hxy = O be the
point equation of a non-singular conic, then
(1) axzg+byyy+czzg+f(yzet2yo) +9(20+220)+
Fh(zyotyroe) = 0
18 the equation of the tangent at (xy, y,, 2,) on the conic, and
(ii) (aa®+by?-+cz+2fyz+ 2gza+2hay) X
X (@ +byg+czd+2fys 2o+ 29270 X0+ 2hxo Yo)
= {awwo+-byyo-+czz0+f (Y20 +2y0) +9 (220 +220)+
+h(@yot+yxo)}
18 the equation of the pair of tangents to the conic which are on the
point (o, Yo, %)-
TaEOREM. If A2+ Bm?4-Cn24-2Fmn-+2Gnl+-2HIm = 0 be
the line equation of any non-singular conic, then
(i) Ally+ Bmmy+ Cnng+ F(mng+nmy)+ G(nly+ing)+
+H(lmg+mly) = 0
18 the equation of the point of contact of any line [Iy, mg, ng]
on the conic, and
(i) (424 Bm?+Cn?+2Fmn+2Gnl+2HIm) X
X (AlZ4- Bm3+-Cn3+2Fmyny+2Gnyl,+2HI m,)
= {4lly+ Bmmy+ Cnny+ F(mnyg+nm,)+-
+ G(nly+-lng) 4 H(Imy+-mly)}
18 the equation of the pair of points common to the line [ly, my, ny]
and the conic.
The proof of the first of these two theorems is very similar
to the proof of the first two parts of Theorem 7.632; the second

is the dual of the first.
4191 F f
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It should be noticed that the expression
azzy+byyot+czzg+f(yzo+2ye) +9(220+220) +hlxye+yxo)
may be written in either of the forms:
x(azg+hyo+920)+y(hae+byo+120) +2(g20+Fyo+c20),
@o(az+-hy+g2) ¥ Yolhz+by+f2)+20(gz+fy+c2).
The dual expression can, plainly, be written in similar ways.

8.86. Point Equation and Line Equation of the same

Conic

The preceding theorem enables us to solve the following
problem: Given the point equation of a non-singular conic,
what is its line equation, and vice versa? The answer is con-
tained in the following theorems.

TeEOREM. If ax?+-by?+c2242fyz+2g2x+2hxy = O be the
point equation of a non-singular conic, its line equation s

A2+ Bm?+ Cn2+4-2Fmn+2Gnl4-2HIm = 0,

where 4, B, C, F, G, and H are the minors of a, b, ¢, f, g, and h
respectively in the non-vanishing determinant
a b g)|
h b f
g9 f ¢

TrEOREM. If Al2+ Bm2+4-COn?+2Fmn-+2GQnl+2HIm = 0 be
the line equation of a non-singular conic, its point equation is
ax?+by+cz?+2fyz 292w+ 2hxy = 0, where a, b, ¢, f, g, and h,
are the minors of 4, B, C, F, G, and H respectively in the non-
vanishing determinant

A H @G
H B F
G F C

The two theorems are dual; only the first is proved, the
second then follows by the principle of duality.

Let (xq, 9o, 2,) be any point on the non-singular conic whose
point equation is aa?+by?+cz?+2fyz-+2gzx+-2hay = 0. Then
by the preceding theorem the tangent at (2, %y, 2,) to this conic
has the equation

(axg+hyo+g2e)x - (havg+byo+-f20)y + (920 +-fyo+c20)2 = 0;
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so that the coordinates of this tangent are

[(ao+-Ryo+g2,), (hag+byo+T2), (9%0+FYo-c20)].
Hence if [I,m, n] are the coordinates of any line on the conic,
a point (x,, ¥y, 2,) must exist such that

kl4-axy+hyy+92, = 0, (1)
km~-hag+by,+fze = 0, (2)
kn—+gzo+fyo+oz = 0. (3)

Moreover, since the point (w,, ¥, %) is on the line [7,m, n],
lzg+myy+nzy = 0. (4)

If %y, Yo, 20, and k be eliminated from the equations (1)-(4),
the equation ! 3

~Q ™R
S o ww
Ii
<

b
f
m

o 3 8

is left.
On expansion, this becomes
Al*+ Bm*+- Cn*+-2Fmn+2Gnl+-2HIm = 0.
This being the line equation of a conic, and being satisfied by
every line on the conic in question, must be the line equation
of that conic. This proves the theorem.

8.87. Pole and Polar

TaEOREM. The polar of the point (z,, Yo, %), relative to the
non-singular conic whose point equation is

ax?+-by?+cz2+2fyz+ 2gzx+ 2hay = 0,
18 the line whose equation 18
(azg+hyo+g20)2+ (hrg+bYo+f20)y+ (9% -+ Yo +C20)2 = O.

TuroreM. The pole of the line [ly, my, ny), relative to the non-~

singular conic whose line equation is
A2+ Bm?+ Cn2+-2Fmn+2Gnl+2HIm = 0,
18 the point whose equation i8
(Aly+Hmy+ Gng)l+(Hly+ Bmy+ Fno)m-+
+(Gly+ Fmy+Cng)n = 0.

The second of these theorems follows from the first by the

principle of duality. The first has already been proved in
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Theorem 8.85 when the point (xy, ¥, %) is on the conic; when
it is not on the conic, the proof given in part (iii) of Theorem
7.632 can be adapted to the homogeneous mesh gauge, or the
following independent proof may be used.

Suppose that P is the point (z,, ¥y, 2,), and that @, (z,y,2),
is any point on the polar of P. Then if U and V are the two
points on the conic collinear with P and @, (PQ,UV) is a
harmonic tetrad, that is to say, R(PQUV) = —1.

Now any point collinear with (%, 2,) and (z,y,2) has
coordinates (Az-uxg, Ay—+pye, A2+uz,) and if this point is on
the conic,

Az —+ )2+ b(Ay + py o)+ e(Az+ p20) >+ 2f(AY + pyo) (A2 + pzg) +
+29(Az+pzo) Ae+- pacg) + 2h(Az+ o)Ay + pgo) = 0,
or

A%(ax®+-by®+-c2®+ 2fyz+ 2920+ 2hay)+-
+20u{z(azo+ hyo-+920) +y (ho+byo+Sz0) +2(9%0 +fYo+c20)} +
+ud(aal+byd+czb+2fyo 20+ 2920 %o+ 2has Yo) = 0.
This is a quadratic equation which gives the two possible
values of the ratio of A to p; if these be denoted by A,, u,, and
Ay, g, the necessary and sufficient condition that (z, y, 2) should
be on the polar of (x,, %y, 2,) is that

A
RZ((D,O, Al/#l,)‘zlf‘z) = b2 -1,
Aoty

that is, A,
]

From the theory of the quadratic equation it follows that
the necessary and sufficient condition that (z,y,z) be on the
polar of (g, y,,2,) is that

(azo+hyo+gzo)r+ (hag+byo+120)y -+ (920 +fyo+c20)2 = 0;
this is therefore the equation of the polar of (z, ¥y, %)

8.88. Notation

It is convenient in working examples and in subsequent work
to have shortened forms for the various algebraical expressions
which occur in the theory of the conic, and for this reason the
following are introduced.

(i) The expression

(azo+hyo+g20)z+ (Ao byo+f20)y+ (g70+FYo+c2 )2
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may be shortened to f(x,x,; ¥, ¥o; 2,%), and this may be still

further shortened without ambiguity to f(z,z,). This latter

form will be used henceforward, together with its variants.

Thus the equation f(z,z) = 0 is the short form of
ax?+by?+c2%+2fyz+-2gzx+ 2hxy = 0;

moreover, it is plain that f(z,, z,) = f(x;, %)

(ii) If f(z,z) = 0 is the point equation of a conic, the line
equation of the same conic will be written F(l,1) = 0, and the
same variants of F(,7) will be used.

(iii) By X will be denoted the expression ax+hy+gz, by ¥
the expression hx-by--fz, by Z the expression gx+fy-+-cz.

X,, Yy, Z,, etc., will have their obvious meanings. But if
there is danger of these numbers being confused with the
suffixed letters used for the gauge-points, their use should be
avoided.

8.881. A Note on Examples. Many quite general theorems,
independent of any mesh gauge, can be proved algebraically,
that is, by imposing a mesh gauge on the field. For example, it
is possible to prove Pascal’s theorem algebraically. In doing so,
it is allowable to select any conic of the field, and in practical
work this would reduce to choosing the conic whose point
equation is f(z,z) = 0. But the actual algebra involved will
be very much simpler if a conic with a simpler equation is
chosen. This is tantamount to choosing a conic of the field,
and then imposing the mesh gauge in such a way that its
equation relative to this mesh gauge is simple. There is plainly
no loss in generality in this method. In the examples which
follow immediately a number of conics with simple point or
line equations will be found. At the end of the set some general
examples, in which the method here explained can be used,
are given.
ExamprLES

1. Show that the point equation of any conic which is on the three
points of the triangle of reference is of the form fyz+gzx+hxy = 0, and
deduce the line equation.

2. By the principle of duality, write down the line equation of any
conic which is on the three sides of the triangle of reference.

3. Determine the equations of the conic on the five points (1,0,0),
(0,1,0), (0,0, 1), (21,Y1,2), and (g, Y3 22)-
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4. Prove that the necessary and sufficient condition that the two
points (zy, ¥y, 2,) and (2,, y,, 2;) shall be conjugate points relative to the
conic whose point equation is f(z,2) = 0 is that f(z;, 2,) = 0.

5. Show that the triangle of reference is self-polar relative to any
conic whose equation is of the form ax®+-by?+c2? = 0.

6. What are the coordingtes of the pole of the line on (x,, %, 2,) and
(23, Y1, 2;) relative to the conic whose point equation is f(x,2) = 0?

7. Show that two conics have four points in common.

8. If fi(x,z) and fy(x,z) denote respectively the expressions

@ 28 +b, Y+, 28+ 2f ye+ 20y 2w+ 2hy 2y
and 22 +by Y2+ ¢ 224 2f, y2 + 2g, 22+ 2h, Ty,
show that any conic which is on the four common points of the two
conics, whose point equations are fy(z,z) = 0 and f,(z,2) = 0, has a
point equation of the form Afy(z, x)+uf, (z, ) = 0.

9. Determine the coordinates of the common points of the two conics
whoso point equations are

hyztgzet+haoy =0 and fyyetgozat+hyay = 0.

10. Dualize Ex. 8.

11. Show that the necessary and sufficiont condition that the conic
whose point equation is f(z,z) = 0 should consist of two coincident
ranges is that

be—f? = ca—g? = ab—h® = gh—af = hf—bg = fg—ch = 0.

12. Determine the point equation and the line equation of a conic
on the point (a, b, ¢) and such that the lines YZ and ZX are tangents to
it, Y and Z being their respective points of contact.

13. Show that for all values of ¢ and u, save simultaneous zeros, the
point [¢(24-u?), (£2—u?), 2tu R] is on the non-singular conic whose point
equation is R*%?- R?%y?{ 22 = 0, Show also that any point on this conic
has coordinates which may be expressed in this form.

14. P is the pole of p relative to a conic ®. Show that if the locus of
P is a range of points on & line, the envelope of p is a pencil on & point.
Show also that if the locus of P is a point-conic, the envelope of p is &
line-conic.

15, Show that if two triangles are self-polar relative to a certain conic,
their six vertices are on a second conic. (Use Ex. 5.)

16. Find the locus of the poles of a line relative to the conics of a
pencil on four points, no three of which are collinear. (Take the four
points as (0,0,1), (0,1,0), (1,0,0), and (1,1,1).)

17. The sides BC, C4, AB of a triangle are tangents to a conic, and
D, E, F are, respectively, their points of contact. Show that the three
lines 4D, BE, CF are concurrent.

18. Show that if two different non-singular conics have four distinct
points in common, there is one and only one triangle which is self-polar
relative to both.



CHAPTER IX
THE METRIC GAUGE

9.1. Distance and Angle in Elementary Geometry

THE terms length (or distance) and angle are familiar in elemen-
tary Geometry, where they are taken as intuitive notions; we
are now in a position to introduce the same terms into Pro-
jective Geometry, not as intuitive notions, but as terms with a
perfectly definite meaning, and to show the relationship between
these well-defined terms of Projective Geometry and the intui-
tive notions of elementary Geometry.

In elementary Geometry distance is something measurable
associated with two points, angle something measurable associ-
ated with two lines. We speak of the distance between two
points being so many inches or centimetres, the angle between
two lines being so many degrees or radians. But though it is
difficult to speak more precisely than this (simply because the
notions are intuitive and not defined), there are certain funda-
mental properties of distance and angle which are recognizable
as being characteristic. If we denote the distance between two
points P and @ by the symbol (P@), these fundamental pro-
perties may be expressed thus:

(i) (PP)=0,
(i) (PQ) = —(@P),
(iii) if P, @, and R be three collinear points, then
(PQ)+(QR)+(RP) = 0.

The corresponding properties of angle are slightly different.
If by [pq] is denoted the angle between two lines p and ¢, and
if this angle be measured in radians, then

(i) [pp] = 2nm, where n is an integer, positive, negative, or
zero,t
(ii) [pg] = —[gp]+-2nm, where n is an integer,
(iif) if p,q, and r be three concurrent lines, then
[pg]+[gr]+[rp] = 2nm,
where % is an integer.

+ The phrase ‘where = is an integer, positive, negative, or zero’ will always
henceforward be shortened to ‘where n is an integer’.
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Now, plainly, it is desirable that when the terms distanceand
angle are defined in Projective Geometry their meanings shall
bear some resemblance to the meanings these same terms bear
in elementary Geometry. This is effected by so choosing their
definitions that proposifions analogous to the above six are
true of them. It will be found that the meanings given to the
terms are in fact generalizations of the meanings they bear in
elementary Geometry.

9.11. Distance on a Line: Angle on a Point

A theorem was proved in the last chapter which can be re-
stated in a form which resembles the third of the three proposi-
tions stated above about angle in elementary Geometry. The
dual of Theorem 8.35 states that if o, u, p, ¢, and r be five con-
current lines, the first two being distinct and coinciding with
none of the last three, then

Rl(oupq). Rl(ougr). Ri(ourp) = 1,
and this is equivalent to
log R(oupq)-+log Rl (ougr)+log Rl (ourp) = 2nmi,

where » is an integer,t and 42 = —1.

This form of the theorem provides the basis of a definition of
the term angle in Projective Geometry.

Let L be any point, 0 and % a pair of distinct lines on it;
these lines will be called the metric gauge-lines on L. The angle
between two lines on L is now defined.

DerFInNITION. If p and q be two lines (distinct or mot) on a
point L, both of whick are distinct from the metric gauge-lines
o0 and u on L, the angle [pq] is defined to be any one of the values of
klog Rl (oupq), where k is a constant different from zero.

The ambiguity of the logarithmic function leaves the exact
measure of an angle ambiguous by an integral multiple of 2kn,
just as in elementary Geometry the exact measure of an angle
(in radians) is ambiguous by an integral multiple of 2. In
actual work this ambiguity is avoided by using periodic func-
tions of the angle, or by a suitable convention; such a conven-
tion will be introduced later.

t Owing to the ambiguity of the logarithmic function, it is impossible to
say that n is necessarily zero.
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The principle of duality suggests that the dual concept be
defined, and though it is further removed (apparently) from
the notion of distance in elementary Geometry than the pro-
jectively defined angle is from angle in elementary Geometry,
it is given the name distance.

Let ! be any line, O and U a pair of distinct points on it;
these points will be called the metric gauge-points on 7.

DerinrrioN. If P and Q be two points (distinct or not) on a
linel, both of which are distinct from the meiric gauge-points O and
U on 1, the distance (PQ) s defined to be any one of the values of
klogRI(OU PQ), where k is a constant different from zero.

9.12. Notes on the Definitions of Distance and Angle

(i) In Projective Geometry the term distance is a relative
term; it is meaningless unless metric gauge-points have been
specified. Hence the distance between two points in Projective
Geometry is not, as in elementary Geometry, an apparently
inherent property of the two points; it is a property of these two
points and the metric gauge-points.

(ii) In Projective Geometry the distance between two points
may be any number whatever, real or complex; in elementary
Geometry it is usually taken for granted that the distance
between two points is always a real number.

(iii) 1t should be observed that the distance between two
points is independent of the mesh gauge imposed on the field,
since the cross-ratio of four collinear points is independent of
the mesh gauge.

(iv) The constant k£ appearing in the definition is termed the
scale constant; its function is not very important.

Similar remarks may be made about the projective definition
of angle.

ExAMPLES

1. If P is a point on [ distinct from the metric gauge-points thereon,
show that (PP) = 2knmi, where n is any integer. Dualize.

2. If P and Q are distinct points on 7, both of which are distincet from
the metric gauge-points thereon, show that (PQ) = —(QFP)+2knmi,
where 7 is any integer. Dualize.

3. If P, Q, and R be three points on a line [, all distinct from the

a0 ag
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metric gauge-points thereon, show that (PQ)+(QR)+(RP) = 2knm,
where n is any integer. Dualizo.

4. If P, Q, and R be three points on a line [, all distinct from the
metric gauge-points thereon, and if (PQ) # (PR)4-2knxi, show that
@ and R do not coincide. Dualize.

5. If 4, B, C, and D are feur points on a linoe I, all distinct from the
metric gauge-points thereop, show that

(AC)+(BD) = (AD)+(BC)+2knri.

9.2. The Metric Gauge-conic

If the notions of distance and angle are to be of general use
in Projective Geometry, it is clear that metric gauge-points
must be assigned on every line of the field and metric gauge-
lines on every point of the field. Plainly, it is possible to choose
these metric gauge-points and gauge-lines in any way we please,
but for the sake of simplicity it is advisable to choose them in
a simple and orderly way. Now, however they be chosen, the
mixed figure consisting of all the metric gauge-points and gauge-
lines is such that at least two of its points are on every line of the
field, and at least two of its lines are on every point of the field.
The simplest mixed figure which has both of these properties
is the non-singular conic, and so we choose the metric gauge-
points and gauge-lines in such a way that the mixed figure which
they form is a non-singular conic. This non-singular conic is
called the meiric gauge-conic, or, more simply, the metric gauge.t

It will be realized that if a non-singular conic be taken as
the method of specifying the metric gauge-points and gauge-
lines there will be certain lines of the field on which the metric
gauge-points coincide, and certain points of the field on which
the metric gauge-lines coincide. These points and lines will be
noticed in detail in due course.

The general definitions of distance and angle for the whole
field are now given formally in the following terms.

DEFINITION. The non-singular conic @ being the metric gauge,
(i) the distance (P Q) between any two points P and Q is defined
to be any one of the values of klogRl(M, M, PQ) (pro-

t Cayley and others call this conic the absolute conic or the absolute. The

term is not adopted here because of the false implication in the word absolute ;
there is nothing absolute or fixed about the metric gauge.
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vided this expression 8 significant), where M, and M, are
the points on ® collinear with P and Q, and k is a fixed
scale-constant different from zero;

the angle [ pq] between any two lines p and q s defined to be
any one of the values of k'logRl(m,mypq) (provided this
expression is significant), where m, and my are the lines on
D concurrent with p and q, and k' s a fixed scale-constant,
different from zero.

(i

~

9.21. Notes on the Definition.

(i) Break-down of the Definition. The expression for (PQ)
ceases to be significant if either or both of P and @ are on the
metric gauge. The dual proposition is also true.

(i) Isotropic Points and Lines. If I be a line on the metric
gauge, and P and @ be two points on /, the distance (P@) is
2knmi, however P and @ be chosen, since on I the metric gauge-
points coincide, and so R(M; M, PQ) = 1. Lines which have
this peculiarity are called isotropic lines; the dual term is
isotropic point. Clearly all isotropic lines are on the metric
gauge, and vice versa.

Points and lines which are not isotropic will be called non-
isotropic or ordinary points and lines. Even at the risk of
labouring the obvious, it may be remarked that there is no
essential difference between ordinary and isotropic points; they
have different properties relative to the metric gauge.

(i) Order of the Meiric Gauge-points. If P and @ are a pair
of distinct ordinary points, and M,;, M, are the metric gauge-
points collinear with them, the definition of distance does not
make it clear whether (PQ) is equal to klogR(Jf; M, PQ) or
klog RI(M, M, PQ); that is to say, it does not specify in what
order the two metric gauge-points are to be taken in the cross-
ratio. The question is left open, but the convention is adopted
here that when more than one distance is measured on the
same line the same order of the metric gauge-points is kept
for all of them. Thus if P, @, R, S,. . . are collinear points, and
M,, M, are the metric gauge-points collinear with them, and if
(PQ) is taken as klog RI(M, M, PQ), then (RS) will be taken as
klogR(M, M, RS), etc,
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The choice of a particular order for the metric gauge-points
on any line corresponds to the choice in elementary Geometry
of a positive direction on a line; for plainly,

klogR/(M, M, PQ) = —klog Ri(M, M, PQ)+-2knmi,
where 7 is any integer/’i‘he dual convention is also made.

9.22, Laguerre’s Theorem in Elementary Geometry

The difference between the metrical notions of Projective Geomotry
and those of elomentary Geometry is not so great as it may appoar to
be at first sight. There is a theorem in elementary Geometry, known as
Laguerre’s theorem, which shows the similarity between the two.

Laguerre’s theorem states that if P, Q, and R be any three points,
and if T and J be the circular points at infinity, the angle PQR is equal
to —YilogR(PI, PJ, PQ, PR).

This theorem is tantamount to saying that angle in clemontary Geo-
metry may be measured in exactly the samo way as in Projective
Geometry, the metric gauge-lincs on any point P being the lines PI
and PJ. The line-figure formed by all these metric gauge-lines consists
of the pencils of lines on I and J; that is to say, it is a singular conic.
In a certain sense, then, it can be said that in elementary Geometry the
gauge-conic is & singular conic. Though we havo in this chapter confined
ourselves to non-singular conics as metric gauges, we shall see in the
next chapter how the definitions of distanco and angle can be extended
in such a way that singular conics can bo used as metric gauges.

9.3. Deductions from the Definitions
9.31. Pairs of Orthogonal Points and Lines

THEOREM. The necessary and sufficient condition that two
ordinary points, P and Q, should be conjugate points relative to
the metric gauge s that (PQ) = (2n+1)kwi, where n is any
integer.

The necessary and sufficient condition that two ordinary lines,
p and q, should be conjugate lines relative to the metric gauge is
that [pg] = (2n-+1)kmi, where n i8 any integer.

The two theorems being dual, only the first is proved.

Let M, and M, be the points on the metric gauge collinear
with P and Q. Then the necessary and sufficient condition
that P and Q should be conjugate points relative to the metric
gauge is that (3, M,, PQ) should be a harmonic tetrad; that is,
' that R(M; M, PQ) = —1; that is, that (PQ) = (2n+1)kmi.

It is convenient to have a name for pairs of points or lines
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which are conjugate relative to the metric gauge; two points
thus related will be said to be orthogonal to each other, or to be a
pair of orthogonal points. Dually, two lines so related will be
said to be orthogonal to each other, or to be a pair of orthogonal
lines. They have properties analogous to those of perpendicular
lines in elementary Geometry.

9.32. Distance and Angle in the Homogeneous Mesh
Gauge
THEOREM. If a homogeneous mesh gauge be imposed on the
field, and if in this the equations of the meiric gauge be f(x,x) = 0
and F(l,1) = 0, then
(i) the distance (PQ) between two ordinary points P, (1, 1, 2y),
and Q, (,, Y, 2,), Satisfies the equation

PQ) Sy, )
cosh“(- . Z S et [
2k Sws, 1) f (g, )
(i) the angle [pq] between the two ordinary lines p, [1;,m;, n,],
and g, [1,, my, n,), satisfies the equation
olpg] . Flyly)
OB = Pl 1)y )
Suppose that M, and M, are the two points on the metric
gauge collinear with P and @, Let their coordinates be
Ay 21+ py %oy A Y1101 Yo A 2110 Z)
and (Ae@y+pa %, Ag Y1t paYa A2y Hpa 2s).
Since these two points are on the metric gauge, the two ratios
A; to py and A, to p, satisfy the quadratic equation
N¥f(ay, 1)+ 2Auf (2, 2p)+1f (%, %) = O,
and we may therefore write
A1 Aﬁ = f(xz: xz),
A pra g py = 2f(my, 24),

and P e = f(21,24),
A A A
Now M, M, PQ) = —3,—3,0,00) _ Mg,
W( 142 Q) H Ko I"’lAS

and, similarly, R(M, M, QP) = A Fa,
Hady
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it follows that
g_k -7P¢g' 1P2+A2l—‘1 * ;1,2)’+(A,;i1l“.
Ay pady Aydg g iy
Hence Q) (PQ)
cosh? (Ii]%)/ (Lk +24e * )
| — QapatAp)
4Ny Ag g g
- fg (21, )
[, @) )f (@, )

This proves the first part of the theorem; the second part is
the dual of the first.

9.33. The Equidistance Locus and the Equiangular
Envelope
THEOREM. The locus of points which are all at a distance
2knmi+d (where n is any inleger) from a given ordinary point P
18 the figure consisting of all the ordinary points on
(i) the polar of P relative to the metric gauge if d = (2m~+1)kmi,
where m 18 any tnieger,
(i) @ non-singular point-conic having double contact with the
metric gauge if d # (2m-+1)kmi, where m 18 any integer.
The first part of the theorem is an immediate consequence
of 9.31.
The second part of the theorem is a consequence of 9.32; it
may also be proved in other ways. The details are left to the
reader. The dual theorem is worth enunciating formally:

THEOREM. The envelope of lines, all of which make an angle
2k'nni+0 (where n is any integer) with a given ordinary line p, is
the figure consisting of all the ordinary lines on

(i) the pole of p relative to the metric gauge if 8 = (2m~-1)k'nt,
where m is any inleger,

(i) @ non-singular line-conic having double contact with the

metric gauge if 0 £ (2m-+-1)k'mi, where m 18 any integer.

The locus and envelope here given should be compared with
the corresponding locus and envelope in elementary Geometry.
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ExamrLEs
1. If P, Q,, Q,, Q; are four collinear ordinary points, and if
(PQ,) = (PQ,) = (PQy),
show that at least two of the three points @;, @;, @5 coincide, unless all
the points are on an isotropic line.

2. 1is an ordinary line, and P an ordinary point on it. Show that, in
general, there are two and only two points @ and @’ on I such that
(PQ) = (PQ’) = d. Show also that @ and @’ coincide in two cases.

3. P and P’ are a pair of orthogonal points; @ and @’ are a pair of
distinct points on the line PP’, such that (PQ) = (PQ’); show that
(P'Q) = (P'Q).

4. P, P, Q, Q' are four distinet collinear ordinary points on an
ordinary line; show that if (PQ) = (P’Q) and (P'Q) = (P’'Q’), then either
P and P’ are orthogonal, or @ and @’ are orthogonal, or both pairs are
orthogonal. Show that in the last case (P’Q) = (P'Q’).

5. If XYZ be the triangle of reference, and f(z,x) = 0 the point
equation of the metric gauge, determine the value of cosh? Q;f) .

6. The distance between a point P and a line ! is said to be d if and
only if (PQ) = d, where @ is the point common to ! and tho line on P
orthogonal to I. Show that the distance of a point from its polar is
(2n+ 1)kmi, where n is any integer.

7. If f(x,z) = 0, F(l,l) = O are the equations of the metric gauge,
show that tho distance d between the ordinary point (x,y,z) and the
ordinary line [I, m,n] satisfies the oquation

d la+my +nz)?
cosh’ﬁ = l_(f(x,%(l,l)) ,
a h g
where A=k b f|.
g f ¢

8. Dualize the definition in Ex. 6 to obtain the definition of the
term angle between a point and a line. Show that the angle between a
point and a line is equal to the distance between them. (Use Ex. 7.)

9. Show that if two ordinary points are equidistant from an ordinary
line they are equidistant from the pole of the line relative to the metric
gauge. Hence or otherwise determine the locus of points all of which are
equidistant from a given ordinary line. (This locus should be compared
with the corresponding locus in elementary Geometry.)

10. Show that, if k = k', the distance between two ordinary points is
equal to the angle between their polars relative to the metric gauge.

11. @ is a non-singular conic distinect from the metric gauge, and
A, B, C, and D are four distinct ordinary points on it. Show that, if
k = §, then for all points P on @, the expression

sinh?4 PCsinh?BPD
sinh’4 PDsinh?BPC
is constant. (By 4 PC is meant the angle between P4 and PC.)
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12. M; and M, are the metric gauge-points on & line I. Show that if
A and A4’, B and B’ are two pairs of corresponding points in a pro-
jectivity on ! whose self-corresponding points are M; and M,, then
(AA’) = (BB’)+2knari, where n is any integer.

9.4. Preamble to szﬂcular Metrical Geometries

We have so far invéstigated the notions of length and angle
in the most general case possible, and though this general
investigation can be taken farther, it is more interesting and
useful to consider certain special cases, and to pay special
attention to certain points and lines of the field. To do this
we require some preliminary notions.

9.41. Real and Complex Points and Lines

DErINTTION. A homogeneous mesh gauge being imposed on
the field, @ point (x,y,z) 18 said to be a real point if and only if
there i8 a number c, not equal to zero, such that all the numbers
cx, ¢y, cz are real numbers. All other points are said to be complex
points.

In other words, a real point is a point whose coordi-
nates in the mesh gauge can be specified by three real
numbers.

The terms real line, complex line, are defined dually.

The warning is repeated here against imagining that there is
any inherent difference between real and complex points or
lines; the distinction arises solely because of the imposition of
the mesh gauge. Strictly speaking, real points are real relative
to the mesh gauge.

It should be clear that the choice of the triangle of reference
and the gauging point determines which points of the field are
real, and which complex. But it should be noticed (though the
fact is not proved here) that different triangles of reference and
gauging points can determine the same set of points to be the
real points of the field. In fact, if one triangle of reference and
gauging point makes a certain set of points the real points of
the field, then there are an infinity of other triangles of reference
and gauging points which make the same set of points the real
points of the field.
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ExAMPLES

1. The line on two distinot real points is real. Dualize.

2. Is it true to say that the line on two distinct complex points is
complex?

3. Show that there are complex points on every line. Dualize.

4. Show that on a complox line there is one and only one real point.
Dualize.

5. Show that the line on the two distinct points

(a+ia’,b+ib’,c+ic’) and (a—ia’,b—1b’,c—ic’),
where a, a/, b, b’, ¢, ¢’ are real and not all zero is a real line. Dualize.
6. Show that if a real line is on the complex point

(a+1ia’,b+1b", c+ic’),
it is also on the complex point (a—ia’,b—1ib’,c—ic’). Dualize.

9.42. Classification of Non-singular Conics

DeFINTTION. A homogeneous mesh gauge being imposed on
the field, a conic whose point equation s f(x,x) = 0 is said to be
a real conic if and only if there is a number d, different from zero,
such that all the numbers da, db, dc, df, dg, dh are real numbers.
All other conics are said to be complex conics.

There is no loss in duality in speaking only of the point
equation in the definition; if the point equation of a conic has
real coefficients, the line equation also has real coefficients.

We are concerned in the sequel with real conics only, and
these can be divided again into two classes. The distinction
which is about to be made can be easily illustrated. Consider
the two conics whose point equations are

22+yP+2t =0
and z2%+y2—22 = 0.

Tt will be seen that both of these conics are real conics, but
while on the second there certainly are some real points, e.g.
(v2,42,2), on the first there are no real points. For if z, y,
and z are any real numbers, not all of which are zero,

x?4y?+22 > 0.

We may therefore divide real conics into two classes: (1)
those on which there are no real points, and (2) those on which
there are some real points. The algebraic criterion whereby a

given real conic may be classified in practice is irrelevant here,
4101 Hh
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80 also are the technical names for the two classes. It will be
sufficient to give them temporary, working, names, and we call
the first class real-complex conics, the second, real-real conics.
The connotation of these terms is plain.

9.43. Metrical Geo:,xétries

By the term Meirical Geomelry is meant, strictly, the inter-
pretation, in terms of the defined concepts of distance and angle,
of the theorems of Projective Geometry when a metric gauge-
conic has been chosen and fixed. When this process is under-
taken without an auxiliary mesh gauge it is known as Synthetic
Metrical Geometry; when it is undertaken with a mesh gauge
it is known as Algebraic Metrical Geometry.

The method by which we have approached Metrical Geometry
makes it impossible to distinguish between the real and complex
points of the field without impressing a mesh gauge, and since
this distinction is very important in the sequel, it is necessary
for us to proceed by the algebraic method. For the choice of a
real-real conic as metric gauge gives rise to one set of metrical
theorems about the real points of the field, while the choice of
a real-complex metric gauge gives rise to a different set.

The first of these sets of theorems is identical with the metrical
Geometry discovered by Lobatchewskij and Bolyai, and some-
times called Hyperbolic Geometry; the second set is identical
with the metrical Geometry discovered by Riemann, and some-
times called Elliptic Geometry.

These metrical Geometries are sometimes called non-Eucli-
dean Geometries, but the term is misleading in so far as it
conveys the idea that there is no connexion between Hyperbolic
and Elliptic metrical Geometries on the one hand, and on the
other the Euclidean metrical Geometry which we are familiar
with as elementary Geometry. The next chapter will show in
detail the extent of the connexion that there is between them,
and it is sufficient here to say that metric gauges exist for
Euclidean metrical Geometry, but that they are singular conics,
while the metric gauges of this chapter are non-singular conies.

Even at this stage it is useful to mention a point which is
vital to the true understanding of Geometry. Itshould be clear
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that there are certain theorems of Projective Geometry which
can be proved either synthetically or algebraically, and which
presuppose no metric gauge; such theorems are aptly called
projective theorems. But there are other theorems which are
only significant when a metric gauge has been impressed; that
is to say, they presuppose a metric gauge of some kind. Such
theorems are called metrical theorems. If thisis borne in mind,
it should be clear that the distinction between Elliptic, Hyper-
bolic, and Euclidean Metrical Geometries is not a distinction
between the fields of which they are true; it is a distinction
which arises solely from the choice of a particular metric gauge.
On one and the same field, an Elliptic, a Hyperbolic, or a
Euclidean metric gauge may be imposed at choice. The pro-
jective theorems are the same whatever metric gauge be chosen,
but the metrical theorems differ.

9.5. Elliptic Metrical Geometry

Elliptic Metrical Geometry results from the choice of a real-
complex conic as metric gauge. The choice may be made in a
variety of ways, but for simplicity we choose that conic whose
point equation is cat-oyP42 = 0,
where ¢ is a positive number. There is no loss in generality if we
take ¢ = 1, and this we do. The symbol f(z,z) will stand for
2%4-y%4-22, and for the sake of simplicity we shall shorten such
expressions as f(z,, ,), f(xs, &3), ete., to fig, fas, ete.

The line equation of the conic is plainly [24-m2+4n2 = 0, and
the expressions F},, Fy, etc., will have their obvious meanings.

‘We agree, since we are dealing only with real points, to specify
the coordinates of all real points by real numbers only; e.g. we
shall exclude such specifications of the point (4, 1, 5) as (4, ¢, 51).

An algebraic theorem, of great importance in what follows,
is proved first.

9.51. Lagrange’s Identity

THEOREM. If (2;,¥y,2;) and (g, Y,, 2,) are any two real points,
then

(@3 H-yi+2) @3+ y3+28) — (2, 2+ 4y Ya+-21 25)"
= (Y12~ Y2 21)*+H (21 22— 2, 21)*+ (@1 Y2— 22 91)* > O,
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the two expressions being equal to zero if and only if the points
(%1, Y1, 21) and (4, Yo, 25) coincide.

The first expression on simplification and rearrangement
becomes

Wiz +yiei—2y, ?[zl 29)+ (21 23+ 23 21— 22, 2, 2, ) +
+ (@ Y3+t yi—27 %291 95)
= (Y122~ Y221)*+ (21 02— 29 21)*+ (2, Ya— %2 Y1)
This expression, being a sum of squares of real numbers,

cannot be negative, and it is zero if and only if the two points
(%4, Y1, 21) and (xy, ¥y, 2,) coincide.

9.52. Distance on a Line

If P and @ be two real points whose coordinates are respec-
tively (#y,%1,21), (%5, s, 2,), it follows from the last theorem
that f; foo—(f12)? = 0, that is to say,

< W)
< fufa S
the first of these two inequalities being & consequence of the
fact that none of the numbers involved in (fy,)?/(fiifes) i8
negative,
From this it follows that there is a real number 6 such that
0 < 0 < and cosb = (fyy)/(fifae)t, the positive square root
being taken in the denominator of this fraction.
Now if M, and M, are the metric gauge-points on the line
PQ, their coordinates being, respectively,

(A @y +py o0 A a9 Yo Ay 21+ 111 %),
and Aoy +pa % A Yy +12Ys, A22y 4o 2y),
the ratios A,/u; and Ay/u, satisfy

A+ 2010+ p¥fas = 0. (See 9.32.)
We now make the convention that

A — _‘"f 12;«/_{(f 12)°—/; nf 22_}

(51 Ju

A — =i +‘\/{(fl_2_)a'_f 11.f20} .

and
e Sz
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From the analysis in 9.32 it follows that

— Arps —fra—{(f12)* =1 fo0}
Q) = Hiog15e) = bog e
cos 6—,/(cos?0—1 cos §-+1sind
= kIOg{:EBE—B_-{—:ﬁa;sEG:wI;} = klo [cos 0—isinf
= klog e = k(20 2nmi),
where n is any integer.
In order that distances between real points shall be real, we
take £ to be a multiple of ¢, the most convenient being —}1.
We therefore fix, once for all, that k = —41, so that

(PQ) = 0+nm,
where n is any integer.

In the limited amount of work on Elliptic Metrical Geometry
which is done here, there will be no loss in generality and no
ambiguity if n is taken as zero, and hence, for all real points
P and Q,

(i) 0< (PQ) < m,
(i) cos(PQ) = fio/(fiyfes)t, the positive square root being taken
always in this fraction,

(iii) 0 < sin(PQ) < 1.

9.521. Direction on a Line. It will probably have been
noticed that if we had taken (—x,, —y,, —2,) as the coordinates
of @ throughout the preceding work, the sign of f;, would have
been changed, and this would have given, as the value of (P@),
the supplement of that obtained. At first sight this appears to
be an ambiguity, but it is not so in fact. For the effect of
changing the sign of the coordinates of @ is to interchange the
order of the metric gauge-points M, and M,; this interchange
occurs because of the method we adopted of specifying their
coordinates. Hence the apparent ambiguity is explained. In
actual work all pitfalls will be avoided if, once the coordinates
of a point have been specified by a particular triple number-
label, this specification is rigidly adhered to throughout.

Another apparent ambiguity may occur to the reader. If we
had undertaken to evaluate the distance (@P) in the preceding
section, the result we should have obtained, following the same
process, would have been exactly the same as that obtained for
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(PQ). The reason for this is that again we should have inter-
changed the gauge-points. Hence the rule must be followed:
take and fix two points on the line, express all other points on
the line in terms of the coordinates of these two; determine and
fix the metric gauge-points and the order in which they are to
be taken; determin,e};ll distances on the line by applying the
definition for distance.

It may be observed that there are, so to speak two finite
paths from P to @ on the line PQ. By fixing one order of metric
gauge-points we measure the length of one of these paths; by
fixing the other order we measure the other. Still speaking
roughly, the whole set of real points on the line PQ form a
closed path. The fixing of the order of the metric gauge-points
determines which direction shall be followed in going from P to
Q. More than this need not be said here, since it is not our
purpose to enter deeply into Metrical Geometry.

9.53. Angle on a Point

Since the expression F(l,l) has the same algebraic form as
f(x,x), the whole of 9.52 can be dualized. It follows that, if
p and ¢ be two real lines whose coordinates are, respectively,
(b1, my, 1], [l g, mg],

0 o< [pg] <m,

(i) cos[pq] = Fyp/(Fyy Fyo)t, the positive square root being taken

in thas fraction,

(iii) 0 < sin[pg] < 1.

9.531. Convention about the Coordinates of a Line on
Two Points. The remarks of 9.521 about the need for con-
sistency in specifying the coordinates of a point may be dual-
ized, and this makes it essential to adopt a uniform convention
for specifying the coordinates of a line on two points whose
coordinates are known.

If P and @ are the points (2y,¥;,%), (%a: ¥a %) respectively,
we agree to specify the coordinates of the line P@Q as

122~ Y221, 21 Ta—2 %1, Ty Y3—T2Y1)
and the coordinates of the line QP as

(Y221— Y1 22, 22 By — 2, Tg, T2 Y1—T1Y2)-
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9.54. The Triangle in Elliptic Metrical Geometry

As an illustration of Elliptic Metrical Geometry, we consider
the metrical properties of a triangle therein.

Take any triangle ABC whose vertices are, respectively,
(%1, Y1:21)s (T Y2:25), (%3, Y3, 23). The sides BC, CA, AB will
have coordinates

[Y225—Ys 22, 22%a—23 s, TaYs—T3Ys),

[Ys 21— Y123, 23121 T3, Ta Yy —21 Yg),

[1122— Y221, 21 Tg— 22y, T1Ya— T 1]
respectively. These will also be referred to as [I;,my, 7],
[Y3, My, mo], [1s, mg, ms] respectively.

We use the symbols a, b, and ¢ for the lengths of BC, C4,
A B respectively.

By the angle BAC we mean the angle between the lines AC
and A B; that is, between [—1y, —mgy, —n,] and [I;, mg, n,]; this
angle is referred to as the angle 4. Hence

cos 4 = —Fy/(Fyy Fy)t,
and not Fyy/(Fy, Fys)t. Similarly for the angles B and C.

9.541. Preliminary Algebraic Identities. Lagrange’s
identity states that Fy; = fpefag—(f23)% and there is a similar
identity, which the reader should verify, namely,

Fzs = f 12f a1“f 1123

It follows from these that F,,, Fyy, Fys, Fog, Fyy, Fy, are the minors
of fi15 faes faas Jeas far» Jrz TESpectively in the symmetrical deter-

minant fu fu fa
fa Ja Ja
fu Jo2 Ja
This determinant will be symbolized by A; if it is written out
in full, it will be recognized at once as
T Y &P
Ty Y2 2
T3 Ys %3

s

it is therefore positive.
From the expressions for cosa and cos 4 it is now possible to
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deduce the values of all the trigonometrical functions of the
sides and angles. In fact

fa . ()} (Fa)t
coBa = -+, sine=__="_, tanae = -3
(fzzfas)* (fzzfsa * fzs
— (Afy)? (Afy)
A= E Ry T m ey T T,

Similar results for the other sides and angles are obtained by
cyclic permutation of letters and suffixes.

9.542. The Cosine Formula. TeEOREM. In a triangle
ABC in Elliptic Metrical Geomeiry
cosa = cosbcosc|sinbsinccos 4,
and cos A = —cos Bcos C-+sin Bsin C cosa.
(Fo) ()t (—Fy) _  —Fy

(fssf 11 (fllf 22 i (1’22 Eaa h f 11(f22f 33

f11f23 f12f31 = cosa—cosbcosc.

Su(ffa)?
This proves the first part of the theorem; the second part
is proved in a similar way.
9.543. The Sine Formula. TaEOREM. In a triangle ABC
in Elliptic Metrical Geometry
sind _sinB__sinC {Af 11/22f, aa}
sing  sinb  sinc  |Fy Fyy By
This theorem is an immediate consequence of the results of
9.541.
9.544. The Sum of the Angles of a Triangle. THEOREM.
In a triangle ABC in Elliptic Metrical Geometry
A+B+C > m

sinbsinccos 4 =

By 9.542,
cos A = —cos Bcos C+sin Bsin C cosa,
and since cos(B+C) = cos Bcos C—sin Bsin 0,
cos 4 +cos(B-+C) = —sin Bsin C(1—cosa),
or cos}(4+ B+ C)cos }(B+C—A) = —sin Bsin C'sin?*}a.
The right-hand side of this equation being negative, the
factors of the left-hand side must have opposite signs.
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Now we may suppose that 4 > B > C, so that
-7 < B4+0—4 < m;
hence cos }(B+C—A4) > 0.
It follows that cos (4 -+ B-C) < 0, that is to say,
A+B+C > 7.

9.55. Elliptic Metrical Geometry and Spherical Geometry

The reader who is acquainted with Spherical Trigonometry
will recognize that these formulae which have been deduced for
the triangle in Elliptic Metrical Geometry are identical with the
formulae for a triangle in Spherical Trigonometry. It is not,
however, legitimate to deduce from this that the Geometry on
the surface of a sphere is identical with Elliptic Metrical
Geometry. It may be found useful to deduce other formulae for
the triangle in Elliptic Metrical Geometry; these other formulae
will be found in any book of Spherical Trigonometry, and to
these the reader is referred.

9.56. A Representation of Elliptic Metrical Geometry

The fact of the identity of form botween Elliptic Metrical Geomotry
and Spherical Trigonometry makes it possible to give a simple repre-
sentation of the former. This is given to help the reader to visualize
the metrical conditions when a real-complex metric gauge is imposed
on the field.

F1a. 60.

The representation is illustrated in the figure. A hemisphere whose
centre is P rests on the plane, touching it at the point 0. ABC is any
triangle in the plane, and A4’, B’, C’ are points on the surface of the

4191 1i
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hemisphere such that PAA’ are collinear, PBB’ are collinear, PCC’
are collinear. The sides and angles of the triangle 4 BC in the plane
when an elliptic metric gauge is imposed may be measured by deter-
mining (in the usual way) the sides and angles of the spherical triangle
A'B'C’.

ExampLES

Apply the results of 9.541 to prove the following formulae for the
triangle in Elliptic Metrical Geometry:
(i) cos Ccosb+cot Asin C = sinbcota.
(ii) cosbcosccos A+sinbsinc¢ = sin Bsin C—cos B cos O cosa.

9.6. Hyperbolic Metrical Geometry

Hyperbolic Metrical Geometry results from the choice of a
real-real conic as metric gauge. For simplicity, we take the
conic whose point equation is cx®-+cy*+4-2% = 0, where ¢ is a
negative number; we take ¢ to be —1, since this involves no loss
in generality.

The symbol f(x, x) will stand for —a2—y2-+22, and f,,, fa, etc.,
will have their obvious meanings.

The line equation of the metric gauge is I24-m2—n? = 0, and
so F(l,1) stands for the expression on the left of this equation.

As in Elliptic Metrical Geometry, we agree to specify the
coordinates of all real points by real number-labels only.

9.61. Interior and Exterior Points and Lines

DErFINITION. A real point (¢4, y,,2,) will be termed an interior
point if and only if fi; > 0; it will be termed an exterior point if
and only if f;; < 0.

DeFINITION. 4 real line [l;,my,n,] will be termed an inferior
line if and only if Fy; > 0; it will be termed an exterior line of
and only if Fi; < 0.

Hyperbolic Metrical Geometry is concerned almost entirely
with interior points and lines, and some preliminary theorems
concerning them are necessary.

9.611. Lagrange’s Identity. THEOREM.
(—2}—gi+2)(—2— 93 +23) — (— 21 % — Y1 Yo+ 2, 2,)°

= —(Y1%—Y2 21)P— (2 Xy — 2, ;)2 (2, Yo — 22 1)
The proof of this is left to the reader,
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9.612. THEOREM. If (4,%1,2,) and (s, Y,,2,) are both interior
points, then fi;fr—(fi2)? < 0, equality only holding if the two
points coincide.

Since the two points are both interior points, neither 2z,
nor 2, can be zero; we may therefore without loss of generality
take 2, =z, = 1.

Write x, = r,cos8d, y, = r,sin 4, where r, > 0; then since
(1, ¥1, 24) is an interior point, 7, < 1.

Similarly, write x, = rycos B, y, = r,8in B, where 7, > 0;
as before, 7, < 1. Then
Junfoo—(f12)? = (—ri4+1)(—13+1)—{—r; 7y cos(4 — B) 41}

= (1=r)(1—r})—{1—ryr,+2r rysin® {4 —B)}
= —(r—19)*—dryry(1—ry ry)sin? }(A— B)—
—4rirdsint }(4—B).

All the terms of this are negative or zero, and they are all
zero only when the two points coincide; hence the theorem is
proved.

9.613. TumorEM. If [, my, ny], [ly, My, ny] are two distinct real
lines which are both on the interior point (x,y,z), then
By Fyy—(Fy)* > 0.
By Lagrange’s identity
By Fpp—(Fy,)?

= —(my ng—my 11— (0 l— 1y 1,2+ (I my— 1y my)?

= dH(—at—yita?),
where d is a real number.

Since (z,y,2) is an interior point, this last expression is
positive; hence Fy; Fp,—(F15)2 > 0.

9.614. TuEOREM. The line on two distinct interior points is
an interior line.

The proof depends on Lagrange’s identity, and is very similar
to that of the last theorem. Compare this theorem with 9.617.
9.615. THEOREM. If (,¥5,%), (%3 ¥s25) be two inlerior
points, and if 2, > 0 and z, > 0, then, —xy Zy—Yy Yo+2,29 > 0.

Without loss of generality, we may take 2, = z, = 1. Write, as
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in 9.612, z, = rycos 4, y, = ry8in 4, x; = ryco8 B, y, = r,sin B,
where 0 < <1, 0<r, <L

Then —=z,2%,—Y;Ys+2,2; = ry79co8(A—B)+1, and this is
plainly positive.

The following theopems are not needed in the sequel, but they
are set down to enable the reader to obtain a fuller idea of the
relations between interior and exterior points and lines. The
details of proof are omitted.

9.616. THEOREM. On every interior line there is an infinity
of interior points.

If [1,m,n] is an interior line, all the points whose coordinates
are (—nl+4-Am, —nm—>l, I12+m?) are on it, and they are interior
points if —(I2++m2—n2)t < A < - (I2+m2—n?)t.

THEOREM. On every exterior point there is an infinity of
exterior lines.

9.617. THEOREM. Any real line on an inferior point is an
interior line.

THEOREM. Any real point on an exterior line is an exterior
point.

9.618. THEOREM. The tsotropic points on an interior line
are real; those on an exterior line are complex.

TaEOREM. The isotropic lines on an interior point are complex;
those on an exterior point are real.

9.619. TEEOREM. The polar of an interior point relative to
the metric gauge is an exterior line; that of an exterior point is an
interior line.

THEOREM. The pole of an interior line relative to the metric
gauge is an exterior point; that of an exterior line is an interior
point.

9.62. Distance and Angle in Hyperbolic Metrical Geo-
metry
9.621. Distance on an Interior Line. Let P and Q be
two interior points whose coordinates are (z;,%;,2;) and
(%4, Y5, 2,) respectively.
From now onwards we make the convention that in specify-
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ing the coordinates of all interior points, the third coordinate
(2) shall always be a positive number. This is possible, since all
the points on the line z = 0 are exterior points.

By 9.612, (f13)2—f11fas = 0, 50 that

()? o

f 11 f 22
and by 9.615, f;, > 0.
There is therefore a positive number 8, such that

cosh 6 = fio/(fafao),
the positive square root being taken in the denominator; and

it follows that
sinh§ = {(ﬁzf'—ﬁli“}* > 0.
11Je2

If now M, and M, are the metric gauge points on the line PQ,

their coordinates being, respectively,
(A 34y T Ay Y111 Yoo A 212 %2)
and Ap 21+ pg g Ao Y1+ praYas Ap2ypra2a)s
the ratios A;/u; and Ay/u, satisfy the equation
2%f11+20uf1o+ufoe = 0.

‘We make the convention that
A — "fm"\/{(fu)z"fufz_z_}, and fxz‘*‘«/{(fm) fufzz}
1 fu #z f 11

Now
(P@) = bogfpte) = ko[ = N )

cosh f—sinh 8
= log{ =0 S = Flog(e)
= k(20+2nmi).

We take k = {, and n = 0, so that (PQ) = 6, where 6 > 0,
and cosh @ = fy,/(f11f22)}, the positive square root being taken
in this fraction.

9.622. Angle on an Interior Point. If [l,m;,n,] and
[%5, m4, ms] are the coordinates of two interior lines p and ¢ which
are on a common interior point, the method of determining the
angle between them is identical with the method adopted in
Elliptic Metrical Geometry. By Theorem 9.613, (Fy,)2—Fy, Fy,
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is not positive, and so the conventions of 9.52 are adopted, the
scale constant being —3s. The results may be stated thus:
0 o< [pg] <m
(ii) cos[pg] = Fyp/(Fyy Fyp), the positive square root being taken
in the denoms .

9.63. The Triangle in Hyperbolic Metrical Geometry
Take any triangle A BC whose vertices are, respectively, the
interior points (%,,Y;,2,), (¥g, ¥s, 25), a0d (%5, Y5, 25), Where 2y, 2,,
and 23 are all positive.
The same symbols and conventions will be used as in the
corresponding part of Elliptic Metrical Geometry (9.54).

9.631. Preliminary Algebraic Identities. The analysis
of 9.541 may be repeated in almost identical terms. It should
be noticed, however, that the minors of fy;, fy, etc., in the
determinant A are —F},, —F,,, etc.; also that A is equal to

iy iy 2z |?
Ty Wy 2

iy Yy 2

and is therefore positive.
The corresponding results are:

_fe e (B _(E),
cosha = par RO (e pge  tamhe="pE
_ -, (Aft (O
A= Thy AT ey AT TRy,

Corresponding results for the other sides and angles are
obtained by cyclic permutation of the letters and suffixes.

9.632. The Cosine Formula. THEOREM. In a iriangle
ABC in Hyperbolic Metrical Geometry

cosha = cosh b cosh c+4sinhbsinhccos 4,
and cos A = —cos Bcos C+sin Bsin C cosha.

9.633. The Sine Formula. TaeorEM. In a triangle ABC
in Hyperbolic Metrical Geomelry

sind _sinB _ sinC _ [Afnfﬂfga]i‘
sinha_sinhb—sinhc_ FqugF” :




THE METRIC GAUGE 247

9.634. The Sum of the Angles of a Triangle. THEOREM.
In a triangle ABC in Hyperbolic Metrical Geometry

A+B4+C <.

The proofs of the three foregoing theorems are analogous to
the proofs of the corresponding theorems in Elliptic Metrical
Geometry.

9.64. The Metrical Geometry of Exterior Points and

Lines

In the foregoing we have confined our attention to interior
points and lines, and it is natural to ask whether there is any
corresponding metrical Geometry of the exterior points and
lines. The answer to this is that the metrical Geometry of the
exterior points and lines is the dual of that of the interior points
and lines. It may be verified, for instance, that if ABC is a
triangle of exterior points, such that all three of the lines BC,
CA, and A B are exterior lines, and if suitable conventions are
adopted,

cosa = —cosbcosc+sinbsinccosh 4,

and cosh A = cosh B cosh C'+4-sinh Bsinh C cosa.

For this reason the study of the metrical Geometry of the
exterior points and lines gives us nothing that is really new.

It may be noticed that if we wish to stay within the realm of
real numbers there is a complete barrier between interior and
exterior points, and between interior and exterior lines. For
by no convention about the scale constant can it be ensured
that the distances between all pairs of real points one of which
is interior and one exterior are all real; a similar statement can
be made about the angles between pairs of lines one of which
is interior, the other exterior.



CHAPTER X
SINGULAR METRIC GAUGES

IN the preceding chapter it has been shown how distance and
angle can be deﬁnﬂ terms of the concepts of Projective
Geometry. In a certain sense it is true to say that, thus defined,
these notions are more general than the corresponding notions
in elementary Geometry, but it is not to be inferred from this
that Euclidean Metrical Geometry can be elaborated from them
in the same way that Elliptic and Hyperbolic Metrical Geo-
metries were elaborated. In other words, Euclidean Metrical
Geometry is not a particular case of the general Metrical
Geometry to which Projective Geometry gives rise. It is, in
fact, a limiting (and singular) case of the general Metrical
Geometry, and in this chapter it is shown how the limiting
process is undertaken, and what its results are. Incidentally, it
will appear that it occupies, so to speak, the borderline position
between Elliptic and Hyperbolic Metrical Geometries.

From another point of view, Euclidean Metrical Geometry
may be said to be a metrical Geometry which arises from the
use of singular conics as metric gauges. This statement is not,
however, the whole truth, and it needs very precise qualification.
What exactly that qualification is will appear from the sequel.

10.1. The Limiting Process

We start by taking as metric gauge the non-singular real

conic whose point and line equations are, respectively,
cx?+cy®+-2% = 0,

and B4+ m2+cn? = 0,
where ¢ is a real number. Plainly, if ¢ is positive, this will give
rise to Elliptic Metrical Geometry, and if ¢ is negative, to
Hyperbolic Metrical Geometry.

It is convenient to write ¢ = R?2, where R? is a real number,
positive or negative.

The limiting process is to make R? tend to zero, and in carrying
it out, three separate processes must be examined: (i) the effect
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on the metric gauge, (ii) the effect on the definition of angle,
and (iii) the effect on the definition of distance.

10.11. The Limiting Process on the Metric Gauge

As R? tends to zero, the point equation

R%? R%? 422 =0
tends to 2=0.

This is the equation of two coincident ranges of points on the
line [0, 0,1], and is therefore the equation of a singular point-
conic.

A little thought will show that such a conic cannot be used
for the definition of distance in the ordinary way, since if it
were, the metric gauge points on every line of the field would
coincide.

We call the line [0, 0, 1] the special line,T since it is metrically
special. The points on it may be called the #sotropic points,
since they have the properties of isotropic points in other
Metrical Geometries, but the name is not usual.

As R? tends to zero, the line equation of the metric gauge
tends to I24-m?2 = 0.

This is the equation of the two pencils of lines on the points
(%,1,0) and (—1,1,0); it is therefore the equation of a singular
line-conic.

This singular conic can be used in the ordinary way for the
definition of angle, since two of its lines are on every ordinary
point of the field. In practice, for the sake of uniformity, we
derive the expression for the angle between two lines by the
limiting process, and not by the direct application of the defini-
tion of angle. The results are the same, whichever method be
used.

The two points (3, 1, 0) and (—¢, 1, 0) will be given the perma-
nent labels I and J, and will be called the special points.i It
will be noticed that both are on the special line.

The isotropic lines of the field are the two pencils on I and J;

+ It is sometimes called the line at infinity, or the vanishing line, or the
absolute ; none of these terms is without false implications.

% They are also called the circular points at infinity ; this name is misleading,
and it has another disadvantage in that it is based on a very subsidiary pro-
perty of the points.

4191 gk
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hence the isotropic lines on any ordinary point P are the lines
PI and PJ.

10.12. The Limiting Process on the Definition of Angle
If p and ¢ be the two real lines whose coordinates are

[Ty, my,my], [Ty, ms, nﬁeﬂpectively, and if the line equation of

the metric gauge be 1*-m2+ Rn? = 0,

then, by working through the usual analysis and taking —31 as

the scale-constant, we find that

[pg] = —}ilog { “hatf{(Fy) 2ﬂ1—‘£—2?}} )

— Py o F (B2 —Fyy By}
If we make R tend to zero in the expression on the right, its

limit is —Jilog {(l1 lyt+m, mz):!:@:(ll my—I, m,)}. 1
(&, Lp+my mo) Fi(ly my—1y my)
Now provided neither p nor ¢ coincides with the special line,
it follows from Lagrange’s identity and the inequality attached
to it (9.51) that

(y lyt-m my)?

< @@y <"
(tymy—1ym,)?
and 0o 2 21 1.
= @m)Bmd)
‘We make no convention as yet about the sign to be taken in
the numerator and denominator of (1).

Now write cosf — _ (ylyFmymy) (2)
EFmdiB-Fmi
and sing = _(hma—lym) @)

Hmip@+my¥
positive square roots being taken in the denominators of both
fractions, and 6 satisfying 0 < 6 < 2.

On substituting these values in (1), we find that [pg] = nn+60
if the upper sign be taken in (1), and [pg] = nw—20 if the lower
sign be taken in (1), » being any integer.

These results are only compatible with (2) and (3) if » is an
even integer or zero. Hence

[pq] = 2n=+0 if the upper sign be taken,
and [pg] = 2nw—0 if the lower sign be taken.
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It will be recognized that the choice of sign corresponds to the
choice of a definite sense of rotation as the positive sense in
elementary Geometry.

There is no loss in generality in elementary work if # is so
chosen that 0 < [pg] < 2.

These results may be summed up as follows:

(@) 0 < [pg] < 2m,
(ii) cos[pg] = (bl +my my)

B+miy@E+my¥
(i) sinfpg] = FEOTEATL,
(v) tan[pg) = T 570 )
A further useful result may be given here; if we write
cos ) = (_li"—érﬁi)* and sinf, = (lﬁ;ﬁ—f)’

and similar expressions for cos 8, and sin8,, it is easily verified
that [pg] = 4 (0,—6,).

It will be noticed that the results given above are similar to
those of ordinary Analytical Geometry.

10.13. The Limiting Process on the Definition of Distance
The fact that as R tends to zero the point equation of the
metric gauge breaks down more completely than the line equa-
tion leads us to expect that the limiting process on the defini-
tion of distance is a more involved and delicate process than
the preceding. This expectation is verified.
We start with the point equation of the metric gauge
R%*+ R¥*+4-2% = 0,
where R is not zero.
Let P and Q be two points not on the special line, whose
coordinates are (z,,%,,2,) and (2, ¥,,2;) respectively.
Let 7' be the greater of the two positive numbers
A+l Coux )
4 4
we restrict |R2| to be less than 7' if 7' is positive; if T' is zero,

and
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| B?| is unrestricted. The object of this restriction will become

apparent later.
Now if (PQ) = d, it fo]lows from 9.32 that

_ ()—fufe
? fufe
where k is the scale-constant.
‘We now choose k equal to 1/(2¢R), so that

sz( Rd) (f 12) —f 11f 22
11J 22
— = B¥H(2)2,—2,%1)*+ (21 Y2 — 2 41) ]+ R4L
2222+ R2M+ RN

where L, M, and N are polynomials in the coordinates.

As R tends to zero, the right-hand side of this equation tends
to zero (and the denominator does not vanish in the process
owing to the restriction on R2).

Hencet lim sinz(Rd) =0,
sin?*(Rd) _
an:(biT 80 Lim = pagr— = L
ow
daslnz(Rd) — (jlfz_zg_%) + (@1 Y—29)— Ri-lj
R24? z”+R2M+.R4N ’

and from this it is obvious that
lim(d?) = (21 2,—2, 7"'1) '+ (z1 Ys—2, y1)
R0 2323
We therefore define the distance between the two points
P and @ by the equation
(PQ) = (2 x2—22x1)2+ (21 Y22, .’/1)2
z1 22
Since neither P nor @ is on the special line [0, 0, 1], we may,
without loss of generality, take z; = 2, = 1; the expression for
distance then takes the familiar form
(PQ)? = (xy—21)*+(¥—y1)*
In practice it is not always useful to make this simplification.
+ Since d is itself a function of R, we cannot infer that‘lb:n:;sin’(Rd) =0,
except by the method used, or some equivalent of it.
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From the above equations it follows that

(PQ) = + A/((zﬂ’z'—zz‘”l)a‘f‘ (z1y2—z'ay1)s)’

42

and whenz; =2, =1

(PQ) = £f{(@s—21)*+(y:—¥1)}
In the work undertaken here we shall take the positive square
root always.

10.2. Euclidean Metrical Geometry

The limiting processes for the metric gauge, the angle formula,
and the distance formula having been effected, it is now possible
to give a formal definition of Euclidean Metrical Geometry.

DrrintrioN. A4 Euclidean metric is said to be tmposed on the
projective field, when

(i) two distinct points I and J are chosen as the special points,
and the line on them as the special line, and

(ii) @ homogeneous mesh gauge having been imposed on the
field in such a way that the points I and J have the coor-
dinates (i, 1,0) and (—1, 1, 0) respectively, the angle between
two ordinary lines is defined by the expression given in
10.12, and the distance between two ordinary points is
defined by the expression given in 10.13.

10.3. The Triangle in Euclidean Metrical Geometry

Let ABC be a triangle whose vertices are the ordinary points
(%1, Y1, 21)s (Za, Yss 25), 8N (X3, ¥a, 25) Tespectively. For simplicity,
we take 2, = 2, =23 = 1.

The coordinates of the sides of the triangle will then be

a: [Ya—Ys T3—%g, Z2Y3—T3Ys] OF [1,my,my];
b [Ys—Y1 ¥1—%s, T3 Y1—1Y3] OF [lg, Mg, my];
¢ [Y1—Ya Xa—%y, T, Ya—2, 4] OF [lg, mg, mg).

The usual convention that the angle 4 will be the angle
between the lines AC and A B will be observed; the choice of a

sense of rotation will be made later. °
The lengths of all sides will be taken as positive.
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10.31. Preliminary Algebraic Identities

From 10.13 it follows that

@ = [(wy—25)*+ (Y2—ys)*Th

and there are similar expressions for b and c.

From 10.12

—[(Ys—y1) @1 —Yo) + (21— 5) (T, —21)]
[(Ys—1)*+ (@1 — 232 P (11— y2)*+ (e —2))*]¥

: _ :E[(?/s—'%)(-’”z—%)—'(xl_‘xa)(yl—yz)]

and sind [(Ya—y2)*+ (2, —23) R (41— Y2)2+ (@a—2)) 2
the positive or negative sign being taken in the numerator
according as one or the other sense of rotation is chosen as the
positive sense.

If the numerator of this last fraction be expanded and simpli-
fied, it is found to be -+ A, where
% oy 1
Ty Yo 1
g Y 1
we agree to take the positive sign if A is positive, the negative
sign if A is negative. It follows that sin4, sin B, sin C are all
positive, so that all the angles of the triangle are less than 7.

10.32. The Cosine Formula
TaEOREM. In a triangle ABC in Euclidean Metrical Geomeiry
0% = b2+c2—2bccos 4,
and cos A = —cos Bcos C+sin Bsin C.

These two formulae are the counterparts in Euclidean
Metrical Geometry of the cosine formulae in Elliptic and Hyper-
bolic Metrical Geometries.

To prove the first formula we observe that

—2bccos 4 = 2(y3—¥1)(¥1—~Y2) +2(2,—25) (X, — 1)

= [~y — Wa—y) P+ [(@s—21)— (22 —2,) P—
—(Ys— Y1) (Yg—Y1)2— (Tg—2,)*— (2 —7,)*
= g®—b%:—c2

The second formula may be proved by substitution of the
appropriate algebraic expressions for cos B, cos C, etc.

cosd =

A=

3
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10.33. The Sine Formula
THEOREM. In a triangle ABC in Euclidean Metrical Geometry
gind sinB_sinC __ 4A

a b c abc’
that sign being taken in the last member which makes the whole
expression positive.

This theorem follows at once from the fact that
sind = +A/(be).

10.34. The Sum of the Angles of a Triangle
THEOREM. In a triangle ABC in Euclidean Metrical Geometry
A+B+C = 7.

This theorem follows from the second part of 10.32; the
proof is similar to that of the corresponding theorem in Elliptic
Metrical Geometry (9.542).

ExAMPLES

1. ¥rom the results of 10.31 show that in a triangle A BC in Euclidean
Metrical Geometry a = bcos C+-ccos B.

2. Show that in Euclidean Metrical Geometry two ordinary lines make
equal angles with a third ordinary line if and only if the common point
of the first two is on the special line but distinct from I and J.

3. A and B are a pair of mates in an involution on the special line of
which I and J are the self-corresponding points; P is any ordinary
point. Show that the lines P4 and PB aro orthogonal.

4. Determine necessary and sufficient algebraic conditions that a
real conic whose equation is

aa?-+by? -+ o2+ 3fyz-+ e+ Shay = 0
shall be
(i) on a pair of real points of the special line,
(ii) on a pair of complex points of the special line,

(iii) on & pair of coincident points of the special line,

(iv) on I and J,

(v) on the points 4 and B, where (IJ, AB) is & harmonic tetrad.

5. The point R is said to be the mid-point of PQ if and only if
(PR) = (RQ). Show that if S be the isotropic point collinear with P
and @, the necessary and sufficient condition that R should be the mid-
point of PQ is that (PQ, RS) should be & harmenic tetrad.

6. Determine the coordinates of the miid-points of the sides of a
triangle whose vertices are (y, ¥1,2;) (€3, ¥z, %), 80d (%5, Y3, 25).
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7. Detormine the equation of the conic on the five points I, J,
(%1, %1,21)s (%2, Y2s 23), BN (g, Y5, 25)-

8. ® is a conic on the two points I and J. Show that the ordinary
points on @ are all equidistant from the pole of the special line relative
to @.

9. A and B are the sel]f‘corresponding points of an involution on the
special line, in which I gnd J are a pair of mates. Show that if C and D
are another pair of mates in this involution, and if P is any ordinary
point, LCPA = LAPD and L CPB = [/ BPD; that is, that the lines
PA and PB are the bisectors of the two angles CPD and DPC.

10. In Euclidean Metrical Geometry two lines are said to be parallel if
their common point is on the special line (cf. Ex. 2), and a four-line
is said to be a parallelogram if one of its diagonal lines is the special
line. With these definitions prove tho theorems of elementary Geometry
which deal with the parallelogram. (The most important are (i) opposite
sides and angles equal, and (ii) diagonals bisect each other.)

12. Taking the definition of a median of a triangle as it is given in
elementary Geometry, prove that the medians of a triangle are con-
current.

13. In Euclidean Metrical Geometry the centre of & non-singular
conie is defined to be the pole of the special line relative to the conic,
and any line on the centre of a conic is said to be a diameter of the conic.
Show that

(i) If A and B are the two points common to & conic and one of
its diameters, then the centre is the mid-point of 4 B.

(ii) The locus of the mid-points of chords of a conic which are all
parallel to a given diameter is a diameter which is conjugate to the
first relative to the conic.

14. In Euclidean Metrical Geometry & central conic is defined to be
a non-singular conic whose centre is an ordinary point; a parabola is
defined to be a conic whose centre is on the special lino. Show that

(i) all diameters of a parabola are parallel ;

(ii) on four distinet ordinary points, no three of which are collinear,
there are in general two and only two parabolas.

15. In Euclidean Metrical Geometry the asympiotes of a central
conic are defined to be the tangents to the conic which are on the centre
of the conic. Show that the common points of a conic and its asymptotes
are on the special line. Show also that pairs of diameters which are
conjugate relative to the conic are pairs of mates in an involution in
which the asymptotes are the self-corresponding lines.

16. Determine the coordinates of the centre, and the equation of the
asymptotes of the conic whose equation is

ax®+by? 4 ez + 2fyz+ 2gz 4 2hwy = 0.
17. Show that the necessary and sufficient condition that the

asymptotes of & conic should be orthogonal is that I and J should be
conjugate points relative to the conic.
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10.4. The Use of the Non-homogeneous Mesh Gauge

Because in Euclidean Metrical Geometry one line is ‘the
special line, it is sometimes convenient to use a non-homo-
geneous mesh gauge wherein the special line is the unlabelled
line. The change from the homogeneous mesh gauge to the
non-homogeneous mesh gauge is effected, as usual, by choosing
the coordinates of all ordinary points so that the z-coordinate
is 1. The vertex Z of the triangle of reference will then be the
origin, the lines ZY and ZX will be the axes of « and y re-
spectively.

But it should be noted that though this is often a simplifica-
tion of the algebraic work involved in a problem, it may not
be a useful simplification of the geometrical problem. For the
non-homogeneous mesh gauge so chosen cannot lead to any
information about the special line; and in one sense the special
line is the most important line of the field in Euclidean Metrical
Geometry. To leave it out of account may therefore be a serious
blemish.

10.5. Euclidean Metrical Geometry and Elementary

Geometry

The reader cannot have failed to notice the similarity between
the results of this chapter and the various results with which
he is familiar from elementary Geometry, Trigonometry, and
Analytical Geometry. This similarity raises the question: What
are the relations between Euclidean Metrical Geometry (i.e.
Projective Geometry with a Euclidean metric imposed) and
elementary Geometry ?

It should be recognized at this stage that if we impose on the
projective field a homogeneous mesh gauge, and then consider
the set of points which are (i) real and (ii) not on a certain
definite line, we have a set of points of which the points of
elementary Geometry are a representation. The propositions
of incidence which can be stated of this restricted set of points
in the projective field are identical with the propositions of
incidence which can be stated in elementary Geometry. Owing
to the fact that we have deliberately left out of consideration

a whole range of points, the initial propositions of Projective
4191 Ll
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Geometry cannot be predicated of the restricted field without
qualification, and this is the reason why the initial propositions
of Projective Geometry are not true, as they stand, of elemen-
tary Geometry.

If now we impose a Kuclidean metric on the original Projec-
tive field, making thé line we considered exceptional to be the
special line, and two appropriate complex points on it the special
points, then the metrical relations between the points and lines
of the restricted field will be identical with the metrical relations
between the points and lines of elementary Geometry.

Hence we may say that elementary Geometry is one repre-
sentation of a restricted portion of the Projective field on which
a Euclidean metric has been imposed.

Another important distinction between Euclidean Metrical
Geometry and elementary Geometry should be noticed. If we
wish to impose a Euclidean metric on the Projective field, we
may choose any line we please as the special line, and any pair
of distinct points on it as the special points. The metrical rela-
tions of the field will then be Euclidean. There are thus an
infinity of ways in which a Euclidean metric may be imposed
on the field; with one of them a certain triangle may be right-
angled, with another the same triangle may be equilateral,
and so on. But in elementary Geometry the metric is definitely
and unchangeably fixed by the presuppositions of the Geometry.

10.51. The Circular Points at Infinity

The analytical treatment of elementary Geometry led mathe-
maticians to the conclusion that the field of elementary Geo-
metry lacked an important line, which they called the ‘line at
infinity’, and the device of homogeneous coordinates in Analyti-
cal Geometry enabled them to add this line to the field and
discuss it in much the same way as other lines. In doing so
they realized they were stepping outside the boundaries of
elementary Geometry, and so the line was spoken of as an
‘ideal line’—something not really there, but convenient to
imagine as being there. When a further widening of the field
was made, and complex points were added, it was recognized
that there were two very important complex points on the line
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at infinity ; and because every circle passed through these points,
they were called the ‘circular points at infinity’.

These points we have seen as the special points of the Eucli-
dean metric; the approach to them from Projective Geometry
shows that they are not different from any other point of the
field, though from the nature of things they do not share certain
metrical properties with other points. But, since the reason
for these exceptional metrical properties is clearly shown, the
special points are not the anomalous and contradictory things
they usually appear to be in Analytical Geometry. The pro-
jective approach shows that, because of the definitions, the
special line and all points on it are metrically exceptional;
Analytical Geometry cannot show why this should be so, and
sometimes does not point out that it is so.

By way of illustrating the use of definitions, we may here
attempt to answer the question: ‘Does every circle pass through
the circular points at infinity?’ The true answer is: ‘It depends
how the term circle is defined.’ Ifit is defined as being the locus
of points which are equidistant from a given point, then I and J
are not on this locus. Ifit is defined as the conic whose ordinary
points are all equidistant from a given point, then I and J are
on this conic. (See 10.34, Ex. 8.) It is best to define a circle in
Euclidean Metrical Geometry either as a conic which is on I
and J, or as a conic whose ordinary points are all equidistant
from a given ordinary point. (The two definitions are not quite
equivalent; the second definition excludes the singular conics
which satisfy the first.)

10.52. The Role of the Special Points

The role which the special points play in Euclidean Metrical
Geometry has already been illustrated in the examples given
after 10.34, and it may be further emphasized. A number of
examples and theorems in Chapters V and VI are projective
theorems which can easily be translated into metrical theorems
in Euclidean Metrical Geometry, when a certain pair of points
are taken as the special points. The theorems and examples
which admit of easy translation in this manner have been so
worded that the letters I and J appear in them; when these
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points are taken as the special points, and the projective rela-
tions of the other points and lines with them are stated in
metrical terms, a metrical theorem (usually well known) appears.

Thus if in Theorem 6.31 I and J are taken as the special
points of Euclidean Metrical Geometry, then

() Yy, Y3, Y3 arte the mid-points of 4,4, A;A4,, 4,4,
respectively;
(ii) 4, is the orthocentre of the triangle 4,4, 4,;
(iii) Dy, D,, D, are the feet of the perpendiculars from 4,, 4,,
Ay onto 4,4, Az 4,, A, A, respectively;
(iv) Y}, Y,, Y, are the mid-points of A,4,, 4,4, Ay4;
respectively.
In metrical terms the theorem states that there is a circle on
the nine points D, Dy, D;, Y3, Y,, Y3, Y4, Y3, Y3. This circle is
known as the nine-points circle in elementary Geometry.

The converse process, that of producing a projective theorem
from a metrical theorem in Euclidean Metrical Geometry is also
instructive, and the reader should attempt to translate some of
the easier metrical theorems of elementary Geometry into pro-
jective terms, and then to prove them projectively.

It is not to be inferred from this, however, that the whole
object of Projective Geometry is to produce metrical theorems.
The foregoing remarks are intended to show that the metrical
interpretation of theorems gives only one aspect of those
theorems, and that not the fundamental aspect. The metrical
properties of the field are accidental and subsidiary; they are
not the fundamental properties that elementary Geometry
makes them. The whole truth is expressed when it is said that
metrical properties are not absolute but relative properties;
they are relative to a metric gauge (singular or non-singular),
the choice of which is entirely at our disposal.

10.6. Simultaneous Metrics

This relativity of metrical properties may be illustrated by
imposing simultaneously on the field three distinct sets of
metrical properties.

First we impose on the field & homogeneous mesh gauge, and
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choose three real points of the field which are interior points
relative to the real-real conic whose equation is

—(@*yP—2?) = 0.
Calling these points A, B, and C, we impose a hyperbolic
metric by taking this point-conic and the corresponding line-
conic as metric gauge.

Let the measures of the sides and angles of this triangle with
this metric be ay, b, ¢, 4,, By, C;.

Next we impose an elliptic metric, by taking the usual conic
as metric gauge; let the measures of the sides and angles with
this metric be a,, by, ¢y, 4,5, By, C,.

Finally, we impose a Euclidean metric, by taking the line
[0,0, 1] as the special line and the points I and J as the special
points. Let the measures of the sides and angles in this metric
be ag, bs, ¢35, A3, B, C;.

Then at one and the same time it is true that

cosha, = cosh b, cosh ¢;+sinh b, sinh¢, cos 4,,
COB @y = €08 by €08 Cy-+8in by sin ¢y cos 4,
and a2 = bi4ci—2bycyco8 4,;
nor can it be said that any one of the foregoing represents the
Metrical Geometry of the triangle more faithfully than any other.

10.7. Parallelism

It is sometimes said that the fundamental difference between
Elliptic, Hyperbolic, and Euclidean Metrical Geometries lies
in what is called the parallel postulate which each makes. It
has been shown that the fundamental difference between the
three lies %ot in the choice of this or that parallel postulate, but
in the choice of this or that metric gauge. Nevertheless, the
question of parallelism in the three Metrical Geometries deserves
some consideration.

In elementary Geometry a common form of parallel postulate
is what is called Playfair’s Axiom: Through any point not on a
given line, there is one and only one line parallel to the given
line. And the corresponding postulates for the other Metrical
Geometries are (1) for Elliptic Metrical Geometry: Through any
point not on a given line there are no lines parallel to the given
line, and (2) for Hyperbolic Metrical Geometry: Through any
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point not on a given line there are two lines parallel to the given
line.

Whether or not these postulates are verified in the three
Metrical Geometries depends on the definition given of parallel
lines. We therefore tesy/various definitions.

DEF. 1. Parallel lines are lines that do not meet (at a finite point).

The postulates are verified for Euclidean and Elliptic Metrical
Geometries. That for Hyperbolic Metrical Geometry is not
verified, since, given an interior line, there are an infinity of
interior lines which do not meet it.

Dgr. I1. Parallel lines are lines which meet on the absolute.

If ‘absolute’ be translated into the term ‘point-conic of the
metric gauge’ the three postulates are verified in their respective
Metrical Geometries.

DEr. II1. Parallel lines are lines which make equal angles with
any transversal.

The postulate of Euclidean Metrical Geometry is verified.
Lines having the requisite property are non-existent in the
other two Metrical Geometries.

DEr. IV. A line is said fo be parallel to a given line if it is every-
where equidistant from it.

The postulate of Euclidean Metrical Geometry is verified.
In the other two Metrical Geometries the equidistance locus
is a conic, not a line.

The four definitions of parallel lines are equivalent in Eucli-
dean Metrical Geometry; if they have any meaning in the other
Metrical Geometries, they are not necessarily equivalent. Hence
the meaning of the term parallel must be carefully defined
before it can be said whether or not a given ‘parallel postulate’
is verified in Elliptic or Hyperbolic Metrical Geometry.

10.8. Complex and Real Euclidean Metrical Geometries
The Euclidean Metrical Geometry which has been investi-
gated so far in this chapter is the result of a limiting process on
the non-singular conic whose equations are
R+ R%?+22 = 0
and 124+m2+ R*n2 = 0.
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This limiting process produces the real-complex singular line-
conic whose equation is
I24m? = 0,
as the metric gauge for the measurement of angle.
Now it is quite clear that if we had started with the non-
singular conic whose equations are
— R%2+ R%2 422 = 0
and P—m?— R%n? = 0,
and carried out the same limiting process, the resulting singular
line-conic for the measurement of angle would have been that
whose equation is Bem? = 0.

This is, plainly, a real-real singular line-conic. It is in fact
the line-conic consisting of the pencils of lines on the two
points (1,1,0) and (1,—1,0).

Hence this singular Metrical Geometry is very similar to the
Euclidean Metrical Geometry which has already been developed.
There is a special line, the line [0,0,1], and on it two special
points (1,1,0) and (1, —1,0), and from these are derived the
metrical properties of the field.

These two singular Metrical Geometries bear to each other
a relation very similar to that between Elliptic and Hyperbolic
Metrical Geometries. They may be distinguished by calling them,
respectively, Complex Euclidean Metrical Geometry and Real
Euclidean Metrical Geometry ; the reason for the names is obvious.

The reader is very strongly advised to work out the details of
Real Euclidean Metrical Geometry in exactly the same way as
those of Complex Euclidean Metrical Geometry. The following
is a synopsis of the results.

(i) Distance.

The distance between two points (zy,y;,2,) and (2, ¥, 2,) i8

+ J ((21”2"'22‘”1)2"(z1?lz"‘zz!/1)2)
A4
or, if 2, = 2, = 1, H{(ws—21)*— (ya—91) .

(ii) Angle.

It being agreed that the coordinates of all lines shall be
specified only by three real numbers, it will be found that the
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ordinary lines of the field are divided into two distinct classes.
If [I,m,n] are the coordinates of an ordinary line, it will belong
to one class if I12—m2? > 0, to the other if I2—m? < 0. This
corresponds to the distinction in Hyperbolic Metrical Geometry
between interior and ex/tfﬁor lines.

The scale-constant is Aaken as .

If [1;, my, n,] and [Iy, my, n,] are two lines such that I > m}
and 2 > mi, and if @ be the angle between them, then if suitable
conventions be adopted,

_ ly—mym,)
(E—mi) B —md)
: _ (tymy—1ym,y)
and sinh § = G2y (l_g:ing*'

If, on the other hand, I} < m? and IZ < m}, the denominators
in these fractions are changed to

(m}—B)i(m3—T).
From these results the Real Euclidean Metrical Geometry of
the triangle can be deduced.

cosh @ =

10.9. Dual Euclidean Metrical Geometries

The two Euclidean Metrical Geometries were evolved from
the Metrical Geometries of Chapter IX by limiting processes
in which the metric gauge became a singular conic. The line-
conic became a pair of pencils of lines on distinct points, the
point-conic a pair of coincident ranges on a line. It is quite
clear that we could have made the limiting processes work the
other way, so that the point-conic of the metric gauge became
a pair of ranges on distinct lines, and the line-conic a pair of
coincident pencils on a point, the common point of the bases of
the ranges.

The resulting Metrical Geometries would have been the exact
duals of those elaborated in this chapter. Save for the fact that
they illustrate a fifth and a sixth simple Metrical Geometry,
they have no particular interest.



CHAPTER XI

TRANSFORMATIONS OF THE MESH GAUGE AND
THE FIELD

THE problem with which we are first concerned in this chapter
may be stated thus: Given that the field is labelled by two
homogeneous mesh gauges simultaneously, one having the
triangle XY Z as triangle of reference and I as gauging-point,
the other having the triangle X'Y’Z’ as triangle of reference
and I’ as gauging-point, what will be the relation between the
coordinates of any point relative to the first mesh gauge, and
its coordinates relative to the second mesh gauge? Put another
way the problem is: If the triangle of reference and gauging-
point be changed from XY Z and I to X'Y’Z’ and I’, how will
the coordinates of any point of the field be changed?

11.1. Transformations of the Mesh Gauge

It is necessary to have a uniform notation so that confusion
may be avoided. The coordinates of all points relative to the
mesh gauge fixed by the triangle of reference XY Z and the
gauging-point [ will be written in the normal way, (z,y,2),
(2,7, —10), etc. The coordinates of all points relative to the
mesh gauge fixed by the triangle of reference X’'Y’'Z’ and the
gauging-point I’ will be written with primes affixed to the
coordinates, thus: (z',¥’,2'), (2’, 3, 14'), ete.

In order to have a short distinguishing word for each mesh
gauge, we shall speak of the plain mesh gauge and the prime
mesh gauge, rather than of the mesh gauge fixed by the triangle of
reference XY Z and the gauging-point I and the mesh gauge fixed
by the triangle of reference X'Y’Z’ and the gauging-point I’.

11.11. The Equations of Transformation
TarEOREM. If the coordinates of any point in the plain mesh
gauge be (z,y, z), and the coordinates of the same point in the prime
mesh gauge be (x',y’,2'), the two are connected by equations of
the form
Kz = ay x+a,y+as52, kr = Ap o'+ Ay Yy +A457,
By = apnx+tag,ytayz, by = Ao+ Agy'+A57,
k7' = a5 &+agy+0a52, kz = A132'+ Ay + 457,
41901 Mm



266 PROJECTIVE GEOMETRY

where (i) the determinant
G Gy Gy
Qg Qgp Qg

31 @3 dg3
18 not equal to zero, /

(i) Ayy, Ayp, A5 are the minors of a,y, a4, 643, efc., respectively,
in this determinant,

(iii) k& and k' are constants, different from zero.

Suppose that XY Z is the triangle of reference for the plain
mesh gauge, and that I is the gauging-point; let (y,y1,21),
(%3, Y3, 23), (3,Y3,23), and (2, Yy, ), Tespectively, be the prime
coordinates of these points. Then since no three of them are
collinear, there is a set of four numbers, Ay, A;, A,, A;, none of
which are zero, which satisfies the three equations

A Zg+A 21+ A x5+ A3 25 = O,

X Yo+A Y1+ Y2+ 25 ys = O,
and AoZo+A 21+ A zs+A325 = 0.
Moreover, it is plain that if the actual numbers specifying the
coordinates of these four points are suitably chosen, one solu-
tion of these equations will be Ay = A, = A, = A; = 1, and it
will henceforward be supposed that this is so.

From this it follows that the point whose prime coordinates
are (r;+3, Ys+Ys3, 25-+25) may also be specified as

(@o+1, Yo+y1, 20 +21);
that is to say it is collinear with ¥ and Z, and it is also collinear
with X and I.

If then I, I, L, are the points (ZIZ) (ZX), (XY) re-

spectively, their prime coordinates are (z,-+3,¥s-+¥s,22+23),
(@s+21, Yat+-y1, 25+21), (@1+25, Y1+Ys, 21+25), respectively.
Suppose now that P is a point of the field, and that its plain

and prime coordinates are, respectively, (z,y,2) and (z',y’,2).
Then, as before, there is a set of four numbers, p, py, pa, ps,
which satisfies the three equations

1 +pay 21+ p Tyt g g = 0,

BY F Y1t raYatuaze = 0,
and p2'+py 2+ pa 2t g 25 = 0.
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Moreover, if it be supposed that no three of the five points
XYZIP are collinear, none of the numbers u, py, p,, ps are

zero, and their ratios are unique.

. YZ\ (ZX\ (X
If now P, F, F, are the points (XP)’ (YP)’ (ZP , Te-

spectively, their prime coordinates are
(12 3+ 133, o Y2t Ha ¥, HaZatHa2a),
(ks T3+ py 21, paYstpaYis pazstpa21)s
(1 T+ o %o ta Y1+ 2 Y2 i 21+ e 2),s
respectively.

Consider now the cross-ratio of the four distinct collinear
points, R(YZI F,). If their plain coordinates are used to
evaluate this cross-ratio, it is found to be

R{(1,0), (0,1), (1,1), (3,2)};
but if their prime coordinates are used to evaluate it, it is found
to be R{(1,0),(0,1), (1,1), (up, p5)}. From this, and frem a
similar consideration of the two cross-ratios R(ZXI, F),
RI(XYI, P,), it follows that cx = p,, cy = p,, ¢z = pg, Where ¢
is a number which is not zero.

When these values of p;, u,, and u; are substituted in the
equations given above, the result is

p &’ +cazy+cyx,+czxg = 0,
and two similar equations, and if a,;, @5, 0,3, etc. be written
for —cz,, —cx;, —cxg, and %’ for u, these take the form given
in the enunciation; namely

Kz’ = ayxt-a,y+-a5,2,

'y = ayzta,ytasxz,

k2 = ag x+a5,y+0as52.
It is plain that the determinants

’ ’ ’
Gy Gyp O3 —Cx; —Cry; —C3
’ ’ ’
Gy Gy Gy | and | —cy; —cys, —cys
’ ’ ’
Qg Ggp Ogg —c2; —Czg —C23

are identical, and therefore that the former does not vanish;
from this it follows that the second set of equations given in
the enunciation are also true.
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This proves the theorem when P is a point which is not
collinear with any pair of the four points XYZI. That the
equations remain true even when this is so is a simple conse-
quence which is left to the reader to verify.

11.12. The Equation/e/of Transformation of the Line
TarEOREM. The equations of transformation being those given
in the last theorem, if the coordinates of any line in the plain mesh
gauge be [I,m,n] and the coordinates of the same line in the prime
mesh gauge be [I',m’, '], then the two are connected by the equations
k'l = Ayl+4,m+Agn, Il = ay U+a,m'+-agn/,
Em' = Ay l+Ay,m+A,5n, km = aplU4a,,m +ag,n’,
E'n' = Ay l4+Ag,m+Agn, kn = a3l +aysm'+agn'.
Consider any line [I,m, n]; then the plain coordinates of the
points on it satisfy the equation lx+my+mnz = 0.
Then their prime coordinates satisfy the equation

YAy o'+ Apy' + A5, 2" ) Fm(Ap @'+ Apy + A2’ )+
+n(dx'+ Ay y +As32") = 0.
Hence, if the line is [I,m’, n'] specified in prime coordinates,
BV = A1+ A4, m+Aqgn,
and there are two similar equations for m' and ', as in the

enunciation of the theorem. From these three equations the
other three plainly follow.

11.2. Real Transformations

The theorems so far proved have done no more than show
how the two sets of coordinates of a point in two mesh gauges
are connected. We now consider in more detail a certain special
type of transformation to which is given the name of real
transformation.

DxriNTTION. A fransformation from one mesh gauge to another
18 said to be a real transformation if in both mesh gauges the same
set of points are real points.

Two questions arise: (1) Are there such transformations? and
(2) What are the necessary and sufficient conditions that a trans-
formation should be a real transformation?
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11.21. Existence of Real Transformations

THEOREM. A transformation is a real transformation if all
the coefficients in the equations of transformation (11.11) are real
numbers.

It may be observed first, that if all the nine coefficients
@yqy Gygs Oyzy Qgyy Qgg, Oz, dgy, Qgg, Agg TE real numbers, then the
corresponding minors, 4,,, etc., are also real numbers, and
vice versa.

The theorem is an obvious consequence of 11.11.

11.22. Necessary and Sufficient Conditions

THEOREM. A necessary and sufficient condition that a irans-
Jormation shall be a real transformation is that X', Y', Z', and I'
shall be real poinis in the plain mesh gauge.

That the condition is necessary is an obvious consequence of
the definition of a real transformation. That it is sufficient
follows from 11.11 and 11.21. For by supposition the plain
coordinates of X’, Y’, Z’, and I' may all be expressed by real
numbers; from 11.11 it follows that 4, ete., may be expressed
as real numbers, and so, from 11.21, the transformation is a real
transformation.

This theorem is of interest, not because it is a particularly
useful theorem but because it shows that if four points of the
field, no three of which are collinear, are chosen as real points,
then all the real points of the field are fixed by this choice. It
therefore shows the number of degrees of freedom there are in
the choice of which set of points shall be the real points of the
field.

11.23. Another Necessary and Sufficient Condition

THEOREM. The necessary and sufficient condition that a trans-
formation shall be a real transformation is that all the coefficients
in the equations of transformation shall be expressible as real
numbers.

The word expressible needs some explanation. The equations
of transformation ¥'2’ = a,, x+a,3y-+ 6,32, etc., may be written
ck's’ = cayx-t+ca,y-+oayz, ete.; hence the equations of a
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transformation are not unique. The theorem states that if a
transformation is a real transformation, there is a constant ¢
such that cay,, ca,,, ete., are all real numbers, and conversely.

That the condition is sufficient is obvious from 11.11; this
part of the theorem merely restates Theorem 11.21.

That the conditiory is necessary is proved as follows. If the
transformation is a real transformation, then by 11.22 the
plain coordinates of X', Y’, Z’, and I’ may all be specified by
real numbers; hence, by 11.11, the coefficients in the equations
of transformation may all be expressed as real numbers.

11.3. Application to Metrical Geometry

In the chapter on the metric gauge it was first supposed that
a mesh gauge was imposed on the field, and then a non-singular
conic with a conveniently simple equation was chosen as the
metric gauge. This was, however, an unnecessarily narrow
restriction, which can now be removed.

In the first place, it is plain that if in the plain mesh gauge a
non-singular conic is a real-real or a real-complex conic, then
it is a real-real or a real-complex conic respectively in the prime
mesh gauge if the transformation between the two is a real
transformation.

Let us suppose now that a certain real conic (and for definite-
ness we may suppose it to be a real-real conic) is chosen as the
metric gauge, and that its equation is not —a%—y%+422 = 0.
‘We choose any real self-polar triangle of this conic as the prime
triangle of reference, and any real point not on the sides of this
triangle as the prime gauging-point. In the prime mesh gauge
the conic will have an equation of the form ax'2-+by'2+c2'2 = 0,
where a, b, and ¢ are real and have not all the same sign. For
definiteness suppose that @ and ¢ are negative, and that b is
positive. Then the real transformation given by the equations

kx" = +4(—a)’,
ky" = +'\/(_c)zly
kz" = by’

transforms the mesh gauge into one wherein the conic has the
equation —a"2—y"24-2"2 = 0.
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In this final mesh gauge the metrical properties of the real
points may be investigated by the methods of Chapter IX.
For instance, suppose that the distance between two points
whose plain coordinates are (;, ¥y, 2,) and (x,, ¥, 2,) is required.
Their coordinates in the double-prime mesh gauge are first
found, the distance is then found by the methods of Chapter IX.
This is the distance between them relative to the chosen metric
gauge.

The problems for Elliptic and Euclidean Metrical Geometries
are treated in a similar fashion.

11.4. Transformations of the Field: Homographies

The fundamental concept of Projective Geometry, the pro-
jectivity, was defined in Chapter III as being a relationship
between two ranges or two pencils, or a range and a pencil,
which could be specified by a sequence of perspectivities. A
projectivity between two ranges was seen to be a multiple rela-
tionship between them, whereby to any point of one range was
related one and only one point of the other. It was seen also that
projectivities could exist between two ranges on the same base.

We now introduce & corresponding, but wider, multiple rela-
tionship, called a homography, not between range and range, but
between all the points of the field and themselves.

In order to grasp the notion clearly it is convenient to think
of every point of the field as being two coincident points, one
red, one blue. We may then speak of the red field and the
blue field. A homography is said to exist between these two
fields when (i) to every point of the red field there corresponds
one and only one point of the blue field, and vice versa, (ii) if
three points of the red field are collinear, the corresponding
points of the blue field are collinear, and (iii) if PQRS are four
collinear points of the red field, and P'Q’R’S’ are the corre-
sponding points of the blue field then (PQRS) ~ (P'Q'R'S’).
This may suffice as a definition, for though it is not in formal
language, it is rigorous.

It is possible to discuss homographies by the methods of
Synthetic Projective Geometry; here, however, the algebraic
method is used, and so & homogeneous mesh gauge is imposed
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on the field. Clearly, in any such discussion, it is necessary to
prove first that the multiple relationship called a homography
is possible.

We shall regularly make use of an informal terminology,
since this makes for brevity and clarity. We shall therefore
speak of plain points, the plain field, and prime points, the
prime field. These adjectives are preferred to the adjectives
red and blue, since we agree to specify plain points by plain
coordinates, (z,y,2), and prime points by coordinates to which
a prime is affixed, (z’,y’,2’).

The algebraic work in the discussion of the homography is
almost identical with that used in discussing the transforma-
tion of mesh gauges, though the thought behind that work is
different. It istherefore necessary to distinguish clearly between
the two, since they are easily confused. In treating of the trans-
formation of mesh gauges we are dealing with two mesh gauges
and one set of points; in treating of homographies we are dealing
with one mesh gauge and two sets of points.

11.41. The Equations of a Homography
THEOREM. The necessary and sufficient condition that a multiple
relationship between the poinis of the field shall be a homography s
that the coordinates of corresponding points shall be connected by
equations of the form
'z = ayx+a,y+a5,7, kx= A2+ A4,y +A4,,7,
By = ayxtay,y+ayz, by = A1p2’+A5 Yy + 4457,
k2 = Qg @-+Ggy+ag32, kz = A2 +Agy + 457,
where (i) the determinant
@11 @y Gqg
Qg1 Ggp Qgg

. @31 Q32 Gg
18 not equal to zero,

(i) Ay, Agq, Ay, elo., are the minors of ayq, Gy, Gy, elc.,
respectively, in this determinant, and -

(ili) & and k' are constants, different from zero.

The sufficiency of the condition is proved first.

Suppose then that the two sets of points are connected by
the equations given, and the determinant does not vanish.
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Then clearly to every plain point there corresponds one
and only one prime point. Moreover, if (2;,¥;,2,), (%3, Ys, 23),
(3, g, 23) are three collinear plain points, then

T Y A
Zy Yo % |=0.
X3 Ys 23
But, from the equations, this determinant is equal to
Ay Ay Ay ® Yoz
A, Ay Ap T Yo % s
Ay Ay Ay Ty Ys 2

and since by supposition the first of these two determinants
does not vanish, the second must vanish. Hence the three
corresponding prime points are collinear.

Finally, let PQRS be any four distinct collinear points of
the plain field, and P'Q’R’S’ the corresponding points of the
prime field. If (2,,9,,2;) and (%,,Y,, 25) are the coordinates of
P and @, those of R and S may be written
Ay +pza, MYy +pys, A2y +puzg) and (pxy+ 0y, pYy +0Ys, p2y+02,),
respectively, and so R(PQRS) = R{(1,0), (0,1), (A, ), (p, @)}.

Moreover, if (z1,¥1, 2;) and (23, ¥s,2;) are the coordinates of
P’ and @', it is plain from the equations connecting the co-
ordinates of corresponding points of the plain and prime fields
that those of R’ and S’ may be written

(i +pzs, Myi+pyz, Aol +pz;) and (pzy+-ows, pys +oys, p2i+023),

respectively.

It follows at once from this that

RZ(PIQ’RISI) = RZ{(I, 0), (0, 1), @A, F'): (ps 0‘)},

and so (PQRS) ~ (P'Q'R’'S’). This proves the sufficiency of
the condition.

The necessity of the same condition is proved as follows.

Suppose that there is & homography between the plain and
prime fields. Let XYZ be the triangle of reference of the
mesh gauge, and I the gauging-point. If these points are
thought of as belonging to the plain field, let X'Y’'Z’I’ be the

qan ¥n
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points of the prime field which correspond to them in the
homography.

Let P be any point of the plain field, and P’ the correspond-
ing point of the prime field.

: . YZ\ (ZX
If now L, I, L, 7, P, F, be the six points (XI)’ (YI)”‘

X YZ\ (ZX\ (X . .
( 71) (X ), (YP)’ ( 7p) respectively, and if these be con-
sidered as points of the plain field, it is not difficult to see that

’

the corresponding points of the prime field are I, I;, I,

P , . . (Y'Z'\ (Z’X"\ (XY’
P,, P, and P, respectively, that is, (X’ I’)’ (Y’ I')’ ( 7 I’)’

(Y'Z’) (ZIXI) and ( IY’) respectively.
X'P\Y'P/J VA ’

From this it follows that (i) (YZL,B,) ~ (Y'Z'I,P,) if the
four points are distinct, and (ii) P, coincides with Y, Z’, or I},
according as P coincides with ¥, Z, or I, if the four are not
distinct. There are similar conclusions about the other two
tetrads Z'X'I}, P, and X'Y'I, P,

Consider now a second mesh gauge imposed on both fields;
for purposes of reference this will be called the star mesh gauge.
Let its triangle of reference be X'Y’Z’, and its gauging-point I,
From what has been already deduced, it follows that if in the
plain mesh gauge the coordinates of P are (z,¥,z), the coor-
dinates of P’ in the star mesh gauge are (z*,y*,2*), where
x* = kx, y* = ky, 2* = kz, k being a number different from
zero.

If therefore in the plain mesh gauge the coordinates of P’
are (z',y',7'), the two sets of coordinates (z*,y* 2*) and
(',y’,2') are connected by equations of the type given in
11.11. It follows that the plain coordinates of P and the plain
coordinates of P’ are connected by equations of the same type,
and this proves the necessity of the condition.

The equations determined here may be called the equations of
the homography; they should be compared with the equations
of the projectivity found in 8.22.

Since the equations of a homography are exactly the same
as the equations of transformation of the mesh gauge (11.11), a
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homography is sometimes called a transformation (of the field).
The prime point corresponding to a plain point is called its
transform. This latter term will be used here.

11.42. The Homography of Lines

The homography has been defined as a relationship between
points, and we therefore inquire about the dual concept, the
homography of lines. Actually, however, this is not different
from the homography defined, and it is easily proved that the
homography of points is at the same time a homography of
lines.

For consider the plain line [/, m, z]; the points on it satisfy
the equation lz+my-+nz = 0, and hence the prime points
corresponding satisfy the equation

UApa'+ A4y Y +A5 2 )+m(A, 2" + A5y + 450 2')+
F (A2’ +Agsy’ +A43537") = 0.

Hence the coordinates [I',m’,n'] of the prime line correspond-
ing to [I,m, n] satisfy the equations given in 11.12. The homo-
graphy of points is therefore a homography of lines also.

11.43. The Determination of a Homography
THEOREM. A homography is completely determined when four
prime points, no three of which are collinear, are specified as
the transforms of four plain points, no three of which are collinear.
The proof of this theorem is a simple example of the solution
of simultaneous linear equations by means of determinants; it
should present no difficulty.

11.44. Self-corresponding Points and Lines

In a projectivity between two ranges on the same base there
are two self-corresponding points, which may, however, coin-
cide. Similarly, in a projectivity between two pencils on the
same base there are, in general, two self-corresponding lines
which may coincide. It is natural to ask the question: How
many self-corresponding points and lines are there in a homo-
graphy? The following theorems supply a partial answer to
this question.
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11.441, TaeoreM. In a homography there cannot be four
self-corresponding points, no three of which are collinear, unless
every point i3 self-corresponding.

By the last theorem a unique homography is determined
when four points, no three of which are collinear, are specified
as the transforms of four points, no three of which are
collinear.

If then the four points X, ¥, Z, and W, no three of which
are collinear, are specified as being self-corresponding points, the
homography having this property is uniquely determined. But
the ‘identical’ homography, that is, the homography in which
every point is self-corresponding, has this property. Hence, if
a homography has four self-corresponding points, no three of
which are collinear, it is the identical homography. This proves
the theorem.

It should be noticed, however, that if the words ‘no three of
which are collinear’ are omitted from the enunciation of this
theorem, it ceases to be true. For consider the homography
whose equations are

kx=2a, ky=y', ke=10z2,
where b is not equal to zero or unity. In this homography the
transform of the plain point (r,s,¢) is the prime point (r, s, t/b);
hence all points on the line z = 0 are self-corresponding.
The dual of Theorem 11.441 is plainly true.

11.442. Determination of Self-corresponding Points.
THEOREM. In a homography whose equaitons are those given in
11.41 the coordinates of the self-corresponding .poinis satisfy the

equations (@y—k)z+a,y+a;3z =0,
gy 2+ (Bpe— k)Y +ay2 = O,
Qg1 T+a33 Y +(Ag3—k)2 = O,
where k is a root of the cubic equation
ay—k  ay LoH
Gy  Gep—k Gy [=0.
@31 Qg Ag—k
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If the point (x, y, z) is & self-corresponding point of the homo-
graphy, z, y, and z satisfy the equations
kx = a,, x-+0a,,y+a,52, ete.
That is to say, they satisfy the equations
(ay—k)z+a,y+a3z =0,
and the other two given in the enunciation. These equations
are not, however, compatible unless the determinant

an—k  ap O3
Gy Gy—k Gy | =0;
asy Qgo ags—k

hence k£ must be a root of this last equation.

A full discussion of self-corresponding points of a homography
is beyond the scope of this book, but it will easily be recognized
from the last theorem and its dual that there are in general
three and only three self-corresponding points and three and
only three self-corresponding lines in a homography. In certain
cases, however, the value of £ found from the determinantal
equation does not give a unique solution for z, y, and z. In
these cases a whole range of points is self-corresponding. This
occurs when two roots of the equation for % coincide.

11.443. Invariant Figures. DEFINITION. A4 figure is said to
be an invariant figure of a homography, or to be invariant in
the homography, if and only if it is identical with the figure formed
by its transforms in the homography.

If 1 is a self-corresponding line of a homography, then the
range of points on [ is an invariant figure. Similarly, if P is a
self-corresponding point of the homography, the pencil of lines
on P is an invariant figure.

This does not imply that all the points on ! and all the lines
on P are self-corresponding; it merely implies that the homo-
graphy permutes amongst themselves, go to speak, the points
on ! and the lines on P. Care must be taken to distinguish
between invariant figures and self-corresponding figures; the
two are not the same.

It is possible to have other invariant figures than ranges of
points and pencils of lines, and we shall meet non-singular
conics which are invariant figures in a homography.
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11.45. Further Theorems on Homographies

The following theorems on homographies are simple conse-
quences of what has preceded; the proofs should present no
difficulty to the reader.

11.451. TuaeorEM. [T'he transform of a non-singular conic in
a homography is a non-singular conic.
11.452. TeeorEM. If P, Q, R, and S are four distinct points
on a non-singular conic ®, and if P', @', R', 8, and @' are,
respectively, the transforms of these, then

O(PQRS) ~ ®'(P'Q'R'S").
11.453. TurorEM. The transforms of pole and polar relative to
a non-singular conic are pole and polar relative to the transform
of the conic; the transform of a tangent to a conic is a tangent to
the transform of the conic.

11.5. Real Homographies

DeriNtTION. A homography is said to be a real homography
if and only if the transforms of all real points in it are real points.

‘We shall be concerned in the sequel only with real homo-
graphies, and the two following theorems are proved about
them. The first of these proves that there are real homo-
graphies.
11.51. Necessary and Sufficient Condition for a Real

Homography

TuroBREM. The necessary and sufficient condition that a homo-
graphy shall be a real homography is that all the coefficients in the
equations of the homography shall be expressible as real numbers.

That the condition is sufficient is plain. Its necessity may
be proved in much the same way as Theorems 11.21 and 11.22,
or as follows.

Suppose that the homography is a real homography, and that
(2',¥,2') is the transform of (,y,z2), so that

¥z’ = aj;x+a,y+a,,2, ete.,

%, Y, 2, «', ¥, 2’ being all real numbers.

Suppose now that

k' = k"+ik*, @y = bj;+icy;, a5 = bygticyy, ete.,
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where k”, k*, by,, by, 6tcC., €15, 49, €tcC., are all real numbers. Then
(B"+ik*)z" = (byy+icyy)2—+ (bya+19010)y+ (brg+icss)2.
If this equation be multiplied throughout by (k"—ik*), it
follows that
(k"2 k*2)a’
= (byy k"33 B*)+(bra b+ 010 k*)y+ (b1 6" +C15 k*)2—
— by K*— 3y k") —i(byy K* —C1p ")y —i(brg k*— 13 &)z
From this it follows that
(byg B*—cyg ")+ (byp k*—Cp ")y -+ (brg k*—cy5k")2 = O,
for every z, y, and z; hence the coefficients in this last equation
are all zero. It follows that
(k"2—E*2)
= (by1 K"+ C1y k*)2+ (byo B+ 010 6*)y+ (013 k" +cy3K%)2,
and there are two other similar equations. These must be
equivalent to the original equations of the homography, and
so the equations of the homography are expressible with real
coefficients.

11.52. THEOREM.

The transform of a real-real conic in a real homography is a
real-real conic; the transform of a real-complex conic in a real
homography is a real-complex conic.

This theorem should scarcely require proof.

11.6. Invariant Non-singular Conics

The term invariant figure has been defined already, in 11.443,
and in this section we consider briefly one type of invariant
figure, the conie.

Consider, in the first place, & homography in which the self-
corresponding points are the three non-collinear points X, ¥,
and Z, so that the three self-corresponding lines are YZ, ZX,
and XY. Itisat once possible to name six singular point-conics
which are invariant figures in this homography. They are

(i) the two ranges on ZX and XY,

(ii) the two ranges on XY and Y Z,

(iii) the two ranges on YZ and ZX,
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(iv) the two coincident ranges on Y Z,

(v) the two coincident ranges on ZX,

(vi) the two coincident ranges on XY

Similarly, six singular line-conics can be named, all of which
are invariant ﬁgure?./ In general it is true to say that these
singular conics are the only invariant conics in a homography,
but under certain special conditions it sometimes happens that
non-singular conics are invariant.

Consider, for example, the homography determined by the
equations e =y, By =2 Kk2=u=.

The transform of the conics whose equations are

22+y2 22+ Myz-+zztay) = 0,
where A has any arbitrary value, are plainly
@'ty 222 LAy 2’ 42'y’) = 0,
so that every one of these conics is an invariant figure in this
particular homography, and, save when A = 2 ‘and A = —1,
they are not singular conics.

Two questions naturally arise from this fact: (1) Given a
homography, what non-singular conics, if any, are invariant
figures in it? (2) Given a non-singular conic, in what homo-
graphies is it an invariant figure?

It is impossible in this book to give a complete answer to
either question, and, in fact, no attempt is made to answer the
first. A partial answer to the second is made, by taking a
certain set of non-singular conics and determining the homo-
graphies in which they are invariant figures. The non-singular
conics selected are those whose point equations are

R2x?4 R%%+42% = 0.

This particular set of conics is admittedly selected because
of the applicability of the results to Metrical Geometry. Before
proving the main theorem about these conics, two subsidiary
theorems are necessary.

11.61. THEOREM.

For all values of t and u, save simultaneous zeros, the point
whose coordinates are (i(t2+u?), (2—u?), 2tuR) 8 on the mon-
singular conic whose point equation is

R’ Re%y2422 =0 (R #0).
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Conversely, any point on this conic has coordinates which may be
expressed in this form.

The proof of this theorem is left to the reader; it should
already have been done in 8.881, Ex. 13.

The theorem shows that we may legitimately speak of the
point (£, %) on the conic, meaning thereby the point whose coor-
dinates in the mesh gauge are those specified in the enuncia-
tion of the theorem.

11.62. THEOREM

If there is a projectivity between two ranges on the non-singular
conic whose point equation is R*x?*-+ R%2+22 = 0, where R = 0,
and if in this projectivity the points (ty,uy), (ts, %), (¥3,Us)s.ees
(¢, u) of one range correspond to the points (b, uy), (£3, Us), (t3, Ug)sers
(¢',u") of the other, then constants A, B, C, D exist such that for
every pair of corresponding points,

t' = At+Bu, u' = Ct+Du, and AD—BC # 0.

Let P,, P, P,... be the points (8, %,), (f5 %s), (I3, %s),..., and
P, P,, P,,... be the points (¢1, uy), (2, %3), (¢3, 3),...; let B be the
point (1,4,0). Plainly B is on the conic.

The coordinates of the line BP are [2{Riu,2Rfu,2t*], or
[¢Ru, Ru,t]. The common point of this line and the line [1, 0, 0]
is (0, Ru,t). Let this point be Q.

Similarly, the coordinates of the line BP’ are ¢Ru’, Ru’, ', and
the common point of this line and [1, 0, 0] is (0, Ru’,t').

Now since  (P,P,B,P,...) ~ (P, P, P, P}...),
and (BBAP.) 2 (0,0,00,.),

and (P{ P P; Pi) B (@505 05 i),
it follows that
(@19 Qs Q) ~ (@) Q) Q3 Qv

and so, from 8.22, that constants 4, B, C, and D exist such that
AD—BC # 0, and for all pairs of corresponding points
t’ = Ai+ Bu and v’ = Ct+Du.

This proves the theorem.
4191 o0
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We are now in a position to prove the main theorem about
homographies which leave the conic whose point equation is
R34 R%24 2% = 0 invariant.

11.63. THEOREM
Any homography whose equations may be put into the form
¥a' = R(p*+N—p*—?)a+2RAu—pv)y+20A-+ppz, (1)
Ky = 2RAu+pv)z+ R(p*+p2—vA— Ay +2(uv—pd)z,  (2)
K2 = 2R2A—ppla-+ 2R uv+pNy+ R(p*+r2—N— e, (3)
where p*+-A2+4u?+12 5 0 has the conic whose point equation 18
R4 R%24-2% = 0 as an tnvariant figure.

Conversely, the equations of any homography which leaves this
conic tnvariant may be put into this form.

That any homography whose equations are of the form stated
leaves the conic whose point equation is R2%x?+ R%%+22 = 0
invariant, may be verified by mere algebra. The converse
theorem may be proved by reductio ad absurdum, or, directly,
as follows.

Consider any homography which leaves this conic invariant.
By 11.453 there is a projectivity between the range of plain
points of the conic, and the range of prime points on it. If
(¢, %) be a typical plain point on it, and (¢', ') be a typical prime
point on it, by 11.62 there are constants 4, B, C, and D, such
that AD— BC # 0, and

t' = At} Bu, % = Ct+Du.
These equations may be written
i = (p+w)i—A+ip)u,
w = QA—iu)t+(p—iv)u,
where p2-4+A2+pu?+412 £ 0.
Now the coordinates in the mesh gauge of the points (Z,u),
(#',u’) are, respectively,
(6(2+u?), (12—u?), 2Rtw), and (i(¥'2+u'?), (#'2—wu'?), 2Ri'w’),
and these two are corresponding points in the homography.
We write their coordinates (z,y,2) and (z',y’,2') respectively.



TRANSFORMATIONS OF MESH GAUGE AND FIELD 283

But
% = i(t'24-u'?)
= i(p+ )2~ 2i(p+iv) At+ip)tu+iA+ip)ut+
A )22 26(A— ipa) (p— )6 (p— ) P
= $¥(ip*+ i —ipt— iy — 2pv+ 22p) + dut (vA+pp) +
+ u2(ip2+ A2 — fpu2—av3 - 2pv— 2A)
= (P +u?)(pP+ A — p2—1%) + 2(BP—u?) Au—pv) +
+4u(vA+pp).

Hence

& = (P4 —pl =2+ 2u—pv)y+20A+pep) B2 (1)
Similarly, it may be proved that

¥ = 2Qp+pv)a+(p*+pt—vA— A2y + 2(uw—pA) B2, (2)
and 2’ = 2ROA—pp)r+2R(u+pAy+ (pP+ 12— X—pd)z.  (3)

Now these equations give the relations between the coor-
dinates of points on the conic and their transforms; but since
no three of these points are collinear, by 11.43 they must be,
the equations of the homography.

If they are multiplied by R, and if a constant be substituted
for R on the left-hand side, they take the form specified in the
enunciation.

This proves the theorem.

The equations (1), (2), and (3) deduced in this theorem are a
slightly more general form of what are known as the Euler-
Rodrigues Equations. They reduce to the Euler-Rodrigues equa-
tions when R = 1. In this form they are well known in the
theory of transformation of axes in three-dimensional Analytical
Geometry.

The group of homographies determined by these equations
for various values of the parameters A, u, v, and p may be called
the Congruence Group of Homographies for the conic whose
point equation is R%z?- R%y2+1z® = 0; the reason for the name
will appear very shortly. If it is necessary to refer to any par-
ticular homography of the group by name, it may be called the
homography (R;p,A, n,v); clearly, the homography (R;p, A, u,v)
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is identical with the homography (R;kp, kA, ku, kv), where & is
any constant different from zero.

11.64. Real Congruence Homographies

When R = 1, so thaZﬂ)e invariant conic is that whose point
equation is 22+y2+4-22 &= 0, those and only those homographies
of the congruence group for this conic are real for which all the
ratios of the parameters p, A, pu, and v are real numbers. In
practice, the real homographies of this group are obtained by
making all the parameters real numbers.

When R = 1, so that the invariant conic is that whose point
equation is —x?—y?422 = 0, those and only those homo-
graphies of the congruence group for this conic are real for
which all the ratios of ip, A, 1, and v are real numbers. Ifin the
equations of Theorem 11.63 R is made equal to 4, and ip, v,
substituted for p and v respectively, they take the form (when
multiplied throughout by —7)

by’ = (—p*+A—pud+v)x+4-2(Au—+pv)y+2(vA+-pp)z,
Ky = 2Qp—pr)x+(—p4-pi4-vi—Ay+2(uw—pA)z,
k2 = —20A—pp)a—2(pv+pA)y+(—p—v2—2*—p)z.

In this form these equations are the equations of the real
homographies of the congruence group for the conic whose
point equation is —z2—y?+2% = 0, when all the parameters
P, A, p, and v are real numbers, and p2+v2—A2—pu? £ 0.

11.7. Congruence in Metrical Geometry

The concept of congruence is familiar in elementary Geo-
metry, where two triangles are congruent if and only if the
corresponding sides and angles are equal. The concept may
be taken over without any modification into the Metrical
Geometry developed from Projective Geometry.

It is possible to elaborate a set of theoréms which would give
necessary and sufficient conditions for the congruence of two
triangles, and which would be very similar to the corresponding
theorems in elementary Geometry. There is, however, a simple
method which is made possible by the foregoing work on homo-
graphies. This is given in the following theorem.
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11.71. The Necessary and Sufficient Condition for Con-
gruence

TaeoreM. In either Elliptic Metrical Geometry or Hyperbolic
Metrical Geometry the necessary and sufficient condition that two
real triangles ABC, A'B'C’ should be congruent is that there
should be a real homography of the congruence group for the
metric gouge, in which A'B'C’ is the transform of ABC.

‘We content ourselves with proving the theorem for Elliptic
Metrical Geometry; the proof for Hyperbolic Metrical Geometry
is very similar, but simpler.

The sufficiency of the condition is proved first. Suppose then
that 4’B'C" is the transform of A BC in a real homography of
the congruence group for the conic whose point equation is
234y2+22 = 0.

Let M, and M, be the metric gauge-points on the line BC.
Let M{ and M; be the transforms of M, and M, respectively in
the homography. Then M; and M, are on the metric gauge, and
RI(M, M, BC) = R/(M; M, B'C’). Hence the two segments B'C”
are equal to the two segments BC; similarly, the two segments
C'A’ are equal to the two segments C4, and the two segments
A'B’ are equal to the two segments 4 B.

Hence each of the eight triangles A BC has its sides equal to
the sides of one of the triangles 4’ B’C’. If a corresponding pair
be selected, the fact that their angles are equal follows at once
from the second part of 9.542. Hence the two triangles are
congruent.

That the condition is necessary is proved as follows. Suppose
that the triangles are congruent.

Let L,, L, be the metric gauge-points on BC, the order being
so chosen that (BC) = —}ilogRI(L, L, BO).

Similarly, let M; and M,, N, and N,, L; and L;, M; and M;,
N; and N be the metric gauge-points on C4, AB, B'C’, C"'4’,
and A’ B’ respectively, the order being chosen in a similar way
each time.

Since no three of the points M;, M,, N,, N, are collinear, and
no three of the points My, M;, N4, N, are collinear, there is
a unique homography in which these latter four points are the
transforms of the first four, respectively. And since 4 is the
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M} M,Z , A’ is the transform
Ni N,

Since (4B) = (4'B'), so that
R(NM,N;AB) = R(N,N; A'B'),

B’ is the transform of B. Similarly, €' is the transform of C.

It remains to prove that this homography is one of the con-
gruence group, that is, that L; and L; are the transforms of
L, and L,.

Suppose then, that L} and L} are the transforms of L, and
L,. Then on the four points My, M;, N, N, are three conics,
and these are respectively on (i) L; and Ly, (ii) L¥ and L¥, and
(iii) B’ and C’. Hence, by Desargues’s (conic) Theorem, there
is an involution

(L{ L} B'LyL¥ C") ~ (Li L¥ C'L{ L} B'). 1)
But  (L{L,B'C") ~ (L, Ly BC) ~ (L* L*B'C"),
so that (L{L¥*B'C") ~ (L, L B'C"),

and so, by (1) (L; L¥B'C’) ~ (L L} C'B’).

Hence esther (i) (L, L¥ B'C’) and (L, L¥ B'C') are both har-
monic tetrads, or (ii) B’ and C’ coincide, or (iii) L; and L¥
coincide, and L, and L¥ coincide.

The first of these is impossible, for it entails that the two dis-
tinet involutions (1) and (B'C'L{ L, L} L¥) ~ (B'C’'L, L, L} L¥)
have two pairs of mates in common. The second is absurd,
and therefore the third is true. Hence the homography is one
of the congruence group. That it is a real homography is left
to the reader to prove.

11.8. Congruence in Euclidean Metrical Geometry

Corresponding to the congruence group of homographies for
Elliptic and Hyperbolic Metrical Geometries there is a congru-
ence group of homographies for Euclidean Geometry. The equa-
tions for these cannot be satisfactorily deduced by a limiting
process (making R tend to zero) from the equations found in
11.63.

For a homography to be one of the congruence group for
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Euclidean Metrical Geometry it is clearly necessary that the
line [0, 0, 1] shall be a self-corresponding line, and, in addition,
either that the points I and J shall be self-corresponding points,
or that they shall be transforms of each other. These conditions
are necessary, but they are not sufficient. In addition it is
necessary that the distance between one pair of points shall be
equal to the distance between their transforms.

It is left to the reader to deduce the equations and to prove
the congruence theorem corresponding to 11.71.

It will be found that the equations take the form

k'x’ = x cos8—ysinf-+t-az,
k'y’ = xsin 0+y cos0+4-bz,
k'z' = z,
when I and J are both self-corresponding points, and
k'z’ = xcos0+ysinf+az,
k'y’ = xsinf—y cos bz,
Kz =z,
when I and J are transforms of each other.

ExAMPLES

1. The plain coordinates of the points X', Y”’, Z’, I’are (1, 0,0),(0,1,0),
(0,0,1), and (a, b, ¢) respoctively, where abc # 0. Deduce the equations
of transformation from one mesh gauge to the other.

2. If they are (1,1,1), (0,1,0), (0,0,1), and (1,0,0) respectively,
what are the equations of transformation ?

3. Show that in the last example the plain coordinates of all points
on the line YZ are identical with the prime coordinates.

4. Determine the coordinates of the self-corresponding points and
lines in the homography whose equations are k'z’ = y—z, &'y’ = z2—x,
k2 =x—y.

5. Show that if the conic whose point equation is —a2—y?4-22 = 0 is
invariant in a real homography, the transforms of interior pointst are
interior points, and the transforms of exterior points are exterior points.

8. A non-singular conic ® is invariant in a certain homography, and
two distinet points 4 and B on it are self-corresponding. Show that
(i) the common point of the tangents at 4 and B is also a self-corre-
sponding point, and (ii) every conic having double contact with @ at
A and B is also invariant in the homography.

+ Aninterior point is here to be defined as a point such that the two tangents
10 the conic which are on it are complex lines.



CHAPTER XII
FURTHER DEVELOPMENTS

THE investigation of'the elementary theory of homographies
carried out in the last chapter brings to a close that part of the
subject of Projective Geometry with which this book deals.
The aim has been to give the reader a wider viewpoint of
Geometry, and to acquaint him with the methods used in the
subject. This strictly limited aim makes it a useful thing to
add a closing chapter in which it is pointed out how the subject
can be extended once the preliminary work is done. These
possible developments are very many, and so this account
cannot pretend to give more than an outline of some of the
more important ones.

12.1. Projective Geometry of Many Dimensions

In this book we have confined ourselves to studying the
Projective Geometry of the two-dimensional field, that is to say,
a field of points and lines. By far the most important develop-
ment of the subject is its extension to a field of many dimen-
sions. The starting-point of many-dimensional Projective
Geometry was outlined in 2.7, and it need not be repeated here.
It will be sufficient to say that instead of confining attention to
but two types of fundamental element, the point and the line,
many-dimensional Projective Geometry deals with many types
of fundamental element. These are inter-related in the first
place by initial propositions of incidence which are generaliza-
tions of those adopted here, and are, naturally, more compli-
cated than those of the two-dimensional field.

In addition to these initial propositions the Projective Pro-
position (3.313), the Harmonic Proposition (4.151), and, clearly,
some suitable initial proposition about extension are needed as
initial propositions. It is unnecessary to take Desargues’s pro-
position as an initial proposition, since this is a consequence
of the initial propositions of incidence in the Projective Geo-
metry of many dimensions.

There is no particular reason for confining oneself to any
particular number of dimensions, and possibly the easiest
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method of attacking this extension is to proceed from two-
dimensional to n-dimensional Projective Geometry at once, n
being an unspecified positive integer.

Many-dimensional Projective Geometry throws considerable
light on a number of questions which are, strictly, two-dimen-
sional by nature. Thus, the deeper theory which underlies
Pascal’s theorem (5.43) can only be fully grasped when it is
approached from the starting-point of many-dimensional Pro-
jective Geometry. The theory of homographies is also greatly
simplified by this method of approach; its synthetic treatment
in two dimensions is laborious, but in many-dimensional Pro-
jective Geometry the synthetic treatment is the natural and
obvious one.

12.2. Finite Geometries

In Chapter VII the question of extension was closed, once
for all, by taking as an initial proposition the isomorphism of
the open set of points on a line with the complex number-
system. It will now be seen that though other initial proposi-
tions of extension might have been adopted, some of them
would have made the work unnecessarily laborious. Such a one
would have been the proposition that the open set of points
on a line was isomorphous with the system of real numbers, or
with the system of rational numbers. It was far easier to take
the proposition we did take, and then when necessary confine
our attention to the real points or the rational points. The
reason of this is that the system of real numbers is itself iso-
morphous with a part of the system of complex numbers; and,
similarly, the system of rational numbers is isomorphous with a
part of the system of complex numbers.

But there are number-systems which are not isomorphous
with a part of the complex number-system; and there are Pro-
jective Geometries which correspond. One such system was
encountered in the representation given in 2.23; there, there
were not more than three points on any line. Systems such as
this were definitely excluded by our initial proposition of exten-
sion, but they are, for all that, a part of Projective Geometry.
Their analytical treatment involves the theory of numbers, and,

aa Pp
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in particular, the theory of numerical congruences; it may be
assumed that the synthetic treatment of them is correspond-
ingly complicated.

12.3. G¥eral Loci and Envelopes

In the preceding chapters the only loci considered were the
range of points on a line and the point-conic; dually, the only
envelopes considered were the duals of these. It is quite clear,
however, that these are not the only types of locus and envelope
which Projective Geometry is capable of handling. The fact
that there is a mesh gauge at our disposal may suggest that a
fruitful development of the preceding work would be the investi-
gation of more complicated types of locus and envelope by the
algebraic method. For instance, it would be possible to inves-
tigate algebraically the properties of loci and envelopes with
cubic, quartic, quintic,... equations. This is certainly a possible
method of studying these more complicated loci and envelopes,
but it is not the best method. Many-dimensional Projective
Geometry is the proper and most natural starting-point for the
study of these more complicated loci and envelopes; the alge-
braic method may be used in conjunction with this, but alone
it is not very fruitful. This is another example of the fact that
many-dimensional Projective Geometry can throw light on a
strictly two-dimensional question.

12.4. Generalized Metrical Geometries

In Chapter IX the notions of distance and angle were defined
projectively, and from them Metrical Geometry was built up.
By taking certain simple conics as metric gauges, and by con-
fining our attention to the real points of the field, a number of
simple Metrical Geometries were developed. Contrary to ex-
pectation, there is not much to be gained from the study of the
general Metrical Geometry, in which a general (complex) conic
is taken as metric gauge, and the metrical relations of the whole
field are considered. But there is a most important generaliza-
tion of Metrical Geometry which is worth outlining here.

In the Metrical Geometries we considered one conic was
taken as the metric gauge for all the points and lines of the
field; in the generalization, not one, but a whole system of
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conics is taken. In fact, with every point of the field is associated
a metric gauge-conic which is used for the measurement of
small distances from the point in question.

By way of illustrating how this is done, and of ggwipg a pre-
cise interpretation of the vague word small, the following
example is taken.

With every point of the field (z,, ¥,,2,) is associated (in this
example) the metric gauge-conic whose point equation is
z, 22 +y, y*+2,2* = 0. Clearly, a point will only be on its own
metric gauge if 23+ y$ 123 = 0, so that points whose coordinates
satisfy this equation correspond to the isotropic points of Pro-
jective Metrical Geometry. With these points we do not deal,
and so, in order to fix definitely the specification of the coor-
dinates of the points with which we do deal, we stipulate that
the coordinates of these points be so chosen that 2§ +y$4-22 = 1.

Consider now two points whose coordinates are (x,,%,,2,) and
(2,48, y, 48y, 2, -+082); if the distance between these two points
be written 8s, then, by 9.32, if the scale-constant is —}s,

cos2(3s) = [xl(xl—_l—Sx)+g_/iy_1iit8y)+z1§z_1j-£z_)]2
(2, 4-82) 24y, (y,4-8y)?-24 (2, 4-82)2

If 8z, 8y, 8z, and therefore 8s be small, this equation after
simplification may be written

(85)% = (3x}+,)(8%)*+ (3yi+y1) (By)*+ (821 +2,)(32)*+

+2(y, 2,)? 8ydz+2(2, )% 828+ 2(x, )% dxdy,
to the second order of small numbers. In the language of
differentials,

(ds)? = (3zi+2,)(dx)*+ (3yi+y1)(dy)*+ (321 +2)(de)*+

+ 243 22 dydz+ 223 o dedx+- 222 Y3 dacdy,
where 2idxt+yidy+22dz = 0.

In this generalized Metrical Geometry, therefore, we obtain
in the first instance, not an expression for the distance between
two points, but an expression for the differential of distance at
any point. The length between two points of a given locus will
then be [ds, where the integral is taken along the locus; the
distance between two points will be the minimum length between
these two points for all the possible loci. These minimum-length
loci are called geodesics; in the Metrical Geometries considered

a0 Pp2
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in Chapters IX and X the lines of the field are the geodesics,
but this is not necessarily so in these more general Metrical
Geometries.

This generalization of metrical ideas is most important, since
it is the true foundagy(onf what is called Differential Geometry;
in fact, Differential Geometry is only the study of the metrical
relations of a perfectly normal projective field, or a part of it,
upon which has been imposed a rather complicated metric.

Differential Geometry must of its nature be treated analytic-
ally, and the analytical weapon most suited for the purpose is
the Tensor Calculus.

12.5. Applications to Physics

The science of Geometry was, in the first instance, the science
of the measurement of the physical space in which we live; it
therefore was, strictly speaking, a physical science. To-day it
is no longer a physical science; nevertheless, it has evolved to
its present state of development from its original state by
successive generalization and abstraction. There is therefore
at least a genealogical connexion between Geometry and the
science of the measurement of physical space. It is only natural
to ask whether there is any closer connexion; whether, in fact,
Projective Geometry is a ‘pure’ mathematical science, corre-
sponding to the ‘applied’ science of Physical Geometry.

Physical Geometry is of its nature a metrical Geometry, since
it is concerned with measurement of space. The first ordering
of the results of these measurements led men to formulate the
propositions of Euclidean Metrical Geometry, and this Eucli-
dean Metrical Geometry continued to be applied to the measure-
ments of space, since it seemed to fit the facts of observation
and its predictions were uniformly verified.

But as the observed facts multiplied, and measurement
became more precise, it became clear that sometimes, at any
rate, the predictions of Euclidean Metrical Geometry were not
verified. The source of this discrepancy was at first attributed
to faulty observation, and later to some hitherto unknown
physical law, but with the advance in the development of
Geometry it became at least a tenable hypothesis that the cause
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of the discrepancy did not lie in either of ¢hese, but in the
Metrical Geometry that was being used to describe the universe.
Men had become so accustomed to the classical Euclidean
Metrical Geometry that they could not imagine any other being
verified in nature.

The px:eceding chapters have shown that there are various
Metrical Geometries, each with precise definitions of distance
and angle, and none of them with any intrinsic claim to be
considered more important than the rest; it is therefore at least
possible that one of them may fit the facts of nature better than
Euclidean Metrical Geometry. Until Geometry had developed
to the point of realizing the possibility of different Metrical
Geometries, any variant on the classical Euclidean scheme was
unthinkable; when the possibility had been realized, the ques-
tion arose: Which of the possible Metrical Geometries best
describes the universe ?

12.6. The Special Theory of Relativity

How this question is answered can be indicated by a simple
concrete example.

The physicist is concerned not only with the measurement of
space but with that of time. He found it convenient to represent
his simultaneous space- and time-measurements by a four-
dimensional field of points. There is no need to attempt the
imagination of a four-dimensional field; it is sufficient to confine
ourselves to a field of two dimensions. This two-dimensional
field the physicist used to ‘map’ the events of the universe; he
took one axis to represent one dimension of space, and one to
represent time. He thus set up on his map a non-homogeneous
mesh gauge. On this map a line parallel to the time-axis
represents a stationary point, and a line at an angle to the
time-axis represents a moving point—moving, that is, relative
to the ‘observer’, the man who makes the map.

Consider now & second observer, moving relatively to the
first; in his map of the universe his axes of space and time
will be at an angle to those of the first observer. The first
observer will describe an event occurring at a certain place and
time by coordinates (z, ) relative to his mesh gauge; the second
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will describe the same event by coordinates (z’,#') relative to
his mesh gauge. How are the two descriptions connected?

It was always assumed that the Metrical Geometry of this
map was the classical Enclidean (i.e. Complex Euclidean), and
therefore that the eqzéons of transformation from one mesh
gauge to the other wére of the form

%' = xcosf—isinf+a,

t' = xsin§-+£cos 04-b,
where tan§ = v, the velocity of the second observer relative to
the first.

The classical Euclidean Metrical Geometry therefore predicts
that if the first observer sees a body moving with a velocity «,
the second will see it moving with a velocity u—v». This pre-
diction seemed to be verified in fact, within the limits of obser-
vational error, so long as small velocities were being observed.
But when velocities of the order of magnitude of that of light
were observed, the equations were found to be inaccurate. It
was then found that the equations which fitted the facts best
were not those given above, but

&' = z cosh §—tsinh 6-4-a,

t' = —x8inh 0-tcosh0-+b,
where tanhf = v, the velocity of the second observer relative
to the first.

This discrepancy between prediction and observed fact was
at first interpreted by physicists as being due to the contraction
of ‘rigid’ bodies when in motion, and was called the ‘Fitzgerald-
Lorentz Contraction’. But there is a far simpler interpretation
than this.

The first set of equations of transformation are those which
leave invariant the special points of Complex Euclidean Metrical
Geometry, the second are those that leave invariant the special
points of Real Euclidean Metrical Geometry. The inference is
that the Metrical Geometry of the map is not the classical
(Complex) Euclidean Geometry, but the Real Euclidean
Metrical Geometry discussed in Chapter X, and that this is the
Metrical Geometry best fitted to describe the physical universe
of space and time.
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The fact which upset the traditional theories was the invari-
ance of the velocity of light. The Michelson-Morley and other
experiments showed that however an observer was moving
his estimate of the velocity of light was always the same. On
the classical theory, if one observer found that the velocity of
a ray of light was ¢, an observer moving with a velocity »
relative to the first should observe the velocity of the same ray
of light as c—v. But in fact he observes it to be ¢. If this
physical fact be translated into terms of the map made above,
it reads that a certain set of lines (those parallel to a line repre-
senting the velocity of light) make the same angle with all other
lines of the field. This should have warned mathematicians
that these exceptional lines were the isotropic lines of the field;
and since they are real lines, that the Metrical Geometry of the
map was not Complex Euclidean Metrical Geometry as had
been supposed, but Real Euclidean Metrical Geometry.

The theory which has been outlined here was called, when it
was discovered, the Special Theory of Relativity; in its turn it
had to give place to a more general theory still, as the facts of
observation were multiplied. Physicists have now realized that
the Metrical Geometry which best describes the universe is not
even Real Euclidean Metrical Geometry, but one of the more
general Metrical Geometries outlined earlier in this chapter.
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