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PREFACE
- aim of this'book is, as its title implies, to give the reader

an introductory course in Projective Geometry. It aims, there-

fore, at removing the Euclidean prejudices which the study of

elementary Geometry begets, anel at substituting for them what

may be called the Projective mentality; at the same time it

seeks to familiarize the reader with most of the important
methods used in the subject. Since these include not only what

are called pure or Synthetic methods, but also the Algebraic

method, the latter is included in the book. And in order that

the subject-matter may be kept as simple as possible until

facility in the use of these methods is attained, the work is con-

fined to two-dimensional Projective Geometry.
In the first six chapters of the book, after a short historical

introduction, the synthetic method is developed as far as the

investigation of the more complex properties of the conic. In

the next two chapters coordinate systems are introduced pro-

fectively, and the Algebyajc method is developed. This intro-

duction of coordinates mafies possible the definition of metrical

concepts, and these are discussed in the ninth and tenth chap-

ters, their true place in the scheme of Geometry being shown.

After a short treatment of the theory of transformations,

the work is brought to a close by a chapter which indicates

the possible developments of the subject from the point

reached.

It cannot with truth be said that the book has been written in

order to 'supply a long-felt want'. There seems, unfortunately,

to be very little demand for the teaching of Projective Geo-

metry in this country. In default of this excuse, therefore, the

authors must fall back on another, namely the hope that their

work may do something to stimulate a demand for more wide-

spread familiarity with the subject. It is surely time that

scholarship candidates in Mathematics and first-year Univer-

sity students should be allowed to know that the classical Geo-

metry which they assimilate occupies but a subsidiary place in

the scheme of Geometry. An acquaintance with Projective
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Geometry shows them what things are fundamental and what
are subsidiary in that scheme; it prepares them too for

Geometries even more general than Projective Geometry,
and for some at least of the subtleties of modern mathematical

Physi S-

C. W. O'H.

14 September 1936 D. B. W.
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CHAPTER I

HISTORICAL AND CRITICAL

1.1. Historical Outline

It is not a waste of time to begin the subject of Projectivo

Geometry with a short study of its history, and there are two

reasons for doing this. The first is that Projective Geometry
has behind it a very long history which is well worth knowing
for its own sake. The second is that the reader who takes up
the subject already knowing something of its history is better

equipped to understand it, since he has at least seen in what
direction the logical development of the subject is going to take

him. In such a book as this it is, naturally, impossible to give
a detailed account of the history, but enough can be said to

indicate the main courses along which it has developed, and to

show the significance of the more important turning-points in

those courses.

Looking back from the standpoint of our present-day know-

ledge, we can distinguish three important lines along which

Geometry has developed. In the earliest period, which extends

from the time of the Greek geometers or earlier up to the middle

of the seventeenth century, only two of these appear. The work
of Euclid may be taken as typical of the first of these two. His

object was to elaborate a science of the measurement of physical

space, and to this end, starting from intuitional ideas of such

terms as point, line, and distance or length, and their properties,
he deduced a number of geometrical theorems which he classi-

fied. It should be noticed that to Euclid and those who followed

him the notion of distance was fundamental and all-pervasive;

it was taken to be so obvious an idea that it did not need to be

defined, and it underlay everything in his geometrical science.

This will be better realized when it is remembered that the

Geometry which is still taught to-day in schools differs very
little from that first elaborated by Euclid. Because of this

fundamental importance in his Geqmetry of the notion of

distance, the line of development of which Euclid is typical is

called the line of metrical development.
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An examination of the work of Pappus (c. 200 B.C.) shows

that he was interested in a type of theorem that is not concerned

with distance, but with such things as concurrence of lines and

collinearity of points. This type of theorem may be called for

the present the Projective type, and for this reason the second

line of development is /called the line of protective development.
It must not, however, be thought that Pappus excluded from

his Geometry the notion of distance; he and his followers did

not hesitate to use metrical ideas in proving these non-metrical

theorems. At the time, and indeed for many centuries, the

distinction between the two types oftheorem was not seen.

If the subsequent history of the metrical line of development
be followed, it will be found that very early in the history of

Geometry geometers directed their efforts towards one parti-

cular object in addition to the general aim of proving new geo-

metrical theorems. This was to remove what had come to be

considered a blemish on Euclid's system. Euclid himself, and

all who came after him, had found it absolutely necessary to

assume some sort of 'parallel postulate' f in order to deduce

any theorems about parallel lines. The necessity of assuming
such a postulate was looked upon as a fault in the system, and

geometers were convinced that somehow or other it could be

proved from the other axioms. Outstanding amongst those who

attempted to do this was Saccheri (1733). His method was the

well-known method of reductio ad absurdum, and in following it

he unwittingly investigated what is now sometimes known as

non-Euclidean Geometry. With him must be mentioned Loba-

tchewskij (1829) and Bolyai (1833) who, convinced by the un-

successful attempts of geometers to prove the parallel postulate

that it was definitely not deducible from the other axioms of

elementary Geometry, built up a system of metrical Geometry
based on the logical alternative to the parallel postulate.

So far, two of the main lines of development of Geometry
have been noticed, and with Descartes (1637) the third begins.

Descartes introduced into the study of metrical Geometry a

f In modern text-books of Geometry which are in use in schools the postu-
late known as Playfair's Axiom is usually assumed. This runs : Through any
point not on a given line, one and only one line can be drawn parallel to the given
line.
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method which is now known as Coordinate Geometry or Analytical

Geometry. The essence of this method is that the concepts of

elementary Geometry are expressed in algebraic language, and

the various theorems are proved therefrom by the application

of the laws of Algebra. It is quite clear that Descartes thought
the traditional geometrical methods cumbrous and unphilo-

sophical, since they all seemed to him to depend on the happy
intuition of a construction which would lead to the proof of the

desired theorem. For this apparently haphazard method he

wished to substitute the universally applicable, certain, and

abstract method of proof by Algebra. Descartes 's new method

was still a metrical method, although it marks the beginning of

a new line of geometrical development; to distinguish it from

what has just been considered, it will be called the Metrical-

Analytical line, and Euclid's the Metrical-Synthetic line.

A question naturally arises here: is it licit to call by the name
of Geometry such a method as the analytical method ? As an

historical fact, mathematicians were very sharply divided in

their opinions, and it was because of this that there arose the

terms Pure (or Synthetic) Geometry, and Analytical Geometry.

Those on the extreme right would not admit that any proof of

a geometrical theorem by algebraic methods was a valid proof,

though they admitted that these methods might be used to

suggest problems for the pure geometer. Those on the extreme

left did not indeed condemn the methods of Pure Geometry as

invalid, but they certainly despised them as elephantine.f
The next critical phase in the development of metrical

Geometry occurs with the publication of Poncelet's work (1822).

Although he was convinced of the autonomy ofPure Geometry,
so that his contribution to Geometry is really an advance along
the Metrical-Synthetic line, he did not disdain to learn some-

thing from Analytical Geometry. Analytical Geometry, we
have seen, took over from Pure Geometry the fundamental

ideas, and translated them into algebraic language; Ppncelet,

t An interesting example of the division of opinion is shown in the editorial

policies of two of the leading mathematical journals of a century or more ago.
Crette'a Journal would never admit to its pages any algebraic proof of a geo-
metrical theorem; Liouville's Journal, on the other hand, refused to print

anything but algebraic proofs of geometrical theorems.
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however, took over from Algebra and Analytical Geometry, and

translated into pure-geometrical terms, certain ideas and prin-

ciples which it seems hard to believe the pure geometer would

have discovered for himself until very much later. This point,

because of its importance, needs to be illustrated by a concrete

example. f
In Algebra, until the theory of complex numbers was founded

on a firm basis, all that could be said of a quadratic equation
was that it had two distinct, or two coincident, or no roots.

But once complex numbers had been admitted with full rights

into Mathematics, it could be said that every quadratic equation

without exception had two roots. Now it will easily be seen

that the problem of finding the points common to a straight

line and a conic by methods of Analytical Geometry leads

always to the solution of a quadratic equation. Hence, once

complex numbers were placed on the same level as other

numbers, the analytical geometer became convinced that any
conic and any straight line always had two points, distinct or

coincident, in common. This conviction was not overthrown by
its apparent contradiction with the inference to be drawn from

the figure on paper; in fact, it led the analytical geometer to the

further conviction that the points which he could draw physi-

cally on paper were not all the points of which Geometry should

treat. In passing, it should be realized that this in itself was an

important step forward, for it meant that mathematicians were

beginning to get a more abstract idea of the terms point and line.

Poncelet's advance on his predecessors was to take over this

analytical discovery into Pure Geometry, and to state definitely

as a principle that any conic and any line had a pair of common

points, and that from any point two tangents could be drawn to

a conic. These new complex points were taken over into Pure

Geometry and their interrelations discussed by pure-geometrical

methods in just the same way as the other points of the geo-

metrical field, even though they could not be represented by
marks on paper. This did not, as a matter of fact, exhaust

Poncelet's contribution to Geometry, but the remainder of his

work belongs rather to the projective line of development, to

which we now return.
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It has been said about Pappus, whoso name is the first to

occur in the second, or Projective, line of development, that

while the theorems he collected were non-metrical, his proofs
of them were based on metrical theorems. It can also be said

that all investigation of theorems of this type was for a long
time marred by the fact that they were proved metrically.

Development along the protective line was thus a mixed or

hybrid development, and it is perhaps because of this that

progress was slow. Even the contributions made by Desargues

(1593) and Pascal (1623), though they were purely projective

and non-metrical theorems, were proved metrically.

It was not until the publication of Geometric der Lage (1847)

and Beitrdge zur Oeometrie der Lage (1856) by von Staudt that

Projective Geometry began to emerge as a geometrical science

entirely independent of the notion of distance. It is scarcely

an exaggeration to say that von Staudt 's work began to open
mathematicians' eyes to the real nature of Geometry, and made
them begin to suspect that length, hitherto looked upon as a

fundamental geometrical notion, was not so in fact. An English

mathematician, Cayley (1859), brought von Staudt's work to

completion by showing that distance or length could be defined

in simpler terms, and moreover that what had hitherto been

accepted as the idea of distance was in fact only a particular

case of the much more general projective definition. This led to

the further and not less important conclusions that not only was

the Metrical Geometry which had been studied since the time of

Euclid merely a part of the more general science of Projective

Geometry, but that the non-Euclidean Geometries elaborated

by Lobatchewskij, Bolyai, Kiemarai, and others were also only

sub-sciences of Projective Geometry. In fact, Cayley was led

to declare that Trojective Geometry is all Geometry*.

Cayley 's work was done by algebraic methods, and it was left

to Klein (1872) to translate it into the language of Pure

Geometry. Thenceforward, Projective Geometry, whether pure
or analytical, gradually came to be recognized as the funda-

mental geometrical science of the simplest type, and Metrical

Geometry as the expression in otner terms of some of its

theorems. It is interesting to note that in Cayley's general
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projective definition of distance was contained the solution of

a number of problems in the very modern Theory of Special

Relativity; so that, as often happens, the pure mathematician

had anticipated the needs of modern physical science.

With the completion/of the work of Cayley and Klein it can

safely be said that all/The most important results and principles

ofProjective Geometry were finally made explicit. But develop-

ment was not on that account arrested. For there still remained

the task of ordering the science of Projective Geometry hier-

archically. That is to say, its propositions had to be classified

and arranged in order of dependence, and the fundamental, un-

proved initial propositions stated and reduced to their simplest

terms. This process has gone on almost to the present day.

But even so there remained one more important development.
For it remained to show that the lines and points of which

Projective Geometry speaks were not necessarily the particular

ones which had helped the historical development, but rather

any objects of which the initial propositions of Projective

Geometry are true. This particular result has only come about

through the awakened interest in the philosophy ofMathematics

which the past half-century has shown. Mathematicians have

now realized that Geometry deals not with the points and lines

of physical space necessarily, but with something much more

abstract; it is no longer their aim to measure physical space;

that task is now left to the physicist, who may or may not find

the mathematician's theorems of value in performing it.

1.2. The Characteristics of a Mathematical Science

At the end of the foregoing paragraphs it was said that

Geometry no longer concerned itself necessarily with the points

and lines of physical space. It is necessary to explain this state-

ment carefully, for plainly it is essential that the reader should

know from the outset what sort of objects Projective Geometry
is dealing with. In order to do this we consider for a moment
what a science is, and how a branch of Mathematics differs

from other sciences.

In Physics we start from certain observed facts, usually the

results of experiments in the laboratory. From these 'results,
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and from the admitted principle of uniformity in nature, we

argue to the causes of the observed facts, and so formulate

physical theories to account for them. We may also argue from

them that certain other experiments, not yet performed, will

have certain results.

In History, similarly, we start with recorded facts] from these

we can sometimes argue that certain unrecorded facts must

have occurred, and we may also trace the effects of these re-

corded facts, even though they are not recorded as effects.

In both these examples, and indeed in any example of a

science that may be chosen, two parts are clearly distinguish-

able; the first may be conveniently called the initial proposi-

tions', the second is the process of inference from these initial

propositions.

In any branch of Mathematics the same two parts can be

distinguished, for there too are initial propositions and infer-

ences drawn from them. But, in a branch of Mathematics, the

initial propositions are not statements of observed or recorded

facts; indeed, they are not statements of physical fact at all.

It is true that they may have been suggested by observed facts,

but, nevertheless, the initial propositions of Mathematics are

always, in essence, propositions about ideas or concepts whose

full connexion with physically existing reality is a matter of

secondary importance to the mathematician.

To the Greek geometers, and indeed to the geometers ofmany
subsequent centuries, the points and lines of Geometry were the

points and lines of physical space, and the science of Geometry
was a set of deductions from certain observed facts about them.

Nobody ever pretended that it was anything else. It was only

as a result of Poncelet's work that mathematicians began to see

that when they used the words point and line they were really

talking of something more general and more abstract than their

predecessors had done. For nobody believed that the newly
introduced complex or 'imaginary' points were points of

physical space; nevertheless they were points in the sense in

which Geometry made use of the term. And so, after Poncelet's

time, the terms point and line stood for things of which the

points and lines of physical space were but particular cases.
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But the real opportunity of framing a completely abstract

and mathematical definition of the terms had occurred earlier,

and been missed, when Descartes introduced Analytical Geo-

metry intp Mathematics. Indeed, the full significance of

Analytical Geometry was not realized by mathematicians for

two and a half centuries. They are not to be blamed for this,

for the point is somewhat subtle; nevertheless it is worth trying
to grasp.

To Descartes the coordinates (x, y) of a point were but a

label distinguishing that point from the rest. Similarly, the

equation
lx+my+n =

was an equation which was associated with a certain line, and

which distinguished it from all the rest. Had ho made a slight

addition to his terminology he might have reached a conclusion

which would have prevented all the subsequent acrimony be-

tween analysts and synthetists, and which would also have

anticipated modern work.

Let us suppose that in addition to speaking of 'the point

(x, yY he had also spoken of 'the line
[I, m, n]\ meaning thereby

the line whose equation is

lx~\-my-\-n 0.

[Z, m, n\ would then have been a label attached to a line in just

the same way that (x, y) was a label attached to a point. Analyti-
cal Geometry would then have dealt with number-pairs labels

attached to points and number-triples labels attached to

lines. But another point of view would have been possible; for

instead of considering spatial Geometry as the principal science

and Analytical Geometry as but its algebraical translation,

Analytical Geometry could have been looked on as the principal

science the science of these number-pairs and number-triples

and spatial Geometry as merely a spatial representation of

it. It is quite clear that either of the two can be considered the

principal science, and the other as the ancillary science, and

that neither has any real claim to priority. It is quite clear too

that any theorem about spatial points and lines can be trans-

lated into a theorem about number-pairs and number-triples,

and vice versa. The real, abstract, science of Geometry is the



HISTORICAL AND CRITICAL 9

same whichever of these two kinds of things is supposed to be

its object, for ultimately the reasoning processes involved are

exactly the same in form. And if somebody else had thought of

some other way of representing spatial points and lines, the

very things used to represent them could have been looked on as

the objects of a new science, and the reasoning processes about

them as a science in its own right.

It is clear then that Analytical Geometry, considered as a

science concerned with number-pairs and number-triples, and

Synthetic Geometry have equal claims to be considered as

sciences in their own right; and, on account of their similarity,

have equal claims to be called Geometry. The first principles of

Geometry the initial propositions of which we spoke above

can be formulated in terms of either of the two, and the subse-

quent reasoning can with equal validity be in terms of either of

the two. Now because of all this, it follows that the whole

coniplexus of points and lines of Synthetic Geometry with their

interrelations and the whole complexus of number-pah's and

number-triples of Analytical Geometry with their interrela-

tions must have some property or properties in common. It is

precisely on account of this which is in common between them

that there is a science common to the two sets of things. And if

there is a third set of things into terms of which Geometry can

be translated, this third set has something in common with the

other two
;
and so on. Clearly, Geometry is concerned with what

is common to the various possible sets of things and not with

the particular properties of each set which differentiate it from

the others.

Now though it would be possible to enunciate Geometry in

terms of either the points and lines which Euclid thought of, or

the number-pairs and number-triples which Descartes might
have thought of, or in terms ofany other adequate set of things,
to do so would be cumbrous. It would be rather like stating

Geometry in two or more different languages at once. We
therefore agree to use terms which by convention mean any of

these different things which we know have something in com-

mon, just as we have agreed in ordinary everyday language to

use the term animal indifferently of cats, dogs, and elephants.
4191



10 PROJECTIVE GEOMETRY

Instead of having to speak of points and number-pairs, we

agree to use the term point indifferently not only of both of these

but of any other objects which can play the role these play in

Geometry; similarly the term line is used to signify anything
which can play the roje which number-triples play. In other

words, the meaning attached to the words point and line has at

one and the same time been made wider and more abstract.

This modification of the meaning of these terms must be

carefully noted, and two mistakes avoided. On the one hand,

it is not true that in modern Geometry the terms mean some-

thing entirely different from what they meant, say, to Euclid;

on the other hand, there has been a very definite and important

change in their meanings. They have, in fact, been generalized.

Having now seen what meaning is attached to the terms

point and line in the science of Geometry, we return to the

question of the initial propositions. Plainly, these will be pro-

positions about points and lines in the geometrical sense of those

terms, and not in any other sense. But since the terms stand

for a much wider class of things than physical points and lines,

the initial propositions cannot merely be statements of observed

physical facts. Indeed, the mathematician as such is not very
much concerned whether or not his initial propositions have any

physical application. In this, Geometry resembles every other

mathematical science, and it is precisely here that Mathematics

differs from other sciences. In Physics, for instance, the initial

propositions are very definitely statements of physical fact; in

Mathematics they may or may not be, and the mathematician

is not concerned even to know whether they are or not.

It may occur to the reader to suggest that since the initial

propositions of a mathematical science are as abstract as the

foregoing remarks imply, it is open to the mathematician to

lay down any arbitrary set of propositions as the initial pro-

positions of a new branch of Mathematics. Even apart from

the question whether such an arbitrarily founded science would

be fruitful, there is an important condition to be fulfilled by the

initial propositions, and this prevents an entirely arbitrary set

being chosen. For it is essential that they should be self-con-

sistent; that is to say, they must not lead to contradictions.
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This is equivalent to saying that a set of initial propositions
must not be such that the contradictory of any one of them can

be logically deduced from the rest. The necessity of this con-

dition need not be enlarged upon. In Physics and all other

natural sciences it is automatically fulfilled, but because

Mathematics is not one of the natural sciences, the mathemati-

cian must see to it before he starts his work that his initial

propositions are consistent.

To do this, he must prove what is called an existence-theorem.

This is done by finding a set of things of which his initial pro-

positions are true, for if they are simultaneously true in even

one such case, they cannot be inherently self-contradictory. In

other words, Tie must know of at least one particular instance of
the general concepts with which his science deals.

In the second half of this chapter an attempt has been made
to sketch the logical and conceptual basis on which a mathe-

matical science rests, and in the following chapters the science

of Projective Geometry is worked out in accordance with the

principles here laid down. The full significance of what has been

said will appear more clearly as the subject is developed, and
the reader will be well advised to return to this section in the

course of his reading.



CHAPTER II

THE PROPOSITIONS OF INCIDENCE

PEOJEOTIVE GEOMETRY does not start where elementary Geo-

metry leaves off; thatns to say, it does not presuppose any of

the results of elementary Geometry. It stands by itself, and

is developed logically from its own initial propositions. The

reader will find, however, that the two subjects arc not entirely

unconnected, for it will appear that elementary Geometry is

a particular case of Projective Geometry. As a consequence of

the fact that it is not dependent on elementary Geometry he must

not expect to find that the initial propositions are familiar to him

from what he already knows. Indeed, it is only at the end of the

development that he will see elementary Geometry emerging.

But it must not be supposed that the only aim of Projective

Geometry is to establish the results of elementary Geometry;
it does this incidentally, but at the same time it shows them

in their true perspective, for it shows clearly what places in the

hierarchy of Geometry this and other Geometries occupy.

In this chapter are laid down the first few of the initial pro-

positions of Projective Geometry, and the first elementary

deductions from them are made.

2.1. Undefined Elements and Initial Propositions

Projective Geometry deals with two kinds of things to which

are given the names of point and line.^ No definition of these

terms is given save that which is implied by the initial pro-

positions. These state certain relations between points and

lines, and since there is contained in them the only definitions

of the terms, any things between which the relations stated by
them can exist are amongst the possible sets of objects studied

by the science.

The first three of the initial propositions are termed the

initial propositions of incidence:

2.11. The Initial Propositions of Incidence]:

t But see 2. 7.

$ In order to distinguish initial propositions clearly from propositions which

are deduced from them, they are printed always in heavy type.
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2.1 11. There is at least one line on which are both of two
distinct points.

2.112. There is not more than one line on which are both

of two distinct points.

2.113. There is at least one point which is on both of two
distinct lines.

2.12. Remarks on the Propositions of Incidence

(a) The propositions of incidence speak of but one kind of

relation between a point and a line, and to this relation is given
the name of being 'on'. While they do not state how many
points have this relation to any particular line, the first two

state that two different points always have it to one and only

one line. The third states that of all the points which are

severally on two different lines, there is at least one which is

on both.

(6) As in elementary Geometry, it is convenient to refer to

points by means of Roman capital letters: A, B, (7, etc. In

addition to this usage, lines will be referred to by means of

small letters: a, 6, c, etc.

(c) Because a point P is on a line q, there is a converse rela-

tion between q and P, and to this relation a name must be given.

For reasons which will appear very soon, it is most convenient

to say that if a point P is on a line q, then the line q is on the

point P. This may be put formally as a definition.

DEFINITION. A line q is said to be on a point P if and only

if the point P is on the line q."\

(d) It may occur to some readers to object at this point that

the statement made earlier on that elementary Geometry is a

particular case of Protective Geometry cannot be true. For it

may be argued that since in elementary Geometry pairs of

lines can be found which are not on a common point, namely

parallel lines, the initial proposition 2.113 is not true in ele-

mentary Geometry. Hence since one of the initial propositions

is not verified, elementary Geometry cannot be a particular

case of Protective Geometry.

t Many text-books do not adopt this terminology ; instead they speak of a

line
'

passing through
' a point.



14 PROJECTIVE GEOMETRY

The real answer to this difficulty lies in the fact that since

elementary Geometry is based on the fundamental notion of

distance it can only consider points which are at a finite distance

from the points under consideration. Hence in elementary

Geometry all that can^be asserted with certainty is that parallel

lines are lines whicn are not on a common point at a finite

distance; whether or not they are on a point which is not at a

finite distance, elementary Geometry is incapable of saying.

And so it cannot assert categorically that parallel lines are not

on a common point. While what has been said cannot pretend
to be a full answer to the difficulty raised, it at any rate con-

tains the substance of the answer, and indeed all that can use-

fully be said at this point. Later on, the reader will see for

himself the full answer, and he will see too that what has been

said is not merely a verbal quibble.

2.2. Existence Theorems

In order to show that the propositions of incidence are not

mutually contradictory, it is necessary to prove an existence

theorem. As has been explained in the preceding chapter, to do

this two sets of objects to which can be given respectively

the names 'points' and 'lines' must be shown to exist, having
relations between them to which can be given the name of 'on'.

When this has been done, it is necessary to prove that with these

interpretations of the terms point, line, and on the initial pro-

positions of incidence are verified. Such a set of objects will

then be called a representation or a verification.

A number of representations are given, not so much with the

idea of convincing the reader by repeated argument that the

initial propositions of incidence are compatible, as of showing
him the variety of different kinds of things to which the con-

cepts of Protective Geometry are applicable.

2.21. The Algebraic Representation

(a) A number-triple (x, y, z), where x, y, and z are any numbers

whatever, with the sole proviso that not all of them are zero,

will be called a 'point*. Since, however, not the numbers them-

selves but only their ratios are considered, the number-triple
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(kx, ky, kz), where k is any number different from zero, is not

considered to be different from (x, y, z).

(b) A number-triple p, w, n], where I, m, and n are any numbers

not all equal to zero will be called a 'line'. As before, the triple

[kl, km, kn], where k is any number different from zero will not

be considered different from \l,m,n\. To distinguish 'lines'

from 'points' the number-triples representing the former will

be enclosed in square brackets.

(c) A 'point' (x, y, z) will be said to be 'on' a 'line'
[I, m, n] if

and only if
te+my+nz = 0.

(d) It remains to show that with this representation of the

terms the propositions 2.111-2.113 are verified.

First, let (x, y, z) and (#', y', z') be two different points, so that

not all of the equations

x/x
r = y/y

r =
z/z'

are true; that is to say, not all of the expressions

(y*
f

-zy')> ('-'), (xy'-y*')

are equal to zero.

Suppose now that

i = (y*'-zy')>

m = (zx'xz') t

n = (xy'-yx'),

so that not all of the numbers I, m, n are zero. Then the line

p, m, n] is on both of the points (x, y, z) and (x
f

, y' y z'), for it is

easily verifiable by direct substitution that

lx-\-my-\-nz = 0,

and Ix'-i-my'+nz' = 0.

Hence, on two distinct points there is at least one line, and so

proposition 2.111 is verified.

Secondly, suppose that
[l

f

,m',n
r

]
is a line distinct from

[I, m, n~\ 9 and that this too is on both of the points (x, y, z) and

(#', y
f

> z') which are by supposition distinct. Then

l'x-\-m'y-\-n'z 0,

and N I'x'+m'y'+n'z' = 0.
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When these two simultaneous equations are solved for /', m',

and ri, it is found that

V = k(yz'-zy'),

mr

k(zx'-~xz'),

where k is an arbitrary constant. That is to say, V = kl,

m f = km, and ri = kn, so that
[I, m, n] and

[l

r

, m', n'] are not

distinct lines. Hence, on two distinct points there is not more

than one line, and so proposition 2.112 is verified.

Finally, let |7,m,n] and p',m',n'] be two distinct lines, so

that not all of the numbers

(mn'-nm
f

), (nl'-lri), (lm'-ml')

are zero; then since under these conditions the simultaneous

equations lx+my+nz = 0,

l'x-{-m
f

y-{-riz =
have a solution, namely

x = k(mri nm') y

y = k(nl' In'),

z = k(lm'ml
f

),

and not all of these numbers are zero, there is a point (x, y, z) on

both of the lines. Hence, there is at least one point on both of two

distinct lines', that is to say, proposition 2.113 is verified.

When these three results are combined, an existence theorem

for the three initial propositions of incidence emerges, and so

those propositions cannot be mutually contradictory.

The reader who is familiar with what is known as general homogeneous
coordinate Geometry will recognize in the algebraic representation

something similar to this part of Analytical Geometry, but a very funda-

mental distinction between the two must bo noticed. In the algebraic

representation the 'points' and 'lines' are number-triples, and nothing

more; that is, they are essentially only sets of numbers. Because of the

laws of algebra it is possible to find a relation between 'points' and
'lines' to which is given the name 'on'. In other words, certain algebraic

properties of number-triples are renamed with geometrical names. But
in general homogeneous coordinate Geometry the process is reversed.

Here points and lines are the fundamental things, and they are labelled

by means of number-triples; the geometrical relations between the points
and lines are interpreted as algebraic relationships between the number-
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triples by means of which they are labelled. In other words, certain

geometrical properties of lines and points are renamed with algebraic
names. The algebraic representation is the application of Geometry to

Algobra; general homogeneous coordinate Geometry, on the other hand,
is the application of Algebra to Geometry.

2.22. A Representation from Elementary Solid Geometry
In this representation the diameters of a sphere are 'points',

and the great-circles of the same sphere are 'lines'. A 'point'

will be said to be 'on' a 'line' if the diameter of the sphere

representing the point is also a diameter of the great-circle

representing the line. Elementary geometrical considerations

establish the truth of the following results:

(a) there is at least one great-circle which has two different

diameters of the sphere as diameters of itself,

(b) there is not more than one great-circle which has two

different diameters of the sphere as diameters of itself,

(c) there is at least one diameter of the sphere which is also

a diameter of each of two different great-circles.

In these three results the propositions 2.111-2.113 are

verified.

2.23. A Physical Representation

At the inaugural meeting of a Lunch Club the members
decided to formulate the following rules:

(1) Periodical lunches were to be given by the club, and they
were to be attended only by members of the club.

(2) Every member of the club was to meet every other

member at least once, but not more than once, at one of the

club's lunches.

(3) The lists of members selected by the Secretary to attend

any two lunches were never to be entirely different, at least one

member was to be present at both.

(4) The President, the Treasurer, and the Secretary were to

be the only members present at the first lunch, and at all

subsequent lunches there were to be at least three members

present.

Hpw many members were there in the club ?

How many lunches were given ?
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How many members were present at each of the remaining
lunches ?

How many lunches did each member attend ?

That the above problem is a representation of the proposi-

tions of incidence may/seem at first sight to be somewhat far-

fetched, nevertheless /it is true. In order to show that it is a

representation it is first of all necessary to show that the rules

agreed upon could, in fact, be kept, and that they did not

impose an impossible set of conditions. It is left to the reader

to show that they were not impossible, and that the four

questions have definite answers; this is an interesting problem
in logic. Once it is solved it is easy to show that the whole

thing is a representation of the propositions of incidence.

If a member of the club be a 'point' and a club-lunch be a

'line*, and if by definition a 'point' is on a 'line' when the

member in question is present at the lunch in question, then the

following propositions are verified:

(a) two distinct points are on at least one line, by Rule (2);

(b) two distinct points are on not more than one line, by Rule

(2) also;

(c) there is at least one point which is on both of two distinct

lines, by Rule (3).

2.24. The Drawn Figure as a Representation

It is customary in elementary Geometry to illustrate theorems,

constructions, and the like by figures drawn on paper, and it is

natural to ask whether Projective Geometry can be illustrated

in the same way. This question is really equivalent to the

following. Are dots made on paper and marks made with a

pencil drawn across the paper in contact with a straight-edge

valid representations of the points and lines of Projective

Geometry, when the obvious convention is made about the

relation 'on' ? In order to have names for these two kinds of

marks let us call them, for the moment, drawn points and

drawn lines respectively.

Now in elementary Geometry the drawn figure fulfils two

functions. In the first place it is a help to the imagination, in

that it enables the mind to concentrate on the work in hand;
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indeed it may suggest methods ofproofand so on. In the second

place it is an approximate representation, and this statement is

best illustrated by an example. It is proved in elementary

Geometry that the sum of the angles of a triangle is equal to

two right angles; if a triangle be drawn on paper, and the angles

between the drawn lines be measured and added together, it is

found that their sum is approximately two right angles. Owing,

however, to the deficiencies of the instruments used to measure

the angles, they can only be measured to a known degree of

accuracy, so that the sum is only known to lie within certain

limits; usually it is found that these limits enclose two right

angles. Nearly every theorem in elementary Geometry has the

same sort of approximate verification in the drawn figure. But

besides these two, the drawn figure is sometimes made to fulfil

another and an illegitimate function in elementary Geometry.
It is, for instance, nearly always taken for granted that the

diagonals of a parallelogram necessarily intersect and are not

parallel, merely because the drawn diagonals intersect. That

is to say, inferences are made from the figure, when they should

be made from the data of a problem.
In Projective Geometry it is plain that if in some sense drawn

lines and drawn points are a representation of points and lines,

then the drawn figure can fulfil the first of these functions

exactly as in elementary Geometry. But when we come to

inquire whether it can fulfil the second function, that of being

at least an approximate representation, it becomes obvious that

the question is without meaning. For measurement of distance

and angle does not figure in the initial propositions, and there

can be approximation only where there is measurement. The

question 'Are drawn points and drawn lines valid representa-

tions of the points and lines of Projective Geometry?* is im-

possible to answer either affirmatively or negatively, and the

answer that they are an approximate representation is nonsense.

Hence it appears that no use can be made of the drawn figure,

since we cannot be certain that it is a valid representation.

Nevertheless, a glance at the remaining pages of this book will

suffice to show that drawn figures are used, and this use is

justified, not by a priori considerations of the nature of drawn
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points and drawn lines, but rather by a posteriori considerations.

For it is found, in practice, that a careful and reasonable use

of drawn figures does not lead to absurd results, and that it

does fulfil the first and main function of a drawn figure, in that

it helps the mind to concentrate on the problem as a whole, and

suggests new results/ for proof. The third and illegitimate

function of the figure is as illegitimate in Projective Geometry
as in elementary Geometry.

2.3. First Deductions

THEOEEM. There is only one point which is on both of two

distinct lines.

Let I and m be two distinct lines, then by 2.113 there is a

point P which is on both of them.

Suppose now that there is a second point Q, distinct from P,

which is on both I and m. That is to say, there arc two distinct

lines I andm which are both on the two distinct points P and Q.

But this conclusion contradicts 2.112, which states that on

two distinct points there is not more than one line.

Hence the supposition that a second point Q, distinct from

P, is also on I and m must be false, and this proves the theorem.

2.31. The Principle of Duality

So far, there are the three initial propositions of incidence,

and one theorem which has been deduced from them. These

four propositions are now set out together:

(2.111) On two distinct points there is at least one line.

(2. 1 12) On two distinct points there is not more than one line.

(2.113) On two distinct lines there is at least one point.

(2.3) On two distinct lines there is not more than one point.

It will be seen that by interchanging the terms point and line

the first two of these propositions are changed into the last

two, and vice versa. This fact has important consequences.

Let us suppose that there is a proposition about points , lines,

and the relation on which is deducible from the propositions

2.111-2.113; then by interchanging the terms point and line

in the enunciation, a proposition is obtained which is plainly

deducible from the propositions 2.111, 2.113, and 2.3. For the
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necessary proof is obtained by making the same interchange in

the original proof. But since 2.3 is deducible from the other

three, the new proposition must also be deducible from them.

Hence if any proposition about lines, points, and the relation

on is deducible from the propositions of incidence, the proposi-

tion obtained by interchanging the terms line and point is also

deducible from the propositions of incidence.

As Projective Geometry proceeds it becomes necessary to

define new terms which are complications of the elementary

concepts contained in the propositions of incidence; at the same

time corresponding terms will also be defined, the definitions

being obtained by the above-mentioned interchange. In this

way a vocabulary of corresponding terms will be elaborated,

and such pairs of terms will be said to be dual terms. In the

terms point and line we have a first pair of dual terms. The

process of changing a proposition by substituting for every

term its dual term is called dualizing a proposition. Hence if

any proposition is deducible from the propositions of incidence,

its dual is also deducible from them.

This important result is known as the Principle of Duality.

Projective Geometry, however, is not based on only the pro-

positions of incidence, for other initial propositions are added

as the work proceeds. It will be necessary then, if the Principle

of Duality is to be preserved, either to add also the dual of

every other initial proposition, or to prove it. It will be found,

as a matter of fact, that with the initial propositions which are

to be added, it is an easy matter to prove the required dual

propositions.

2.4. Extension

In elementary Geometry it is taken for granted that the

number of points on any line is not finite, and it is natural to ask

whether anything of the same sort is true in Projective Geo-

metry. The initial propositions of incidence, however, do not

enable us to give any definite answer to the question 'How

many points are there on the line?' For in the representation

given in 2.23 there are only three points on any line, while in

the algebraic representation there is not a finite number of
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points on any line; yet both of these are compatible with the

propositions of incidence. Indeed, it is not difficult to construct

a representation in which there are any desired finite number of

points on a line.f Hence it is possible to say, roughly, that the

propositions of incidence are compatible with there being any
number of points, finite or infinite, on a line. Incidentally, this

may help to show thb reader that in Projective Geometry the

terms point and line have a much wider significance than they
have in elementary Geometry.
Now it does not require much thought to see that the proposi-

tions ofincidence are compatible with even simpler systems than

that given in 2.23. They are true, for instance, of the following

systems:

(i) a system consisting of three points which are not all on

the same line, and the three lines which are on pairs of

these points ;

(ii) a system consisting of n points all on one line, one other

point not on this line, and the n lines each of which is on

this special point and one of the other n points.

The discussion of these extremely simple systems is not very

fruitful, and so we shall lay down, provisionally, two initial

propositions which will exclude them. These propositions will

be the following: Not all points are on the same line, and There

are at least three points on every line.

If we call the totality of points and lines in any system the

field, it will be seen that the above propositions state something
about the extent of the field, and so they are called propositions

of extension. The effect of the two propositions of extension

here stated is to put, as it were, a lower bound to the simplicity

of the field. This is merely a matter of convenience, for it

obviates the necessity of constantly stating annoying and

trivial exceptions to general theorems which are true in the less

simple fields. But it must be noticed that these two proposi-

tions of extension are not definite, that is to say, they do not

state that the field has any definite extension; they merely say

t But there is one proviso. If there are, say, n points and no more on one

line, there are n points and no more on every line. See Ex. 3 of the examples
which follow.
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that it must not be too simple. For the present they will suffice,

but later more definite propositions will be substituted.

2.41. Provisional Initial Propositions of Extension

2.411. Not all points are on the same line.

2.412. There are at least three points on every line.

In accordance with what has been said about the Principle of

Duality, it is necessary to prove the duals of these two proposi-

tions and to show that they are compatible with the propositions

of incidence. These theorems are not difficult, and they are

left to the reader as examples.

EXAMPLES

1. Using the propositions of incidence and 2.411, show that not all

linos are on tho saino point.

2. Using tho propositions of incidence, 2.411 and 2.412, show that

there are at least three linos on every point.

3. Show that if there are precisely n points on ono line, then

(i) there are precisely n points on every line,

(ii) there are precisely n lines on every point,

(iii) there are precisely n2
n-f 1 points in all,

(iv) there are precisely n2 n+1 linos in all.

4. Show that tho geometrical reasoning used to solve the last example

provides a solution of the puzzle quoted in 2.23.

5. Show that the provisional propositions of extension are compatible
with the propositions of incidence by showing that they are verified

in (i) the algebraic representation, and (ii) tho representation of 2.23.

2.42. A Note on 2.412

The second of the propositions of extension states that there

are at least three points on every line, but in the work which

follows it is assumed in every theorem that there are sufficient

points on every line to make the theorem significant. Thus if

there is a theorem about six points on a line, it would be a

meaningless theorem in a field where there are only three points

on every line. Strictly speaking, the enunciation of such a

theorem should be qualified by the phrase 'Provided there are

at least six points on every line'. These qualifications will,

however, be systematically omitted, for it is plain that they are

implied.
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2.5. Notation

In 2.12 (6) it was remarked that capital letters would be used

to designate points and small letters to designate lines, and

these beginnings of the notation used in Projective Geometry
are now developed. /
The first two propositions of incidence ensure that there is

a unique line on two distinct points. Hence there is no ambiguity
in referring to the line on the two points A and B as the line

AB. This usage is familiar from elementary Geometry.

Dually, by 2.113 and 2.3 there is a unique point on two dis-

tinct lines a and 6, and this point will be referred to as the

point ab.

Often, however, it will be necessary to speak of the common

point of two lines which are known only as, say, XY and AB;
and though it might be possible, with care, to speak of the point

XYAB, it is not very desirable to do so. Instead, we use the

notation: 'the point I A _)', and, dually, 'the line I
*f
V.

\AB] \ab/

The reader may find it useful in his written work to shorten

the phrases 'The point P is on the line q' and 'The line x is on the

point Y' to the symbolic statements

P\q and x\Y,

respectively. The negative statements 'The point P is not on

the line <f and 'The line x is not on the point 7' may be

shortened to
p]lq and xjfY)

respectively. This notation is not adopted in this book.

What has been said is completed by giving definitions of the

two dual terms collinear and concurrent.

2.51. DEFINITION

Three or more points which are all on the same line are said

to be collinear.

2.52. DEFINITION

Three or more lines which are all on the same point are said to

be concurrent.^

t The etymologically dual term is copunctual or compunctual ; it seems to

savour of pedantry to prefer one of these to the well-known term concurrent,
even though this has in it an erroneous suggestion ofmotion.
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2.6. Figures, Theorems, Constructions

2.61. Figures

In elementary Geometry, the term figure is used to signify

indifferently either the drawn figure or an assemblage of lines

and points, and there is no reason to make any careful distinc-

tion between the two. But in Projective Geometry, whose

connexion with the drawn figure is rather tenuous, the term is

restricted to the second of these two meanings. For conveni-

ence, figures are classified into point-figures, line-figures, and

mixed figures; the following definition gives the principle of

this classification.

2.611. DEFINITION. Any set of points and lines is termed a

figure; if it consists of points only, it is termed a point-figure; if

it consists of lines only, it is termed a line-figure; otherwise it is

termed a mixed figure.

2.612. DEFINITION. A point-figure all of whose points are

collinear is termed a collinear point-figure.

2.613. DEFINITION. A line-figure all of whose lines are con-

current is termed a concurrent line-figure.

2.614. Simple Figures. The following is a list of some of

the simpler figures which occur in Projective Geometry:

la. The Point.

16. The Line.

2. The Point-on-Line. A self-dual figure consisting of a

single point and a single line, the point being on the line.

3. The Point-and~Line. Self-dual. As 2, except that the

point is not on the line.

4a. The Point-pair. A point-figure consisting of two distinct

points.

46. The Line-pair. The dual of 4a.

5a. The Point-pair on a line. This is 4a, together with the

line on the point-pair.

56. The Line-pair on a point. The dual of 5a.

6 a. The Three-point. A point-figure* consisting of three non-

collinear points.
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66. The Three-line. The dual of 6a.

7. The Triangle. A mixed, self-dual figure consisting of

three non-collinear points, together with the three lines

which are on pairs of these.

The triangle is an extremely important figure in the sequel;

in order to be able tp refer to its constituent parts, the three

points are called the points or vertices of the triangle, the three

lines are called the lines or sides of the triangle. It should be

noted that there are only three points in a triangle; any other

points on any of the sides are not points of the figure.

The side BC of a triangle ABC will be said to be opposite to

the point A, and vice versa. Similarly, B is opposite to CA, C
toAB.

2.62. Theorems
The word theorem has been used before this, and it is taken

for granted that its meaning is known; if, however, a formal

definition of the term be needed, the following will suffice:

A theorem is any true statement about the points and lines of the

field.

The word true merits notice; a proposition is said to be true

in Projective Geometry if it is a logical consequence of the

initial propositions. A proposition may be true of a certain

representation without being true in Projective Geometry; but

a proposition cannot be true in Projective Geometry without

being true of all the representations. Thus the proposition

'There are only three points on a line' is true of the representa-

tion of 2.23, but it is not a theorem of Projective Geometry;
whereas the proposition 'Two lines have only one point in

common', being a theorem of Projective Geometry, is true in all

the representations.

Some cautions must be given about the proving of theorems.

The proof must proceed by strictly logical deduction from the

initial propositions or from theorems already proved. Hence

(i) To say 'It is obvious from the figure that . . .'is not a

sound reason for the statement which this phrase precedes. At

best, this only shows that the conclusion is true in a representa-

tion, not that it is true in Projective Geometry; and even this
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assumes what has not been proved, namely that the drawn

figure is a representation.

(ii) Keasoning which is based on considerations of length or

angle, in any form whatever, is not logical deduction, for these

terms are not yet defined. When they are defined they may be

used like any other term.

(iii) Propositions which are true only under certain condi-

tions should not be stated as theorems without stating the

conditions definitely.

2.63. Constructions

In elementary Geometry there are, besides theorems to be

proved, exercises known as constructions. In these some figure

is given, and it is necessary (i) to give practical rules for deter-

mining by means of ruler and compass certain points and lines

or some other figure which has some specified property, and (ii)

to prove that the figure so determined has the desired property.

From what has already been said, it will be plain that the

first of these two cannot be a part of any constructions which

appear in Protective Geometry. Its place is, however, taken

by something else. In a construction in Projective Geometry
a figure is given, and it is necessary (i) to specify exactly some

other figure (by stating relations which exist between it and the

given figure) which has some desired property, and (ii) to prove
that this figure has the desired property.

2.7. Projective Geometry of Many Dimensions

At the beginning of this chapter it was stated that Projective

Geometry deals with two kinds of things, namely points and

lines, and that it discusses the relations which exist between

them as a consequence of the relations of incidence. While this

statement is true, it is not the whole truth, for the Projective'

Geometry of points and lines is not the whole of Projective

Geometry; it is only that part known as two-dimensional Pro-

jective Geometry.
It would have been possible to start with three different

kinds of things, points, lines, and planes, and after stating

propositions of incidence about these, to have discussed their
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interrelations. This would have been three-dimensional Pro-

jective Geometry. And in complete generality it would have
been possible to start with n kinds of things, which might have

been called T 's (points), Ti's (lines), T2 's (planes), T3 's, Ti's,...,

Tn~i& ;
this wouldhave been ^-dimensional Projective Geometry.

It will be plain that xwiese Projective Geometries are classified

according to the number of different kinds of things they deal

with; and that a Projective Geometry dealing with k different

kinds of things is called ^-dimensional Projective Geometry.

Suppose now, for simplicity's sake, that we proposed to study
three-dimensional Projective Geometry. It would obviously
be desirable to spend some time in studying the interrelations

of only those points and lines which are on a single plane. Of
this restricted field of points and lines the initial propositions
of incidence, 2.1112.113, would be true, and the Projective

Geometry of the plane would be two-dimensional Projective

Geometry. Similarly, in ^-dimensional Projective Geometry
the study of the interrelations of the 3P 's, T^'a, jT2 's,..., 2&-i's

which are on a Tk is the same as the study of ^-dimensional

Projective Geometry.
All this has been mentioned, not for the purpose of mystifying

the reader, but rather in order to show him two important

things. First, that what is given in this book, namely two-

dimensional Projective Geometry, is only a part of the whole

subject. Secondly, that nevertheless it is an extremely important

part. For in two-dimensional Projective Geometry most of the

basic ideas are developed which pervade the whole subject. It

is better to become acquainted with these ideas in the simplified

field of points and lines only, rather than in the more compli-
cated fields with which the higher dimensions are concerned.

Once these ideas are familiar, it is not a difficult matter to pass
on to higher dimensions. To do so is indeed the natural general-

ization to which the elementary two-dimensional work points
the way.
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EXAMPLES
1. Show that if the point A is on the line BCt then the point B is on

the line CA, and the point C is on the line AB.
2. Show that if the three points A, B, G are not collinoar, then the

Jines BC, CA, AB are not concurrent.

3. Show that the points ax, bx, ex, dx,... are collinoar.

4. State the duals of the last three examples, and prove them without

appeal to the principle of duality.
5. Show that the initial proposition 2.113 is a consequence of 2.111,

2.112, and 2.3.

6. If A, B, C, D are four points, no throe of which are collinear, show
that there are three and only three points, E, J?, G, each of which is

collinear with two pairs of the four given points.
7. In the last example show that if there are only three points on

every line, then E, F, O are collinear. (The reader is advised to try to

draw a figure illustrating this.)

8. In the Algebraic Representation show that the necessary and
sufficient condition that the three distinct points (#i3/iZj.), (T22/2 iS2)

and (2*3,3/3,2:3) should be collinoar is that

2/a 0.

2/3

9. Show that, in the Algebraic Representation, the three points

>y,z), (ti?)* and (Ix+X^ly+X^lz-^Xt,) are collinear.



CHAPTER III

PERSPECTIVITY AND PROJECTIVITY

3.1. Perspective Figures

3.11. DEFINITION /
Two point-figures /ABCD...., A'B'C'D'.... are said to be

centrally perspective on the point 0, or in central perspective from
the point 0, if the lines AA 1

', BE', CC' are all on 0.

The point is called the centre of perspective.

3.12. DEFINITION

Two line-figures abed...., a'b'c'd'.... are said to be axially per-

spective on the line o, or in axial perspective from the line o, if

the points aa', 66', cc',... are all on o.

The line o is called the axis of perspective.

The terms central(ly) perspective and axial(ly) perspective are,

plainly, dual terms; so also are centre of perspective and axis of

perspective.

3.13. Triangles in Perspective

The consideration of figures in perspective is divided into

two parts:

(i) perspective point-figures whose points are not all col-

linear, and the dual of this;

(ii) perspective point-figures whose points are all collinear,

and the dual of this.

The second part is of greater importance, and the first is

only considered in so far as it helps in the consideration of the

second.

The simplest figure whose points are not all collinear is the

triangle, and perspective triangles are therefore considered

here. In fact it is not necessary to consider any other types of

figure in perspective in this first part.

Since the triangle is a mixed figure, consisting of points and

lines, it would appear at first sight that two triangles could be

centrally perspective, or axially perspective, or both, or neither.

In 1639 Desargues published a theorem in elementary Geometry
which stated that any two triangles which were centrally per-
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spective were also axially perspective, and vice versa. This

theorem can be easily deduced from the initial propositions of

incidence and extension in the Protective Geometry of three

or more dimensions, but it is not a consequence of the corre-

sponding propositions in the Projective Geometry oftwo dimen-

sions. In fact there are systems of points and lines in which all

the initial propositions so far stated are verified, but in which

Desargues's theorem is not verified. Similarly there are systems
in which not only the initial propositions ofincidence and exten-

sion but also Desargues's proposition are all verified.

Since one of the objects of this book is to provide an intro-

duction to Projective Geometry of three or more dimensions, no

useful purpose will be served by considering systems in which

Desargues's proposition is not true, for these cannot occur as

sub-systems in a Geometry of more than two dimensions. We
therefore confine ourselves to those systems in which it is true,

and this is tantamount to laying down Desargues's proposition

as an initial proposition. When this has been done, it will be

necessary to show that it is compatible with the other initial

propositions; this is done by showing that it is verified in the

algebraic representation; it will also be necessary to prove the

dual of Desargues's proposition.

3.14. Desargues's Proposition

If two triangles are centrally perspective, they are also

axially perspective.

FIG. 1.
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In the figure the two triangles ABC, A'B'C' are centrally

perspective on the point and axially perspective on the line o.

3.141. Verification in the Algebraic Representation. Let A, B, C
be (#i 2/i *i) (av 2/2 zz)> and (xa> 2/s ^3) respectively, and A', B', C' be

(x{, 2/1, z[), (#3, 2/a Sg), and (#3, 2/3*23) respectively. Let 0, the centre of

perspective, be (f, 77, f ). /
Since O, A, A' are collinear, O, B, B' are collinoar, and 0, (7, C" are

collinear, numbers Xlt Ai, A2 , A.^, A3 , A3 exist such that

{ -- AjSjL+A^i A2 zz -j- Aa 3
=

Hence - -

(1)

and A2 s2-A3 S3
= -Aizi+AX,

and there arc> two similar sets of three equations.
Consider now the point

(Aa #2-A3 r3 , A2 2/2
~A3 2/3 , A2

z2-A3 z3 ).

Not all of these numbers aro zero, for then either B and C would coin-

cide, or A2 and A3 would both be zero and so B' and C' would coincide.

This point plainly lies on BC; but from the equations (1) it can also

be specified as

(-A.X4A1X, -As 2/2+AS 2/, -A-X-f-AgZs),

so that it also lies on B'C'. Hence it is the point A".

Similarly, B" is

(As^-Ai^, A3 2/3-^2/1, A3 z3-A1 21 ),

and C" is (Aj^-A2 xz , Aj 2/1
-A2 yz , Ax zl

-A2 z2 ).

It remains to show that A" t B", and C" are collinear. This will be so

if the determinant

A2 2/2
-A3 2/3 A2 z2-A3 23

A3 2/8-A1 2/i

A1 2/1-A2 2/2

vanishes. On adding the second and third rows of this determinant to

the first, it is easily seen that it does, in fact, vanish; hence A"9 B", and
C" are collinear.

Desargues's proposition is therefore verified in the algebraic repre-
sentation.

3.142. Dual of Desargues's Proposition

THEOREM. If two triangles are axially perspective, they are

also centrally perspective.

Suppose ABC, A'B'C' be two axially perspective triangles;
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that is, suppose there exists a line I and on it three points A",

B", C', such that A" is the point \ &' is the point

O" is the point

FIG. 2.

Suppose now that ABC and A'B'C' are not centrally per-

'AA"

(

spective. Let 1 be the point (,), and 0% be the point
\BB j

CC'\

J,
so that by supposition Ox and 2 are not coincident.

Let Q be the point
( p,j,

distinct from C", by supposition.

Then the triangles ABC, A'B'C^ are centrally perspective

on 19 and so by Desargues's proposition they are axially perspec-

tive also.

But fA'B'
\AB

I

is on /, and \ on lt hence I is the axis of

perspective of ABC, A'B'C^ Now AC and I are on jB*, and

therefore A fC1 and are on B".

Since, however, A'C' is also on J5", the two lines A'C and
A'C' have the two points A' and J5" in common; by 2.112 they
are therefore not distinct lines, and so C' and Ct must coincide.

Hence X and Oa must also coincide, so that ABC and A'B'C'
are centrally perspective.

4191 v
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EXAMPLES

1. Using the dual of Desargues's proposition as an initial proposition,

prove Desargues's proposition.
2. If ABC, A'B'C' are two perspective triangles show that the three

. A / BC\ (C'A\ , (A'B\
points

(B ,
c/), (OA ,),

an* (^j are collmear.

3. If ABC, A'B'C' pre two triangles which arc centrally perspective

on 0, and if A", B", C" are the collinear points
(

/CY/) (/;/ j/)
anc^

( A ' ')
resPoc*ive^y show that the following pairs of triangles are also

perspective:

(i) CC'B" and BB'C",

(ii) AA'C" and CC'A",

(iii) BB'A" and AA'B",

(iv) OBC and ^'B*C"',

(v) OC4 and B'C'A",

(vi) O^IJB and C'A"B",

(vii) OB'C" and .4B"Cr,

(viii) OC'A' and BC"^",

(ix) OA'B' and (Li'JS*.

State the centre and axis of perspective of each pair.

4. The triangles ABC, A'B'C' are perspective on and o as centre and
axis of perspective. If the triangles BCD and B'C'D' are perspective
on the same centre and axis, show that both of the pairs of triangles

ABD, A'B'D', and ACD, A'C'D' are perspective on and o.

3.2. Projectivity

3.21. Collinear Point Figures in Central Perspective

Let ABCD... be a set of points on a line Z, and A'B'C'D'...

another set on a line m, distinct from I. If these two figures

are centrally perspective on the point 0, then AA', BB', CC' t

jDZ)',... are all on 0. The two figures are clearly related, and the

relation between them is called a central perspectivity. The fact

that there is a central perspectivity between ABCD... and

A'B'C'D'... is expressed by writing

l(ABCD...) ^ m(A B'C'D'...).

Clearly the definition of a central perspectivity implies that

also m(A'B'C'D'...) l(ABCD...).

The relation of central perspectivity is not only a relation
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between the two figures ABCD..., A'B'C'D'..., each taken as a

whole, it implies a relation between each pair of corresponding

FIG. 3.

points in the two figures, so that A and A' are related, B and Bt

are related, and so on, and all these pairs are related in the same

way. The relation between each pair is that of being collinear

with the point 0. The statement

l(ABCD...) ^ m(A'B'C'D'...)

implies these separate relations by the order assigned to the

letters on each side of the relation.

FIG. 4.

What has been said applies, mutatis mutandis, to axial per-

spectivity of concurrent line figures.

The accompanying figure illustrates the relation

L(abcd...)
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3.22. Successive Perspectivities

Suppose that

and

it is natural to ask whether there exists a point B such that

in other words, whether two successive perspectivities are

equivalent to one. To this question only a partial answer can

be given at present. Later, it will be shown that unless the three

lines a, 6, and c are concurrent, and the three centres of per-

spectivity A, B, and C are collinear, the two perspectivities are

not equivalent to a single perspectivity. For the present, it is

shown that if the three lines #, 6, and c are concurrent, then

there exists a third centre of perspectivity on which c(C^CzCz ...}

and a(A 1A 2A 3 ...) are perspective.

3.221 . THEOREM. If a, b, and c are three concurrent lines, and if

and b(BiBiB..) c(C,C2Cz...),

then there exists a point B collinear with C and A such that

Since the lines a, 6, and c are concurrent at the point F, the

triangles A 1B1C1 and A 2B2C2 are centrally perspective on F;

hence by Desargues's proposition they are axially perspective.

But by supposition I
l M is the point (7,

and
(

* M is the point A ;

hence ( J- .

1
) is on the line AC.
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Similarly, since the triangles A 2B2C2 and A^B^O^ are cen-

trally perspective on F they are axially perspective on AC,

and so
(

2 2

)
is on the line AC.

W3^3/

Hence the lines A^C^ A 2C2 ,
A 9C3 are concurrent at a point

B on AC; that is to say

3.222. THEOREM. If A, B, and C are three collinear points,

and if

and B(b^b^.)

then there exists a line b concurrent with c and a such that

C^CgCg...) A A(al a2 as ...).

This theorem is the dual of the preceding theorem; the same

figure illustrates it.

Ex. Show that if
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and c^OaCa...) ^ a(A^A zA z ...) t

and if the three points A, B, and C are collinear, then the three lines

a, b, and c are concurrent. Dualize this theorem.

3.23. Three or More Successive Perspectivities

It has been said that two successive perspectivities do not

necessarily reduce to one, and it might be expected from this

that three successive perspectivities do not necessarily reduce

to two, and so on. This, however, is not so, and the next stage

in the inquiry into the theory of perspectivity is to show that

three or more successive perspectivities are always equivalent

to at most two. To prove this important theorem it is first

necessary to prove a subsidiary one. The subsidiary theorem

and the main theorem are proved in the next two sections.

3.231. THEOBBM. //

and &(#! ,,...) c

and if b' be any line concurrent with a and b, then there exists a

point Vi collinear with Tj and V2 and a collinear point-figure

B(B'zBz... on V, such that

and

FIG. 0.
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Let BiB'zB'z.., be the point-figure on &' perspective with

3... from the centre V2 . Then plainly

But also, v
a(A1A 3A 3...) 6(5^^3...),

and so, since the lines a, b, and b' are concurrent, it follows

from Theorem 3.221 that there is a point V( collinear with

TI and V2 such that

This proves the theorem.

3.232. THBOBEM. If

a(A 1A zA3 ...) b(B1 B,B3...),

<Aen <Aere ea;it a Z*e x andpoints U and V such that

and x(XlX2X3...)

The theorem states that any number of perspectivities can

always be reduced to two, but it is plainly only necessary to

prove that three successive perspectivities can always be re-

duced to two, for if this is proved, it is possible to reduce any
number successively until there are only two.

Accordingly, for the above theorem may be substituted the

following:

// a(A1A,At...) J* 6(^5^3...),

,...)
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and

then there exist a line x and points U and V such that

and

Firstly, if the lines a, 6, c are concurrent, the first two per-

spectivities may be reduced to one by 3.221. Similarly, if the

lines 6, c, and d are concurrent, the last two perspectivities may
be reduced to one; hence these cases may be dismissed.

Three cases now remain to be considered:

(i) no three of the lines a, 6, c, and d concurrent,

(ii) a, 6, and d concurrent,

(iii) a, c, and d concurrent.

Suppose first that no three of the lines a, 6, c, and d are con-

current.

FIG. 7.

Let TI be the common point of a and 6, and T2 that of c and

d. Let x be the line T&.
Let X^X2X3... be points on x such that

i-; A
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so that also T7

But since y
7^

V 1 2 3***/>

it follows by 3.221 that there is a point U such that

By exactly similar reasoning there is a point F such that

Hence there is a line x and two points U and F such that

d\A.-tAnAn...) _

and x(X1Xz X9...) -

Secondly, suppose that a, 6, and d are concurrent. Let b' be

on be but not on J^. Then by 3.231 there exist a point F and

points B'lt B2) J?a,... on b
f

such that

Tf

ciiA-tAnA*.,.} b (B-tBnBv*,.)

and b'(B[B'2 B'3 ...) ^ c(Ci<72 <73 ...).

But no three of the lines a, &', c, d are concurrent, and so the

previous part of the theorem is applicable; hence there exist a

line x and points U and F satisfying the required conditions.

The third case, when a, c, and d are concurrent, is treated in

exactly the same way. In place of c a line c' is substituted and

the first part of the theorem again used.

3.233. THEOBEM. //

and 5(6! 6,6,...) ^
4191 G
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and if Bf

be any point on AB but not on v2 , then there exist a

line v{ on v^2 and a concurrent line-figure b[b2 b^... such that

A(al at
at,..) % B'(b'^b',...)

and

3.234. THEOREM. //

A(a1 a2a3 ...)

B^b^...) C(clC2 c3...),

C(Cl c2 c3...) ^ D(d1 d,d3 ...),

then there exist a point X and lines u and v such thai

A(al a2 a3 ...)

and X(xl x2x3 ...)

These last two theorems are the duals of the two preceding

ones. It will be useful practice for the reader if he proves them

on their own merits, and not merely by appeal to the principle

of duality.

3.235. Gollinear Point-figures on the same Line

In Theorem 3.232 it was assumed that the line n, on which was

the final collinear point-figure of the sequence considered, was

distinct from the line a, the first of the sequence. If, however,

a and n are not distinct, a slight change has to be made in the

theorem, which then reads:

If a(A 1A 2A 3...) and a(AiA 2 Az...) are two collinear point-

figures on the same line which are connected by a sequence of

perspectivities, then the sequence may be reduced to one of three

perspectivities at most.

The formal proof of this theorem is left to the reader.



PERSPECTIVITY AND PKOJECTIVITY 43

3.24. Definition of Projectivity

In 3.21 it was pointed out that a relation exists between two

collinear point-figures which are centrally perspective, and that

this relation between the two figures implies relations between

corresponding points of the two figures. If now

and

it is .clear that the two figures A 1A ZAS ... and C^CgCg... are

related, although the relation between them is not, in general,

a perspectivity. The relation between two collinear point-

figures which are connected by a finite number of perspectivities

is catted a, projectivity, and by 3.221 a perspectivity is a particular
case of a projectivity.

A projectivity between two collinear point-figures A 1
A 2A 3 ...

and 2?! JS2 #3 ... is symbolized by writing

a(A 1A 2A 3 ...)
~ &(#! J32 J53...).

Just as a perspectivity is not only a relation between the two

figures in perspective, each taken as a whole, so a projectivity

is not only a relation between the two figures each taken as a

whole. It implies that to each point of one figure there corre-

sponds a single, determinate point of the other, and vice versa;

in the case contemplated above, A : and B1 are related, A z and

B2 are related, and so on, and all these pairs are related in the

same way. The relation between each pair is that determined

by the perspectivities which specify the projectivity.

It is plain from what has been said that a projectivity can

exist between two point-figures which are on the same line.

This also applies, mutatis mutandis, to projectivities between

concurrent line-figures. No distinguishing adjective is used to

differentiate between projectivities between collinear point-

figures and projectivities between concurrent line-figures.

Now that the term projectivity haa been defined, it may be

used to restate Theorems 3.232 and 3.235 and their duals.



44 PROTECTIVE GEOMETRY

3.241. THEOREM. A projectivity between two collinear point-

figures on different lines can always be specified as a sequence of

at most two perspectivities.

3.242. THEOREM. A projectivity between two concurrent line-

figures on different points can always be specified as a sequence of

at most two perspectivities.

3.243. THEOREM. A projectivity between two collinear point-

figures on the same line can always be specified as a sequence of at

most three perspectivities.

3.244. THEOREM. A projectivity between two concurrent line-

figures on the same point can always be specified as a sequence of at

most three perspectivities.

3.245. Projectivities between Point-figures and Line-

figures.

So far, only the notions of a projectivity between two

collinear point-figures and a projectivity between two con-

current line-figures have been considered. It is convenient,

however, to supplement these by the notion of a projectivity

between a collinear point-figure and a concurrent line-figure.

FIG. 8.

Let A !A 2A 3... be a collinear point-figure on the line a and

any point not on a; let OAl} OA& OA 9>... be a^Og..., a con-
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current line-figure. Then if K1K2K3 ... be a collinear point-

and

in the sense already defined, the concurrent line-figure

is said to be projective with the collinear point-figureKl K%K3 ... .

The relation is expressed by writing

The principle of duality leads us to formulate the definition

of a projectivity between a collinear point-figure and a con-

current line-figure, and having formulated this dual definition,

we can then prove (for it must be proved) that

implies lc(K^K2 K^...) ~ 0(a1 a2 a3 ...).

EXAMPLES

1. a, 6, and c are three concurrent lines; U, F, and W are three

collinear points. Show that if

and a(A^A^A^...}

then there is a point X collinear with C7, F, and W and such that

2. Show that if

and if b
f be any lino other than a, c, and C7F, then there exist points

17', V on UV such that

and b'(B'iB!>B's...)

3. Showthatif A(a1 az a,...)
^

and 5(6! 62 68 ...) ~ Cfa ca t8 ...),

then ^(^agtta...) '^ ^CiCgCj...). Dualize.
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4. Show that if

then A(al az at ...) /^c(C1 C72C8...). Dualize.

5. Show that if ,-4(#1 #jjCfc8...)
/^^ 2?(&&2 63 ...)

and J9(&i >n &<>...) ^^cfOiCoCg...),

then ^(a^2 3...) ^cfCVC^Oa...). Dualize.

6. Show that if
.4(tt1

a2 a8...)
~ 6(5! JB2 #3 ...)

then A(a1 az aa ...)
/-^ C^Cjj c3 ...). Dualize.

7. Is it true that A(a1 az a3 ,..)
r^> A(al az as...)'i Justify the answer

given.

3.25. Perspectivity and Projectivity in the Algebraic Repre-
sentation

If (#i,g/i,Zi) and (x[,y[,z[) be any two points, then any point on their

join is ,\
j-V/p' > v -j-A'v' A ~ 4-A/xv/

)

The numbers (Ax , A{) will be tennod the coordinates of the point

relative to the base points (xjt ylt zj and (x(, j/j, z{). It can easily be verified

that the point whose coordinates are (kXlt kX[), where k is any constant

other than zero, is the same as the point whose coordinates are (Al5 Ai)

provided the same base points are used. To avoid cumbrous phrase-

ology, we shall refer in future simply to the point (A15 AJ).

3.251. Perspectivity

Let (A^AO be any point on a lino lt on which the base points are

Let (A2,Aa) be any point on a line lz on which the base points are

We now ask what is the algebraic relation connecting the four

numbers Alf AJ, A2 , A which is the counterpart of the geometrical relation

known as central perspectivity on the point (, 17, ).

Now if the throe points (A^AO on llt (A2,Aa) on 12 , and (f,i?,f) are

collinear,

f v

0, wherethat is, A

t M Y
b V fe

*i 2/i Zi

2 2/2 *

( -n

^ 2/a 4
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D =

**

2/2 22

J

(3)

(4)

#a 2/2 Za

When f, 17,
and { are eliminated from these equations, the equation

=
(5)

remains, and this may be written

Api+Bpi+Cpz+DptL
= 0,

Pi /2 /s> and />4 being the minors of A, B, (7, and D in the above deter-

minant.

Hence, if there is a central perspectivity between the points (Aj,Aj)

on Z1 and points (A2,Ag) on Z2 , then there are four numbers A, B, C, and
D such that

^AA+tfA^+tfA^+JSAjA; = 0, (6)

and APl+ Bp2+ C/>3+Dpt
= 0. (7)

It should also be observed that ADBC ^ 0, for wore this so, we
could write AjC = B/D = k, and the equation (6) would reduce to

)
- 0,

and plainly this equation cannot be satisfied by all pairs of points in the

perspoctivity.

Conversely, if the two equations (6) and (7) are satisfied, and if

ADBC = 0, there is a perspectivity between points (A1,AJ) on llt and

points (A2 , Ag) on lz . No difficulty should be experienced in proving this.

The following theorem may therefore be enunciated:

The necessary and sufficient condition tJiat there should be a central

perspectivity between points (A^A^) on l and points (X2,X'2 ) on 12 is that

there should befour numbers A,B,C, and D, such thatADBC ^ 0, and

= 0,

= 0.

3.252. Projectivity
A projectivity between points on a line 2t and points on a line 1B is

defined as a sequence of perspectivities, and this can, in fact, be reduced

to a sequence oftwo perspectivities if the two lines are distinct. Suppose
then that a perspectivity is specified between points on ^ and points
on lz , and that a second perspectivity is specified between the points on
lz and those on Z3 .

Let the base points on Zx and lz ba as before, and let those on lz be
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Since there is a perspectivity between points on ^ and /2 , numbers
A y B, C, and D exist such thatADBC ^ 0, and

= o (i)

and Api+Bpt+Cpt+Dpi = 0. (2)

Similarly, there are numbers E, F, G, and H, such thatEHFG ^ 0,

and --
(3)

and Eat+Faz+Gaz+Ho-i = 0. (4)

When A2 and A are eliminated from equations (1 ) and (3), the resulting

equation is

(BE-AG)X1 X3+(BF-AH)X1X^-{-(DE-CG)X{Xs^(DF-CH)X{X
f

s
= 0,

and this may be written

= 0.

Further, the expression ad be is equal to (ADBC)(EHFG), and
therefore it cannot vanish.

Hence, if there is a projectivity between points (Alf A) on 119 and points

(AajAa) on 13 , then there are four numbers a, 6, c, and d, such that

ad be 7^ and

aXiXs+bX^+cXlXz+dX'^ = 0. (5)

The converse theorem is also true, for if the equation (6) be satisfied,

and if ad be = 0, then there are eight numbers A 9 B, C, D, E, F, G,

and H, such that neither (ADBC) nor (EHFG) vanishes and, in

addition, WIJT Ari' a JbJL AGf

b = BF-AH,
c = DE-CG,
d = DF-CH,

0.

In fact, it will be found that there are an infinity of solutions of these

equations. Hence the relation implied by equation (5) can be specified

as a sequence of perspectivitios; hence it is a projectivity.

The following theorem may therefore be enunciated:

The necessary and sufficient condition that a projectivity should exist

between points (Xlt X{) on a line l and points (Ag,Aa) on a line lz is that

there should befour numbers a, 6, c, and d, such that ad be ^ 0, and

= 0.

3.3. Projectivity of Ranges and Pencils

In considering perspectivities and projectivities between

collinear point-figures, we have so far taken these figures to be

merely selections of points from the whole set of points on the
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line. In order to simplify the work, we now pay special atten-

tion to one particular collinear point-figure, namely that con-

sisting of all the points on a line. Similarly, we pay special

attention to the concurrent line-figure consisting of all the lines

on a point.

DEFINITION. The point-figure consisting of all the points on

a line is catted a range of points on a line, or, simply, a range; the

line on which a range is, is catted the base of the range.

DEFINITION. The line-figure consisting of all the lines on a

point is called a pencil of lines on a point, or, simply, a pencil; the

point on which a pencil is, is called the base of a pencil.

Since the range is a collinear point-figure, all the theorems

about perspectivity and projectivity of collinear point-figures

are true of ranges.

3.31. Projectivities between Ranges
A projectivity between two ranges on different bases sets up

relations between the points of one and the points of the other

in such a way that to one point of one there is made to corre-

spond a unique point of the other, and vice versa. A question

here presents itself: Can a projectivity between a range on the

base a and a range on the base b exist in which certain arbitrary

points A 1A 2A BA 4L
... chosen on a correspond to arbitrary points

B B2 J?3 J54 ... chosen on b ?

A partial answer to this question is given in the following

theorems.

3.311. THEOBEM. There is a projectivity between a range on a

base a and another range on a base b in which three arbitrarily

chosen distinct points on the first range correspond to three arbi-

trarily chosen distinct points on the second.

Let A 1A 2A 3 be three arbitrarily chosen points of the range
on a, and B1B2 B$ be three arbitrarily chosen points of the

range on b.

Let U be any point on A lBv and c any line on Bv other than

6. Then points C2 ,
C3 exist such that .
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Let F be the point (f
2

^
2V Then, clearly,

W3 C3/

so that a(A 1A2A B)
'

I u

FIG. 9.

Hence the projectivity which is specified by the perspectivities

on U and V has the required property, and the theorem is proved.

It is clear that the two perspectivities specifying the pro-

jectivity are by no means unique.

3.312. THEOBEM. There is a projectivity between a pencil on a

base A and another on a base B in which three arbitrarily chosen

distinct lines of the first pencil correspond to three arbitrarily

chosen lines on the second.

If certain ideas which are elaborated in the next chapter

were now at our disposal, it could be proved that Theorems

3.311 and 3.312 are not in general true when the word three is

changed into four. In fact, it could be proved that if A, B, and

C are three arbitrary points of one range and A', B', Cf

are

three arbitrary points of a second range, and if a projectivity is

set up which makes A, B, C correspond to A' t B' y C", then by
whatever perspectivities the projectivity is specified certain points

of the first range will always correspond to certain other points

of the second. That is to say, there are points D, E, F t ... which

will always correspond to certain points D', E'
t F',... . In the

Algebraic Representation it is found that if in a projectivity

three Joints of one range are chosen to correspond to three
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points of another, then the point corresponding to any other

point is fixed however the projectivity be specified.

These facts lead us to lay down an initial proposition which

states that if there are two differently specified projectivities

in each of which three points A, B, C of one range correspond
to A', B', C' of the second, then the two projectivities are

entirely equivalent; that is to say, if in one of the projectivities

D, E, F,... correspond to D r

, E', 1",..., then in the other

A E, F,... correspond to D', E', F',....

3.313. The Projective Proposition

IIA.B.C.D are four points of a range, and A', B', C' are

three points of another range, then there is a unique

point D' of the second such that any projectivity in

which (ABC) ~ (A'B'C') is also a projectivity in which

(ABCD) ~ (A'B'C'D').

3.314. Verification in the Algebraic Representation
Let (Alt Ai) be a typical point on a line llt and (A2,Aa) a typical point on

a line 12 . By 3.262, if a projectivity exists between the two ranges, the

coordinates of corresponding points are connected by an algebraic
relation of the type

aA^a+ fcAjLAa+cAj'Aa+dAiAa =0 (ad be ^ 0).

Suppose now that three points (!,) (&,$) and (y^yj) on ^ corre-

spond respectively to the three points (a2,aa), (j82 /%) and (y2yss) on h'

Then aa1 a2+&a1 c4+caia2+rfa][a2 == ^

ohPt+WiK+cKh+dKK - o,

and ayiy2+&yiy2+cyiy2 -fdyjya*
= 0;

from these three equations the ratios of the four numbers a, 6, c, d can

be determined uniquely.
Let (8^ 8) be any fourth point on Z; then since a, 6, c, d are known

apart from a constant factor it follows that (S2 , 83), the corresponding

point on lz , is uniquely determined from the equation

aS1 82+681 8^4-c8J82 +rf8i8a = 0,

however the projectivity be specified in terms of perspectivities.

The Projective Proposition is therefore verified in the Algebraic Repre-
sentation, and so it is compatible with the other initial propositions.

3.315. Dual of the Projective Proposition
THEOREM. If a, 6, c, d, are four lines of a pencil and a', 6', c'

are three lines of another pencil, then there is a unique line d' of

the second such that any projectivity in which (abc) ~ (a'b'c') is

also a projectivity in which (abed) ~ (a'b'c'd
1

).
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Let U and F be the bases of the two pencils, and suppose
that there are two lines d' and d" on V and that there are two

projectivities, in one of which

U(abcd) ~ V(a'b'c'd'),

and in the other
V(a'b'c'd').

Let x and y be any 'two lines; let the points xa, xb, xc, xd be

A, B, C, D respectively; and the points ya', yb' t yc', yd', yd" be

A\ B'
9 C

1

, D', D".

Then clearly there are two projectivities, in one of which

x(ABCD) ~ y(A'B'C'D'),
and in the other

x(ABCD) ~ y(A'B'C
fDH

).

This contradicts the Projective Proposition, hence the sup-

position that d' and d" are distinct is false. This proves the

theorem.

3.32. Elementary Deductions from the Projective Pro-

position

A number of important theorems can be deduced at once

from the Projective Proposition, and great use will be made of

them in the sequel.

3.321. THEOREM. // X is the common point of two lines a

and b, and if a projectivity between the range on a and the range

on b is such that the point X, considered as apoint of a, corresponds

to the point X, considered as a point of 6, then the projectivity is a

perspectivity: that is, the lines on pairs of corresponding points

are all concurrent.

Let A! and A 2 be any two points on a, and let J5X and B2 be

the points corresponding to them in the projectivity.

Let F be the point

Then the central perspectivity on F between the two ranges
involves the relation

But the projectivity also involves, by supposition,
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Hence, by the Projective Proposition, the projectivity is

equivalent to the perspectivity.

3.322. THEOREM. // x is the line on two points A and B,

and if a projectivity between the pencil on A and that on B is such

that the line x, considered as a line of the pencil on A, corresponds

to the line x, considered as a line of the pencil on B, then the pro-

jectivity reduces to a perspectivity; that is, the common points of

corresponding lines of the two pencils are collinear.

The somewhat long enunciation of these two theorems may
tend to make the reader lose his grasp of their significance, and

so they are re-enunciated in less careful words.

A projectivity between two ranges, in which the common point

is self-corresponding, is always a perspectivity.

Or, with even greater economy:

A projectivity with a common self-corresponding point is a

This theorem is constantly in use when it is desired to prove
that three or more lines are concurrent; for the lines which are

on pairs of corresponding points in a perspectivity are con-

current at the centre of perspective. The dual theorem is used

for the dual purpose.

3.323. Pappus's Theorem

If A, B, C are three points on a line x, and A', B' 9 C'

are three points on a line y, and if A", B", C" are the points

\B'Cr (CM)' \A'W
re8Pectively thenA",B", and C" are collinear.

FIG. 10.
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Let be the point xyt and Bl9 C^ the points (f ), (

respectively.

Then y(A'B'C'0)
*

(C"B'B^A)

and y(A<B'C'0) (

hence (C^B'S^A )
~ (B"^ C'A ).

But this is a projectivity between ranges on different bases in

which there is a common self-corresponding point A. Hence

it is a perspectivity, by the last theorem. Hence B"C ft

t
B'Clt

BtC
f

are concurrent, but the common, point of the last two

lines is A". Hence A", B", C" are collinear.

The reader should notice how this theorem is proved, and should study

carefully the figure accompanying it. Pappus's theorem is not very
difficulty but time is often wasted in futile attempts to reproduce the

proof. Of the many available ways of proving the theorem, that given
here has been chosen as being the most 'automatic'. It will appear later

on as the proof of another important theorem.

It is left to the reader to state the dual of Pappus's theorem;

it is useful practice to prove it without using the principle of

duality.

The line A"BnCn
in Pappus's theorem is called the Pappus

line of the two sets of three collinear points A, B, C, and A',

B', C'.

3.324. Utility of Pappus's Theorem
At first sight, Pappus's theorem appears to have little bearing

on the work that has preceded it, nor does it answer any question

which that work has raised. Nevertheless, it is of great value in

that it provides a simple method of determining corresponding

points in a projectivity when three pairs of corresponding points
are known. One way of doing this is already known, namely

by setting up two perspectivities; but this is cumbrous. The

following theorem is the foundation of a simpler method.

THEOREM. //

(i) I be the Pappus line of two sets of three collinear points

A
t
Bt C and A', B'

t C' onx and y respectively,
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(ii) D be any other point on x, and D" the point common to

A'D and I,

(iii) D' be the point common to y and AD",

then (ABCD) ~ (A'B'C'D').

FIG. 11.

Let F be the point common to AA ' and I.

Then x(ABCD) ^' Z(W'J3"Zr),

but l(FC"B"D") ^ y(A'B'C'D') t

hence x(ABCD) ~ y(A'B'C
r

D').

The reader will have no difficulty in devising a construction

for finding corresponding points in a projectivity in which three

pairs of corresponding points are given.

3.325. The Permutation Theorem
THEOEEM. // x(ABCD) y(A'B'C'D'),

then also x(ABCD) ~ y(B'A'D'C').

Let V be any point not on x, and z any line other than x, and

suppose x(ABCD) A z(A
/tB tfC ffD ff

).

(CA"\J,
then UV is the Pappus line of the

two sets ABC and B"A"D".
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Hence in the projectivity in which (ABC) ~ (B"A"D
ff

) the

point corresponding toD is G\ for CC" is on F andDD" is on F.

Hence (ABCD) ~ (B'A'D'C*).

Now
(B'A'Dfi') (BADC)

^ B"

FIG. 12.

and (BADC) ~ (B'A'D'C'),

so that (ABCD) ~ (B'A'D'C').

The permutation theorem is constantly in use in subsequent

work.

1. If

and

and

EXAMPLES

B

show that o, 6, and c are concurrent, and that A, B, and (7 are collinear,

Dualize.

2. If the lines joining three pairs of corresponding points of two

ranges in a projectivity are concurrent, show that the projectivity is a

perspectivity.

3. ABCD and A'B'C'D' are two sets of four points on x and y

respectively. If / is the Pappus line of ABC and A'B'C' and also of

ABD BnAA'B'D', show that it is also the Pappus line ofBCD and B'C'D'
and of ABD and A'B'D'.

4. ABC and A'B'C' are two sets of three collinear points and

A*t B", C" are the points (

^^J. ( x
r?/)

an<^
(
T>A

/)
respectively. Show

that the Pappus line of A'B'C' and A"BffC" is ABC.
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5. In a certain projectivity between two ranges, ABC correspond

respectively to A'B'C', and I is the Pappus line of these two sets. If

DEF correspond to D'WF' respectively, show that I is also the Pappus
line of these two sets.

6. If in the last example X is the point common to the line I and the

base of the first range, what point in the second range corresponds to X?
7. If ABC and A'B'C' are two sets of three collinear points, and if

AA f

t BB' t CC' are concurrent, show that the Pappus line of ABC and
A'B'C' and these two lines are concurrent.

8. Prove the converse of the last example.
9. State the dual of Theorem 3.324, and prove it without appeal to

the principle of duality.
10. State the dual of Theorem 3.325, and prove it without appeal to

the principle of duality.

3.4. Gobasal Ranges and Pencils

Strictly speaking, there is but one range of points on a line

and one pencil of lines on a point, and therefore to speak of

more than one range or pencil on a given base is a contradiction

in terms. Nevertheless, these expressions are used, and they
are used with a very definite meaning and for a definite purpose.

It will be quite clear that a projectivity can exist between a

range and itself, and if A, B, C, A', B', C' are points of the

same range, it is possible to set up a projectivity in which the

points A, B, C correspond to the points A
1

', B', C' in just the

same sort of way as any other projectivity is set up. A little

thought will show that if we are going to speak of a projectivity

between a range and itself, we shall have to be constantly

qualifying terms and using cumbersome language; moreover the

terminology used when speaking of ranges not on the same base

in projectivity will not be applicable without qualification to

a projectivity between a range and itself. For these and other

reasons we are led to speak not of a projectivity between a

range and itself, but between one range and another range on

the same base. The two ranges are not really distinct, but it is

a help to thought and language to think of them as distinct.

Just as in Algebra it is usual to say that the equation

za 2x+l =
has two roots, which we say are equal, so here we say that on

the one base there are two (or more) coincident ranges and these

ranges are called cobasal ranges.
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The term cobasal pencils has a similar meaning, and is used

for similar reasons.

3.41. Projectivities between Cobasal Ranges and Pencils

THEOBEM. // A, B,/C are three points of a range, and A',

B' t C' are three points/ of a cobasal range, then a projectivity in

which A and A', B and B', C and C' correspond is unique.

Let A", B", C" be three points on another line perspective

with A', B', C'.

By considering the projectivity in which (ABC) ^ (A"B"C
H
)

the proof of the theorem becomes plain. The details are left to

the reader.

3.42. The reader may find it helpful in thinking of projectivi-

ties between cobasal ranges to ascribe colours to the different

ranges, even though in formal written work the practice might
be deprecated. Thus there will be (say) a red range and a blue

range on a certain base, and because of a projectivity, to each

red point there corresponds a definite blue point, and vice versa.

The theorem of the last section shows that when three dis-

tinct red points are specified as corresponding to three distinct

blue points, the projectivity is completely determined, that is

to say, the blue point corresponding to any other red point is

determined,t
A question naturally arises here. Are there any red points,

say A, B, C,... which correspond to the same blue points

A, B, (7,... ? In formal language, if a projectivity exists between

two cobasal ranges are there any points which are self-corre-

sponding ? This question is answered in the next section.

3.43. Self-corresponding Points of Gobasal Ranges in

Projectivity

3.431. THEOBEM. // in a projectivity between two cobasal

ranges there are three self-corresponding points, then every point

is a self-corresponding point.

t Another helpful way of considering a projectivity between cobasal ranges
is to think of one range as a range of electric lights and the other as a range of

switches. When a projectivity exists, the switch at the point A switches on the

light at A'. But the switch at A' does not switch on the light atA except under

certain special circumstances which will be investigated in the next chapter.
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Let A, B, C, be the self-corresponding points.

Now there is a projectivity between two cobasal ranges, the

identical projectivity, in which

(ABCDEF...) ~ (ABCDEF...),

and plainly, in this projectivity, every point is self-corre-

sponding.
But a projectivity is determined uniquely when three pairs

of corresponding points are specified, hence if there is a pro-

jectivity in which (ABC) ~ (ABC) it cannot be other than the

identical projectivity. Hence every point is a self-corresponding

point.

3.432. THEOREM. There are projectivities between cobasal ranges

in which there are only two self-corresponding points.

T B' B" X A" A'

FIG. 13.

Let x be the base of the cobasal ranges.

Let y be any other line, and let T be the common point of

x and y.

Let U and V be any two points neither of which is on x or

y, and which are not collinear with T.

Let X be the point common to UV and x.

Let ABCD... be a range on y.

Consider the two ranges x(A
tB'C'Dt

...) and x(A
ffB ffC lf

D"...) t

defined by the perspectivities

y(ABCD...) ^ x^'B'C'D'...),

y(ABCD...) ^ ^A'B'C'D*...),

so that x(A'B'C'D'...) ~ x(A'B'C'D'...).
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Then clearly X and T are self-corresponding points.

Moreover there are points on x which are not self-correspond-

ing. Hence by the previous theorem there cannot be more

than two self-corresponding points.

3.433. THEOBBM. Thefe are projectivities between cobasal ranges

in which there is only(one self-corresponding point.

jf C" C' B" B
f A 1 #

FIG. 14.

This theorem is very similar to the last, and the only differ-

ence in the preliminary construction is that the points U and V
must be collinear with T.

3.434. The Number of Self-corresponding Points

The last three theorems have shown that ifa projectivity exists

between two cobasal ranges (i) there cannot be more than two

self-corresponding points unless all points are self-corresponding,

(ii) there can be two self-corresponding points without all points

being self-corresponding, (iii) there can be only one self-corre-

sponding point. It is impossible to say definitely at this stage

whether there can or cannot be projectivities between cobasal

ranges in which there are no self-corresponding points. To
answer this question definitely it would be necessary to lay down
an initial proposition on extension in place of 2.412, and more

definite than 2.412. This will be done eventually, but for the

present there is no need to enter into a further discussion of the

question of extension.

In working examples the reader may always assume that in

the projectivities between cobasal ranges with which he deals

there are two self-corresponding points. These two may be

coincident (as in Theorem 3.433), and this possibility should not

be overlooked.
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EXAMPLES
1. Show how two establish a projactivity between two cobasal ranges,

given (i) three pairs of corresponding points, (ii) two pairs of corre-

sponding points and one self-corresponding point, (iii) two distinct self-

corresponding points and one other pair of corresponding points.
2. Given that in a certain projectivity between two cobasal ranges the

two self-corresponding points are coincident, show that the projectivity
'

is uniquely determined if the coincident self-corresponding points are

known, and one other pair of corresponding points is known. (Use 3.433. )

3. If X and X' are the distinct self-corresponding points of a pro-

jectivity between two cobasal ranges on the lino x, and ifA , A' and JB, B'
are two pairs of corresponding points, show that there is a projectivity
between cobasal ranges in which x(XX'AA') ~ x(XX'BB').

4. Show that if Jc(XYAB) ~ k(XYBA), then k(XYAB) ~ k(YXAB).
5. If there are two distinct self-corresponding points in a projoctivity

between two cobasal ranges, show that the projectivity may be specified

by two perspoctivities.
6. ABC is a triangle, and P, Q, R are three points not on any of its

sides. Show that if the self-corresponding points of a certain pro-

jectivity are known, then a triangle A'B'C' can be constructed such that

(i) A' is on BC, B' is on CA, C' is on AB; and

(ii) B'C' is on P, C'A' is on Q, and A'B' is on R.

How many triangles are there which fulfil these conditions ?



CHAPTER IV

THE FOUR-POINT AND THE FOUR-LINE

4.1. Definitions and/Elementary Properties

4.11. The Simple Four-Point

DEFINITION. Any set of four points, no three of which are

collinear, is termed a simple four-point.

4.12. The Simple Four-Line

DEFINITION. Any set of four lines, no three of which are con-

current, is termed a simple four-line.

The four-point and the four-line are, plainly, dual figures.

4.13. The Complete Four-Point

In the figure A Q , A^ A z , A 3 are the points of a simple four-

point.

(a) Since any four things can be associated in pairs in six

different ways, there are six lines associated with any simple

four-point, each of the lines being on two of the points. In the

figure A A 19 A 2A Bt A A 2 ,
A A B ,

AQA 3 , A^A^ are the six lines

in question. They are called sides ofthe four-point.

(6) These six sides can be arranged in three pairs; two sides

will belong to a pair if and only if their common point is not a

point of the four-point. Two sides which belong to the same pair

are called opposite sides.

(c) The common point ofa pair of opposite sides will be called

a diagonal point', there are thus three diagonal points in all.

In the figure, A A^ and A 2A 3 are opposite sides and their
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common point D is a diagonal point. The other pairs of opposite
sides and the corresponding diagonal points are:

A A 2 and A 1A3 ;
D2

A A 9 and A^A^ D3 .

(d) The method of assigning the letters to the various points
should be noticed. The four points of the four-point are

A^A^A^A^ in naming any pair of opposite sides, all the suffixes

0, 1, 2, 3 are mentioned; the suffix of the diagonal point associ-

ated with any pair of opposite sides is the suffix of the letter

associated with A in that line of the pair which is on A Q .

DEFINITION. The four points of a simple four-point) together

with the six sides and the three diagonal points is termed a complete

four-point.

FIG. 16.

What has been said in this section can all be dualized;

associated with a simple four-line are six points which can be

classified into three pairs, and three diagonal lines. This leads

to the definition of the complete four-line as follows:

DEFINITION. The four lines of a simple four-line, together

with the six points and the three diagonal lines, is termed a com-

plete four-line.

4.131. Elementary Properties

The following elementary properties of the complete four-

point, and their duals, are simple consequences of the defini-
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tions, and are scarcely worth enunciating as theorems. The

reader should satisfy himself that they are true, and that not by

merely verifying them in the drawn figure.

(a) No two of the six sides of a complete four-point can

coincide. /
(b) No four of the six sides can be concurrent.

(c) A diagonal point cannot coincide with any of the four

points of the four-point.

(d) nor can it be on three of the sides.

(e) None of the four points of a complete four-point can be

collinear with a pair of diagonal points.

4.14. The Four-Point in the Algebraic Representation

Let (x ,y ,z ), (x^y^z^, (xa,y2,z2 ), (x3,y3,z3 ) be the four points
-4 , A 19 A 2 , and A3 respectively.
Then the six sides of the four-point are:

L2/2 *3 2/3*2' *2 ^3 *3*^2' ^'22/3 *^3 2/2-1'

[2/0*2 2/2 ~0 Zo XZ Z2 X0' #02/2^22/0]'

[2/0*3-2/3*0'2o#3-*

A,A,

In order to find the diagonal points, the common points of these pairs

of lines may bo found in the usual way, or more simply thus:

Numbers A , Alf A2 , A3 exist such that the three equations

,3^0,
I= 0, (1)

A *o+Al*l+A2 *2+As*3 = J

are satisfied. The ratios of A , Ax , A2 , A8 may be determined from these

equations by the elementary theory of determinants; none of them can

be zero, since no three points of the four-point can be collinear.

From the equations (1) it follows that

A 2/o+Ai2/i = -A2 2/2-A3 2/8 > 1 (2)

Consider now the point (X x +X1
xlt \>yo+hiyi, X^ZQ+^Z^. Since

not all these numbers are zero (see 3.141), it is plain that this point is

collinear with (x0t y , ZQ ) and (xlt ylt 2j). But, from the equations (2), this

point may be specified as (Ag^aH-^a^a* ^22/2+^3^8' Aa 22+A8 z3 ), and this
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specification shows that it is also collinear with (xz , y2 , z2 ) and (a3 , y3 , 23 ).

Hence it is the diagonal point D.
Similarly the other diagonal points may be found. Honce

Diis the point (^x^+X^x^ A i/ -fA^, AoZo+A^i),

or (X2x2+XB xa , A2 s/2+A8 2/3 , A2 z2+A3 23 );

D2 is the point (A a? +A2 #2 , A yQ+A2 1/2 , A 4-A2 2 ),

or (Aj^i+Asa?,,, A^+Aj,*/,,, A^-fA3 z3 );

Da is the point (A r -fA8 x9 , A y +A3 2/3 , A z 4-A3 za ),

or (Ax a?!+A2 xz , Ax 2/x+A2 y^ Xl zl+A2 z2 ).

4.15. Diagonal Points

The initial propositions so far laid down do not make it

possible to deduce that the diagonal points of a four-point are

collinear or that they are not collinear. They are in fact com-

patible with both of these possibilities. For instance, in the

finite Geometry in which there are only three points on every

lincf the whole field consists of one complete four-point in

which the three diagonal points are collinear. On the other

hand, in the Algebraic Representation there is no complete

four-point whose diagonal points are collinear.

It is possible to prove, with the material at our disposal, the

following proposition and its dual: // the diagonal points of any
one complete four-point are collinear, the diagonal points of every

complete four-point are collinear. From this, the negative pro-

position follows at once : // the diagonal points of one complete

four-point are not collinear, then the diagonal points of every

complete four-point are not collinear.

The study of systems in which the diagonal points of every

four-point are collinear is less simple than the study of those

in which they are not; moreover it is best left until the simpler

systems have been investigated. Hence, in this book we confine

ourselves to systems in which the diagonal points of a complete

four-point are not collinear. To do this, we could lay down the

initial proposition: There is one complete four-point whose

diagonal points are not collinear. We should then go on to prove
the second of the propositions stated above. To save time,

however, we lay down instead an initial proposition which is

equivalent to these two.

t See 2.23.
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4.151. The Harmonic Proposition.f There is no com-

plete four-point whose diagonal points are collinear.

4.152. Verification in the Algebraic Representation
Let (#o2/o'o) (zyi*ti)*JiXv &***) (%3>ys> z*) bo the points A , A lt

A z , A B , as in 4. 14. Then ifAQ, Alf A2 , A3 have the meanings there assigned,
the diagonal points are: /

A (Ao^o+Ai^i, Aot/o+A^i, A z -fA^),
or (A2 x2+A3 o:3> A2 7/2+A3 2/3 , A2 z2+A3 3 );

A (A ^0+A2 ff2 , A 2/o+A2 2/2 , A 2 4-A2 22 ),

or (Ajajj+Aatfg, A^+Ag^a* AjZj+Ajjgj,);

A (A # +A8 , A 2/0+A3 ?ys , A z +A3 23 ),

or (Aj o^j+A2 a?j,, A! 2/1+A2 2/2 , Ax !+A2 2,).

Suppose now that the throe diagonal points arc all on the line [I, m, n].

Let &

Now since all tho diagonal points are on [Z, m, n], it follows that

0; A2 fc2+A3 fcs
= 0;

A;2
= 0; Al fcl+A8 *, = 0;

= 0; A^i+Aa^ = 0;

and from these six equations that

A fc = A!^ = A2 A;2
= A3 ^3

= 0.

Now since none of tho numbers A , Aj, A2 , A8 can be zero,

ko==kl==kz== fcs
=

;

that is to say,
lXo+my +nz = 0,

Ixl+myl+nz1
= 0,

= 0,

0.

But this implies that all the points A , A t A z , A z are collinear, and this is

contrary to the definition of a four-point. Hence the supposition that

the three diagonal points are collinear is false.

The Harmonic Proposition is therefore verified in the Algebraic

Representation.

t The word harmonic probably appears to be used here, and elsewhere in this

chapter, for no reason at all. It was applied to certain properties of the four-

point when these were being investigated metrically, and its aptness can only
be explained in metrical or analytical terms. The word is retained simply
because of its historical associations.
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4.153. Dual of the Harmonic Proposition
THEOREM. There is no complete four-line whose diagonal lines

are concurrent.

FIG. 17.

Let ,
a1} a2 ,

#3 be any four-line, and d\ t
d2 ,

dz its three

diagonal lines.

Then its six points are, in pairs, a av a2 a3 ;
a #2 , a^a^\

a a3 ,
a

l
a
2 .

(Consider the four-point whose points are specified as follows:

A is the point a^a^\

A 1 is the point a^a^\

A% is the point a2 ;

A 3 is the point a a3 .

No three of these points are collinear.

The six sides of this four-point and the three diagonal points

may be tabulated thus:

A QA l i8 the line GU ^ . ^, . A ,

)
Dl is the point a alt on d*\

A^A^is the line a J

A A Z is the line d2\

A lA 3 is the line d3)

^ ^ 3 is the line aa) .

/ t , J
Do is the point a3 a2J on a,,

-^i^a is the line a
2 )

(The reader should verify that these statements are true, by

finding the reasons for them, and not merely by reference to

the figure.)

Z>2 is the point
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Now since Dv Z>
2 ,

Z>3 are not collinear, and since D1 and D3 are

on d
lt

it follows that D
z
is not on d^. But D

2
is the common point

of d2 and d^; and so d2 , d& and d1 are not concurrent.

Hence the diagonal lines of a four-line arc never concurrent,

and so the theorem is proved.

4.16. The Diagonal Triangles

Since the diagonal points of a complete four-point are not

collinear, they are the vertices of a triangle; dually, the diagonal

lines of a complete four-line are the sides of a triangle. To these

triangles a special name is given.

DEFINITION. The triangle whose vertices are the diagonal

points of a complete four-point is termed the diagonal triangle of

thefour-point.

The triangle whose sides are the three diagonal lines of a com-

plete four-line is termed the diagonal triangle of the four-line.

4.17. The Harmonic Points

The sides A A 1 and A ZA B of a four-point are both on the

diagonal point Dv Hence, since Dl is not on D2
D3 ,

the common

point ofA AI and D2
D3 is distinct from D^ and, similarly, the

common point of A 2A 3 and D2DS is distinct from Dl and from

f tne s*x s^es ^ tne f ur-Pint there is

(A
A \

nnrD*Dzl
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therefore such a point, and to them are assigned the letters

Hv H[, H2 ,
H2 ,

H3 , #3, in the following way:

(A
A \
M,

i/a-^a/

(A
A \2 3

J,
^2^3/

(A
A \2

],AA/

(A
A \1 8

J,
A-^3/

(A
A \3

],
^1^2/

(A
A \1 2

|.AA/
To these six points is given the name of harmonic points of

the four-point; dually, there are harmonic lines of a four-line.

DEFINITION. The point common to a side of a four-point and

the line on the two diagonal points which are not on that side is

termed a harmonic point of the four-point.

The line on a point of a four-line and on the common point of

the two diagonal lines which are not on that point is termed a

harmonic line of the four-line.

There is an important theorem about the harmonic points of

a four-point; this is given at once.

4.171. THEOREM. The six harmonic points of a four-point

are the points of a four-line.

Since the lines A^H^ A 2 H[, and A DS are all on the point

A 3 ,
the triangles A QA :A 2 and DZH2 H[ are centrally perspective

on the point A3 . Hence they are axially perspective.

Now fy^A is the point Dlt
and f?^ is the point D2 .

Hence the common point ofA A 2 and H( H'2 is on D1
D2 . That

is to say, H[, H2 , H'% are collinear.

It may be proved in a similar way that (i) H19
H2 ,

and #3,

(ii) Hlt
H'2 ,

and -fiT3 ,
and (iii) H[, H2 ,

Hz are collinear.

This shows that the six harmonic points are in threes on four
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distinct lines, no three of which are collinear. The theorem is

therefore proved.

4.172. THEOBEM. The six harmonic lines of a four-line are the

sides of a four-point.

4,2. Harmonic Tetrads

DEFINITION. The two pairs of points consisting of (I) two

diagonal points of a four-point and (2) the. two harmonic points

collinear with them are termed a harmonic point-tetrad.^

DEFINITION. The two pairs of lines consisting of (1) two

diagonal lines of a four-line and (2) the two harmonic lines con-

current with them are termed a harmonic line-tetrad.

Thus with the ordinary lettering which has been used for the

four-point, the following are harmonic point-tetrads:

(Z>2A, #i#;), (AA- #2^), and (AA #3^)-
It is clear from the definition that if (XY, LM) is a harmonic

tetrad, then (XY,ML), (YX,LM), and (YX,ML) are also

harmonic point-tetrads.

Where there is no danger of ambiguity, the qualifying words

point and line in the terms harmonic point-tetrad and harmonic

line-tetrad will be omitted.

4.21. Permutation Property of Harmonic Tetrads

THEOBEM. If(XY,LM) is a harmonic tetrad, then (LM,XY)
is also a luirmonic tetrad.

t A harmonic point-tetrad is sometimes called a harmonic, range. The dual

term is a harmonic pencil. These names are not used here.
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With the lettering usually applied to the complete four-point,

(D2D3 , H^H[) is a harmonic tetrad.

Consider the four-point whose points are H^H^H^H^ Then

the diagonal points of this four-point areH
19 H[, and Z\.

The harmonic points on the line U^H[ are Z>2 and Z>3 .

Hence (H^H'^ D2D3 ) is a harmonic tetrad.

This proves the theorem.

4.22. The Unicity Theorem

A harmonic point-tetrad has been defined as a set of four

collinear points which fulfil certain conditions, but it has not

yet been proved that these conditions are not fulfilled by any

arbitrary set of four collinear points. In the following theorem it

is shown that the harmonic tetrad is, in fact, something special and

that not every set of four collinear points is a harmonic tetrad.

THBOBEM. // X , 7, and L are three distinct collinear points,

then there is a unique point M, collinear with them, such that

(XY, LM) is a harmonic tetrad.

FIG. 19.

Let X, 7, and L be any three collinear points.

Let AQ and AQ be any two distinct points not collinear with

them. Let A and A z be points on A Q X, A Y respectively,

such that Av A%, and L are collinear. Let A 3 be the point

Let the points A(, A'2 , A% be defined similarly, relative to the

point AQ.
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Now the triangles A QA 1A 2 and A^A^A^ are axially per-

,. . (A^A^ /A A 2\ (A.A^ ., ,,.

spective, since (j" 4 /)(^?j/|(.|7 /,/)are the colhnear points
\AQAJ \A A 2] \A 1AJ

X, Y, and L respectively. Hence the lines A^A'^, A^A[, and
A 2A 2 are concurrent. /

Similarly, the triangles A 1A 2A 3 and A[A 2 A^B,TG axially per-

spective, so that the lines A^A[, A 2A 2 , -4 3 ^4 3 are concurrent.

Hence the triangles A GA 2A 3 and A'^A'^A'^ are centrally per-

spective, and they are therefore axially perspective also.

(A
A \

*J
is colHnear with X and 7: let this

point be M .

But -X" and T are diagonal points and L and M are harmonic

points of both of the four-points A A 1A 2A 3 and A
f

A[A 9 Ay.
Hence the fourth point M of a harmonic tetrad, of which one

pair is X
, Y, and the third point is L, is the same, however the

four-point is constructed, and this proves the theorem.

The dual theorem is :

THEOREM. // x, y, and I are three distinct concurrent lines,

then there is a unique fourth line on their common point such thai

(xy, Im) is a harmonic tetrad.

4.221. Harmonic Conjugates
The theorem just proved shows that ifX and Y are one of the

pairs of a harmonic tetrad, then corresponding to every point

L there is a unique point M such that (XY, LM) is a harmonic

tetrad. It is useful to have a name for such pairs of points.

DEFINITION. If X, 7, L, M be four collinear points, and

(XYjLM) be a harmonic tetrad, then L and M are said to be

harmonic conjugates relative to the pair X, Y.

Ifx> y> l m befour concurrent lines, and (xy, Im) be a harmonic

tetrad, then I and m are said to be harmonic conjugates relative to

the pair x, y.

It is plain that if L and M are harmonic conjugates relative

to X and 7, then X and 7 are harmonic conjugates relative to

L andM .

The phrase 'relative to' which is used in the above definitions,

is deserving of some notice, for it will frequently occur. To say
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that L and M are harmonic conjugates is a meaningless form

of words unless another pair of points is mentioned with which

this pair forms a harmonic tetrad. L and M can only be har-

monically conjugate when there is another pair of points to

which they are related in such a way that the two pairs form

a harmonic tetrad. Harmonically conjugate is an example of a

relative term, that is, a term which does not acquire precise

meaning unless taken in conjunction with another term, the

choice of which is, within certain limits, arbitrary.

4.222. Singular Harmonic Tetrads

Given three collinear points X, Y, L there is a unique
fourth point M, collinear with the other three, which is the

harmonic conjugate of L relative to X and Y. It is not a

completely trivial question to ask what the harmonic conjugate
of Y is, relative to X and 7; in fact, later on, the answer to

this question is important.
It is an easy matter to verify, by carrying out the construc-

tion of 4.22, that the harmonic conjugate of Y relative to X and

Y is Y.

Similarly, the harmonic conjugate of X relative to X and Y
is X.

A tetrad such as that just considered, in which three of the

points are coincident, is aptly called a singular harmonic tetrad.

Dually, there are singular harmonic line-tetrads.

In the paragraphs which follow immediately it is consis-

tently supposed that the harmonic tetrads dealt with are not

singular.

4.23. Projective Properties of Harmonic Tetrads

It has been shown that not every set of four collinear points

is a harmonic point-tetrad, and, dually, that not every set of

four concurrent lines is a harmonic line-tetrad. It follows that

a harmonic tetrad has special properties which distinguish it

from other tetrads, and it is therefore natural to ask whether

a tetrad (point- or line-) which is projective with a harmonic

tetrad (point- or line-) is itself harmonic. This general question

is answered in the theorems which follow, and in them the pro-

jective properties of the harmonic tetrad are investigated; it is
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these projective properties which make the harmonic tetrad

important in Projective Geometry.

4.231. THEOREM. // (XY,LM) is a Jiarmonic point-tetrad,

then

(XYLM) ~ (XYML) ~ (YXLM) ~ (YXML).

With the usual lettering of the complete four-point,

l Hi) is a harmonic tetrad.

Now

but .

Hence, if (XY, LM) is a harmonic tetrad,

(XYLM) ~ (XYML).

The other results follow by applying the permutation theorem

(3.325).

4.232. THEOREM. If X, Y,L, andM are four distinct collinear

points, and if (XYLM) ~ (XYML), then (XY} LM) is a har-

monic tetrad.

Suppose that (XY, LM) is not a harmonic tetrad. Let Y 1

be

the point such that (XY', LM) is a harmonic tetrad.

Then by the last theorem (XY'LM) ~ (XY'ML)\ and by

supposition (XYLM)
~ (XYML).
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Now these two projectivities have three pairs of correspond-

ing points in common, hence they are the same projectivity.

It follows that (XYY'LM )
~ (XYY'ML). But this is a pro-

jectivity in which there are three distinct self-corresponding

points, and it is not a projectivity in which every point is self-

corresponding. This is a contradiction in terms. Hence 7' must

coincide with Y. That is to say, (XY, LM) is a harmonic tetrad.

The last two theorems may be re-enunciated as one:

4.233. Necessary and Sufficient Condition for a Har-
monic Tetrad

THEOREM. The necessary and sufficient condition that the four
distinct collinear points X, Y, L, and M should form a harmonic

tetrad (XY, LM) is that

(XYLM) ~ (XYML).
THEOREM. The necessary and sufficient condition that the four

distinct concurrent lines x, y, I, and m should form a harmonic

tetrad (xy, Im) is that (xylm) ~ (xyml).

It is now possible to prove the full projective properties of

harmonic tetrads. This is done in the following theorem.

4.234. THEOREM. // a tetrad is projective with a harmonic

tetrad, it is itself a harmonic tetrad.

Conversely, any two harmonic tetrads are projective with each

other.

The enunciation does not specify whether the tetrads in

question are point-tetrads or line-tetrads. In the proof which

follows that case only is considered in which one is a point-

tetrad and the other a line-tetrad; the proofs of the other cases

are entirely similar.

Suppose first that
(XY, LM) is a harmonic tetrad, and that

(XYLM)
~ (xylm), where x, y, I, andm are four concurrent lines.

Then by the last theorem (XYLM )
~ (XYML), and from

this it follows that (xylm) ~ (xyml).

Hence by the last theorem (xy, Im) is a harmonic tetrad.

Conversely, suppose that both (XY, LM) and (xy,lm) are

harmonic tetrads. If it is not true that (XYLM)
~ (xylm), let

m* be the line on the same point as the other four, and such

that (XYLM) ~ (xylm*).
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Then by the first part of the theorem (xy, lm*) is a harmonic

tetrad. That is to say, ra and ra* coincide. This contradicts the

supposition that m* is not the same line as w. Hence

(XYLM) ~ (xylm).

The theorem is thus rfroved.

4.24. Harmonic Tetrads in the Algebraic Representation

The object of this paragraph is to answer the question: Given four

collinear points X, Y , L, M, whoso coordinates relative to some base

points are, respectively, (/ii,^i) (/^a'/^a)* (/^Ma)' an<^ (f^fO* what is tho

necessary and sufficient algebraic condition that (XY, LM) shall be a

harmonic tetrad ?

The usual notation for the four-point in the Algebraic Representation

being supposed, it is not difficult to verify that the harmonic points
H1 and H{ are, respectively, (X x X1 xlt X yQ \iyi, X z X1 zl ) and

(A2 o;
2-A8 a3 , A2 i/2-A3 y3 , A2 z2-A3 z3 ).

Hence the harmonic tetrad (Z>2,Z>3 , t/iHl) consists of the following

points: (A o: +A2 a;2 , A ?/ +A2 2/2 X z -) A2 s2 ), (A a -|-A3 #3 , A 2/ 4A3 2/3 ,

AoZo+^sSs)' (A # ^i* A 2/ A^, AO SO-^I SI)' and (A2 a?
2 A3 #3 ,

A2 3/2-A3 i/3,A2 z2-A3 z3 ).

If now tho points Z)2 and Z)3 be taken as base points, these four points
have the coordinates (1,0), (0, 1), (1, 1), and (1, 1) respectively.

Suppose now that the points A", F, L, andM have coordinates (fa,fj),

(/Ug,/^), (/x3,/x) and (^4,^4) relative to some base points. Then since the

necessary and sufficient condition that (XY9 LM) is a harmonic tetrad

is that (XYLM) /^ (DS,D3H1H /

1 ), a necessary and sufficient condition is

that there should be numbers a, 6, c, and d such thai- ad be ^ 0, and

by 3.252; that is to say, that

i /*!

^ **

s /^ /^a Ma

4 ^4 ~A*4 ~M
This determinant, on being simplified, is found to be

(Mi /4 MiMaX^a /*4 /*a ^4)+ (/AI /*! /A!

and so the equation may be written in the form
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Hence the following theorem may bo enunciated:

The necessary and sufficient condition tfiat four distinct collinear points

X, Tt L t M9 whose coordinates relative to some base points collinear with

them are
(fti,/u.J) 0*2/4) (M-s'Ma)* and (/^j^l) respectively, should be a

harmonic tetrad (XY, LM) is that

EXAMPLES

1. With the usual notation applied to the four-point, show that

(A QA lt DlHl ) and (A^A^ D1 H{) are harmonic tetrads. Hence enumer-
ate nine harmonic tetrads associated with the four-point.

2. x and y are two lines and V is a point not on either, and I, m, n are

three lines on V. Xlt X2 , X3 , Tlr
Y2 , Y9 are the points Ix, mx, nx, ly, my,

ny respectively. If Zlt Z2 , Z3 are points on I, m, n respectively, such

that (VX1,Y1 Z1 ), (VX2,Y2 Z2 ), and (VX3,Y3 Za ) arc all harmonic

tetrads, show that Zlt Zz , Z3, and xy are collmoar.

3. A, B, C, D, X, and Y are six collinear points, and A', B f

, C', D'
are the harmonic conjugates relative to XY of the points A, B, C, D
respectively. Show that (ABCD) ~ (A'B'C'D'), and that X and Y are

the self-corresponding points of the projoctivity.

4. Show that the four-line whose six points are the harmonic points
of a four-point has the same diagonal triangle as the four-point.

5. ABC is any triangle; A' and A" are two points on BG such that

(BC, A'A") is a harmonic tetrad. The points B' and B" on CA, C' and
C" on AB are similarly defined. Show that corresponding sides of the

three triangles ABC, A'B'C', A"B"C" are concurrent.

6. ABC is any triangle, and any other point. A', B', C' are the

. A (BC\ (CA\ (AB\ A . . , . w . x .

points I . Y \ 7?nr \r<nf
resPec*lvely an^ ^ & > C are points such

that (BC,A'A
H
), (CA,B'B"), (AB,C'C") are all harmonic tetrads.

Show that (i) A", B', C' are collinear, and that there are two other,

similar, sets; (ii) AA', BB", CCff
are concurrent, and that there are two

other, similar, sets; and (iii) A", B", C" are collinear.

7. Show that the diagonal triangle of a four-point is perspective with

any triangle whose vertices are any three of the four points of the four-

point.

8. If (ABCD) ~ (BCDA), show that (AC,BD) is a harmonic tetrad.

Show that the converse is also true.

9. If two harmonic point-tetrads on two different lines have a point
in common, show that they are perspective in two different ways.

10. Given four points X, Y, Z, A, no three of which are col-

linear, construct a four-point ABCD whose" diagonal points are X, Y,

andZ.
How many four-points satisfy the conditions ?
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4.3. Involutory Hexads

The harmonic tetrad is a set of four collinear points which is

defined in terms of concepts which arise from the consideration

of the four-point; the involutory hexad is a set of six collinear

points which arises inft similar way. In a certain sense the

harmonic tetrad is a particular case of the involutory hexad,

but this is not the real reason why the latter is important in

Protective Geometry. Its real importance lies in the fact that

it leads on at once to the notion of the involution, without which

Projective Geometry would be extremely handicapped.

4.31. DEFINITIONS

A set of six collinear points such tJiat each is on one of the six

sides of a complete four-point is termed an involutory point-hexad.

FIG. 20.

In the figure X^ X2 , X& X{, X'^ X'3 are the six points. The

method of assigning suffixes will be easily understood.

A set of six concurrent lines such that each is on one of the six

points of a complete four-line is termed an involutory line-hexad.

The words point and line in the terms point-hexad and line-

hexad will be omitted when no ambiguity arises.

Since the six sides of a four-point can be classified into three

pairs, the six points of an involutory hexad can also be classified
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into three pairs. This fact will have been realized by the way in

which suffixes and dashes have been assigned to the points.
Thus Xl

and X{, X2 and X2 ,
X3 and X'z are the three pairs. The

FIG. 21.

fact that three pairs of points constitute an involutory hexad is

expressed by writingf (Xl
X2X& X[X'2 X^).

It is clear that if (X^X2X3 , X[ X'z X'3 ) is an involutory hexad,

(XiX2X3 ,
X1X2 X'% ) , (XlX2 X%, X(X2 X'z),

(AjX2 X$) XiX2 X^), (X X2X3 ,
X1X2X3),

(X{X2 X'3 ,
X1X2X3), (X'iX2X& XlX2 X'z),

and (ZiZJZJ.^ZjJa)
are also involutory hexads.

The same questions arise about involutory hexads as arose

about harmonic tetrads. These are: (1) Are any six collinear

points an involutory hexad ? (2) If there are six collinear points,

and there is a projectivity between them and an involutory

hexad, are they themselves an involutory hexad? (3) What
is the necessary and sufficient condition that six points should

be an involutory hexad ? These questions are answered in the

theorems which follow.

f The reader will probably find it more helpful in written work to symbolize

t-jr

-y- yr
-i

* ' '
. He may also find it helpful

A!A zA 3J

to name the three pairs of points: Father; Mother; Brother, Sister; Unck, Aunt.

The initial letters of those words will be the letters assigned to the points, so

that the hexad will be I ., ^ I- This device is not so childish as it may appear

at first sight.
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4.32. The Unicity Theorem

THEOREM. IfXltX2 ,X3 ,Xi,X2 arefive distinct collinearpointst

then there is a unique point X's collinear with them, such that

'

*~1,X2
A 3, X1X2 T'

X

is an involutory hexad.

FIG. 22.

Let x be the line on the five given points.

Let AQ be any point not on x, and A any other point on

Let A 3 be the point
1

,
and A z the point

Let A' be another point not on x, and distinct from A . Let

AI, A 2 ,
A'3 be three points defined in a similar way, relative to

AQ, as A l9 A 2 ,
A 3 were defined relative to A^.

The proof of the theorem now proceeds very similarly to that

of 4.22. The outline only is given here; the details may be

filled in by the reader.

The triangles A A 1A 3 and A f

A{A^ are axially perspective,

and so they are also centrally perspective. Similarly, the triangles

A A 2A 3 and A^A^A^ are axially perspective, and so they too

are centrally perspective.

Hence the triangles A1A 2A^ and A{A'2 A'z are centrally per-

spective, and so they are axially perspective, and x is their

axis of perspective. That is, the common point of A1A 2 and
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A{A'2 is on x. This point is the unique sixth point of the in-

volutory hexad.

4.33. Necessary and Sufficient Condition for an Involu-

tory Hexad

THEOBEM. The necessary and sufficient condition that six

collinear points X1} X2 ,
Xs , X{, X2 , X$ shouldform an involutory

hexad in which X1 and X{, X2 and X2 , X$ and JTJ are pairs

is thai

or

or

lX2 XzX2 )
~ (X(X2 X$X2 ),

tX2 Xz X'3 )
~ (X(X2 X$ XJ.

FIG. 20.

First suppose that (X1X2X& X[X2 X'9 ) is an involutory

hexad. Then

(X.X.X.Xi) (D.A.A.Xi)

But by the permutation theorem (3.325)

Hence \-"-i ^L 2"'^3 i/
f^J

\*^*
-i'^2'^*3'"L i/*

The other two results are proved similarly. Hence the condi-

tions are necessary.
*1W . TUT
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Next suppose that

(X1xiz,zi)~(*i*;*;*i),
and that the six points are not an involutory hexad. Suppose
then that (X1X2X3 , X(XiXl) is an involutory hexad. Then

by the first part of the theorem
'

Hence

but this last projectivity has three self-corresponding points,

so that X$ and X$ must coincide. Hence the six points form an

involutory hexad.

This proves that the first of the conditions mentioned is

sufficient, and it may also be proved in a similar manner that

either of the others is sufficient.

The theorem which has just been proved is of very great

importance in the work which follows; it occurs again, with a

slightly different enunciation in the theory of involutions, and

it will constantly be encountered in the theory of conies.

4.34. Projective Properties

It is easy to see that if

(X^X^XiX^Xi) and (Y^Y^Y^Y'^)
are two involutory hexads, there is not necessarily a projectivity

such that

For in the projectivity in which (X1XZX3 )
^ (F1F2 I^), X( and

Y( need not necessarily be corresponding points, since Y[ may
be chosen arbitrarily; and even if they are, X'2 and Y'2 need not

necessarily be corresponding points, for a similar reason. But

if these five pairs of points be, in fact, pairs of corresponding

points in a projectivity, then it can easily be proved that the

sixth pair, X3 and Y3 , are also a pair of corresponding points in

the projectivity.

The converse of the theorem, namely, that if

(XiX^Xfr X[X'2 X^)
be an involutory hexad, and if there be a projectivity in which

(J^X, JT3 2Ti JTJXJ)
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then CFi^ljj, Y(Y^Y'Z ) is also an involutory hexad, is an easy

corollary of 4.33. Both of these are left to the reader.

4.35. Singular Involutory Hexads

In all that has been said about involutory point-hexads it

has been tacitly supposed that the line on which the six points

are is not on any of the diagonal points, and something must be

added in order to cover the cases when it is.

In the first place, suppose that the line is on one, but only

one, diagonal point, and, for definiteness, suppose this is the

point Z\. It is at once obvious that there are now not six, but

five, distinct points; nevertheless, it is also obvious that the

point Dl can be looked on as two coincident points, one ofwhich

is on A^A^ the other on A 2A 3 . There is therefore still an in-

volutory hexad, but one of the constituent pairs is a pair of

coincident points; D1 is the coincident pair Xl and X[.

Next, suppose that the line is on two diagonal points Dz and

D3 . As before, each of these may be looked on as a pair of

coincident points, and the involutory hexad consists of one

pair of distinct points and two pairs of coincident points.

Involutory hexads in which one or more pairs are pairs of

coincident points may be called singular involutory hexads. The

reader will easily prove that there cannot be more than two

pairs of coincident points. All the theorems about involutory

hexads are true of the singular cases, and the reader should

verify this.

The four points which constitute the singular hexad in which

there are two pairs of coincident points together form a harmonic

tetrad, and so the remark that the harmonic tetrad is, in a

certain sense, a particular case of the involutory hexad is

justified. But the full significance of this will be more obvious

when the notion of the involution has become familiar.

4.4. Involutions

If Xl9 X2 , X$ are three collinear points, and X(, X'z ,
X'z are

any other three points collinear with the first three, there is

a projectivity in which (X1X2XB )
~ (X'^X^X^), and this pro-

jectivity is completely determined. If now the two sets of

three points together form an involutory hexad, it is natural
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to suppose that the projectivity has special properties which

distinguish it from other projectivities. This is, in fact, true,

and the following theorems bring out the properties of such a

projectivity. First of all, however, it is useful to have a name
for a projectivity between cobasal ranges or pencils in which

three pairs of corresponding points are the three pairs of an

involutory hexad.

4.41. Definition

Any projectivity between cobasal ranges or cobasal pencils in

which there are three pairs of corresponding points which are the

three pairs of an involutory hexad is termed an involution.^

The name involution is primarily a name for the projectivity

between two cobasal ranges or pencils, and so we speak of two

ranges in involution, meaning thereby that there is an involu-

tion between them. In a secondary sense the word involution

is sometimes applied to the two ranges between which there is

an involution; it will be found that there is no ambiguity in

this usage.

4.42. The Fundamental Theorem on Involutions

THEOREM. //Xl and X(, X2 and X2 ,
Xz and X^ be three pairs

ofcorresponding points in a projectivity, the necessary and sufficient

condition that this projectivity be an involution is that

(X^X^X^X^ ~ (X( X'^X^X^.

First suppose that the projectivity is an involution so that

there are three pairs of corresponding points which form an

involutory hexad. Let this hexad be (Y^Y273 , Y[ Y'2 Y'3). Then

Consider now the five points Tlt
Y2 ,
X3 , Y^ Y2 ',

let X% be

a sixth point such that (Y^X^Y^Y^Xl) is an involutory

hexad. Then

But by supposition

so that (FiFjZ,, Y^Y2 X'J is an involutory hexad.

t The name was that given by Deeargues (1639) when he studied involutions

metrically. The reason for the name is a little obscure, and it is certainly not

a very apt term. It is retained because it is now universally used. As the sequel

will show, the term reciprocal projectivity would perhaps bo more apt.
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Similarly, it may be proved that (Yj^X^X^Y^X^X^) and

finally (X-^X^X^ XiX'2 Xi) are also involutory hexads.

Hence any three pah's of corresponding points in the pro-

jectivity form an involutory hexad.

Hence, by 4.33, for any three pairs of corresponding points

This proves the necessity of the condition.

The sufficiency of the condition follows at once from 4.33,

for if (X^X^XO ~ (XlX'zX'zXJ, then (X^X* X'^X^
is an involutory hexad, and the projectivity is an involution.

4.421. Definition

A pair of corresponding- points in an involution is termed a

pair of mates of the involution.

4.422. Remarks on Theorem 4.42

The theorem just proved shows that pairs of mates of an in-

volution have a remarkable property, which is probably most

simply explained by using the ideas suggested in 3.42. There

it was suggested that cobasal ranges should be thought of as

possessing distinguishing colours. A projectivity sets up a

correspondence between red points and blue points. In a general

projectivity a red point A corresponds to the blue point B,

say; but the red point B does not necessarily correspond to the

blue point A. When the projectivity is an involution, however,

Theorem 4.42 shows that if the red point A corresponds to the

blue point B, then the red point B corresponds to the blue pointA ,

There is thus a reciprocal correspondence in an involution.

4.43. Another Sufficient Condition

THEOREM. // in a projectivity between cobasal ranges a pair

of distinct points correspond reciprocally, that is to say, if

(AB...) ~ (BA...),

then the projectivity is an involution.

Let C be any other point of the first range and D the corre-

sponding point of the second. Let X be that point of the second

range which corresponds to D t considered as a point of the first

range.t

f If the reader will substitute red and blue for first and second respectively,
the thought underlying this formal language will become clearer.
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Then (ABCD) ~ (BADX).

But, by the permutation theorem,

(ABCD) ~ (BABC),

so that X and C are the same point.

Similarly, if E be arfy other point of the first range and F
the corresponding point in the second,

(ABEF) ~ (BAFE).

Hence (ACEB) ~ (BDFA ),

and so, by the previous theorem, the projectivity is an in-

volution.

4.431. Note on the Sequence of Theorems

It is clear that an involution could have been defined as a

projectivity in which there is a pair of distinct points which

correspond reciprocally. It could then have been shown that

in an involution every pair of corresponding points correspond

reciprocally, exactly as in 4.43. From this result it is a simple

conclusion that three pairs of mates in an involution together

form an involutory hexad.

This line of approach to the subject is in many ways more

satisfying, since it starts with something much simpler than

the involutory hexad, and leads up to the connexion between

involutions and involutory hexads. It has not been adopted
here in order that the theory of involutions might appear as

an immediate extension of the matter preceding it.

4.44. Self-corresponding Points of Involutions

Since an involution is a special case of a projectivity, it is

natural to inquire about the self-corresponding points, if there

are any, of an involution. In the following theorems this

inquiry is undertaken.

4.441. THEOREM. // X and Y be any two distinct points, then

the pairs of points which are harmonic conjugates relative to X
and Y are pairs of mates in an involution of which X and Y are

the self-corresponding points.

Let A and A' be any pair of conjugate points relative to

X and 7.
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Consider the projectivity in which (XYA) ~ (XYA'), and

suppose that in this projectivity (XYAA') ~ (XYA'A*).
Now (XY, AA') is a harmonic tetrad, therefore by 4.23

(XY, A'A") is a harmonic tetrad. Hence A" is the same point
as A.

Hence in the projectivity A and A' are reciprocally corre-

sponding points, and the projectivity is therefore an involution,

by 4.43.

Let B and E' be another pair of corresponding points, so that

they arc, by 4.43, reciprocally corresponding points.

Then (XYBB') ~ (XYB'B), that is to say, by 4.24, B and

B f

are harmonic conjugates relative to X and Y.

Similarly, any pair of mates are harmonic conjugates relative

to X and Y.

Hence the pairs of points harmonically conjugate relative

to X and Y are pairs of mates in an involution whose self-

corresponding points are X and Y.

4.442. THEOREM. // an involution have a pair of distinct

self-corresponding points, then every pair of mates of the involu-

tion is a pair of harmonic conjugates relative to the self-correspond-

ing points.

Let X and Y be the self-corresponding points of the involu-

tion, and let A and A' be a pair of mates.

Then (XYAA') ~ (XYA'A), and so, by 4.24, A and A' are

a pair of harmonic conjugates relative to X and Y .

4.443. THEOREM. // an involution have one self-corresponding

point, then it has a second, distinct from the first.

Let X be the self-corresponding point, and let A and A' be

any pair of mates of the involution.

Then the involution is a projectivity in which

(XAA
f

)
~ (XA'A).

Suppose that 7 is the harmonic conjugate of X relative to

AA', and suppose that Y' is the mate of Y in the involution.

Then (XYAA') ~ (XY'A'A).
But (XY,AA

f

)
is a harmonic tetrad, and so, by 4.23,

(XY',A'A) is also a harmonic tetrad; hence Y f and Y are the
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same point. Therefore F, which must be distinct from X , is also

a self-corresponding point of the involution.

4.444. Summary
It has been proved thjat there are involutions which have two

self-corresponding points, and that no involution can have a

single self-corresponding point. It is therefore natural to ask

whether there can be involutions which have no self-correspond-

ing points. This question cannot be answered definitely, for

there are some systems in which every involution has two self-

corresponding points, and there are others in which some invo-

lutions have no self-corresponding points. Both types of system
are compatiblewith the initial propositions so faradopted. Later

an initial proposition about extension will be added, and this

will exclude all systems of the second type.

4.45. Conditions Determining an Involution

A projectivity is completely determined when three pairs of

corresponding points are known, and these three pairs may be

chosen arbitrarily. But if the projectivity is to be an involution,

then obviously the three pairs cannot be chosen arbitrarily, for

they must form an involutory hexad. The following theorem

shows that when two pairs of mates are known, the involution is

completely determined.

THEOREM. An involution is completely specified when two

pairs of mates are known; either or both of the pairs may be

coincident.

Let A and A', B and B' be the two pairs of mates.

Suppose there are two involutions in which these two pairs

are pairs of mates.

Let C and C" be any other pair ofmates in the first involution,

and let C" be the mate of C in the second involution.

Then (ABC, A'B'C') and (ABC, A'B'C") are both involutory

hexads; hence, by 4.32, C' and C" are the same point.

This shows that the two involutions are identical.

4.46. Common Mates of Two Involutions

A problem that is continually occurring in subsequent work

is the following: If there are two different involutions on
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a line, what pairs of mates are the same in the two involu-

tions ?

The following theorem shows that if the two involutions are

really different, then there is one and only one pair of mates

common to the two. By the time this theorem is needed, an

initial proposition of extension will have been added which will

ensure that every projectivity has two self-corresponding points,

distinct or coincident. But since this initial proposition has

not yet been laid down, the following theorem is enunciated

conditionally.

THEOREM. // every involution 1ms two self-corresponding

points, then there is one and only one pair of points, distinct or

coincident, which is a pair of mates in both of two involutions on

the same line.

It is clear from the last theorem that two different involutions

cannot have more than one pair of mates in common.

Suppose now that X and X' are the self-corresponding points

of one involution and that Y and Y' are those of the other.

If one of the first pair coincide with either of the second, this

is the pair of (coincident) mates common to the two involutions.

Suppose, however, that the four points are all distinct.

Consider the involution in which X and X' are a pair of

mates and Y and Y' are a pair of mates. Let Z and Z' be the

self-corresponding points of this involution.

Then, by 4.442, (XX', ZZ') is a harmonic tetrad, hence Z and

Z' are a pair of mates in the first involution. By entirely similnr

reasoning Z and Z' are also a pair of mates in the second

involution.

This proves the theorem.

4.47. Involutions in the Algebraic Representation

If (Aj, AI ) and (A2 , A) are the coordinates of two points on a line relative

to some chosen base points, and if these two points are a pair of corre-

sponding points in a projectivity, the^n there exists an algebraic relation

oA^a+ fcAiAa-fcAA2+ dAiAg' == Q (ad-bc -/- 0)

connecting Aj, A{, A2 , Ag.

If now the projectivity be an involution, then every pair of corre-

sponding points is a pair of reciprocally corresponding points, and so

aAaAi+ ftAjjAj-f-cAaAj+dAaAJ = 0.
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Subtracting these two,

6)AiAa
-= 0,

or (ft-eXA^-AlA,) = 0.

But (AiAg AA2 ) does not vanish, and so 6 c.

Honce, if a projectivity specified by the equation

A! A2+ 6AX AS 4-^AJ
A2+ dX{ A = (ad- be / 0)

&e an involution, then b = c.

Conversely, in any projectivity in which 6 ~- c every pair of points
is a pair of reciprocally corresponding points, so that the projectivity is

an involution.

The two results may be stated as one, thus :

The necessary and sufficient condition that a projectivity sjtecified by
the equation

aAiAa+ feA^a+cAiAa+dAiAa = (ad be = 0)

should be an involution is that b c.

4.5. Concurrence and Collinearity in Triangles

In elementary Geometry it is proved that the three medians

of a triangle are concurrent; this theorem is only one ofanumber
of such theorems, which assert that three lines, one on each of

the points of a triangle, are concurrent provided certain condi-

tions are satisfied. Similarly, there are theorems which assert

that three points, one on each of the sides of a triangle, are

collinear. There are two theorems in metrical Geometry, known
as Ceva's and Menelaus's theorems, which state general condi-

tions for the concurrence of such lines and the collinearity of

such points, but these theorems state metrical conditions, and

therefore they cannot be given here, for the term length has not

been defined. But it is to be expected, since concurrence of

lines and collinearity of points are notions which do not involve

the notion of length, that non-metrical conditions can be stated.

In the following two theorems, which are dual theorems, neces-

sary and sufficient conditions are stated for the concurrence of

lines on the points of a triangle, and the collinearity of points

on the lines of a triangle. The theorems are a simple corollary of

the work that has been done on involutions, and for that reason

they are included here. It will be found that all problems of

concurrence and collinearity in triangles can be solved by
their use.
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y
4.51. THEOBEM. //

(i) ABC is a triangle whose sides BCt CA, AB are the lines

a, b, c respectively,

(ii) I, m, n are three lines on A, B, C respectively,

(iii) x is any other line distinct from these six,

(iv) A', B', C', A", B", C" are the six collinear points ax, bx,

ex, Ix, mx, nx respectively,

then the three lines I, m, n are concurrent if and only if A', A";

B', B"; C', C" are pairs of mates in an involution.

The details of the proof of this

theorem are left to the reader, and

only the outline is given here.

First suppose that I, m, n are

concurrent, and that is their

common point. Then the neces-

sity of the condition at once

follows from the fact that the six

points are an involutory hexad

associated with the four-point

ABCO.
Next suppose that the condition

is fulfilled, but that I, m, and n

are not concurrent. Let be the point mn, and V the line

AO. Further, let K be the point xl'. Then by the first part
of the theorem (A'B'C',KB"C") is an involutory hexad, and

so K and A" are the same point. That is to say I is on 0, and

the three lines are concurrent.

4.52. THEOREM. //

(i) ABC is a triangle whose sides BC, CA, AB are the lines

a, b, c respectively,

(ii) L, M, N are three points on a, b, c respectively,

(m) X is any other point distinct from these six,

(iv) a', b
f

, c', a", b", c" are the concurrent lines AX, BXt CX,
LX, MX, NX respectively,

then the three points L, M }
N are collinear if and only if a' t a";

b', b"; c
f

,
c" are three pairs of mates in an involution.

FIG. 23.
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EXAMPLES
1. Prove Theorem 4.32 when A and AQ coincide but A l and A^

do not.

2. If (X^XZX^ X{X'Z X'3 )
is an involutory hexad, and if V is any

point not collinear with thpse six, show that

is also an involutory hexad.

3. X and X', Y and Y' are two pairs of mates in an involution in

whichM and N are the self-corresponding points. Show that X and Y',

X' and Y, M and N are three pairs of mates in another involution.

4. If x(A lA 2A 3A A ...) ^ y(B1 Bn Ba B4 ...)

and x(A,A,A,A....} y(CLC2C3 Ct ...),

determine a necessary and sufficient condition that the projectivity

y(B^Bz B^B^..) ~y(G\CzC3 Ct...)

shall be an involution.

5. If Z is the Pappus line of the projactivity

and if y(\\YzY3 Y^...) A a-(Z1 Za Z8 Z4 ...), whow that the projectivity

^(-STjXzX8X4 ...)
/^^ ^(ZjZg Z3 Z4 ...) is an involution if and only if U

is on L

6. Prove the dual of Theorem 4.22 without appealing to the principle
of duality.

7. A andA f are a pair of mates in an involution. Assuming that every
involution has two self-corresponding points, devise a construction for

finding a second pair of mates, B and JB', such that (AA', BB') is a
harmonic tetrad.

8. If (XYABCD) ~ (XYBCDA), show that A, C and B,D are two

pairs of mates in an involution whose self-corresponding points are

X and Y.



CHAPTER V

THE CONIC
5.1. Introductory

5.11. Notation

It will be found, in dealing with the conic, that it is often

necessary to speak of projectivities between a set of concurrent

lines, say XA, XB, XC,... and some other set of points or lines.

In symbolizing such projectivities it would be legitimate, though

cumbrous, to writeX(XA ,XB, XC,...) ~ .... Similarly it would

be cumbrous to say: 'Let a be the line XA, b be the line XB,
etc/, and then to write X(abc...) ~ ... .

To obviate these difficulties, an addition is made to the

notation already in use. By the set of symbols X(ABC...) is

denoted the set of concurrent lines XA, XB, XC,... . No con-

fusion will arise between this and the set of symbols x(ABC...).
It should be noted that the points A, B, C, in X(ABC...) need

not be collinear.

With this a modification of the existing notation is made.

Hitherto the symbol A has been used to denote a perspectivity,

and the symbol ^ to denote a projectivity that is not a per-

spectivity. In future the symbol ~ will be used for both, and

the fact that a projectivity is a perspectivity will be denoted if

necessary by placing a letter (large or small) over the sign ~.

Thus rL will denote a central perspectivity on the point O,

and // will denote an axial perspectivity on the line o.

5.12. A Provisional Initial Proposition of Extension

We have so far been content with the indefinite initial pro-

positions of extension: Not all points are on the same line, and

There are at least three points on every line. To enter into a

discussion of the question of extension at this point would not

be very fruitful, and it would take us a long way from the line

of development that is being followed. At the same time, to

attempt to study the conic having only the above indefinite

initial propositions of extension would be very laborious, for

it would entail the constant enumeration of exceptions to

general theorems. Moreover, it would be seen, when the time
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came for the complete discussion of extension, that most of

these exceptions were in reality trivial. Hence it is convenient

and useful at this point to lay down a provisional proposition of

extension as follows :

5.121. Every projecdvity between cobasal ranges has

two self-corresponding points which are either distinct

or coincident.

EXAMPLES

1. Show that the dual of 5.121 follows from 5.121.

2. Show that 5.121 is verified in the Algebraic Representation.

The reader may be surprised to find that 5.121 is called a

proposition of extension, and not a second protective pro-

position. The full reason for this cannot be given here, but

it can be explained at least roughly. Let us suppose first of all

that we are dealing with a field in which 5.121 is verified, so

that every projectivity between cobasal ranges has two distinct

or coincident self-corresponding points. Now suppose that

instead of considering the whole field, we consider only a part
of it, yet a part in which every one of the initial propositions

so far laid down is verified, with the exception of 5.121. It is

quite plausible to suppose that in thus cutting off from our

consideration a part of the original field, we get rid of the

self-corresponding points of some of the projectivities between

cobasal ranges in the part that is left. And so it may be seen,

in a rough sort of way, that the effect of 5.121 is to ensure

that the field is extensive enough to include the double points

of every projectivity between cobasal ranges.

5.13. Loci and Envelopes

DEFINITION. A locus is a point-figure to which a point does

or does not belong, according as it does or does not satisfy some

given condition,

DEFINITION. An envelope is a line-figure to which a line does

or does not belong, according as it does or does not satisfy some

given condition.

It should be noticed that in Projective Geometry a locus

is not 'the path traced out by a point moving according to some

given law'; points do not move.
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The repeated alternatives 'does or does not . . . does or does

not . . .'in these definitions are important. In proving that a

certain point-figure is the locus corresponding to some given
condition it is necessary to prove two things: (i) that every

point of the figure satisfies the condition, and (ii) that no other

point satisfies the condition. This is what is implied by the

repeated alternatives. It is therefore insufficient to prove that

every point satisfying the condition is a point of the figure which is

asserted to be the locus. Dual remarks apply to envelopes.

5.2. Definition and Basic Properties of the Gonicf

DEFINITION. A point-conic is the locus of the points which are

common to pairs of corresponding lines of two pencils between

which there is aprojectivity.

The bases of the two pencils are called the generating bases.

FIG. 24.

DEFINITION. A line-conic is the envelope of the lines which

are on pairs of corresponding points of two ranges between which

there is a projectivity.

The bases of the two ranges are called the generating bases.

t The name conic is given to those loci and envelopes for historical reasons.

The properties of plane sections of the right circular cone were investigated

very early in the history of Mathematics, and to these curves was given the

name conic section. Later, these curves were defined by the familiar focus-and-

directrix property (SP = ePM) instead of being defined as sections of a cone,
and the name was shortened to conic. The name is taken over into Projective

Geometry because eventually, when certain metrical ideas are introduced, it

can be proved that these loci and envelopes can be identified with loci and

envelopes having the focus-directrix property.



PROJECTIVE GEOMETRY

FIG. 25.

5.21. Non-singular and Singular Point- and Line-conies

The definition of the point-conic makes no stipulation about

the two pencils by which it is specified; while there may be

no particular relation between them beyond the projectivity

spoken of, they may, on the other hand, be specially related, as

for instance when they are cobasal. It is therefore necessary to

classify point-conies, and this is done here.

(i) Point-conies specified by a projectivity between pencils

which are not cobasal and whose common line is not self-

corresponding. These point-conies are called non-singular point-

conies. All other point-conies are singular point-conies.

(ii) Point-conies specified by a projectivity between pencils

which are not cobasal but whose common line is self-corre-

sponding. According to the definition of the point-conic, every

point on this common self-corresponding line is a point of the

locus. The points common to other pairs of corresponding lines

are all collinear by 3.322. Hence the locus consists of two ranges

of points on different bases.

(iii) Point-conies specified by a projectivity between two

cobasal pencils which have two distinct self-corresponding

lines. It is clear that every point on each of the two self-corre-
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spending lines is a point of the locus. The only point common
to other pairs of corresponding lines is the common base of the

two pencils. Hence the locus consists of two ranges of points on

different lines,

(iv) Point-conies specified by a projectivity between two

cobasal pencils which have two coincident self-corresponding

lines. Hence the locus consists of two cohasal ranges, or two coin-

cident ranges of points.

There is a dual classification of line-conies.

What has been said is not sufficient to show that the non-

singular point-conic is not, as a matter of fact, a pair of ranges;

that it is not is a simple consequence of a theorem which is

about to be proved.

5.22. Elementary Deductions

Before making any deductions from the definitions of the

point-conic and the line-conic, an addition is made to the

terminology in use.

DEFINITION. // A be any point of a point-conic, then the

point-conic is said to be on A, and A is said to be on the point-

conic.

DEFINITION. // a be any line of a line-conic, then the line-

conic is said to be on a, and a is said to be on the line-conic.

The following theorems are elementary deductions from the

definitions of point-conic and line-conic.

5.221. THEOBEM. Every point-conic is on its two generating

Let U and V be the two generating bases of a point-conic.

Consider the pencil on U', one of its lines is the line UV.

The line corresponding to this in the pencil on V is some line

VX
, say. Now V is on both UV and VX, hence V is on the point-

conic. Similarly, U is on the point-conic.

5.222. THEOBEM. // U, V, A, B, C are five points, no four of

which are collinear, then there is one and only one point-conic

which is on A, B, C, and whose generating bases are U and V.

Since no four of the five points are collinear, of the three
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pairs of lines UA, VA; UB, VB; UC, VC, at most one pair

can coincide, and the rest are distinct.

Consider the projectivity specified by

U(ABC...) ~ V(ABC...).

Three pairs of corresponding lines being here specified, the

projectivity is determined. Hence there is a point-conic

satisfying the conditions, and it is unique.

The reader should investigate why it is that the theorem breaks

down when four of the five points are collinear; there are two cases to

consider.

5.223. THEOREM. Two distinct points on a non-singular point-

conic cannot be collinear with a generating base.

Let U and V be the generating bases of a non-singular point-

conic.

(i) Let A be any other point on the conic. Then it is asserted

that A, U, and V a,re not collinear.

For if they were, the lines UA and VA being corresponding

lines in the two pencils, these pencils would have a common self-

corresponding line, and so the point-conic would be singular;

this contradicts the supposition.

(ii) Let A and B be two points on the point-conic distinct

from both U and V. Then it is asserted that U, A, and B are

not collinear.

For if they were, the lines VA and VB would both correspond

to the same line in the pencil on U, and this is impossible.

The theorem is thus proved.

Incidentally this theorem proves also that a non-singular point-conic
does not consist of two ranges of points, and so a non-singular point -

conic differs from a singular point-conic.

5.23. The First Basic Theorem

At first sight it would appear that the two generating bases,

which, by 5.221, are on the point-conic, are points on the point-

conic which have some special properties distinguishing them

from the rest. The next theorem shows that this is not so.

THEOREM. Any two distinct points on a point-conic can be the
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Let U and V be the generating bases of a non-singular point-

conic, and let A, B, C, D,... be any other distinct points on it. It

will be shown that A and B can be taken as the generating

bases.

FIG. 26.

Let x be the line CD, so that by 5.223 neither U nor V is on x.

T 4. A, T An ,! - * /^\ /<?^\Let ^tf^lT be the
points^), (^),

respectively, so that by 5.223 A', B', C, D, A", B" are all

distinct.

Then U(ABCD) ~ x(A'&CD),
and V(ABCD) ~ x(A"B"CD).

But by the permutation theorem

x(A"B"CD) ~ x(B"A"DC).

Hence, since by the definition of a point-conic

U(ABCD) ~ V(ABCD),
it foUows that x(A'B'CD) ~ x(B"A"DC).

Now this is a projectivity between two cobasal ranges in

which there is a pair of reciprocally corresponding points, and

so by 4.43 it is an involution in which A' and B", B' and A",

C and D are pairs of mates.
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Hence A and B can be taken as the generating bases of the

point-conic.

In this proof it has been assumed that the point-conic is non-

singular; the theorem remains true when it is singular, but the

proof is then extremely easy, and it is left to the reader to prove
it for himself. /

5.24. The Second Basic Theorem

The second basic theorem about the point-conic is an imme-

diate consequence of the first, and the proof can be omitted. It

is enunciated because it is constantly being used, while the first

basic theorem is, by comparison, seldom used.

THEOREM. The necessary and sufficient condition that six

points A, B, C, D, E, F should all be on a point-conic is that

A(CDEF) ~ B(CDEF)
The sufficiency of the condition is proved by the method of

reductio ad absurdum.

5.25. Other Deductions from the First Basic Theorem

5.251. THEOREM. On five points, no four of which are collinear,

there is one and only one point-conic.

This is an immediate deduction from 5.222 and the first

basic theorem.

5.252. THEOREM. No three points of a non-singular point-conic

are collinear.

This is an immediate deduction from 5.223 and the first

basic theorem.

EXAMPLES

1. A, B, C, D is a four-point, and X, Y, Z, W are any four points on
a line x. Find the locus of a point P such that P(ABCD) ~ x(XYZW).

2. Prove the dual of the first basic theorem without appeal to the

Principle of Duality, and draw an appropriate figure.

3. Show that if every point-conic which is on four points A, B, C, D
is singular, then at least three of these points are collinear.

4. abed is a simple four-line. How many singular line-conies are

there on these four lines ? Dualize.

5. Ranges x(XlXzXz..,) and y(YlYzYz...) are centrally perspective on
a point Z. X' is any point on a?, Y/

any point on y; Pn is the point

(X'Y
\n
I . Show that the locus ofPn is a point-conic. Under what circum-
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stances is this point-conic singular? (This is known as Maclaurin'a con-

struction for the point-conic.)

Give a dual construction for a line-conic.

6. Show that if there arc precisely n points on every line of the field,

then

(i) there are precisely n points on every non-singular point-conic,

(ii) there are precisely n lines on every non-singular line-conic,

(iii) there are precisely n point-conies (singular and non-singular) on

every simple four-point,

(iv) there are precisely n line-conies (singular and non-singular) on

every simple four-line.

7. A certain figure is asserted to bo the locus corresponding to a given
condition. Show that it is necessary and sufficient to prove that (i) every

point of the figure is a point of the locus, and (ii ) every point of the locus

is a point of the figure.

5.26. The Point- and Line-conic in the Algebraic Representation

Let [l^m^n^ [Z], w^nJJ be two lines on a point U, so that any other

line on U is [A^+A^i, A^/^-fAjwJ, Ai^+AjwlJ and its coordinates are

(Ai,AJ) relative to these base lines.

Similarly, let (A2 , A) be the coordinates of a line on F, relative to the

base lines [J2,w2,w2] and [Z,m,n].
Lot (#,2/,z) be the common point of the two linos (A^AJ) and (Ao.Aa),

so that
X1(l1x+mly+n1 z)+\{(l^+m{y-i n(z] = (1)

and A2(Ja#+m2^n2 z)+A2(/.2#-j-W22/4-ttaZ) 0. (2)

Ifnow tho lines (A],A) on U and (A2,Aa) on V are a pair of correspond-

ing linos in a projectivity between the two pencils, thero are numbers

a, b, c, and d such that ad be ^ and

aAA-ffcA^+cAJAjj+dAiAa = 0. (3)

When Alt Aj, A2 , and A are eliminated from the equations (1), (2), and

(3), the equation

+d(l1 x+mly+nl z)(lzx+m2y+n2 z)
= (4)

is left.

This equation may be written in the form

Axz+By*+Cz*+2Fyz+2Gzx+2Hxy = 0. (5)

Now from the definition of a point-conic (x, y, z) is a point on a point-
conic. Hence every point (x, y, z) on a point-conic is such that

Ax*+By*+Cz*+2Fyz+2Gzx+2Hxy = 0,

where the coefficients A, B, etc., are determined by the projectivity which

specifies the point-conic.

Suppose now that (x,y,z) is any point satisfying (5). Then clearly

(#2/2) satisfies (4). That is to say, there are numbers At , AJ, Aa , and A



102 PBOJECTIVE GEOMETRY

which satisfy (1), (2), and (3). Hence (x, yt z) is the common point of

two corresponding lines in the projectivity between the pencils on U
andF.
We may therefore say that in the Algebraic Representation all the

points on a point-conic satisfy;an equation similar to (5), and that all the

points which satisfy this conation are points of the point-conic.

The complementary theprem, that every equation of the form given is

satisfied by the points of some point-conic is more complicated, and it is

not proved here.

Dually, there is the theorem that in the Algebraic Representation all

the lines of a line-conic satisfy an equation of the form

Al*+Bm*+Cnz+2Fmn+2Gnl+2Hlm = 0.

5.3. The Incidence of Lines and Point-conies, and Dual

5.31. Fundamental Theorem of Incidence

In 5.242 it was proved that no three points of a non-singular

point-conic were collinear; this theorem is only a part of a more

general theorem which is now proved.

THEOREM. Every line of the field has two and only two points

in common with a non-singular point-conic.

Let x be any line of the field, and let U and V be any two dis-

tinct points of the point-conic not on x.

Let U(u1 u2 u3 ...)
~ V^v^v^...) be the projectivity between

the two pencils which specifies the point-conic, so that %%,
u2 v2 , u3 v3) ... are points on the point-conic.

Let X
19
X2 ,

JT3,... be the points xuv xu2 , #%,..., and let

X(, X2 , X'z,... be the points xvv xv2 ,
xv3,... . Then

x(X1X2X3 ...)
~ x(X'1 X'2 JTg...),

and since this is a projectivity between cobasal ranges, it has, by

5.121, two self-corresponding points. Let these be Xn and Xm .

Then plainly the point un vn is Xn) and um vm is Xm .

Hence there are two points (which may, however, coincide)

on x which are also on the point-conic.

Clearly there cannot be more than two, by 5.242.

The theorem just proved deals only with non-singular point-conies;

the corresponding theorem for the singular cases runs:

THEOREM. Every line of the field, with certainly one exception, and

possibly two, has two and only two points in common with a singular point-

conic. The exceptional lines ftave all theirpoints in common with the singular

point'Conic.
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5.32. Tangents to a Point-conic

In the proof of the last theorem it was stated in passing that

the two points which a line has in common with a non-singular

point-conic might be coincident. Before discussing the implica-

tions of this coincidence, it is important to prove that there are

such lines.

5.321. THEOREM. On every point of a non-singular point-

conic there is one and only one line which is on two coincident

points of the point-conic.

Let A and B be two points of a non-singular point-conic;

then there is a projectivity between the two pencils on A and B,

the common points of corresponding lines being the points of

the point-conic.

Consider the line AB of the pencil on A.

To this corresponds some line on B, BX say.

Suppose now that D is a point on BX distinct from B, and on

the point-conic. Then, by the definition of a point-conic, AD is

the line on A corresponding to BD, i.e. to BX.

But, by supposition, AB corresponds to BX', hence there is

no other point than B on BX which is a point of the point-conic.

This shows that there is a line on B which satisfies the conditions

of the theorem.

It remains to show that BX is the only line on B which

satisfies the conditions.

Suppose then that there is another, BY say. Then both of the

lines BX, BY correspond, in the projectivity, to the line AB of

the pencil on A . This being impossible, the second part of the

theorem is also proved.

DEFINITION. Any line which is on two coincident points of a

non-singular point-conic is termed a tangent to the point-conic;

the point common to a tangent and a point-conic is termed the point

of contact of the tangent.

An immediate consequence of the last theorem is the

following.

5.322. THEOREM. // A, B, C, D, and P be five distinct points

on a non-singular point-conic, and ifAA', BB', CC', DD 1

be the
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tangents to this point-conic on A, JB, (7, and D respectively,

then

P(ABCD) ~ A(A'BCD) ~ B(AB'CD)
~ C(ABC'D) ~ D(ABCD').

In order to enunciate the last theorem it was necessary to

name another point oil each tangent; but, to save this trouble,

in future we shall write

P(ABCD) ~ A(ABCD) ~ B(ABCD)
~ C(ABCD) ~ D(ABCD),

provided there is no danger of ambiguity. The lines AA, BB, CC,
DD denote the tangents to the point-conic at A, B, C, and D
respectively.

5.33. Duals of the Preceding Theorems

The results of the last paragraphs are important enough to

merit the explicit statement of the dual results.

5.331. THEOREM. Every point of the field is on two and only

two lines of a non-singular line-conic.

5.332. THEOBEM. Every point of the field, with certainly one exception,

and possibly two, is on two and only two lines of a singular line-conic. All

the lines on the exceptional points are lines of the line-conic.

5.333. THEOREM. On every line of a non-singular line-conic

there, is one and only one point which is on two coincident lines of

the line-conic.

DEFINITION. Any point which is on two coincident lines of

a non-singular line-conic is termed a tangent-point to the line-

conic; the line of the line-conic which is on the tangent-point is

termed the line of contact of the tangent-point.

5.334. THEOREM. // a, 6, c, d, and p be five distinct lines on a

non-singular line-conic, then

p(abcd) ~ a(abcd) ~ b(abcd) ~ c(abcd) ~ d(abcd).

In the enunciation of this theorem, oa, 66, etc., denote the

tangent-points to the line-conic on a, 6, etc.

5.4. Desargues's (Conic) Theorem, and Pascal's Theorem

In this section of the chapter are proved two extremely

important theorems about the conic. They are named after
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their discoverers, who, however, employed metrical ideas in

their proofs.

5.41. Desargues's (Conic) Theorem
THEOBBM. // AQA 1A 2A3 be a four-point, and x any line

distinctfrom the six lines of this four-point, then every point-conic

on A QA 1A 2A 3 is also on a pair of mates of an involution on x.

FIG. 27.

With the usual convention, let Xl9 X2 ,
X3 , X(, X'z ,

X's be the

points common to the six sides of the four-point and the line x.

Let Y and 7' be the two points common to x and any non-

singular point-conic on the four points of the four-point.

Then A^(A^77') ~ x(XlX977
f

);

also A t(A lA^77
f

)
~ x(X^X\77')
~ x(XiX'3 Y

f

Y),

by the permutation theorem.

Hence, since A^A^YY') ~ A^A^YY'),
x(X1X3YY

f

)
~ x(XiXi7'7).

By 4.43 this projectivity is an involution in which X1 and X[,
X3 and X& Y and 7' are three pairs of mates.

Hence 7 and 7' are mates in an involution of which X and

Xi, X3 and X^ are two pairs of mates. Similarly for any other

point-conic on the four-point.

It may be noticed that X^ and X( and the other two pairs of

the involutory hexad are themselves pairs of points common to

x and a point-conic on the four-point. The point-conies in

question are the three singular point-conies on the four-point
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It will be recognized that this theorem was virtually proved
in 5.23.

5.42. Singular Gases of Desargues's Theorem

There are two other theorems, similar to Desargues's (conic)

theorem. These can be/proved by considering, not a simple

four-point on a point-oonic, but singular four-points, that is,

four-points in which two or more of the points coincide. They
are, in a sense, singular cases of Desargues's theorem.

5.421. THEOEEM. If A^AZAZ be a three-point, t any line on A t ,

and x any other line not on any of the points of the three-point,

then any point-conic on the three-point, such tliat t is a tangent to

it, is also on a pair of mates of an involution on x.

This is proved in exactly the same way as Desargues's

theorem, by considering the singular four-point (A )A lA 2A S ,

in which A Q and A l coincide, but the line A$A is fixed as t.

The figure shows the assignment of the various letters.

5.422. THEOEEM. If A 1A 2 be a point-pair, and t^ and t2 be

two lines on A l and A z respectively, each being distinct from

Fio. 29.
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A 1A 2 ,
and if x be any other line, then any point-conic on A l

and A 2 , such that ^ and t2 are tangents to it, is also on a pair of

mates ofan involution on x, and one of the self-corresponding points

of this involution is the common point of x and A 1A 2 .

The method of assigning the letters in the figure will make

the method of proof clear. JS is a self-corresponding point of

the involution.

EXAMPLES

1. x is a line on which is an involution, and P, Q, R are throe distinct

points not on x, and not collinoar. Show that all point-conies on P, Q, R
and a pair of mates of the involution are also on a certain other point S.

2. P, Q, R, S are the points of a simple four-point, and t is a line which

is not on any of them. Show that there are two and only two point-

conies on these four points to which t is a tangent. What significance

has this theorem when t is on one or more of the diagonal points of the

four-point PQRS ?

3. ABC is a triangle, x a line distinct from its sides, and a point not

on any of these four lines. A', B', C" are the common points of x and

BC, CA, AB respectively. A" is the second of the two points common
to x and the point-conic on A, B, C, 0, A'. B", C" are similarly defined.

Show that AA", BB", CC" are concurrent.

4. A, B, C, D, E are five points no three of which are collinear, and

a? is a line on A. Use Desargues's theorem to find the other point on x

which is on the point-conic on the five points.

5. ABCD and A'B'C'D' are two simple four-points, and x is any line

not on any of these eight points. Show that there is, in general, one and

only one point-pair X, X' on x such that the six points ABCDXX' are

all points of a point-conic, and the points A'B'C'D'XX' are all points of

another point-conic.
6. a, 6, c are three non-concurrent lines on the points A, B, C

respectively, a and b are tangents to a point-conic on A , B, C. Find a

second point on c which is also on the point-conic.
7. D and IS are two diagonal points of a complete four-point WXYZ.

Show that any point-conic on this four-point is also on a pair of points
on DE which are harmonic conjugates relative to D and E.

8. The usual notation for the points associated with a complete four-

point being supposed, show that the six points A^A^H^H^H'^H^ are all

on a non-singular point-conic, and that A 2A zH^H3 H!j,U
f

s are all on a

non-singular point-conic.

5.43. Pascal's Theorem

THEOREM. If A, B, C, A', B',
'

be six points on a

non-singular point-conic, and if A", B", C" be the points



108 PBOJECTIVE GEOMETRY

c"
are

linear.

Fia. 30.

fRr"\ /C*' A\
Let J?! be the point (

~7 ;L )
,
and (7X the point L,

:M .

V-/ w W

' C(A'B'C'A),

Then B(A'B'C'A) ,

and C(A'B'C'A) <

But B(A'B'C'A) <

hence (C'B'B^A)^

This being a projectivity between ranges on different bases,

and there being a common self-corresponding point, it must be

a perspectivity.

Hence B"C", B'C^ B1 C
t must be concurrent. But the

common point of the last two of these three lines is A"', hence

A", B", and C" are collinear.

If this theorem and its proof be compared with Pappus's
theorem (3.323), the similarity can hardly escape notice. In-

deed, Pappus's theorem is only a particular case of Pascal's

theorem.

Pascal's theorem is sometimes enunciated thus: // a hexagon
be inscribed in a (point-)conic, the intersections ofpairs of opposite

sides are collinear. If the obvious meanings be ascribed to the

terms hexagon, inscribe, intersect, and if the hexagon considered

be AB'CA'BC', it will be seen that this enunciation is equiva-

lent to that given. For the opposite sides of this hexagon are

AB' and A'B, B'C and BC', CA' and C'A.
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5.431. Converse of Pascal's Theorem

THEOREM. If A,B, C, A', B', C' be six points, no three of

which are collinear, and if A", B", C" be defined as in Pascal's

theorem, and be collinear , then A, B, C, A', Bf

,
C' are all on a

non-singular point-conic.

This theorem is proved by the method of reductio ad absur-

dum. With this indication, the reader should find no difficulty

in proving it.

5.432. Dual of Pascal's Theorem and its Converse

THEOREM. // a, b, c, a', b', c' be six lines on a non-singular

line-conic, and if a", 6", c" be the lines L?
),

(

C
f

j,
I

J

re-

spectively, then a", b", c" are concurrent.

It will be found useful to draw a figure appropriate to this

theorem.

THEOREM. // a, b, c, a', b', c' be six lines, no three of which are

concurrent, and a", b", c" be defined as in the dual of Pascal's

theorem, and be concurrent, then a, b, c, a', b', c' are all on a

line-conic.

5.433. Utility of Pascal's Theorem and its Converse

It will be found that the converse of Pascal's theorem is often

the simplest method ofproving that six points are all on a point
-

conic, although there are always two other methods of doing

this. The dual theorem is useful for the dual purpose.

The converse of Pascal's theorem is also a very convenient

method of determining other points on a point-conic, five of

whose points are known. This construction is important enough
to merit a formal enunciation and proof.

CONSTRUCTION. A, B, C, D, E are five points, no three of

which are collinear; EF is any line on E, but not on any of the

other four points. Determine the other point on EF which is on

the point-conic on ABODE.

Let L be the point I _ _), andM the point ( ).

\.ZA&/ \&*l
'

( CD\
'

/AN\
Let N be the point

J J
,
and X the point ( I.
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Then X is the required point.

For L, M, N are, respectively, the points

Fia. 31.

and these points are collinear l>y construction, hence ABCDEX
are all on a point-conic.

5.434. Singular Gases of Pascal's Theorem. Just as

with Desargues's theorem so with Pascal's theorem there are

singular cases. These arise when there are not six points but

five or less on the point-conic, and these are counted as six by

considering one, or more, as pairs of coincident points. The

line joining coincident points will then be the tangent to the

point-conic at the point in question.

In distinguishing the various possible cases that can arise

it is useful to consider the six points in the cyclic ordering

AB'CA'BC'A. Two or more points will be consecutive if they
are consecutive in this ordering. It can easily be verified that

the following assertions are true.

(i) If two non-consecutive points are coincident, Pascal's

theorem is true, but trivial,

(ii) If more than two consecutive points are coincident, the

theorem is again true, but trivial.

(iii) It is true and not trivial when one or more pairs of con-

secutive points are coincident, so long as these pairs have

not a common point. (If they had, more than two con-

secutive points would be coincident, and so, by (ii), the

theorem would become trivial.)

This leaves four non-trivial theorems:

(a) When e.g. A and B f

are coincident.
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(6) When e.g. A and B f

are coincident and C and A' are

coincident.

(c) When e.g. A and B f

are coincident and A' and JS are

coincident.

(d) When e.g. A and Br

are coincident, (7 and A' are coin-

cident, B and C' are coincident.

All these non-trivial theorems are proved just as Pascal's

theorem itself is proved, and it is a useful exercise to work out

a complete proof. The last of the four types of theorem can be

stated in other terms thus:

5.435. THEOBEM. // the sides BC, CA, AB of a triangle are

tangents to a non-singular point-conic, and their points of contact

are A', B', C' respectively, then the two triangles ABC, A'B'C'

are perspective.

EXAMPLES

1. X, Y, Zi are throe collinear points, and P and Q are two other points
not collinoar with them. Show that the other six intersections of the

six lines PX, PY, PZ, QX, QF, QZ are six points of a point-conic.

2. AQ Aj A zA 3 is a four-point which is on a point-conic. Show that the

common point of tangents, whoso points of contact are two of the points
A A 1A sA3f is collinear with two of the diagonal points of the four-

point.

3. A A1A ZA Z is a four-point which is on a point-conic, and aQ a^az a^
(

is the four-line composed of the four tangents to the point-conic at

AQ, A lt A 2 , and A z respectively. Show that the four points Dz , Z>3 ,

a o1> and a2 a3 are collinear. Dualize.

4. In the last example show that the six points A , A it A z , A^ a alt

az as are all on a point-conic. Hence show that a ax and az a3 are harmonic

conjugates relative to D2 and D8 .

5. Use Pascal's theorem to show that three tangents to a non-singular

point-conic cannot be concurrent. Dualize.

6. With the usual notation, XxXzX9 X{ X'z X'3 is an involutory hexad
associated with a four-point, and Y^Y^Y^Y'^Y^Y'^ are, respectively, the

harmonic conjugates of these points relative to the two points of the

four-point with which each is collinoar. Show that Y^Y^Y^Y'^'^Y^ are

all on a point-conic. Under what circumstances is this point-conic

singular ?

7. Use Pascal's theorem to prove Ex. 8 of the last set of examples.
8. ABC and A'B'C' are two perspective triangles. Show that the six

. . (BC\ (BG\ (CA\ (CA\ (AB\ (AB\ ..

points
(

,A ,)
9

(A ,B,)> (^,), (B/c,), (B , ), (C/A ,)
areallonanon-

singular point-conic. Dualize.



112 PROJECTIVE GEOMETRY

9. Given two tangents to a point-conic with thoir points of contact

and one other point on the point-conic, find the second point of the point-
conic which is on a line on the given point.

10. Given four points A, B, C, D of a point-conic, and d the tangent
to the point-conic at D, determine (i) the second point of the point conic

which is on any line on A*/(ii) the second point of the point-conic which

is on any line on D. /
11. A is a point, and # a line not on it. P1P2P8P4P5P6 are six dis-

tinct points on a point-conic which is non-singular. The common points
of x and the six lines AP19 AP2 ,..., AP6 are Ql Q2 QB ... Q9 . El R2 ... R6

are six points, one on each of those lines, such that

Show that the six points Sl Rt ... J?6 are all on a non-singular point -

conic.

5.5. Pole and Polar

5.51. THEOREM. The locus of the harmonic conjugates of a point,

relative to pairs of points of a non-singular point-conic which are

collinear with it, is a range of points.
*p

FIG. 32.

Let A and A' be a pair of points on a non-singular point-conic

and collinear with P\ and let A^ be the harmonic conjugate of

P relative to AA'.

Let T be the common point of the tangents at A and A'.

Similarly, let B and B' be another pair of points on the point-

conic, collinear with P\ and let Bl be the harmonic conjugate
of P relative to BB'.

LetX and Y be the points /
,

j
,

I
,

J
respectively, -so that

X, Y, and P are the diagonal points of the four-point AA'BB'.
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Then, as a consequence of a singular case of Pascal's theorem

(type (o)), the three points
^'), (JfJJ, (j^j

are collinear.

That is, T, X, Y are collinear.

But X, Y, A lt
Bl are collinear, hence B1 is collinear with

A and Av
Similarly, if CC' be any other pair, then the appropriate point

C1 is collinear with T and A.

Hence all points of the locus are on TA.
Suppose now that Lt is any point of TA^ and that LL' is

the pair of points on the point-conic collinear with P and Lv
Then by what has just been proved (PL^ LL') is a harmonic

tetrad. Hence every point of the range on TA is a point of the

locus, and vice versa.

The proof just given has tacitly supposed that P is not on the

point-conic. If P is on the point-conic, it is easily verified that

the locus is the tangent at P. (See 4.222.)

5.511* DEFINITION. // p be the base of the range which is the

locus in the preceding theorem, then p is said to be the polar of P,

and P the pole ofp, relative to the point-conic in question.

Notice that pole and polar are not dual terms.

5.512. THEOREM. The envelope of the harmonic conjugates of

a line relative to pairs of lines of a non-singular line-conic which

are concurrent with it is apencil of lines.

5.513. DEFINITION. // P be the base of the pencil which is the

envelope in the preceding theorem, then P is said to be the pole

ofp, and p the polar of P relative to the line-conic in question.

Here again polar and pole are not dual terms; but 'pole and

polar relative to a point-conic' is the dual of 'polar and pole

relative to a line-conic'. The apparent ambiguity will shortly

be removed.

5.52. Elementary Properties of Pole and Polar

5.521. THEOREM. // P and p be pole and polar relative to a

non-singular point-conic, and ifA and B be the two points common
to p and the point-conic, then the tangents at A and B are both

on P.
4191
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Suppose that AP is not a tangent to the point-conic. Let A'

be the other point of the point-conic on AP, and let A" be such

that (AA', A"P) is a harmonic tetrad.

Then A "
is on p. That isp and AP are the same line.

This is absurd except/when P is on the point-conic. Hence

when P is not on the point-conic the theorem is true.

And when P is on the point-conic the theorem is plainly true.

As direct corollaries of this theorem, the following may be

enunciated:

5.522. THEOREM. // P and P' are distinct points, their polars

relative to any non-singular point-conic are distinct.

5.523. THEOREM. Two and only two tangents to a point-

conic are on any point which is not on the point-conic.

5.53. Projective Properties

In this section certain deeper properties of pole and polar are

investigated. These investigations give an answer to the

general question: 'Given a set of points which has certain pro-

jective properties, what protective properties has the set of their

polars relative to any non-singular point-conic?' It is to be

expected that the polars will have dual properties; this is, as a

matter of fact, the answer. Before coming to the investigation

proper two preliminary theorems are needed.

5.531. THEOREM. // the polar ofP relative to any non-singular

point-conic is on Q, then the polar of Q relative to the same point-

conic is on P.

Let R and S be the two points of the point-conic which are

collinear with P and Q.

Then because Q is on the polar of P, (RS, PC) is a harmonic

tetrad. But this shows that P is on the polar of Q.

5.532. THEOREM. // P, Q t R, S,... be collinear points, then

their polars relative to any non-singular point-conic are con-

current lines.

Let p, q, r, s,... be the polars, and let X be the point pq.

Then by the last theorem the polar ofX is on both P and $
Jlence it is also on R t $,...,
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By the last theorem the polars of M, $,.,. are therefore on X.

That is to say, p, q, r, $,... are all concurrent.

5.533. THEOREM. // P, Q, R, S are four collinear points on

the line x, and p, q, r, s are the four concurrent lines on the point

X, which are their polars respectively relative to a non-singular

point-conic, then
x(PQE8) X(pqrs) .

Let A and B be the points of the point-conic which are on x.

Let P', Q', R', S' be the harmonic conjugates of P, Q, R, 8

respectively, relative to AB.
Then XP'

t XQ', XR', XS' are the polars of P, Q, R, S respec-

tively, i.e. they are the lines p } g, r, s.

Hence X(pqrs) ~ x(P'Q'R'S').

But P and P', Q and Q', R and R', S and S' are mates in an

involution, of which the double points are A and B
;
so that

x(PQRS) ~ x(P'Q'R'S').

Hence x(PQRS) ~ X(pqrs).

The reader should verify that this proof remains valid when one, or

two, of the points PQRS arc on the point-conic.

The following important theorems are direct consequences
of the preceding theorems. In order to avoid prolix enuncia-

tions the following convention is used: by A, B, (7, D,...

p> q, r, s,... are denoted the poles and polars of a, 6, c, d,...

P, Q, R
y S,... relative to a definite non-singular point-conic.

The truth of these theorems should be verified.

5.534. THEOREM. //

then

5.535. THEOREM. // P19 P2 ,
P3,... be collinear points on the re-

spective lines of the pencil X(xl x2 a?3...), then plf p2 , p&... are con-

current lines on the respective points of the range x(X1 X^X^...) t

5.536. THEOREM, //

z(Z1 Z2 Z3...)
~ w(WlWzW3 ...).
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5.537. THEOREM. // P, Q, ft, S, T ,
U we six points on a point-

conic, then p, q, r, s, t, u are six lines on a line-conic. The line-

conic is or is not singular according as the point-conic is or is not

singular.

If x is the tangent to me point-conic on any one of these points,

thenX is the tangent-point to the line-conic on the corresponding line.

This theorem can be proved in two ways at least. The first

way is to make use of the definition of the point-conic, in virtue

of which
P(RSTU) ~ Q(KSTU),

so that p(rstu) ~ q(rstu).

The second way is to use Pascal's theorem and the converse of

its dual.

5.54. Equivalence of the Point-conic and Line-conic

5.541. THEOREM. The set of all tangents to a non-singular

point-conic is a non-singular line-conic, and the set of all tangent-

points to a non-singular line-conic is a non-singular point-conic.

The two parts of the theorem are plainly dual, and only the

first is proved here.

Let P, Q, ft, S, T, U be any six points on a non-singular

point-conic.

By 5.537 their polars relative to any non-singular point-

conic are all lines on a line-conic.

In particular, therefore, their polars relative to the point-conic

which they are on are lines on a line-conic.

But these polars are the tangents to the point-conic in

question, hence any six tangents to a point-conic are lines on a

line-conic, and this line-conic cannot be singular.

Hence all the tangents to a non-singular point-conic are lines

on a non-singular line-conic, and there can be no lines on this

line-conic which are not tangents to the point-conic.

This important theorem, whose existence the reader has

probably suspected, leads to the definition of the term conic, as

distinct from point-conic and line-conic.

5.542. DEFINITION. The mixed self-dual figure consisting of a

non-singular point-conic and the non-singular line-conic which is

the set of tangents to it is known as a conic (non-singular).
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5.543. Classification of Gonics. It is now no longer necessary

to distinguish carefully between point-conies and line-conies,

and even the singular conies will not be distinguished in this

way in future. It is worth while at this stage to make a list of

the various types of conies.

Type I. The non-singular conic. A mixed, self-dual figure.

Type II. Singular conies of the first class.

(a) Two ranges of points on different bases.

Point-conic. Not self-dual.

(6) Two pencils of lines on different bases. Line-

conic. Not self-dual.

Type III. Singular conies of the second class.

(a) Two ranges of points on the same base. Point-

conic. Not self-dual.

(6) Two pencils of points on the same base. Line-

conic. Not self-dual.

This classification is important, for it is the only division

which is inherent in the nature of conies. Later it will be possible

to classify conies of Type I into sub-classes, but these classi-

fications arc all relative to some arbitrarily chosen standard

external to the conic itself,f

5.544. Duality of Pole and Polar. There remains one

theorem to be proved. If P is any point, and its polar relative

to the points of a conic is p t is its polar relative to the lines of the

conic also p ? It is not at once obvious that it is, nor has it yet
been proved.

THEOBBM. //P be any point, and p be its polar relative to the

points of a conic, then p is also its polar relative to the lines of the

conic.

The theorem is obviously true if P be on the conic. Suppose
then that it is not on the conic. Let x and y be the two tangents
to the point-conic of the conic which, by 5.523, are on the point

P; let X and Y be their points of contact. Then the polar of P
relative to the point-conic is XY.

f Thus we could, even now, classify conies' of Type I into (a) those which
are on an arbitrarily chosen line x, and (6) those which are not. But this is a
classification relative to x.
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Consider now the line-conic alone, x and y are two lines of

this, and X and Y are the tangent-points on them. The polar
ofX relative to the line-conic is x, and y is the polar of F.

Hence the pole of XY relative to the line-conic is xy, i.e. P;
and this is the same as spying that XY is the polar ofP relative

to the line-conic. /
This proves the theorem, and removes the slight ambiguity

which so far has been involved in the use of the terms pole

and polar.

5.545. Conjugate Points and Lines. DEFINITIONS. // the

polar of P relative to a conic is on Q, then P and Q are termed

conjugate points relative to the conic.

If the pole ofp relative to a conic is on q, thenp and q are termed

conjugate lines relative to the conic.

This new term is frequently useful in dealing with conies.

EXAMPLES

1. ABCDE are five points on a non-singular conic. Show that the neces-

sary and sufficient condition that AB and CD should be conjugate lines

relative to the conic is that E(AB, CD) should be a harmonic line-tetrad.

2. P is a point not on a certain conic. Show that pairs of lines on P
which are conjugate relative to the conic are mates in an involution.

What are the self-corresponding lines of this involution?

3. P is a point not on a certain conic. The two tangents to the conic

which are on P have X and Y as their points of contact. Show that XY
is the polar of P. Why was it impossible to adopt this as a definition

of the term polar instead of 5.51 1 ?

4. P is a point not on a certain conic. A 1 A{, A Z A%, Az A's ,... are pairs
of points on the conic collinear with P. 2\ is the common point of the

tangents at A^ and A{; Tz , T9 ,... are defined similarly. Show that the

locus of the points T is the polar of P.

What objection was there to adopting this as a definition of the term

polar, instead of 5.611 ?

6. X, Y, C are three distinct points on a conic, and Z is the pole of

XY relative to this conic. ZT is any line on Z. Show that I _, 1, I J

are conjugate points relative to the conic.

6. X, Y, Z, W are four distinct points on a conic; A and B are the

poles ofXY and ZW relative to this conic. Show that

A(XYZW) ~ B(XYZW).
Henco show that ABXYZW are six points on a second conic.

(This theorem has already been proved in another way. See 6.435,

Ex. 4.)
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7. w4 , AI,Az ,A 3 are four distinct points on a conic, IfDv D2 ,D8 be the

diagonal points of the four-point A QA lA 2AS , show that Dl is the pole
of DZD8 .

8. ABC, A'B'C' are two triangles centrally perspective on and

axially perspective on o.

Show that ifABCA'B'C' are six points on a conic, the following pairs

(ij/nr

\

,_,) and AA' i

5.6. Ranges and Pencils on a Conic

DEFINITIONS. The set of points on a non-singular conic is

termed a range on a conic.

The set of lines on a non-singular conic is termed a pencil on a

conic.

The notion of ranges on a line led to the notion of projectivi-

ties between ranges and thence to important results, and in just

the same way the notion of ranges and pencils on a conic leads

to further results about the conic. The first task, obviously, is

to define projectivity between ranges on a conic and other

ranges.

Before doing this it is necessary to introduce an addition to

our notation.

A range on a line x is denoted by x(ABC...)\ it will obviously

be convenient to have a similar notation for ranges (and pencils)

on a conic. We therefore use Greek capital letters to denote

conies, and to avoid ambiguity only those Greek capitals which

are different from Roman capitals, namely, F, A, 0, S, II, 5),

O, *F, Q. It will be found that these are quite sufficient.

By 0>(ABC...) is meant the range ABC... on the conic O.

By O(a6c...) the pencil abc... on O.

5.61. Projectivity

5.611. DEFINITIONS. A range <b(ABC...) on a conic will be

said to be perspective with a range x(A'B'C'...) on a line if and

only if there is a point on the conic, but not on x, such that

AA', BB', CC'... are all on 0.

A pencil (abc...) on a conic will be said to be perspective with

a pencil X(a
r

b'c'..) on a point ifand only if there is a line o on the

conic, but not on X, such that aa' t 66', cc'... are all on o.
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5.612. DEFINITIONS

(a) A range <&(ABC...) on a conic will be said to be protective

with a range x(A'B'G
f

...) on a line if and only if there

exists a range y(A"B"C"...) such that

and <b(ABC...) is 'perspective with y(A"B"C"...).

(6) There is also said to be a projectivity between the two ranges.

*/(c) Two ranges <b(ABC...), <&'(A'B'C'...) on different conies are

said to be protective if both are protective with the same

range on a line.

(d) Two ranges $(ABC...), Q>(A'B'C'...) on the same conic are

said to be protective if both are protective with the same

range on a line.

EXAMPLES

1. Give a reason for the insistence on the fact that in a perspectivity

between a range on a conic and a range on a line, the centre of perspec-
tive must be on the conic.

2. Frame suitable definitions for projectivitios between

(a) a range on a conic and a pencil on a point,

(6) a range on a conic and a pencil on the same or another conic,

(c) a pencil on a conic and a range on a lino.

3. Show that if <&(ABC...) x(A'B'C'...), where is a point on the

conic but not on x, then the two points common to O and x are common

self-corresponding points.

4. Show that a projectivity between a range on a conic and a range
on a lino is completely determined when three pairs of corresponding

points are given.
5. Show that if the common points of x and <D are U and V t and

(UVABC...) ~ x(UVA'B'C'...)> then there is a point O on 0> such that

AA', BB'> CC' are all on 0; that is, the projoctivity is a perspectivity.

6. Show that in a projectivity between two ranges on the same conic

there cannot be more than two self-corresponding points, and that there

are always two, which may not, however, be distinct.

7. If o, 6, c,... are the tangents to a conic $ at the points A, B, (7,...,

show that
(ABC...) ~ O(a6c...).

8. If <b(ABCD...) ~<b(A'B'C'D'...) and X be any point on O, show

that X(ABCD) ~ X(A'B'C'D').

9. Show that (ABCD) ~ (BADC).

5.62. Self-corresponding Points and Lines

The first important consequence of the idea of projectivities

between ranges on a conic and other ranges is that it makes
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possible a construction for determining the self-corresponding

points of a projectivity between cobasal ranges,f

5.621. THEOREM. //

then the Pascal line of the two triads ABC, A'B'C' is identical

with the Pascal line of any other two corresponding triads DEF,
D'E'F'.

Further, if R and S are the points common to this Pascal line

and O, then R and S are self-corresponding points of the

jectivity, and they are the only ones.

respec-

The second part of the theorem is proved first, and from it

the first part is deduced.

Let I be the Pascal line of the two triads ABC, A'B'C', so

that Z is the line US.

Let A', B", G" be the points l^\ l^\
tively, so that these three points are on I.

(TO

Q\

A A')'

Then <b(RABCS) l(RXCB"S),
A

and

and so

<b(RA'B'C'S)

(RABCS)

l(RXC"B"S),

(RA'B'C'S).

f Tho moaning of the word base can now be-extended so as to include not

only points (the bases of pencils) and linos (the bases of ranges), but also conies

(the bases of ranges and pencils on conies).
4191
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Hence in the projectivity determined by the three pairs of

corresponding points A and A', B and B' t C and C", E and S are

self-corresponding points. It is clear that they are the only ones.

Similarly, if D and D', E and E', F and I' are three other

pairs of
corresponding^oints

in the projectivity, their Pascal

line is on two self-corresponding points of the projectivity. But

there cannot be more than two self-corresponding points in a

projectivity, hence ES is the Pascal line of DEF and D'E'F'.

This proves the first part of the theorem.

The dual theorem should be proved independently, and an

appropriate figure should be drawn.

The theorem just proved provides an easy method of deter-

mining the self-corresponding points of two ranges on the same

conic. The next theorem may be used to find the self-corre-

sponding points of two ranges on the same line.

5.622. THEOREM. //

(i) x(ABC...) ~ x(A'B'C'...),

(ii) 4> be any non-singular conic and any point on it but not

onx, n
(iii) ^>(A 1 B1 Cl ...)

~ x(ABC...)

and

(iv) E and S be the self-corresponding points of these two ranges

(v) T and U be points on x collinear with E and 0, S and

respectively
r

,

then T and U are the self-corresponding points in the pro-

jectivity x(ABC...) ~ x(A'B'C'...).

The proof of this theorem is left to the reader.

The line joining the two self-corresponding points in a pro-

jectivity between two ranges on a conic is often called the axis

of the projectivity. The dual term is centre of projectivity, but

this latter must be carefully distinguished from a centre of

perspectivity.

5.623. A Note on Constructions. The problem, or construc-

tion:

Given three pairs of corresponding points in a projectivity

between two cobasal ranges, find the self-corresponding points,
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can evidently be solved by means of the last theorem. It should

be noticed, however, that in solving it a conic O is an integral

part of the construction.

So far, no construction has involved more than points and

lines, and this construction is therefore very different. There is

no logical objection to using conies in problems and construc-

tions, but it is better to avoid using them when possible. This

advice can be justified by remembering that the conic is a very

complex construct; points and lines are the simple elements.

A construction is better when it uses simpler materials.

5.63. Involutions on Conies

DEFINITION. A projectivity between two ranges on a conic, in

which there is a pair of reciprocally corresponding points, is termed

an involution.

That is, if 3>(AB...) ~(BA...) the projectivity is an in-

volution.

Involutions between pencils on conies are defined dually.

The properties of involutions on a conic are proved in the

following theorems.

5.631. THEOBEM. Every pair of corresponding points in an

involution on a conic is a pair of reciprocally corresponding points.

Distinguish the two ranges by calling one the first range, the

other the second.

Let A and B be the pair of reciprocally corresponding points.

Let C in the first isange correspond to D in the second.

Let D in the first range correspond to X in the second.

Then <b(ABCD...) ~ (BADX)\
but by the permutation theorem

(ABCD)~ 3>(BADC).

Hence X is (7, and so every pair is a pair of reciprocally

corresponding points.

5.632. THEOREM. The lines which are on pairs of mates of an
involution on a conic are concurrent.

Let A and A' be a pair of mates of the involution.

Let I be the axis of the involution, and let A 1 be the point
on I which is collinear with A and A',
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Let P be the harmonic conjugate ofA^ relative to A and A'.

Let B and B' be another pair of mates.

Then I ,,) is on Z; and since the projectivity is an involu-

ti0n
'

\A'B'I
iS alS n l

Fio. 34.

These are two of the diagonal points ofthe four-pointAA'BB'.

The third is plainly P.

Hence BB' is on P.

Similarly, the line on any other pair of mates is on P.

This proves the theorem.

5.633. THEOBEM. //

Q>(ABC...)~<S>(A'B
f

C'...)

and if AA', BB', CC' are concurrent, the projectivity is an

involution.

Let be the point of concurrence ofAA', BB', CC'.

Consider the involution in which A and A', B and B' are two

pairs of mates.

Then in this involution, by the last theorem, C and C' must
be a pair of mates.

Hence the projectivity

is an involution.
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[EXAMPLES

1. A and A' are mates of an involution on a conic, and R and S are

the self-corresponding points. IfE is any other point on the conic, show
that E(AA', RS) is a harmonic tetrad.

2. X and Y are two points on a conic, and Z is the polar ofXY relative

to this conic. A and A' are two points on the conic and collinear with Z.

Show that A and A' are mates in an involution of whichX and Y are the

self-corresponding points.
3. I, m, n are three non-concurrent lines, P and Q are two points on

n, but not on I or m. Show how to construct two lines r and 8 each on the

point Im such that (Inters) and (PQ, RS) are both harmonic tetrads,

where R and S are the points nr, ns respectively.
4. P, Q, R, S aro four points on a conic <E>. Find a fifth point T on <I>

such that
(PQRT) ~ (PQTS).

How many points satisfy the condition ?

5. If (PQABC...) ~ (PQA'B'C'...) and if Z is the pole of PQ
relative to <E>, show that A', B' and Z are collinear if and only if A, Bt

and Z are collinear.

6. If &(ABC...) * ' ^(A'B'C'...) and the projectivity is not an involu-

tion, show that the envelope of lines on pairs of corresponding points is

a conic.

7. P, Q, R are three points not on a conic <E>. Show how to construct a

triangle ABC whose sides BC, CA, AB shall be on P f Q, R respectively
and whoso points shall be on <E>. How many such triangles aro there ?

8. Give a suitable definition of the harmonic conjugate of the point
A on a conic <I>, relative to two other points on the conic.

Show that mates in an involution on a conic <D are harmonic conjugates
relative to the self-corresponding points.

9. Show that every involution on a conic has distinct self-corrospond-

ing points.



CHAPTER VI

FURTHER THEOREMS ON CONICS

IN the preceding chapter the five principal methods of dealing

with the conic in synthetic Projective Geometry were elabor-

ated. These five are enumerated here for convenience:

(i) Projectivilies between pencils or ranges whose bases are

points or lines on the conic.

(ii) Desargues's theorem and its converse.

(iii) Pascal's theorem and its converse.

(iv) Theory of poles and p'olars.

(v) Ranges and pencils on the conic as base.

In this chapter these methods are applied in various ways in

order to prove certain well known theorems about the conic.

6.1. Pencils and Ranges of Conies

6.1 1. Gonics on Four Distinct Points or Lines

If AQ, Av A z , AS are four points, no three of which are col-

linear, and if X is any fifth point, then there is one and only
one conic on these five points.

The set of all conies on the points A ,
A 19 A 2 ,

A 3 is termed a

pencil of conies on four points, or a pencil of conies of Type I.

Given any fifth point X, other points of the conic on A
, A^

A 2 , A& X can be found by any of the first three of the methods

enumerated above.

Given any line Z, not on any of the four points, then every
conic of the pencil is, by Desargues's theorem, on a pair mates

of an involution on Z. In particular, I is on two and only two

conies of the pencil.

Dually, if
,
alt a2 >

aa are ^our lines no three of which are

concurrent, the set of conies which are on these four lines is

called a range of conies on four lines, or a range of conies of

Type I.

There is one and only one conic of the range on any fifth line Z;

two and only two on any point X not on any of the four lines.

Various singular cases of pencils and ranges of conies arise,

and two of these are considered in the following paragraphs.
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6.12. Gonics on Three Distinct Points and a Line on one

of them

If A-L, A 2 , AZ are three distinct non-collinear points, and t is

a line on one of them, and ifX be any fourth point, then there

is one and only one conic on these four points and on t.

The set of conies on A^ A 2 , A$ and on t is termed a pencil of

conies on three points and having single contort at one of them,

or, more simply, a pencil of conies of Type II. It may be looked

upon as a singular case of Type I, wherein A and A are coin-

cident, but the line A A is determined as t.

Given any fourth point X, other points of that conic of the

pencil which is on X may be found by any of the first three

methods enumerated.

Given any line I not on any of the throe points, there are two

and only two conies of the pencil on 7.

The dual of the pencil of Type II is the range of Type II.

Any two conies of the pencil are said to have single contact

at A .

6.13. Conies having Double Contact

If we now suppose that not only A and At coincide, but also

A 2 and A& and that the lines A^A^ and A 2A 3 are determined

as #! and t% respectively, we have a second singular case of a

pencil of conies.

If A and A 2 are points on ^ and t2 respectively, then the set

of all conies on A
lt
A 2 ,

t
l}
and t2

is termed a pencil of conies

having double contact, and sometimes a pencil of conies of

Type V.

Singular cases of Pascal's or Desargues's theorem establish

the result that on any point X, not on A 1 or A 2 , there is one and

only one conic of the pencil.

A singular case of Desargues's theorem establishes the result

that on any line Z, not on A
19
A 2 ,

or t t
2t there is one and only

one non-singular conic of the pencil.

It may also be verified that the pencil of conies having double

contact is a self-dual figure.

Other singular cases of pencils of conies exist, but their dis-

cussion is omitted here.
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EXAMPLES

1 . Enumerate the singular conies of the throo types of pencils.

2. Explain the apparent exception to Dosargues's theorem contained

in tho statement: There is one and only one non-singular conic of a pencil

of conica having double contacton any line not on A lt A s , or ^ t2 . Why are

there not two ? /

6.2. Further Theory of Poles and Polars

The following group of theorems about poles and polars is

selected as being useful in application, and important enough
to merit explicit proof.

6.21. THEOREM

//D1D2D3 be the diagonal triangle of thefour-point A QA 1A 2A 3 ,

then D2D3 is the polar of D relative to any conic of the pencil on

Fid. 35.

Let <X> be any non-singular conic on A A 1A 2AB .

Then, with the usual lettering used for the four-point, H is

the harmonic conjugate of D
l relative to A GAV and H{ is the

harmonic conjugate of Dl relative to A 2A 3 .

Hence, by the definition of polar, U^H^ is the polar of D^
relative to O.

But H^KI is D2Da ,
and <D is any non-singular conic of the

pencil. Hence the theorem is proved.

It should be noticed that, in addition, D2 is the pole of D3Dl

relative to O, and DB the pole of Z\D2 relative to <E>.

The triangle J\ Z>2D3 therefore has the remarkable property

that each side is the polar, relative to O, of the opposite point.
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Such a triangle is called a self-polar triangle relative to O. Other

properties of self-polar triangles will be investigated later.

b.22. THEOREM

// two four-points AQA^A 2A^ B^B^B^B^ have the same

diagonal points Dj^D^D^ then there is a conic which is on the

eight points A QA 1A 2A 3B B
1B2 B3 .

FIG. 36.

Let H^H^H^H^H'^H^ be the harmonic points of the four-

point A A
l
A 2A Bt and K^K2K^K[K2 K'Z those of B B^B2 J53 .

Suppose first that B is not on any ofthe sides ofA QA 1A ZA3 .

Consider the conic on A A A 2A zB .

Since D is the pole of D2D3 relative to this conic, and since

KI is the point on D2D3 which is collinear with B and Dlt and

since, further, Bl is the harmonic conjugate of BQ relative to

B1K1) it follows that B1 is on the conic.

Similarly, B2 and BB are on the conic.

This proof breaks down when B is on one of the sides ofA A 1A<tA9t

but when this is so, it is a simple matter to show that B19 Bz , and Bs are

also on sides ofA QA :A zA a . Not only this, but that the two four-points
have a pair of opposite sides in common. When B is on one of the sides

ofA Q A! A%AB there is therefore a singular point-conic on the eight points.

6.23. THEOREM

// A A1A 2AB be a four-point, and X be any point not on one

of its sides
, then the polars ofX relative to conies of the pencil on

A^A^A2Az are all concurrent.
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Consider the non-singular conic ^<mA^A^A 2A^X.
Let XT be the tangent to <J> at X.

By Desargues's theorem, conies of the pencil are on pairs of

mates in an involution on XT, and X is one of the self-corre-

sponding points of this involution.

Let X' be the other, aifid letT be any non-singular conic of the

pencil other than >.

Let E and E 1

be the pair of mates of the involution on XT
which is on *F.

Then (XX', EE') is a harmonic tetrad.

Hence the polar ofX relative toT is on X'.

But the polar ofX relative to <I> is on X'.

Hence all the polars ofX relative to conies of the pencil are

onX'.

The point-pair XX' has the property of being a conjugate

point-pair relative to every conic of the pencil.

6.24. THEOEEM

IfABC be any triangle and A', B', C' be the poles of BC, CA,
AB relative to any non-singular conic O, then the triangles ABC,
A'B'C' are perspective.

Fio. 37.

Let a, 6, c, a', b' t
c' be the lines EC, CA, AB, JB'C', C'A',

A'B' respectively; these are the polars of A' t B', C', A, B, C

respectively.

Let B", X, Y be the points 66', ac', ab' respectively.

Let x be the line A'Ct so that x is the polar ofX .
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Then B(A'B'AX) ~ b'(aba'x),

and b'(aba'x) is b'(YB'C'A').

Now
V(YB"C'A') ~ C(YB"C'A')

~ C(A'C'B'Y).

This last pencil is identical with C(A'C'AY).

Hence B(A'B'AX) ~ C(A'C'A7),

or B(A'B'AC) ~ C(A'C'AB).

These two pencils have the common corresponding line BC,

(r

jD/v

1 is on AA'\ and so

the triangles are perspective.

6.25. Hesse's Theorem

THEOREM. // A^A^A^A^ be any four-point, and if two pairs

of opposite sides are pairs of conjugate lines relative to a conic O,

then the third pair of sides is also a pair of conjugate lines relative

The theorem is a direct consequence of the previous theorem

and is in fact merely a restatement of it. It is obtained by

(n
ff

f
\

I.

CO /

6.26. THEOREM

// the sides BC, CA, AB of a triangle are tangents to a conic

$ at A' 9 B', C' respectively, then the triangles ABC, A'B'C' are

perspective.

This is a particular case of 6.24. It has already been noticed

in the discussion of the singular cases of Pascal's theorem

(5.434).

EXAMPLES

1. $ is a conic, and P, Q, A are throe distinct non-collinear points not

on it. X and Y are two points on <D collinear with A. Show that there is

a second pair of points X.' and Yf on O and collinear with A such that

XYX'Y'PQ are all on a conic.

Discuss the case when A and P, A and Q are both pairs of conjugate

points relative to <D.

2. P, Q, A are three distinct non-collinear points, and a is a line not on

any of them. Show that conies on P and Q, relative to which A and a

are pole and polar, form a pencil on four points.
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3. If A and a arc polo and polar relative to every non-singular conic

of a pencil on four points, show that A is a diagonal point of the four-

point.

4. IJKL are four points on a conic d>. P is tho polar of IJ relative

to <D, Q that of KL. Show that the poles of IJ and KL relative to the

conic on IJKLPQ are on P&. (See 5.545, Ex. 6.)

6. A A 1A ZA8 is a fomspoint, <E> any conic on A Q and Av Show that

any conic of the pencil OTLA A l A z A s \Bona second pair of points JS and
JB' of <D which are collinear with a certain point on A 2A 3 .

6. ABODE are five points, no three of which are collinear. x is a

line not on any of them. Give a construction for determining the points
on x which are also on the conic on ABODES.

7. AB and I are two conjugate lines relative to a conic O ; A' and B'

are points on I which are conjugate to A and B respectively relative to fl>.

(AA'\
_ ,1 is on O.

8. ABC is a three-point on a conic <D, and HS is a line conjugate to

BC relative to <D. Show that the points (CA)> ( j )
are conjugate

relative to fl>.

9. XFZPQ are five points, no three ofwhich are collinear. Show that

the sot of conies which are on X, F, and Z, and relative to which P and

Q are conjugate, is a pencil on four points.

6.3. Gonics and Triangles

Under this heading are grouped a number of theorems which,

though they might be spread about under different headings,
are more convenient when found together.

6.31. THEOREM

// two triangles ABC, A'B'C' are both self-polar relative to a

conic O, then the six points A, B,C,A
f

, B', C' are all on a second

conic T.

Let BC, CA, AB, B'C', C'A', A'B' be a, 6, c, a', 6', c' re-

spectively, so that these lines are the polars, relative to <I>, of

A, B, C, A', B', C' respectively.

Let U, V, X, Y be the points ab
f

, ac\ l**%\, (^\ respec-

tively. The polars of these collinear points are AY, AX, AV,

^{/respectively.

Now A(BCB'C') ~ a(BCYX)

~ A(CBVU).
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But C, B t Vt
U are collinear, so that

A(CBVU)~A'(CBVU)

~A'(BCUV).

FIG. 38.

This last pencil is A'(BCB'C').
Hence A'(BCB'C') ~ A(BCB'C'), and so the six points are

on a second conic.

The converse of this theorem will be proved later (6.422).

As a corollary the following theorem can be proved.

6.311. THEOEEM. // D^D2D^ be the diagonal triangle of the

four-point A A 1A 2A 3) and if x be any line not on any of these

seven points, then the poles of x relative to conies of the pencil

on A A 1A^A 9 are all on a conic.

Two non-singular conies of the pencil are on x
; let I and J,

on x, be the points of contact of these two conies.

Let O be any other non-singular conic of the pencil. It is on

two points L and L', say, on x, such that (//, LL') is a har-

monic tetrad.

Let the tangents at L and L' to O have the common point T.

Then IJ is the polar of T relative to <E>,

TI J 0>,

and TJ /
'

4>,

so that TIJ is a self-polar triangle relative to <I>.
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But, by 6.21, Dl
D2D3 is also a self-polar triangle relative to O.

Hence T is on the conic on IJD
1
D2D3 .

6.32. The Eleven-point Conic

The conic on the five points Dv D2 , && I> ^ spoken of in the last

paragraph has certain interesting properties, and six other

points on it can be specified at once. That is to say, given a four-

point, and a line not on any of these points nor on the diagonal

points, there is a conic determined by this four-point and this

line, and eleven points of this conic can be specified.

The conic may be aptly spoken of as the eleven-point conic

relative to the four-point and the line.

The reader may justly ask why this is included in the section devoted

to conies and triangles. The reason is an follows. The four-point
A A1A ZA Z may be looked upon as a triangle A lA 2A Stt

and a fourth

point A Q . D
1
D

2
D

3 will then be three points on the sides A ZA 9 , A 3A lt

A 1 A% of the triangle, and the lines A D
lt
A 2 D?,A S Ds are concurrent at

AQ, The eleven-point conic is usually spoken of as the eloven-point conic

relative to a triangle (A^A^A^), a line (x), and a point (^4 ). Once it has

been realized that all questions about concurrence and collinearity in

triangles are really questions about four-points and four-linos respec-

tively, much has been gained.

THEOREM. //

(i) A A lA 2 Az be a four-point whose diagonal points are

(ii) x be a line not on any of these seven points,

(iii) X1X2XBX[X2 Xz be the involutory hexad on x deter-

mined by the four-point, and I and J be the self-corre-

sponding points of the associated involution,

(iv) 715 72 ,
73 , 7i, 72 , 7g be the harmonic conjugates ofXlt

X2 ,

X& X{, X2 , X'% relative to the pairs of points of the four-

point collinear with each,

then I, J, 1\, D2 ,
Dz ,

Yv 72 ,
73 , 7^, 72', 7^ are all on a conic.

It is necessary to prove that the six points 7X72 Ig 7i 7^ 7g
are on the conic on IJDiD2Ds .

Let P be the point on x collinear with A 2 and 7^
Let Q be the harmonic conjugate of A 2 ,

relative to the pair

P7X . Consider that conic O of the pencil on A A 1A 2A B which

is on Q. Then since P is the harmonic conjugate of 7X relative
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FIG. 39.

to A 2 Q, and since Xl is the harmonic conjugate ofY relative to

A-iAfr PX1} i.e. x
t
is the polar of 7j relative to O. Hence, by

6.31, YI is on the conic on D1D2 D^IJ.

Similarly, all the other five points are on the same conic.

6.33. THEOREM. //

(i) O be any non-singular conic,

(ii) ABC be a triangle whose points are on O,

(iii) X, 7, Z be three collinear points on EC, CA, AB re-

spectively,

(iv) R and S be the two points on O collinear with X, Y, Z,

then (ABCR) ~ x(XYZS), where x is the line XY.

FIG. 40.

Let T be the point on O collinear with A and -X", Then

x(XYZ8) ~ A(XYZS)
~ A(TCBS)
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Now since there is an involution on O such that A and T, E
and S, B and C, are three pairs of mates,

<b(TCB8)~<b(ABCR).

Hence x(XYZS) ~ $>(ABCR).

6.34. THEOEEM /

// A, B, C, A', B', C be six points on a non-singular conic,

then the six sides BC, CA, AB, B'C', C'A', A'B' of the two

triangles ABC, A'B'C' are on a second conic.

FIG. 41.

Let a, b, c, a', b
f

,
c' be the lines BC, CA, AB, B'C', C'A',

A'B' respectively.

Let X, Y, Z be the points c'a, c'b, c'c respectively, and X'
9

Y', Z' the points b'a, b'b, b'c respectively.

It follows from the last theorem that

c'(X7ZB')~<b(ABCA')

and b'(X'Y'Z'C') ~ 0>(ABCA'),

so that c'(XYZB') ~ b'(X'Y'Z
f

C').

But these last two ranges are, respectively,

c'(abca') and b'(abca'),

and so c'(abca') ~ b'(abca').

From the definition of a line-conic it follows that a, b, c,

a', b', c' are all on a conic.

The dual of this theorem is its converse.

y
6.35. THEOREM. //

(i) ABC be any triangle and O be any non-singular conic not

on any of its points or sides,

(ii) X and X' be voints on BC such thatAX and AX' are on O,
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(iii) Y and Y' on CA, Z and Z' on AB be points similarly

defined,

then X, Y, Z, X', Y' t Z' are six points on a conic.

FIG. 42.

Let P, Q, M, N be the points (

C
^\, (^\, (%\,

\BY ) \BY) \BY I

respectively.
IAN\ IYZ'\ IAM\ (Y'Z\

respectively.

Consider the range of conies on the four-line whose points are

BCMNPQ.
The pairs of tangents on the point A to conies of this range

are mates in an involution on A.

Now the singular conies of this range are the pencils on the

three point-pairs B, C; M, N\ P, Q.

Hence AB and AC, AR and AR', AX and AX' are three

pairs of mates of the involution.

It follows that B and C, R and R', X and Xf
are pairs of

mates in an involution on BC.

Consider now the four-point ANZ'Y; two of its diagonal

points are B and C, while R and S are the two harmonic points

collinear with them.

Hence (BC, RS) is a harmonic tetrad.

Similarly, (BC, R'S') is a harmonic tetrad.

Hence (BCRS) ~ (BCS'K)
~ (CBR'S').
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It follows that S and 8' are mates in the involution also.

Altogether, there is an involution on BC, in which X and X' t

E and R', 8 and 8', B and C are pairs of mates.

Now any conic on YY'ZZ' is on a pair of mates of an involu-

tion on BC, and in this involution B and C, 8 and 8' are pairs

of mates. It is therefore/identical with the previous involution,

and so there is a conic on XX'YY'ZZ'.

The dual of this theorem is its converse.

6.4. Conic Constructions

Under this heading are collected certain problems in which

it is required to construct a conic, but in which the data require

something more than the direct application of Desargues's or

Pascal's theorem. In general, the method is to reduce the prob-

lem to a simpler one in which either of the above theorems may
be applied. The problems are enunciated as theorems, and the

proof is often left to the reader once the construction has been

given.

6.41. Data involving Poles and Polars

In general, it may be taken that to be given a line and a point

which are polar and pole is equivalent to being given two points

on the conic. Thus sufficient data are the following:

(i) a pole and polar, and three points on the conic ;

(ii) two poles and polars, and one point on the conic.

If three poles and polars are given, there is in general no

solution to the problem, unless the triangle formed by the

poles and that formed by the polars are perspective.

6.411. THEOREM. // A, P, Q, R be four points, no three of

which are collinear, and a be any line, not on any of these four

points, then there is one and only one conic on P, Q, and R
relative to which A and a are pole and polar.

Let X be the point on a collinear with A and P and Y be the

point on a collinear with A and Q.

Let P' and Q' be points such that (AX, PPf

) t (AY, QQ') are

harmonic tetrads.

Then the conic on PQRP'Q' fulfils the conditions, and it is the

only one which does so.
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The following cases should bo examined:

(i) a on A.

(ii) a on P or Q or R, but not on A.

(Hi) a on P and Q, or Q and R, or R and P, but not on A.

(iv) A, P, Q collinear.

Those are not covered by the theorem.

6.412. THEOREM. // A, B, P are three non-collinear points,

a and b two lines not on any of these three points, then there is one

and only one conic on P and relative to whichA and a, B and b are

two poles and polars.

The method used in 6.41 1 may be applied here. The following

is an alternative method.

Let X be the point ah.

Let A' and E' be points on a and b respectively which are

collinear with AB.
Let R and S be the double points of the involution on AB

in which A and A', B and B' are two pairs of mates.

Then any conic relative to which A and a, B and b are poles

and polars must be on R and S, and moreoverXE andXS must

be tangents to it.

Hence all these form, together, a pencil of Type V, i.e. they
have double contact.

The theorem now reduces to the proof that there is one and

only one conic of the pencil on P.

The case when A, B, and P are collinear is not covered by the theorem

and should be examined. The case when a and b are on B and A
respectively involves the fact that XAB is self-polar relative to the

required conic; cases involving self-polar triangles are treated later.

6.413. THEOREM. If ABC, A'B'C' are two perspective triangles

and no three of these points are collinear, then there is one and

only one conic relative to which A and B'C', B and C'A', C
and A'B' are poles and polars.

From the work done in the preceding theorem it is only

necessary to prove that there is one and only one conic of a

pencil of Type V relative to which a given line and point are

polar and pole.

6.42. Gases involving Self-polar Triangles

6.421. THEOREM. // ABC be a triangle and P and Q be two

other points, one at least of which is not on any of the sides of the
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triangle ABC, then there is one and only one conic on P and Q,

and relative to which ABC is a self-polar triangle.

Let P be the point not on any of the sides of ABC.
Let EST be the three other points of that four-point whose

diagonal triangle is ABC, and one of whose vertices is P.

Then the conic on PQBST is the required conic, by 6.21.

That this conic is unique is left to the reader to prove.

The case when both P and Q are on sides of ABC should be

examined.

6.422. THEOBEM. // A, B, C, A', B', C' be, six points on a

non-singular conic, then there is one and only one conic relative to

which ABC and A'B'C' are both self-polar triangles.

FIG. 43.

Let EC, CA, AB, B'C', C'A', A'B' be a, b, c, a', V, c' re-

spectively.

Let A" be the point aa', a" the line AA'.

Let X and Y be the points a"a, a"a' respectively.

Let M and N on a be the self-corresponding points of an

involution in which B and C, A" and X are two pairs of mates.

Let M' and N r be similarly specified points on a'.

Let O be the conic on ABCA'B'C'.

Consider that conic on MNM'N' which is also on AM
;
let

it be T.

Since (A"X, MN) and (A*Y,M'N') are harmonic tetrads,

XY, i.e. a", is the polar of A" relative to Y, and the point-pair

B, C is a conjugate pair relative to it.

Since also (BC, MN) is a harmonic tetrad, and AM is on T,
AN is also on it. Hence MN, i.e. a, is the polar ofA relative to

T ; that is, ABC is a self-polar triangle relative to T.
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Now for similar reasons B f and C r

are conjugate points rela-

tive to T, and the pole of B'C' must be on a". That is, there is

a point K on a" such that KB'C' is self-polar relative to T.

But by 6.31 ABCKB'C' must be on a conic, and this conic

cannot be other than O. Hence K is A'.

Hence *F fulfils the requirements.

Plainly, also, it is the only conic which does so.

6.43. Data involving Lines and Points

A different class of problem is typified by the following:

Given two points and three lines, not specially related, construct

a conic which shall be on all five.

There are four cases of this problem; the data in these are:

(i) four points and one line,

(ii) three points and two lines,

(iii) two points and three lines,

(iv) one point and four lines.

It will be realized that (iii) and (iv) are the duals of (ii) and

(i) respectively, and so consideration of this type of problem is

limited to the consideration of (i) and (ii).

6.431. THEOREM. // AQA 1AZAB is a four-point and x any

line, not on any of these points, there are two and only two conies on

AQA 1A 2A Z and x.

Let XiX2X& X[X^X^ be the involutory hexad on x deter-

mined by the four-point.

Let U and V be the self-corresponding points of the involu-

tion in which these are mates.

Then the conies on A QA 1A 2A^U, A QA 1A 2A S V are the

required conies, and they are the only two. The proof is left to

the reader.

The following cases, covered by the theorem, deserve attention:

(i) when x is on one and only one diagonal point of the four-point ;

(ii) when x is on two diagonal points.

The following cases, not covered by the theorem, should bo in-

vestigated:

(i) a; on one and only one of the four points ;

(ii) x on two of the four points.



142 PROJECTIVE GEOMETRY

6.432. THEOBEM. // A, Bt C are three points and x, y two

lines not on any of them, and if no three of the points A, B, C, xy
are collinear, then there are four and only four conies on A, B, C,

Let z be the line EC, X and 7 the points zx, zy.

Let Z be the point xy.

Let U and F on z be the self-corresponding points of the

involution in which B and C, X and Y are mates.

(AV\
I, and letD be the harmonic conjugate

of A relative to LV.

Then F is a diagonal point of the four-point ABCD, and the

other two diagonal points are on ZU.
Consider now the pencil of conies on ABCD.
Relative to any conic of the pencil, F and ZU are pole and

polar.

Now x and y are harmonic conjugates relative to ZU and

J2/F, hence any conic of the pencil which is on x is on y also.

Two conies of this pencil therefore fulfil the conditions.

By interchanging the roles of U and F in the construction,

a second pencil of conies is obtained ;
of this pencil two more

conies fulfil the required conditions.

There are therefore four conies which fulfil the conditions.

It is plain that there are only four.
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The following cases, not covered by the theorem, should be examined :

(i) A, B, C, and xy collinear;

(ii) A t B, and C collinear, but not collinear with xy;

(iii) B, C, and xy collinear, but not collinear with A;
(iv) A on x, B and C not on y;

(v) A on x, B on y;

(vi) A, B, and C on x;

(vii) B and C on y, A not on y.

It will be found that in the last case no conic satisfies the conditions

unless B and C coincide.

EXAMPLES

1. ABG is a triangle and x a line not on any of its points; X, a point
on x, is not on any of the sides of the triangle. Give a construction for

finding a conic <D on x andX and relative to which ABC is self-polar.

2. If in the last example X is not on x, and if Y and Z are points on
x which are also on a conic on A, B, C, X, show that x and X are polar
and pole relative to the conic "which has ABC and XYZ as self-polar

triangles. Show that this conic is the only one which has ABC as a self-

polar triangle, and relative to whichX and x are pole and polar.
3. Give a construction for finding points of a conic which shall be on

two given points and a given line, and relative to which a given point
and line shall bo pole and polar. How many conies satisfy the con-

ditions ?

4. Give a construction for finding points of a conic which shall bo on
a point X and a line x, and relative to which ABC shall be self-polar.

How many conies fulfil the conditions ?

5. Use the converse of the theorem that the points of two triangles
which are self-polar relative to a conic <D are on a conic ^F, to prove that

if the points of two triangles are on one conic the sides are on a second

conic.



MISCELLANEOUS EXAMPLES
1 . A 2 B2 C2 and A 9 B3C3 are two triangles perspective on the point X1 ;

A3 B3 C8 and A l Bl Ci are perspective on Xz ; A 1 B1Cl and A 2 B2CZ are

perspective on Xa . IfXlt Xrz , X3 are collinear, show that the triangles

A 1A 2A 3 , B1 B2
B3 , C1C2

O3 &re perspective in pairs on three collinear

centres.

Hence show that if three triangles are perspective from the same

centre, the three axes of perspective are concurrent.

2. (PQ,AB) is a harmonic tetrad on a line x, and <D is any non-

singular conic. The four-line formed by the two pairs of tangents to

$ onA and B has WXYZ as its other four points. Show that PQWXYZ
are six points on a conic.

A' and B' is another pair of harmonic conjugates relative to P and Q,

and W'X'Y'Z' are denned in a similar way. Show that the ten points

PQWXYZW'X'Y'Z' are all on the same conic.

3. If two different pencils of conies on four points have a conic in

common, show that the two four-points have the same diagonal points.

4. A BC, A'B'G' are two triangles perspective onX and x. A", B", C"

are the three points on x collinear with A and A', B and J3', C and C"

respectively. If (XA",AA') t (XB",BB'), (XC",CC
f

) are all harmonic

tetrads, show that ABCA'B'C' are all on a conic.

5. a(OAiA zA 9 )
~ b(OB1 B2 B3 )

~ c(0(71 C
r

l 6
1 '

8 )
~ diOD^D,) and

A 1 B^D! are all on a line XY. Show that if A 2 B2C2D2XY are six

points on a conic, A 3 B3CSD3XY are six points on another.

6. Three conies <J>, T, 1 are on two points I and J. P^ and Q are the

other two points on both T and Q, JP2 and Q2 those on 1 and <3>, JPS and

Qz those on <D and T. Show that Pj Q19 P2 <22 , P8 Q3 are concurrent.

7. X, F, Z are the three points on a line m which are also on the sides

BC, CA, AB of a triangle ABC. X'Y'Z' are similar points on a line m\
O1 O2 O8 O4 are the points of contact with m of the four conies on
A t B, C, m, and m'\ O{ 0% 0$ O^ are similar points on m'. Show that

m(XYZO1 Oz O9 O4 )
~ m'&Y'Z'O'i O'* O'a O'J.

8. A-^A ZA9 is any triangle and x a line not on any of its vertices.

XjX2X3 on x are collinear with A 2A 3 , A 3A lf A^A^ respectively. / and
J are any other distinct points on x.

YI and YI are the self-corresponding points in an involution on x in

which Xz and X3 , / and J are two pairs of mates. Yz and Fg, y8 and Y3

are similarly denned.

Show that (i) Y^Y^Y^Ys is an involutory hexad, (ii) the six

lines A-iY^ A-^Y'^ A ZYZ , A 2 Yzt A 9Y9 , A BY9 are six lines of a four-point
B B! J5a B3 .

9. A!A 2A 8t x,X19X2 ,X3 , J, and J are as specified in the last example.

X{, X'z , X'a are the harmonic conjugates ofXlf X2, X8 respectively rela-
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tive to I and J. T is any point on tho conic on A lA z A$ IJ. Show that

. x (TXi\ (TX'*\ (TX'*\
thepomts , arecollinear.

10. A :A 2A Z , x, Xlt Xz , X9 , I, and J are as specified in Example 8;

X{, X%, X'9 are as specified in Example 9. Mlt Mz ,M& are the harmonic

conjugates of X19 Xt , X3 relative to A ZA 9 , A 3A lf A 1A Z respectively.

Show that Ml Xj,, M2X^ M3 X'S are concurrent.

11. IfP is the common point of the three linesMl X{,Mz X%,M3 X'z in
the last example, show that PIt PJ are tangents to the conic on

A^A^A^IJ.
12. A conic <D is on the sides of a triangle ABC which is self-polar

relative to a second conic *F. x is any other line on <D and X is its pole

relative to T. y and z are the two tangents to O which arc on X. Show
that the triangle xyz is self-polar relative to T.

13. <Dj, <D2 , and <D8 are three conies. <D2 and <D3 have double contact

andXlt X{ are thoir common points; O3 and Ox have double contact and
Xz , X% are thoir common points; Oj and <D2 have double contact and

ijr V'\ /jr Y f\

Xst X'z are their common points. Show that (
*

*j
and I

*

^J are

harmonic conjugates relative to Xl and X{.

14. P and Q are two points not on a line x. R and R' are a typical

pair ofmates ofan involutionon x. U and V are tho other two points ofthe

four-line PR, PR', QR, QR'. Show that the locus of U and F is a conic.

When and how is this conic singular ?

15. If x(ABA^A^A 9...) ^x(ABB1Bz Bz ...), find a third range

y ..), such that both the projectivities

and x(BiBz Bs...)
^ x

are involutions.

Is this third range unique ?

16. a; and y are two lines conjugate relative to a conic. P and Q are

two points on x; P' and Q' are two points on y. IfP and P', Q and Q' are

both conjugate relative to <]>, show that (^^y )
is on fl>.

17. Two conies O and T are each on the sides of a triangle ABC.
Show that the six points of contact are all on a third conic Q. Dualize

this result, and also examine singular cases.

18. A, B, C are any three points on a conic <D. T is the polar of BO
/TU\ ITU\

relative to <D. Show that if TU be any lino on T, the points I . I, I . D J\\jAl \A.tl

are conjugate relative to <D. Dualize.

19. A, B, C, P, Q are five points no three of which are collinear.

Show that the set of conies on A, B, and C and relative to which P and

Q aro conjugate points is, in general, a pencil on four points.

Hence devise a construction for a conic on four points and relative to

which two other points are conjugate points,
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20. x and y are two lines, P and Q are two points not on either. Find

the locus of poles of PQ relative to conies on x, y, P, and Q.

Examine the case when PQ, x, and y are concurrent.

21. x(Xj.X2Xa ...)
~ y(Y1Y2Y3...) f and Zt Z2 Z8 ... is a range on a third

line z such that X1Y1 Z1 are collinear, XZYZ ZZ are collinear, and so on.

Show that, in general, it is noftrue that

Under what conditions is it true ?

22. A, Bt C, D, P, Q are six points, no three of which are collinoar.

There is a unique conic on ABCD relative to which P and Q are con-

jugate points. Give a construction for the polar of P relative to this

conic.

23. -4BCD are the points common to two conies <D and <&'. abcda'b'c'd'

are the eight tangents to these conies at those points . Show that those

eight lines are all on a third conic.

24. p and q arc conjugate linos relative to a conic C>. P and P' are the

common points of p and <D, Q and Q' those of q and O. Show that

O(PP', QQ') is a harmonic tetrad.

25. O is a point, <J> a conic not on it, X, Y, Z, W four points on a line x.

R and R' are the common points of <t> and a typical line p of the pencil
on O. 8 is a fourth point on this line such that

p(ORR'S) ~x(XYZW).
Show that the locus of S is a conic "which has double contact with <I>,

except when (YZ,XW) is a harmonic tetrad.

26. A GA^A ZA 9 is a four-point and <D is any conic on its diagonal

points. With the usual convention for assigning letters, Y^Y^Y^Y^Y^Y^
are the six other points on O which are on the sides of the four-point.
X1X2X3X{X^X3 are the harmonic conjugates of these relative to the

pairs of points of the four-point with which they are collinear. Show
that those six points are collinear, and that the self-corresponding points
of the involution in which they are mates are on <D.

27. X1XzXB Z1 Zz Z9 ZiZzZ'3 are nine collinear points such that

(X2X8 , Z Z{), (X8Xlt Zz Za), (Xj_Xz , Za Z^) are harmonic tetrads. Show
that (Zi Zz Z8 , Z{ Z'% Z'3 ) is an involutory hexad.

28. A non-singular conic is on the points of the triangle ABC and on
the sides of A'B'C'. Show that there is another conic on the points of

A'B'C' and on the sides of ABC.



CHAPTER VII

THE NON-HOMOGENEOUS MESH GAUGE

IN the preceding chapters of this book the subject of Projective

Geometry has been studied by what is usually known as the

Synthetic method. This method consists in the direct deduc-

tion, by the ordinary processes of deductive logic, of the conse-

quences of the initial propositions laid down, no special tech-

nique being evolved to simplify the process. Now although it

is possible to continue the study of Projective Geometry by the

Synthetic method far beyond the point we have reached, it is

convenient to introduce here a new method which can be used

along with it. This new method is, in fact, the application of

algebraic language and symbolism to the concepts of Geometry
in a way similar to that in which Descartes and those who

followed him applied Algebra to elementary Geometry. There

is, however, a very important difference between Algebraic

Projective Geometry and what is usually known as Analytical

or Coordinate Geometry; this difference will be noted and

commented on in due course.

This chapter and the succeeding one are taken up with the

foundations and elaboration of the new method; incidentally,

the question of extension is reviewed, and a final and definitive

initial proposition of extension laid down. The reader may find

that the introduction to the algebraic method is long and at

times a little uninteresting, but it has been thought better to

study the question thoroughly, rather than to sacrifice rigour

to interest.

7.1. Number-Systems

It is necessary to consider first some basic and rather abstract

ideas which belong properly to the subject of Algebra, and have,

at first sight, no bearing on what has gone before. In all that is

to be said it is taken for granted that the reader is familiar

with the concept of complex numbers, and with the elementary

properties of complex numbers. That is to say, it is assumed

that he knows not only what a complex number is, but also
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what is meant by the sum, difference, product, and guotient of

two complex numbers.

7.11. Simple Number-Systems
We now ask the question: Are there any sets of numbers

which can be selected/from the whole domain of complex
numbers such that, if a and 6 are any two numbers of the set,

then

(1) a+b is also a number of the set,

(2) a b is also a number of the set,

(3) a x b is also a number of the set,

and (4) a~b is also a number of the set, except, obviously,

when 6 is zero ?

Not every arbitrarily chosen set of numbers has all these pro-

perties; it is easy to prove that, for instance, the set consisting

of all the positive integers does not possess them.

On the other hand, it is not difficult to prove that such sets

can, in fact, be selected; the simplest of them all is the set

consisting of the number zero only. In addition to this trivial

example, the following are given; it is not difficult to show that

they have the properties enumerated:

(1) the set consisting of all the rational numbers (positive

and negative, zero included);

(2) the set consisting of all the numbers of the form a+W2,
where a and 6 are rational numbers;

(3) the set consisting of all the numbers of the form

where a, b, c, and d are rational numbers;

(4) the set consisting of all the real numbers;

(5) the set consisting of all the complex numbers.

The examples given do not exhaust all the possibilities nor

even all the types of possible sets. In the sequel we shall require

a name for these sets of numbers, and so we call them systems

of numbers, or, more simply, number-systems.

Now of the numbers belonging to a number-system the

following propositions are plainly true:

I. // a and b are numbers of the system, then there is a unique
number of the system which is their sum.
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II. // a, b, and c are numbers of the system and a+6 *= c,

then b-\-a = c.

III. There is a unique number, 0, of the system, such that if

a is a number of the system, then a+0 = a, for every a.

IV. // a, b, and c are any three numbers of the system, then

a+(6+c) = (a+b)+c.
V. // a and b are any two numbers of the system, then there

is a unique number, c, of the system, such that a-\-c = 6.

VI. If a and b are any numbers of the system, then there is a

unique number of the system which is their product.

VII. // a, b, and c are numbers of the system, and if a x b = c,

then b X a c.

VIII. There is a unique number, I, of the system, such that if

a is a number of the system, a x I = a, for every a.

IX. // a, b, and c are any three numbers of the system, then

ax(bxc) = (axfc)Xc.

X. If a, 6, and c are any three numbers of the system, then

ax(6-fc) = (ax6)+(axc).
XI. // a is any number of the system other than zero, and b is

any number whatever of the system, then there is a unique number

c of the system, such that axe = b.

These propositions will be recognized as the fundamental

propositions on which the whole of Algebra is based, although

they do not ensure that all algebraic processes can be carried

out in any particular number-system. For instance, if the

number-system is that consisting of all rational numbers, the

process of extracting the square root of a number will not

always be possible.

7.12. Generalized Number-Systems

Having noticed the basic properties of number-systems, we
now make use of them to introduce deeper ideas. The process

which is undertaken is that of generalizing the concepts of

number and number-system.

It will be observed that a number-system is a set of entities

numbers whose members are interrelated by two types of

relation, which may be called the sum-relation and the product-

relation. For if a+b = c, the number c bears to the two
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numbers a and 6 the relation of being their sum; and ifa x b = d,

the number d bears to the two numbers a and 6 the relation of

being their product. These two 'relations are, respectively, the

sum-relation and the product-relation. Of them the eleven

propositions of the preceding section are true.

We now ask the question : Is it possible to find sets of entities,

other than the number-systems we have been considering,

interrelated by two types of relation, similar to the sum-rela-

tion and product-relation, and of which propositions similar to

those of the preceding section are true ? If it is possible to do

so, then we are in a position to lay down the initial propositions

of a completely abstract science, of which the number-systems of

7.11 are representations. If it is impossible to do so, then there

is nothing to be gained by attempting to conceive of something
more abstract than these number-systems; but it is our aim to

show that a certain set of points on a line is (when suitable

analogues of the sum-relation and product-relation have been

specified) a representation of the more abstract concepts.

Without waiting to find out if this is possible or not, we lay

down the definition of an abstract number-system as follows.

DEFINITION. A set of entities, identifiable by the symbols

a, b, c, d,..., is said to be a representation of an abstract number-

system if and only if the following propositions are true:

I. If a and b are any members of the set, then there is a unique

member, c say, of the set, related to them by what is termed the

S-relation. This S-relation is precisely specified for every pair

a and b, and it is symbolized by writing a+b = c.

II. // a and b are any members of the set, and ifa+b~c, then

b+a c.

III. There is a unique member, Z, of the set, such that if a is

a member of the set, than a+Z = a, for every a.

IV. // a, b, and c are any members of the set, then

a+(b+c) = (a+6)+c.

V. // a and b are any two members of the set, then there is a

unique member, c, such that a-\-c = 6.

VI. If a and b are any members of the set, then there is a unique

member, d say, related to them by what is termed the P-relation.
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This P-relation is precisely specified for every pair a and b, and

it is symbolized by writing a x b = d.

VII. // a and b are any members of the set, and if a x b d,

then b x a d.

VIII. There is a unique member, U, of the set, such that if a is

a member of the set, a x U = a, for every a.

IX. // a, b, and c are any three members of the set, then

ax(bxc) = (axb)xc.

X. // a, b, and c are any three members of the set, then

ax(b+c) = (axb)+(axc).

XI. // a is any member of the set other than Z, and b is any
member of the set whatever, then there is a unique member, c, of

the set such that a x c = b.

It is plain that these eleven propositions, stated as they are in

abstract form, are a set of initial propositions, and since we

already have an existence theorem for them in the simple

number-systems of 7.11, they can, in fact, form the basis of

a possible science. There, entity was interpreted as number,

8-relation as sum, and P-relation as product. The way is now

open to inquire whether a set of entities, apparently quite un-

connected with the numbers of 7.11, satisfy these initial pro-

positions when appropriate meanings are given to the terms

^-relation and P-relation.

One further point may be noticed here. If we find such a

set of entities, by what name arc they to be called? There

seems to be no reason for not calling them number-systems. It is,

of course, open to the reader to reserve the term number for the

entities of 7.11, and to invent some new term, such as 'abstract

number', for other representations of 7.12. But no useful

purpose is served by such a verbal distinction as this; it is

rather like reserving the term animal for the familiar dog, cat,

horse, etc., and using some other term to denote unfamiliar

animals like the Teratoscincus Scincus. For the truth is that

the numbers of 7.11 have the properties which Mathematics

takes cognisance of, solely because they are, in fact, representa-

tions of the initial propositions of 7.12.

In the same way, no useful purpose is served by distinguishing
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between S-rdation and sum, and between P-relation and pro-

duct, and henceforward the simpler terms will be used.

7.2. A Geometrical Number-System
The object of this sectiorils to show that there is a geometrical

representation of the concepts of the last section. In order to

do this it will be necessary (1) to choose a suitable set of

entities, (2) to specify what is meant by the sum and product of

a pair of these entities, and (3) to show that the eleven initial

propositions are verified.

7.21. The Gauge-points and the Open Set on a Line

Let I be any line of the field, and let A Q ,
A 19 and A^ be any

three arbitrary but distinct points on it; in subsequent work it

will be necessary to refer to these points, and so they are called

the gauge-points.

The set of all points on the line I, with the exception of the

point A^ will be called the open set on the line.

The open set on the line I is chosen as the set of entities for

the representation of the initial propositions of 7.12.

7.22. The Sum and Product of a Pair of Points

DEFINITION. The sum of any two points, Ax and Ay , of the

open set is defined to be a mate ofAQ in the involution in which

(1) Aa is a self-corresponding point, and

(2) Ax and Av are a pair of mates."\

DEFINITION. The product of any two points of the open set,

Ax and Ay, both of which are distinct from A , is defined to be the

mate of A! in the involution in which

(1) AQ and AM are a pair of mates, and

(2) Ax and Ay are a pair of mates.

If either or both of the points Ax ,
Ay Coincide with A their

product is defined to be the point A .

It should be noted that both of the terms sum and product of

a pair of points are relative terms (see 4.221); they are meaning-
less unless gauge-points have been specified.

f The suffixes attached to letters labelling points of the open set are not

necessarily numbers; any distinguishing suffix is sufficient for the purpose.
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If As is the sum of Ax and A
y relative to the gauge-points

A , Av and A^, the involution specifying this relation may be

(A
A A \

A A
X

A
w

1
* ^e accompanyingAzAyA ttt/

figure illustrates the definition; from it the reader will be able

to elaborate a formal construction for determining the sum of

two points relative to any gauge-points.

The involution specifying the product of two points may be

(A
A A \1 *

I, where Az is the productAZAVA <J
of Ax and Ay

. The accompanying figure illustrates this.

The symbolic propositions Ax-\-Ay
= Az and AxxAv

= Az

will henceforward bear their obvious meanings in terms of the

above definitions, and the symbols (Ar -\-Ay ) and (AxxAy) will

denote the points which are, respectively, the sum and product

of Ax and Ay .

Before verifying the eleven initial propositions, it is necessary
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to prove two theorems about the sum-relation and product-

relation; these theorems are given below, and the reader will

find that the formal proof of them is an almost immediate

consequence of the definitions.

7.221. THEOREM. //

or if Aa+Ax
= Ap ,

Ab+Ax = A
q ,

A C+AX
= A

r) ... y

(AwAxApAq
A r...).

FIG. 47.

7.222. THEOREM. //

or if

Fia. 48.
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7.23. Verification of the Initial Propositions

The following eleven theorems show that the eleven initial

propositions of 7.12 are verified. Most of them are extremely

simple.

7.2301. THEOBEM. // Ax and Av are any two points of the

open set, then there is a unique point of the open set which is

their sum.

7.2302. THEOREM. // Ax and A y are any two points of the

open set, and ifAx+Ay
= AB , then AV+AX

= Az .

7.2303. THEOBEM. There is a unique point of the open set,

namely A ,
such that if Ax is any point of the open set,

AX+A = Ax .

These three theorems are simple consequences of the defini-

tion of the term sum.

7.2304. THEOBEM. // Ax ,
Ay ,

and Ae are any three points of

the open set, then AX+(AV+AS)
= (Ax+Ay)+Ag .

Suppose that

Ax+Ay
= A u ,

A
y+Az

= Av ,
and A U+AS

= A8 .

Then since Ay+A, = Av and A u+Ae
= A8, by 7.221,

(AMA,AuAy )
~ (A.A.A.AJ. (1)

Since also Ax+Ay
= A u , by the definition of the term sum,

\A a)AQA u AyA..K )
r*+* \A (Jt

AuAQAx Ay)\

and so, from (1), it follows that

(A^A^A^ ~ (AnA,ABA9). (2)

But since A U+AZ
= A8 ,

(4mA,AtAMAJ~(AmAtAtA.AJ. (3)

This last involution is plainly identical with the projectivity

(2); that is to say, Av and Ax are mates in the involution (3).

Hence AX+AV
= A8 ,

or

Ax+(Ay+Ag)
= (A.+

and this proves the theorem.
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7.2305. THEOREM. // A x and Av are any two points of the

open set, then there is a unique point As ,
also of the open set, such

that AX+AZ
= Ay .

This theorem is a simple consequence of the definition of the

term sum. /

7.2306. THEOREM. // Ax and Ay are any two points of the

open set, then there is a unique point of the open set which is their

product.

7.2307. THEOREM. // Ax and A
y

are any two points of the

open set, and if AxxAy
= Az ,

then AyxAx = Az .

7.2308. THEOREM. There is a unique point of the open set,

namely Av such that if Ax is any point of the open set, then

A.x XA.i = A.x .

The last three theorems are simple consequences of the defini-

tion of the term product; but in verifying them the reader

should not omit to notice the second half of the definition.

7.2309. THEOREM. // Ax ,
A

v , and Az are any three points of

the open set, then Ax x(AyxAz )
= (AxxAy)xAz .

When one or more of the points mentioned coincides with

A
,
the theorem is trivial. When this is not so, the proof pro-

ceeds in a similar way to that of 7.2304, save that 7.222 is used

in place of 7.221. The details are left to the reader.

7.2310. THEOREM. // Ax ,
Ay ,

and Az are any points of the

open set, then Ax x (Ay+Az )
= (Axx AV)+(AX XAz ).

The theorem is trivial ifAx coincides with A Q ,
and so this case

is at once excluded.

Suppose then thatAy+Az
= ArtAxxAy

= A
8t
AxxAg

= A
t,

and AxxAr
= A u \ then by 7.222

(A.AtAiAiA.A,) ~ (A.A9A.A9AiAJ. (1)

But since Ay+Az
= Ar ,

and hence, from (1),

(AuA A uA8At)
^
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That is to say, A8-}-At
A M , or

Ax x(Av+A.) = (AxxAv)+(AxxAs),

and this proves the theorem.

7.2311. THEOBEM. // Ax is any point of the open set other

than the point A , and Ay is any point whatever of the open set,

then there is a unique point As ,
also of the open set, such that

AxxAs
= Ay .

This theorem is a simple consequence of the definition of the

term product.

The eleven propositions of 7.12 are thus verified of the open
set of points on a line, when the sum-relation and product-

relation are interpreted according to the definitions which have

been given. This extremely important result is worth stating

as a formal theorem.

7.24. THEOBEM
The open set ofpoints on a line is a representation of the abstract

number-system of 7. 12, when the sum-relation and product-relation

are interpreted according to the definitions in 7.22.

EXAMPLES

1. is any non-singular conic, and P , Plt and Pu are any three

distinct points on it. If these are the gauge-points on O, and if the terms

open set, sum of two points, product of two points arc defined analogously
to the corresponding terms for the line, prove the analogues of Theorems

7.221 and 7.222.

2. Hence show that the open set of points on a non-singular conic is

a representation of the abstract number-system of 7.12.

3. Prove analogues of Theorems 7.2304, 7.2308, and 7.2310, without

appealing to the theorems proved in Example 1.

7.3. Extension

The preceding sections have shown that the open set of points

on any line of the field is a representation of the abstract

number-system, and this result enables us to lay down a final

and definitive initial proposition of extension. It is essential

to do this before introducing the algebraic method; it is more-

over convenient to dispose finally of the question of extension

at this point. In order to do this it is necessary to introduce the

notion of isomorphism.



158 PROTECTIVE GEOMETRY

7.31. Isomorphism
DEFINITION. Two representations of the abstract number-

system are said to be isomorphic if and only if to every entity in

one there corresponds one and only one entity in the other, and

vice versa, in such a
waythat if A and B are two entities in one

which correspond respectively to A' and B' in the other, then

(i) A+B corresponds to A'-\-B', and

(ii) A X B corresponds to A'xB'.

It will be seen from this definition that if two number-

systems are isomorphic, there is complete parallelism between

them, in the sense that if any operations consisting of successive

sums and products are performed on the entities of one, and if

the corresponding operations are performed on the correspond-

ing entities of the other, the results will be corresponding
entities.

7.311. THEOBEM. // I and m are any two distinct lines of the

field, and on them gauge-points Z/
,
Lv LM ,

and M ,
Mlt M^,

respectively, are chosen, then the open sets on I and m are iso-

morphic.

Consider the projectivity in which

by means of this projectivity, every point of the open set on I

is made to correspond to a unique point of the open set on m,

and vice versa. The first condition of isomorphism is therefore

fulfilled.

Let Lx and Ly be any two points on I, and suppose that

LX+LV
= Lp and LxxLv

= L
q

. Further, suppose

Then since

l(Lm L,LfLx Lv)
~ l(LaLp L LvLx)

and V.L.Ltl+LiL.L,) ~ l(L^La

it follows that

and m(

That is to say, MU+MV
= M, and MU+M, = M,. Hence the
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second and third conditions for isomorphism are fulfilled, and

the theorem is proved.

7.32. Isomorphism with Simple Number-Systems
The open set of points on any line of the field being a repre-

sentation of the abstract number-system, the question at once

arises: Is this set of points isomorphic with any of the simple

number-systems of 7.11? A precise answer to this question

would settle the question of extension at once; but it is impos-
sible to give a precise answer to it, for the initial propositions of

Projective Geometry are compatible with its being isomorphic
with any one of a variety of simple number-systems. It is

therefore necessary to lay down as an initial proposition the

isomorphism of the open set with some chosen simple number-

system. This will be an initial proposition of extension.

For our purposes it is simplest to choose as the initial pro-

position of extension the isomorphism of the open set with the

set of all complex numbers. Some reasons why this choice is

made are given below.

If, in studying Algebra, we confine ourselves to the real numbers, that

is to say, if we study the Algebra of the Real Number-System, it is

necessary to say that many problems have therein no solution. For

instance, the quadratic equation #a+#+l = has no roots in the

system. It is therefore necessary to be constantly enumerating excep-

tions, and stating conditions. But ifwe study the Algebra ofthe Complex
Number-System, it is easily proved that therein every algebraic equation
has a root, and so, roughly, that every significant elementary problem
has a solution. Moreover, the history of Mathematics shows that the

introduction of complex number into Algebra enabled mathematicians

to increase considerably their knowledge of the Real Number-System.
In just the same sort of way, if we agreed to lay down as an initial

proposition of extension the isomorphism of the open set with e.g. the

real number-system, we should find that some problems were without a

solution. Not every line, for instance, would have points in common
with an arbitrary non-singular conic. In consequence we should have

to hedge our theorems about with conditions, and progress would bo

retarded. But if we agree to lay down that the open set shall be iso-

morphic with the set of all complex numbers, we may confidently expect
that all elementary problems in Geometry will have a solution, and that

there will be no necessity to enumerate irritating exceptions. Moreover,

as in Algebra, the study of the consequences of this initial proposition

of extension will give us knowledge of other systems which we could

not obtain otherwise.
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7.33. Initial Proposition of Extension

The open set of points on a line is isomorphic with the

set of all complex numbers.

As before, it will be necessary to prove that this particular

initial proposition of extension is compatible with the initial

propositions laid down up to this. This is done by proving an

existence theorem; we show that there is a representation of the

other initial propositions of which this initial proposition is

also true. As usual, we choose the Algebraic Representation
for this purpose.

7.331. Verification in the Algebraic Representation

THEOREM. In the Algebraic Representation the open set of points on a

line is isomorphic with the complex number-aystem.

Let (Xo,y9,z ), (xi>yi> zi)> and (^u^Ju^ta) b three distinct collinear

points in the Algebraic Representation, so that numbers p and q exist

such that x1
= P^Q+qx^ yl

= py^+qy^ and z = px +qzu . Plainly
there is no loss in generality if it bo supposed that p and q are unity.

These three points are taken as the gauge-points A , A lt A^ and any
other point on the line is (Aa +/^w,Ay +/^w,A2 +ftJ-

If now we take the points A and A^ as reference points, the coordi-

nates of any point on the line relative to these reference points are

(A,/*). In particular, the coordinates ofA , A lt and Aw are, respectively,

(1,0), (1,1), and (0, 1), and any point of the open set has coordinates

(l,fc), where k is any complex number.
The open set may therefore be put into correspondence with the

complex number-system by making the point (l,k) correspond to the

number k, and vice versa. The first condition for isomorphism is there-

fore fulfilled.

Further, if the two points (A, p) and (p, cr) are mates in an involution,

then numbers o, 6, and c exist such that

aXp-{-b(Xa-{-[jLp)+CfjLa
= 0,

where ac -62 ^ 0.

Firstly, suppose that (i) A^ is a self-corresponding point, and (ii) the

points (1,*) and (l,y) are mates in this involution. It is easily verified

that those conditions entail (i) c = 0, and therefore b = 0, and (ii)

a = b(x~{-y). The involution is therefore specified by the equation

-(ff+y)Ap+(Aor+/i/?) = 0,

and the mate of (1,0) in this is (l,x+y). Hence the sum of the two

points (I,a3) and (l,y) is (l t x+y)-, the second condition for isomorphism
is therefore fulfilled.

Secondly, suppose that (i) A Q and AM are mates, and (ii) the points

(l,o;) and (l,y) are mates in the involution. It may be verified that

these conditions entail (i) 6 = 0, and therefore oc ^ 0, and (ii) a can/.
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The involution is therefore specified by the equation xyXp+/nor 0,

and the mate of (1, 1) in this is (l,xy). Hence the product of the two

points (1,*) and (l,y) is (l,xy), and therefore the third condition for

isomorphism is fulfilled. The theorem is therefore proved.

7.332. Duality. In order to maintain the Principle of

Duality it is necessary, as usual, to prove the dual of the

initial proposition of extension. The reader should find no

difficulty in doing this, once he has, by dualizing, elaborated

definitions of gauge-lines on a point, sum of two lines, product of

two lines. It is then only necessary to prove that the open set

of lines on a point is isomorphic with the open set of points on

a line.

7.4. The Algebraic Method

We are now in a position to introduce the algebraic method,
and the first step in this is to attach algebraic labels to the

points of the field. In the first six chapters of this book it

was found necessary, as in every treatise on Geometry, to

attach labels to the various points and lines which were con-

sidered in any theorem. Their function was simply to identify

the points and lines in question, and so alphabetical labels were

sufficient for the purpose. Moreover, the practice of labelling

points never pretended to be exhaustive; only those were

labelled which were relevant to the theorem considered.

It is now our purpose, however, to undertake a much more

comprehensive system of labelling. In this every point of the

field will receive a label, and this label will be not merely an

empty symbol useful for purposes of identification only but one

which gives certain information about the relations of the point

to other points of the field.

7.41. Labelling the Points on a Line

We begin by assigning a simple form of label to the points on

a line. Let I be any line, and on this, let A& A lt and A^ be the

gauge-points. Now since the open set on this line is isomorphic
with the complex number-system, and since in this isomorphism
the point A corresponds*)" to the number 0, and A to the

t This correspondence of A and A t to and 1 respectively is not a conse-

quence of Theorem 7.331, but of Theorems 7.2303 and 7.2308.
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number 1, it is only natural to assign the label Ax to the point

which corresponds to the number x. In this way, to every

point of the open set is attached a label of the form Ax . More-

over, because of the isomorphism,

tf x-{-Ay
= Ax+y

and <AxxAy
= Axy .

Two important features of this system of labels must be

noticed. First, the labels have nothing to do with the notion

of distance, for the simple reason that distance has not yet been

defined; it is, however, worth remarking that number has been

introduced into Geometry without appeal to the notion of

distance. Secondly, the label attached to any particular point

is entirely dependent on the choice of the gauge-points, and it

will, in general, vary when the gauge-points are varied. In

other words, the label attached to any particular point is its

label relative to the gauge-points.

7.411. The Determination of Particular Labels. The

reader may feel that at this point two questions call for an

answer. They are: (1) Given any number, z say, how is it

possible to determine the point whose label is Az l (2) Given

any arbitrary point, how is it possible to determine what label

is attached to it ?

(1) If z is a rational number, the point Az may be determined

by a finite number of repetitions of the constructions for sum
and product. For by successive applications of the construction

for the sum of two points, the points A 2 , A& A& A & , A&... can

be constructed, and if z = m/nt where m and n are integers,

A 2 is easily found from these.

If z is not a rational number, it may be possible to give a

construction for determining Az if constructions using conies

are employed. But conies are not the only type of locus, and

though we have not done so, it is possible to define more com-

plicated loci and to study their properties, and with their aid to

determine all the other points. The answer to the question is

therefore: With the knowledge at present at our disposal it

may not be possible to determine the point Az .

(2) To the questioner who asks 'What is the label of this
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particular point?' the answer must be given: 'If you will tell

me exactly which point you mean, i.e. give me a construction

by means of which I can be certain which point you are talking

about, I will tell you its label/ Any construction which will

identify it will give its relation to the gauge-points, and when
this is known its label is determinable.

7.42. Dropping the Pilot

In the process of labelling the points of the open set we have

used labels consisting of a letter of the alphabet, to which a

numerical suffix was attached. It is plain, however, that the

important and significant part of this combination is the suffix,

and that the letter plays no useful role whatever. This being so,

the useless letter may without loss be omitted : instead of speak*

ing of the points A , A lt A^ Ax , etc., we may therefore for the

future speak of the points 0, 1, j, a;, etc. The effect of this

technical simplification is that every point of the open set has

now a number-label instead of a suffixed letter-label.

At the same time we may change the label of the gauge-point
AM to w. More will be said about this point later, but the

reader has probably realized that in some sense it corresponds
to the improper number oo. For the present we shall call it the

unlabelled point, not because it has no label at all, but because

its label is altogether outside the numerical labelling system
which has been elaborated.

7.43. Complex Points

It may occur to the reader to ask what significance is to be attached

to points whose labels are 'strictly complex numbers', i.e. numbers of

the form x-\-iy, where x and y are real numbers, *2 1, and y is not

zero. The question may be put in another way: Is there any essential

difference between points whose labels are real numbers, and those

whose labels are not real numbers? The answer is that there is no

essential difference whatever; in fact, if the gauge-points are changed
in a suitable way, points which before had real-number-labels can be

made to have labels which are not real numbers.

The preoccupation ofmathematicians in past years with the Geometry
which is apparently applicable to the physical space in which we live

led them to make a sharp, but unnecessary and misleading distinction

between so-called real points and so-called imaginary points in the

conceptual space studied in Analytical Geometry. The method by which

number has been introduced into Projective Geometry, and the nature
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of Projective Geometry itself, should convince the reader that points

with so-called imaginary labels are on precisely the same footing as

points with real labels. The only difference between them is in their

labels; this difference has as much significance as the difference between

points whose labels are odd integers and those whose labels are even

integers. The precise labelWhich a point has is entirely dependent on

the choice of the
gauge-points.

7.44. Labelling the Field

Having labelled the points of a single line we now amplify the

process in order to attach labels to other points of the field.

FIG. 49.

Let I and m be any two distinct lines of the field, and let

be their common point.

On / choose three gauge-points XQ ,
Xv and X^ in such a way

that XQ coincides with 0. Similarly, on m choose three gauge -

points F ,
FI} and YM in such a way that F coincides with 0.

Suppose the open sets on these lines labelled in the way
described above.

Let P be any point of the field not on the line X^T^ let x be

the label of the point on I which is also on PY^ let y be the

label of the point on m which is also on PXM .

Then to the point P is given the double number-label (x,y).

Points on the line I will have labels of the form (0, y), and points

on the line m will have labels of the form (x, 0) ; these replace the

temporary labels first attached.

It is clear that two distinct points of the field have different

labels, and that points with different labels are distinct.
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The points of the line XWFW do not receive any label in this

system, and for this reason the line is termed the unlabelled line.

This system of giving double number-labels to all the points

of the field save those of the line X^Y^ is called the non-homo-

geneous mesh system, or the non-homogeneous mesh gauge. The

significance of the qualifying word non-homogeneous will become

clearer in due course.

There are certain terms connected with the non-homogeneous
mesh gauge which are in normal use; these are defined below.

DEFINITIONS. The double number-label attached to any point

is catted the coordinates of the point; the first of the two numbers is

called the x-coordinate; the second, the y-coordinate.

The lines OX^, OYM are termed the axes of coordinates; the

first is the x-axis; the second, the y-axis.

The point is called the origin of coordinates.

7.441. The Unlabelled Line. The non-homogeneous mesh

gauge leaves the line X^Y^ unlabelled, nor can this line be

included by any extension of the labelling system as it stands.

This line is sometimes spoken of as the ideal line, or the vanish-

ing line, and there are other terms in use. None of them is

adopted here, since they imply that this particular line is some-

thing rather special in itself; the truth is, however, that it is

in no way special. It is just as much a line of the field as any
other line; it is the labelling system which breaks down on this

line, and with another choice of axes and gauge-points, another

line would be thus apparently singular. It is only singular

relative to the labelling system; it is not singular in itself.

The fact that the labelling system is thus defective has im-

portant consequences later, but it makes it desirable that a

system free from this defect should be devised. This will be

done in the next chapter. It is convenient, however, to make

some use of this labelling system, even though it is defective;

and this is done in the following sections.

7.5. The Algebraic Specification of the Projectivity

Since the work to be done on the projectivity is concerned

only with the points on a single line, it is easier to use the single
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number-labels of 7.41, relative to gauge-points on the line,

rather than the double number-labels of 7.44.

The problem being attacked may be stated in general terms

thus: If there is a projectivity between a range on a line and

a range on another or thiefsame line, and if, in this projectivity,

points whose labels are
7

:*;, y, z, ,..., correspond to points whose

labels are #', y', 2', f',..., what algebraic relation connects x

with #', y with y', and so on? In the language of analysis,

what function of x is x' ?

Four simple theorems, three of which are restatements of

known results, are prefixed to the theorem which answers this

question.

7.51. THEOBEM

// / and m are two distinct lines of the field, and if gauge-points

A , Av AM are chosen on I, and B , Blt Bw on m, then

l(A A1A al
Ax)
~ (. B,B Bx)

for every x.

This is an immediate consequence of the definition of iso-

morphism.

7.52. THEOBEM

// 1 and m are the same or distinct lines of the field, there is a

projectivity in which

l(A a)
A AxAyAs...)~m(B0)

B
t
Bx+tBy+t

Bs+t...).

Case 1. If I and m coincide, and the gauge-points also coin-

cide, this theorem is a restatement of 7.221.

Case 2. If I and m do not coincide, it is a consequence of

Case 1 and the preceding theorem.

Case 3. If I and m coincide, but the gauge-points do not, it

is a consequence of Case 2 and the preceding theorem.

7.53. THEOBEM

// I and m are the same or distinct lines of the field, there is a

projectivity in which

provided t ^ 0.

Case 1. If I and m coincide, and the gauge-points coincide,

this theorem is a restatement of 7.222.

Cases 2 and 3. As in the preceding theorem.
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7.54. THEOREM

// 1 and m are the same or distinct lines of the field, then there is

a prqjectivity in which

provided t ^ 0.

Case 1. If I and m coincide, and the gauge-points coincide,

this is the definition of the product of two points. The projec-

tivity is, in fact, the involution specifying the product.

Cases 2 and 3. As in the previous theorems.

We are now in a position to prove the theorem to which this

preliminary work has been leading.

7.55. THEOREM

// Ax , A^ Ag ,
and A

t
are four distinct collinear points, all of

which are distinct from AM ,
and if Bx>, By>, Bz>, and Bv are four

other distinct collinear points, all of which are distinct from BMt

then the necessary and sufficient condition that

l(AxAv
AeAt)

~ m(Bx,By,Bs,Bt.)

is thatfour numbers a,b,c, and d should exist such that

ad be = 0,

and . , . ,

a?' = ??+?,
' = ??+?

cx+d' cy+d' .

, __ qg+6 , _ at+b
'

~
ct+b

The sufficiency of the condition is proved first. Suppose then

that adbc^Q, and that the four equations (1) are satisfied,

By 7.52, l(AxAv
AzAt)

~ ^A^AyA^, where

.-*+
*

fi
= y+

*
y = Z+

*
* = t+

*CO O C/

By 7.53, l(AaApAr
At)
~ l(A fAfA1>

Ae), where

c _ <"* r- & etc
(bc-ad)'

L-
(bo-ad)'

By 7.54, l(AtA^Ae)
~ ^A^A^A^A^).

By 7.52, l(Al!,All,i
A

ll^A llg)
~ VA^A^A,), where

. 1
,
a 1

,
a .

A = -+_,
/*-j+j,

etc.
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Hence l(AxAyAeAt)
~ l(AxApA vAJ.

T, , v ca+c otac+bc ad ax+b ,But A = - - = --- = -7-3 = x ,

C otc
2 cx+d

and, similarly, ^~y',v z
f

t
TT t'.

Hence l(AxAyAzAt
Y~ l(Ax>Ay*Ae'At), and so the condition

is sufficient.

It will be noticed that this proof is only valid when c ^ 0;

when c = 0, the proof is as follows.

l(AxAyAsAt)
r^

^AaApAyAft), where a #+-, etc.,

l(A QLA^Ay
A 8)
~ l(A A^A,nA e) J where c = ~, etc.,

that is to say, l(AxAvAeA t )
~ l(Ax>Ay.A&.A^].

We have assumed throughout the proof that the same base

and gauge-points are retained throughout; the transference to

other gauge-points on the same or a different base is effected

in the obvious manner.

The necessity of the condition follows at once from this by
reductio ad absurdum. For suppose that

l(AxAvA8At)~l(Ax,Ay,As,A^
and that a, 6, c, and d arc four numbers satisfying the equations

xf = ~ u' = - = -

cx+d'
y

cy+d* cz~+d'

Suppose also that t" = .

ct-\~d

Then, by what has just been proved,

l(AxAvA!1
A

t)
~ l(Ax.Av.A1.Ae.),

that is to say, At
> and A^ coincide. Hence

_ at+b
1

~ti+d
9

and it is clear that ad be =^= 0.

This theorem may be expressed more fully as follows.

7.56. THBOBEM

// a projectivity between two ranges on the same or different

ranges is symbolized by

1{AuA9AmA,A.Af..) ~ m(Bp.B0>
B

a,Bv.Be
,

l....),
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then numbers a, 6, c, and d exist such that ad be ^ 0, and

, _ ax-\-b , _ ay-\-b , _ az-\-b~~ ~ -"

_ at+b a -d~* p ~' P ~~*

Conversely, if any three of the last six equations are satisfied, then

1(A.A,A.A,A.A,...) ~ ntBfB.BsBfBtB,...),

and the other three equations are also satisfied.

The details of the proof of this theorem are left to the reader.

The value ofp' is found by tracing the points corresponding to

AM in the first range through the various projectivities of the

last theorem, p is found in a similar way.

7.57. The Equation of a Projectivity

The theorems just proved show that, in general, if x is the

label of any point of a range, and x' is the label of the point

corresponding to it in a projectivity, then

, __ ax+b

or cxx' ax-\-dx' b 0. (2)

Corresponding to every such equation there is a projectivity,

and corresponding to every projectivity there is an equation of

this type. We therefore speak of it as the equation of the pro-

jectivity. It is plain that it may also be written in the form

(3)
ex a

The equations (1) and (3) show that x is a one-valued function

of x'
t
and that x' is a one-valued function of x. It is interesting

to notice that the equation of the projectivity is the most

general equation between two variables, such that each is a

one-valued analytic function of the other.

7.58. Self-corresponding Points

If the two ranges between which there is a projectivity are

cobasal, and if the same gauge-points are chosen for both, the
4191 2
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self-corresponding points of the projectivity are those points

whose labels satisfy the quadratic equation

cx*+(d-a)x-b = 0.

This is obtained by putting x x' in (2). Exceptional cases

arise when the unlabelled point is one (or both) of the self-

corresponding points of the projectivity. The conditions for

this are left as examples for the reader.

EXAMPLES

1. Determine the necessary and sufficient algebraic condition that a

projectivity shall be an involution.

2. Determine the necessary and sufficient condition that AM shall be

a self-corresponding point of a projectivity. (The following 'proof is

insufficient: The necessary and sufficient condition that one root of the

quadratic equation cxz -\-(d a)x 6 = should be 'infinity' is that

c == 0; hence this is the required condition that A^ be a self-correspond-

ing point.)
3. Determine the necessary and sufficient condition that the two self-

corresponding points of a projectivity shall coincide. Hence prove

algebraically that the self-corresponding points of an involution are

always distinct.

4. What is the equation of the projoctivity l(A a ApAY )
~

l(A$A yA a ) ?

Determine the self-corresponding points.

5. What is the equation of the involution

l(AMA.A uA ft)~l(AuA 9ApAJ1
Show that +== 0.

6. Find the harmonic conjugate of A8 relative to Ax and Ay .

7. Prove algebraically that if As and A
t are harmonic conjugates

relative to Ax and A y>
then Ax and Ay are harmonic conjugates relative

to AB and At
.

7.6. Loci

The general problem of which particular instances are studied

in this section may be stated thus: Given a locus in the field,

what relation exists between the non-homogeneous coordinates

(relative to some axes and gauge-points) x and y of any labelled

point of the locus? Conversely, given a relation between two

variables x and y, what is the locus of points whose coordinates

satisfy this relation ?

The relation between the coordinates x and y is usually in the

form of a single equation, f(x, y) = 0, but this is by no means

necessary.
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DEFINITION. // there w an equation f(x, y) 0, such that

(i) the coordinates (x, y) of every labelled point of a certain

locus satisfy this equation, and

(ii) every point whose coordinates (x, y) satisfy this equation is

a point of the locus
,

then the equation f(x,y) = 0, or any equivalent of it, is termed the

equation of the locus, and the point (x, y) is said to satisfy the

DEFINITION. // there are two equations, x = x(t) and y y(t),

such that

(i) the coordinates (x,y) of every labelled point of a certain

locus satisfy these equations, and

(ii) every point whose coordinates (x, y) satisfy these equations

is a point of the locus,

then the equations are termed the parametric equations of the

locus, and the point (x, y) of the locus is said to correspond to the

value t of the parameter.

In what follows, the only loci considered are the line and the

conic. A general theorem is prefixed.

7.61. THEOREM

// f(x, y) = and g(x, y) = are the equations of two loci,

then those labelled points which are common to the two loci are

points whose coordinates are solutions of the simultaneous equa-

tions f(x, y) = 0, g(x, y) 0, and vice versa.

This theorem should not require formal proof.

7.62. The Equation of the Line

THEOREM. The equation of any line of the field, other than the

unlabelled line, is of the form

Ix+my+n = 0,

where not both of I and m are zero.

Conversely, any locus whose equation is of this form is a line.

(1) Consider any line on Y^, other than the unlabelled line,

and suppose it is also on the point (&,<)). From the defini-

tion of the non-homogeneous mesh gauge it is plain that the

^-coordinate of every point on this line is k, and that every
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point whose ^-coordinate is k is on this line. Hence the equation

of the line is x k = 0, and this is of the form specified.

(2) Similarly, any line on X^ other than the unlabelled line

has an equation of the form specified.

Fio. 50.

(3) Let p be any line not on XM or 7W ,
and consider the

perspectivities

p(PQRS...) 5? !{XItX.X.X.t...),

P(PQRS...) ~" m(Yy Yy Yv Yy ...).

It follows at once that (i) the coordinates of P, Q, E, 8,... are

(*i,2/i), (*2,2/2), (xa,ya), (xt,yt)..., and (ii)

l(Xx Xx Xx XXt...)
~ m(Yy Y,/

Yv YVt ...).

Moreover, in this projectivity, the point XM corresponds to the

point Y^ and so numbers a and 6 exist such that

#1 = 2/i+6, x2
= GM/2+&, etc.,

and, in general, if (x, y) are the coordinates of any point on p,

x = ay+b.

Further, suppose that (f , T?) is any point such that

f = 077+6;
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then clearly X% and
Y^

are corresponding points in the above

projectivity, and so the point is on p. Hence the equation of

the line is
x-ay-b = 0,

and this is of the form specified.

This proves the first part of the theorem, namely, that every
line other than the unlabelled line has an equation of the form

Ix-\-my-\-n 0; it does not show that every locus whose equa-
tion is of this form is a line.

Consider then any locus whose equation is lx-\-my-\-n = 0;

let (xlt 2/i) and (#2 , y2 )
be any two distinct points on this locus.

Let p be the line on these two points, so that the equation of

p is (say) I'x-\-m'y-\-ri = 0. It follows that

n = 0,

= 0,

' = 0,

I'x2+m'y2+n' = 0.

From these equations it follows at once that

I' __ m
f

_ ri

I

~~
m

~~
n'

and this implies that lx-\-my-\-n~ and I'x+m'y+n' are

equations of the same locus. Hence every equation of the form

Ix-\-my-\-n = is the equation of a line.

7.621. Particular Gases. The general equation of the line

found in the last section may be put into a more convenient

form in certain particular cases. These are given in the follow-

ing theorems.

THEOREM. The equation of the line on the points (a, 0) and

(0, 6), where ab ^ 0, is

THEOREM. The equation of the line on the origin and the point

(a, 6), where not both of a and b are zero; is

bxay = 0.
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THEOREM. // the points (xlt y^ and (#2 , yz )
are distinct, the

equation of the line on the two is

All three theorems are Broved by assuming that

flx-\-my-\-n =
is the equation of the line in question and writing down the

condition that the points named shall be on it. Alternatively,

the third of the three may be proved in this way; the other two

are particular cases of the third.

7.622. Parametric Form. THEOREM. The equations x = lr-\-a,

y = mr+6 are parametric equations of a line in the field (in

terms of the parameter r). Conversely, any line of the field has

parametric equations of this type.

The proof of this theorem should present no difficulty after

what has already been proved.

EXAMPLES

1. Why is it impossible to give an equation for the unlabelled line ?

2. Show that the necessary and sufficient condition that the three

points (#!, 2/i), (a?2 , y2 ) t and (x3 , y3 ) should be collinoar is that

8 ft 1 =0.

j 2/3 1

3. Show that the equation of the line on the points (#1,2/1) and

y i

2/i 1 =0.

t 2/2 !

4. Show that for all values ofA the point (Aa^+fl A}#2 , Ajft-Kl \}yz )

is collinear with the points (#1,3/1) and (a?2,2/2 ). Conversely, show that

any point not on the unlabelled line, and collinear with (xlf 2/: ) and (x2 , t/2 )

has coordinates (Aa^+ { 1 A}#2 , Xyt -f- { 1 A}y2 ).
5. Find the coordinates of the point common to the two lines whose

equations are fa+my+n = and l'x+m'y-\-n' 0. Show that if

Im'ml' = 0, there is no point (xt y) common to these two lines unless

In'nl' 0. Why is it that this fact does not contradict the initial

proposition that two distinct lines have a common point ?

6. Show that any line on the common point of the two lines whose

equations are fa+my+n =" and l'x+m'y+n' ~ is

A(fo-fmy+n)+n(l'x+m'y+n') = 0.
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7. Show that the necessary and sufficient condition for the con-

currence of the three lines whose equations are

lx-\-my-{-n 0, l'x-{- m'y-\-ri = 0, and I'x+m^+n" =
is that

i m n
m' n' 0.

m" n"

8. Use Example 4 to determine the coordinates of the diagonal points
of the simple four-point

Detormino also the coordinates of the harmonic points.

7.63. The Equation of the Conic

THEOREM. The equation of any point-conic, singular or non-

singular, other than the singular point-conic consisting of two

coincident ranges on the unlabelled line, is of the form
ax2

-\-2hxy-+-by*-+-2gx-}-2fy-}-c = 0.

Conversely, any locus whose equation is of thisform is a point-conic.

(i) Suppose that the conic is singular, and that it consists of

the ranges on the two lines whose equations are Ix-\-my-\-n

and l'x-\-m'y-\-n' = 0. (These two lines may be identical.)

Then the equation of the conic is

(lx-}-my-\-n)(l'x-\-m'y-\-n
f

)
= 0,

and this is of the form specified.

(ii) Suppose that the conic is singular, and that it consists

of one range on the unlabelled line, and one on the line whose

equation is lx-}-my-\-n = 0. Then its equation is lx-\-my-\~n = 0,

and this is of the form specified.

Fio.,51.
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(iii) Finally, suppose that O is a non-singular point-conic.

Let P and Q be two distinct points on it which are not on the

unlabelled line or the #-axis. Let (f , rj) and (f', 77') respectively

be the coordinates of these points.

Consider the perspectives

~~
f,l ,A I I

(1)

From these it follows at once that

*(*,...) -*(*...),
and hence that

where 8-j8y^o. (2)

Now if (x,y) are the coordinates of A, since A, P, and X are

coUinear,
x y 1

77
] = 0; that is, />

=
01 ^

o M i ^'^ 'v
Similarly, a = ^-

-,-.

It follows from (2) that

j

y i? y(i?' fy)+% i?')

'

or y(^-^)(7?

/

a;-fi/)+8(^-^)(2/-7?

/

)-

-^'x-ZyKy-^-fty-riKy-ri') = 0,

= 0, (3)

so that the coordinates of every point on the point-conic satisfy

an equation of the type specified.

On the other hand, if (x,y) be any point satisfying (3), it

follows at once, by reasoning in the reverse direction, that X
p

and Xa are corresponding points in the projectivity (1), and

hence that the point (#, y) is on the point-conic.

Hence the equation ofevery point-conic with the single excep-

tion mentioned is of the form specified.

The converse part of the theorem is more complicated than

the corresponding part of 7.62.
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Consider the equation aa?2-f2hxy-\-by*-\-2gx+2fy+c = 0.

(i) If the left-hand side of this equation factorizes, and its fac-

tors are lx-\-my-{~n and l'x-\-m'y~}-n' t then the equation is plainly

that of the locus consisting of the two lines Ix-\-my-\-n

and I'x+m'y+n' = 0, and this is a point-conic.

(ii) If the left-hand side does not factorize, let (xl9 yj, (xz , y2),

(x&ys)> (#4> 2/4)>
and (#5,^5) he any five distinct points on the

locus whose equation this is. Then

ax*+2hxv y,+by}+2gxv+2fyv+c - (v
= 1, 2, 3, 4, 5),

and these five equations determine uniquely the ratios of the

coefficients a, 6, c, /, g, and h in terms of xly ylt etc. (If the left-

hand side factorizes, there is not necessarily a unique solution.)

Now on these five points there is a point-conic; let its equa-
tion be o'a?+ 2h'xy+b'y*+2tfx+2fy+c' = 0. Hence

a'x*+2h'xv yv+b'y*+2g'xv+2fyv+c = (v
=

1, 2, 3, 4, 5),

and these five equations determine uniquely the ratios of the

coefficients a', 6', c',/', <?', and h f

in terms of ajlf yl5 etc.

It is plain that as a consequence the two equations are equi-

valent, and hence that the equation

ax*+2hxy+by*+2gx+2fy+c =

is the equation of a point-conic.

7.631. Singular Point-conies. In this section the criterion

whereby the equation of a singular point-conic may be dis-

tinguished from that of a non-singular point-conic is given.

THEOKEM. The necessary and sufficient condition that

axz+2hxy+by*+2gx+2fy+c =
should be the equation of a singular point-conic is that

a h g

h b f =0.

9 f c

The necessity of the condition is proved first. Suppose then

that the conic is singular, and that it consists of the two lines

whose equations are Ix+my+n == and I'x+m'y+n' = 0,W A a.
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Then the equation is equivalent to

(to+my+n)(l'x+m'y+n
f

)
= 0,

that is to say, a = kll', b = kmm', c = knn',f = }&(m

gr
= &(w/'+w7), and h = i&(Zw'+Z'w), and so the determinant

in question is /

Z'm), mm', \(mri+m'ri)

%(mri+m'n), nn'

It is easily verified that this determinant in fact vanishes.

Hence the condition is necessary.

If, on the other hand, the determinant vanishes, then either

(i) there are unique numbers f and 77
such that

af+hl+ff = V+h?+/ = gf+fr+c = 0,

or (ii) a/h = A/6 = gr//.

In the first case, since

the point (,17) is on the conic. And if (f',??') ig any other

point on the conic, it is easily verified that every point collinear

with these two is also on the conic; hence the conic is singular.

In the second case, ab = h2 and af = gh, and so, if a ^ 0,

= (ax+hy)*+2g(ax+hy)+ac.

This expression can plainly be factorized into two linear factors;

hence the equation ax*+2hxy-\-by*-}-2gx+2fy+c = is that

of a locus consisting of two ranges on distinct or coincident

lines; the conic is therefore singular.

But if a = 0, then h g = 0, and the equation of the conic

reduces to by*+2fy+c = 0; the left-hand side of this equation

being factorizable, it is the equation of a singular conic.

7.632. Tangents, Pole and Polar. THEOREM. //

aaP+2hxy+W+tyx+1fy+c =
be the equation of a non-singular conic, then
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(i) if (x1} y-^ be the coordinates of any point on the conic, the

equation of the tangent on (xlt y^ is

axx^hfry^yxj+byy^gfr+xj+fty+yj+c = 0,

(ii) if (xlt yt) be the coordinates of any point not on the conic,

the equation of the pair of tangents to the conic which are on

(x^yj is

(ax*+2hxy+by*+2gx+2fy+c) X

= 0,

(iii) the equation of the polar of any point (xv yj relative to

the conic is

axx
l+h(xy1+yx1)-}-byy1

-Jrg(x+xl)-{-f(y+yl)+c = 0.

The three theorems are taken together because the first two

make use of the same principle, and the third is an immediate

deduction from them.

Consider any line p which is on the point (x^y^. (It is not

at this stage supposed that this point is on or not on the conic.)

Let (x,y) be the coordinates of any point on p\ then the co-

ordinates of any point collinear with these two are

\

and if this point is on the conic,

= 0,

+2Xp[axxl+h(xy1+yxl)+byyl+g(x+x1)+f(y+y1)+c]+

+H*[axl+2hxlyi+byl+2gxl+2fyl+c] = 0. (1)

This is a quadratic equation for determining the ratio of A

to
/i,

and so for determining those points on p which are on the

conic. We make use of it in two different ways in what follows.

(i) Suppose first that the point (x^yj is on the conic, so

that one of the values of A//* is zero. If, in addition, the line p is

a tangent, the other value of A//* is also zero; for if it were not,

there would be a point on p t
distinct from (xlt yj, on the conic.
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The condition that both the values of A//* shall be zero' is that

axl-\-2hxl y1+byl+2gxl+2fy1+c = 0,

and axx +h(xyl^yxl)+byyl+g(x+x1)-^f(y-i-y1)+c = 0.

The first of these equations merely shows that (xl9 yt ) is on

the conic, but the second, is a relation between the coordinates

(x, y) of any point on p, the tangent. It is the equation of a line,

and so it is the equation of the tangent on (a?1 , yt).

This proves the first part of the theorem.

(ii) Suppose next that (x^y^ is not on the conic, then ifp is

either of the tangents to the conic which are on (xlt yx ), both

values of the ratio A//* are equal, and so

(ax*+2hxy+by*+ 2gx+2fy+c) x

X (ax*+2hxly1+by*+2gx1+2fyl+c)-

-"(axx^hlxyi+yx^+byy^glx+x^+fiy+y^+c)* = 0.

This last is a relation between the coordinates (x,y) of any

point on either of the tangents; it is the equation of a point-

conic, and so it is the equation of the pair of tangents.

(iii) If F(x, y) = and G(x, y) = be the equations of any
two loci, it is plain that the locus whose equation is

XF(x,y)+fjLG(x,y) =
is on all the points common to the two loci. We use this fact to

determine the equation of the polar of any point (x, y) relative

to the conic. For if P be any point, and Q and R be the points

of contact of the two tangents to the conic on P, then QR is

the polar of P.

The equation

X(ax*+2hxy+by*+2gx+2fy+c)+

+(ax*+2hxy+by*+2gx+2fy+c)x

X (a^l+2hxlyl+byl+2gx1+2fyl+c)-

(axx^+^xy^+yx^+byy^+g^+x^+fy+y^+c)^ =
is that of a locus on the points common to the conic and to the

two tangents to the conic which are on (xv y^). It is plainly the

equation of a conic; moreover, if

-A = axl+2kcl y1+byl+2gxi+2fy1+ct



THE NON-HOMOGENEOUS MESH GAUGE 181

it reduces to

= 0.

This is the equation of a pair of coincident lines, each of which

is therefore the polar of (x^ yj. Hence

axxl+h(xy1+yxl)+byyl-i-g(x+x1)+f(y+y1)+c =
is the equation of the polar of (xv yj when that point is not on

the conic. The first part of the, theorem shows that it is also

the equation of the polar of (xlt y) when that point is on the

conic. Hence the theorem is proved.

7.7. The Non-homogeneous Mesh Gauge and Elementary

Geometry

By means of the non-homogeneous mesh gauge, a label has

been given to every point of the field save the points of the

tmlabelled line. This system of labels has enabled us to apply

Algebra to Geometry, but even in the limited amount which

has been done in this chapter, the unlabelled line has shown

itself to be a source of trouble. Whenever it or any point on

it was mentioned special treatment was required. For this

reason a labelling system without this defect will be elaborated

in the next chapter.

But the work done with the non-homogeneous mesh gauge
serves to give us a first hint about elementary Geometry. The

reader cannot have failed to notice the extreme similarity

between the Algebraic Projective Geometry, which uses the

non-homogeneous mesh gauge, and the ordinary algebraic treat-

ment of elementary Geometry known as Analytical Geometry.
There is, so to speak, isomorphism between the two. And since

the non-homogeneous mesh gauge leaves one line and all the

points on it out of consideration, this suggests that elementary

Geometry may be all along doing the same thing. It is true

that this line is sometimes 'added' to the field of elementary

Geometry under the name of the 'line at infinity', but it is

nevertheless not amenable to treatment in the same way as

other lines, since none of its points are at a finite distance from

the rest of the field. The mesh gauge of elementary Analytical

Geometry fails to label the points on the line at infinity', simply
because that mesh gauge is defined in terms of length. Hence
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the 'line at infinity
5

always remains exceptional in elementary

Geometry. Hence too there are such anomalies as parallel lines,

circular points at infinity, and other puzzling things.

It is not possible to do more here than adumbrate the explana-
tion of the apparently exceptional things in elementary Geo-

metry; in a later chapter'the relations between it and Projective

Geometry are more fully discussed.

7.8 The Non-homogeneous Mesh Gauge and Cartesian Co-
ordinates

The similarity between the non-homogeneous mesh gauge and what
are called in Analytical Geometry Cartesian coordinates makes it neces*-

sary to emphasize the radical differences between the two.

In Cartesian coordinates the points on the a?-axis and the points on
the 2/-axis are given number-labels by a method which involves the

notion of distance ; the two axes are chosen at right angles to each other,

and this choice involves the notion of angle. Further, if it be allowed

that in elementary Analytical Geometry there is an unlabelled line, this

line is fixed definitely and cannot be chosen at will.

In the non-homogeneous mesh gauge the points on the axes aro given
number-labels by a process which makes no appeal to the concepts of

distance or angle, and the unlabelled line may be chosen to be any line

of the field whatever.

The similarity between the two in the algebraic processes involved,

and even to some extent in the terminology in use, is a similarity only
in form ; the thought underlying this external form is different.

EXAMPLES
1. Show that with the recently added initial proposition of extension

two non-singular conies always have four distinct or coincident points
in common.

2. Write down the equation of the pair of tangents on the origin to

the conic whose equation is ax*+ 2hxy+ by*+2gx -\-2fy-\-c
= 0.

3. If ax*-\-%hxy-\-by*-\-2gx-{-2fy-\-c = is the equation of a pair of

distinct lines, determine the coordinates of their common point.

4. Determine a necessary and sufficient condition that the line

lx+my-\-n = shall be a tangent to the conic whose equation is

5. Determine a necessary and sufficient condition that the two points

(xlt yi) and (xz,yt ) shall be conjugate points relative to the conic whose

equation is ax*+2kxy+by*+2gx+2fy+c = 0.

6. If ax*+2hxy+byz+2gx+2fy+ c is the equation of a non-

singular conic, determine a necessary and sufficient condition that the

ar-axis shall be a tangent to it, and that Xw shall be its point of contact.

7. Show that the unlabelled line is the polar of the origin relative to

the conic whose equation is x*-\-y* = As
8

.



CHAPTER VIII

THE HOMOGENEOUS MESH GAUGE

8.1. Homogeneous Coordinates on a Line

IN developing the non-homogeneous mesh gauge in the last

chapter we first gave number-labels to the points of a line,

and later extended the labelling system to other points of the

field. The homogeneous mesh gauge is developed in the same

way, labels being first attached to the points of a line only.

The homogeneous coordinates of a point on a line are defined

in the following way:
IfA , AU and A^ are gauge-points on the line, then (i) to any

point Ax of the open set (x being its number-label in the sense

of the last chapter) is attached a double label (xlt x9 ) 9
where

a^/tfg
= x

; (ii) to the point Am is attached the label (r, 0),

where r is any number whatever.

It is clear that the double number-label attached to any

point is not unique, and that if (alt
a2 ) is a suitable label for a

given point, then (ka^ka,^ is equally suitable, provided k ^ 0.

This ambiguity causes no ambiguity in the work done with the

homogeneous coordinates.

It may be observed that (i) every point of the line, AM in-

cluded, has been labelled, and (ii) to every possible number-

pair (av a2 ), with the single exception of the pair (0, 0), there

corresponds a point on the line.

Now though by this means Aw has been included in the

labelling system, it is not therefore obvious that it is not still

an apparently exceptional point. The first of the following

theorems, which deal with the projectivity in terms of homo-

geneous coordinates, shows that in this labelling system A^ is

on exactly the same footing as all the other points.

8.2. The Projectivity on a Line

8.21. The Equation of a Projectivity

THEOREM. The general equation of a projectivity between two

ranges is --
^
= 0,
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where (xlt x2) are the homogeneous coordinates of any point of one

range, and (x[, x2 ) are the homogeneous coordinates of the corre-

sponding point of the other, and be ad ^ 0.

The enunciation includes, in reality, two theorems: first, that

if there is a projectivity/between two ranges, the homogeneous
coordinates of every pair of corresponding points are related by
the equation ax^x'^bx^x'^cx^x^dx^x^ = 0, and, secondly,

that if two ranges of points are thus connected in pairs, the

correspondence is a projectivity.

First then, suppose that there is a projectivity between the

two ranges. Then, by 7.56 and the definition of homogeneous

coordinates, if (xlt x2) and (x(,x'%) are a pair of corresponding

points, both of which belong to the open set, numbers a, 6, c,

and d exist, such that

and be ad ^ 0.

Since neither of #2 , x% is equal to zero, it follows that

= 0.

The equation is therefore true for all such pairs.

It remains to show that the equation is still satisfied when

Aw is one or both of a pair of corresponding points.

By 7.56, if Ap is the point of the first range corresponding

to AM of the second, p = c/a, and so the homogeneous
coordinates of Ap are ( c,a). Clearly the equation is satisfied

when xl ct x2
= a, and x2

= 0.

Similarly Aw in the first range corresponds to Ap > in the

second, where the homogeneous coordinates of Ap . are (6, a),

and the equation is satisfied in this case also.

Finally, if A^ in the first range corresponds to A^ in the

second, a 0, and so the equation of the projectivity is

bx1 xz -}-cx2 Xi-}-dx2 x2
= 0, and this equation is plainly satisfied

when #2
~ xi 0.

The first part of the theorem is therefore proved. The second

part is proved by reductio ad absurdum; the details are left to

the reader. The theorem shows that there is. no need to pay
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special attention to the point AM when dealing with a pro-

jectivity in homogeneous coordinates.

8.22. Second Form of the Equation of a Projectivity

THEOBEM. The algebraic relation between the homogeneous
coordinates of a pair of corresponding points in a projectivity may
be expressed by equations of theform

kx[ =

where k ^ and $y aS ^ 0.

This theorem is a very simple consequence of the last.

8.23. Self-corresponding Points

THEOBEM. // ax^x^bx^x^cx^x^dx^x'^ = be the equation

of a projectivity between two cobasal ranges, each referred to the

same gauge-points, then the self-corresponding points of the pro-

jectivity are

(i) (ftc+^fc+c)*-..^ 2a) and

(bc^b+c^lad, 2a)

if neither a nor d is zero,

(ii) ( d,b+c) and (1,0) if a = Oandd ^ 0,

(iii) (6-f c, a) and (0, 1) if a ^ and d = 0,

(iv) (0, 1) and (1,0) if a = d = 0.

If (xlt xz ) is a self-corresponding point of the projectivity,

aXiXi+bxiXi+cx^Xi+dxiXz = 0,

or axl+(b+c)XiXi+dxl = 0.

This last is a quadratic equation for determining the ratios

of #! to xz ,
and the results follow at once from the theory of the

quadratic equation.

8.24. Condition for an Involution

THEOBEM. The necessary and sufficient condition that the

projectivity between two cobasal ranges, referred to the same

gauge-points whose equation is axl x[
Jrbxl xz -{'Cxz x'l -\-dx2 xz

= 0,

shall be an involution is that b == c.

First suppose that the projectivity is an involution. Then its

^91 Bb



186 PROJECTIVE GEOMETRY

equation must remain unaltered by the interchange of (xv x2)

and (#i,&2) ( Hence b = c.

Next suppose that 6 = c, then since the equation remains

unaltered by the interchange of (xlt #2 ) and (x(, x'z )
the projecti-

vity must be an involution.

EXAMPLES

1. Show that (a, 1) and (l,a) arc mates in the involution in which

(] , 1) and ( 1, 1 ) are self-corresponding points.

2. Determine a necessary and sufficient condition that the projectivity

whoso equation is ax1 .r(4 byt x', 4 cxz x[4 dxz x!2 = shall have coincident

self-corresponding points.

8.3. The Gross -ratio

Suppose that P, Q, R, and 8 are four distinct collinear points

whose homogeneous coordinates relative to some gauge-points

are respectively (x^yj, (x2,y2 ), (xB,y3), and (x^y). Similarly,

suppose that P', Q', R', and /S" are four other distinct collinear

points with coordinates (xi,yl), (x^y'z ), (x^y^), and (x'^y^).

The necessary and sufficient condition that

(PQRS) ~ (P'Q'E'8')

is that four numbers a, 6, c, and d should exist, such that

axv x'v+bxv y'v+cyv x'v+dyv y'v
=

(v
= 1, 2, 3, 4) and fo o<? ^ 0.

An equivalent statement of this necessary and sufficient con-

dition is that

*22/2 2/2*2 2/22/2

#3*3 #32/3 2/3*3 2/32/3

#4#1 #42/1 2/4*4 2/42/1

this being a simple deduction from the first condition.

Neither of these two statements ofthe necessary and sufficient

condition for projectivity is, in practice, very convenient to use,

but from the second it is possible to deduce, by mere Algebra,

a very simple and convenient condition. As, however, this

deduction is not a very interesting piece of work, it is deduced

from geometrical considerations in the following theorem.

THEOBEM. The necessary and sufficient condition that the four

distinct points whose homogeneous coordinates are respectively
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(xi>yi)> (#2>2/2) (#32/3) and (#4>2/4) should beprojective with four
other points whose coordinates are respectively (x[,y[), (x%, y%),

(#3,3/3), and (x'^yi) is that

- a?3 2/i)(g2 2/4-^4 2/2 ) ^ (xJyz-XzyiKxM-xM)
*i yi *i yi)Wi 2/3-^3 2/2)

'

3-^3 2/2)

Let the first four points be P, Q, R, and $ respectively, and

let T be a point such that

Then if (x, y) be the coordinates of T, it follows that

or

or

= 0,

Hence ^-
/X V-^12/4 ^4 2/l) (^22/3 *^32/2)

If now the second four points be P', ', R', and $' respec-

tively, and if (PQRS) ~ (P'Q'R'S'), it follows that

(P
f

Q'B'8
f)~(A QAmA l T) 9

and hence, by precisely similar reasoning, that

1 = (^i 2/3-^3 2/1X^2 2/4-^4 2/2)

3? (*^l2/3 ^4 2/l) (^'2 2/3 ^3^2)
Hence

4-^4 2/2)

3-^s 2/2) (*i 2/1-^4 yi)(*iVi-*i 2/2)

'

and so the condition is necessary.

Suppose, on the other hand, that the condition is fulfilled.

Then if (PQRS) ~ (^o^^T) the coordinates of the point T
are

-#3 2/2}> {*! 2/3
-
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And if (P'C'jR'/S") ~ (A^A^A^U), the coordinates of U are

But the initial supposition shows that T and U are the same

point, and so (PQES) ~ (P'Q'R'8').

Hence the condition isj^ufficient, and the theorem is proved.

The expression
-

3-^32/1)^22/4-^42/2)

(xl 2/4 #4 2/i)(#2 2/3^32/2)

occurring in this theorem is of the utmost importance in what

follows, and it is therefore essential to have a name for it; it is

called the cross-ratio of the four points in question. The follow-

ing is a formal definition.

DEFINITION. // P, Q, E, and S are four distinct collinear

points, and if their homogeneous coordinates relative to some

gauge-points are respectively (x^y-^), (x2,y2 ), (x3,y3 ), and (#4,2/4 ),

then the function

is termed the cross-ratio of the four points, in that order.

The symbols ty(PQRS) or ${(^,2/1), (*,,ya), (x3,y3 ), (x4,yj}
are used to denote the cross-ratio of the four points. If the

T&em-homogeneous coordinates of the four points are z
l9

z2 23 ,

and z4 respectively, the cross-ratio is symbolized by

It is easily verified, by direct substitution of the corresponding*

homogeneous coordinates, that

(The fact that all four points have non-homogeneous coordi-

nates implies that none of them coincides with AM.)

8.31. Some Practical Notes.

(1) Structure of the Cross-ratio.

It is important to be able to write this fraction rapidly and
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accurately, and so its structure should be carefully noticed.

The numerator is the product of the differences of alternates;

the denominator is the product of (i) the difference of extremes,

and (ii) the difference of means. A practical way of memorizing
this structure is by means of the following diagram, whose

significance is plain:

Neither of these is of very much help when homogeneous
coordinates are being used, but in practice it is wiser (because

aaj&r) to use wow-homogeneous coordinates whenever possible.

The only difficulty that can arise with these is when A^ is one

of the four points whose cross-ratio is sought. A method of sur-

mounting this difficulty is given in the next paragraph.

(2) Limiting Forms. The reader should verify the following

four propositions:

(a)

-
Z3 )

Z2

(b) WPA^ E8) = lim ^-

(c) WPQA^ 8) EE lim
28->w

J ES lim

The verification is accomplished by showing that in each

case the homogeneous form of the* cross-ratio is equal to the

limit given. This gives a method of using non-homogeneous
coordinates for the cross-ratio, even when one of the points

i*^,-
For this reason it is permissible to write, for instance,

thereby the fraction *. It is even

permissible to write ^

2l
~"

J}

8
*"""^ for this cross-ratio, provided

(i-*4) s->)
we do not attempt to manipulate the symbol oo as if it were

a number; it is, however, better to avoid tKis last usage in

formal work.
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(3) Consistency. Some writers adopt a different definition

of the cross-ratio. For example, $(%, z2 >
za> z&) is sometimes

defined as fe

The definition adopted/in this book is in agreement with

that of standard modeny writers on the subject, and it fits in

best with the developments made in the next chapter. But if

the reader consults other works on Protective Geometry, he

should make certain which definition the writers use.

EXAMPLES

1. Evaluate $(0,oo,,l), and 1^(0, GO, t, t).

2. If 1, p, and p
2 are the roots of the equation a;

3 1 = 0, show that

3. Show that if l(PQBCDE...} ~ l(PQB'C'D'E'...), then

ty(PQBB') = ^(PQCC
f

)
= ty(PQDD') = ty(PQEE'), etc.

4. Prove that the converse theorem is also true.

5. If the equation of the projoctivity in Ex. 3 is

axx'+bxy'+cyx'+dyy' ~ 0,

show that y.(PQAA')+ l$(QPAA')

8.32. Permutations

There are twenty-four ways in which the four letters PQRS
can be permuted amongst themselves, but though the value of

the cross-ratio of four points is not independent of their order,

there are not, in fact, twenty-four different values of the cross-

ratio. By the permutation theorem of 3.325

(PQE8) (QP8E) ~ (SEQP) ~ (RSPQ),
and so the cross-ratios corresponding to these four permuta-
tions are equal. In this way the twenty-four arrangements of

the letters can be grouped into six sets of four, and there are

in fact six different cross-ratios. Given one of these six, it is

possible to deduce from the following theorems the other five.

8.321. THEOREM.

]$(PQBS) = ty(QPSE) = ty(SMQP) = 1$(RSPQ).

This is a consequence of the permutation theorem (3.325)

and 8.3.

The theorem may be stated in words thus: // any pair of
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letters be interchanged, and the remaining pair be also inter-

changed, the value of the cross-ratio is unaltered.

8.322. THEOREM. // ty(PQRS) = A, then

ty(QPRS) = ty(PQES) = W(ESQP) = ty(SEPQ) = 1.
A

There is no loss in generality if the points P, Q, M, S are

taken as 0, 1, oo, and t respectively. Then ty(PQRS) = (t l)/t,

and 1$(QPRS) = t/(tl). This proves the first result; the rest

follow by the last theorem.

The theorem may be partially stated in words thus: // either

the first pair or the second pair be interchanged, the new cross-ratio

is the reciprocal of the old.

8.323. THEOREM. If ty(PQRS) = A, then

W(SQRP) = W(RPSQ) = WQSPR) = ty(PRQS) = 1-A.

The theorem may be proved in the same way as the last. It

may be partially stated in words thus : // either the outer pair or

the inner pair be interchanged, the sum of the old cross-ratio and

the new cross-ratio is unity.

The six possible values of the cross-ratio may now be all

deduced by successive application of the last two theorems.

They are: A, I/A, 1-1/A, A/(A-1), 1/(1-A), and 1-A.

The proof that this is so is best shown by a schematic diagram,

as under. In this C-> denotes a permutation which changes
a cross-ratio A into (1 A); R-> denotes a permutation which

changes a cross-ratio into its reciprocal. (C for complement,
R for reciprocal.)

$̂ I

\ . /
(i-j)
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8:33. Gross -ratios of Singular Tetrads

The cross-ratio of four collinear points has been defined only
when the four points are all distinct. It is natural to make an

attempt to generalize this definition so as to cover the cases

when the four points are not all distinct, i.e. when they form a

singular tetrad. /

The cross-ratio ty(xv xz ,
x& #4) *8

> by definition, the fraction

Okvious generalization is to say that the2 #4

cross-ratio of any four points, distinct or not, is the fraction

just written down. This is, however, impossible, since the

fraction is not always significant when two or more of the four

points coincide. Subject to a proviso to be made almost

immediately, the definition is given: // the tetrad (xlt
x2 ,

xs ,
#4 )

is singular, its cross-ratio is defined to be the fraction

provided this is significant.

The following cases should be noticed:

(i) If three or more of the points coincide, the fraction

assumes the indeterminate form 0/0.

(ii) If the first pair or the second pair coincide, and, a

fortiori, if the first pair coincide and the second pair

coincide, but separately, the value of the fraction is unity.

(iii) If the first and the third coincide, or the second and the

fourth coincide, and, a fortiori, if each pair coincide

separately, the value of the cross-ratio is zero.

(iv) In all other cases of coincidence the fraction assumes

the meaningless form 1/0.

The proviso mentioned above is noticed here; Theorem

8.3 is not true of singular tetrads, and must never be applied

to them. Thus, if P, Q, M, and 8 are four distinct collinear

points, ty(PPRS) = ty(PQItll) = 1, but it is not true that

(PPRS) ~ (PQRR); similarly, ty(PQPS) = W(PQRQ) = 0,

but it is not true that (PQPS) ~ (PQRQ). Caution must

therefore be exercised when the cross-ratios of singular tetrads

are in question. In what follows it will always be supposed



THE HOMOGENEOUS MESH GAUGE 193

that a cross-ratio is that of a non-singular tetrad, unless the

contrary is explicitly stated.

The following theorem is sometimes of value.

THEOBEM. // ty(PQBS) is equal to zero or unity, the tetrad is

singular,

8.34. The Gross -ratio of a Harmonic Tetrad

THEOBEM. The necessary and sufficient condition that the four
distinct collinear points P, Q, E, and 8 should form a harmonic

tetrad (PQ,BS) is that ty(PQES) = -1.

First suppose that T$(PQBS) = 1. Then, by 8.322,

W(QPB8)= -1.

Hence by 8.3, (PQES) ~ (QPBS), so that (PQ, ES) is a har-

monic tetrad. The condition is therefore sufficient.

Next suppose that (PQ, US) is a harmonic tetrad, so that

(PQES) ~ (QPES). It follows that if T$(PQBS) = A, A = I/A,

so that A = 1. But since the tetrad is not singular, A ^ 1;

that is to say, A = 1, and so the condition is necessary.

8.35. The Multiplication Theorem

THEOBEM. // the five collinear points 0, U, P, Q, E are all

distinct, then ^(OUPQ).^(OUQE) = W(OUPB).
Choose gauge-points on the line so that none of the points

is the unlabelled point; there is no loss in generality if these are

so chosen that and U have the labels and 1 respectively.

Let p, q, and r be the labels of the other points.

Then

This proves the theorem.

8.36. Theorems involving the Mesh Gauge
The theorems on cross-ratios have so far been confined to

the points on a single line; the two theorems which follow deal

with the cross-ratio of four collinear points in terms of their

4191 o
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non-homogeneous coordinates relative to some non-homogene-
ous mesh gauge imposed on the field.

8.361. THEOBEM. // the non-homogeneous coordinates of four

distinct collinear points P, Q, R, and 8 are, respectively, (xlt y^,

ty(PQRS) = !?(*!, a?,, a!a,af4 )

provided these cross-ratios are significant.

The two cross-ratios cannot both be indeterminate, and one

of them will be indeterminate only if the four points are all on

a line whose equation is x = k or y Jc.

The reader should have no difficulty in proving this theorem

if he bears in mind the definition of the non-homogeneous
coordinates of a point of the field.

8.362. THEOKEM. // P, Q, R, and S are four distinct points on

the line whose parametric specification is x == lr+a, y = mr+6,
and if the values of the parameter r corresponding to these four

points are respectively rv r2 ,
r3 ,

and r4 ,
then

5 ,,.
I and m cannot both be zero; suppose then that I ^ 0. Then

by the previous theorem

2>3>4 ) by 7.221,

= Wi.^'s.'i) by 7.222.

This proves the theorem ifZ=0;ifJ = 0, the proof is entirely

similar, save that it starts from

^(m^+b, mr2+b, mr^b, mr^b).

EXAMPLES

1. Show that if the collinear points 0, U, P, Q, R are distinct, and
if W(OUPQ).W(OUQR).T$(OUKT) = 1, then T coincides with P.

2. Examine the conditions under which Theorem 8.35 is true when
one or more of the points coincide.

3. If W(ABCP) = A, and ty(ABCQ) /*,
show that

4. If "Bf.(xlt xtt xtt co) = ty(yi*yz,yt>K>), show that the three points
whose non-homogeneous coordinates are (xl9 yl ) t (x^y^ t and (xzt yt ) are

collinear.
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8.4. The Homogeneous Mesh Gauge
In 8.1 the homogeneous coordinates of a point on a line,

relative to gauge-points chosen on the line, were defined; in

this section the labelling system is extended to all the points

of the field.

8.41. The Triangle of Reference

Choose any four-point XYZI in the field, and let Xv Y
lt

(XI\
1, Yl the

(V
T\ I 71 \

zxr
and Zl the point

(XY)'

FIG. 52.

Gauge-points are now chosen on the three lines YZ, ZX,
and XY as follows:

(i) on YZ, gauge-points X ,
Xlt and Xu , coinciding with

Z, Xlt and Y respectively;

(ii) on ZX, gauge-points Y ,
Yv and Y^, coinciding with X,

Y, and Z respectively;

(iii) on XY, gauge-points ZQ ,
Zlt and Zw , coinciding with

Y, Zlt and X respectively.

The triangle XYZ so gauged will be called the triangle of

reference-, the point / will be called the gauging point.

Before making use of the triangle of reference to label the

points of the field it is necessary to prove a preliminary theorem

about it,
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8.411. THEOBEM. IfX', Y' 9 and Z' be three points on the

sides of YZ, ZX, XY of a* triangle of reference) and distinct

from its points, the necessary and sufficient condition that the

three lines XX', YY'
3 ZZ' should be concurrent is that

The necessity of the Condition is proved first. Suppose then

that the lines XX', YY', ZZ' are aU on the point P.

(i) Suppose first that P coincides with /. Then each of the

tetrads mentioned in the enunciation is singular, and its cross-

ratio is unity; the theorem is therefore true.

(ii) Suppose next that P and / do not coincide, but that P
is on one of the lines XX13 YYV ZZlf For the sake of definite-

ness take it to be on XX
;
then X' and Xx coincide.

FIG. 53.

Hence (Y^Y'YJ Z (XX^I) & (Z.Z9 Z'ZJ,

and so V1&W7J = JftZvZtZ'Zj,

or WY^Y'YJ. WZoZ^Z'ZJ = 1.

Hence, since ^(ZoZ^Z'ZJ = 1,

JKZoZ.Z'ZJ. ^(707,7%). WZ^Z'ZJ = 1.

(iii) Lastly, suppose that P is not on any of the lines XXlt

YY
lt
ZZV so that none of the pairs Xl and X', Yl and 7', Zl

and Z' coincide.
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FIG. 54.

(YY'\

IY7A*
),
and X" the point "\. Then

ZZJ \XKj
Tr TT-

so that

Also

and so

(77'PB)

(1)

- WX.X9X'X1).'Bt(Xt.X Xl X'), by 8.35,

= l?(Zftl
Z Z'Z1).l?(Z ZZ-'Z1 ), by 8.321,

= ^(Z^ZoZ'ZJ. WY^Y'YJ, by (1).

Hence

5(z zwz'z1).?(r rfll
rT1).i?(z z

ftl
z /z1 )

= i.

This proves that the condition is necessary. That it is also

sufficient follows at once by the reductio ad absurdum argument.
It is perhaps worth noticing that the above theorem is the

equivalent in Projective Geometry of the metrical theorem

usually known as Ceva's theorem. The companion theorem,

Menelaus's theorem, has also a projective equivalent, and,

though it is not needed, it is enunciated here. The proof is

left as an exercise to the reader.

8.412. THEOBEM. IfX' t 7'
9 and Z' are, respectively, on the

sides YZt ZX, and XY of a gauged triangle of reference XYZt
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and are, distinctfrom X, Y, and Z, then the necessary and sufficient

condition that they should be collinear is that

z'z) = -i.

8.42. Labelling the Points of the Field

If (y, z) are the homogeneous coordinates of the point X' in

8.411, relative to the gauge-points XQ ,
X1} and X^, then neither

y nor z is zero, and ^/.(X^X^X'X^ = y/z. Similarly, if (z,x)

and (x, t) are the homogeneous coordinates of Y f and Z f

respec-

tively, relative to the gauge-points collinear with them, then

I?(7orwFT1 )
= 2/^ and $(Z Z^ Z'ZJ = x/t. The theorem

just proved states that the necessary and sufficient condition

that XX'
', 77', and ZZ' should be concurrent is that

y.z.x __

z.*J
~ lj

that is to say, t = y.

In other words, given three numbers x, y, and z, none of

which are zero, there is a unique point P, common to the three

concurrent lines XX'
', 77', and ZZ', where X' is the point

(y, z) on YZ, 7' the point (z, x) on ZX, Z' the point (x, y) on X7.

Conversely, given any point P, not on YZ, ZX, or XY, there

are three numbers x, y, and 2, such that X' is (y, z), 7' is (z, #),

and Z' is (#,t/). These facts are used in the definition of the

homogeneous mesh gauge, which is now given.

DEFINITION. IfXYZ is a gauged triangle of reference, the

homogeneous coordinates of any point of the field relative to this

triangle of reference are defined as follows:

(i) if P be any point on YZ, and if its homogeneous co-

ordinates relative toX
,
Xlt andX^ be (y, z), its homogeneous

coordinates relative to the triangle of reference are (Q,y,z);

(ii) ifP be the point (z, x) on ZX, its homogeneous coordinates

relative to the triangle of reference are (x, 0, z);

(iii) if P be the point (x, y) on XY, its homogeneous coordinates

relative to the triangle of reference are (x, y, 0) ;

(iv) if P be any point not on YZ, ZX, or XY, and if (y, z),

(z, x), (x, y) be the coordinates of the points X', 7', and Z'

respectively, then the homogeneous coordinates of P rela-

tive to the triangle of reference are (x t y,z).
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8.43. Observations on the Definition

(i) In the above definition the homogeneous coordinates of

the three points X, Y, and Z are defined twice over. For

example, the coordinates of the point X are defined in (ii) and

(iii). It is important to notice that both definitions give the

same coordinates for these points. X has coordinates (1,0,0);

7, (0,1,0); Z, (0, 0,1).

(ii) In the homogeneous mesh gauge, a triple number-label

is given to every point of the field. It is clear that this label is

not unique, and that if (x, y, z) is a suitable label for a certain

point, the label (kx,ky,kz) is equally suitable, provided k is

different from zero.

(iii) If P and Q are two different points, their homogeneous
coordinates relative to any triangle of reference are plainly

different.

(iv) If (x, y,z)is any triple number-label other than the label

(0, 0, 0), there is a point of the field whose homogeneous coor-

dinates are (x,y,z). There is no point whose homogeneous
coordinates are (0, 0, 0).

(v) If (x,y,z) and (x', y',z
f

) are two different labels, and if

each is different from (0, 0, 0), they are the labels of different

points of the field, unless x/x
r = y/y

f =
zjz'.

(vi) It has already been noticed that the homogeneous coor-

dinates of the points X, Y, and Z are, respectively, (1,0,0),

(0, 1, 0), and (0, 0, 1). It is easily verified that the coordinates

of the points X19
Y

19
Z

1}
and / are, respectively, (0, 1, 1), (1, 0, 1),

(1,1,0), and (1,1,1).

8.44. Homogeneous Equations

The utility of the non-homogeneous mesh gauge lay in the fact

that the condition to be fulfilled by the points of a locus could

be expressed as an equation between the coordinates of those

points, and the same is true of the homogeneous mesh gauge.
But the reader who is familiar with homogeneous coordinates

in Analytical Geometry will be aware that not every equation

connecting three variables x, y, and z is usefully significant

there; in fact, only those equations of the type known as homo-

geneous equations are of any value. The same is true of the
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homogeneous mesh gauge in Projective Geometry. For the sake

of the reader who is not familiar with the use of homogeneous

coordinates, this point is explained in detail.

In the now-homogeneous mesh gauge any equation of the

form f(x, y) = 0, where//^, y) is an algebraic function, is the

equation of some locus/and not every point of the field satisfies

it. But the corresponding proposition for the homogeneous
mesh gauge is not true. For consider any algebraic equation

f(%, y, z)
= 0, and suppose that the point P, (x , y , z ), satisfies

it; it is not difficult to see that usually the point (kxQ , kyQ ,
Jb )

will not satisfy it; that is to say, the point P both satisfies and

does not satisfy it. The equation x
2
-}-y-\-z~S = 0, for instance,

is satisfied by the point (1, 1, 1) but not by the point (2, 2, 2),

though these are the coordinates of the same point. Moreover,

it may be shown that if P is any point of the field other than

(0, 1, 1) there is a specification of P which satisfies the equa-

tion, and there is also one which does not. Hence every point
of the field save one satisfies the equation and yet does not

satisfy it; the remaining point does not satisfy it. In other

words, the equation is valueless as the expression of a relation

between the coordinates of points on a locus. The only kind of

equation which can possibly be of any value is an equation such

that if (x , y , z ) satisfies it, then (kx , kyQ ,
kz

)
also satisfies it,

for all values of k other than zero. Such equations exist, and

are called homogeneous equations.

, DEFINITION. An algebraic function f(x, y, z) is said to be

homogeneous if and only iffor all values of x, y, and z, other than

f(kx Ten kz]
simultaneous zeroes, the value of the fraction

J
-

'

: is a
f(x, yt z)

constant depending only on the value of k.

An algebraic equation f(x, y, z)
= is said to be homogeneous

if and only iff(x, y, z) is a homogeneous function.

The following theorem is an immediate consequence of this

definition.

THEOBEM. // f(x, y,z) Q is a homogeneous equation, and

tf (#o> 2/o
2o) satisfies it, then (kx^ kyQ ,

Jb
)
also satisfies it, for every

value of k other than zero.

In practice, the only homogeneous functions which need to
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be considered are polynomials, and a polynomial in the variables

x, y, and z is homogeneous if and only if every term of it is

of the same degree in x, y, and z. In the sequel we shall be

concerned only with polynomials of the first and second

degrees. These will occur, respectively, in (i) the linear equation

lx-}-my-\-nz = 0, and (ii) the quadratic equation

ax*+by*+cz
2
+2fyz+2gzx+2hxy = 0.

8.5. Loci in the Homogeneous Mesh Gauge
DEFINITION. // there is an equation f(x, y, z)

= 0, such that

(i) the homogeneous coordinates (kx, ky, kz) of every point of
a certain locus satisfy this equation, for all values of k other

than the value zero, and

(ii) every point whose homogeneous coordinates (kx,ky,kz)

satisfy this equation, for all values of k other than the value

zero, is a point of the locus,

then the equation f(x, y, z) = 0, or any equivalent of it, is termed

the equation of the locus, and the point (x, y, z) is said to satisfy

This definition should be compared with the corresponding
definition for the non-homogeneous mesh gauge (7.6). As has

been pointed out above, the equation of a locus is in reality an

algebraic statement of the condition of a locus, and a definition

of it might have been framed along these lines.

The equations of the line and the point-conic, which are now

given, can be deduced from the corresponding equations in the

non-homogeneous mesh gauge, but the process, though not

intrinsically difficult, is a little complicated; it seems easier

and more natural to deduce them anew from first principles.

8.6. The Equation of the Linef

8.61. THEOREM
The equation in homogeneous coordinates of any line of the

fidd is of theform lx+my+nz = 0)

where not all of /, m t and n are zero.

f It will probably have been already realized that it is not strictly accurate

to speak of the 'equation of a line' ; the locus in question is the range of points
on the lino, and so the equation is the equation of the range of points. The
distinction is pointed out because it is needed later.
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(i) XYZ being the triangle of reference, let P be any point

other than these three; let (# ,y ,z ) be the coordinates of P.

Then from the definition of homogeneous coordinates, any

point on the line XP, distinct from X must have coordinates

Hence the coordinates (x,y,z) of any point on XP, other

than X, must satisfy the equation z^yy^z = 0; moreover, this

equation is satisfied by the coordinates of X, (1,0,0). Hence

the coordinates of every point on the line XP satisfy this

equation.

Further, any point which satisfies this equation must have

coordinates (k, y& z ), and from the definition of homogeneous

coordinates, this is on XP.
Hence the equation of XP is z y y$z = 0, and this is of

the form specified.

Similarly, the equation of any line on Y or Z is of the form

specified.

FIG. 55.

(ii) Consider now any line a, not on X
} Y, or Z. Let L, M,

and N be the three points common to a and YZ, ZX, XY
respectively; let their coordinates be (0,%, m), (-n, 0,Z),

(w, p, 0) respectively.!

Let P, (x, y, z), be any point on a other than L, M, and N, and
let L', M' , N' be, respectively, the points (0,y,z), (x, 0,2), and

f It is a consequence of the protective equivalent of Menelaus's theorem

(8.412) thatp = I; this fact is not used in the proof, but appears as a subsidiary
result.
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(#, y, 0), so that X, P, and L' are collinear, F, P, and M '

are

collinear, , P, and N f

are collinear.

Then (LMNP) & (LZYU),
hence

ty(LMNP) = IKMF1/) = 8(Z,X Z,,,^')

= V((H,-m), (0,1), (1,0), (y, z))

my
(my+nz)'

Similarly, since (LMNP) ~ (ZJf.Of'),

and also, since (LMNP) (YXNN'),

ty(LMNP) = =^.
iw

It follows that

m^ __ (^+ W2;) _ my
(my-\-nz) Ix px

From these two equations it can be at once deduced that

p = Z, and that Ix-{-my+nz 0, and since the points L, M,
and N also satisfy this last equation, every point on a satisfies

the homogeneous linear equation

lx+my-\-nz = 0.

It remains to show that every point which satisfies this

equation is a point on a; this is done by the method of reductio

ad absurdum.

Suppose then that (XQ , y ,
z ) satisfies the equation, but is not

on a. Let Q be the point on a which is collinear with this point

and X\ then the coordinates of Q must be (J,y >
2o)> where t is

some number different from # .

Now since Q is on a,

U+myQ+nzQ
= 0,

but, by hypothesis, fo 4-mt/ +n2 = 0,

hence l(xQ t)
= 0,

-

and since I = 0, it follows that t = # . As this is contradictory
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to the supposition that i ^ x
,
that supposition must be absurd.

Hence (x , y^ ZQ) is on a.

It follows that the equation of any line of the field is of the

form lx-\-my-\-nz = 0.

8.62. THEOREM /
Any locus whose, equation is a homogeneous linear equation

is a line of the field.

This theorem is the converse of the last.

Consider the equation lx-\-my-\-nz = 0. Let (# , y ,
z

) and

(#i> 2/i> %i) be two distinct points on it, so that

lxQ+myQ+nz = 0,

and fai+myi+nZi = 0;

it follows that

I _ m _ n
"~ ~~

y\~x\ 2/0)'

If now I'x+m'y+n'z = is the equation of the line on

(#o>?o 2o) an^
(
xi>yi> zi)> ^ may be proved in precisely the

same way that

l
f m' ri

from these two equations it follows that Ijl'
= m/m' = w/w', so

that the two equations lx-\-my-\-nz = and l'x-\-m'y-\-riz ==

are equivalent. Hence the former is the equation of a line of

the field.

The following theorems are important enough to merit formal

enunciation, but since they are simple consequences of previous

work they are left to the reader as examples.

8.63. THEOREM

The equation of the line on the two distinct points (x , y ,
z ) and

or
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8.64. THEOREM

The necessary and sufficient condition that the three distinct

points (xv yv zj, (x2 , y2 ,
z2), (XB , y3 ,

z3 ) should be collinear is that

2/2

2/3

= 0.

8.65. THEOREM

// (x , 2/0, ZQ ) and (x^ ylt z-^ be two distinct points, then

(i) (A# -f/*#!, Ay -f/*yi A2 +^i) are the coordinates of a point

collinear with them, for all values of A and
p,,

save only the

single pair A =
/LC
= 0, and

(ii) the coordinates of any point collinear with these two may be

expressed in the form (^-{-fjix^ A^/ +jLt2/1} Azo+^Zj).

8.66. THEOREM

// Pj, P2 , P3 , and P4 6e four distinct collinear points, having

respectively the coordinates (x^y^zj, (x2,y2,z2), (x^,y3,z3), and

(x^, 2/4 ,
z4), then the cross-ratio ^(P1P2P3P4) is equal to whichever

of the following cross-ratios are significant:

It should be noticed that at least one of the above cross-

ratios must be significant.

8.67. THEOREM

// (x',y',z
f

) and (x",y",z") be two distinct points, and if

f*i> ^2> -Fs> and P4 be four distinct points collinear with these, Pn
having coordinates

(\nx'^n x",\liy'+Mn
,\nz'^n z

n

) (n= 1,2,3,4),

then VftPtPtPj - ^{(A!,^), (A2)/,2 ), (A3,/x3),

EXAMPLES

1. Determine the equation of the line on the points (1,0, 1), and

( 1, 1, 0) in the form fce-fmy-\-nz = 0, and show that the point (0, 1, 1)

is also on it.

2. Find the coordinates of the point common to the distinct lines

whose equations are lx-{-m^y-^-n^z = and l^x^m^y-^-n^z = 0.
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3. Show that the necessary and sufficient condition that the three

distinct linos lvx+m vy+nvz (v
= 1,2,3) should be concurrent

is that

Z2 0.

j
ws

4. For what values of/are the three points (t,n, m), ( w,M)>

(m, Z,t) collinear? Show that if these three points are collinear and

t 7^ 0, tjie point (l,m,n) is collinear with them.

5. Determine the coordinates of the three diagonal points of the four-

point (x ,y ,zQ ), (xlt y^zl ) t (x^y^z^ t (xzf y3,za).

6. Verify algebraically the harmonic proposition (4.151) that there

is no non-singular four-point whose diagonal points are collinear.

8.7. The Dual Mesh Gauge

In the last chapter no attempt was made to define a mesh

gauge which was the dual of the non-homogeneous mesh gauge

there studied. This was not because it was impossible, but

because it would have fulfilled no useful purpose to do so. It is,

however, extremely useful to elaborate a system of coordinates

which is the dual of the homogeneous mesh gauge, for if this

is done, the algebraic method becomes a much more flexible

instrument for the study of Projective Geometry. For this

reason the dual system is now developed; it follows exactly

the same lines as the development of the homogeneous mesh

gauge in the earlier stages of this chapter.

8.71. Labelling the Lines on a Point

Gauge-lines Z ,
l
lt
and lm are chosen on any point P, and the

open set of lines on P is labelled, each with a single number-

label; this is the dual of the process of labelling the points of the

open set on a line, as in the last chapter.

Double number-labels are now given to all the lines on P in

exactly the same way as double number-labels were given to

the points of a line in 8.1. That is to say, (i) to a line whose

single number-label is x, the double number-label (xlt xz ) is

given, where xjxt
= x, and (ii) to the line lm the double number-

label (r, 0) is given, where r is any number different from zero.

It is plain that with this labelling of the pencil of lines on a

point, the duals of Theorems 8.21, 8.22, 8.23, and 8.24 are all

true, and, in addition, the following self-dual theorem.
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THEOREM. The general equation of a projectivity between a

range and a pencil is ax^+bx^l^+cx^+dx^ = 0, where

(xv x2 ) is the double number-label of any point of the range, and

(llf Z2 ) is the double number-label of the corresponding line of the

pencil, and be ad ^ 0.

The cross-ratio of any four concurrent lines is now defined,

and the duals of Theorems 8.3, 8.321, 8.322, 8.323, 8.?4, and

8.35 are true. The following self-dual theorem is also a con-

sequence of the definition.

THEOBEM. // P
lt
P
zt P& and P be four distinct collinear

points, and Z
lf

Z2 ,
13 ,

and Z4 four concurrent lines, the necessary

and sufficient condition that (Px P%P3P4 )
^

(lt lz Z3 Z4) is that

8.72. Labelling the Lines of the Field

In order to label all the lines of the field a triangle of reference

is first defined.

Choose any non-singular four-line Imni in the field, and let

Zt, mlt and n^ be its diagonal lines, L being the line I
), m, the

\mnj

line , and n, the line

y7 t

Vco

FIG. 56.

Calling the three points mn, nl, and Zw, L, M, and JV respec-

tively, gauge-lines are now chosen on these three points as

follows:

(i) on L> gauge-lines Z0s Il9 and Zw , coinciding with n
t

Zls and
m respectively;
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(ii) on M, gauge-lines r/i , mlt and m^, coinciding with

/, mly and n respectively;

(iii) on N, gauge-lines n
,
n

lt
and raw , coinciding with m, w

lf

and I respectively.

The triangle LMN (linn) so gauged will be called the triangle

of reference for the dupl gauge, and the line i will be called the

gating line.

The dual of Theorem 8.411 can now be proved, and from it

will follow, exactly as from 8.411, that any line of the field p,

not on L, M, or N, determines three numbers A, /x, and i>, whose

ratios are unique and which are such that (i) the line [

*
} has

\rnnj

the label (p,, v) in the labelled pencil on L, (ii) the line
( *) has
\nl/

the label (i/,A) in the labelled pencil on M, and (iii) the line

(

n
P\ has the label (A,u) in the labelled pencil on N. This is

lm]
illustrated in the accompanying figure.

FIG. 67.

Homogeneous coordinates of any line of the field are now

defined, the definition being the dual of that given in 8.42.

EXAMPLES

1. Prove the dual of Theorem 8.411 without appeal to the principle

of duality.

2. Prove the dual of Theorem 8.412 without appeal to the principle

of duality.
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8.73. Envelopes in the Dual Homogeneous Mesh Gauge
DEFINITION. // there is an equation F(X, /*, v)

= 0, such

that

(i) the homogeneous coordinates (kX, kfi, kv) of every line of a

certain envelope satisfy this equation, for all values of k

other than the value zero, and

(ii) every line whose homogeneous coordinates (kX, Tcp, kv) satisfy

this equation, for all values of k other than the value zero,

is a line of the envelope,

then the equation F(X, /x, v) or any equivalent of it is termed the

equation of the envelope, and the line (A, JLI, v) is said to satisfy the

equation.

This definition is the dual of the definition of 8.5, and from

the principle of duality the following theorems are true:

8.731. THEOREM. The equation in dual homogeneous coordi-

nates of the pencil of lines on any point of the field is a linear

homogeneous equation.

8.732. THEOREM. Any envelope, whose equation is a linear

homogeneous equation, is a pencil of lines on some point of the

field.

8.733. THEOREM. The equation of the pencil on the common

point of two distinct lines (A , ^ ,
v ) and (Xlt ^, vj is

or
A p V

0.

8.734. THEOREM. The necessary and sufficient condition that

the three distinct lines (Al5 JL^, v^, (A2 , ju,2 ,
v2 ), (A3,/A3,v3) should be

concurrent is that

"2
= 0.

8.735. THEOREM. // (A , /z ,
v ) and (Alf filt v^ be two distinct

lines, then

(i) (P^o+9 r

^ijPAto+9 r

/
Ltnlw'o+fl !*;i) are the coordinates of a line

4m se
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which is on their common point, for all values of p and q,

save only the single pair p = q = 0, and

(ii) the coordinates of any line which is on the common point of

these two may be expressed in the form

8.736. THEOEEM. // 119 12 , l& and Z4 be four distinct con-

current lines, having respectively the coordinates (Ax , fLV vj,

(A2 , jLt2 ,
v2), (A3 , jjL3 ,

v3 ), and (A4 , jt*4 ,
v4), then the cross-ratio I?(^ 12 13 Z4 )

is equal to whichever of the following cross-ratios are significant:

8.737. THEOBEM. // (A, /i, v) and (A
;

, /x',
v

;

) 6e fwo distinct

lines, and if lv lz , Z3 ,
and l be four distinct lines on the common

point of these two, I having coordinates

(pn*+qn x>pnp'+qnij<
f

>pn v+qn v') (n = 1,2,3,4),
then

The preceding theorems, 8.731-8.737, are the duals of

Theorems 8.61-8.67 respectively; the reader should examine

them carefully, and satisfy himself that they are true; it is a

useful exercise to prove the first two of them without appealing

to the principle of duality.

8.74. Simultaneous Dual Mesh Gauges

The simplicity and beauty of the algebraic method in Pro-

jective Geometry is the result, in large measure, of the simul-

taneous use of the two dual mesh gauges which have been

defined in this chapter. To achieve this, then, it is plainly

necessary to impose two mesh gauges simultaneously on the

field; in one of these, every point of the field is labelled, in

the other, every line. When this has been done, the relations

between the two must be found; that is to say, given the

coordinates of a point in the first mesh gauge, the equation of

the pencil on it in the second must be found, and vice versa,
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and given the equation of a line in the first mesh gauge, its

coordinates in the second must be found, and vice versa.

To avoid confusion in dealing with two mesh gauges simul-

taneously, the following additions to terminology and notation

are made.

(i) The mesh gauge wherein every point of the field is labelled

will be called the point mesh gauge, or the system of point

coordinates', the dual mesh gauge wherein every line of the field

is labelled will be called the line mesh gauge, or the system of line

coordinates', the term complete mesh gauge, or simply, mesh gauge,

will denote both of these two simultaneously.

(ii) A triple number-label which is the coordinates of a point

will, as heretofore, be enclosed in round brackets; a triple

number-label which is the coordinates of a line will in future be

enclosed in square brackets, thus: [A, /*,*>].

In imposing the two mesh gauges on the field it is obviously

possible to choose two arbitrary triangles (that is, triangles

not specially related) as the triangles of reference for the two

mesh gauges. If this is done, there is no gain in generality, and

there is a distinct loss in simplicity; we therefore choose the

same triangle of reference for both.

Let XYZI be any non-singular four-point; the triangle XYZ
is taken as the triangle of reference for the point mesh gauge,

the point / as the gauging point. For the line mesh gauge the

non-singular four-line Imni is chosen, where I, m, and n are,

respectively, the lines YZ, ZX, and XY, and i is the line whose
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equation is (in the point mesh gauge already set up) x-\-y-\-% = 0.

The triangle XYZ (Imn) is the triangle of reference for this

mesh gauge, the line i the gauging line.

It will be noticed that the line i is on three of the harmonic

points, (0, 1, 1), ( 1,0; 1), and (1, 1,0), of the four-point

XYZI, and that the point 1 is on three of the harmonic lines,

[0, 1, 1], [1, 0, 1], and [1, 1, 0], of the four-line Imni.

The following theorem gives the relations between the two

mesh gauges.

8.741. THEOREM. In the complete mesh gauge set up,

(i) the base of the range whose equation in the point mesh gauge
is 'hx-{-p/y-\-vz

= has coordinates [A, ft, v\ in the line mesh

gauge, and vice versa, and, dually,

(ii) the base of the pencil whose equation in the line mesh gauge

is Aff-f\vy-\-vz
= has coordinates (x, y, z) in the point

mesh gauge, and vice versa.

Consider the labelled pencil of lines on X, and the labelled

range of points on YZ. There is a perspectivity between these

two, and in this perspectivity,

(1) the line [0, 1, 0] corresponds to the point (0, 0, 1),

(2) the line [0, 0, 1] corresponds to the point (0, 1, 0), and

(3) the line [0, 1, 1] corresponds to the point (0, 1, 1).
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Hence if, in this perspectivity, the line [0,^,v] corresponds
to the point (0, y } z), and the equation of the perspectivity is

apy+biJiZ+cvy+dvz = 0,

the conditions (1), (2), and (3) above entail that b = c = 0,

and a = d, so that the equation is \iy-\-vz
= 0.

Hence the line [0, /u, v] corresponds to the point (0, v, /i).

Similarly, in the perspectivity between the pencil on Y and

the pencil on ZX, the line [A,0, v] corresponds to the point

( v, 0,A); and in the perspectivity between the pencil on Z
and the range on XY, the line [A, p, 0] corresponds to the point

(fr-A.0).
Take now any line whose equation in the point mesh gauge

is Xx-\-fj,y-}-vz 0. This line is on the points (0, v, /z),

(v, 0, A), and (/*, A, 0); hence, by what has just been proved,
the lines on X, F, and Z respectively which determine its

coordinates in the line mesh gauge are [0,^,v], [A, 0,v], and

[A, //,, 0], That is to say, its coordinates in the line mesh gauge
are [A,^,v].

This proves the first part of the theorem; the second part is

the, dual of this.

This theorem may be stated in another way thus:

8.742. THEOREM. In the complete mesh gauge the necessary

and sufficient condition that the point (x,y,z) should be on the

line [A, JJL, v] is that \x-\-iLy-\-vz
= 0.

8.743. The Complete Mesh Gauge and the Algebraic Repre-
sentation. It should not bo necessary at this stago to point out that tho

complete mesh gauge is something different from the Algebraic Repre-
sentation, though there are formal likenesses between the two. (See

the end of 2.31.) The fact that it is now possible to refer to points and
lines by triple number-labels does not mean, however, that we have

now only one possible representation of Projoctive Geometry, namely
the Algebraic Representation; but it does mean that now, because of

the initial proposition of extension added in the last chapter, we are

confined to those representations which are isomorphic with the

Algebraic Representation.

[EXAMPLES

1. Prove part (ii) of Theorem 8.741 directly, and without appealing
to the principle of duality.

2. Determine the coordinates of the line on both of the points
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(xi> 3/i zi) and (#2 , 2/2> ^2 ). Determine also the coordinates of the point on
both of the lines [Al,/A1 ,i'1] and [A2,/u2,i>2].

3. P is the point (a,6,c); show that three of the harmonic points of

the four-point XYZP are all on the line [a-
1

, b~l
, c"

1
]. Show also that

three of the harmonic lines of the four-lino, [1,0, 0], [0, 1, 0], [0, 0, 1 ], and

[a, 6, c], are all on the poi#t (a"
1
, 6"

1
, c"

1
). Does the second proposition

follow from the first by the principle of duality ?

4. A A 1A ZA 3 is a non-singular four-point whose diagonal points
are Dlt Dz , and Da and whose harmonic points are Hlt H{, JF/2 , H%, H8, H'A .

A complete mesh gauge is set up as follows: (i) the triangle of reference

XYZ for the point mesh gauge is the triangle A^A^A^ (in that order),

and the gauging point is A Q ; (ii) the triangle of reference LMN for the

line mesh gauge is the triangle Dl
DzDa (in that order), and the gauging

line is the line on Hlt H2 , and Ha . Show that in this mesh gauge the

necessary and sufficient condition that a point (x,y,z) shall be on a lino

[A,/Lt,v] is that

af(A-/A-i/)+y(/*-v-A)+2(v-A-jLt) =-- 0.

Determine also, in this mesh gauge, the coordinates of the lino on both

of the points (x^y^z^) and (x^yz,zz ).

8.8. The Equations of the Conic

The conic is a self-dual figure consisting of a point-conic and

the set of all tangents to it, this last forming a line-conic. The

same conic is therefore associated with two equations; one of

these is the equation ofthe point-conic, in the point mesh gauge,

the other is the equation of the line-conic, in the line mesh

gauge. The first will be called the point equation, the second

the line equation. The two are not alternative forms of the

same equation; one is the equation of a locus, i.e. a point-figure,

the other is the equation of an envelope, i.e. a line-figure.

8.81. The Point Equation

THEOREM. The point equation of any conic is of the form

ax*+by*+cz*+2fyz+2gzx+2hxy = 0.

Let O be any point-conic, P and Q any two distinct points

on it. Then there is a projectivity between the pencils on these

two points such that the common points of corresponding lines

are all on O.

Let [1,04,9^] and
[Iz,m2,n2]

be any two distinct lines on

P; then any line on P has coordinates
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Take now two distinct lines [Z3 ,
w3 ,

n3] and
[Z4 ,w4 ,

w4] on Q,

and choose their coordinates in such a way that in the pro-

jectivity between the two pencils the line

[AZ8+/J4,Aw3+/m4,Att3+/xtt4] on Q

corresponds to the line

[AJt-f/^Am^/^'Afti+AtftJ on P.

It is plainly possible to make this choice.

Now the common point of these two is (x, y, z), where

kx = A^mjWg mgW^+A^mgWg m3 n2+m1 n4 m4%)+
+/*

2
(w2 w4 w4 w2 ), (1)

ky = A2(V3

and & ^ 0.

This point (#, y, 2;) is a point on <I>, whatever be the values of

A and
/LI. Hence, if A and p be eliminated from -the three equa-

tions above, an equation will be obtained which is satisfied by
all the points on O.

Rewriting the three equations in the form

ky = a21 A
2+a22 A/i+a23 ja

2
,

kz =
and denoting by J.rs the minor of a

r8 in the determinantf

\an \ 9
we have

and this is a homogeneous quadratic equation, that is, it is of

the form specified.

It remains to prove that any point which satisfies the equa-

tion is a point of O. Suppose then that (ff , y , z )
satisfies the

equation.

f This determinant is not, in general, zero.
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== "

this is permissible since (x
, yQ ,

z ) satisfies the equation.

Then clearly the equations (1), (2), and (3) are satisfied for

some value of Jc by x0) yQ)
and z . That is to say, the point

(#o> 2/o>
2o) ig ^ne common point of two corresponding lines of the

pencils on P and Q\ hence it is on O.

Hence the equation of any point-conic is a homogeneous

quadratic equation.

8.82. The Line Equation

THEOBEM. The line equation of any conic is of the form
Al2+Bmz+Cn*+2Fmn+2Gnl+2Hlm = 0.

This is the dual of the last theorem.

8.83. The Converse Theorems

THEOBEM. Any locus whose (point) equation is a homogeneous

quadratic equation is a point-conic.

THEOBEM. Any envelope whose (line) equation is a homo-

geneous quadratic equation is a line-conic.

The first of these two theorems is proved in precisely the same

way as the second part of Theorem 7.63; the second is the dual

of the first.

8.84. Singular Conies

THEOBEM. The necessary and sufficient condition that the point-

conic whose equation is

ax2+by2+cz2
+2fyz+2gzx+2hxy =

should be singular is that the determinant

a h g

h b f

9 f c

should vanish.

THEOBEM. The necessary and sufficient condition that the line-

conic whose equation is

Al2+Bm2+Cn2+2Fmn+2Gnl+2Hlm =
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should be singular is that the determinant

A H G
H B F

F C

The proof of the first of these theorems is very similar to

that of Theorem 7.631 ;
the second is the dual of the first.

8.85. Tangents and Points of Contact

THEOREM. // ax*+by
z
-\-cz*+2fyz+2gzx+2hxy = be the

point equation of a non-singular conic, then

(i) axxQ+byyQ+czz +f(yzQ+zy )+g(zx +xz )+

+h(xy +yx )
=

is the equation of the tangent at (x , yQ ,
z ) on the conic, and

(ii) (ax
2
+by*+cz*+2fyz+2gzx+2hxy)x

X (azg+fcyg+czg-f 2/2/ z -|- 2gz xQ+2hx 1/ )

= {axx +byy +czzQ+f(yz +zyQ)+g(zx -{-xzQ)+

is the equation of the pair of tangents to the conic which are on the

point (x ,y ,z ).

THEOBEM. If Al*+Bm2+Cn*+2Fmn+2Gnl+2Hlm = be

the line equation of any non-singular conic, then

(i) All +Bmm +Cnn +F(mn +nm )+G(nl +ln )+

+H(lm +ml )
=

is the equation of the point of contact of any line [/ ,
ra

,
w ]

on the conic, and

(ii) (Al
2+Bm*+Cn2+2Fmn+2Gnl+ 2Hlm) x

is the equation of the pair of points common to the line
[/ ,
w

,
w

]

and the conic.

The proof of the first of these two theorems is very similar

to the proof of the first two parts of Theorem 7.632; the second

is the dual of the first.

4191 F f
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It should be noticed that the expression

axxQ+byyQ+czz +f(yzQ+zyQ)+g(zxQ+xz )+h(xyQ+yx )

may be written in either of the forms:

The dual expression can, plainly, be written in similar ways.

8.86. Point Equation and Line Equation of the same
Conic

The preceding theorem enables us to solve the following

problem: Given the point equation of a non-singular conic,

what is its line equation, and vice versa ? The answer is con-

tained in the following theorems.

THEOREM. // ax*+by*+cz*+2fyz+2gzx+ 2hxy = be the

point equation of a non-singular conic, its line equation is

Al2+Bm2+Cn*+2Fmn+2Gnl+2Hlm = 0,

where A, B, C, F, G, and H are the minors of a, 6, c, /, g, and h

respectively in the non-vanishing determinant

a h g

h b f

g f c

THEOBEM. // Al*+Bm2+Cn2+2Fmn+2Gnl+2Hlm = be

the line equation of a non-singular conic, its point equation is

ax2+by2+cz2
+2fyz+2gzx+2hxy = 0, where a, b

} c,/, g, and h,

are the minors of A, B, C, F, G, and H respectively in the non-

vanishing determinant

A H G
H B F
G F C

The two theorems are dual; only the first is proved, the

second then follows by the principle of duality.

Let (# , yQt 2 ) be any point on the non-singular conic whose

point equation is ax2+by2+cz2
+2fyz+2gzx+2hxy = 0. Then

by the preceding theorem the tangent at (XQ, y ,
z )

to this conic

has the equation

0;
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so that the coordinates of this tangent are

Hence if
[I, m, n] are the coordinates of any line on the conic,

a point (XQ, y& z ) must exist such that

M+ax +hyQ+gz = 0, (1)

km+hxQ+by +fzQ
= 0, (2)

kn+gx +fy +cz = 0. (3)

Moreover, since the point (x , y ,
z

)
is on the line p, m, n],

Ix +my +nz = 0. (4)

If #o> y& 2o> and & be eliminated from the equations (l)-(4),

the equation I a h g

m h b f =()
n g f c

I m n
is left.

On expansion, this becomes

Alz+Bm2+Cn*+2Fmn+2Gnl+2Hlm = 0.

This being the line equation of a conic, and being satisfied by

every line on the conic in question, must be the line equation
of that conic. This proves the theorem.

8.87* Pole and Polar

THEOREM. The polar of the point (# , y ,
z

),
relative to the

non-singular conic whose point equation is

axz+byz+czz
+2fyz+2gzx+2hxy = 0,

is the line whose equation is

(axQ+hyQ+gzQ)x+(hx +byQ+fzQ)y+(gxQ+fyQ+czQ)z
= 0.

THEOREM. The pole of the line [7 , m ,
w ], relative to the non-

singular conic whose line equation is

Al*+Bm*+Cnz+2Fmn+2Gnl+2Hlm = 0,

is the point whose equation is

The second of these theorems follows from the first by the

principle of duality. The first has already been proved in
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Theorem 8.85 when the point (x0i yQ) z ) is on the conic; when
it is not on the conic, the proof given in part (iii) of Theorem

7.632 can be adapted to the homogeneous mesh gauge, or the

following independent proof may be used.

Suppose that P is thepoint (# , y ,
2 ), and that Q, (x,y,z),

is any point on the polar of P. Then if U and F are the two

points on the conic collinear with P and Q, (PQ, UV) is a

harmonic tetrad, that is to say, ff.(PQUV) = 1.

Now any point collinear with (xQt y ,zQ) and (x,y,z) has

coordinates (A#+//#0} Ay+M2/o>^2 ~l~M3o) and if this point is on

the conic,

ty+p,y )
= 0,

or
2
-}- 2fyz+2gzx+2hxy)+

= 0.

This is a quadratic equation which gives the two possible

values of the ratio of A to
/x,;

if these be denoted by Alf ftj, and

A2 , ft2 ,
the necessary and sufficient condition that (x, y, z) should

be on the polar of (XQ , yQ ,
z )

is that

that is, i-|
= 0.

Ml /*2

From the theory of the quadratic equation it follows that

the necessary and sufficient condition that (x,y t z) be on the

polar of (x& 2/ ,
z ) is that

(ao; +% +^ )a;+(^ +6y 4-/2o)y+(^o+/yo-fc25o)2 = 0;

this is therefore the equation of the polar of (XQ , yQ, z ).

8.88. Notation

It is convenient in working examples and in subsequent work

to have shortened forms for the various algebraical expressions

which occur in the theory of the conic, and for this reason the

following are introduced.

(i) The expression
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may be shortened to /(#,# ; 2/,t/ ; z,z ), and this may be still

further shortened without ambiguity to f(x,x ). This latter

form will be used henceforward, together with its variants.

Thus the equation f(x, x) = is the short form of

az2
+fo/

2+cz2
+2/t/z-f 2gzx+2hxy = 0;

moreover, it is plain that /(# , x) = f(xlt
XQ ).

(ii) If f(x, x) = is the point equation of a conic, the line

equation of the same conic will be written F(l, 1) 0, and the

same variants of F(l,l) will be used.

(iii) By X will be denoted the expression ax+hy+gz, by 7
the expression hx-\-by-{-fz, by Z the expression gx~\-fy-\-cz.

X
,
yo ,

ZQ , etc., will have their obvious meanings. But if

there is danger of these numbers being confused with the

suffixed letters used for the gauge-points, their use should be

avoided.

8.881. A Note on Examples. Many quite general theorems,

independent of any mesh gauge, can be proved algebraically,

that is, by imposing a mesh gauge on the field. For example, it

is possible to prove Pascal's theorem algebraically. In doing so,

it is allowable to select any conic of the field, and in practical

work this would reduce to choosing the conic whose point

equation is f(x, x) 0. But the actual algebra involved will

be very much simpler if a conic with a simpler equation is

chosen. This is tantamount to choosing a conic of the field,

and then imposing the mesh gauge in such a way that its

equation relative to this mesh gauge is simple. There is plainly

no loss in generality in this method. In the examples which

follow immediately a number of conies with simple point or

line equations will be found. At the end of the set some general

examples, in which the method here explained can be used,

are given.
EXAMPLES

1. Show that the point equation of any conic which is on the three

points of the triangle of reference is of the foTmfyz+gzx -\-hxy = 0, and
deduce the line equation.

2. By the principle of duality, write down the line equation of any
conic which is on the three sides of the triangle of reference.

3. Determine the equations of the conic on the five points (1,0,0),

(0, 1,0), (0,0, 1), fa,?!,*!), and (
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4. Prove that the necessary and sufficient condition that the two

points (#1,2/1,21) and (#2 , 2/2 , z2 ) shall be conjugate points relative to the

conic whose point equation is /(a?, x) is tba>tf(xlt xz )
= 0.

6. Show that the triangle of reference is self-polar relative to any
conic whose equation is of the form axz+byz+cz2 ~ 0.

6. What are the coordinates of the pole of the line on (# , yQ , z ) and

(i,&i) relative to the conic whoso point equation is f(x, x) ~ 0?

7. Show that two conies have four points in common.
8. Iff^XfX) a,ndfz(x,x) denote respectively tho expressions

a1 x*+b1 y*+cl z*+2flyz+2gl zx+2hl xy
and az x

z+bz y*+cz
zz+2fz yz+2gz zx+2hz xy,

show that any conic which is on the four common points of the two

conies, whose point equations are fi(x, x) = and fz(x, x) = 0, has a

point equation of the fatm\fi(x,x)+pft(xf x) 0.

9. Determine the coordinates of the common points of the two conies

whose point equations are

fiyz+9izx+hixy = and fz yz-\- gz zx+hz xy = 0.

10. Dualize Ex. 8.

11. Show that the necessary and sufficient condition that the conic

whose point equation is f(x, x) should consist of two coincident

ranges is that

6c-/2 = ca-g* = ab-h* = gh-af = hf-bg=fg-ch = 0.

12. Determine the point equation and the line equation of a conic

on the point (a, b, c) and such that the lines YZ and ZX are tangents to

it, Y and Z being their respective points of contact.

13. Show that for all values of t and w, save simultaneous zeros, the

point [i(t*+u*)> (
2 2

), 2tuR] is on the non-singular conic whose point

equation is R*xz
-\-R*y*-}-z*

= 0. Show also that any point on this conic

has coordinates which may be expressed in this form.

14. P is the pole ofp relative to a conic O. Show that if the locus of

P is a range of points on a line, the envelope ofp is a pencil on a point.

Show also that if the locus of P is a point-conic, the envelope ofp is a

line-conic.

15. Show that if two triangles are self-polar relative to a certain conic,

their six vertices are on a second conic. (Use Ex. 6.)

16. Find the locus of the poles of a line relative to the conies of a

pencil on four points, no three of which are collinear. (Take the four

points as (0, 0, 1), (0, 1, 0), (1, 0, 0), and (1, 1, 1).)

17. The sides B<7, CA, AB of a triangle are tangents to a conic, and

D, E, F are, respectively, their points of contact. Show that the three

lines AD, BE, CF are concurrent.

18. Show that if two different non-singular conies have four distinct

points in common, there is one and only one triangle which is self-polar

relative to both.



CHAPTER IX

THE METRIC GAUGE

9.1. Distance and Angle in Elementary Geometry
THE terms length (or distance) and angle are familiar in elemen-

tary Geometry, where they are taken as intuitive notions; we
are now in a position to introduce the same terms into Pro-

jective Geometry, not as intuitive notions, but as terms with a

perfectly definite meaning, and to show the relationship between

these well-defined terms of Protective Geometry and the intui-

tive notions of elementary Geometry.
In elementary Geometry distance is something measurable

associated with two points, angle something measurable associ-

ated with two lines. We speak of the distance between two

points being so many inches or centimetres, the angle between

two lines being so many degrees or radians. But though it is

difficult to speak more precisely than this (simply because the

notions are intuitive and not defined), there are certain funda-

mental properties of distance and angle which are recognizable

as being characteristic. If we denote the distance between two

points P and Q by the symbol (PQ), these fundamental pro-

perties may be expressed thus:

(i) (PP) = 0,

(ii) (PC) = -(<2P),

(iii) if P, Q, and E be three collinear points, then

(PQ)+(QR)+(RP) = 0.

The corresponding properties of angle are slightly different.

If by [pq] is denoted the angle between two lines p and g, and

if this angle be measured in radians, then

(i) [pp]
= 2nirt where n is an integer, positive, negative, or

zero,t

(ii) [pq]
=

[qp]-{-2n7T, where n is an integer,

(iii) ifp,q, and r be three concurrent lines, then

where n is an integer.

f The phrase 'where n is an integer, positive, negative, or zero' will always
henceforward be shortened to 'where n is an integer*.
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Now, plainly, it is desirable that when the terms distance and

angle are defined in Protective Geometry their meanings shall

bear some resemblance to the meanings these same terms bear

in elementary Geometry. This is effected by so choosing their

definitions that propositions analogous to the above six are

true of them. It will be found that the meanings given to the

terms are in fact generalizations of the meanings they bear in

elementary Geometry.

9.11. Distance on a Line: Angle on a Point

A theorem was proved in the last chapter which can be re-

stated in a form which resembles the third of the three proposi-

tions stated above about angle in elementary Geometry. The

dual of Theorem 8.35 states that if o, u, p> q, and r be five con-

current lines, the first two being distinct and coinciding with

none of the last three, then

and this is equivalent to

where n is an integer,f and t2 = 1.

This form of the theorem provides the basis of a definition of

the term angle in Projective Geometry.

Let L be any point, o and u a pair of distinct lines on it;

these lines will be called the metric gauge-lines on L. The angle

between two lines on L is now defined.

DEFINITION. // p and q be two lines (distinct or not) on a

point L, both of which are distinct from the metric gauge-lines

o and u on L, the angle [pq] is defined to be any one of the values of

klogJ$(oupq), where k is a constant different from zero.

The ambiguity of the logarithmic function leaves the exact

measure of an angle ambiguous by an integral multiple of 2kvri
t

just as in elementary Geometry the exact measure of an angle

(in radians) is ambiguous by an integral multiple of 2n. In

actual work this ambiguity is avoided by using periodic func-

tions of the angle, or by a suitable convention; such a conven-

tion will be introduced later.

t Owing to the ambiguity of the logarithmic function, it is impossible to

say that n is necessarily zero.
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The principle of duality suggests that the dual concept be

defined, and though it is further removed (apparently) from

the notion of distance in elementary Geometry than the pro-

jectively defined angle is from angle in elementary Geometry,
it is given the name distance.

Let I be any line, and U a pair of distinct points on it;

these points will be called the metric gauge-points on I.

DEFINITION. // P and Q be two points (distinct or not) on a

line I, both of which are distinctfrom the metric gauge-points and

U on I, the distance (PQ) is defined to be any one of the values of

klogJ$(OUPQ), where k is a constant different from zero.

9.12. Notes on the Definitions of Distance and Angle

(i) In Protective Geometry the term distance is a relative

term; it is meaningless unless metric gauge-points have been

specified. Hence the distance between two points in Projective

Geometry is not, as in elementary Geometry, an apparently
inherent property of the two points; it is a property of these two

points and the metric gauge-points.

(ii) In Projective Geometry the distance between two points

may be any number whatever, real or complex; in elementary

Geometry it is usually taken for granted that the distance

between two points is always a real number.

(iii) It should be observed that the distance between two

points is independent of the mesh gauge imposed on the field,

since the cross-ratio of four collinear points is independent of

the mesh gauge.

(iv) The constant k appearing in the definition is termed the

scale constant ; its function is not very important.
Similar remarks may be made about the projective definition

of angle.

EXAMPLES
1. If P is a point on I distinct from the metric gauge-points thereon,

show that (PP) Zkniri, where n is any integer. Dualize.

2. If P and Q are distinct points on I, both of which are distinct from

the metric gauge-points thereon, show that (PQ) = (QP)+2kniri,
where n is any integer. Dualize.

3. If P, Q, and R be three points on a line I, all distinct from the
4191 Gg
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metric gauge-points thereon, show that (PQ)+(QR)+ (RP) = 2Jcnm,

where n is any integer. Dualize.

4. If P, Q, and B be three points on a line I, all distinct from the

metric gauge-points thereon, and if (PQ) ^ (PR)-\-%kniri, show that

Q and R do not coincide. Dualize.

6. IfA t B, C, and D are four points on a lino I, all distinct from the

metric gauge-points thereon, show that

(AC)+ (BD) =

9.2. The Metric Gauge-conic

If the notions of distance and angle are to be of general use

in Projective Geometry, it is clear that metric gauge-points

must be assigned on every line of the field and metric gauge-
lines on every point of the field. Plainly, it is possible to choose

these metric gauge-points and gauge-lines in any way we please,

but for the sake of simplicity it is advisable to choose them in

a simple and orderly way. Now, however they be chosen, the

mixed figure consisting of all the metric gauge-points and gauge-
lines is such that at least two ofits points are on every line of the

field, and at least two of its lines are on every point of the field.

The simplest mixed figure which has both of these properties

is the non-singular conic, and so we choose the metric gauge-

points and gauge-lines in such a way that the mixed figure which

they form is a non-singular conic. This non-singular conic is

called the metric gauge-conic, or, more simply, the metric gauge.^

It will be realized that if a non-singular conic be taken as

the method of specifying the metric gauge-points and gauge-
lines there will be certain lines of the field on which the metric

gauge-points coincide, and certain points of the field on which

the metric gauge-lines coincide. These points and lines will be

noticed in detail in due course.

The general definitions of distance and angle for the whole

field are now given formally in the following terms.

DEFINITION. The non-singular conic O being the metric gauge,

(i) the distance (PQ) between any two points P and Q is defined

to be any one of the values of klogty(M1M%PQ) (pro-

f Cayley and others call this conic the absolute conic or the absolute. The
term is not adopted here because of the false implication in the word absolute;

there is nothing absolute or fixed about the metric gauge.
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vided this expression is significant), where M and M2 are

the points on O collinear with P and Q, and k is a fixed

scale-constant different from zero;

(ii) the angle [pq] between any two lines p and q is defined to be

any one of the values of k' log 1^(7% ra2pg) (provided this

expression is significant), where m and w2 are the lines on

O concurrent with p and q, and k
f

is a fixed scale-constant,

different from zero.

9.21. Notes on the Definition.

(i) Break-down of the Definition. The expression for (PQ)
ceases to be significant if either or both of P and Q are on the

metric gauge. The dual proposition is also true.

(ii) Isotropic Points and Lines. If Z be a line on the metric

gauge, and P and Q be two points on I, the distance (PQ) is

2kmri, however P and Q be chosen, since on I the metric gauge-

points coincide, and so I?(Jf3M2 PQ) = 1. Lines which have

this peculiarity are called isotropic lines; the dual term is

isotropic point. Clearly all isotropic lines are on the metric

gauge, and vice versa.

Points and lines which are not isotropic will be called non-

isotropic or ordinary points and lines. Even at the risk of

labouring the obvious, it may be remarked that there is no

essential difference between ordinary and isotropic points; they
have different properties relative to the metric gauge.

(iii) Order of the Metric Gauge-points. If P and Q are a pair

of distinct ordinary points, and Mlt M2 are the metric gauge-

points collinear with them, the definition of distance does not

make it clear whether (PQ) is equal to Iclog^M^M^PQ) or

Moglj^JfgJifiPQ); that is to say, it does not specify in what

order the two metric gauge-points are to be taken in the cross-

ratio. The question is left open, but the convention is adopted
here that when more than one distance is measured on the

same line the same order of the metric gauge-points is kept
for all of them. Thus if P, Q, R, S,. . . are collinear points, and

MI, M% are the metric gauge-points collinear with them, and if

(PQ) is taken as klog^M^PQ), then (US) will be taken as

), etc.
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The choice of a particular order for the metric gauge-points

on any line corresponds to the choice in elementary Geometry
of a positive direction on a line; for plainly,

where n is any integer. /f"he dual convention is also made.

9.22. Laguerre's Theorem in Elementary Geometry
The difference between the metrical notions of Projective Geometry

and those of elementary Geometry is not so great as it may appear to

be at first sight. There is a theorem in elementary Geometry, known as

Laguerre's theorem, which shows the similarity between the two.

Laguerre's theorem states that if P, Q, and R be any three points,

and if I and J be the circular points at infinity, the angle PQR is equal
to -^logI(PI,P7,PQ,P.R).

This theorem is tantamount to saying that angle in elementary Geo-

metry may be measured in exactly the same way as in Projectivo

Geometry, the metric gauge-linos on any point P being the lines PI
and PJ. The line-figure formed by all these metric gauge-lines consists

of the pencils of lines on I and J\ that is to say, it is a singular conic.

In a certain sense, then, it can be said that in elementary Geometry the

gauge-conic is a singular conic. Though wo have in this chapter confined

ourselves to non-singular conies as metric gauges, we shall see in the

next chapter how the definitions of distance and angle can be extended

in such a way that singular conies can bo used as metric gauges.

9.3. Deductions from the Definitions

9.31. Pairs of Orthogonal Points and Lines

THEOREM. The necessary and sufficient condition that two

ordinary points, P and Q, should be conjugate points relative to

the metric gauge is that (PQ) = (2%-f- l)&7rt, where n is any

The necessary and sufficient condition that two ordinary lines,

p and q, should be conjugate lines relative to the metric gauge is

that \jpq\
= (2n+l)jfori, where n is any integer.

The two theorems being dual, only the first is proved.
Let MI and M2 be the points on the metric gauge collinear

with P and Q. Then the necessary and sufficient condition

that P and Q should be conjugate points relative to the metric

gauge is that (M1M2 , PQ) should be a harmonic tetrad; that is,

that ^(M^M^PQ) = 1; that is, that (PQ) = (2n+l)kiri.

It is convenient to have a name for pairs of points or lines
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which are conjugate relative to the metric gauge; two points

thus related will be said to be orthogonal to each other, or to be a

pair of orthogonal points. Dually, two lines so related will be

said to be orthogonal to each other, or to be a pair of orthogonal

lines. They have properties analogous to those of perpendicular
lines in elementary Geometry.

9.32. Distance and Angle in the Homogeneous Mesh
Gauge

THEOREM. // a homogeneous mesh gauge be imposed on the

field, and if in this the equations of the metric gauge bef(x } x) =
and F(l,l) = 0, then

(i) the distance (PQ) between two ordinarypoints P, (xv yv zj,

and Q, (x2) y2 ,
z2 ), satisfies the equation

_
2k favXJftXtoXJ'

(ii) the angle [pq] between the two ordinary lines p, [l^mv
and q, [12 ,m2 , wj, satisfies the equation

2k'

Suppose that MI and M2 are the two points on the metric

gauge collinear with P and Q, Let their coordinates be

and (A2

Since these two points are on the metric gauge, the two ratios

Aj to fa and A2 to
ju,2 satisfy the quadratic equation

^f(^vXl)+2Xfjif(xli x2)+^f(x2)
x2 )
= 0,

and we may therefore write

and

Now

and, similarly,
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it follows that

Hence

This proves the first part of the theorem; the second part is

the dual of the first.

9.33. The Equidistance Locus and the Equiangular

Envelope

THBOBEM. The locus of points which are all at a distance

2kniri+d (where n is any integer) from a given ordinary point P
is the figure consisting of all the ordinary points on

(i) the polar ofP relative to the metric gauge ifd= (2w-f- 1 )kni9

where m is any integer ,

(ii) a non-singular point-conic having double contact with the

metric gauge if d = (2m-f l)&7rt, where m is any integer.

The first part of the theorem is an immediate consequence
of 9.31.

The second part of the theorem is a consequence of 9.32; it

may also be proved in other ways. The details are left to the

reader. The dual theorem is worth enunciating formally:

THEOREM. The envelope of lines, all of which make an angle

2k'mri+6 (where n is any integer) with a given ordinary line p, is

the figure consisting of all the ordinary lines on

(i) the pole ofp relative to the metric gauge ifd (2m+l)k
f

7ri)

where m is any integer,

(ii) a non-singular line-conic having double contact with the

metric gauge if 6 ^ (2m+l)'irt, where m is any integer.

The locus and envelope here given should be compared with

the corresponding locus and envelope in elementary Geometry.
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EXAMPLES
1. If P, Qv Qv Q9 are four collinear ordinary points, and if

(PQj - (PQZ )
= (P<23 ),

show that at least two of the three points Qt , Q2 , Qt coincide, unless all

the points are on an isotropic line.

2. I is an ordinary line, and P an ordinary point on it. Show that, in

general, there are two and only two points Q and Q' on I such that

(PQ) = (PQ') = d. Show also that Q and Q' coincide in two cases.

3. P and P' are a pair of orthogonal points; Q and Q' are a pair of

distinct points on the line PP', such that (PQ) (PQ')', show that

(P'Q) = (P'Q').

4. P, P', Q, Q' are four distinct collinear ordinary points on an

ordinary line; show that if (PQ) = (P'Q) and (P'Q) = (P'Q'), then either

P and P' are orthogonal, or Q and Q' are orthogonal, or both pairs are

orthogonal. Show that in the last case (PQ) =- (P'Q').

5. If XYZ be the triangle of reference, and f(x, x) =- the point

equation of the metric gauge, determine the value of cosh2 - -

6. The distance between a point P and a line I is said to be d if and

only if (PQ) == d, where Q is the point common to / and the line on P
orthogonal to I. Show that the distance of a point from its polar is

(2n+ l)krri t where n is any integer.

7. Iff(x,x) 0, F(l,l) = are the equations of the metric gauge,
show that the distance d between the ordinary point (x t y,z) and the

ordinary line [Zf m, ri\ satisfies the equation

where A =
a h g
n i f
ff f c

i

8. Dualize the definition in Ex. 6 to obtain the definition of the

term angle between a point and a line. Show that the angle between a

point and a line is equal to the distance between them. (Use Ex. 7.)

9. Show that if two ordinary points are equidistant from an ordinary
line they are equidistant from the pole of the line relative to the metric

gauge. Hence or otherwise determine the locus of points all of which are

equidistant from a given ordinary line. (This locus should be compared
with the corresponding locus in elementary Geometry.)

10. Show that, if k k', the distance between two ordinary points is

equal to the angle between their polars relative to the metric gauge.
11. O is a non-singular conic distinct from the metric gauge, and

A t B, C, and D are four distinct ordinary points on it. Show that, if

k = $, then for all points P on O, the expression

is constant. (By APC is meant the angle between PA and PC.)
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12. M1 and Mz are the metric gauge-points on a line I. Show that if

A and A', B and B' are two pairs of corresponding points in a pro-

jectivity on I whose self-corresponding points are Ml and M2 , then

(AA') (BB')4-2fcn7rt, where n is any integer.

9.4. Preamble to
Particular

Metrical Geometries

We have so far investigated the notions of length and angle
in the most general case possible, and though this general

investigation can be taken farther, it is more interesting and

useful to consider certain special cases, and to pay special

attention to certain points and lines of the field. To do this

we require some preliminary notions.

9.41. Real and Complex Points and Lines

DEFINITION. A homogeneous mesh gauge being imposed on

the field, a point (x, y, z) is said to be a real point if and only if

there is a number c, not equal to zero, such that all the numbers

ex, cy, cz are real numbers. All other points are said to be complex

points.

In other words, a real point is a point whose coordi-

nates in the mesh gauge can be specified by three real

numbers.

The terms real line, complex line, are defined dually.

The warning is repeated here against imagining that there is

any inherent difference between real and complex points or

lines; the distinction arises solely because of the imposition of

the mesh gauge. Strictly speaking, real points are real relative

to the mesh gauge.

It should be clear that the choice of the triangle of reference

and the gauging point determines which points of the field are

real, and which complex. But it should be noticed (though the

fact is not proved here) that different triangles of reference and

gauging points can determine the same set of points to be the

real points of the field. In fact, if one triangle of reference and

gauging point makes a certain set of points the real points of

the field, then there are an infinity of other triangles ofreference

and gauging points which make the same set of points the real

points of the field.
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EXAMPLES

1. The line on two distinct real points is real. Dualize.

2. Is it true to say that the line on two distinct complex points is

complex?
3. Show that there are complex points on every line. Dualize.

4. Show that on a complox line there is one and only one real point.
Dualize.

5. Show that the line on the two distinct points

(a+ia',b+ib',c+ic') and (a-ia',b ib',c ic'),

where a, a', 6, &', c, c' are real and not all zero is a real Hue. Dualize.

6. Show that if a real line is on the complex point

(a+ia',b-\-ib',c+ic') t

it is also on the complex point (aia',bib't cic f

). Dualize.

9.42. Classification of Non-singular Conies

DEFINITION. A homogeneous mesh gauge being imposed on

the field, a conic whose point equation is /(#, x) = is said to be

a real conic if and only if there is a number d, differentfrom zero,

such that all the numbers da, db, dc, df, dg, dh are real numbers.

All other conies are said to be complex conies.

There is no loss in duality in speaking only of the point

equation in the definition; if the point equation of a conic has

real coefficients, the line equation also has real coefficients.

We are concerned in the sequel with real conies only, and

these can be divided again into two classes. The distinction

which is about to be made can be easily illustrated. Consider

the two conies whose point equations are

x2+y2+zz =
and ic

2+y2 z2 = 0.

It will be seen that both of these conies are real conies, but

while on the second there certainly are some real points, e.g.

(V2, V2, 2), on the first there are no real points. For if x, y,

and z are any real numbers, not all of which are zero,

> 0.

We may therefore divide real conies into two classes: (1)

those on which there are no real points, and (2) those on which

there are some real points. The algebraic criterion whereby a

given real conic may be classified in practice is irrelevant here,
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so also are the technical names for the two classes. It will be

sufficient to give them temporary, working, names, and we call

the first class real-complex conies, the second, real-real conies.

The connotation of these terms is plain.

9.43. Metrical Geometries

By the term Metrical Geometry is meant, strictly, the inter-

pretation, in terms ofthe defined concepts ofdistance and angle,

of the theorems of Projective Geometry when a metric gauge-
conic has been chosen and fixed. When this process is under-

taken without an auxiliary mesh gauge it is known as Synthetic

Metrical Geometry; when it is undertaken with a mesh gauge
it is known as Algebraic Metrical Geometry.
The method by which we have approached Metrical Geometry

makes it impossible to distinguish between the real and complex

points of the field without impressing a mesh gauge, and since

this distinction is very important in the sequel, it is necessary

for us to proceed by the algebraic method. For the choice of a

real-real conic as metric gauge gives rise to one set of metrical

theorems about the real points of the field, while the choice of

a real-complex metric gauge gives rise to a different set.

The first ofthese sets oftheorems is identical with the metrical

Geometry discovered by Lobatchewskij and Bolyai, and some-

times called Hyperbolic Geometry; the second set is identical

with the metrical Geometry discovered by Kiemann, and some-

times called Elliptic Geometry.
These metrical Geometries are sometimes called non-Eucli-

dean Geometries, but the term is misleading in so far as it

conveys the idea that there is no connexion between Hyperbolic
and Elliptic metrical Geometries on the one hand, and on the

other the Euclidean metrical Geometry which we are familiar

with as elementary Geometry. The next chapter will show in

detail the extent of the connexion that there is between them,
and it is sufficient here to say that metric gauges exist for

Euclidean metrical Geometry, but that they are singular conies,

while the metric gauges of this chapter are non-singular conies.

Even at this stage it is useful to mention a point which is

vital to the true understanding of Geometry. It should be clear
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that there are certain theorems of Projective Geometry which

can be proved either synthetically or algebraically, and which

presuppose no metric gauge; such theorems are aptly called

projective theorems. But there are other theorems which are

only significant when a metric gauge has been impressed; that

is to say, they presuppose a metric gauge of some kind. Such

theorems are called metrical theorems. If this is borne in mind,
it should be clear that the distinction between Elliptic, Hyper-

bolic, and Euclidean Metrical Geometries is not a distinction

between the fields of which they are true; it is a distinction

which arises solely from the choice of a particular metric gauge.

On one and the same field, an Elliptic, a Hyperbolic, or a

Euclidean metric gauge may be imposed at choice. The pro-

jective theorems are the same whatever metric gauge be chosen,

but the metrical theorems differ.

9.5. Elliptic Metrical Geometry

Elliptic Metrical Geometry results from the choice of a real-

complex conic as metric gauge. The choice may be made in a

variety of ways, but for simplicity we choose that conic whose

point equation is
^i+^a+^i ,

where c is a positive number. There is no loss in generality ifwe
take c 1, and this we do. The symbol f(x, x) will stand for

x2
-\-y

2
-\-z

z
, and for the sake of simplicity we shall shorten such

expressions as f(xv x2), f(xa ,
x3 ), etc., to/12 , /33 , etc.

The line equation of the conic is plainly l
2
-{-m

2
-{-n

2 = 0, and

the expressions Fllt F2Z , etc., will have their obvious meanings.

We agree, since we are dealing only with real points, to specify

the coordinates of all real points by real numbers only; e.g. we
shall exclude such specifications of the point (J, 1, 5) as (%i, i, 5i).

An algebraic theorem, of great importance in what follows,

is proved first.

9.51. Lagrange's Identity

THEOBEM. I/ (xv ylt
z{) and (x2 , y& z2) are any ^wo real points,

then
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the two expressions being equal to zero if and only if the points

(
xi>yi> zi) and (X2>y&*i) coincide.

The first expression on simplification and rearrangement
becomes

+ (%l yl+%1yl- 2*1 #2 2/1 2/2)

=
(2/1 22-2/2 %)

2+ (1 #2-22 *l)
2+ (1^2-^2 2/l)

2
-

This expression, being a sum of squares of real numbers,

cannot be negative, and it is zero if and only if the two points

(#i> 2/i> Zi) and (#2> 2/2 > coincide.

9.52. Distance on a Line

If P and Q be two real points whose coordinates are respec-

tively (#i>&> zi)> (#2> 2/2> 22)> i* follows from the last theorem

that/u/22 (/12 )

2 > 0, that is to say,

the first of these two inequalities being .a consequence of the

fact that none of the numbers involved in (/i2)
2
/(/u/22)

negative,

From this it follows that there is a real number 6 such that

^ 6 < TT, and cos 6 = (f12)I(f11/22)^9 the positive square root

being taken in the denominator of this fraction.

Now if M! and M2 are the metric gauge-points on the line

PQ, their coordinates being, respectively,

and

the ratios AJfij and A2/^t2 satisfy

A2
/ii+2A/z/12+M2

/22 = 0. (See 9.32.)

We now make the convention that

andOilMJ.
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From the analysis in 9.32 it follows that

- "* =

where n is any integer.

In order that distances between real points shall be real, we
take A; to be a multiple of i, the most convenient being $.
We therefore fix, once for all, that k = -

Ji, so that

(PQ) = 6+H7T,
where n is any integer.

In the limited amount of work on Elliptic Metrical Geometry
which is done here, there will be no loss in generality and no

ambiguity if n is taken as zero, and hence, for all real points

P and Q,

(i) < (PQ) < 7T,

(ii) cos(PC) = /i2/(/n/22)* thepositive square root being taken

always in this fraction,

(iii) < sin(PQ) < 1.

9.521. Direction on a Line. It will probably have been

noticed that if we had taken (x2 , y^ ^2) as the coordinates

of Q throughout the preceding work, the sign of/12 would have

been changed, and this would have given, as the value of (PQ),

the supplement of that obtained. At first sight this appears to

be an ambiguity, but it is not so in fact. For the effect of

changing the sign of the coordinates of Q is to interchange the

order of the metric gauge-points M and Jf2 ; this interchange

occurs because of the method we adopted of specifying their

coordinates. Hence the apparent ambiguity is explained. In

actual work all pitfalls will be avoided if, once the coordinates

of a point have been specified by a particular triple number-

label, this specification is rigidly adhered to throughout.

Another apparent ambiguity may occur to the reader. If we

had undertaken to evaluate the distance (QP) in the preceding

section, the result we should have obtained, following the same

process, would have been exactly the same as that obtained for
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(PQ). The reason for this is that again we should have inter-

changed the gauge-points. Hence the rule must be followed:

take and fix two points on the line, express all other points on

the line in terms of the coordinates of these two; determine and

fix the metric gauge-joints and the order in which they are to

be taken; determin/all distances on the line by applying the

definition for distance.

It may be observed that there are, so to speak, two finite

paths from P to Q on the line PQ. By fixing one order ofmetric

gauge-points we measure the length of one of these paths; by

fixing the other order we measure the other. Still speaking

roughly, the whole set of real points on the line PQ form a

closed path. The fixing of the order of the metric gauge-points

determines which direction shall be followed in going from P to

Q. More than this need not be said here, since it is not our

purpose to enter deeply into Metrical Geometry.

9.53. Angle on a Point

Since the expression F(l, I) has the same algebraic form as

f(x, x) y the whole of 9.52 can be dualized. It follows that, if

p and q be two real lines whose coordinates are, respectively,

(i) < [pq] < 77,

(ii) coa[pq] = F12/(FUF22)*, the positive square root being taken

in this fraction,

(in) < suTjjjg] ^ 1.

9.531. Convention about the Coordinates of a Line on

Two Points. The remarks of 9.521 about the need for con-

sistency in specifying the coordinates of a point may be dual-

ized, and this makes it essential to adopt a uniform convention

for specifying the coordinates of a line on two points whose

coordinates are known.

If P and Q are the points (xl9 yv Zj) t (#8 ft) 2a) respectively,

we agree to specify the coordinates of the line PQ as

and the coordinates of the line QP as
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9.54. The Triangle in Elliptic Metrical Geometry

As an illustration of Elliptic Metrical Geometry, we consider

the metrical properties of a triangle therein.

Take any triangle ABC whose vertices are, respectively,

(#i2/i 2i) (#22/2 22)> (a^S/s^s)- Tne sides BC> GA, AB will

have coordinates

respectively. These will also be referred to as [^m^nj,
[I2,mt,n2], [Z3,m3,7i3] respectively.

We use the symbols a, 6, and c for the lengths of EG, CA,
AB respectively.

By the angle BAG we mean the angle between the lines AC
and AB; that is, between [

?2 ,
m2 , %] and

[Z3,w3,?&3]; this

angle is referred to as the angle A. Hence

cosA = -J

and not FZJ(F^2F^. Similarly for the angles B and C.

9.541. Preliminary Algebraic Identities. Lagrange's

identity states that Fn =/22/33 (fza)
2

>
and there is a similar

identity, which the reader should verify, namely,

It follows from these thatFu ,
FZ2, F^, F^, FzltF12 are the minors

of /n> /22 /33> /23 /3i /i2 respectively in the symmetrical deter-

minant f f f
Jll /12 /13

/21 /22 /23

/31 /32 /33

This determinant will be symbolized by A; if it is written out

in full, it will be recognized at once as

3 2/3

it is therefore positive.

From the expressions for cos a and cosA it is now possible to
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deduce the values of all the trigonometrical functions of the

sides and angles. In fact

Similar results for the other sides and angles are obtained by

cyclic permutation of letters and suffixes.

9.542. The Cosine Formula. THEOREM. In a triangle

ABC in Elliptic Metrical Geometry

cos a = cos b cos c+sin b sine cosA 9

and coeA = cos B cos (7+sinB sin C cos a.

= cosa-cos6cosc.
*

This proves the first part of the theorem; the second part

is proved in a similar way.

9.543. The Sine Formula. THEOREM. In a triangle ABC
in Elliptic Metrical Geometry

sinA __ sinl? _ sinO _ fAjf11/22/33) i

sina
~*

sin b
~~

sine
~~"

(F^ ^22^33!

This theorem is an immediate consequence of the results of

9.541.

9.544. The Sum of the Angles of a Triangle. THEOREM.

In a triangle ABC in Elliptic Metrical Geometry

A+B+C>ir.
By 9.542,

cosA = cos B cos (7+sin B sin C cos a,

and since
cos(5+ C) = cos B cos ^7^^B sin Cy

cosA+cos(B-}-C) = sin J5 sin (7(1 cosa),

or Goa$(A+B+C)co8$(B+C--A) = sinJ5sin(7sin2Ja.

The right-hand side of this equation being negative, the

factors of the left-hand side must have opposite signs.
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Now we may suppose that A > B > <7, so that

TT< B+C A <TT;

hence cos %(B+C A) > 0.

It follows that cos J(-4-f-J?-f <7) < 0, that is to say,

A+B+C >TT.

9.55. Elliptic Metrical Geometry and Spherical Geometry
The reader who is acquainted with Spherical Trigonometry

will recognize that these formulae which have been deduced for

the triangle in Elliptic Metrical Geometry are identical with the

formulae for a triangle in Spherical Trigonometry. It is not,

however, legitimate to deduce from this that the Geometry on

the surface of a sphere is identical with Elliptic Metrical

Geometry. It may be found useful to deduce other formulae for

the triangle in Elliptic Metrical Geometry; these other formulae

will be found in any book of Spherical Trigonometry, and to

these the reader is referred.

9.56. A Representation of Elliptic Metrical Geometry
The fact of the identity of form between Elliptic Metrical Geometry

and Spherical Trigonometry makes it possible to give a simple repre-
sentation of the former. This is given to help the reader to visualize

the metrical conditions when a real-complex metric gauge is imposed
on the field.

FIG. 60.

The representation is illustrated in the figure. A hemisphere whose
centre is P rests on the plane, touching it at the point O. ABC is any
triangle in the plane, and A', B't C' are points on the surface of the

W I i
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hemisphere such that PAA' are collinear, PBB' are collinear, PCC'
are collinear. The sides and angles of the triangle ABC in the plane
when an elliptic metric gauge is imposed may be measured by deter-

mining (in the usual way) the sides and angles of the spherical triangle

A'B'C'.

/ EXAMPLES

Apply the results of 9.541 to prove the following formulae for the

triangle in Elliptic Metrical Geometry:

(i) cos C cos 6+ cotA sin C sin&cota.

(ii) cos b cos c cos A-\- sin b sine = sin B sin (7 cos B cos C cos a.

9.6. Hyperbolic Metrical Geometry

Hyperbolic Metrical Geometry results from the choice of a

real-real conic as metric gauge. For simplicity, we take the

conic whose point equation is cxz+cy*+z2 = 0, where c is a

negative number; we take c to be 1, since this involves no loss

in generality.

The symbol /(cc, x) will stand for x2
-~y*+z

z
, and/nj/23 , etc.,

will have their obvious meanings.
The line equation of the metric gauge is Z

2-fm2 n2 = 0, and

so F(l y I) stands for the expression on the left of this equation.

As in Elliptic Metrical Geometry, we agree to specify the

coordinates of all real points by real number-labels only.

9.61. Interior and Exterior Points and Lines

DEFINITION. A real point (xlt ylt zj will be termed an interior

point if and only iffu > 0; it will be termed an exterior point if

and only iffu < 0.

DEFINITION. A real line [lltmlt nj will be termed an interior

line if and only if Fn > 0; it will be termed an exterior line if

and only ifFn < 0.

Hyperbolic Metrical Geometry is concerned almost entirely

with interior points and lines, and some preliminary theorems

concerning them are necessary.

9.611. Lagrange's Identity. THEOREM.

The proof of this is left to the reader,
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9.612. THEOREM. // (x^y^z^) and (x2,y2,z2 ) are both interior

points, then /u/22"~(/i2)
2 ^ > equality only holding if the two

points coincide.

Since the two points are both interior points, neither z

nor z2 can be zero; we may therefore without loss of generality
take z1 = z2 = 1.

Write xl
= r^GOBA, y = T^sin^, where r > 0; then since

(#i>2/i,Zi) is an interior point, r1 <l.

Similarly, write x2 ra cos2?, y2
= r2 sinJ5, where r2 > 0;

as before, r2 < 1. Then

/n/22-(/i2 )
2 = (-/-

All the terms of this are negative or zero, and they are all

zero only when the two points coincide; hence the theorem is

proved.

9.613. THEOREM. // [llt mlt nj, [12 ,w2 ,
n2] are two distinct real

lines which are both on the interior point (x, y, z), then

By Lagrange's identity

2~ (% l2-n2 ^)

where d is a real number.

Since (x,y,z) is an interior point, this last expression is

positive; hence FnF22 (F12 )
z > 0.

9.614. THEOREM. The line on two distinct interior points is

an interior line.

The proof depends on Lagrange's identity, and is very similar

to that of the last theorem. Compare this theorem with 9.617.

9.615. THEOREM. // (x^y^z^ 9 (x2,y2,z2) be two interior

points, and ifzl >0 and z2 > 0, then x-^x^y^y^+z^ > 0.

Without loss ofgenerality, we may take z1 ~z2
= 1. Write, as



244 PROJECTIVE GEOMETRY

in 9.612, a?!
== rjCOs-4, y = r^inA, x2

= r2 coBB, y2
= r2 sin J3,

where < rx < 1, < r2 < 1.

Then x1 x2 y1 y2+z1 z2 = r1 r2 coa(AB)+l, and this is

plainly positive.

The following theorems are not needed in the sequel, but they

are set down to enable the reader to obtain a fuller idea of the

relations between interior and exterior points and lines. The

details of proof are omitted.

9.616. THEOREM. On every interior line there is an infinity

of interior points.

If
[Z, m, n] is an interior line, all the points whose coordinates

are ( ril+Xm, nmXl, Z
2-fw2

) are on it, and they are interior

points if (l*+m*-n*)* < A < +(Z
2
-f-m

2-rc2
)*.

THEOREM. On every exterior point there is an infinity of

exterior lines.

9.617. THEOREM. Any real line on an interior point is an

interior line.

THEOREM. Any real point on an exterior line is an exterior

point.

9.618. THEOREM. The isotropic points on an interior line

are real; those on an exterior line are complex.

THEOREM. The isotropic lines on an interior point are complex;

those on an exterior point are real.

9.619. THEOREM. The polar of an interior point relative to

the metric gauge is an exterior line; that of an exterior point is an

interior line.

THEOREM. The pole of an interior line relative to the metric

gauge is an exterior point; that of an exterior line is an interior

point.

9.62. Distance and Angle in Hyperbolic Metrical Geo-

metry
9.621. Distance on an Interior Line. Let P and Q be

two interior points whose coordinates are (x^y^z^ and

fey*^) respectively.

From now onwards we make the convention that in specify-
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ing the coordinates of all interior points, the third coordinate

(z) shall always be a positive number. This is possible, since all

the points on the line 2 = are exterior points.

By 9.612, (/12 )
2-/n/22 > 0, so that

fufn
'

and by 9.615, /12 > 0.

There is therefore a positive number 0, such that

cosh0-/12/(/u/22)*,
the positive square root being taken in the denominator; and

it follows that

Al/22

IfnowMl andM2 are the metric gauge points on the line PQ t

their coordinates being, respectively,

and (A2 x^

the ratios \li*>i and A2//*2 satisfy the equation

A2/u+2AM/i2+/*%a
= 0.

We make the convention that

n 22 and * _ - 122 -i
f HJ.1U. -

f
~

.- -

f .. -
f

! /ll /^2 /ll

Now

(PQ) =

T1 f c= A; loge
(

c

sn 71 . 9 /ix
,- c 1 = Mog(e

20
)

cosh^+suih^J
e

We take k = J, and n = 0, so that (P#) = ^, where > 0,

and cosh0 = /i2/(/n/22)*> *^e positive square root being taken

in this fraction.

9.622. Angle on an Interior Point. If Pi,^i, %] and

[Z2 ,
m2 ,

n2] are the coordinates of two interior lines p and q which

are on a common interior point, the method of determining the

angle between them is identical with the method adopted in

Elliptic Metrical Geometry. By Theorem 9.613, (JP12)
2 ^lA
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is not positive, and so the conventions of 9.52 are adopted, the

scale constant being J. The results may be stated thus:

(i) < [>0] < *,

(ii) co8[pq]
= Fid(flu -^2)** the positive square root being taken

in the denominator,

9.63. The Triangle in Hyperbolic Metrical Geometry
Take any triangle ABC whose vertices are, respectively, the

interior points (x^y^), (x2,y2,z2), and (#3,1/3,33), where zv z2 ,

and 23 are all positive.

The same symbols and conventions will be used as in the

corresponding part of Elliptic Metrical Geometry (9.54).

9.631. Preliminary Algebraic Identities. The analysis

of 9.541 may be repeated in almost identical terms. It should

be noticed, however, that the minors of /u , /22 , etc., in the

determinant A are Fn ,
F2Z , etc.; also that A is equal to

ix2 iy2 z2

and is therefore positive.

The corresponding results are:

Corresponding results for the other sides and angles are

obtained by cyclic permutation of the letters and suffixes.

9.632. The Cosine Formula. THEOREM. In a triangle

ABC in Hyperbolic Metrical Geometry

cosh a = cosh b cosh c+sinh b sinh c cosA ,

and cosA = cos B cos C+ sin B sin C cosh a.

9.633. The Sine Formula. THEOREM. In a triangle ABC
in Hyperbolic Metrical Geometry

BinA BwB
sinh a sinh b sinh c
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9.634. The Sum of the Angles of a Triangle. THEOREM.
In a triangle ABC in Hyperbolic Metrical Geometry

A+B+C <TT.

The proofs of the three foregoing theorems are analogous to

the proofs of the corresponding theorems in Elliptic Metrical

Geometry.

9.64. The Metrical Geometry of Exterior Points and
Lines

In the foregoing we have confined our attention to interior

points and lines, and it is natural to ask whether there is any
corresponding metrical Geometry of the exterior points and
lines. The answer to this is that the metrical Geometry of the

exterior points and lines is the dual of that of the interior points
and lines. It may be verified, for instance, that if ABC is a

triangle of exterior points, such that all three of the lines JBC,

CA, and AB are exterior lines, and if suitable conventions are

adopted,
cos a = cos b cos c-f- sin b sine cosh A,

and coshA = cosh B cosh O+sinh B sinh C cos a.

For this reason the study of the metrical Geometry of the

exterior points and lines gives us nothing that is really new.

It may be noticed that if we wish to stay within the realm of

real numbers there is a complete barrier between interior and
exterior points, and between interior and exterior lines. For

by no convention about the scale constant can it be ensured

that the distances between all pairs of real points one of which

is interior and one exterior are all real; a similar statement can

be made about the angles between pairs of lines one of which

is interior, the other exterior.



CHAPTEB X

SINGULAR METRIC GAUGES

IN the preceding chapter it has been shown how distance and

angle can be definea in terms of the concepts of Projective

Geometry. In a certain sense it is true to say that, thus defined,

these notions are more general than the corresponding notions

in elementary Geometry, but it is not to be inferred ironi this

that Euclidean Metrical Geometry can be elaborated from them
in the same way that Elliptic and Hyperbolic Metrical Geo-

metries were elaborated. In other words, Euclidean Metrical

Geometry is not a particular case of the general Metrical

Geometry to which Projective Geometry gives rise. It is, in

fact, a limiting (and singular) case of the general Metrical

Geometry, and in this chapter it is shown how the limiting

process is undertaken, and what its results are. Incidentally, it

will appear that it occupies, so to speak, the borderline position

between Elliptic and Hyperbolic Metrical Geometries.

From another point of view, Euclidean Metrical Geometry

may be said to be a metrical Geometry which arises from the

use of singular conies as metric gauges. This statement is not,

however, the whole truth, and it needs very precise qualification.

What exactly that qualification is will appear from the sequel.

10.1. The Limiting Process

We start by taking as metric gauge the non-singular real

conic whose point and line equations are, respectively,

c#2
-fcy

2+z2 = 0,

and Z
2+m2

-fcw
2 = 0,

where c is a real number. Plainly, if c is positive, this will give
rise to Elliptic Metrical Geometry, and if c is negative, to

Hyperbolic Metrical Geometry.
It is convenient to write c JR2, where JR2 is a real number,

positive or negative.
The limiting process is to make R2 tend to zero, and in carrying

it out, three separate processes must be examined: (i) the effect
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on the metric gauge, (ii) the effect on the definition of angle,

and (iii) the effect on the definition of distance.

10.11. The Limiting Process on the Metric Gauge
As JR2 tends to zero, the point equation

RW+Rtyt+z* =
tends to zz = 0.

This is the equation of two coincident ranges of points on the

line [0, 0, 1], and is therefore the equation of a singular point-

conic.

A little thought will show that such a conic cannot be used

for the definition of distance in the ordinary way, since if it

were, the metric gauge points on every line of the field would

coincide.

We call the line [0, 0, 1] the special line,-\ since it is metrically

special. The points on it may be called the isotropic points,

since they have the properties of isotropic points in other

Metrical Geometries, but the name is not usual.

As JS2 tends to zero, the line equation of the metric gauge
tends to l

z+m2 = 0.

This is the equation of the two pencils of lines on the points

(t, 1, 0) and ( *, 1, 0); it is therefore the equation of a singular

line-conic.

This singular conic can be used in the ordinary way for the

definition of angle, since two of its lines are on every ordinary

point of the field. In practice, for the sake of uniformity, we
derive the expression for the angle between two lines by the

limiting process, and not by the direct application of the defini-

tion of angle. The results are the same, whichever method be

used.

The two points (t, 1, 0) and ( i, 1, 0) will be given the perma-
nent labels I and Jt and will be called the special points.% It

will be noticed that both are on the special line.

The isotropic lines of the field are the two pencils on / and J\

f It is sometimes called the line, at infinity, or the vanishing tine, or the

absolute ; none of these terms is without false implications.

$ They are also called the circular points at infinity ; this name is misleading,
and it has another disadvantage in that it is based on a very subsidiary pro-

perty of the points.
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hence the isotropic lines on any ordinary point P are the lines

PI and PJ.

10.12. The Limiting Process on the Definition of Angle
If p and q be the/ two real lines whose coordinates are

[lvml5 wj, p2 ,
w2 >

nw respectively, and if the line equation of

the metric gauge be
Z
2+m2+jBV = 0>

then, by working through the usual analysis and taking \i as

the scale-constant, we find that

If we make E tend to zero in the expression on the right, its

limit is

Now provided neither p nor # coincides with the special line,

it follows from Lagrange's identity and the inequality attached

to it (9.51) that

and̂ '

We make no convention as yet about the sign to be taken in

the numerator and denominator of (1).

Now write

positive square roots being taken in the denominators of both

fractions, and 6 satisfying ^ < 2?r.

On substituting these values in (1), we find that [pq]
= TITT+^

if the upper sign be taken in (1), and [pq]
= WTT -0 if the Zower

5i^n be taken in (1), n being any integer.

These results are only compatible with (2) and (3) if n is an

even integer or zero. Hence

[pg]
= 27iir-f if the upper sign be taken,

and [pq]
= SHIT 6 if the lower sign be taken.
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It will be recognized that the choice of sign corresponds to the

choice of a definite sense of rotation as the positive sense in

elementary Geometry.
There is no loss in generality in elementary work if n is so

chosen that < [pq] < 2ir.

These results may be summed up as follows:

(i) < [pq] < 27T,

A further useful result may be given here; if we write

= - and

and similar expressions for cos 2 and sin 2 >
it is easily verified

that [>g]== (01-02).

It will be noticed that the results given above are similar to

those of ordinary Analytical Geometry.

10.13. The Limiting Process on the Definition of Distance

The fact that as R tends to zero the point equation of the

metric gauge breaks down more completely than the line equa-

tion leads us to expect that the limiting process on the defini-

tion of distance is a more involved and delicate process than

the preceding. This expectation is verified.

We start with the point equation of the metric gauge

RW+R*y*+z* = 0,

where R is not zero.

Let P and Q be two points not on the special line, whose

coordinates are (#1,^1, %) and (afoft)*?) respectively.

Let T be the greater of the two positive numbers

we restrict |jR
2

|
to be less than T if T is positive; if T is zero,
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\R*\ is unrestricted. The object of this restriction will become

apparent later.

Now if (PQ) = d, it follows from 9.32 that

~
7n/22

'

where k is the scale-constant.

We now choose k equal to l/(2iE), so that

/11/2

where L, M, and N are polynomials in the coordinates.

As E tends to zero, the right-hand side of this equation tends

to zero (and the denominator does not vanish in the process

owing to the restriction on .R2).

Hencef lim mr^(Ed) = 0,

, v sinz
(JRd) _

and so hm - n~^ = 1.

R-*O

Now

and from this it is obvious that

We therefore define the distance between the two points
P and <2 by the equation

\2 - fa ^2-^2 3l)
2+ fa ^2-^

Since neither P nor Q is on the special line [0, 0, 1], we may,
without loss of generality, take z = z2 = 1; the expression for

distance then takes the familiar form

In practice it is not always useful to make this simplification.

f Since d is itself a function of R, we cannot infer that lim sina(.ReZ) 0,
-+0

except by the method used, or some equivalent of it.
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From the above equations it follows that

2-s2 2/i)
2- -i- //(

gi gi
it / 1

V V

and when 2X
= z2 = 1

In the work undertaken here we shall take the positive square

root always.

10.2. Euclidean Metrical Geometry
The limiting processes for the metric gauge, the angle formula,

and the distance formula having been effected, it is now possible

to give a formal definition of Euclidean Metrical Geometry.

DEFINITION. A Euclidean metric is said to be imposed on the

projectiv&field, when

(i) two distinct points I and J are chosen as the special points,

and the line on them as the special line, and

(ii) a "homogeneous mesh gauge having been imposed on the

field in such a way that the points I and J have the coor-

dinates (i, 1, 0) and ( i, 1, 0) respectively, the angle between

two ordinary lines is defined by the expression given in

10.12, and the distance between two ordinary points is

defined by the expression given in 10.13.

10.3. The Triangle in Euclidean Metrical Geometry
Let ABC be a triangle whose vertices are the ordinary points

(#i 2/i Zi)> (#2 2/2 *2)> and (*3> y& 2s) respectively. For simplicity,

we take Zj
= 22 23

= 1.

The coordinates of the sides of the triangle will then be

-^2/ or

The usual convention that the angle A will be the angle

between the lines AC and AB will be observed; the choice of a

sense of rotation will be made later.

The lengths of all sides will be taken as positive.
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10.31. Preliminary Algebraic Identities

From 10.13 it follows that

and there are similar expressions for b and c.

From 10.12

smA =
p-

L^-3
,

the positive or negative sign being taken in the numerator

according as one or the other sense of rotation is chosen as the

positive sense.

If the numerator of this last fraction be expanded and simpli-

fied, it is found to be i A, where

1 2/i

2 2/2

S 2/3

we agree to take the positive sign if A is positive, the negative

sign if A is negative. It follows that sin .4, sin B, sin C are all

positive, so that all the angles of the triangle are less than IT.

10.32. The Cosine Formula

THEOEEM. In a triangle ABC in Euclidean Metrical Geometry

a2 = 62
-fc

2
2&ccos-4,

and cosA cos B cos C-fsinB sin C.

These two formulae are the counterparts in Euclidean

Metrical Geometry of the cosine formulae in Elliptic and Hyper-
bolic Metrical Geometries.

To prove the first formula we observe that

The second formula may be proved by substitution of the

appropriate algebraic expressions for cos JB, cos C , etc.
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10.33. The Sine Formula

THEOREM. In a triangle ABC in Euclidean Metrical Geometry

sinA __ sinJ? __ sin C __ A
a

""
6

~~
c

~~
o6c*

2foj 5&0W being taken in the last member which makes the whole

expression positive.

This theorem follows at once from the fact that

sinJ. = A/(6c).

10.34. The Sum of the Angles of a Triangle

THEOBEM. In a triangle ABC in Euclidean Metrical Geometry

A+B+C = it.

This theorem follows from the second part of 10.32; the

proof is similar to that of the corresponding theorem in Elliptic

Metrical Geometry (9.542).

EXAMPLES

1. From tho results of 10.31 show that in a triangle ABC in Euclidean

Metrical Geometry a = b cos (7+ c cos B.

2. Show that in Euclidean Metrical Geometry two ordinary linesmake

equal angles with a third ordinary line if and only if the common point
of the first two is on the special line but distinct from / and J.

3. A and B are a pair of mates in an involution on the special line of

which I and J are the self-corresponding points; P is any ordinary

point. Show that the lines PA and PB are orthogonal.
4. Determine necessary and sufficient algebraic conditions that a

real conic whose equation is

ax*+by*+cz*+2fyz+2gzx+2hxy =
shall be

(i) on a pair of real points of the special line,

(ii) on a pair of complex points of the special line,

(iii) on a pair of coincident points of the special line,

(iv) on I and J,

(v) on the points A and Bt where (IJ,AB) is a harmonic tetrad.

6. The point R is said to be the mid-point of PQ if and only if

(PR) (RQ). Show that if S be the isotropic point collinear with P
and Q, the necessary and sufficient condition that R should be the mid-

point ofPQ is that (PQ, RS) should be a harmonic tetrad.

6. Determine the coordinates of the mid-points of the sides of a

triangle whose vertices are (xlt ylt zt ) t (xzt yz,zt ) t and (a?8, 3/3,23).
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7. Determine the equation of the conic on the five points I, J,

8. <D is a conic on the two points I and J. Show that the ordinary

points on O are all equidistant from the pole of the special line relative

toO.

9. A and B are the selfneorresponding points of an involution on the

special line, in which JT and J are a pair of mates. Show that if C and D
are another pair of mates in this involution, and if P is any ordinary

point, LCPA = LAPD and LCPB = LBPD\ that is, that the lines

PA and PB are the bisectors of the two angles CPD and DPC.
10. In Euclidean Metrical Geometry two lines are said to be parallel if

their common point is on the special line (cf. Ex. 2), and a four-line

is said to be a parallelogram if one of its diagonal lines is the special

line. With those definitions prove tho theorems of elementary Geometry
which deal with the parallelogram. (The most important are (i) opposite
sides and angles equal, and (ii) diagonals bisect each other.)

12. Taking the definition of a median of a triangle as it is given in

elementary Geometry, prove that the medians of a triangle are con-

current.

13. In Euclidean Metrical Geometry the centre of a non-singular
conic is defined to bo the pole of the special line relative to the conic,

and any line on the centre of a conic is said to be a diameter of the conic.

Show that

(i) If A and B are the two points common to a conic and one of

its diameters, then the centre is the mid-point of AB*
(ii) The locus of the mid-points of chords of a conic which are all

parallel to a given diameter is a diameter which is conjugate to the

first relative to the conic.

14. In Euclidean Metrical Geometry a central conic is defined to be

a non-singular conic whose centre is an ordinary point ; a parabola is

defined to be a conic whose centre is on the special lino. Show that

(i) all diameters of a parabola are parallel ;

(ii) on four distinct ordinary points, no three of which are collinear,

there are in general two and only two parabolas.

15. In Euclidean Metrical Geometry the asymptotes of a central

conic are defined to be the tangents to the conic which are on the centre

of the conic. Show that the common points ofa conic and its asymptotes
are on the special line. Show also that pairs of diameters which are

conjugate relative to the conic are pairs of mates in an involution in

which tho asymptotes are the self-corresponding lines.

16. Determine the coordinates of the centre, and the equation of the

asymptotes of the conic whose equation is

ax*+by*+cz*+2fyz+2gzx+2kxy = 0.

17. Show that the necessary and sufficient condition that the

asymptotes of a conic should be orthogonal is that I and J should be

conjugate points relative to the conic.
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10.4. The Use of the Non-homogeneous Mesh Gauge
Because in Euclidean Metrical Geometry one line is -the

special line, it is sometimes convenient to use a non-homo-

geneous mesh gauge wherein the special line is the unlabelled

line. The change from the homogeneous mesh gauge to the

non-homogeneous mesh gauge is effected, as usual, by choosing
the coordinates of all ordinary points so that the 2-coordinate

is 1. The vertex Z of the triangle of reference will then be the

origin, the lines ZY and ZX will be the axes of x and y re-

spectively.

But it should be noted that though this is often a simplifica-

tion of the algebraic work involved in a problem, it may not

be a useful simplification of the geometrical problem. For the

non-homogeneous mesh gauge so chosen cannot lead to any
information about the special line; and in one sense the special

line is the most important line of the field in Euclidean Metrical

Geometry. To leave it out of account may therefore be a serious

blemish.

10.5. Euclidean Metrical Geometry and Elementary

Geometry
The reader cannot have failed to notice the similarity between

the results of this chapter and the various results with which

he is familiar from elementary Geometry, Trigonometry, and

Analytical Geometry. This similarity raises the question: What
are the relations between Euclidean Metrical Geometry (i.e.

Projective Geometry with a Euclidean metric imposed) and

elementary Geometry ?

It should be recognized at this stage that if we impose on the

projective field a homogeneous mesh gauge, and then consider

the set of points which are (i) real and (ii) not on a certain

definite line, we have a set of points of which the points of

elementary Geometry are a representation. The propositions

of incidence which can be stated of this restricted set of points

in the projective field are identical with the propositions of

incidence which can be stated in elementary Geometry. Owing
to the fact that we have deliberately left out of consideration

a whole range of points, the initial propositions of Projective
4m L l
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Geometry cannot be predicated of the restricted field without

qualification, and this is the reason why the initial propositions

of Projective Geometry are not true, as they stand, of elemen-

tary Geometry.
If now we impose a/Euclidean metric on the original Projec-

tive field, making tl^e
line we considered exceptional to be the

special line, and two appropriate complex points on it the special

points, then the metrical relations between the points and lines

ofthe restricted field will be identical with the metrical relations

between the points and lines of elementary Geometry.
Hence we may say that elementary Geometry is one repre-

sentation of a restricted portion of the Projective field on which

a Euclidean metric has been imposed.
Another important distinction between Euclidean Metrical

Geometry and elementary Geometry should be noticed. If we
wish to impose a Euclidean metric on the Projective field, we

may choose any line we please as the special line, and any pair

of distinct points on it as the special points. The metrical rela-

tions of the field will then be Euclidean. There are thus an

infinity of ways in which a Euclidean metric may be imposed
on the field; with one of them a certain triangle may be right-

angled, with another the same triangle may be equilateral,

and so on. But in elementary Geometry the metric is definitely

and unchangeably fixed by the presuppositions ofthe Geometry.

10.51. The Circular Points at Infinity

The analytical treatment of elementary Geometry led mathe-

maticians to the conclusion that the field of elementary Geo-

metry lacked an important line, which they called the 'line at

infinity', and the device ofhomogeneous coordinates in Analyti-

cal Geometry enabled them to add this line to the field and

discuss it in much the same way as other lines. In doing so

they realized they were stepping outside the boundaries of

elementary Geometry, and so the line was spoken of as an

'ideal line' something not really there, but convenient to

imagine as being there. When a further widening of the field

was made, and complex points were added, it was recognized
that there were two very important complex points on the line
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at infinity; and because every circle passed through these points,

they were called the 'circular points at infinity'.

These points we have seen as the special points of the Eucli-

dean metric; the approach to them from Projective Geometry
shows that they are not different from any other point of the

field, though from the nature of things they do not share certain

metrical properties with other points. But, since the reason

for these exceptional metrical properties is clearly shown, the

special points are not the anomalous and contradictory things

they usually appear to be in Analytical Geometry. The pro-

jective approach shows that, because of the definitions, the

special line and all points on it are metrically exceptional;

Analytical Geometry cannot show why this should be so, and

sometimes does not point out that it is so.

By way of illustrating the use of definitions, we may here

attempt to answer the question: 'Does every circle pass through
the circular points at infinity?' The true answer is: 'It depends
how the term circle is defined.' If it is defined as being the locus

of points which are equidistant from a given point, then / and J
are not on this locus. If it is defined as the conic whose ordinary

points are all equidistant from a given point, then / and J are

on this conic. (See 10.34, Ex. 8.) It is best to define a circle in

Euclidean Metrical Geometry either as a conic which is on /

and /, or as a conic whose ordinary points are all equidistant

from a given ordinary point. (The two definitions are not quite

equivalent; the second definition excludes the singular conies

which satisfy the first.)

10.52. The Role of the Special Points

The role which the special points play in Euclidean Metrical

Geometry has already been illustrated in the examples given
after 10.34, and it may be further emphasized. A number of

examples and theorems in Chapters V and VI are protective

theorems which can easily be translated into metrical theorems

in Euclidean Metrical Geometry, when a certain pair of points

are taken as the special points. The theorems and examples
which admit of easy translation in this manner have been so

worded that the letters / and J appear in them; when these
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points are taken as the special points, and the protective rela-

tions of the other points and lines with them are stated in

metrical terms, a metrical theorem (usually wellknown) appears.

Thus if in Theorem 6.31 / and J are taken as the special

points of Euclidean Metrical Geometry, then

(i) 7i, 7a, 73 a/e the mid-points of A 2A B) A^AV A :A Z

respectively;

(ii) AQ is the orthocentre of the triangle A 1A 2A 3 ]

(iii) Z\, Z>2 , Z>3 are the feet of the perpendiculars from A lt
A 2 ,

A% on to A 2A3, A^A^ A1A 2 respectively;

(iv) 7X ,
72 ,

73 are the mid-points of A A^ A A 2 , A^A 3

respectively.

In metrical terms the theorem states that there is a circle on

the nine points DI} D2 ,
D3 ,

715
72 ,

73 , 7^, 72 ,
73 . This circle is

known as the nine-points circle in elementary Geometry.
The converse process, that of producing a projective theorem

from a metrical theorem in Euclidean Metrical Geometry is also

instructive, and the reader should attempt to translate some of

the easier metrical theorems of elementary Geometry into pro-

jective terms, and then to prove them projectively.

It is not to be inferred from this, however, that the whole

object of Projective Geometry is to produce metrical theorems.

The foregoing remarks are intended to show that the metrical

interpretation of theorems gives only one aspect of those

theorems, and that not the fundamental aspect. The metrical

properties of the field are accidental and subsidiary; they are

not the fundamental properties that elementary Geometry
makes them. The whole truth is expressed when it is said that

metrical properties are not absolute but relative properties;

they are relative to a metric gauge (singular or non-singular),

the choice of which is entirely at our disposal.

10.6. Simultaneous Metrics

This relativity of metrical properties may be illustrated by

imposing simultaneously on the field three distinct sets of

metrical properties.

First we impose on the field a homogeneous mesh gauge, and
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choose three real points of the field which are interior points

relative to the real-real conic whose equation is

-(x2+yz
-z*) = 0.

Calling these points A, J5, and (7, we impose a hyperbolic

metric by taking this point-conic and the corresponding line-

conic as metric gauge.

Let the measures of the sides and angles of this triangle with

this metric be a
lt bv c

l}
A l9 Blt Cv

Next we impose an elliptic metric, by taking the usual conic

as metric gauge; let the measures of the sides and angles with

this metric be a2 , 62 ,
c2 ,
A 2 ,

JB2 ,
(72 .

Finally, we impose a Euclidean metric, by taking the line

[0, 0, 1] as the special line and the points / and J as the special

points. Let the measures of the sides and angles in this metric

be a8 ,
63 ,

c3 , A3 ,
B3 , C3 .

Then at one and the same time it is true that

coshttj = cosh 6X cosh Cj^sinh&j^inhCi cos J. 1?

cosa2
= cos&2 cosc2+sin&2 sinc2 cos^4 2 ,

and a = 6|+c 2&3C3 cos^ 3 ;

nor can it be said that any one of the foregoing represents the

Metrical Geometry of the triangle more faithfully than any other.

10.7. Parallelism

It is sometimes said that the fundamental difference between

Elliptic, Hyperbolic, and Euclidean Metrical Geometries lies

in what is called the parallel postulate which each makes. It

has been shown that the fundamental difference between the

three lies not in the choice of this or that parallel postulate, but

in the choice of this or that metric gauge. Nevertheless, the

question ofparallelism in the three Metrical Geometries deserves

some consideration.

In elementary Geometry a common form of parallel postulate

is what is called Playfair's Axiom: Through any point not on a

given line, there is one and only one line parallel to the given
line. And the corresponding postulates for the other Metrical

Geometries are (1) for Elliptic Metrical Geometry: Through any

point not on a given line there are no lines parallel to the given

line, and (2) for Hyperbolic Metrical Geometry: Through any
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point not on a given line there are two lines parallel to the given

line.

Whether or not these postulates are verified in the three

Metrical Geometries depends on the definition given of parallel

lines. We therefore tesl/various definitions.

DBF. I. Parallel lines are lines that do not meet (at a finite point).

The postulates are verified for Euclidean and Elliptic Metrical

Geometries. That for Hyperbolic Metrical Geometry is not

verified, since, given an interior line, there are an infinity of

interior lines which do not meet it.

DBF. II. Parallel lines are lines which meet on the absolute.

If 'absolute' be translated into the term 'point-conic of the

metric gauge* the three postulates are verified in their respective

Metrical Geometries.

DBF. III. Parallel lines are lines which make equal angles with

any transversal.

The postulate of Euclidean Metrical Geometry is verified.

Lines having the requisite property are non-existent in the

other two Metrical Geometries.

DBF. IV. A line is said to be parallel to a given line if it is every-

where equidistant from it.

The postulate of Euclidean Metrical Geometry is verified.

In the other two Metrical Geometries the equidistance locus

is a conic, not a line.

The four definitions of parallel lines are equivalent in Eucli-

dean Metrical Geometry; if they have any meaning in the other

Metrical Geometries, they are not necessarily equivalent. Hence

the meaning of the term parallel must be carefully defined

before it can be said whether or not a given 'parallel postulate'

is verified in Elliptic or Hyperbolic Metrical Geometry.

10.8. Complex and Real Euclidean Metrical Geometries

The Euclidean Metrical Geometry which has been investi-

gated so far in this chapter is the result of a limiting process on

the non-singular conic whose equations are

and /
2+wa

-f#** = 0.
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This limiting process produces the real-complex singular line-

conic whose equation is

J2+m2 = 0,

as the metric gauge for the measurement of angle.

Now it is quite clear that if we had started with the non-

singular conic whose equations are

-J?V+jRy+z2 =
and Z

2-m2-jRW = 0,

and carried out the same limiting process, the resulting singular

line-conic for the measurement of angle would have been that

whose equation is
Z2~w2 =

This is, plainly, a real-real singular line-conic. It is in fact

the line-conic consisting of the pencils of lines on the two

points (1,1,0) and (1, 1,0).

Hence this singular Metrical Geometry is very similar to the

Euclidean Metrical Geometry which has already been developed.

There is a special line, the line [0, 0, 1], and on it two special

points (1,1,0) and (1, 1,0), and from these are derived the

metrical properties of the field.

These two singular Metrical Geometries bear to each other

a relation very similar to that between Elliptic and Hyperbolic
Metrical Geometries. They may be distinguishedby calling them,

respectively, Complex Euclidean Metrical Geometry and Real

EuclideanMetricalGeometry ; thereasonforthe names is obvious.

The reader is very strongly advised to work out the details of

Real Euclidean Metrical Geometry in exactly the same way as

those of Complex Euclidean Metrical Geometry. The following

is a synopsis of the results.

(i) Distance.

The distance between two points (xv yv z:) and (#2 , ya ,
22) is

1R 7
or, if zx

= z2
= 1, {(*2-ai)

2
~(2/2--2/i)

2
}*.

(ii) Angle.

It being agreed that the coordinates of all lines shall be

specified only by three real numbers, it will be found that the
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ordinary lines of the field are divided into two distinct classes.

If p, m, n] are the coordinates of an ordinary line, it will belong
to one class if I

2 m2 > 0, to the other if I
2 ra2 < 0. This

corresponds to the distinction in Hyperbolic Metrical Geometry
between interior and exterior lines.

The scale-constant is /taken as J.

If pl5 m1} wj and p2 ,
ra2 ,

n2] are two lines such that Zf > mf
and Zf > m|, and if be the angle between them, then if suitable

conventions be adopted,

If, on the other hand, l\ < mf and Zf < m|, the denominators

in these fractions are changed to

From these results the Real Euclidean Metrical Geometry of

the triangle can be deduced.

10.9. Dual Euclidean Metrical Geometries

The two Euclidean Metrical Geometries were evolved from

the Metrical Geometries of Chapter IX by limiting processes

in which the metric gauge became a singular conic. The line-

conic became a pair of pencils of lines on distinct points, the

point-conic a pair of coincident ranges on a line. It is quite

clear that we could have made the limiting processes work the

other way, so that the point-conic of the metric gauge became
a pair of ranges on distinct lines, and the line-conic a pair of

coincident pencils on a point, the common point of the bases of

the ranges.
The resulting Metrical Geometries would have been the exact

duals of those elaborated in this chapter. Save for the fact that

they illustrate a fifth and a sixth simple Metrical Geometry,

they have no particular interest.



CHAPTER XI

TRANSFORMATIONS OF THE MESH GAUGE AND
THE FIELD

THE problem with which we are first concerned in this chapter

may be stated thus: Given that the field is labelled by two

homogeneous mesh gauges simultaneously, one having the

triangle XYZ as triangle of reference and / as gauging-point,
the other having the triangle X'Y'Z' as triangle of reference

and /' as gauging-point, what will be the relation between the

coordinates of any point relative to the first mesh gauge, and

its coordinates relative to the second mesh gauge? Put another

way the problem is: If the triangle of reference and gauging-

point be changed from XTZ and / to X'Y'Z' and /', how will

the coordinates of any point of the field be changed?

11.1. Transformations of the Mesh Gauge
It is necessary to have a uniform notation so that confusion

may be avoided. The coordinates of all points relative to the

mesh gauge fixed by the triangle of reference XYZ and the

gauging-point / will be written in the normal way, (x,y,z),

(2, 7, 10), etc. The coordinates of all points relative to the

mesh gauge fixed by the triangle of reference X'Y'Z' and the

gauging-point /' will be written with primes affixed to the

coordinates, thus: (x',y
f

, z
f

), (2', 3', 14'), etc.

In order to have a short distinguishing word for each mesh

gauge, we shall speak of the plain mesh gauge and the prime
mesh gauge, rather than ofthe mesh gauge fixed by the triangle of

referenceXYZ and the gauging-point /and the mesh gauge fixed

by the triangle of reference X'Y'Z' and the gauging-point I'.

11.11. The Equations of Transformation

THEOREM. // the coordinates of any point in the plain mesh

gauge be (x, y, z), and the coordinates of the same point in the prime
mesh gauge be (x',y',z

f

), the two are connected by equations of

the form
Ic'x' = anx+a12 y+auz, kx =
k'y' = a2

k'z
f =

4191 Mm
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where (i) the determinant

a31 a33 a,

is not equal to zero, /
(ii) An ,

A 12 ,
A13 are the minors ofau ,

a12 , a13 , etc., respectively,

in this determinant,

(iii) k and k' are constants, different from zero.

Suppose that XYZ is the triangle of reference for the plain

mesh gauge, and that / is the gauging-point; let (x{, y[, z{),

(#2 2/2 ^h (#3,3/3,33), and (XQ, y^, ZQ), respectively, be the prime
coordinates of these points. Then since no three of them are

collinear, there is a set of four numbers, A , Ax ,
A2 ,

A3 ,
none of

which are zero, which satisfies the three equations

3*3 = 0,

and

Moreover, it is plain that if the actual numbers specifying the

coordinates of these four points are suitably chosen, one solu-

tion of these equations will be A = Ax = A2
= A3 = 1, and it

will henceforward be supposed that this is so.

From this it follows that the point whose prime coordinates

are (a^+^s* 2/2+2/3^2+^3) mav also ^e specified as

that is to say it is collinear with Y and Z, and it is also collinear

with X and /.

If then 4 Iv, 4 are the points I*"}, ^ ,

~*
, re'

V5

spectively, their prime coordinates are

zi)> respectively.

Suppose now that P is a point of the field, and that its plain

and prime coordinates are, respectively, (x,y,z) and (x',y' 9 z').

Then, as before, there is a set of four numbers, p, filt n2> ^3 ,

which satisfies the three equations

0,

2;2
= 0,

and f
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Moreover, if it be supposed that no three of the five points

XYZIP are collinear, none of the numbers /*, pv p2 , ^3 are

zero, and their ratios are unique.

If now Px, Pv, P,, are the points

spectively, their prime coordinates are

.

gj),
re-

respectively.

Consider now the cross-ratio of the four distinct collinear

points, J%(YZIXPX ). If their plain coordinates are used to

evaluate this cross-ratio, it is found to be

^{(l.OUO, !),(!, !),(*,, z)};

but if their prime coordinates are used to evaluate it, it is found

to be I?{(1,0), (0,1), (1,1), fe^)}. From this, and from a

similar consideration of the two cross-ratios If.(ZXIyPv) f

J$.(XYJZPZ), it follows that ex = /x1? cy = /*2 , cz = IL%, where c

is a number which is not zero.

When these values of p^ t ju,2 , and ^3 are substituted in the

equations given above, the result is

[Ax'+cxxi+cyxz+czxs = 0,

and two similar equations, and if an ,
a12 ,

a13 , etc. be written

for c#i, cceg, c#3, and k' for /x, these take the form given
in the enunciation; namely

k'x' = anx+a12y+als z,

Ic'z' ==

It is plain that the determinants

n aia a13

are identical, and therefore that the former does not vanish;

from this it follows that the second set of equations given in

the enunciation are also true.
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This proves the theorem when P is a point which is not

collinear with any pair of the four points XYZI. That the

equations remain true even when this is so is a simple conse-

quence which is left to the reader to verify.

11.12. The Equation/of Transformation of the Line

THEOBEM. The equations of transformation being those given

in the last theorem, if the coordinates of any line in the plain mesh

gauge be
[I, m, ri\

and the coordinates of the same line in the prime
mesh gauge be

[l

f

, m', ri], then the two are connected by the equations

kT = J.nZ-M 12ra-M13 w, kl = a^l'+a^m'+a^n',
k'm' = ^ 21 Z-M 22m-K4 23 7&, km = a12 l'+a22m'+aB2 n',

k'n' = A 31 l-\-A B2 m-}-A B3 n, kn = a13 Z'-{-a23m' -\~aZBn
f

.

Consider any line [Z,m, w]; then the plain coordinates of the

points on it satisfy the equation fa+my+nz 0.

Then their prime coordinates satisfy the equation

l(A llx'+A 2ly'+A 3l z
f

)+m(A l2 x
f+A 22y'+A 32 z')+

+n(A lsx'+A2By'+A 33 z
f

)
== 0.

Hence, if the line is
[Z', ra', n

f

] specified in prime coordinates,

k'l' = A-^l+A-^m+A^n,
and there are two similar equations for m' and nf

,
as in the

enunciation of the theorem. From these three equations the

other three plainly follow.

11.2. Real Transformations

The theorems so far proved have done no more than show

how the two sets of coordinates of a point in two mesh gauges
are connected. We now consider in more detail a certain special

type of transformation to which is given the name of real

transformation.

DEFINITION. A transformationfrom one mesh gauge to another

is said to be a real transformation if in both mesh gauges the same

set of points are real points.

Two questions arise: (1) Are there such transformations? and

(2) What are the necessary and sufficient conditions that a trans-

formation should be a real transformation?
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11.21. Existence of Real Transformations

THEOREM. A transformation is a real transformation if all

the coefficients in the equations of transformation (11.11) are real

numbers.

It may be observed first, that if all the nine coefficients

an ,
a12 ,

a13 ,
a2l ,

a22 , &<&> a31 ,
a32 ,

a33 are real numbers, then the

corresponding minors, A llt etc., are also real numbers, and

vice versa.

The theorem is an obvious consequence of 11.11.

11.22. Necessary and Sufficient Conditions

THEOEEM. A necessary and sufficient condition that a trans-

formation shall be a real transformation is that X', Y'
t Z', and I'

shall be real points in the plain mesh gauge.

That the condition is necessary is an obvious consequence of

the definition of a real transformation. That it is sufficient

follows from 11.11 and 11.21. For by supposition the plain

coordinates of X', Y', Z', and 1' may all be expressed by real

numbers; from 11.11 it follows that Au > etc., may be expressed

as real numbers, and so, from 11.21, the transformation is a real

transformation.

This theorem is of interest, not because it is a particularly

useful theorem but because it shows that if four points of the

field, no three of which are collinear, are chosen as real points,

then all the real points of the field are fixed by this choice. It

therefore shows the number of degrees of freedom there are in

the choice of which set of points shall be the real points of the

field.

11.23. Another Necessary and Sufficient Condition

THEOREM. The necessary and sufficient condition that a trans-

formation shall be a real transformation is that all the coefficients

in the equations of transformation shall be expressible as real

numbers.

The word expressible needs some explanation. The equations

of transformation k'x' = an x-\-a12y+&i3 z, etc., may be written

clc'x' = ca^x-^-ca^y+ca^Zj etc.; hence the equations of a



270 PROJECTIVE GEOMETRY

transformation are not unique. The theorem states that if a

transformation is a real transformation, there is a constant c

such that can ,
ca12 , etc., are all real numbers, and conversely.

That the condition is sufficient is obvious from 11.11; this

part of the theorem merely restates Theorem 11.21.

That the conditioi/is necessary is proved as follows. If the

transformation is a real transformation, then by 11.22 the

plain coordinates of X', Y', Z', and /' may all be specified by
real numbers; hence, by 11.11, the coefficients in the equations

of transformation may all be expressed as real numbers.

11.3. Application to Metrical Geometry
In the chapter on the metric gauge it was first supposed that

a mesh gauge was imposed on the field, and then a non-singular

conic with a conveniently simple equation was chosen as the

metric gauge. This was, however, an unnecessarily narrow

restriction, which can now be removed.

In the first place, it is plain that if in the plain mesh gauge a

non-singular conic is a real-real or a real-complex conic, then

it is a real-real or a real-complex conic respectively in the prime
mesh gauge if the transformation between the two is a real

transformation .

Let us suppose now that a certain real conic (and for definite-

ness we may suppose it to be a real-real conic) is chosen as the

metric gauge, and that its equation is not a?
2 -

/
2+22 = 0.

We choose any real self-polar triangle of this conic as the prime

triangle of reference, and any real point not on the sides of this

triangle as the prime gauging-point. In the prime mesh gauge
the conic will have an equation of the form ax'2

-\-by'
2
~}-cz'

2 = 0,

where a, 6, and c are real and have not all the same sign. For

definiteness suppose that a and c are negative, and that b is

positive. Then the real transformation given by the equations

lex" =

let* =
transforms the mesh gauge into one wherein the conic has the

equation x^y^+z''2 = 0.
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In this final mesh gauge the metrical properties of the real

points may be investigated by the methods of Chapter IX.

For instance, suppose that the distance between two points

whose plain coordinates are (xl} y^ z ) and (x2 , t/2 ,
z2) is required.

Their coordinates in the double-prime mesh gauge are first

found, the distance is then found by the methods of Chapter IX.

This is the distance between them relative to the chosen metric

gauge.

The problems for Elliptic and Euclidean Metrical Geometries

are treated in a similar fashion.

11.4. Transformations of the Field: Homographies
The fundamental concept of Projective Geometry, the pro-

jectivity, was defined in Chapter III as being a relationship

between two ranges or two pencils, or a range and a pencil,

which could be specified by a sequence of perspectivities. A
projectivity between two ranges was seen to be a multiple rela-

tionship between them, whereby to any point of one range was

related one and only one point ofthe other. It was seen also that

projectivities could exist between two ranges on the same base.

We now introduce a corresponding, but wider, multiple rela-

tionship, called a homography, not between range and range, but

between all the points of the field and themselves.

In order to grasp the notion clearly it is convenient to think

of every point of the field as being two coincident points, one

red, one blue. We may then speak of the red field and the

blue field. A homography is said to exist between these two

fields when (i) to every point of the red field there corresponds

one and only one point of the blue field, and vice versa, (ii) if

three points of the red field are collinear, the corresponding

points of the blue field are collinear, and (iii) if PQRS are four

collinear points of the red field, and P'Q'R'S' are the corre-

sponding points of the blue field then (PQRS) ~ (P'Q'R'S').

This may suffice as a definition, for though it is not in formal

language, it is rigorous.

It is possible to discuss homographies by the methods of

Synthetic Projective Geometry; here, however, the algebraic

method is used, and so a homogeneous mesh gauge is imposed
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on the field. Clearly, in any such discussion, it is necessary to

prove first that the multiple relationship called a homography
is possible.

We shall regularly make use of an informal terminology,

since this makes for
/brevity

and clarity. We shall therefore

speak of plain points, the plain field, and prime points, the

prime field. These adjectives are preferred to the adjectives

red and blue, since we agree to specify plain points by plain

coordinates, (x, y, z), and prime points by coordinates to which

a prime is affixed, (x
f

,y' } z').

The algebraic work in the discussion of the homography is

almost identical with that used in discussing the transforma-

tion of mesh gauges, though the thought behind that work is

different. It is therefore necessary to distinguish clearly between

the two, since they are easily confused. In treating of the trans-

formation of mesh gauges we are dealing with two mesh gauges
and one set ofpoints; in treating ofhomographies we are dealing

with one mesh gauge and two sets of points.

11.41. The Equations of a Homography
THEOREM. The necessary and sufficient condition that a multiple

relationship between the points of the field shall be a homography is

that the coordinates of corresponding points shall be connected by

equations of the form
k'x' = a

ljLx+a12 y-}-alz z t kx =
k'y' =

where (i) the determinant

#11 #12 #13

is not equal to zero,

(ii) A1V A12 ,
A 1Z , etc., are the minors of au ,

aia ,
a
18 , etc.,

respectively, in this determinant, and

(in) k and k' are constants, differentfrom zero.

The sufficiency of the condition is proved first.

Suppose then that the two sets of points are connected by
the equations given, and the determinant does not vanish.
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Then clearly to every plain point there corresponds one

and only one prime point. Moreover, if (x^y^z^y (x&y%>%%),

(#3, y3 ,
z3) are three collinear plain points, then

* 2/3

But, from the equations, this determinant is equal to

A
yi

and since by supposition the first of these two determinants

does not vanish, the second must vanish. Hence the three

corresponding prime points are collinear.

Finally, let PQRS be any four distinct collinear points of

the plain field, and P'Q'R'S' the corresponding points of the

prime field. If (x^y^z^ and (x2 , yz,z2) are the coordinates of

P and Q, those of R and S may be written

(A#1 4-/*o;a,Ay1+/Ay2,A21 4-jLi38) and (px^~{~axz,py^-\-ay^pz^azz),

respectively, and so ty(PQRS) = #{(1,0), (0, l) x (A,/z), (/,*)}.

Moreover, if (x[ t y(, z) and (x2 , y%, z%) are the coordinates of

P' and Q', it is plain from the equations connecting the co-

ordinates of corresponding points of the plain and prime fields

that those of R' and S' may be written

and

respectively.

It follows at once from this that

W(P'Q'E'S') = #{(1,0), (0,1), (A, /,),(,, a)},

and so (PQRS) ~ (P'Q'R'S'). This proves the sufficiency of

the condition.

The necessity of the same condition is proved as follows.

Suppose that there is a homography between the plain and

prime fields. Let XYZ be the triangle of reference of the

mesh gauge, and / the gauging-point. If these points are

thought of as belonging to the plain field, let X'7'ZW be the
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points of the prime field which correspond to them in the

homography.
Let P be any point of the plain field, and P' the correspond-

ing point of the prime field.

Z'X'\ , ,.
i

'' '' respectlvely-

If now 4, 7y , 4 Py ,
Pz) be the six points

\zi\ \XP}' \YP}' (ZP}'
resPectivelv > and tf these be con-

sidered as points of the plain field, it is not difficult to see that

the corresponding points of the prime field are I'x ,
I'y ,

!'

Pxt P'y, and P's respectively, that is,

(Y'Z'\

\X'PT
From this it follows that (i) (YZIXPX )

~ (Y'Z'IXP'X) if the

four points are distinct, and (ii) P'x coincides with F', Z'
9 or I'x ,

according as P coincides with 7, Zt
or Ix , if the four are not

distinct. There are similar conclusions about the other two

tetrads Z'X'ryP'y and X'TT.P',.
Consider now a second mesh gauge imposed on both fields;

for purposes of reference this will be called the star mesh gauge.

Let its triangle of reference be X'Y'Z', and its gauging-point /'.

From what has been already deduced, it follows that if in the

plain mesh gauge the coordinates of P are (x,y,z), the coor-

dinates of P' in the star mesh gauge are (#*,#*, z*), where

x* = lex, y* Tcy, z* = Jcz, k being a number different from

zero.

If therefore in the plain mesh gauge the coordinates of P'

are (#', y', z'), the two sets of coordinates (x*, y*, z*) and

(a;',^',^') are connected by equations of the type given in

11.11. It follows that the plain coordinates of P and the plain
coordinates of P' are connected by equations of the same type,

and this proves the necessity of the condition.

The equations determined here may be called the equations of

the homography; they should be compared with the equations

of the projectivity found in 8.22.

Since the equations of a homography are exactly the same

as the equations of transformation of the mesh gauge (11.11), a
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homography is sometimes called a transformation (of the field).

The prime point corresponding to a plain point is called its

transform. This latter term will be used here.

11.42. The Homography of Lines

The homography has been defined as a relationship between

points, and we therefore inquire about the dual concept, the

homography of lines. Actually, however, this is not different

from the homography defined, and it is easily proved that the

homography of points is at the same time a homography of

lines.

For consider the plain line [Z,ra, n\\ the points on it satisfy

the equation fa+my+nz 0, and hence the prime points

corresponding satisfy the equation

+n(Aj9 x
f+Au y

t

+A^z
t

)
= 0.

Hence the coordinates
[l

r

, m', n'] of the prime line correspond-

ing to \l,m,n\ satisfy the equations given in 11.12. The homo-

graphy of points is therefore a homography of lines also.

11.43. The Determination of a Homography
THEOREM. A homography is completely determined when four

prime points, no three of which are collinear, are specified as

the transforms offour plain points, no three of which are collinear.

The proof of this theorem is a simple example of the solution

of simultaneous linear equations by means of determinants; it

should present no difficulty.

11.44. Self-corresponding Points and Lines

In a projectivity between two ranges on the same base there

are two self-corresponding points, which may, however, coin-

cide. Similarly, in a projectivity between two pencils on the

same base there are, in general, two self-corresponding lines

which may coincide. It is natural to ask the question: How
many self-corresponding points and lines are there in a homo-

graphy? The following theorems supply a partial answer to

this question.
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11.441. THEOREM. In a Tomography there cannot be four

self-corresponding points, no three of which are collinear, unless

every point is self-corresponding.

By the last theorem a unique homography is determined

when four points, no/tnree
of which are collinear, are specified

as the transforms /of four points, no three of which are

collinear.

If then the four points X, Y, Z, and W, no three of which

are collinear, are specified as being self-corresponding points, the

homography having this property is uniquely determined. But

the 'identical' homography, that is, the homography in which

every point is self-corresponding, has this property. Hence, if

a homography has four self-corresponding points, no three of

which are collinear, it is the identical homography. This proves
the theorem.

It should be noticed, however, that if the words 'no three of

which are collinear' are omitted from the enunciation of this

theorem, it ceases to be true. For consider the homography
whose equations are

lex = #', ky = y', kz bz',

where b is not equal to zero or unity. In this homography the

transform of the plain point (r, s, t) is the prime point (r } s, tjb)\

hence all points on the line 2 = are self-corresponding.

The dual of Theorem 11.441 is plainly true.

11.442. Determination of Self-corresponding Points.

THEOREM. In a homography whose equations are those given in

11.41 the coordinates of the self-corresponding .points satisfy the

equation*
(an^k)x+a12y+a1B z

= 0,

2 k)y+a2B z
= 0,

k)z = 0,

where k is a root of the cubic equation

k a12 a13
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If the point (x, yt z) is a self-corresponding point of the homo-

graphy, xt y, and z satisfy the equations

lex = a^x-^-a^y^a^z, etc.

That is to say, they satisfy the equations

and the other two given in the enunciation. These equations
are not, however, compatible unless the determinant

i-*>
'

= 0;

hence k must be a root of this last equation.

A full discussion of self-corresponding points of a homography
is beyond the scope of this book, but it will easily be recognized
from the last theorem and its dual that there are in general

three and only three self-corresponding points and three and

only three self-corresponding lines in a homography. In certain

cases, however, the value of k found from the determinantal

equation does not give a unique solution for x
y y, and z. In

these cases a whole range of points is self-corresponding. This

occurs when two roots of the equation for k coincide.

11.443. Invariant Figures. DEFINITION. A figure is said to

be an invariant figure of a homography, or to be invariant in

the homography, if and only if it is identical with the figureformed

by its transforms in the homography.

If I is a self-corresponding line of a homography, then the

range of points on I is an invariant figure. Similarly, if P is a

self-corresponding point of the homography, the pencil of lines

on P is an invariant figure.

This does not imply that all the points on I and all the lines

on P are self-corresponding; it merely implies that the homo-

graphy permutes amongst themselves, so to speak, the points
on I and the lines on P. Care must be taken to distinguish
between invariant figures and self-corresponding figures; the

two are not the same.

It is possible to have other invariant figures than ranges of

points and pencils of lines, and we. shall meet non-singular
conies which are invariant figures in a homography.
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11.45. Further Theorems on Homographies
The following theorems on homographies are simple conse-

quences of what has preceded; the proofs should present no

difficulty to the reader.

11.451. THEOREM. /The transform of a non-singular conic in

a homography is a non-singular conic.

11.452. THEOREM. If P, Q, R t
and S are four distinct points

on a non-singular conic O, and if P', Q', R', S', and O' are,

respectively, the transforms of these, then

<b(PQRS)~<f>
r

(P'Q'R'S').

11.453. THEOREM. The transforms of pole and polar relative to

a non-singular conic are pole and polar relative to the transform

of the conic; the transform of a tangent to a conic is a tangent to

the transform of the conic.

11.5. Real Homographies
DEFINITION". A homography is said to be a real homography

if and only if the transforms of all real points in it are real points.

We shall be concerned in the sequel only with real homo-

graphies, and the two following theorems are proved about

them. The first of these proves that there are real homo-

graphies.

11.51. Necessary and Sufficient Condition for a Real

Homography
THEOREM. The necessary and sufficient condition that a homo-

graphy shall be a real homography is that all the coefficients in the

equations of the homography shall be expressible as real numbers.

That the condition is sufficient is plain. Its necessity may
be proved in much the same way as Theorems 11.21 and 11.22,

or as follows.

Suppose that the homography is a real homography, and that

(#', y', z
r

) is the transform of (x, y, z), so that

fcV = a^x+a^y+a^z, etc.,

x, y, 2, #', y', z' being all real numbers.

Suppose now that
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where k", k* t 6U ,
612 , etc., cu ,

c12 , etc., are all real numbers. Then

If this equation be multiplied throughout by (k" ik*) t it

follows that

=
(&iiW+cu k*)x+ (612

-Xftu**-^*>-
From this it follows that

**-cls*> = 0,

for every x, y, and z; hence the coefficients in this last equation
are all zero. It follows that

(k**-k**)x'

and there are two other similar equations. These must be

equivalent to the original equations of the homography, and

so the equations of the homography are expressible with real

coefficients.

11.52. THEOBEM.

The transform of a real-real conic in a real homography is a

real-real conic; the transform of a real-complex conic in a real

homography is a real-complex conic.

This theorem should scarcely require proof.

11.6. Invariant Non-singular Conies

The term invariantfigure has been defined already, in 11.443,

and in this section we consider briefly one type of invariant

figure, the conic.

Consider, in the first place, a homography in which the self-

corresponding points are the three non-collinear points X, Y,

and Z, so that the three self-corresponding lines are YZ, ZX,
and XY. It is at once possible to name six singular point-conies

which are invariant figures in this homography. They are

(i) the two ranges on ZX and XY,
(ii) the two ranges on XY and YZ,

(iii)
the two ranges on YZ and ZX,
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(iv) the two coincident ranges on YZ,

(v) the two coincident ranges on ZX,
(vi) the two coincident ranges on XT.

Similarly, six singular line-conies can be named, all of which

are invariant figures/ In general it is true to say that these

singular conies are the only invariant conies in a homography,
but under certain special conditions it sometimes happens that

non-singular conies are invariant.

Consider, for example, the homography determined by the

equations k'x' = y, Jc'y'
=

z, k'z' = x.

The transform of the conies whose equations are

*2
-f 2/

2+z2-fA(t/z-fza?+xy) = 0,

where A has any arbitrary value, are plainly

^ 2
+2/'

2+2/2
-fA(2/V-|-2V+^y) = 0,

so that every one of these conies is an invariant figure in this

particular homography, and, save when A = 2 'and A = 1,

they are not singular conies.

Two questions naturally arise from this fact: (1) Given a

homography, what non-singular conies, if any, are invariant

figures in it? (2) Given a non-singular conic, in what homo-

graphies is it an invariant figure?

It is impossible in this book to give a complete answer to

either question, and, in fact, no attempt is made to answer the

first. A partial answer to the second is made, by taking a

certain set of non-singular conies and determining the homo-

graphies in which they are invariant figures. The non-singular

conies selected are those whose point equations are

This particular set of conies is admittedly selected because

of the applicability of the results to Metrical Geometry. Before

proving the main theorem about these conies, two subsidiary

theorems are necessary.

11.61. THEOREM.

For all values of t and u> save simultaneous zeros, the point

whose coordinates are (i(t
zjru2

), (t
z
-u*), 2tuE) is on the non-

singular conic whose point equation is
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Conversely, any point on this conic has coordinates which may be

expressed in this form.

The proof of this theorem is left to the reader; it should

already have been done in 8.881, Ex. 13.

The theorem shows that we may legitimately speak of the

point (t, u) on the conic, meaning thereby the point whose coor-

dinates in the mesh gauge are those specified in the enuncia-

tion of the theorem.

11.62. THEOBEM

// there is a projectivity between two ranges on the non-singular

conic whose point equation is R2x2
-\-R

z
y
2
-}-z

2
0, where R ^ 0,

and if in this projectivity the points (t^u^), (t2,u2 ), (3,^3),...,

(t, u) of one range correspond to the points (t[, u[), (t'2 , u^), (t^, u$),...,

(t',u') of the other, then constants A, B, C, D exist such that for

every pair of corresponding points,

t' = At+Bu, u' = Ct+Du, and ADBC ^ 0.

Let Plt P2 , P3 ,... be the points (^,%), (t2,u2), (t3,u3),..., and

Pi, P2 , Pg,... be the points (t[,u[), (t^ui), (t^u^),...', let B be the

point (1, i, 0). Plainly B is on the conic.

The coordinates of the line BP are [2iRtu,2Rtu,2t*\, or

\iRu t Ru, t].
The common point of this line and the line [1, 0, 0]

is (0, Ru, t). Let this point be Q.

Similarly, the coordinates of the line BP' are iRu', Ru', t', and

the common point of this line and [1, 0, 0] is (0, Ru', t').

Now since (P1P2P3P4...) ~ (P^ P'z P^ P^...),

and (P1P2P3P4 ...)
& (Q, Qz Q3 Q,...),

and (P( Pi PS Pi...)

it follows that

and so, from 8.22, that constants A, B, C, andD exist such that

ADBC ^ 0, and for all pairs of corresponding points

t' == At+Bu and u' == Ct+Du.
This proves the theorem.
4191
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We are now in a position to prove the main theorem about

homographies which leave the conic whose point equation is

22 = invariant.

11.63. THEOREM

Any homography whose equations may be put into the form

k'z' = R(p*+X*-p,*-v*)x+2R(XiJi-pv)y+2(vX+pn)z, (1)

fcV = 2R(Xf*+pv)x+R(P*+^-- v*--X*)y+2(tJ,v--pX)z, (2)

k'z' = 2R*(vX-piJi)x+2R*(t*v+PX)y+R(p
z+vz

--X*--p,*)z, (3)

where p
2
-f-A

2+M2+ /2 ^ has the conic whose point equation is

JR2#2
-fR2

y
2
-\-z* = as an invariant figure.

Conversely, the equations of any homography which leaves this

conic invariant may be put into this form.

That any homography whose equations are ofthe form stated

leaves the conic whose point equation is R*x*+R*y*-\-z* =
invariant, may be verified by mere algebra. The converse

theorem may be proved by reductio ad absurdum 9 or, directly,

as follows.

Consider any homography which leaves this conic invariant.

By 11.453 there is a projectivity between the range of plain

points of the conic, and the range of prime points on it. If

(t, u) be a typical plain point on it, and (', u') be a typical prime

point on it, by 11.62 there are constants A, B, (7, and D, such

that AD EG ^ 0, and

t
r = At+Bu, uf = Ct+Du.

These equations may be written

u' = (A ip)t+(p iv)u t

where p
2+A2

+/i
2+v2 ^ 0.

Now the coordinates in the mesh gauge of the points (t,u),

(t' 9 u') are, respectively,

(i(t*+u
z
), (t* t*

2
), 2Rtu), and

(i(t'
2+u' z

), (*
/2

tt'
8
), 2Rt'u'),

and these two are corresponding points in the homography.
We write their coordinates (x,y>z) and (x',y' t z') respectively.
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But

in)(piv)tu+i(p i

Hence

a-' = (/)
2+A2-

jL
c
2-v2

)a:+2(A^- /o%+2(vA+^)^-1
2;. (1)

Similarly, it may be proved that

y'
= 2(AMH-pl/)a;+(^+ /

.
2~^--A2

)2/-h2(^- /3A) JB--
1
2, (2)

and z' = 2B(vX-piJL)x+2K(iiv+pX)y+(p*+v
z
-X*--iJL

2
)z. (3)

Now these equations give the relations between the coor-

dinates of points on the conic and their transforms; but since

no three of these points are collinear, by 11.43 they must be
t

the equations of the homography.
If they are multiplied by R, and if a constant be substituted

for jR on the left-hand side, they take the form specified in the

enunciation.

This proves the theorem.

The equations (1), (2), and (3) deduced in this theorem are a

slightly more general form of what are known as the Euler-

Rodrigues Equations. They reduce to the Euler-Rodrigues equa-

tions when jR = 1. In this form they are well known in the

theory of transformation of axes in three-dimensional Analytical

Geometry.
The group of homographies determined by these equations

for various values of the parameters A, jz,, v, and p may be called

the Congruence Group of Homographies for the conic whose

point equation is J?2a;a+B*y*+z* = 0; the reason for the name
will appear very shortly. If it is necessary to refer to any par-

ticular homography of the group by name, it may be called the

homography ( JB; p, A, ^, v) ; clearly, the homography (JB; p, A, /i, v)
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is identical with the homography (R; kp, kX, kp, kv), where k is

any constant different from zero.

11.64. Real Congruence Homographies
When R = 1, so that/fihe invariant conic is that whose point

equation is x2+y2
-\-z

2 t= 0, those and only those homographies
of the congruence group for this conic are real for which all the

ratios of the parameters p, A, p,,
and v are real numbers. In

practice, the real homographies of this group are obtained by

making all the parameters real numbers.

When E = i, so that the invariant conic is that whose point

equation is -~#2
y
z+z* = 0, those and only those homo-

graphies of the congruence group for this conic are real for

which all the ratios of ip, A, /*, and iv are real numbers. If in the

equations of Theorem 11.63 R is made equal to *, and ip, iv,

substituted for p and v respectively, they take the form (when

multiplied throughout by i)

k'y* =
k'z' = -~2(vX-ptJ,)x-2(tJ,v+pX)y+(-p

z-v*-X*-n2
)z.

In this form these equations are the equations of the real

homographies of the congruence group for the conic whose

point equation is x2
y
z
-\-z

z = 0, when all the parameters

p, A, p,,
and v are real numbers, and p

2+v2 A2
p? ^ 0.

11.7. Congruence in Metrical Geometry
The concept of congruence is familiar in elementary Geo-

metry, where two triangles are congruent if and only if the

corresponding sides and angles are equal. The concept may
be taken over without any modification into the Metrical

Geometry developed from Projective Geometry.
It is possible to elaborate a set of theorems which would give

necessary and sufficient conditions for the congruence of two

triangles, and which would be very similar to the corresponding
theorems in elementary Geometry. There is, however, a simple

method which is made possible by the foregoing work on homo-

graphies. This is given in the following theorem.
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11.71. The Necessary and Sufficient Condition for Con-

gruence
THEOREM. In either Elliptic Metrical Geometry or Hyperbolic

Metrical Geometry the necessary and sufficient condition that two

real triangles ABC, A'B'C' should be congruent is that there

should be a real homography of the congruence group for the

metric gauge, in which A'B'C' is the transform of ABC.

We content ourselves with proving the theorem for Elliptic

Metrical Geometry; the proof for Hyperbolic Metrical Geometry
is very similar, but simpler.

The sufficiency of the condition is proved first. Suppose then

that A'B'C' is the transform of ABC in a real homography of

the congruence group for the conic whose point equation is

32
+2/

2+z2 = 0.

Let MI and Mz be the metric gauge-points on the line BC.

Let Mi andM2 be the transforms ofM andM2 respectively in

the homography. ThenMi and M'z are on the metric gauge, and

ty(MiM2 BC) = J$(M[MiB
r

C'). Hence the two segments B'C'

are, equal to the two segments BC\ similarly, the two segments
C'A' are equal to the two segments CA, and the two segments
A f

B' are equal to the two segments AB.
Hence each of the eight triangles ABC has its sides equal to

the sides of one of the triangles A'B'C'. If a corresponding pair

be selected, the fact that their angles are equal follows at once

from the second part of 9.542. Hence the two triangles are

congruent.

That the condition is necessary is proved as follows. Suppose
that the triangles are congruent.

Let Llt L2 be the metric gauge-points on BC} the order being
so chosen that (BC) = ^ilo^^L^BC).

Similarly, let Mt and M2 , NL and N2 ,
L and L%, MI and M'%,

N{ and JVg be ^ne metric gauge-points on CA, AB, B'C', C'A',

and A'B' respectively, the order being chosen in a similar way
each time.

Since no three of the points Mlt M& Nlt N% are collinear, and

no three of the points M{, M'^ N{, N^ are collinear, there is

a unique homography in which these latter four points are the

transforms of the first four, respectively. And since A is the



286 PROJECTIVE GEOMETRY

point (^^2

\ and A' is the point (^jfffV A' is the transform
\Al^2/ \^1^2/

of A.

Since (-45) = (A'B'Ym that

B' is the transform of B. Similarly, C" is the transform of (7.

It remains to prove that this homography is one of the con-

gruence group, that is, that L[ and Lz are the transforms of

L1 and L2
.

Suppose then, that L* and L* are the transforms of Lt and

L2 . Then on the four points M{, M'2 , Ni, Ni are three conies,

and these are respectively on (i) L[ and L'2 , (ii) L* and L* ,
and

(iii) B' and C'. Hence, by Desargues's (conic) Theorem, there

is an involution

(L(L*B'L',L*C') ~ (LiL*C'LiL?B'). (1)

But (L[ Li B'C
1

)
~ (L L

2BC) ~ (L* L*B'C
f

),

so that (L[ Zf B'C') ~ (Lz L* B'C') ,

and so, by (1) (Li L* B'C') ~ (Li L% C'B') .

Hence either (i) (L^fB'C') and (L^B'C') are both har-

monic tetrads, or (ii) 5' and C' coincide, or (iii) L[ and *

coincide, and Li and * coincide.

The first of these is impossible, for it entails that the two dis-

tinct involutions (1) and (B'C'LiLiLfLft ~ (B'C'Lz LiL*Lf)
have two pairs of mates in common. The second is absurd,

and therefore the third is true. Hence the homography is one

of the congruence group. That it is a real homography is left

to the reader to prove.

11.8. Congruence in Euclidean Metrical Geometry

Corresponding to the congruence group of homographies for

Elliptic and Hyperbolic Metrical Geometries there is a congru-
ence group of homographies for Euclidean Geometry. The equa-
tions for these cannot be satisfactorily deduced by a limiting

process (making R tend to zero) from the equations found in

11.63.

For a homography to be one of the congruence group for
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Euclidean Metrical Geometry it is clearly necessary that the

line [0, 0, 1] shall be a self-corresponding line, and, in addition,

either that the points / and J shall be self-corresponding points,

or that they shall be transforms of each other. These conditions

are necessary, but they are not sufficient. In addition it is

necessary that the distance between one pair of points shall be

equal to the distance between their transforms.

It is left to the reader to deduce the equations and to prove
the congruence theorem corresponding to 11.71.

It will be found that the equations take the form

k'x' = #cos0 ysui6-\-az,

k'y' x sin Q+y cos 0-J-&2,

k'z' = z,

when / and J are both self-corresponding points, and

k'x' = x cos 0-ft/ sin 6+az,

Jc'y'
= x&md 2/COS0+&Z,

k'z' = z,

when / and J are transforms of each other.

EXAMPLES
1. The plain coordinates ofthe points X', Y', Z', I' are (1, 0, 0), (0, 1, 0),

(0, 0, 1 ), and (a, 6, c) respectively, where afec ^ 0. Deduce the equations
of transformation from one mesh gauge to the other.

2. If they are (1,1,1), (0,1,0), (0,0,1), and (1,0,0) respectively,

what are the equations of transformation ?

3. Show that in the last example the plain coordinates of all points
on the line YZ are identical with the prime coordinates.

4. Determine the coordinates of the self-corresponding points and
lines in the homography whose equations are k'x' = y z, k'y' zx,
k'z' = x-y.

5. Show that if the conic whose point equation is a2
t/
2+2a = is

invariant in a real homography, the transforms of interior pointsf are

interior points, and the transforms of exterior points are exterior points.

6. A non-singular conic O is invariant in a certain homography, and

two distinct points A and B on it are self-corresponding. Show that

(i) the common point of the tangents at A and J5 is also a self-corre-

sponding point, and (ii) every conic having double contact with O at

A and B is also invariant in the homography.

f An interior point is here to he defined as a point such that the two tangents
to the conic which are on it are complex lines.



CHAPTER XII

FURTHER DEVELOPMENTS

THE investigation of^the elementary theory of homographies
carried out in the last chapter brings to a close that part of the

subject of Projective Geometry with which this book deals.

The aim has been to give the reader a wider viewpoint of

Geometry, and to acquaint him with the methods used in the

subject. This strictly limited aim makes it a useful thing to

add a closing chapter in which it is pointed out how the subject

can be extended once the preliminary work is done. These

possible developments are very many, and so this account

cannot pretend to give more than an outline of some of the

more important ones.

12.1. Projective Geometry of Many Dimensions

In this book we have confined ourselves to studying the

Projective Geometry of the two-dimensional field, that is to say,

a field of points and lines. By far the most important develop-
ment of the subject is its extension to a field of many dimen-

sions. The starting-point of many-dimensional Projective

Geometry was outlined in 2.7, and it need not be repeated here.

It will be sufficient to say that instead of confining attention to

but two types of fundamental element, the point and the line,

many-dimensional Projective Geometry deals with many types
of fundamental element. These are inter-related in the first

place by initial propositions of incidence which are generaliza-

tions of those adopted here, and are, naturally, more compli-

cated than those of the two-dimensional field.

In addition to these initial propositions the Projective Pro-

position (3.313), the Harmonic Proposition (4.151), and, clearly,

some suitable initial proposition about extension are needed as

initial propositions. It is unnecessary to take Desargues's pro-

position as an initial proposition, since this is a consequence
of the initial propositions of incidence in the Projective Geo-

metry of many dimensions.

There is no particular reason for confining oneself to any

particular number of dimensions, and possibly the easiest
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method of attacking this extension is to proceed from two-

dimensional to w-dimensional Projective Geometry at once, n

being an unspecified positive integer.

Many-dimensional Projective Geometry throws considerable

light on a number of questions which are, strictly, two-dimen-

sional by nature. Thus, the deeper theory which underlies

Pascal's theorem (5.43) can only be fully grasped when it is

approached from the starting-point of many-dimensional Pro-

jective Geometry. The theory of homographies is also greatly

simplified by this method of approach; its synthetic treatment

in two dimensions is laborious, but in many-dimensional Pro-

jective Geometry the synthetic treatment is the natural and

obvious one.

12.2. Finite Geometries

In Chapter VII the question of extension was closed, once

for all, by taking as an initial proposition the isomorphism of

the open set of points on a line with the complex number-

system. It will now be seen that though other initial proposi-

tions of extension might have been adopted, some of them
would have made the work unnecessarily laborious. Such a one

would have been the proposition that the open set of points

on a line was isomorphous with the system of real numbers, or

with the system of rational numbers. It was far easier to take

the proposition we did take, and then when necessary confine

our attention to the real points or the rational points. The

reason of this is that the system of real numbers is itself iso-

morphous with a part of the system of complex numbers; and,

similarly, the system of rational numbers is isomorphous with a

part of the system of complex numbers.

But there are number-systems which are not isomorphous
with a part of the complex number-system; and there are Pro-

jective Geometries which correspond. One such system was

encountered in the representation given in 2.23; there, there

were not more than three points on any line. Systems such as

this were definitely excluded by our initial proposition of exten-

sion, but they are, for all that, a part of Projective Geometry.
Their analytical treatment involves the theory of numbers, and,

4191 p p
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in particular, the theory of numerical congruences; it may be

assumed that the synthetic treatment of them is correspond-

ingly complicated.

12.3. Gtoteral Loci and Envelopes

In the preceding chapters the only loci considered were the

range of points on a line and the point-conic; dually, the only

envelopes considered were the duals of these. It is quite clear,

however, that these are not the only types oflocus and envelope
which Projective Geometry is capable of handling. The fact

that there is a mesh gauge at our disposal may suggest that a

fruitful development of the preceding work would be the investi-

gation of more complicated types of locus and envelope by the

algebraic method. For instance, it would be possible to inves-

tigate algebraically the properties of loci and envelopes with

cubic, quartic, quintic,... equations. This is certainly a possible

method of studying these more complicated loci and envelopes,

but it is not the best method. Many-dimensional Projective

Geometry is the proper and most natural starting-point for the

study of these more complicated loci and envelopes; the alge-

braic method may be used in conjunction with this, but alone

it is not very fruitful. This is another example of the fact that

many-dimensional Projective Geometry can throw light on a

strictly two-dimensional question.

12.4. Generalized Metrical Geometries

In Chapter IX the notions of distance and angle were defined

protectively, and from them Metrical Geometry was built up.

By taking certain simple conies as metric gauges, and by con-

fining our attention to the real points of the field, a number of

simple Metrical Geometries were developed. Contrary to ex-

pectation, there is not much to be gained from the study of the

general Metrical Geometry, in which a general (complex) conic

is taken as metric gauge, and the metrical relations ofthe whole

field are considered. But there is a most important generaliza-

tion of Metrical Geometry which is worth outlining here.

In the Metrical Geometries we considered one conic was

taken as the metric gauge for all the points and lines of the

field; in the generalization, not one, but a whole system of
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conies is taken. In fact, with every point ofthe field is associated

a metric gauge-conic which is used for the measurement of

small distances from the point in question.

By way of illustrating how this is done, and of gjjp$g a pre-

cise interpretation of the vague word small, the following

example is taken.

With every point of the field (xl9 yly zj is associated (in this

example) the metric gauge-conic whose point equation is

#i#
a
+2/i2/

2+2i 2;2 = 0. Clearly, a point will only be on its own
metric gauge if #1+2/1+21 ^ 0> so that points whose coordinates

satisfy this equation correspond to the isotropic points of Pro-

jective Metrical Geometry. With these points we do not deal,

and so, in order to fix definitely the specification of the coor-

dinates of the points with which we do deal, we stipulate that

the coordinates ofthese points be so chosen that iCi+yf+zf = 1.

Consider now two points whose coordinates are (xv ylt zj and

(#!+&, 2/1+80, s^+Sz); if the distance between these two points
be written 8$, then, by 9.32, if the scale-constant is Ji,

If 8#, 80, 8z, and therefore 8s be small, this equation after

simplification may be written

2
81/82+ 2(z! xj* Sz83+ 2(3! 0i)

2 8

to the second order of small numbers. In the language of

differentials,

where x\ dx+yl dy+ zf dz = 0.

In this generalized Metrical Geometry, therefore, we obtain

in the first instance, not an expression for the distance between

two points, but an expression for the differential of distance at

any point. The length between two points of a given locus will

then be Jdk,
where the integral is taken along the locus; the

distance between two points will be the minimum length between

these two points for all the possible loci. These minimum-length
loci are called geodesies; in the Metrical Geometries considered



292 PROJECTIVE GEOMETRY

in Chapters IX and X the lines of the field are the geodesies,

but this is not necessarily so in these more general Metrical

Geometries.

This generalization ofmetrical ideas is most important, since

it is the true foundation of what is called Differential Geometry;

in fact, Differential Geometry is only the study of the metrical

relations of a perfectly normal projective field, or a part of it,

upon which has been imposed a rather complicated metric.

Differential Geometry must of its nature be treated analytic-

ally, and the analytical weapon most suited for the purpose is

the Tensor Calculus.

12.5. Applications to Physics

The science of Geometry was, in the first instance, the science

of the measurement of the physical space in which we live; it

therefore was, strictly speaking, a physical science. To-day it

is no longer a physical science; nevertheless, it has evolved to

its present state of development from its original state by
successive generalization and abstraction. There is therefore

at least a genealogical connexion between Geometry and the

science of the measurement of physical space. It is only natural

to ask whether there is any closer connexion; whether, in fact,

Projective Geometry is a 'pure' mathematical science, corre-

sponding to the 'applied' science of Physical Geometry.

Physical Geometry is of its nature a metrical Geometry, since

it is concerned with measurement of space. The first ordering

of the results of these measurements led men to formulate the

propositions of Euclidean Metrical Geometry, and this Eucli-

dean Metrical Geometry continued to be applied to the measure-

ments of space, since it seemed to fit the facts of observation

and its predictions were uniformly verified.

But as the observed facts multiplied, and measurement

became more precise, it became clear that sometimes, at any
rate, the predictions of Euclidean Metrical Geometry were not

verified. The source of this discrepancy was at first attributed

to faulty observation, and later to some hitherto unknown

physical law, but with the advance in the development of

Geometry it became at least a tenable hypothesis that the cause
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of the discrepancy did not lie in either of *hese, but in the

Metrical Geometry that was being used to describe the universe.

Men had become so accustomed to the classical Euclidean

Metrical Geometry that they could not imagine any other being
verified in nature.

The preceding chapters have shown that there are various

Metrical Geometries, each with precise definitions of distance

and angle, and none of them with any intrinsic claim to be

considered more important than the rest; it is therefore at least

possible that one ofthem may fit the facts of nature better than

Euclidean Metrical Geometry. Until Geometry had developed
to the point of realizing the possibility of different Metrical

Geometries, any variant on the classical Euclidean scheme was

unthinkable; when the possibility had been realized, the ques-

tion arose: Which of the possible Metrical Geometries best

describes the universe ?

12.6. The Special Theory of Relativity

How this question is answered can be indicated by a simple

concrete example.
The physicist is concerned not only with the measurement of

space but with that of time. He found it convenient to represent

his simultaneous space- and time-measurements by a four-

dimensional field of points. There is no need to attempt the

imagination of a four-dimensional field; it is sufficient to confine

ourselves to a field of two dimensions. This two-dimensional

field the physicist used to 'map' the events of the universe; he

took one axis to represent one dimension of space, and one to

represent time. He thus set up on his map a non-homogeneous
mesh gauge. On this map a line parallel to the time-axis

represents a stationary point, and a line at an angle to the

time-axis represents a moving point moving, that is, relative

to the 'observer', the man who makes the map.
Consider now a second observer, moving relatively to the

first; in his map of the universe his axes of space and time

will be at an angle to those of the first observer. The first

observer will describe an event occurring at a certain place and

time by coordinates (x, t) relative to his mesh gauge; the second
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will describe the same event by coordinates (#', t') relative to

his mesh gauge. How are the two descriptions connected?

It was always assumed that the Metrical Geometry of this

map was the classical Euclidean (i.e. Complex Euclidean), and

therefore that the equations of transformation from one mesh

gauge to the other were of the form

x' xco&B sin0+a,

t' = #sin0-Mcos0-|-&,

where tan0 v, the velocity of the second observer relative to

the first.

The classical Euclidean Metrical Geometry therefore predicts

that if the first observer sees a body moving with a velocity u,

the second will see it moving with a velocity u v. This pre-

diction seemed to be verified in fact, within the limits of obser-

vational error, so long as small velocities were being observed.

But when velocities of the order of magnitude of that of light

were observed, the equations were found to be inaccurate. It

was then found that the equations which fitted the facts best

were not those given above, but

x' = x cosh 6 <sinh0+#,

t' = #sinh0H-cosh0+&,

where tanh = v, the velocity of the second observer relative

to the first.

This discrepancy between prediction and observed fact was

at first interpreted by physicists as being due to the contraction

of 'rigid* bodies when in motion, and was called the 'Fitzgerald-

Lorentz Contraction'. But there is a far simpler interpretation

than this.

The first set of equations of transformation are those which

leave invariant the special points of Complex Euclidean Metrical

Geometry, the second are those that leave invariant the special

points of Real Euclidean Metrical Geometry. The inference is

that the Metrical Geometry of the map is not the classical

(Complex) Euclidean Geometry, but the Real Euclidean

Metrical Geometry discussed in Chapter X, and that this is the

Metrical Geometry best fitted to describe the physical universe

of space and time.
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The fact which upset the traditional theories was the invari-

ance of the velocity of light. The Michelson-Morley and other

experiments showed that however an observer was moving
his estimate of the velocity of light was always the same. On
the classical theory, if one observer found that the velocity of

a ray of light was c, an observer moving with a velocity v

relative to the first should observe the velocity of the same ray
of light as c v. But in fact he observes it to be c. If this

physical fact be translated into terms of the map made above,
it reads that a certain set of lines (those parallel to a line repre-

senting the velocity of light) make the same angle with all other

lines of the field. This should have warned mathematicians

that these exceptional lines were the isotropic lines of the field;

and since they are real lines, that the Metrical Geometry of the

map was not Complex Euclidean Metrical Geometry as had
been supposed, but Real Euclidean Metrical Geometry.
The theory which has been outlined here was called, when it

was discovered, the Special Theory of Relativity; in its turn it

had to give place to a more general theory still, as the facts of

observation were multiplied. Physicists have now realized that

the Metrical Geometry which best describes the universe is not

even Real Euclidean Metrical Geometry, but one of the more

general Metrical Geometries outlined earlier in this chapter.
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