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PREFACE.

TREATISES on Projective Geometry are usually written with
the object of presenting this science in a purely systematic form;
hardly any attention is paid to the applications. As a rule the
methods of “arithmetized” mathematics have to be transformed,
made more concrete, before they lend themselves to the solution
of practical problems; and this, in the judgment of many, dis-
figures the purely scientific method.

In this respect, projective geometry, geometry of position, is
no exception. The puristic tendencies of von Staudt, Reye, and
others culminate in the modern Italian school of geometer-logicians,
headed by VERONESE ! and ENrIQUES.  The latter’s projective
geometry > contains an admirable logical presentation of the
subject. With Enriques projective geometry is a “visual” sci-
ence, and everything is foreign to it which cannot be based upon
the axioms of vision. "

It seems doubtful whether the axioms of vision alone can
establish a sound projective geometry. Enriques himself, in
his book, lets the fundamental elements of the first order be
generated by motion! In this visual geometry metrical proper-
ties, which are indispensable in the applications, appear as special
cases and are of secondary importance. Conics result from the
theory of polarity.

On the other hand, FIEDLER, WIENER and others show that
the methods of Poncelet, Steiner, Chasles, and Cremona naturally

! Grundziige der Geometrie, Teubner, Leipzig.
3 German translation, Teubner, Leipzig.
iii
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follow from the study of descriptive geometry. With them,
projective and descriptive geometry are organically related and
each branch benefits by its connection with the other. Little
attention is paid to the so-called foundations.

As the present book has been written with a utilitarian pur-
pose, considerable space is given to the applications; and in
their treatment use has sometimes been made of original analytic
and geometric methods of attack and solution. It has thus been
found possible to include some new subject-matter and especially
certain parts of modern analytical geometry.

In addition to the traditional contents-of the standard ele-
mentary treatises, two chapters on pencils and ranges of conics,
including cubics, and on the applications in mechanics have
been added. . The Steinerian transformation contained in Chap-
ter IV, in connection with the study of plane cubics, is a brilliant
example of the original power of projective geometry; and as it
is elementary, it seems natural to introduce it after the theory of
conics. As a novel feature the realization of collineations by
linkages, described in Chapter V, may be mentioned.

Much time may profitably be devoted to the original prob-
lems and to the constructions involved in them. No first study
of projective geometry can be successful without the constant
use of ruler and compass.

My thanks are due to my colleague, Professor Ira M. De Long,
for many valuable suggestions as to matters of form.

Corrections and suggestions as to either the form or the matter
of the text are earnestly solicited.

ArvorLp EumcH.
BOULDER, COLORADO, '
July, 1904.
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PROJECTIVE GEOMETRY.

CHAPTER 1.

GENERAL CONSIDERATIONS. ANHARMONIC RATIO. PROJEC-
TIVE RANGES AND PENCILS. POLAR INVOLUTION OF THE
CIRCLE. ’

§ 1. Geometric Quantities and their Signs.

Geometric quantities can be represented by numbers by
assuming an arbitrary geometric quantity of the same kind as a
unit.! To show this for linear quantities, assume any line 4Z,
Fig. 1, and a unit w. Measure off on AZ as many units % as

o - + +—

A B8 1z

Fi16. 1.

possible, so that the remainder BZ<#. Suppose that the num-
ber of units measured on AZ is a, so that AZ=au+BZ. Now
consider BZ as a unit and % as the quantity to be measured.
Suppose that BZ is contained b times in % and that the remain-
der r<BZ. Then u=b-BZ+r. In asimilar manner, consider r
as a unit and BZ as the quantity to be measured. Suppose that
7 is contained ¢ times in BZ and that the remainder is s, so

1 See LAGRANGE’S Lectures on El tary Mathematics (translated by Th. J.
McCormack, Open Court Publ. Comp., Chicago), p. 3.




2 PROJECTIVE GEOMETRY.

that BZ=cr+s. Continuing this process till it closes, or else
indefinitely, there results the series

AZ=au+ BZ,
u=>b-BZ+r,

BZ=cr+s,
r=ds+i,
s=et+7,

which by elimination leads to the continued fraction (# as the
original unit being 1)

AZ=a+1
b+1
cf1
d+1

This evidently represents a number and the proposition is
proved.! '

Geometric quantities being represented by numbers, it must be
possible to define negative and positive geometric quantities in
accordance with the laws of Arithmetic. This can be done in the
most convenient manner by the method of displacements. As-
sume any line and three points on it in the order 4, B, C from

1 This continued fraction is convergent, since by the process of its formation
it continually approaches the limit, which is known in advance. For example,

‘\/; =141
2+1
a+r
2+ ...
Concerning further details consult LAURENT: Traité d’Analyse, Vol. V, pp. 321~
359-
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the left to the right. Increase and decrease of geometric quan-
tity on this line are measured by the amount of displacement of a
moving point, or by the length of the line between the original
and final position of a moving point on this line. The formal
laws of all displacements on this line are those of the group. Thus,

(1) : AB+BC=AC

shows that two displacements succeeding each other are equiva-
lent to a single displacement of the same kind and of the same
system (group).! It follows further that

(2) AB+BC+CA=o0;?
hence by substitution of (1) in (2)

AC+CA=o,
or CA=—-AC; v~

i.e., two displacements, or geometric quantities, which are de-
* scribed in opposite directions are of opposite sign. The same
conclusions are reached when angular displacements are con-
sidered. It is a universal convention to designate all geometrical
quantities which are obtained by displacements on a line from
the left to the right as positive and those in the opposite direction
as negative. In a similar manner, angles formed by angular dis-
placements counter-clockwise are assumed as positive and those
clockwise as negative. The conception of the group is general
and also comprises the determination of such geometric quan-
tities as areas and volumes. :

In case of a surface assume a pole O and any line / on this
surface. A point P is moving on /, and in any position of its
motion is connected to the point O by a geodesic of the surface.
The generalized radius vector OP then sweeps over a certain area

11t is beyond the limits of this book to enter into a discussion of groups in

this connection.
2 MoBIUS: Barycenirische Calcul, § 1.
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which is subject to the laws of the group. Thus if P moves
from A4 to B to C, counter-clockwise with respect to O,

0OAB+OBC=0A4C,
OAB+OBC+0CA =o;
hence OAC+OCA =o,
or OCA =—-0AC.

Two areas have therefore to be considered as of opposite sign
if their boundaries are described in oppo-
site senses. According to the distinc-

\\ o ik v v e, s
. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ _ boundary is described coun?er-%lockwise

A or clockwise, respectively. From this it
follows further that if the point P de-
scribes a closed line on a surface, the
radius vector OP sweeps over an area
_equal to the area enclosed by the curve.
For a triangle 4 BC, Fig. 2,

ABC=0AB+0OBC+0CA,
where OCA is negative. On the other hand

CBA=0CB+0BA+0AC
=—0BC—-04B+0AC;
hence ABC+CBA =o,
CBA=—-ABC.

The same reasoning may be extended to the determination of
volumes, which is left to the reader as an exercise.
Ex. 1. If 4, B, C, D are four collinear points, prove that

BC-AD+CA-BD+AB-CD=o.
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Ex. 2. For the same points prove

DA?.BC+DB*-CA+DC* AB=—BC-CA-AB.

- § 2. Anharmonic Ratio.! Projective Transformation of ths
Points of a Straight Line.

1. Critical Note—vON STAUDT in his classical works 2 on the
geometry of position created a system with the principal purpose
of laying the foundations of geometry without the aid of metrical
considerations. He introduced the word “Wurf” as an equiva-
lent of anharmonic ratio and attached to it a meaning independent
of any ratio. The anharmonic ratio is considered as a property
of the “Wurf”, so that, according to v. Staudt, metrical geometry
is based upon projective geometry, or rather the geometry of
position. STEINER, on the contrary, took the anharmonic ratio as
a starting-point in his investigations.® In a recent paper * PoIN-
CARE has pointed out ‘“that from a certain point of view the
geometry of v. Staudt is predominantly a visual geometry, while
that of Euclid is predominantly muscular.” In other words, the
two geometries are derived from experiences in optics and kine-
matics, respectively.

In works with practical purposes, where applications form an
important part, it is probably of the greatest advantage to take
one view or the other according to the simplicity of the treatment
which it may afford. .

This method, although objectionable from the standpoint of
pure geometry, reflects the development of geometric science
itself.

11 shall use the expression anharmonic ratio, because it is used by the trans-
lators of Reye’s and Cremona’s treatises on projective geometry and by a majority
of English authors. Double ratio, corresponding to the German Doppelverhilt-
nis, is presumably a better designation.

2 Geometrie der Lage, 1847. Beitrige, 1856—60.

3 Systematische Emtwickelung der Abhingigkeit geometrischer Gestalten, etc.,
1832.

% On the Foundations of Geometry, Monist, No. 1, Vol. IX.
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2. The anharmonic ratio of four points 4, B, C, D on a line,

a straight line for the sake of simplicity, where (4, B) shall be
designated as the first, (C, D) as the second pair, Fig. 3, is

As AC, BC, AD, BD are all positive quantities, k will be a posi-
tive number. It is clear that this is not the only anharmonic
ratio that may be formed between the four points. As there are
24 permutations possible between four elements, there will also
be 24 anharmonic ratios. Some of these, however, have the
same value, and it may easily be verified that there are only 6
different anharmonic ratios possible. Designating (1) by the
symbol (4BCD),! these are ’

( (ABCD)=F,

(BACD) =;—,
(BCAD)= —I_T"",

(2) h k
' (CBAD)= —,

I
(CABD)= —,
| (ACBD)=1—*F.

If the points 4, B, C, D are located by their displacements a, b,

! M6BIUS, Barycentrische Caleul, § 183.
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¢, d from a fixed point O, the first anharmonic ratio assumes the
form

c—a fd—a
(3) /i

3. This expression leads to the solution of the important prob-
lem to find all pairs of points, X, ¥, which with two fixed points
4 and B form the constant anharmonic ratio .. Associating with
X and Y the displacements x and y from O, the condition, ac-
cording to (3), is

(4)

or, solved for x,
(a—bk)y—ab(1—k)
(s) = Ry— (b—ak)

From this it is seen that to every value of y corresponds one
and only one value of x satisfying the condition of the problem,
and vice versa. Taking any four points Y,, V,, V,, ¥, and de-
termining the corresponding points X,, X,, X, X, according to
(5), there is found the relation

(X XoXoX)=(Y,Y,Y,Y);

i.e.,, any four points of the series (X) and their corresponding
points of the series (') satisfying the condition (5) have the same
anharmonic ratio. Two series or ranges of points with this
property are said to be projective. Formula (5) is the analytical
expression for these projective ranges of points; it effects a pro-
jective transformation * of the points of a straight line.

For y=a, x=a, and for y=»b, x=>b; i.e., the transformation
leaves the points 4 and B invariant; they are called the double-

1 The word projective was first used by PONCELET in his great work: Traité
des propriétés projectives des figures, 1822. MOBIUS was the first who gave an
analytical representation of projective transformations, in Der barycentrische
Calcul, 1827.
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points of the transformation, or of the projective ranges of points.

From (4) follows immediately that every pair of corresponding

points jorms a constant anharmonic ratio with the double- points.
On the other hand every transformation of the form

Ay+B
© *=Cy+D

is projective. To prove this assume four points ¥y, ¥,, ¥, ¥,
and determine the corresponding points X,, X, X, X, Let
Y1 V2r ¥ Ya and Xy, %,, %5, %, be the corresponding displacements,
then to form (X,X,X,X,) we have from (6)

(4D~ BC)(ys=3,)
(Cy,+D)(Cy+ D)’
. AD—=BC) (35— y,)
) ) * (Cys+D)(Cy,+D)’
7 o (AD=BO)(3.—3)
T (CyAD)(Cyt D)’
. (AD=BO) (3.~ 3)
BT (CrAD)(Crt D)’

Xg— X, =

Xg—

and by division
Xg— Xy [X— X1 Vs V1 [Va— D
Xg— Xyl Xy— %2 Ys— Y, y{_yz,

or (XXX X)=(Y,Y,Y,Y)),

which is a property of a projective transformation. To prove
that (6) is of the form (5), we find the double-points of (6) by
putting y=x; then (6) becomes
(8) Cx’—(A—D)x— B=o;
hence, designating the roots of this equation by @ and b,
A—D+~(A—D)*+4BC
= 2C ’

_A—D—~(4—D)*+4BC
- 2C :

(9)
b
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The transformation (6) has therefore two double-points. Put-
ting in the first and third equations of (7) %,=y,=a and
%,=9,=Db, it is found by division that

a—x, Jb—x, Cb+D
(10) a—y,/ b—y, Ca+D

=k (constant).

Thus we find that any pair of corresponding points of the
transformation (6) forms a constant anharmonic ratio with its
double-points; such a transformation is projective. In deriving
equation (5) it was assumed that 4 and B are real points.
Assuming a projective transformation of the form (6), where
4, B, C, D are real coefficients, it may happen that the double-
points given by (9) are imaginary. In fact there are three pos-
sibilities for the double points. According as

(11) (A—D)+4BC Zo,

e and b, or the double-points, are real, real and coincident, or
imaginary, and the transformations are then called hyperbolic,
parabolic, or elliptic.

4. We shall next show that two projective ranges are deter-
mined by three pairs of corresponding points X,, Y,; X,, V,; X, Vs,
whose positions are determined by the coordinates x,, ¥, ; %5, ¥, -

If these points are corresponding in two projective ranges, their
coordinates must satisfy some relation of the form

_ay+b
x_cy+d

or cxy+dx—ay—b=o.

To determine the ratios ;7, bé’ %, which evidently determine the

transformation, we have the conditions
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c d a
-b-xlyl+ b—xl" lTy‘_ I=0,

c d a
szyz"‘ Exz_ Z’yz_ 1=0,

L S
bxsys'*'bxa‘pa_l—o-

These are three equations with the three required ratios as
unknown quantities. These are therefore uniformly deter-
mined by the #’s and »’s and are in determinant form:

I % Y XY I W N —% I l
X2 Y2 %Y I N XY2 —%
c X3 Vs _(?_ X3¥s I Y3 a_ XgYs — Xy I’
b wy, ®m o y|’ b [xy @ |t b jwy w oy
XYz %2 Y2 XY2 X2 Y2 XY X3 N2
X3g¥s X3 Vs XYz X3 Vs Xg¥s X3 Vs

This proposition is also geometrically clear. In two pro-
jective ranges any four points of one range have the same anhar-
monic ratio as the four corresponding points of the other range.
Hence, choosing any fourth point x,, then there is clearly only
one point Y,, so that . '

(X X XeX)=(Y,Y. Y Y);

i.e., three pairs of points determine the projectivity.

As an exercise assume the case of two coincident projective
ranges for which the infinitely distant point is self-correspond-
ing. Let x,=y, determine this infinitely distant point. From

. c . a a .
the above expressions we find 5 =0 while 3 and 7 are finite.
The projective transformation assumes the form

x=ay+pf;

i.e., what is called a linear transformation.
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5. It is beyond the limit of this book to discuss all special
cases of projective transformations of a straight line in detail.
We shall indicate one of its properties which is of extreme impor-
tance in modern geometry, and then discuss the special case of
involution. Let a point x be transformed into a point x’ by
the projective transformation

(12) W=

Transform &’ into a point & by another .transformation of
the same kind:

,_ ¥+
(13) & rlx,+6l'

The result of these two operations is

) ,_ (aa+ rB)x+ (Ba,+0By)
(14 - (ar+rd)x+ (Br,+09,)’

which shows that x’/ is obtained from x by a projective trans-
formation of the form (12). Hence one, two, or more opera-
tions of the form (12) in succession are equivalent to. an oper-
ation of the same kind. Giving a, 8, 7, 0 all possible real values,

12) depends upon the three ratios ﬁ, ﬁ, l, so that (12) repre-
p p 580 P

sents a triply infinite number of projective transformations.
For this reason it is said that all projective transformations of a
siraight line jorm a continuous three-termed group (dreigliedrig).!

§ 3. Involution.?

In case that the constant anharmonic ratio % in equation (4)
of the foregoing paragraph is —1,

1 SoprUs LIE: Vorlesungen iiber continuierliche Gruppen.
2 First systematically studied by DESARGUES (Brouillon projet, etc.).
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x—a y—a

(1) Py Sy SR
_ (a+b)y—2ab
) NGO

In these equations x and y can be interchanged without affect-
ing (1) or (2). The ratio (ABXY)=—1 is called a harmonic ratio
and (1) and (2) represent an involutoric transformation. To the

. . . . a .
point at infinity, y=c0, corresponds the point x=—.:—; ie.,

the point bisecting the distance 4B between the double-points.
It is called the middle point of the involution. Designating this
point by M, it is found that

@3) MX-MY=""L =5

i.e., the product of the displacements of two corresponding points of
an involution from the middle point is comstant and equals the
square of the displacement of either double-point from the middie
point. '

Equatien (2) may always be written in the form

_wy—8
ry—e’

(4) x
if @ and b are given by the values

a |laz B a Ia’ B
Ca=— \/——— b=——Al5— =
=TNFT R NF Ty

As these expressions define the double-points, they must also
result directly from (4). For the double-points x=y; hence
from (4) '

rx*— 2%+ f=o.
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The roots of this equation are indeed identical with the pre-
2

vious values of @ and b. If 8 >9_’ a and b are conjugate complex
ror

numbers, i.e., the double-points of the involution are imaginary. .
In this case the middle point M of the involution is still real,

a+bdb «a

since = -, and
T

MX-MY= 3

2
X and Y are on different sides of M. For ‘gJF the double-

points coincide, and MX-MY =o; every point corresponds to M.
According to these results involution has been classified as hyper-

Fro. 4.

bolic in case of real double-points, elliptic in case of imaginary
double-points, parabolic in case of coinciding double-points.

Geometrically, the different cases may be obtained as intersec-
tions of a straight line with coaxial systems of circles. Figs. 4,
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5, and 6 represent hyperbolic, elliptic, and parabolic involutions
respectively. In the first the points of a pair, XY, are always on
the same side of M, and move in opposite directions; in the second
they are on different sides of M, and one of the points (X) is

Fi1G. 6.

within the distance 4B and the other without. Corresponding
points move in the same direction. We have seen that an in-
volution on a straight line is determined by the transformation

ax+b
(S) ¥ = cx—a’ or
©) cxx' —a(x+a’)—b=o,

which shows that an involution is determined by two pairs, since
there are only two essential constants in (6).
Suppose that in a projective transformation

_ax+b
“aarad &
cxx’+dx’— ax—b=o,

the points x,', x, may be interchanged without affecting the pro-
jectivity. The condition for this is

(7 cxy%) + dxy! — ax,— b=o,

)] cxx/+dx, —ax/—b=o.
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By subtraction
(9) d(x,— %)+ a(x,— x,") =o,

which can only be satisfied when d=—a, since x,»x,’. The
condition d=— a, however, implies involution, hence the theorem:

I} a projective iransformation contains a pair whose values may
be interchanged without altering the transformation, it is an involu-
tion. Thus if x,x,” be a pair,

(10) (ABX X,)=ABX/X)=—1.

§ 4. Projective Pencils of Rays.

Let @, b, ¢, d be four rays (straight lines) passing through
a common point, and (ab), (bc), etc., the angles included by
the rays ¢ and b, b and ¢, etc., so that also here (ab)=—(ba);
(ab)+ (bc)+ (ca)=o.

In analogy with the anharmonic ratio of four points, the anhar-
monic ratio of these rays is

sin (ac) /sin (ad)
(@) sin (bc)/ sin (bd) %
and may be designated by (abcd)=*k.

What has been said about the permutations of four points
applies without alteration to four rays. Consider now four con-
current rays a, b, ¢, d passing through four points 4, B, C, D of
a straight line, respectively. From Fig. 7 it is seen that

sin (ac) /sin (ed) CN yDM
sin (bc)/ sin (d) CP/ DO’

DM and CN being L ¢ and DO and CP L tob. But

CN _4aC o CP_BC
DM~ 4D ™ DO~ BD' "
CN /DM AC JAD
and

‘ cp/ po~sc/ BD
(2) (abed)= (ABCD).
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This important result may be stated by the theorem:

The anharmonic ratio of any four concurrent rays is equal to
the anharmonmic ratio of four points formed by the intersection of
any transversal with these rays. (Pappus.)

Fic. 4.

In other words, if the rays @, b, ¢, @ are considered as project-
ing rays in a central projection, such a projection does not change
the anharmonic ratio of four points. .

A system of rays in a plane and passing through the same
point is called a pencil of rays.’ By the above theorem all- proper-
ties of projective ranges of points may be transferred to pro-
jective pencils of rays.

In order to obtain an analytic expression for the rays of two
projective pencils with the same vertices, assume the line repre-
senting a projective range of points as the X-axis and the origin
of the range as the origin of a Cartesian system. Let V, with
the coordinates m and n, be the center of a pencil, then the equa-
tions of the rays passing through the double points A and B of the
transformation

—bk)y—ab(1—k
® =y Cas9)

! CREMONA, loc. cit., p. 22.  In the translation of Reye’s Geometrie der Lage
the term ‘‘sheaf of rays’ is used, while in Cremona’s treatise ‘‘sheaf of rays”
or ‘“planes” means all rays or planes passing through a point in space. Ger.
Strahlenbiischel. Fr. Faisceaux.
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are
(4) nx+ (a—m)y—an=o,
(5) nx+ (b—m)y—bn=o.

Multiplying (5) by A and subtracting from (4), the equation
of a third ray through V results:

a— b a— b
©) ”x+<1—,l m)y— "o

This ray intersects the X-axis in a point, say D, whose abscissa
a—Ab

d =1

To find the corresponding. point C in transformation

—2b :
(3), put y=d=";?[ in (3). This gives for the abscissa ¢ of C

— Abk
the value ¢ = 91——Ak’ so that the equation of the ray passing

through C becomes
a— Abk a— Ak
(7) nx+ —I—_—Tk——m y— mﬂ——o.

Comparing equations (6) and (7) with those of (4) and (5),
we find, if (4) and (5) are written #=o0, v=o0, that (6) and (7),
the equations of the rays V.D and VC, are

(8) : u— v =o,
) " u— Akv=o.

For each value of A these equations represent a corresponding
pair in a projective transformation of rays which is characterized

by the anharmonic ratio .. In other words, for a variable 2,
(8) and (9) represent two projective pencils.
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§ 5. Involutoric Pencils.

In the case of involution the anharmonic ratio is 2= —1, so
that equations (8) and (9) of the previous paragraph become

(1) u— Av=o,
(2) %+ v=o;

i.e., if w and v are any two rays, the rays 4— Av=o0 and 4+ Av=0
are harmonic with regard to # and v. For A=0 and A= the
double-rays #=0 and v=o of the involution are obtained. (1)
and (2) define an involution of rays when 2 varies from — o to
+ . Suppose A

u=ax +by +c =o,

v=ex+by+c,=o

be the equations of the double-rays, so that (1) and (2) assume
the form ‘

(3) (a_ Aal)x+ (b— Abl)y+c_ M1=°:
4) (a+2a)x+ (b4 Ab,)y+c+ Ac,=o.

The trigonometric tangents of the angles of inclination with
+ X, or the slopes of (3) and (4), are

a—2a,

(s) m=_b— )bl ’
a+ia,
© ™=y,

hence the tangent of the angle ¢ included by (1) and (2) or (3)
and (4) is

m—m, 2(ab— db,)l
@) = mem, P U — P(ap 5
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This shows again that for A=0 and A=, tan ¢=o0, or ¢=0
(180°). In these cases the rays (3) and (4) coincide and the
double-rays of the involution are obtained. Supposing that
a,b—ab >0, which generally will be the case. we may ask for

those values of 2 which will make tan ¢=, or ¢=-7;t, a right
angle. From (7) we find for this condition

a’+ b*— A%(a*+ b)) =0, or
N
© i

which is always a real quantity. Whether we take the + or —
sign for 4 in (8), we obtain the same couple of equations (3) and
(4); hence the theorem:

An involution of rays always contains one, but only one, rect-
angular pair.

We shall now discuss the case where tan ¢ =00, or ¢=90°,
for all values of .. In order that this be the case, the quanti-
ties @, b, @,, b, must satisfy the conditions a*+b*=o0, a,*+b,*=0,
ab—ab, o, or b=+1a, b,= F ia,, so that the equations

ax+by+c=o0, ax+by+c,=o

of the double-rays assume the forms

x+4 ‘- iyt
y+a—o, x zy+al-o,

.. . c c .
and are imaginary. We can dispose of the constants 2 and ;13- in
1

such a manner that the double-rays will pass through the real
point (e, B). Their equations then become

{u5x+iy— (a+iB8)=o0,
v=x—1iy— (a—if)=o.

)
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The involution with these double-rays has only rectangular
pairs. The equations of such a pair are

{u—Av=o,
(10) 14+ w=o.

For real values of A the pairs are imaginary, since (10) may
be written

—1
y—ﬂ=i (x_a)’
(1) o

y— ).

1+ip
—ipn

a real quantity, /1— Thus, if in (10) we

Putting i— +j=,u,
1+iu

1—iy
where g is any real quantity, the corresponding pairs (11) in the
involution will be real and rectangular. Now an involution of
rays has generally only one rectangular pair and is determined -
by two pairs, hence the theorem:

An involution of rays having more than one rectangular pair
has all its pairs rectangulay.

The double-rays of this involution are imaginary and pass
through the two infinite points, which, as will be seen later on,
are called the circular points at infinity, § 12.

If an involution of rays shall contain the rays joining the
vertex with the circular points, i.e., the two rays with the slopes
+1% and —7 as a pair, then according to (3) and (4) we must
have

a—Aa, ) a+,la
T I

or ’ A(bi—a,)+a—bi=o,
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These two equations must exist for the particular value of
4 which makes the slopes of (3) and (4) +¢ and —4. This can
only be true under the condition

(byi—a,)(a+bi)— (byi+a,)(a—bi) =o,
or aa,=—bb,.

Hence the theorem:

If an involution of rays contains the rays with the slopes +i
and —1i as a pair, then the double-rays of this involution are per-
pendicular to each other.

Conversely, it can easily be proved that if the double-rays of
an involution are perpendicular, them this involution contains
the rays with the slopes +1i and —1i as a pair. The slopes of
the rays of any pair in an involution, as defined by (3) and (3),
are —%:—i‘;: and _ab—ii‘;i' Consequently the tangents of the
angles which these rays make with one of the double-rays, for

instance #=o (slope— %), are

a a—1Aa,

T, Aeb—ad)
a a—Aa, a*+b*— A(aa,+bb,)

Ity 5=,
and
a a+la,
" b b+, Aab—a,b)
a a+la, a*+b*+ A(aa,+bb,)
F b+ 8,

In case of perpendicular double-rays aa,+bb,=o, and these
two tangents become equal. Hence the theorem:

In case of perpendicular double-rays, the angles of all pairs
o] the imvolution are bisected by the double-rays. In such an
involution two rays chosen from each of two pairs include the same
angle as the remaining two rays of the two pairs.
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§ 6. Product of Projective Pencils and Ranges.!

1. In § 4 it has been shown that the equations of two pro-
jective pencils of rays with the same vertex may always be writ-
ten in the form

(1) u— lv=o,
(2) u— Akv=o.

For every value of A these equations represent a correspond-
ing pair of rays in a projective transformation which is charac-
terized by the anharmonic ratio £. In other words, for a variable
A (1) and (2) represent two projective pencils. Now the second
pencil (2) may be moved into any other part of the plane with-
out ceasihg to be projective with regard to (1). This operation
does evidently not change the general form of (2); only the
expressions % and v are transformed into new expressions r and
s. These represent two rays intersecting each other in the ver-
tex of the moved pencil. Thus the equations of the two pencils
are :

@3) u—lv=o,

(4) r— Aks=o.
For each value of A.there are two rays which intersect each
other in a certain point P. If A successively assumes ail values

between — o and + o, P describes a locus whose equation is
obtained by eliminating A between (3) and (4). This gives

(5): vr— kus=o,

1 The conception of pencils of curves and surfaces represented by equations
of the form P+AQ=o is due to LaME, who introduced it in his article, Sur les
intersections des lignes et des surfaces, Gergonne’s Annales, Vol. VII, 1816-1%, pp.
229—240. The generation of conics by projective pencils and ranges is due to
STEINER (Systematische Entwickelung, etc.), who called it his “steam-engine”
(Dampfmaschine).
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an equation of the second degree in x and y, since %, v, r, s are
linear in x and y. Hence the theorem:

The product of two projective pencils of rays with separate
verlices is a curve of the second order.

2. Each linear expression, like ax+by+c=o0, depends on
two independent coefficients, so that the equation vr—kus=o
contains eight independent coefficients. Arranging in (5) the terms
according to powers of x and y, an equation of the form

©) ax?+ 2bxy+ cy*+ 2dx+ 2ey+ f=0

is obtained, where a, b, ¢, d, ¢, | are expressed in terms of the
coefficients of #=0, v=0, r=0, s=o.

As (6) contains only five independent coefficients, it is clear
that the eight coefficients in #=o0, v=o0, r=0, s=0 may always
be selected in such a manner that (5) becomes identical with
any equation of the form (6). See problem 11 in § 7.

Hence the theorem: :

Every curve of the second order may be considered as the prod-
uct of two projective pencils of rays.

(s) is satisfied by #=v=o0 and r=s=o, also by u=r=o0
and by v=s=o; ie., the curve of the second order passes
through the vertices of the projective pencils and also through
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the points of intersection of the rays v, s and u, 7, Fig. 8. If,
therefore, we want to write (6) in the form (5), we have to choose
two points S and T on the given curve (6). Suppose that =0
and v=o0 contain S, and =0 and s=o T, then %, v, r, s, each
only depend on one coefficient (slope), so that (5) depends on
these four coefficients and %k, which makes five coefficients in
all. These coefficients may therefore be uniquely determined
so that (5) represents or is identical with (6). Now two points

o (—1)®

S and T may be chosen in = ? different rays on a

curve. Each of these determines a different but unique form
of (5). The previous theorem may therefore be stated as fol-
lows: ‘

Every curve of the second order may be produced in a doubly
infinite number of ways by two projective pencils.

At the same time we have proved the theorem:

If two fixed points S and T be joined fo a point P which
describes a curve of the second order through S and T, the pencils
(SP) and (TP) about S and T as vertices are projective.

3. As the general equation of a curve of the second degree
depends upon five independent constants, it is clear that five
points of the curve determine it. Designating the coordinates
of one of these points by x;, y,, there is

ax 2+ 2bxy;+ ¢y + 2dx i+ 2ey,+ f=o,
'i=Iy 2, 3,4y 5-

These are five equations with five unknown quantities

b d
‘-;—, 37—, %, Ei—, Zif, which may be found by the usual method.

Hence the theorem:

A curve of the second order is determined by five points.

In a similar manner it may be proved that two projective
ranges of points can be represented by the equations

) a—u f=o,
®) 7— pKd=o0,
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where a, 8, 7, 0 are the line-equations ! of four pomnts in a plane.
Assuming the knowledge of line-coordinates, the proof may
be made without difficulty and may be left to the reader.

For every value of p there are two points which determine
a straight line. If p successively assumes all real values, this
line envelops a curve whose equation is obtained by eliminating
u from (7) and (8) and which is

(")) Br— xad=o.

This is an equation of the second degree in line-coordinates
and consequently represents a curve of the second class.? In
analogy with the previous statements we have also the theorems:

Every curve of the second class may be produced in a doubly
infinite number of ways by two projective ranges.

If two fixed tangents S and T be intersected by a line P
which envelops a curve of the second-class tangent to S and T,
the ranges (SP) and (TP) on S and T as bases are projective.

A curve of the second class is determined by five tangents.

§ 7. Exercises and Problems.

1. Assuming (ABCD)=k, find the values of the other
twenty-three ratios which may be formed with the four points
ABCD.

2. Do the same when (ABCD)=+1, —1I.

3. If X, X,, X5, X, and Y, V,, ¥, ¥, are corresponding
points in a projective transformation, verify the relation

(X, X.X:X)=(Y,Y,Y,Y,) by using

axtb
y= cx+d’

1 ] ine-coordinates of a line are the negative reciprocal intercepts of this line
with the coordinate axes. The reader is referred to SALMON-FIEDLER: Analytische
Geomelrie der Kegelschnitte, 6. ed., Vol. 1, pp. 120-128.

3 This statement stands for a definition.
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4. If the double-points of an involution are ¢=o0 and b=,
prove that the involutoric transformation has the form x+y=o.

5. If x and y are a pair in an involution with the double-
points @ and b, prove the relation

(x—a)(y—x)+ (x—b)(y— %)+ 2(x— a)(x— b) =o.
6. Also establish the relation

I I 2

x—a +x—b=x—y'

7. Prove that the middle point of an involution is always
real.

8. What is the form of an involutoric transformation if the
double-points are +a and —a? :

9. An involutoric transformation referred to its center as
an origin may be represented by x-y=Fk? where + k locates the
double-points. (¥ may be real or imaginary.) Prove that the
anharmonic ratio of the points represented by x, y,+ k,— % is —1.

10. Prove that the rectangular pair of an involution of rays
bisect the angles formed by the double-rays.

11. The equation of a circle

x4 y'=R?

is given, and on it the points (47, 0) and (—7, o). Find the
equivalent equation :
vr—kus=o,

where the pencils #— 2v=o0 and r— Aks=o have the given points
as vertices.

§ 8. The Complete Quadrilateral.!

In § 5 it has been found that if p and ¢ are linear expressions
in x and ¥,

1 See Elemente der analytischen Geometrie by F. JOACHIMSTHAL, pp. 131-142.
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p=o0,
g=o,
agamob (5-9).

always are the equaﬁons of four-harmonic rays of a pencil. By
means of this theorem it is now possible to study the harmonic
properties of the complete quadrilateral. Let p=o0, ¢g=o and

r=o0, s=o be the equations of two pairs of rays, Fig. 9. The
equations of the rays passing through the vertices of these pairs
are of the form ap+B¢=o0 and a'r+f's=0 respectively. For
certain values of a, 8 and o/,  these equations may both rep-
resent a ray passing through the vertices of both pairs, so that
we have the identity

(1) ap+Bg=a'r+f's.
From this the further identities

o) ap—f's=a’r—fy,
3) B's—Bg=ap—a'r

follow. Identity (2) represents a straight line through the points
of intersection of the rays p=o and s=o and of the rays r=0 and
g=o. The second represents a line passing through the points
of intersection of p=o0 and r=o and of s=0 and g=o. Adding
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(2) and (3).we get

(4) ap—Lg=ap—fy,

i.e., the equation of a ray passing through O and P. The form
of the equation shows that the ray is harmonic to the ray PQ
with regard to the rays PC and PD.

Identity (3) may be written ap—a’r=8's—pq. Subtracting
this from (2), there results the new identity

(s) a'r—f's=a'r—f's.

This is the equation of a ray through O and Q. The form of
the equation shows that the ray QO is harmonic to the ray QP
with respect to the rays OB and QC. As (4) and (5) result from
(2) and (3) by addition and subtraction, it is proved that OP, OQ
and AC, BD are harmonic'pairs. PC, PD; QB, QC; BD, AC
are called the sides, and OP, OQ, QP the diagonals, of the com-
plete quadrilateral. The previous results may be summed up in
the theorem:

In every complete quadrilateral a pair of sides always forms a
harmonic pencil with the two concurrent diagonals.

From this it follows that two vertices, for instance C and D,
are harmonically divided by the two diagonals PO and PQ.

Ex. 1. If p=0, =0, r=0 are the equations of the sides of a
triangle, prove that any line of its plane may be represented by
an equation of the form ap+ g+ yr=o.

Ex. 2. Let p=0, g=0, r=0 be the equations of the diagnnals
of the quadrilateral, prove that

aP+ﬂq+ 1r=0,
—ap+Pq+r=o,
ap—fg+yr=o,
ap+fg—yr=o

are the eqﬁations of a quadrilateral having those diagonals.
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§ 9. Perspective Pencils and Ranges.

In § 6 it has been found that the equations of two projective
pencils of rays with the vertices S and T may be written in the
form

(1 %u+w=o,

T+ pus =o,!

where % and v are two rays through S, and 7 and s two rays
through 7. In general the product of these pencils is a curve of
the second order with the equation

(2) us—rv=o.

Every value of g gives two corresponding rays #+ gv=o0 and
r+ ps=o, which intersect each other in a certain poinf of the
curve. We will now assume that the rays «, v through S and r, s
through T are chosen in such a manner that there exists a value
k of p so that the two corresponding rays u+kv=o, r+ks=o0
are identical, or that the ray through the vertices S and T is self-
corresponding. In this case

(3) utkv=r+ks.
Eliminating # between (3) and (2) gives

rs+ ks:— ksv—rv=o, or
(4) . (r+ks)(s—v)=o.
Eliminating v between (3) and (2) gives

I I

Uus—rs—r? ur=o0 or
BT TR =%

5) <s+ I;r)(u— r)=o.

! Here p= — A and s =ks in formulas (3) and (4), § 6.
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Equations (3), (4), and (5) show that in this case the curve
of the second order degenerates into two straight lines, one pass-
ing through S and T, the other passing through the points of
intersection of #=0 and r=o0 and of v=o0 and s=o0. Hence the
theorem:

If the ray commecting the vertices of two projective pencils is
self-corresponding, then the product of the two pencils consists of
the self-corresponding ray and another straight line.

Two pencils of this kind are said to be in a perspective position,
or simply in perspective.

Similar arguments in line-coordinates, which may be left as
an exercise to the reader, lead without difficulty to the theorem:

If the point of intersection of two projective ramges is self-
corresponding in both ranges, then the product (emvelope) of these
ranges consists of the self-corrésponding point and another point.

Two ranges of this kind are said to be in a perspective position,
or simply in perspective. »

The line where corresponding rays of two perspective pen- -

cils meet is called axis of perspective. The point through which
rays joining corresponding points of two projective ranges pass
is called center of perspective.
Ex. Prove the proposition concerning perspective ranges
of points analytically (line-coordinates) and geometrically.

§ 10. General Conmstruction of Projective Pencils and Ranges.

In § 2, 4 it has been proved that a projective transformation
is determined by three corresponding pairs. This applies to
pencils as well as ranges. This fact and the results of the pre-
vious section make it possible to construct projective pencils
and rays.

A. Projective Pencils.—Let a, b, ¢ and &', ¥, ¢’ be three
pairs of corresponding rays through the vertices L and L’ re-
spectively, Fig. 10. These determine two projective pencils of
rays through the points L and L’. Taking ¢ and ¢’ as bearers
of two ranges of points, obtained by the intersections of &, ¥,
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cy... and @, b, ¢ with ¢ and ¢, respectively, we have accord-
ingly the projective ranges

(c-a’¥d...)=(d-abc...).
As the points (cc’) and (c’c) are identical, it follows that they

are in perspective, i.e., the lines joining the points (¢a’) and (ca),
(c¥’) and (¢'D),... are all concurrent, say at P.

Hence, if any ray x of the first pencil is given, we know that
the corresponding ray »’ will be situated in such a manner that
the line joining (x¢’) and (#’c) will pass through P, and &' is
found by joining the point of intersection of x and ¢’ to P by
a line & The line joining L’ to the point of intersection of &
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and ¢ is the required ray x’. In an entirely similar manner
any ray of the second pencil may be assumed and the corre-
sponding ray in the second pencil be constructed. Any ray 7
through P intersecting ¢ and ¢ in two points ¥ and ¥’ gives
rise to two corresponding rays LY and L’Y’, or y and /. From
this construction it is seen that two projective pencils always
admit of a third pencil which is in perspective with each of them.

-Now it is known that two projective pencils produce a curve
of the second order in a unique manner. The six rays a, b, c;
a, V', ¢ determine the five points L, L', (aa’), (b¥’), (cc’) of the
curve, and every new pair of the construction like x and «’, y
and ¥, etc., determines a new point of the curve. The forego-
ing construction gives us therefore a means to construct any
number of points of a curve of the second order, as soon as five
of its points are given. If L, L’, A, B, C—in any order—are
the given five points, join L and L’ each to 4, B, C, thus ob-
taining the projective rays a, b, ¢ and o, ¥/, ¢’; then apply
the construction and find as many points of the curve as
desired.

The ray ¢ joining L and L’ is common to both pencils, but
is not self-corresponding. Suppose ¢ belongs to the pencil at L.
To find its corresponding ray at L’, produce ¢ to its point of inter-
section 7" with ¢’; join I” with P and find the point of inter-
section T of this line with ¢. The line joining L’ with T is the
required ray #. Following this construction in Fig. 10 it is clear
that L’T is nothing else than PL’. Similarly, if # is considered
as belonging to the pencil at L', its corresponding ray will be
PL. Taking a ray through either L or L', very close to ¢, and
making the construction for the corresponding ray, supposing
at the same time that the original ray passes to the limiting posi-
tion of ¢, it is easily found that PL and P’L’ are the tangents
from P to the curve of the second order.

B. Projective Ranges.—Let A, B, C and A’, B’, C’ be three
pairs of corresponding points on the lines / and // respectively,
Fig. 11. These determine two projective ranges of points on
J.and /. Taking ¢ and ¢ as vertices of pencils of rays, joining
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A, B, C,...,and 4, B, C,..., respectively, we obtain the
projective pencils

(C-A’B'C'..)=(C"-ABC...)

F16. 11.

As the ray CC’ or C'C is common to both, it follows that they
are in perspective; i.e., the points of intersection of the rays CA’
and C'4, CB’ and C’'B, etc., are all on the same straight line,
say p.

Hence, if any point X of the first range is given, the corre-
sponding point X” is found by joining C’ to X and finding the point
of intersection of this joining-line with p. The line joining C
to this latter point cuts / in the required point X’. In an
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entirely similar manner any point of the second range may be
assumed and the corresponding point in the first be constructed.
Any point in p gives rise to two corresponding points on / and /.
From this construction it is seen that fwo projective ranges always
admit of a third range which is in perspective with each of them.

The line p intersects } and J’ each in a point whose corre-
sponding points coincide with the point of intersection of / and /’.
Again, I, I', AA’, BB’, and CC’ are five tangents to a curve
of the second class and the foregoing construction makes it pos-
sible—by joining X and X’—to construct.any number of tan-
gents. The line of perspective cuts / and / in their points of
tangency.

§ 11. Exercises and Problems.

1. Given five points of a curve of the second order; construct
five other points, each being situated between two of the given
points, i.e., one between 4 and B, one between B and C, etc.

2. Construct the tangents at each of the given points.

3. Given five tangents of a curve of the second class; con-
struct any number of other tangents and the points of tangency
of the given tangents.

4. Two projective ranges (ABC...)=(4’B'C'...) on the
lines / and /' determine a curve K of the second class having
AA’, BB, CC’, ... as tangents. Conversely, every tangent
x of K cuts / and // in two corresponding points of the ranges.
If we now turn /’ about its point of intersection P with / through
the space containing K, Fig. 11, two coincident projective ranges
arise. To obtain the double points of these, § 2, draw the
bisector ¢ of the angle between / and . The two tangents d,
and d,, perpendicular to ¢, intersect either / or  in the required
double- or self-corresponding points D, and D,.?

! This construction has been successfully used as a base for the synthetic
treatment of the projective continuous groups by Professor NEWsoN and myself.
See Kansas University Quarterly, Vol. IV, p. 243 and Vol. V, No. 1.
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5. What position must K have with respect to / and / in order
to make the projective ranges on / and !’ involutoric?

6. Show that with K as a circle the projective ranges are
involutoric. '

7. Assume five points L, L', A, B, C of a curve of the second
order in such a manner that the respective pencils are involutoric.

8. Verify problems 1 and 2 on a given circle.

9. Prove NEwWTON’S theorem (Principia, lib. i., lemma xxi).

If two angles A0S and AO’S of given magnitude turn about
their respective vertices O and O’ in such a way that the point
of intersection S of one pair of arms lies always on a fixed straight
line u, the point of intersection of the other pair of arms will
describe a conic (Cremona’s statement).

10. Prove MACLAURIN’S theorem (Phil. Trans. of the Royal
Society of London for 1735).

If a triangle C’PQ move in such a way that its sides PQ,
QC’, C'P turn round three fixed points R, A, B, respectively,
while two of its vertices P, Q slide along two fixed straight lines
CB’, CA’, respectively, then the remaining vertex C’ will describe
a conic which passes through the following five points, viz.,
the two given points 4 and B, the point of intersection B’ of
the straight lines AR and CB’, and the point of intersection A’
of the straight lines BR and C4’.

§ 12. Projective Properties of the Circle.

To specialize the results concerning projective pencils for
the circle it is simplest to depart from the equation of the circle
(1) x*+y:*—ri=o.

This may be written in the form

(@+1y)(x—iy)—r*=o,
which itself may be considered as the result of the elimination
of A between the projective pencils
{x+ 1y+Ar=o,

(2) r+ A(x—iy) =o.
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The vertices of these imaginary pencils are the points of inter-
section of the line at infinity, #=o, with the rays x+4y=o0 and
x—1iy=o0. These points are called the circular points at infinity.*
Taking the center of the circle at (a, b), the equation of the
circle becomes

(x—a)*+ (y—b)*—1*=0, or
(3 {(x—a)+i(y—b)} {(x—a)—i(y—b)} —r*=o.

Eq. (3) is the result of the elimination between the projective
pencils

4 ;x”y— (a+3b)+ Ar=o0, -

r+ A(x—iy— a+1b) =o,

and -shows that all circles of the plane pass through the same
circular points. As a curve of the second order is determined
by five points, a circle must be determined by three points, two
fixed points (the circular points) being given in advance.

A circle can also be produced by two projective pencils with
real vertices. Graphically this proposition is evident. If, in
Fig. 12, ST be a chord of a circle,
all angles subtended by this chord
are equal, ie, ZASC=/ZATC,
£LBSC= £BTC, etc. *Hence

(abed . . )=(@¥d ...);

the pencils at S and T are projective.
Connecting any point in space with
all points of the circle, a cone is
obtained. Cutting this cone by any
plane and passing planes through the vertex of this cone and
the rays of the pencils through S and T, two new pencils of
rays (a,b,c,d,...) and (a/b/c/d/ ...) are obtained on the inter-
secting plane, which are again projective. Their product is

! Introduced by Poncelet, loc. cit., p. 94.
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therefore a curve of the second order; in this case a conic. Tt will
be scen later on that all curves of the second order are idemtical
with all conics.

To show how a circle may be described as an envelope, assume
first the line-equation of a circle

I
(5) w2 =F:

where % and v are the line-coordinates and r the radius.  Equa-
tion (5) is the product of the two projective ranges

u+ iv+§ =0,
©6)

>+ (u—1) =o.

The coordinates of the line at infinity are #=v=0; conse-
quently the points #+ =0 and #—#v=o are situated on the line

at infinity. ’-I;=o is the equation of the origin. Thus the pro-

jective ranges (6) are situated on the two imaginary straight lines
joining the points #+ 4 =o0 and #—iv=o0 with the origin. These
lines are tangent to the circle and they pass through the circular
points at infinity. A translation does not change these results,
so that the theorem may be stated:

The tangents to a circle from its center pass through the circular
points at infinity.

In the case of real projective ranges producing a circle it is
more convenient to assume the circle and to prove that it is the
product of two projective ranges. Let in Fig. 13 £044’'=a,
LOBB'=f, LAOB=¢, and in a similar manner Z04’4 =«/,
LOB'B=f', LA'OB'=¢'. There is 2a+2a’ =n—7p, 20+28' ="
z—r, hence f—a=a’—f'. But f—a=¢ and a/—p'=¢’, hence
¢=¢’. This is true for any two tangents to the circle, so that the
pencils (O-ABCD...) and (O-A’B'C'D'...) are projective.
From this follows that the ranges formed by the points of inter-
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section of all tangents with two fixed tangents are equal. Con-
versely, the product of these particular ranges is a circle, as might
also be proved directly. The tangents and ranges of this exam-
ple may again be connected to a point in space. Cutting this
configuration by any plane in space, two projective ranges pro-

FiG. 13.

ducing a curve of the second class are obtained. It will be seen
later on that all curves of the second class are identical with all
conics or curves of the second order.

§ 13. Polar Involution of the Circle.

Through a given point 4, Fig. 14, draw any ray intersecting
a given circle in two points C and D. On this ray determine a
" point B in such a manner that the anharmonic ratio

‘ (ABCD)=—1,

i.e., harmonic. If this operation is repeated for every ray pass-
ing through A, the points B on all these rays will form a certain
locus which is a straight line, and which is called the polar of
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the point A with regard to the given circle. The point 4 is called
the pole. To prove this assume

F16. 14.
(1) x?—2rx+ y?=0

as the equation of the circle and (a, o) as the coordinates of the
point A. The special position of point and circle has no influence
upon the generality of the result. The equation of any ray
through A may be written

(2)  y=(a—x)m.

Solving (1) and (2) it is found that the absciss® %, and x, of the
points of intersection C and D of the ray with the circle are

_r+am’+ 1P+ 2arm?— a*m?

%= 1+m? !
3 ‘
r+am?—A/r*+ 2arm? — a*m?
I+m2 *
Now (AB'X,X,)=(ABCD)=-1,
a—x,  a—%,
or b—x,  b—x
a(x,+ x,)— 2x,
from which b= —(‘——2)————'2’-

20— (%,+ x,)
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Substituting the values for x, and «x, in this expression, then

i.e., the abscissa of B is independent of m and is therefore a con-
stant. The locus of the point B is consequently a straight line
parallel to the y-axis, or perpendicular to the line joining the point
- A with the center, of the circle.

If A is without the circle, there are rays which do not cut the
circle, or for which the points of intersection are imaginary. This
is the case when 72+ 2arm?—a*m*<o, or a*m?—2arm®>r? or
|m| > L x, and x, are conjugate-imaginary, so that

va = zar
x,+x, and x,x, are real quantities and consequently also b is a
real quantity. Hence if C and D are imaginary B is still real,
and (ABCD)=—1. If m=—L, the points C and D coin-

N a*=zar

.cide and the rays through 4 become tangent to the circle, which
are real when A is outside (2r<a), and imaginary when A4 is
inside (27 >a). Hence the theorem:

The polar of a point with regard to a circle passes through the
points of tangency (real or imaginary) from this point to the circle.

In the case of a pole within the circle the equation of the

polar becomes

~

a

a
——1
r

b=

The greatest value for ¢ is in this case 27, so that up to this
limit i:——1< 1 and b>a. The smallest value of b is for a=2r,

ie,, b=2r. For a<z2r, we have therefore always b>2r; the
polar does not intersect the circle. For a=2r, b=2r, the pole
coincides with the polar, which in this case becomes a tangent;
i.e., a langent is the polar of ils point of tangency and a point of
tangency is the pole of the corresponding tangent. For the center
of the circle a=7 and b=, the polar is the line at infinity. For
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the tangents from the center m= ti(a=7), so that the equations
according to (2) become x+4y=r, x—3y=r. This shows again
that the tangents from the center of a circle touch the circle at its
circular points, a result obtained in the previous section.

§ 14. Continuation of § 13.

Taking any point, for instance B, on the polar of 4, it is
clear that the polar of B must pass through 4, since 4 is har-
monic to B with regard to C and D as the other pair. Thus
the theorem:

The polar of a point which is situated on the polar of another
point passes through the latter point. Conversely, the pole of
a straight line which passes through the pole of a second line is
situated on the latter.

From this it follows that the tangents at C and D intersect
each other in a point of the polar of A. This point is. evidently

F1G. 15. : M

. the pole of the ray (ABCD), through A. Using the results of
§ 8, concerning the complete quadrilateral, it is now easy to give
a simple construction of the polar of a point, or of the pole of a
straight line. Through A draw any two rays intersecting the
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circle in the points C, D and E, F, Fig. 15. Connect C with F,
and D with E, and find the point of intersection G of these con-
necting lines. In the same manner find the point of intersection
H of the lines connecting C with E, and D with F. The line
through G and H is the required polar of 4. The proof is imme-
diate, for (ABCD)=(AEIF)=—1, which is the condition that
GH be the polar of A. The polar of H must pass through 4,
and since (HGBI)=—1, it follows that it also passes through G.
Hence the polar of H isAG. The polar of G passes through 4
and H, hence AH is the polar of G. The triangle AGH
possesses the important property that the polar of each of its

vertices is the opposite side in the triangle, and the pole of each
side is the opposite vertex of this side. This triangle is called
a self-polar triangle with regard to the circle.

Consider now in Fig. 16 the pole P and its polar p inter-
secting the circle in two points 4 and B. Through P draw
any ray c intersecting p in C, and determine the pole C’ of the
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ray ¢. Then (ABCC')=—1. Designating the tangents from
P to the circle by ¢ and b, and the ray PC, which is the polar
of C’, by ¢, there is also (abcc’)=—1. For every ray through P a
pair of poles and a pair of polars are obtained which are harmonic
- to 4 and B, and to @ and b, respectively. In this manner an involu-
tion of coincident poles and polars arises. In the case of the figure
A and B are the real double-points, a and b the real double-
rays of the involution. It is noticed that in this hyperbolic invo-
lution each pair is separated by the double-elements. Two pairs
either exclude each other entirely, like CC’ and DIV, or include
each other entirely, like DD’ and EE’. If P were within the
circle, we should have an elliptic involution, where two pairs
always overlap each other. As an interesting example of this
kind, consider the right-angle involution of the circle, Fig. 17.

Y

Fi1G6. 17.

The polar of the center is the line at infinity. To every diam-
eter @ as a polar corresponds a pole 4 which is the infinite point
of the perpendicular diameter ¢’. Thus @ and o’ are a pair of
the polar involution about the center. In fact the rays of each
pair are perpendicular to each other. To find the double-rays let

y=mx,

1
y=—u>
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be the equations of any pair. For a double-ray these equations
must be identical. This is only possible when m= —’%, or m?

=—1, which gives as the only possibilities m,=1, m,=—3. The
equations of the double-rays are therefore ¥+ #y=o0 and x—sy=o.
As they are the double-rays of a right-angle involution, the para-
doxical result is obtained that each of these rays is perpendzcular
to itself. Geometrically this has no meaning.

Ex. 1. Construct a self-polar triangle having two poles
within the circle. _

Ex. 2. Discuss the elliptic pole and polar involution and
make the necessary constructions. '

Ex. 3. Explain the involutoric relation between an inscribed
quadrilateral ABCD of a circle and the quadrilateral circum-
scribed at 4, B, C, D. -




CHAPTER II.

COLLINEATION.

§ 15. Central Projection.!

A central projection, or a perspective, is determined by the
plane of projection (plane of the picture) and the center (eye).
Assuming the plane of the paper as the plane of projection and
any point in space as the center, it is possible to construct the
perspective of any figure in space on this plane.

The center can most easily be located by a circle in the
plane of projection. The radius of this circle is the distance
of the center from the plane, and the center of the circle is the
orthographic projection of the center upon the plane of pro-
jection. This circle has been introduced into geometry by Pro-
fessor FIEDLER of Ziirich, who calls it distance-circle * (Distanz-
kreis). In this section only the projections of figures in a plane
will be considered and the geometrical laws involved in this

1 Historsic Note.—DESARGUES, whom Poncelet called the MONGE of his cen-
tury, was the first to investigate the relation of central projection to the geometry of
position; i.e., the purely projective properties of central projection (perspective),
in his Méthode universelle de metire en perspective les objets dommés réellement
(Paris, 1636). These principles are also contained in the Buvres de Desargues
réunies et analysées par Poudra, Paris, 1864, Vol. 1.

Brook TAYLOR’S New Principles of Linear Perspective, London, 1715 and 1719,
and J. H. LAMBERT’S work, Die freie Perspektive, oder Anweisung jeden perspeksi-
vischen Aufriss von freien Stiicken und ohne Grundriss su verfertigen, Ziirich, 1759,
1I. part, 1774, contain also the fundamental principles of perspective.

For further information see the introductory chapter of WIENER’s Darstellende
Geometrie, Leipzig, 1884-87, which contains a history of this science and a chapter
on perspective in Vol. IT; also FIEDLER’s Darstellende Geometrie, Vol. 1.

¥YD. Geomeirie, Vol. 1, 1883, and Cyclographie, Chapter VIII. The method
followed here is that of Fiedler.

45
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projection explained. The plane of projection will be desig-
nated by z’, and the arbitrary plane, whose perspective will
be made, by =, Fig. 18. Let s be the line of intersection of =
and n’. To obtain the projection P’ of any point P in =, con-
nect P with the center C and determine the point of intersec-
tion P’ of this connecting line with #’. In a similar manner,
the projection 2’ of a line / (RS) in = is obtained as the line of
intersection of the plane, passing through C and !, with ='.
From this construction the followmg fundamenta.l laws are
immediately clear:

To every point of n corresponds a point of ', and conversely,
and both points lie on a ray through C.

To every straight line of & corresponds a straight line of n’, and
conversely, and both lines meet in a point of s.

To the line at infinity of = corresponds a line ¢ of n’ which is
parallel to s. Conversely, to the line r' at infinity of n’ corresponds
a line r parallel to s.

The plane = is usually determined by its trace s in z’ and
either of the lines r and ¢’. If a straight line / in = is given, inter-
secting s in S, the corresponding line ’ is determined by drawing
a line through C parallel to / and marking its point of intersection
Q’ with ¢’. It is apparent that Q’ is the projection of the infinite
point of /, and the projection of / consequently passes through S
and Q’'. Another way is to produce / to its point of intersection
R with r and to join C with R. The line through S parallel to
CRisl’. From the figure it is seen that CRSQ’ is a parallelogram
and that

PS :PR=P'S:CR.

The planes through C parallel to = and #’ form a space of a
parallelepiped. Keeping =’ fixed, it is possible to turn the planes
7 and the planes through C parallel to = and #’ down into =,
without changing s and ¢’ and the distances of C and 7, C and ¢,
S and r, and S and ¢’ in these planes.

After the motion there is still CR || and = Q’S, and SP’=SP’; .
consequently the distances PR and PS are not changed by the
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motion. From this it follows that after the motion P’ and the
revolved position of P lie on a ray through the revolved position
of C. The laws expressing the geometrical relation between the
revolved and the projected figure are therefore the same as those

Fic. 18.

between the figure in space and its projection. After the rabatte-
ment, Fig. 18 assumes the form of Fig. 19.

In this figure / and 7’ are the two corresponding lines which
with s and SC form a pencil of four rays through S. As this
pencil is intersected by the rays CP and CQ, we have

(CLP'P)=(CMQ'Q).

4
The value of (CMQ'Q) is %=%%=k, say; i.e., entirely in-
dependent of the position of /, //, and CP. Thus, drawing any
ray through C, intersecting s in S, and constructing any two
corresponding points P and P’ (rotated position of a point in =
and its projection on z’), we have

(CSPP")=const.

4
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Keeping CS fixed and constructing all possible pairs (P, P'),
two coincident projective series of points are obtained having C
and S as double-points. The different cases of central projection
may be classified according to the position of the center and to the
value of the constant & of the projection. Before entering upon

Fi1G. 19.

these details it is important to establish the analytical relation
between a pair P, P’.

Ex. 1. In both figures 18 and 19 it is noticed that the distance
between 7 and s is equal to the distance between C and ¢/. As-
sume the elements of a perspective as in Fig. 19, and draw the
perspective of a triangle (¢) which does not cut r; also of a triangle
(b) which cuts 7.

Ex. 2. Draw in a similar manner the perspective of a regular
hexagon which is not cut by 7.

Ex. 3. Draw the perspective of a circle

(@) which does not cut 7; also of a circle
(b) which cuts 7 in two points; and of a circle
(c) which touches 7.
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Ex. 4. Draw the perspective of a system of concentric circles.

Ex. 5. Find // when / is parallel to s.

Ex. 6. Construct the perspective of a circle having lts center

at C, Fig. 19.

Note—In all these exercises the given figures are, of course,

in the revolved position of #; i.e., in «’.

§ 16. Analytical Representation of Central Projection.

In Fig. 19 assume any two perpendicular lines through C as
coordinate axes and designate the angle which the X-axis makes
with CO by ¢, and its angle with CP by ¢. Designate the coor-

dinates of P and P’ respectively by x, y and &/, ¥. Now

CP-LP' CP(CP'—CL)
(CLPP')=Fk, or CP =———— P CP = —_——_k(CP—CL) .
. CP.-CL
From this CP =k-*CL:“(k_——I)a)
NOW. CP=\/x’+y’, CL =C0—S(mj’ or, since

_xecosd ¢ , ysing
cos (¢—¢)=cos ¢ cos ¢+sm ¢ sin p= ity \/x’+y

PENIPE)
CL— CN\/x+'y ;
x cos ¢+ysin ¢

hence, by substitution in the above value for CP/,

CN Azt y?

P “({x—F) cos %+ (1—F) sin ¢-y+k-CN"
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Now &’ =CP’-cos ¢;; y' =CP sin ¢; hence

_ CN -x A
" (1—k) cos ¢-x+ (1—k) sin ¢-y+k-CN’
_ CN .y

y’_(l—k) cos ¢-x+ (1—k) sin ¢-y+k-CN *

4

@

In these expressions there are three arbitrary parameters: CN,
k, ¢. Conversely, if the transformation

ax
¥ T dx+ey+f
ay

Y= Titeyt}

- (D

is given, it always represents a perspective. To prove this, it is
sufficient to reduce (II) to the form (). This can be done in

one and only one way, by puttin, bL:k’

(1—k)cos¢y d (1—k)sing e
CN o’ CN @&

[\

and as a consequence

From this CN = \—/ie ::;2 Equations (II) are the most general

=tan ¢.

representation of a perspective, The points (x, ¥) in z for which
(«’, 9) in 7’ become infinite are. evidently situated in the line
dx+ey+f=o. This is therefore the equation of the line . For
the line s we have x=’, y=9'; hence from the first equation of
an
dx*+ exy+ fx=ax,

or dx+ey+f—a=o,
as the equation of s.

Equations (II) may also be written in the form

x(dx’ — a)+ yex’ + fx’' =o,
xdy +y(ey'—a)+Jy =o.
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The condition that the values for # and y become infinite is

(dx'—a) ex’ o
- oy  (ey—a) 7
or explicitly
dx’'+ ey +a=o.
This is therefore the equation of ¢’.
. . o o e —a
In these calculations the coordinate-origin is C, so that v’i‘??'

is the distance of s from C, or CN.

The distance of ¢ from C is —L—, and that of r from C is
\d*+ e
‘\/ii’i_-i-—e—" This naturally all agrees with Fig. 19 from which they

were derived. It must be remarked that these formulas only
bold when C is in finite regions.

§ 17. Special Cases of Central Projection.

A. InvorLuTION.—If in Fig. 18 the center C is situated in
the bisecting plane of = and #’ and if = is subsequently turned
in the direction of the space between = and ' in which the
bisector lies, then r will coincide with ¢/, and after the rotation
CO=—NO. Cand ¢,r,in this case, are on the same side of s;
k=%=—1. This perspective is called an involution, since
in Fig. 19 to every line / of = corresponds a line I/ of #/. If I/ is
considered as the rotated position of a line in =, then its corre-
sponding line in #’ when rotated will coincide with /. This fact
immediately appears from the construction and also from equa-
tions (II), which in this case assume the form

. ax
T dx+ey—a’

- v
y,'_dx+ey—a’

()
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or dxx’'— a(x+x’)+ ex’y =o,
eyy'—a(y+y)+dxy' =o.

Now in every perspective x’y=xy, as is seen immediately by
dividing both equations (II); hence these equations remain the
same when x, y and &/, ¥ are interchanged.

If the plane #’ is turned in the opposite direction as in the
involution, 2=+1, and the revolved position of #’ in this case
is also obtained from that of an involution by a reflection on the
s-axis.

B. StmiLiTupE.—This case arises when « || #; ie., if s is
infinitely distant; hence the equation of s must appear in the
form j—a=o0 and d=o0, ¢e=o. Equations (II) now go over into

x'=i3x,
av) o
‘ ¥y =17
I
' R , cP’
When k& =3 1 positive, (CLP’P) >o0 and equals Vol 2 k.

P and P’ are on the same side of C, and the center in space is on
the same side of # and =, Fig. 20a.

If % is negative, P and P’ are on different sides of C, and the
center lies between #/ and =. If k=—1, the center is in the

middle of # and = and the perspective becomes central symmetry,
Fig. 20b.
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C. ArriniTy.!—By this term we designate a perspective
whose center is at an infinite distance. All rays through C are
parallel and intersect the axis of collineation s at a constant
angle. To prove this, draw through every projecting ray, inter-
secting #’ and = in two points P and P’, a plane parallel to some
fixed plane, and intersecting 7’ and = in the lines P'Q and PQ;
where Q is a point in s, Fig. 21a. For all planes of this kind

F16. 2140.

’
the triangles PQP’ are similar, i.e., %=const.; furthermore,

for every plane the lines P’Q and PQ include constant angles
with s. Hence, after revolving = down into.«’, Fig. 21b, and
connecting again P with P/, ZPQL=const.,, ZP'QL=const.,

/
%QQ=const.; hence ZQPL=const.,, ZP'LQ=const., and PP’
remains parallel to some direction cutting s at a constant angle.
PQ-sin (PQL)
sin (PLQ)

1 Introduced by M6BIUS in his Barycenirische Calcul, p. 150.

Now PL= =PQ:const.;
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w _PQsin (PQL) .

similarly PL= sin (P'LQ) =P'Q-const.;
’

hence = const.

PL
’

. P
The same result might be found from Fig. 19, where 1—,{—‘=k.

Formulas (IT), however, are not valid in this case. To establish
the analytical relation between P/, (¥, ) and P, (x, y) assume
now s as the x-axis and any perpendicular to it as the vy-axis.

Fic. 21b.

Let the constant slope of PP’ be m; then the equation of the
ray through P is, when ¢ and 75 designate current coordinates,
7—y=m(§—x), and the distance of L from O, Fig. 21, is obtained

as A=""—2, Now from the figure A—#'=—k(x—2); eliminat-

ing 4, there is found

1—k
V) ' {“’ =x=
¥y =ky.

These are the equations of affinity. Conversely, if a transforma-
tion

x’ =x+ay,
\e e
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is given, it may always be represented in the form (V), by putting
b=k and 1g—b=—m. A characteristic property of this trans-
formation is that closed curves are transformed into closed curves,
so that the areas enclosed by the two have the constant ratio %
@n V). To prove this assume any triangle ABC and the corre-
sponding triangle A’B'C’. Designate the points of intersection

F16. 232.

of AB and A’B’, BC and B’C’,CA and C’A’ by C,, 4,, B,, respect-
ively. Now in Fig. 22

(1) AABC=aAAC B+ ABAC+ ACBA,,
(2) AA'B'C'=prA'C\B,+ AB'A,C,+ AC'B,A,;

but as the corresponding triangles on the left side have equal
bases and altitudes of constant ratio k, we have

AA'C\B,=k-rAC\B,; AB'AC,=k-aBAC,;
aC'BA,=k-ACBA,.
Substituting these values in (2) and dividing (1) by (2), there
is .
AA'B'C'=Fk- AABC. Q.E.D.

As these triangles may be infinitesimal, it follows by limiting
summations that the same property holds for any corresponding

N
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areas. If k is negative, it follows that the area of A’B'C’ is also
negative. For k=—1

2
(VII) { o =x— T

which represents as a special case of affinity oblique axial sym-
meiry. For m= o this goes over into orthogonal axial symmetry.

(&' =x, y,="'y)'

When k=41 and mzo an identical transformation is
obtained. But the case is also possible where 2=+1 and m=o;
ie., where the rays PP’ or AA’ are parallel to s, Fig. 23. In

¢ B, A
FiG. 23.
. 1—k
this case —, ¢an have any value, say — 4, so that the equa-

tions are now

(VIII) { ’;:;J’ b,

The effect of this transformation is that every point is moved
parallel to s, and the amount of the motion is proportional to
the distance of the point from s. As in (VII), equal areas are
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here transformed into equal areas. This transformation is
called elation.!

§ 18. Exercises and Problems.
‘1. Given a straight line with the equation
px+qy+r=o.

Find the equation of the perspective of this line, and discuss its
position with respect to the original line, ¢, C, and s.

2. Let &’y =f(«’) be the equation of a curve and suppose
that f(x’) is not divisible by &’ and remains finite for 2’ =o; then
for this value of &/, ¥ becomes infinite; in other words, the
curve approaches the y-axis asymptotically.

Applying the transformation (II) to this equation, or making
a perspective of this curve, its equation becomes

a’xy(dx+ey+ P =d(x, ¥),

where ¢(x, y) is a polynomial of x and y of the nth order, pro-
vided f(x) is an integral algebraic function of x of the nth
degree. For &’ =0, y’=w. The corresponding values of x and y

are x=o0and y=— %. Thus putting in the above equation x=o0,

the value of y is found to be —5. The infinite branch of the

curve is therefore transjormed into a finite branch. This is gen-
erally true, as it follows directly from equations (II). If &’=oo,

y=o0, —z,—,=m (finite), the corresponding point ¥, y is necessarily
situated in the line 7, whose equation is dx+ey+f=o. Now

%=-§,=m; hence y=mx and from dx+emx+ f=o, the coor-
. I . i . .
~ dinates x=— dremw ?="a +emof the required point are found.

! Term used by S. Lie, loc. cit.
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3. Find the transformed equation of xy=1 and discuss it.
4. Find the transformed equation of the circle

3 2 l’
x+y Sditer
5. Transform perspectively. the curve y=¢*. For ¥’'=w,
x?  x° Yy 1
¥=0w. Now y=1+x+a+3—l+...; hence printvi b |
x A . (Y )
5_!+-3—l+ cee and}'lflm <;;) =w. By equations (II),
ay =edz+?y+f
Toteyt] '

Now for &’=w, % =w, we have

%
—_
f
hence —x—a—I=e‘”‘%+;‘ becomes af=e°=1;
d— [ -_ e —
y+ +)’ +y
h L ana
ence y=-— and ¥=o.

Make the corresponding construction.

6. A perspective does not change the degree or class of a curve.
As the curve is supposed to be algebraic, we may represent it
by the polynomial f(x, y)=o0, which evidently does not change
its degree when transformed. Show this directly.

7. Prove analytically that the transformation

& =x+ay,
y =by

transforms the area of the triangle ABC (x,, y;; %, %2} %a ¥s)
into an area of the triangle A’B'C’ (x/, v/; %/, ¥/; %5y 9),
so that AA'B'C'=b- AABC. Use determinants.
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§ 19. Collineation.!

In the last two sections it has been seen that every perspec-
tive transformation transforms a straight line into another straight
line (into a point if the line passes through the center). The .
question is now whether there are other transformations with this
property. From analytical geometry it is known that transla-
tion and rotation are transformations of this kind.

A. TrANSLATION.—By this operation all points of a plane
are moved parallel to a certain fixed direction by the same amount.
The equations are

& =x+ a,
IX
=) {y’ =y+b.
The slope of the direction in which (%, y) is moved is
y=y_b
¥—x a’
and the amount Var+ b2,

B. RotaTioN.—If every point (%, ) is turned through an
angle ¢ about the center (origin), the coordinates &/, 5" of the
rotated point may be expressed by

{x’=x cos ¢—y sin @,

X) ¥ =x sin ¢+y cos ¢.

(IX) and (X) are the equations of ordinary motions in a
plane. If to a point (x, y) we first apply a rotation (X) and
then a translation ¥”=a'+a, y’=9y+b, and finally writing
again &’ and y for %’ and y”, the result is
x%) x’-_——x cos ¢—y sin ¢+a,

¥ =x sin ¢+ 7y cos $+b.
1 Called by CHASLES, in his Géoméirie Supérieure, art. 99, homographie; homo-

graphic means to be in collineation. The word collineation goes back to MoBrus'’
Barycentrische Calcul.
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Such a transformation changes only the position and not
the shape of a figure, nor its size. Another transformation which
does not change the character of a straight line is ’

C. DiraraTioN.—The equations for these are:

o

and may physically be illustrated by stretching a piece of rubber
first in the direction of the x-axis and then in the direction of
the y-axis. Equal distances along one of the axes are stretched
by the same amount. If one of the coefficients @, 3 is 1, then
(XI) represents an orthogonal affinity. Combining the dilatation
x’=ax, ¥ =0y with the affinity ¥’ =%"+a,y, ¥’ =0y and then
dropping one prime clear through, the result is

X1)

x =ax+a,fy,
y =BBy.

Applying to this the rotation &=« cos ¢—% sin $+da,
¥y’ =« sin ¢+9’ cos ¢+ ¥, and dropping one prime, the result is

&’ =a cos ¢-x+ (a,B cos p—fB, sin p)y+a’,
¥y =a sin ¢-x+ (a,8 sin ¢+ Bp, cos ¢)y+ ¥,

representing thus a combination of a dilatation, an affinity, a
translation, and a rotation. Conversely, every transformation

(XIT) %x’=ax+ by+e,

y,=dx+ey+f)

represents such a combination. To prove this, put a=a cos ¢,

d=2sin ¢; ie., tan ¢=g, a=Va*+d. Further,

a,B cos ¢— PP, sin p=b,
a,f sin ¢+ P, cos p=e,
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from which
_bcosgtesing ., bdtae
af= cos” b+ Sin’ & =bcosp+esin ¢_—'—a’+d”
ed— ab

BB, =e cos p—b sin ¢ =W’
and finally o’ =c, ¥’ =f.

The transformations making up (XII) all leave the infinitely
distant line unchanged and transform areas into proportional areas.
The same is therefore also true of their combination. Such a
transformation is called a Linear Transformation, or Linear
Deformation. As all of its constituents are projective, a linear
transformation is also projective, i.e., it transforms pencils and
ranges into projective pencils and ranges. Perspective and linear
transformations are two of the most important projective trans-
formations.

D. GENERAL COLLINEATION.—A perspective contains three
arbitrary parameters, which is apparent when numerators and
denominators of equations (II) are divided by a. Applying to
the point x, y a linear transformation

x’ =ax+by+c,
y =dx+eytf,
and then to the transformed point &/, 4’ the perspective
x'
YT TR
y, N\

R S
4 dx’+ey +1’
the result is, after dropping one prime,

B ax+by+c
B (da+ed)x+ (d,b+ee)y+] 1’
_ dx+ey+f
Y = @otedrt @b+edythy

«
(XIIT)
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These equations are of the form

ax+by+c,
asx+bgy+cy’
ay%+by+¢,
agx+byy+cy

4 x'=
(XTIIT1)
y =
Conversely, every expression of the form (XIII) can be repre-
sented by (XIII’). To show this, put a,=a, b,=b, ¢,=¢; @,=d,
b,=e, ¢,=f; da+ed=a, db+ee=b,, f,=a,, From

da+ed=ay,
d,b+ee=b,,

_ase—bd  ab,—bya,
we find 4= 4e=bd ~a5,— b3,

_ba—ab  bya,—ash,
“= ge—bd " ab,— bya,

By means of these formulas it is possible to resolve every trans-
formation (XIIT) into a perspective and into a linear transforma-
tion. The principal property of this transformation is that it
transforms every straight line and every point projectively into a
straight line and a point. It is the general projective transfor-
mation of the plane, or a collineation in the plane.

Dividing numerators and denominators of (XIII) by c,, it is
seen that a collineation generally depends upon EIGHT parameters.
To prove that this is the most general transformation which trans-
forms straight lines into straight lines, assume that

_Px9)
7= 0, 9)

R(x,9)
75 )
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be a transformation of this kind; then the equation of every
straight line
ax’+by +c=o,

where @, b, ¢ may have any real values, must be transformed into
a linear'equation between x and y. Thus

aP(x, y) -S(x, y)+bR(x’ »)Q(*, ¥)+¢Q(x, ) S(x) y)=o

must be linear for all real values of a, b, and ¢. This can only
be true if P, Q, R, and S are themselves linear functions of x
and y.

§ 20. Geometrical Determination and Discussion of
Collineation.

1. The equations of collineation depend upon eight parameters;
these, when known, determine a collineation. If, therefore, any
four points, of which no three lie in a straight line, are given:
A% 915 As(%5 92); As(%s, ¥s); Au(%, ¥,), We can assume any
other four points with the same property as corresponding points
of a collineation. That this assumption is legitimate is seen
from the eight equations which may be established between the
coordinates of the given points 4,,4,, Ay, A,and 4/, A/, A/, A/
by formulas (XIII). The eight independent parameters are now
the unknown quantities which from the eight equations of condi-
tion may be extracted in a definite manner. Hence the theorem:

There is one and only one collineation which transforms a quad-
rilateral in a plane into any other quadrilateral of the same plane..
Two quadrilaterals in a plane determine a collineation uniquely.

2. An important problem in a collineation is the determina-
tion of those elements, points, or straight lines which are not
changed in position, i.e., of the invariant elements. To find the
straight lines which are invariant, assume their equation in the
form '

(1) ax’ 4+ by +c=o.
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By the collineation (XIII) this is transformed into the equation
(2) (aa,+bb,+ cc,)x+ (aas+bb,+cc,)y+ (aay+ bby+ ccy) =o.

This will be identical with (1) if the three equations hold
aa,+ bb,+ cc,=Aa, etc., or

a(a,— A)+bb, +ecc, =0,
(3) g‘wz +b(b,—N+cc,  =o,
aa, + bb, +¢(cs— A) =o.

These are consistent only if the determinant

a,—4 b, ¢
(4 a b—214 ¢ |=o
a, by c,—4

which gives a cubic equation for the proportionality-factor A.
Solving (4) for A and substituting any of its values in (3), we can

easily extract the values of a—c and g from any two of equations (3).

These values inserted in (1) give the equation of an invariant
straight line of the collineation. As there are three values for 3,
there are three such lines. Hence the theorem:

A collineation in a plane leaves a triangle invariant. ’

The vertices of this triangle are invariant points, while other
points of the sides of a triangle are generally transformed into
other points of the same sides. (See ex. 6 in §23.) It may
happen that two roots of the determinant (4) are conjugate
imaginary, so that the invariant triangle in this case has only
one, real side and one real point (above example).

3. In equations (XIIT) both %’ and y’ become infinite for all
points of the line

5%+ bsy+¢s=o0;

hence, in the collineation, to this line corresponds the line at
infinity. Solving equations (XIII) for x and ¥, the result is
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r= (BaCs— baCa) %’ + (bot1— bic)y’ + (ByCa— byty)

(s) (@zhs— asby)x" + (ashy— a,by)y’ + (ayb,— a5dy)’
_ (@3C3— a5C)%" + (@163— 56,) Y + (@56, — a,C;)

(G205— asby)x’ + (ash,— a,by)y’ + (a0, — azby)’

From this it is seen that all points of the line at infinity, x= o
y= are transformed into the line

(©) (a5D5— a3b,)%" + (ash,— 0,05)Y' + (0,0,— ab,) =o.

4. Suppose a collineation (XIII) has been applied to a plane.
Turn the transformed plane through an angle ¢ about the origin
and translate it afterwards in the direction tan 0=% through a.
distance V/a?+b%. The result of these successive transforma-

tions of the original plane (x,y) is expressed by the equations

(al cos p— a, sin P+ aa,)x+
(b, cos ¢— b, sin P+ ab,)y+ ¢, cos p—¢, sin P+ ac,

’=
& ot byt e
(a, sin ¢+a, cos $+ bag)x+
, (b, sin ¢+ b, cos p+bby)y+¢, sin $—c, cos p+ bc,
Y= agx+bgy+cy

The angle ¢, and @ and b, can always be determined in such a
manner that

b, cos ¢—b, sin ¢+ aby=o,

a, sin ¢+ @, cos ¢+ bay,=o,

@, cos ¢— a, sin ¢+ aay=>, sin ¢+ b, cos $+ bb,,

so that by this motion (¢, @, b) the equations assume the form

a0 2
asx+byy+cs’
y,’= ay+q

agx+bsy+cy”
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If the original plane is translated in such a manner that x=x,— ﬁ-,

y=y1—cq—(, the connection between the (x”/, ¥’) plane and the
(%1, ¥1) plane will be of the form )

... W
agx+LByy+rs

y' = ay, o
ax+By+rs ,
Hence the theorem:

If two collinear planes (figures) are given, it is always possible,
by proper motions, to bring both into a perspectwe position.

And as a corollary:

Any two quadrilaterals in a plane can always be moved into a
perspective position; one may be considered as a perspective of the
other. ‘

As a special case we have:

Any quadrilateral may be considered as the perspective of a
square; and conversely.

On account of its practical importance this proposition will
be treated graphically in § 27.

§ 21. Continuous Groups of Projective Transformations.

If to the point %/, ' obtained by the projective transforma-
tion
_ax+by+q
eyt by+ay
y = axt bzy +¢
ayX+ ba +6

another transformation of the same kind

x"=“1x'+.30/+ 5

() agx’ + By + 15’
y,,=azx'+pzy’+ £

asx,“}'ﬂsy"" Ts

(¥
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is applied, the result is

7] Alx+Bly+Cl

3 ,_Aw+By+C,
Agx+ By+Cy
where

A, =alal+ﬂla'2+ 710y By=ab,+B.b,+1,by, C, =a1¢1+ﬂx¢z+ 713
A;=a,0,+6,0,+ 105, B, =at;b,+ B0, + 13by, Cs =00, +BaCa+ 1aCs,
A, =aqal+ B2+ 158y, By=ah,+Bsb,+ rsby, Cs=ayc, +Bsta+ ribs

Transformation (3) which changes (x, y) directly into (x”, y")
is of the same form as (1) and belongs, therefore, to the totality
of all projective transformations. For this reason it is said that
all projective transformations of the general type form a group.
It is eight-termed (achtgliederig), since its general equations
depend upon eight parameters. In § 20 we saw that every trans-
formation (1) leaves a triangle invariant, and this fact is the
characteristic property of the general projective group.

It is not our purpose to discuss all possible projective groups,
and we shall simply point out the most important ones.

" The six-termed linear transformation

x=ax+by+cy,

@ Ly oortigre

is clearly a group. As it is contained in the general group it is
called a six-termed subgroup of (1) and leaves the line at infinity
invariant.
The perspective '
ax
Tagxt byy+cy
s) oy

y =a,x+ byy+cq
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is a three-termed subgroup leaving a point (origin x=0, y=0)
and the axis s of collineation (every point of it) invariant. As in
these examples, ‘it may be found that every projective special
group leaves a certain figure invariant. The particular invariant
figure is characteristic for the group.

The theory of continuous groups is a creation of SopHUS LIE *
and is of the greatest importance in various branches of mathe-
matics, notably in the theory of differential equations.

§ 22. The Principle of Duality.?

A. Two forms of projectivity have already been studied (§§ 6,
9, 10, 13)—the projectivity of pencils and that of rays. Two
projective pencils generate a curve of the second order; two pro-
jective ranges generate a curve of the second class. In the first
case the point is the generating element of the curve; in the
second it is the straight line. In both cases the equations in point-
and line-coordinates are respectively of the second degree.

A plane figure may therefore be considered either as a configura-
tion of points or as a configuration of straight lines. This is the
principle of duality. Two figures are called dual if to a point in
one corresponds a straight line in the other, and conversely.
Below is a scheme of some dual figures, which by the foregoing
statements explains itself.

1 Vorlesungen diber tinuierliche Gruppen. Theorie der Transformations-
gruppen.

The theory of projective groups has been worked out synthetically by Pro-
fessor NEwsoN and partly by the author himself. See Kansas University Quar-
terly, Vol. V, No. 1.

3 Historic Note.—PONCELET in his Traité, 1822, was the first geometer who
showed by his method of reciprocal polars the great importance which dualistic
relations have for geometry. GERGONNE, in the Annales de Mathématiques, T.
XVI, 1826, stated the principle of duality in all its generality and independently
of reciprocal polars. PLUCKER first established the analytic expression for duality,
and STEINER gave the equivalent geometric interpretation.
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1. Range of points on a straight | Pencils of rays through a point.

=
QOO OO0~
2. Curve. ~"y | Envelope.
- -C
3. Triangle. A ‘B Trilateral. 74

-C
4. Quadrangle. . 5 Quadrilateral. %
A .
5. Points of a plane (= 3?). Straight lines of a plane (e ?).
6. Point of a curve. Tangent of a curve.
7. Tangents from a point to a | Points of intersection of a straight
curve. line with a curve.
8. Point of intersection of two | Straight line connecting two
straight lines. points.
9. Intersections of curves. Common tangents of curves.

B. Analytically the principle of duality is expressed by the dis-
tinction between point- and line-coordinates: x, y and #, v. If
the point with the coordinates x and ¥ satisfies the equation

ax+by~+c=o,
then the point is situated on the straight line which cuts from the

x- and y-axes the distances ——% and —-%. If x and y are kept

fixed and a, b, ¢, or u=g-, v=g are varied, then for all values of

a, b, ¢, or % and v, which satisfy ax+by+c, or ux+vy+1=0, a
straight line is obtained which passes through the point (%, y).
Hence

ux+vy+1=o

is the quation of the point (x,y) in line-coordinates %, v. In
§ 19 the equations for a general collineation were established for
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point-coordinates. The problem now is to do the same thing
for line-coordinates. A straight line

(1) A ax’+ by +c=o0
by equations (XIII), § 19, is transformed into

x(aa,+ ba,+ cas) + y(ab,+ bby+ cby) + ac,+ by + ccy=o,
or

_@a,+ba,+cay  ab,+bb,+-cb,
(2) ac,+be,+cey 7 ac,+ beg+ cey

Putting ax’+ by’ +¢ into the form ux’+vy'+1=0 and (2)
into the form #'x+v/y+ 1=o0, the required equations of collinea-
tion in line-coordinates

au+av+ay

- cu+ c,v+ ¢y’
bu+bv+ by

V= U+ cu+cg’

X1V)

are obtained. By this transformation every straight line with the
coordinates %, v is transformed into a straight line with the coor-
dinates #/, V. )

The discussion of these formulas is similar to that of (XIII)
and may be left to the student. In (XIII) and (XIV) the ana-
‘lytical expressions for the dualistic interpretation of collineation
have been obtained. As for (XIII), the group-property is funda-
mental for (XIV). In case of perspective in line-coordinates, a,,
@y, by, by vanish from (XIV). '

§ 23. Exercises.and Problems.
1. Show that the transformation

¥’ =x cos ¢+ sin ¢,
¥y =% sin ¢—ycos ¢,
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consists of a rotation through an angle ¢ and a reflection on the
x-axis.

2. What becomes of the circle 2+ y?*=#? after a dilatation;
what is the ratio between the enclosed areas before and after
dilatation?

3. Investigate the transformation

' =ax+by,

y =cx+dy,
where ad—bc=1. :
4. The area included by a closed curve C’ in the &’y’-plane is

obtained by evaluating / dx’dy. If we now transform the x’y’-

plane by the equations &’ =¢(x, y), ¥ = ¢(«, ¥), the area of the
transformed curve ¢ is

Take now a linear transformation

& =ax+by+c,
y =dx+ey+f,

then the area 4’ of a curve in the transformed plane expressed
in terms of the area 4 of the original curve is

A’ =(ae—bd)A,
L 4’
or 1 =% bd;

i.e., in a linear transformation corresponding areas have a con-
stant ratio. )

5. Prove that all points of the xy-plane are transformed into
a straight line when ae—bd=o.

1 PrcAaRD: Traité d’Analyse, Vol. I, pp. 98~102.
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6. Find the invariant points from the equations of a general
collineation. In these equations set x=§, y=%, x' =§, y’=%

and designate by 4 a factor of proportionality; then
A =a,6+bn+cl,

(1) A =a,§+ b+l
AL =l + b+l

If (&, v, ¢’) is identical with (&, 5, ¢), we get the condition
(a,— Hé+ b+ 6 {=o,

(2) ' a6+ (b,— A+ 6.{=o0,
af+ b+ (cs— A) =0,

* or

a—4 b G
(3 e b—1 ¢ |=o
g by c—1

This determinant gives three values for 4, consequently from
(2) three sets of values for (§, 3, £). Two values of A, hence
two of the invariant points,may be imaginary, while the line join-
ing them is real (§ 20, 2).

7. Show that all motions in a plane form a group.

8. Prove the same for affinity;

9. For symmetry (central and orthogonal);

10. Similitude.

11. Find the invariant elements of an affinity.

12, How does a linear equation affect an hyperbola?

§ 24. Orthographic Projection.

1. In an orthographic projection two perpendicular planes
of projection are assumed. One is in a horizontal position,
and is designated by H; the other in a vertical position, and is
designated by V. Both H and V intersect each other in the
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ground-line GL and divide the whole space into four quadrants,
or angles, Fig. 24. With respect to the observer, space may be
described as above or below H, in front or back of V. The four
angles are now numbered as follows:

1 Angle: above H, in front of V.
II Angle: above H, back of V.
III Angle: below H, back of V.
IV Angle: below H, in front of V.

Fi16. 24.

In any of these angles, the projections of a point are obtained
as the foot-points of the perpendiculars (projectors, projecting
lines) from these points to H and V. If 4 is the point in space,
we may designate the horizontal projection of 4, which is in
H, by A’, the vertical projection of 4 by 4” (in V).

Let the plane through 44’ and AA” intersect GL in A¥,
then there is A"A*=AA’, A’/A¥=AA". In order to have the
representation of these projections in one plane (plane of the
drawing; blackboard), one of the planes, for example ¥, may be
rotated about GL, so that the part of V above GL turns from
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the observer till it coincides with H. After the rotation the
upper portion of ¥ covers the back part of H, and the lower
portion of V lies in coincidence with the front part of H. Accord-
ingly the projections of points in the different angles will lie as
follows with respect to GL: ’

Point in I Angle: H-projection below, V-projection above GL;

[{3 {3 II {3 . 13 abwe’ 4 abm}e (13 ;
13 [{4 III {3 : {3 abo,ue’ 141 below 43 ;
“oHIV “ below, « below .

- The same is true of the projections of any figures situated in
the different angles.

In Fig. 25 these cases are represented. The two projections
of a point necessarily lie in the same perpendicular (eventually

B/l

A”? ? ,

Y B

I

A

G ! I ! L

! 1 T
IR

i .
X c%, i
Db

F1G. 25.

extended) to GL. A fixed point in space can be represented in one
and only one way by two projections. Conversely, two points in
the same perpendicular to GL always represent the projections of
a point (but only one point).

2. STRAIGHT LINE.—A straight line is determined by two
points (the only line or curve determined by two points). An
orthographic projection (of course, also a perspective) of a siraight
line ts also a straight line. Hence, if A’, A”; B/, B” are the
projections of two points, the lines joining A’, B’ and A”, B
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are the corresponding projections of the line 4B. Generally
any straight line—when produced—pierces H and V. The
points where this occurs are called the traces of the line and may
conveniently be designated by
lyy 13, Sy Si etc. (¢, =horizontal,
i,=vertical trace). A point P is
situated on AB when P’ is on
AIBI’ PII on AIIBII’ and
PP"1 GL, Fig. 26. To find
the traces ¢,, {, when A’B’ and
A”B" are given we notice that
the V-projection of a point in H
lies in GL, and that the H-pro-
jection of a point in V lies also
in GL; the other projections coincide with the points themselves,
respectively.

Hence, to find the horizontal trace ¢, of AB, produce 4”B”
till it intersects GL at ¢,”. This, being still situated on 4”/B”, is
the vertical projection of a point of 4B, and as it is also on GL,
the point must be in H and is necessarily the required trace ¢,.
Hence, to find ¢,, produce the perpendicular to GL at ¢,” till it
intersects A’B’ produced at the required ¢. Similarly, ¢, is found
by drawing a perpendicular at the point of intersection ¢/ of
A’B’ with GL and producing it till it meets A”B’’ produced at
the required ¢,. '

It is evident that any two lines |’ and 1" may be considered as
the projections of a line I. This line is uniquely deiermined by
!" and 1”". To prove this draw any two perpendiculars to GL,
cutting !’ and!”” at A’, A" and B/, B”. These points, however, rep-
resent the projections of two points and hence the problem is
reduced to the foregoing considerations. This proposition is
altogether general no matter how the lines may be situated.
If one line is perpendicular to GL, the other reduces to a point.
Usually the projections may be assumed indefinitely extended.

A finite portion may be cut out by two perpendiculars to
GL. If the traces ¢, and ¢, are given, the projections are found:
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by drawing the perpendiculars #,¢,” and ##,/ to the ground-line;
then ¢, is the H-projection, ¢, the V-projection of the line.

3. PLANE.—A plane is determined

(a) By three points not in the same straight line;
® one point and a straight line;

(c) two intersecting lines;

@) two parallel lines.

The most convenient manner to represent a plane is by its
traces, i.e., its lines of intersection with the planes of projection.
The traces of a plane meet in the ground-line and may be desig-
nated by o, 0,; 7, 7,; etc. Let S and T be the points where
o, and g, 7, and 7, meet. A plane in a general position extends
into all four quadrants, and if nothing else is specified it will
be understood that the plane is indefinitely extended.

Ex. 1. Draw the projections of a straight line

(@) L H () L GL

oLV (g) in a plane L GL
) I H (k) cutting GL
@ilv () nHorV

() || GL () inVand L H,

and repeat the construction in all four angles; also construct the
traces in every case.
Ex. 2. Draw the traces of a plane

(o) LH ) | H

® LV h v

(¢) L HandV (g) passing through GL

@ || GL (k) solve the foregoing problems

in all four angles.

Ex. 3. A profile plane is a plane L. GL. Given a plane || GL;
find its distance from GL.

Ex. 4. Given any plane; locate a point in this plane; i.e., draw
its projections.

Ex. 5. A straight line lies in a plane when its traces lie in the
corresponding traces of the plane; conversely, a plane passes through
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a line if its traces pass through the corresponding traces of the line.
Construct the traces of the planes determined by (a), ®), (c), or
(d) under 3, § 24.

§ 25. Affinity between Horizontal and Vertical Projections of
a Plane Figure.

RABATTEMENT.

1. The orthographic projections of a figure in a plane ¢,So,
are perspectives with infinitely distant centers in directions per-
pendicular to H and V. In this case any of the projections and
the corresponding revolved figure are in the relation of affinity
(orthogonal affinity with one of the traces as an axis). But there
exists also affinity between horizontal and vertical projections of a

plane figure, as we shall now see.
A —_
Petd
-7 7
-7
-~ 4 '
P // ‘
- ,I 1
" i pid !
“ ]
! b |
L |
I/
r
1
FiG. 27.

2. Let P be the bisecting plane of the first and third angles,
Q the bisecting plane of the second and fourth angles. The pro-
jections of a point in P are equally distant from GL; those of a
point in Q coincide.

Hence, to find the point of intersection of any line I with Q,
produce 1’ and 1"’ till they intersect ab A; Arepresents the coinciding
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projections of the required point of imtersection, Fig. 27. If this
point 2 is infinitely distant, i.e., if 2’ || /", then [ is parallel to Q.
If a plane P is given, then all lines in this plane will generally
intersect the line of intersection s of P and Q. Hence the cor-
responding projections of all lines in P will meet in points of

-

Fic. 28.

¢, s”; this line is therefore the axis of affinity which exists between
the projections of figures in a plane P. If A is a point in P
(traces s,, §;), then we can rabat P about s, into H. During
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the rabattement A describes a circle with center in s,; A’ describes
a perpendicular to 5,. A line /, its horizontal projection ¥, and
its rabatted position /”/ meet in the same point of s,, Fig. 28.
Hence there exists also affinity between the horizontal projec-
tion of a plane figure and its rabattement into H. In Fig. 28
these affinities are illustrated in case of a triangle. If the hori-
zontal projection of a triangle,

A’B'C' and A" are given, B”

and C” may be found by applying

the principle of affinity.  Thus

A’B’ meets A”B” in a point 7

of s (s, s), and B, B” lic in a

perpendicular to GL; hence join

A” with r and through B’ draw

B'B” | GL, thus determining B”

Similarly C” may be obtained.

By the same principle the rabatte-

ment A’’B"'C' may be con-

structed if one point, say A’ is

known. An interesting special case

is obtained when s, and s, are

equally inclined towards GL. Then Fi. 2.

s is perpendicular to GL and corresponding projections of closed
figures have equal areas, Fig. 29. This case has been discussed
in § 17, Fig. 23, elation.

Ex. 1. Discuss the affinity which results when s, coincides
with s,. :

Ex. 2. What must be the position of a plane P to obtain
orthogonal afhnity, § 17?

Ex. 3. What plane gives orthogonal symmetry?

Ex. 4. What is the position of a plane if the projections of
any point in this plane are always equally distant from the axis of
affinity s? (Oblique symmetry.) Make use of a profile-plane.

Ex. 5. A straight line is perpendicular to a plane if its pro-
jections are perpendicular to the corresponding traces of the plane.
Prove this proposition.
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Ex. 6. What is the position of a plane whose traces coincide ?

§ 26. Homologous Triangles.

1. In § 15, treating of central projection, two planes = and =’/
intersecting each other in s and a center of projection V (C) were
assumed. Consider now any triangle ABC in = and find its
projection A’B’C’ in «’; then a pyramid with base A’B’C’ and
vertex V is obtained which by the plane =z is cut in the triangle
ABC. Revolving = and with
it ABC about s down into =’,
thus assuming the position
A,B,C,, then from the laws of
perspective we know that 4’4,
B'B,, C'C, are concurrent at
a point W, and the points of
intersection of A’B’ and A,B,,
B'C' and B,C,, C'A’ and C /4,
are collinear, i.e., lic on the
same straight line. Triangles
with this property are called
homologous,* Fig. 30. Any two

Fi6. 3o. triangles for which the lines
joining corresponding vertices are concurrent may always be
considered as resulting by the foregoing projection and rabatte-
ment, so that the following theorem holds:

If two triangles A,B,C, and A,B,C, are situated in such a
manner that the lines joining corresponding points like A,A,,
B,B,, C,C, are concurrent at Vg, then the points of interseciion

A,B BC G4
of corresponding sides, in symbols A:B: % I B:C: }“’ C:A : }‘B ’

are collinear on s.

Y,

1 CasEY in his sequel to Euclid uses the word homologous. Mr. LEUDESDORF
in his translation of Cremona’s Projective Geometry, p. 10, uses homological. See
also PONCELET, loc. cit.
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Conversely:

If two triangles are situated in such a manner that the points
of intersection a, B, r of corresponding sides are collinear, then
the lines joining corresponding points are concurrent.

It is noticed that these theorems are simply a specialization
of the general laws of central projection or perspective. They
include- evidently the laws of affinity as special cases (infinite
point of concurrence, plane intersections of triangular prisms,
orthographic and generally parallel projections).

2. THEOREM.—The centers of homology of three homologous
triangles with the same axis of homology are collinear.

Let 4,B,C,, 4,B,C,, A;B,C, be the three triangles whose
corresponding sides meet in the collinear points a, 8, y. Con-
sider the two triangles, Fig. 31, A,4,4, and B,B,B,, then it is

Fic. 31.

seen that the lines 4,B,, 4,B,, A B, are concurrent at f. Hence
the intersections of their corresponding sides are collinear; but
these points, V;, V,, V,, are the centers of homology of the given
three triangles, Q.E.D. '
CoROLLARY.—T'he three triangles A,A,As B,B,B;, C,C,Cs

-

~



82 PROJECTIVE GEOMETRY.

have the same axis of perspective; and their centers of homology
are the points a, B, y. Hence the centers of homology of these
triangles lie on the axis of homology of the triangles A,B,C,, A,B,C,,
A,B,C;, and conversely.

3. THEOREM.—The three axes of homology of three homologous
triangles with the same center of homology are concurrent.

Let A,B,C,, A,B,C,, A4B;C, be the three triangles with the
common center of homology V, Fig. 32. Consider the two

F16. 32.

triangles formed by the two systems of lines 4,B;, A,B,, A:B;
and A4,C,, A,C,) A,C,. These two triangles C/C/C, and
Cy/'C,’'C,” are in perspective, the line V4,4,4 being their axis
of homology. Hence the lines joining their corresponding vertices
are concurrent at S, which proves the theorem.!

1 See CASEY’s Sequel to Euclid, ed. 19oo, pp. 77-88. Casey’s proofs are based
exclusively upon metrical properties.
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4. THEOREM.—I] in two complete quadrilaterals five pairs of
corresponding sides intersect in five collinear poinis, the point of
wniersection of the sixth pair will be collinear with these.

Suppose that 4B, 4'B’; BC, B'C’; CD, C'D’; DA, D'A’;
BD, B'DY are the pairs of sides intersecting on a fixed line s, Fig.

33 Now ABC and A’B'C’ are homologous triangles, consequently
AA’, BB, CC’ pass through a fixed point S. Also BCD and
B'C'D’ are homologous, and as BB’ and CC’ pass through S,
DD’ also passes through S. Hence, as 44’, CC’, DD’ pass
through S, the triangles ACD and A’C’D’ are also homologous.
Now AD and A'DY, CD and C’D’ intersect in points of s.
Consequently also AC and A’C’ intersect on s. This, however,
is the sixth pair, Q.E.D. The line of collinearity may, of course,
be infinitely distant.

Ex. 1. Prove dualistically: If, in two complete quadrangles,
lines joining five pairs of corresponding points are concurrent,
the line joining the sixth pair is concurrent with these.

Ex. 2. Consider any three spheres in space which do not
intersect and exclude each other. Let ¢, ¢, ¢; be their centers
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and construct their external common tangent-cones with the
vertices E,, E,, E,, A common tangent-plane to the cones (E),,
(E,) is necessarily also tangent to (E,); hence (E,), (E,), (Ey)
have the same two external common tangent-planes and E,,
E,, E, are therefore necessarily collinear with -the line of inter-
section of these two planes. Similarly it is seen that the internal
common tangent-cones of (E,) and (E,) and of (E,) and (E,)
have two common tangent-planes.which are also common to
the external tangent-cone of (E,) and (E,;). Hence, designating
"the vertices of the internal common tangent-cones by I,, I,, I,,
we have the following triads of collinear points:-

E.E,E,, E.El, E,E]l, EEIj;

i.e., the points of similitude of three spheres in space jorm a com-
plete quadrilateral.

Frc. 34.

In any orthographic projection the spheres are projected into
circles and the E’s and I’s into their centers of similitude; and
since any three circles in a plane may always be considered as
the projections of three spheres in space excluding one another, .
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the foregoing proposition also holds for three circles in a plane,
Fig. 34.

Ex.. 3. If we now take four spheres in space with the centers
C,, C,, C,, C,, and designating the external and internal centers
of similitude respectively by E, I; for the spheres with the
centers C; and Cy, then we find that all external centers of similitude
lie in a plane. To prove this, remark that there are six centers
of this kind, E,,, E,,, Es,, E,,, Eys, E,,, and that these are arranged
in groups of three on six straight lines; they form, therefore, a
complete quadrilateral and are coplanar, Fig. 35. The centers

F1Gc. 35.

of similitude of three spheres are always coplanar; and since four
groups of three out of four spheres may be formed, four more
quadrilaterals of points of similitude may be formed. The
twelve points of similitude are distributed three by three on six-
teen axes of similitude. Of the latter, four pass through every
point of similitude.
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If pgrs designates each arrangement of the numbers 1 2 3 4,
(pq) the external, (pg) the internal point of similitude of Cp
and Cq; moreover, if (pgr) is the axis of similitude passing through

(#9), (#7), (¢r), finally (pgr) the one through (pg), (pr), (a),
then the axes may be represented by the following table:

(234) (134) (124) (123)
(134) (234) (x23) (124)
(124) (123) (234) (134)
(123) (124) (134) (234)

In this table two axes which belong neither to one and the
same line, nor to the same column, have always a point of simili-
tude in common, while this is not true of two axes belonging
to the same column or line.

This configuration, which was discovered by Poncelet, is now
known as Reye’s configuraiion.!

§ 27. A Few Applications to Perspective.

1. PERSPECTIVE OF A SQUARE.—In § 20 it was seen that
there is always a collineation transforming a quadrilateral into
any other quadrilateral. The proof of this proposition was
analytical. In view of its practical application the special case
is of interest:

Every quadrilateral may be considered as the cemtral projec-
tion or perspeciive of a rectangle or of a square.

Let A’B'C'D’ be any quadrilateral and L’M’N” its diagonal
points, Fig. 36. If this is the central projection of a rectangle,
the line joining M’ with N’ must be the vanishing line ¢/, and
M’ and N’ are the vanishing points of the two pairs of parallel
sides. From this it is clear that the center of perspective joined
with M’ and N’ gives two perpendicular lines. In other words,
the center is situated on a circle having M’N’ as a diameter

! See Archiv fiir Mathematik und Physik, 3d series, Vol. I, PP- 124-132.




COLLINEATION. 8y

(see § 15). Any point on this circle as a center and any line
Il ¢ as an axis determine a perspective in which the original
quadrilateral is the perspective of a rectangle. This rectangle
can be constructed without difficulty. The quadrilateral may
also be considered as the perspective of a square. The center O
must now also be situated on a circle over E’F’ as a diameter.
O is therefore the point, or one of the points, of intersection of

q’

F1c. 36.

the circles over M’M’ and E’'F’ as diameters. In § 8 the har-
monic properties of the complete quadrilateral were obtained
analytically. Constructing the diagonals of a square, of which
one is at an infinite distance, those properties appear immedi-
ately from the square, and as a projection, does not change a
cross-ratio, it is evident that the same harmonic properties hold
for the complete quadrilateral.
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2. PERSPECTIVE OF CIrcLES.—Every perspective of a circle
is called a comic section or simply conic. If two lines are tangent
to each other at a point 4, then the perspectives of these lines
are tangent at the perspective 4’ of 4. Hence if a circle is
inscribed to a square, the perspective will give a conic inscribed
to a quadrilateral. .

The problem of drawing perspectives of circles may therefore
be reduced to the problem of inscribing comics to quadrilaterals.

By this method the problem can be solved in a simpler man-
ner than by the ordinary construction from the given- circle and

> the data of perspective. In Fig. 37 a

’ square PQRS and the inscribed circle

with the points of tangency A4, and

| BB, have been assumed. Divide OB

A:F sAand BQ and BP into the same num-
| bers of equal parts and number them
‘ from O to B and from P and Q towards
| B, starting every time with o. Con-
 nect A with any of the division-points
on BP, and 4, with the corresponding
point on OB. The point of intersection K of these two rays is

Frc. 37.

Fi1c. 38.

a point of the circle. In a similar manner the points of the
dircle in the remaining quadrants may be located. Now the
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rays from 4 and 4, form two projective pencils, and their prod-
uct is therefore a curve of the second order. As ZA,KA is a
right angle, this curve is a circle (indeed AA4,01= A A4 P1, hence
A, 1 1A1) and is therefore identical with the assumed circle.

Now, in order to inscribe a conic into the quadrilateral PQRS,
touching at A4, BB,, Fig. 38, construct the point O as the inter-
section of the diagonals PR and QS. Joining O to M and N
and producing gives 44, BB,. Applying the same principle of
bisection by diagonals in analogy with Fig. 37, the proper division
on OB and P(Q is obtained. Having these, the inscribed conic
is found in exactly the same manner as the inscribed circle.
The proof of this construction is evident, since every quadrilateral
may be considered as the perspective of a square, and the per-
spective does not destroy the- projectivity of pencils.

This construction is very effective in perspective drawing,
being applicable to all kinds of quadrilaterals.

It is also remarked that comics (perspeciives of circles) are
curves of the second order.

This idea will be fully discussed in the next chapter.
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\

§ 28. Exercises and Problems.

1. Given two straight lines and a point; to draw a straight
line through this point passing through the inaccessible point of
intersection of the given lines. »

SorLuTioN.—Let g and & be the given lines and A the given
point. Through A draw any two lines cutting g and % in PQ
and RS, Fig. 39a and 39b. Join PS and QR and produce till
they intersect at M. Designating the inaccessible point by N,

P g' Q/ T/

F16. 39a.

PQRS may be considered as the perspective of a square having
M, N, A as diagonal points. Hence any third line through A
cutting g and & at T and V is the perspective of a line parallel to
QR and PS. From this it follows that the line joining 4 to the
point of intersection B of TR and-QV is the required line.

2. Inscribe a conic within a rectangle; within a trapezium; a
rhombus. ‘

3. Draw two homologous quadrilaterals.
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F16. 39b.

4. Draw the perspective of a cube; of a cylinder; of a pyramid;
of a hexagonal prism.
5. Draw the perspective of two concentric circles,



CHAPTER III
THEORY OF CONICS.

§ 29. Introduction.

The Greeks originally studied conics as plane sections of
cones.! Steiner and Chasles considered them as products of
projective pencils and ranges, defined by anharmonic ratios.
von Staudt and Reye, however, define this relation purely by
harmonic division. I shall follow Steiner’s method, by which
the projective properties of the circle (see § 12) are easily ob-
tained and transformed to conics by central projection. Follow-
ing this method, it becomes necessary to show that all curves of
the second degree as obtained by projective pencils and ranges
are also produced by plane sections of cones, or as perspective
collineations of the circle. ’

Conversely, it must be shown that every curve of the second
degree may be projected into a circle. This is the method followed
by Poncelet, Steiner, and a majority of modern writers on pro-
jective geometry. From a purely geometrical standpoint von
Staudt’s and Reye’s methods are to be preferred.

! MENACEMUS obtained conics as intersections of planes perpendicular to the
elements of a right cone. In case of an ‘“‘acute-angled cone’’ (opening angle at the
vertex < go°) the conic was called ellipse; of a ‘“right-angled cone” (angle at
vertex=qo°) a parabola; of an “‘obtuse-angled cone”’ (angle at vertex > 9o°) an
hyperbola. APoLLONIUS, who introduced these names, extended the proofs to
oblique cones.

92
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§ 30. Identity of Curves of the Second Order and Class and
Conics.

The general equation of a circle is
(1) (x—a)’+ (y—b)*=r2

To obtain the equation of this circle in line-coordinates,
assume the equation of its tangent in the form

(2) ux+vy+1=o.

This represents a tangent if the distance of the center (e, b)
from the line (2) is r; i.e., if

au + bv 4 I _,
N v, Vig+v, Vu,+12
or
@3) r*(u*+v*)— (au+bv+1)?=o0.

Every pair of values u, v satisfying (3) gives the line-coor-
dinates of a straight line tangent to the circle (1). Equation (3)
represents, therefore, (1) in line-coordinates (see § 6). Both (1)
and (3) depend upon three essential parameters. The formulas
for perspective in their dual interpretation each depend upon
three essential parameters. Hence, applying a perspective to
either (1) or (3), i.e., to the given circle, we can in both cases
dispose of the six parameters in such a manner that the trans-
formed equations assume any given form of the second degree
inxand y, or in ¥ and v. This means that every curve of the
second order or class may be considered as a conmic section (per-
specitve of a circle).

Conversely, if the general equation of a conic of the second
degree is given, it is always possible to find a perspective which
will transform this equation into that of a circle. Hence every
curve of the second degree may be projected perspectively into a
circle. Curves of the second degree and conics are therefore identical.
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Ex. 1. The perspective transformation

x
= lx+my+n’

Y
y'=lx+my+n

transforms the general equation

ax’*+ by'*+ cx’'y + 2dx’ + 2ey + f=o0
into

x2(a+ 2dl+ fI*)+ y* (b+ 2em+ jm?) + xy(c+ 2dm+ 2¢l+ 2fim)+
x(2dn+ 2fin)+ y(2en+ 2fmn)+ fn’.

Find the values of ! and m which will transform the given
equation into that of a circle.
Ex. 2. Solve the dual problem of Ex. 1.

Ex. 3. Find a circle and a perspective, so that the perspec-
2 2

tive of the circle is the ellipse ot z—,= I.
Ex. 4. Given the circle x?4y?=1. Transform this circle
by the perspective

%’ y
x=y,_1, y=y,_1.

Discuss the result geometrically and show that the center of
the circle is the focus of the transformed circle.

§ 31. Linear Transformation of a Curve of the Second Order.

1. By the translation

ix=x’+a,,

(@) y=y+b,
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the equation
(2) ax?+ 2bxy+ cy?+ 2dx+ 2ey+ f=0
is transformed into ‘

ax'*+ 2bx’y’ + c/y*+ 2(aa,+ bb,+ d)x’ + 2(ba, + cb,+ )y +
aa,*+ 2ba,b,+ cb,*+ 2da,+ 2¢b,+ f=o.

In order that the coefficients of x’ and y’ disappear, @, and b,
must be chosen, so that

aa,+bb,+d=o,
ba,+cb,+e=o.

If ac— b, 0, we find for g, and b, the values

be—cd bd—ae
(3) a,= ac—b? b= ac—b*

By this assumption the transformed equation reduces to (the x’
and ¥’ being replaced by x and y) '

(4) ax’+ 2bxy+cy’+ =o,

ac—b*

where

N : abd
A=d(be—cd)+e(bd—ae)+[(ac—b’)=lb ce
def

2. Turning the coordinate axes now through an angle 6; i.e.,
making the transformation :

gx=x' cos f— ¥’ sin 6,

(5) y=x’ sin 6+ cos 6,

and again suppressing the primes of x and y, the result is

4
Ax*+ 2Bxy+Cy*+ sy il
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where
A =a cos? 6+ 2b sin 8 cos 0+ ¢ sin? 6,
2B=(c—a) sin 20+ 2b cos 20,
C=a sin? §— 2b sin 0 cos 6+ ¢ cos? 4.

Choosing § so that B=o, or

2b
6) . tan 20= —c

the transformed equation reduces to

2 2 —
(7) . Ax +Cy - bz_ac°
To determine A and C, we have from the foregoing expressions
for 4, 2B, C:
A+C=a+c,
® {B”——A-C=b’—ac.

But when 8 is chosen so that B=o, 4 -C=ac—b?> Hence 4 and
C are roots of the equation

22— (a+¢)z+ac—b*=o.

If now b%*—acxo0, two cases, b’—ac >0 and b>°—ac< o, must be
distinguished.

It is further assumed that 4 0. In the first case, b*—ac >o,
it follows, since now AC=ac—b*< o, that 4 and C are of different

. 4
sign. Hence, no matter what the sign of 4, i0—a) and

C_(bz_-d——aT) have different signs and are always real. The equa-
tion therefore represents an hyperbola. 1If, in addition to 52— ac‘>o,
4=o0, then the equation may be resolved into two linear factors;
the hyperbola degenerates into two intersecting straight lines.

In the second case, b*—ac <o0,4-C=ac- b*>o0. Both 4 and
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4 4 -
A=) ™4 Cpr—ag) Deve

the same sign. According as this is positive or negative, the
equation represents a real or an imaginary ellipse. If 4=0, the
ellipse degenerates into two intersecting imaginary lines.

3. Finally the case’ b*—ac=o0 must be considered. Here
b=++a. Considering the case b=+%ac, the general equa-
tion (2) reduces to (coordinates x’, ¥')

C have the same sign; hence also

) (W ax’ +cy)*+ 2dx’ + 2ey + [ =o.

- a
Putting Va=r sind, Vc=rcos0; ie., r*=a+c, tan 0=\/c—'

and dividing the whole equation by 7%, we have

(10) (o sin 6+ cos 0)=+I—I, (242 + 2¢y/ + f) =o.

Turning the coordinate axes through an angle 8; i.e., putting

x=x’ cos f—y’ sin 6,
y=2u'sin 64y cos 0,

or o &’ =x cos 6+ y sin 6,
y/ =—xsin0+y cos b,

Ve

a
equation (10) becomes, after putting sin 6= Ty cos 0= Tt
and reducing,

(11) »*+ % (@Ve—eVa)x+

2
(a+cVa+c
(d\/3+e\/;)y+},‘\/5+_6% =o.

Making ﬁrially the translation, by replacing y and x by y+p8
and x+ « respectively, we have
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2 2 — —_
(12) ¥ +———(a+ Vate { (Ve—eVa)x+
(@Va+eVetpa+ oV oty +a(@Vo—eva)+

Larovareryvarel.
_ eVetdVa
(at+eVate
(eVec+dV a) + f(a+c)?
2@V i—eVa)(a+cVate’

"Letting’ B and

(12) becomes

. deeva
=—2—————x,
(e+ c)\/ atc
which represents a parabola. When b*—ac=o, then
abd ’ ‘
d=|b c e |=— (cd’— 2bde+ ae?).
def

But b= +\/E, hence
4=— (a6’ 2V ac-de+cd?) = — (eV a— dV/c)%;
R Y B
(a+c)Vatec. )
If in (11) dVc—eVa=o, i.e., =0, then the equation may be
- resolved into two linear factors in.y only, and represents con-

sequently two parallel lines. These are real and distinct, coinci-
dent (real), imaginary and distinct, according as

hence

(13) y’

(d\/;i+ e\/c—)’¥ fla+ c)’%o.

The case b=—A/ac may be treated in a similar manner and
leads to no new result.

4. From the foregoing short discussion it is seen that the
character of the general equation of the second order may be
established by means of translations and rotations; i.e., by special
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cases of the linear transformation. In this, two algebraic expres-
sions between the coefficients are of fundamental importance,

b
namely, b’—-ac=l e ;l, which for abbreviation we may designate

by t, and
abd
d=d(be— cd)+ e(bd— ae)+ f(ac—b*)=|b ¢ e|.
def

According as 7 %o the general equation represents an hyper-

bola, a parabola, or an ellipse, if 4#0. When d=o0 these
curves degenerate into intersecting, parallel or coincident, or
imaginary intersecting lines. The determinant 4 is called the

DISCRIMINANT of the equatlon We may call t=b,—ac= lb ¢

the characteristic determinant, or simply CHARACTERISTIC.

We shall now show that the discriminant and characteristic
of an equation of the second order are not changed by a translation.
By the translation in which x and y are replaced by x+a, and
y+b,, equation (2) is transformed into
(14) ax®+ 2bxy+ cy*+ 2(aa,+ bb,+ d)x+ 2(ba,+ cb, + €)y

+ a,(aa,+ bb,+ d)+ b,(ba,+ cb,+ €) + da, + eb,+ f=o.

From this it is apparent that ¢ has remained invariant. The

discriminant

a b aa,+bb,+d
b c ba,+cb,+e -
4= aa,+bb,+d ba,+cb+e a,(aa,+bb,+d)+b,(ba,+cb,+€)
. +da,+eb,+f
a b : d |
b Cc - e
aa,+bb,+d  ba,+chbte da,+eb,+f
a b d
b ¢ e,
d e |

which is the original discriminant.
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In a translation © and 4 are invariants. The same is true
of  and 4 in a rotation, and consequently in any motion of the
plane in itself. No special proof for the case of rotation will
be given, since it is contained in the linear transformation which
will now be treated.

5. A linear transformation (§ 19, XII)

(15) §x=ax’+ﬂy’+f,
y=)'x' + 5y'+’),

leaves the line at infinity invariant. It may therefore be ex-
pected that such a transformation does not materially change
the expressions = and 4.

As the constants € and 7 mean simply a translation in addi-
tion to the special linear transformation :

A

x6) y=14/+3y,

and as a translation does not change 7 and 4, it is sufficient to
study the effect of (16) upon the general equation (2). Making
in (2) for x and y the substitution (16) and afterwards replacing
x’ and ¥ by x and y, we have

(17)  (aa’+2bay+cr®)x*+ 2{aaf+b(ad+Pr)+crd}xy
+ (af*+ 2030+ c0?)y*+ 2(da+ er)x+ 2(df+ ed)y+ f=o.

The discriminant of this equation is

aa’+ 2bay+cy? aaf+b(ad+Lr)+cyd da+er
aaf+ b(ad+Br)+cyd af?+ 2b30'+ cd? dp+ed |,
da+ey dB+ed I

4=

which reduces down to

abd
bce

de |

(18) 4'=(ad—By)? = (ad—Br)%4.
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In a similar manner there is found

(19) 7 =(ad—Pr)*.

From this it follows that the character of a-curve of the second
order is not changed by a linear transformation.
It is always assumed that ad—frso. Indeed, according

2> 2. 20 42
ast=o, also r’Zo, and also a54<o, A<o.

For a rotation, 7 =(cos? 8+ sin? f)r=7,

4'=4;

i.e., in this case v and 4 are invariants. In the next section it
will be seen that conics are characterized by their pole- and
polar involutions on the line at infinity (involution of diam-
cters). :

Thus, it is also geometrically evident that in a linear trans-
formation, which does not change the involution of the infinitely
distant line, the type of a conic is not changed.

Ex. 1. Find (18) from the preceding unsolved determinant.
Calculate also 7.

Ex. 2. If b>—ac=o0, assume b=—A/ac and transform, with
this condition, the general equation (2) to the normal form
yZ=2px.

Ex. 3. Discuss the curve determined by y*—2xy+x%—1=0.
Ex. 4. What curve does the equation

ax*+ (a+b)xy+by*+ (a+)a+ (b+¢)y+c=o

represent?
. . . . a7
Ex. 5. If in the linear transformation ad—gr=o, i.e., E=—5,
we have
x=ﬂ<%x' +y’>’

y=6(§x’+y’).
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B

Hence, no matter what the values of x’ and y’ maf be,5’x-= 5=

constant. The whole #’y/-plane is transformed into the straight
line x6—yf=o.

§ 32. Polar Involution of Conics. Center. Diameters. Axes.
Asymptotes.

‘1. In §§ 12 and 13 the involutoric properties of the circle
have been explained. As a collineation does not change pro-
jective properties, it is clear that the following theorems hold
for conics. (As the figures of involution referred to in this sec-
tion are in close analogy with those of the circle, their reproduc-
tion is left to the student.)

1. The polars of the points of a straight line | pass through
a fixed point L, the pole of .

I1. The poles of the rays of a pencil P lie on a straight line p,
the polar of P.

From this follows immediately

II1. If the pole L of a straight line I lies on a second line g,
then the pole G of g lies on 1.

IV. If the polar | of a point L passes through the pole G of a
second line g, then the line g passes through the pole of 1.

Consider now any straight line / and its pole L. Let ¢ be
any ray through L cutting 7 at A. The pole 4, of a lics on 2.
Hence the pole of the ray a,, passing through L and A4,, coin-
cides with 4. Taking any number of rays @, b, ¢, d,... and
constructing as before their corresponding rays a,, by, ¢, d,,. ..,
a system of coincident polars and poles through L and on / are
obtained which are in involution; i.e., every pair of correspond-
ing rays and poles, xx, and XX, are harmonic with the double-
rays and double-points through L and on !, respectively. The
double-elements are real when / intersects the conic really; i.e.,
when L admits of two rcal tangents to the conic. If / does not
intersect in real points, then the involution has imaginary double-
elements. In case that / is tangent to the conic, the double-
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elements are coincident. The points of intersection of / and
the tangents from L to the conic, whether real, coincident, or
imaginary, give in all cases the double-elements of the involu-
tion. Accordingly, hyperbolic, parabolic, and elliptic involu-
tions are distinguished.

Two corresponding rays x, x,, and 1, with their poles X, X, and
L always form a self-polar triangle; i.e., a triangle whose vertices
are the poles of its opposite sides.

All these properties might be derived directly from the gener-
ation of conics by projective pencils and ranges; i.e., without
reference to the perspective of the circle. We have used this
method to lay particular stress upon the invariance of these
properties by projective transformations. Examples will be given |
later on to show how some of the propositions (all, for that matter)
in this connection may be derived independently of perspective.

2. It is now of the greatest interest to investigate the involu-
tions of poles and polars when the latter are assumed in special
positions. Let / be at an infinite distance. Then for every ray
a through L cutting the conic at P and P, (LAPP))=—1=
(L © PP,), or LP=—LP,. Every ray through L, the pole of the
line at infinity, therefore cuts the conic in two points which are’
equally distant from L. This point is therefore called the CENTER
of the conic.

To every ray through the center corresponds an infinitely dis-
tant pole. Call the center O. Of great importance is the polar
involution through O. The poles A and 4, of any two corre-
sponding rays through O are infinitely distant. Any ray through
A cutting ¢, in B and the conic in C and D is parallel to @, and
(BACD)=(B» CD)=—1; hence BC=—BD; i.e., B bisects CD.
Two corresponding rays of the involution through O are called
CONJUGATE DIAMETERS of the conic.

Including imaginary elements, the foregoing properties of the
polar involution at the center give the following theorems:

V. All chords of a conic parallel to a diameter are bisected by its
conjugate diameter. The relation between conjugate diameters is
reversible.
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V1. If a diameter intersects a conic, then the tangenis at the
poinis of inlersection are parallel 1o the conjugate diameter.

3. DEriNITIONS.—The rectangular pair of the polar involution
at the center are called the AXES of the conic.

The double-rays of the involution of diameters of a conic are
called the ASYMPTOTES.

The points at which the polar involution is rectangular are
called the Focr of the conic.

In these definitions it is assumed that the involutions exist.
From the definition of a self-polar triangle it is easily concluded
that the involutions on two of its sides are hyperbolic, while on the
third it is elliptic. If we now consider a self-polar triangle hav-
ing the center O of the conic as one of its vertices, then two dis-
tinct cases may occur.

First. The involutions of poles on two conjugate diameters may
both be hyperbolic, while the polar involution at the center, con-
sequently the involution of poles on the line at infinity, is elliptic.
The involution of conjugate diameters has no real double-rays; the
conic is an ellipse.

Second. The involution at the center is hyperbolic; it is hyper-
bolic on one diameter and elliptic on the conjugate diameter. The
involution of conjugate diameters has real double-rays; i.e., the
conic has real asymp.otes and is an hyperbola.

From theorem V it follows immediately that the ellipse and
hyperbola are symmetrical with respect to both axes.

The existence of the ellipse, hyperbola, and a special involu-
tion of diameters in connection with a conic, called parabola, will
be proved in the next section. At the same time the existence
of foci will be proved.

§ 33. Existence of Ellipse, Hyperbola, Parabola, and their
Foci.

1. In Fig. 40, just as in Fig. 19, § 15, let s be the axis, ¢ and
r the counter-axes, and C the center of collineation. Assume any
circle K with C as a center and determine the pole O of » with
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respect to K. Draw also the polar involution at O, of which OM
and OM, are a corresponding pair intersecting K at X, ¥ and
X,, Y,, respectively. Now (OMXY)=(OM,,X,Y,)=—1. In
the central projection 7 and consequently M and M, are projected

to infinity. Hence, designating the projected figure by primes,
O X'Y)=(0oX/Y/ )=—1; ie, OX' =-0Y,0X/=—
Q'Y/; O is the center of the transformed circle, and the polar
involution at O’ becomes the involution of diameters. Now the
polar involution at O is elliptic, parabolic, or hyperbolic accord-
ing as r does not cut K, touches K, or intersects it in two points.
The same is evidently true of the involution of diameters at O’.
In case that 7 is tangent to K, O coincides with the point of tan-
gency of r; O’ is projected to infinity, so that the diameters be-
come all parallel. This is the case of the parabola. A parabola
may therefore be considered as a conic tangent to the line at
infinity. With the existence of these different involutions of
diameters the existence of the ellipse, the parabola, and the hyper-
bola is proved. To sum up, the central projection of a circle is an
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ellipse, a parabola, or an hyperbola according as it does not intersect
7, is tangent to r, intersects v. Further, a conic is an ellipse,
a circle, a parabola, or an hyperbola according as the involution of
diameters is elliptic, elliptic and rectangular, parabolic (parallel
diamelers with infinite center), or hyperbolic.

2. Consider now the rectangular polar involution at the center
O of the circle K. The central projection of O coincides with
itself, and for the corresponding pair of two perpendicular diam-
eters AB and DE, A’B'1 D’E’. The points of intersection P and
Q of DE and AB with ¢ are the poles of A’B’ and D’E’. The
vanishing line ¢ is therefore the polar of C with regard to K'.
The same holds for any pair of perpendicular diameters of K and
their transformations.

The involution of polars at C of K’ is therefore rectangular;
C'is a focus of K'.

Any conic which is the perspective of a circle with the center
of perspective as a center has this center as a focus.

The construction also shows that a focus lies on the major axis
of the conic. '

Ellipse and hyperbola are symmetrical with respect to their
axes; both curves have therefore two foci (real). That a conic
cannot have more than two real foci is seen from the construc-
tion of Fig. 40, and also from the fact that every point not on
the axes admits of oblique pairs of polars.

The double-rays of the rectangular polar involutions at
the foci pass through the circular points at infinity; they may
be considered as imaginary tangents to the conic from its
foci. The foci of a conic may therefore also be defined as
~ follows: _

The foci of a conic are the points of intersection of the tangents
from the circular points at infinity to the conic.

Two of these intersection-points are real, the other two are
imaginary and, on account of the symmetry, are necessarily situ-
ated on the other axis. Ellipse and hyperbola admit, therefore,
also of two imaginary foci.

Analytically this also appears by writing the equations of
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the imaginary double-rays at the foci, when their distance from
the center of the conic is ¢:

I. (x—c)+iy=o0.
2. (x—c)—iy=o.
3. (x+c)+iy=o.
4. (x+c)—iy=o.
From 1 and 2, x=c; y=o.
From 3 and 4, X=—cC; y=o0.
From 1 and 4, xX=0; y= —ic.
. From 2 and 3, x=o0; y=+1ic.

The solutions of 1 and 3, 2 and 4 give the circular points.

§ 34. Construction of Foci Independent of Central Projection.

To the pencil T of parallel rays a, b, ¢,... considered as
polars of the conic K, Fig. 41, correspond the poles 4, B/, C’, ...
on the conjugate diameter # of the direction of T. To the diam-
cter m || T corresponds as pole the infinitely distant point of .
To the line at infinity belonging to the pencil T corresponds
as pole the center I’ of K.

From 4’, B/, C’,..., I', draw rays o', ¥/, ¢, ..., 7 per-
pendicular to m. These rays form another pencil S of parallel
rays which is projective to the pencil T. As these two pencils
are perpendicular, their intersection 4,, B,, C,, ..., M, is an
equilateral hyperbola, having m and its perpendicular through
I’ as asymptotes. Both pencils T and S intersect the axes each
in two coincident projective ranges, for instance

(ABC ...YK(4,B,C,. . .).

On this axis, to the point I’ of the first range corresponds
the infinitely distant one on the same axis. If I’ is taken as a
point of the second range, then its corresponding one is infinitely
distant. Hence I’ and the point at infinity on the horizontal
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axis may be interchanged without disturbing the projectivity;
the foregoing point-ranges form therefore an involution (§ 3).
The double-points of this involution are the points where the
cquilateral hyperbola H cuts the axis. To the ray f (pencil T')
‘ through one of these points, say F, corresponds the perpendicular
ray /' in the pencil S. But every ray of S passes through the

F16. 41.

pole of the corresponding ray in 7. Hence f’ contains the pole
of f, and f and j/ form consequently a rectangular pair of the
polar involution around F. The polar involution of any point
on an axis contains, however, another rectangular pair, namely,
the axis itself and the perpendicular to it through the given point.
The polar involution about F has therefore two rectangular
pairs and is consequently itself rectangular (§ 5). The point
F, according to definition, is therefore a focus. As there are
two double-points of the involution (4BC...)A(4,B,C,...),
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there are also two foci. Assuming that the points of a pair 44,
are on the same side of the center of involution, then

IA-TAd,=+#,

and I’F =k; the foci are real. But on the other axis I’4d*-I’A *=
— k2, i.e., the double-points of the involution, or the foci, are imag-
inary. This is in accordance with the statement in the foregoing
section.! .
Ex. 1. Carry out construction of this section on a large sheet.
Ex. 2. Instead of taking an ellipse for the conic K, take an
hyperbola.

$§ 35. Focal Properties of Conics.

1. From Fig. 40, § 33, we have, if R designates the point of
intersection of PD with » (not shown in the figure),

(Co DR)=(CPD'x),
or CD :CR=CD’ . PD'.

Designating the distances of C and D’ from 7 and ¢ by r and 9,
respectively, there is

CR:PD'=y:6=CD:CD';
consequently

CD' CD
5 = _T =constant.

This result may be stated by the theorem:

The ratio between the distance of any point of a conic from one
of its foci and the distance of the point from the polar of this focus is
constant.

1 Since an involution of right angles does not admit of real double-rays, it
follows that the foci are within the conic; i.e., within that portion of the plane
from which no real tangents may be drawn. They are situated on an axis, since
in any other case the polar involution would have oblique pairs.



110 PROJECTIVE GEOMETRY.

DEerINITION.—The polar of a focus of a conic is called directrizx.

This theorem, as well as its converse, may be used to define
conics, as was done by Pappus (Mathematical Collections):

The locus of a point whose distances from a fixed point and a
fixed straight line (not passing through the fixed point) have a con- -
stant ratio is a conic. The fixed point is the focus, the fixed line
the corresponding directrix.

D .
If, in Fig. 40, K does not intersect 7, i.e., if CT< 1, K’ is an
e e CD . . .
ellipse; if K touches ”'7 =1,and K’ is a parabola; if K inter-

D .
sects 7, %—>I, and K’ is an hyperbola. The figure may easily
be drawn for the case of an hyperbola or a parabola.

Fi1G. 42.

2. From Pappus’ metrical definition a number of properties
of conics may be derived. Given a conic K and its foci F and F,,
Figs. 42 and 43, according as we take for K an cllipse or an hy-




THEORY OF CONICS. I1I

perbola. Both curves are symmetrical with respect to both axes.

The ratios (C—:)) are therefore the same for both foci and their

corresponding polars (directrices). Taking any point A on K and
- designating the focal distances AF and AF, by r and r,, and the
distances from the corresponding directrices by d and d,, we have

(’71 =constant (Pappus).
1

"From this ‘Z:;'=same constant as above. But in an ellipse
1

F1G6. 43.

d+d,=constant, and in an hyperbola d—d,=constant. Hence
the theorem:

The sum of the radii vectores (AF, AF,) of any point of an
ellipse is constant.

The difference of the radii vectores of an hyperbola is constant.
In both cases the constant is equal to the distances of the vertices of
the curves.
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The second part of this theorem results by taking 4 in one
of the vertices. In case of an ellipse we have then

Hn_r —prla.
itd,~d’ r+r,—r+ddl,

in case of an hyperbola

r
= dy

r—r,=r—

3. Given a conic K, Fig. 44, and its foci F and F,. Take
any point P in the plane of K and construct the polar involution
around P and its rectangular pair PR,, PR. Connecting P
with all pairs of the involution on the axis which are formed by
couples of rectangular conjugate polars of K parallel to PR

F1G6. 44.

and PR, (see Fig. 41, § 34), an involution of rays at P is obtained
in which PF and PF’ are the double-rays, and PR, PR, the
rectangular pair. PR and PR, are consequently the bisectors
of the angles formed by PF and PF,. In the polar involution
around P, the tangents PU and PV from P to K are the double-
rays and, according to the construction, PR, PR, the rectangular
pair. The angles formed by PU and PV are therefore also
bisected by PR and PR,. Hence the theorem:
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The angles formed by the tangenis (real) from a point to a conic
are bisected by the bisectors of the rays joining this point to the
joci; or these tangents jorm equal angles with the focal rays (PF,
PF)).

If P lies on K, say at Q, then PU and PV coincide with the
tangent ¢ at Q. We have therefore the corollary:

The tangent at any point of a conic includes equal angles with
the focal radii at this poind.

ol /

F1c. 45.

4. If in Figs. 42 and 43 F,4 is produced and 4 B made equal
to AF (F,B=2a, the major axis), then BF 1 AC (tangent at 4);
hence BC=FC. As O€ | F,B=3}F B, we have the theorems:

The locus of the reflected images of a jocus on all tangents
0f an ellipse or an hyperbola is a circle having the other jocus as
a center and the major axis as a radius.

The locus of the foot-points of all perpendiculars from the foct
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of an ellipse, or an hyperbola, to their tangents is a circle over the
major axis as a diameter.

In case of a parabola, Fig. 45, the first circle becomes the
directrix f, and the second the tangent v at the vertex. Suppose
D to be a point where two perpendicular tangents of the parabola
meet, and let 4 and 4’ be the points of tangency. We have

a+¢x'=7-25; hence AF, and A’F, include an angle of =. D is

therefore the pole of a focal chord A4’ and, as such, lies in the
directrix. Hence: '

The tangenis from any point of the directrix of a parabola to
the parabola are perpendicular to each other.

It is known from § 33 that the polar involutions around a
focus are rectangular. Thus, if A4’ is a focal chord and 4, its
pole on the directrix, FA; 1 AA’ at F. The foregoing statement
is therefore only a part of the general proposition, since ZAFA,=
right angle, Fig. 46:

F16. 46.

The portion pf a tangent of a conic between its point of tangency
and ils inlersection with the corresponding directrix appears as
subtended by a right angle when seen from the jocus.
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Further, from the fact that the polar of a point which is situated
on another polar passes through the pole of this polar, and that
the polar involution at a focus is rectangular it follows, Fig. 46:

The rays joining a focus with the point of intersection of two
langents and the point of intersection of the chord of comtact of
these tangents with the corresponding directrix are perpendicular.

Ex. 1. If from any foint O at a distance ¢ from the center
of a circle with radius r two perpendicular secants are drawn,
intersecting the circle in the points 4, B, C, D, then

OA*+OB*+0C?*+0D?*=4r.

Assuming this proposition, prove:

The locus of the point of iniersection of two tamgents to an
elipse or an hyperbola which cut at right angles is a conceniric
circle. If a and b are the parameters (major and minor half-
axes), the radius of the circle is \/a*+ b2

Ex. 2. Let Q and R be the points of intersection of a third
tangent with the two tangents to a parabbdla from a point P.
Prove that ZRPF is equal to the angle which QP makes with
the diameter of the parabola through P.

Ex. 3. Applying the proposition established in the fore-
going exercise, prove that the circle circumscribing a triangle
formed by three tangenis to a parabola passes through the focus.

Ex. 4. The locus of the foci of all parabolas which touch the
three sides of a given triangle is the circumscribing circle of the
triangle. (Cremona.)

Ex. 5, Suppose a quadrilateral ABCD is circumscribed
about a conic with the points of tangency KLM N, Fig. 47. The
pairs of sides AB and CD, BC and AD, CA and BD intersect
cach other in the three points OPQ. The pole of AC is the
point of intersection of KN and LM and is the point of con-
currence of PO, ML, DB, NK. Similarly, KL, AC, NM meet
at a point of PO, the pole of BD. Hence, in p quadrilateral
circumscribed to a conic, the diagonals form a self-polar tri-
angle. If A, B, N, and L are given, then we may choose Q
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at random on NL, by which the fourth side CD and its point
of contact is perfectly determined. From this the proposition
follows:

Let PAB be a iriangle circumscribed to a conic, and LN the
chord of contact of the tangents PB and PA; then the lines join-
ing any point Q on LN io A and B are conjugate polars.

Ex. 6. Prove: The portion of a movable tangent of a central
conic between the two langenis at the vertices sublends right angles
at the foci.

Ex. 7. The lines joining the points of intersection of all circles
through the foci with the tangenis at the vertices of a ceniral conic
are the tangenis of this conic. (The two points joined must not
be equally distant from the axis.)

Ex. 8. Consider again, Fig. 48, two tangents intersecting
at P, and let their chord of contact AB intersect the directrix

F1G. 48.

at C. Then PF is the polar of C. Consequently F-APBC is
‘a harmonic pencil in which one pair, FP, FC is perpendicular.
FP therefore bisects the angle AFB, § 5. Hence the proposi-
tion:

The line joining a focus to the point of intersection of two tan-
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gents of a comic bisects the angles formed by the rays joining the
focus to the points of contact.

Ex. 9. Consider two fixed tangents and a movable tlangent
of a conic, and join a focus to their points of intersection and
points of contact. Applying the proposition of Ex. 8, prove that
the piece of a movable tangent included by iwo fixed tangents appears
under a constant angle from a focus.

In case of an hyperbola whose asymptotes include an angle ¢,
the above constant angle with reference to the asymptotes as

fixed tangents is 7:—%3.

Ex. 10. The extremities of a tangent, determined by the asymp-
totes, and the foci of the hyperbola are concyclic, .

By means of this proposition it is easy to construct an hyper-
bola by its tangents when the asymptotes and the foci are known.

§ 36. Analytical Expression for Tangent and- Polar.

1. Although problems connected with tangents and polars
of general conics have so far been simply treated without their
analytic forms, it is of great value for the developments that will
follow to establish their equations by means of transversals and
anharmonic ratios. Let (x,, ¥,), (%, ¥.) be two points A and C;
then the coordinates of any point B of the straight line AC are
given by the equations '

AB
CHB

(1) x=x‘I—_Af’, y=y‘I—_A{’, where A=

Substituting these values in the general equation
u=ax?+ 2bxy+ cy*+ 2dx+ 2ey+ f=o,

and multiplying by (1—4)?, we obtain, after arranging according
to ascending powers of 4,
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(2) u,— 2 v+ A%, =0,
where
%, = ax,*+ 2bx,y,+ ¢y, + 2dx, + 2ey,+ |,
U, =ax,*+ 2bx,y,+ ¢y, + 2dx,+ 2ey,+ [,
v =x,(ax;+ by, + d)+ y,(bx;+ ¢y, + €) + dx, + ey, + |
=%,(0%,+ by, + &)+ 3,(bx, + ¢y, + €) + dx, + ey, + .

From (2) two values of A are obtained which when substituted
in (1) give the coordinates of the points of intersection of AC
with the conic U. In case that these two points coincide, the
roots of (2) will be equal and AC is a tangent to U. Now, the
condition for equal roots is

3) VI— U, = 0.

Suppose that (x,, y,) itself is on U, then #,=o0, and the con-
dition reduces to v=o0. Every point (x,, y,) which satisfies v=0
lies on the tangent at (x;, ;). The equation of the tangent at
(x5, ¥,) is therefore

@) x(ax,+ by, + )+ y(bx,+ ¢y, + €) + dx,+ ey, + f=o.

2. Let A and B be the points (x,, ¥,), (%5, ;) and C, D the
points of intersection of the straight line A B with U, correspond-
ing to the roots of (2). If A, B and C, D are two harmonic

. .. AC AD AC AD
pairs, then (ABCD)=—1; i.e., BCBD- D Or —BC.}.E_O_
AC AD
But BC and BD ¢ the roots of (2); hence ABCD form

a harmonic group if the sum of the roots of (2); i.e., 2%—=o.
2

Asu, is not supposed to be on U, this is only possible if v=o; i.e., if

(5) (0% +by+ @)+ 2,0, + 0y, +€)+ dx + ey + f=o.
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If four points A BCD, of which C and D are on U, are collinear
and form a harmonic group, then the coordinates of 4 and B are
related by (5). Keeping the point A fixed and letting B under
condition (5) vary, it is plain that all points B restrained by these
conditions lie on the straight line

(6) x(ax,+ by, +d) +y(bx,+ cy, + €) + dx, + ey, + f=o.

This line is called the polar of the point A (x,, y,) with respect
toU.
Similarly, the polar of B(x,, y,) is given by

(1) %@yt by, + &)+ 3%, + cyy+€) + d%, + ey, + f=o.

If (x,, ,) lies on the polar (6) of (x,, 3,), then (5) holds. But
this can also be written as

8) %, (a%,+ by, + @) + 3, (bx,+ ¢y, + e)'_*'dxz‘*'eyz‘*'i:o»

which is the condition that (x,,y,) lies on the polar of (x,, ¥,).
Hence the theorem which has already been established before :

If A is on the polar of B, then B is on the polar of A.

From this it follows that the polars of the points of a straight
line all pass through its pole, and, conversely, the poles of all rays
through a fixed point lie on its polar.

3. To establish the relation between the points of a straight
line and the corresponding pencil of polars, assume first any four
lines through a fixed point:

ph=ax+by+c=o,
pr=ax+by+c,=o,
h— AP2=°’
P pp=o.

Cut these lines by any transversal and find the anharmonic
ratio of the four points of intersection 4,4,4,4,. For the sake of
simplicity, choose the x-axis as this transversal, so that the distances
of these points from the origin become

_a o _aie _a-pm
b’ b’  b—Ab, b= b,
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The anharmonic ratio is easily found:

© A=

If now (%, %), (%, ;) are the coordinates of two points 4,,
A,, then the coordinates of any point 4, on 4,4, are

xl_lxz yl_lyﬂ _AsAx
=1 1—=1° where A_A,A,'

The polar of 4, is

or, multiplying by 1— 2 and rearranging,

x(ax,+ by, +d) + y(bx,+ cy, + €) + dx,+ ey, + |
— A{x(ax,+ by,+ d) + y(bx,+ cy,+ €) + dx; + ey, + f} =o.

Designating the equations of the polars of 4,, 4, simply by
p,=0, p,=o, the polar of 4, will be represented by p,— Ap,=o.
Analogously, the polar of a fourth point 4, on 4,4, is repre-

1

AA
sented by p,— pup,=o0, where pu= A‘ A The anharmonic ratio of

A,A, A A Ag A
A, A, A, A, is evidently A,A_ A_A—_g_A— ;1%—; Accord-
2 4

ing to (g) the same is true of the four points of intersection of any
transversal with the polars p,=o, p,=o0, p,—Aip,=o0, py—pp,=0
of the points 4,, 4,, A;, A,. Hence the theorem:
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The range of points of a straight line and the corresponding
pencil of polars are projective.

This follows also by considering the polar involution around
a point and the corresponding involution of poles on its polar,
as shown elsewhere.

4. EQUATION OF A CONIC IN LINE-COORDINATES.

To find the equation in line-coordinates #, v of a conic with
the Cartesian equation

(10) ax?+ 2bxy+ cy’+ 2dx+ 2ey+ f=o,
consider the equation of a tangent
(x1) (et by d)x+ (bt eyt )y+ (dxit eyt f)=o

at a point (x,, y,) of this conic. The line coordinates of this
tangent are
w35 +by,+d
dx,+ey,+ [’
. bx,+cy,+e
dx,+ey,+f

(12)

Conversely, the Cartesian coordinates x;,, ¥, expressed in terms of
the line-coordinates % and v of the tangent at this point are, from
(12), ’
(cf— e*)yu+ (de— bf)v+ (be— cd)
= be— cdyu+ (bd— ae)v+ (ac—b?)’
(13) (de—bfyu-+ (af— d*)v+ (bd— ac)
= (be— cd)yu+ (bd— ae)v+ (ac—b?) "

But these values of x, and y, satisfy (10). Thus, substituting
(13) in (10), we get the relation which exists between the line-
coordinates # and v of the tangents of the conic (10), or the equa-
tion of the conic in line-coordinates. After reduction this equa-
tion becomes

(14) (cf—e)u+ 2(de—bfyuv+ (af— d*)v*+
2(be— cd)u+ 2(bd— ae)v+ ac— b*=o.
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Ex. 1. Find the line-equations of
xl ]
o z—, =I;
y'=px;
xl+ y2 . 1’2;
(x—a)*+ (y—b)*—r*=o.

Ex. 2. Establish the equation of a point of (14).
Ex. 3. From the line-equation of a conic,

au*+ 2buv+ cv*+ 2du+ 2ev+ f=o,

establish the Cartesian equation.

- § 37. Theory of Reciprocal Polars.

1. We have already discussed the principle of duality, § 22,
in an elementary manner. In this section it will be seen that
the principle follows directly from the theory of polars.

To every point as a pole corresponds a straight line as a polar,
and conversely. To two projective pencils producing a conic
correspond, according to the theorem at the end of § 36, 3, two
projective point-ranges which produce a conic as an envelope;
ie., to the points of a conic correspond the tangents of another
conic, called the reciprocal of the first. In general, to any figure
consisting of points and straight lines corresponds a figure con-
sisting of straight lines and points, the polars and poles of the
points and lines of the first figure. The anharmonic ratios of
corresponding elements are the same in the original and reciprocal
figure.

The transformation thus established is called polar reci-
procity and is contained in the slightly more general principle
of duality. The polar of a point (%, y,) with respect to the
conic U is given by

(® %(ax,+ by, +d) + y(bx, + ¢y, + €) + dx, + ey, + f=o0,
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or, introducing the line-coordinates,

y— ax,+by,+d

(2) dx,+ey+f’
_ bx,+cy,+e

U dx eyt

(3 xu+yv+1=o0.

Formulas (2) are the analytical expression for this trans-
formation. To the point (x,, ¥,) corresponds the straight line
with the coordinates (#, v). As the transformation is involu-
toric; i.e., that the coincidence of a point and straight line neces-
sitates the coincidence of their polar and pole, we can inter-
change (%, y) with (x,, ,), as has been already established.

Designate now the original conic by U, the conic to be recip-
rocated by K, and the reciprocal conic by K,. Assume U and
K, as central conics. If the center of U is outside of K,, two
tangents from it may be drawn to K,, which when reciprocated
are two points of K,. As these tangents pass through the cen-
ter of U, their poles will be infinitely distant. From this it fol-
lows that K, is an hyperbola. If K, passes through the center
of U, then only one real tangent can be drawn to K, at this point;
i.e., K, will have only one infinite point (tangent) and is there-
fore a parabola. When the center of U is inside of K, no real
tangents from it can be drawn to K,; i.e., K, has no infinite
points and is consequently an ellipse. Hence the theorem:

According as the center of the original conic U is outside, onm,
or inside of the conic K, to be reciprocated, the reciprocal conic K,
-will be an hyperbola, a parabola, or an ellipse.

2. According to (2) (x;, %,) is the pole of the line with the
coordinates (%, v). Suppose now that this line envelopes a
circle of radius 7 and having its center in the origin of coordinates.
The line-equation of this circle is

I
2 2
4) w+4v =

2
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Taking U= (x—a)’+ (y—f)*—p*=o0; i.e., a=1, b=0, c=1,
d=—a, e=—f, f=a’+[*—p? substituting these values in (2),
and finally substituting the values of # and v, thus obtained in
(4), we get

; x—a }:+ { y,—B }’_l
—ax,— By +al+f—p? —an—fytal+f-p) o
or, expanded and rearranged,

(5) Py~ 2afriy,t (7~ By 2@+ i pP— 1),
+2B(@ 4= 0= 1)yt P+ ) @+ ) o

This is the equation to which the poles of all tangents of
(4) are subjected. Hence (5) is the equation of the conic recip-
rocal to the circle x4 y*=7? with respect to the circle (x—a)?
+(y—pB)*=p*. Here the characteristic determinant of (s5) is

t=r}(a’+p’—1r?).

Evidently >, =, <o, according as a*+8>, =, >r.
Hence, according as the center of U is outside of, on, or inside
of (4), the reciprocal conic (5) is an hyperbola, a parabola, or
an ellipse, which is in agreement with the previous result.

Ex. 1. What is the reciprocal of a polygon circumscribed
to a conic with respect to this conic?

Ex. 2. Find the reciprocal of the point Au+ Bv+C=o.

Ex. 3. Find' the reciprocal of the envelopes #u?—?=0;
wW—vi=1; uv=u’+1>%

Ex. 4. Discuss reciprocation in the case where in formulas
(2) the determinant

abd
bce
def

=0.
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Ex. 5. Given the polar-reciprocal transformation

_Ax+By+D
“_Dx+Ey+F’

_ Bx+Cy+E
V= Dx+Ey+F

by which to every point (¥, y) corresponds a straight line (%, v),
and conversely.

Establish the equation of the conic, for which every point
(%, ¥) coincides with the corresponding line (¥, v).

§ 38. General Reciprocal Transformation. Polar Systems.

1. Formulas (2) of the foregoing section may be generalized
by setting
u=axx+b1y+cl
agi+byy+ ¢y
(1) axtby+e
YT et byt

Solving (1) for x and y, we get

x= (baes— bsca)u+ (byey— bicy)v+ (bye,— byt,)
(G505~ ash,)u+ (ash,— a,bg)v+ (a,b,— ah,)’

(2) _ (a5e,— axte)+ (a:6— asC,) v+ (a,6,— a,c,)
V7 (agby— asbout (ash,— abo)v-+ (asby—ahy)

To a straight line

ax+by+c=o0
corresponds by this transformation a point with the line-equation

) {a(bos— bsta) + b(age,— ayes) +¢ (a:bs— ash,) }u+
(3) {a(bsc,—bics) +b(ayc,— as¢,) + c(ash,— a,bs) v+
U{a(bycs— byc,) +b(aye,— a,6,) +c(ab,—azb,)} =o.
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Conversely, to a point
au+bv+c=o0

corresponds a line with the equation
(4)  (aa,+Dba,+ cay)x+ (@b + bb,+ cby)y+ (ac, + bey+ cc) =o.

If four points, of which no three are collinear, with the equa-
tions a‘u+bw+cf=0 (i=1, 2, 3, 4) are given; and also four
arbitrary lines, of which no three are concurrent, with the equa-
tions a’x+ By+r*=o0 (i=1, 2, 3, 4), we can let these points and
lines correspond to each other in a reciprocal transformation
by setting

r'(a’a,+ ba,+ c'ay) — o (a'c,+ bic,+ ccy) =0,
i=1 12,34
(@b, + b*b,+ c'bs) — B (a%c,+ by + c¥cs) =o.

These are eight equations with the eight unknown ratios
4 4o b b Il’—, 2 2 from which the latter may be found
definitely. Hence the theorem: A quadrilateral and a quad-
rangle always determine a reciprocal transformation in which
they correspond to each other. The reciprocal transformation is
the most general dualistic transfermation and includes polar
reciprocity as a special case. This is easily recognized by
comparing formulas (2) of § 37 and (1) of this section.

2. We shall now determine those lines of the coincident planes
(%, v) and (x, y) which coincide with their corresponding points.
A line with the coordinates # and v passes through the point with
the coordinates x and y if

ux+vy+1=o.
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Hence the points (x, ¥) whose corresponding lines (%, v) accord-
ing to (1) pass through them satisfy the condition

alx+b1y+61x azx+bzy+cz I+ 1 =0,
Gt by 0y Gt byt ey ’

or
(5) o+ (bt a)xy+by'+ (61 F @)X+ (Gt by)y+cs=o,

which represents a real or imaginary conicC. Conversely, for the
lines (u, v) whose corresponding points (¥, ¥) lie on them, we have
the condition

_ (6) (byCs— bstr)t?+ (bye,— bycy+axc,— az%)’“”"' (a,65—asc) v+
(01€a— sty + @by — ahy) s+ (a.,6,— 163+ ash,— a,by) v+
(ab,— a;b,)=o,

which represents a conic of the second class I  The conics C
and I' are generally different, as may be seen by applymg the
results of § 36, 4, to equations (5) and (6).

To every point of C correspond the two tangents from it to
T conversely, to every tangent of I" correspond its two points of
intersection with C. If C and I have a point P in common, then
to P on C correspond two coincident tangents to I' at P, so that
their corresponding points also coincide at P. This is only pos-
sible when C and P are tangent at P. From this it follows that
the two conics C and I' are doubly tangent, and as there is no dis-
tinction analytically, we may say that in case of no real intersec-
tions the conics C and I" have two imaginary tangencies.

3. From (3) it is seen that to a pencil

ax+by+c+ A(a'x+by+c’)=0

corresponds a range; and the vertex of the pencil corresponds to
the line of the range. The converse (apply (4)) is also true. Let
now U and S be the points of tangency of C and I',and # and s
the tangents at U and S, and T their point of intersection, and
consider the planes of (%, v) and (x, y) as made up of lines and
points and points and lines respectively; i.e., to a couple («, v),:
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(au+bv+1=0) in one plane corresponds dualistically a couple
(%, ), (ax+pPy+1=0) in the other plane, and conversely.

No matter whether we consider T" as belonging to one or the
other plane, SU is the corresponding line in both cases. In the
reciprocal transformation T" and SU are therefore in the relation
of involution. For both conics SU is the polar of T.

The question is whether it is possible to find a reciprocal trans-
formation for which the involutoric property is true in general.
For this purpose consider a point

au+bv+c=o
b
in the plane (¥, v) and the same point (g—), (c_) in the plane (x, y).

To the point ( b—) in the xy-plane corresponds the line with

a
c’c
the coordinates

_aa,+bb,+cc, aa,+bb,+cc, .
) u= aa,+ Dbyt iy v = 2ay+ Bbyt cc, in the uv-plane.

To the point (e#+dv+c=o0) in the uv-plane corresponds the
line .
(8,4 ba,+ caz)x+ (ab,+bb,+ cby)y+ (ac, + by +ccy) =0

in the xy-plane. Its line-coordinates are

3 , _aa,+ba,+ca, _ab,+bb,+cby
@® W et be o, U ac,+be,tcey

For an involutoric relation the two lines (7) and (8) must be
identical. This will be the case when b,=a,, ¢,=a,, ¢,;=by; ie.,
if the transformation (1) has the form

_ ax+by+e _ bx+by+c

T extcyte’ ety oy

©)

According to (2), § 37, these are the formulas for a transforma-
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tion by reciprocal polars. To prove this directly the equation (5)
of the conic C now becomes

(10) a, %%+ 2b,xy+ by*+ 2¢,5+ 2¢,y+ ¢y =o.

To a point ux,+vy,+ 1=0 now éqrresponds the line (accord-
ing to (4)) '

(11)  (@y%,+byyy+ )%+ (b + by, + 6)y+ (6%, + €2y, +¢5) =o.

This, however, is the polar of the point (x,, y,) with respect to
(10).

An involutoric recipcocal transformation is therefore a trams-
formation by reciprocal polars.

In this case the conics C and I coincide.

4. The line-coordinates given in (7) and (8) are also identical
if corresponding numerators and denominators are proportional.
Designating the proportionality factor by 4, these conditions
assume the form

. a,(1— N)a+ (b,— A2,)b + (¢,— Aay)c=o0,
(12) (a;— Ab)a+ by(1—A)b + (c,— Abs)c=o0,
(as— Acy)a+ (bs— Acy)b +cs(1— A)c =o;

but consistency of these equations requires the vanishing of their
determinant, or

a,(1—2) b—Aa, c¢,—Aa,
a,—Ab, b,(1—21) c¢,—Abs |=o0.
a— A, by—Ac, ¢(1—2)

(13)

This is the case, first when b,=a,, ¢,=a,, ¢,=b,, and A=1, as
discussed under 3; secondly, by expanding the determinant
according to ascending powers of A and solving the cubic in A.
Thus three values for A are obtained which make the determinant
vanish. One of these values is always real, so that there is at
least one real line which with its corresponding point forms an
involutoric couple.
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To push the investigation of involutoric reciprocity one step
further we may put the condition for the equality of % and «/,
and v and 7, in (7) and (8) in the form

(14) (8,%+ a;y+ a5) (8% +byy+ ¢y) — (@ %+ by +¢,) (¢, %+ ¢y +¢5) =0,
(15) (byX+byy+by)(ag%+bgy+cs) — (8%+ byy+c,) (6% + €3+ ¢5) =0,

a b
where x=-, y=— are the coordinates of the original point.

There are generally four solutions of (x, y) which satisfy
(14) and (15) simultaneously. Of these, one is the point of inter-
section of the lines @+ byy+c;=0 and ¢,x+c,y+cs=o0, which,
however, is to be excluded. In fact, according as this point is
considered as belonging to one or the other plane, (%, v) or («/, v’),

. C . u _ax+by+tc,
the lines through the origin with the slopes '17=a—,x Fhyte,’
v _ax+ay+a,
v bx+by+b,
before, there are in general only three involutoric pairs in a
reciprocal transformation; they are determined by the three
remaining points of intersection of (14) and (15) and form a
triangle UST, according to 3, in which 77U and T'S correspond
to the points U and S, and T to the line US, involutorically.
Hence in a reciprocal transformation there is generally only
one involutoric pair (T, US) which is not coincident.

Suppose that this be true for a second pair of this kind, then
(14) and (15) would have a fifth common solution which is only
possible when the two are identical. Hence the theorem:

If a reciprocal tramnsformation conlains two non-coincident
involutoric pairs, then all its pairs are involuloric; the transforma-
tion is a so-called polar reciprocity. '

By two non-coincident involutoric pairs the polar reciprocity is
fully determined.

To prove this last theorem equations (9) and the equation for

correspond to it. Hence, as we have found

3 obtained from them may be written in the form
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G e O ) — Py
Py x+c' y+c,(l ux) E:uy %=0,

b, b, ¢ (2Y _
Py x+c’ y—c—"vx+c' (1—vy)—v=o,

a, b_l _Iﬁ G G
chx'*_c, (vy—ux) C'uy+6—s'v—c—'u—o.

Giving (x,y) two arbitrary values and (¥, v) correspondingly
two "arbitrary values, six equations with the only five unknown

b, b
quantities ﬂ, L2 5, fz, are obtained. Designating the two
Cs" (3" Cg (3 Gy

pairs by (x,, ¥,), (%a, ¥.) and (%,, v,), (%,, V,), the determinant of
the six equations becomes

U | % N (1—ux) o —%y,

—U | X, Y2 (1—u;x,) o —Uy, —

—% | o %y — Uy n (@-vy) —vu —o
U, | o X3 — U X3 ¥, (1—v) -,

+1 (v (Vo —Ux) U — %Y, — %, o

=1 |, (Vyyy— %) 2 —UsY; — U, o

In fact multiplying the six rows successively by v,, —v,, —%,, %,,
+1, —1, as indicated, after this multiplication, the sum of the
first four rows is equal to the sum of the last two, which shows
that any of the six equations may .-be expressed in terms of the
five remaining ones. The above five quantities are therefore
umquely determined, which proves the theorem.

. In a polar reciprocity, or simply in a polar system, two
palrs A, a and P, p determine at once a third. Indeed the line
c joining A and P is the polar of the point of intersection C of a
and p. The pole of AC is the intersection of @ and ¢, say B.
Thus, starting with two pairs, we have constructed a triangle
ABC, whose vertices are the poles of its opposite sides. Such
a triangle is called a self-polar triangle (§ 14). Clearly in every
polar system there are an infinite number of self-polar triangles;
but by such a triangle a polar system is not completely determined.
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To do this, another pair, like P, p, must be added to the given
triangle.

6. Without following the subject of polar systems further we
remark that the great geometer von Staudt has made it the back-
bone of his geometry of position. In this connection conics
appear as special properties of polar systems and no distinction,
or separate treatment of real and imaginary elements, is necessary.

In view of the various methods applied in this work, we have
found it advisable to be satisfied with the foregoing short account.

It would be very valuable if some geometer could show how,
with polarity as a base, projective geometry might be made as
simple and as accessible to the applications as the traditional
methods.

§ 39. Theorems of Pascal and Brianchon.!

1. Assume six points 4, B, C, D, E, F in any order on a
conic and consider any two of them, say 4 and C, as vertices
of pencils of rays in the conic, Fig. 49. Then

(A-BCDEF)=C-BCDEF).

Cutting these pencils by the lines ED and EF respectively,
two projective point-ranges,

(Bxch 1E1F 1) = (BzczD LE,F. z):

are obtained, and as E, is identical with E, it follows (§ ¢) that
the two ranges are perspective. Hence B,B,, C,C,, D,D,, E,E,
F.F, are concurrent at a point B;. This will be true no matter
how the six points may be distributed over the conic, pro-
vided the foregoing order of the points is followed. The lines
followed in the order ABCDEF form now a closed hexagon,

1 PascAr (1623-1662) discovered his theorem when sixteen years of age and
called it Hexagramma Mysticum. It appeared first in Pascal’s “Conic Sections,”
which was published in 1640.

BRIANCHON (1785-1864) published his theorem in 1806 in the Journal de
PEcole Polytechnique, Vol. XIII.
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and we may call opposite sides of this hexagon lines which are
separated by two adjacent sides of the hexagon, which is all in
analogy with the regular hexagon. The pairs of opposite sides
intersect at B,, B,, B,, three collinear points. As the six points

By
F16. 49.

were arbitrarily selected, this is generally true, hence PaAscavr’s

THEOREM:

In any hexagon which is inscribed in a comic, the three pairs
of opposite sides intersect in three collinear poinis.

We shall call such a line of collinearity a Pascal line.

By reciprocation, Fig. 5o (§ 37), we obtain immediately in
its generality BRIANCHON’S THEOREM:

In any hexagon which is circumscribed about a conic, the
three principal diagonals are concurrent.
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We shall call such a point of concurrence a Brianchon point.

2. Salmon, in his treatise on Conic Sections, 1848, gave a
remarkably simple proof for Pascal’s theorem, based upon the
abbreviated designation of straight lines in analytic geometry.
Let A=o0, B=o, C=0, D=0, E=0, F=0 be the equations of
the sides of any hexagon inscribed to a conic, and G =o the equa-
tion of the straight line joining the vertices (4 =o, F=0) and
(C=0, D=0). Then

A-C—2B-G=o0, F-D—pE-G=o

are two forms in which the equation of the given conic may be
written. From these two forms we get

A-C—F-D=G(AB— 4E).

Now the points (A=o0, D=0) and (C=o0, F=o0) are not
situated on the line G=o, consequently they must lie on the
line AB— gE=o0. In other words, the points (4 =0, D=o0),
(C=o0, F=0), (B=o, E=0) are collinear, and as they are the
points of intersection of pairs of opposite sides in the hexagon,
Pascal’s theorem is proved.

- B D F

F16. 510

By considering 4 =o, etc., as the line-equations of the six
vertices of a hexagon circumscribed to a conic, Brianchon's
theorem may l? deduced in a similar manner.
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3. Assuming as a conic a degenerate hyperbola, consisting
of two intersecting lines and on each three points, say 4, E, C
and D, B, F, Pascal’s theorem still holds; i.e., the points B,,
B,, B, are collinear.

If AB||DE and EF || CB, then B, and B, and consequently
also B, are infinitely distant; i.e., also CD || AF, Fig. 51. Hence
the special theorem:

If on each of two intersecting lines three poinis A, C, E and
B, D, F are chosen, so that AB is parallel to DE and EF parallel
to BC, then CD is also parallel to AF.

In this special form Hilbert in his Foundations of Geometry,*
p- 28, uses Pascal’s theorem to establish a non-Archimedean
geometry.

Ex. 1. Prove Pascal’s special theorem directly..

Ex. 2. Establish the dualistic of Ex. 1.

Ex. 3. If A=o, yA+bB=o, yB'+ad’ =0, A’=0, aA’+¢B
=0, ’A+bB' =0 (where a, b, y, ¥ are numerical factors and
A, B, A’, B’ linear expressions in x and y) are the sides of a hex-
agon, prove that this hexagon is inscribed to the conic

aAA’'—bBB =o,
and that
. y7’A—abA’ =0

is the Pascal line of the hexagon. (Bobillier, 1828.)

Ex. 4. If six points on a conic are given, it is possible to pass
in five different ways from any point to the others. From each
of these four different paths, not chosen before, may be taken to
join the remaining points; from each of these three different
paths may be selected; and so forth. Finally the original point
is reached in 5-4-3-2-1=120 ways; but as each closing side is
contained in one of the original paths, it is evident that only
120:2=060 different closed hexagons can be formed. Hence
with six poinis on a conic may be formed sixty different hexagons
and consequently sixty different Pascal lines.

! Grundlagen der Geometrie, Teubner, Leipzig, 1899.
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Between these lines exist a number of interesting relations.!

Verify the following propositions in a regular hexagon:

The sixty Pascal lines intersect each other three by three in
twenty points G (Steinerian points). (Steiner’s theorem.)

Besides these points G, the sixty Pascal lines have, three by
three, sixty other points H in common. (Kirkmann’s theorem.)

There are twenty lines g each of which contains a point G
ond two points H. Four by four of these lines pass through
fijteen points J. (Cayley’s theorem.)

The points G lie four by four in fifteen straight lines J.
(Steiner’s theorem.)

Designating the original six points by 123456, then a Steiner-
ian point is given by the intersection of the Pascal lines of the
three hexagons 123456, 143652, 163254.

Ex. 5. State the dualistic of the foregoing theorems.

§ 40. Applications of Pascal’s and Brianchon’s Theorems.

1. Construction of a conic when five of ils points are given.

The practical importance of Pascal’s and Brianchon’s theorem
lies in the possibility of constructing an unlimited number of
points and tangents of a conic, when five of its determining ele-
ments are given.

Let ABCDE be five points of a conic and 4B, BC, CD, DE
four consecutive sides of an inscribed hexagon. In Fig. 52, it
is clear that the Pascal line p passes through B,, the point of in-
tersection of AB and DE. Now there are an infinite number of
points F possible on the conic and consequently an infinite num-
ber of Pascal lines through B,. Thus to every point F on the
conic corresponds one Pascal line through B,. Hence, assuming
any line p through B,, the line EF passes through the intersection
B, of BC and p. In a similar manner the line FA is obtained
by joining 4 with the point of intersection B, of CD with p.

! See SALMON-FIEDLER, Analytische Geometrie der Kegelschnitte, Vol. 11, pp.
450466, sth edition.
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The point where the produced lines of EBy and AB, meet is
evidently the required point F on the conic, corresponding to the

chosen Pascal line . Repeating the same construction for every
line p through B,, all points of the conic are obtained.

To construct the tangent at any point of the conic, say 4,
consider F infinitely close to A. Apply the general construction
of p for ABCDEF, then the line joining B, with A is the tangent
at this point.

2. Conslruction of a conic when five of its tangenis are given.

Let a, b, ¢, d, e be the given tangents, Fig. 53, forming five con-
secutive sides of a circumscribed hexagon. The line b, joining
the points of intersection of @ and b, and d and e, passes through
the Brianchon point P. Now, every sixth tangent determines
another point P on b,. Conversely, every point P on b, deter-
mines a sixth tangent of the conic. Thus, to find a sixth tangent
], assume any point on b, as the Brianchon point P. Then the
line through b¢ and P will be the line b, cutting e in the point
where also f cuts. In a similar manner, the line joining the point
of intersection of ¢ and d with P is b;, which, when produced, cuts
a in the same point as f. Hence the line joining the points of
intersection of e and b,, and b, and «q, is the sixth tangent corre-
sponding to the chosen P. Repeating this construction for all
points of b,, all tangents of the conic are obtained.
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To construct the point of tangency of any tangent, we may
consider this one as two coincident tangents (consecutive), say a
and f, and these with the remaining four, when subject to the
general construction of the Brianchon point, lead to the required
point of tangency.

3. By the same methods conics may also be constructed when
they are determined by mixed elements; i.e., points and tangents,
always five in number. In these problems a tangent appears as

F1G. 53.

a line joining two consecutive points, and a point as the point of
intersection of two consecutive tangents. The same construc-
tions may also be extended to cases where one point, two points,
or one tangent is infinitely distant. '

Ex. 1. Given five points of a conic; to construct the tangents
at these points.

Ex. 2. The dualistic of Ex. 1.

Ex. 3. Given three points and the directions of the asymp-
totes of an hyperbola; to construct any number of points of the
hyperbola.

Ex. 4. Given four tangents of a parabola (one tangent is
infinitely distant). To construct any number of its points.

Ex. 5. Given four points and a tangent of a conic; construct
other points of the conic.
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Ex. 6, Dualistic of Ex. s.

Ex. 7. Given three points and two tangents of a conic. To
construct it. Also make the dualistic construction.

Ex. 8. Given three points, a tangent, and its point of tan-
gency; construct the conic.

Ex. 9. Given the two tangents at the given vertices of an
ellipse or hyperbola and a third tangent; to construct any
number of tangents.

Ex. 10. Given the two asymptotes and a tangent of an hyper-
bola; to construct it. '

Ex. 11. Given the axis, vertex, and two other points of a
parabola; construct it. .

Ex. 12. Given three points and an asymptote of an hyper-
bola; to construct it.

§ 41. Conics in Mechanical Drawing and Perspective.

1. To inscribe an ellipse in a parallelogram.

The middle points of the sides shall be the points of tangency
of the ellipse. Two points of tangency may be designated by 4 B
and CD, and the third by E, Fig. 54. The explanation of the con-
struction of points of the ellipse by Pascal’s theorem is identical
with that of Fig. 52, § 40, and is apparent from Fig. 54. By
assuming a second Pascal line through L with points H and J
corresponding to M and N on the first Pascal line, a second
point G is obtained. The same construction repeated for other
Pascal lines through L gives further points of the ellipse, so
that the ellipse through these points may be sketched free-hand
or by mans of a curved ruler. In this figure the ellipse appears
manifestly as the product of two projective pencils with 4 and
E as vertices. In fact,

(AMCH)=(KNCJ),

since these points are projected by one and the same pencil
through L. Taking a Pascal line parallel to KC and desig-
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nating its point of intersection with AC produced by I, then
the point corresponding to J has moved to infinity on KC, and

FiG. 54.

to the Pascal line LI corresponds the point E on the ellipse..
Now

(AMCI)=(KNCw),

and as AC=CI, these ratios become

1AM _KN
2 CM CN’
But there is also
(AMCI)=(OFC»);
hence
| ‘KN OF,

CN ™ CF;
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From this it follows that the rays AN and EM of the pencils
through 4 and E trace on KC and OC similar point-ranges.
If, therefore, KC and OC are divided into any number of equal
parts and the division-points are numbered from K to C and
from O to C, then the rays joining E and 4 with equal numbers
on KC and OC intersect each other in points of the ellipse. In
a similar way this construction may be extended to the remain-
ing three quarters of the ellipse. The same method may obviously
be applied to rectangles and squares. See Figs. 37, 38; § 27.

2. To inscribe an ellipse to any quadrilateral.

A quadrilateral may be considered as the perspective of a
square, and it must therefore be possible to apply the previous
construction to any quadrilateral. The distances KC and OC,
Fig. 55, must now be divided perspectively into a number of
equal parts. The fundamental principle of perspective division
is the following:

If KC as a side of a rectangle AKCO, in perspective, shall be
divided into two equal parts, draw the diagonals AC and KO and
join their toint of intersection W to the point X, where AK and OC
produced meet. WX cuts KC at its middle point, M.

F1G. s5.

In the first place, the points 4B, C, E, etc., were obtained by
the application of this principle to the given quadrilateral.
By the same principle KM and CM may be again bisected.
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OC may be subdivided in the same manner. Fig. 38, § 27, illus-
trates the construction of an ellipse inscribed in a quadrilateral
by this principle.

The problem to inscribe an cllipse into a quadrilateral appears
in a great number of special forms in perspective. For example,
a trapezoid may be considered as the perspective of a square
having two opposite sides parallel to the picture-plane, as in
the case of window-frames and doors.

3. To consiruct a parabola having the vertex, the major axis,
and a point given.

Let, in Fig. 56, the vertex be designated by A B, the infinitely
distant point of the axis by DE, and the third point by C. Evi-
dently any line p parallel to the tangent at the vertex may be
considered as a Pascal line. The construction

AB BC CD

DE §L’ EF%M’ FA fN

for the assumed Pascal line p gives us a point F of the parabola.
If p varies, the point-ranges traced by M, N, F, on AC, KC, AK
are all similar. Hence, dividing KC and AK in any number
of equal parts, numbering the division-points from K to C and
from A to K, a line joining 4 to any number on KC and a line
through the equal number on AK, parallel to the axis, cut each
other in a point of the parabola.

4. Construction; of a parabola which is the funicular polygon of
a uniformly distributed load on a horizontal beam.

If a load is uniformly distributed on a horizontal beam, then
the funicular polygon is a parabola limited by points in perpen-
diculars through the extremities of the beam. The tangents at
the extremities of the parabola are known; they are parallel to
the extreme lines of the force polygon. Designate in Fig. 57
the tangents at the extremities by ab and de, and the infinite
tangent by ¢. Then the Brianchon points P are situated on ad,
and lines through P parallel to ab and de (the tangents at the
extremities) cut these in two points x and y through which the
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sixth tangent [ passes. If P moves on ad, then the points x and y
trace on @b-Q and de-Q two equal point-ranges. Hence, dividing.

AB ¢ >—> o0 DE

X
RN SN

FiG. 56.

these distances in a number of equal parts and numbering them
from eb and Q, the lines joining equal numbers are tangents of
the required parabola. To find the point of tangency of f,
replace ab by ¢, de by f, f by ab, and the infinite tangent by de,

de being the infinite point of the axis of the parabola. For this
arrangement P is also the Brianchon point, and the construction
shows at once that the required point of tangency T is cut out by
a line through P parallel to the axis of the parabola.
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To sum up, we have the following construction for a parabola
touching the sides of an isosceles triangle ABC, AC=BC, at 4
and B: Divide AB, BC, and CA into the same number of equal
parts and number the division-points from A to B, from A to C,
and from C to B. The lines joining equal numbers on AC and
CB are tangenis of the required parabola, and the perpendiculars
Jrom corresponding equal division-points on AB cut these tangents
in 1heir points of tangency. A

5. Construction of an equilateral hyperbola when its asymptotes
and the tangent ai a verlex are given.

In Fig. 58 designate the asymptotes by ab and de, and the
tangent at the vertex by c¢. Let ¢ cut the asymptotes at A and B.

de

> ab

Fre. 58.

In this case the Brianchon points are infinitely distant. Hence,
drawing through A and B two parallel lines in any direction,
cutting the asymptotes at C and D, the line joining C with D
will be a required tangent of the hyperbola. To study the metrical
relations of this hyperbola, we have

AAOD « ACOB,
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hence D0O:40=B0:CO,
or CO-DO=A40-BO =constant.

Designating the distance of the vertex M from tke asymptotes
by &, there evidently is

CO-DO =47,

a relation which holds for any tangent. Hence the triangle
between the asymplotes and any tangent has a constant area. (This
is true for any hyperbola, as might be proved in a similar manner.)

To find the point of tangency of CD, replace the designation
J by ab, ab by de, de by ¢, and AB by f. (The student should
make a new figure.) Join the point of intersection Q of AB
and CD to O and produce to the point of intersection R with
BC; then R is the new Brianchon point and the line through
R parallel to OD cuts CD in the required point of tangency V.
As ABCD is a quadrilateral in which AD || BC and O and Q
are diagonal points, BR=RC, hence also DN=CN. The point
of tangency bisects, therefore, the tangent between the asympiotes
(general proposition).

Designating the coordinates of IV by « and y, we have x=3CO,
y=%DO0O; hence xy=%4CO-DO, and as CO-DO=4k?,

xy=Fk>

This is the equation of the hyperbola referred to its asymptotes.

A full treatment of this case was given in view of its importance
in the graphical representation of Boyle’s law expressing the
relation of the volume x and the pressure y of a gas.

§ 42. Special Constructions of Conics by Central Projection
and Parallel Projection.!

1. Given five points of a conic, to construct a circle of which the
given comic is a perspective. ’

1 For the collection of these problems the author is indebted to Dr. Karl Doehle-
mann’s Geometrische Transformationen, I. Teil, Goschen, Leipzig, 1902.
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In §§ 20 and 27 it has been shown analytically and synthetic-
ally that every quadrilateral may be considered as the perspec-
tive of a rectangle which is always inscribed to a certain circle.
It is therefore possible to construct four points 4, B, C, D of a
rectangle as the points whose perspectives are four given points
A’ B, C’, D’ of the conic. As has been explained in § 27, the
two diagonal points M’ and N’ determine the vanishing-line and
are the vanishing-points of the pairs of parallel sides AB, CD and
AD, BC. The center of perspective collineation is situated on a
circle over M’N’ as a diameter, and AB, CD and 4D, BC are
respectively parallel to SM’ and SN’, Fig. 59. The axis of col-

lineation s must be chosen parallel to ¢ or M’N’ at any distance
from it. From S and s, ABCD is perfectly determined. To
determine its position in space the distance-circle with S as a
center must be given. There are therefore three elements, S, s,
and distance-circle, which determine ABCD, of which A'B'C’'D’
is a perspective, completely. Hence there are «® rectangles in
space of which A’B'C’D’ is a perspective. If now E, of which
E’ is the perspective, shall also be situated on the circle through



148 PROJECTIVE GEOMETRY.

ABCD, notice that AC is a diameter, hence AEC a right angle.
Consequently if we produce 4’E’ and C’E’ to their intersections
P’ and Q’ with ¢/, the center S necessarily also lies on the circle
over P'Q’ as a diameter.

In the figure the construction of ABCDE has been removed
parallel to s in order to make it clearer. In this construction we
may dispose arbitrarily of s and of the distance-circle. Hence
there are o« ? circles in space which may be transformed into a
given conic by perspective, under the given conditions. To make
this proposition general it must be remembered that the analytic
expression for perspective involves three essential parameters. If
a translation of the center of perspective is added, two more con-
ditions enter, so that, together with the choice of the distance-
circle, six constants perfectly determine a central projection. If,
therefore, the general equation

ax?+ 2bxy+ cy*+ 2dx+ 2ey+ j=o,
by means of this projection, is transformed into
Ax*+ 2Bxy+Cy*+ 2Dx+ 2Ey+ F =o,

this equation contains those six constants. If this equation shall
represent a circle, the conditions A =C, B=o0 must be satisfied,
so that of the six constants only four remain independent.

Hence the theorem:

A conic may be considered as central projection of «* circles in.
space.

Ex. 1. Given five tangents of a conic; to construct a circle of
which the given conic is a perspective.

Hint: Any four of the given tangents may be transformed
into a rhomb circumscribed to the required circle. The diagonals
of this rhomb are perpendicular and intersect at the center M of
the required circle. Furthermore, the piece of the fifth tangent
between two parallel sides of the rhomb appears under a right
angle from M.

Ex. 2. Any two conics in a plane may be considered as the cen-
tral projection of two circles. (Monge.)
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The two circles are supposed to be in one and the same plane.
Now every point of the plane may be taken as the center of pro-
jection, so that there are % 0 ®=w® central projections of a
plane. Transforming the equations of the given conics, six
parameters are introduced of which we may dispose arbitrarily.
In order that the transformed equations represent circles, four
conditions must be satisfied, so that there is still an infinite
number of possibilities for the problem left.

In case that the given conics have four real points of inter-
section, imaginary elements are introduced in the solution. The
validity of the geometrical problem in this case is maintained by
Poncelet’s principle of continuity.?

Ex. 3. Prove that any conic and a straight line in its plane
may be projected centrally into a circle and the infinite line of its
plane.

2. Conics as interseclions of right cones.

Let in a plane perpendicular to the paper, Fig. 60, a conic K
with the foci F, F, and the vertices A, 4, be given. At one of the
foci, say F, construct any sphere, .S, tangent to the plane of the
conic, and from 4 and A4, draw, in the plane of the paper, two tan-
gents to this sphere, intersecting at V. Consider V as the vertex
of a cone tangent to S; this cone will be a right cone cutting the
plane of K in a certain conic K’ with the same vertices 4 and
A,. Let the cone touch the sphere along the circle whose plane

.is T and which cuts the plane of K in a line perpendicular to the
plane of the paper. This line appears as a point D. Assume
any point P’ on K’ and let P’V cut T in Q; then P"Q=P'F (in
space). The true length of P’F is P’R, which is parallel to V4.
Now, no matter where P’ is taken on K*, PPR/P"D=P'F/P'D=
constant. This constant is also equal AB/AD=AF/AD.
Hence, as P’ is the locus of the points whose distances from a
fixed point F and a fixed line (D) have a constant ratio, it must

1 Stated by PONCELET in the introduction of his Traité. It consists in the
assumption that if one figure is obtained from another figure by a continuous
variation, then projective properties derived from the first figure also hold for the
second figure. The principle, however, is rigorous only when proved analytically.
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be a conic with the focus F and the directrix (D) and is therefore
identical with the original conic XK.

In Fig. 60 K has been assumed as an ellipse. For every
sphere tangent at F there is consequently a right cone tangent

Fic. 6o. i
to it and of which the given ellipse is a section. Now |
VA,—VA=VB,+B,A,—VB—BA=BA,—BA=AF-AF=FF,; |
ie., VA,— VA =FF,=constant.

V moves, therefore, on an hyperbola having 4, 4, as foci and
F, F, as vertices.




THEORY OF CONICS. 151

If, in place of an ellipse, an hyperbola is chosen for K, V will
be on an ellipse having the foci of the hyperbola as vertices and
its vertices as foci.

To sum up we have the theorem:

The locus of the vertices of all right comes passing through
a given ellipse is an hyperbola having the vertices of the ellipse
as foci and its foci as vertices, and whose plane is perpendicular
to the plane of the ellipse.

The locus of the vertices of all right cones passing through a
given hyperbola is an ellipse whose vertices and foci coincide with
the foci and vertices of the ellipse, and whose planes are perpen-
dicular to each other.

Ex. Prove that the locus of the vertices of all right cones
passing through a given parabola is a parabola having the vertex
of the first as a focus and the focus as a vertex. The planes of
the- two parabolas are perpendicular.

That there are no other right cones in these problems with
the enumerated properties follows from the fact that in every
right cone and one of its plane sections there is only one plane
of symmetry with respect to the conic section. Conversely, if a
conic is given, the vertex of a right cone can only be in this plane
of symmetry, the plane passing through the foci and perpendicular
to the plane of the conic.

3. Perspective between any two given conics.

Let K=0 and K’=o0 be the equations of any two conics in
the same plane. Apply a general perspective collineation to K,
thus introducing five arbitrary parameters into the transformed
equation. In order to make this last equation identical with
K’ =0, corresponding coefficients must be set equal. This gives
five equations between the five parameters of the perspective col-
lineation, and as these equations are of the second degree there
will be several solutions of the problem. Two conics in a plane
may therefore always be considered as perspectives of one another.
Without discussing the possibilities of real and imaginary solu-
tions of these equations the case will be considered where K
and K’ have four real points of intersection 1, 2, 3, 4, Fig. 61.
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K and K’ have the self-polar triangle XY Z in common. Desig-
nate the four common tangents by I, II, III, IV, and consider
the points of intersection .S of III and IV, and S, of I and II.
Evidently the centers of perspective must be sought in such

Fi1G. 61.

points of intersection of common tangents, because a tangent
from the center of perspective to one conic is also a tangent to
the perspective conic. The common chords 12 and 34 as well
as the chords of contact AB and A’B’ pass through X when pro-
duced. Choosing 34 as the axis of a central collineation, S as
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the center, A, A’ as corresponding points, then the collineation
is perfectly determined, and the conic K is transformed into a
conic K”’, which, however, is identical with K’, since it has the
points 3, 4 and the points of tangency 4’, B’; i.e., six points in
common with K’. Instead of s we may also choose the chord s,
as the axis, and S as the center of a collineation. Hence with S
as a center there are two central collineations transforming K
into K’. Conversely, every chord, as s, may serve for two collinea-
tions with S and S, as centers. The same can be analogously
proved for every common chord and point of intersection of two
common tangents. We have therefore the theorem:

If two comics K and K' have four real points of intersection,
then there are 12 ceniral collineations in which K and K’ correspond
to each other. For every point of intersection of two common
tangents there are iwo chords which may be taken as axes of wo
of those 12 collineations. Comversely, to every chord belong two
points of intersection of common tangenis as centers of iwo such
collineations.

These propositions admit of an easy interpretation in space.
As every common chord determines two centers of collineation,
it follows that there are iwo cones through iwo conics in space with
lwo points in common.

In § 33 it has been shown that on account of the rectangular
polar involution around the center of collineation not being
changed, a circle concentric with the-center of collineation is
transformed into a conic whose focus is in this center. Gen-
erally, for the same reason, a conic one of whose foci coincides
with the center of collineation is transformed into a conic having
the same focus.

But this is also in agreement with the previous result. A
focus of a conic may be considered as the point of intersection.
of two conjugate imaginary tangents from the circular points.
Two conics with the same focus have therefore two common
imaginary tangents, and their real point of intersection may
be assumed as a center of collineation between the two conics.

Ex. 1. Discuss the case and make the construction when
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K and K’ intersect in two real points and have two parallel tan-
gents.

Ex. 2. Make the construction when K and K’ are tangent.

Ex. 3. Discuss the arrangements of K and K’ in order to
obtain all special cases of perspective collineation.

4. Given five points of a conic K,—A, B, C, D, E; through
two of these, say A and B, pass a circle K', and find the center of
perspective S for which K and K’ are corresponding.

In Fig. 62 construct the pole X of s or AB, which we assume
as the axis of collineation. This is easily done by means of
the points of intersection P and Q of CD and DE with s and
their polars p and ¢ in the quadrilaterals ABCD and AEBD.
Construct also the pole X’ of s with respect to K’, then X and
X’ are corresponding points in the collineation and the center S

/
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must be on the line joining X with X’. DX and D’X’ meet on
5, in a point R; hence X’R cuts K’ in D’. Joining DD’ and
producing gives on XX’ the required center S. Having found S,
it is an easy matter to construct further elements of K from the
corresponding elements of K’.
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A similar problem was solved in the first part of this section..

5. Given three points A, B, C of a conic K and the tangents
at A and B. To find the point of intersection of this comic with
a given line g.

Designate the intersection of the tangents by S, Fig. 63, and
draw any circle K’ -tangent to S4 and SB at the points 4’ and
B’. K and K’ are now corresponding conics in a gollineation
with S as a center and 4, A’; B, B’ as corresponding pairs. SC

cuts K’ in C’. Draw CA and CB cutting gin X and Y. Draw
SX and SY, which by C’A” and C’B’ are cut in X" and ¥’. The
line joining X’Y” is g’. Let g’ cut K’ in P’ and Q’, then SP’
and SQ’ produced cut g in P and Q, the points of intersection
of g with K.

With exactly the same designations we can immediately
solve the special case:

Given the asymptotes of an hyperbola and another point. To
find the points of intersection of this hyperbola with a given straight
line. _ :
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Nothing is changed in the previous construction except that
A and B are, the infinite points on the asymptotes.

6. To construct a conic K when three points A, B, C and two
tangents a and b are given.

Draw again a circle K’ tangent to @ and b and assume the
intersection S of ¢ and b as the center of collineation, Fig. 64.
Join S to A, B, C and designate the points of intersection of
SA, SB, SC with K’ by A’, B/, C’ and A", B”, C". If we let

Fic. 64.

A’, B’, C’ correspond to A, B, C, then s is the axis of collineation;
if the corresponding points are A, B”, C”, then s, will be the
axis of collineation. In both collineations the same conic K
.corresponds to K’. But we may also let 4’, B”, C’ correspond
to 4, B, C, which will lead to a different conic K. The arrange-
ment A”B'C"”, ABC leads to the same conic. There are
eight different correspondences possible which in groups of
two lead to the same conic. The problem admits, therefore, of
four different solutions.
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7. Given three points of a conic K,—A, B, C,—and a focus S.
To construct the conic.

Draw in Fig. 65 any circle tangent to the conjugate imaginary
tangents from S to K; i.e., draw anv circle K’ with S as a center.

The problem and the construction are in this case exactly the
same as in problem 6. Here also there are four different solutions,

8. Given four points and a tangent of a conic, to construct it.

In Fig. 66 let A, B, C, D be the given points and ¢ the given
tangent of the conic K. Consider 4B or s as the axis of a col-
lineation, and any circle K’ through 4 and B as the perspective
of K. By means of the quadrilateral A BCD construct the polar
p of P with respect to K, and also the polar ¢’ of P with respect
to K’. p and p/ meet in a point of s. From the point where ¢
cuts s draw the tangent ¢’ to K’ and let this tangent correspond
to ¢ in the collineation. ¢and?’ cut p and #’ in two correspond-
ing points X and X’, and the center or, if there are several, the
centers of possible collineations must be on the line joining X
with X’. To determine these centers, join C with X, and the
point of intersection of CX with s to X’.  Where the last line cuts
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K’ are two points C’ and C,’ which correspond to C. Hence there
are two different collineations. Their centers S and S, are ob-

Fi1G. 66.

tained as intersections of C’C and C,/C with XX’. To the point of
tangency 17 of ¢/ with K’ correspond in the two collineations T
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and T, on ¢, which are the points of tangency of the two conics K
passing through ABCD and tangent to &

That these are the only solutions is not apparent from this
construction; it simply shows how conics with the required con-
ditions may be found.

9. Osculating Circle of a Conic.

If a conic K passes through the center S of the collineation,
then K’ will be tangent to K at S. If, furthermore, also the axis
s passes through S, one of the remaining two points of intersection
of K and K’ will coincide with S, and K and K’ have at S a con-
tact of the second order. If K is a circle, K will be the osculat-
ing circle to K’ at S. The remaining fourth point of intersection
will be on 5. In case that S is on s, the counter-axes of collinea-
tion ¢’ and  will be on opposite sides of s. The center M of the
circle K is the pole of the infinitely distant line ¢ with respect to
K. The corresponding point M’ of the collineation is the pole of
¢ with respect to K’. If now a diameter of K turns about M,
the rays joining S with its extremities form a rectangular involu-
tion of rays around S which is identical with the involution of rays
joining S to the extremities of the chords through M’ correspond-
ing to the diameters through M. Hence M’ is obtained as the
pole of the involution of points on K’, which when joined with S
give a rectangular involution of rays. ¢ is the polar of M’ with
respect to K’, and s is a line through S parallel to ¢'.

It is now possible to solve the problem: Given five points of a
conic K', to comstruct the osculating circle at any of the given
points.

In Fig. 67 let 4, B, C, D, E be the given points, and A4
the point at which the osculating circle shall be constructed.
Join A with B and C; at A erect perpendiculars to AB and AC,
and by Pascal’s theorem construct the intersections B, and C,
of these perpendiculars with K’. BB, and CC, cut each other
at M’. In the quadrilateral BB,CC, the polar ¢ of M’ is easily
found. Through A4 draw s parallel to ¢/, and find by Pascal’s
theorem the intersection F of s with K’. K is the circle passing
through F and tangent at 4 to the perpendicular to 4AM’.
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If K is tangent to s at the point S, the osculation will be of
the third order; i.e., K and K’ will have four points in common
at S.

Ex. 1. To construct a conic when the osculating circle at
one of its points, 4, and two other points, B and C, are given.

F16. 67.

Ex. 2. To construct the osculating circle at the vertex of a
conic which is determined by major and minor axes.

Ex. 3. To construct a parabola when the osculating circle at
its vertex is known. V

Ex. 4. Given three tangents and two points of a conic; con-
struct the conic. Dualistic problem of § 42, 6.

Ex. 5. Given four tangents and a point of a conic; construct
the conic. Dualistic problem of § 42, 8.
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§ 43. Problems of the Second Order.

1. In the previous section and even farther back we have
occasionally touched upon problems of the second degree. We
shall now pay particular attention to a few geometrical problems
which analytically are equivalent with the solution of an equation
of the second degree. Most of these problems may be reduced
to the problem, to find the double-points of two coincident projective
point-ranges. This was done analytically in the first chapter.
Geometrically we may solve it by the following proposition, which
in a little different form appears as Pascal’s theorem: Six points,
4,B,C,A’, B/, C’, on a conic K determine two projective ranges
of points on K, so that for.any point P on K we have the pro-
jective pencils

P(ABC...)=P(A'B'C’...).

The pairs of sides AB’, A’B; BC’, B'C; CA’, C’A intersect in
three collinear points, on the Pascal line p. Considering two
points, for instance B and B’, as carriers of pencils, then

(B-A'B'C’...)=(B-ABC...),

and as BB’ is a ray common to both pencils, they are perspective
and have p as the axis of perspective. Two rays joining B and
B’ with any point on p cut K in two corresponding points of the
projective ranges on K. From this it is clear that the points of
intersection of p with K are the double-points of the projectivity.
These are real, coincident, or imaginary according as p cuts,
touches, or does not cut K.

If, instead of six points, six tangents a, b, ¢, @/, ¥/, ¢’ of the
conic are given, the lines joining the pairs of intersection ab,
a’b; bc, Vc; ca’, c’a all pass through the Brianchon point P.
Considering two of the tangents, b and ¥, and cutting these with
the remaining tangents, two perspective ranges

(b-a'¥d .. =¥ abc...)
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with the common point b (self-corresponding) are obtained.
Taking any ray through P and cutting it by b and ¥, then the
tangents to K from these two points are two corresponding tan-
gents. T'he tangents from P to K are the double tangents of the
projectivity. 'We postulate now that a problem is geometrically
solvable if it can be solved by compass and ruler. Hence, replac-
ing K by a circle, we can now solve the following problems:

2. Given five points of a conic; to construct the inlersections
of this conic with a straight line.

In Fig. 68 let 4,B,C,D,E, be the given points and ! the
given line. Join D, and E, with A4,B,C, and designate the
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corresponding intersections on ! by ABC and A’B'C’. Draw
an arbitrary circle K and join any of its points S with ABC and
A’B'C’, and let these lines cut K in points which we shall also
designate by ABC and A’B’C’, to simplify the designation.
According to the foregoing results ABC and A’B’C’ determine
-two projective ranges on K. Construct the line p and let M
and N be the intersections of p with K. Join S with M and N
on K, and produce to their like-named intersections M and
N on /. These will be the double-points of the projective

Fic. 69.

ranges ABC ... and A'B'C’, or the points of intersection of /
with the conic through A BCDE.

3. Given five tangenis of a comic; to comstruct the tangenis
of this conic through a given point. °
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In Fig. 69 let a,, b, ¢, d,, ¢, be the given tangents and S the
given point. Cut d; and e, with a,b¢c, and designate the corrc-
sponding lines, joining these points with S, by abc,a’ ¥ ¢’. Draw
an arbitrary circle K and let any tangent s of K cut abca’¥/c’ in
six points. From these draw tangents to K and designate them
similarly by abc, a’'b/c’. Construct the Brianchon point P of the
circumscribed hexagon abca’t/c’ of K. From P draw the tan-
gents m and » to K, cutting s in M and N. The lines joining S
with M and N are the required tangents from .S to the given
conic.

This construction may be replaced by a simpler one. Join
the points where a,, b,, ¢, cut d, and ¢, directly to the point S of
an auxiliary circle passing through S, and designate the points
of intersection with this circle by 4, B, C, A’, B/, C’. Con-
struct the Pascal line p of this hexagon. The lines joining S with
the points of intersection of p with the auxiliary circle are the
required tangents from S.

4. PONCELET’'S PROBLEM.—To construct a polygon whose
vertices shall lie on given straight lines (each on each), and whose
sides shall pass through given points (each through each).

For the sake of simplicity we shall limit the problem to four
straight lines @, b, ¢, d and four points 4, B, C, D. The method
- of reasoning is not different in the general case. First make a
trial construction by drawing through 4 a line ¢, cutting @ in 4,,
Fig. 70. From A, draw a line b, through B, cutting b in B;;
from B, a line ¢, through C, cutting ¢ in C,; from C, a line d,
through D, cutting ¢ in D,; from D, a line a,’ through 4 cutting
ain A/. If a, turns about 4, then bd,, c,, d,, ¢/ will turn about
B, C, D, A in such a manner that we have for various positions
the projective ranges

(A,4,45...)=(BB;Bs...)=(C,CiCs .. )=
(D\D;Dy...)=(A/4/4 ...).

Considering the projective ranges

(A 4,4,..)=(4/474)..)
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on g, it is clear that the lines ay, ay through 4 and the double-
points of these ranges, M and N, coincide with the lines a,/,
ay through D. These double-points determine, therefore, two
solutions of the problem which may be real or imaginary. In

Cs
F16. 70.

the figure the two real solutions of the problem are indicated by
heavy lines.

Ex. 1. To inscribe in a given conic a polygon whose sides
pass respectively through given, non-collinear, points.



166 PROJECTIVE GEOMETRY.

Ex. 2. To circumscribe about a given circle a triangle whose
vertices are on three given lines.

Ex. 3. Between two given straight lines to place a segment
such that it shall subtend given angles at two given points.

Ex. 4. To construct a polygon whose sides shall pass respect-
ively through given points, and all whose vertices except one
shall lie respectively on given straight lines; and which shall be
such that the angle included by the sides which meet in the last
vertex is equal to a given angle. (Cremona.)

Let 4, B,C,..., N be the given points and a, b, ¢,..., m
the given lines. Through A and IV draw a circle K which sub-
tends the given angle over the chord AN. From any point of K
draw a line through 4, cutting @ in 4,; from 4, draw a line
through B, cutting 4 in B, and so forth, until the line m is reached
in a point M,. Then through IV and the same point on K draw
a line cutting m in M,/. Repeat this construction for two other
points of K, thus giving on m the projective ranges (4,4,45...)=
(4/A/AS ...). The double-points of these ranges make it
possible to draw two polygons with the required properties.
This problem may be solved in a different manner.

Through 4 draw any line e, cutting @ in 4,, through 4, and
B a line b, and so forth, until the line m is reached in M,.
Through M, and N draw a line n, cutting g, in a point V. If
now a, turns about 4, then #n, will turn projectively about N.
Hence their point of intersection V' will describe a conic K*
passing through 4 and V. The two other points of intersection
of this conic with the circle K determine the two solutions of
the problem. It is now possible that the conic K* is itself a
circle, but different from K. In this case there is no real solu-
tion. K* may be identical with K, so that there are an infinite
number of solutions.

Make the constructions as indicated.
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§ 44. An Optical Problem.

1. The following problem stated by Cremona in his Elements
of Projective Geometry, p. 199, is an application of Ex. 4 of the
previous section:

A ray of light emanating from a given point A is reflected
from n given straight lines in succession; to determine the. original
direction which the ray must have, in order that this may make
with its direction after the last reflection a given angle.

Designate in Fig. 74 the reflecting lines by a, b, ¢,...,n.
Through 4 draw any ray a, striking ¢ at 4,. The reflected
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ray b, passes through the point B which is symmetrical to 4
with respect to a. The ray b, strikes b at B,, and its reflected
ray c, passes through C, which is symmetrical to B with respect
to b, and so forth. The ray o, reflected from the last line »
at N, passes through O, which is symmetrical to N with respect
to n. Let the rays ¢, and o, intersect at V,. We have now a
closed polygon apby,. ..o, whose sides pass through the fixed
points 4, B, C,... N, O and whose vertices except V lie on the
fixed sides a, b, ¢,..., n. Hence, when g, turns about 4, V will
describe a conic and the problem is reduced to the one explained
in Ex. 4, § 43.

2. Cremona stops the discussion of the problem at this point.
We shall now show that a further investigation is necessary.
Let a be the angle of incidence of a, on @, a, the angle of inci-
dence of b, on b, a, of ¢, on ¢, and so forth; ¢,, ¢,, ¢, . .. the angles
which @ and b, b and ¢, ¢ and 4, .. . include. The angles ¢,, ¢,,
s, . - . between the different reflécting lines must be selected in
such a manner that always

a;tat+¢i=mn.

From the figure we now derive the following series:

Q= a+¢,— oy,
a,=r—a—¢,+@,— o,

Ag= at+¢— P+ Ps— b,
ag=n—a—¢,+d,— ds+ P, — ¢,

Au=—0— P+ P— s+ ... —¢zn—u
Uypp=  at+d—dytds— ... —Pyu

If there are n reflecting lines, then the number of angles a
is also 7, and the number of angles ¢ isn—1. Erect perpendicu-
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lars to g, at any of its points, to @ at 4,, to b at B,, and so forth,
to # at any of its points. Then the first and the last perpen-
dicular deviate from each other by the angle

at+@—2)ntan— ($t Pt dat ... +bn),
and consequently also the rays a, and 0, by the angle ¢:
p=atan—($+drt bt ... + 5 )+ (n—2)m.
If # is odd, then #—1 is even; i.e., n=2p+1, and
Bkt dum ity e by = = i = st (1= 2,

or
d=m—2)r+20—2(h;+ $;+ Pt e+ P20)3

ie., the angle between the original incident ray of light and the
final emanant ray depends upon the angles ¢ ‘and the originai
angle of incidence a. Their point of intersection V describes a
conic which is not a circle, and there are two positions of V, real
or imaginary, for which the incident and reflected ray make a
given angle.

If n is even, then n—1 is odd; i.e., #=2p and

p=a+r—a—p+ds— Pyt by P —Py—e. =Py +(n—2)m,

or

¢=n—1)n—2(by+ Pyt ec+ bapy).

Hence, in case of an even number of reflecting sides, V describes
a circle and the angle ¢ is constant. Cremona’s problem admits
cither of mo solution, or of an infinite number of solutions. The
angle ¢ does not depend upon the angles ¢ of even indices.

To sum up we may state Cremona’s problem and its solution
by the following proposition:

If rays of light emanate from a fixed source which, in succession,
are reflected on n straight lines, then the last reflected rays cut the
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corresponding original rays in points of a comic, which is not a
circle, when n is odd, and in points of a circle when n is even. In

F1G. 72.

the first case there are two places on the conic ai which the original
and the final ray make a given angle. In the second case there are
no such places on the circle, or else an infinite number. In this

|

\p=90°

$,=6,=11280
¢4 arbitrary

F16. 73.

case the angle ¢ depends only upon the angles between succeeding
reflecting lines whose orders in this succession are odd.
3. APPLICATIONS.—Let n=2, then ¢p=n—2¢,.

To make ¢=§-, we must choose ¢, =45°. This case is illus-
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trated in Fig. 72 and is practically applied in Bauernfeind’s Angle
Mirror or Optical Square.
For n=4

$=37—2(P,+ ¢s)-

To make ¢=§, ¢+ ¢, must be made equal to %7:. Under
this condition ¢, and ¢, may vary separately. The condition
is also satisfied by taking ¢‘=¢,=%n=112° 30, and this is
illustrated in Fig. 73.



CHAPTER 1V.

PENCILS AND RANGES OF CONICS. THE STEINERIAN TRANS-
FORMATION. CUBICS.

§ 45. Pencils and Ranges of Conics.

1. Involution of the Pencil u+ Au,=o.
Let u=ax*+ 2bxy+cy*+ 2dx+ 2ey+ f=o,
u,=a,x*+ 2b,xy+ c,y*+ 2d,x+ 2¢,y+ f,=o0
be the equations of two ¢onics; then
(1) U+ Au,=o

is the equation of a conic which passes through the four points
of intersection of U and U,. As a conic is determined by five
points, any fifth point, different from one of the four points of
intersection of U and U,, determines the equation of the conic
through the five points; ie., A Conversely, every value of A
determines the equation of one of the conics of the system.
Designating the points of intersection of U and U, by 4, B, C, D,
then for a variable A,
u+ A, =o

represents all conics through the four fixed points 4, B, C, D,
and is called the equation of the pencil of conics through these
points. Among these conics are three degenerate conics, con-

1See Joachimsthal, loc. cit., p. 183. By U, V, U, etc., we shall designate
conics whose equations are u=o, v=o0, %,=0, etc.

The student is asked to draw a figure for this section.
‘ 172
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isting of the three pairs of lines through 4, B, C, D. To prove
this we form the discriminant of (1), which is

at+ida, b+ A, d+Ad,
(2) b+Ab, c+Ac e+ Ae,
d+Ad, e+le, [H+Af

The vanishing of this expression is the condition for degener-
ate conics among the pencils. This gives a cubic equation in A
and consequently three values for A; i.e., three degenerate conics
through 4, B, C, D, as was to be proved. One value of A is
always real, so that also in case of one or two imaginary pairs
among 4, B, C, D there is always a conic consisting of a real
line-pair. In case of a double-root which is evidently real, the
third root is also real; the conics U and U, have a contact of
the first order. If the root is triple, U and U, have a contact of
the second or third order.

In § 36 it was shown that the coordinates of a point C (x, )
on the line joining the two points 4 (x,, ¥,), B(%,, ¥,) are

xl"‘lxz __yx_lyz _&
=20 YT Ti=x» vhere A=peC

X =

Assume now that A and B are on the conic given by (1),

A
then C is on the conic U, if A= E% is a root of

(3) u,— 2Av+ A*u,=o,

where #%,, v, %, have the same meaning as in formula (2), § 36.
In a similar manner, C is on U, if A satisfies

4) u’ - 2V + A%, =o,

where %/, ¥/, u/ have the same meaning as in (3), except that
a,b,c,...are replaced by a,, by, ¢, . ... Designating the points
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of intersections of 4B produced with U by C, C’; and with U,
by C,, C/, we have

AC AC' u, AC, AC; u/

The points A and B are on %+ Au,=0; hence
w,+Au'=o0, u,+iu/=o,

and, eliminating 4,

u, u'
ut e By
U, Ug

or

AC AC'_AcC, ct
(5) BC BC ~BC, BC;

Giving 2 all possible values and keeping the transversal,
or C, C’ and C,, C/, fixed, 4, B is the pair of points in which
the variable conic #+4A%,=o cuts this transversal. (5) may
also be written

(4BCC,)=(BAC'CY);

i.e., the anharmonic ratio of any four points cut out by the fixed
and variable conics on the transversal is equal to the anharmonic
ratio of the four corresponding points. Furthermore, from (s)
it is seen that interchanging 4 and B, two corresponding points,
does not affect the relation. The system of points defined by (s)
is therefore involutoric. Hence the theorem:

T'he conics of a pencil of conics cut any transversal in an involu-
tion of points. Every comic, including the degenerate comics, cuts
out a pair of the involution. (Desargues.)

The double-points of the involution are evidently the points
where two conics of the pencil touch the transversal. They may
be real (including coincidence) or imaginary. The remark in
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connection with problem 8, § 42, to construct a conic through
four given points, tangent to a given line, is now clear.

COROLLARY.—Amy transversal culs the three pairs of sides
of a complete quadrilateral in three pairs of an involution.

Ex. Prove directly that every transversal cuts a coaxial system
of circles in an involution. By reciprocation we derive the
theorem:

The pairs of tangents from any point to the conics of a range
(comics inscribed in a quadrilateral) form an involutoric pencil.

CorOLLARY.—The lines joining amy point with the three
pairs of wvertices of a complete quadrilateral jorm three pairs of
an involutoric pencil.

Ex. Prove directly that the tangents from any point to the
range of circles inscribed to two straight lines form an involutoric
pencil.

2. A Special Case.—Assume the four points 4, B, C, D,
through which the pencil of conics passes, as an orthogonal quadri-
lateral; ie., ABLCD, BC 1 AD, CA L BD. In this case the
conics are all equilateral hyperbolas. To prove this, note that the
degenerate conics consist of three pairs of perpendicular lines,
Fig. 74. The involution on the infinitely distant line is there-
fore rectangular and its pairs can only be cut out by conics
whose infinite branches are rectangular; i.e., branches of equi-
lateral hyperbolas.

Take now any equilateral hyperbola and on it any triangle
ABC. Let D be the point of concurrence of the altitudes of
ABC. Through ABCD we can now pass an infinite number
of equilateral hyperbolas, among which is necessarily the given
hyperbola. Hence D is on this hyperbola, and we have the
theorem: :

The point of concurrence of the altitudes of any triangle in-
scribed in an equilateral hyperbola lies on this hyperbola.!

3. Polars of a Pencil of Conics.

1 BRIANCHON et PONCELET in Gergonne’s Annales, Vol. II, pp. 205-220. Also
FIEDLER in Vierteljahrsschrift d. Naturf.-Ges., Ziirich, Vol. XXX, pp. 390—402.
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From the explicit expression of the equation of a pencil of
conics

6) u+ Au,=o

it is easily found that the equation of the polar of a point P may
‘always be put in the form

(7) p+ API =0,

where p=o, p,=o0 are the equations of the polars of P with
respect to the conics U and U,. From this it follows that the

Fro. 74.

polar of any point P with respect to a conic of the pencil always
passes through the point of intersection P’ of the polars of P
with respect to U and U,. Hence the theorem:

All polars of a point with respect to the conics of a pencil are
concurrent.

If the point P with the coordinates x,, ¥, describes the straight
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line ax,+pPy,+r=o, then for the point P’'=(x,"y,’) we have
the three conditions

(ax, + by, + d)x,+ (bx,/+cy/ + €)y, +dx,/ +ey/+ | =0,
(a,x) + by +d)x,+ (byx) + ¢y + &/ )y + dyx/ + ey + f=0,
ax,+ Byt r =0,

which are consistent only when

lax) +by/ +d  bx +cy/ +e dx’ +ey'+f
3) ax/+by'+d, bx/+cy/+e dx'+ey'+f|=o.
a B8 r

This gives a quadratic equation between x,/, y,, the coor-
dinates of P’; hence the theorem:

If a point P describes a siraight line, then the point of con-
currence P’ of all polars with respect to the conics of a pencil
describes a conic.

Designating ax,’+ by, +d, bx,’+cy,’+e, dx/+ey/+f byr, s, ¢,
and in a similar manner by r,, s, ¢, the same expressions, with
a, b, e, ... replaced by a,, b, c,, the polar of a point (x/, ,") with
respect to the pencil of conics %+ Au,=o has the form

(r+Ar)%,+ (s+ As,)y, + i+ X, =o.
This equation will be identical with that of the given line g,
ax,+By,+r=o, if

© r+dr s+, 14+ M,
? a 8 r

Hence the pole (x,, y,") of g for any conic of the pencil must
satisfy (9). For every value of A a definite value of (x/, y,)
is obtained, which therefore describes a certain locus. To find

—_—
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its equation we must eliminate A from (9), which gives the equa-
tion

(10) a(sty— s¢)+B(rig—rty) + r(rs,—r,5) =o.

But this is identical with (8). Hence the theorem:

The locus of the poles of a straight line with respect to all
conics of a pencil is a conic which is identical with the comic of
concurrent polars of all points of the given line with respect lo
the same pencil.

Of particular interest is the case when P describes the infi-

nitely distant line; i.e., when %‘=,u is'a variable (finite) and
1

x,=o00. In this case

(11) {1’ =ax, +by, +d + p(bx, +cy/ +e)=o,

pi=ax/ +by/ +d+ pbx+ ¢y +e)=o.

Eliminating g, the equation of the conic which P’ describes
becomes '

(12) (ax/+by/+a)(bxy+cy/ +€)
A : —(ag%,/ + by +d,) (bx/ +cy/ + e)=o.

If (x,, y,) describes the infinitely distant line, then its pole
with respect to a certain conic of #+Aw,=o must satisfy
p+Ap,=o for all values of g, which can only be true when equa-
tion (12) is satisfied. But the poles of the infinite line are the
" middle points of the conics of the pencil. The centers of a pencil
of conics lie on a conic whose equation is given by (12).

The three diagonal points of the fundamental quadrilateral,
being the centers of the three degenerate conics, belong to this
locus. If P is taken as the infinitely distant point of the line
joining two points, say 4 and B, of the fundamental quadri-
lateral, then P’ is the middle point of A B, since all polars of P
with respect to the conics of the pencil pass through this point.
The locus (12) passes, therefore, also through the middle points
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of AB, BC, CD, DA, BD, CA. In case of an orthogonal quad-
ruple, as it was described above, under (2), the locus (12) becomes
a circle circumscribed to the foot-points of the altitudes of the
triangle 4 BC, which bisects the sides and the segments DA, DB,
DC of the altitudes, Fig. 74. This circle is otherwise called
the Feuerbach circle! of the triangle. We have therefore the
theorem:

The locus of the centers of all equilateral hyperbolas circum-
scribed to an orthogonal guadrilateral ABCD (D = point of concur-
rence of altitudes) is the Feuerbach circle of the triangle A BC.

4. Poles of a Range of Conics.

A range of conics consists of all conics inscribed to a quadri-
lateral (imaginary elements included), or is the reciprocal of
a pencil of conics #+ A4, =o with respect to a given conic K.
From this property we derive immediately the theorems:

All poles of a straight line with respect to the conics of a range
are collinear.

If a straight line p turns about a fixed point, then the line of
collinearity p/ of all its poles with respect to the conics of a range
envelops a conic.

Let M be the center of K and designate by V a conic of
the pencil %+ Au,=o, and by v the polar of M with respect
to V. On reciprocation with respect to K, V is transformed
into a conic V’; M, the pole of v, is transformed to infinity;
consequently the polar v is transformed into the center of the
transformed conic V’. As the polars of M with respect to
all conics V are concurrent, it follows that their reciprocal poles are
collinear.

Hence the theorem:

The centers of the conics of a range are collinear.

Among the conics of the range there are three degenerate
ones, consisting of the three pairs of points in which the sides
of the fundamental quadrilateral intersect each other. The

! Concerning this circle see CAJORI'S History of Elementary Mathematies, pp-
259, 260; also KOTTER: Die Entwickelung der synthetischen Geometrie, Vol 1,

. 35-38.
PP- 35-3 “
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represent two corresponding conics. The two pencils (1) are
said to be projective. Two corresponding conics intersect each
other in four points (including imaginary points). We obtain
the locus of all these points by eliminating A from equations (1),
which gives

(2) UV, — UV =0,

an equation of the fourth degree in x and y. Hence the theorem:

Two projective pencils of conics produce a curve of the fourth
order.

As the equation of a curve of the fourth order depends upon
twelve constants and as (2) contains twenty constants, it is
evidently always possible to state the converse; i.e.,

Ewvery curve of the fourth order may be considered as the product
of two projective pencils of comics.

The curve as represented by (2) passes through the inter-
sections of U and U,, V and V,, U and V, U, and V,.

Reciprocally we have the theorems:

Two projective ranges of comics produce a curve of the fourth
class.

Every curve of the fourth class may be considered as the product
of two projeciive ranges of conics. '

2. In analogy to (1) a pencil of conics and a pencil of rays
are projective if their equations may be written in the respective
forms

u+ Au, =o,
3 *j he

!+ M, =o.

For every 4 we have a conic and a ray corresponding to each
other in this projectivity, and the two intersect each other in
two points. The locus of these points is obtained by eliminating
A from equations (3); so that its equation is

. (4) ull_ ull =0,
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middle points of these three pairs evidently belong to the above
locus. This may be stated in the corollary:

The middle points of the three diagomals of a complete quadri-
lateral are collinear.

Designating the three pairs of points by 4,4, B,B,, C,C,,
two circles over 4,4, and B,B, as diameters intersect at two
points (real or imaginary) F,, F,. Joining F, to 4,, 4, and B,, B,,
the involution of the tangents from F,; to all conics of the range
is determined, and as two of these pairs, F,4,, F,A, and F,B,,
F,B,, are rectangular, all other pairs are rectangular; i.e.,
F,C,1 F,C,, and the circle over C,C, as a diameter is coaxial
with the first two circles.! Constructing all circles from the
points of which rectangular pairs of tangents may be drawn to
the conics, it follows from the last remarks that all these circles
form a coaxial system. We state these facts once more in the
theorem: :

The circles from whose points pairs of perpendicular tangents
may be drawn to the conics of a range, each for each, form a coaxial
system. '

Ex. 1. If through the vertices of two angles, whose sides
intersect each other in the points 4, B, C, D, two parallel lines
are drawn, then the harmonic lines of each of these parallel lines
with respect to the sides of the corresponding angles intersect
each other in a point which describes the conic of the middle
points of all conics through 4, B, C, D, when the direction of
the two parallel lines changes.

§ 46. Products of Pencils and Ranges of Conics.

1. The pencils and ranges of conics may be related to each
other by requiring that two conics shall correspond to each other
if their equations are determined by one and the same param-
eter A. Thus, for a certain value of A,

u+ Au, =o,
v+ Ay, =0

¢9)

! The student is asked to make the foregoing construction.
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represent two corresponding conics. The two pencils (1) are
said to be projective. Two corresponding conics intersect each
other in four points (including imaginary points). We obtain
the locus of all these points by eliminating A from equations (1),
which gives '

(2) UY,— U,V =0,

an equation of the fourth degree in x and y. Hence the theorem:

Two projective pencils of conics produce a curve of the fourth
order.

As the equation of a curve of the fourth order depends upon
twelve constants and as (2) contains twenty constants, it is
evidently always possible to state the converse; i.e.,

Every curve of the fourth order may be considered as the product
of two projective pencils of conics.

The curve as represented by (2) passes through the inter-
sections of U and U,, V and V,, U and V, U, and V,.

Reciprocally we have the theorems:

Two projective ranges of comics produce a curve of the fourth
class.

Every curve of the fourth class may be considered as the product
of two projective ranges of conics. »

2. In analogy to (1) a pencil of conics and a pencil of rays
are projective if their equations may be written in the respective
forms

u+ Ay, =o,
3) ; °

I+ A, =o.

For every A we have a conic and a ray corresponding to each
other in this projectivity, and the two intersect each other in
two points. The locus of these points is obtained by eliminating
A from equations (3); so that its equation is

(4) ul,—ul=o,
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and is of the third degree. It is satisfied for /=0, };=0; #=o0,
%,=0; %#=0, l=0; #,=0, ,=0. Hence the theorem:

The product of a pencil of conics and a projective pencil of
rays is @ curve of the third order which passes through the vertex
of the pencil of rays and through the four fundamental points of

the pencil of conics.
' As the equation of a cubic depends upon nine constants and
as (4) contains fourteen constants, it is always possible to write
the equation of any cubic in the form of (4). Hence the theorem:

Every cubic may be considered as the product of a pencil of
conics and a projective pencil of rays.

Reciprocally:

The product of a range of conics and a range of points is a
curve of the third class which is inscribed to the fundamental
quadrilateral of the range of conics and which touches the range
of points.

Conversely, every curve of the third class may be considered
as such a product. '

3. In § 45, 3, it was shown that the polars of a point P with
respect to a pencil of conics #+Au,=o are concurrent at a
point P’, and that when P describes a straight line, P’ describes
a conic. In general to a point P corresponds one and only one
point P’. Let the straight line described by P be g and the
corresponding conic described by P’ be G, and designate the
points where g cuts G by X and X’, Fig. 75. The relation between
P and P’ is involutoric; i.e., all polars of P’ with respect to the
pencil pass through P.

To the point X on g corresponds a point on G, to X on G corre-
sponds a point on g; but to X only one point corresponds in the
correspondence between P and P’; hence the point correspond-
ing to X is X’. Conversely, to X’ corresponds X. The pencil of
conics cuts g in an involution of points. Let M and N be the
double-points of this involution, V', and V, the conics of the
pencil touching g at M and N. Then, the polars of M with
respect to ¥, and V are g and the polar passing through IN.
Hence, in the correspondence of P and P, to M corresponds
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the point N, and, conversely, to IV corresponds M. There are
only two points on g with this property, the points X and X’ where
g cuts the conic G. Consequently M and N coincide with X
and X’. We may state this result in the theorem:

FiG. 75.

In the correspondence of P and P’ to a straight line g corre-
sponds a comic G. The points on g whose corresponding points
are on g itself are the points of intersection X and X' of g with G.
These same points are also the double-points of the involution of
points which the pencil of conics cuts out on g.

According to the theorem that G is also the locus of the poles
of g with respect to the conics of the pencil, the points X and X’
on G are poles of g, and as these coincide with g it follows that
g touches two conics of the pencil at X and X’; in other words,
X and X’ are the double-points of the involution cut out on g
by the pencil of conics, as has been established above. The
theorem therefore also holds for an imaginary pair of corre-
sponding points X, X". _

4. Consider now the straight lines of a pencil:

(5) (a+ pa)x+ B+ pB)y+r+ pri=o.
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For a definite value x4 we have a definite ray of the pencil.
According to (8) in § 45, 3, when P describes the line (5), P’
describes the conic

ax,/+by/+d bx/+cy/+e dx/+ey/+f
(6) ax/+by'+d, bx/+cy'+e dx/+ey'+f | =o,
a+ pa, B+ B, r+uen

which may also be written in the form

ax/+by/+d  bx/+cy/+e dx'+ey/+f
) ax/+by’+d, bx/+cy/+e dx/+ey'+f,
@ 8 r

ax/+by/+d  bx/+cy/+e dx/+ey/+]
+plax/+by'+d, bx/'+cy/+e dx'+ey’+f| =o.
a, .31 T

Designating ax+f8y+ r and a,x+p,y+r, by g and g, and the
corresponding conics by G=o0 and G,=o, then to the pencil
g+ pg,=o corresponds the projective pencil of conics G+ pG,=o. .
The product of the two pencils is therefore a curve of the third
order with the equation

)] _ Gg,—Gg=o.

In the transformation of P into P’, to a pencil of rays corre-
sponds a pencil of comics projective to the pencil of rays. The
product of the two pencils is a curve of the third order. This
curve may also be considered as the locus of those points on the
rays of a pencil whose corresponding points are on the same rays,
each for each. )

Ex. 1. Establish the equation of a coaxial system of circles.
Prove the propositions of this section directly in this special case.

Ex. 2. Prove that the pencil of rays joining any point to
the centers of a coaxial system of circles is projective to this sys-
tem. Establish the equation of the curve produced by the two
pencils.
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Ex. 3. Show in what manner a system of confocal conics
may be considered as a range of conics.

Ex. 4. What is the fundamental quadrilateral in case of two
tonics #=o0, #%, =0, having a double contact?

§ 47. The Steinerian Transformation.

1. In the foregoing sections we have shown that the polars
of any point P with respect to a pencil of conics are concurrent
at a point P’. For the construction and clear understanding of
this transformation it is of great advantage to consider in par-
ticular the degenerate conics of the pencil through the quadrangle
which shall be designated by 4,4,4,4,, and its diagonal points by
B,,B,, B,. The pairs of lines 4,4,, By4,;' 4,4,,B,4,; A,A,,B,A,
are the degenerate conics of the pencil. To find P’ when P is given,
join P to B,, B,, B,, Fig. 76, and construct the fourth harmonic
rays to PB,, PB,, PB, with respect to the corresponding pairs
of lines through B,, B,, B,. The three harmonic rays intersect
each other at P’. From this simple geometric construction it
is now easy to study the correspondence of P and P’ for any
particular positions. At every point B, say B,, the lines 4,4,
B, B,B,, B,B, form a harmonic pencil. To the points B
correspond, therefore, all points of their opposite sides of the tri-
angle B,B,B,. The points 4,, 4,, 4,, 4, are invariant, since the
fourth harmonic rays pass through the points themselves. To
a point on any line joining two of the fundamental points, say
4,4, corresponds the fourth harmonic point to the pair 4,4,.
All other points are in uniform correspondence.

We have seen that to a straight line corresponds a conic. As
a straight line cyts each of the sides BB, B,B;, B,B,, and as to
these sides correspond the opposite points B,, B,, B,, it follows
that said conic passes through the points B,, B,, By, To the
straight lines of the plane corresponds the met of conics through

1See STEINER’S collected works, Vol. I, pp. 407-421, and M. DIsTELI: Die
Metrik der circularen Curven dritter Ordnung im Zusammenhang mit geomeirischen
Lehrsitzen Jakob Steiners. Also PONCELET: Traité, 1 ed. 1822, p. 198,
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B,B,B,. Taking a pencil of rays through P, its corresponding
pencil of conics passes through P’ and B,, B,, B;. The curve
of the third order produced by these two pencils passes, therefore,
according to § 46, (4), through P and P, B,, B,, B,.

On every ray through P there are two corresponding points
X and X’ of the cubic. Consequently, connecting P to 4,, 4,,

F1G. %6.

4, A,, the corresponding points on these four rays coincide,
each for each, with 4,, 4,, 4,, 4,, so that these points are on
the cubic and PA,, PA,, PA,;, PA, the tangents at these points.
On the rays PB,, PB,, PB, the points which correspond to B,, B,,
B, are the points of intersection B/, B/, By of these rays with the
sides B,B;, B;B,, B,B,, respectively. The points B/, B, By are
therefore ‘also on the cubic. Hence the theorem:
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In the Steinerian transformaiion to every pencil of rays corre-
sponds a projective pencil of comics through the diagonal points
of the fundamental quadrilateral. The product of the two pencils
is a curve of the third order through the vertex of the pencil of
rays and its corresponding point and through the vertices and diag-
onal points of the jundamental quadrangle. Thus to every point of
the plane may be associated a certain curve of the third order in
the Steinerian transformation. All these ®? cubics pass through
seven fixed points.

Without proceeding to the Steinerian transformation of
conics, cubics, etc., we shall immediately take the general case
of a curve of the nth order, Ca. To determine in how many points
any straight line g cuts Cyp, notice that the conic G corresponding
to g cuts Cn in 27 points. Hence, when the whole configura-
tion is transformed, G with its 2m intersections on C, is trans-
formed into 27 intersections of g with the transformed C,. Hence
the theorem:

In a Steinerian transformation a curve of the nth order is gen-
erally transformed into a curve of order 2n.

2. Analytical Expression for a Steinerian Transformation.

Nothing will be lost in the general result if we assume that
the points 4,, 4,, A, form an equi- A,
lateral triangle and that A, be its
center, since by a collineation this
orthogonal quadrangle may be trans-
formed into any other quadrangle.
Let A, coincide with the origin, and
A, with the X-axis, Fig. 77, and
AA,=A,A,=4,A,=1. The foot-
points of the perpendiculars of the
triangle are B,, B,, B,. Consider
first the degenerate conic consisting ¢
of the lines 4,4, and 4,B, with the
equations

F1e. 77.

£+ 39— 1=0,
‘\/3_5— 7 =0,
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so that the equation of the degenerate conic is
(1) V3-8—V3 -+ 260—3-E+1=0.
Similarly the equation of the degenerate conic represented by
A,A, and 4,B, is
(2) V3-6-3- 97— 26y—V/3-6—1=o0.

The equations of the polars of the point P (x, y) with respect
to these conics are

B @V3ty- Ve E—VaHn->VitE=o,

@ @Va—y—WRE— @ VaH -2 Vi-2=o.

The common solutions of (3) and (4) are the coordinates /, ¥’
of the point P corresponding to P in the Steinerian transformation:

2=+

4@ +yh)-T

YTy
y' 4(xz+y2)_l'

(5)

Solving these equations with respect to x and y we obtain

oo 2@yt
(6) 4(x"+y’2)—1 ’
g Y=Y

4(x”+y")—l ’

which shows that the transformation is involutoric.

To the line at infinity, x=0c0, y=c0, %=arbitr., corresponds

the circle

() & 4y?=1.
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Ex. 1. The centers of the conics circumscribed to a quad-
rangle A4,4,4,A, lie on a conic K, which bisects the distances
between these points in six points. These form three parallelo-
grams having the same center, which is the center of the conic
cutting out these points.

Ex. 2. According as a straight g cuts K, in two real or two
imaginary points, or touches it, the corresponding conic in the
Steinerian transformation will be an hyperbola, an ellipse, or
a parabola.

Ex. 3. Prove by formulas (5) that in a Steinerian transforma-
tiona C, is transformed intoa C,,. In particular a straight line
is transformed into a conic.

Ex. 4. Prove that in the Steinerian transformation 4,4,4,4,
are invariant points and that to the sides B,B,, B,B,, ByB, corre-
spond the points B,, B,, B,, by using formulas (5).

§ 48. Curves of the Third Order.

1. In the Steinerian transformation, with every point of the
plane is associated a certain cubic. As in the previous section
assume as conics determining the fundamental quadrangle or
quadruple the degenerate conics.

(1) % sx/g-x’+ 2xy—\/§;y’—‘\/§_-x+y=o,
(2) U, =V3-52— 20— \/3-y*—/3-x— y=o.
To find the cubic associated with the point (%, ¥'), take as
lines g and g, in formula 8, § 46,
() :  g=x—¥'=o,
() &=y—y =o.

According to (5), § 47, to these lines correspond in the Stei-
nerian transformation the conics
(s) G=2(x"—y")+x—'{a(x’+y")—1} =0,
©® - G= y—4avy —yla*+y)—1}=o0.



190 PROJECTIVE GEOMETRY.

The equation of the cubic associated with the point (x/, ¥')
is Gg,—G,g=o, or

O—y){2(x*—y) +x—2[a(**+y*)— 1]}

—@-)ty—axy  —yla"+y")—1]}=0,
or
2(x?— 9y +x
- o (Gaei-)

From the form of this equation it is apparent that a Steinerian
transformation does not change the equation. Hence the theorem:

The net of cubics through a quadruple and its diagonal points
is invariant in the corresponding Steinerian transformation.

This is also geometrically evident. In the construction of
the curve, Fig. 76, eleven points are obtained through which
the cubic passes and which, as a group, are invariant in the
Steinerian transformation. '

For the points &’ =00, 3y’ =00, 3:,—=x, (7) reduces to

_ymaxy 2@ —y)tx
4 +y)—1 4 +y)—1

®) ¥+ wx+

Also in this case the cubic is the locus of the double-points
of the involutions cut out on the pencil of parallel rays through
the infinite point <%,=K> by the pencil of conics through the
fundamental quadruple. The line at infinity belongs also to the
pencil of parallel rays, and -as the involution on it is rectangular
it follows that the double points are the circular points. Hence
(8) represents a pencil of bicircular cubics.

As has been seen already, the tangents to the cubic at the points
A, A,A,A, pass through the point P. We shall now prove that
the tangents at B,, B,, By pass through P’. For this purpose
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draw a ray through P cutting the cubic in two points U and V,
of which U shall be close to B,, Fig. 78. To this ray corresponds

Fic. 78.

in the Steinerian transformation a conic through B,, B, B;, U,
V,and P’. As the ray through P turns in such a manner that U
approaches B, as a limit, the corresponding conic will approach
the degenerated conic, consisting of the ray P'B, and the side
B,B, as a limit. Hence, when the ray passes through B,, the
corresponding ray through P’ will be a tangent to the cubic at B,.
A similar result is obtained for the points B, and B,, which proves

the proposition.
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2. In what follows it will be assumed that the cubic is a
circular curve; i.e., that the point P is infinitely distant. Desig-
nating this infinitely distant
point by B and its correspond-
ing point by C, the tangents at
the A’s are parallel to the direc-
tion of B, and the tangents at
the B’s pass through C, Fig. 79.
The ray through C parallel to
the direction of B is the asymp-
tote of the curve. Hence the
tangents at the points B, B,, B,,
B; meet in the point C of the
same curve. Four points on
_the cubic with this property
“are called a Steinerian quad-

ruple of the cubic.

Thus A4,4,4,A,, BB,B,B,
are such quadruples. Accord-
ing to previous results, the rays
BB,, BB,, BB, cut the opposite »
sides B,B;, BB,, B,B, in three
more points, C,, C,, Cs, of the
cubic. But this is equivalent
with considering BB,B,B; as a
fundamental " quadrangle in a
new Steinerian transformation
with C,, C,, C, as the diagonal
points, and C as the original
point associated with the cubic.
That the cubic associated with
C in this new transformation is
identical with the original cubic

follows from the following consideration: The points B being:
points of tangency count for eight given points. Furthermore,
the four C’s lie on the original curve, so that the new curve has .

Fic. 79.




CURVES OF THE THIRD ORDER. 193

at least twelve points in common with the original cubic, and is
consequently identical with it.

In this new Steinerian transformation construct the point D
corresponding to C. Then take the new quadruple CC,C,C;s and
construct the associated cubic in the Steinerian transformation
belonging to this quadruple. The new cubic is identical with
the original cubic, as can easily be proved. The tangents at
C, C,, C,, C; all pass through D. For the quadruple CC,C,C,
construct the diagonal points D,, D,, D,. These together with D
form a new quadruple, whose tangents pass through E, the point
corresponding to D in the transformation associated with the
quadruple C,C,C,C,. Continuing this construction, we may
obtain any number of points of the cubic arranged in quadruples.
The points B, C, D, E ... have the property that the tangent at
one of these points always passes through the previous point.

3. The general equation of a cubic may be written

(1) A.x'+Bx’y+ Cxy*+ Dx*+
ax+ 2bxy+cy’+ 2dx+ 2ey+ f=o.

The problem arises, what connection exists between the
fundamental quadruple with which the cubic is associated and
the shape or equation of the cubic. In the above discussion the
quadruple was assumed as real and the cubic consisted of a
serpentine (infinite branch) and an oval. By certain collineations
this curve may be transformed into various other curves which
may be characterized with respect to their behavior at infinity.
The serpentine or oval will be called elliptic, hyperbolic, or para-
bolic, according as they have two imaginary, two real, or two
coincident points at infinity. Designating by 7 the counter-axis
which in a collineation is transformed to infinity, and by S and O
the serpentine and oval of the cubic, then the transformed curves
resulting from various positions of r are as given in the following
table:

! For the sake of simplicity, in the figure only the quadruple CC,C,C; has been
constructed.
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Original Curve. 7 Resulting Cusve.
14
S o S o
cutting ingpoints | .......... hyperbolic elliptic
tangent inrpoint | .......... parabolic elliptic
cutting | .......... in 2 points elliptic hyperbolic
tangent | .......... in 1 point elliptic parabolic

From these possible collineations it is seen that a cubic with
two branches, serpentine and oval, by any collineation is trans-
formed into a cubic with two branches. The geometrical dis-
cussion of this section therefore does not cover all cases as yepre-
sented by the general equation of the cubic. For this purpose
it is necessary to classify the cubics from the general equation,
or the fundamental quadruple, by introducing coincident and
imaginary elements. We shall do both. As the analytical dis-
cussion is briefer, we shall take this up first and discuss the geomet-
rical aspect later on. To equation (1) apply the general projec-
tive transformation or collineation of the xy-plane as given in
§ 19. This collineation depends upon eight parameters. After
the transformation, clearing of fractions, collection of equal terms
in x and y, (1) assumes the form

) { A x*+ Bx*y+ Cyxy*+ D y*+
a,x’+ 2bxy+ ¢y’ + 2dx+ 2,9+ f,=o,
where 4,, B,,...a,, b,,...are polynomials in 4, B, ... a,b,...

and the eight parameters of the collineation. It is evidently
possible to choose in an infinite number of ways the eight param-
eters in such a manner that in (2) the coefficients B,, C,, D,,
b, ¢; vanish, which amounts to five equations with eight un-
known quantities. It is therefore possible to find a collineation
transforming (1) into an equation of the form

¥ =ax’+fx*+ rx+9,
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or, resolving the right side into its linear factors,

® Y =a(n—e) (@~ &) (x—65),

in which e, has a different meaning from the e, used above.

The general equation of the cubic can therefore always be
reduced to an equation of the form (3), so that the discussion of
the cubic with respect to its type may be limited to equation (3).
This equation represents a curve
which is symmetrical with respect
to the x-axis, and its shape depends
essentially upon the values of ¢,
€ & Assume ¢,<¢,Ze, “The
following cases may. be dis-
tinguished:

L. e, e, e, are real and different
from each other.

On the x-axis the curve has
the real points with the abscissas
¢, ¢, e, Fig. 8o. In order that y? be positive, it is necessary that

" either <x<e, or x>¢. From this it

Fi1c. 8o.

follows easily that the cubic consists in
this case of an oval and a serpentine.
This is the case discussed in connection
with the real quadruple.

-9 e, ) II.. e, is real, e, and ey are conjugate
imaginary.
In this case we can write (3) in the
form

y'=a(x—e)[(x—p)*+£’%),
from which follows that y? is real-only
when x >e,; the curve consists of only

one branch, Fig. 81. This case is equivalent with a fundamental
quadruple with two real and two conjugate imaginary points, as
we shall see later on.

F1G. 81.
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o %91 2

point, Fig. 82.

Fi1G. 82.

The equation becomes
¥ =a(i—e)(x— )
y is real for x>e¢,. Hence x=e, is a
double-point of the cubic, Fig. 83.

This case corresponds to a funda-
mental quadruple with two coincident
and two conjugate imaginary vertices.

A A e,=e,=e; and all real.

Equation (3) can be written

yi=(x—e,)"

We must take x>e,. The curve
has a cusp at x=e, with the wx-axis

II1. e,=e¢, and e, all real.

Equation (3) assumes the form
Vi=a(x—e)*(x—e*).

To get real values for y, x>és

“““ The point x=e¢,, y=o satisfies the
equation also; but it is an isolated

Correspondingly, in the quadruple
two points are real and two coincide.
IV. e, and e,=e, are real.

Fr16. 83.

as a tangent, Fig. 84. The four points of the quadruple are
real and three of them are coinci-

dent along the tangent of the cusp.

‘These are the five types of
curves of the third order into
o e16¢e which all cubics may be projected.

- NEwTON ! called these five types,
found by him, respectively,
parabola campaniformis cum
ovali,
Fro. 84. parabola pura,

parabola puncta,

1 Enumeratio linearum tertii ordinis (Londini, 1706).
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parabola nodata,

parabola cuspidata,
and, according to their behavior at infinity, subdivided them
into seventy-two different kinds. By later investigations six more
were added to the seventy-two.

As in the first case, this classification may be made by choos-
ing in the perspective collineations the counter-axes 7 properly.

§ 49. Curves of the Third Order Generated by Involutoric
Pencils.

1. Every straight line cuts a pencil ©of conics in an involution
of points. Instead of any two conics #=o0, %, =0, we may take
two degenerate conics with the same vertex:

% Epp,=o;
u,=(p+4p)(p+ pp,) =0,

where p and p, represent two distinct straight lines. The pencil
of conics then becomes

U+ vy = pp,+v{(p+ Ap,) (p+ 1p1) } =o,

where v is a.variable parameter. We may write this also in the
form
vp?+ (14 vp+vA)pp,+ vapp,* =o.

Solving for p,

_= (1+vAi+vp)+ \/(1-{— vA+vp)l— 4v"Ap
2y

4

‘r

and designating by § and 7 the expressions multiplying #, in the
last formula, the equation of the involutoric pencil of rays may
be written

(1) (p—Ep){p— np) =0,

where §7=2g=constant.
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For every set of values of & and 7 satisfying this candition, (1)
represents two rays of a pair of the involution

f_ £p=o, .
p—p=o0.

The product of two projective pencils of this kind, baving
the same v,

(2) i+ vi(p+Ap)(p+ 1p) } =0,
(3) 90+ 1@+ ) (g+ £ g) ) =o,

is evidently the curve of the fourth order:
@) @+ A9+ K B) =90t (0+ 48 (P + 1)} =o,

with the double-points p=p,=0 and ¢=g¢,=o.

In (1), p=0 and p,=o are evidently the equations of a pair of
the involution.

In (3) the corresponding pair is given by g=o0, ¢,=o. Letting
the corresponding rays p, and ¢, coincide; i.e., p,=¢,=o, the
curve (4) degenerates immediately into the ray p,=o and the
cubic

(s) pi(g+2p) (g+#0)}—qi(2+2p) (p+ pp) }=o.

To distinguish the pencils (2) and (3) from ordinary linear
involutoric pencils, we shall call them quadraticc. The result
may be stated in the theorem:

The product of two projective quadratic involutions of rays
is a curve of the jourth order. If the two involutions have two
corresponding rays in common, then their product is a curve of
the third order and that common ray.

The cubic can also be produced by two projective pencils of
which one is linear and one quadratic:

P'*‘ vpy,
©) {Qﬁ'l‘ vi(g+4q,) (¢+ £},
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whose product is

)] ?i(g+1q) (¢+ 1g)}— pugq,=o.

As (5) and (7) contain respectively twelve and ten arbitrary
parameters it is clear that every cubic may be represented by
one of these forms. '

2. Considering (5), each two pairs of corresponding rays of
the two quadratic involutions (2) and (3), in which ¢,=p,,

- 51’1 =0,
® .
g—&'pi=o,
(9) g q— 7'$=0,

intersect each other in four points of the cubic. The vertices
of the two pencils are also on the cubic. Two pairs of the quad-
ratic involution in one pencil and the two corresponding
pairs in the other pencil are therefore sufficient to determine
the projectivity and consequently also the cubic, since they deter-
mine ten points on the curve.

Conversely, if on a cubic two vertices B and B, are known,
and if it occurs twice that two rays through B cut certain two rays
through B, in four points of the cubic, then these pairs determine
two projective quadratic involutions of rays by which the entire
cubic is produced.

To prove this assume a ray, a, through B, passing very close
to B. If the foregoing statement would not be true, the
product of the involutions determined by the four pairs
of rays through B and B, would be a curve of the fourth order,
according to (4). On the ray a there would be two points
cut out by the corresponding rays through B, which in general
would be distinct. As the ray a in the limit approaches the
ray through B, passing through B, these two points on @ become
coincident; i.e., B is a double-point of the curve (4). Similarly
B, is also a double-point. A double-point on another curve
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counts for two points of intersection, so that the supposed curve
of the fourth order has twelve points in common with the given
cubic. Construct the net of quartics (curves of the fourth order)
through these twelve points. Any two points different from these
twelve points, with these, determine fourteen points; ie., such
a quartic and only one, which therefore consists of the given cubic
and the straight line through the assumed two points.

From this it follows that there is only one quartic through
the twelve points having B and B, as double-points, and this
consists of the given cubic and the line through B and B,
which proves the proposition.

3. Consider three quadratic involutions of pencils of rays
projective to each other:

(10) ot vi(ptAp) (p+ pp)} =0,
(11) 99+ v{(g+¥q)(g+ ' q)} =o,
(12) i+ vi(r+ ') (r+¢'r)} =o,

and suppose that the product of (10) and (11) is identical with
the product of (10) and (12); i.e., that the two equations

(13) Pl (g+ 2 q)(g+ ' 3) } — {(p+ Ap) (2+ 1) }aa =0,

(1a)  pod(r+ ") (r+ p'r)}— L+ 2p) (p+ 1py) Jrry=o,

must be simultaneously satisfied for all sets of values of x and .
This can only be true if

(15) 99 {(r+ ") (r+ p'r) } = (g + X q) (g+ ' g) } =0

simultaneously with (13) and (14).

From this the theorem follows:

I} a quadratic involution of rays produces with two projective
quadratic involutions one and the same quartic or cubic, then the
product of the last two involutions is the same quartic or cubic.
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4. Considering again the construction of a cubic by the Stein-
erian transformation, Fig. 85, and taking B at an infinite distance

Frc. 85.

in the indicated direction, then to a point X on the cubic corresponds
a point ¥ on a ray through X parallel to this direction. Joining
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X and Y with B, and producing XB, and Y B, to their intersec-
tions ¥, and X, with the cubic, then X, corresponds to Y, in the
Steinerian transformation and hence X,Y, is parallel to XY.
It is now clear that the pairs of rays XV,, X,V through B, and
XY, XY, through B, furthermore the pairs 4,4; (counted
twice) through B, and BA,, BA,, determine two projective quad-
ratic involutions around B, and B whose product is a cubic,
since they have the ray B,B in common. This cubic having
ten points in common with the cubic of the Steinerian trans-
formation (4,, 4;5; each counted twice, since BA,, BA, are tan-
gents at A, and 4,; B, B,, X, YV, X,, V) is identical with it. If
‘we connect X and ¥ with B; and produce XB; and VB, to their
Jintersections X,’ and Y, with the cubic, then X,/ and ¥ cor-
respond to each other in the Steinerian transformation; i.e.,
X/Y/||XY. Consequently the cubic may also be considered
as the product of the involution around B and an involution
around B,. In the same manner it is also the product of the
involutions around B and B,; hence, according to the foregoing
theorem, the cubic is also the product of the two involutions
around B; and B,. Hence the points where X,B, and Y,B, pro-
duced meet the cubic are the same as X/, ¥,/. In a similar
manner it can be proved that XB, and X,B;, YB, and Y,B,
intersect each other in the points X’, ¥’ of the cubic, so that
" X'Y"||XY. X has been assumed as any point of the cubic, and
X, in such a manner that the corresponding point ¥ of X lies
in a straight line with X, and B,. Consider now the pairs of
rays XX/, XB, and X, X', X,B,; and XY, XV, and X,Y,, X,Y;
they determine two projective quadratic involutions about X
and X, whose product is a cubic which is identical with the original
cubic, since it has ten points in common with it. Taking any
point G on the cubic * and letting XG and X,G cut the cubic in
J and K, then XJ and XK produced cut the cubic in one and
the same point H; XG, XH and X,G, X,H form two corre-
sponding pairs of the involutions around X and X,. If G ap-
proaches the point of intersection of XX, with the cubic, then J

! For the sake of simplicity in the figure the following part of the construction
is not shown.




CURVES OF THE THIRD ORDER. 203

and K approach X, and X; hence, in the limit, the tangents to
the cubic at X and X, intersect each other in a point of the cubic.
In a similar manner it can be proved that the tangents at ¥ and
Y,, X’ and X/, Y’ and Y/ intersect each other in points of the
cubic. Again, G and H, and J and K may be assumed as
vertices of projective quadratic involutions producing the cubic.
Hence also the tangents at G and H, and J and K intersect
each other in points of the cubic. We can therefore state the
following theorem:

Designating two points on a cubic whose tangents at those
points intersect each other in a point of the cubic as a Steinerian
couple, or simply as a couple, then the cubic can be produced by
two projective quadratic involutions around these points.

The lines joining any point of the cubic to the points of a couple
cut the cubic again in a couple, and all couples of the cubic are
produced when this point describes the whole cubic.

Each two corresponding pairs of the involutions around the
two points of a couple intersect each other in two mew couples.
Such two involutions produce all couples of the cubic.

A quadruple on a cubic is defined as a group of four points
any two of which form a couple; i.e., the tangents at the four
points concur in a point of the cubic. From this definition we
infer easily:

The lines joining four points of a quadruple cut the cubic in
another quadruple. The sixteen lines joining the points of two
quadruples intersect each other, four by four, in four points of a
new quadruple. -

These results form a part of the theory of problems of clo-
sure on the cubic as it has been developed by Steiner, Clebsch,
and others.* They are sufficient for the applications in the
following sections.

! For further details references are made to

CLEBSCH: Crelle’s Journal, Vol. LXIII, pp. 94-121.

STEINER: Crelle’s Journal, Vol. XXXII, pp. 371-373.

DisTELY: Die Steiner’schen Schliessungsprobleme nach darstellend-geometrischer
Methode. Leipzig, 1888.

EmcH: Applications of Elliptic Functions to Problems of Closure, University
of Colorado Studies, Vol. I, pp. 81-133.
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Ex. 1. Verify the theorems of this section constructively,
when B is finite or infinite. :

Ex. 2. What relation must exist between a quadratic and a
projective linear involution of rays in order that the cubic pro-
duced be one with a cusp.

Ex. 3. Prove directly that a cubic can be produced by two
quadratic involutions around the points of a couple by determin-
ing two corresponding pairs of the involutions.

§ 50. Various Methods of Generating a Circular Cubic.

1. In § 48 (8), we found for the equation of the bicircular
cubic referred to the equilateral triangle 4,4.4, with 4, as
point of concurrence of altitudes, after some rearrangement,

(1) 4(kx—y) (@ +y")— 265" — gxy+ y+2y*— 245+ 2y =0.

The slopes of the asymptotes at the circular points are evi-
dently +¢ and —i, so that the equations of these asymptotes
are of the form
(2) { y=ix+¢,

y=—1%+0y

where ¢, and ¢, are constants to be determined. If equations (2)
represent asymptotes, then their common solutions with (1)
must give infinite values for x and y. Substituting the values
of y from (2) in (1), we get respectively

(8¢, + 8c.ki— 41— 4k)x*+ Bx+C =aq,
(3) { (8¢c;— 8cyki+ 41— 46)x*+ B'x+ C' =0,
where B, C; B', C’ are polynomials in ¢, «; ¢, , different
from those of the x?’s.
In both cases the values of x will be infinite, if we have re-
spectively
1 k41

8¢, + 8¢, ki— 4i—4k=0, or ¢,= Py
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and
L 1 k—14
8¢c,— 8¢,ki+ 4i— 4k=0, or =7 T

so that the equations of the asymptotes are

. I K+i
YR T
@) y=—ix+£ x—i"
2 1—Kt

Solving these two equations simultaneously, we get for the
coordinates of the point of intersection of the two asymptotes (4)

x IK—1 K
“zre+1’ YT e

(s)

The sum of the squares of these expressions is x*+y*=%; i.e.
the point of intersection is on the circle corresponding to the
infinite line in the Steinerian transformation. The real asymp-
tote of the cubic has the slope &, so that its equation is of the
form y=«xx+c¢,. By a similar method as in the case of ¢, and
¢, above, we find

P L '
3T 1424

and as the equation of the real asymptote

36— K°
142k

©) y=rx+

Solving (1) and (6) simultaneously, we find for the point of
intersection of this asymptote with the cubic

1 1—&° K

@ =i i
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Comparing (7) with (5), it is seen that the two points are.
diametral.

A similar result is obtained by taking any orthogonal quad-
ruple A,4,4,4, and the circular cubic associated with it. In
this case the equation of the cubic assumes the form

(8) (ax+By)(**+9*) + ax?+ 2bxy+ cy*+ 2dx+ 2ey+ f=o.

Repeating on this equation the same process as above on equa-
tion (1), the theorem may be stated thus:

Considering a bicircular cubic in a Steinerian tramsformation,
the asymptotes at the circular poinis intersect each other in a point
D of the circle which corresponds to the line at infinity in the Stei-
nerian transformation. The real asymptote cuts the same circle
in a point C which with D determines a diameter of the circle. The
points D and C are called center and principal points of the cubic.

2. In equation (8) the infinitely distant real point of the cubic
is the infinite point of the line ax+ By =o, as can easily be verified.
Taking the x-axis parallel to this line, (8) becomes

(9) y(%*+ 9%+ ax?+ 2bxy+ cy*+ 2dx+ 2ey+ f=o.

In a similar manner as in (5), the coordinates of the center of
the cubic are found to ke

(10) x=b, y=

Taking this point as the origin of a new coordinate system
with axes parallel to those in (g), (9) assumes the form

(11) (+0) @+ ¥?)+ 2dw+ 2e9+ f=o.

Here the equation of the real asymptote is y=—a, so that
the coordinates of the principal point of the cubic become

2ae— |
2d ’

x= y=—a.
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Equation (11) may be considered as the result of the elimina-
tion of A* from the two equations

x2+y3_ A’=°,
2dx+-2ey+ f+ 2*(y+a) =o,

which represent two projective pencils of concentric circles and
rays. Hence the theorem of CzUuBER:!

Every circular cubic may be generated by two projective pencils
of concentric circles and rays. The common center of all circles
of the pencil is the center of the cubic, and the vertex of the pencil
of rays is the principal point of the cubic.

3- In § 49it has been shown that the points on a cublc may
be arranged according to couples, so that the rays from any
point on the cubic to the points of these couples form an' ‘involu-
tion. ‘

Suppose now that the direction of the real asymptote of a
circular cubic is perpendicular to one of the sides say B,B, of
the diagonal triangle B,B,B,, Fig. 86; then the center of the
cubic will coiqéide with the point B,. In other words, the cir-
cular points form a couple, so that the involutions of rays from
any point of the cubic contain the directions of the circular points
as a pair.

Hence, according to a theorem in § 5, p. 21, since 4,4, 4,4,
are two couples and P any point on the cubic, the angles 4,PA4,
and 4,PA, are equal. Hence the theorem:

The circular cubic which contains the circular points as a
couple (conjugate pair) is the locus of all points frem which two
fixed lines A A, A,A, appear under the same angle.

Inscribing a conic to the quadrilateral 4,4,4,4,, then the
pieces 4,45 and 4,4, of the tangents contained between the two
other tangents 4,4, A,A, of the conic, are subtended by equal
angles at the focus, § 35, p. 118. Hence the theorem:

1 Die Kurven dritter und vierter Ordnung, welche durch die unendlich fernen
Kreispunkte gehen. (Zeitschr. f. Math., XXXTI, 1887.)
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The locus of the foci of all comics inscribed to a quadrilateral
is a circular cubic having the circulay poinis as a conjugale pair.

The same cubic may also be produced by two projective pencils
of circles over A, A, and A,A,, in which two corresponding circles
subltend equal peripheral angles over the chords A\ A, and A,A,.

Fic. 86.

But if two projective pencils of circles G+ AG, =0 and G’ + iG,’
=0 produce a cubic, say GG,—G,G’ =0, so that this equation
reduces to Gg,/—G,g’ =0, where g/ and g’ are linear factors,
then the cubic may also be produced by two projective pencils
of circles and rays. '

4. In the same circular cubic consider the pencil of circles
through B,B,, Fig. 86. The ray B,C passes through the center
of the circle through B,B,B,. A,A, passes through the center
of the circle through 4,4, (diameter of said circle) and B,B,.
B, A, passes through the center of the circle through 4,4,
(diameter) and B,B;. The three circles through B,B, and the
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three corresponding rays through B, determine nine points of the
cubic, since B, as a point of tangency on B,C counts twice. The
two pencils therefore determine two projective pencils of circles
and rays whose product is the given cubic. Hence the theorem:

The circular cubic having the circular poinis as a conjugate
pair is also the product of a pencil of circles and a projective pencil
of rays which pass through the centers of the corresponding circles.

Ex. 1. With the Steinerian transformation for base, prove that
the general equation of a circular cubic has the form

(ax+By)(**+9?) +ax*+ 2bxy+cy*+ 2dx+ 2ey+ f=o.
Ex. 2. Given the pencil of circles
x4 y?— p*—2lx=0 (Pp=constant)

and a pencil of rays passing through the centers of these circles.
To find the equation of the product of the two pencils and discuss
the result for different positions of the vertex of the pencil.

Ex. 3. Establish the equations of two projective pencils of
circles in which corresponding circles subtend equal peripheral
angles over the fixed chords.

Ex. 4. Prove that in a circular cubic the oval and the ser-
pentine appear under the same angle from any point of the curve.

Ex. 5. The extremities of two diameters 4,4, and 4,4,
form a square. What is the locus of the points from which both
diameters appear under the same angle?

§ 51. The Five Types of Cubics in the Steinerian Transfor-
mation.!

1. Cubic with Oval and Serpentine.
This cubic is obtained when all four points of the funda-
mental quadruple are either real or imaginary. As the case

1 This section has been published in The University of Colorado Studies,
Vol. 1., No. 4, Feb. 1904.
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with four real points has so far always been used to illustrate the
general properties, we shall now assume an entirely imaginary
quadruple determined by a coaxial system of circles with the
limiting points P and Q, Fig. 87. On every ray g through an

Lo
N

/

arbitrary fixed point B the circles of this system cut out an invo-
lution of points whose double-points X and X’ are two points of
the cubic associated with the point B in the Steinerian transfor-
mation belonging to the given imaginary quadruple. To construct
X and X’, let g cut the line m, which is the line joining the finite
imaginary points of the quadruple, at M. With M as a center
pass a circle K through P and Q which will cut g in the required
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points. In reality, according to the well-known -construction
just explained X and X’ are the points of tangency of g with two
circles of the given system. It will be noticed from the figure
that the two points of the cubic on a ray through B are always
equally distant from m. Hence, taking a ray through B parallel
to m, the point at infinity corresponding to Q will be in a line
through P parallel to m. In other words, the line through P
parallel to m is the asymptote of the cubic. Considering the
pencil of circles through P and Q, the same circular cubic is also
produced by this pencil and the pencil of diameters through B.
Thus a statement in the foregoing section is corroborated.

II. The Simple Cubic.

This curve is produced by assuming two separate real and
two imaginary points in the fundamental quadruple. In Fig. 87
let P and Q be the real points, and the circular points of the pencil
of circles through P and Q the imaginary points. To find the
points ¥ and ¥’ where a ray / through B cuts the cubic, let /
cut » at N. With N as a center construct the circle L orthogonal
to the pencil of circles through P and Q. The circle L cuts /
in the required points ¥ and ¥’. This cubic appears again
plainly as the product of a pencil of circles and the pencil of
diameters through B. Two points on a ray through B, like
Y and Y7, are always equally distant from #n. To R corresponds
the infinitely distant point of the cubic; consequently, the asymp-
tote is parallel to # and its distance SC from # is equal to RC.

Ex. 1. Prove that the two cubics in Fig. 87 intersect each
- other orthogonally.

Ex. 2. Construct the tangents to the two cubics at B, P, Q.

II1. Cubic with an Isolated Point.

The quadruple consists of two distinct points 4,, 4, and two
coincident points 4,, 4,. It is assumed that the direction of
the line joining 4, and 4,in the limit; i.e., as they become coinci-
dent, cuts 4,4, at B,. B, and B, will coincide with 4, and 4,,
Fig. 88. Joining B, which, as usual, has been assumed infinitely
distant, to B,, B,, B;, and constructing the fourth harmonic rays
to the pairs of sides passing through these points, it is seen by
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passing over to the limit that the fourth harmonic rays at B, and
B, coincide. As before, they cut the fourth harmonic ray through
B, at C, the point through which the asymptote passes.

The pencil of conics through the quadruple cuts every ray
through B to the left of 4, and to the right of 4, in elliptic in-

volutions, and only the rays between 4, and 4, contain hyperbolic
involutions. The only branch of the cubic is therefore contained
between two lines through A, and A4, parallel to the direction
of B. The ray through 4,4, carries a parabolic involution, and
4,4, represents an isolated point of the cubic.

IV. Nodal Cubic.

Assuming in the fundamental qnadruple 4, and 4, real and -
coincident and 4,, 4, conjugate imaginary, a cubic with a double-
point or node at 4,4, is obtained. In Fig. 89 a vertical line
through 4,4, represents the limiting direction of the line joining
the two points. As conics of the pencil through the fundamental
quadruple take the pencil of circles tangent to each other at 4,4,
and to the vertical line. A4,and A, are then represented by the
circular points at infinity. To construct the cubic associated with
an arbitrary point B, draw rays through B. On each of these
rays the pencil of circles cuts out an involution whose double- :
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points are points of the cubic. These points are, of course, also
the points of tangency of circles of the pencil. Hence, to find
the points where a ray g through B cuts the cubic, take the point
M where g cuts m, the line joining 4, with 4,, as a center of a
circle K passing through 4,4,. K cuts g in the required points
X and X’. From this it is seen that the nodal cubic is also

!
{
| Asymptote
L
\ .
{
' i

FiG. 89.

the product of a pencil of circles with coincident limiting points
and a pencil of diameters. As X and X’ are equally distant from
m, the asymptote is parallel to m at a distance to the left of m
equal to BA, (BA, L m for the sake of symmetry.)

V. Cuspidal Cubic.

In this case three of the four real points of the fundamental
quadruple coincide. Constructively this can be arranged best by
assuming as the pencil of conics a pencil through a fixed point 4,
and with its conics all osculating each other at another- fixed
point which evidently may be considered as the representative
of the three coincident points 4,, 4,, 4,.

To construct a pencil of osculating conics we may start
with the construction of § 41, g, Fig. 67. There it was shown
that the picture of a circle in a perspective collineation whose
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center lies on the axis of collineation and also on the given circle
is a conic osculating the given circle at the center of collinea-
tion. Hence, considering in Fig. go the line s joining 4,
with the coincident remaining points as the common axis of an
infinite number of perspective collineations in which only the

counter-axes vary, the pictures of a fixed circle K through
A A,454, form clearly a pencil of osculating conics.

On every ray g’ (or the identical g,") through a fixed point B
(assumed infinitely distant) this. pencil cuts out an involution
whose double-points are two points on the cuspidal cubic asso-
ciated with B in the Steinerian transformation. These points
are also the points of tangency of g’ (g,) with two conics of the
pencil. For the actual constructien of these points the following
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simple method may be applied: Let g’ intersect s at S. From
S draw the two tangents g and g, to the circle K.! Through the
center of collineation or the cusp draw a line / parallel to the
direction of B. Let T and T, be the points of intersection of
with g and g,, and through T and T, draw two lines 7 and r,
parallel to s. Considering 7 and 7, as counter-axes of two dis-
tinct collineations with the same axis s and the same center, then,
according to the constructions of collineations, g’ and g,” will be
the pictures of g and g, in these two collineations, and the rays
joining 4 to G and G, cut g’ (g/) in two points G’ and G, which
evidently are the points of tangency with g’ (g,”) of the two oscu-
lating conics corresponding to the fixed circle K in the two colline-
ations (r, r,). The line / cuts K at U; the tangent at U cuts s
at V; and from the construction follows that the line through V
parallel to / is an asymptote. In a similar manner the lines join-
ing C to the points of tangency W and W, of the tangents to K
parallel to s are the directions of the two other real asymptotes.
By a suitable collineation this cuspidal cubic may be transformed
into the symmetrical form of Newton’s parabola cuspidata.

Ex. 1. Prove that if s is a diameter of K and the direction
of B is perpendicular to s, then the above cubic degenerates into
an equilateral hyperbola.

Ex. 2. Prove that if K is tangent to s, then the cubic degener-
ates into a parabola.

Ex. 3. A pencil of cubics is determined by two cubics or by
eight arbitrary points of which no four are in the same straight
line. But it is clear that the two cubics determining the pencil
have nine points in common, hence all cubics of the pencil pass
through these nine points. In other words: All cubics passing
through eight fixed poinis pass through a ninth fixed point.

Ex. 4. Through four points 4, B, C, D of a cubic draw the
pencil of conics (K). Every conic K of this pencil cuts the
cubic in two points P and Q. Prove that the secant PQ cuts
the cubic in a fixed point.

11n Fig. go K is the only circle shown, and / is the line through 4 (':utting
this circle at U.
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Ex. 5. Let two straight lines / and m cut a cubic in the points
4, B, C and D, E, F. Construct the points of intersection
G, H,I of AD, BE, CF with the cubic and prove that they are
collinear.

Ex. 6. Construct the cubic in the Steinerian transformation
when one of the points of the quadruple is infinitely distant.




CHAPTER V.
APPLICATIONS IN MECHANICS.

§ 52. A Problem in Graphic Statics.

1. Let 1, 2, 3,...be a system of coplanar forces in a plane,
Fig. g1a. With O and O’ as poles construct two force-polygons,
Fig. 91d, and in the previous figure the two corresponding funicu-
lar polygons. Considering in both figures the lines o, o12, 0’12,
o), 12, it is seen that corresponding lines are parallel and that
they form in each case five sides of a complete quadrilateral.
Hence, according to the last theorem of § 25, also the line joining
the intersections of o and o/, and of o12 and 012, in Fig. 914, is
parallel to OO’ in Fig. 91d. In a similar way it can be proved
that the line joining the intersections of o12 and 0’12, and of o123
and 0’123, in Fig. 914, is parallel to 00’ in Fig. 91b, i.e., identical
with the line joining (o and o’) with (o12 and o’12). This result
may evidently be extended to any number of forces, so that we
have the theorem: ) —

Corresponding sides of two funicular polygons of a system
of coplanar forces intersect each other in poinis of the same straight
line.t

COROLLARY.—If the forces are concurrent, they and the two
funicular polygons determine a perspective collineation.

2. The value of this theorem will appear from the solution
of the following problem:

Two bars, AC and BC, connected by a’ pivot-point at C, are
supported by pivots at A and B (Fig. 92). Two forces, 1 and 2,

1 In Cremona’s Graphic Statics this theorem follows from the fact that the twa

figures (¢ and b) form two reciprocal figures. See loc. cit., p. 127.
) 217
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are applied to the bar AC, and in the same manner two forces,
3 and 4, to the bar BC. To find the reactions at the poinis A, B, C.

F1G. 91a.

FiG. g1b.

First determine magnitude, direction, and position of the
resultants (12) and (34) of the forces 1, 2 and 3, 4 by means of
the polygon of forces (Fig. 92b) and the funicular polygon
(Fig. 92a). Then construct the funicular polygon of the result-
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ants (12) and (34) with O’ as a pole and with its first side pass-
ing through A. Every funicular polygon constructed in this
manner will be collinear with every other, and with the point
of intersection M of (12) and (34) as the center of perspective

collineation. Now it is clear that the polygon passing through
4,C,and B, and formed by the reactions at these points, is also a
funicular. It is therefore collinear with the first polygon (¢/, 0’12,
o’1234). Projecting the points C and B from M upon the funicu-
lar sides (0’12) and (0'1234), respectively, the projected points
C’ and B’ will correspond to C and B in a perspective collinea-
tion. Hence the lines BC and B'C’ will intersect each other
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in a point S of the perspective axis s. By this point and the
point 4 the axis is determined.

FiG. 92b.

The directions ofl the reactions at 4, C, and’ B intersect the
funicular lines o/, 0’12, 0’1234 in points of the line s, and they
may easily be-drawn. To find the magnitudes of the reactions,
draw lines parallel to their directions through the points 4,, C,,
B,. These lines necessarily meet in a point O, of the straight
line g. Thus 0,4,, O,B,, O,C, are the magnitudes of the reac-
tions at the points 4, B, C.

§ 53. Statical Proofs of Some Projective Theorems.

1. Constructing a funicular polygon of a system of coplanar
forces 1, 2, 3,..., n, it is known that the resultant of the system
passes through the point of intersection of the forces (o) and
(0123 ...1) of the funicular polygon, and is also the resultant
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of these two extreme forces, with (o) reversed. Hence, when
the system is in equilibrium, the forces (o) and (o123...%)
must coincide. Hence the theorem:

A funicular polygon of a system of coplanar forces in equilibrium
is a closed figure.

Consider now three forces 1, 2, 3 in equilibrium, Fig. 93a, and
draw any triangle o, o1, o12 having its vertices on these forces.
Draw also, in Fig. 93b, the force-polygon 123. Through the inter-

Fic. 93b. F16. 93a.

section of 1 and 3 in (b) draw a line parallel to o in (a); through
1 and 2 one parallel to c1 in (@). These two lines intersect each
other in a point O. Now connect O with the intersection of
2 and 3. Thus three forces O4, OB, OC are obtained, and
if O is assumed as a pole and starting out with the original line
o in (b), a funicular polygon is obtained which coincides with the
original triangle o, o1, or2. Hence the theorem:

Amny triaggle whose vertices lie on the lines of action of three
forces in equilibrium may be considered as a funicular polygon
of these forces.

Consequently, according to the theorem of § 51, if we take
any two triangles with their vertices on the three: lines of action,
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the three points of intersection of corresponding sides are collinear.
As any three concurrent lines may be chosen as lines of action
of three forces in equilibrium, we thus have proved the well-
known theorem concerning homologous triangles.

2. THEOREM. The middle points of the diagonals of any com-
plete quadrilateral are collinear.*

MiNcHIN ? gives the following proof for this proposition: Let
ABCDEF be the complete quadrilateral. Take the following
system of forces, supposed act-
ing on a rigid body: two forces
represented by DA and DC in
magnitudes and senses, and
two represented by B4 and BC,
Fig. 94

Now the resultant of the
first pair passes through «, the
middle point of AC; so does

Fic. 94. the resultant of the second
pair; therefore the resultant of the four forces passes through a.
Also the resultant of D4 and BA passes through j3, the middle
point of BD; so does the resultant of DC and BCZ; hence the
resultant of the four forces also passes through 8. We shall now
show that it passes through y, the middle point of EF. For
this purpose introduce a force ED and a force DE which do not
alter the given system. Introduce also forces CE, EC; CF, FC;
FB, BF. Hence the given system is equivalent to forces EA,
AE; DF, DE; BE, BF; EC, FC; and it is obvious that the
resultant of each of these pairs passes through y; hence the
resultant of the whole system passes through 7. Now as the
resultant of the given system acts in a right line, and as a, 3, 7
have been independently shown to be points on this resultant,
these points are collinear. Q.E.D. b
3. Pascal’s theorem, that the intersections of the opposite

! CHASLES, loc. cit., arts. 344, 345.
3 Treatise on Statics, Vol. 1, pp. 145, 146.
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sides of a hexagon inscribed in a circle lie in a right line, is easily
exhibited as a case of the
funicular property in § 52.
Following again Minchin, loc.
cit., let the lines DA, EB, FC
in Fig. 95 be lines of action
of three forces, P, Q, R, such
that if P is resolved at 4 into
two components along AB,
APF, or into two at D along
DC, DE; if Q is resolved into
two at B along B4, BC, or
into two at E along ED, EF;
and if R is resolved at C
along CB, CD, or at F along
FE, FA, the two compo- Fc. 5.

nents thus obtained along .

any side are equal and opposite. Obviously such conditions are
consistent, on account of the equality of angles in the same seg-
ment of a circle. Now if P, Q, R are applied at 4, B, C, by
the nature of the case a polygon FABCD of jointed bars pivoted
at F and D would be kept in equilibrium; i.e., this is a funicu-
lar of the forces. Again, let P, Q, R be applied at D, E, F to
a polygon CDEFA of jointed bars pivoted at C and 4. This
polygon would be in equilibrium, and a funicular of the forces.
The two funiculars of the same forces, however, have the property
that the intersections, a, 3, 7, of their corresponding sides (4 B, DE),
(BC, EF), (CD, FA) are collinear. Q.E.D.

Ex. Prove that the medians of a triangle are concurrent.

GEOMETRY OF STRESSES IN A PLANE.

§ 54. General Remark‘s.

-Forces acting on a body cause certain displacements or strains
between its particles. These strains are said to be within the
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elastic limit if after the disappearance of these forces the strains
disappear also; i.e., if the body returns to its original condition.
The forces which occur within the body as a result of the strains
are called stresses. These are called tensions, compressions, or
shears, according as their tendency is to pull the particles apart,
to press them together, or to push them over one another. Accord-
ing to Hooke’s law the stresses in a body are approximately pro-
portional to the corresponding strains as long as they occur within
the elastic limit. In many cases, plane surfaces may be passed
through strained bodies orthogonally to which there are no
strains and consequently no stresses. This is the case in beams
under tension, compression, or bending, and covers a great num-
ber of engineering structures. In these cases the investigation
of strains and stresses is limited to the plane. In what follows
only stresses in a plane will be considered.

The forces producing the stresses in a body and these them-
selves are in equilibrium. The stresses in any portion of the
solid are also in equilibrium. Considering an infinitesimal
plane section in a strained solid, we make the assumption that
the stresses acting on this element are uniformly distributed,
so that their resultant passes through the center of gravity of
this element. For many purposes it is convenient to consider
the resultant stress per unit of the surface-element. This stress,
the resultant divided by the element, is called the specific stress
acting on that element.

§ 55. Involution of Conjugate Sections and Stresses.

1. Calling a plane surface through a strained body with the
stresses acting in this plane (no stresses normal to the plane, as
assumed above) a field of forces, we assume that under the influ-
ence of this field every portion of this plane is in equilibrium.
Thus, if a very small triangle ABC (infinitesimal in all rigor)
is cut out of the field, the resultant stresses acting upon its sides
must' be in equilibrium. According to the assumption of the
uniform distribution of stresses over an infinitesimal section,
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these resultants must pass through the middle points r, a, 8 of
the sides AB=c, BC=a, CA =b, and, being in equilibrium, are
concurrent. Designate these resultants by 4, B, C, as shown
in Fig. 96. Each two of these forces, for instance 4 and B, may
be resolved into components parallel to the sides AC and BC.
Let 4,, A, and B,, B, be these components. 4, and B, act along
the sides BC and AC, while 4, || AC and B,|| BC. As 4, and B,
both pass through 7, their resultant will pass through 7.

F1G. 96.

In consequence, the resultant of 4, and B,, which passes
through C, must pass through 7, since C is the resultant of 4,, B,
and 4, B,, Now Cy is half the diagonal in the parallelogram
having AB as the other diagonal. In order that the resultant
of A, and B, lies in the diagonal Cy the proportion

4, B,
a b

B
must hold. é? and =7, however, are the specific stresses acting
a b

along the sections BC and AC. Hence the theorem:

If the specific stresses acting on two different sections at a point
are each resolved into components parallel to these sections, then
the components acting along these sections are equal.
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If the sections AC and BC are perpendicular to each other,
A, and B,, 4, and B, represent the normal and transversal com-
ponents of the stresses. Hence the corollary: »

The transversal stresses acting on two perpendicular sections
are equal.

Taking at C any section CB and the stress 4 acting on it and
drawing another section CA parallel to 4, we have 4,=A4, B,=B,
A,=B,=o0. This gives the corollary:

If the force A acting on a section CB is known, then the jorce B,
acting on a section CA parallel to A, is parallel to CB.

Fi16. 97.

2. According to this corollary for every section through a
point C there exists a certain stress acting on this section, such
that if the direction of this stress is considered as a section, the
stress belonging to this section acts along the original section.
This, however, is a clear expression for the involutoric character
of the directions of sections and corresponding stresses.

To prove this dlrectly, keep in F1g 97 the stress. 4 and the
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direction of the stress B| CB constant, and let the section BA
turn about the fixed point B. The extremity 4 of BA traces
on the section CA a point-range A4,4,..., so that the corre-
sponding stresses B, B,, B,... are proportional to the distances
CA, CA,, CA,,.... In the force-polygon the extremities of
the B-stresses are marked by LL,L,..., and the corresponding
C-stresses are ML, ML,, ML,,.... Now the distances NL, NL,,
NL,, ...are proportional to the distances CA, CA,, CA4,,...;
hence the projectivity of the pencils

(B-AAA,...)A(M-LL,L,...).

Moving these pencils parallel to themselves so that M coin-
cides with B, we have at B an involutoric pencil of sections and
directions of corresponding stresses.

§ 56. Discussion of this Involution.

In Fig. 97 the sections C4A and CB are both acted upon by
compressions; in consequence the stress acting on the section is
a compression. From the figure it appears clearly that corre-
sponding rays of the involution in this figure move in the same
direction. Hence, according to § 3, the involution is elliptic.
The same is true if there are only tensions. In these cases there
are no double-rays, i.e., there are no sections where there are only
shearing (transversal) stresses. In all sections the material is
either entirely under the influence of compressions or under the
influence of tensions.

As every involution in a pencil admits of two rectangular rays,
it follows that through every point of a plane of stresses there are
two sections on which only normal stresses are acting. In case of
elliptic involutions these normal siresses are either both compres-
sions or both tensions.

If in Fig. 97 one section, say C4, is acted upon by a tension
and the other, CB, by a compression, it is apparent that corre-
sponding rays of the involution (§ 3) move in opposite directions.
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The involution is hyperbolic and has two real double-rays
(sections) in which only shearing stresses are acting.

Considering two corresponding rays BA and C, they are al-
ways separated by one of the double-rays, say d,, Figs. 98 and gg.
If a compression acts on BA, it will be so when BA approaches

F1G. 9¢8. FiG. 99.

d,. But as soon as these corresponding rays have crossed the
double-ray d,, the section AB is acted upon by tension. From
this it follows that the material included by one angle formed by
the double-rays is subject to tension only, while the supplementary
part is subject to compression only.

As the angles formed by the double-rays are bisected by
the rectangular pair, it follows that the stress acting on one section
where there is only a mormal siress is a compressive force, while
the stress acting on the perpendicular section is a tensile force.

For a further discussion of these involutions and their exten-
sion to space we refer to Ritter's Graphische Statik, Vol. 1, pp.
146, published by Meyer & Zeller, Ziirich.
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§ 57. The Stress Ellipse.! Metric Properties of the
Involution of Stresses.

1. According to the previous section the specific stress acting
on every section through a fixed point can be constructed as soon
as the specific stresses acting on any two sections are known.
In Fig. 100 assume these two sections, CA and CB, parallel to the
x- and y-axis of a Cartesian system, and let the variable section
AB include an angle a with the positive part of the x-axis.. As
in Fig. 96, resolve the stresses A and B into transversal and

N

F1G. 100.

normal components 4,, B, and 4,, B,. Designating the specific
stresses determined by these components by ¢,, 4, and n,, n,, we
have A,=a-n, B,=b-n, A,=a-t,, B,=b-t,, Evidently ¢,=¢,=¢,
say. The resultant C of A and B can also be resolved into trans-
versal and normal components 7" and N with the corresponding
specific stresses = and v, so that T=cr, N=cv. Let X and ¥
be the components of C parallel to the coordinate axes. Desig-

1Elegant graphic constructions for stress-ellipses may be found in RITTER’S
Graphische Statik, loc. cit. For a tharough analytic discussion see M. LEvy’s
Statique Graphique, Vol. I, pp. 527-548 (Note IV).
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nating the specific stresses by § and 9, X=c¢{, Y =¢y. From the
figure we have .

a=csina, b=—ccosa,
X=4,+B,=an,+b-¢, or
X=c(n, sina—1t, cosa) and
§=m, sin a—1#, cos a.
Y=B,+4,=bm,+at, or
Y =—c¢(m, cos a—¢, sina) and
n=—m, cos a+*#, sin a.

Now |

v=—7y cos a+ ¢ sin @, hence
v=n, cos’ a—{, sin a cos a+n, sin®a—¢, sin a cosa, or
v=13(n,+m,)+4% cos 2a-(n,—n,)— % sin 2a-(4,+¢,).

Similarly,

t=§ cos a+7nsina, or

Tv=n, sin a cos a—#, cos? a—mn, sin a cos a+¢,sin*a, or
t=3%(n,—mn,) sin 2a+3(¢,—¢,)—3(¢,+1,) cos 2a.

As t,=t,=t, we have finally

(1) v=4(n,+n,)—3(n,—n,) cos 2a—1 sin 2a,

(2) t=4%(n,—mn,) sin 2a—1¢ cos 2a.

Designating the angle which the direction of C makes with
the positive x-axis by 3, we have

_n _ —mcosa+i, sina
tanﬂ——e - m,sina—t cosa’
or
ttan a—mn,
tan f=—-—2

" m, tan a—1¢



APPLICATIONS IN MECHANICS. 231

Solving for tan a, we get

¢ tan f—n,

&) tan & =n“ tan f—¢’

which clearly shows the involutoric character between the direc-

tions of a section and the stress acting on this section. This is-

in agreement with the geometric discussion of stresses in § s55.
For the double-elements of this involution we have

tan f=tan a=m,
nm*—2tm+n,=o,

m=t:i:\/t’—nanb‘

L

(4)

These values for m are real when n, and n, have different
signs; in this case the involution is hyperbolic. If #, and #,
both have the same sign, and #,n,>#*, then the involution is
elliptic. For nn,=¢* the involution is parabolic and tan a=
¢ . ' . o
;—=const.; i.e., the stresses all act in the same constant direction.

a
This is the case in a rod under tension or compression exclu-

sively.
2. Letting v, and v, be the normal specific stresses on two

perpendicular sections determined by the angles a and a——’—;,

and =+, the transversal specific stresses in these sections, from
the formulas for v and 7 we get

Ty — WY, =1*—n n, = const.

To get the rectangular pair of the involution, we form

t tan a—mn,
tan a—
tan (a—B)= n,tan a—1¢
ttana—mn,
1+tan
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ltan a—mn,

=0, or
n,tana—¢

In this a—p=’2i, if 14+tana-
¢t tan®? a4 (n,—mn,) tan a—t=0, or

_t—n V(= n)+ 478

tan
2t

an expression which is always real.
From this, and also from the expression for =0, follows

2t

n,—n,’

(5) ' tan 2a=

3. We shall now find the locus of the extremities of the specific
c . . . .
stresses — acting on all sections. Its coordinates: are evidently

¢ and r) when ‘referred to the point of application as an origin.
-From

6) n, sin a— #, cos a=§,
) t, sin a—mn, cos a =1,

the expressions for sin @ and cos & result:

1

. né—i

sin ¢ =—2 2,
anb_t .
§—n

cosa= "2,
anb—t

and since sin? @+ cos? @ =1, the required equation
@)  Em + )= 269(n,+n)t+ 9’ (n, + 1)) — (nn,— 17)*=0
results. In this equation

(1’ + ) (n,'+ %) — (n,+n,)°0 = (n m,— 1°)*> o;

it represents, therefore, an ellipse, the so-called stress-ellipse.
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From analytical geometry, § 31, the angles 6 and 0+§— of the

axes of this ellipse are determined by

- —2i(n,tny) 2t
(9) tan 20—”b3+ 12— ("’n2+ l’) = ”a_ ”b .

Hence, according to (5), we have the theorem:
The axes of the stress-ellipse coincide with the rectangular
pair of the involution of stresses around the center of the ellipse.
From
v=4(n,+n,)—%(n,—n,) cos 2a—1sin 2a

we find, by differentiation with respect to a, the condition for
maximal and minimal normal stresses,

¢ sin 2a(n,—n_)— 2t cos 2a =0,
or
2t

a_nb

(10) tan 2a =

Hence, according to (5), the theorem:

The maximal and minimal normal siresses occur on the sections
of the rectangular pair of the involution, or on the axes of the stress-
elh'[:se.. In these sections T=o.

In a similar manner, from

t=4}(n,—mn,) sin 2a—¢ cos 2a

we find for the maximal and minimal shearing stresses the condi-
tion
”a— nb .

)

2t

(11) tan 2o/ =—
hence, from (10) and (11),

T 4
tan 2a-tan 2’ =—1, 2a=2a,:|:—2, a’=aj:;, or:

T he directions of the maximal and minimal shearing stresses
bisect the angles formed by the maxima! and minimal normal
stresses and are equal (except as to sign).
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4. The directions B, and f, of the stresses corresponding to
two rectangular sections with the inclinations a@ and cz-{-‘;i are,

~according to (3), determined by

’ {tan a—mn

(12) tan f,=———2
2 n, tan a—¢’
) t cot a+m,
(13) tan By= — ot
? m,cot a+t

¢ tan fB,—m, n, tan B,—¢

From (12), tan a—na tan fi— cot a=; tan B—n,"

Substituting this in (13) and reducing, we get

1n, ) tan i (124 )
(14) a0 5= o 17 tam By, —dim )

From this formula follows at once: ,

The directions of pairs of siresses corresponding to pairs of
perpendicular sections form an involution.

This involution is identical with the involution of conjugate
diameters of the stress-ellipse.

To prove the second part of this theorem, form the equa-
tion of the polar

(15) &&,(n 2+ %) —(§in+ &) (na‘l' ”b)t+ ﬂﬂl(”qz'*'tz) —(nn,—t*)>2=0

for any point (§,, 7,), for which h_tan B, with respect to the

1
stress-ellipse.
For the point infinitely distant in the direction of B, there

still is 2=tan B, and §,=o0, n,=o. Hence

1

E(m,+1%)— (9+¢ tan B,)(n,+n,)+ 7 tan B, (n,*+#*) =o,
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‘or
n_ t(n,+m,) tan B,— (n,2+ 1)
& (n}2+8) tan f—t(n +m,)’

which is nothing else than tan 3, in (14), Q.E.D.
5. The normal stresses, v, v,, on two perpendicular sections,

determined by the angles @ and a— g, are

v =%(n,+n,)—4(n,—n,) cos 2a—1 sin 2a,
v,=%4(n,+n,)+3(n,—n,) cos 2a+1¢ sin 2a.
Adding, we get
(16) v,+v,=n,+n,=const.

Hence the theorem:

The sum of the mormal stresses acting on two perpendicular
sections is constant and equal to the sum of the maximal and mini-
mal normal siresses.

6. Between the angles § and a which the directions of a sec-
tion and the corresponding stress make with the positive x-axis
the involutoric relation

t tan a—mn,
n,tan a—1¢

(64)] tan f=

exists. The central ray of the involution, for which 8=o, is deter-

mined by tan a=Z:—”. Designate this value of a by 7, so that

’—:9=tan r. Take a line parallel to the ray for which ﬂéo, at a

distance p from it, and project the involution of stresses on this
line. Then, from Fig. 101, AC-BC=const. To determine this
constant, we have BC=BD—CD, AC=CD+DA; hence

ace=— (k) (k)
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or, after reducing,

— 73
nn,—1t
2

y

(18) AC-BC=—p* =Fk, say.

In a similar manner, for the constant of the involution of
conjugate diameters of the stress-ellipse we find

(nm,—*)?

(19) AlCl 'Blcl = ?’ (”bz+ tz)z

=Fk,, say.

Assuming that #n, and #, are normal stresses on two perpen-
dicular sections, then t=o. Without loss of generality we may

B=o0
p
v a
B c D A
Fr1G. 101.

also assume p=1, so that (18) and (19) become

n n,

(20) k=T, k,=—<—)2=_kz,'

b y

where 7, and n, now designate the maximal and minimal normal
stresses. Hence, when the stress-ellipse is known, it is not diffi-
<ult to construct the involution of stresses.

§ 58. Examples.
1. A plane linear deformation is defined by the equations

&’ =ax+by,
@ { ¥ —a+by. \
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Referring the points (¥, ¥) and («’, ') to an oblique system
of coordinates (£, 7) having the same origin and whose axes
include the angles a and a, respectively, we have

(2)

x=§ cos a+ 7 cos a,,
y=¢ sin a+ 7 sin a,.

Applying this to the points (x, y) and («’, ¥’), we get, accord-
ing to (1),

& cos a+ 1 cos @, =&(a cos a+b sin a)+ y(a cos a,+ b sin a,),
& sin a+ v sin «, =§(a, cos a+ b, sin a)+ 7(a, cos a,+ b, sin ,),
or, solving for & and 7/,

1 . . .
8’=m{€(a cos a sin &, + b sin & -sin a,— @, cos & cos @,
— .

—b, sin & cos a,)+ 7[b sin? @, — @, cos? a,
+ (a—b,) sin a, cos a,]},

7= sin(a——_I—T) {&[b sin? a,— a, cos® @+ (a—b,) sin a cos ]
1

+ 5(a cos a, sin a+b sin @, sin a— @, cos a, cos @
—b, sin a, cos a)}.

In these expressions we can choose the angles @ and «, in:
such a manner that tan « and tan e, are the roots of

b-tan®’ a+ (a—b,) tan a—a,=o,

so that .
tan a= b—a+ \/(b,—— a)’+ 4a!b’
2b .
—_—— — 2
fan a _b—a A (b,—a)’+ 4alb.

2b
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Under these conditions the coefficients of 7 and & in the ex-
pressions for &’ and 7/, respectively, vanish and the linear trans-
formation in this system of oblique coordinates assumes the form

[ o _ —2(b—2a.0)+ (@+b,)+ (a+b)V B—0) + 225
&= Ll WAL it £
\/(b,— a)*+ 4a,b
7= 2(ab,— 20,b)— (¢’ +b,") + (a+ bl)\/(bl“ a)’+4a,b 7.

V/ (b,— a)*+ 4a,b

3)

From these formulas follows that the linear deformation (1)
may be considered as two consecutive stretches along two oblique
axes or directions. The angle ¢ formed by these axes is deter-
mined by

A/ (b,— @)+ 4a,b

tan ¢p= —
1

2. Evidently the rectangular transformation

o {xl:ax"

y =by

is a special case of (3).
The elongations along the x- and y-axes are’

x— —
x=a—1 and u=b,—1.
x Y

We can also write (4) in the form

¥ =x+(a—1)x%,
(5) { ¥y =y+(b—1)y.

Consider (5) as the analytical expression of a strain in‘a very
thin plate which is assumed to have the property of a perfect
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solid. Then a—1 and b,—1 are very small numbers. The
strain-ellipse has the equation

a*x?+ byt =12,

By the linear deformation certain stresses are produced which
according to Clebsch ! may be expressed in terms of the strains
a—1and b,—1. In our special case there are no shearing stresses
along the x- and y-axes, so that in the formulas ?

N,=M+2pa, N,=20+2udb

we have 6=a+b,— 2, A=p for a perfect solid, a=a—1, b=b,—1,
N,=n,, N;=n,; hence

"a = A(3a+ bl— 4))
7y = A(a+ 3b,— 4), -~
and the equation of the stress-ellipse

x2 y?
2 it 3=
A*(3a+b,—4)* " A(a+3b,—4)

I.

§ 50. The Rectangular Pair of the Involution of Stresses in
’ Nature.

In the sections corresponding to the rectangular pair of the
involution only normal stresses are acting and these represent
the maximal and minimal normal stresses. If at the point con-
sidered we advance an infinitesimal amount in the direction of
one of the conjugate rectangular sections, for instance that for
which the normal stress is a maximum, we can at this place,
infinitely close to the first, again construct or calculate the two
rectangular pairs of the involution. On the section for which

1 Theorie der Elasticitit fester Korper, Leipzig, 1862.
2 MINCHIN: Treatise on Statics, Vol. 11, p. 435, fourth edition.
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the normal stress is a maximum we can again advance an infini-
tesimal distance and then construct the two conjugate normal
sections, etc. In this manner a curve is obtained along which
the normal stresses have their maximal values. If these stresses
are tensions which are greater than the elastic limit of the material,
then the material will rupture along this curve (maximal tension
curve). In a similar way a curve may be drawn through the
point along which the normal stresses have their minimal values.
" If the involution is hyperbolic, this curve is a maximal compres-
sion curve, since the stresses along this curve are maximal with
reference to the compressive stresses.

OF THE

ARAPAHOE GLACIER

AUGUST 1902

V4 MILE

Fi16. 102.

This case of a hyperbolic involution is shown in Fig. 102,
which shows the crevasses of Arapahoe glacier.! The stream-

! From a drawing by Professor N. M. FENNEMAN in an article: The Arapahoe
Glacier in 1902, Journal of Geology, Vol. X, p. 841.
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lines represent the curves of maximal compression, while the
crevasses cutting the stream-lines orthogonally represent the
maximal tension curves. The case of an elliptic involution
where there are only tensions is illustrated by the cracks which
form on a heavily varnished surface or in a mud-bed which is
drying up. In this case only tensile normal stresses act on the
rectangular pair. One is a maximum, the other a minimum.
We should therefore expect that the maximal tension curves
would form a system of more or less parallel curves. This,
however, does not occur, as is seen from Fig. 103, in which the

F1G. 103.

cracks intersect or meet orthogonally. This can be explained
in the following manner: After a crack has formed, the maximal
stress and strain normal to the crack has been relieved, so that
the former minimal normal tension along the crack now becomes
the maximum. Hence the next rupture will be orthogonal to
the first crack.?

1 See my article on this subject in the American Mathematical Monthly, Vol.
VII, pp. 134, 135. Further examples may be found in Ritters Graphische Statik,
Vol. I, pp. 128-134.
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REALIZATION OF COLLINEATIONS BY LINKAGES.

§ 60. Introductory Remarks.

We have seen that collineations may be produced analytically
and synthetically by different methods. In what follows a num-
ber of linkages will be described by which collineations may be
realized kinematically. Linkages, like pantographs, translators,
etc., devised for some special purpose have been known for a
long time. The history of linkages in connection with the theory
of geometrical transformations, however, dates back to the year
1864, when PEAUCELLIER found a rigorous solution for the prob-
lem to describe a straight line by a link-motion.! Since that
time a number of geometers, among whom the English SYLVESTER,
HArT, RoBERTS, CAYLEY, and KEMPE occupy the foremost places,
have made a systematic study of linkages and their geometric
properties and have found a great number of important results.
Among these investigations probably the most interesting are
those of KEMPE and KoENics. The first proved the theorem
that it is always possible to find a linkage so that one of its points
describes any given algebraic curve. Koenigs generalized this
by proving that every algebraic surface and curve may be described
by a linkage. As a result of these interesting theorems it is not
difficult to prove that any algebraic transformation between any
number of variables may be realized by linkages.? The diffi-
culty lies in the actual construction of such linkages. Recently
Koenigs has invented a linkage which realizes a general projec-
tive transformation in a plane.® '

! Nouvelles Annales de Mathématiques, 2d series, Vol. III (1864), p. 144.

? KoENIGS: Legons de Cinématique (1897), pp. 262—307. See also Transac-
tions of the American Mathematical Society, Vol. III, pp. 493-498 (Oct. 1902),
where the author proves that any number of algebraic relations between n complex
variables may be realized by a plane linkage.

3 Comptes Rendus, Vol. CXXXI, p. 1179. The different cases of collineation
were worked out by HERMANN EMCH in his Master’s Thesis at the University of
Colorado, 1902.
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To have a definite idea about the character of the plane
linkages to be considered I set down Koenigs’s definition:

A plane linkage (systeme articulé, Gelenkwerk) is a combina-
tion of plates or plane figures subject to remain in one and the
same plane, among which a certain number are connected to each
other by hinges or pivots perpendicular to the common plane.

In this definition it is assumed that the links move by each
other without interference, which means that the links, consid-
ered as material, lie in a series of close parallel planes.

Every linkage is constructed in such a manner that one of
its pivots is fixed and represents the origin O, while others repre-
sent the algebraically related variables. The points of the link-
ages will always be designated by the same letters as the corre-
sponding variables.

Two or more linkages each involving two variables may be
combined in the following manner: Suppose L, L,, Ly, ..., La
are linkages realizing the transformations

“'_"i(ul)r ‘"1=i1(u2)’ sy “n—1=in—1(un), un:iﬂ(z)'

Let the origins of all these linkages coincide; attach the pivot
%, of L, to the pivot %, of L,_,; attach the pivot »,_, of L,_, to
%, ,of L, , and so forth; finally the pivot #, of L, to %, of L.
Then the point # of L evidently realizes the compound trans- -
formation

U=H{Ifa- - fns(fn(2))]} =F (2).

Linkages involving more than two variables may be similarly
combined.

The range of effectiveness of a linkage is, of course, limited
to a certain finite portion of the plane. This range, although
in some cases small, always exists.
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§ 61. Analytic Formulation of the Problem.

We shall consider only the most importaxit cases of collinea-
tion. A great number of special cases will be left as exercises
for the, student.

The most important cases are the linear transformation and
perspective. A linear transformation

) { x,=ax+by+c,
G n=du+ey+]

may be considered as made up of four subgroups: (1) the two- -

termed tramslation, (2) the one-termed rofation, (3) the two-
termed dilation,! (4) the one-termed elation. By a translation
(p, ¢) and a rotation (¢) the point (x, ) is changed into («/, ¥').

&’ =x cos ¢—y sin ¢+ P,
(2) {y’=x sin ¢ +y cos ¢+gq.
A dilation
x'=ax,
© (v

changes (¥/, ¥’) into (x”, ¥):

{ & =ax cos ¢—ay sin ¢+ ap,
@ ¥ =Bz sin ¢+ By cos $+Pa.
Finally by the elation
x = 4 1y,
(5) { "= ¥
we get

© { x,= (& cos ¢+ A0 sin ¢p)x+ (AB cos p—a sin P)y+ap+ABq,

y,=0 sin ¢-x+ cos ¢-y+Pq,

1 Term used by S. LIE, loc. cit. It is equivalent with dilatation, p. 6o.
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which by properly choosing a, 8, 4, ¢, p, g, the six parameters,
may represent any linear transformation of (¥, y) into (xy, ¥,).
To prove this let

a cos ¢+ A8 sin p=a,
A8 cos p—a sin ¢p=b,
ap+ Aﬂq =0
B sin ¢=d,
B cos p=e,
ﬂq=i ’
'
which represent six equations with six unknown quantities a, 3,
4, ¢, p, ¢. Solving, we get

ae—bd

e’

ad+be

B=Vd"+¢, 1=';1ae—z,

a=

c(d*+ e?)— j(ad+ be) _ f
ae—bd ’ q_\/dz_*_en'

d
¢=arc tan o p=

Substituting these values in (2), (3), (5), we obtain a trans-
lation with rotation, a dilation, and an elation which in succession
transform (x, y) into (¥, ¥'), (*/, ¥’) into (x”, ¥’), and finally
(%", ¥") into (%, ¥,) in such a manner that (,, y,) is connected
to (x, y) by the linear transformation

{xl=ax+ by+ec,
N

) =dx+ey+f.

Applying to (x,, ¥,) the perspective

X
R S—
dlxl+ ely!+f1
@) N
y=

1+e1yl+f1
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we have
o ax+by+c ,
()  (doted)x+ (db+ee)y+ )]
' dx+ey+f

Y = @t eadwt @b +ee)y )y

which may represent any projective transformation. The linear
transformation is a six-termed and the perspective a three-
termed group, so that their combination (9) contains nine param-
eters, although the general projective group is eight-termed.
This is due to the fact that both the linear transformation and
the perspective contain the one-termed group of similitudes as a
subgroup. These considerations, which may be found in a liitle
different form in § 19, have been repeated here for a clearer under-
standing of what follows.

We shall now proceed to describe linkages realizing the trans-
formations in question. Theoretically only such linkages should
be admissible in which a link joins two and only two points.
In other words, no three points in a straight lire should be ad-
mitted @ priori. It is, however, very useful for practical pur-
poses to make this last assumption. For some transformations
we shall construct more than one linkage in order to show the
advantage which one or the other may have.

Combining the linkages involved in the linear transforma-
tion and in perspective according to the scheme explained in
the last part of § 60, a compound linkage for a general collinea-
tion is obtained. :

§ 62. Peaucellier’s Inversor.

In our particular investigation of link-motions the problem
to draw a straight line theoretically correct is of the greatest im-
portance. This can be done by Peaucellier’s inversor (loc. cit.)
or by Hart’s linkage (Koenigs’s Cinématique, p. 267). Peau-
cellier’s inversor is of greater principal value and will be described
here.
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It consists in the first place of a rhombus ABPP’ and two
equal links 40 and BO. 1In all these points the links are joined

by pivots, Fig. 104. Designating O4 =OBby e, AP=PB=BP’ =
P'A=b,AA’=c,wehave OA’=4(OP+OP'),A’P=3(OP'—OP);
2(OP+OP)2=a*—c*; ¢*=b>—-}(OP'—OP)?, or }(OP+OP’)*—
$(OP'—OP)*=a—b?, or finally '

OP-.-OP' =a*-b2.

Hence, if O is kept fixed, the points P and P’ are inverse

with respect to a circle having O as a center and Va’—b® as a
radius. If now P describes a circle with M as a center and OM =r
as a radius, we have OP-OP'=0T-0Q, or OP/OT=0Q/OP’;
consequently AOPT ®wA OQP’; and since £ZOPT=go° also
£OQP will be a right angle. Hence, when P describes said
circle, P' will describe a straight line perpendicular to the direction
of OM. '
For the limiting position OSRS’ of the inversor we have
QS8'=4/08"*-00Q?,
or, since ‘
az_ b’

2r

0S"=(a+b)* and 0Q=

Q8= %\/ (a+b)%4r*— (a>— b?)2
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Of course the lengths ¢, b, r must be chosen in such a manner

—b
that the linkage is movable. The conditions are r>aT, fol-

lowing from (a+ b)24r*— (a*—b*)? >0, and, for the case that the
straight line shall not cut the circle of inversion 7< }V/a*— b

Ex. 1. Show that when M, P, and A are in a straight line,
AP 1 S§0Q.

Ex. 2. If the whole linkage is in a vertical plane and OM
vertical, the linkage remains in equilibrium under the action of
any weight suspended at P’.

Ex. 3. If ¢ and b are given, what value must r have to make

QS’ a maximum?

§ 63. Pantographs.

1. Inversor Pantograph.
By means of Peaucellier’s cell A BPQO, a part of the inversor,

P

F1G. 105,

we can locate for every point P a point Q, so that OP-0OQ =a?—.b2.
Applying another cell, 4,B,Q’P’O,, for which 0,0’ -O,P" =a,*— b 2,
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and letting O, coincide with O, and Q with Q’, Fig. 105, then
0,0’ =0Q’, and by division

oP_a-b

OP' a2-b*

Hence, when P describes a figure, P, will describe a similar
figure. Choosing O as the origin of Cartesian coordinates and

C . a=b? .
designating the constant ratio 23—b3 by «, then when O is fixed,
1 1

the linkage of Fig. 105 will realize the transformation of P(x, y)
into P'(«', ¥'):
‘ ¥ =xx, y=xy.
2. Sylvester’s Pantograph.!

Take any two similar triangles, Fig. 106, OAA4’ and APB
pivoted at A4, with ZA’OA= /BAP and £A’AO= /BPA.

Now /ZQA'P'=/LA’AB, LQA'O= LA'OA+ LA’AO; hence
AQA'P’+ LQA'O=LA’AB+ LBAP+ LA'AO, or LOA'P' =
LOAP. But there is also

! Nature, 1875, p. 168,
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hence AOA'P’NA OAP. From this gj, gi and ZAOP=
LA'OP', hence also ZPOP'=/AOA’ and APOP'eo AA04’.
Consequently when P describes a figure and O remains fixed,
P’ will describe a similar figure. The ratio of similitude between
the figures traced by P and P’ is OA/OA’. Turning the figure
traced by P’ negatively through an angle= ZA4’0A4 it will come
similarly situated with the figure traced by P with respect to
the center O. Designating by ¢ the angle A’OA4, and by p the

A’
ratio g 1 Sylvester’s pantograph will realize the combined groups
of rotation and similitude between P(x, y) and P’(x’, ¥’):

=p(x cos —y sin @),
¥y =p(x sin ¢+ y cos ¢).

This becomes a pure rotation when p=1; ie., 04 =04".

The arrangement of this linkage is a little different from
Sylvester’s original pantograph, but does not essentially differ
from it.

" 3. P. Scheiner's Pantograph (1631).

Scheiner’s or the ordinary pantograph appears in the market
under many different forms. One of the simplest is illustrated
in Fig. 107. Two equal sets of links PQ, PR and CP’, CO

FI1G. 107.

pivoted at P and C are placed in such a manner that P is in a
straight line with O and P’, and PQ||CP’, PR||CO. 1In this
position pivots are also placed where PR and CP’, and PQ and
CO meet. From the figure it appears at once that when O is
fixed and P describes a figure, then P’ will describe a figure
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similar to and similarly situated with the first. The linear ratio
between the two figures is OP/OP’. To make different values
for this ratio possible the links may be divided into equal parts,
as shown in Fig. 107. Wishing to enlarge a figure in the linear
ratio 4 : 3, set the pivots where PR and CP’, and PQ and CO meet
at the marks 6, so that OP’/OP=8 :6=4:3. In a similar manner
arrangements for any other ratio may be made by properly
dividing the links.

Although Scheiner’s pantograph is the simplest of all panto-
graphs and consequently exclusively used for practical purposes,
it has the theoretical disadvantage of not being a pure linkage.
Indeed, in Fig. 107 it is assumed that.a link joins three given
points in a straight line. The first two pantographs described
are pure linkages.

§ 64. Rotator and its Combinations.!

1. To realize a rotation through an angle ¢ of a point P(x, y)

into P’(x’, ¥’), so that

&’ =x cos ¢—y sin ¢,

-y =x sin ¢+ 7y cos @,
Sylvester’s pantograph in the case p=1 may be used.. Another
linkage for the same purpose, Fig. 108, is obtained by taking
two isosceles triangles OAC and OBD
pivoted at O, the coordinate-origin, with
LAOC=£BOD=¢ and AO=CO=BO=
DO. Attaching the links PB=PC, P'A =
P'D, pivoted at P and P’ respectively, and
all equal to 40, two equal rhombs OBPC
and OAP’D are obtained. Hence ZAOP=
£LBOP', LPOB= £P'OA, and £ZBOP'+ FIG. 108.
ZPOB=£LAOP+ LCOP,or

LPOP' = LAOC=¢.

! A paper on this linkage and its applications was presented to the Am. Math.
Soc. in Chicago, Sept. 1902, and was published in Vol. I of The University of
Colorado Studies, April 1903. See also Transactions of the Am. Math. Soc..
Vol. ITT, No. 4, pp. 493-498, Oct. 1902.
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Furthermore, PO =PO. The linkage of Fig. 108 can therefore
be used to perform the proposed rotation.

2. The foregoing linkage may be used for various purposes.
In the first place when O is not fixed, we have in the three pivots
P, O, P’ a variable isosceles triangle which in all its deforma-
tions remains similar to some original size. When O is fixed and
P describes a straight line or a circle, P’ also describes a straight
line or a circle respectively. Making ¢=90° and taking two
equal rotators with the points P and P’ attached, a variable
square is obtained.

§ 65. Translators.

One of the simplest devices for translation is that of Kempe.1
It consists of three parallel equal links AD, BC, PP’ which are
connected by CD=||AB and CP' =
|| BP. Letting A coincide with the
coordinate-origin and designating the
coordinates of D by a and b, then for
the coordinates (x, ¥) of P and («/, ’)
of P’ we have from Fig. 109

x'=x+a,

¥y =y+b.

A translator which is more general
is obtained from a linkage which was originally invented to per-
form the addition of any complex variables.” It consists of 12
links, Fig. 110, of which OF =|CE=|BD; FP'=|EG=|DP;
.OC=||FE=|P'G; CB=||[ED=|{GP. 1tisevident that OBPP’
will always be a parallelogram no matter how the linkage may
be deformed. Hence, keeping B and O fixed, P’ represents in
every position of the linkage a translation of P equal to BO and
in the direction of BO.

! How to Draw a Straight Line.
? Transactions, loc. cit.
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§ 66. Linear Transformation.

1. By a combination of rotator and translator it is possible
to realize a general motion in the plane. According to § 61

Fi16. 110.

the next group in making up a linear transformation is the dila-
tion .

x’=ax’.

y' =By

The linkage for this transformation is shown in Fig. 111.t
Let OA=«'. By a Scheiner pantograph (which we choose for
the sake of simplicity), in which OB/OA =a and consisting of
the links OC, CB, DA and AE, a point B is realized for which
BO=«""=ax’. One of the points 4 and B is kept on the x-axis
by a Peaucellier inversor. To 4 and B attach a translator
ABIP'VLMNH. Produce the link NB arbitrarily to R and

! This is essentially the arrangement of HERMANN EMCH in his thesis, loc. cit.




254 PROJECTIVE GEOMETRY.

complete the rhombus BRST. To BR and BT attach at B the
equal right-angled triangles RBF and TBG, so that BF=BG.
Complete the rhombus BFGP”. From the figure follows easily
that ZFBG= £RBT and that P”B 1 BS, 1 OB.

Now use FB and FP” as links of a second Scheiner panto-
graph, and attach the links /K and IU in such a manner that

F1G. 111.

BF :IK=P"F :IU=BP"” :IP",and P”B/BI=f. The point I
is now collinear with P”” and B, and as P’A||IB it follows that
P’A 1 OA. Making PPA=y, we find IB=P'A=y; P'B=
B-IB=py. The coordinates of P” are therefore

 BO=#"—ax,
P'B=y'=py,

and we have constructed a linkage realizing dilation.

2. The last group to be considered is the one-termed elation.
Take two rhombs AEP”F and ACBD with the common joint or
Ppivot 4; join E and C, and F and D by two equal links EC=FD,
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so that ZEAC= AFAD=;—r. ~ From plane geometry there fol-

lows easily ZEAF= £CAD:; i.e., that the two rhombs are similar;
further, that P”A 1 AB, no matter how the linkage may be
distorted. This linkage realizes, therefore, a variable right tri-
angle P’ A B whose angles are constant. Joining in a symmetrical
mannet the rhomb BHP,G=AEP"F to the previous linkage
(CG=CE, HD=FD), a wvariable rectangle ABP'" P, is obtained
whose sides have a constant ratio, Fig. 112.

P"”
2

i

]

1

]

e,

F1c. 112.

This linkage may be used to solve mechanically two interest-
ing cases of collineations in a plane. If by two Peaucellier
Inversors the points 4 and B are forced to describe the same
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straight line s, in which an arbitrary point is taken as the origin
of a Cartesian coordinate system, and s itself is assumed as the

. . AB .
x-axis, we have, since Tp=m (constant), for the coordinates

%,, 9, of P, in terms of those of P (x”, ¥'):
x,=x"+my’,
n=y’,

which represents the required elation.

If the rhombus BGH P, and the links CG and DH are attached
below s, so that the point P, will fall on P,, then the coordinates
of P, are

x,=x"+my"’,
i y, ,:
which represents oblique axial symmetry. Combining the link-
ages for rotation, translation, dilation, and elation as explained
in § 60, a linkage for the linear transformation is obtained.
Ex. 1. Construct a linkage for the transformation (oblique

axial symmetry):

& =x+my,

y==

Ex. 2. Construct a linkage for the transformation (orthogonal
axial symmetry):
¥ =x,
¥y ==
Ex. 3. Construct a linkage for the special dilation:

x' =ax,

y=y.
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Ex. 4. Construct a linkage for the central symmetry:
& =—ux,
y=-y. ,
Ex. 5. Draw the combined linkage for a general linear trans-
formation. : .
Ex. 6. Determine the ranges, or limits of the areas, covered

by Sylvester’s pantograph, the rotator, the translators, and
Scheiner’s pantograph as used in the linkage for dilation.

§ 67. Perspective.

1. Mechanisms by which the perspective of any plane figure
may be drawn are known in various forms. One that is in prac-
tical use is the “perspectivograph” invented by H. RiTTER.! In
this mechanism pivots are kept on given straight lines by grooves
so that it combines link- and sliding-motions. Another “per-
spectivograph” in which two ellipses are used and which also
combines link- and sliding-motions was described by the author
some years ago.? Probably the most important linkage-realizing
perspective has been invented by KoENiGs,® and, as it does not
use slide-motion, will be described here. We must, however, first
describe KEMPE’s reversor which Koenigs uses as an auxiliary
linkage.

2. Kempe’s Reversor.

In Fig. 113 consider the linkage OBCD in which OB and CD
are equal and cross each other, and also OD=BC. Designating
the variable point of intersection of OB and CD by X, this linkage,
which is called counter-parallelogram, has the property that for
any deformation ABOD=24DCB; A0XD=ACXB. On DC
choose a pivot E in such a manner that DE: DO=DO:DC, so
that the triangles OCD and EOD are similar. Then with OD

1 See Geometrische Transformationen by Dr. K. DOEHLEMANN, pp. 199-204,
Leipzig, 1902.

3 The Industrialist, Vol. XXV, pp. 237-240, Manhattan, Kansas, 1899.

3 Comptes Rendus, Vol. CXXXI, p. 1179.
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and ED as given links complete the counter-parallelogram ODEF,
in which FE=DO, FO=DE. Thus AEQD=AOEF and
similar to AOCD= ACOB. Hence, in every deformation, the

D

n

FiG. 113.

counter-parallelograms OBCD and ODEF are similar, and as
4 BOD = & DCB, it also follows that A DOF = A FED. By means
of this reversor it is possible to keep two links BO and FO at
equal angles from a given link DO. By a similar construction
two other links, B’O and F’O, symmetrical to DO may be attached,
and it is clear that their motion is otherwise independent of that
of BO and FO. We have therefore a linkage in which in every
deformation '
£LBOB'= LFOF'.

Kempe’s reversor may be extended to realize any number of
equal angles, ZBOD= £/DOF= /FOH = .... For the details
of this we refer to Koenigs’s Kinematics, loc. cit.

KOENIGS’ PERSPECTIVOGRAPH.

3. Introducing polar coordinates, x=rcos 6, y=rsin 6, in the
formulas for a perspective transformation

x
X =
J dx+ey+f
Y

(1) |
Y et ?
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we get, since &/ =6 =arc tan (%) =arc tan <3;,—,—>,

r
) , = r(d cos 0+ e sin )+’
and
1 . i
(3) ;,—=d cos 0+ e sin 0+;—.

and

. . ) S I I
Putting d——; sin ¢, e=—7— CoS ¢, so that a—-m

d
¢= tan"‘(z ), (3) becomes

4) 7r = —(I? sin (0+ ¢).

Now take two Peaucellier inversors OABQP and OCDQ'P/,
Fig. 114, and by means of Kempe’s reversor as described in

Frc. 114.

Fig 113 keep ZAOC= £ZBOD. This can be done by properly
choosing B/, F’, B, F of Fig. 113 on BO, AO, DO, CO of Fig. 114,
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respectively. Let OP=r, OP’=¢'; p and ¢/ the squares of the
radii of the circles of inversion of the two inversors; OQ =p,

0Q'=¢. Now OP-0Q=p, or rp=p hence =4

OP' -0Q' =y, or v ¢ =4/, hence %={,— So far, no particular
values are assigned to g and 4/, so that we can choose u=jf-4;
I
r

Equation (4) now becomes

=L

.
R A

(5) o/—p=—-L sin 0+9).

To the two inversors attach a Kempe translator OO’EFRQ,
where O’ is on the y-axis, and join R to Q’ by the link RQ’ =RQ.
Let LPOX=0+¢; then ZQRQ' =2(0+¢), and QQ’ =0 —p=

’ —_—
2RQ-sin (0+ ¢). Hence, taking OO’ =RQ = -2 —#l—=%\/d’+ e,

the points P’ and P realize the proposed perspective transforma-
sion, since the linkage satisfies all conditions of equations (1) or
(2), or their equivalent (5).

Ex. 1. Modify the linkage so that P and P’ describe similar
figures.

Ex. 2. Investigate the cases fj=1, and f=o0.
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Salkowski’s Physiological and Pathological Chemistry. (Orndorff.)....8vo, 3 SO
Schimpf’s Text-book of Volumetric Analysis.......... cessessons «...l2m0, 3 SO
Essentials of Volumetric Analysis...........ccc0i0eeceetcensecess 13m0y I 25
Spencer’s Hanabook for Chemists of Beet-sugar Houses...... 16mo, morocco, 3 00
Handbook for Sugar Manufacturers and their Chemists. . 16mo, morocco, 2 0o
Stockbridge’s Rocks and Soils. .......... eesescsscsssnanae esesessees.8V0, 2 50
® Tillman’s Elementary Lessons in He@t.....cccvcccevccsscccccceces.8V0, I 50
L4 Descriptive General Chemistry.......ccccvvevesasccceccecess..8v0, 3 00
Treadwell’s Qualitative Analysis. (Hall).. ..8vo, 3 00
Quantitative Analysis. (Hall)........... ..8vo, 3 oo
Turneaure and Russell’s Public Water-supplies......... ..............Bvo. s 00
Van Deventer’s Physical Chemistry for Beginners. (Boltwood.).......12mo, 1 50
® Walke’s Lectures on Explosives..............ccvvnnneen teccsescess8v0, 4 0O
‘Washington’s Manual of the Chemical Analysis of Rocks.............. 8vo, 2 o0
‘Wassermann’s Immune Sera: Hsmolysins, Cytotoxins, and Precipitins. (Bol-
T T N «..13Mm0, 1 00
‘Wells’s Laboratory Guide in Qualitative Chemical Analysis...... ceenane 8vo, 1 S0
Short Course in Inorganic Qualitative Chemical Analysis for Engineering .
Students ........co0000 cecnnannn ceees seseen ceesececnne 12mo, I S50
Wm’.mmopyofndnking-mm. ........ esssssssessasscssese 8vo, 3 so
Wiechmann’s Sugar Analysis.........ccoo0c0eeeeivcenccene...Small8vo, 2 50
ve..120, I SO
.............. 12mo, 1 50
Waulling’s Elementary Conneinlnornnlc Phnrmnccuﬂulmdlndhl(:hem-
IBMY.. . ceveieenicrscces covnnanns ceses sesseccnne cessssI3mMO, 2 00

CIVIL ENRGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING
RAILWAY ENGINEERING.
Baker’s Engineers’ Surveying Instruments. .....cceecvevcecencease. . 12M0, 3

Bixby’s Graphical Computing Table....... cecesene Paper 194X 24% inches.

*s Burr’s Ancient and Modern Enzineerlng and the Isthmian Canal. (Postage,
27 cents additional.). ..............00.. ceess seassecsssBVo, N0ty 3
Comstock’s Field Astronomy for Enzlmn. 2
Davis’s Elevation and Stadia Tables...... ...........................Bvo. 1
Ellott’s Engineering for Land Drainage...... tecsescessessesssesscsslamo, I
Practical Farm Drainage.......... P ¢t T T
Polwell’s Sewerage. (Designing and Maintenance.)e....ccecoveee ceee.s8v0, 3
Freitag’s Architectural Engineering. 2d Edition Rewritten............ 3
French and Ives’s Stereotomy......ccccvevieeececocncasasscocsns ee..8v0, 2
Goodhue’s Municipal Improvements................ tetecesresesesadaMO, I
Goodrich’s Economic Disposal of Towns’ Refuse. ... 3
Gore’s Elements of Geodesy. .. .coccvvvvvinirncncencnnees 2
Hayford’s Text-book of Geodetic Astronomy............. cescesecsens 3
Hering’s Ready Ref Tables (C jon Factors). F
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Howe’s Retaining Wallsfor Earth.....c.cocceeeevacoscccceccccacens. 12mo, 1 38
Johnson's (J. B.) Theory and Practice o1 Surveying............. Small 8vo, 4 00
Johnson’s (L. J.) Statics by Algebraic and Graphic Methods. . .......... 8vo, 2 00
Laplace’s Philosophical Essay on Probabilities. (Truscott and Emory.) 1amo, 2 00
Mahan’s Treatise on Civil Engineering. (1873.) (Wood.)............8v0, S 00
®  Descriptive Geometry.............. Sessessassasssesaanansensas 8vo, 1 S0
w-mamwmdomm ......... .......Bvo, 2 50
Elements of Sanitary Engineering. ................ 2 oo
Merriman and Brooks’s Handbook for Surveyors. 32 co
Nugent’s Plane Surveying.......ccocviiiiiecccsnnioncesnncananns ...8v0 3 so
Ogden’sSewer Design. .............c..... ceeeeane RN ve...12mo0, 2 0O
Patton’s Treatise on Civil Engineering............... «eo..8v0 half leather, 7 so
Reed’s Topographical Drawing and Sketching......... ssssssnses «s...4t0, 5 OO
m.mmmBMPmlﬁuﬁonofw........ 380
Siebert and Biggin’s Modern Stone-cutting and Masonry................8v0, I SO
Smith’s Manual of Topographical Drawing. (McMillan.).............. 8w, 2 SO
Sondericker’s Graphic Statics, with Appllcaﬁom to Trusses, Beams, nnd
T 2
Taylor and Thompson's Ttuthoon Conmto.l’hmnndkdnloreod. (Inpnu)
® Trautwine’s Civil Engineer’s Pocket-book................ 16mo, morocco, 5 00
Wdt'tlndnnﬂn(undhchitoetunl]nﬂ.mhm. ....... .........s.ﬁsvo. goo
eep, 50
Law of Operations Preliminary to Construction in Engineering and Archi-
OCtUTS, . . ccovvenecacecccaccnscosasssncorcnsassoccnne e...8v0, § 0O
5 so
Lawof Contracts. ......coveveececscsccccscssasccssaccersares 8V0, 3 00
‘Warren’s Stereotomy—Problems in Stone-cutting..................... 8vo, 2 50
Webb’s Problems in the Urse and Adjustment of Bnglnmln%'ll,gltmmeml.
16mo, morocco, 1 35
® Wheeler’s Elementary Course of Civil Engineering................... 8vo, 4 0o
Wilson’s Topographic Surveying......... R - L T |
BRIDGES AND ROOFS.
Ws Practical Treatise on the Construction of Iron Highway Bridges..8vo, 2 oo
Thames River Bridge.........co00cccvceeccccrccccacass 4to, paper, oo
MﬂConmonthosmiand(udeoomenu.Amhedmh and
Suspension Bridges............. cesessassccse eesrescccscns vo, s0

Du Bois’s Mechanics of Engineering. Vok IL................Small 4to, 1
Foster’s Treatise on Wooden Trestle Bridges.....cccoocveecccccsacee..4t0,
Fowler’s Coffer-dam Process for Piers......... :

NAE VD HWNAOW G1 e
7.3
©

2s
so
so
oo
D%(n of Simple Roof-trusses in Wood and Steel.........c.c.c0uee.. 8vo, 2 oo
ohnson;¥Bryan, and Turneaure’s Theory and Practice in the of
] loz:rn Framed Structures.. ry ................... mto, 10 00
Merriman and Jacoby’s Text-book on Roofs and Bridges:
Part 1. —Stresses in Simple Trusses............c.cc...
Part II.—Graphic Statics......................
Part I'1 —Bridge Design. 4th Edition, Rewritten
Part IV.—Higher Structures................
Morison’s Memphis Bridge..........ccoieeiiiennececcinccccconnes ..4t0, 10 00
Waddell's De Pontibus, a Pocket-book for Bridge Engineers.. . 16mo, morocco, 3 0o
Specifications for Steel Bridges. ........ccccevecnserorccacerces 1amo, 1 38
‘Wood’s Treatise on the Theory of the Constmcﬁon of Bndzea and Roofs.8vo, 2 oo
Wright’s Designing of Draw-spans:
Part L. —Plate-girder Draws. ...........cciiivinieccinncneanss 50
Part IL.—Riveted-truss and Pin-connected Long-span Draws. 50
Two parts in one volume............ Cetessevessessssescscsenes 30




HYDRATULICS.
Bazin’s Experiments upon the Contraction of the Liquid Vein Issuing from an

Dh.nmlollunVelodtyo!WntuinOpenClmmAll......... paper,
Cofin’s Graphical Solution of Hydraulic Problems
Flather’s Dynamometers, and the Measurement of Power.......... «..12mo,
Polwell's Water-supply Engineering.....cccovevreerecicsccnsicens...8v0,
Frizell’'s Water-power..... ......... g 8vo,
Pusrtes’s Water and Public Health. .
Water-filtration Works. ........ essssssnasanns teesscecesesss.T3MO,
Ganguillet and Kutter’s General Formula for the Uniform Flow of Water in
Rivers and Other Channels. (Hering and Trautwine.)........8vo,
Hazen’s Filtration of Public Water-8upply......cccccovececccccsess.8V0,
Hazlehurst’s Towers and Tanks for Water-works.....c.....e000evv....8v0,
Herschel’s 115 Experiments on the Carrying Capacity of Large, Riveted, Metal
Condults.....co vovrveeercnecrcanscccsencsccvenscscocans 8vo,
Mason’s Water-supply. (Considered Principally from a Snn!h.ry Stand-
point.) 3d Edition, Rewritten ...........c......... trecaces.8V0,
Merriman’s Treatise on Hydraulics. oth Edidon.Rewﬂmn.......... 8vo,
® Michie’s Elements of Amlyﬁul Mechanics........cc0000nene ceesees 8vo,

ee0eesssssesssscsssssseass 13O,

¢® Thomas and Watt’s Imwonmmt of Riym (Post., 44 c. additional), 4to,
Turneaure and Russell’s Public Water-supplies. .........cccc0cvee....8v0,
Wegmann's Desien and Construction of Dams............. cesessacescdto,

‘Water-supply of the City of New York from 1658to0 1898.......... ..4t0,
‘Weisbach’s Hydraulics and Hydraulic Motors, (Du Bois.).............8v0,
Wileon’s Manual of Irrigation Engineering.......ccc00cvee....Small 8vo,
Wolff’s Windmill as & Prime Mover........cc00ecersccrcccsccccnncs ..8vo,

Elements of Analytical Mechanics............... sesassavs cesss.8vo0,

MATERIALS OF ENGINEERING.

Baker’s Treatise on Masonry Construction......cceeseeeeceecsccsss..8v0,
Roads and Pavements........... O 1 LS
Black’s United States Public Works..........cccec0eeee.a.0000blong 4to,
Bovey’s Strength of Materials and Theory of Structures......c.cce.e....8v0,
Burr’s Elasticity and Resistance of the Materials of Engineering. 6th Edi-
tion, Rewritten........ ceccsananne seceesscccns eeccssccncs 8vo,

Byrne’s Highway Construction.......cccoeceeeceecrsscscccnnsaccons 8vo,
Inspection of the Materials and Workmamhiy Employed ln Constmcﬁon.

0,

Church’s Mechanics of Engineering.......... eteerecesecstssncanans 8vo,
Du Bois’s Mechanics of Engineering. Vol I..................Small 4to,
Johnson’s Materials of Construction........... ceseee esvesses.large 8vo,
Fowler’s Ordinary Foundations. .........ccovviieeinnienienennennn. 8vo,
Keep'sCastIron..........co0000n000e0 tecsnnan eesecsscssaseanaann 8vo,
Lanza’s Applied Mechanics.....c.oveeeerereoennccecccncesacnns ....8vo0,
Martens’s Handbook on Testing Materials. (Henning.) zvok eee s 8v0,
Merrill’s Stones for Building and Decoration........... . 8vo,
Merriman’s Text-book on the Mechanics of Materials................. 8vo,
Strengthof Materials. ... .............cco0viieuirerennsnnnnn. 12mo,
Metcalf’s Steel. A Manual for Steel-users. .. ............co00en ...12mo,
Patton’s Practical Treatise on Foundations.. ...........c.coeveeeineen 8vo,
Richey’s Handbook for Building Superintendents of Construction. (In press.)
Rockwell’s Roads and Pavements in France........... teresrseesessIamo,

7
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Sabin’s Industrial and Artistic Technology of Paints and Varnish...... 8vo,

Smith’s Materials of Machines. ..................coovevuiiinnnnnnn 12mo,
Snow’s Principal Species of Wood. .. ........ccovvniiiinnneicssnannes 8vo,
Spalding’s Hydraulic Cement. . ..........c.cco0eeeeeeecccaaans PR 12mo,

Text-book on Roads and Pavements............oocvuneiunnnnn. 12mo,

Taylor and Thompson’s Treatise on Concrete, Plain and Reinforced. (In

press.)

Thurston’s Materials of Engineering. 3 Parts........................ 8vo,
Part 1.—Non-metallic Materials of Engineering and Metallurgy. .. .. 8vo,
Part II.—Ironand Steel ...............ciivieinininnennnnns 8vo,
Part III.—A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents. .........ccovvvuunnnn. eeetee e e

Thurston’s Text-book of the Materials of Construction

Tillson’s Street Pavements and Paving Materials. . ....................

‘Waddell’'s De Pontibus. (A Pocket-book for Bridge Engineers.). . 16mo, mor.,
Specifications for Steel Bridges. . . ...........ccioiiiiinnn. ", .12mo,

‘Wood’s (De V.) Treatise on the Resistance of Materials, and an Appendix on
the Preservation of Timber. .. .................ciiiieinnnnnn, 8vo,

‘Wood’s (De V.) Elements of Analytical Mechanics. .. ................. 8vo,

‘Wood’s (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and
1T 8vo,

Andrews’s Handbook for Street Railway Engineers. .. .. 3xs inches, morocco,

Berg’s Buildings and Structures of American Railroads. ............... 4to,
Brooks’s Handbook of Street Railroad Location............ 16mo, morocco,
Butts’s Civil Engineer’s Field-book........................ 16mo, morocco,
Crandall’s Transition Curve. . ... .....c.vvvvniinennnn .. 16mo, morocco,
Railway and Other Earthwork Tables. .......................... 8vo,
Dawson’s “Engineering’ and Electric Traction Pocket-book. 16mo, morocco,
Dredge’s History of the Pennsylvania Railroad: (1879).............. Paper,
* Drinker’s Tunneling, Explosive Compounds, and Rock Drills, 4to, half mor.,
Fisher’s Table of Cubic Yards........................cc0uuunn Cardboard,
Godwin’s Railroad Engineers’ Field-book and Explorers’ Guide... . 16mo, mor.,
Howard’s Transition Curve Field-book.. .................. 16mo, morocco,
Hudson’s Tables for Calculating the Cubic Contents of Excavations and Em-
banKmMeNts. o o oo vvttt i et 8vo,

Molitor and Beard’s Manual for Resident Engineers, ... ............ 16mo,
Nagle’s Field Manual for Railroad Engineers. . . ... e 16mo, morocco,
Philbrick’s Field Manual for Engineers. . .................. 16mo, morocco,
Searles’s Field Engineering. .............cccoiuieeinennnn.. 16mo, morocco,
Railroad Spiral .. ......c.coiiiiiiiiiiiiiiiiiiin.e, 16mo, morocco,
Taylor’s Prismoidal Formule and Earthwork. ... .................... 8vo,
* Trautwine’s Method ot Calculating the Cubic Contents of Excavations and
Embankments by the Aid of Diagrams. .............. PR 8vo,

The Field Practice of Laying Out Circular Curves for Railroads.
12mo, Morocco,

Cross-section Sheet. .. .oov cvvnieneeneenenenneneonannennonns Paper,
Webb’s Railroad Construction. 2d Edition, Rewritten. . . ...16mo, morocco,
Wellington’s Economic Theory of the Location of Railways...... Small 8vo,

DRAWING.

Barr’s Ki ics of Machinery.........coiiiieiieieeeceeenennnnnss 8vo,
* Bartlett’s Mechanical Drawing. .. ........covtivecverecnancnneanns 8vo,
* “ Abridged Ed............0iiiiinnnn... 8vo,
Coolidge’s Manual of Drawing. .................. O 8vo, paper,
Coolidge and Freeman’s Elements of General Drafting for Mechanical Engi-

B 1T < T Oblong 4to.
Durley’s Kinematics of Machines. ........ccc00000e Sessasesssasnsnns 8vo,
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Hill's Text-book on Shades and Shadows, and Perspective. . ............ 8vo.

Jamison’s Elements of Mechanical Drawing. . ........................ 8vo,
Jones’s Machine Design:
Part L.—Kinematicssof Machinery. .................... e 8vo,
Part II.—Form, Strength, and Proportions of Parts. .............. 8vo,
MacCord’s Elements of Descriptive Geometry. ... ........ccovvvenn... 8vo,
Kinematics; or, Practical Mechanism................c.c00uun... 8vo,
Mechanical Drawing. .. o.....civiiiiiniieeesncnsnscacenannns 4to,
Velocity Diagrams. . .. ............coitiirieenecnsnnecnasennns 8vo,
Mahan'’s Descriptive Geometry and Stone-cutting..........cc00veenn. 8vo,
Industrial Drawing. (Thompson.). .. .......c.ccvvvenenn . 8vo,
Moyer’s Descriptive Geometry. (In press.)
Reed’s Topographical Drawing and Sketching. ... ..........cco00veenn. 4to,
Reid’s Course in Mechanical Drawing. . . ............c.ciiivenneennnn. 8vo,
Text-book of Mechanical Drawing and Elementary Machine Design. .8vo,
Robinson’s Principles of Mechanism. . ....................cc000eeenn. 8vo,
Schwamb and Merrill’s Elements of Mechanism................c...... 8vo,
Smith’s Manual of Topographical Drawing. (McMillan.).............. 8vo,
‘Warren’s Elements of Plane and Solid Free-hand Geometrical Drawing. . 12mo,
Drafting Instruments and Operations. . ........................ 12mo,
Manual of Elementary Projection Drawing. .................... 12mo,
Manual of Elementary Problems in the Linear Perapective of Form and
ShAdOW. .ttt i i et 12mo,
Plane Problems in Elementary Geometry. ... ......cco00ueenn... 12mo,
Primary Geometry. .. ..ottt ettt 12mo,
Elements of Descriptive Geometry, Shadows, and Perspective...... 8vo,
General Problems of Shades and Shadows................c00000n. 8vo
Elements of Machine Construction and Drawing. ................. 8vo.
Problems, Theorems, and Examples in Descriptive Geometry. ...... 8vo,
Weisbach’s Kinematics and the Power of Transmission. (Hermann and
KIein. ) o oottt i i it er e 8vo,
Whelpley’s Practical Instruction in the Art of Letter Engraving....... 12mo,
Wilson’s (H. M.) Topographic Surveying.................... Nedeeaenn 8vo,
Wilson’s (V. T.) Free-hand Perspective. . ..............civvennnnnenn. 8vo,
Wilson’s (V. T.) Free-hand Lettering. .. .............ccieeeeneennn.. 8vo,
‘Woolf’s Elementary Course in Descriptive Geometry ............ Large 8vo,
ELECTRICITY AND PHYSICS.
Anthory and Brackett’s Text-book of Physics. (Magie.)........ Small 8vo,
Anthony’s Lecture-notes on the Theory of Electrical Measurements. . . .12mo,
Benjamin’s History of Electricity. ..............cciiiiiiiniennnnnnnn. 8vo,
Voltaic Cell. .. .......coiviieinnnrnnnnnnns B 8vo,
Classen’s Quantitative Chemical Analysis by Electrolysis. (Boltwood.). .8vo,
Crehore and Squier’s Polarizing Photo-chronograph. . ................. 8vo,

Dawson’s “Engineering”’ and Electric Traction Pocket-book. . 16mo, morocco,
Dolezalek’s Theory of the Lead Accumulator (Storage Battery). (Von

D 00 1. L T NS 12mo,
Duhem’s Thermodynamics and Chemistry. (Burgess.).......ccccuuun. 8vo,
Flather’s Dynamometers, and the Measurement of Power............ 12mo,
Gilbert’s De Magnete. (Mottelay.).......c..coiveeueenreneeneennnns 8vo,
Hanchett’s Alternating Currents Explained. . ....................... 12mo,
Hering’s Ready Reference Tables (Conversion Factors)...... 16mo, morocco,
Holman's Precision of Measurements. .. ..........c.ccveuveeennnnnnn. 8vo,

Telescopic Mirror-scale Method, Adjustments, and Tests.. .. .Large 8vo,
Landauer’s S Analysis. (Tingle.)...ceee.vvcveevccnccnnns eves.8vo,

Le Cluulier'; High-temperature Measurements. (Boudouard—Burgess.)ramo
LBb’s Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) 1amo,
9
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® Lyons’s Treatise on Electromagnetic Phenomena. Vols. L and IL 8vo, each,

6
® Michie. Elements of Wave Motion Relating to Sound and Light....... 8vo, 4
Niaudet’s Elementary Treatise on Electric Batteries. (Fishoack.)......12mo, 2
® Rosenberg’s Electrical Engineering. (Haldane Gee—Kinzbrunner.)....8vo, - 1
Ryan, Norris, and Hoxie’s Electrical Machinery. VoL L.......ccc.....8v0, 2
Thurston’s Stationary Steam-engines.......... vere eeesesesee..8V0, 2
® Tillman’s Elementary Lessons in Heat.............. cteosscncens 8vo, 1
Tory and Pitcher’s Manual of Laboratory Physics......cec..... Small 8vo, 2
Ulkels Modern Electrolytic Copper Refining .....o0ccveecevcccccsn. 8vo, 3
LAW.
® Davis’s Elementsof Law ......o0c0eveene.nns N 8vo, 2
®  Treatise on the Military Law ot United States........c.c........ 8vo, 7
. Sheep, 7
Manual for Courts-martial.........coievievneensncas + . .16mo, morocco, I
Wait’s Engineering and Architectural Jurlspmdence ................. éﬁ:o' g
P
. Law of Operations Preliminary to Construction in Engineering and Archi-
teCtUr®. .. cveverectnacccscscecocsesessorssscccscssscs. 8VO, 5
Sheep, 5
Law of Contracts..... wtsssescses eseccssscccsscscssscnsssoscce 8vo, - 3
Winthrop’s Abridgment of Military Law........ccceeeueeee teeeeece. 13m0, 2
MANUFACTURES.
Bernadou’s Smokeless Powder—Nitro-cellulose and Theory of the Cellulose
Molecule...cooosreoecnceassccccasasssscssscsscsnsesss.J2mO, 2
Bolland’sIron Founder........ cocoeeeiencnee conensssanncanscnns 13mo, 2
“ The Iron Founder,” Supplement..........cccovcveeccnnnean 12mo, 2
Bncyclopodhofl’onndiuandbicﬂomofroundry Terms Used in the
. Practice of Moulding......ccccce.. eesesessssecscasanae .13mo, 3
Eissler’s Modern High Explosives...... eeeccccsstesrcesncas cecensnas 8vo, 4
Effront’s Enzymes and their Applications. (Prescott.).................8v0 3
Fitzgerald’s Boston Machinist............... teecescetecsnseasanan 18mo, 1
Pord’s Boiler Making for Boiler Makers 1
Hopkins’s Oil-chemists’ Handbook........ccocceeeeececnnes 3
Keep’s Cast Iron...... messscsssausasseanssarsasssnsansseransanans 2
Leach’s The Impecﬂonnndhnlylll of FoodwithSpechl Reference to State
Control. (In prepar )
Matthews’s The Textile Fibres. .« ....ovvvneieeennerennneeennnenenn. 8vo, 3
Metcalf’s Steel. A Manualfor Steel-users.........cccuvieueeeennn.. 13mo, 2
Metcalfe’s Cost of lunuflctures—-And the Administration of Workshops,
Public and Private......... see
Meyer’s Modern L tive Construction........... ceeesssenssneanns 4to,
Morse’s Calculations used in Cane-sugar Factories. .........16mo, morocco, 1
* Reisig’s Guide to Piece-dyeing......cooeveeeeeennnieercecccnnnes 8vo, 25
-thln'-lndushialmdA:ﬂ:ﬂcTechnologyotPnlnudenmhh......8vo, 3
Smith’s Press-working of Metals....c.oceeeecacercceccerancensanenas 8vo, 3
Spalding’s Hydraulic Cement. .......cceveerevecnnceas casecans +e..13mo, 2
Spencer’s Handbook for Chemists of Beet-mm Housu ..... 16mo, morocco, 3
Handbook for Sugar Manufacturers and their Chemists.. . x6mo morocco, 2
Taylor and Th)omp-on's Treatise on Concrete, Plain and Reinforced. (In
press.
Tharston’s Manual of Steam-boilers, their Designs, Construction and Opera-
tion....coiieincncnns cectcecscesevene cesesseescesrssann 8vo, 5
* Walke’s Lectures on Explosives......q0000uv.. evsssesssssases ves..8v0, 4
West’s American Foundry Practic......cceeeceeerecnasccanccannns 13m0, 2
Moulder’s TeXt-DOOK. .. uuuvererrecssaesanasacacssanasenss 130, 2
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Wolff’'s Windmill as & Prime Mover..........c...... veraes sesaavsares 8vo,
Woodbury’s Fire Protection of Mills..... eeescsertessssescsssrscsnss 8vo,
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron nnd Steel. . .8vo,
MATHEMATICS.
Baker’s Elliptic Functions....c.cocceeeecccsrccescieescnnccsscncnnas 8vo,
¢ Bass’s Elements of Differential Calculus.......cccoe00evececces....12M0,
Briggs’s Eloments of Plane Analytic Geometry..... cesesen
Compton’s Manual of Logarithmic Computations..........ccovuuue.. 12mo,
Davis’s Introduction to the Logicof Algebra.............ccce00uvee....8vO,
® Dickson’s College Algebra............... tects sesecscnenns Large 12mo,
®  Answers to Dickson’s College Algebra . ............. ...8vo, paper,
¢  Introduction to the Theory of Algebraic Eqnnﬂons Large 1amo,
Halsted’s Elements of Geometry............ teeeseccesenan 8vo,
Elementary Synthetic Geometry...... secsessceiocrtssssnsssarne 8vo,
Rational Geometry. c...coooveennrecncarcecossacssnsacsannnes 12mo,
* Johnson’s (J. B.) Three-place Logarithmic Tables: Vest-pocket size. . paper,
100 copies for
* ’ Mounted on heavy cardboard, 8 X 10 inches,

" 10 copies for

Johnson’s (W. W.) Elemenury Treatise on Differential Calculus. . .Small 8vo,
Johnson’s (W. W.) Elementary Treatise on the Integral Calculus. .Small 8vo,
Johnson’s (W. W.) Curve Tracing in Cartesian Co-ordinates.......... 12mo,
Johnson’s (W. W.) Treatise on Ordinary and Partial Differential Equations.
Small 8vo,

Johnson’s (W. W.) Theory of Errors and the Method of Least Squares. . 12mo,
* Johnson’s (W. W.) Theoretical Mechanics........................ 12mo,

Laplace’s Philosophical Essay on Probabilities. (Truscott and Emory.) xamo,
® Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables........ sesesscceresesssesccnsrscacnnsas [ 8vo,
Trigonometry and Tables published separately................ Each,

¢ Ludlow’s Logarithmic and Trig: tric Tables ......... ceessssnens 8vo,
Rice and Johnson's Elementary Treatise on the Differential Calculus.Sm., 8vo,
Differential and Integral Calculus. 2 vols. in one.......... Small 8vo,
Wood’s Elements of Co-ordinate Geometry..........cee0ue eeseccsssne 8vo,
Trigonometry; Analytical, Plane, and Spherical............. «e..12mo,

MECHANICAL ENGINEERING.
MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon’s Forge Practice............... sesasansnvuvs cesssasreseans 12mo,
Baldwin’s Steam Heating for Buildings....ccc0eeecececccccsceccnnne 12mo,
Barr’s Kinematics of Machinery.c..cocceveceecessescscesonasnsncacs 8vo,
‘Butlett'- Meclnnicall)uwing ............ esesecccassessssecnnass 8vo,
i “ Abridged Bd......cooveiiinnncnannans 8vo,
Benjamin’s Wrinkles and Recipes..........cco00.e. teteteccsenanas 12mo,
Carpenter’s Experimental Engineering.......... cesesreccscesoasnnns 8vo,
Heating and Ventilating Buildings.......ccccoeiiveieenecnncnans 8vo,
Cary’s Smoke Suntenion in Plants using Bituminous Coll. (In prep-
Chrk’sGunndOilEnzine........ ...... .

Coolidge’s Manual of Drawing
Coolidge and Freeman’s Elements of General Drafting for Mechanical En-
gineers. ..oo0vuoesn.s esesesesscnccsveveee weasecsss Oblong 4to,
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12

Cromwell's Treatise on Toothed Gearing........cco0eeecescaccacess12m0 I
Treatise on Belts and Pulleys....... Sssssnesssrcann sevecceee ..12mo, 1
Durley’s Kinematics of Machines. ........cccoceeeinecessconnoncaens 8vo, 4
thhor'snyngmommmdthnlummntofhm....... ..... 12mo, 3
Rope Driving. ......cc0000uvenacenes essscascesse cresecaceas 12mo, 32
Glll'anmanelAnalm{orEnzlnm ......... cesescsessassenns 13mo, I
Hall’s Car Lubrication.......ccoovvevenenennaeeens. tersssracsa 12mo, I
Hering’s Ready Reference Tables (Conversion Factors) 2
Hurton’s The Gas Engine........... cecessnres sevecnes PR |
Jamison’s Mechanical Drawing. .. ......ccevevierinernennereoneansas 2

Jones’s Machine Design:

Part I.—Kinematics of Machinery I
Part IL—Form, Strength, and Proportions of Parts. ..... veseesses.8VO, 3

Kent’s Mechanical Engineer’s Pocket-book. . .......... «.... 36mo, morocco, 5

Keri’s Power and Power Transmission...........ccovvinneasenns ee..8v0, 2

Leonard’s Machine Shops, Tools, and Methods. (In press.)

MacCord’s Kinematics; or, Practical Mechanism.................... ..8v0, 5
Mechanical Drawing............ cesecsecccnasese ceccssssaresas 4t0, 4
Velocity Diagrams. ..........c000000e00e teecsssssnsensecansan 8vo, 1

Mahan’s Industrial Drawing. (Thompson.)..... . sevscssssssasss 8vo, 3

Poole’s Calorific Power of Fuels............c..o00vvennnn. PR .o 3

Reid’s Course in Mechanical Drawing...........cccvivienniaeec®nnn 2
Text-book of Mechanical Drawing and Elomenhry Machine De-icn .8vo, 3

Richards’s Compressed Air........ ceescacaan veeses eeresscnscn s 1amo, I

Robinson’s Principles of Mechanism 3

Schwamb and Merrill’s Elements of Mechanfsm....................... 8vo, 3

"Smith’s Press-working of Metals . ...........ccccoveceiasannnssoccoann 8vo, 3

Thurston’s Treatise on Friction and Lost Work in Huhlnory and Mil

WOTK. c et iviiinie cneeriviacasacsonssossscasnoscnnncen .8vo, 3
Animal as & Machine and Prime Motor, and the Laws of Energetics.12mo, 1

‘Warren’s El ts of Machine Construction and Drawing.............. 8vo, 7

Weisbach’s Kinematics and the Power of Trarsmission. Herrmann—

D T T 8vo, 5
Machinery of Transmission and Governors. (Kertmmn—mn.) .8vo, 5
Hydraulics and Hydraulic Motors. (Du Bois.).....c.cccvcveee...8vV0, 5

Wolff’'s Windmill as & Prime Mover.............. tessscscesssescses.8V0, 3

Wood’s Turbines...... tecacecestacnacaans tecscsctescasscnssngeye 8Y0, 2

MATERIALS OF ENGINEERING.

Bovey’s Strength of Materials and Theory of Structures..... teescencane 8vo, 7

Burr’s Elasticity and Resistance of the Materials of Engineering. 6th Edldon

Resot......cooovvniiinnnnnonnnnnes . eee..8v0. 7

Church’s Mechanics of Engineering ..... S sssesanresanansassaneees 8vo, 6

Johnson’s Materials of Construction....... ceeessecaseascsanes Large 8vo, 6

Keep'sCastIron........coo00cennns eecesesccsasecns .............8vo, 2

Lanza’s Applied Mechanics..........ccccceeeeeerereccnnnss eeesece..8v0, 7

Martens’s Handbook on Testing Materials. (Hennlnz ) ............ ...8v0, 7

Merriman’s Text-book on the Mechanics of Materials....... ereenreaans 8vo. 4
Strength of Materials .........ccoievineeiienescnanncennnnns 12mo, I

WMetcalf’s Steel. A ManualforSteel-users...............ccv0uuu.n.. 12mo 2

Sabin’s Industrial and Artistic Technology of Punu and Varnish ..... 8vo, 3

Smith’s Materials of Machines.............. tecececocecstcnansscan 12mo, 1

Thurston’s Materials of Engineering....co0c0eeeeean.n, eee..3 VOI8 , Svo, 8
Part IL—Ironand Steel...........civviieeneenennnnnnsnccen.. 8vo, 3
Part III.—A Treatise on Brasses, Bronzes, and Other Alloys and their

Comstituents. . .. ... ... . ittt teiietitteerate e 8vo 2
Text-book of the Materials of Construction...... sevesessessecsces 8vo, 5
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Wood’s (De V.) Treatise on the Resistance of Materials and an Appe..dix on

the Preservation of Timber. .. ............................. 8vo, 2

Wood’s (De V.) Elements of Analytical Mechanics.. .................. 8vo, 3
Wood’s (M, P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.

8vo, 4

STEAM-ENRGINES AND BOILERS.

Carnot’s Reflections on the Motive Power of Heet. (Thurston.)....... 13110,
Dawson’s “Engineering” and Electric Traction Pocket-book..i16mo, mcr.,
Ford’s Boiler Making for Boller Makers........ccoo0ceeennnn. vees..18mo,
Goes’s Locomotive Sparks.......cccvveeevicencncccscccnnnes PP 8vo.
Hemenway’s lndhlmmmsm-oumo Economy ..... 12mo.
Hutton’s Mechanical Engineering of Power Plants...........cccc0.... 8vo,

Heat and Heat-engines............ teersescssacsacscstsesneas .8VO,
Kent’s Steam-boiler Economy........... ceesssnssssaass.8V0,
Msmmnooryofmmutor.. ceccsssssscesss.8VO,
MacCord’s SHAe-VaAIVES. . .cvocceiiecreeccrcecsccncacccaccccnssees 8V0,
Meyer's Modern Locomotive Construction.......cccvvvvveenceeecces..4to,
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Peabody’s Manual of the Steam-engine Indicator...... ceeseee essss 13m0, I
Tables of the Properties of Saturated Steam and Other Vapors......8vo, 1
Thermodynamics of the Steam-engine and Other Heat-engines.....8vo, 5
Valve-gears for Steam-engines........co000enese cetecreasncanan 8vo, 2

Peabody and Miller’s Steam-boilers ....... ssssannssens cessscsesses 8V0, 4

Pray’s Twenty Years with the Indicator......ccccvoviennvenen. Large 8vo, 2

Papln'l Thermod othvuﬁthycluinGmmdSnmnmd Vapors.

OSterberg.). cccocevvtecanr socesaonnnccoccocoascsononnnas 13mo, I

Rnnnll.ocomodm Slmpk.Compon.nd.and Electric.............. 13mo, 2

Rontgen’s Principles of Thermodynamics. (Du Bois.)......c0cvvvun.. 8vo, 5

Sinclair’s Locomotive Engine Running and Management..............13mo, 2

Smart’s Handbook of Engineering Laboratory Practice......c.ccuu... 12mo, 2

3
2
Notes on Thermodynamics....ccoceceecccsecesscssccssesnsassI3M0, I

Spangler, Greene, and Marshall’s Elements of Steam-engineering........ 8vo, 3

Thurston’s Handy Tables....... A - (T |
Manual of the Steam-engine...... tesessssascsscsses sess 3 VOIS, 8vo, 10
Part L.—History, Structuce, and Theory.....ccce0veeeccccsce....8v0, 6
Part II.—Design, Construction, and Operation........ce00ceen....8v0, 6
Handbook of Engine and Boiler Trials, and the Use of the Indicator and

the Prony Brake........cco000cneee etecescescaenencscnneas 8vo, 5
Stationary Steam-engines. ......cccceeetectctecnanse esecsecsens 8vo, 2
Stenm-boithxploﬁomlnThoorynndianﬁce .............. 12mo, 1
Manual of Steam-boilers, Their Designs, Ci and Operation 8vo, s

Weisbach's Heat, Steam, and Steam-engines. (Du Bois.)............. 8vo, 5

Whitham’s Steam-engine D:sign..... cesescssesvacsssce cevecescseee 8vo, s

Wilson’s Treatise on Steam-boilers. (thher).........l ........... 16mo, 2

Wood’s Thermodynamics Heat Motors, and Refrigerating Machines. ...8vo, 4

MECHANICS AND MACHINERY.

Barr’s Kinematics of Machinery.........coiiiiiieetineeceenenennnnn. 8vo, 2
Bovey’s Strength of Materials and Theory of Structures......... ceeeaen 8vo, 7
Chase’s The Art of Pattern-making...... cesvecss cecene cesesccccae 12mo, 2
Chordal.—Extracts from Letters.............c... vesens cesrecseane 1amo, 2
Church’s Mechanics of Engineering............... ceesvcsnsessassss.8V0, 6
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Church’s Notes and Examples in Mechanics. .... vesesesessscssnccces.8V0,
Compton’s First Lessons in Metal-working.........c000cevcececss..323m0,
Compton and De Groodt’s The Speed Lathe.............

Treatise on Belts and Pulleys 13mo,
Dana's Ten-bohok of Elementary Mechanics for tho Uu of Colleges and

................................... tereseesa.12M0,
Dingey’s Machinery Pattern Making............cciiviiiiiinnnnnn. 12mo,
Dredge’s Record of the Transportation Exhibits Building of the World’s
Columbian Exposition of 1893....c0c00c0veeen. 4to half morocco,
Du Bois’s Elementary Principles of Mechanics:
Vol
Vol. IL—8tatics.. ...cu0 vovsevencnnoaes tes seetecsncncannsas 8vo,
Vol. IIl.—Kinetics
Mechanics of Engineering. Vol L...... PR ..
Durley’s Kinematics of Machines
Fitzgerald’s Boston Machinist
Ma‘sbynnmomem:.mdthnleummtoﬂ’owc.....
Rope Driving......ccoeeecevececccccccenes cessee cecsecnnnan 12mo,
Goss’s Locomotive Sparks......... vessesencecs teessesecsssacssccs 8V0,

Hal's Car Lubrication.......... sesscsssssessscnnans cesssacensnes 13mo,

* Johnson’s (W. W.) Theoretical Mechanics.

Johnson’s (L. J.) Statics by Graphic and Algebraic Methods. .. ......... 8vo,

Jones’s Machine Design:
Part L—Kinematics of Machinery.............. TR A
Part IL—Form, Strength, nndhvmﬁomofl’lm..........

Kerr’s Power and Power Transmission........

Lanza’s Applied Mechanics...... ersessccsscatsscansann

Leonard s Machine Shops, Tools, and Methods. * (Iapnu.)

MacCord’s Kinematics; or, Practical Mechanism....,......... veeees.8V0,

Text-book of Mechanical Drawing and Elementary Machine Design. Bvo.

Richards’s Compressed Air............c.... cesenne ctesesssssaanae 12mo,
Robinson’s Principles of Mechani teeeetenessecstnensaans cessee..8v0,
Ryan, Nozris, and Hoxie's Electrical Machinery, Vol.l................lvo.
Schwamb and Merrill’s Elements of Mechanism.............c.c00uu... 8vo,
ﬁnchir’tlacomoﬁvo—enzimRnnnin(nndlnumt............. 12mo,
Smith’s Press-working of Metals....ccceecceccncceccccnccccnccasess.8V0,

Materials of Machines,....cccccceecesceccccccccecs esccsecee.I2MO,

Spangler, Greene, and Marshall’s Elements of Steam-engineering.......8vo,
Thurston’ €V T;uhu on Friction and Lost Work in Machinery and Mill

Animglu.luhinenndl’ﬁmalotor. and the Laws of Energetics. 1amo,
Warren’s Elements of Machine Construction and Drawing.............8vo,
Weisbach’s Kx;wmaﬁa and the Power ot Transmission. (anns;-:

Machinery of ‘l‘nnml-ion and Govmon. (Hemnn—xhin.) 8vo,

Wood’s Elements of Analytical Mechanics........cccccevecacecese..8v0,

Principles of Elementary Mechanics.......ccc0ceee ecessasess.12M0,

Turbines. .cooveeoeee coceneccanes on cecsssscccssesssaccessas 8V0,

rheWorld'-Cohmbhanmnonofxsos................ teessessees dtO,
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METALLURGY.
Bgleston’s Xannnrgy of Silver, Gold, and Mercury:

VoL L—S8IIver.... .ccovciiiiincnsacocennssacene St atenen 8vo, 7
Vol n.—Goldmdlmuty.......... .............. eeeeen ...8v0, 7
** Jles’s Lead-smelting. (Postage 9 cents uddidoml.) ........... r3mo, 2
Keep’s CASt IrOn. . ..oovevneececcscoceoccacesccsnansssnes eeseseces 8vo, 2
Kunhardt’s Practice of Ore Dre-inginEnropo ...................... 8vo, 1
Le Chatelier’s High-temperature M ments. (Boud d—Burgess.).1amo, 3
Metcalf’s Steel. A Manual for Steel-users........ ceeesennenn erenne 12mo, 2
Smith’s Materials of Machines..........cccoveieeererenenccacennns 12mo, I
Thurston’s Materials of Engineering. In Three Parts................ 8vo, 8
Part ILL—Iron and Steel......c.o.cceieiececcncccnenccacacnanns 8vo, 3

Part IIl.—A Treatise on Bn-u, Bronzes..nd Other Alloys and their
Constituents. ....coocveeee coeeen ees0se sssscecs sesssscss 8vo, 2
Ulke’s Modern Electrolytic Copper Rnﬂninz 3

MINERALOGY.

Barringer’s Description of Minerals of Commercial Value. Ohlong. moroceo, 2
Boyd’s Resources of Southwest Virginia.......... esecsacsecasesnanns 8vo, 3
Map of Southwest Virginia........covvvviinneanns Pocket-bookform, 2
Brush’s Manual of Dommimﬁnlhnnbu (Penfleld.)............ 8vo, 4
Chester’s Catalogue of Minerals...... cecssssanen sassnsss .....avo,aopg. 1
s I
Dictionary of the Names of Minerals........cccoo00eveeee [P 8vo, 3
Dana’s System of Mineralogy......occ. .. sesasunse Large 8vo, half leather, 12
First Appendix to Dana’s New “System of Mineralogy.”....Large 8vo, 1
Text-book of MIneralogy.....cccceeereotcccernrcnscccccnns ve..8v0, 4
Minerals and How to Study Them...c.ccco0eeeeeen veesecees..13M0, I
Catalogue of American Localities of Minerals.... 1
Manual of Mineralogy and Petrography........cc.c00eeeeve...13m0, 2
Douglas’s Untechnical Addresses on Technical Subjects. ... ..... vee..12mo, I
Eakle’s Mineral Tables.......ccccuutveireienncvecncescscscencseess8¥V0, I
Egleston’s Catalogue of Minerals and Synonyms.........cc.000uuennn. 8vo, 2
Hussak’s The Determination of Rock-forming Minerals. (Smith.) Small 8vo, 2
Merrill’'s Non-metallic Minerals: Their Occurrence and Uses............. 8vo, 4

® Penfield’s Notes on Determinative Mineralogy and Record otl!insoul'l'uu.
vo, paper, O

Rosenbusch’s Microscopical Physiography of the Rock-making Minerals.
(IAding®.) e ccoveeeeconcncconssercascncssccnsscancne eees..8v0, 5§
‘Tilhmn’sText—bookoﬂmpommmnm:ndDoch ...... eesesss.8v0, 2
Williams’s Manual of Lithology......... teecstcsssecscssscscssseessBV0, 3

MINING.

Beard’s Ventilation of Mines.........ccc0cen. cesesecsascns ceccsee 2
Boyd’s Resources of Southwest Virginia.. 3
Map of Southwest Virginia.......ccoccvevevana... Pocket-book form, 2
Douglas’s Untechnical Addresses on Technical Subjects. ... .......... 12mo, I

* Drinker’s Tunneling, Explosive Compounds, and Rock Drills.

4to, half morocco, 25

Eissler’'s Modern High Explosives........ccoc0eeeeeccacincccecss...8v0, 4
Fowler's Sewage Works Analyses.........cccccveveaceccccnee «ee..12mo0, 2
Goodyear’s Coal-mines of the Western Coast of tho United States......xamo, 2
Ihiseng’s Manual of Mining........ccoivieeinuncncnnccocncacsann 4
*# leg’s Lead-smelting., (Postage 9c. additional) 2
Kunhardt’s Practice of Ore Dressing in Europe.......cc0c0ceenes 1
O’Driscoll’s Notes on the Treatment of Gold Ores....... 2
* Walke’s Lectures on Explosives..........ccc00e0 4
Wilson’s Cyanide Processes............. cecscsscssescssces b4
Chlorination Process...............cc0c000e 1
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Wilson’s Hydraulic and Placer Mining.........cco00vievneencnnnn. :.zmo, 2

Treatise on Practical and Theoretical Mine Ventilation.......... 12mo,
SANITARY SCIENCE.
Folwell’s Sewerage. (Designing, Construction, and Maint: ) P 8vo,
‘Water-supply Engineering. ...... eeeseetiietett ittt aaaaas 8vo,
Fuertes’s Water and Public Health. .........................o. ... 12mo,
Water-filtration Works. ....................ciiiiininiinnnnn. 12mo,
Gerhard’s Guide to Sanitary House-inspection. .. .......,........... 16mo,
Goodrich’s Economical Disposal of Town’s Refuse............... Demy 8vo,
Hazen’s Filtration of Public Water-supplies. . ........................ 8vo,
Leach’s The Inspection and Analysis of Food with Special Reference to State
. Comtrol ...... ... 8vo,
Mason’s Water-supply. (Considered Principally from a Sanitary Stand-
point.) 3d Edition, Rewritten............................. 8vo,
Examination of Water. (Chemical and Bacteriological.). .. ..... 12mo,
Merriman’s Elements of Sanitary Engineering. ..:.................... 8vo,
Ogden’s Sewer Design. ..............c0iiiiiirietrernennneannann. 12mo,
Prescott and Winslow’s Elements of Water Bacteriology, with Special Reference
. to Sanitary Water Analysis. .. ...........cociiiiennnnn... 12mo,
* Price’s Handbook on Sanitation ............ cecieans eestcrncaans 12mo,
Richards’s Cost of Food. A Study in Dietaries..................... 12mo,
Cost of Living as Modified by Sanitary Science. ................. 12mo,
Richards and Woodman’s Air, Water, and Food from a Sanitary Stand-
3 8vo,
* Richards and Williams’s The Dietary Computer..................... 8vo,
Rideal’s Sewage and Bacterial Purification of Sewage.................. 8vo,
Turneaure and Russell’s Public Water-supplies....... eesececcarranens 8vo,
Von Behring’s Suppression of Tuberculosis. (Bolduan.)............. 12mo,
‘Whipple’s Microscopy of Drinking-water. .. ......................... 8vo,
Woodhull’s Notes and Military Hygiene. ........................... 16mo,
MISCELLANEOQUS.
Emmons’s Geological Guide-book of the Rocky Mountain Excursion of the
International Congress of Geologists . . ................ Large 8vo,
Ferrel's Popular Treatiseonthe Winds. . ......................0uun.. 8vo,
Haines’s American Railway Management. ......................... 12mo
. Mott’s Composition, Digestibility, and Nutritive Value of Food. Mounted chart.
Fallacy of the Present Theoryof Sound. ....................... 16mo,
Ricketts’s History of Rensselaer Polytechnic Institute, 1824-1894. Small 8vo,
Rostoski’s Serum Diagnosis. (Bolduan.).......................... 12mo,
Rotherham’s Emphasized New Testament...................... Large 8vo,
Steel’s Treatise on the Diseasesof the Dog. . .............c..oeunnnn... 8vo,
Totten’s Important Question in Metrology........ et irecereceaeaaa 8vo,
The World’s Columbian Exposition of 1893. ... ..........cccvvnn.... 4to,
Von Behring’s Suppression of Tuberculosis., (Bolduan.)............. 12mo,

Worcester and Atkingson. Small Hospitals, Establish t and Mai 3
and Suggestions for Hospital Architecture, with Plans for a Small

Hospital . .. .. ..ttt it i e 12mo,
HEBREW AND CHALDEE TEXT-BOOKS.

Green’s Grammar of the Hebrew Language. . ........................ 8vo,
Elementary Hebrew Grammar....................co0vvunnnn.. I2mo.
Hebrew Chrestomathy. .................cuiiiniinennnennnnn.. 8vo,
Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.
(Tregelles.).........ooiiiieeennnnnnnn. Small 4to, half morocco,
Letteri®s Hebrew Bible. . ..........0oiiiiiiiiiiiiiiiiiininnnn... 8vo,
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