This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of
to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was nevel
to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domair
are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey fro
publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belon
public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have take
prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the fild&e designed Google Book Search for use by individuals, and we request that you use these fil
personal, non-commercial purposes.

+ Refrain from automated queryirigo not send automated queries of any sort to Google’s system: If you are conducting research on m:
translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encc
use of public domain materials for these purposes and may be able to help.

+ Maintain attributionThe Google “watermark” you see on each file is essential for informing people about this project and helping ther
additional materials through Google Book Search. Please do not remove it.

+ Keep it legalWhatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume |
because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users
countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific
any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in al
anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps
discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on
athttp://books.google.com/ |



http://books.google.com/books?id=3ZULAAAAYAAJ&ie=ISO-8859-1




Math 8509,22.5

[ —l

SCIENCE CENTER LIBRARY

FROM THE
FARRAR FUND

The bequest of Mrs. Eliza Farrar in

memory of her husband, John Farrar,

Hollis Professor of Mathematics,

Astronomy and Natural Philosophy,
1807-1836










HIGHER GEOMETRY

AN INTRODUCTION TO ADVANCED METHODS
IN ANALYTIC GEOMETRY

BY

FREDERICK S. WOODS

PROFESSOR OF MATHEMATICS IN THE MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

GINN AND COMPANY

BOSTON . NEW YORK + CHICAGO . LONDON
ATLANTA + DALLAS . COLUMBUS : S8AN FRANCISCO



’
Ier

COPYRIGHT, 1922, BY FREDERICK 8. WOODS
ALL RIGHT8 RESERVED

The Athenzum Press

GINN AND COMPANY - PRO-
PRIETORS + BOSTON « U.S.A.




PREFACE

The present book is the outgrowth of lectures given at various
times to students of the later undergraduate and earlier graduate
years. It aims to present some of the general concepts and methods
which are necessary for advanced work in algebraic geometry (as
distinguished from differential geometry), but which are not now
accessible to the student in any one volume, and thus to bridge
the gap between the usual text in analytic geometry and treatises
or articles on special topics.

With this object in view the author has assumed very little
mathematical preparation on the part of the student beyond that
acquired in elementary courses in calculus and plane analytic geom-
etry. In addition it has been necessary to assume a slight knowl-
edge of determinants, especially as applied to the solution of linear
equations, such as may be acquired in a very short course on the sub-
ject. But it has not been assumed that the student has had a course
in highér algebra, including matrices, linear substitutions, invariants,
and similar topics, and no effort has been made to include a dis-
cussion of these subjects in the text. This restriction in the tools
to be used necessitates at times modes of expression and methods
of proof which are a little cumbersome, but the appeal to a larger
number of readers seems to justify the occasional lack of elegance.

In preparing the text one of the greatest problems has consisted
in determining what matters to exclude. It is obvious that an
introduction to geometry cannot contain all that is known on any
subject or even refer briefly to all general topics. The matter of
selection is necessarily one of individual judgment. One large
domain of geometry has been definitely excluded from the plan of
the book ; namely, that of differential geometry. In the field which
is left the author cannot dare to hope that his choice of material
will agree exactly with that which would be made by any other
teacher. He hopes, however, that his choice has been sufficiently

wise to make the book useful to many besides himself.
iii



iv PREFACE

The plan of the book calls for a study of different codrdinate
systems, based upon various geometric elements and classified
according to the number of dimensions involved. This leads natu-
rally to a final discussion of n-dimensional geometry in an abstract
sense, of which the particular geometries studied earlier form con-
crete illustrations. As each system of coordinates is introduced, the
meaning of the linear and the quadratic equations is studied. The
student is thus primarily drilled in the interpretation of equations,
but acquires at the same time a knowledge of useful geometric facts.
The principle of duality is constantly in view, and the nature of
imaginary elements and the conventional character of the locus at
infinity, dependent upon the type of codrdinates used, are carefully
explained.

Numerous exercises for the student have been introduced. In
some cases these carry a little farther the discussion of the text,
but care has been taken to keep their difficulty within the range

R,
of the student’s ability. FREDERICK S. WOODS
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HIGHER GEOMETRY

PART I. GENERAL CONCEPTS AND
ONE-DIMENSIONAL GEOMETRY

CHAPTER 1
GENERAL CONCEPTS

1. Coordinates. A set of n variables, the values of which fix a
geometric object, are called the codrdinates of the object. The ana-
lytic geometry which is developed by the use of these codrdinates
has as its element the object fixed by the codrdinates. The reader
is familiar with the use of coordinates to fix a point either in the
plane or in space. The point is the element of elementary ana-
lytic geometry, and all figures are studied as made up of points.
There is, however, no theoretical objection to using any geometric
figure as the element of a geometry. In the following pages we
shall discuss, among other possibilities, the use of the straight line,
the plane, the circle, and the sphere.

The dimensions of a system of geometry are determined by the
number of the codrdinates necessary to fix the element. Thus
the geometry in which the element is either the point in the plane
or the straight line in the plane is two-dimensional ; the geometry
in which the element is the point in space, the circle in the plane,
or the plane in space is three-dimensional; the geometry in which
the element is the straight line or the sphere in space is four-
dimensional.

Since each coordinate may take an infinite number of values,
the fact that a geometry has » dimensions is often indicated by
saying that the totality of elements form an oo* extent. Thus the
points in space form an oo® extent, while the straight lines in
space form an oo* extent. If in an oo" extent the codrdinates of an

element are connected by % independent conditions, the elements
1



2 ONE-DIMENSIONAL GEOMETRY

satisfying the conditions form an co*~* extent lying in the oo
extent. Thus a single equation between the codrdinates of a point
in space defines an «® extent (a surface) lying in an oo® extent
(space), and two equations between the codrdinates of a point in
space define an o' extent (a curve).

2. The principle of duality. When the element has been selected
and its codrdinates determined, the development of the geometry
consists in studying the meaning of equations and relations con-
necting the codrdinates. There are therefore two distinct parts to
analytic geometry, the analytic work and the geometric interpreta-
tion. Two systems of geometry depending upon different elements
with the same number of codrdinates will have the same analytic
expression and will differ only in the interpretation of the analy-
sis. In such a case it is often sufficient to know the meaning of
the cotrdinates and the interpretation of a few fundamental rela-
tions in each system in order to find for a theorem in one geom-
etry a corresponding theorem in the other. Two systems which
have such a relation to each other are said to be dualistic, or to
correspond to each other by the principle of duality.

It is obviously inconvenient to give examples of this principle
at this time, but the reader will find numerous examples in the
pages of this book.

3. The use of imaginaries. Between the codrdinates of a geo-
metric element and the element itself there fails to be perfect equiv-
alence unless the concept of an imaginary element is introduced.
Consider, for example, the usual Cartesian co6rdinates (z, y) of a
point in a plane. If we understand by a * real point ” one which has
a position on the plane which may be represented by a pencil dot,
then to any real pair of values of z and y corresponds a real point,
and conversely. It is highly inconvenient, however, to limit our-
selves in the analytic work to real values of the variables. We
accordingly introduce the convention of an *imaginary point” by
saying that a pair of values of z and y of which one or both is a
complex quantity defines such a point. In this sense a * point”
is nothing more than a concise expression for “ a value pair (z, ¥).”
From this standpoint many propositions of analytic geometry
are partly theorems and partly definitions. For example, take the
proposition that any equation of the first degree represents a straight
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line. This is a theorem as far as real points and real lines are
concerned, but it is a definition for imaginary points satisfying an
equation with real coefficients and for all points satisfying an equa-
tion with complex coefficients. The definition in question is that
a straight line is the totality of all value pairs (2, ¥) which satisfy
any linear equation. _

Any proposition proved for real figures may be extended to imag-
inary figures provided that the proof is purely an analytic one
which is independent of the reality of the quantities involved.
One cannot, however, extend theorems which are not analytic in
their nature. For example, it is proved for a real triangle that the
length of any side is less than the sum of the lengths of the
other two sides. The length of the side connecting the vertices
(2, y) and (z, 9,) is V(z,— z,)'+(y,—¥,)~ We may extend
this definition of length to imaginary points, but the theorem con-
cerning the sides of a triangle cannot be proved analytically and
is not true for imaginaries, as may be seen by testing it for the
triangle whose vertices are (0, 0), (¢, 1), and (7, —1).

Similar considerations to those we have just stated for a point
in a plane apply to any element. It is usual to have a real element
represented by real codrdinates, but sometimes it is found con-
venient to represent a real element by complex coordinates. In
either case there will be found in the analysis certain combinations
of cobrdinates which cannot represent real elements. In all cases
the geometry is extended by the convention that such codrdinates
represent imaginary elements.

4. Infinity. Infinity may occur in a system of geometry in two
ways: first, the value of one or more of the coordinates may increase
without limit, or secondly, the element which we suppose lying
within the range of action of our physical senses may be so displaced
that its distance from its original position increases without limit.

Infinity in the first sense may be avoided by writing the cotr-
dinates in the form of ratios, for a ratio increases without limit when
its denominator approaches zero. Coordinates thus written are called
homogeneous codrdinates, because equations written in them become
homogeneous. They are of constant use in this book.

The treatment of infinity in the second sense is not so simple,
but proceeds as follows: As an element of the geometry recedes
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indefinitely from its original position, its cobrdinates usually
approach certain limiting values, which are said by definition to
represent an “‘element at inﬁnit);‘” The cobrdinates of all ele-
ments at infinity usually satisfy a certain equation, which is said
to represent the “locus at infinity.” The nature of this locus
depends upon the coordinate system. Thus, in the plane, by the
use of one system of codrdinates all “ points at infinity ” are said
to lie on a “straight line at infinity ”; by another system of coor-
dinates the plane is said to have “ a single real point at infinity ” ;
by still another system of coordinates the plane is said to have
“two lines at infinity.” These various statements are not contra-
dictory, since they are not intended to express any fact about the
physical properties of the plane. They are simply conventions to
express the way in which the codrdinate system may be applied
to infinitely remote elements. There is no more difficulty in pass-
ing from one convention to another than there is in passing
from one coordinate system to another. The convention as to
elements at infinity stands on the same basis as the convention as
to imaginary elements.

5. Transformations. A transformation is an operation by which
each element of a geometry is replaced by another element. The
new element may be of the same kind as the original element or
of a different kind. For example, a rotation of a plane about a
fixed point is a transformation of points into points; on the other
hand, a transformation may be made in the plane by which each
point of the plane is replaced by its polar line with respect to a
fixed conic. We shall consider in this book mainly analytic trans-
JSormations, that is, those in which the coordinates of the trans-
formed element are analytic functions of those of the original
element.

A transformation may be conveniently expressed by a single
symbol, such as 7. If we wish to express the fact that an element,
or a configuration of elements, a, has been transformed into another
element or configuration 4, we write ‘

T(a)=3. @

Suppose now, having carried out the transformation 7, we carry
out on the transformed elements another transformation S. The




GENERAL CONCEPTS 5

result is a single transformation @, and we write
G =281, ©)
where G is called the product of S and 7.

Similarly, the carrying out in succession of the transformation
T, then S, and then R, is the product RS7. This symbol is to be
interpreted as meaning that the transformations are to be carried
out in order from right to left. This is important, as the product
of transformations t8 not necessarily commutative. For example, let
T be the moving of a point through a fixed distance in a fixed
direction and S the replacing of a point by its symmetrical point
with respect to a fixed plane. It is evident in this case that

ST+ TS. 3)

A product of transformations s, however, associative. To prove this,
let B, S, and T be three transformations. We wish to show that

(RS)T=R(ST)=RST. @)
In the sense of formula (1) let
T(a)=1b, S®)=g¢ R(c)=d.

Then (RS)T(a)=RS(b)=R(c)=d.
On the other hand, S7(a)=8(%)=c¢,
so that - R(ST) (a)=R(c)=d.

This establishes the theorem.

If T represents an operation, 7-' shall represent the tnverse
operation ; that is, if 7 transforms any element @ into an element
b, T-' shall transform every element & back into the original a.
The product then of 7 and 7-! in any order leaves all elements
unchanged. It is natural to call an operation which leaves all ele-
ments unchanged an identical transformation and to indicate it by
the symbol 1. We have then the equation

TT-'=T"'T=1 ®)
If S and 7 are two transformations, the operation
781T-*=9 (%)

is called the transform of S by 7.
If 8 and S} are the transforms of S, and .S, respectively, then
S.8; is the transform of S,S, For

S8, = (T8, T~ (T8,T-Y)=T8,T-'T8,T'=T(8,S,) T
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EXERCISES

1. State which of the following pairs of operations are commutative :

() a translation and a rotation about a fixed point;
(b) two rotations ;

(¢) two translations;

(d) a rotation and a reflection on a line.

2. If S is a transformation such that $?=1, prove that S-! =S, and
conversely. Give geometric examples of transformations of this type.

3. Prove that the reciprocal of the product of two transformations is
the product of the reciprocals of the transformations in inverse order ;
that is, prove that (RST)'= T-1§-'R-.

4. If S is a rotation in a plane and T a translation, find the trans-
form of S by T and the transform of T by S.

5. Prove that the trahsform of the inverse of S is the inverse of the
transform of S.

6. If the product of two transformations is commutative, show that
each is its own transform by the other.

6. Groups. A set of transformations form a group if the set contains
the tnverse of every transformation of the set and if the product of any
two trangformations of the set is also a transformation of the set.

In general the definition of a group of operations involves also
the conditions that the operations shall be associative and that the
identical transformation shall be defined. These latter conditions
being always true for geometrical transformations need not be
specified in our definition nor explicitly looked for in determining
whether or not a given set of transformations form a group.

As an example of a group consider the operations consisting of
rotating the points in space around a fixed axis through any angle
2

5
possible rotations around the same axis.

A set of operations forming a group and contained in a larger
group form a subgroup of the larger group. For example, the rota-

“equal to any multiple of ——- Another example consists of all

27
5
of all rotations about the same axis. Again, all méchanical motions
in space form a group. All translations form a subgroup of the

tions about a fixed axis through multiples of form a subgroup
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group of mechanical motions. All translations in a fixed direction
form a subgroup of the group of translations and hence a sub-
subgroup of the group of motions.

The importance of the concept of groups in geometry lies in the
fact that it furnishes a means of classifying different systems of
geometry. The element of the geometry having been chosen, any
group of transformations may be taken, and the properties of
geometric figures may be studied which are unaltered by all trans-
formations of the group. Thus the ordinary geometry of space
considers the properties of figures which are unaltered by the group
of mechanical movements.

Any property or configuration which is unaltered by the opera-
tions of a group is called an ¢nvariant of the group. Thus distance
is an invariant of the group of mechanical motions, and a circle is
an invariant with respect to the group of rotations in the plane
of the circle about the center of the circle.

EXERCISES

1, If « is the distance of a point P on a straight line from a fixed
point 0, and P is transformed into a new point P’ such that z' = ax + b,
prove that the set of transformations formed by giving to ¢ and 4 all
possible values form a group.

2. If (z, y) are Cartesian codrdinates in a plane, and a transformation
is expressed by the equations
«'=2x cosa — ysina,
y'=xsina + ycos a,

prove that the transformations obtained by giving @ all possible values
form a group.

3. If (x, y) are Cartesian coordinates in a plane, prove that the
transformations defined by the equations
z'=zcosa + y sina,
y'=zsine — y cos a,
do not form a group.
4. Name some subgroups of the groups in Exs. 1-2.

5. Let G be a given group and G, a subgroup. If every transforma-
tion of G, is replaced by its transform by 7, where T belongs to G, show
that the transformations thus found form a subgroup of G.



CHAPTER II
RANGES AND PENCILS

7. Cartesian coordinate of a point on a line. Consider all points
which lie on a line LK (Fig. 1). These points are called a pencil
or -a range, and the line LK is called the azis or the base of the
range. Any point P on LK may 4 o B P
be fixed most simply by means of
its distance OP from a fixed origin
O, the distance being reckoned positive or negative according as P -
lies on one side or another of 0. We may accordingly place

z=O0P €Y}

K
Fic. 1

and call z the coordinate * of P. To any point P corresponds one A

and only one real codrdinate z, and to any real z corresponds
one and only one real point P. Complex values of z are said, as
in § 8, to define imaginary points on LK.

The coordinate may be made homogeneous (§ 4) by using

the rz_a.tio z: t, where. % = OP. As P recedes indefinitely from O, ¢ .

approaches the value 0. Hence, as in § 4, we make the convention
that the line has one point at infinity with the coordinate 1: 0.
When the nonhomogeneous z of (1) is used, the point at infinity
has the cotrdinate oo.

The codrdinate z we call the Cartesian codrdinate of P because
of its familiar use in Cartesian geometry.

8. Projective coiordinate of a point on a line. On the straight
line LK (Fig. 1) assume two fixed points of reference 4 and B
and two constants %, and k. Then if P is any point on LK we
may take as the coordinate of P the ratio z,:z, where

z:z,=k .AP:k, . BP, (¢))

* The word ** codrdinate ’* may be objected to on the ground that it implies the

existence of at least two quantities which are codrdinated in the usual sense. In

spite of this objection we retain the word to emphasize the fact that we have here
the simplest case of codrdinates.in an n-dimensional geometry.

. AP g AAE
’:é\_u 4@1037°| ,ﬁﬁf
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in which the distances 4P and BP are positive or negative accord-
ing as P is on the one side or the other of 4 or B respectively.
It is evident that the correspondence between real points on LK
and real values of the ratio z :z, is.one to one. Complex values
of the ratio define imaginary points on LK (§ 3).

The Cartesian codrdinate of the preceding article may be con-
sidered as a special or limiting case of the kind just given. For if
in (1) we place k, =1, allow the point B to recede to infinity,
and at the same time allow %, to approach zero in such a manner
that the limit of %, .BP remains finite, equations (1) give the
homogeneous Cartesian coordinates of P.

Considering (1), we see that as P recedes indefinitely from 4
and B the ratio z,:z, approaches the limiting ratio %,: %, Hence
we say that the line has one point at infinity.

It is to be noticed that the ratio (which alone is essential) of
the constants %, and %, is determined by the codrdinate of any one
point. Since this ratio is arbitrary the codrdinate of any point may
be assumed arbitrarily after the points of reference are fixed.

In particular any point may be given the coordinate 1:1. This
point we shall call the unit point. The coérdinate of 4 is 0:1 and
that of Bis 1: 0. Since the unit point and the points of-geference
are arbitrary, it follows that in setting up the codrdinate system any
three points may be given the codrdinates 0:1, 1: 0, and 1: 1 respec-
tively, and the coordinate system 18 fully determined by these points.

The codrdinate of this section we shall call the projective
coordinate of P because of its use in projective geometry.

EXERCISES

1. Establish a cobrdinate system on a straight line so that the point B
is 5 inches to the right of 4 and the unit point 1 inch to the right of 4.
‘Where is the coérdinate negative ?

2. Take the point B as in Ex. 1 and the unit point 1 inch to the
right of B. What are the coordinates of points respectively 1, 2, 8,
4 inches to the right of 4 and 1, 2, 3 inches to the left of 4 ?

9. Change of coordinates. The most general change from one sys-
tem of projective codrdinates to another may be made by changing
the points of reference and the unit point, the latter change being
equivalent to changing the ratio of the constants %, and %, Let
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z,: z, be the codrdinate of any point P (Fig. 2) referred to the

points of reference 4 and B, with certain constants k, and %, and

let z} : z; be the codrdinate of the same p B p

point referred to the points of reference —¢— % —

4' and B/, with constants %, and £,.

Assume any point O and let O4=aq,

04'=d', OB=5, 0B'="¥,and OP =t. Then from (1), § 8, we have
vz, =k —a):k,(t—0b), af:zi=k(t—a):k(-b). (1)

The elimination of ¢ from these equations gives relations of the
form pr,= @z, + a,z), @

p,= Bz, + B,y
which are the required formulas for the change of codrdinates.

The ratio of the coefficients @, a,, 8, and B, will be determined
if we know three values of z, : z, which correspond to three values
of 2}:4}, in particular to the three values 0:1, 1:0, 1:1. For
when 2] : 2,=0:1 we have 2, : 2,=a, : 8;; when z;: z; =1: 0 we have
z,: z,=a,: B;; and when 27 : z}=1:1we have z,: z,=a, +a,: 8, + 8,.

It is obvious from the foregoing that if the reference points 4
and B are distinct, the coefficients in (2) must satisfy the condition
aB,—apB *0, which is also necessary in order that the ratio z,: z,
in equations (2) should contain z;: .

Equations (2) may be placed in a form which is of frequent use.
Let us place zj: ;=\, @,=2, B,=2, a,=y, B,=y, where y,: g,
and 2 : 2z, are the codrdinates of the two points corresponding to
A =0 and A = o respectively. Then equations (2) become

Px1=y1+le’ (3)
Pz, =Y, + A2,

Hence, if y,: y, and z,: 2, are the codrdinates of any two points on
a straight line, the coordinate of any other point may be written
Yy, + A2y, + Az

FiG. 2

EXERCISES
1. Find the formulas for the change from the coordinate in Ex. 1, § 8,
to that in Ex. 2.

2. Find the formulas for a change from the coordinate in Ex. 1, § 8,
to one in which the reference points are respectively 2 and 6 inches
from A and the unit point 4 units from 4.

3. Prove that all changes of coordinates form a group.
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10. Coordinate of a line of a pencil. Consider all straight lines
which lie in a plane and pass through the same point (Fig. 8).
Such lines form a pencil, the common point being called the vertex
of the pencil.

Let OM be a fixed line in the pencil, OP any line, and 6 the angle
MOP. Then it would be possible to take 6 as the coordinate of OP,
but in that case the line OP would
have an infinite number of cot6rdi-
nates differing by multiples of 2.
We may make the relation between
a line and its coordinate one to one
by taking as the codrdinate a quan-
tity z defined by the equation

z=Fktané, @
where % is an arbitrary constant.
Then z =0 is the line OM, z = oo is 4 Fro. 3

the line at right angles to 0, and

any positive or negative real value of z corresponds to one and
only one real line of the pencil, and conversely. Imaginary values
of = define imaginary lines of the pencil as in § 3.

A more general codrdinate may be obtained by using two fixed
lines of reference 04 and OB and defining the ratio z : z, by the
equation z,: #,= k, sin AOP : k,sin BOP. )

Equation (2) reduces to equation (1) when the angle 40B is a
right angle, 04 coincides with OM, and z,: z,= 2.

In general let the angle #04 = a and the angle MOB = 8. Then
(2) may be written

z 1z, =k sin (0 —a):k, sin (0 —B)
=k (zcosa —ksin a): k,(z cos B — k sin B), 3
when z is defined by (1).

Now let 21 : 2} be another codrdinate of the lines of the pencil of
the same form as in.equation (2), but referred to lines of reference
04' and OB’ and with constants %, and %, Then z] : z} is connected
with z, : z, by a bilinear relation of the form

pT, = a2 + @z,

4
Pz, = By2; + Bl ®
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This follows from the fact that both z,: 2, and 2]: 2} are con-
nected with z by a relation of the form (8).

Since a transformation of codrdinates is effected either by change
of the lines of reference or by change of the constants % and £,, it
follows that any transformation of codrdinates is expressed by a
relation of form (4). The coefficients of the transformation are
determined when the values of z,: z, are known which correspond

to three values of 2/ : 2, The proof is asin §9. Also, as in § 9, it
may be shown that if y :y, and 2, : 2, are the codrdinates of any
two lines of a pencil, the coordmate of any line may be written

z, = Az,
P 1 y 1+ kS . (5)
PZ,= Y, + Az,

11. Coordinate of a plane of a pencil. Consider all planes which
pass through the same straight line (Fig. 4). Such planes form a
pencil or sheaf, and the straight line is called the azis of the pencil.
The coordinate of a plane of the sheaf may be
obtained by first assuming two planes of refer- g
ence a and b and a fixed constant k& Then, if p D
is any plane of the pencil and (a, p) means the
angle between a and p, we may define the coordi-
nate of p as the ratio z, : z, given by the equations

z iz, =k sin(a, p): k,sin (4 p). (1)

It is obvious that if a plane m be passed per-
pendicular to the axis of the pencil, the planes of | / ~
the pencil cut out a pencil of lines in the plane m.
The angle between two lines of this pencil is the
plane angle of the two planes in which the two lines lie. Hence
the codrdinate z,:z, defined in (1) is also the codrdinate of the
lines of the pencll in the plane m, in the sense of § 10. The results
of § 10 with reference to transformation of codrdinates hold, there-
fore, for a pencil of planes. In particular, if ¥, :y, and 2 :2, are
the codrdinates of any two planes of a sheaf, the coordinate of any
plane of the pencil may be written

-~

Fic. 4

pr,=y, + le,

@
Pz,=y,+ Az,




CHAPTER III
PROJECTIVITY

" 12. The. linear transformation. We shall now consider the
substitution
p7y = a2, + Bz,

Pa"'; = a7, +ﬁzzz

not as a change of coordinates, as in § 9, but as defining a trans-
formation in the sense of § 5. Then z,:z, are to be interpreted as
the coordinate of an element of a one-dimensional extent and
z} : 2} a8 the cobrdinate of the transformed element of the same or
another one-dimensional extent. If z,:z, and 2/:2] refer to dif-
ferent extents, the elements need not be of the same kind. For
example, the transformation (1) may express the transformation
of points into lines, of points into planes, of lines into planes, and
80 on.

To study the transformation we shall find it convenient to use
a nonhomogeneous form obtained by replacing z,:z, by A, z{:2}
by A/, and changing the form of the constants. We have

7£,___a7t+/3
77\.+8'

(@B,—apB +0) @

(@d— By +0) @

Here A and A’ may be the point, line, or plane codrdinates of
§§7, 8, 10, 11 or may be the A used in the formulas of §§9-11.
More generally still, A may be any quantity which can be used
to define an element of any kind, even though not yet employed
in this text. ,

In each case the element with coordinate A is said to be trans-
formed into the element with codrdinate A/, and the two elements
A and A\’ are said to correspond. There is one and only one element
A/ corresponding to an element A. Conversely, from (2) we obtain

N — 8
= Tota ®
18
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Hence to an element A’ corresponds one and only one element A.
In other words, the correspondence between the elements N and the
elements \' i8 one to onme.

Any element whose coordinate is unchanged by the trans-
formation is called a fired element of the transformation. This
definition has its chief significance when the elements A and A’ are
points of the same range, or lines of the same pencil, or planes
of the same pencil. If, for example, A and A’ are points of the
same range, the point A is transformed into the point A/, which
is in general a different point from A, but the fixed points are
unchanged.

To find the fixed elements we have to put A = A’ in (2) or in (8).

There results

WH+@—a)A—B=0. €))

Any linear transformation has, accordingly, two fixed elements, whick
may be distinct or coincident.

If a, B, v, and & are real numbers, and real coordinates A and A/
correspond to real elements, we may make the following classifica-
tion of the linear transformations:

© (1) (8—a)*+ 4 By >0. The fixed elements are real and distinct.
The transformation is called hyperbolic.

(2) (8 —a)’+ 4By <0. The fixed elements are imaginary with
conjugate imaginary codrdinates. The transformation is called
elliptic.

(8) (8 —a)*+ 4 By=0. Thefixed points are real and coincident.
The transformation is called parabolic.

By the transformation (2) an element P with codrdinate A is
transformed into an element @ with the coordinate A. At the
same time the element ¢ is transformed into an element B with
coordinate A". In general, R is distinct from P, for A" is given
by the equation

x,,___ax’+ﬁ=(a’+,8-y)k+aﬂ+38. (5)
“WHE (@ + oA+ By £

In order that A" should always be the same as A it is necessary
and sufficient that the equation

(ay +yd) M+ (8 —a) A —(aB+B8)=0
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should be true for all values of A. The coefficients «, 8, v, and 8
must then satisfy the equations

ay+v3=0, _
& a?=0, ®)
aB+B88=0.

The second equation gives 6 = + @. If we take 8 = @ the other
two equations give y = 0, 8= 0, and the transformation (1) reduces
to the identical transformation A =2A. We must therefore take
d = — a, and all three equations (6) are satisfied.

The transformation then becomes
_ar+ 8
- MnN—a

xl

(@+By+0) ™

A linear transformation of this type is called involutory. It has
the property that if repeated once it produces the identical trans-
formation. The correspondence between the elements A and the
transformed elements A’ is called an ¢nvolution.

EXEREISES

1. Find the transformation -which transforms 0, 1, oo into 1, o, 0,
respectively. What are the fixed points of the transformation ?

2. If z is the Cartesian codrdinate of a point on a straight line,
determine the linear transformation which interchanges the origin and
the point at infinity. What are the fixed points of the transformation ?
Do all such transformations form a group ?

8. If « is the Cartesian coordinate of a point on a straight line,
determine the transformation which has only the origin for a fixed
point and also that which has only the point at infinity for a fixed
point. Does each of these types of transformation form a group ?

4. If = is the Cartesian coordinate of a point on a straight line,
determine a transformation with the fixed points 4 <. Do these form
a group ?

6. Show that the general linear transformation may be obtained as
the product of two transformations of the type A'=al, two of the

type A'= A\ + b, and one of the type}J:}%-

6. Show that any transformation with two distinct fixed elements

. AN—a A—a
aandbcanbewnttenm_kx_b-
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7. Show that imy tran;formation with a single fixed element @
can be written J\’_—-a=x——a+b'

' 8. Show that; any involutory transformation can be written
AM—a A—
N5~ ATs

9. Show that all transformations with the same fixed elements
form a group.

10. Consider the set of circles which pass through the same two
fixed points, and the common diameter of the circles. Show that if P
and Q are the two points in which any one of the circles meets the
common diameter, P may be transformed into @ by an involutory
transformation, the form of which is the same for all points P. Show
that the transformation is elliptic or hyperbolic according as the two
fixed points in which the circles intersect are real or imaginary.

11. Show, conversely to Ex. 10, that any involutory transformation
may be geometrically constructed as there described.

» where a and b are the fixed elements.

13. The cross ratio. The linear transformation contains three
constants ; namely, the ratios of the four coefficients a, 8, v, and 3.
These constants can be so determined that any three arbitrarily
assumed values of A can be made to correspond to any three arbi-
trarily assumed values of A’. In other words,

I. By a linear trangformation any three elements can be trangformed
tnto any other three elements, and these three pairs of corresponding
elements are sufficient to fix the trangformation.

To write the transformation in terms of the codrdinates of three
pairs of corresponding elements, we write first

Mo, A=

A — x; x xl (1)
which is obviously a transformation by which A, is transformed
into A}, and A, into A{. If, in addition, A, is to be transformed into
A\j, @ must be determined by the equation

N _ M= 0
x, Vinkswary @
From (1) and (2) we have
NoM NN A= Noh, &
_7‘4 N )1 ‘A= x'1 N2, .

which is the required transformation.
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If A, and A{ are a fourth pair of corresponding elements, we have,
from (3), M=M OM=M AN M)
- MM ONIAL T N A— A,
or, with a slight rearrangement,
X{—M.M—Xi_:ll—l.,.lz—-l‘ (4)
M=M N=N M= M)
A Ay A— l4
v )
A=A A,
is called the cross ratio, or the ankarmonic ratio, of the four ele-
ments A, A, A, A, and is denoted by the symbol (AA,, AA).
Equation (4) estabhshes the theorem:

II. The cross ratio of four elements ts unaltered by any linear
transformation. '

The quantity

The cross ratio is accordingly independent of the cot6rdinate
system used in defining the elements.

The cross ratio depends not only on the four elements involved
but also on the order in which they are taken. Now four things
may be taken in twenty-four different orders, but there result only
six distinct cross ratios. In fact, it is easy to show, by writing all
possible cross ratios, that the six distinct ones are

7, -]:s 1—1’ 1 ] T—l' r ’
' r R r r—1

where 7 is any one of them.

In naming the cross ratio of four elements it is therefore neces-
sary to indicate the order in which the elements are to be taken.
We have adopted the convention that if B, B, E, and E are four
elements with the codrdinates A, A,, A;, and A, respectlve]y, the
cross ratio indicated by the symbol (BE, ER) shall be given by

the relation M= . A—A,, O)
BEVES VAP VW

If, then, we denote (BE, ER) by r, it is evident that

1

1—~r

b

1.
(BB, ER)=~ (BB EB)=1-r, (EE, PP)—

r—

(RE, EI;)=

’ 144y L343
r —
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A special form which the cross ratio takes for certain codrdinates
is of importance and is given in the following theorem :

III. If the elements P and Q have the codrdinates y,: y,and z,: z, re-
spectively, and the elements R and S have the codrdinates y, + Az, : y, + Az,
and y,+ pz,: y,+ pz, respectively, then

A
(PQ, RS)= (RS, PQ)= =

To prove this take A, =0 for the element P, A,=c for the
element @, A,=A for the element R, and A, = p for the element
S, and substitute in (6).

If A is the Cartesian coordinate of a point on a straight line,
then A, — A= EE, N\,—N\,=EE, \,—N\=ER, \,— N=ER, and

P
(BE, RE) =33 - 254 )

The cross ratio is accordingly found by finding the ratio of the
segments into which the line BE is divided by R and the ratio of
the segments into which RE is divided by E, and forming the ratio
of these ratios. ,

14. Harmonic sets. If a cross ratio is equal to —1, it is called
a harmonic ratio. If B, E, B, and F, are four elements such that
the four elements form a harmonic set, and the points R and B
are said to-be harmonic conjugates to E and E.

From III, § 18, it follows that the points y, + Az :y, + Az, and
Y, — Az,: y,— Az, are harmonic conjugates to y,:y, and z,: 2,

From (7),§ 18, it follows that if four points on a straight
line form a harmonic set, then

BE_ _ER
BE- BE

This shows that the two points in a harmonic set divide the dis-
tance between their harmonic conjugates internally and externally
in the same ratio.
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EXERCISES

1. Show that the cross ratio of any point, the transformed point,
and the two fixed points of any elliptic or hyperbolic transformation
is constant. This is sometimes called the characteristic cross ratio of
the transformation. What happens to the characteristic cross ratio as
the two fixed points approach coincidence ?

2. Show that by any involutory transformation any element is

transformed into its harmonic conjugate with respect to the two fixed
elements.

3. If A, A, A, A, form a harmonic set, prove that
2 _ 1 + 1
A NS A
In general, prove that if (A A, AN,) =&,
1—% 1 _k
&z_)‘l_kc_)‘l A=A
4. Write the transformation by which each point on a line is trans-

formed into its harmonic conjugate with respect to the points A = — a,
A = a. What are the fixed points of the transformation ?

5. Prove that an involution of lines of a pencil contains one and
only one pair of perpendicular lines (that is, one case in which a line
is perpendicular to its transformed line) unless all pairs of lines are
perpendicular. When does the latter case occur ?

6. Let x, : z, be the coordinate of a point on a line and consider the
point pair defined by the equation

anxi + 2 ayyzy + aa,:tf_= 0.
Show that the equation may be reduced to one of three types by a
real transformation of coordinates and give the analytic condition for
each type.
7. Let 4 and B be two distinct points defined by the equation of
Ex. 6,and P (y,:y,) and Q (2,:%,) and R (w,:w,) any three points. If
the projective distance between two points is defined by the equation

D(PQ) = %‘ log (PQ, AB), show that D(PQ) + D(QR) = D(PR).

Consider two cases :

1. A and Breal. Take k real. Then any two points between 4 and
B have a real distance apart. 4 and B are at an infinite distance from
any other point. Any point not between 4 and B is at an imaginary
distance from any point between 4 and B.
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2. A and B conjugate imaginary. Take & pure imaginary. Any two
real points are at a real finite distance apart. The total length of the
line is finite.

8. Consider the point pair defined by the equation

' au®f + 2 0,322, + a2} = 0.
Then, if y, : y, is any given point, the equation
@y + 219Y5)®; + (@191 + Agey)x3 =0

defines a pomt which is called the polar point of y with respect to
the point pair. Assuming a,a,, — af # 0, show that to any point cor-
responds a definite polar point and that any point is the polar point
of a definite point y. Show that a point and its polar are harmonic
conjugates with respect to the point pair. What happens to these
.theorems if a0, —a}=07?

15. Projection. Two one-dimensional extents are said to be in
projection if the elements of the two extents are brought into
correspondence by means of a linear relation,

A= a7L+B

7+ 5

between their codrdinates. The correspondence is called a projec-

tivity. If the correspondence is involutory, the projectivity is an

involution (§12). From the definition the followmg theorems
may be immediately deduced :

(a8 — By #0)

I. The cross ratio of any four elements of a one-dvmensional extent
18 the same as the cross ratio of the four corresponding elements of a
projective extent.

II. Two one-dimensional extents may be brought into projection with
each other in such a way that any three elements of one are made to
correspond to any three elements of the other.

III. A projectivity s fully determined by three pairs of corresponding
elements.

IV. Two extents which are in projection with the same third extent
are in projection with each other.

EXERCISE

If the points of a circle are connected to any two fixed points of the
circle, show that the two pencils of lines formed are projective.
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16. Perspective figures. A simple case of a projectivity is that
called a perspectivity, now to be defined. Noting that we have to
do with pencils of different kinds,
according as they are made up
of points, lines, or planes, we
say that two pencils of different
kinds are in perspective when
they are made to correspond in
such a manner that each element
of one pencil lies in the corre-
sponding element of the other. /4 1B Y N
Two pencils of the same kind - Fic. 6
are in perspective when each is
in perspective to the same pencil of another kind. The corre-
spondence between perspective figures is called a perspectivity.

A pencil of points and one of lines are therefore in perspective
when they lie as in Fig. 5, where the lines a, b, ¢, d, etc. correspond
to the points 4, B, C, D, etc. To see that we are justified in calling
this relation a projectivity, note that

AD 0A48in 40D
BD OB sin BOD

=

‘Hence, if 4 and B are taken as fixed points and D as any point,
the variable A is a coordinate at the same time of the points of the -
pencil of points and of the lines
of the pencil of lines. Since any
change of codrdinate of either of
the pencils is expressed by a
linear relation, the two pencils
satisfy the definition of projec-
tive figures.

Two pencils (ranges) of points
are in perspective when they are /A /B \{)
perspective to the same pencil ' \c
of lines as in Fig. 6. The straight : Fie. 6
lines connecting ‘corresponding
points of the two ranges then pass through a common point. That
the relation is a projectivity follows from IV, § 16.
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Two pencils of lines are in perspective when they are in per-
spective to the same range of points as in Fig. 7. The points
of intersection of corresponding '
lines of the two pencils then lie
on the same straight line. That
the relation is a projectivity
follows from IV, §165.

From these definitions the
following theorems are easily
proved :

L If four lines of a pencil of
lines are cut by any transversal,
the cross ratio of the four points of
intersection 18 independent of the
position of the transversal and is equal to the cross ratio of the four lines.

II. If four points of a range are connected with any center, the cross
ratio of the four connecting lines i8 independent of the position of the
center and 18 equal to the cross ratio of the four points of the range.

II1. If the straight lines connecting three pairs of corresponding points
of two projective ranges meet in a point, all the lines connecting corre-
sponding points meet in that point, and the ranges are in perspective.

IV. If the points of intersection of three pairs of corresponding lines
of two projective pencils lie on a straight line, the points of intersection
of all pairs of corresponding lines lie on that line, and the pencils are
in perspective.

The last two theorems follow from III, § 15.

A pencil of lines is in perspective to a pencil of planes when the
vertex of the pencil of lines lies in the axis of the pencil of planes
and each line corresponds to the plane in which it lies. If the plane
of the pencil of lines is perpendicular to the axis of the pencil of
planes, the correspondence is a projectivity, since, by § 11, the same
coordinate may be used for each pencil. If the plane of the pencil
of lines is not perpendicular to the axis of the pencil of planes, the
pencil of lines is clearly in perspective to another pencil of lines
with its plane so perpendicular, for in Fig. 7 the two pencils are
not necessarily in the same plane. Hence the relation here is also
a projectivity.

Fi1a. 7
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EXERCISES

1. Consider any two projective pencils of lines not in perspective
and construct the locus of the intersections of corresponding lines.
Show that this locus passes through the vertices of the two pencils and
that it is intersected by an arbitrary line in not more than two points.

2. Consider any two pencils of points not in perspective and con-
struct the lines joining corresponding points. These lines envelop a
curve. Show that not more than two of these lines pass through any
arbitrary point and that the two bases of the pencils belong to these lines.

3. Consider the locus of the lines of intersection of corresponding
planes of two pencils of planes not in perspective Show that this locus
contains the two axes of the penclls and that it is cut by any arbitrary
plane in a curve such as is defined in Ex. 1.

4. Show that if the line connecting the vertices of two projective
pencils of lines is self-corresponding (that is, considered as belonging
to one pencil it corresponds to itself considered as belonging to the
other pencil) the pencils are in perspective.

5. Show that if the point of intersection of the bases of two projective
ranges is self-corresponding (see Ex. 4) the ranges are in perspective.

6. Given any two projective ranges of points. Connect any pair of
corresponding points and take any two points O and O’ on the connect-
ing line. With O as a center construct a pencil of lines in perspective
with the first range, and with O’ as a center construct a pencil of lines
in perspective with the second range. Prove by use of Ex. 4 that the
two pencils are in perspective. Hence show how corresponding points
of two ranges can be found if three pairs of corresponding points are
known or assumed.

7. Given two projective pencils of lines. Take the point of inter-
section of two corresponding lines and through it draw any two lines
o and o. On o construct a range of points in perspective to the first
pencil of lines and on o' construct a range of points in perspective to
the second pencil of lines. Prove by use of Ex. 5 that the two ranges
are in perspective. Hence show how corresponding lines of two pro-
jective pencils can be found if three.pairs of corresponding lines are
known or assumed.

17. Other one-dimensional extents. We have taken as an example
of a one-dimensional extent of points the range, or pencil, consist-
ing of all the points on a straight line. It is obvious, however, that
this is not the only example of a one-dimensional extent of points.
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In fact, any curve, whether in the plane or in space, is a one-
dimensional extent, the codrdinate of an element of which may be
defined in a variety of ways. One of the simplest methods is to
take the length of the curve measured from a fixed point to a vari-
able point as the codrdinate of the latter point, but other methods
will suggest themselves to the reader familiar with the parametric
representation of curves. In the case of a circle, for example, we
may construct a pencil of lines with its vertex on the circle, take
as the initial line of the codrdinate system the tangent line to the
circle through the vertex of the pencil, and then take as the coordi-
nate of a point on the circle the codrdinate of the line of the pencil
which passes through that point.

Similarly, the tangent lines to a plane or space curve form an
example of a one-dimensional extent of lines. Also the tangent
planes to a cone or a cylinder or the osculating planes to a space
curve are examples of a one-dimensional extent of planes. These
extents, both of lines and planes, will be discussed later.

Moreover, it is not necessary that we confine ourselves to points,
lines, and planes as elements. We may, for example, take the
circle in a plane as the element of a plane geometry. In that case
all the circles which pass through the same two points form a one-
dimensional extent, a pencil of circles. Another example of a one-
dimensional extent of circles consists of all circles whose centers lie
on a fixed curve and whose radii are uniquely determined by the
positions of their centers.

In like manner the sphere may be taken as the element of a
space geometry. All the spheres which interseet in a fixed circle
form then a one-dimensional extent of spheres, a pencil of spheres,
and other examples are readily thought of.

In all these cases, when the codrdinate A of the element of the
extent is fixed, the discussion of the previous sections applies.

One more remark is important. In all cases we have allowed A
to take complex values. That is, A is a number of the type

A=A+,

where ¢ =V —1. The variable A may accordingly be interpreted in
the usual manner on the complex plane. The significance of the
linear transformation may then be studied from the standpoint of
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the theory of functions of a complex variable. This lies cotpletely
outside of the range of this book.

We notice, however, that in interpreting A as the codrdinate
of a point on a straight line we have a one-dimensional extent of
complex values, while in interpreting it as a complex point on a
plane we have a two-dimensional extent of real values. That is,
the dimensions of an extent will depend upon whether it is counted in
terms of complex quantities or of real quantities. Usually we shall
in this book count dimensions in terms of quantities each of which
may take complex values.

Consider the complex quantity

A=2 +0A, 'e))
where A, and A, are real, and let
M=, A =S @

¢ being a real quantity and the functions real functions.

Then as ¢ varies, the point A traces out a curve on the complex
plane which is one-dimensional. If A is interpreted as the coordi-
nate of a point on a straight line, then equations (2) define a one-
dimensional extent of points on the straight line, which do not of
course contain all the points of the line. Such a one-dimensional
extent of points is called a thread of the line. Examples are the
thread of real points (A, =0), the thread of pure imaginary points
(A, =0), the thread of points A (1+47) the square of whose
coordinates is pure imaginary, and others which can be formed
at pleasure.
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PART II. TWO-DIMENSIONAL GEOMETRY

CHAPTER 1V
POINT AND LINE COORDINATES IN A PLANE

18. Homogeneous Cartesian point codrdinates. Let OX and OY
be two axes of coordinates, which we take for convenience as rec-
tangular. Then, if P is any point and PM is drawn perpendicular
to OX, meeting it at M, the distances OM and MP, with the usual
conventions as to signs, are the well-known Cartesian coordinates
of P. To make the coordinates homogeneous we place

0M=:§, MP='%- '¢))

Then to any point P corresponds a definite pair of ratios z:y: t.
Conversely, to any real pair of ratios z: y: ¥ in which ¢ is not equal
to zero, corresponds a real point. In order that a point may cor-
respond to any pair of ratios we need to make the following
definitions, in harmony with the general conventions of §§ 8-and 4:

(1) The ratios 0: 0: 0 shall not be allowable, for they make both
OM and MP indeterminate, and the point P cannot be fixed.

(2) Complex ratios shall be said to represent an imaginary
point (§ 3).

(3) A set of ratios in which ¢=0 shall be said to represent a
point at infinity (§ 4). In fact, it is obvious that as ¢ approaches
zero, P recedes indefinitely from 0, and conversely. In particular,
the point 0:1: 0 is the point at infinity on the line 0Y (§ 7), the
point 1: 0: 0 is the point at infinity on the line OX, and a:5:0 is

the point at infinity on the line OM = S MP.
19. The straight line. It is a fundamental propdsition in analytic
geometry that any linear equation
Az + By +Ct=0 a

represents a straight line. This is partly a theorem and partly a_

definition. It is a theorem as far as it concerns real points whose
27
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coordinates satisfy an equation of the form (1), in which the coeffi-
cients are all real and 4 and B are not both zero. For proof of the
theorem we refer to any textbook on analytic geometry.

The proposition is a definition as far as it refers to imaginary
points, to equations with complex coefficients, or to the equation
t=0. In this sense “straight line” means simply the totality of
pairs of ratios z: y: ¢ which satisfy equation (1).

In particular, the equation =0 is satisfied by all points at
infinity. Hence all points at infinity lie on a straight line, called
the line at infinity.

If one or more of the coefficients of (1) are complex the straight
line is said to be imaginary. It is interesting to note that an ¢mag-
tnary straight line has one and only one real point. To prove this
let us place in (1)

A=a+ia, B=b+1b, C=ec +ic,

Then (1) is satisfied by real values of z, y, and ¢ when and only
when az+by+ect=0,
ax+by+et=0.

These equations have one and only one solution for the ratios
z:y:t, and the theorem is proved. Of course the real point may
be at infinity.

Consider now any two straight lines, real or imaginary, with the

t'
equations Az+By+Ct=0,
Az+By+Ct=0.
These equations have the unique solution
z:y:t=BC,—B,C,:CA4,—CA :4B—AB,

which represents the common point of the two lines. This point is
at infinity when 4, B,— 4,B = 0, in which case, as is shown in any
textbook on analytic geometry, the lines, if real, are parallel. If
the lines are imaginary they will be called parallel by definition.
We may say

Two straight lines intersect in one and only one point. If the lines
are parallel, the point of intersection i8 at infinity.
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If (z; y,) is a fixed point on the line (1), we have

»A(:v—zo)+B(y—yo)=0; ©))
whence ¥— Y, 4
z—z, B

-Whether 4 and B be real or complex qua.ntltles, there exlsts a
real or imaginary angle @ such that

tan 0 = — .4;
Then, from equation (2),
=% _Y— Y,

cos @ siné

By placing these equal ratios equal to r we have, as another
method of representing a straight line analytically, the equations

z=2z +rcosb, )
y=y,+rsiné.
These are the parametric equations of the straight line. In them -
z,, y, and 0 are constants and r a variable parameter to each value
of which corresponds one and only one point on the line, and con-

versely. If the quantities involved are all real, the relation between
them is easily represented by a figure. In all cases

r=v(—2)'+y -y’ O]

and is defined as the distance between the points (2, ) and (z,, y,)-

This work breaks down only when 44 B’=0. In that case

either 4 =B =0, and the line (1) is the line at infinity, or equa-
tion (1) takes the form

ztiy+C=0. ©)
Here we may still place '
tan 6 = + 7,
but sin 6 and cos 6 become infinite and equations (8) are impossible.
In fact, equation (2) becomes

d (Z— o)ii(y—yo)=0
an
r=vV(@—2)'+ @y -3)'=
This shows that the distance between any two points on the
imaginary lines (5) must be taken as zero. For that reason they

are called minimum lines. They play a umque and very important
part in the geometry of the plane.
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EXERCISES

1. Prove that through every imaginary point goes one and only one
real line.

2. Prove that if a real straight line contains an imaginary point it
contains also the conjugate imaginary point (that is, the point whose
coordinates are conjugate imaginary to those of the first point).

8. Prove that if a real point lies on an imaginary line it lies also on
the conjugate imaginary line (that is, the line whose coefficients are
conjugate imaginary to those of the first line).

4. If the usual formula for the angle between two lines is extended
to imaginary lines, show that the angle between a minimum line and
another line is infinite and that the angle between two minimum lines
is indeterminate.

5. Given a pencil of lines with its vertex at the origin. Prove
that if the pencil is projected on itself by rotating each line through
a constant angle, the fixed points of the projection are the minimum
lines.

6. Show that a parametric form of the equations of a minimnum line is
=z, + ¢,
Y=y % i
where ¢ is a parameter, not a length.

20. The circle points at infinity. The circle is defined analyti-
cally by the equation

a(@+ YD)+ 2fat + 2 gyt + ct’ =0, @

the form to which equation (4), § 19, reduces when z, y, and r
are constants and (z, y) are replaced by z:y:t.

If a+ 0, the circle evidently meets the line at infinity in the
two points 1:7:0 and 1:—¢:0, no matter what the values of
the coefficients in its equation. These two points are called the
circle points at infinity. If a=0 in (1), the circle contains the
entire line at infinity and, in particular, the circle points. Hence
we may say th’éfy all circles pass through the two circle points
at infinity.

The circle points 1: + ¢: 0 are said to be at infinity because they
satisfy the equation t=10. Their distance from the center of the
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circle is not, however, infinite. The distance between two points
with the nonhomogeneous codrdinates (2, y) and (z, g,) is

d=v(z—2)+(y — ¥4

which can be written in homogeneous cotdrdinates as

d= \[(z'to—zot)::' Yt — .’/ot)z, @

(]
and this becomes indeterminate when z: y: ¢ is replaced by 1: + ¢:0.
This perhaps makes it easier to understand the statement that
these points lie on all circles.
If z: y,: ¢ is the center of the circle and 7 its radius, equation (1)
can be written (compare equation (2))

(aty— z)'+ (yt,— yot)* — r'tt’= 0.
When = 0 this equation becomes

(xto— xot)s+ (yto— yot)’= 0, (3)
the locus of which may be described as a circle with center (z, y,)
and radius zero. When the center is a real point the circle (3)
contains no other real point and is accordingly often called a point
circle. A point circle, however, contains other imaginary points.
In fact, equation (8) may be written as

[(=t,— z,t) +i(yto— yot)] [(xto— z ) — i(yto_ yot)] =0,
which is equivalent to the two linear equations
t,(z+ i) — (Z,+ iyt =0,
ty(z — i) — (5= ig)t = 0,
each of which is satisfied by one of the circle points at infinity.
Hence we have the result that a point circle consists of the two
imaginary straight lines drawn from the center of the circle to the two
circle points at infinity.

The distance from the point (z, y,) to any point on either of
the two lines just described is zero, by virtue of equation (3).
There are therefore the minimum lines of § 19, as is also directly
visible from equations (4). It is obvious that through any point

of the plane go two minimum lines, one to each of the circle points
at infinity.

C))
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1. Show that an imaginary circle may contain either no real point,
one real point, or two real points.

2. Consider the pencil of circles composed of all circles through two
fixed points. Show that the pencil contains two point circles and one
circle consisting of a straight line and the line at infinity. Show also
that the point circles have real centers when the fixed points of the
pencil of circles are conjugate imaginary, and that the point circles
have imaginary centers when the fixed points are real

3. If a pencil of circles consists of circles through a fixed point and
tangent at that point to a fixed line, where are the point circles and
the straight line of the pencil ?

21. The conic. An equation of the second degree,
az*+ 2 hzy + by*+ 2 frt + 2 gyt + ct*= 0, )}
represents a locus, called a conie, which is intersected by a general
straight line in two points. For the simultaneous solution of the
equation (1) and the equation
Az +By +Ct=0 @
consists of two sets of ratios except for particular values of 4, B,
and C.
Let the equation (1) be written in the nonhomogeneous form
by placing ¢ =1, and let (2) be written in the form (§19)
r=2z+rcosé, y=y,+rsiné. ©))
The values of r which correspond to the points of intersection
of the straight line (2) with the curve (1) will be found by sub-
stituting in (1) the values of z and y given by (8). There results
Lr+ 2 Mr+ N=0, (C))
where M= (az,+ hy,+f)cos 0 + (hz,+ by, + g)sin 6.
This will be zero for all values of § when z and y, satisfy the
equations az,+ hy,+f=0, hz,+ by, +g=0. ©))
In this case the point (z,, y,) will be called the center of the
curve, since any line through it meets the curve in two points
equally distant from it and on opposite sides of it. Now equation
(5) can be satisfied by a point not on the line at infinity when
and only when A*— ab+ 0. Hence the conic (1) i8 a central conmic
when h*— ab+ 0, and 8 a noncentral conic when h*— ab= 0.
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The conic (1) is cut by the line at infinity =0 in two points

for which the ratio z:y is given by the equation
ar’+ 2 hzy + by* = 0. ®)

This has equal or unequal roots according as A*— ab is equal or
unequal to zero. Hence a central conic cuts the line at infinity in two
distinct points; a moncentral conic cuts the line at infinity in two
cotncident points.

So far the discussion is independent of the nature of the coeffi-
cients of (1). If, however, the coefficients are real the classifica-
tion may be made more closely, as follows:

(1) ¥ —ab<0. The curve cuts the line at infinity in two distinct
imaginary points. It is an ellipse in the elementary sense, or
consists of two imaginary straight lines intersecting in a real
point not at infinity, or is satisfied by no real point.

(2) h*—ab>0. The curve cuts the line at infinity in two distinct real
points. It is a hyperbola or consists of two real nonparallel lines.

(8) B*—ab=0. The curve cuts the line at infinity in two real coin-,
cident points. It is a parabola, or two parallel lines, or two
coincident lines. In the very special case in which A =a =5 =0
it degenerates into the line at infinity, and the straight line
Je+gy+ect=0.

EXERCISES

1. Show that for a éiven conic there goes through any point, in
general, one straight line such that the segment intercepted by the conic
is bisected by the point.

2. Show that for a given conic there go through any point, in gen-
eral, twoJines which have one intercept with the conic at infinity.

3. Prove that through the center of a central conic there go two
straight lines which have both intercepts with the conic at infinity.
These are the asymptotes. Show that the asymptotes of an ellipse are
imaginary and those of a hyperbola real, and find their equations.

4. Show from (3) that if #;:y,:¢ is a point on the conic, the equa-
tion of the tangent line is

(azy + hy, + fto) @ + (kv + by, + 98,) y + (fe, + gy, + ¢ty) £ = 0.
5. Show that the condition that (1) should represent straight lines is

a b f
b gl=0.
f g ¢
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22. Trilinear point coordinates. Let 4B, BC, and C4 (Fig. 8)
be three fixed straight lines of reference forming a triangle and let
k,, k,, and k, be three arbitrarily assumed constants. Let P be any
point in the plane 4BC and let p,, p,, and p, be the three perpen-
dicular distances from P to the three lines of reference. Algebraic
signs are to be attached to each of these distances according to
the side of the line of reference on which P lies, the positive side
of each line being assumed at
pleasure.

The coordinates of P are
defined as the ratios of three
quantities z, z,, z, such that
zizx,=kp kp,:kp,. (1)

It is evident that if P is given,
its coordinates are uniquely de-
termined. Conversely, let real
ratios a : @, : a, be assumed for
z:z,:z,. Theratio z;:z,=a,:a,

furnishes the condition Pi_con-

Fi1e. 8

stant, which is sé,tisﬁe{ Eby any
point on a unique line through 4. Similarly, the ratio z,: z,=a,: a,
is satisfied by any point on a unique line through C. If these lines
intersect, the point of intersection is P, which is thus uniquely
determined by its codrdinates.

In case these two lines are parallel we may extend our codrdi-
nate system by saying that the codrdinates a, : a,: a, define a point
of infinity. These are, in fact, the limiting ratios approached by
z :,: z, as P recedes indefinitely from the lines of reference.

We complete the definition of the cotdrdinates by saying that
complex coordinates define imaginary points of the plane, and the
coordinates 0: 0: 0 are not allowable.

The coordinates of 4 are 0:0:1, those of B are 0:1:0, and
those of C are 1: 0:0. The ratios of k,, k,, and k, are determined
when the point with the coordinates 1:1:11is fixed. This point we
shall call the unit point, and since the %’s are arbitrary it may be
taken anywhere. Hence the coordinate system is determined by three
arbitrary lines of reference and an arbitrary unit point.
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The trilinear codrdinates contain the Cartesian coordinates as a
special limiting case, in which the line BC is the line at infinity. If
BC recedes indefinitely from A, p, becomes infinite, but the factor
k, can be made to approach zero in such a way that Lim kp,=1.
(There is an exception only
when P is on the line BC and
remains there as BC becomes
the line at infinity; in this
case kp,=0.) If in addition
we place k =k,=1, the codr-
dinates z,:z,:z, become the
coordinates z:y:¢ of §18.

23. Points on a line. If
Y:9,:Y,and z:2.:2 are two
Jixed points, the codrdinates of
any point on the straight line
Joining them are y+ Az :y,+
22,: y,+ A2, and any point with these codrdinates lies on that line.
To prove this let ¥ and Z (Fig. 9) be the two fixed points and P

any point on the straight line YZ. Place I}%: m. Then, if p}, p,

and p!' are the perpendiculars from Y, P, and Z respectively on
4B, it is evident from similar triangles that

1 1 m;
P —p
/ 1
whence pl=M&.
14+m
.. _pitm ;',
Similarly, ="y
Bt
7 14m
From (1), § 22, p,= f;c P Y, g1
where p, p', and p"" are proportlonahty fa.ctors. By substitution
we have " mo' mo'!
Z,: J1+ln§_z1:.'/s+_PPTzzzys+'f—zs’

"
which is the required form, where A = an—,
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The above proof holds for any real point P. Conversely, any
real value of A determines a real m (the cobrdinates of ¥ and Z
being real) and hence determines a real point of P. For complex
values of A or for imaginary points ¥ and Z the statement at the
beginning of this section is the definition of a straight line.

It is to be noticed that A is an example of the kind of codrdinates
of the points of a range which was discussed in § 8.

24. The linear equation in point coordinates. A homogeneous

equation of the first degree,
az +azr.+az,= o,
represents a straight line, and conversely.

To prove this theorem it is necessary to show that the linear
equation is equivalent to the equations of § 23. Let us have given
ar +az +ax = 0 €))

and let y,:y,:y, and 2 :2,: 2 be two points on the locus of (1).
Then ay,+ay,+ay,=0,

az +az +az,= 0.

From these three equations we have

.l‘l .’l“ 1“
yl yg ya = 0‘
IZ 2 zZ

1 t 3

Then from the theory of determinants there exist three multi-
pliers A, A, A, such that
Az, + Ay + Az =0,
Az +Ay +2z=0,
Azt Ay +Az=0;
whence Tix T, =y + Az Y, + A2y + Az, &)
Conversely, if equations of the form (2) are given we may write
them as pr,=y+ 2z, '
pr,=y,+2z,
pr=y,+ Az,
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The elimination of p and A then gives

zl y 1 zl
T, Y, %|= o,
x8 y 8 z’

which is a linear equation in z, z,, and z,

Hence equation (1) is equivalent to equation (2), and the
theorem at the beginning of this section is proved.

25. Lines of a pencil. If

az, +agz +az,=0, (¢))

b+ bz, +bz,= 0 &)

are two fixed lines, the equation of any line through their point of
intersection 18

az +az,+az,+ Az +bz,+bz)=0. ©))

It is evident that (8) represents a straight line and that the
codrdinates of any point which satisfy (1) and (2) satisfy also (8).

Furthermore, A is uniquely determined by the cobrdinates of any
point not on (1) and (2). Hence for all values of A, (8) defines
the lines of a pencil.

The parameter A in (8) is of the type of codrdinates defined in
§10. To show this let us take Y (y,: ¥,: ¥,), & point on (1), and
Z(2,:2,:2,), a point on (2). Then y,+ Az :y,+Az,:y,+ Az, is a
point on (8) and also a point of the range determined by ¥ and Z,
By § 9, A is the codrdinate of a point on the range, and hence, as
shown in § 16, the codrdinate of a line of the pencil in the sense

of § 10.
EXERCISES

1. Show that the equation of any line through the point 4 of the
triangle of reference is x, + Az, =0, and find the coordinates of the
point in which it intersects any line ez, + ez, + ag, = 0. Distinguish
between the cases in which a,+ 0 and a; = 0.

2. Write the equations of two projective pencils of lines with
the vertices 4 and B respectively. Find the equation satisfied by
the coordinates of the points of intersection of corresponding lines.
Hence verify Ex. 1, § 16.

3. Write the codrdinates of the points of two projective ranges on
4B and AC respectively. Find the equations of the lines connecting
corresponding points. Hence verify Ex. 2, § 16.
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4. Show that homogeneous point covrdinates are connected by the
relation p (ahz, + bk, + ckz)= K,

where a, b, and ¢ are the lengths of the sides of the triangle of reference
and K is its area. Hence show that

akx, + bkx, + ckg,= 0
is the equation of the straight line at infinity.

5. Consider the case in which B is at infinity, 4 and C are right
angles, and k, = k,= k,=1. Show, for example, that x + z,=0 is
the equation of the straight line at infinity and that «, + 2, 4 Az, = 0
is the equation of any straight line parallel to AC.

26. Line coérdinates in a plane. The coefficients a, a,, 4, in the
equation of a straight line are sufficient to fix the line. In fact,
to any set of ratios a,: a,: a, corresponds one and only one line,
and conversely. These ratios may accordingly be taken as coor-
dinates of a straight line, or line codrdinates, and a geometry may
be built up in which the element is the straight line and not
the point.

A variable or general set of line coordinates we shall denote by
u,:u,: u, and the line with these cordinates is the straight line
which has the point equation

uz, + ugz, + ugz,=0. ¢Y)

This equation may also be considered as the necessary and suffi-
cient condition that the line u : u : %, and the point z,:z,: z, are
“united ”; that is, that the point lies on the line and the line
passes through the point.

It is obvious that the definition of line codrdinates holds for
Cartesian as well as for trilinear coordinates. With the use of
trilinear coordinates any straight line may be given the codrdinates
1:1:1. For the substitution .

which amounts to a change in the constants k, &, k, in (1),
§ 22, changes the equation az + az,+ az,= 0 into the equation
7+ zy+ 2;= 0.
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27. Pencil of lines and the linear equation in line coordinates. If
v, :9,: v, and w : w,: w, are two fixed lines, it follows immediately
from § 25 that

v+ Aw, v, 4 Aw, s v+ Aw, (¢))
represents any line of the pencil determined by the two lines v,
and w, .

Consider now an equation of the first degree in line codrdinates,

au + au +au,=0. @

It may be readily shown, as in § 24, that if v, : v,: v, and w, : w_: w,
are two sets of codrdinates satisfying (2), the general values of
u, : u,: u, which satisfy (2) are of the form (1). Hence (2) repre-
sents a pencil of lines.

Or we may argue directly from (1), § 26, and say at once that
any line whose coordinates satisfy (2) is united with the point
a,: a : a and,conversely, that any line united with the pointa,:a: a,
has coordinates which satisfy (2). We have, therefore, the theorem :

The equation au + au + au,=0 represents a. pencil of lines of
which the vertex is the point a : a : a,.

Compare the linear equation in point codrdinates,

azr +azx,+azx,=0, ¢))
and the linear equation in line cotrdinates,
au +au + au,=0. ©))

Equation (3) is satisfied by all points on a range of which the
base is the line with the line cotrdinates a,: a,: a,. It is the point
equation of that line.

Equation (4) is satisfied by all lines of a pencil of which the
vertex is the point with the point codrdinates a :a,:a,. It is
the line equation of that point.

EXERCISES

1. If ABC is the triangle of reference, as in Fig. 8, show that the °
line codrdinates of 4B are 1:0: 0, those of BC are 0:0:1, and those of
CA4 are 0:1:0. Show also that the equation of the point 4 in line
coordinates is u, = 0, that of B is u, = 0, and that of C is u, = 0.

2. What does the equation %, 4+ Au,= O represent? What line is
represented by the line coérdinates A:1:0? ’
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8. Find in line codrdinates the equations of the points of the range
which lie on the line 1:1:1; also the point cobrdinates of the same
range.

4. Find in point codrdinates the equations of the lines of the pencil
with vertex 1:1:1. Find also the line codrdinates of the lines of the
same pencil.

5. Show that line codrdinates are proportional to the segments cut
off by the line on the sides of the triangle of reference, each segment
being multiplied by a constant factor.

. 6. Show that line codrdinates are proportional to the three perpen-
_diculars from the vertices of the triangle of reference to the straight
Iine, each perpendicular being multiplied by a constant factor.

- 28. Dualistic relations. The geometries of the point and the line

in a plane are dualistic (§ 2). This arises from the fact that the

- algebraic analysis is the same in the two geometries. The differ-

“ence comes in the interpretation of the analysis. In both cases we
have the two independent ratios of three variables which are used
homogeneously. In the one case these ratios are interpreted as the
coordinates of a point; in the other case they are interpreted as
the codrdinates of a line. In both cases we have to consider a
linear homogeneous equation connecting the variables which is sat-
isfied by a singly infinite set of ratio pairs. In the point geometry
.this equation is satisfied by the singly infinite set of points which
lie on a straight line. In the line geometry this equation is satis-
fied by the singly infinite set of straight lines which pass through
& 'point.

From the above it appears that any piece of analysis involving
two independent variables connected by one or more homogeneous
linear equatlons has two interpretations which differ in that * line”
in one is “ point™ in the other, and vice versa. Hence a geometric
theorem involving points and lines and their mutual relations may
be changed into a new theorem by changing “point ” to “ line ” and
“line™ to “point.” In making this interchange, of course, such
other changes in phraseology as will preserve the English idiom
are also necessary. For example, “ point on a line” becomes “ line
through a.point,” and “a line connecting two points ” becomes “a
point of intersection of two lines.”
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We restate some of the results thus far obtained in parallel
columns so as to show the dualistic relations. .

The ratios z,:z,:, determine
a point.

A linear equation az, 4 ez, +
az, = 0 represents all points on
the line of which the cobdrdinates
area,: a,: a;. It is the equation of
the line.

If y, and 2, are fixed points the
cobrdinates of any point on the
line connecting them are y; + Az,

If ax +ax, +ax,=0

and bz, + bz, + bx,=0

are the equations of two lines, the
equation of any line through their
point of intersection is

alxl + af’tﬂ + alxl .
+ A0z, + bz, + b)) = 0.
Three points y,, z,, ¢ lie on a
straight line when

Y &/ 4
Yg % Y4
Ys % 4

= 0.

Three straight lines

Yexi=0, 3bx;=0, Jea;=0

meet in a point when
1 b!
=0.

g

%
!
%

2 bﬂ '
b8

The ratios u,:u,:u, determine
a straight line.

A linear equation au + au, +
agu,=( represents all lines through
the point of which the codrdinates
are a,:a,: a, Itis the equation of
the point.

If v, and w; are fixed lines the
coordinates ofany linethrough their
point of intersection are v, + Aw;.

If au, +' au,+ au, =0
and du, + bu,+ bu,=0
are the equations of two po.ints,

the equation of any point on the
line connecting them is

au, + au, + a u,
+ A (b, + b, + bu)= 0.

Three lines v;, w;, u;, meet in
a point when

» ’U‘ wl ul
v, w, u =0
'U. wl ul
Three points

.Eat“i =0, zba“.' =0, chuf: 0

lie on a straight line when

a'l bl cl
a, b ¢|=0.
a, b, ¢

29. Change of coordinates. We will first establish the relation
between a set of Cartesian coordinates and.a set of trilinear codr-
dinates. Let 4B, BC, and C4 be the lines of reference of the
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trilinear codrdinates and let their equations referred to any set of
Cartesian coordinates be respectively

ar+by+ect=0,
ar+by+ect=0, o
a,z+b,y+cat= 0.
Then by & familiar theorem in analytic geometry,
_az+ ﬂi ot
+Va?+ b3t
_artbytet
+Vai+8]t
p= a2 + by + ¢t
+Va+ 8}t
We may take without loss of generality
k1=i‘/alg_+—b_1§tv k=1Vaj+bjt, k=1Vai+bt,
since each of the equations (1) may be multiplied by a factor

without changing the lines represented.
Therefore we have

1

b,

pr,=az+by+ct, .
pr,=azx+by +cf, @
pr,=azx+by+ct,

where p is a proportionality factor.

Since the lines 4B, BC, and CA form a triangle, the determinant
|ab,c,| does not vanish and equations (2) may be solved for z, y,
and t. ‘

Suppose now another triangle 4'B'C’ be taken, the equations of

-ts od m'
its sides being adz+by+ct=0,

ayz+ by +cit=0, )
alz+bly+cit=0,
and let z}:2}: 2}, be trilinear codrdinates referred to the triangle
A'B'C'. Then, as before, '
P2 = djz + by + et |
p'2, = alz + by + o @
plal = alz + by + ot




POINT AND LINE COORDINATES IN A PLANE 43

Equations (2) may be solved for z, y, and ¢ and the results
substituted in (4). There result relations of the form
oz) = a2 + az,+ ag,
o7y = Bz, + Bz, + Byt ‘ ®)
02y = 7,2+ VT + iy
which are the equations of transformation of codrdinates from
Z,:2,: 7, t0 2} 2 s 2l
In (5) the right-hand members equated to zero give the equa-
tions in trilinear coordinates of the sides of the triangle of reference
A'B'C'. Since these do not meet in a point the coefficients are sub-
ject to the condition that their determinant does not vanish, and
this is the only condition imposed upon them.
By the transformation (5) the equation of the straight line

wz + uz, + uz, = 0

becomes . wiz), + il + ulzl = 0,
where pu, = ayu) + Bu; + vyuy,
PU;= azu{ +Bzu; + '72'“;’ (O)

; pus = auy + By + v5us
These are the formulas for the change of line codrdinates.
In connection with the change of coordinates three theorems are
of importance.

L The degree of an equation in point or line codrdinates is unaltered
by a change from one set of trilinear codrdinates to another.

II. If the coordinates y, and z, are transformed tnto the codrdinates
¥, and 2}, the codrdinates y,+ Az, are transformed into the codrdinates
Yi+ N'zl, where N = e\, ¢ being a constant.

III. The cross ratio of four points or four lines is independent of
the coordinate system.

Theorem I follows immediately from the fact that equations (5)
and (6) are linear.

To prove theorem II note that from (5), if the codrdinates
¥+ Az, are transformed into 2, then

oz = a,(4,+72) + &, (4, + 22) + &, (¥, + 22)
= (aly 1 + @y 2+ a.:'/ s) +X (alzl + ®e2 + alzl)
=0y, + o2,
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where o, and o, are used, since in transforming y; and 2 by (5) the
proportionality factors may differ.
Similar expressions may be found for 2} and z;. Hence we have

xlzz;:x,’,=y{+.?7\z(:y‘+%kz;:y§+?xz;, which proves the

theorem. The sa;ne proof h(;lds for lim:, coordinates using equa-
tions (6). '

Theorem III follows at once from II.

30. Certain straight-line configurations. A complete n-line is
defined as the figure formed by n straight lines, no three of which
pass through the same point, together
with the }n(n —1) points of inter-
section of these lines. A complete
three-line is therefore a triangle con-
sisting of three sides and three vertices.
A complete four-line is called a com-
plete quadrilateral and consists of four
sides and six vertices. Thus in Fig. 10
the four sides are a, b, ¢, d and the six
vertices are K, L, M, N, P, Q. Two
vertices not on the same side are called opposite, as K and M, L
and N, P and Q. A straight line joining two opposite vertices is a
diagonal line. The complete quadrilateral has three diagonal lines.

A complete n-point is de-
fined as the figure formed by
n points, no three of which lie
on a straight line, together m/
with the }n(n —1) straight
lines joining these points. A *
complete three-point is there-
fore a triangle consisting of
three vertices and three sides.
A complete four-point is called
a complete quadrangle and
consists of four vertices and
six sides. Thus in Fig. 11 the four vertices are 4, B, C, D and
the six sides are k, [, m, n, p, ¢. Two sides not passing through the
same vertex are called opposite, as ¥ and m, ! and n, and p and ¢.

Fic. 10

Fi16. 11
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The point of intersection of two opposite sides is a diagonal
point. The complete quadrangle has three diagonal points.

It is obvious that a complete n-point and a complete n-line are
dualistic. A triangle is dualistic to a triangle, and ‘a complete
quadrangle to a complete quadrilateral. The diagonal lines of
a complete quadrilateral are duahstlc to the diagonal points of a
complete quadrangle.

For the complete triangle we shall prove the following dualistic
theorems :

L. The theorem of Desargues. If two triangles are so placed that the
straight lines connecting homologous vertices meet in a point, then the
points of intersection of homologous sides lie on a straight line.

I If two triangles are 8o placed that the points of intersection
of homologous sides lie on a straight line, then the lines comnecting
homologous vertices meet in a point. :

Let there be given two triangles with the vertices 4, B, C and
4, B', C' respectively (Fig. 12) and with the sides a, b, ¢ and
a', ¥/, ¢ respectively, the
side a lying opposite the
vertex 4 ete.

We shall denote by
~ 44" the straight line
connecting 4 and 4/,
and by aa’ the point
of intersection of a and
@'. Then the two the-
orems stated above are
respectively :

If the straight lines
AA', BB, and CC' meet
in a point 0, the points aa', bY, and of lie on a straight line o.

If the points ad', bY', and cc liec on a straight line o, the straight
lines A4'; BB, and CC' meet in a point 0.

The proofs of these theorems may be given together, the upper .
line of the following sentences being read for theorem I and tbe
lower line for theorem II. i
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Take {AB C} as triangle of reference and {0}&5 the unit
abe 0

i A B
{plci)ll:;t}, Then the coordinates of {a} are 0:0:1, those of {b}
are 0:1: 0, those of {f} are 1: 0: 0, and those of {g} are 1:1:1.

By § 28 the cobrdinates of {;‘,’} are 1:1:1+4, those of {5

are 1:1+ wu:1, and those of {S’} are 1+ »:1:1.

The coérdinates of any {.P"int on 4'B' } are therefore
line through a'd

point lies also on 4B

passes also through ab

we must have p=—1. Hence the coordinates of {Cfg,} are

0:— w: A Similarly, the coordinates of {;g,} are »:0:— X\ and

!
the codrdinates of {jj,} are — v: pu:0. Since

14+ p:14+p(A+ pu):14+ X + p, and if this {

0 —p A
v 0 —A|=0,
—v p.) 0
points aa', bb', ¢ line o
the three {lines 44', BB, oC' have a common {point 0}. The

two theorems are therefore proved.
point} . { line o
The{ line | ©Quation of the point 0
Auz,+ vAz,+ pvz, =0 .
Apu, + vAu 4 pvu,= 0
For the complete quadrilateral we shall prove the following -
theorem :
II. Any two diagonals of a complete quadrilateral intersect the
third diagonal in two points which are harmonic conjugates to the two
vertices which lie on that diagonal.

In Fig. 13 let the two diagonals LN and MK intersect the third
diagonal PQ in the points B and S respectively. We are to prove
that B and S are harmonic conjugates to P and Q.

Since by III, § 29, the cross ratio is independent of the coordi-
nate system, we shall take the triangle LPQ as the triangle of
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reference and the point N as the unit point, so that the coordi-
nates of P are 0:0:1, those of Q are 1:0:0, those of L are
0:1:0, and those of N are 1:1:1. Then by § 23 it is easy
to see that the coordinates of
Rare 1:0:1, those of M are
0:1:1, thoseof Kare1:1:0,
and finally that those of §
are —1:0:1. By § 14 the
theorem follows.
The dualistic theorem to ITI d
is as follows:

IV. If any two diagonal points Rk Q s
of a complete quadrangle are Fio. 18
Joined by straight lines to the
third diagonal point, the two joining lines are harmomic conjugates
to the two sides of the quadrangle which pass through that third
diagonal point. '

The proof is left to the reader.

Since the cross ratio of any four lines of a pencil is equal to
the cross ratio of the four points in which the four lines cut any
transversal (§ 16), theorem IV leads at once to the following:

V. The straight line connecting any two diagonal points of a com-
plete quadrangle meets the sides of the quadrangle which do not pass
through the two diagonal points, in two points which are harmonic
conjugates to the two diagonal points.

Similarly, theorem III may be replaced by the theorem, dualistic
to V, as follows:

VI If the intersection of any two diagonal lines of a complete
quadrilateral is connected with the two vertices of the quadrilateral
which do mot lie on the two diagonals, the two comnecting lines are
harmonic congugates to the two diagonals.

Theorem III gives a method of finding the fourth point in a
harmonic set when three points are known. In Fig. 13 let us
suppose P, @, and R given, and let it be required to find S. The
point L may be taken at pleasure and the lines LP, LR, and LQ
drawn. Then the point N may be taken at pleasure on LE and
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the points M and K determined by drawing QN and PN. The
line MK can then be drawn, determining S.

We will now prove the following theorem :

VII. Theorem of Pappus. If R, R, E are. three points on a
straight line and E, R, E are three points on another straight line,
the three points of intersection of the three pairs of lines EE and
ER, EER, and ER, RE, and RR lie on a straight line.

We may so choose the codrdinate system that the line contain-
ing B, R, R (Fig. 14) shall be ;=0 and the line containing
E, B, E, shall be z,=0. We may then take the line RE as the
line z,= 0, so that the coordi-
nates of B are (0:1:0) and
those of B are (1:0:0), and
may so take the unit point
that the coordinates of F are
(0:1:1) and those of E are
(1:0:1). Call the codrdinates
of B (0:1:1) and those of
B (1:0:pu). Then the equa-
tion of RE is z,=0 and that
of RRis z,+ Az,—z,=0. These
lines intersect in the point
K (A:—1:0). The equation
of BR is z,—z,=0 and that
of BR is pzx + Az,—2,=0. These lines intersect in the point
L (1—:p:p). The equation of R Eisz + z,— z,= 0 and that of
RERis pr,— z,= 0. These lines intersect in M (1: p—1: pu). Since

F1c. 14

A -1 0
1-2  p p|=0,
1 p—1 u

the three points L, K, M lie in a straight line, as was to be proved.

Dualistic to this theorem is the following:

VIL. If p,, p,s p, are three straight lines through a point and
Dy Po» D, are three straight lines through another point, the three lines
connecting the three pairs of points p p, and p,p,, p,p, and p.p,,
PP, and p p, meet in a point.

The proof is left to the reader.
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EXERCISES
1. Prove theorem IV.

2. Prove theorem VIII.

3. A triangle is so placed that its vertices P, Q, R are on the sides
AB, AC, and BC, respectively, of a fixed triangle and its sides PR and
RQ pass through two fixed points in a straight line with 4. Prove that
the side PQ passes through a fixed point.

4. A triangle is so placed that its sides QR, PR, PQ pass through
the vertices C, B, 4, respectively, of a fixed triangle and its vertices Q
and P lie on two fixed lines which intersect on BC. Prove that the
vertex R lies on a straight line.

5. Given a straight line p and two fixed points 4 and B. Take any
two points on p and connect each of them with 4 and B. These lines
determine two new points C and D by their intersections. Prove that
the line C'D passes through a fixed point on 4B.

6. Given a point P and two fixed lines ¢ and 4. Draw any two lines
through P and connect their points of intersection with @ and 4. This
determines two new lines ¢ and d. Prove that the point of intersection
of ¢ and d lies on a fixed straight line through ab.

7. Three lines £, g, % are drawn through the vertex 4 of the triangle
ABC. On g any point is taken and the lines  and m are drawn to C
and B respectively. The line ! intersects f in D and the line m inter-
sects & in E. Prove that DE passes through a fixed point on BC.

8. Three points F, G, H are taken on the side BC of the triangle
ABC. Through G any line is drawn cutting AB and AC in L and M
respectively. The lines FL and HM intersect in K. Prove that the
locus of K is a straight line through 4.

9. Show that if a, &' and b, ' are any two pairs of corresponding
lines of two projective pencils not in perspective, the line connecting
the points ab' and a'b passes through a fixed point. This is called the
center of homology of the two pencils. Show that it is the intersection
of the two lines which correspond to the line connecting the vertices of
the pencils, considered as belonging first to one pencil and then to the
other. . :

10. Show that if 4, A’ and B, B' are any two points of two projec-
tive ranges which are not in perspective, the point of intersection of
the lines AB' and A'B lies on a fixed straight line. This is called the
axis of homology of the two ranges. Show that it intersects the base of
each range in the point which corresponds to the point of intersection
of the two bases, considered as belonging to the other range.
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31, Curves in point coérdinates. The equations
zz 2=, (1) : (D) : &, (D), (¢))

where ¢ is an independent variable and the ratios of the functions
¢.(t) are not constant or indeterminate, define a one-dimensional
extent of points called a curve. It is not necessary that any point
of the curve should be real. We shall limit ourselves to those
curves for which the functions ¢,(¢) are continuous and have
derivatives of at least the first order.

If ¢,(?) is identically zero the curve is the straight line z,= O.
Otherwise we may write equations (1) in the form

G_$®D_ gy B_$®_ g 0

Z. ¢.(t) 1( )’ xa ¢'(t) ’( ) ) ( )

It is then possible to eliminate ¢ between the equations (2) with
the result, z, z,

2@ ®

Conversely, let there be given an equation

f@p 2 2)=0, @®
where f is a homogeneous function in z, z,, z,. By a homogeneous
function we mean one which satisfies the condition

Sz, Az, Az) =N (2, 7, 2),
where X\ is any multiplier, not zero or infinity. In particular, if we
1
place A= — we have
z, 2 z
Sz, 2, )= z;f(—, =, 1)
xl xl

for all points for which z, is not zero. Equation (4) may then be

written  f@E e D=0, )
where s=2, =",
x‘ xs

We shall limit ourselves to functions f which are continuous and
have partial derivatives of at least the first order. '
We shall also assume that (4) is satisfied by at least one point

¥,:91: Y, (¥, 0), at which one of the partial derivatives (say g)

v
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~ does not vanish. Then similar conditions hold for (5), and by the
theory of implicit functions * we have, from (5),

s=¢ (),

which is valid in the vicinity of ¢,= %2, = .
Ys Ys
This last equation may be written

zizr,=¢():t:1,
~ which is of the type of equations (1). Hence, under our hypotheses
equation (4) represents a curve.

The above discussion leaves unconsidered the points for which
z,= 0. These may be found by direct substitution in (4) or we may
repeat the discussion, dividing by some other codrdinate, perhaps z,.

Let P (y,:y,:y,) be a point of (1) corresponding to the value
t=t,and let Q (y,+Ay,:y,+A4y,: y,+Ay,) be a point correspond-
ing to¢,+At. These two points fix a straight line with the equation

az +ag.+az,=0, Q)
the coefficients of which are determined by the two equations
Y, + aiy:+ AsYs= 0,
a,(4,+8y)+ a,(y,+4y) + a,(y,+8y,) = 0.
From these it follows that
a,: a.: a,=y,0y,— ¥,89,: 4,89, — 4,89, 4,89, 4,89, (D)

It is to be noticed that these involve the ratios of the in-
crements Ay, Ay, Ay, If now At approaches zero, the point
Q approaches P, the ratios Ay, :Ay,: Ay, approach the ratios -
dy,: dy,: dy,, and the ratios a,: a,: a, approach the limiting ratios

a,: a,: a,=y,dy,— yad 2* yad 1 yldys: ¥,9Y,— yzdyx‘ ®

The straight line (6) with the coefficients defined by (8) is
the limit of the secant PQ and is called the tangent to the curve.

If the equation of the curve is in the form (4), the equation of
the tangent may be modified as follows:

Since f(y,:¥,:y,) is a homogeneous function we have, by
Euler’s theorem,

K/ A A _
ayl y1+ ay’yg"' ay' .’/.— ”f(.'/p yg’ yn)_ 0‘ . (9)

* See Wilson’s **Advanced Calculus,’” p. 117.
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On the other hand, dy,, dy,, dy, satisfy the condition

W gy + P g Y G
df"‘ 3.1/,dy1+ ay’dyl+ ay.dyl— 0‘ (10)

Equations (9) and (10) give
¥.3y,— y,39,: 4,3y, — ¥,99,* ¥,.9y,— y,dy,= KA
3 8 8 E) 8 1 1 3 1 2 3 1 ayl ay’ ay'
Hence the equation of the tangent line is, from (8) and (10),
of of, of
z, 8]/ +zgay’+ .ay = 0. (11)

The equation (11) is fully and uniquely determined for any
point on the curve except for a point y,: y,: y, at which
f ¥ _o Y_
%, %, 2y,
Points for which the conditions (12) hold are called singular points.
We may sum up as follows : At every nonsingular point (y,: y,: y,)
of a curve J(@p g, 2)=0
there 18 a definite tangent line given by the equation
A A

"y, T "oy, T "l
Consider now any straight line determined by two fixed points
y; and z, so that y,+ Az, is any point of the line. The point y;+ Az,

lies on the curve (1) when A has a value satisfying the equation

Stz g+ 0z, y,+22) =0, 13)
~which expands by Taylor’s theorem into
' A+ AN+ AN+ ... =0, (¢ %))
f U 7,
.Wl.]ere A°=f(yl’ Yo -'/a) and Al_? +@; + y

If y, is on the curve (4), 4,=0 and one root of (14) is zero. If,
in addition, 4,= 0 and g, is not a singular point, 2 lies on the tan-
gent line to (4) and two roots of (14) are zero. If y, is a singular
point of the curve, 4 =0 and 4,=0 for all values of z; that is,
any line through a singular point of a curve intersects the curve in at
least two coincident points.
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If f(z,, z,, ,) is a homogeneous polynomial of the nth degree,
the locus of points satisfying (4) is defined as a curve of the nth
order. Equation (14) is- then an algebraic equation of the nth
degree unless its left-hand member vanishes identically for all
values of . Hence any curve of the nth order is cut by any straight
line in n points unless the straight line lies entirely on the curve.

32. Curves in line coordinates. The equations

Uy 2 Uyt U=, (1) $,(1): $, (1), @
where ¢ is an independent variable and the ratios of the functions
¢,(t) are not constant or indeterminate, define a one-dimensional
extent of straight lines. We shall see that these lines determine
a curve in the sense of § 81. Equations (1) are called the line
equations of that curve.

Proceeding as in § 81 with the same hypotheses as to the nature
of the functions ¢,(t), we may show that equations (1) are
equivalent to the equation

U _ p(%).
u, u

Conversely, let there be given an equation

f(ux’ Uys us) = 0’ (2)
where f is a homogeneous function in u,, u,, u,; we may show, as
in § 31, that equation (2) defines a one-dimensional extent of lines
of the type (1).

The discussion now proceeds dualistically to that in § 31.

Let p(v,:v,:v,) and ¢(v,+ Av: v,+ Av: v, + Av,) be two straight
lines determined by placing t=¢ and ¢t=¢t+ At in (1). These
two lines determine & point K the codrdinates of which satisfy the
two equations vz, + v,2,+ v,2,=0,

(v + Av) 7, + (v,+ Av) 7, + (v,+ Av) 7,= 0,
the solution of which is ; '
z:z: 2= v,Av,— v,Av, : 9, Av — v, Av, 2 v Ay — v Av,.
. Now let At approach zero. The line g approaches the line p, the
ratios Av, : Av, : Av, approach the ratios dv:dv,: dv,, and the point
K approaches the point Z, of which the cotrdinates are

z iz = v dy,—vdy v de —vdvvdy,—vdy. (3)
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By virtue of (8) and (1) the points L form in general a curve.
An exception would occur when the right-hand ratios of (3) are
independent of ¢. In that case the points L for all lines of (1)
coincide.

If the extent of lines is defined by a single equation (2) the
coordinates of L may be put in another form, as follows: Since f
is a homogeneous function we have, by Euler’s theorem,

Qf f v, + l v,=nf=0.
avl 30’
But df=a*f-dvl+—a£dva+?ldva= 0;
3'01 31’2 ov,
whence
v dv,— v dv v dyv, — v dv: vdv—vdv:gf—-z-af.
av 61) 6'0,
The coordinates of L are therefore
’ _T o,
S R i v, dv 31) )

These equations determine a unique point on any line p unless
p is such a line that

¥ _o ¥ ¥

dv, v, O !

in which case p is called a singular line.
Equations (4) also show that the points L form a curve unless

o

the ratios of the partial derivatives 5y, BT constant in the neigh-
]
borhood of v. This would happen, for example, if
f = (a1u1+ au, + aau;) ¢ (ul’ Uy ua)
and v, is any point which makes the first factor vanish. The points

L on all lines in the neighborhood of v, are then all a,: a,: a,
Leaving the exceptional case aside we have the theorem:

On any nonsingular line of a one-dimensional extent of lines there
lies a unique point, called a limit point, the locus of which is in general
a curve. This curve i3 said to be defined in line coordinates by the
equation of the line extent. In special cases the curve may reduce to
a point or contain a number of points as parts of the curve.
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In case we have a true curve of limit points it will be possible
to solve equations (4) for v :v,:v, and substitute in (2). This

gives . S @y v, v)=¢ (2, 7,, 2)=0, ®)
which is the equation in point cobrdinates of the locus of L.

oz, Ov 0z, 0Ov,0x; Ov, o,
_ ov, ov, 0,
= P(Zl ag;'. +z2 ax"" $s a—z' N
where p is a proportionality factor and the last reduction is made
by means of (4). But since vz, + vz, + vz, = 0 we have

ov, o, 0v, _
z, 2, + 2z, o2, + 2z, o, + v,= 0.
o
Theref. — =— pu,.
erefore o, PY;

This shows that the tangent line to the curve (5) at the point
L is the line p. Hence we have the theorem:

Each line of a one-dimensional extent of lines is tangent at its
limit point to the curve which i the locus of the limit points. The
lines therefore envelop the curve.

Let us suppose now that in equation (2) f is an algebraic poly-
nomial of the nth degree. Then the locus of the limit points L is
called a curve of the nth class. We shall prove that through any
point of the plane go n lines tangent to a curve of the nth class.

To do this we have to show that n lines satisfying equation
(2) go through any point of the plane. Now any point is fixed
by two lines v, and w,, and any line through that point has the
coordinates v,4+ Aw, This line satisfies (2) when A satisfies the

equation S+ 0, v+ Aoy, v, 4+ ) = 0.

This is an equation of the nth degree, and the theorem is proved.

We have shown in this section that a one-dimensional extent
of lines are in general the tangent lines to a curve. Conversely,
the tangent lines to any curve are easily shown to be a one-
dimensional extent of lines. An exception occurs only when the
curve consists of a number of straight lines.
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The dualistic relation between point and line codrdinates is
exhibited in the following restatement, in parallel columns, of the

results of §§381 and 82:

An equation f(x,, x, x,) =0 is
satisfied by a one-dimensional ex-
tent of points which lie on a curve.
A line joining two consecutive
points of the curve is tangent
to the curve. Its line cotrdinates
are u,:u, u—a—f a@f aa': ‘The
elimination of x :x,:x, between
these equations and that of the
curve gives the line equation of
the curve. '

The equation of the tangent
line to the curve defined by the
point extent is

o, U
oy, oy, *

If f is of the nth degree the
curve is of the nth order.

On any line lie » points of the
curve.

The curve of the first order is
a straight line, the base of a pencil
of points. It is of zero class and
has no line equation.

& 4= 0.

o+ 5 m+a

An equation f(u, u, u,) =0 is
satisfied by a one-dimensional ex-
tent of lines which are tangent to
a curve. A point of intersection
of two consecutive lines is a point
on the curve. Its point codrdinates

of . of 0
are xl:x,:z.—a;f 8{ 8£ The
elimination of u,:u,:u, between
these equations and that of the line
extent gives the point equation of
the curve.

The equation of a point on the
curve enveloped - by the line ex-
tent is

LA S
o, T 3y, 1 5y =0

If f is of the nth degree the
curve is of the nth class.

Through any point go n lines
which are tangent to the curve.

The curve of the first class is
a point, the vertex of a pencil of
lines. It is of zero order and has
no point equation.

EXERCISES

1. Find the singular point of zf+ zlx, — 2x,=0. Show that
through the singular point go two real lines which meet the curve in
three coincident points. Sketch the curve with special reference to its
relation with the triangle of reference. Also sketch the curve interpret-
ing the coordinates as Cartesian coordinates and taking z, =0, z,= 0,
x, = 0 successively as the line at infinity.

2. Find the singular point of x# — xjx, = 0. Show that through it
go two coincident lines which meet the curve in three coincident points.

Sketch the curve as in Ex. 1.
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8. Find the singular point of the curve z + 'z, + 2, = 0. Show
that through it go two imaginary lines which meet the curve in three
coincident points. Sketch the curve as in Ex. 1.

4. Find the line equation of each of the curves in Exs 1-3.
5. Show that any point whose codrdinates satisfy the three equations

g{—: X aaf 0, 8f =0 lies on the curve f= 0 and is therefore a
smgular pomt
6. Show that the singlilar points of a curve in nonhomogeneous

31'

Cartesian coordinates are given by %= =0, prov1ded the solu-

tions of these equations also satisfy f (:c, y) = 0. (Compare Ex. 5.)
Apply to find the singular points of 2?4 3y* = @? and 2* — 3* = 0.

7. Show that through any point on a singular line of a line extent
go at least two coincident lines of the extent. Hence show that if the
extent envelops a curve of the nth class, the singular lines are the
locus of a point such that at least two of the n tangents to the curve
from that point are coincident. Illustrate by considering the line extent
uf + uud = 0.

8. If f (x, 2, ) = 0 is the equation of a curve and y,: y,:y, is a
fixed point, show that the equation

o

af
N AT SR EL

represents 8 curve which passes through all the singular points of
. f=0 and through all the points of tangency from y; to f= 0, but
intersects /= 0 in no other points.

9. Prove that a curve of the third order can have at most one singu-
lar point unless it consists of a straight line and a curve of second
order, or entirely of straight lines.



CHAPTER V
CURVES OF SECOND ORDER AND SECOND CLASS

33. Singular points of a curve of second order. By § 81 a curve
of second order is deﬁned by the equation
azri+agi+azi+2az2+2a05,+2az2=0, (1)
which can be more compactly written in the form
daarm=0.  (4=a)

By the last theorem of § 81 any straight line cuts a curve of
second order in two points or lies entirely on the curve.

It follows immediately that if the curve has singular points it
must consist of straight lines. For any line through a singular
point meets the curve in two points coincident with the singular
point, and if it passes through a third point of the curve it must
lie entirely on the curve.

We proceed to examine the singular points more closely, as
they are important in determining the nature of the curve.

By (12), § 81, the singular points are the solutions of the

equations a,y,+a.y,+a,y,=0,
any1+ azsy:+ TosYs= 0’ (2)
.Y, + ayy,+ ay,= 0.

Let D, called the diseriminant of equation (1), be defined by
all ali all
Gy Ty Byyf*
all a’l all

D= ®)

There are then three cases in the discussion of equations (2).

Case I. D # 0. Equations (2) have no solution, and the curve
has no singular point. This is the general case.

Casg II. D=0, but not all the first minors of D are zero.
Equations (2) have one solution, and the curve has one singular

point. Let that point be taken by a change of codrdinates as the
58
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point 0:0:1. The degree of the equation will not be changed
(§29), but in the new equation we shall have a,=0, a,=0,
a,=0. The equation therefore becomes

a,, 77 + 2 a2, 7, + ag7; = 0,

which can be factored into two linear factors. These factors can-
not be equal, for if they were we should have a :a,=a,: a,, and
equations (2), written for the new coordinates and new equation,
would have more than one solution. Hence the locus of (1) con-
sists of two intersecting straight lines.

Casg III. D=0, and all its first minors are zero. Any solution of
one of the equations (2) is a solution of the others, and the curve
has a line of singular points. If by a change of coordinates that
line is taken as the line z,= 0, we shall have in the new equation
a,=a,=a,=a,=a,=0, and the equation becomes z}= 0. Hence
in this case the curve consists of two coincident straight lines.

Summing up, we have the following theorem :

A curve of the second order has in general no singular point. If it
has one singular point it consists of two straight lines intersecting in
that point. If it has a line of singular points it consists of that line
doubly reckoned.

The curves of second order in homogeneous coordinates are the
same as the conics in Cartesian coordinates, for, as shown in § 29,
the degree of an equation is not altered by a change of codrdinates.
We may on occasion distinguish between the conics without singu-
lar points and those which consist of two straight lines by calling
the latter degenerate cases of the conic.

34. Poles and polars with respect to a curve of second order.
By (11), § 31, if y, is a point on the conic (1), § 33, the line
coordinates of the tangent at y; are

pu,=a,y,+ a9y, + .Y,
pU= amy1+a22ys+ o693 Lo (1)
Pun": anyl+ a,,%"‘ Y5

Let us now drop the condition that y, is on the curve and consider
¥, a8 any point of the plane, whether on the curve or not.
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Equations (1) then associate to any point y, a definite line u;
This line is called the polar of the point, and the point is called
the pole of the line. The equation of the polar is

ally lzl + a”V !xl + a'ﬁylz 3 + all(ylx! + y le) + a”(ylxl + y lz l)
+ an(x:ya+ ziys) = 0’
or, more compactly,
2“«&.’/.‘"’&= 0. (au=a,) @

If y, is given, u, is uniquely determined by (1); but if u,is given,
¥; is determined only when equations (1) can be solved, that is,
when the discriminant D, § 88, does not vanish. Hence,

I. To any point of the plane corresponds always a unique polar ;
but to any line of the plane corresponds a unique pole when and only
when the curve has no singular point.

The following theorems are now easily proved:

II. The polar of a point on the curve 8 the tangent line at that
point and, conversely, the pole of any tangent to the curve is the point
of contact of the tangent.

It is obvious that equation (2) reduces to the equation of
the tangent when the point gy, is on the curve. Conversely, if
equation (2) is that of a tangent to the curve, the solution
of equations (1) will give the point of contact.

III. The polar of a point passes through the point when and only
when the point is on the curve.

This follows from the fact that the substitution z,= y, reduces
equation (2) to the equation of the curve.

IV. The polar of any point passes through the singular points of
the curve if such exist.

This follows from the fact that equation (2) can be written
vz oz ta gty (o tagtar) Y (o taz taz)=0.

V. If a point P lies on the polar of a point Q, then Q lies on the
polar of P. '

I
w
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If P is the point y, and @ is the point z,, the polar of P is
2tyn=0  (ax=ay)
Sawz=0.  (a=0y)
The condition that P should lie on the polar of @ is

zaazi.’/k'—-
which is just the condition that @ should lie on the polar of P.

and that of @ is

VI. If a curve of second order has no singular point, two tangents
may be drawn to the curve from any point not on it, and the chord con-
necting the points of contact of these tangents is the polar of the point
of intersection of the tangents.

Let P (Fig. 15) be a point not on the curve. The polar of P,
being a straight line, cuts the curve in two points 7'and S. These
two points are distinct because by theorem II the polar is not
tangent, since P, by hypothesis, is not
on the curve. =

Since by hypothesis the curve has
no singular point, it has a unique
tangent line at each of the points T
and S. These tangents are the polars
of their points of contact and hence by
theorem V pass through P. The polar
of P therefore passes through 7' and S
(theorem V).

There can be no more tangents Fic. 16
from P to the curve, for if there were,
the point of tangency would lie on 7'S by theorem V, and hence
TS would intersect the curve in more than two points, which is
impossible. The possibility that 7'S should lie entirely on the curve
is ruled out by the fact that in that case the curve would consist
of two straight lines and would have a singular point, which is
contrary to hypothesis.

This theorem as proved takes no account of the reality of the
lines and points concerned. In the case in which it is possible to
draw real tangents from P, however, the theorem furnishes an easy
method of sketching the polar of P.

P

\a
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When real tangents cannot be drawn from P, as in Fig. 16, the
polar of P may be constructed as follows:

Through P draw two chords, one intersecting the curve in the
points R and § and the other intersecting the curve in the points
T and V. Draw the tangents
at the points B, S, 7, and 7, I/ /
and let the tangents at B and § K u
intersect at L and let the tan-
gents at 7 and V intersect at K.
Then, by theorem VI, L is the P
pole of RS, and K is the pole
of TV. Consequently the polar of
P passes through L and K and
is the line LK. S

VII. For a curve of second order
without singular points it is possible
in an infinite number of ways to construct triangles in which each side
t8 the polar of the opposite vertex. These are called self-polar triangles.

T16. 16

We may take 4 (Fig. 17), any point not on the curve, and
construct its polar, which will not pass through 4 (theorem III)
and cannot lie entirely on the curve,
since the curve has no singular point.
We may then take B, any point on
the polar of 4 but not on the curve,
and construct its polar. This polar
will pass through 4 (theorem V) but
not through B (theorem III). The
two polars now found are distinct
lines (theorem I) and will intersect
in a point C. Draw 4B. Then 4B is
the polar of C by theorem V. The
triangle 4BC is a self-polar triangle. Fic. 17

B

VI If any straight line m s passed through a point P, and
R and S are the points of intersection of m with a curve of the
second order, and Q s the point of intersection of m with the polar
of P, then P and Q are harmonic conjugates with respect to R
and 8. ‘ '
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Let P.(Fig. 18) be any point with coordinates y;, let p be the polar .
of P, and let m be any line through P cutting p in @ and the curve
in B and S. Then, if 2 are the coordinates of @, the coordinates of -
R and 8 are y,+ Az and y,+ Az, where A, and A, are the roots of
the equation
! Dyt 20D a2+ N a2z, =0,

obtained by substituting ;= y,+ Az; in the equation of the curve.

P R\ Q’\l )

Fic. 18 Fi6. 19

But since @ is on the polar of P, we have za,.hy,z,= 0, and

therefore A, =— 2\, By § 14 the theorem is proved.

This theorem gives a method of finding the polar of P when
the curve of second order consists of two straight lines intersecting
in a point O (Fig. 19): Draw through P any straight line m inter-
secting the curve in the points R and S, distinct from O, and find
the point @, the harmonic conjugate of P with respect to B and 8.
By theorem VIII, @ is on the polar of P, and by theorem IV the
polar of P passes through O. Hence Q and O determine the re-
quired polar p.

EXERCISES

1. Prove that if a conic passes through the vertices of the triangle
of reference its equation is ez, + e, + ez, = 0. Classify the conie
according to the nature of the coefficients ;.

2. Prove that if the triangle of reference is composed of two tan-
gents to a conic and the chord of contact, the equation of the conic is

¢z a,+ cxi=0. Classify the conic according to the nature of the

coefficients ¢;.
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3. Prove that the triangle formed by the diagonals of any complete
quadrangle whose vertices are in the conic is a self-polar triangle.

4. Prove that the triangle whose vertices are the diagonal points
of a complete quadrilateral circumseribed about a conic is a self-polar
triangle.

5. Prove that a range of points on any line is projective with the
pencil of lines formed by the polars of the points with respect toany conic.

e. If P,, P,, P, are three points on a conic, prove that the lines P, P,
and P,P, are harmonic conjugates with respect to the tangent at P, and
the line joining P; to the point of intersection of the tangents at P, and P,.

7. If the sides of a triangle pass through three fixed points while
two of the vertices describe fixed lines, prove that the locus of the third -
vertex is a conic.

8. The equation f,+ Af,=0, where f, and f, are quadratic poly-
_nomials and X is an arbitrary parameter, defines a pencil of conics.
Sketch the appearance of the pencil according to the different ways
in which the conics’ f;=0 and f, = 0 intersect.

9. Prove that through an arbitrary point goes one and only one
conic of a given pencil and that two and only two conics of the pencil
are tangent to an arbitrary line. What points and lines are exceptional ?

10. Show that any straight line intersects a pencil of conics in a set
of points in involution. What are the fixed points of the involution ?

11. Prove that the polars of the same point with respect to the
conics of a pencil form a pencil of lines.

12. If the point P describes a straight line, prove that the vertex of
its polar pencil (Ex. 11) with respect to the conics of a pencil describes
a conic.

13. Prove that the locus of the poles of a straight line with respect
to the conics of a pencil is a conic.

14. Prove that the conics of a pencil of conics which intersect in
four distinct points have one and only one common self-polar triangle.

15. Prove that the pole of the line at infinity is the center of the
conic unless the conic is tangent to the line at infinity.

16. Prove that the tangents to a central conic at the extremities of a
diameter are parallel.

17. Two lines are conjugate with respect to a conic if each passes
through the pole of the other. Prove that each of two conjugate
diameters is parallel to the tangents at the ends of the other. Prove
also that a system of parallel chords are all conjugate to the same
diameter and therefore bisected by it.
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18. Consider a pencil of lines with its vertex at the center of a conic,
and an involution in the pencil such that corresponding lines in the
involution are conjugate diameters of the conic. Show that the fixed
lines of the involution are the asymptotes.

19. The foci are defined as the finite intersections of the tangents
from the circle points at infinity to any conic. Show that a real central
conic has four foci, two real and two imaginary, and that the real foci
are those considered in elementary analytic geometry.:

85. Classification of curves of second order. We are now ready
to find the simplest forms into which the equation

an'”r'”t= 0 (@s=ay) (1)
can be put by a change of codrdinates.
As before let us place

By Gy Gy
D= Qg Gy Oyl
By Ay Oy

Case I. D+ 0. The curve has no singular points (§ 33), and
there can be found an infinite number of self-polar triangles
(VII, § 84). Let one such triangle be taken as the triangle of
reference. Then, since the polar of 0:0:1 is the line z,=0, we
shall have, in the new equation of the curve, a,,= a,,= 0. Since the
polar of 0:1: 0 is z,= 0, we shall have a ;= a,= 0. Since the polar
of 1: 0: 0 is z,= 0, we shall have a,=a,,=0. The equation of the

curve is therefore 0,22 + a7} + agzi= 0. 1©))

No one of the coefficients a,,, a,,, @, can be zero, for if it were
the curve would have a singular point.

If the cobrdinates of the original equation of the curve are real
and the new coordinates are referred to a real self-polar triangle
with a real unit point, the coefficients a,,, a,,, and a,, are real. We
may then distinguish two cases according as all or two of the signs
in (2) are alike. By replacing V|a,|z; by z, we have then two
types of equations, ezl 22 =0, 6

z}+z) — i =0. “@

The first equation represents a curve with no real points and
the other represents one which has real points. It is obvious that
no real substitution can reduce one equation to the other. Of
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course the second equation can be reduced to the first by placing
z,=ix,, which does not involve imaginary axes but an imaginary
value of the constant k,, Summing up, we have the theorem:

A curve of second order whose equation has real coefficients and
which has no singular point is one of two types: an imaginary curve
the equation of which can be reduced to the form (3), and a real curve
the equation of which can be reduced to the form (4). If no account
18 taken of imaginaries the equation of any curve of the second order
with no singular point can be reduced to the form (3).

Case II. D=0, but not all first minors of D are zero. The
curve has then one and only one singular point (§ 833). This may
be taken ds the point 0:0:1. Then a,=a,=a,=0. The points
0:1:0 and 1:0: 0 may be taken in an infinite number of ways so
that each is on the polar of the other. Each of these polars passes
through 0:0:1 (IV, § 84). Since 0:1:0 is the pole of z,=0 we
have a,= 0 in addition to a,= 0, as already found, which is also
the condition that 1:0:0 is the pole of z,=0. The equation of
the curve is therefore a8 + ayzi=0. ®)

Neither of the coefficients @, or a,, can be zero, for if it were,
the curve would have more than one singular point.

Equation (5) may be reduced without the use of imaginary
quantities to one of the types

zl+z}=0, Q)
z}— a7 =0. )
Summing up, we have the theorem:

A curve of the second order whose equation has real coefficients and
which has one singular point is one of two types: two imaginary straight
lines represented by equation (6) or two real straight lines represented
by equation- (7). If no account s taken of imaginaries a curve of
second order with one singular point consists of two straight lines inter-
secting in that point, and its equation may be put in the form (6).

Caske III. D=0, and all its first minors are zero. The curve has
then a line of singular points, and its equation may be reduced to
z22=0 (§ 83). A curve of second order with a line of singular points
consists of that line taken double.
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EXERCISES

1. Apply the foregoing discussion to the classification of curves in
Cartesian codrdinates, using x,= 0 as the equation of the line at infinity.
Where does the parabola occur in the discussion ? (See Ex. 2, § 34.)

2. Show from the foregoing that if an ellipse or a hyperbola is

referred to a pair of conjugate diameters, its equation is "’;': + %: 1,
and conversely. @

3. Show from the foregoing that if a parabola is referred to a diam-
eter * and a tangent at the end of the diameter, the equation of the
parabola is y* = ax, and conversely.

4. Show that if a central conic does not pass through either of the
circle points at infinity, it has one and only one pair of conjugate
diameters which are orthogonal to each other.

5. Show that if a parabola does not pass through a circle point
at infinity one and only one pair of axes described in Ex. 4 will be
orthogonal. Write the equation of a parabola tangent to the line at
infinity in a circle point.

36. Singular lines of a curve of second class. Consider the curve
of second class defined by the equation in line codrdinates

E Aguan= 0. (Au=4y) @
By §32 the singular lines of this locus are defined by the
uations
cquation A, + A, + 4, u,= 0,
Auu1+Amus+Azaua= 0, (2)
Amu1+Anu2+Assus= 0.
Let A, called the discriminant of the curve (1), be defined by
the equation
q All Al! Alll
A=(4, 4, 4,
Al! Aﬂ Au

There are then three cases in the discussion of equations (2).
Case I. A+ 0. Equations (2) have no solution, and the curve
has no singular line. This is the general case.

* A diameter of a parabola is defined as a straight line through the point of
tangency of the parabola with the line at infinity.
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Casg II. A=0, but not all the first minors of A are zero.
Equations (2) have one solution, and the curve has one singular
line. Let this line by a change of coordinates be taken as the line
~0:0:1. The degree of the equation will not be changed, but in
the new equation we shall have 4,,=4,=4,=0. The equation
therefore becomes Ayt + 2 A, + Ay =0,
which can be factored into two linear factors. These factors can-
not be equal, for if they were we should have 4, : 4 =4 :4,,and
equations (2), written for the new equation, would have more than
one solution. Each of the factors of (8) represents a pencil of
lines the vertex of which lies on the line z,= 0; that is, on the
singular line of the locus of (1). Equation (1) is the line equation
of the two vertices of the pencils represented, and the singular line
is the line connecting these two vertices.

Case III. A=0, and all its first minors are zero. Any solution
of one of the equations (2) is a solution of the others, and the
curve has a pencil of singular lines. If by a change of codrdinates
that pencil is taken as the pencil = 0, we shall have in the new
equation (1) 4,,=4 = A4,,=A4,,=A4,=0, and the equation becomes
ui=0. Hence in this case equation (1) is the equation of two
coincident points.

Summing up, we have the following theorem: A curve of the
second class has in general mo singular line. If it has one singular
line it consists of two distinct points lying on that line. If it has a
pencil of singular lines it consists of the vertex of that pencil doubly
reckoned. _

37. Classification of curves of second class. By §32 the limit
points of intersection of two lines of the locus

ZA:'&W“&= 0 (Au=4y) @
are given by the equations
pr,= Anu1+ A13u2+ Amua’
pr,=4 w4t Auus+ Assus’ ‘ (2)
pZy= Auu‘l + Asnus+ Asaua'

There are again three cases corresponding to the cases of the
previous section. '
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CasE I. A# 0. Equations (2) can be solved for w, u, and u,
and the results substituted in (1). But by. aid of equations (2),
equation (1) can be replaced by the equation

uz, +ug +uz,=0. ©))
The result of the substitution is therefore

2 “u e Lal_ 0 4
xﬂ AlB Aﬂa Aﬂ ( )
0 2 =z =z
which may be written > =0, *)

where a, is the cofactor of 4, in the expansion of the determi-
nant A.

This is the curve of second class enveloped by the lines which
satisfy equation (1). It appears that it is also a curve of second
order. Let

all al! a‘la

D=|a, a, a,

als aas a”

be the discriminant of (5). Then

A 0 O
D-A=|0 A 0|=A?
0 0 A
and D=A?+ 0.

We have therefore the following result: A curve of second class
with no singular line 8 also a curve of second oirder with no singular
point. The converse theorem is easily proved: A curve of second
order with no singular point is also a curve of second class with no

singular line.

Since the simplest equations of the curve of second order are
zi+ 2l 27=0,
2l 2] —x;=0,
the simplest equations of the curve of second class are
ul+ ul+ ul=0,

ui+ui—ul=0.
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Casg II. A= 0, but not all its first minors are zero. Equations
(2) have no solution, so that no point equation can be found for
the locus of the limit points on the lines of equation (1). In fact,
we have already seen that the limit points are two in number
only, the vertices of the two pencils of lines defined by (1). The
simplest forms into which equation (1) can be put without the
use of imaginary coordinates are obviously

ul+ u;=0,
ul—ul=0.

Caskg III. A=0, and all first minors are equal to zero. We have
already seen that the simplest form of the equation in this case is

u1’= 0.

38. Poles and polars with respect to a curve of second class.
Equations (2), § 87, can be used to establish a relation between
any line %, whether or not it satisfies (1), § 37, and a point z, de-
fined by these equations. The point is called the pole of the line,
and the line is called the polar of the point with respect to the
curve of second class given by equation (1), § 87. The following
theorem is then obvious:

To any line of the plane corresponds a distinct pole, but to any
potnt corresponds a distinct polar when and only when the discrim-
tnant of the curve of second class does not vanish.

This relation is dualistic to that of § 34, and all theorems of that
section can be read with a change of * point” to * line,” *“ pole” to
* polar,” etc. We shall prove in fact that in case of @ curve of second
order and second class without singular point or line the definitions of
poles and polars in § 84 and § 88 coincide.

This follows from the fact that the curve of second class defined by

ZAuu‘uk= 0
is, when A # 0, the curve of second order
D tur =0,

where a, is the cofactor of 4, in A. Now, if equations (2), § 37,
are solved for u,, u, and u,, there result the equations (1), § 84, and
the theorem is proved.
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In case a curve of second class consists of two points, by a
theorem dualistic to IV, § 384, the pole of any line lies in the
singular line, which is the line connecting the two points. It may
be found by means of a theorem which is dualistic to VIII, § 84, and
which may be worded as follows:

If any point M is taken on a
line p, and r and 8 are the lines
through M belonging to a curve
of second class, and q i8 the line
Jjoining M to the pole of p, the
lines p and q are harmonic con-
Jugates with respect to r and s. Fie. 20

This theorem is illustrated in Fig. 20, which also suggests
the construction necessary to find P the pole of p, since P is the
intersection of ¢ and the line 00'.

EXERCISES

1. If the three vertices of a triangle move on three fixed lines and
two of its sides pass through fixed points, the third side will envelop
a conic. ’

2. A range of conics is defined by the equation f, + Af; = 0, where
fi=0 and f;=0 are the equations in line cosrdinates of two conics.
Discuss the appearance of the range.

3. Prove that there is in general one and only one conic of a range
which is tangent to a given line and two and only two conics of a
range which pass through a given point. What are the exceptional lines
and points ?

4. Prove that for a given range all tangents through a fixed point
form a pencil in involution with itself.

5. Prove that for a given range of conics the poles of a fixed straight
line form a range of points.

6. If a straight line in Ex. 5 turns about a point, show that the base
of the range of its polar points envelop a conic.

7. Prove that the centers of the conics of a range lie on a straight
line.

8. Prove that the conics of a range with four distinct common
tangents have one and only one self-polar triangle.
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39. Projective properties of conics. We shall prove the following
theorems which are connected with the curves of second order and
involve projective pencils or ranges.

L. The points of intersection of corresponding lines of two projective
pencils which do not have a common vertex generate a curve of second
order which passes through the vertices of the pencils.

Without loss of generality we may take the vertices of the two
projective pencils as 4(0:0:1) and C(1:0:0) (Fig. 21) respec-
tively, and may take the point of intersection of ome pair of

corresponding lines as B(0:1:0). The B
two pencils are. then
z,+ M’= 0
and z,+Nz,= 0,
1+ 8 i i
where A= S The point B lies on P

the line of the first pencil, for which
A=0, and on the line of the second
pencil, for which A'= 0. Since these are
corresponding lines in the projectivity,
we have 8 =0. Then 8 and 4 cannot vanish, owing to the condition
ad — By + 0. Now, if 2, : 7, : 7, is a point on two corresponding lines

(%]
Fie. 21

of the pencils, we have A = — L, N =— ‘3-"’, and hence
zl zl
vzz,—Brz,+ arg, = 0. Q)

The point z;: z,: z, therefore lies on a curve of second order.
Conversely, if y,: y,: y, is a point on this curve of second order,

—a+B8 Y
we have 7 S—
Ys v
But the line joining g, to 4 has the parameter A=—2, and

Ys
the line joining y, to B has the parameter A’ =—%, and conse-

K/
quently A/ =‘2';—B- Hence the point g, is the intersection of

two corresponding lines of the two projective pencils.
That the curve of second order with the equation (1) passes
through 4 and C is obvious. Hence the theorem is proved.
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If @ =0 the curve (1) reduces to the two straight lines z,=0
and yz,— Bz,= 0, and the two pencils are in perspective (§ 16).
Equation (1) may be written in the more symmetrical form
ez gz, + crx, + ez, = 0,

G, % & _
f)l' : ;; + ;’ + ;; =0. 2

II. The lines connecting corresponding points of two projective
ranges which do not have the same base envelop a curve of second
class which is tangent to the bases of the two ranges.

This is dualistic to I. We may take the bases of the two ranges
as a(0:0:1) and ¢(1:0:0) (Fig. 22) respectively, and a line
connecting two pairs of corresponding points as $(0:1:0). The
line equations of points on the
two ranges are then

' u, + Xu’= 0
and %+ Mu,= 0,
where, as for I,
_an+8,
==

The lines connecting corre-
sponding points then satisfy
an equation of the form

euu, + cuu + cuu, = 0,

L R S a
or u, + A + U, 0. (3) FiG. 22
Conversely, any line satisfying this equation is a line connecting
corresponding points of the two ranges.
When a =0 the equation factors into u, =0 and yu,— Bu,=0,

and the two ranges are in perspective.
III. Any two points on a curve of second order without singular
lines may be used as the vertices of two generating pencils.

No three points of the curve lie in a straight line. Hence any
three points on the curve may be taken as the vertices of the
coordinate triangle ABC. The equation of the curve is then of

the form ez, +czx +exw =0, (©))
where ¢, ¢,, ¢, are not zero, since the curve has no singular point.

X’
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The equation of any line through 4 is z,+ Az,—= 0 and that of
any line through Cis z,+ A\'z,=0. If these lines intersect on (4)
we have A’=c’l—f-

A
The correspondence of lines of the pencil with vertex 4 and

those of the pencil with vertex C is therefore projective. This
proves the theorem.

IV. Any two tangent lines to a curve of second class without singular
points may be taken as the bases of two projective generating ranges.
This is dualistic to theorem III.

V. If any point of a curve of second order without singular points

8 connected with any four points on the curve, the cross ratio of the

Jour connecting lines is constant for the curve. If any tangent line to

" a curve of second class without singular lines is tntersected by any

Sour tangents, the cross ratio of the four points of tntersection is
constant for the curve.

This is a corollary to theorems III and IV.

VI. One and only one curve of second order can be passed through
five points, no four of which lie in a straight line.

Let the five points be R, B, R, R, and R (Fig. 23).

From R, which cannot be in the same straight line with B, B, and
E, draw the lines BE, RE, EE; and from E, which also cannot be
collinear with B, B, E,draw EE, BB, ER.
Then there exists one and only one pro-
jectivity (I, § 18) between the pencil with
vertex E and that with vertex B in which
the line RE corresponds to BE, the line
ER to BR, and the line RE to EE. The
intersection of corresponding lines of these 4
projective pencils determine a curve of
second order through the five given points. Since any two points
on the curve may be taken as the vertices of the generating pencils,
only one curve can be passed through the points.

Ny

Fic. 23

VII. One and only one curve of second class can be constructed
tangent to five lines mo four of which meet in a point.
This is dualistic to theorem VI.
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VIIL. Pascal’s theorem. If a hexagon i inscribed in a curve of

second order, the points of intersection
straight line.

of opposite sides lie on a

By a hexagon is meant in this theorem the straight-line
figure formed by connecting in order the six points R, B, B, B,
R, B, taken anywhere on the curve of second order (Fig. 24).

The opposite sides are then BE and
BB, BP and EE, EE and EP
respectively.

We shall first assume that the curve
is without singular points. Then the
points R, B, and E do not lie on a
straight line and may be taken as the
vertices of the triangle of reference.
Let B be the point (0:0:1), B
the point (0:1:0), and E the point
(1:0:0). Then the equation of the
curve is, by (2),

G Gy by,
zl+xﬂ xl 0 (5)

Let E have the cobrdinates g,,
E the coordinates 2, and E the

oV

coordinates w,. Then, since the three points B, R, and E lie

on the curve (4), we have

111
B$ Y Y
1 1 1
4 % 2
1 1 1
w, w, w,

=0. 6)

The equation of the line RE is yz,— y,z,=0 and that of EE

is zz,— 22, They intersect in the point Yi.1:5. Similarly, the

2 22

lines EE and RE intersect in the point %:%.1 and the lines

lwl
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EE and RF intersect in the point 1: %:?- The condition that
1 1

these three points lie on a straight line is

1 Y 2

1 zl
L1 Ao,
y’ Z’
Hh %oy
yl‘ wlv

which is readily seen to be the same as equation (6).

If the curve of second order consists of two intersecting straight
lines, the theorem is still true, but the proof needs modification.
When the points B, B, and E lie on one of the straight lines
and B, B, B lie on the other, we have the theorem of Pappus
(VII, §380). Other distributions of the points on the straight
lines are trivial.

IX. Brianchon’s theorem. If a hezagon t8 circumscribed about a curve
of second class, the lines connecting opposite vertices meet in a point.

This is dualistic to VIII, and the proof is left to the student.

EXERCISES

1. Prove that the center of homology (see Ex. 9, § 30) of two pro-
jective pencils of lines is the intersection of the tangents at the vertices
of the pencils to the conic generated by the pencils.

2. Prove that the axis of homology (see Ex.10, § 30) of two pro-
jective ranges is the line joining the points of contact of the bases of
the ranges with the conic generated by the ranges.

3. Show that the lines drawn tlirough a fixed point intersect a conic
in a set of points in involution, the fixed points of the involution being
the points of contact of the tangemts from the fixed point.

4. Prove that if two triangles are inscribed in the same conic they
are circumscribed about another conic, and conversely.

5. Prove that if a pentagon is inscribed in a conic the intersections
of two pairs of nonadjacent sides and the intersection of the fifth side
and the tangent at the opposite vertex lie on a straight line.

8. State and prove the dualistic theorem to Ex. 5.
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7. Prove that if a quadrilateral is inscribed in a conic the inter-
sections of the opposite sides and of the tangents at the opposite
vertices lie on a straight line.

8. State and prove the dualistic theorem to Ex. 6.

9. If a quadrilateral ABCD is inscribed in a conic and L is the
intersection of the tangent at 4 and the side BC, K is the intersection
of the tangent at B and the side 4D, and M is the intersection of the
sides 4B and CD, prove that L, K, and M lie on a straight line.

10. State and prove the dualistic theorem to Ex. 8.

11. If a triangle is inscribed in a conic, prove that the intersections of
the tangents at the vertices with the opposite sides lie on a straight line.

12. State and prove the dualistic theorem to Ex. 12.

13. Prove that the complete quadrangle formed by four points of
a conic has, as diagonal points, the points of intersection of the
diagonal lines of the complete quadrilateral formed by the tangents
at the vertices of the complete quadrangle.



CHAPTER VI
LINEAR TRANSFORMATIONS

40. Collineations. A collineation in a plane is & point trans-
formation (§ 5) expressed by the equations

Py = Ay, + aygZy+ ayTy,
PTy= Oy, + AT, + Ay, (¢Y)
PTy = g7y + Qg+ Ay

If the determinant |a,| is not equal to zero, these equations can

be solved for z, with the result -
oz, = A2 + Ay 7y + Ay 23,
02y = A7) + Ay + Ay ¢))

oz, = 4,7 + Ay 7+ Ay,

where 4, is the cofactor of @, in the expansion of |a,| and where
IA&I *0. . .

If the determinant |a,|= 0, equations (2) cannot be obtained
from (1). For this reason it is necessary to divide collineations
into two classes:

1. Nonsingular collineations, for which |a,|+ 0.
2. Singular collineations, for which |a,|=0.

We shall consider only nonsingular collineations in this text,
though some examples of singular collineations will be found in
the exercises. :

It is obvious that for a nonsingular collineation z; cannot have
such values in (1) that z{=z;=2;=0. Hence by (1) any point z;
is transformed into a unique point z}. Similarly, from (2) any
point z is the transformed point of a unique point z,

Consider now a straight line with the equation

uz + ur, + uzr,= 0.
7
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All points z;, which satisfy this equation, will be transformed into
points z}, which satisfy the equation

mi =4,u+ 4,0+ 4, u,

=4, u + A u +A4u, [©))

2171

T =A,u + A u,+ A0,

8171 332

where, by (2),

It appears then that any straight line with coordinates u, is
transformed by (1) into & unique line with coordinates u]. Also,
equations (8) may be solved for , with the result

‘ Ay = a,u + Gyt + By,
Ay = Gy + Gyt + a0, C))
Mty = ayuy + agyty + aygly,
from which it appears that any line is the transformed line of a
unique line.

Equations (3) express in line coordinates the same transforma-
tion that is expressed by equations (1) in point coordinates. For
it is easy to see that by equations (8) any pencil of lines with the
vertex z; is transformed into a pencil of lines with the vertex = and
that the relation between z; and z} is exactly that given by equa-
tions (1). Equations (3), therefore, which express a transformation
of straight lines into straight lines, also afford a transformation of
points into points in a sense dualistic to that in which équations (1)
afford a transformation of straight lines into straight lines.

We will sum up the results thus far obtained in the following
theorem :

L By a nonsingular collineation in a plane every point 18 trans-
SJormed into a unique point and every straight line into a unique
straight line and, conversely, every point 8 the transformed point of a
unique point and every straight line the transformed line of a unique
straight line.

Consider now a collineation B, by which any point z; is trans-
formed into the point 2], where

PZ; = 0,7, + a7, + a7y,
and let B, be a collineation by which any point z} is transformed

; '
into 2'', where ozl =b,2| + b2, + b,z
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Then the product E,E, is a substitution of the form
T2 = €\ + Oy + Oy,

which is a collineation. Hence the product of two collineations is
a collineation.

Moreover, if B, is as above and E, is of the form
o' = A, 2+ A, 2+ 4,4,
’ ™=z, Tr/=2, T1/=2,,
which is the identical substitution. Hence in this case R, is the
inverse substitution to B, and is denoted by R;'. Our work shows
that the inverse transformation to a collineation always exists and
is itself a collineation.

These considerations prove the following theorem :

the product R.E, is

II. The totality of nonsingular collineations in a plane form a group.

We shall now prove the following theorems:

II. If R, R, R, E, are any four arbitrarily assumed points, no three
of which are on the same straight line, and R', E', B!, E' are also
Jour arbitrarily assumed points, no three of which lie on a straight
line, there exists one and only ome collineation by means of which F, is
transformed into F', F, into E!, F, into B!, and F, into E'.

To prove this we will first show that one and only one collinea-
tion exists which transforms the four fundamental points of the
coordinate system, namely 4(0:0:1), B(0:1:0),C(1:0:0),and
I (1:1:1), respectively, into four arbitrary points B (a,: a,: a,),
B (B,:8;:8y), B (v::%: %), and E (3,: 3,: 8,), no three of which
lie on a straight line.

By substituting in equation (1) the coordinates of correspond-
ing points, remembering that the factor p may have different values
for different pairs of points, we have the following equations out
of which to determine the coefficients a,:

P&, = Gy Psﬁl= ey P = Oy
P&, =y P B, =0, Py, =0, ®)
Py @ = Gy Peﬂs= Bygr Py = Gy
P481= a,ta,ta,
P482= a,+ an+ s ®
P483= au+ an+ gy
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By substitution from equations (56) in equations (6) we have
P&+ P8+ py,— 8 =0,
P2+ P8, + Py, — 8, = 0,
P&yt P B+ Py, — P8 = 0,

which may be solved for p.: p,: p,: p,. Since no three of the points
R, B, E, E lie on a straight line no determinant of the third
order formed from the matrix

@, B 1 N 81
e, B, 2 Vs 8:
@, B s s 8:

can vanish, and hence no one of the factors p, can be zero. The
values of p , p,, p,, and p, having thus been determined except for
a constant factor, the values of the coefficients a, can be found
from (5) except for this same factor. Hence the collineation (1)
is uniquely determined, since only the ratios of @, in (1) are
essential. '

Let it now be required to transform the four points R, E, R, F,
no three of which are on a straight line, into the four points F/,
P, B!, B!, respectively, no three of which are on a straight line.
As we have seen, there is a unique collineation R, which transforms
4, B, C, I into R, B, R, FE, respectively, and a unique collinea-
tion B, which transforms 4, B, C, I into R/, B!, ', B/ respectively.
Then the collineation R;' (theorem II) exists and transforms
B, B, E, E, into 4, B, C, I respectively. The product R,R[! is
a collineation (theorem II) which transforms E, R, R, E into
E', B/, B!, F' respectively. Moreover, this is the only collineation
which makes the desired transformation. For let R be a collinea-
tion which does so. Then R;'R transforms E, B, E, E into
4, B, C, I respectively. Hence

R;'R=FRi';
whence ‘ R=R,R;
This establishes the theorem. It is not necessary that all the

points B, B, B, F, should be distinct from the points E/, E/, E', B
In the special case in which F is the same as F', B the same as
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E!, R the same as F/, and E the same as B/, R =R, and R is
the identical substitution. Hence we have as a corollary to the
above theorem:

IV. Any collineation with four fixed points no three of which are in
the same straight line is the identical substitution.

V. Any nonsingular collineation establishes a projectivity between
the points of two corresponding ranges and the lines of two correspond-
ing pencils, and any such projectivity may be established in an infinste
number of ways by a nonsingular collineation.

To prove the first part of the theorem let the point g, be trans-
formed into y; and the point 2; be transformed into 2] by the collinea-

ion (1), so that
tion (1), so tha Py = Yy + oY+ a0Ys,

P2 = ;2 + 4,2, + 447,
Then y,+ Az is transformed into §,, where
Psbr= ;1 (41 A2) + 4,3 (Y + A2,) + @, (%5 + A2,)
= puyit Mogzl s

whence ck=yl+ Nz
where A= Ap,,
P1

This establishes a projectivity between the points of the range
¥;+ Az, and those of the range y/+\'z. By the use of line codrdinates
and equations (8) the proof may be repeated for the lines of a pencil.

To prove that there are an infinite number of nonsingular col-
" lineations which establish a given projectivity between the points
of two ranges, it is only necessary to show that there are an infinite
number of collineations which transform any three points P, @, R
lying on a straight line into any three points P/, ¢, E’, also on a
straight line, and apply III, § 15.

To prove this, draw through R any straight line and take .S and
T two points on it. Draw also through R’ any straight line and
take 8’ and 7' any two points on it. )

Then by theorem III there exists a collineation which trans-
forms the four points P, @, S, T into the four points P, @', ', 1",
and this collineation transforms R into R'. Since S, 7 and §', 7'
are to a large extent arbitrary, there are an infinite number of
required collineations.
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If it is required to determine a collineation which establishes a
projectivity between two given pencils of lines, this may be done
by establishing a projectivity between two ranges, each of which
is in perspective with one of the pencils. Since this may be done
in an infinite number of ways, there are an infinite number of the
required collineations.

41. Types of nonsingular collineations. A collineation has a fized
point when z!=2; in equations (1), § 40. The fixed pomts are
therefore given by the equations

(a,—p)z,+az,+azx = 0,
Aoy 1+(a —p)x +a”z‘ (1)
Ay, 1+asxx2+ (asa p)z‘— 0'

The necessary and sufficient conditions that these equations have
a solution is that p should satisfy the equation

a,—pP a, s
g A= P Qg =0. @
a, a, a,—p

Similarly, the fixed lines of the collineation are given by the

equations (a,,— p)u,+ a,u,+ a u,=0,

a,) 1+(an p)u +a 0 (3)
auux"' azs“z+(aaa P) ua_ O’

and the necessary and sufficient condition that these equations
have a solution is

a,—P 4 L
et Q=P Oy =0. C))
2, Gy A — P

Equations (2).and (4) are the same and will be written
f(p)=0. ®

Now let p, be a root of (5). Then p, cannot be zero, since by
hypothesis | @, |# 0. The root p, is a double root when
_ A= P, %

P (py=— 7= Fn O
' ™ A5~ Pil g Qg5 Py
and it is a triple root when
P (=2 [(ay— p)+ (2= p)+ (@ —pD]=0. (D)

=Py Oy |= 0, (6)
T Q= Py
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We may now distinguish three cases:

1. When all the first minors of the determinant f(p,) do not vanish.
Equations (1) and (3) have each a single solution. The collineation
has then a single fixed point and a single fixed line corresponding to
the value p,. The root p, may be a simple, a double, or a triple root
of (5), according as equations (6) and (7) are or are not satisfied.

2. When all the first minors of f(p,) vanish, but not all the
second minors vanish. Equations (1) and (3) contain then a single
independent equation. The collineation has then a line of fixed
points and a pencil of fixed lines corresponding to the value p.

The root p, is at least a double root of (5) since equation (6) is
necessarily satisfied, and it may or may not be a triple root.

8. When all the second minors of f(p,) vanish. Equations (1)
and (3) are satisfied by all values of z; and w; respectively, and
the collineation leaves all points and lines fixed. The root p, is then
a triple root of (5) since equations (6) and (7) are satisfied.

From this it follows that a collineation has as many fized lines as
Jfixzed points and as many pencils of fived lines as lines of fixed points.

From § 12 it follows also that in every fized line lies at least one
fixed point and that through every fized point goes at least one fixed
line. The line connecting two fixed points is fixed and the point common
to fized lines is fived.

We are now prepared to classify collineations according to their
fixed points and to give the simplest form to which the equations
of each type may be reduced. We will first notice, however, that
if the point #,=0, 2,=0, z,=1 is fixed, then by (1), § 490,
a,=a,=0; and if the line z,= 0 is fixed, then a,=ay,=0.

A. Collineations with at least three fixed points not in the same
straight line. Take the fixed points as the vertices 4, B, C of the
triangle of reference. Then the collineation is

Pz, = 0Ty,
PTy = Gyl
p, = Qg5 Tye

" No one of the coefficients can be zero, since the collineation is
nonsingular, but they may or may not be equal. We have then
the following types, in writing which different letters are used-to
indicate quantities which are not equal.
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Tyee L Pz, = az,,
pry = bz,
Pz, = Ty

The collineation has only the fixed points 4, B, C and the
fixed lines 4B, BC, and CD.

Tyek 11. Pl = ax,,
Pz, = azy
pay = ozy.

The collineation has the fixed point 4, the line of fixed points
BC, the fixed line BC, and the pencil of fixed lines with vertex A.
It is called a homology.

Tyee III. pr =1z,
Pz =Ty
pPTy= Ty

All points and lines are fixed. It is the identical transformation.

B. Collineations with at least two distinct fixed points, but no others
not in the same straight line. We will take the two fixed points
88 4(0:0:1) and ¢ (1:0:0) of the triangle of reference. The
collineation has at least two distinct fixed lines one of which is AC.
The other must contain one of the fixed points, and we will take
it a8 BC (z,=0). The collineation is then

Py = %) + Ay,
Pz = Ooiys
pay = gy,
Here a,,+ 0 or we should have case 4. We shall place a,=1.
The equation (5) is now (a,— p)(a,— p)(a,—p)=0. Placing
p=a, we have as the equations to determine the corresponding

fixed poi
ed point (“u_ a n)‘”l""’a: 0,
(ag,— am)xs='0.

Since by hypothesis every fixed point lies on x,= 0, we have
%,=a,,. It is left undetermined whether a,, is or is not equal to .
Hence we have two new types.
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Tyee IV. P, = az,+ z,,
py = azy,
Pz = bz,

The collineation has only the fixed points 4 and C and the
fixed lines 4C and BC.

TypE V. pr; = az,+ z,,
pzy = az,,
pzy = az;.

The collineation has the line of fixed points 4C and the pencil
of fixed lines with its vertex at C.

In either Type IV or V the point B may be taken at pleasure
on the line BC. ’

C. Collineations with only one fized point. Take the fixed point as
C (1:0:0). The collineation has also g fixed line which must
pass through C. Take it as BC (z,=0). The collineation is now

P, = 4y 2, + 8,7, + ay7,,

pzy = Qg3+ gy,

pry = 3T
Equation (5) is now (a,—p)(a,—p)(a,—p)=0, and since
by hypotheses C is the only fixed point, we have a = a, =a,
The point 4 (0:0:1) taken at pleasure is transformed into
4’ (a,:a,:a,), and if we take the line 44’ as 2, =0, we have
a,=0. The coefficients a, and a, cannot vanish or we have the

previous cases. We may accordingly replace z, by fi and z, by
:t, 12 .

and have, finally,

a“a”
TypE VL* . prl=az, + 7,
pzy = az,+ z,,
pay = azy

*The above classification has been made by means of geometric properties.
The reader who is familiar with modern algebra should compare the classifica-
tion by means of Weierstrass’s elementary divisors. Cf. Bocher’s * Higher Algebra,’’
p. 292.
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EXERCISES

1. Find the fixed points and determine the type of collineation to
which each of the following transformations in Cartesian codrdinates
belong : (a)a translation, () a rotation about a fixed point, (¢) a reflection
on a straight line. '

2. Determine the group of collineations in Cartesian codrdinates
which leaves the pair of straight lines #*— y*= 0 invariant and discuss
the subgroups.

3. Are two collineations with the same fixed points always commu-
tative? Answer for each type.

4. Consider the singular collineations. Prove that there is always a
point or a line of points for which the transformed point is indeter-
minate. We shall call this the singular point or line. If there is a
singular point, every other point is transformed into a point on a fixed
line which may or may not pass through the singular point. If there
is a singular line, every point not on the line is transformed into a
fixed point which may or may not lie on the singular line. Prove these
facts and from them show that the singular collineations consist of the
following types:

I One singular point P, a fixed line p not through P, two fixed
points on p.

pE= Ty,
pri= oz,
pry=0. (a+1)
II. One singular point P, a fixed line not through P, one fixed
point on p. pxl = az, + 2,
pT3= axqy
px3=0.

IIL. One singular point P, a singular line p not through P, all points
of p fixed.

pI= 2y,
pTy= X,
pry=0.
IV. Onesingular point P, a fixed line p through P, one point of p fixed.
‘ pT = 3y
pT3= Iy,

pxi=0.
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V. One singular point P, a fixed line p through P, no point of p fixed.

Pz{ = T3y
Pz; = gy
pry=0.

VI. A singular line p, a fixed point P on p.
Pzi = Xy
Pz; = 0)
pry=0.

VII A singular line p, a fixed point P not on p.

. Pz{ =z,

pry=0,
prs=0.

42. Correlations. The equations '

py=a,z +a,z+ axgzs’

p’u; = @yT, + a’ax:+ oy (l)

puy= a,z, + a .z, + a,z,
where z; are point codrdinates and u’ are line codrdinates, define
a transformation of a point into a line. Such a transformation is
called a correlation. As in the case of collineations, we shall dis-
tinguish between nonsingular and singular correlations according
as the determinant | a, | does not or does vanish, and shall consider
only nonsingular correlations. Equations (1) can then be solved for
z, with the result WAl + A4

oz, =4, u + 4, + 4,4,

oz, = A u + A i+ 4, u, )
oz, =4+ Auu; +4,,

where 4, is the cofactor of a, in the determinant | a,| Every
straight line u, is therefore the transformed element of a point z/.

Consider now the points of a line given by the equation
' uz, +ug +ur, = 0, .

where u; are constants. By (2) these points go into a pencil of
lines the vertex of which is the point z;, where

Pz =4 u+A4 u+A4u,

171 1272
plel = A, u + A u + Au, ®)
Plz)=A,u+Au +Au,.

8171
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We may express this by saying that the line u, is transformed
into the point z/. Also, since equations (3) can be solved for u,

with the result

— '
ou,=a !+ e, r!+ a7,

ou,=a .z +az!+a .z, “@
TU= (i) [+ a”z, + a“z’v

every point is the transformed element of one and only one line.

Since equations (2), (8), and (4) are consequences of equations
(1), we shall consider them as given with (1) and sum up our
results in the following theorem:

I. A nonsingular correlation defined by equations (1) 8 a trans-
formation by which each point i8 transformed into a straight line and
each straight line into a point, tn such a manner that points which lie on
a straight line are trangformed into straight lines which pass through a
point, and lines which pass through a point are transformed into points
which lie on a straight line. Each line or point i8 trangformed into one
point or line and 18 the transformed element of one line or point.

Consider now a correlation S, by which a point z, is transformed
‘into a line u/, and let S, be a correlatlon by which the line u; is
transformed into a point x” It is clear that the product S,8, is a
linear transformation by which the point z; is transformed mto the
point z!'; that is, a collineation. Therefore the correlations do not
form a group. It isevident, however, that the i inverse transformation
of any correlation exists and is a correlation.

We can therefore prove the following theorems:

I If R, B, R, R are four arbitrary points, no three of which lie
on a straight line, and if p,, p,, P, p, are four arbitrary lines, no three
of which pass through a point, there exists one and only ome correla-
tion by means of which P, is transformed into pys B tnto p, F into p,,

~and E, into p,, and there exists also one and only one correlation by
means of which p, is transformed into F, p, into K, p, into K, and
P, into F,.

II. Any nonsingular collineation establishes a projectivity between
the points of a range and the lines of a corresponding pencil, and any
such projectivity may be established in an infinite number of ways by
a correlation. .
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The proofs of these theorems are the same as those of the cor-
responding theorems of § 40 and need not be repeated.
By equations (1) a point z; lies on the line u/, into which it is
transformed when and only when
2

allxl’ + a”x! + a“'z :+ (al!+ a’l) zlzl-'_ (a18+ all)xlxl
+(a,+ a)zz,= 0. )
That is, z, lies on a conic K.
Similarly, from equations (8) a line , passes through the point
2,, into which it is transformed when and only when
Allulz + Aﬁu: + A“u: + (A 12 + Aﬂ)ulu’ + ('All + Ail)ului
+ (4, +4,)uu,=0. ©)
That is, %, envelops a conic K,

It is evident that the conics X, and K, are not in general the
same. Their exact relations to each other will be determined later
in this section. In the meantime we state the above result in
the following theorem :

IV, In the case of any nonsingular correlation the points which lie
on their trangformed lines are points of a certain comic, and the lines
which pass through their transformed points envelop a certain conic,
which, in general, is not the same as the first.

Any point P of the plane may be considered in a twofold manner:
a8 either an original point which is transformed by the correlation
into a line or as a transformed point obtained from an original
line. If P is an original point it corresponds to a line p’ whose
coordinates are given by (1). If P is a transformed point it corre-
sponds to a line »p whose cotrdinates are given by (4), in which we
must replace z by z;, the codrdinates of P.

The lines p and p' do not in general coincide. When they do
the line p and the point P are called a double pair of the correlation.
That P should be a point of a double pair it is necessary and suffi-
cient that the codrdinates ] and «, of equations (1) and (4) should
be proportional ; that is, that the codrdinates of P should satisfy
the equations

(au - Pau) z,+ (a‘m_ Pael) z,+ (am - Pau) Ty= 0,
(4= P,) T, + (A — Pay) 2+ (8 — pag) 27,= 0, ™
(au— Pala) x1+ (a”—— Paaa) :v3+ (a’aa— Pan) T,= 0,
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where p is an unknown factor. For these equations to have a solu-
tion it is necessary and sufficient that p should satisfy the equation
au_ Py G Py By Py
_Pam By — Pay  Gy— pay | =0. ®
—pa, a,—pa, a,—pa,

The correlatlons may be classified into types according to the -
nature of the double pairs and of the conics X, and K,. As a pre-
liminary step we shall prove the theorem:

V. If the point P and the line p form a double pair, then p is the
polar of P with respect to the conic K.

To prove this let the coordinates of P be y,, where y, is the solution
of (7) for p =p,, and let v, be the codrdinates of p. Then v, is deter-
mined from (1) when z;is replaced by y,. Then from (1) and (7) we

h
ave PYvi=a, Y+ A Y+ 45 Ys= pr (a9, + az..%'*'aa.!/a) 5
whence

(P + ;‘)vi= @+ a, )y + (@t a, )y, + (an""asa).'/s'
1

These last equations are exactly those which determine the polar
of P with respect to K,, and the theorem is proved.

We now proceed to the classification.

A. Let K be a nondegenerate conic. By a proper choice of coordx-
nates its equatlon can be put in the form

z, 24 (a,+a,)rz,= _ €))
sothat a =a,=0, a,=—a,, a,=— a”, a,*—a,.

If there is at least one double pair of which the point is not on the -
conic, it may be taken as 4 (0:0:1) without changing the form of
equation (9). We shall then have a,,= a,= 0. The correlation is
now expressed by the equations :

-
pUy = @14
Pu; = anxl’

|
Py = Zg

Neither a, nor a,, can be zero. There are then two types accord-
ing a8 a, and a, are or are not equal:
Tyee L pu = ax,
puy = az;,
puy = z,.
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The conic K, has now the equation z;+2 azz,=0, and the correla-
tion is a polarity with respect to this conic. Conversely, any polarity
with respect to a nondegenerate conic can be expressed in this form.

The equation (8) now becomes a*(1—p)*= 0, and equations (7)
are identically satisfied when p=1. Hence trn a polarity every cor-
related point and line form a double pair. The equation (6) now
becomes au; + 2 w,u,= 0, which is the line equation of K,. Hence
in a polarity the conics K and K, coincide.

Tyee IL pu = azx,
Pu; = bxl!
pu,’, = z,. (a+t )}

The conic K, has the line equation
(a+ b wu,+ abuf=0

4 abz,z,+ (a + b)2}=0,

and the relation of the two conics K, and K, is as in Fig. 25. Equa-

tion (8) becomes (1= p)(a—bp) (b —ap)=0,

which has three unequal roots. The correlation has accordingly

three double pairs: namely, the point 4 and the line BC, the point

B and the line 4B, the point

C and the line 4C. B
Types I and II arise from

the assumption that there is

a double pair of which the

point lies outside the conic. "4

If there is no such pair, there

must be at least one of which

the point lies on the conic.

In this case take the point as Fro. 25

B (0:1:0) without changing

the form of equation (9). By theorem V the line of the double

pair which contains B is the tangent B4. Then, from (1), a,,=0,

or the point equation

We have before seen that a,= — a,, so that the correlation is now
Py = 01Ty + CryTss
P = auz,
pUy =— ay;7, + 2.
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The coefficient a,, cannot be zero or we should have the previous
case. The equation (8) is now (a,— pa,) (e, —pa,) (1—p)=0,
and the solution p=1 would give a point not on K, contrary to
hypothesis, unless a, = a,,., We have, finally, for the equations of
the correlation :

Tyee IIL U = az,+ bz,,
puy = az,
Py =— bz, otz
where a = b is not excluded. The line equation of K, is now
Bl — ol — 2 auuy=0,
and the corresponding point equation is
bz} 42} + 2 axyx,= 0.
The two conics K, and K, lie therefore in the position of Fig. 26.
The equation (8) for p has the triple root p=1, and the cor-
relation has only one double pair consisting of the line point B

and the line 4B.
B. Let the conic K, degenerate

tnto two intersecting straight N
lines. 'We may take the equa- ,
tions of the lines in the form
ayri+ 2 =0; - ’ 4
whence
a,=0, 0= Gy
(¢

Q=0 G =—a,

The point B is again taken Frc. 26
a8 the point of a double pair
and is therefore transformed into a line through B, and if we
take that line as z, = 0 we have, from (1), a,,=0. The equation (8)

is now ai (1+p)'(1—p)=0,

where @, cannot be zero since the correlation is nonsingular.
The root p=—1 gives the point B as a point of a double pair.
The root p =1 gives the point 0:— a,:a,, and if this be taken as
4 we have a,= 0.
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We have then, finally,

TypE IV. pu, = az,+ bz,
puy =— bz,
pu' = Zs»

where the equality of the coefficients is not excluded.

The conic K, has now the equation

au,’ + b"u,’ = 0,

which is that of two pencils with their vertices on 4B. The relation
of K and K, is shown in Fig. 27.

C. Let the conic K, degenerate tnto two
coincident straight lines. Take the equa-
tion of K a8 z3_,

The discussion proceeds as in the pre-
vious case with the coefficient a placed
equal to zero. We have, accordingly,

K,

TypE V. puy= —dz,
puy = bz, 4
pul = z,. Fre. 27

The conic K, has the equation %= 0, which is that of a.double
pencil of lines with the vertex 4. The relation of the two conics
K, and K, is shown in Fig. 28. The equation (8) now becomes
B(1+p) (1= p)=0.
The root p=1 gives the point 4 as
a point of a double pair of which the
line is BC. The root p=—1 gives
any point on the line BC, so that if M
is any point on BC it is a point of a /-A
double pair the line of which is AM.

\
Fic. 28

EXERCISES

1. Find the square of each of the different types of correlations and
determine the type of collineation to which it belongs.

2. Prove that if P is a point on K, the two tangents drawn from P
to K, are the two lines to which P corresponds in the correlation
according as P is considered as an original point or a transformed point.
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3. Prove that if p is a tangent to K, the two points in which p inter-
sects K, are the two points to which p corresponds in the correlation
according as p is considered as an original line or a transformed line.

4. Take any point P. Show that the line into which P is transformed
by a correlation of Types II, III, V is a line which connects two of the
four points of intersection with K, of the two tangents drawn from P
toK,. Show also that the line which is transformed into P is another line
connecting the same four points of intersection. Determine these two
lines more exactly and explain the construction in Type IV.

5. Take any line p. Show that the point into which p is transformed
by a correlation of Types II, III, V is one of the four points of inter-
section of the four tangents drawn to K, from the points in which p
intersects K,. Show also that another of these points of intersection is -
the point which is transformed into p. Determine these points more
exactly and explain the construction in Type IV.

6. Show that if every point lies in the line into which it is trans.
formed by a correlation, the correlation is a singular one of the form

pu; = 01973+ A15%s,
Pl =— 0T, + a2y,
PUs = — Gy, — Gogly.

Study the correlation.

43. Pairs of conics. The preceding results may be given an
interesting application in studying the relation of two conics to
each other, especially with reference to points and lines which are
the poles and polars of each other with respect to both the conics.

Let S tuz=10 (¢))
and Eb.-ﬂ.% =0 ' @
be two conics without singular points. The product of a polarity
with respect to (1) and a polarity with respect to (2) is a non-
singular collineation which may be expressed by the equations

P (bl + bygy + by52p) = a7y + a7y + 4y,
P (bus®1 + By + byyy) = gyt gy BTy, C))
P (it + by + bes?y) = 01y + Gy + By

The fixed points of the collineation (8) are identical with the
points which have the same polars with respect to both (1) and (2),
and the fixed lines of (8) are identical with the lines which have the
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same poles with respect to (1) and (2). Each fixed point of (3)
will be paired with some fixed line of (8) as pole and polar. These
points and lines we shall refer to briefly as common polar elements.

We shall have as many arrangements of common polar elements
as there are arrangements of fixed points of (3) and may classify
them into the types given in § 41.

TypE I. There are three and only three common poles 4, B, C
(Fig. 29) and three common polars 4B, BC, C4. To pair these off
we notice first that no point can be the pole of a line through it.

For if B were the pole of B
AB, for example, C would be
the pole of either 4C or BC,
say AC. The lines 4B and
AC would be tangent to each
of the conics (1) and (2) and
4 would be the pole of BC. 4
Then if D were any point 0
whatever on BC, and E its
harmonic conjugate with re-
spect to B and C, the line
EA would be the polar of
D with respect to both (1)
and (2). Hence the conics would have more than three common
polars, and the collineation (8) would not be of Type I, § 41.

Therefore the triangle is a self-polar triangle with respect to
both (1) and (2). By taking this triangle as the coordinate tri-
angle, the equations of the conics reduce to the forms

Fic. 29

z + 2+ =0, : @
ai+ gl + agl=0, )
and the collineation (8) becomes
P:"{ = a,T,,
pay= Ty (6)
pTy= ATy

where, by § 41, a, # a,+ a,
The two conics (4) and (5) intersect in four distinct points, as
is easily proved.




LINEAR TRANSFORMATIONS 97

Tyee II. There are two common poles 4 and C (Fig. 80)
and two common polars AC and BC. The point C' must be the
pole of one of the lines 4C and BC
which pass through it, and hence
C lies on the two conics. But C
cannot be the pole of BC, for, if
it were, 4 would be the pole of
AC, and the line 4C would be tan-
gent to the conics at 4 and in-
tersecting them again at C, which
is impossible. Therefore C is the 4 0
pole of AC and 4 of BC. If we Fie. 30
take the axes of codrdinates as in
Type IV, § 41, the equation of each of the conics is of the form

B

a7+ azg + 2 a7, = 0. )
Without changing the position of the axes we may take one of
the conics as z}+ 23+ 2 z,2,= 0, ®

leaving the equation of the other in the general form (7). The
collineation (8) is then pz!,
2

= Qg%
p(z +2) = a2, + a2,
PTy = a7,
or pry = agny+ (a,— a5) 7,
Pz, = ATss ®
pay = Ay Tye

That this should be of Type IV, § 41, we must have a, # a,, a, # a,.
The conics (1) and (2) are tangent at C and intersect in two other
points, as is easily proved. The B
conics have no common self-polar
triangle since there are not three
fixed pointsin the collineation (9).

Typg III. There is a line BC
(Fig. 81) each point of which is
& common pole and another com-
mon pole 4 not on BC. The
common polars consist of the line BC' and all lines through 4. It
is evident that 4 is the common pole of BC, and hence BC is not

A
Fi6. 31
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tangent to the conics. Take as B any point of BC and take C as the
pole of AB. Then ABC is a common self-polar triangle. The equa-
tions of the two conics may now be written as in Type I, (4) and (5),
with the addition that now a,= a,, in order that the collineation (6)
should be of Type II, § 41.- Hence the equations of the conics are
reduced to the forms

z}+ 2l 4 22=0, . 10) ‘
zi+ 2} + azi=0, e
and the collineation (8) becomes
Py =1y . ]
pry= T a
pry = aZy.

The two conics are tangent at two points, namely the points in l
which the line BC meets the conics. This is easily seen from the
equations. We may also argue that if BC meets (10) in L, the
point L is a common pole of the line AL. Hence AL is tangent
to both conics. Similarly, if M is the other point of intersection ‘
of BC and (10), AM is a common tangent to the conics.

Type IV. There is one common pole C (Fig. 32) and one com-
mon polar BC. Hence the two conics are tangent to BC at C ‘
and tangent at no other point. Take any point on the conic (1) as
4, and the tangent to (1) at 4 as 4B. g
The equation of (1) then is

z3+ 222, =0,
while that of (2), since it is known
only to be tangent to BC at C, is
a,7; + ags + 2 agz, + 2 a gz, = 0.

The collineation (3) is then of the type
pry= s,
pay= a7, + agZy, A
Pz{=a9z|+aszs+azza' ‘

In order that this should have
only one fixed point it is necessary
and sufficient that a,=a,, @, 0. The two conics, besides being
tangent at C, intersect in the point z,:z,:7,=a}:4 a,a,: —84;.

Fie. 32
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If this point is taken as the point 4 in the coordinate triangle,
we have a, = 0. The equations of the conics are then
a4+ 222,=0, (13)
27+ 2 azzy+ 2 2,2,= 0, 14)
and the collineation (38) is
pri =2, + az,= az, + 7,
PTy= T, + agz,= az,+ z,, (15)
pry= Ty= ALs,
which is of Type VI, § 41.
As noted, the two conics are tangent at one point and intersect
in another point.
TypE V. There is a line BC (Fig. 83) of common poles and a
pencil, with vertex €' on BC, of common polars. Every point on BC

is therefore the common pole of some line through ¢, and hence
¢ is the common pole of BC. Hence the two conics are tangent to .

BC at C. We proceed as in Type IV, but we B
now find that in order that all points on z,=0
should be fixed points of the collineation we
must have a = a,, a,= 0. The equations of the
conics therefore reduce to A
z; +22,2,=0, 16)
2!+ azl + 22,2,=0, an
and the collineation (3) becomes c
pri=2z +az,
ps = T as)
Py = Ty
which is of Type V, § 41. Fio. 33

The two conics are tangent at one point and have no other point
of intersection.

Type VI. Every point of the plane is a common pole with
respect to the two conics. The two conics are obviously identical.

To each type of the arrangements of the common polar elements
corresponds a distinet kind of intersection of the two conies.
Conversely, the nature of the common polar elements is deter-
mined by the nature of the intersections, as is easily proved.
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It is sometimes important to find, if possible, a self-polar triangle
common to two conics. The foregoing discussion leads to the
following theorem:

If two comics intersect in four distinct points they have ome and
only one common self-polar triangle. If they are tangent in two points
- they have an infinite number of common self-polar triangles, one vertex
of which 8 at the intersection of the common tangents. In all other
cases two distinct conics have no common self-polar triangle.

It is only when two conics have a common self-polar triangle
that their equations can be reduced each to the sum of squares
as in Types I and IIIL.

EXERCISES

1. Prove that the diagonal triangle of a complete quadrangle whose
vertices are on a conic, or of a complete quadrilateral whose sides are
tangent to a conic, is self-polar with respect to the conmic; and, con-
versely, every self-polar triangle is the diagonal triangle of such a quad-
. rangle and such a quadrilateral. Corresponding to a given self-polar
triangle one vertex or one side of such a quadrangle or such a quadrilat-
eral may be chosen arbitrarily. Apply this theorem to determining the
common self-polar triangle of two conics in the position of Type I.

2. Discuss the common polar elements of a pair of conics when one
of them has singular points, obtaining seven types corresponding to
the seven types of singular collineations given in Ex. 4, § 41. (Notice
that if the conic (1) consists of two intersecting straight lines, the point
of intersection P is the singular point of the corresponding collineation,
and the polar p of P with respect to the conic (2) is the fixed line. If the
conic (1) consists of a straight line taken double, that line is the singular
line p, and its pole P with respect to the conic (2) is the fixed point.)

44. The projective group. As we have seen, the product of two
collineations is a collineation, and the product of two correlations
is a collineation. It is not difficult to show that the product of a
collineation and a correlation in either order is a correlation. The
inverse transformation of either a collineation or a correlation
always exists and is a collineation or a torrelation respectively.
Hence we have the theorem: -

The totality of monsingular collineations and monsingular correla-
tions in a plane form a growp, of which the collineations form a
subgroup.
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This group is called the projective group, and projective geometry
consists of the study of properties which are invariant under this
group.

It is evident then that projective geometry will include the study
of straight-line figures with reference to the manner in which lines
intersect in points or points lie on straight lines. Such theorems
have been illustrated in § 80. Lengths of lines are not in general
invariant under the- projective group, and projective geometry is
not therefore concerned with the metrical properties of figures.
The cross ratio of four elements is, however, an invariant of the
projective group, and hence the cross ratio is of importance in
projective geometry. .

By means of a collineation any conic without singular points
may be transformed into the conic

al+ 2] 23=0.

This was virtually proved in § 85 when we showed that any equa-
tion of the second order with discriminant not zero may be reduced
to the above form. But any transformation of codrdinates is ex-
pressed by a linear substitution of the variables, and this substitution
may be interpreted as a collineation, the cotrdinate system being
unchanged. Hence any conic without singular points can be trans-
formed into any other conic without singular points by a collineation.
Similarly, any conic with one singular point may be transformed
into any other conic with one singular point, and any conic with
an infinite number of singular points may be transformed into any
other which also has an infinite number of singular points. Hence
projective geometry recognizes only three types of conics and studies
the properties which are common to all conics which belong to each
of the types. Such properties are illustrated in the theorems of
§39, where the distinction between ellipse, hyperbola, and parabola
is not made.

In projective geometry it is convenient sometimes to consider the
properties invariant under the subgroup of collineations. The corre-
lations may be implicitly employed by use of the dualistic property.

45. The metrical group. We shall proceed to study the collinea-
tions which leave all distance invariant or multiply all distances
by the same constant k. For that purpose it is convenient to use
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Cartesian coordinates. Since it is evident that all points at infinity
remain at infinity, the transformations must be of the form

pr' = ar+ay+aft,

Py =bz+by+bt, @

pt'=t,
or in nonhomogeneous form

7= az+ay+a, @
y=bz+by+b,

Transformations of this type are called affine, since any point
in the finite part of the plane is transformed into a similar point.
We proceed to find the conditions under which an affine transfor-
mation will have the properties required above.

If (2,, y,) and (z,, y,) are any two points which are transformed
respectively into (27, y;) and (@}, u;), then, by hypothesis,

@ — =)'+ — y)'=F[(@— 2)'+ (%~ 1)),
from which we obtain
(a5 (7—2,)"+ (a5 +8) (,— ¥+ 2 (0,8, +,5,) (2,— 7)) (%~ 9,)
=k'[(z,— )"+ (%~ 3]

Since this must be true for all values of the variables, we have

al+ bi= K,

aj+b}=F,

a,a,+ b,b,= 0.
From this follows algebraically d,=+a, b=7Fa, Also an

angle can always be found such that a =kcos¢, b =ksing.
Equations (2) can- then be written

2=k (xcos¢ — ysin ¢)+ a,
yY=xk(zsing+ycosd)+d.
The product of any two transformations of the form (3) is
also of the form (8). This can be shown by direct substitution,

or follows geometrically, since (8) is the most general collineation
which multiplies distances by a constant. It is also evident that

©)
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the inverse transformation of (8) exists and is of the same form.
Hence the following theorem :

I. Transformations of the form (8) form a group called the metrical
group of collineations.

To this we add the following theorem :

II. By the metrical group of collineations the circle points at infinity
are either fixed or interchanged with each other. Conversely, any col-

lineation which leaves the circle points fived or interchanges them
belongs to the metrical group. '

This follows from the fact that minimum lines (§ 19) must be
transformed into minimum lines. Since the line at infinity is fixed,
the points where the minimum lines intersect the line at infinity
must be fixed- or interchanged. Theorem II may therefore be
restated as follows: 4

II. The metrical group leaves invariant the curve of second class
consisting of the two circle points at infinity.

We shall now enumerate certain special types of the trans-
formation (8).

I. Translation.
{z’ =z+a
yY=y+b ’

. This is of Type V, § 41, the line of fixed points being the line
at infinity, and the pencil of fixed lines being the parallel lines
intersecting in a:5:0.

The translations evidently form a subgroup of the metrical
group. '
II. Rotation about a fixed point.

If the fixed point is the origin, we have the transformation

Z'= 2 cos ¢ — y sin ¢,
R{y’:zsiﬁ¢+ycos¢.

This is of Type I, § 41, the fixed points being the origin and the
two circle points at infinity.
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. A rotation about any other point is the transform (§ 5) of Rby T.
Thus, if B’ is a rotation about (a, b), R'= TRT-', where R’ is the
transformation a=(z— a) cos §— (y — b)sin &,

{y’ b= (z— a)sin¢ + (y — d) cos ¢.
The substitutions B and R’ form each a subgroup of the
metrical group.
II1I. Magnification. '
agnificati P = ka,
aw{yh
'This is of Type II, § 41, the fixed point being the origin, and
the line of fixed points being the line at infinity. The pencil of
fixed lines is the pencil with its vertex at (0, 0).
A magnification M’ with the fixed point (a, §) is the transform
of M by T; thus, M'=TMT-", where M’ is the transformation
¥—a=k(z—a),
. M{y’—b=k(y—b)-
The transformations M and M’ form each a subgroup of the
metrxcal group.

IV. Reflection on a straight lme

If the straight line is the axis of z, the transformation is

=gz
s {y’ =—y

This is of Type II, § 41, the line of fixed points being y =0,
and the distinct fixed point being 0:1: 0. The fixed pencil of lines
consists of the parallel lines through 0:1: 0.

If, now, U is a transformation of the metrical group (8), it is not
difficult to show that it is the product of transformations of the
types we have enumerated. There are, in fact, two main divisions
of the metrical transformations, namely,

CrAss 1. Metrical transformations not involving a reflection.

Consider U,= TMR. Itis evident that U, is given by the equations

2 =k(zcos d — ysin$)+a,
{ =k(zsin¢g + ycos p)+ b,
and that, conversely, any transformation of this type can be ex-
pressed as the product 7MR. '
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Crass II. Metrical trangformations involving a reflection.
Consider U,= T'SMR. It is evident that U is of the type

o' =k(z cos ¢ — ysin ¢) +a,
| ”’{z/=—k<min¢+ycos¢)+b,
which can al_so be written

o'=k(zcos ¢ + ysin ¢) + a,
{y =k(zsing—ycos ) +b
by replacing ¢ by — ¢, an allowable change, since ¢ is any angle.

Conversely, any transformation of type U, can be expressed as
the product TSMR.

The transformations U, form a subgroup of the metrical group.
The transformations U, however, do not form a group, since the
product of two such tra.nsformations is one of the form U,

46. Angle and the circle points at infinity. By the metrical group
angles are left unchanged. This is evident from the fact that any
triangle is transformed into a similar triangle. Also the cross ratio
of any two lines and the minimum lines through their point of inter-
section is equal to the cross ratio of the transformed lines and the
minimum lines through the transformed point of intersection, since
minimum lines are transformed into minimum lines. This suggests
a connection between this cross ratio and the angle between the
two lines. We shall proceed to find this connection.

Let the two lines be I with line codrdinates v, and I, with line
codrdinates w;,. The codrdinates of any line through the point of
intersection of I, and I, are u,= v,+ Aw,, and this is & minimum line
when 1w, sa.tlsﬁes the lme equatlon of the circle points at infinity,
namely, - ‘

U + u; =0,

This gives for A the equation

AN+ 2BA4+C=0,

where A=wl+wl B=wp,+vw, C=v{+v}
Lo , A . N . 4 — R3
Let us place A= B+e AAC z,
— . — 2
A = —B—itVAC—B

3 4
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and call m, the minimum line corresponding to A,, and m, the
_minimum line corresponding to A,. Then (§18)
—B+iVAC—B*
—-B—iVAC-B

aR mlm.)=-t—=

Now the point equations of /, and , are respectively
ve+vy+ot=0,
wz+wy+wt= 0,
and if ¢ is the angle between them,

v,W, + v, B
CcO8 = = ———X
¢ Vit oiVwitwi VAC
¢=;¢;\/AC'—B’ '
vVAC
A, _—cosptising e
Therefore A, —cospFising e**
___cvi(‘;
whence ¢=:I:%1()gh

7\,'
The ambiguity of sign is natural, since an interchange of A, and ‘
A, would change the sign of ¢. We have, therefore,

¢=;t%log(lll,, m,m.).

The angle between two lines is therefore equal to —2—'- times the

logarithm of the cross ratio of the two lines and the mintmum lines
through their point of intersection.

If ¢____'_12r_, l"-=—1, and, conversely, if h=—1, ¢=%+k1r.
Hence A »

Perpendicular lines may be defined as lines which are harmonic
conjugates with respect to the minimum lines through their point of
intersection.



CHAPTER VII
PROJECTIVE MEASUREMENT

47. General principles. The results of the last section suggest a
generalization, to be made by replacing the circle points at infinity
by the general curve of the second class,

EAa“«“t= 0, (du=4,) @
which we shall call the fundamental conic. Let ! and I, (Fig. 84)
be any two lines, and let ¢, and ¢, be the two tangents which can be
drawn to the fundamental conic from the
point of intersection of /, and /. Then the
projective angle between /, and /, is defined
by the equation : .
AL =Mlog(ll, tt), ©))
where M is a constant to be determined
more exactly later.
This satisfies the fundamental require-
ments for the measurement of an angle, 12
since it attaches to every angle a definite Fic. 34
numerical measure such that the sum of the measures of the parts
of a whole is equal to the measure of the whole. To prove the
latter statement, notice that

AL +aL)=Mlog (L, tt)(LL, tt).
Now, if 7, I, and /, are three lines of the same pencil, with cobr-
dinates A,, A,, A, respectively, and the codrdinates of the lines ¢
and ¢, of the same pencil are taken as 0 and o, we have

A
11, tt) =11,
( 13 tlt!) )
12, t6)="2,
( s tlt!) )

Al 6 Qs t2) = %= Al 18-
Hence A+ A= adl).
107
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Dualistically, if the fundamental conic does not reduce to two
points its equation can be expressed in point coordinates as

Sazz=0.  (ay=a,) ®)

Then, if E, and B (Fig. 35) are two points, and 7}, and 7, are
the two points in which the line BE cuts the conic, the projective
distance RE is defined by the equation

dist. (BE) = Klog (RE, 1,1,), (4)
where K is to be determined later. Itis
shown, as in the case of angles, that
dist. (BB)+ dist. (BB) = dist. (BE).

The analytic expression for distance T
and angle in terms of the codrdinates of
the points and lines, respectively, may Fro. 35
readily be found. Take, for example,
equation (4). If y, are the coordinates of B, and 2z, the coordinates
of B, the codrdinates of 7) and T, are y,— Az, and y,— Agz;, where
A, and A, are the roots of the quadratic equation

D %y Y— 2N auy 2+ N au22,= 0,
which we write for convenience in the form ’
o, — 20, + Vo, =0.

Wo will take = 2t V0= 000

o — Vol —o o
and A== " Y UL,

Then, by the definition (2) and theorem I11, § 18, we have
| dist. (ya)=Klog 2 ®)
2
A _ 9, +V w:’— Dy By ["’vz+ Vv “’:-— mum"]’

But o~
A, w0, — Vv o), — o, 0, ®0, 0,

and therefore 4we have, as the final form,

/ 2
dist. (y2)=2 K log w. )



PROJECTIVE MEASUREMENT 109

There is of course free choice as to which of the two values of
\ is taken as A, To interchange A, and A, is simply to change the
positive direction on the line.

The distance between two points is zero when the two points
are coincident or when the line connecting them is tangent to the
fundamental conic, since in the latter case A, =A,. The tangents to
the conic are therefore analogous in the projective measurement
to the minimum lines in ordinary measurement.

The distance between two points is infinite when A or A, is
zero or infinity. This happens only when E or E is on the funda-
mental conic. That is, points on the fundamental conic are at an
infinite distance from all other points. ‘

Similarly, consider equation (2). If v, and w, are the cobrdinates
of I and [, respectively, the codrdinates of ¢ and ¢, are v,— A w, and
v,— A\w,, where A and A, are the roots of the equation

ZAav‘vk— 2 XZA,.,‘v‘w,+ X’zAi,,w‘w,= 0,
which may be written
o Q,-270, +2Q,,=0.

\/—2'_——
If we take A= Q.+ %"’ 'Q""Q"""’,

1
vv

Q,.— Vi, —Q,.Q,.,
M= Q,, ’
we have, by (2), ‘
Q. +vVo —0 0
w,) =M lo, h=2Mlo L) v v o, 7
A (vw) gx’ g \/m ™

An angle is zero if ! and /, coincide or if 7, and /, intersect on the
fundamental conic, for in the latter case A, =X\,. That is, all lines which
intersect at an infinite distance make a zero angle with each other. They
are therefore analogous to parallel lines in Euclidean measurement.

The angle between two lines is infinite if either line is tangent
to the fundamental conic.

From the definitions we have the following theorem:

Projective distance and angle are unchanged by the group of collin-
eations which leave the fundamental conic invariant.

We shall now proceed to discuss more in detail three cases,
according to the nature of the fundamental conic. '
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48. The hyperbolic case. We assume that the fundamental conic
is real. It may then be brought by proper choice of codrdinate
axes to the form 21 s s

o =zi4+z}—2}=0 ¢))
in point coordinates and to the form

Q. =ul+uj—u=0 )
in line codrdinates.

The conic divides the plane into two portions, one of which
we call the ¢nside of the conic and which is characterized by the
fact that the tangents to the curve from
any point of the region are imaginary.
The outside of the conic is the region
characterized by the fact that from every
point of it two real tangents can be
drawn. We shall consider the inside of
the conic.

If 7, and I, (Fig. 36) are two real
lines intersecting in a point inside the
conic, A, and A, of equation (7), § 47,
are conjugate imaginary. Let us place
A, = re*®, where

Fie. 36

V20,0,

__()'_"l_, sin¢ =.
vQ,Q,,

Then A, =re-% and

A1) =Mlog ¥=M(2¢ + 2nm)i.

cos ¢ =

NI

Since it is desirable that the angles which a line makes with
another should differ by multiples of , we shall place M =1

2
and have, as the complete definition of the angle § between the
lines !, and Z, 0=¢+nmr;
whence cosfd =+ ~ O ¢)

V2,0,

Two lines are perpendicular to each other when 6 =(2n +1) %
For that it is necessary and sufficient that %‘: —1. The two lines
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are then harmonic conjugates with respect to ¢, and ¢,. This has a
geometric meaning, as follows: Let P (Fig. 86) be the point of in-
tersection of I, and [, p the polar of P, L, and L, the intersections
of p with I and ¢, respectively, and 7T, and T, the intersections of
the conic with ¢, and ¢, respectively. T, T, ¢, t,, being imaginary,
are not shown in the figure. Then by VI, § 84, 7, and 7; lie on p,
and by I, § 16, (L,L,, T,T)=(l}, tt). Hence, in order that the
two lines / and [, should be perpendicular it is necessary and suffi-
cient that L, and L, should be harmonic conjugates to 7, and T,
and hence (VIII, § 84) L, must lie on the polar of L, and L,
must lie on the polar of L. But the polars of L and L, pass
through P by V, § 84, and therefore 7 is the polar of L, and [,
is the polar of L. Hence for two lines to be perpendicular it is
necessary and sufficient that each should pass through the pole of -
the other.

Consider now the distance between two points F, and R, (Fig. 86)
inside the conic. Then A and A, of (5), § 47, are both real, and
hence if the distance BE is to be real we must take K as a real

quantity. Let us place K= g’ where k is real. We have, for the

distance, ———

dist. (y‘ z‘_) = E log h =k log a_’_"'-’_w_”—-a,l&'. (4)
2 A Vo,o.,

If we write d for dist. (y, z,) we have, from (4),
o, +Vo, —o o,
vm"m" T
-4 o,—Vo,—o.0,
vV w"w” ’
()

whence cosh - = —£—,

k Y/ mww“

®
2 —
sinh & = Y%~ O
5 Vo,

We have already noted that if F, is inside the conic and E on

the conic, the distance BE becomes infinite. If F, is inside the conic
and B outside of it, A, and A, in equation (4) have opposite signs,
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and the distance BE becomes imaginary. If, then, we can imagine
a being living inside the conic and measuring distance and angle by
the formulas (5) and (8), the conic would lie for him at an infinite
distance, and the region outside would be simply nonexistent, a
mere analytic conception in which a point means simply a pair
of coordinate values. Such a being would have a non-Euclidean
geometry of the type named Lobachevskian.

We have, of course, based all our discussion on the assumption
of the Euclidean axioms, and the inside of our fundamental conic is
simply a portion of the Euclidean plane. It lies outside the scope
of this book to show that by a choice of axioms, differing from
those of Euclid only in the parallel axiom, it is possible to arrive
at a geometry which for the entire plane has properties which are
exactly those of the interior of our fundamental conic, with the
projective measurement here defined. Such a discussion may be
found in treatises on non-Euclidean geometry. The inside of the
fundamental conic is a picture in the Euclidean plane of the non-
Euclidean geometry. We shall proceed to notice some of the most
striking properties.

We first notice that if LK (Fig. 87) is a straight line and P
a point not on it, there go through P two kinds of lines, those which
intersect LK and those which do not.
The latter lines are those which in the
entire plane intersect LK in points
outside the conic, but from the stand-
point of the interior of the conic they
must be considered as not intersect-
ing LK. The two classes of lines, the
intersecting and the nonintersecting,
are separated from each other by two
lines PL and PK, which intersect LK on the conic; that is, at
infinity. These lines we call parallel lines, and say that through a
point not on a straight line can be drawn two lines parallel to that
straight line.

The angle which a line parallel to LK through P makes with
the perpendicular to LK is called the angle of parallelism, and is &
function of the length of the perpendicular. To compute it, let
us take LK as z,=0, the point P as y,, and the equation of

Fie. 37
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the conic as z!+ z;—27=0. The pole of LK is (1:0:0). The
line PR is perpendicular to LK when it passes through the pole
of LK. Its equation is therefore yz — gy, =0, and it intersects
LKin B(0:9,:y,).

Hence, if p is the length of PR we have, from (5),

coshB=NYV¥ _,  gpP____ % g
k' Vyi—yi—yl ko Vyi—yi-y:

The point K is the point ( 0:1:1), and the equation of PK is
¥, —ypr,— yz,+ yx,= 0. Hence to find the angle between PK
and PR we have to place in (3) )

v1=0’ UV=Yp Y%= Yp
M=Y,— Yy W="Yp W;=Y,

There results, with the aid of (6),

Y, p
cosf=——"1__ =tanh=.
Vyi-yi k

It appears, then, that the angle 8 is a function of p. We shall
place, following Lobachevsky’s notation,

0==n(p).
Our last equation then leads with little work to the final result:
tan fm (p) = 3 . )

This result is independent of the fact that it has been obtained
for the special line z, = 0 and the special form of the equation of
the conic since no transformation of codrdinates alters the projective
angles or distances.

If in formula (5) we consider y, as a fixed point C and replace
% by a variable point z;, at the same time holding the distance d
constant, we have :
o), +cw,_ =0 ®
as the equation of the locus of a point at a constant distance
from a fixed point. This locus is called a pseudo circle. From
the form of (8) it is obvious that the pseudo circle is tangent to
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the fundamental conic w,, = 0 at the points in which the latter is
cut by the polar @, = 0 of the point y,. There are three cases:
I. The point C lies inside the conic (Fig. 38). The pseudo
circles with the center y, are then closed curves intersecting the
conic in imaginary points.
II. The point C lies on the conic (Fig. 89), and the distance of
each point from g, is infinite. The pseudo circles are tangent to the

Fi6. 88 Fic. 89

conic. They are the limiting cases of the pseudo circles of Case I
when the center recedes to infinity and the radius becomes infinite,
and are called in non-Euclidean geometry limit circles or horicycles.

III. The point C is outside the conic (Fig. 40), and the radius
is imaginary so that points of (8) lie inside the conic. The straight
line o,,= 0 is one of these pseudo circles, and the others are the
loci of points equidistant
from this line. To prove
the latter statement draw
any straight line through C.
It intersects the polar of C
at B and the pseudo circle
in two points one of which
is Q. Then CR and CQ are
constant, and-hence RQ is
constant. In this geometry,
then, the locus of points equally distant from a straight line is
not a straight line, but a pseudo circle with imaginary center and
imaginary radius. It is called a hypocycle.

Fia. 40
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EXERCISES
1. Consider angle and distance for points outside the fundamental
conic, especially with reference to real and imaginary values.
2. Construct a triangle all of whose angles are zero.

8. Compute the angle between two lines of zero length and between
any line and a line of zero length.

4. Prove that the sum of the angles of a triangle is less than two
right angles.

49. The elliptic case. We assume that the fundamental conic is
imaginary. It may be reduced by proper choice of coordinates to

the form - o =z} +zi+at=0 @
in point codrdinates and to the form
Q. u1 +ultul=0 )

in line codrdinates.

Since the tangents from any point to the fundamental conic
are imaginary, the problem of determination of angle is the same
here as in the hyperbolic case, and we have

Q
cos 0 = \/—'ﬂ;—';)— ' ®

Any straight line connecting the two points B and E meets the
conic in imaginary points, and if £ and K are real pomts, the
quantities A, and A, in (5), § 47, are conjugate imaginary. Hence,
if the distance between two real points is to be real, we must take
K as pure imaginary. We will place K — %, where k is resl.

. 2

Placing A, = re¢, where

m“ .
AV w"w" ’ Vo (l)
and representing the distance (y.2;) by d, we may reduce formula
. (5), §47, to the form d o

co8 — = \/aT’.m:. (0))

Two real points are always at a finite distance from each other,
_since, as shown in § 47, an infinite distance only results when one
of the points is on the fundamental conic.

Consider the change in d as z; moves along a straight line, .
being fixed. In the beginning of the motion, when z coincides -

cosp =

b
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with y;, cos % = » and the sign of the radical must be taken

— %

v mwmn
so that cos %= 1 and d=0. As z moves away from y, the signs
of the quantities on the right-hand side of equation (4) remain
positive and d increases until z; reaches a point on the line o =0,
(Fig.41), the polar of ;. Then

d aT . .
cosic—O andd=-2—k. This is

true of all lines through y;
and for either direction on any
such line. Hence the straight

line o, =0, which, by § 48, wpe=9
is perpendicular to all lines "
through y,, is at a constant \

distance 12’-‘ from y; in all
directions.

Consequently, if we start from y, and traverse a distance ak on
any line through y; and in either direction, we return to y,. There
are two cases of importance to be distinguished :

CasE 1. All straight lines may be considered of length k.
The cotrdinates y, always refer, then, to a single point. All straight
lines intersect in one and only one point, there are no parallel
lines, and two lines always bound a portion of the plane. This is
the Riemannian geometry. It may be visualized by drawing straight
lines from a point outside the plane and considering each point of
the plane as represented by one and only one of these lines.

Casg II. All straight lines may be considered of length 2 k.
When we traverse the distance 7k on a line from y, and return to
¥:,» we shall consider that we are on the opposite side of the plane
and need to repeat the journey to return to our starting point.
Any codrdinates y,, then, are the codrdinates of two points lying
on opposite sides of the plane. Two straight lines intersect in two
points, there are no parallel lines, and two lines inclose two por-
tions of the plane. We call this spherical geometry, since it is exactly
that on the surface of a sphere. It is also the geometry of the half-
lines or rays drawn to the plane from a point outside of it.

Fia. 41
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EXERCISES

1. Construct a triangle all of whose angles are right angles.

2. Prove that the sum of the angles of a triangle is greater than
two right angles.

50. The parabolic case. We may consider that the fundamental
conic is one which contains singular points or singular lines.
There are, then, the two possibilities of the point equation repre-
senting two straight lines or of the line equation representing
two points. The former possibility has little interest, and we shall
consider only the case in which the line equation represents two
points. There are two cases to distinguish:

Case 1. The two points are imaginary. We may take them as
the two points 1:+¢: 0, and the line equation of the fundamental
conic is then Q.=u! + u}=0. @

The formula for angle may be modified as in § 48, with the
result that '

: W, + v, W, . o)
Voi+ ol Vul+w}

The point equation of the fundamental conic does not exist and
the distance formula (6), § 47, cannot be immediately applied.
We may proceed, however, by a method of limits. In place of (1)

we will write Q. =ul+ ul+ eul=0, )]

which goes over into (1) when e=0. The point equation cor-
responding to (8) is
o, =ec(zi+2)+2;=0, @

and from this we find, as in § 48,
sinh d =3 Ve (_.%za—' ¥:2)'+ e (Y2 — yi2)' + € (912, — ¥2,)’ .
k Ve@i+yD+ g Ve +e)+2
Since the quantity on the right hand of this equation is infini.

cos 0 =

tesimal, we may replace sinhé by % and then pass to the limit,

k
88 ¢=0 and k£ = oo in such a manner that Lim ikVe=1. We have
d= \/(?/123— Y2)"+ (Y:2%— Ys2:)" . ®)

Ys?s
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If we take 2,=0 as the line at infinity, the points 1:41:0
become the circle points, and the formula (2) for angle and (5)
for distance become the usual Cartesian formulas. The geometry
is Euclidean. We have this result:

Euclidean measurement 18 a special case of projective measurement.

CasE II. The fundamental points are real. We may take them
as 1: +£1:0. The line equation of the fundamental conic is then

Qu=ui—ui=0. ®)

Since through every real point there go two lines of the pencils
defined by (6), it is necessary to take the constant K of §47 as
real if real lines are to make real angles with each other. We
will take K= and find, by a discussion analogous to that used
in § 48 for finding d,

cosh f =121~ %% | )

Vol — viVwi—w}?

The formula for distance may be found as in Casel, with the
result

d= vV (@ta— 952)'— Yt — Y2’ . ®
Y

If we take z,= 0 as the line at infinity and use nonhomogeneous
Cartesian coordinates, we have, for the distance between two points

@ ad & Y) g Y= Iy—G =9y Q)

and for the angle between the two lines ar+bdy+e¢=0 and
dz4by+d=0,

aa' — bb!

Consider now any fixed point in the plane. For convenience let
it be the origin 0. Through O go two lines of the pencils defined by
the fundamental conic; that is, two lines drawn to the fundamental
points at infinity. The equations of these lines are z+y=10
(Fig. 42). They divide the plane into two regions, which we may
mark as shaded and unshaded. If a point (, ) lies in the unshaded
region, 2°— y* > 0; and if it lies in the shaded region, 22— y* < 0.
Consequently, distances measured from O are imaginary in the

cosh 8 =
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shaded region and real in the unshaded region. The boundaries
between the two regions are lines of length zero. The locus of
points equidistant from O are equilateral hyperbolas z'— y*=k.
A line ar+by=0, passing n
through O, is in the unshaded !
region if a’— *<0 and ‘'in the
shaded region if a®— "> 0. Hence
an angle with its vertex at O is
real if both sides are in the shaded
region or both sides in the un- X
shaded region, and is imaginary
if one side is in the shaded region i
and one side in the unshaded {
region. A line through O which I
is not a line of zero length makes
an infinite angle with each of the
lines of zero length. The two lines of zero length make an inde-
terminate angle with each other. In this respect as in other ways
they are analogous to the minimum lines in a Euclidean plane.
These properties are of course the same at all points of the
plane. They make a geometry which differs widely from the
geometry of actual physical experience.*

I
Fie. 42

*This geometry has recently gained new interest because of its occurrence
in the theory of relativity. Cf. Wilson and Lewis, ** The Space-Time Manifold
of Relativity,”” Proceedings of the American Academy of Arts and Sciences (1912),
Vol. XLVIII, No. 11.



CHAPTER VIII
CONTACT TRANSFORMATIONS IN THE PLANE

51. Point-point transformations. Consider now the transformation
defined by the equations

P1=1, (21 T3y Ty)s
P2=J1 (21 Ty Ty)s @
PT =13 (2 2y Tp)s

where z,, z,, z, and z], 2}, z; are point coordinates and f, f,, f, are
homogeneous functions which are continuous and possess deriva-
tives and for which the Jacobian

of, % of,
or, Oz, Oz,
ofy ofy U,
or, ox, oz,
of, 6__}"a of,
le or, Oz,

does not identically vanish.

By the transformation (1) a point 2, is transformed into one
or more points z}, with possible exceptional points. Owing to the
hypothesis as to the Jacobian, equations (1) can in general be
solved for z,, and any point 2 is therefore the transformed point
of one or more points z, with possible exceptional points.

Consider now a point M and its transformed point M’. If there
is more than one transformed point, we will fix our attention on
one only., If M describes a curve ¢ defined by the equations

z,= ¢1(t)’ z,= ¢a(t)7 Ty= ¢a(t)’ ’ (2)
the point M’ describes a curve ¢, the equations of which may be
found by substituting from (2) into (1). The direction of ¢ at
M is determined by 2, z,, #, and dz,, dz,, dz,, as shown in (4),

§ 81. The direction of ¢’ at M’ is determined in the same manner
" 120
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by 2, 2}, 2, and dz), dzj, dz}. These latter six quantities are
determined by the former six, and hence the direction of ¢ at a
point M’ is determined by the direction of ¢ at M. From this
follows the theorem

If two curves c, and ¢, are tangent at a point M, the transformed
curves ¢, and cy are tangent at the trangformed point M.

For this reason the transformation (1) is called a contact
transformation.

If the transformation (1) is expressed in nonhomogeneous
Cartesian coordinates, it becomes

4 =£(®@ ¥)»
y'=s(@ ¥

Now let p be the direction % of a curve traversed by the point

(%, ) and let p' be the direction 2% of the transformed curve.
We have, evidently,
o, s
=T
IR
%
% tPoy

2,"=f1(1', y)’

¥ =fi(® 9) ®

r'= ——a"”

afl o%h
+

Pay %

The three equations

are called an enlarged point transformation. They bring into clear
evidence that two curves with a common point and a common
direction are transformed into two curves which have also a
common point and a common direction.

52. Quadric inversion. An example of a point-point transforma-
tion as defined by (1), § 51, has already been met in the case of
the collineations.
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As another example consider the transformation

PTI= T,Zy
PTy=T,Zy @
PTy= Ty

These equations can be solved when neither z,, z,, nor z, are
zero into the equivalent equations

oz, =27
oz, = zial, @
oT,= 7|7}

The transformation establishes, therefore, a one-to-one relation
between the points z; and the points 2] with the possible excep-
tion of points on the triangle of reference ABC. To examine these
points let 4 be as usual the point 0:0:1, B the point 0:1:0, and
C the point 1: 0: 0, so that the equation of 4B is 2= 0, that of
AC is z,= 0, and that of BC is z,=0. Then from (1) any point
on the line 4B is transformed into B, any point on the line 4AC is
transformed into C, and any point on the line BC is transformed
into 4. The codrdinates of either 4, B, or C, if substituted in (1),
give the indeterminate expression 0:0:0, but if we enlarge the
definition of the transformation by assuming that (2) holds for all
points, including those on 4B, AC, and BC, it follows that B is
transformed into the entire line 4B, C is transformed into the
entire line AC, and 4 is transformed into the entire line BC.
Consider any straight line with the equation

azr+azx+az,=0.
It is transformed into the curve

a5+ et aziz= 0,
which is a conic through the points 4, B, and C. In fact, the point
in which the line meets 4B is transformed into B, the point in
which the line meets 4AC is transformed into C, and the point in
which the line meets BC is transformed into 4.

If the straight line passes through one of the points 4, B, or C,
the conic into which it is transformed splits up into two straight
lines, one of which is a side of the coordinate triangle and the
other of which passes through the vertex opposite that side. In
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particular, consider & line z,+ Az,= 0 through 4. The first two of
equations (1) give 2,+ Azj= 0 for all pdints except the point 4;
that is, any point except 4 on a line through 4 gives a definite
point on the same line. The point 4, however, goes over into the
entire line z,= 0.

In a similar manner a conic is transformed into a curve of
fourth order, which passes twice through each of the points 4, B, C,
since the conic cuts each of the lines 4B, BC, C4 in two points.
If, however, the conic passes through one of the points 4, B, C,
that point is transformed into a side of the codrdinate triangle,
and the curve of fourth order must consist of that side and a
curve of third order. ‘

In particular, a conic through 4 but not through B or C is
transformed into the line BC and a curve of third order through
Band C. A nondegenerate conic through B and C and not through
4 is transformed into two lines 4B and AC and a conic through B
and C, but not througli .4. Finally, a nondegenerate conic
through the three points 4, B, C is transformed into the three sides
of the triangle of reference and a straight line not through its ver-
tices. These results may all be seen directly or verified analytically.

By placing /= z; in equations (1) the locus of fixed points of
the transformation is found to be the conic

z2,— 2, =0,
which passes through B and C and is tangent to 4B and AC.

It is not difficult to show that each point P of the plane is trans-
formed into a point P’ in which the line AP cuts the polar. of P
with respect to the fixed conic.

This transformation is called a quadnc tnversion to distinguish
it from the circular inversion, or simply inversion, discussed in the
next section.

EXERCISES

1. Prove the statement in the text that the point P is transformed
into the point in which AP cuts the polar of P with respect to the .
fixed conic. Hence show that P and P'are harmonic conjugates to the
points in which PP’ cuts the conic.

2. Prove that the cross ratio of four points on a straight line p is
equal to the cross ratio of the corresponding four points on the conic
into which p is transformed.
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3. Study the transformations

@ pof =1
p; = L
z
pal = 1
8 x'
(2) pxi =24,
P"";‘= (2%}
pTy = i
3) pxi ==,
P} = T2,
Py = T — 2y

53. Inversion. The transformation (1) of § 52 has particular
interest and importance when the points B and C are the circle
points at infinity. We may then place z,= ¢, z, =z +1y, z,=z—1y
and, using Cartesian codrdinates, write the transformation in the

form P&+ iy) = (z+ ig)ts
p(@ —iy) = (z— iy, : @)
pt =2+ o7,
or, what is the same thing in nonhomogeneous form,
== . N
2+ y
=4, 2
y=zL ®
z”+y”= 1 .
2+ y

By this transformation a one-to-one relation is established
between the points (z, ) and (<, y'), with the exceptions that the
origin corresponds to the line at infinity, and conversely, and that
each of the circle points at infinity corresponds to the minimum
line joining it to the origin, and conversely. The circle 2*+ y*=1
is fixed. Any point of the fixed circle is transformed into a point
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inside that circle, and, conversely, in such a way that if O is the
origin, P any point, and P’ the transformed point, OP . OP' =1.
The transformation is called an inversion with respect to the unit
circle, or a transformation by reciprocal radius with respect to
that circle. The origin is called the center of inversion, and the
fixed circle the circle of inversion.

Remembering that a circle is & conic through the circle points
and applying the results of the previous section, we have the
following theorems: )

I. A straight line not through the center of inversion is trangformed
into a circle through the center of inversion.

II. A straight line through the center of inversion i transformed
into tself (and the line at infinity).

II. A circle not through the center of inversion is trangformed tnto
a circle not through the center of inversion (and the two minimum
lines through the center of inversion).

IV. A circle through the center of inversion is trangformed into a
straight line not through the center of inversion (and the two minimum
lines through the center of inversion and the line at infinity).

V. A conic 18 trangformed in general into a curve of fourth order
through the circle points at infinity.

VI. A conic through the center of inversion is transformed into
a curve of third order through the circle points (and the line at
nfinity).

If we take the nonhomogeneous form (2) of the transformation
and apply it to the equations

az+by+c=0,
a@+yD)+bz+cy+f=0

we readily get theorems I-IV without the clauses in parentheses.
It is in this simplified form that the theorems are often given, but
they then fail to tell the whole story.

Let us denote by I the transformation (1) and by M the trans-
formation III, § 45. Then M~ transforms the circle z*+ y*=#"
into the unit circle, I carries out an inversion with respect to the
unit circle, and M carries the unit circle back into the circle -
2+ y*= . The product of these three, namely MIM~', which is
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the transform of I by M, is an inversion with respect to the circle
2*+ y*=Kk* and is represented by the equations
=k
2+y
Ky
=5, 3
poL + yls — _’f‘_ '.
2+ y

It is evident that a point P is transformed into a point P, where
OP.OP =k, and that theorems I-VT still hold.

If we desire an inversion with respect to a circle with center (a, 5)
and radius k, we may transform (8) by means of a transformation
which carries O into (a, b). The result is

_ E(z—a)
M e
Ey-b
—b= ! ,
y (@—a)'+@y -5
K
—_— 2 — b= .
(z' a) +(y b) (x_ a)2+(y — b)!

Obviously theorems I-VI hold for (5).

If the inversion (2) is written as an enlarged point-point trans-
formation of the form (3), § 51, we have

7=

z"+y’
=—9
oy
= 22y +(y'—2Np.
7~ y'+ 2 pzy
From this it is easy to compute that if p, and p, are the slopes of

two curves through the same point, and if p] and p are the slopes
of the two transformed curves through the transformed point, then

PP PP

1+ pip: 1+P1Pz
This shows that the angle between two curves is preserved by
the transformation. A transformation which preserves angles is said
to be conformal. Hence an tnversion is a conformal transformation.
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EXERCISES

1. Show that any circle through a point P and its inverse point P'
is orthogonal to the circle of inversion.

2. Show that a pencil of straight lines is transformed by inversion
into a pencil of circles consisting of circles through two fixed points.
Study the configuration formed by the inversion of a series of con-
centric circles and the stra.ight'lines through their common center.

3. Show that parallel lines invert into circles which are tangent at
the center of inversion.

4. Show that the cross ratio of four points collinear with the center
of inversion is equal to that of the transformed points.

5. Show that a point P and its inverse point P! are harmonic con-
jugates with respect to the intersections of the line PP' and the circle
of inversion.

6. If a circle is inverted into a straight line, show that two points
which are inverse with respect to the circle go into two points which
are symmetrical with respect to the line.

7. Study the real properties of an inversion with respect to the
imaginary circle 2* + y? = —1.

8. Show that an inversion is completely determined by two pairs
of inverse points.

9. From the theorem *four circles can be drawn tangent to three
given lines;” prove by inversion the theorem *four circles can be drawn
tangent to three given circles which pass through a fixed point.”

10. From the theorem “two circles have four common tangent lines ”
prove by inversion the theorem *through a given point four circles can
be drawn tangent to two given circles.”

54. Point-curve transformations. Consider now a transformation

defined by the equation

F (2 7y 2y 3 23, 73) =0, 1.
where z; and 2] are point coordinates and ¥ is a function homo-
geneous in both z, and 2!, continuous in both sets of these variables,
and possessing derivatives with respect to both.

Let M be a point with the codrdinates y,. If these codrdinates
are substituted for z; in (1) and held fixed, the resulting equation -
is that of a curve which we call an m'-curve, the equation being

F Yy Y2 ¥ 2 73y 1) =0, €))
and we say that the point M is transformed into the m/-curve.



128 TWO-DIMENSIONAL GEOMETRY

We shall make the hypothesis that these m/-curves form a two-
parameter family of curves such that one curve of this family goes
through any given point in any given direction.

Let K’ be a point with the coérdinates z{. This point will lie on the

p h
m'-curve (2) if F Yy Yo Ys» 2 % 2)=0, )
and all values of the ratios y,:y,:y, which can be determined
from equation (3) will, if used in (2), determine an m'-curve
through K'. These values of y;, how-

ever, are given by any point M which 5
lies on the curve

M,
F (2 23 Ty 21y 2 2)= 0. (4) M, '
Call any curve defined by equation "4

(4) a k-curve. We have, then, the
following result: Fie. 43

All points M which lie on a k-curve are transformed into m'-curves
which pass through a point K' (Fig. 43).

We can say, then, that the k-curve is transformed into a point K.
In fact, the equation of a k-curve is found by holding 2} constant
in (1), just as the equation of an m/-curve is found by holding z;
constant in the same equation.

It is further evident that all k-curves which pass through a pomt M
are transformed into points K' which lie on the curve m'.

If any proof of this is necessary, it may be supplied by noticing
that equation (8) is the condition that M should lie on % and
that K’ should lie on m'.

Consider now any curve ¢,
not a k-curve, defined by the

equations
q $1= ¢1 (X),

r,= ¢9 (X)’ (5)
z,=¢,(A).
The m'-curves corresponding to
_ points M on ¢ form a one-
parameter family of curves which in general have an envelope ¢,
and the curve ¢ 18 said to be transformed into the curve ¢
To follow this analytically let M, (z,, z,, #,) (Fig. 44) be the
point on ¢ corresponding to the value A, of A, and let M, be

Fie. 44
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the point corresponding to the value A + AX, the codrdinates of
M, being z + Az, z,+ Az, z,+ Az,. The two points M, and M,
are transformed into m| and m}, which intersect in a point K, the
coordinates of which are given by the equations

F (2, 7,y 7y @), 74, 23) =0,

oF oF oF
(a—zl + Gl) AZ‘+ <a—z’ + €’> A$’+ <a—x; + G') AI.: 0, (6)
where the values of z, and Az, are to be taken from (5). The
point K’ corresponds to a k-curve through M, and M,.

Now let M, approach M,. The curve m] approaches the curve
m}, and the point K’ approaches a limiting point 7’ the codrdinates
of which are given by

F(z,, 7y 2y 2, 23 7)== 0,

oF oF oF, Q)

axl d$l+ a—-x’d:l:’+ 5—2:'d1:’— 0,
where the values of z; and dz; are to be taken from (5).

The point 7" is obviously the transformed point of ¢, a k-curve
tangent to ¢ at M,. The locus of 7" is the curve ¢/, which cor-
responds to ¢

Equations (7) furnish a proof that ¢’ is tangent to m' at 7"
For, by differentiating the first of these equations and taking
account of the second, we have

oF oF oF ,

il ~ —dz!=0, 8
which, as in § 31, determines the direction of ¢. But this is just
the equation which determines the direction of m{. The direction
of ¢ is thus determined at the point 7' by the direction of mj. It
is therefore determined by the point M, and the curve ¢, the latter
being determined by the direction of ¢. Hence two curves ¢ which
are tangent are transformed into two curves ¢ which are tangent. The
transformation is therefore called a contact transformation.

Suppose now that the transformation (1) is expressed in non-
homogeneous Cartesian codrdinates by the equation

F(z, y ©, y)=0,
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dy

:—‘Z of any curve ¢, and p’ the slope i of

the transformed curve ¢’. Then equations (6) and (8) are replaced
in the present coordinates by

and let p be the slope

oF oF
% +p—ay—0,
oF ,oF
o TP % =0

which enable us to determine p and p' when z, y, 2/, and y' are
known. The last three equations, written together,

F(xy 2, y)=0,

8F oF
+p— 7y =0, )
aF
et /
3 z, + p =0,

are called an enlarged pomt-curve contact transformation. If
solved for «/, ¥/, and p' they may be written in the form
o=f,( 9 p)
y’=-fg(z’ % p) 10)
?'=f,(a 9 p)- ‘

If, then, the point (z, y) describes the curve z =f (1), y =£,(0),
i)
ALY
expressed in terms of the parameter A.

An example of a point-curve transformation is found in the cor-
relations already discussed, since the equations (1), § 42, may be
written in the form

(allzl+ alf’v2+ allxl) Z;+ (a21x1+ a z8+ a!FI)z'
+ (a7, + a2, + a,2) 2 = 0.

we have p=

, and equations (10) give the transformed curve

Here the m'-curves and the k-curves are straight lines. If z;
describes a curve ¢, the straight line m' envelops the transformed
curve ¢. If the correlation is expressed in Cartesian codrdinates,
it is readily put into the form (10).
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EXERCISES

1. Express the general correlation in the form of equations (10).

2. Place in the form of equations (10) the polarity by which a point
is transformed into its polar line with respect to the circle 2? 4 3* = 1.

3. Find the curve into which the parabola 3= ax is transformed by
the polarity of Ex. 2.

4. Show that the curve into which the circle (z — &)*+(y — k)*=1*
is transformed by the polarity of Ex. 2 is a conic, and state the con-
ditions under which it is an ellipse, a parabola, or a hyperbola. Find
the focus and directrix of the coniec.

5. Prove that by any polarity the order and the class of the trans-

formed curve is equal to the class and the order, respectively, of the
original curve.

6. Study the transformation

and find the curve into which the circle #*+ 3*=1 is transformed
by it.

7. Express in the form of equations (10) each of the types of
correlations given in § 42 and study them from this standpoint.

55. The pedal transformation. As another example of a point-
curve transformation we shall use homogeneous Cartesian coordi-
nates and take the equation

@+ yHt— 2tz — y't'y=0. (¢))

If we take M as any point (z: y: t), the corresponding m'-curve
is in general a circle constructed on the line OM as a diameter.
Exceptional points are the origin and the points at infinity. If M
is the origin, the circle becomes the two minimum lines through
the origin. If M is a point at infinity, not a circle point, the circle
m' splits up into the line at infinity and a straight line through O -
perpendicular to OM. If M is a circle point I, the circle m' splits
up into the line at infinity and the minimum line OL
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The %-curve corresponding to a point K’ is in general a straight
line through K’ and perpendicular to OK'. Exceptions occur when
K' is the origin or one of the circle points at infinity, in which
cases the k-curve is indeterminate. If K’ is any point on the line
at infinity but not a circle point, the k-curve is the line at infinity.
If X' is on a minimum line through O, but not at infinity, the
k-curve is the other minimum line through 0. A k-line does not
in general pass through O or the circle points at infinity.

Conversely, any straight line which does not pass through the
origin, and is neither the line at infinity nor a minimum line, is a
k-line, the point K’ being the point in which the normal from 0
meets the line. This may be seen by comparing the equation
az+ by +ct=0 with (1), thus determining 2': y': t'=— ae¢: — be: a*+ 5%,
which is the foot of the normal from O to the line.

Take any curve c¢. The tangent A-curve at any point M is
the tangent line ¢, and the point 7" is the foot of the perpen-
dicular from O on 7. Therefore the trangformed curve ¢’ of any
curve c 18 the locus of the feet of the perpendiculars drawn from
the origin to the tangent lines of ¢. The transformation is called
the pedal transformation, and the point O is the origin of the
transformation.

If the pedal transformation is expressed in Cartesian coordi-
nates as an enlarged point-curve transformation of the form (9),

§ 54, it becomes
2yt — z”‘z— ¥y =0,

z! .
p== ®
) 22—z
T 2y-y
and these equations can be solved for 2/, ¥/, and p/, giving
__y—pp
1+p*
i
¥y= 1+ps (3) ‘
p= P =2=2yp

oy —y+22p
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EXERCISES

1. If Q is the pedal transformation with the origin O, P a polarity
with respect to any circle with the center 0, and R an inversion
with respect to the same circle, prove the relations Q = RP, P = RQ,
R = QP. .

2. Show that by a pedal transformation a parabola with its focus at
the origin of the transformation is transformed into the tangent line
at the vertex of the parabola.

3. Show that by a pedal transformation an ellipse with its focus at
the origin of the transformation is transformed into a circle with its
diameter coinciding with the major diameter of the ellipse. State and
prove the corresponding theorem for the hyperbola.

4. Find the curve into which the ellipse z—;+ g—:= 1 is transformed
by a pedal transformation with its origin at the center of the ellipse.

56. The line element. With the use of Cartesian coordinates the
contact transformations may be looked at from a new viewpoint
by the aid of the concept of the line element. A line element may
be defined as a point with an associated direction. More precisely
let there be given three numbers (z, g, p), where the numbers
zand y are to be interpreted as the usual Cartesian cotrdinates
of a point in the plane and p is to be interpreted as the slope
or direction of a line through the point. Then the three quanti-
ties taken together define a line element. A line element may
be roughly represented by plotting a point M and drawing a short
line through M in ‘the direction p, but this line must be con-
sidered as having no length just as the dot which represents M
must be considered as without magnitude. There are oo® line
elements in the plane out of which we may form a one-dimensional
extent of line elements by taking z, y, and p as functions of a
single parameter; thus,

oz =) y=£,(0), p=Sf(M). @
There are two types of one-dimensional extents: -

Type I. The functions f, (A) and f, (1) may reduce to constants.
In this case the one-dimensional extent consists of a fixed point
with all possible directions associated with it.
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Tyee II. The point (z, y) may describe a curve the equations
of which are the first two of (1). Then the third equation of (1)
associates with every point of that curve a certain direction.

1t is’obviously convenient that the direction associated with each
point of the curve should be that of the tangent to the curve. The
necessary and sufficient condition for this is that by virtue of (1)
we should have dz — pdy = 0. .

A one-dimensional extent of line elements defined by equation (1)
shall be called a union of line elements when it satisfies the con-
dition dz —pdy =0. It is evident that the first type of extents
always satisfies this condition and that the second type satisfies the
condition when the direction of each element is that of the curve
‘on which the point of the element lies. ‘

Two unions of line elements have contact with each other if they
have a line element in common. Two unions of the first type have
contact, therefore, when they coincide; one of the first type has con-
tact with one of the second when the point of the first lies on the
curve of the second; and two elements of the second type have
contact when their curves are tangent in the ordinary sense.

Any transformation of line elements defined by the equations

?=f,(= % P,
y'=r(® 3 p) &)
P'=1(= 9 p)
where the functions are bound by the condition
dy' — p'dz' = p(dy — pdz), @
where p is not identically zero, is called a contact transformation.

It is clear that by such a transformation a union of line ele-
ments is transformed into a union of line elements and that two
unions which are in contact are transformed into two which are
in contact.

The enlarged point-point transformation (8), § 51, and the
enlarged point-curve transformation (9), § 54, are cases of the
general contact transformation (2). In fact, any contact trans-
formation may be reduced to one of these cases. To show this
let us proceed to deduce from (2) equations which are free from
p and p'. Two cases only can occur.
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Casg I. The first two equations in (2) may each be free from p.
Then equation (8) gives the condition

af’dzﬁf’ dy—p' afx‘dx A f‘dy=P(dy—pdx),
which must be true for all values of the ratios dz: dy. Hence we have
Uy _ % _
3y —F% oy
3fa 19 _
p ox — PP»

whence, by eliminating p and solving for p/, we have the result
that the contact transformation (2) is in this case of the form

7 =f (29
y=fi=xy),
o, o @
' oz 2 Py oy
AN
oz TP 2y
which is exactly that of (8), § 51.

By this transformation any one-dimensional extent of line ele-
ments which form a union of the first type is transformed into a
union of the first type, and any union of the second type is trans-
formed into a union of the second type.

9

Case II. Atleast one of the first two equations in (2) contains p.
It is then possible to find one, but only one, equation free from
p and p'. Let that equation be

F(z,y, 2, y)=0.
From this equation we find

F

d+ d+ dx’+d =0,
oy z/y’

which must be identical with (8). By comparison we find
OF o0F OF _oF
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from which p and p' can be found, with the result that the contact
transformation (2) can in this case be put into the form

F(z’.'/’dv.'/)=01

oF oF '
'5z‘+1’a—y—0: . ®)
oF  _,OF _

P oy ="

which is exactly that of (9), § 54.

By this transformation any union of the first type is transformed
into a union of the second type, each element of the former being
transformed into an element of the latter.

As an example consider the transformation

Y?=zF kp ,
2%

Y=y
y 1 +p"
r'=p

If written in the form ‘(5) this becomes

@-2)'+ ' -y)'=F,
z’—z+p(y’—y)=0,
d—z+p' (Y —-y)=0.

The geometﬁcal meaning of these equations is simple. Any line
element (2, y, p) is transformed into a line element (<, ', p') so
placed that the point (2/, ') is at a distance & from the point (<, ¥'),
and the line joining (<, y') to (2, y) is perpendicular to the line
element. A transformed line element is parallel to the original
element. Otherwise stated, each line element is moved parallel
to itself through a distance k£ in a direction perpendicular to the
direction of the element. Each line element is therefore trans-
formed into two line elements. A union of the first type, consist-
ing of line elements through the same point, is transformed into a
union consisting of the line elements of a circle with that point as
a center and a radius £ Any curve ¢ is transformed into two
curves parallel to ¢ at a normal distance % from e.

This transformation is sometimes called a dilation, suggesting
that each point of the plane is dilated into a circle.
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EXERCISES

1. Show that the transformation
z'=p,
y'=zp—y,
p'=z,

is a contact transformation and study its properties.
2. Show that the transformation

2': x + 2p,
y'=y+r"
p'=p,

is a contact transformation and study its properties.

3. Show that any differential equation of the form f (x, Y %) =0

may be written in the form f(x, , p) = 0 and considered as defining a
doubly infinite extent of line elements. To solve the equation is to
arrange the elements into unions of line elements. In general, the solu-
tion consists of a family of curves. Any union formed by taking one
element from each curve of a family is a singular solution. Note that
an equation f'(x, ¥)= 0 can also be interpreted in this way, and that
the family of solutions consists of points on the curve f(z, ) = 0 with
all the line elements through each, while the singular solution is the
curve f(x, ¥) = 0 with its tangent elements. :

4. Study the differential equation y — px = 0 in the light of Ex. 3.
Show that the singular solution is the one-dimensional extent of line
elements which consists of all elements through the origin.

_— p 1

5. Apply to Ex. 4 the dilation 2'=2 ———, ¥'=y+—=—
pp y x '\/ﬁ-?” .'/ :'/ m’

p=p'. Show that the differential equation becomes y'—p'z'— V1+p'*=0.

What becomes of the singular solution and the family of solutions ?

6. Study Clairaut’s equation, y = px + f(p), by the method of
Ex. 3 and show geometrically that the family of solutions consists of
the straight lines y = ez + f(¢). What is the singular solution ? Apply
to the variables in the equation the transformation zx'+ yy'=1 and
determine the effect on the equation and its solutions.



CHAPTER IX
TETRACYCLICAL COORDINATES

57. Special tetracyclical cotrdinates. We shall discuss in this
chapter a system of coordinates especially useful for the treat-
ment of the circle. These coordinates are not dependent upon the
Cartesian coordinates, though they are often so presented. On the
contrary they may be set up independently by elementary geometry
for real points and then extended to imaginary and infinite points
in the usual manner. It is therefore not to be expected that the
geometry in the imaginary domain and at
infinity should agree in all respects with
that obtained by the use of Cartesian
coordinates.

The coordinates we are to discuss are N 3
called tetracyclical coordinates, and we
begin, for convenience, with a special type. 2 . x
Let 0X and 0OY (Fig. 45) be two Fro. 45
1G.

straight lines of reference intersecting at
right angles at O, and let P be any real point of the plane. Let
MP and NP be the distances of P from OX and OY, respectively,
taken with the usual convention as to signs, and let OP be the
distance of P from O, taken always positive. Then the special
tetracyclical coordinates of P are the ratios

Tz, = OP*: NP: MP:1, ()
from which it follows that the quantities = are connected by
the fundamental relation

o (2) = 2+ 23— 2,8, = 0. ®

It is obvious that to any real point corresponds one set of codr-
dinates and, conversely, to any real set of the ratios z:z,: 2,3,
which satisfy the relation (2), and for which z, + 0, corresponds

one real point P. We extend the cobrdinate system in the usual
138
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manner by the convention that any set of ratios satisfying (2)
shall define a real or an imaginary point of the plane, the ratios
0:0:0:0 being of course unallowed.

As the real point P recedes from O, the ratios approa.ch a limit-
ing set of values 1:0:0:0. To see this we write equation (1) in
the form

o e . _I.NP.MP. 1
xl-xzoxa-ﬁ‘-— H 5?’.0:’1‘{-0?

,cosf sinf_ 1
" OP° OP op

where 6 = the angle MOP. The limit of the ratios of z; is there-
fore 1:0:0:0. Hence we say that dy the use of the special tetra-
eyclical coordinates the plane is regarded as having a single real point
at infinity. This point, however, is not the only one which must
be considered at infinity, as will appear later.

58. Distance between two points. Let C (y,:y,:y .’/4) and
P (z:z:z,:2,) (Fig. 46) be two real points, and let d = CP, the
distance between them. Then, by trigonometry,

d*="0P"4+ 0C'— 2 OP - 0C cos (6,— 6),

where 6 =the angle XOP and 6,=the angle XOC. But from
the definition of the coordinates and Y

from the relations
P
OP cos 0, = 4, 0Psm0=——, :
x‘ z, o
0Ccos 8,=%, 0Csinf,=
v Py 5 —x
the above equation can be written Fic. 46
=& 2 ym,— 2 Y57+ Y%, '¢))

Yz,
This equation, obtained by the use of real points, is now taken
as the definition of the distance between imaginary points.
Equation (1) can be written

_ 20 y) , | @
.Y, -
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where in accordance with the usual notation w(z, y) denotes the
polar * of the form o (z).

From (8) it appears that d=co when y,=0 or when z,=0. Hence
the locus of the points at infinity is defined by the equation z,= 0.

Since always @ (z) =0, the points at infinity satisfy also the con-
dition z;+ z;= 0, from which it appears that the point 1:0:0:0
is the only real point at infinity, as we have already seen. The
nature of the locus at infinity will appear later.

59. The circle. If we take the usual definition of a circle, the
equation of a circle with center y, and radius » can be written from
1), §58, as

ya— 2!/{”:— 2 ycxa+ (yx— ray‘) = 0. (1)
This is of the type
az+az,+az, + az,= 0, )]

and the relations between the coefficients a, and. the center and
radius of the circle are readily found. For we have by direct
comparison of (1) and (2)
pa=Y, pP,=—2y, pa=—2y, pa=y—rYy,
From these and the fundamental relation y;+ y'— y,y,=0 we
easily compute the following values:

Py = a4} + a3,

PYy=—2a,a,
PYs=— 2 a,a,, ®
PYs= 4 al’o
al+at—4aa
r'= =2 _ 8 " 14 Zaf ,

# A homogeneous polynomial is called & form. The general quadratic form in
n variables is

L
Ea.-azm, @
1 .
L
and the bilinear form Ew‘,
1

is called the polar form of (1). If by a linear transformation of the variables z;
the form (1) is transformed into

7

Z-AWk,
its polar is transformed into zAaa:‘yi..
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which give the coordinates of the center and the radius of the
circle in terms of the coefficients a, of equation (2).

These results, obtained primarily for real circles, are now gen-
eralized by definition as follows:

Every linear equation of the form (2) represents a circle, the center
and the radius of which are given by equations (8).

We may classify circles by means of the expression for the radius.
For that purpose let us denote the numerator of #* in (8) by # (a);

that is, n(a)=al+ a?—4 aa,. ()
We make, then, the following cases:

CAsE L. n(a)# 0. Nonspecial circles.

Subcase 1. a,# 0. Proper circles. Equation (2) is reducible to
(1) and represents the locus of a point at a constant distance from
a fixed point. Neither center nor radius is necessarily real, but the
center is not at infinity and the radius is finite. The circle does not
contain the real point at infinity, since 1:0:0: 0 will not satisfy
equation (2).

Subcase 2. a,=0. Ordinary straight lines. The radius becomes
infinite and the center is the real point at infinity. The equation
may be written, by § 57, in the form

a,ﬁ+ (11'1]7135 +a,=0, (a;+a;+0)
which, as in Cartesian geometry, is a straight line. This line
passes through the real point at infinity. In fact, the necessary
and sufficient condition that eguation (2) should be satisfied by
the codrdinates of the real point at infinity is that a =0. Hence
an ordinary straight line may be defined as a nonspecial circle which
passes through the real point at infinity.
CasE . n(a)=0. Special circles.
Since a; + a; = 4 a,a,, the codrdinates of the center may be written
Y.:%:9:y=—2a:a:a,:—2a,. )
Subcase 1. a,# 0. Point circles. The radius is zero and the coordi-
nates of the center are those of a point not at infinity. The center
may be any finite point. It is obvious that if the center is real, it is

the only real point on the circle, and hence the name “ point circle.”
The point circles do not pass through the real point at infinity.
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By (2), § 58, the equation of a point circle may be written

o(z, y)=0,
where @(y)=0. Comparing with (4), we see how the equation
n(a)= 0 may be deduced from o (y)=0.

Subcase 2. a,= 0. Special straight lines. The radius becomes inde-
terminate, and the center, given by (4), becomes — 24,:a,:a,=0,
which is a point at infinity. The special straight lines pass through
the real point at infinity. In fact, a special straight line may be
defined as a special circle which passes through the real point at infinity.

We have seen that the locus of all points at infinity is z,=0,
which is the equation of a circle belonging to the case now being
considered, and with its center at 1: 0: 0: 0. Hence we say:

"The locus at infinity 18 a special straight line whose center 18 the
real point at infinity.

EXERCISES .

1. Consider the point circle #,= 0. Show that it is made up of
two one-dimensional extents (*‘threads”) expressed by the equations
x i x, iy x,=0:1: 4 ¢: A, where A is an arbitrary parameter. Show
that these threads have the one point 0:0:0:1 in common, but that
neither can be expressed by a single equation in tetracyclical coordi-
nates. Hence note the difference between this locus and that expressed
by 2* + y* = 0 in Cartesian cobrdinates.

2. As in Ex. 1, show that the special circle &, = 0 is composed of two
threads having the real point at infinity in common.

3. Examine the special circles x,+ ix, = 0 and x, — iz, = 0 and show
that these two and the two in Exs. 1 and 2 are made up of different
combinations of the same four threads.

4. Show that any special circle is made up as is the circle in Ex. 1.

60. Relatit;n between tetracyclical and Cartesian coordinates. If we
introduce Cartesian codrdinates, by which, in Fig. 45,
' z:y:t=0M: MP:1,
there exists for any real point of the plane the following relation
between the special tetracyclical coordinates and the Cartesian

coordinates : pz, =2+ 3,
pz,=at,
Pz= Yyt

pz,=t%




TETRACYCLICAL COORDINATES 143

These equations, derived for real points of the plane at a finite
distance from O, can now be used to define the relation between
the imaginary and infinite points introduced into each system of
coordinates. .

There appear, then, exceptional points. In the first place, we
notice that the tetracyclical coordinates take the unallowed values
0:0:0:0 when 2°+y*=0, t=0. That is, the circle points at
infinity necessary in the Cartesian geometry have no place in the
tetracyclical geometry. Furthermore, any point on the line at
infinity ¢=0, other than a circle point, corresponds to the real
point at infinity 1: 0: 0: 0 in the tetracyclical cobrdinates.

If the tetracyclical codrdinates are given, the Cartesian coordi-
nates are obtained through the equations z¢: yt: t*=z,: z,: 2. These
equations will determine a single point on the Cartesian plane
unless z,=2z,=2,=0. In this case {=0 and the ratio z:y is
indeterminate. That is, the real point at infinity in tetracyclical
codrdinates corresponds to the entire line at infinity in Cartesian
coordinates. Any other point on the tetracyclical locus at infinity
z,= 0 has codrdinates of the form z :1: +¢:0, and no Cartesian
codrdinates can be found corresponding to these values.

Hence, in Cartesian codrdinates we find certain points, the circle
points at infinity, which do not exist in tetracyclical codrdinates, and
in tetracyclical codrdinates we find certain points, the imaginary points
at infinity, which do not exist in the Cartesian codrdinates. We also
find that the real point at infinity in tetracyclical codrdinates corre-
sponds to the entire line at infinity in Cartesian codrdinates, and, con-
versely, that any point at infinity in Cartesian codrdinates corresponds
to the real point at infinity in tetracyclical codrdinates. With these
exceptions the relation between the codrdinates is one to one.

The exceptional cases bear out the statements in §§38 and 4 as
to the artificial nature of the conventions as to imaginary points
and points at infinity. Since the Cartesian codrdinates are more
common, there is some danger of thinking that the conventions
there made are in some way essential. The discussion of this text
-shows, however, that the tetracyclical conventions may be made
independently of the Cartesian ones, and the geometry thus deduced
is equally as valid as the Cartesian. As long as either set of

coordinates is used by itself, the difference in the conventions is
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unnoticeable. It is only when we wish to pass from one set of
coordinates to the other that we need to consider this difference.

61. Orthogonal circles. Consider two proper circles with real
-centers C, and C, and real radii r, and 7, intersecting in a real
point P. Then, if (7, r,) is the angle between the radii C,P and
C,P, and d is the length of the line C,C,, we have, from trigonometry,
Atr-d

CO8 (7, 1) =
27,
a’'b

But the angle between the circles is either -equal or supple-
mentary to the angle between their radii. Hence, if we call  the
angle between the circles we have
it d

cosf =+ Sy
a’'d

If the equations of the two circles are
ez, +ag +az,+az=0 Q)
and bo +bx, + bz, +02,=0 )
respectively, the formula for the angle may be reduced by (3), § 59,
and (4), § 59, to the form
—2ab +ab+adb—2ab,
Vaitai—4aaVbi+bi—4b0,
or, more compactly,

. 1CX) N
cos 0 i\/;QT)\/q—(bj ®

where 7 (g, b) is the polar of 5 (a).

This formula, which has been obtained for two real proper circles
intersecting in a real point, is now taken as the definition of the
angle between any two circles. of any types whose equations are
given by (1) and (2). We leave it for the reader to show that if
one or both of the circles is a real straight line, the definition
agrees with the usual definition.

The condition that two circles should be orthogonal is then

n(a, 5)=0. O]

If the circle (1) is a special circle, the coordinates of its center
have been shown to be — 2 a,: a,: a,: — 24, and equation (4) is the

cos @ =+
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condition that this center should lie on (2). Hence a special circle,
whether a point circle or a special straight line, i8 orthogonal to
another circle when and only.when the center of the special circle lies
on the other circle.

We might equally well say that a special circle makes any angle
with a circle on which its center lies, since in such a case cos @ in
(3) is indeterminate.

It is possible in an infinity of ways to find four circles which
are mutually orthogonal. For if

2“‘3":40 ®

. Ebr"”s= 0 Q)
may be found in oo® ways orthogonal to (5), since the ratios 3, have

to satisfy only one linear equation of the form (4) Circles (5)
and (6) being fixed, the circle

Siez=10 )
may be found in an infinite number of ways orthogonal to (5) and

(6), since the ratios ¢, have to satisfy only two linear equations.
Finally, the circle
Ee.z«: 0

ma'y be found orthogonal to (5), (6), and (7) by solving three
linear equations for e;.
It is geometrically evident that at least one of these circles is

imaginary.

is any circle, the circle

EXERCISES

1. Prove, as stated in the text, that formula (3) gives the ordi-
nary angle in the casés in which one or both of the circles is a
straight line.

2. Prove that a special circle is orthogonal to itself.

3. What is the angle between a special circle and another circle not
through its center ?

4. Prove that the circles =, —'z4= 0, z,= 0, 2,=0 are mutually
orthogonal and find a fourth circle orthogonal to them.

5. Prove that z, = 0, z,= 0, z,= 0 are mutually orthogonal. Can a
fourth circle be found orthogonal to them ? Explain.
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6. Find all circles orthogonal to the circle at infinity x, = 0.

7. Find the equations of all circles orthogonal to the point circle
#, = 0. How do they lie in the plane ? '

8. Find the equations of all circles orthogonal to the real proper
circle z, —x, = 0.

9. Show that all circles whose coefficients a; satisfy a linear equation
ca, + ca,+ ¢, + o0, =0

are in general orthogonal to a fixed circle and find that circle.

62. Pencils of circles. Consider two circles
az +agx,+ar,+azx, = 0, : (1)
bo + b+ bx,+ bz, =0, ¢))

With reference to them we shall prove first the following
theorem :

L. Any two circles intersect ih two and only two points. These points
may be coincident, in which case the circles are said to be tangent.

To prove this we note that if equations (1) and (2) are inde-
pendent, at least one of the determinants, a3, — a3,, must be different
from zero. Hence we can solve for one pair of variables, z; and z,
in terms of the other two. For example, we may find from (1) and
(@) z,=cz,+ e, z,= cx,+ cz,. If these values are substituted
in the fundamental relation w(2)=0, there results a quadratic
equation in z, and z,. This determines two values of z,:z, and
from each of these the ratios z :z, are determined. This proves
the theorem.

It is evident that the circle points at infinity which are intro-
duced as a convenient fiction in Cartesian geometry do not appear
here. In Cartesian geometry it is found that there are always two
sets of coordinates which satisfy the equation of any circle, and we
are consequently led to declare that all circles pass through the
same two imaginary points at infinity. By the use of tetracyclical
coordinates there are no two points at infinity common to all
circles. In fact the circle (1) meets the locus at infinity z,=0 in
the two points — a,F a,i: a,: + ta,: 0, which are not the same for
all circles.
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Theorem I holds of course for the case in which the circles are
straight lines, one of the points of intersection being always the real
point at infinity. Two straight lines which are tangent at the real
point at infinity are parallel lines in the Cartesian geometry.

Consider now the equation

2::(“"*‘ Ab) 7= 0, 6))

where A is an arbitrary parameter. For any value of A (8) defines
a circle which passes through the points common to (1) and (2)
and intersects (1) and (2) in no other point. The totality of the
circles corresponding to all values of A forms a pencil of circles.
If (1) and (2) are real circles, the pencil (8) may be of one of
the following types:
(1) proper circles intersecting in the same two real points ;
(2) proper circles intersecting in the same two imaginary points ;
(3) proper circles tangent in the same point ;
(4) proper concentric circles ;
(5) a pencil of intersecting straight lines ;
(6) a pencil of parallel straight lines.

II. In any pencil of circles there is one and only one straight line,
unless the pencil consists entirely of straight lines.

The condition that (8) should represent a straight line is

a + b =0,

which determines one and only one value of A unless both @, and
b, are zero. In the latter case all circles defined by (3) are straxght
hnes. This proves the theorem.

The straight line of the pencil is called the radical axis of any
two circles of the pencil. Its equation is

(ab,—ab)z,+(ad,— ab)z,+ (ad —ad)zr,=0.
This is a special line when
(ab,— abd)'+ (ab,— ab)'=0.

If the circles (1) and (2) are real and proper, the last equation

can be satisfied only when
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and the equations (1), (2), and (8) represent concentric circles,
and the radical axis is the line at infinity z,=0.

In all other cases the radical axis of two real circles is a real

straight line.

II. In any pencil of circles there are two and only two (distinet or
imaginary) special circles, unless the pencil consists entirely of special
cireles.

By § 59 the condition that (8) should be a special circle is

ﬂ(d + M) = 0’
or n(a)+ 2y (a, )+ A (5)=0.

This equation determines two distinct or equal values of A
unless it is identically satisfied. Hence the theorem is proved.

If the pencil is defined by two real proper circles, the special
circles are point circles, since by II there is only one straight line
in the pencil and that is real and nonspecial. It is not difficult to
show that if the circles of the pencil intersect in real points, the
special circles have imaginary centers; if the circles of the pencil
intersect in imaginary points, the special circles have real centers;
and if the circles of the pencil are tangent, the centers of the special
circles coincide at the point of tangency.

IV. A circle orthogonal to two circles of a pencil is orthogonal to dll
circles of the pencil.

Let Zc,z‘= 0 be orthogonal to (1) and (2). Then
‘ n(c, a)=0, 9(e )=0;
whence n(e a+M)=9(c, )+ (e 5)=0

for all values of A. This proves the theorem.

It follows from.this and § 61 that a circle orthogonal to all
circles of a pencil passes through the centers of the special circles
of the pencil, and, conversely, a circle through the centers of
the special circles is orthogonal to all circles of the pencil. If the
pencil has only one special circle, the orthogonal circles can be
determined as circles which pass through the center of the special
circle and are orthogonal to one other circle of the pencil, say the
radical axis.
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These considerations lead to the following theorem :

V. For any pencil of circles there exists another pencil such that all
circles of either pencil are orthogonal to all circles of the other, and
any circle which 18 orthogonal to all circles of one pencil belongs to the
other. The points common to the circles of one pencil are the centers
of the spectal circles of the other.

Fig. 47 shows such mutually orthogonal pencils.

Fic. 47

EXERCISES

1. Show that two real circles intersect in two real distinct points,
are tangent, or intersect in two conjugate imaginary points according as
[n(a, 8))*—n(0)n(®) EO0.

2. Show that the point circles in a pencil of real circles have real and
distinet, conjugate imaginary, or coincident centers, according as the
circles of the pencil intersect in conjugate imaginary, real and distinct,
or coincident points. In the last case show that the centers of the point
circles coincide with the point of tangency of the circles of the pencil.

3. Show that circles which intersect in the same two points at infinity
are concentric.

4. Prove that the radical axis of a pencil of circles passes through
the centers of the circles of the orthogonal pencil.

5. Prove that the radical axes of three circles not belonging to the
same pencil meet in a point.

6. Take El:z.m, 0, be‘_ 0, Ec,a:‘_ 0, any three circles not be-
longing to the same pencil, and show that 2(“"" Ab;+ pe) ;=0
defines a two-dimensional extent of circles (a circle complex) consisting
of circles orthogonal to a fixed circle. Discuss the number-and position
of the point circles, the straight lines, and the special lines of a complex.

7. Show that the totality of straight lines form a complex. To what
circle are they orthogonal ? '

8. Show that circles common to two complexes form a pencil.
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63. The general tetracyclical coordinates. Let us take as circles
of reference any four circles not intersecting in the same point
and the equations of which, in the special tetracyclical coordinates
thus far used, are

za¢”€= 0, zﬂazi= 0, 2‘7.34: 0, 28-"”;: 0,

and let us place
P‘Yl—_- alx1+ a:zs"" aaxs"' a‘z‘,

pX,=Bz +Bz,+Bz,+Bz,
PX8= fylzl + '7,1’,"" 7azs+ 74:”4’
PX,= 81z1+ 8{2’:+ 8,::.+ 84‘”4'

Q)

Since the four circles do not meet in a point their equations
cannot be satisfied by the same values of z, and therefore the
determinant of the coefficients in (1) does not vanish. Therefore
the equations can be solved for z; with the result

or, = A1X1 + B1Xz+ I‘1Xs + AIXG’
oz,=A, X +BX +TI' X +AX,
oz,=A X + Bst'l" rX,+4,X,
oz, =A X +BX,+ 'x,+AX,

)

where A, is the cofactor of «, in the determinant of the coefficients
of (1), B, the cofactor of 8,, etc.

The relation between the ratios z,:z,:z,: 2, and X : X;: X: X,
is therefore one to one, and the latter ratios may be taken as the
coordinates of any point. These are the most general tetracyclical
cobrdinates.

A geometric meaning may be given to these codrdinates as
follows: '

If the circle with the Cartesian equation

d(x’+y’)+bx+cy+d=0

is a real proper circle, and the point P (z, y) is a real point outside
of it, then the expression

a(@+y)+bz+cy+d

is proportional to the power of P with respect to the circle ; that is
to the length of the square of the tangent from P to the circle. If
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P is a real point inside the circle, the power may be defined as the
product of the lengths of the segments of any chord through P.
Also, if :
bz + cy + d=0
is a real straight line, the expression
brtcy+d

is proportional to the length of the perpendicular from any real
point to the line.

By virtue of § 60 these relations hold for a linear equation in
tetracyclical coordinates. Of course if the points, circles, or lines
involved are imaginary, the phra.seolog'y is largely a matter of
definition. We may say, then:

The most general tetracyclical codrdinates of a point consist of the
ratios of four quantities each of which i8 equal to a constant times the
power of the point with reference to a circle of reference, or, in case
the circle of reference i8 a straight line, to a constant times the length
of the perpendicular from the point to the line.*

By means of (1) the fundamental relation @ (z)= 0 goes oyer
into the new fundamental relation

Q) =3 a0, X X,=0, C))
and the polar equation (2, y)=0 becomes
0, Y)=Zaa,X‘Y,= 0, @

where the determinant |a,| does not vanish.

The real point at infinity has now the codrdinates X : X : X,: X,
=a:8,:9,:8, and hence by a proper choice of the circles of
reference may be given any desired codrdinates. The locus at
infinity has the equation

AX+BX+I‘X+AX 0

% Some authors prefer to deﬁne the codrdinate as the quotient of the power of the
point divided by the radius, since this quotient goes over into twice the length of
the perpendicular from the point to a straight line when the radius of the circle
becomes infinite. This definition fails if the circle of reference is a point circle
when the corresponding cordinaté is the square of the distance of the point from
the center of the circle. Since the constant which may multiply each cotrdinate is
arbitrary, we prefer the definition in the text.
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A circle with the equation
az+az,+az,+azr=0
has in the new coordinates the equation
A1X1+ A X+ A4,X+A4X =0,
where pa,=ad +B A+ vy A+d4,
Pa,= az‘41+ﬂs‘43+ %4, + 8:‘44’
Pa= a,A1+B.A,+ 74, + 8,4,
pa‘= a4A1+ﬂ4An+ '74Aa+ 84‘44'
By virtue of these relations the condition for a special circle
n(a)=0 becomes a new relation

®

H(4)= zb&AfAr: 0, ®
and the condition 5 (a, )= 0 for orthogonal circles becomes
H(4, B)=35,AB,=0. )

The form H(4) may be computed directly from £ (X) as follows:
By formulas (4) and (2), § 58, the equation of a point circle
with the center Y is

QX Y)=0.
Hence, if AX+A4X+A4X+A4X =0
is a point circle, we must have
pA;=a, Y, + a,Y,+ a,Y,+ a,Y,. ®

These equations can be solved for Y, since the determinant |a,|
does not vanish. But Y, being the codrdinates of a point must sat-
isfy the fundamental relation (8). Substituting, we obtain a rels-
tion between the A’s to be satisfied by any point circle. This can
be nothing else than the condition

H(4)=0.
By virtue of (8) we have, accordingly,
H(4) = kQ(Y).
L)

But (8) can be written =0
)

Hence we have H (Z%) = KQ(Y). ®
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Also the form Q(X) may be computed from the form H(4) as
follows: If 4 is a point circle, equation (7) expresses the condition
‘that the center of 4 should lie on a circle B. But if X; are the
coordinates of the center of 4, this condition is

X, +BX +BX,+BX,= 0.
Hence, i)y comparison with (7), ‘
pX.=b,,4,+b;34;,+b; 4, + b, 4, (eL))
Since 4 is a point circle its coefficients 4, satisfy (6). Therefore,

if equations (10) are solved for 4, and the result substituted in
(6), we have a relation satisfied by the codrdinates of any point.

This can only be QXx)=0.

By virtue of (10) we have, accordingly,
Q(X)=kH (A).

But (10) can be written oX;= 3 A'

Hence we have Q (Zg) = KH (4). an

64. Orthogonal cobrdinates. Particular interest attaches to the case
in which the four circles of reference are mutually orthogonal. If
the circle X,= 0 is orthogonal to the circle X, = 0, we have, from (7),
§ 68, b,=0. Therefore, for an orthogonal system of cotrdinates
o have gy kAl kAl Rl ko

Equations (10), § 63, give

pX;=kd,
whence the fundamental relation for the point codrdinates is
X} X’ X} X7
QX —k—;+ % k:+ i =0.

Without changing the cobrdinate circles it is obviously possible
to change the coefficients in (1), § 68, so that k,=1. Then we have
QX)) =X+ X+ X'+ X,

HA)=A)+A4}+ 4]+ 4],
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A special case is obtained by placing

PX;= T, — Tp
pX,= 2z,
PX,= 2 Ty

P‘X4= —i(x1+ z‘),
where z; are the special coordinates of § 57. The four circles of
reference are a real circle with center at O and radius 1, two per-
pendicular straight lines through O, and an imaginary circle with
center at O and radius <.

65. The linear transformation. Let z; be any set (special or
general) of tetracyclical coordinates where o(z)=0 is the fun-
damental relation, and consider the transformation defined by the
equations ,
Po=a,z + e,z + ez +a .z,
pry=a,z +a .z + &z +az,
PR =y, + &z + az, + 2z,
p zi: auz1+ d“m,-{- ailxl+ @ Ter

@®

where the determinant of the coefficients |, | does not vanish and
where z] satisfies the same fundamental relation as z,.

By means of (1) any point z, is transformed into a point ), and
since the equations can be solved for z;, the relation between a
point and its transformed point is one to one.

By means of (1), also, any circle .

ar+aez +ar,+az,=0
is transformed into the circle

ajz) + a7, + apzl+ ajz,=0,
where pai= Aya,+ 4; 0,4+ 4,0, + 4,0,

Now, if g, is a fixed point, z; a variable point, and y; and 2] the
transformed points respectively, the equation

oz y=10
is transformed into the equation
[} (Z’ y y") = 0,

since the equation @ (z)=0 is transformed into w(2’) = 0.
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That is, by the transformation (1) special circles are transformed
tnto special circles, the center of each special circle being transformed
into the center of the transformed circle.

It follows from the above that nonspecial circles are transformed
into nonspecial circles, for if a nonspecial circle were transformed
into a special circle, the inverse transformation would transform a
special circle into a nonspecial circle, and since the inverse trans-
formation is also of the form (1), this is impossible.

We may accordingly infer that by the transformation (1) the
equation 7 (a)=0 is transformed into itself.

We may distinguish between two main classes of transformations
of the form (1) according as the real point at infinity is invariant
or not. The truth of the following theorem is evident:

If a linear trangformation leaves the real point at infinity invariant,
every straight line 18 transformed into a straight line and every proper
circle into a proper circle. If a linear transformation transforms the
real point at infinity into a point O and trangforms a point O’ into
the real point at infinity, any straight line is trangformed into a circle
through O, and any circle through O' is transformed into a straight line.

Since, as we have seen, the equation 7 (a)= 0 is transformed into
itself, we may write 5 (a’")=kn(a), the value of % depending on
the factor p in (1). With the same factor we have 5 (%)= k5 (d)
and 7 (a, ¥)=Fkn(a, b). Hence by (8), § 61, the angle between
two circles is equal to the angle between the two transformed
circles. The linear transformation ts therefore conformal.

66. The metrical transformation. We shall prove first that any
trangformation of the metrical group can be expressed as a linear
trangformation of tetracyclical codrdinates.

We have seen in § 45 that a transformation of the metrical group
is a linear transformation of the Cartesian cotdrdinates z and y

" together with the condition (2”*+ y™) =4 (2*+ y*). It follows from
this that the transformation can be expressed as a linear transfor-
mation of the special coordinates of § 57. But the general tetra-
cyclical coordinates are linear combinations of the special ones.
Hence the theorem is proved.

Since a metrical transformation transforms straight lines into
straight lines, it must leave the real point at infinity invariant.
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Conversely, any linear trangformation of tetracyclical codrdinates
which leaves the real point at infinity invariant 8 a trangformation of
the metrical group. This may be shown as follows:

If the real point at infinity is invariant, the locus at infinity is
transformed into itself, since it is a special circle with its center at
the real point at infinity. Therefore any linear transformation of
general tetracyclical codrdinates which leaves the real point at infinity
invariant is equivalent to a transformation of the special coordinates
of § 57, which leaves the point 1:0:0: 0 invariant and transforms
the locus z,= 0 into itself; that is, to a transformation of the form

M = au‘z 1 + anza + anz 3 + auxt’

P"Js = a’x, + auxa + anzq’ (1)
Pza, = aaxs + “ur'”a +. auxt’ ‘
pz,= z,.

Since 2+ o — 2l = B (g + 2} — 2,2, @

we have, for the coefficients, the conditions

aht ah= aht = ay=
a”a’-i; T &y = 0, (3)
a,— 2(ae,+a.2)=0,
a,—2(a,,+a,2,)=0.
Now the last three equations of (1) are equivalent to the equa-
tions in Cartesian cotdrdinates
o= @ + Y + %200
Y= az+ay+a,
and the conditions imposed on the coefficients are exactly those
necessary to make this a metrical transformation. The first equa-
tion in (1) is a consequence of the last three equations in (1) and
the condition (2). In fact, the coefficients «,, a,, «,,, and «,, may
first be determined to satisfy equations (8), the coefficients «,, and
@, may be assumed arbitrarily, and the coefficients @, «,,
and @, are then determined by (8). This, proves the theorem.
67. Inversion. Two points P and P’ are inverse with respect toa

nonspecial circle C if every circle through P and P’ is orthogonal
to C. From this it follows that if C is a straight line two inverse
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points are symmetrical with respect to that line ; that is, the straight
line PP' is perpendicular to C and bisected by it. By a limit process
it is natural to define the inverse of a point on the stmight line C
as the point itself.

IfCisa proper circle with radius » and center 4 (Flg 48), the
inverse of 4 is the real point at infinity, since the circles which
pass through 4 and the real point at infinity are straight lines

perpendicular to C. If P is not at 4

nor on C, the straight line PP’ must P ’
pass through 4, since that line is a ’

circle through P and P’ which by defi- ‘

nition must be orthogonal to C. Take
now the point M midway between P
and P’ so that

AM=} (AP +4P"),
and with M as a center construct a
circle through P and P. If R is the radius of this circle,
R=}(AP' — AP).
By squaring the last two equations and subtracting one from the
other, we have AM —R'=AP . AP
But the condition for orthogonal circles gives
R4 — AM ' 0.
Hence we have as the condition satisfied by two inverse points
with respect to a circle with radius » and center 4
AP.AP' =1 '¢))

Fic. 48

Conversely, if P and P’ are two points so placed that the line . .

PP/ passes through 4 and the condition (1) is satisfied, the line PP’
and the circle described on PP’ as a diameter are easily proved to
be orthogonal to C. Then any circle through P and P’ is orthogonal
to C by theorem IV, § 62. Hence P and P’ are inverse points.

The condition (1) shows that if one of the points P and P’ is
inside of the circle, the other is outside of it. The condition holds
also for the point 4, since if AP=0, AP'=w. By a natural
extension of the definition of inverse points, condition (1) can also
be taken to hold for a point on the circle C, so that we may say
that any point on the circle C is its own inverse.
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It is to be noticed that inverse points as here defined are also
inverse in the sense of § 58 if the circle C is a proper circle, but
the definition given in this section is wider than that in § 53, since
it holds when the circle becomes a straight line.

An inversion with respect to a nonspecial circle C is defined as
a point transformation by which each point of the plane is trans-
formed into its inverse point with respect to that circle. We shall
proceed to prove that any tnversion can be represented by a linear
trangformation of tetracyclical codrdinates. It is first of all to
be noticed that by an inversion each point of the circle C is
left unchanged by the inversion. This condition is met by the

transformation poi= e+ a3 T ®

where ch;vk= 0 is the equation of C. Now let Eb‘wi= 0 be any
circle through z; and its transformed point {. Since Zb..z'.= 0 and
Zb‘z(= 0, we have, from (2),

adb+ab+ad+ab =0 ®
If 3 b,= 0 is orthogonal to C, we have
b, )= L[5 21 45 21 5 20 g 20

10, )= [bl e, T 0ae, ¥ 00z, T 050, | = O ®

and therefore if (4) is satisfied by all values of 5, which satisfy (3),
we may place . on

a =T

oc,

It remains to determine A. For that purpose we use the con-
dition that @ (#)=0 and @ (2’)=0, and for convenience writing 4
in place of the symbol Ec,rk, we have

oAz + ad)=2Ndw(z, a) + A0 (a)=0. ‘ ®)
But o (a)= m(%%) and, by (11), § 63,

on\ _ _1 on-, 0y on on
m(ac)_lm(c)—2k[clacl+c’ +csaca+c‘ .

Hence w(a)=4k[ac + ac+agc+agcl,
. 1 0w
and since o (:) = .2_2% 5’
we have 22 = ke,
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Therefore w (2, a)= %zx‘z_‘: = %2"-‘7" = %’A,

and, from (5), A=-— % o(a)=—17(c).
We have consequently built up the transformation

0
pzi =2z (c)— '3%2 ey (O]
¢

which is an inverse transformation, since it transforms any point 2,
into a point z} such that any circle through z; and 2] is orthogonal
to C. The theorem is therefore proved. It is to be noticed that the
transformation is completely determined when the circle C is known.

68. The linear group. We are now prepared to prove the fol-
lowing proposition :

Any linear transformation by which the real point at infinity s
invariant or 8 transformed into a point not at infinity t8 the product
of an inversion and a metrical transformation.

To prove this let T be a transformation of the form

P, = @yt + &yt a7yt BT,
by means of which the relation @ ()= 0 is transformed into itself.

If the real point at infinity is invariant, the transformation is
metrical (§ 66). If the real point at infinity is transformed into a
finite point 4, let 4 be taken as the center of a circle C with respect
to which an inversion 7 is carried out. By I the point 4 goes into
the real point at infinity. Hence the product I7 leaves the point at
infinity invariant and is therefore a metrical transformation. Call
it M. Then IT=M;

whence T=1"'"M=IM.

We have written 7-'=I because an inversion repeated gives the
identical transformation, and hence an inversion is its own inverse.

The tetracyclical codrdinates are adapted to the study of the
properties of figures which are not altered by this group of linear
transformations. In the geometry of these properties the straight
line is not to be distinguished from a circle, since any point of the
plane may be transformed into the real point at infinity, and thereby
any circle may be transformed into a straight line and vice versa.
Any pencil of circles may in this way bé transformed into a pencil
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of straight lines and many properties of pencils of circles obtained
from the more evident properties of pencils of straight lines.

The distinction between special and nonspecial circles is, how-
ever, fundamental, since a circle of one of these classes is trans-
formed into a circle of the same class.

EXERCISES

1. Write formulas (6), § 67, for the special cosrdinates of § 57 and
for the orthogonal codrdinates of § 64.

2. From (6), § 67, obtain in the codrdinates of § 67 the formulas for
inversion on the circle of unit radius with its center at the origin, and
check by changing to Cartesian codrdinates.

8. Show from (6), § 67, that inversion on a fundamental circle
of a system of orthogonal codrdinates is expressed by changing the
sign of the corresponding coérdinate and leaving the other codrdinates
unchanged.

4. Prove that a plane figure is unchanged by four inversions on
four orthogonal circles.

5. Show that three inversions on orthogonal circles have the same
effect as an inversion on a fourth circle orthogonal to the three.

6. Prove that the product of two inversions is commutative when
and only when they take place with reference to orthogonal circles.

7. Show that the product of two inversions on two straight lines is
a rotation about the point of intersections of the two lines.

8. By Ex. 7 show that the product of two inversions on the circles
C, and C, can be replaced by the product of the inversions on two cir-
cles C; and C, if C] and C; pass through an intersection of C, and C,
and make the same angle with each other.

9. Consider the curye defined by the quadratic equation

E“ux@k= 0.

Show that any circle or straight line intersects the curve in four
points. If the codrdinates are the special codrdinates of § 57, classify
the curve according as (1) it does not pass through the real point at
infinity, (2) it passes once through the real point at infinity, (3) it
passes twice through the real point at infinity. Obtain the Cartesian
equation for each of the classes and note the relation of the curve to
the circular points at infinity. Note that the above classification is
unessential from the standpoint of the linear group of tetracyclical
transformations. :
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69. Duals of tetracyclical coordinates. By anticipating a little of
the discussion of space geometry, to be given later, we may obtain
duals to the tetracyclical coordinates. The student to whom space
geometry is unknown may postpone the reading of this section.

If we interpret the ratios z,:z,:2,:z, as quadriplanar point
coordinates in space of three dimensions, then

(2)=0 )
is a surface of second order, and the geometry on this surface is
dualistic with the geometry in the plane obtained by the use of
tetracyclical co6rdinates.

The linear equation 2“1‘”‘=0 represents the plane section of
the surface (1), and these sections are the duals of the circles in
the plane. The point at infinity is a point on (1) not necessarily
geometrically peculiar, and the straight lines in the tetracyclical
plane are duals to the plane sections of (1) through this point.

More specifically let us consider the specialized coordinates of
§ 57 and place in space z,:z,:z,:z,=2:2:y:t, the usual homoge-
neous Cartesian codrdinates. The fundamental equation is now
the equation P4 yP—at=0,

which, in space, represents an elliptic paraboloid. We have, then,
the following dualistic properties:

The tetracyclical plane The elliptic paraboloid

The real point at infinity. The point at infinity on 0Z.

Any circle. Any plane section.

Any proper circle. An elliptic section made by a
plane not parallel to 0Z.

Any straight line. A parabolic section made by a
plane parallel to 0Z.

A special circle. A section made by a tangent

' plane.

A point circle. A section made by a tangent
plane not parallel to 0Z.

The center of a point circle. The point of tangency.

A special straight line. A section made by a tangent
plane parallel to 0Z (a minimum
plane).

The special line at infinity. The section made by the plane

at infinity.
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Again, if we have tetracyclical coordinates for which the funda-

mental equation is 234 i zi— =0,

which can be obtained from the special orthogonal system given
in § 64 by multiplying 2, by ¢, the geometry obtained thereby is
dualistic with the geometry on the surface of the sphere

’ 2+ y+2=1

In this case the tetracyclical point at infinity is dualistic to the
point &, where the sphere is cut by 0Z. Circles on the tetracyclical
plane are dualistic to circles on the sphere, the straight lines on
the plane corresponding to circles through the point N on the
\sphere. This brings into clear light the absolute equivalence of a
straight line and circle by the use of tetracyclical coordinates. In
fact, the plane geometry on the tetracyclical plane is the stereo-
graphic projection of the spherical geometry.

"~ To see this take the sphere whose equation is
2+ y'+2=1,

and let & (0, 0, 1) be a fixed point on it and P (&, 9, {) any point
on it. The equation of the straight line NP is '

z_y_z2-—1

E g -1
and this line intersects the plane z=0 in a point @ with the
codrdinates I3 )

r=_——

i-¢ YTi-¢

From these equations and the equation ¥+ *+ ¢*=1, which
expresses the fact that P is on the sphere, we may compute

f=_ 22 ., .- %2y L 2yl
Z?+ P +1 2?2+ y'+1 2+ y'+1
from which, by placing
£=3 g3 a3,
we have pr, =2+ y'—1,
pzr,= 22,
pr,=2y,

pz,= 2+ y+1
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Now, on the one hand, z : z,: z,: z, are homogeneous Cartesian
coordinates of a point on the sphere, and, on the other hand, they are
tetracyclical codrdinates of a point on the plane, being connected
with the specialized codrdinates of § 57 by the equations

pr.=z— 7, pr,=2z, pr,=2z, pr,=z,+7,

where z]: z}: z}: z] are the special coordinates. '
From this relation we may read off the following dualistic

properties:
Plane

Any point of the plane.
The point at infinity.
Any circle.

A straight line.

A special circle.

A point circle.

The center of a point circle.

A special straight line.

The center of a special straight
line.

The special line at infinity.

Parallel lines.

Sphere

Any point on the sphere.

The point N.

A circle (any plane section).

A circle through N.

A section made by a tangent
plane.

A section made by a tangent
plane not passing through N.

The point of tangency of the
tangent plane.

A tangent
through N.

A point on the plane 2 =1 not
coincident with N.

The section made by the plane
z =1 (a tangent plane).

Circles tangent to each other
at N.

plane passing



CHAPTER X
. A SPECIAL SYSTEM OF COORDINATES

70. The codrdinate system. Each of the two coordinates z and y
in a Cartesian system is of the type described in § 7 for the cotrdi-
nate of a point on a line. An interesting example of a more general
type of codrdinates may be obtained by taking each of the coirdi-
nates in the manner described in § 8. We shall develop a little of
the geometry obtained. The results will be of importance chiefly as
showing that much of the ordinary
conventions as to points at infinity
and the ordinary eclassification of
curves is dependent on the choice B
of the coordinate system. This fact
has already come to light in the
use of tetracyclical coordinates. The
present chapter emphasizes the fact.

To obtain our system of cobrdi-
nates take two axes OX and OY
(Fig. 49) intersecting in O at right
angles, and on each axis take besides O another point of refer-
ence, 4 on OX and B on OY. Then, if P is any point of the plane,
to obtain the codrdinates of P draw through P a parallel to 0Y
meeting OX in M, and a parallel to OX meeting OY in N. Let the
coordinates of M be defined as in § 8 by

k OM =z

Y

4

(2] M A

Fia. 49

and those of N by p= T 9

The codrdinates of P may then be taken as (A, u) or otherwise
written as (z,:z,, y,:9,)- It is clear from § 8 that the ordinary
Cartesian cobrdinates are a limiting case of these codrdinates as 4

and B recede to infinity.
164
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The codrdinates being thus defined for real points the usual ex-
tension is made to imaginary points as defined by imaginary values
of the codrdinates. To consider the locus at infinity let P recede
indefinitely from O. This may happen in three ways:

1. P may move on a straight line parallel to OX. Then the ratio
z,: z, approaches the limiting ratio %,: k,, and the ratio g, : y, has
the constant value determined by any point on the straight line.

2. P may move on a straight line parallel to OY. Then z,: z, has
the constant value determined by a point on that line, and % Ys
approaches the limiting value %, : ,.

3. P may move on a stralght lme not parallel to OX or OY.
Then M and N each approaches the point at infinity on its respec-
tive axis, and therefore the ratio z,: z, approaches % : %, and the
ratio y,: y, approaches k,: k,.

These are the only points which we recognize as at infinity. In
other words, if P recedes indefinitely from O it will not be con-
sidered as approaching a definite point at infinity unless the point
on the curve approaches as a limit a point on a straight line. We
have, then, the proposition

All points at infinity have codrdinates which satisfy the equation
(kg — k) (ky,—ky, D= 0. @

To define the nature of the locus at infinity we note first that
an equation of the type

ez, +az,=0, )
if satisfied by real points, represents a straight line parallel to OX;
and the equation ay+ay,=0, )

if satisfied by real points, represents a line parallel to 0Y. With
the usual extension of theorems in analytic geometry we say that
these equations always represent lines parallel respectively to OX
and OY. We must therefore say that equation (1) represents two
straight lines which have the point (: %, k,: £,) in common. We
have, then, the proposition

The locus at infinity consists of two straight lines having in common
a point called the double point at infinity.

The foregoing discussion shows that an important distinction
between lines which are parallel either to OX or to OY and lines
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which are not so parallel. The straight lines which are parallel to
OX or OY we shall call special lines and divide them into two fam-
ilies of parallel lines. Lines which are not special we shall call
ordinary lines. We have already seen that a special line has a
point at infinity which is peculiar to itself and that all ordinary
lines have the same point at infinity ; namely, the double point
at infinity. We may accordingly state the following theorems, the
proofs of which are obvious:

I. Two special lines of the same family have no point in common.

II. Two special lines of different families, or a special line and an
ordinary line, have only one point in common which lies n the finite
region of the plane.

III. Two mnonparallel ordinary lines have always the double point
at infinity and onme other finite point in common.

IV. Two parallel ordinary lines have only the double point at
infinity in common.

71. The straight line and the equilateral hyperbola. From the

¢
equations pz, =k - OM, T
pr,=k, - AM, B
which define the cordinates, we may _P
obtain E c o’
plkg,—kz)="Fkk, - OA=Fkka;
k.
h oM=_2%
whence P | 5 o X
Similarly, ON = —*L__. 1G.
v ky,—k;y,

Now let C (Fig. 50) be a fixed point with coordinates
(a;:a,, B,:8,), let CD be the line through C parallel to 0, and
let CE be the line through C parallel to OX. Then, if the line P¥
meets CE in M’ and the line PN meets CD in N’, we have

k, ak.a AT — AT
OM'= OM—0D =255 _ % _ BB 8T
ko, — bz, ke, —ke, ‘kz,—ka,
ON'= ON—oOE=— % ___ kB, __ By—Bgs

| kg = ks kB~ kB, kg~ kg,
where ¢, and ¢, are constants dependent upon the position of C.
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Consider now a locus defined by the condition '

%1- = const.
CN'

This locus is obviously & straight line through C, and its equation
is of the form '

(az,— az) (klyl— ksya) - a(Ba’ll—Blya) (kdzl_ klx3)= 0, (1)
where a is a constant.
Conversely, any equation of the form (1) in which a is not zero

or infinity, and % ak’,:: g’ * ——, represents an ordinary straight
1
line. For (a,:a,, B,:8,) fixes a pomt C, and the equation is equiva-
lent to %: const. If a is zero, or infinity, or Z—':'— kl » O %= Iki:,
the equation is factorable and represents two special lines, one at
least of which is at infinity.
Again, consider the locus of P defined by the equation

CM' . CN'= const.

This locus is an equilaﬁeml hyperbola with two special lines as
asymptotes. We shall call it a special hyperbola. Its equation is

(agx1_ axzz) (Bayx_ﬁlya) —a (kszl_ klzg) (kyyl— kayl):: 0. (2)
Conversely, any equation of the form (2) in which a is not zero

or infinity, and a’#:k B 2 ‘, represents a special hyperbola.

ke B K
For (a;: a,, B,: BI) fixes & point C, and the equa.tion is equivalent
to CM' . CN'=const. If a is zero, or infinity, or B, o é’ = E‘,
@, B, k

equation (2) can be factored and represents two specml lines.

It is to be noticed that equation (1) is satisfied by the coordinates
of the double point at infinity and that equation (2) is not.

72. The bilinear equation. Equations (1) and (2) of § 71 are of
the form

4zy,+ Bry,+ Cry+ Dry,=0, @

which is a bilinear equation in z,: z, and y,: y,.

We shall now assume equation (1) and examine it in order to see
if it is always of one of the-types of § 71.
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In the first place it is easy to show that the necessary and suffi-
cient condition that (1) should factor into the form
(az,+bz) (ey,+fy)=0
is that 4D —BC=0. Furthermore, the necessary and sufficient
condition that (1) should be satisfied by the coordinates of the
double point at infinity is
Ak k,+ Bk k,+ Ck f,+ Dkk,= 0. .

We shall denote the left-hand member of this equation by K and
make four cases aceording to the vanishing or nonvanishing of the
two quantities K and 4D — BC.

Case . AD—BC+# 0, K+ 0. The equation cannot be factored
and the locus does not pass through the double point at infinity.
Therefore it cannot be of the type (1), § 71. It will be of the
form (2), § 71, however, if we can find a,, a,, 8,, }3,, and a to satisfy
the equations a,B,— akk,= pA,

—apf + akk,= pB,
- axlsn'l' ak1k4= PG
a B, — akk,= pD.
These equations can be solved by taking
a,= Ck,+ Dk,
a,=— (4k,+ Bk),
ﬁl= Bk‘-l-Dk.,
B,=—(4k,+ Ck),
a=BC—AD.

Hence equation (1) represents a special hyperbola.

Case II. AD—BC +# 0, K=0. The equation cannot be factored
and the locus passes through the double point at infinity. We shall
compare the equation with (1), § 71. The locus of the equation
under consideration intersects OX in the point (D:—B, 0:1),
which we will take as (a,: a,, B8,: 8,). Using these values in 1),
§ 71, and comparing with (1) of this section, we have

. —Bk,— ak,= pA,
Bk,= pB,

— Dk,+ ak,=pC,
Dk,= pD,
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Bk, + Ak, _ Dk, + Ck,
—k, k,

K=0. Since 4D —BC +# 0, a cannot be zero. ‘
Therefore the locus represents an ordinary straight line.

Case III. AD—-BC=0, K#0. The equation is factorable
into the equations of two special lines, one of each family. Neither
line can be at infinity since the locus does not pass through the -
double point at infinity.

CAse IV. AD—-BC=0, K=0. The equation is factorable into
the equations of two special lines, one of each family. At least one
of these lines must be at infinity since the locus passes through the
double point at infinity.

If we call a singular bilinear locus one defined by the equation (1)
when AD — BC =0, and a nonsingular bilinear locus one defined.
by (1) when 4D — BC # 0, we have the following result:

A nonsingular bilinear locus is a special hyperbola or an ordinary
straight line according as it does not or does pass through the double
point at infinity.

A singular bilinear locus consists of two special lines, one of each
SJamily, where one or both of the lines may be a line at infinity.

whence a=

» these values agreeing, since

73. The bilinear transformation. Consider the transformation

pi= &7, + B2y,
P“%:.'lex"' 8,7, S Bﬂl =0
%= &Y, +BiYy
oY= Y% + 8%;.
This defines a one-to-one relation between the points (z,:z,, y,:3,)
and the points (z]: 3, ¥{: y;). The following properties are evident :
I. Any special line is transformed into a special line of the same
family and any singular bilinear locus into a singular bilinear locus.
II.. The lines at infinity may remain fixed or be transformed
into any two special lines.
III. The point at infinity may be fixed or be transformed into
any other point either at infinity or in the finite part of the plane.
IV. If the double point at infinity is fixed, ordinary straight
lines are transformed into ordinary straight lines and special
hyperbolas into special hyperbolas.

(a:QS’— Bﬂs * 0)
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. V. If the double point at infinity is transformed into a finite
point 4 and the finite point B is transformed into the double point
at infinity, any ordinary line is transformed into a special hyperbola
through 4, and any special hyperbola through B is transformed into
an ordinary straight line. The line 4B is transformed into itself.

EXERCISES

1. Show that the cross ratio of the four points in which a special
line meets four special lines of the other family is unaltered by the
bilinear transformation.

. 2. Study the transformation pzi=1y,, pxi=1y,, oyi=2,, oyi=uz,
and also the transformation obtained as the product of this and the
"bilinear transformation of the text.

8. Given in space the hyperboloid #*+4 y*— 2?=1 and A and u defined
by the equations

A= -2z 1+y xT—2z 1—y

1—y a;+z k= 1+y z+z

Note that (A, x) are coordinates of a point on the hyperboloid and
name the essential features of a geometry on the hyperboloid which
is dualistic to the geometry in the plane discussed in this chapter.
Generalize by replacing the hyperboloid by any quadric surface.
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PART III. THREE-DIMENSIONAL GEOMETRY

CHAPTER XI
CIRCLE COORDINATES

74. Elementary circle coordinates. As the first example of a
geometric element determined by three codrdinates, thus leading to
a three-dimensional geometry, we will take the circle. If we con-
sider a real proper circle with the radius » and with its center at
the point (%, k) in Cartesian coordinates, we might take the three
quantities (%, k, r) as the coordinates of the circle. It is more
general, however, to take the Cartesian equation

4P+ 9D+ a2 +ay+a=0 ®
as the definition of the circle and to take the ratios a,: a,: a,: a, as
its coordinates. The circle may then be of any of the types specified
in § 569. If it is a real proper circle the coordinates are essentially
the same as (&, %, 7).
We may also take the equation in tetracyclical codrdinates z;,
vz, +ur +uz,+ugz,=0, ©))
and take the ratios u, : u : u ; u, as the codrdinates of the circle. If
the point coordinates z; are the special cordinates of § 57, the circle
coordinates u; obtained from equation (2) are the same as the
coordinates @; obtained from equation (1), but in general no sim-
plification is introduced by the use of the special coordinates. In
fact, it is in many cases simpler to assume that the point co6rdinates
z, in equation (2) are orthogonal. ’
Unless it is otherwise explicitly stated we shall assume in the
following that z; are orthogonal tetracyclical point codrdinates
connected by the relation :

w(@)=a}+ 2]+ 2{ +2}=0. )
Then the condition that equation (2) shall represent a special
circle is 7 (W)= ul+ ui+ ud +ul=0. @

171
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Asshown in § 68 the equation of a special circle with the center

Yo 18 oy 2)=yz,+y2,+y25+92=0, ®)
where, of course, y; satisfy the fundamental relation (8).

Hence, if (2) is a special circle the coefficients u, are exactly the
coordinates of its center. Because of the importance of this result
we repeat it in a theorem:

L. If «; are orthogonal tetracyclical point covrdinates and u, are circle
- codrdinates based upon them, then the circle codrdinates of a special
circle are the point coordinates of the center of the circle.

Two circles with the codrdinates v, and w, are orthogonal when
(v w)=vw +vw,+ vw,+ v,w, = 0. ©)
From this we may deduce the following theorems:
II. A linear equation .
au +au,+ au + au =0 ©)

in circle coordinates defines a linear circle complex which is composed
of all circles orthogonal to a base circle a,: a,: a,: a,.

For equation (7) is simply equation (6) with v, replaced by the
constants e, and with w, replaced by the variables «,.

The complex contains special circles whose centers are the points
of the base circle.

When the base circle is a special circle the complex is called a
spectal complex. It consists of all circles through the center of the
base circle, and the condition for it is

al+ ai+ al+ al=0.
If a,are the codrdinates of the real point at infinity, equation (7)

defines a special complex consisting of all the straight lines of
the plane.

II. If two circles belong to a linear complex, all circles of the pencil
defined by the two belong to the complez.

The proof of this theorem is left to the student.

IV. Two simultaneous linear equations '

au +au+au+au = 0,
bu +bu +bu+du =0
define a linear congruence, which consists of a pencil of circles.
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To prove this, note that the congruence consists of all circles
which belong to the two complexes Za‘u,.= 0 and zb‘u‘= 0. These
circles are also common to all complexes of the pencil of complexes

2 (@;+2b) u,= 0, ®

and is defined by any two complexes of this pencil. But the pencil
(8) contains two special complexes given by the values of A which
satisfy the equation

(a,+20)*+ (a,+ b))’ + (a,+ Ab)*'+(a,+2b)*'=0.  (9)

If the bases of the two special complexes are distinct, the con-
gruence consists of all circles through two points and is therefore
a pencil of circles.

If the bases of the two special complexes coincide, equation
(9) has equal roots. We may without loss of generality assume
Ea‘u,= 0 to be the special complex of the pencil. Then 2a{= 0,
and since (9) has equal roots ¥ ab,=0; that is, the point g, is on
the circle 5,. Hence the congruence consists of all circles which
pass through a fixed point on a circle and are orthogonal to that
circle. They accordingly form a pencil of tangent circles.

75. The quadratic circle complex. The equation

an'“‘ub;' 0 (0= a) @

defines a quadratic circle complex.

Let v; and w, be any two circles. Then pu,= v‘+ Aw, is any circle
of the pencil defined by v, and w,, and belongs to the complex (1)
when A satisfies the equation

Zaav‘vk+ 2 xza,.,,v,.w,+ x’za“w‘wk= 0. ()
Hence we have the following theorem :

L. The quadratic complex contains two distinct or coincident circles
Sfrom any pencil of circles unless all circles of the pencil belong to the
complezx.

Now let v, be a circle of the complex (1). Then one root of (2)
is zero, and two roots will be zero when

Ea‘&v‘w&= 0. ®
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Equation (3) will be satisfied by all values of w, when v, satis-
4 .
es the equations a0+ am+a v+ ap=0,

anvl + anv: + azava + auvo"—_ O’

au”x + a'uvz + auva+ auvs = 0’

auvl + amvz + auvl + a«va = 0’

©)

and any v; which satisfy these equations will also satisfy (1) and
hence be the coordinates of a circle of the complex. Therefore

II. Any circle whose codrdinates v, satisfy equations (4) will be a
circle of the complex such that any pencil of circles which contains v,
and does not lie entirely on the complex will have only v, tn common
with the complex.

Such a circle is called a double circle of the complex. A double
circle does not always exist in a given complex, however, for the
necessary and sufficient condition that equations (4) should have
a solution is that the determinant of the coefficients should vanish.
A complex that contains a double circle is called a singular complex.

If in equation(2) v, is the double circle of a singular complex and
w, any other circle of the complex, the equation is identically satis-
fied. Hence we have the following theorem :

III. In a singular complex the pencil of circles defined by the double
aircle and any other pencil of the complex lies entirely in the complez.

We shall now proceed to find the locus of the centers of the
special circles of the quadratic complex. The special circles have
coordinates », which satisfy simultaneously equation (1) and also
the equation for a special circle

i+ ul+ ug+ui=0. o)
The circle coordinates are also (theorem I, § 74) the point cobr-
dinates of the centers of the special circles. These codrdinates
define a one-dimensional extent. Therefore the locus of the centers
of the special circles of the complex is a curve, which is called a
eyclic or a bicircular curve (see Ex. 9, § 68).
" The cotrdinates u, which satisfy simultaneously (1) and (5) will
also satisfy the equation

Ea,}u,.u,,+ A(ug+ug+ug+u)=0 ()
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for all values of A, and any equation of the form (6) may replace
(1) in the definition of the locus sought. But among the com-
plexes defined by (6) there are in general four singular complexes
corresponding to the values of A defined by the equation

ay— A M @y ay

a, a,—\ a, @, -0
| %s Tos Gy — A @y, )

a, a, a, a,— A\

Hence we have the following theorem :

IV. The cyclic is in general the locus of the centers of the special
circles of any one of four singular complexes.

Take C, any one of these singular complexes, and consider
the straight lines belonging to the complex C. Their codrdinates
satisfy a linear equation

cu, + cu+ cu+ cu, = 0,
where ¢; are the coordinates of the real point at infinity. Conse-
quently the straight lines form a one-dimensional extent, and by
theorem I any pencil of straight lines contains two of the lines of
this extent. Consequently the lines of the complex C envelop a
conic, which we shall call T

Now let D be the double circle of C, and 7 any straight line of
C; that is, any tangent line to I'. The pencil defined by D and T
belongs entirely to C, and consequently the two centers of the two
point circles of this pencil are points of the cyclic. Furthermore,
all points of the cyclic can be obtained in this way, since a point
of the cyclic and the circle D will determine a pencil of circles
belonging to C and containing a line 7. Hence we may say:

V. A cyclic can be defined (and in general in four ways) as the
locus of the centers of the point circles of the pencils of circles defined
by a fized circle D and the tangent lines to a fized conic T.

Take R and B, two points on the conic I', and with B and E as
centers construct two circles ¢ and ¢/ orthogonal to D. The circles
¢ and ¢ determine a pencil of circles orthogonal to D and to the
chord EE. Hence, by theorem V, § 62, if 4 and 4’ are the points
of intersection of ¢ and ¢/, 4 and 4’ are the centers of the point
circles of the pencil of circles defined by D and the chord RE.
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Now let E approach £ as a limit. The points 4 and 4’ approach
M and M’ respectlvely, two points on the envelope of the circles c.
At the same time 4 and A4’ approach as limits the centers of the
point circles in the pencil of circles defined by .D and the tangent
to the conic I. Hence we have the following theorem :

VI. A cyclic can be generated as the envelope of a family of circles
whose centers are on a given conic I' and which are orthogonal to a given
circle D. Each circle of the family s doubly tangent to the cyclic.

This generation of the cyclic can in general be made in four
ways, since, as we have seen, the cyclic can be obtained from the
point circles of four singular complexes. The cyclic curves have
been exhaustively studied both with the use of Cartesian cobrdi-
nates and with the use of tetracyclical coordinates, but a further
discussion of their properties would require too much space for
this book.

EXERCISES

1. Given the equation » ajuu, = 0, consider the polar equation

agvay = 0. This assigns to any circle a definite linear complex.
Discuss this on the analogy of polar lines with respect to a curve
of second order in the plane, defining tangent complexes, self-polar
systems of complexes, and the reduction of the orlgma.l equation to a
standard form.

2. Prove that if a quadratic complex contains more than one double
circle it contains at least a pencil of double circles and degenerates
into two linear complexes or a single linear complex taken double. In
the former case show that each circle of the pencil common to the two
complexes is a double circle of the quadratic complex.

8. If a quadratic complex degenerates into two linear complexes,
show that the cyclic defined by it degenerates into two circles.

4. Show that any circle in a nonsingular quadratic complex belongs
to two pencils which lie entirely in the complex. Hence show that any
quadratic complex is made up of two families of pencils such that any
circle of the complex belongs to one of each of the families. Show that
two pencils of the same families never have a circle in common and
that any pencil of one family contains one circle of each pencil of the
other family.

5. Show that the following curves are special cases of cyclics: the
ovals of Descartes, the ovals of Cassini, the cissoid, the lemniscate,
the inverse and the pedal curves of conics.
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76. Higher circle coordinates. In addition to the four quantities
%, u, u, u, used in the foregoing sections, we shall now introduce
a fifth quantity w,, defined by the relation '

w+ug+ u + ul+ uf=0. @

If the point codrdinates z; used in defining the elementary circle
coordinates u; were not orthogonal, we should define u, by the

equation () + u2=0,

of which (1) is a special case. We may also, if we wish, replace
the five quantities u, by five independent linear combinations of
them, by virtue of which equation (1) would be transformed into
a more general quadratic equation, so that we may say the higher
circle codrdinates in their most general form consist of the ratios of
Jive variables connected by a fundamental quadratic relation

E(w)= 2 azuu, = 0.

We shall continue to use the orthogonal form for simplicity of
treatment.

As shown in § 59 the vanishing of the codrdinate u, is the neces-
sary and sufficient condition that the circle should be special. In
this case the circle is completely determined by the four codrdi-
nates u, %, %, w,. So, in general, the center and the radius of a
circle are fully determined by means of the first four cotrdinates,
u, U, %, u,; that is, the circle is completely determined in the
elementary sense. The absolute value of «, is then determined, but
its sign is not fixed.

It is necessary, then, to distinguish between two circles which are
alike in the elementary sense but differ in the sign of the coordi-
nate u,. This may be done by noting that any nonspecial circle,
whether a proper circle or a straight line, divides the plane into two
portions, and by considering a circle with a fixed u, as the boundary
of one of these portions and the circle with a codrdinate u, of
opposite sign as the boundary of the other portion. The same result
may be obtained by considering the circle described in opposite
directions, with the agreement, perhaps, that the circle shall be
considered as bounding that portion of the plane which lies on the
left hand in describing the circle.
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If z, are the orthogonal coordinates described in detail in § 64,
that is, if we introduce Cartesian codrdinates so that

Pz1=x’+-'f_1’ p$’=2$, Pz|=2y’ pz‘=—i(:t’+ y"*'l)’
it is easy to compute that the radius of the circle #, is equal to

&_ﬂﬁi;_. Hence to fix a sign of u, is equivalent to fixing the sign
'oi! the‘radius. We may agree that the sign of the radius is to be
considered positive when the center of the circle lies in the area
bounded by the circle and that the sign of the radius is to be
taken as negative when the center lies in the part of the plane not
bounded by the circle.

The angle between two circles %, and v, is now defined without
ambiguity by the formula ‘
ulvl+ u’vl+ uivl+ ulvl

ulvl

or uw, + uy, + U+ uw,+ uyv cos 6 = 0. @

cos 0 =—

To change the sign of u; but not of v, is to change the angle 8
into its supplementary angle.

If the circles u, and v, are real and the codrdinates are those of
§ 64, it is not difficult to see that the angle 8 is the angle between
the two normals drawn each into the region of the plane which
each circle bounds.

If either of the two circles is special, @ is either infinite or in-
determinant. In particular, if v, is a special circle and w; is not,
we have cos @ =o when the center of v, does not lie on u, and

cos 6 =g when the center of v, lies on »,. Hence we may say:

A special circle makes any angle with a circle on which its center lies.

Two circles are orthogonal when 6 = (2% +1)é—r + The necessary
and sufficient condition for this is :

up +uy + uy, +uw,=0. . ©))

Two circles are tangent when § = 0. The necessary and sufficient

condition for this is

ulvl + uxv:'l' us”a+ u4v4+ usvs =0. (4)

- It is to be noted that two circles are not defined as tangent when

0 =m. If the circles are real proper circles they are tangent only
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when they are tangent in the elementary sense and the interior of
one lies in the interior of the other.
Consider the equation
au +au,+ ey, + au,+ au,=0 ()
in the higher circle codrdinates. This is equivalent to equation (2)
if we place
a=v, a=v, a=v, a=v, a=~uv,c08,
together with the condition
vi+vi+ovi+vi4+vi=0.
These equations are just sufficient to determine v, and cos §. Hence
the higher circle complex consists of circles cutting a fived circle under
a fized angle. '
If a,= 0 the higher circle complex becomes the elementary com-
plex consisting of circles orthogonal to a base circle.
The circle complex (5) is called a special complex when
al+ al+al+al+al=0.
In that case § =0 and the equation may be identified with (4).
Hence a special complex in the higher codrdinates consists of circles
tangent to a fized circle.
Two simultaneous equations
au +au +au,+au + au,=0,
bu +bu +du,+du +dbu =0
define a higher circle congruence. Circles which satisfy these two
equations also satisfy any equation of the form

E(“¢+ Ab)u= 0,
but among the complexes defined by this last equation are two
special complexes. Hence a higher circle congruence consists of all
circles tangent to two fixed circles.

EXERCISES

1. What is the configuration of the higher circle congruence if the
two special complexes coincide ?

2. Show that if «; are orthogonal tetracyclical coordinates, the circle
codrdinates w,, u,, u,, u, are proportional to the cosines of the angles
which the circle %; makes with the coérdinate circles.

3. Describe the complexes defined by each of the equations ;= 0.



CHAPTER XII

POINT AND PLANE COORDINATES

77. Cartesian point codrdinates. Let OX, 0Y, 0Z (Fig. 51) be
three axes of coordinates, which we take for convenience as mutu-
ally orthogonal. Then, if P is any point in space, and PL, PH,
PN are the perpendiculars to the three Y

planes determined by the axes, the N

lengths of these perpendiculars with a
proper convention as to signs are the 7
_ rectangular Cartesian coordinates of P.
That is, we place 1) X
z=MP, y=LP, z=NP, (1)
L
where MP, LP, and NP are positive if %
Fia. 51

measured in the directions 0X, 0Y, and
0Z respectively, and negative if measured in the opposite directions.
The codrdinates may be made homogeneous by placing

up=% rp=Y, nwp=% )
t t t
and taking the ratios z: y:z:¢ as the codrdinates of P.

To any point P corresponds then a real set of ratios, and to any
set of real ratios in which ¢ is not zero corresponds a real point P.
The relation between point and codrdinates is then made one to
one by the following conventions: (1) the ratios 0:0:0:0 are
not allowable; (2) complex values of the ratios define an imag-
inary point; (38) ratios in which ¢ =0 but z:y:2z are determinate
define a point at infinity. In fact, as ¢ approaches zero P recedes.
indefinitely from O.

If a point is not at infinity we may, if we choose, place ¢=1
in (2), thus reducing the homogeneous coordinates to the non-
homogeneous ones. Again, nonhomogeneous codrdinates are easily

made homogeneous by dividing by ¢. Accordingly we shall use
180
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the two kinds side by side, passing from one to the other as
convenience dictates. :

A more general system of Cartesian coordinates may be defined
by dropping the assumption that the axes 0X, 0¥, 0Z (Fig. 51)
are mutually orthogonal, and drawing the lines MP, LP, NP
parallel to the axes. The codrdinates are then called oblique. They
may be made homogeneous by the same device as that used in the
case of rectangular codrdinates.

Throughout this book the axes will be assumed as rectangular
unless the contrary is explicitly stated.

78. Distance. Let E and E be two real points with the cotrdi-
nates (2, ¥,, 2,) and (z,, ¥,, 2,) respectively, and let a rectangular
parallelepiped be constructed on EF, as a diagonal, with its edges
parallel to the codrdinate axes. Then, if ER, RS, and SE are three
consecutive edges of the parallelepiped, it is evident that

BR=z,—z, RS=y,—y, SE=z—z, @
Hence the distance ER is given by the equation
BE =V (#,— 2)'+ (%:— D'+ (5 —2)% &)

or, written in homogeneous codrdinates,

PEB= ‘/(xstl — 2,8,)" + (Yot — Yits) " + (2t — zlt,)’. . ®
12 tlts

This formula has been proved for real points only. It is now
taken as the definition of the distance between all points of what-
ever nature. From the definition we obtain at once the following
propositions :

L. The distance between two points neither of which is at infinity is
finite.

II. The distance between a point at infinity and a point not at infinity
18 infinite, unless the point at infinity has codrdinates which satisfy
the conditions P+ yP+8=0, t=0. NG
In the latter case the distance between the point at infinity and any
point not at infinity 18 indeterminate.

The points whose codrdinates satisfy equations (4) form a one-
dimensional extent called the circle at infinity. The reason for the
use of the word “circle” will appear later.

»



182 THREE-DIMENSIONAL GEOMETRY
4
If in equation (2) we replace the coordinates of B by those of a

fixed point C (z, y,, 2,) and the codrdinates of E by those of a
variable point P (z, y, z), while keeping CP equal to a constant r,

we obtain (:E _ xo)’+ (y _ y0)2+ (z _ zo)z_: ‘I", (5)
which defines the locus of a point at a constant distance from a

fixed point. This locus is by definition a sphere.
Equation (5) may be written in the form

A(Z+ 9+ 2) + Bat + Cyt + Det + B = 0, ®)
where e e e s
2,1 9,12, t,=B:C:D: — 24, APt -ZA’— AE o

If the center C and the radius r are finite, the coefficient A is not
zero. Conversely, any equation of the form (6) in which 4 is not
zero defines a sphere, the radius and the center of which are given
by (7). More generally it is possible to define a sphere as the
locus of any equation of the form (6). In case 4= 0 the center is
at infinity, the radius is infinite or indeterminate, and the equa-
tion splits into the two equations ¢ =0 and Bz + Cy + Dz + Et=0.
These cases of the sphere will be discussed in detail in § 118. In the
present section we shall consider only the case in which 4+ 0 and
the sphere conforms more nearly to the elementary definition, and
its equation may then be put in the form (5).

The radius, however, may be real, imaginary, or zero. If the
radius is zero, the equation takes the form

(z— xo)z +(@ - yo)2+(z - zo)2= 0, (8)
and the sphere is called a null sphere or a point sphere.

It is obvious that if (z,, y,, 2,) is a real point, equation (8) is
satisfied by the codrdinates of no other real point. There exist,
however, a doubly infinite set of imaginary points which satisfy
equation (8). :

79. The straight line. A straight line is by definition the one-
dimensional extent of points whose codrdinates satisfy equations

of the form Pz =12,+ Az, .
pz =2z + Az, .

pt =t + AL,
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where (z,:y,:2,:t) and (z,: y,:2,:t,) are the codrdinates of two
fixed points and A is a variable parameter.
From the definition we may draw the following conclusions:

I. Any two distinct points determine a straight line, and any two
distinct points on the line may be used to determine .

The first part of this theorem is obvious. To prove the second
part let B be a point on the line (1) determined by A =, and let
B, be another point on the line determined by A =X,. Let o be

a quantity defined by the relation x—%h= A. Then the first
equation in (1) may be written to

Pz____xl'*- Az + o (24 M7y)
140
or 7T = 2, + M7, + o (2, + \3,),

and similar equations can be found for y, 2, and ¢. But these are
the equations of a straight line defined by B and B, which is
thus shown to be identical to that defined by (z:y,:2,:¢) and
(2,2 4,2 2,2 L)

II. A straight line contains a single point at infinity unless it lies
entirely at infinity.

If, in equations (1), ¢,= 0 and ¢,= 0, then ¢ = 0 for all values of A.
Otherwise ¢ =0 only when A =— i—‘: which determines on the line

the single point at infinity (zt,— z:t‘: yt,— Yt 2t,—2t:0) This
proves the theorem. Straight lines which lie at infinity are some-
times called tmproper straight lines; other lines are called proper
straight lines.

II. If two points of a straight line are real, the line contains an
infinity of real points. .

This follows from the fact that if the two real points are used to
determine the equations (1), any real value of A gives a real point
on the line. Such lines are called real lines, although it should not
be forgotten that they contain an infinity of imaginary points also.

If a real line is also a proper line we may put ¢, ¢,, and ¢ equal
to unity in equations (1) and write the equations of the line in

the form T—7_y—u _2—2 @

L=, Y2~ Y% A2
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From this and equations (1), § 78, it is not difficult to show
that the real points of a real proper line form a straight line in the
elementary sense.

IV. An imaginary strazght line may contain one real point or no
real point.

To prove this it is only necessary to give an example of each
kind. The line defined by the two points (1:1:1:1) and (1:0:¢:1)
contains the first point and no other real point, while the line
defined by (1:7:¢:1) and (1:0:¢:1) contains no real point.
These statements may be verified by using the given points in
equations (1) and examining the values of A necessary to give a
real point on the line.

An imaginary line which contains no real point may be called
completely imaginary, one with a single real point ¢ncompletely
tmaginary. _

V. If the distance between two points on a straight line is zero, the
distance between any other two pointe of the line s zero.

To prove this we may use the codrdinates of the points between
which the distance is zero for the fixed points in equation (1).
Then, if B and E are two points determined by A=A and A=},
respectively, we may compute the distance BF by formula (3),
§ 78. There results
PP A — N
A= (t1+>~(lt,)’(tl+>~,t,)*[ (@4—28) (49, (3t —28) =0

A straight line with the above property is called a minimum line.
Such lines have already been met in the plane geometry. Concern-
ing the minimum lines in space we have the following theorems:

VI. A minimum line meets the plane at infinity in the circle at
infinity, and, conversely, any line not at infinity which intersects the
circle at infinity 18 a minimum line.

From the proof of theorem II the necessary and sufficient con-
dition that a line meet the circle at infinity is

(xitl— zlts)2+ (-'/s 1 -’/lt:)""(z l—2 ts) =0,
which is also the necessary and sufficient condition that the two
points (z,:9,:2,;:¢,) and .(z,: y,: 2,:¢,) should be at a zero distance
apart. By theorem V the line is then a minimum line.




POINT AND PLANE COORDINATES 185

| VII. Through any point of space goes a come of minimum lines
which s ‘also a point sphere.

Any point in space may be joined to the points of the circle at
infinity. We have then a one-dimensional extent of lines through
a common point, and such lines form a cone by definition. Also
if (z,:9,:2,¢) is the fixed point and (z:y:2:¢) is any point on a
minimum line through it, the codrdinates of (z:y:z:¢) will satisfy
the equation ., _ 4 )14 (9t,— 9 )+ (2t, — 2,2)"= 0, )
and, conversely, any point whose codrdinates satisfy this equation
lies by theorem VI on a minimum line through (z;: y,:2,: ).

Equation (8) is, however, the equation of a point sphere in
homogeneous form. Hence the minimum cone is identical with
the point sphere.

80. The plane. A plane is defined as the two-dimensional extent
of points whose coordinates satisfy an equation of the form

Az + By + Cz+ Dt =0. [¢))
From the definition we deduce the following propositions:

I. If two points lie on a plane, the straight line ccmnectmg them lies
entirely on the plane.

This follows immediately from the fact that if (z,:y,:2,:¢,) and
(7, 9,0 2,0 t) satisfy (1), then (2,4 Az gy, +Ay,:2,+Az: ¢+ \L)
does also :

II. A plane is uniquely determined by any three points not on the
same straight line.

If (z:y9,:2,:t), (2,:9,:2,:1), and (z,;:y,: 2:t) are any three
points, the coefficients 4, B, C, and D may be 80 determined that

‘ Az + By, + Cz,+ Dt = 0, =
Az, + By + Cz,+ Dt = 0, e 2
Az, + By, + Cz,+ Dt,=0, :
unless there exist relations of the form
A2+ Az, + Az, =0,
A'1-1/1+ xz:'/z"' A'su'la:: 0,
Az Az, + A2, = 0,
A+ A + N, 0
that is, unless the three points taken lie on a straight line.
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It follows from theorems I and II that any plane in the elemen-
tary sense may be represented by an equation in the form (1).
The general definition of a plane extends the concept of the plane
in the usual way. .

III. Points at infinity lie in a plane called the plane at infinity.

This is g result of the definition, since the equation of points at
infinity is ¢ = 0.

On the plane =0 the coordinates y:z:¢ are homogeneous
coordinates of the type of § 18. Similarly, on the plane y =0 we
have the Cartesian cosrdinates z:z:¢ and on the plane z=0 the
Cartesian coordinates z:y:¢ On the plane ¢t =0 we may define
z:y:z as trilinear codrdinates of the type in § 22.

IV. If three points of a plane are real, the plane contains a doubly
infinite number of real points.

From equations (2) the values of 4, B, C, and D are real if the
codrdinates of the points involved are real. Then in equations (1)
real values may be assumed for two of the ratios z:y:z:¢, and the
third is determined as real.

Such a plane is called a real plane, although it contains, of course,
an infinity of imaginary points. '

V. Any two distinct planes intersect in a straight line, and any
straight line may be defined as the intersection of two planes.

Consider the two planes
Az+By+ Cz+Dit=0,
Az+By+ Cz+Dt=0.

These equations are satisfied by an infinite number of values of
the codrdinates. Let (z,:y,:2,:¢) and (z,:9,:2,:¢) be two such
values. Then the values (2,4 Az;:y,+M\y,:2,+ Az, ¢+ At) also
satisfy the two equations so that the two planes have certainly 8
line in common. They cannot have in common any point not on
this line if the two planes are distinct, since three points completely
determine a plane (theorem II).

Again, a plane (by theorem IT) may be passed through two points
on a given line and a third point not on the line, and two such
planes will determine the line.
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VI. Any plane except the plane at infinity contains a single line at
tnfinity, and any two planes intersecting in the same line at infinity
are parallel.

The first part of this theorem is a corollary of theorem V. The
second part is a definition of parallel planes. The definition agrees
with the elementary definition since, by theorem V, parallel planes
in this sense have no finite point in common.

VII. An imaginary plane contains one and only one real stfaight line.

Since an imaginary plane has one or more of the coefficients in
its equation complex, we may write the equations as

(a,+ i)z + (B, + 1By + (v,+ 1v,)2z + (8,+ 8 )t = 0.

This can be satisfied by real values (z:y:2:t) when and only

when az+By+vz+8t=0,
az+By+vz+8t=0;

that is, when (z:y:2:¢).lie on a real straight line (theorem V).

That the line is real follows from theorem III, § 79, since the above

equations are evidently satisfied by two real points.

The real line on an imaginary plane may lie at infinity. In
that case the plane is said to be imaginary of higher order. If the
real line is not at infinity, the plane is said to be imaginary of
lower order.

VIII. Any plane intersects a sphere in a circle.

Consider the intersection of the plane

Az+ By+ Cz+ Dt=0 3
and the sphere
a(@+y+2)+ bz +cy+dz+et=0. (©))

Any point on the intersection of these two surfaces also lies on
the intersection of (3) and
a( @+ ¥+ D)+ G+ Az +(c+AB)y+(d+20)2
+(e+AD)t=0, (5)
where A is any multiplier. Equation (5) represents a sphere with
the center g L 4): (c+AB): (d+1C): — 2],
which will lie in the plane (8) when
bA+cB +dC— 2aD + (4'+ B*4+ CHOL=0.
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The peints of the intersection of (8) and (4) are therefore
shown to lie at a constant distance from a fixed point of the
plane, and hence the intersection satisfies the usual definition of
the circle.

The above discussion fails if the coefficients of the plane satisfy

the condition _ A+ B+ C*= 0.

This happens for the plane at infinity and for other planes called
minimum planes. In these two cases the truth of theorem VIII is
maintained by taking it as the definition of a circle. This justifies
the expression “circle at infinity,” which we have already used,
and shows that there is no other circle at infinity. The case of a
minimum plane needs further discussion.

' IX. Any plane not a minimum plane intersects the circle at infinity
tn two points, which are the circle points of that plane. A minimum
plane 18 tangent to the circle at infinity. Through any point in a plane
which 18 not a minimum plane go two minimum lines. Through any
‘point in a minimum plane goes only one minimum line.

The plane (8) intersects the plane at infinity in the line
Az + By + Cz=0, t =0, and this line intersects the circle at infinity
in two points unless 4*+ B’+ C*= 0, when it is tangent to that circle.
In the latter case the plane is by definition a minimum plane.

It is easy to see that in a plane which is not a minimum plane
its intersections with the circle at infinity have all the properties of
the circle points discussed in § 20 and that the metrical geometry
on such a plane is that of §§ 45 and 46. The latter parts of the
theorem follow from theorem VI, § 79.

. The minimum planes are fundamentally different from other
planes in that a minimum plane contains only one circle point at
infinity. The geometry on a minimum plane presents, therefore,
many peculiarities, some of which will be mentioned in the next
section. - S I

-81. Direction and angle. We define the direction of a straight
line as the codrdinates of the point in which it meets the plane at
infinity. This definition is justified by the facts that the lines
through a point are distinguished one from another by their direction
in accordance with theorem I, § 79, and that a line can be drawn
through the point with any given direction by the same theorem.
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We shall denote the direction of a line by the ratios I:m: n.
Then we have, by theorem II, § 79,

lim:n=zt —zt 1yt —yt:zt—zt,
where (z,:y,:2,:t) and (z,:y9,:2,:t) are the coordinates of any
two points of the line. If neither of these points is at infinity, we
may write limin=2—2:y—Y:2—2,
which is in accordance with the more elementary definition of
direction.

From the definition we have the following consequences:

I. Two noncoincident lines with the same direction are parallel.

Such lines lie in the plane determined by their common point at
infinity and two distinct points one on each line (theorem II, § 80),
and they can intersect at no point except the common point at
infinity. IIence they are parallel.

II. The necessary and sufficient condition that a line should be a
minimum line 18 that its direction should satisfy the condition

. B4+ mi4n*=0.

This follows from (8), § 79.

In § 46 we have defined the angle between two intersecting lines
~ I, and [, by the equation

¢=% log (2 1,, mm,),

where m and m, are the two minimum lines through the inter-

section of [ and 7, and in their plane. We shall continue to use
this definition.

Now, if the lines I, [,, m,, and m, intersect the plane at infinity in
the points L, L,, M,, and M, respectively, we have, by theorem I, §16,

i
¢ =3 log (L L, MM).
From this we have the following theorem, in which the condition

that 7 and 7, should be intersecting lines may be dropped:

III. The angle between two lines i8 equal to the projective distance
between the points tn which they intersect the plane at infinity, the
eircle at infinity being taken as the fundamental conic and the constant K

of (4), § 47, being equal to -
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The cross ratio (L,L,, M, M,) is unity when and only when ¥
and M, coincide or L, and Z, coincide, it being assumed that neither
L, nor L, lies on the circle at infinity. In the former case the lines
I, and I are parallel ; in the latter case they lie in the same minimum
plane. Hence follows the theorem :

IV. If two nonminimum lines are parallel or if they lie in the same
minimum plane, they make a zero angle with each other, and, con-
versely, if two nonminimum lines make a zero angle with each other,
they are either parallel or lie in the same minimum plane.

Let us suppose that I, and /, are nonminimum and distinct and
that their directions are 4,:B,: C, and 4,: B,: C, respectively. Then,
as in (4), § 49,

cos ¢ . A1A3+BIBQ+ CIC!

V A+ B} + C}VA}+ B+ C}

From this we obtain the following result:

@

V. Two nonminimum lines are perpendicular to each other when
their directions satisfy the condition

A A+ BB+ C,C,=0. @

Interpreted on the plane at infinity this means that the two

points (4,: B,: C,) and (4,:B,: C,) lie each on the polar of the other.

VI. If Az + By + Cz+ Dt =0 18 not a minimum plane, any line

with the direction A: B: C does not lie in the plane and is perpen-
dicular to every line in the plane.

The plane mentioned meets the plane at infinity in the line
Az + By + Cz=0, and any line with the direction 4: B: C meets
the plane at infinity in the point (4: B: C), which is the pole of the
line 4z + By + Cz = 0 with respect to the circle at infinity. Hence
the point (4 : B: C) will not lie in the line Az+ By + Cz= 0 unless the
latter is tangent to the circle at infinity. This proves the theorem.

Any line with the direction 4: B: C is said to be normal to the
plane 4z + By+ Cz + Dt= 0, and this designation is used sometimes-
even for minimum planes. The above discussion, however, estab-
lishes the following theorem:

-VII. The normals to a minimum plane lie in the plane and are the
minimum lines in the plane.
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By (1) a line with the direction /:m:n makes with the axes of
coordinates the angles @, B, v, where

l m n
COS & =—————» COS8 B=~——? CO8 Yy =—————————-
\/lz+m2+n2 . \/l’+m’+n’ \/l"'+m’+n’

These quantities are called the direction cosines of the line.
With their use equations (2) of § 79 may be put in the form

z=uz+rcosa,
y=y,+rcosp,
z=zl+rcos'y,

where it is easy to show that » is the distance of the variable point
(%, y, 2) from the fixed point (2,, ,, 2,). It is obvious that these
equations do not hold for & minimum line.

EXERCISES

1. Show that through any imaginary point in space there goes a
pencil of real planes having a real line as axis. .

2. Show that the equation of any imaginary plane of lower order
may be written ax + by + cz + dt = 0, where a, b, and ¢ are real and d
is complex.

3. Show that any imaginary straight line either lies in ome real
plane and contains one real point, or lies in no real plane and contains
no real point. The last kind of lines is called completely imaginary
and the former kind incompletely imaginary.

4. Show that the necessary and sufficient condition that two points
should determine an incompletely imaginary straight line is that the
two points lie in the same plane with their conjugate imaginary points,
but not on the same straight line.

5. Show that two conjugate imaginary points determine a real
straight line and that if an imaginary point lies on a real straight line
its conjugate imaginary point does also.

6. Show that a minimum line makes an infinite angle with any

other line not in the same minimum plane with it and makes an inde-
terminate angle with any line in the same minimum plane with it.

7. If (2) is taken as the definition of perpendicular lines, show that
a minimum line is perpendicular to itself and that a line in a minimum
plane is perpendicular to every minimum line in the plane.



192 THREE-DIMENSIONAL GEOMETRY

8. If the angle between two planes is the angle between their
normals, show that two nonminimum planes-make a zero angle when
they are parallel or intersect in a minimum line.

9. Show that any minimum plane makes an infinite angle with any
plane not intersecting it in a minimum line and makes an indeterminate
angle with any plane intersecting it in a minimum line.

10. Show that the codrdinates of a point on the circle at infinity
can be written z:y:2=1—s*:7(1 4 §°): 2 5, where s is an arbitrary
parameter. Hence show that the equations of a minimum line may be
written z =z, + a— s’) .,

y=y+id+)n
) z==z42sr,
where s is fixed for the line and r is variable.
11. Show that the equations

x=f(1—s’)F(3)da,
y=[ia+orea
z=f2.sF(s)da,

where F(s) is an arbitrary function, represent a minimum curve; that
is, a curve such that the length between any two points is zero and
the tangent line at any point is a minimum line.

12. Show that a minimum plane through the center of a sphere
intersects the latter in two minimum lines intersecting at infinity.

13. If a line is defined by the two equations
Ax+By+ Cz+ Dt = 0,
Az +By+ Cz+ Dt =0,
show that its direction is B,C,— B,C,:C,d,— C,4,:A B,— A.B,.
14. Show by reference to the plane at infinity that the necessary

and sufficient condition that the plane Az + By + Cz + Dt = 0 should
be parallel to a line with direction Z:m:n is Al 4+ Bm + Cn = 0.

16. Show that the equation of a plane through the point (z,:y,:2,:¢)
and parallel to the two lines with the directions /: m,: n, and ;: m,:n,,
respectively, is

x y =z t
Y A Y — 0'
i, m n, O™
&, my n, 0




POINT AND PLANE COORDINATES 193

82. Quadriplanar point codrdinates. Let us assume four planes of
reference ABC, ABD, ADC, and BCD (Fig. 52), not intersecting in
a point, and four arbitrary constants &, &,, k,, k,. Let p, p,, p,, p,
be the lengths of the perpendiculars from any point P to the four
planes in the order named, the sign of each perpendicular being
positive or negative according as P lies on one or the other (arbi-

trarily chosen) side of the corresponding plane. Then the ratios

vz =kp kp,:kp,:kp,
are the coordinates of the point P.

It is evident that if P is given as a real point its codrdinates are
uniquely determined. Conversely, let a set of real ratios z: z,: ,: ,
be given, no one of which is zero. The
ratio z,: z, is one of the cobrdinates of
any point in a definite plane through
BC, and the ratio z,:z, is one of the
coordinates of any point on a definite
plane through BD. The two ratios are 4
part of the coordinates of any point on a
definite line through B and of no point
not on this line. Call this line I. The
ratio z,: z, is one of the codrdinates of
any point on a definite plane through
CD. Call this plane m. If the plane m and the line ! meet in a
point P, the ratios z,: #, : 7, : 2, have fixed a definite point. If the
line Z and the plane m do not intersect, we shall say that the ratios
define a point at infinity.

Complex values of the ratios define imaginary points, and the
ratios 0: 0: 0: 0 are excluded. .

If one of the coordinates is zero, the other three are trilinear
coordinates on one of the planes of reference. For example, if z,= 0
the ratios z,: z,: z, are trilinear cotrdinates in the plane 4 BC, since
the distance of a point in the plane 4BC from the line 4C is equal-
to its distance from the plane 4CD multiplied by the cosecant of
the angle between the planes 4BC and 4BD, and, similarly, for the
distances from 4B and BC.

Hence all values of the ratios z,: z,: z,: z,, except the una.l_low-
able ratios 0: 0: 0 : 0, determine a unique point. '

B

Q

D
F1c. 62



194 THREE-DIMENSIONAL GEOMETRY

Referring to the figure, we note that = 0 on the plane 4B(;
z,=0 on the plane ABD; z,=0 on the plane 4DC; and z=0
on the plane DBC.

The point 4 has the codrdinates 0:0:0:1, the point B the
coordinates 0:0:1: 0, the point C the coérdinates 0 :1:0: 0, the
point D the coordinates 1:0:0:0. The ratios k,: k,: k,: , are
determined by the position of the point Z, for which the codrdinates
are 1:1:1:1, and this point can be taken at pleasure.

Quadriplanar codrdinates include Cartesian codrdinates as a spe-
cial or limiting case in which the plane z, = 0 is taken as the plane
at infinity. For if the plane BCD recedes indefinitely from 4, and
the point P is not in BCD, the perpendicular p, becomes infinite in
length, but £, can be made to approach zero at the same time and
in such a manner that lim k,p,=1. Finally, if the planes A4BC,
ABD, and ACD are mutually orthogonal and k = k,= k,=1, the
coordinates are rectangular Cartesian codrdinates.

If the planes ABC, ABD, and ACD are not mutually orthogonal,
we may place k, = csc @, where a, is the angle between 4B and the
plane ACD, and take similar values for %, and £, We then have
oblique Cartesian codrdinates.

In using quadriplanar cobrdinates it is not convenient or neces-
sary to specify the coordinates of a point at infinity. In fact, such
points are not to be considered as essentially different from other
points. Distance and all metrical properties of figures are not
conveniently expressed in terms of quadriplanar coordinates and
should be handled by Cartesian codrdinates. We may, however,
pass from the general quadriplanar codrdinates to Cartesian coordi-
nates by simply interpreting one of the codrdinate planes as the
plane at infinity.

83. Straight line and plane. Weshall prove the following theorems:

LIfy:y,:y,y, andz:z2:z2,.:2 are two fired points, the cobrdi-

nates of any point on the straight line joining them are

Pz, =Yy, + 22,
PT,= Yo+ A2, @
PZ= Y+ Az,
pz= ;’/,"‘ Ma’

and any point with these codrdinates lies on that line.




POINT AND PLANE COORDINATES 195

This is the definition of a straight line for imaginary points. If,
however, the points y, and 2z, are real, the points given by real
values of A are real points which lie on a real straight line in the
elementary sense. This is easily verified by the student in using
a construction and argument similar to that used in § 28 for the
straight line in the plane.

. Any homogeneous linear equation of the form

az +az.+az+az,= 0 @
represents a plane.

This is the definition of a plane. If y; and 2 are any two points
satisfying the equation of a plane, the codrdinates of any point on
the line joining y; and 2, also satisfy the equation ; that is, the line
which joins any two points of a plane lies entirely in the plane.
Hence, if the plane contains real points it coincides with a plane
in the elementary sense.

III. Three points not in the same straight line determine one and
only one plane.

The proof is as in §80. If g,, 2, t, are the three points, the
equation of the plane is

1 2 8 4
yl ya ys yl —
zl. Z’ 28 zl —0. (3)
t t t t

IV. If y,, 2,, and t; are any three points not on the same straight
line, the coordinates of any point on the plane through them may be
written

pr,= y1+ M1+ Ftl’
p:c2= !/,+ Ma+ ”ts’
sz'_" -'/a+ Ms+ ”'ts’
pr,=y,+ A2, + pt,,

®

and any point with these codrdinates lies in the plane.

This follows immediately from the fact that the elimination of
P M, and p from equations (4) gives equation (8), and, conversely,
from (8) the existence of (4) may be deduced.
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V. Any two distinct planes tntersect in a straight line.

The proof is the same as that of theorem V, § 80. A line can
therefore be defined by two simultaneous equations of the form

az + asxs+_ ag,+az = 0,
bz, + bz, + bz, + bz, =0.
V1. If za,z‘= 0 and Ebm: 0 are the equations of any two
lanes, th '
planes, then Ear'”r" 7&26@,: 0

18, for any value of N, the equation of a plane through the line of in-
tersection of the first two planes. As \ takes all values, all planes of
the pencil may be obtained.
VII. Any three planes not belonging to the same pencil intersect in
a point.
To prove this consider the three equations
a1x1+ a,:z:‘+ asza+a4x4= 0’
bxx1+ b2x2+ baxa+ beq'_" 0,
e+ ez + ez, + ez, = 0.

These have the unique solution

a, a, a, a, a, a| |a a a a, a, a
rizixix,=|\b b b :—|b b b|:|b b b |:—|b b b,
6 ¢ ¢ ¢ ¢ ¢l le ¢ ¢ e ¢ ¢

unless the determinants involved are all zero. But in the latter
case there must exist multipliers A, u, p such that

pe;= Ma;+ pb,,
and hence the three planes belong to the same pencil by theorem VI
v If Ea‘w,% 0, -Eb,x,= 0, Ec‘z‘= 0 are the equations of three
planes not belonging to the same pencil, then
2“.‘”4'*‘ xzbixi'i" ch.-’ci= 0
18 the equation of a plane through their point of intersection. As)

and p take all values, all planes through a common point can be found.
Such planes form a bundle.

The proof is obvious.
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-84. Plane cobrdinates. The ratios of the coefficients in- the equa-
tion of the plane are sufficient to fix the plane and may be taken
as the codrdinates of the plane. We shall denote them by %, and say
that u : u: u,: u, are the plane codrdinates of the plane whose point
equation 18 vz, + uz,+ uz,+uz,=0. €Y

No difference is made in this definition if the point cotrdinates
are Cartesian. Equation (1) is the condition that the plane », and
the point z; should be in wunited position; that is, that the plane
should pass through the point or that the point should lie on the
plane.

We have the following theorems, which are readily pro‘ved by
means of those of § 83:

LIfv:v:v:v, and wi:w: w:w, are the codrdinates of two fixed
planes, the coordinates of any plane through their line of intersection are

pu,= v+ le,
PU,= V,+ Aw,,
PU;= vs+ Nws’
pu,=v,+ Aw,,

@

and any plane with these codrdinates passes through this line.

The proof is obvious. Equations (2) are the equations of a
pencil of planes. They are also called the plane equations of a
straight line, the axis of the pencil. In this method of speaking
the straight line is thought of as carrying the planes of the
pencil in the same sense as that in which by the use of equa-
tions (1), § 83, the straight line is thought of as carrying the
points of a range.

II. Any homogeneous linear equation of the form
au +au +au+au = 0 ©))
i8 satisfied by the coordinates of all planes through a fixed point.

It follows from (1) that all planes whose codrdinates satisfy (8)
are united with the point a : a,:a;: a,. Equation (3) is therefore
called the plane equation of the point a,:4,:a,:a, in the same
sense in which equation (2), § 83, is the point equation- of the
plane a :4a,:a;:a,.
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I, Three planes not belonging to the same pencil determine a point,

This is, of course, the same theorem as VII, § 83, but in plane
coordinates we prove it by noticing that three values of u,, say v,
w,, 8, which satisfy (8) are sufficient to determine the coefficients
of (8) unless ps,;=Av,+uw,. The equation of the point determined
by the three planes is, then,

U U YU Y,

Yy Y% Y% Y =0. (4)
w, W, Wy w,

8 8 8 8

-
)
L)

4
IV. If v, w,, and s, are any three planes not belonging to the same
pencil, the codrdinates of any plane through their common point are

PU;= v+ Aw;+ ps,,
and any plane with these codrdinates passes through this point.
The proof is obvious. These planes form a bundle,

V. Two linear equations which are distinct are satisfied by the coordi-
nates of planes which pass through a straight line.

This follows from the fact that each equation is satisfied by
planes which pass through a fixed point. Simultaneously, therefore,
the equations are satisfied by planes which have two points in com-
mon, and these points are distinct if the equations are distinct. The
planes, therefore, have in common the line connecting the two points.

The equation of a straight line can therefore be written in
plane codrdinates as the two simultaneous equations

au + au +au+au =0,
blul +bu, + bu, + b‘u4 =0.

V1. If za‘u,.:O and Eb‘u,= 0 are the plane equations of two
points not covncident, then Za‘u,+ 7&2 bu;= 0 18 the plane equation of
any point on the line connecting the first two points. As N\ takes all
values, all points of a range can be thus obtained.

VIL If 3 au,=0, > ba,= 0, and 2c,u;= 0 are the plane equations
of three points not in the same plane, then Za‘u‘+ XZbiu‘il-pE eu;=0
18 the plane equation of any point on the plane determined by the first
three points. As A and p take all values, all points on the plane can
be found.
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The proofs of the last two theorems follow closely from theorems
I and II of § 88.

The theorems of this section are plainly dualistic to the theorems
of the previous section. We exhibit in parallel columns the funda-
mental dualistic objects :

Point ’ Plane
Points in a plane. Planes through a point.
Points in two planes. Planes through two points.
A straight line. A straight line.
Points of a range. . Planes of a pencil.
Planes of a bundle. Points of a plane.
EXERCISES

1. Write the equations, both in point and in plane codrdinates, of the
vertices, the faces, and the edges of the coordinate tetrahedron.

2. Ifaline is defined by the two points (y,: y,: %, y,) and (2,: 2,: %,: 2,),
show that its equations in plane codrdinates are
Y, + %Y, + uyy + 1y, =0,
ug, + ug, + uz, + uz, =0;
and if a line is defined by the two planes (v,:v,: v,: v,) and (w,: w,: w,: w)),
show that its equations in point codrdinates are
v, + v, + v, + v, =0,
wa, +wg, + wg, + wz, = 0.
3. Show that the condition that two lines defined by the planes
(0:0,:a5:a), (8,:5,:8,:0) and (c,:0,:¢,:¢,), (d,:d,:dy:d), respec-
tively, should intersect is

a a4 4G @
b, b b b, =0
9 % % 4% ’
d d, d d,

and write the similar condition for two lines, each defined by two
points. :
4. Two conjugate imaginary lines being defined as lines such that
each contains the conjugate imaginary point of any point of the other,
show that if two conjugate imaginary lines intersect, the point of inter-
section and the plane 6f the two lines are real. Hence show that
conjugate imaginary lines cannot lie on an imaginary plane.
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5. Show that if a plane contains two pairs of conjugate imaginary
points which are not on the same straight line the plane is real.

6. Two conjugate imaginary planes being defined as planes such that
each contains the conjugate imaginary point of any point of the other,
show that the plane coordinates of the planes are conjugate imaginary
quantities, and conversely. Prove that two conjugate imaginary planes
intersect in a real straight line. )

85. One-dimensional extents of points. Consider the equations

Pz, 1=f 1(t)’

sz=~fa(t)’

Pz, =1 (Ds

Pz4 =-f4(t)’

where ¢ is an independent variable and f,(¢t) are functions which

are continuous and possess derivatives of at least the first two

orders. We shall also assume that the ratios of the four functions

J:«(t) are not independent of ¢£. Then, to any value of ¢ corresponds

one or more points z;: z,: z,: 7,, and as ¢ varies these points describe

a one-dimensional extent of points, which, by definition, is a curve.

It is evident that because of the factor p the form of the functions

' J«(t) may be varied without changing the curve, but there is no

loss of generality if we assume a definite form for f,(¢) and take
p=1 :

Let y; be a point P obtained by putting ¢ =¢, in (1), and let ¢
be a point obtained by putting ¢=¢,+ At. Then the coGrdinates
of Q are y;+ Ay,, and the points P and @ determine a straight line
with the equations

®

Pz=y+ p(y:+ Ay)

or oz, = y,+ My, @
where the ratios of Ay, and not the separate values of these quantities
are essential. As At approaches zero the ratios Ay,: Ay,: Ay,: Ay,
approach limiting ratios dy,: dy,: dy,: dy,=f1(t): 1 (t): fi(t): fi(k)
and the line (2) approaches as a limit the line

pr= Yi+ My, = f,(t) + M), @)
which is called the fangent line to the curve. At every point of the

curve at which the four derivatives fi(t) do mot vanish, there i a
definite tangent line.
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The points y; and y,+ dy,, which suffice to fix the tangent line,
are often called consecutive points of the curve, but the exact
meaning of this expression must be taken from the foregoing
discussion.

We shall now show that the tangent lines to a curve in the neigh-
borhood of a fixed point of the curve form a point extent of two dimen-
sions, unless in the neighborhood of the point in question the curve is a
straight line.

This follows in general from the fact that equations (8) involve
two independent variables ¢, and A. To examine the exceptional
case we notice that at léast two of the functions f;(¢) cannot be
identically zero if equations (1) do not represent a point. We
shall also consider the neighborhood of a value ¢, in which f}(t)
are one-valued, and shall take f;(¢) and f,(¢) as the two functions

which do not vanish identically. We may then place'-f!gi—) =rand
replace equations (1) by the equivalent equations L ®

Pz1= Fl('f),
pPr,= F:(T)’

4
o )
Px4=1’

where F, () and F,(7) are one-valued in the neighborhood considered.
The equations of the tangent line are then
pz,= F, (1) + AF{(Ty),
pzy=Fy (1)) + AF; (1),
PE=T+ 2\
pz,=1,
and the points on these lines form a two-dimensional extent unless
F(r)+ M ()=¢(n+2).  (=12) ®
From this follows, by differentiating (5) with respect to A,

Fi(r)=¢i(m+2), ®
and by differentiating (5) with respect to 7,
F(r)+ M/ (r)=¢i(m+ ), ™

and from (6) and (7) we have F'(1,) =0; whence F,(7,)=¢;,T+¢;4.
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Equations (4) then reduce to
pz,=c,T+ a0
Pz, =T + Cag?
P, =T,
pz,=1.

These are the equations of a straight line and the theorem is proved.

Consider now three points, P, @, R, on the curve (1) with
the coordinates y;, y,+ Ay, and y,+ Ay,+ A (y;+ Ay,), the incre-
ments corresponding to the increment At; that is,
¥:=1i(0)s Y+ By=Si(t,+ A0, y,+Ay.+ Ay, +Ay) =Ff,(t,+240).

Then by the theorem of the mean,

Ay =fi(t, + AD - [,(t)=(fi(t) +e) A,
and by expansion into Maclaurin’s series,
Ay =f,(t, + 2 A0 — 2£,(t, + AD +£(t)
=(fl'(t) +¢) At

The three points P, @, and R determine a plane whose coordi-

nates u; satisfy the three equations
wy +uy, +uy,+uy=0
u Ay, + v Ay, + v Ay, + u Ay, = 0, ®)
uan + u’zA’yz"' usAz st qua.%: 0.

As At approaches zero the three points P, @, and R approach
coincidence, and the plane (8) approaches as a limit the plane
whose coordinates satisfy the three equations

Uit 0y, + uy,+ 1y, =0,
udy, +wdy,+udy,+udy,=0, - ®
ud’y, + wd’y, + udy, + ud’y,= 0.

This plane is called the osculating plane at the point P. It is
evident that at any point P there i8 in general a definite osculating
plane. The only exceptions occur when the point P is such that
the solution of the equations (9) is indeterminate. Writing these
equations with derivatives in place of differentials we have

u [1(4) + uf3(8) + u fo (1) +u () =0,
w fi1(4) + w138 + u fi (&) + w fi(t) =0, 10
w S (8) + wfi (0D + u fy () +u Sl () =0, '
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and in-order that the solution of these equations should be inde-
terminant it is necessary and sufficient that ¢, should satisfy the
equations formed by equating to zero all determinants of the third
order formed from the matrix

RACY IR ACY IR ACYRINACY.
PACYRIVACYRINACYBINACY)
A @) 'ﬂ'(tl) VACY)

If these equations have solutions they will be in general discrete
values of ¢, which give discrete points on the curve at which the
. osculating plane is indeterminate. To examine the character of a
curve for which the osculating plane is everywhere indeterminate,
it is convenient to take the equations of the curve in the form (4).
Equations (10) then take the form

W F,(7) + u, Fo(1) + uym+ u,= 0,
WF(T)+ wFY () + 1y =0, an
u, B (T) + wF (1) =0,
and these have an indeterminate solution when and only when
F!!(t)=0, F/(r)=0. a2)

If equations (9) are true for all values of 7, the curve is a
straight line, as has already been shown.

Equations (10) determine wu, as functions of the parameter ¢,
Therefore the osculating planes of a curve form in general a one-
dimensional extent of planes. An exception can occur only when
the ratios of u; determined by (10) are constant. To examine this
case take again the special form (4) of the equations of the curve
and consider equations (11). If the ratios u, determined by (11)
are constant, it is first of all necessary that

F ()= e F/(7);

whence Fy()=c,Fy()+ e+
Equations (4) then become '
pz,= F (1),
pr,=c F (T)+ T+
PT=T

pz,=1,
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and any point whose codrdinates satisfy these equations lies in

the plane — 2+ e+ o=

It is evident from the deﬁmtlon that this pla.ne is the osculating
plane at every point of the curve, and this can be verified from equa-
tions (11). We may accordingly make more precise the theorem
already stated by saying that the osculating planes of a curve in the
neighborhood of a fixed point of the curve form a one-dimensional extent
of planes unless the curve s a plane curve in the neighborhood considered.

If from equations (1) the parameter ¢ is eliminated in two ways,
there results two equations of the form

S (z,s T,y 2, T,) = 0, a3)
9 (z, 2, 7,, 2)=0.

Conversely, any equations of form (18) may in general be replaced
by equivalent equations of form (1).

EXERCISES

1. Show that in nonhomogeneous codrdinates the equations of the
tangent line and the osculating plane are, respectively,
X—ax Y-y Z-—z
dz dy = Tz
X—2 Y—y Z-—2
dx dy dz
& d*y a2
2. Find the tangent line and osculating plane to the following curves:
(1) The cubie, z=8y==28z2=¢
(2) The helix, x=acos b, y=asinb, 2 =k6.
(3) The conical helix, x =tcos?, y=~¢sin¢, z = kt.

3. Show that the osculating plane may be defined as the plane ap-
proached as a limit by a plane through the tangent line to the curve at
a point P and through any other point P, as P' approaches P.

4. Show that the osculating plane may also be defined as the plane
approached as a limit by a plane through a tangent line at P and parallel
to a tangent line at P', the limit being taken as P' approaches P.

5. The principal normal to a curve is the line in the osculating plane
perpendicular to the tangent at the point of contact; the binormal is the
line perpendicular to the tangent and to the principal normal. Find the
equations of these normals.

and = 0.
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86. Locus of an equation in point coordinates. Consider the
equation f(”v 2, 2, z‘)= 0, (1)

where f is a homogeneous function of z, z, z, and z,, which is
continuous and has derivatives of at least the first two orders.
Two of the ratios z,: z,: z,: z, can be assumed arbitrarily, and the
third determined from the equation. The equation therefore defines
a two-dimensional extent of points which by definition is called a
surface. .

If f is an algebraic polynomial of degree n, the surface is called
a surface of the nth order. Any straight line meets a surface of the
nth order in m points or lies entirely on the surface. To prove this
notice that a straight line is represented by equations of the form

PZ= Y+ Az,
where y; and z; are fixed points, and that these values of z, substi-
tuted in (1) give an equation of the nth order in A unless (1) is
satisfied identically.

A tangent line to a surface is defined as the limit line approached
by the secant through two points of the surface as the two points
approach coincidence. Let y, be the codrdinates of a point P on
the surface and y,+ Ay, those of a neighboring point @ also on the
surface. The points P and @ determine a secant line, the equations

of which arg pz= Y+ M (¥:i+ By,
which can also be written .
pz,= Y:+ pdY, (€©))
where the ratios of Ay, and not their individual values are essential.
Now let the point @ approach the point P, moving on the surface,
so that the ratios Ay, : Ay,: Ay,: Ay, approach definite limiting ratios
dy,: dy,: dy,: dy,. Then the line (2) approaches the limiting line
pT=Y;+ pdy, . ©))
which is a tangent line to the surface at the point P.

If the four derivatives if_‘, E, —ai, of do not all vanish, the
oy, oy, oy, 9y,
ratios dy, : dy,: dy,: dy, are bound only by the condition

Py + L gy + P ay + ¥ 4y = 4
oy, ¥ oy, Wt oy, W gy, W= @
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By Euler’s theorem for homogeneous functions we have, since
¥, satisfies equation (1),

d
y,a;+y.a;+y 'yf+y.a; 0. &)

By virtue of (4) and (5) any point z; of () satisfies the equation

ng e e tag =0 ®

This is- the equation of a plane, and its coefficients depend only

upon the coérdinates of P and not on the ratios dy, : dy,: dy,: dy,.

Hence all points on all tangent lines to the surface satisfy the

equation (6). Equation (6), however, becomes illusive, and the dis-
cussion which led to it is impossible when P is such a point that

of of of of
gy, =0, o, =0.
oy, %y, oy, %,

Points which satisfy these equations are called singular points,
and other points are called regular points. We have, then, the
following theorem:

All tangent lines to a surface at a regular point lie in a plane
called the tangent plane, the equation of which 8 (6).

In the equation (6) the point y, is called the point of tangency.
Conversely, any line drawn in the tangent plane through the point
of tangency is a tangent line. To prove this take z, any point
in the plane (6). Then :

L A/
“ay, ey, ey, ey
and the equations of the line through y; and z; are
PT =Y+ Az,

But a point @ on the surface may be made to approach P in
such a way that dy, :dy,:dy,:dy,=2:2,:2,:2, since the only
restriction on dy; is given by (4), which is satisfied by 2z, Hence
the line determined by y; and z; has equations of the form (3) and
is therefore a tangent line, and the theorem is proved.
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The plane codrdinates of the tangent plane to the surface (1
are, from (6), . o Gol2.8 4 (7-)
= o9, y 4y By
The codrdinates y; can be eliminated between these equations,
and the equation FWo o ¥ 9 =0 ®)

found by substituting y, for z; in (1). There are three possible
results:
1. There may be a single equation of the form

& (uy u, uy u)=0. )

This is the general case, in which the equations (7) can be
solved and the results substituted in (8).
The condition for this is that the Jacobian

ou, ou, ou, Oou, f 0 o*f 2*f
oz, oz, 0z, oz,| |0z} Oxoz, Oxbz, Ox,0z,
ou, ou, ou, Ou, Bf Bf Bf P
oz, oz, oz, oz, |omox, ox} Oxpz, Oxdx,
du, ouw, duy, Ou,| | Of Ff P &f
5;1 5;, %; 8—1:‘ 0z,0x, Cz,07, 53:—: oz 0z,
ou, Ou, Ou, Ou, o*f *f *f o
ox, oz, ox, 0x,| |owoz, Oxgz, Ozgz, oz}

shall not vanish. In this case the tangent planes to (1) form a
two-dimensional extent and their codrdinates satisfy (9).

If ¢ (u, u, u, u,) is an algebraic polynomial of the mth degree,
the surface (1) is said to be of the mth class. Through any straight
line m planes can be passed, tangent to a surface of the mth class. To
prove this notice that a plane through any straight line has the
coordinates

PU;= v+ Aw,,
where v, and w, are fixed coordinates. These values of u; substi-
tuted in (9) give an equation of the mth degree in A. This proves
the theorem.

"For example, consider the surface

azi+ azxl+ agi+ axi=0.
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The coordinates of its tangent plane are
’ PU= 4y
and these values substituted in
a7+ a9, + @y + a,y; =0
2 2 2 2
givo LA Y
a, a - a4 a,
The order and class of this surface are both 2, but the class of
a surface is not in general equal to its order.
2. There may be two equations of the form
b (u,y uyy uy u)=0,
¥ (uys %,y uy, u)=0. _
In this case the tangent planes to (1) form a one-dimensional

extent. The surface is called a developable surface.
For example, consider the surface

2l 2] — 2+ 2wgr,— i = 0.

The coordinates of a tangent plane at y, are

PU =Yy
PL=Y

PU=—Y;+ Yo

PU=Yy— Y,

The elimination of y; from these equations and the equation

hit¥—Y%+2y8.—9:=0
gives the two equations uy+ u,= 0,
ui+ u;—u;=0.

*8. There may be three equations of the form
' ¢(ul, Uy Uy, ) =0,
Y (u,y uyy uy u)=0,
x (%5 Uy ugy u)=0.

These- equations can be solved for «. Hence in this case the

tangent planes form a discrete system.
For example, consider the surface

zx +rr+zx,=0.
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The  tangent planes have the coordinates

PU,= Ty
’m:'_— Zes
PUy= T

pu,= zl+ :z:g+ z,.
These lead to the equations

u =1u,
u,=u,
uu,= 0.

The tangent planes are the two planes z,= 0 and z,+ 2,4+ z,= 0.
In fact the surface consists of these two planes.

EXERCISES

1. Show that the section of a surface made by a tangent plane is a
curve which has a singular point at the point of contact of the plane.

2. Show that the section of a surface of the nth order made by any
plane is a curve of the nth order.

3. Show that any tangent plane to a surface of second order inter-
sects the surface in two straight lines, and in particular that the tangent
plane to a sphere intersects the sphere in two minimum lines.

4. Show that through the point of contact of a surface and a tan-
gent plane there go in general two lines lying in the plane and having
three coincident points in common with the surface.

5. Show that the equation f(z,, «,, x,) = 0, where the function f is
homogeneous in z,, ,, x, and the codrdinate x, is missing, represents
a cone, by showing that it is the locus of lines through the point
0:0:0:1. :

6. Show that the tangent plane to a cone contains the element of
the cone through the point of contact.

7. From Ex. 5 show that in nonhomogeneous Cartesian codrdinates
the equation f(x, ¥, #) = 0, where f is homogeneous, represents a cone
with its vertex at the origin and that f(z, y) = 0 represents a cyhnder
with its elements parallel to 0Z.

8. Show that through a singular point of a surface there goes in
general a cone of lines each of which has three coincident points in
common with the surface.
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9. Find the equation or equations satisfied by the codrdinates of
the tangent planes of each of the following surfaces :
1) 2 axyx; + bxg + cx} =0,
(2) 2 a2, + b + cxf = 0,
) 2 axyxy; + b} 4 cxi=0.
10. Show that the tangent planes of a cone or a cylinder form a
one-dimensional extent.

11. If the equation of a surface is written in the nonhomogeneous
form z = f(x, y), show that its tangent planes form a two-dimensional

extent unless 7¢ — s* = 0, where r= @—:f’.’ s= 8’f t= g;

12. Show that two simultaneous equa.tlons 4’1(“’ x,, z,, x,)=0and
&,(x,, ,, x;, x,) = 0 define a curve, and that if the tangent planes to
the curve are defined as the planes through the tangent lines to the
curve, they form a two-dimensional extent given by the equations

0%y 0%,

pU; = 3_ o together with the equations of the curve.
Ly

87. One-dimensional extents of planes. Consider the equations

Pul =f1(t)'
Puz jfz(t)’ . (1)
Pug _f;(t)’
Pug =f4(t)7

where u, are plane coordinates, ¢ an independent variable, and
J:(®) functions of ¢ which are con-
tinuous and possess derivatives of
at least the first two orders. We
shall also assume that the ratios of
the four functions f;(t) are not in-
dependent of ¢. The equations then
define a one-dimensional extent of
planes. Let v be the cobrdinates
of a plane p (Fig. 563) obtained by
placing ¢ =¢ in (1) and let v, + Ay,
be the coordinates of a plane ¢
found by placing ¢t =t +At. Then p and ¢ determine a straight
line m, the equations of which are
pu; = v, + p(v; +4v)
or ou, = v, 4+ N,
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As At approaches zero the line m approaches a limiting line !,
of which the equations are

Pu{ = ’U‘ + wvi =-fl (tl) + hf‘, (tl)‘ (2)
This line is called a characteristic of the extent defined by (1).
It is evident that in any plane of the extent for which the four deriv-

atives f(t) do not vanish there is a definite characteristic.
We shall now prove the proposition

. The characteristics form in general a surface to which each plane of
the defining plane extent is tangent along the entire characteristic in
that plane.

To prove this we notice that any point z; which lies in a char-
acteristic satisfies the two equations

i) +2,(1) + 2 foy(D) + 2, /(D =0,
EVAORENHOR EVHORLENHORIY
and that in general ¢ may be eliminated from these equations with

1t of the f
a result of the form bz, 2, 2, 2)=0. )

This proves that any point on any characteristic lies on the sur-
face with the equation (4).
By virtue of the manner in which (4) was derived we may write

¢ (2 2y 2y x‘)=2x‘f‘ ®:
where ¢ is to be determined as a function of z; from the second of
equations (38). Therefore
2= O+ ZafiO) =fO=pue
This shows that the tangent plane of (4) is the plane u, of the
extent (1) and that the same tangent plane is found for all points
for which ¢ has the same value; that is, for all points on the same
characteristic. The proposition is then proved.
Consider now three planes, v, v, +Av, v,+Av,+A(v; +Av).
They determine a point P the codrdinates of which satisfy the
three equations

®

zv +zy,+zp,+20,=0,
r Av, + 2 Av, + z,Av, + 2 Av, = 0, )
z A% + z,A%,+ r A% + 2 A%, =0,
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and as At approaches zero the point P approaches as a limit a
point L the codrdinates of which satisfy the equations
zv + 20 + 7, +z20,=0,
- zdv+zdy+zde+zdy,=0, (6)
z d* + v d™ +zd + zd%,= 0,
or, what is the same thing, the equations

“h(O+ 2fi(D+ 2f,(O+ 2 (D=0,
HOLEVHORENAOREVAORIY M
OB ENVHOREVHORENAOLLY
The point L we shall call the limit pomt in the plane v, and shall
prove the following proposition :

The locus of the. limit points {8 in general a curve, called the
cuspidal edge, to which the characteristics are tangent.

The first part of the proposition follows from the fact that equa-
tions (6) can in general be solved for z, as functions of ¢

To prove the second part of the proposition note that by differ-
entiating the first two equations of (7) on the hypothesis that
z, ,, 7, z, and ¢ vary, and reducing the results by aid of the
three equations (7), we have

Sdrfi(H=0,  Ndzfit)="0. ®
Now from (8), § 86, the tangent line to the cuspidal edge at s
point (z,, z,, z,, z,) given by a value ¢ has the equations
pX,= z;+ Ndz,,
and from (7) and (8) any values of the codrdinates X; which satisfy
these equations satisfy also

SX®=0  DXAD=0;
that is, the point X; lies on the characteristic (8).
To complete the general discussion we shall now prove the
proposition
The osculating planes of the cuspidal edge are the planea of the
defining plane extent.

By differentiating the first of equations (7) and reducing by
the aid of the second equation, we have 2dz,f,(t)= 0. Therefore
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by selecting the proper equations from (8) and (8) and replacing
Ji(t) by v,, we have the equations

2”.-’”&= 0, Ev,dx‘= 0, zv‘d’x‘= 0.
But from (9), § 85, these equations define v, as the osculating
plane of the cuspidal edge. This proves the proposition.
'In the foregoing discussion we have considered what happens in
general. To examine the exceptional cases we may, as in § 85,
write the equations (1) in the form

g, = F,(r),
pug= Ivz(T)’

‘ 9
e, ®
pu,=1.

The equations (3) for the characteristics now become
2, F (1) + 2, Fy) (1) + T2, + 2,= 0,
z,Fi(1) + 2, Fy(7) + 2, =0, an
and the equations (7) for the limit points become
2, Fy (7)) + z,F(7)+ 2,7 + 2,= 0,

T F(T)+2,F (1) + 2, =0, an
z, FY (7)) + =, F''(1) =0.
The second of the equations (10) can be solved for T unless
F(M=¢, Fi(m)=¢;
whence - F(t)=ecr+ ¢, Fy(t)=¢c7+e¢,
and - Fl(t)=0, FlI(t)=0.

In this case equations (10) become
ez, + ez, +2,=0, a2)
e, + ez, +2,=0, ‘
so that all characteristics are the same straight line. At the same time
equations (9) become

pu,=eT+ e
pu,= C,T +ec,
Pug= T
Pu4= ].‘7

which are of the type (2), § 84, and represent a pencil of planes
determined by the two planes (¢,:¢,:0:1) and (¢,:¢,:1:0). The



214 THREE-DIMENSIONAL GEOMETRY

axis of the pencil is the straight line (12) with which the charac-
teristics coincide.

Turning now to equations (11) we see that the last one deter-
mines z,: 2, and the others determine z, and z,, unless F' (1)=0
and F!/(t)=0. This is the same exceptional case just considered.
The equations for the limit points become equations (12), so that
the limit point in each plane is indeterminate but lies on the axis
of the pencil of planes.

Another exceptional case appears here also when the solutions
of (11) do not involve 7. This happens when

F)(1)=cF'(v);

whence F(t)=cF()+eT+e,
Equations (11) then have the solution
zizzir,=c:—1lice, 13)

At the same time equations (9) are

Pu1 = Fl(T)’
pu,=c F (T)+eT+¢,
fm; =T

=1

All planes which satisfy these equatlons pass through the point (13).
The surface of the characteristics is in this case a cone, since it
is made up of lines through a common pomt The cuspidal edge
reduces to the vertex of the cone.
In §86 we have shown that the tangent planes to a surface
may, under certain conditions, form a one-dimensional extent of
planes, and have called such surfaces developable surfaces. We may

now state the following theorem, which is in a sense the converse -
of the above:

Any one-dimensional extent of planes i8 composed of planes which
are tangent to a developable surface, where, in the neighborhood of
each point, the surface may be one of the following three kinds :

1. It may be composed of tangent lines to a space curve.

2. It may be a cone. (If the vertex i8 at infinity, the cone is a

cylinder.)

3. It may degenerate into the axis of a pencil of planes.
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In the above theorem the nature of the surface has been de-
scribed only for each portion of it, since the foregoing discussion
is based on the nature of the functions f;(¢) in the neighborhood
of a value of ¢, which fixes a definite plane, a definite character-
istic, and a definite point on the cuspidal edge. In the simplest
case the developable surface will have throughout one of. the
forms given above. Next in simplicity would be the case in which
the surface is composed of two or more surfaces, each of which is
one of the above kinds. It is of course possible to define surfaces
which have different natures in different portions, but the char-
acter of each portion must be as above if the functions f; (¢) satisfy
the conditions given.

The planes of the extent are said in each case to envelop the
developable surface.

88. Locus of an equation in plane coordinates. Consider an

equation J(m, u, u, u)=0, @

where f is a homogeneous function of the plane coordinates u, We
shall consider only functions which are continuous and have deriva-
tives of at least the first two orders. Two of the ratios u :,:u,:u,
can be assumed arbitrarily, and the third determined from the equa-
tion. Hence the equation represents an extent of two dimensions.

If f is a polynomial of the nth degree, then n planes belonging to
the extent (1) pass through any general line in space. The proof
is as in § 86. In this case the extent is
said to be of the nth class.

We shall not restrict ourselves, how-
ever, to polynomials in the following dis-
cussion, but shall proceed to find some of
the general properties of the extent (1).

Let v, be the coordinates of a plane p
(Fig. 54) of the configuration defined by
(1), and v, +Av, those of another plane g,
also of the configuration. The two planes p and ¢ determine a
line m whose equations in plane codrdinates (theorem I, § 84) are

pu; = v;+ A (v; +Av),
or, otherwise written, ou,=v,+ pAv,

P

Fic. 54

where the ratios only of Av, are essential.
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Now let ¢ approach coincidence with p in such a way that the
ratios Av,: Av,: Av,: Av, approach limiting ratios dv,: dv,: dv,: dv,
The line m approaches a limiting line Z whose equations in plane
coordinates are ou,= v,+ pdv,.

The differentials dv are bound only by the condition
S Y gy U gy g
df = v, dv + o, dv,+ v, dv,+ v, dv,=0, @)

so that the planes with codrdinates dv, : dv, : dv,: dv, form a linear
one-dimensional extent which by theorem II, § 84, consists of all
planes through the point P, whose codrdinates are
pigigp L. Of Of
zl.x,.z‘.x‘—%:.%;.-az.—a-v—‘ (3)
This point lies in the plane v, since, by Euler’s theorem for
homogeneous functions,

”‘%+v’%+v‘%+v‘%= ’ (4)
which is the condition (1), § 84, for united position.

Aline Z is the intersection of any one of the planes dv,: dv, : dv,: dv,
with the plane v, :v,:v,:v,. Hence the lines Z form a pencil of
lines through P. ,

The point P is not determined by equations (38) if

of of f _o o
a—-vl=0, a—v’-=0, a’-‘=0, -a—v—‘=0. ®)

A plane for which these conditions is met is called a singular
plane of the extent (1). Other planes are called regular planes.

We sum up our results in the following theorem :

In any regular plane p of the extent (1) there lics a definite point P
whose codrdinates are given by (3) and which has the property that
any line of the pencil with the vertex P and in the plane p 8 the limit
of the intersection of p and a neighboring plane.

The point P may be called the limit point in the plane p.

The elimination of v, from equations (8) and equation (1), written
in v, will give the locus of the points P. There are three cases:

I. The elimination may give one and only one equation of the

form ¢ (z, 2, 2, )= 0. ®)
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The locus of ?is then a surface. If the extent (1) is of the nth
class, the surface (6) is also called a surface of the nth class.
II. There may be two equations of the form

¢, (2 2, 2, )= 0
&, (2 2,5 2 T) =
The locus of P is then a curve.

III. There may be three equations connecting z,, z,, z,, z,. The
points P are then discrete points.

We shall now show that the planes of (1) are tangent to the
locus of P in such a manner that P is the point of tangency of
the plane p, in which it lies.

To prove this write equation (4) in the form

vz, + vz, + vz, +ovz,=0
and differentiate. We have

Ev,dx‘ +Ex,dv‘=
which, by aid of (2) and (3), is
v,dz, + v dz,+ v,dz,+ v dz,= 0. ®
Consider now in order the previous cases.
I. If z, satisfy a single equation (6), we have

9 4 19 gy 4 % 4o 108 g0 _
s, dz,+ o, dz,+ o, dz,+ 7 dz,=0. ®

4

™

By comparison of (8) and (9) we have py,= Z—fo which shows
3
that v, are the codrdinates of the tangent to ¢ = 0 at the point z,. -
II. If z, satisfy the two equations (7), we have

aa:‘dz +a¢‘d:c +a¢‘dz +a4"dz 0,

o, 31: 0;4’; 3_¢_= -
o Aok g ok G o e, = 0,

A comparison with (8) gives o= 4" +2A ¢’, which shows. that
T
v, passes through the line of intersectlon of the tangent planes to

¢,= 0 and ¢,= 0 and hence is tangent to the curve defined by the
two surfaces.

ITI. If the points z; are discrete points, we may say that each
plane of the extent is tangent to the point, through which it passes,
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thus extending the use of the word * tangent” in a manner which
will be useful later. Summing up, we say :

A two-dimensional extent of planes consists of planes which are
tangent either to a surface or to a curve or to a point.

The theorem has reference, of course, only to the neighborhood
of a plane of the extent. The entire extent may have the same
nature throughout or different natures in different portions.

89. Change of coordinates. A tetrahedron of reference and a set
of codrdinates z; having been chosen, consider any four planes not
meeting in a point the equations of which are

az+az+az+azx=0,

n 1272 1878 1474
a7 + ay07y + .57 + 27,= 0’ (l)
2,7 + 5oy + @557y + a:uzc = 0’
257 + @,,Ts + @457 + 2Z = 0,

the coefficients being subject to the single condition that their deter-
minant | a, | shall not vanish. We assert that if we place
PTi= Ay, + ATy + Ay + 4Ty, @
then z! are the codrdinates of the point z; referred to the tetrahedron
formed by the four planes (1). The proof runs along the same
lines as that of the corresponding theorem in the plane (§ 29) and
will accordingly not be given.
It is also easy to show that by the same change of the tetrahedron
of reference, the coordinates u, become u/, where
pui= au, + a0+ ag g+ a, . ©)
The change from one set of Cartesian co6rdinates to another is
effected by means of formulas which are special cases of (2). If
(z:y:2:t) are rectangular Cartesian coordinates and
ar+by+eczt+et=0,
dga: +by+cz+et=0, ©)
az+by+cz+et=0
are any three nonparallel planes, and we place
pr'=k(az+by+cz+e),
Py =k,(az+by+cz+ed),
pe' =k (azx + by, + cz,+ ed),
pt'=t,

@)
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the quantities 2/, g/, 2/, ¢ are proportional to the perpendiculars on
the three planes, and it is possible to adjust the factors k, so that
#':y': 2: ¢ may be exactly the Cartesian codrdinates referred to the
planes (4) as codrdinate planes, the codrdinates being rectangular
or oblique according to the relative position of the planes (4).
The equations (5) represent a change from a rectangular set of
codrdinates to another set which may or may not be rectangular,
and conversely. A change from an oblique system to another is
represented by formulas of the same type, since the change may
be brought about as the result of two transformations of this type.

EXERCISES
1. Find the characteristics, characteristic surface, and cuspidal edge
of each of the following extent of planes:
@) pu,=1, pu,= 3¢, pry=3 &, pu,= 2.
(2) pu,= ak sint, pu,= — ak eos t, pu,= a?, pu,=— a’kt.
3) pu,=1-28, pu,=2¢, puy=— 14 %), pu, =1+ 2%
4) pu,=2¢, pu,=t*—1, pu,=1*+1, pu,=1.
2. If a minimum developable is defined as a one-dimensional extent

of minimum planes, show that the characteristics are minimum lines and
the cuspidal edge is a minimum curve unless the developable is a cone.

3. Show that the necessary and sufficient condition that the surface
z=f (z, y) should be a minimum developable is that p*+ ¢* +1=0,

where p = a@__: y g = g—; . (Compare Ex. 11, § 86.)
4. Prove that planes which are tangent at the same time to two
given surfaces, two given curves, or a given surface and a given curve
define developable surfaces.
5. Find the envelope of each of the following one-dimensional extent

of planes:
Q) 2ui+3ui+4ui—24ul=0.

(2) 3ujytpug— ul=0.

(3) ut+ ud—ul=0.

(4) v+ ud+ 2 ui— 2 wuy+ 2 wuy— 2 ugug— ui=0..

6. Show that the minimum planes form a two-dimensional extent

and find its equation.
" 7. Show thatepx,= f(t) + sf; (t) (i=1, 2, 3, 4) defines a developable
surface and, conversely, that any developable surface which is not a
cone or the axis of a pencil of planes may be expressed in this way.



CHAPTER XIII
SURFACES OF SECOND ORDER AND OF SECOND CLASS

90. Surfaces of second order. Consider the equation

E“ux.“k= 0, (@s=ay) @
which defines a surface of second order (§86). The Jacobian of
§ 86 becomes, except for a factor 2, the determinant

all al! all all
a a a a
13 22 23 24
A= ,
axa a” all all
a a a a

14 24 84 44

called the discriminant of the equation. We may make the follow-
ing preliminary classification : '

I. A+ 0. The surface has a doubly infinite set of tangent planes.
The plane equation of the surface may be found by eliminating

from the equations
pu. 1= allzl + auz: + @)%, + auzt’
pU,= @,z + LOVEN + 007y + 2%
Pua = allzl + anz: + auxs + auza?

P ul = auzl + auxz + auxa + a“x‘,

)

and equation (1). But a combination of (2) and (1) gives readily
uz + uzr, +uz,+uz,=0,

and the elimination of z; from this equation and the set (2) gives

|
|
)
)

1 13 18 14 1

)
|
K
)
| =8

12 22 28 24

alB a28 a!B aaq u8 = 0 (3)
a14 a34 au a{! u‘
W, u, u 0
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This is an equation of the second degree in u. Hence a sur-
Jace of the second order for which the discriminant 18 mot zero ts also
a surface of the second class (§ 88). :

It is not difficult to show that the discriminant of (38) is not
equal to zero.

II. A=0. The tangent planes either form a one-dimensional
extent of planes or consist of discrete planes. These cases will be
examined later.

91. Singular points. By § 86 singular points on the surface (1),
§ 90, are given by the equations

auz1+ amz: + allxl + auxc = 0’

azr+azx+azx+ax=0, '
1271 222 233 24 4 (1)

a T+ 8,2, + a7, + a2, = 0,

.7 + 2%, + aux: + a«xc =0.

There are four cases:

I. A # 0. Equations (1) have no solution, and the surface has
no singular points. This is the general case.

II. A=0, but not all its first minors are zero. The surface has
one and only one singular point. Let y, be the coordinates of the
singular point and 2 the coordinates of any other point in space,
and consider the straight line

PE= Yit Az, €)
To find the points in which the line (2) meets the surface sub-

stitute in equation (1), § 90. Since the coordinates y, satisfy the
equation of the surface and also the equations (1), the result is

h’za“z,zk= 0. ©))
This shows that any line through a singular point meets the sur- -
face only at that point (A = 0), and there with a doubly counted
point of intersection. An exception occurs when z, is taken on
the surface. Then equation (8) is identically satisfied, and the
line yz lies entirely on the surface. Hence the surface s .a cone
with the singular point as the vertex. There is no plane equa-
tion of the surface. In fact the tangent planes form a singly
infinite extent of planes, and their coordinates are subject to two
conditions.



222 THREE-DIMENSIONAL GEOMETRY

III. A=0, all its first minors are zero, but not all its second minors
are zero. Equations (1) contain two and only two independent equa-
tions and hence the surface has a line of singular points. If this
line is taken as the line z,= 0, z,= 0 in the codrdinate system, equa-
tions (1) show that we shall have a ,=a ,=a,=a, =a, =0a, =0a, =0,
and the equation of the surface becomes a r;+ 2 auxlx,+ az! =0
At least two of the coefficients in the last equation cannot va.msh
since the surface has only the line z =0 and z,= 0 of singular
points. Therefore the left-hand member of the equation of the sur-
face factors into two linear factors. Hence the surface consists of
two distinct planes intersecting in the line of singular points.

IV. A=0, all its first and second minors are zero, but not all
the third minors are zero. Equations (1) contain one and only one
independent equation, and hence the surface has a plane of sin-
gular points. If this plane is taken as z, = 0, the equation of the
surface becomes z{ =0. Hence the surface consists of the plane of
singular points doubly reckoned.

92. Poles and polars. The polar plane of a point y; (the pole)
with respect to a surface of the second order whose equation is
(1), § 90, is defined as the plane whose coordinates are

PU=auY, + Gy + Ay + aY,. @

The following theorems are obvious or may be proved as are
the similar theorems of § 34:

L If the pole is on the surface, the polar plane is a tangent plan,
the pole being the point of contact.
" II. To every point not a singular point of the surface corresponds
a unique polar plane.

II. To every plane corresponds a unique pole when and only when
the discriminant of the surface does not vanish.

IV. A polar plane contains its pole when and only when the pole is
on the surface.

V. All polar planes pass thrw,gh all the singular points of the
surface when such exist.

VI. If a point P lies on the polar plane of a point Q, then Q lis
on the polar plane of P.

VII. All tangent planes through a point P touch the surface in a
curve which lies in the polar plane of P.
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VIII. For a surface of second order without singular points it is
possible in an infinite number of ways to construct a tetrahedron in
which each face 18 the polar plane of the opposite vertex.

These are self-polar tetrahedrons.

IX. If any straight line m i3 passed through a point P, and R and
S are the points in which m intersects a surface of second order and
Q 8 the point of intersection of m and the polar plane of P, then P
and Q are harmonic conjugates with respect to R and S.

In addition to these theorems we will state and prove the
following, which have no counterparts in § 34:

X. The polar planes of points on a range form a pencil of planes the
axig of which 18 called the conjugate polar line of the base of the range.
Reciprocally the polar planes of points on the axis of this pencil form
another pencil the axis of which s the base of the original range.

Consider any range two of whose points are P and @ (Fig. 55).
Let the polar planes of P and @ intersect in LK, and let 4 be any
point of LK. The polar plane of 4 must contain both P and @
(theorem VI) and hence the entire line PQ. Now let B be any
point on PQ. Its polar plane must
contain 4 (theorem VI). But 4 is
any point of LK. Therefore the polar
plane of R contains LK. This proves
the theorem. It is to be noted that the \
opposite edges of a self-polar tetra-
hedron are conjugate polar lines. L

R
XI. If two conjugate polar lines in- v \‘ \
tersect, each is tangent to the surface \
K

at their point of intersection.

Let two conjugate polar lines, PQ
and LK, intersect at R. Since R
lies in each of the lines PQ and LK its polar plane must contain
each of these lines by the definition of conjugate polar lines. Hence
the polar plane of R contains B and is therefore (theorems IV
and I) the tangent plane at R. The two lines LK and PQ lying
in the tangent plane and passing through R are tangent to the
surface at R.

F16. 56
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EXERCISES

1. Show that any chord drawn through a fixed point P, intersecting
at infinity the polar plane of P with respect to a quadric, is bisected by P.
Hence show that if a quadric is not tangent to the plane at infinity there
is a point such that all chords through it are bisected by it. This is
the center of the quadric.

2. Show that the locus of the middle points of a system of parallel
chords is a plane which is the polar plane of the point in which the
parallel chords meet the plane at infinity. This is a diametral plane
conjugate to the direction of the parallel chords. Show that a diametral
plane passes through the center of the quadric, if there is one, and
through the point of contact with the plane at infinity if the surface
is tangent to the plane at infinity.

3. Prove that all points on a straight line which passes through the
vertex of a cone have the same polar plane; namely, the diametral plane
conjugate to the direction of the line.

4. Show that if a plane conjugate to a given direction is parallel to
a second given line, the plane conjugate to the latter line is parallel to
the first. Three diametral planes are said to be conjugate when each
is conjugate to the intersection of the other two. Show that the inter-
sections of three conjugate diametral planes with the plane at infinity
form a triangle which is self polar with respect to the curve of inter-
section of the quadric and the plane at infinity. Discuss the existence
.and number of such conjugate planes in the two cases of central quad-
rics and quadrics tangent to the plane at infinity.

6. Show that if a line is tangent to a quadric surface its conjugate
polar is also tangent to the surface at the same point, and that the two
conjugate polars are harmonic conjugates with respect to the two lines in
which the tangent plane at their point of intersection cuts the surface.

6. Show that the conjugate polars of all lines in a pencil form a
pencil. When do the two pencils coincide ? Show that the conjugate
polars of all lines in a plane form a bundle of lines, and conversely.

93. Classification of surfaces of second order. With the aid of the
results of the last two sections it is now possible to obtain the
simplest equations of the various types of surfaces of the second
order which have already been arranged in classes in § 91.

I. The general surface. A+ 0. The surface has no singular point
(§ 91) and there can be found self-polar tetrahedrons (§ 92). Let
one such tetrahedron be taken as the tetrahedron of reference in the
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coordinate system. Then the equation of the surface must be such
that the polar of 0:0:0:1 is z, =0, that of 0: 0:1:0 is z,=0,
that of 0:1:0:0 is 2,=0, and that of 1: 0: 0:0 is z =0. The
equation is then Ay A+ g+ a7 =0, @
where no one of the coefficients can be zero, for, if it were, the
surface would contain a singular point.

1t is obvious that if the original tetrahedron of reference were
real and if the coefficients in the original equation of the surface
were real, the new tetrahedron of reference and the new coefficients
are also real. We may now replace z, in the last equation by |a,|z,
and have three types according to the signs of the terms resulting.

1. The imaginary type, z}+ z;+ zj+ x}=0. )
This equation is satisfied by no real points.
2. The oval type, . z}+z;+2]—z}=0. @

No real straight line can meet this surface in more than two real
points. If it did, it would lie entirely on the surface (§ 86), and
hence the point in which it met the plane z,=0 would be a real
point of the surface. But the plane z,= 0 meets the surface in the
curve z?+ z; + 28 = 0, which has no real point. Hence, as was said,
no real straight line can meet the surface in more than two real
points. The surface, however, contains imaginary straight lines as
will be seen later.

3. The saddle type, zitz}—ai—z}=0. (€))

Through every point of this surface go two real straight lines
which lie entirely on the surface. This follows from the fact that
whatever be the values of A and u, the two lines

z —z,— N(z,—z,)=0, z 42+ Az +2)=0"
and x—z— p(z,+2)=0, z,—z,+ p(z,+2)=0
lie entirely on the surface. Moreover, values of A and x may be
easily found so that one of each of these straight lines may pass
through any point of the surface. This matter will be discussed in
detail in § 96.

As the three types of surfaces here named are distinguished by
properties which are essentially different in the domain of reality,
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the corresponding equations can evidently not'be reduced to each
other by any real change of coordinates. However, if no distinction
is made between reals and imaginaries, all surfaces of the three
types may be represented by the single equation

i+ a}+xl+2}=0. ®)

II. The cones. A= 0, but not all the first minors are zero. The
surface has one singular point (§ 91) and is a cone with the singular
point as the vertex. Let the vertex be taken as 4 (0:0:0:1).
Then in the equation of the surface a,=a,=a,=a,=0. Take
now as B (0: 0:1:0) any point not on the surface. Its polar plane
contains 4 (theorem V, § 92) but not B (theorem IV, § 92). Take
as €' (0:1:0:0) any point in this plane but not on the surface.
Such points exist unless the polar plane of B lies entirely on the
surface, which is impossible since B was taken as not on the surface.
The polar plane of C contains 4 and B and intersects the polar
plane of B in a line through 4. Take D (1:0:0: 0) as any point
on this line. We have now fixed the tetrahedron of reference so
that 0: 0:0:1 is a singular point, the polar plane of 0:0:1:0is
z,= 0, the polar plane of 0:1:0:0 is z,= 0, and the polar plane
of 1:0:0:0 is z=0. Therefore the equation of the surface is

auai + 0z + 575 = 0,
where no one of the three coefficients can vanish, since.the surface

has only one singular point. By a real transformation of coordinates
this equation reduces to two types:

1. The imaginary cone, z}+ z}+ zi=0.

2. The real cone, zl+ zi—2}=0.

III. Two intersecting planes. A= 0, all the first minors are zero,
but not all the second minors are zero. This has been sufficiently

discussed (§91). There are obviously two types in the domain
of reals; namely:

1. Imaginary planes, z}+z}=0.
2. Real planes, zl—2}=0.
IV. Two coincident planes. A= 0, all the first and all the second

minors are equal to zero. Evidently the equation in this case is

reducible to the form s
z}=0,
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but the plane z,= 0 is not necessarily real. In fact the condition
that all the second minors of A vanish is the condition that the
left-hand member of equation (1), § 90, should be a perfect square,
as is easily verified by the student.

94. Surfaces of second order in Cartesian coordinates. As we
have seen (§ 82), we obtain Cartesian codrdinates from general
quadriplanar codrdinates by taking one of the coordinate planes as
the plane at infinity and giving special values to the constants Z;.
This being done, the general equation of the second degree will
be written
ar’+ b2+ e’ + 2 fyz + 292z + 2 hay + 2lxt + 2myt+ 2nzt+ dt*’=0, (1)
which reduces to the usual nonhomogeneous form when ¢ is placed
equal to 1. '

For equation (1) the results of §§ 90-93 remain unchanged
except for a slight change of notation. We will refer to the equa-
tions of these sections by number and make the necessary change
in notation without further remark. Assuming that A # 0 we
may find the pole of the plane at infinity, for example, by placing
%, in equations (1), § 92, equal to the codrdinates 0:0:0:1 of the
plane at infinity. There result the equations

ax+hy +9z2+1Ut =0,
he+by +fz +mt=0,
gz +fy +ez+nt =0,
lx +my+nz+dt =p,

the solution of which is the coordinates of the pole required. This
pole is therefore a finite point when the determinant

C)

a h g
D=k b f
g f e

is not zero and is a point at infinity when D = 0.

In the latter case, by theorems IV and I, § 92, the surface is
tangent to the plane at infinity. In the former case, if the pole
of the plane at infinity is taken as 0:0:0:1, then I=m=n=0,
and consequently it appears that if z:y,:2:¢ is a point on the
surface, —z,: —y,: —2,:¢, is also on the surface. The point is
therefore called the center of the surface, and the surface is called
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a central surface. Conversely, if a surface without singular points
has a center (that is, if there exists a point which is the middle
point of all chords through it), that point is the pole of the plane
at infinity. This follows from theorem IX, § 92, or may be shown
by assuming the center as the origin of cotrdinates and reversing
the argument just made.

We have reached the following result:

A surface of second order with the equation (1) s a central surface
or a noncentral surface according as the determinant D 8 not or is
equal to zero. A noncentral surface is tangent to the plane at infinity.

Holding now to the significance of the determinant A as given
in § 90 we may proceed to find the simplest forms of the equa-
tions of the surface in Cartesian coordinates. There will be this
difference from the work of § 98 that now the plane ¢ =0 plays
a unique réle and must always remain as one of the coordinate
planes. The other three cobrdinate planes, however, may be
taken at pleasure, and we shall not at present restrict ourselves
to rectangular coordinates.

1. Central surfaces without singular points. As in § 98, by refer-
ring the surface to a self-polar tetrahedron one of whose faces is
the plane at infinity its equation becomes

az®+ by + 2 + dt*= 0.

According to the signs of the coefficients this gives the following
types in nonhomogeneous form:

1. The oval type:

(a2) The imaginary ellipsoid, :—:+ %:+ ?: -1
(%) The real ellipsoid, §:+ ‘%:+ §= 1.
| 2
(¢) The hyperboloid of two sheets, 2—’:— Y1
2. The saddle type: \
The hyperboloid of one sheet, §:+ ‘%— zz;:l.

II. Noncentral surfaces without singular points. Since the plane
at infinity can no longer be a face of a self-polar tetrahedron, we
cannot use the method of § 98. We will take the point of tangency




SURFACES OF SECOND ORDER AND SECOND CLASS 229

in the plane at infinity as B (0:0:1:0). Then g=f=c¢ =0 and
n # (. Take an arbitrary line through B. It meets the surface
in one other point 4, which we take as 0:0:0:1. We then take
the tangent plane at 4 as z=0. Then I=m=d =0, and the
equation of the surface is

a2+ 2 hay + byt + o= 0.

The tangent plane at 4 meets the plane at infinity in a line
(z=0, t=0), which is the conjugate polar to the line 4B (z=0,
¥ =0). The points € (0:1:0:0) and D (1:0:0:0) may be taken
as any two points on this line such that each lies in the polar
plane of the other. Then %= 0, and the equation of the surface is

reduced to 0+ by + nz = 0.
According to the signs which occur we have two types:
1. The oval type:
The elliptic paraboloid, ;,+ = e
2. The saddle type:

2

The hyperbolic paraboloid, i ‘%,= ne.

The discussion of surfaces with singular points presents no features
essentially different in Cartesian codrdinates from those found in
the general case. If the surface has one singular point, it is a cone
if the singular point is not at infinity and is a cylinder if the sin-
gular point is at infinity. If the surface has a line of singular
points, it consists of two intersecting or two parallel planes accord-
ing as the singular line lies in finite space or at infinity. If the
surface has a plane of singular points, it consists of a plane doubly
counted, which may be the plane at infinity.

95. Surfaces of second order referred to rectangular axes. In the
previous section no hypotheses were made as to the angles at which
the codrdinate planes intersected. For that reason the codrdinate
planes leading to the simple forms of the equations could be chosen
in an infinite number of ways. We shall now ask whether, among
these planes, there exist a set in which the planes z=0, y=0,
and z=0 are mutually orthogonal.
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Consider first the central surfaces without singular points for
which D # 0. The plane at infinity cuts this surface in the gen-

eral conic a*+ by’ + e+ 2 fyz + 292z + 2 hay = 0, @

where z: y:2 are homogeneous codrdinates on the plane t=0.
When the equation of the surface is referred to a self-polar tetra-
hedron of which the plane at infinity is one face, the curve (1) is
referred to a self-polar triangle. If the axes in space are orthogonal,
the triangle must also be a self-polar triangle (theorem V, § 81)

to the circle at infinity PP+ 2=0 )

Our problem, therefore, is to find on the plane at infinity a triangle
which is self polar at the same time with respect to (1) and (2).

By § 43 this can be done when and only when the curves (1)
and (2) intersect in four distinct points or are tangent in two
distinet points or are coincident.

In the first case there exists one and only one self-polar triangle
common to (1) and (2), and therefore there exists only one set of
mutually orthogonal planes passing through the center of the quad-
ric and such that by use of them as coordinate planes the equa-
tion of the quadric becomes

a*+ by’ + e+ d = 0. (aFbdb+c+0)

These planes are the principal diametral planes of the quadric,
and their intersections are the principal azes.

In the second case there are an infinite number of planes through
the origin, such that by use of them as coordinate planes the equa-
tion of the quadric becomes

a(@+yH+ e+ d=0. (a®c*0)

Here the axis 0Z is fixed, but the axes OX and OY are so far
indeterminate that they may be any two lines perpendicular to 02
and to each other. The surface is a surface formed by revolving
the conic az*+ ¢Z*+ d = 0, y = 0 about OZ.

In the third case any set of mutually perpendicular planes through
the origin, if taken as codrdinate planes, reduce the equation of the

quadric to the form a(@P+ P+ +d=0,

and the quadric is a sphere.
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It is to be noticed that if the coefficients in equation (2) are
real, one of the above cases necessarily occurs. For in this case
the solutions of equations (1) and (2) consist of imaginary points
which occur in pairs as complex imaginary points.

If we consider the noncentral quadrics without singular points
and use the notation of § 94, we notice first that if the axes of
codrdinates are rectangular, the point B cannot be on the circle at
infinity, since the line CD must be the polar of B with respect to
the circle at infinity. The point B being fixed by the quadric sur-
face, the line CD is then fixed, and consequently the line 4B, since
4B is the conjugate polar of CD with respect to the quadric. The
point 4 is then fixed and is called the vertez of the quadric.

" ‘The points ¢ and D must now be taken as conjugate, both with
respect to the circle at infinity and with respect to the conic of inter-
‘section of the quadric and the plane at infinity. If the two straight
lines into which this latter conic, degenerates (cf. Ex. 1, § 86) are
neither of them tangent to the circle at infinity, the points C' and
D are uniquely fixed. If both of these lines are tangent to the cir-
cle at infinity, the point C may be taken at pleasure on CD, and D
is then fixed. -

- In the first case there is one tangent plane and two other planes
perpendicular to it and to each other, by the use of which the equa-
tion of the quadric is reduced to the form

ax’+ by*=na. (a#b)
In the second case there are an infinite number of mutually

‘orthogonal planes, one of which is a fixed tangent plane, by the
use of which the equation of the quadrlc is reduced to the form
a(P@+ y*)=ne,

and the quadric is a paraboloid of revolution.

“'In all other cases, namely, when the point of tangency of the
quadric with the plane at infinity. is on the circle at, infinity or
when the section of the quadric -with the plane at infinity consists
of two straight lines, one and only one of which is tangent to the
circle at infinity, the equation of the surface cannot be reduced to
the above forms by the use of rectangular axes.

~If the coefficients of the terms of the second order in the equatlon
of the quadric are real, the rectangular axes always exist.
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EXERCISES
Examine the following surfaces for the existence of principal axes:

2P+ A zz iz 4+1=0.

<284+ A+ )P+ P2+ 1+ Dy =0.

B4+ 2P+ T2+ 4iyz +1=0.

284+ 24 2%y +1=0.

L34+ 2P+ T84 6iyz+1=0.

B4 2y — P — 2P+ 22=0.

cxz+iyz+x=0.

cB—2y+ > +22+22=0.

. Examine the quadrics with singular points by the methods of
section.

- I T B S BTG S CR
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96. Rulings on surfaces of second order. We have seen (§93)
that the equation of any surface of the second order without
singular points can be written as

it itz +al=0 o
if no distinction is made between reals and imaginaries or between

the plane at infinity and any other plane. This equation can be
written in either of the two forms

4w,  x—w,
z,+w, z—w,

= @

x1+iza=_xa+iz4

A S ?‘xa

=W; ©)

whence follows for any point on the surface
AT RERE R 7\;&\-{—1:1:(-— Ap+D:ir—p:i(A+p). @)
From these equations the following theorems are easily proved:
I On a surface of second order without singular points le two
Jamilies of straight lines, one defined by equations (2) and the other
by equations (3).
For if A is given any constant value in (2) the equations
represent a straight line every point of which satisfies equation (1).

Similarly, » may be given a constant value in (8). The straight
lines (2) and (3) are called generators.
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II. Through each point of the surface goes ome and only ome line
of each family.

For any point z; of the surface determines A and ux uniquely.

III. Each line of one family intersects each line of the other family.

For any pair of values of A and ux leads to the solution (4).

IV. No two lines of the same family intersect.

This is a corollary to theorem II.

V. A tangent plane at any point qf the surface intersects the sur-
Sace in the two generators through that point.

For the two generators are tangents and hence lie in the tangent
plane. But the intersection of the tangent plane with the surface
is a curve of second order unless the plane lies entirely on the
surface, which is impossible since the surface has no singular points.
Hence the section consists of the two generators.

VI. The surface contains no other straight lines than the generators.

For if there were another line the tangent plane at any point
of the line would contain it, which is impossible by theorem V.

VII. Any plane through a generator intersects the surface also in
a generator of the other family and s tangent to the surface at the
point of intersection of the two generators.

Consider a plane through a generator g. Its intersection with
the surface is a curve of second order of which one part is known
to be g. The remaining part must also be a straight line 4, which
is a generator by theorem VI. Since % and g are in the same plane
they intersect and hence belong to different families by theorem IV.
The tangent plane at the intersection of 4 and g contains these
lines by theorem V and hence coincides with the original plane.

VIII. If two pencils of planes with their axes gemerators of the
same family are brought into a ome-to-ome correspondence go that two
corresponding planes intersect in a generator of the other family, the
relation 8 projective.

Let the axes of the two pencils be taken as =0, z,=0 and
z,= 0, z, = 0 respectively. Since these lines lie on the surface, the
equation of the surface has the form

ex gz, +erw + cxx + cxy, = 0.
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.The equations of planes of the first pencil are
z, +Az,=0
and those of the second are
' z,+ pz, =0,
If two such planes intersect on the surface, we have
A=l "G,
Cep—ec,
which proves the theorem.

IX. The intersections of the corresponding planes of two projective
"“pencils of planes with nonintersecting azes generate a surface of second
order which contains the two axes of the pencils.

~ Let the two pencils be z,+ Az,=0 and z,+ pz,= 0, where the
ap+8. '
oyr+8

* Then if a point is common to two corresponding planes, it
-satisfies the equation

projective relation is expressed by A =

yrz,+ axz,— drx,— Brx,= 0,
“which is also satisfied by the axes of the pencils.
X. (Dualistic to VIII.) Lines of one Jamily of generators cut out
projective ranges on any two lines of the other family.
As in the proof of theorem VIII, let 2, = 0, z,= 0 be a generator

.of the surface and let z,=0, z,=0 be another generator of the
same family. The equation of the surface is then

cx T+ e T, + cx T + e T T, = 0,

‘and the generators of the second family are

NEN S 270
x2 clx8+ C’x‘

A generator of this family meets z = 0, z,= 0 in the point wher
z:z,=¢,+ ¢ \: — ¢,— ¢\ and meets z,= 0, z,= 0 where a;l:z’=x:1.
.The relation is evidently projective.

-+ XI. (Dualistic'to X.y The lines which connect corresponding poinis
of -two projective ranges with noninterseoting bases lie on .a surfact
of second order. '
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Let one range be taken on z,= 0, z,= 0 and the other on z,= 0,
z,= 0. Then the points of the two ranges are given on each base
by the equations z,+ Az,= 0 and z,+ pz,= 0. Let the projective
ap+8, o
yu+ 8

From these it is easy to compute that the coordinates of any pdint
on the line connecting two corresponding points of the two ranges
satisfy the equation

relation be expressed by A =

vz, — Sz .z, + argz,— Brz,= 0.

EXERCISES
1. Distinguish between the cases in which the generators are real or
imaginary, assuming that the equation of the quadric is real.
2. What are the generators of a sphere ?

3. Distinguish between a central quadric and a noncentral one by
showing that for the latter type the generators are parallel to a plane
and for the former they are not.

. 97. Surfaces of second class. Consider the equation
EAu“s”k= 0, (Aki=,A&) @
in plane codrdinates. This is a special case of the equation dis-

cussed in. § 88. Equations (8), § 88, which determine the limit
points, become
PT= AUy + A ug+ A uy + A uys (¢=1,234) (2
and equations (5), § 88, which define the singular planes, become
Aqu + A uy+ Aguy+ A, u, = 0. =12238,4) (3
If we now place

Au Au Au Au
4, 4, A, 4
A=|"1 22 28 2¢ (4)
Ala A” A” Au
Au An AM Au

we have to distinguish four cases. ‘

I. A+ 0. Equations(2)have then a singlesolution for w,: u,: u: »,,
which, if substituted in (1), gives the equation of the surface en-
veloped by the extent of planes. This equation may be more con-
veniently obtained by replacing (1) by the equation

vz, + uz, + uz, + uz, = 0,
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obtained from (1) by the help of (2). The elimination of u; then
gives :

All Al’ All . Al‘ xl
Al! A” A” AM x’
A, 4, 4, 4, =z,[=0, ®)
Al( A!! AM A“ I‘
r T =z =, 0

which is the equation of a surface of second order.

Under the hypothesis A+ 0 equations (3) have no solution, so
that in this case no singular plane exists. It is not difficult to
show that the discriminant of equation (4) does not vanish.

We have, accordingly, the following result: A plane extent of
second class with nonvanishing discriminant consists of planes envelop-
ing a surface of second order without singular points.

This theorem may be otherwise expressed as follows: A surface
of second class without singular planes 18 also a surface of second order
without singular points.

II. A=0, but not all the first minors are zero. Equations (3) now
have one and only one solution, so that the extent (1) has one and
only one singular plane. Let it be taken as the plane 0:0:0:1.
Then 4, =4, =4, =A4,,=0, and equation (1) takes the form

Ayul + Aygug + Agug + 2 4, uu,+ 2 A uuy + 2 Ayguu,= 0, (6)

where the determinant -

All Al! 4 13
Al’ A’! A28
All A” Au

does not vanish owing to the hypothesis that not all the first
minors of the discriminant (4) vanish.

The elimination of u; from equations (2) and equation (6)
gives, then,

All Al! A18 xl
A A z,

12 22 23 2 - 0 T = O’
All A” Au 38 ’ ‘

which are the equations of a nondegenerate conic in the plane
z,=0,
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We have, accordingly, the result: A plane extent of second class

with one singular plane consists of planes which are tangent to a non-
_degenerate conic lying in the singular plane.

~ The equation of the plane extent may be considered the equa-

tion of this conic in plane codrdinates.

II1. A=0, all the first minors are zero, but not all the second
minors are zero. Equations (8) now contain only two independent
equations and hence the extent contains a pencil of singular planes.
If this pencil is taken as w,= 0, u,= 0, the equation of the extent
becomes

A ul+24 uu+4,u=0, , )

where the determinant 4 4, — 4], does not vanish because of the
hypothesis that not all the second minors of the discriminant (4)
vanish.

Equation (7) factors into two distinct linear factors and hence
the plane extent consists of two bundles of planes. The elimina-

tion of %, between equations (2) and (7) gives

. All Al! xl
4, 4, z,|=0, z=0, z=0,
z =z 0

which define the vertices of the two bundles.

We have, accordingly, the result: A plane extent of second class
with a pencil of singular planes consists of two bundles of planes, the
singular pencil being the pencil common to the two bundles.

IV. A= 0, all the first and second minors are zero, but not all
the third minors are zero. Equations (8) contain only one inde-
pendent equation and hence the plane extent contains a bundle of
singular planes.. If this bundle is taken as w,= 0, the equation of
the extent becomes A i 0, . ®)
where 4, cannot be zero because of the hypothesis that not all
third minors of (4) are zero.

Hence we have the result: A plane extent of second class with a
bundle of singular planes consists of that bundle doubly reckoned.

It may be noticed that the elimination of u; between equations
(2) and (8) gives the meaningless result z,:z,: z,:2,=0:0:0:0.
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98. Poles and polars. The relation between poles and polars may
be established by means of plane cobrdinates as well as by point
coordinates. We shall define the pole of a plane v; with respect to
the extent (1), § 97, as the point the codrdinates of which are

pT,= Ao+ Ay + 4,0+ 4&4"4- (¢=1,23,4) ‘

For the case in which A+ 0 the relation between pole and polar
is the same as that defined in § 92, as the student may easily prove.
In the cases in which A= 0 the polar relation is something new.

The following theorems dualistic to those of § 92 are obvious or
easily proved : '

L If a plane belongs to the extent its pole is the limit point in the
plane.

. To any plane not a smgular plane of the extent corresponds a
unique pole.

III. To any point corresponds a unique polar when and only when
the plane extent has no singular plane.

IV. A pole lies in its polar plane when and only when the polar
plane belongs to the extent.

V. The pole of any plane lies in all nngular planes when such exist.

VI. If a plane p passes through the pole of a plane g, then q passes
through the pole of p.

. VII. All limit points lying in a plane p are the limit points of planes
of the extent which pass through the polar of p.

VIII. For a surface of second class without singular planes it s pos-
gible in an infinite number of ways to construct self-polar tetrahedrons.

IX. If a line m lies in a plane p, and r and 8 are the planes of the
extent which pass through m, and q is the plane through m and the
pole of p, then p and q are harmonic conjugates to r and s.

99. Classification of surfaces of the second class. The previous
sections enable us to write the simplest forms to which the equas-
tion of a surface of the second class may be reduced.

I. A#0. Since the planes envelop a surface of type I, § 93,
we may take the results of that section and find the plane equation
corresponding to each type there. Consequently, if no account is
taken' of real values the equa.tlon of the plane extent may be

written as ul+u,+u:+u‘ 0.
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If the coefficients in the original equation are real and the origi-
nal coordinates are also real, then, by a real change of coordinates,
the equation takes one or another of the forms '

ult+ui+ug+ul=0,

ul 4+ ug+ u; — ul=0,

w4 ul—ul—ul=0.
"I A= 0,but not all the first minors are zero. We have already
obtained equation (6), § 97, as a possible equation in this case.

If no account is taken of reals this equation can be reduced to

the form Ui+ uie= 0,

In the domain of reals there are two types:

1. Planes tangent to a real plane curve

ul+ul—ui=0.

2. Planes tangent to an imaginary plane curve

. ) o ul4+ ul+ul=0. '

III. A =0, all the first minors are zero but not all the second
minors are zero. As shown in § 97, the equation can be reduced
to the slingle type witui=0
if no account is taken of reals, and to the following two types in

the domain of reals:
1. Two real bundles of planes

ul—ul=0.
2. Two imaginary Bundles of pla.hes
' ui+ul=0.
IV. A = 0, all. the first and second minors are zero. As shown
in § 97, there is here only one type of equation,
- u=0,

repfesenting a double bundle of planes.



CHAPTER XIV
TRANSFORMATIONS

100. Collineations. A collineation in space is a point transforma-
tion expressed by the equations

P =y, + 0,37, + Oz, + 0,7,

PTy= Ay Ty + BpeTy + ATyt Ay 7,

PTy= GyyZ+ BTy + ATy + Gy, T,,

PT= BTy + GyuZy+ ATy + 04T,

™

We shall consider only the case in which the determinant |a,|
is not zero, these being the nonsingular collineations. Then to any
point z; corresponds a point z), for the right-hand members of (1)
cannot simultaneously vanish. Also to any point 2] corresponds
a point z; given by the equations obtained by solving (1),

ox;= A2+ A7+ A2+ A7, ¢))

where, as usual, 4, is the cofactor of a, in the expansion of the
determinant |a,|. -

By means of (1) any point which lies on a plane with coordi-
nates v, is transformed into a point which lies on a plane with
coordinates u/, where

pui= Ay + A; uy+ A, g+ A0, ©)
and ou,;= a, ‘u{ + a.‘,_,.u; + a“u‘ + aﬁ"‘- (4)

The following theorems, similar to those of § 40, may be proved
by the same methods there employed.

I. By a nonsingular collineation points, planes, and straight lines
are trangformed into points, planes, and straight lines respectively in
a one-to-one manner. . -

II. The nonsingular collineations form a group.

oI If B, B, R, R, and E, are five arbitrarily assumed points no
Jour of which lie in the same plane, and E!, B!, B', E', and E' are also

240
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Jfive arbitrarily assumed points no four of which lie in the same plane,
there exists one and only one collineation by means of which E, is trans-
formed into B!, B into B!, B into P!, B into E', and B into B

IV. A nonsingular collineation establishes a projectivity between the
points of two corresponding ranges or the planes of two corresponding
pencils, and any such projectivity may be established in an infinite
number of ways by a nonsingular collineation.

V. Any two planes which correspond by means of a monsingular
collineation are projectively transformed into each. other.

101. Types of nonsingular collineations. A collineation has a
fixed point when z]= z, in the equations (1), § 100. Fixed points
are therefore given by the equations

(an_ [4 ) £21 + @ Ty + @44 + 2,2~ 0,
a2+ (a,— p)z, + a7, +a,z7,= 0,
7, + a7, + (8 — p) 2, +a,z,=0,
Lot + a7, + a«xa"' (a“ -P) = 0.

~ The necessary and sufficient conditions that these equations
have a solution is that p satisfies the equation

a,—p ay, ay, 2y

a, a,—p a, a, -0
a, Ay a,—p a,

a, A Qs =P

Similar conditions hold for the fixed planes. By reasoning
analogous to that used in § 41 we may establish the results:

Every collineation has as many distinct fized planes as fixed points,
as many pencils of fized planes as lines of fixed points, and as many
bundles of fixed planes as planes of fixed points.

In every fized plane lie at least one fixed point and one fixed line,
through every fized line goes at least one fized plane, on every fived
line lies at least one fized point, through every fized point go at least
one fized line and one fized plane.

With the aid of these theorems we may now classify the
collineations. For brevity we shall omit much of the details of the
work, which is similar to that of § 41.* In the following equations

# Asin § 41, the use of Weierstrass’s elementary divisors would simplify the work.
8ee footnote, p. 86.
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the letters a, b, ¢, d represent quantities which are distinct from
each other and from zero. '

A. At least four distinct fized points not in the same plane. The
four points may be taken as the vertices of the tetrahedron of
reference ABCD (see Fig. 562, § 82). We have, then, the following

types:

Tyek L. pz,= az,
pr= bz,
pay= £y
pzy= dz,.

The collineation has the isolated fixed points 4, B, C, D, and the
isolated fixed planes 4BC, BCD, CDA, DAB.

TyeE I1. pr,= ax,
pr=  az,
pTy= Ty,
pri= dz,.

The collineation has the isolated fixed points 4, B, the line of
fixed points CD, the isolated fixed planes ACD, BCD and the
pencil of fixed planes with axis 4B.

Tyee II1. px,= az,,
pPT=  az,
pzy= CZgy
pri= . cz,.

The collineation has the two lines of fixed points 4B, CD and
the two pencils of fixed planes with the axes 4B, CD.

TyeE IV. pz, = az,,

I —
pr = az,

pry= ATy,

pr, = dz,.

The collineation has the isolated fixed point 4, the plane of
fixed points BCD, the isolated fixed plane BCD, and the bundle of
fixed planes with vertex 4.
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TyrE V. px, = ax,
pry=  az,
pTy = Az,
pr, = az,.

All points and planes are fixed. It is the identical transformation.

B. At least three distinct fixed points not in the same straight line and
no others not in the same plane. The fixed points may be taken as the
points 4, B, D. There are three fixed planes, one of which is ABD,
and the others must intersect 4BD in one of the three fixed lines
AB, CD, DA. We may take one of these planes as DBC(z,=0). -
Then in that plane we have a collineation in which B and D are
the only fixed points. By proper choice of the vertex C the collinea-
tions in the plane z,= 0 may be given the forms found in § 41.
Hence for the space collineations we find the following types:

Tyre VI. pry=ar,+ =z,
Px; = az,,
. Px; = )
pT, = dz,.

The collineation has the isolated fixed points 4, B, D and the
isolated fixed planes 4BD, ADC, BCD.

Tyee VIL pry=az,+ =z,
pzy = az,,
pry = Ty
P = oz,

The collineation has an isolated fixed point D, a line of fixed
points 4B, the isolated fixed plane 4BD, and the pencil of fixed
planes with the axis CD.

Type VIII. P, =azx, + z,
PT, = az,,
P Z‘g = axa’
!Pz: = dx{'

The collineation has the isolated fixed point 4, the line of fixed
points BD, the isolated fixed plane BCD, and the pencil of fixed
planes with the vertex 4D,
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Type VIII is distinguished geometrically from Type VII by the
fact that in Type VIII the line of fixed points intersects the axis
of the pencil of fixed planes and in Type VII this is not the case.

TyeE IX. pri=az + =z,
pry = az,,
Py = az,,
Pz = az,.

The collineation has the plane of fixed points 4BD and the
bundle of fixed planes with vertex D.

C. At least two distinct fixzed points and mo others not in the same
straight line. The fixed points may be taken as B and D. There
must be two distinct fixed planes of which one must pass through
BD and the other may. There are two subcases each leading to
two types of collineations.

1. If both fixed planes pass through BD they may be taken as
z,=0 and z,=0. Then in each of these planes we have a collineation
of TypeIV or Type V of § 41. By proper choice of the points 4 and
C we have, accordingly, the following types of space collineations:

TypE X. Pz =ar, + z,
pu=-  az,
pTy= br,+ =,
pry = b,.

The collineation has the isolated fixed points B, D and the isolated
fixed planes ABD, BCD. :

Tyee XL pr,=az + =,
pry = az,,
pry = ax,+ =z,
P = az,.

The collineation has the line of fixed points BD and the pencil
of fixed planes with the axis BD.

2. If only one of the fixed planes passes through BD the other
must contain one of the fixed points B or D. In ‘this case we may
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take the two fixed planes as z,= 0 and z,=0. Then in the plane
BCD we have a collineation of Type IV or Type V of § 41 and
in ABD one of Type VI of § 41. By proper choice of the points
C and 4, therefore, we have the following types:

Type XIL pri=az,+ =z,
pay= az,+ z,
pry= ba,
pr,= az,.

The collineation has the fixed points B, D and the fixed planes
BCD, ADC.

Type XIIIL pri=az,+ =z,
pry= ar,+ 7, .
pzy= Ay,
pz= az,.

The collineation has the line of fixed points BD and the pencil
of fixed planes with the. axis DC.

D. Only one fized point. The fixed point may be taken as D.
The fixed plane which must exist may be taken as z,=0. Then
in that plane the collineation is of Type VI, § 41, and the points
C and B may be so chosen that the equations take the form of
Type VI there given. To do this we first select z,=0, z,=0 as the
fixed line in the plane z,=0. The point 4 may be taken as any
point outside of z,=0. If 4'is the point into which 4 is trans-
formed, the line 44’ may be taken as z,= 0, z,= 0. This fixes the
point B. Then C is determined, as in Type VI, § 41. The result
is the following type:

Tyepe XIV. pri=az,+
pz= ar,+ Ty
pri= ar,+ z,,
pri= az,.

The above types exhaust the cases of a nonsingular collineation.
In a singular collineation there exist exceptional points, lines, or
planes. The discussion of these is left to the student.
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EXERCISES
1. Considering the translation
':v'=a:+a, yY=y+b 2'=z+4c
as a collineation, determine its fixed points and the type to which it
belongs.
2. Considering the rotation
'=xzcos¢p —ysing, y'=xsing+ycosg, 2'=z2
as a collineation, determine its fixed points and the type to which it
belongs.
3. Considering the screw motion
2'=xcos¢p —ysing, y'=axsing+ycosg, 2'= kz
as a collineation, determine its fixed points and the type to which it
Belongs.

4. Set up the formulas for the singular collineation known as
 painter’s perspective,” by which any point P is transformed into that
point of a fixed plane p in which the line through P and a fixed point 0
meets p.

5. Find all possible types of nonsingular collineations.

102. Correlations. A correlation of point and pla.ne in space is
defined by the equations

pUi= 0,2+ ATy + ayty+ a4z, (I= 17 2; 3, 4) ¢Y)

where u, are plane cobrdinates and z, are po'i'n't coordinates, The
correlation is nonsingular when |a,|+ 0, and we shall consider only
such correlations. Then any point z, is transformed into a definite
plane u;, and any plane u; is the transformed element of a definite
point, so that the correspondence of an element and its transformed
element is one-to-one. The points z, which lie on a plane with
coordinates u; are-transformed into planes u/ which pass through a
point i, where pz= Ai1u1+Ai2“2+Aia“a:+Auuv (2)
where 4, is the cofactor of a, in the d'etermina.nt]a,.k{. We may
say, therefore, that the plane u, is transformed into the point .
Points which lie on a line [ are transformed:into planes through
line 7, so that we may say that the line { is transformed intp the
line 7.
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If the point P (2,) is transformed into the plane p'(u}), then, by the
same operation, the plane p' is transformed into the point P"(2{"),
where, from (2), .
pzi = Auy + Ay + A uy + A, 0.

The last equations solved for u] give
pui= a2y + 0,7 + ayzy + a7y (€))

The pointé z; and 2’ are in general distinct. That they should
coincide it is necessary and sufficient, as is seen by comparison

of (1) and (4), that
(au_ Pan) z,+ (an P am) z,+ (axs_ 4 au) z,+ (au —-p au) z,= 0,
(a,—pa,) 2, + (2, — pa,,) T, + (a,— pay,) 2, + (2, —pa,) 2,=0,
(a81 - Pals) z,+ (asz - Paza) z,+ (an - Pa’sa) 7, + (au_. Pau) z,= 0,
(an_Pau)x1+ (an - Pau) 7+ (an—Pau) z,+ (a« —Pa«) z,= 0,
where p must satisfy the condition .

A= P, = P3y G POy Oy~ Py,

a,—pa, a,—pa, a.,—pa, a,—pa,|

Gy POy Gy pay Gy piy ay—pay

Cpn— Py A= POy, A= Py, a,—PA,

®

in order that equations (5) may have a solution.

When the codrdinates of a point P satisfy equations (5), it and
the plane p/, into which it is transformed, form a double pair of the
correlation. Since (6) is of the fourth degree we see that in general
a correlation has four double pairs, but may have more.

The double pairs may be made the basis of a classification of
correlations, as was done in the case of the plane, but we will not
take the space to do so. Of special interest is the case in which each
point of space is a point of a double pair. For this it is necessary
and sufficient that equations (5) should be satisfied for all values
of z. This can happen in only two cases: :

1 p=1, a,=a,. 2. p=—-1,0a,=0, a,=—a,.
In the first case the correlation is evidently a polarity with

respect to the conic zakaﬁk= 0, and by proper choice of cotrdi-
nates it may be represented by the equations

I—
pU = z;.
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In the second case the correlation has the form

P“; = 4,2 tae 7+ a2,
P u; =07 +a,7,+ LA
puy=— 15T — AgsTy +a,z,
puy=— )T~ Ay Ty — Ay Ty

and represents a null system, which will be discussed later. It will
be .shown that by choice of axes the correlation may be reduced
to the standard form

puy= Ty
pUy=—2;,
PUs=2,
pUL=— z,.

Another question of interest is to determine the condition under
which a point P lies in the plane p', into which it is transformed.
From equations (1) it follows at once that the codrdinates of P
must satisfy the equation

zaux-"”k= 0.

This equation is satisfied identically only in the case of the null
system ; otherwise it determines a quadric surface KX, the locus of
the points P which lie in their respective transformed planes.
Similarly, the planes p which pass through their respective trans-
formed points envelop the quadric K,

2 Auu,= 0,

which is in general distinct from K.

EXERCISES
1. Prove that if P and p' are a double pair the plane p' is the polar
plane of P with respect to the conic K.

2. Prove that a correlation is an involutory transformation only in
the case of a polarity or a null system.

3. Explain why there is no analog of the null system in .plane
geometry.

4. Prove that any correlation is the product of a collineation and a
polarity.
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103. The projective and the metrical groups. The product of
two nonsingular collineations or of two nonsingular correlations
is a nonsingular collineation. Hence the totality of all collineations
and correlations form a group, since this totality contains the
identical substitution. Projective geometry may be defined as that
geometry which is concerned with the properties of figures which
are invariant under the projective group. In this geometry the
plane at infinity has no unique property distinct from those of °
other planes nor is the imaginary circle at infinity essentially
different from any other conic, and all questions of measurement
disappear. Quadric surfaces are distinguished only by the presence
and nature of their singular points.

Subgroups exist in great abundance in the group of projections.
For example, the collineations taken without the correlations form
a subgroup, but the correlations alone form no group. All colline-
ations with the same fixed points obviously form a subgroup.
Again, all collineations which leave a given quadric surface inva-
riant form a subgroup. Of great importance among these latter
is the group which leaves the imaginary circle at infinity invariant.
This is the metrical group, which leaves angles invariant and multi-
plies all distances by the same constant.

The general form of a transformation of the metrical group is

p=lg+my+nz+plt,
py' = lz+my+nz+pt,
pe = lx+my+nz+pt,
pt' =1,

@

where the coefficients satisfy the conditions
B+ 0+ =m}+mi+mi=ni+n;+ng, @ -
Lm +1m +1lm =mn +mn+mn=nl+nl+nl =0 (3)

It is easy to see that the distance between two transformed
points is by this transformation % times the distance between the
original points, where %* is the common value of the expressions
in (2), and, conversely, that a collineation which multiplies all
distances by the same constant is of the form (1). The preser-
vation of angles follows from elementary theorems on similar
triangles.



250 THREE-DIMENSIONAL GEOMETRY

All transformations of the metrical group which leave a plane p
fixed form a group of collineations in that plane by which the
circular points at infinity are invariant. This group is therefore
the metrical group in p, and the projective definitions of angle
and distance given in § 50 stand. :

L]
EXERCISES

1. If D is the determinant of the coefficients /, m, » in (1), show that
D=4k

2. Show that the necessary and sufficient condition that (1) should
represent a mechanical motion is that D =4 1, and that it should repre-
sent a motion combined with a reflection on any plane is that D =—1.

3. Show that if D=+ 1 in addition to conditions (2) and (3), we have
B+mi+ni=0+mi+ni=0+mitai=1,
Ll + mm, 4 nmn, = Ll + mm, + nn, = Ll + mgm, + nn, =0.

104. Projective geometry on a quadric surface. It has already
been noted (§ 69) that the geometry on a surface of second order
with the use of quadriplanar co6rdinates is dualistic to the geom-
etry on the plane with the use of tetracyclical coordinates. For in
each case we have a point defined by the ratios of four quantities
z,, z,, ¥,, Z,, bound by a quadratic relation

' o(z)=0, @
which is, on the one hand, the equation of the quadric surface
and, on the other hand, the fundamental relation connecting the
tetracyclical co6rdinates.

Any point I on the quadric surface may be taken as correspond-
ing to the point at infinity on the plane, since the point at infinity
is in no way special in the analysis. Any linear equation

S az=0 @
represents a plane section of the surface or a circle on the plane.
Should the section pass through I, the circle on the plane becomes
a straight line, but circles and straight lines have no analytic
distinction in this geometry.

If y, is a point on the quadric surface and we have, in (2),

ow
;= a—"y" )
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the plane (2) is tangent to the surface, and the circle on the plane
is a point circle. The point of tangency on the surface corresponds
to the center of the point circle on the plane. The intersection of
the tangent plane with the quadric surface consists of two gen-
erators. In a corresponding manner the point circle on the plane
consists of two one-dimensional extents. Neither alone, however,
can be represented by a linear equation in z;, and therefore they
are not straight lines on the plane. If this is obscure it is to be
remembered that imaginary straight lines are not defined by any
geometric property, but by an analytic equation.

The intersection with the quadric surface of the tangent plane
at I corresponds to the locus at infinity on the plane.

The center y; of a point circle on the plane, or the point of tan-
gency of a tangent plane to the surface, is found by solving (3)
for y,. The values of y, must satisfy (1), and the substitution

gives the equation 7(a)=0, @

which is the condition that a circle on the plane with tetracyclical
cordinates should be a point circle, or that a plane in space should
be tangent to the point circle. It is in fact simply the equation in
plane codrdinates of the quadric surface (1).

Two circles on the plane are perpendicular when

on _ ] 4
. Eb,%‘ =7(a b)=0. )
In space the pole of the plane Eagq: 0 with respect to the sur-
face with the plane equation (4) is y‘.=§;—7, and equation (5) is
(]

the condition that this pole lie in the glane Zb,.z.: 0. Hence two
orthogonal circles on the plane with tetracyclical coordinates cor-
respond to two plane sections of the quadric surface such that
each plane contains the pole of the other.

A linear substitution of the tetracyclical codrdinates corresponds
to a collineation in space which leaves the quadric surface invariant.
The geometry of inversion on the plane is therefore dualistic to the
geometry on the quadric surface which is invariant with respect to
collineations which leave the surface unchanged. Two points on
the plane which are inverse with respect to a circle C' correspond
to two points on the quadric surface such that any plane through
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them passes through the pole of the plane corresponding to C or,
in other words, such that the line connecting them passes through
the pole of the plane corresponding to C. Since the center of a
circle on the plane is the inverse of the point at infinity with
respect to that circle, the point on the quadric which corresponds
to the center of a circle may be found by connecting the point I
with the pole of the plane corresponding to the circle.

An inversion with respect to a circle corresponds in space to a
collineation which transforms each point into its inverse with
respect to a fixed plane. That is, if the fixed circle corresponds to
the intersection of the quadric with a plane M, and K is the pole
of M, an inversion with respect to M transforms any point R on
the quadric into the point E, where the line KB, again meets the
quadric. The collineation which carries out this transformation
has the plane M as a plane of fixed points and the point K as a
point of fixed planes.

Consider now the parameters (A, ) on the surface, defined as in
§ 96. They may be taken as the codrdinates of a point on the sur-
face and may be interpreted dualistically to the special codrdinates
of § 70. The two families of generators are then dualistic to the two
systems of special lines of § 70, and the locus at infinity on the plane
is dualistic to the generators through the point I of the surface.

The bilinear equation

arp+ai +ap+ a‘='0 ©)
represents a plane section of the quadric surface and is dualistic
to the equilateral hyperbola on the plane with two special lines as
asymptotes. A section of the quadric surface through I corresponds
to an ordinary line on the plane, from which it is evident that by
the use of the special coordinates the straight line has the properties
of the equilateral hyperbola.

Any collineation of space which leaves the quadric surface inva-
riant gives a linear transformation of A and of u. This is evident
from the fact that the collineation must transform the lines of the
surface into themselves in a one-to-one manner. It may also be
proved analytically from the relations of § 96.

Conversely, any linear substitution of A and p corresponds to a
collineation which leaves the quadric invariant.
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Consider in fact the substitution
ak"*‘ﬁ .

which leaves the generators of the second family fixed and trans-
forms the generators of the first family. From (4), § 96, it is easy
to compute that this is equivalent to the collineation
=@+ dz+i(a— )7+ (v —Bzn—i(B+ 1)
pry=i(— @+ &z +(a + O+ i(B+ M7+ (- B+ 7,

. . 8
— (B W= i(B+ et (@ + D+ i(—a+ By
2= i (B + )2+ (B — m)ah+i(a — 8)z}+(a + B)al.
Similar results can be obtained for the transformation
A=N, _metn 9
b=t g C))

by which the generators of the first family are ﬁxed and for the
product of (7) and (9).
Finally, the collineation correspongling to the transformation
ay. + ,8 mX’ m\ +n n .
by which generators of the two families are interchanged, is easily
computed.

EXERCISES

1. Show that if the quadric (1), § 96, is the sphere «®+ 3*+ 2?=1,
the transformation A = e$)!, u = ei$p' represents a rotation of the sphere
about the axis 0Z through an angle ¢.

2. Show that the transformation A =— u', u =— X' replaces each
point of the sphere of Ex. 1 by its diametrically opposite point.

3. Obtain a transformation of A, x which represents a general rota-
tion of the sphere in Ex. 1 about any axis through its center.

105. Projective measurement. The definition of projective meas-
urement, given in § 47 for the plane, can evidently be generalized for
space, and only a concise statement of essentials is necessary here.

Let w(z)=0 (¢))
be the equation of any quadric surface taken as the fundamental
quadric for the measurement, and let

Qu)=0 @

be the equation of the same surface in plane coordinates.



264 THREE-DIMENSIONAL GEOMETRY

If 4 and B are any two points and 7, and 7, are the points in
which the line 4B meets the quadric, then the distance D between
4 and B is defined by the equation

D= Klog(4B, T\T));
or if y, and z are the coordinates of 4 and B respectively,
@@ D+ V[e@ P —[2][= ()] ®
oy D~ V[o@ DI~ [eW][=()]
Also, if a and & are two planes and ¢ and ¢, are the two tan-

gent planes to the Quadric through the intersection of @ and &, the
angle ¢ between a and b is defined by the equation

$= -;.—log [ab’ t1t2]

i 1o, 2 D+ VIO P[0 WIOG)]

28 _ o ’
Q@ )= V2w DI~ [2@][2 ()]

where u, and v, are the codrdinates of a and & respectively.
Two planes are perpendictlar if each passes through the pole of

the other; for, in (4), if @ (u, v) = 0, then ¢ = % log (—1)= ”é +nm.

D=Klog

O]

A line is perpendicular to a plane p if every plane through the
line is perpendicular to p; that is, if the line passes through the
pole of p.

We may define the angle between two lines in the same plane
as the angle between the two planes through the lines and perpen-
dicular to the plane of the lines. That is the same as defining the
?
2
ratio of the two lines and the two tangent lines drawn in their plane
to the quadric surface.

Any plane cuts the quadric surface in a conic, and the definition
of angle and distance is the same as in the projective measurement
of §47, in which this conic is the fundamental one. Projective
plane measurement is therefore obtained by a plane section of
projective space measurement.

As in Chapter VII we have three cases:

I. The hyperbolic case. The fundamental quadric is real, and we
consider only the space inside of it. The geometry in the plane is
the same as in § 48. :

angle between the two lines as - times the logarithm of the cross
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II. The elliptic case. The fundamental quadric is imaginary.
The geometry in the plane is the same as in § 49.

III. The parabolic case. The fundamental quadric in plane coor-
dinates may be taken as

u+u+ =0,

which is that of a plane extent consisting of planes tangent to a
conic in the plane z,= 0. If this conic is the circle at infinity, the
measurement becomes Euclidean.

If the conic is a real circle at infinity, for example the circle

2+ y'—2'=0, t=0,
we have a measurement in which
D=V Y- G-
and the angle between the two planes
az+by+cz+dt=0 and az+by+cz4+dt=0

aa' + bb' — ec’ .
Vai+ B — AVa' + b — ¢

is given by cos ¢ =

Through any point in space goes a real cone, such that the dis-
tances from its vertex to points inside it are imaginary, distances
from its vertex to points outside it are real, and distances from its
vertex to points on it are zero. Any plane section through the
vertex is divided into regions with the properties described in § 50.

106. Clifford parallels. When a system of projective measure-
ment has been established, the concept of parallel lines may be
introduced by adopting some property of parallel lines in Euclidean
geometry as a definition. Perhaps the most obvious as well as the
most common definition is that parallel lines are those which in-
tersect at infinity. By this definition, in parabolic space one and
only one line can be drawn through a point parallel to a given line,
in hyperbolic space two such parallels can be drawn, and in elliptic
space no real parallel can be drawn.

In elliptic space, however, there exist certain real lines called
Clifford parallels which have other properties of parallel lines as they
exist in Euclidean space. We will proceed to discuss these lines.

We have seen that any linear transformation of the parameters
A and g which define a point on a quadric surface correspond to
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a collineation which leaves the quadric invariant. Among these
transformations are those of the type
!
which transform the generators of the first family among themselves
but leave each generator of the second family unchanged.
For reasons to be given later we call such a transformation a
translation of the first kind.
Similarly, the transformation

A=A,

A=

_mp'4n
p= i+ g ’ @
by which the generators of the second family are transformed but
each of the first family is left unchanged, is called a translation of
the second kind.

Consider a translation of the first kind. On the fundamental
quadric any generator of the second family is left unchanged as a
whole, but its individual points are transformed, except two fixed
points, for which ar +8

T @
7™+

This equation defines two generators of the first kind, all of
whose points are fixed. Hence, tn a translation of the first kind there
are, in general, two generators of the first kind which are fixed point
by point. We say “in general” because it is possible that the two
roots of (8) may be equal.

Call the two fixed generators g and A. Then any line which in-
tersects g and 4 is fixed, since two of its points are fixed. Also
through any point P in space one and only one line can be drawn
intersecting g and A. Therefore, any point P is trangformed into
another point on the line which passes through P and intersects g and h.

Since we are dealing with a case of elliptic measurement the lines
g and A are imaginary. Then, if a real point P is transformed into
another real point, the roots of (8) must be conjugate imaginary,
since a real line intersects an imaginary quadric whose equation has
real coefficients in conjugate imaginary points corresponding to con-
jugate imaginary values of A and u. Therefore, if a translation of the
Jirst kind trangforms real points into real points, there must be two dis-
tinet fized generators corresponding to conjugate imaginary values of =
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This may also be established by equations (8), § 104. That these
may represent a real substitution 8 must be conjugate imaginary to
a, and vy conjugate imaginary to — 8. We therefore place a = d + ic,
0=d—1ic, B=—b+1a, y=>b+1a, and have

pr,= dz;— cz; + by + azi,
pz,= ez + do— any+ by,
PEy=— bx|+ ax;+ day + cxy,
p,=—az) — bey— ozl + dl.

®

With these values of a, 8, , and & the roots of (3) are conjugate
imaginary.

To find the projective distance between a point z; and its trans-
formed point z}, we use equations (4) and substitute in (8), § 105,

placing K = L. There results

2
J 0g¢zl+i\/a’+b’+c’__cos_l d
2 Pd—iVi+ B+ V& + B+ A+ d?

which is a constant. Hence, by a translation of the first kind each
_ point of space is moved through a constant projective distance on the
straight line which passes through the point and meets the two' fized
generators on the fundamental quadric.

It is this property which gives to the transformation the name
“ translation ” and to the lines which intersect the two fixed gen-
erators the name “ parallels.” By the transformation the points of
space are moved along the Clifford parallels in a manner analo-
gous to that in which points are moved along Euclidean parallels
by a Euclidean translation.

In the projective space a dualistic property exists. Since the
Clifford parallels are fixed, any plane through one of them is trans-
formed into another plane through it. Now any plane contains one
Clifford parallel, since it intersects each of the fixed generators in
one point. If u; and u} are the original and the transformed plane
respectively, the angle between them is, by (4), § 105,

D=

. 2 2 2
p=ilogdtVatbed d .
2 P d-Var by Vai+ b+ + dP
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Hence, by a translation of the first kind each plane of space is turned
about the Clifford parallel in it through a constant angle which s equal
to the distance through which points of the space are moved.

Similar theorems hold for translations of the second kind. The
two kinds of translations differ, however, in the sense in which the
turning of the planes takes place.

By a translation of the second kind Clifford parallels of the first
kind are transformed into themselves. For by the translation of
the second kind all generators of the first kind are fixed, and conse-
quently any line intersecting two such generators is transformed into
a line intersecting the same two generators. Hence two Clifford
parallels are everywhere equidistant if the distance is measured on
Clifford parallels of the other kind.

Let LK and MN be two Clifford parallels of the first kind, g
and % the two fixed generators which determine the parallels, and
PQ any line intersecting both LK and MN. The line P@Q intersects
two generators ¢’ and A’ of the second kind and is therefore one
of a set of Clifford parallels of the second kind. Therefore there
exists a transformation of the second kind by which PQ is fixed
and LK is transformed into MN, P falling on Q. Hence the
angles under which PQ cuts LK and MN are equal, of course in
the projective sense. That is, if a line cuts two Clifford parallels,
the oorresponding angles are equal.

In particular the line may be so drawn as to make the angle
LPQ a right angle. For if @ is on MN, the point @ and the line
LK determine a plane p, and in this plane a perpendicular can be
drawn from @ to LK. To do this it is only necessary to connect @
with the point in which the plane p is met by the reciprocal polar
of LK with respect to the quadric surface.

Hence, from any point in one of two Clifford parallels a common
perpendicular can be drawn to the two, and the portion of the perpen-
dicular included between the two parallels 18 of constant length.

107. Contact transformations. A transformation in space, expres-
sible by means of analytic relations between the coordinates of
points, may be of three kinds according as points are transformed
into points, surfaces, or curves respectively. We shall find it con-
venient to employ Cartesian codrdinates in discussing these trans-
formations and to introduce the concept of a plane element.

|
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Let (2, y, 2) be a point in space and let Z—z=p(X—2)+q(Y—y)
be a plane through it. Then the five variables (2, y, 2, p, ¢) define
a plane element, which may be visualized as an infinitesimal portion
of a plane surrounding a point. In fact, not the magnitude of the
plane but simply its orientation comes into question, just as, in
fixing a point, position and not magnitude is considered. If any
one of the five elements is complex, then the plane element is
simply a name for the set of variables (z, g, 2, p, ¢).

Since the five variables are independent, there are «o® plane ele-
ments in space. Of chief interest, however, are two-dimensional
extents of plane elements. Such an extent we shall denote by M,
and shall consider three types:

1. Let the points of the plane elements be taken in the surface
z=f(z, y) and let p and ¢ be determined by the equations

p=— =a—;- More generally, let z, y, and z be defined as

functions of two variables « and v, and let p and ¢ be determined
by the equation

dz = pdz + qdy ¢))
for all differentials du and dv. Then

o _ a0y

u pau + qau’

o_ 0a, 0y,

- P 9%’

whence p and ¢ are also determined as functions of u and v.

In either definition the M, consists of the plane elements
formed by the points of a surface and the tangent planes at
those points.

2. Let the points of the plane elements be taken as functions
of a single variable » and let p and ¢ be again determined by
equation (1), where one of the two (say p) is arbitrary and the
other (say ¢) is thus determined in terms of p and w. The M,
then consists of the points of a curve and the tangent planes to
the curve at those points. The points themselves form a one-
dimensional extent, and through each point goes a one-dimensional
extent of planes; namely, the pencil of planes through the tangent
line to the curve.
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8. Let (z, y, 2) be a fixed point and let p and ¢ be arbitrary and
independent. The M, then consists of a point with the bundle of
planes through it. In this case, also, equation (1) is true, since
dz, dy, and dz are all zero.

It is clear that the M ’s defined above do not exhaust all pos-
sible types of two-dimensional extents of plane elements. For
example, we might take the points as points on a surface and the
planes as uniquely determined at each point but not tangent to
the surface; and other examples will occur to the student. The
above-mentioned types exhaust all cases, however, for which equa-
tion (1) is true, as the student may verify. We shall say that a set
of plane elements satisfying (1) form a union of elements.

Two Ms are said to be in contact when they have a plane
element in common. From this definition two surfaces, or a curve
and a surface, are in contact when they are tangent in the ordi-
nary sense, a point is in contact with a surface or a curve when
it lies on the surface or the curve, two curves are in contact when
they intersect, and two points are in contact when they coincide.

A contact transformation is a transformation by which two X s
in contact are transformed into two M,’s in contact. There are
three types of such transformations, which we shall proceed to
discuss in the following sections.

108. Point-point transformations. This transformation is defined
by three equations of the form

1"=fl($, Y, z)’
.'/'=fg(x’ Y, 2), ¢y
?=f(z 9, 2),

or, more generally, F (2, ¥,2 2, y,2)=0,
F(xy 22, y,2)=0, ®
Fa(zo Y, 2 zlv ylv 2’)’: 09

where we make the hypothesis that equations (1) can be solved
for z, y, z and equations (2) for z, y, z and 2/, ¢/, 2/, and that all
functions are continuous and may be differentiated. Within a prop-
erly restricted region the relations between z, y, z and @/, y/, # are
one to one, a point goes into a point, a surface into a surface,
and a curve into a curve.
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A direction dz: dy: dz is transformed into a direction dz’: dy': d2/,
where o

or’ oo’
_ . % g
dy'= azd“' aydy+ 92 dz, ®

o' o2 oz
! — - = .
dz o dz + 3ydy + p dz
From this it follows that two tangent surfaces are transformed
into tangent surfaces. More specifically, the relation

dz = pdz + qdy, ©))
which defines a union of line elements, is transformed into

oz 0z o7 oz
2 - = —_—
% wTPa% wtia

o’ or' oY or'
wtPo% 't =0. ®)

/) 0 oy oy’
ay Yy y'2#+qv

.

oz " L o y 2

dz/

If now we define p' and ¢’ so that this relation is
d?' = p'de’ + ¢'dy’, ©6)
a union of plane elements (z, ¥, 2, p, ¢) is transformed into a union
of plane elements (2, ¥, 2, p', ¢’). From equations (5) and (6),
P=5(@yap 0
¢=f (= 9 2 p -

These equations adjoined to (1) form, together with (1), the
enlarged point trangformations.

A collineation is an example of a point transformation. Another
example of importance is the transformation by reciprocal radius,
or inversion with respect to a sphere. If the sphere has its center
at the origin and radius %, the transformation is

Pz

)
y=—r4
o+ g+ 2

S k2 .
PP+ 2
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EXERCISE

Discuss the properties of the inversion with respect to a sphere,
especially with reference to singular points and lines.

109. Point-surface transformations. Such a transformation is
defined by the equation
f@yady,d)=0, @
with the usual hypotheses of continuity and differentiability of f.
An example is a correlation since it may be expressed by the single
equation
(allz + al# + alsz + all)x, + (aﬂ.x + a#’y + aﬂz + aii) y’
+(a, 2+ ay + a2+ a‘“)z'+ ar+ay+az+ d“= 0.
By equation (1), if (z, y, 2) is fixed, (2, ¥/, 2') lies on a surface
and we say a point P is transformed into a surface m'. If P/ (2, y,7)
is fixed, the point (z, y, 2) describes a surface m, where the surfaces
m' and m are not necessarily of the same character. If P'is on m'itis
obvious that m contains P. In other words, if P desecribes a surface
m, the corresponding surface, 7', continues to pass through P’. We
say, therefore, that the surface m is transformed into a point P
If P describes any surface S (differing from an m surface), the
surface m' will in general envelop a surface ', the transformed
surface of S. Analytically, from the general theory of envelopes, if

the equa;;lon of ;S’ is 2=z ¥), ®
and p = a_:i g= aL; the equation of & is found by eliminating z, %
and z from (1) and (2) and the two equations
. 6f
oz p az =0 @
UL
ay %% =0 @

Furthermore, the tangent plane to $' at any point is the same a3
the tangent plane to m’ at that point, and hence, if we use p' and ¢’ to
fix that plane, we have

f od TP 5 f ®

+q af 0. Q]




"TRANSFORMATIONS ' 263

We now have five equations, namely (1), (3), (4), (5), and (6),
establishing a relation between a plane element (z, y, 2, p, ¢) and
a plane element (2, ¥/, 7, p, ¢’). These equations may be solved
to obtain the form 2=¢.(5 % % P D
Y= 9 5p D
d=¢®n Y up 9
P=¢.(= 9 5p 9
7=¢,(2 9 2 P 9,
which form the enlarged point-surface contact transformation.

EXERCISES
1. Study the transformation defined by the equation
P+yP+2— (' +yy' + 22)=0.
2. Study the transformation defined by the equé,tion
@2+ —y)+ (- )=

110. Point-curve transformations. ‘Consider a transformation
defined by the two equations

Sy 57,y 2)=0, @)
Jo(@ ¥ 2 2, y,2)=0.

If a point P (z, y, 2) is fixed, the locus of P/(<, o/, 2') is a
curve k' defined by equations (1). Similarly, if P’ is fixed, the
locus of P is a curve . Hence the transformation changes points
into curves.

If P describes a curve C, the curve &' takes oo’ positions and in
general generates a surface. The o' curves ¥’ may, however, have
an envelope €', which is then the transformed curve of C. Or,
finally, if C is a curve %, the corresponding curves &’ pass through
a point P’, which we have seen to correspond to %.

If the point P describes a surface S, the corresponding curves &’/
form a two-parameter family of curves. The envelope of the family
is a surface §' which corresponds to S.

To work analytically let us form from (1) the equation

FAM= 0. ®
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With (2, y', ') fixed, (2) represents a pencil of surfaces through
a k-curve, and the tangent plane to any one of these surfaces at a
point on the k-curve has a p and a ¢ given by the equations

% 2% U\
_ 8:1: 8:1: _ 33/ 33/' 3)
32 Bz

There is therefore thus defined a pencll of plane elements through
a point P and tangent to a k-curve through that point.

Similarly, with (z, y, 2) fixed, equation (2) defines a pencil of
surfaces through a K-curve, and a corresponding pencil of plane
elements is defined by (<, ¥/, #) and

o L\, o, L\,
. w M or oy oy
e A T A @
o T o T od

From (8) and (4) it is easy to compute that dz — pdz —qdy is
transformed into d2’ — p'd2’ — ¢’dy’ except for a factor. So that if
(% ¥, % p, ¢) is transformed into (@, ¥/, Z, p/, ¢') by means of (1),
(3), and (4), a union of plane elements is transformed into &
union of plane elements.

From the six equations (1), (8), (4) we may eliminate A and
obtain five equations which may be reduced to the form

d=f(% 9 2 p O

¥=r®y s p 9

2'=f.(x, Y 2 Py Q)

=19 sp 0

=1 9 2 p 9,
which define the enlarged point-curve contact transformation
derived from (1).

Consider a fixed point P(a, b, ¢) with the M, of plane elements
through it. Equations (1) define & ¥'-curve, and we may consider
them solved for 2’ and ' in terms of /. In (8) p and ¢ may be
taken arbltranly Then, if the values of 2 and ¥ in terms of 2’ are
substituted in (8), both A and 2’ may be determined. Finall,
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p’ and ¢' are determined from (4). This shows that a definite
plane element through P is transformed into a definite plane ele-
ment of a A'-curve. The M, through P is therefore transformed
into a M, along ¥

A pencil of plane elements through P will in general be trans-
formed into an M, of plane elements forming a strip along ¥, but
if the axis of the pencil through P is tangent to a k-curve, the
pencil will be transformed into a similar pencil at a point of the
K-curve.

‘That being established, we see that if C is any curve, and we
take an M, of plane elements tangent to it, we shall have corre-
spondingly an M} of plane elements forming a surface. But if ¢
is the envelope of k-curves, the M} consists of elements tangent to
a curve C' enveloped by ¥-curves.

If P describes a surface S, and we take the M, of tangent ele-
ments, we shall have a corresponding M,, forming a surface S
A plane element of the M, gives a definite plane element of a
k-curve, as we have shown. Therefore the surface §' is made
of plane elements belonging to #-curves and is the envelope of
such curves.

' EXERCISE

Study in detail the transformation defined by the equations
=+iy)—22—x=0,
2@ —iy)+2'—y=0.



CHAPTER XV
THE SPHERE IN CARTESIAN COORDINATES '

111. Pencils of spheres. The equation

a( @+ y’+2)+2fr+29y+2hz+¢c=0 a

represents a sphere with the center (:I’ —J, j) and the radiusr,
given by the equation - e@ ¢ a
P L +3 +h—ac 9
T I : ¢))
If a =0, equation (1) represents a plane which may be regarded
‘as a sphere with an infinite radius and with its center at infinity.
For convenience we shall denote the left-hand member of equation
(1) by S. The equation S=0
=

shall then denote the sphere with the coefficients a,, f;, g;, &, ¢,
Consider now two spheres
_ 8= 0, S,= 0. ®3)
They intersect at right angles when and only when the square

of the distance between their centers is equal to the sum of the
squares of their radii. The condition for this is easily found to be

2 (flf’ +99,+ hlks) — a0 86= 0. )
The spheres defined by the equation
S 4+18,=0, &

where A is an arbitrary parameter, form a pencil of spheres. If S
and S, are both planes, all spheres of the pencil are planes. Other-
wise the pencil contains one and only one plane, the equation of
which is found by placing x=—% in (5).
2

This plane, called the radical plane of the pencil, has accordingly
the equati
or quaon ,8,—a,8,=0 ®

2(fla2—-f,al)z+ 2(9,2,— 9,2)y+ 2 (hla’— ha)z+ca —ca= 0.
266
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|
|

|
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The centers of the spheres of the pencil have the coordinates
(_fl+xf2, _ 5+ M," _ ”1+khx)
a,+ Aa, a,+ Aa, a,+ Aa,
and therefore lie in a straight line perpendicular to the radical
plane. This line is the line of centers of the pencil.

We have three forms of a pencil of real spheres not planes :

1. When the spheres S, and S, intersect in the same real circle C..
The pencil consists of all spheres through C. The radical plane is
the plane of C, and the line of centers is perpendicular to that plane
at the center of C.

2. When the spheres S, and S, intersect in an imaginary circle. -
All spheres of the pencil pass through the same imaginary circle,
but in the ordinary sense the spheres do not intersect. The radical
plane is a real plane containing the imaginary circle, and the line
of centers is perpendicular to it.

3. When the spheres S, and S, are tangent at a point 4. The
spheres of the pencil are all tangent at 4. The radical plane is the
common tangent plane at 4, and the line of centers is perpendicular
to the radical plane at A.

The position of the radical plane in the second form of the pencil
has been fixed only analytically. A useful geometrical property
is that all the tangent lines from a fixed point of the radical plane
to the spheres of the pencil are equal in length. For if P is
any point of space, and M the center of a sphere of radius r, the
square of the tangent from P to the sphere is MP"— 7% Applying
this to a sphere of the pencil (5), we find the square of the length‘
of the tangent to be S+ 2S,

a,+ \a,

ﬁ _ )‘(az‘sl— al‘Sz) .
a, a,(a,+2a,)

If the point P is in the radical plane (6), this distance is inde-
pendent of A and hence the theorem.

It follows from this that the radical plane i8 the locus of the centers
of spheres orthogonal to all spheres of the pencil.

Closely connected with this is the theorem: A sphere orthogonal
to any two spheres i orthogonal to all spheres of the pencil determined
by them and has its center on the radical plane of the pencil,

which can be written

\J
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The last part of this theorem is a consequence of the previous
theorem. The first part is a consequence of the linear nature of
the condition (4) for orthogonality.

112. Bundles of spheres. The spheres defined by the equation

8+ AS,+ p8=0, )
where S, S,, S, are three spheres not belonging to the same pencil
and A, u are arbitrary parameters, form a dundle of spheres.

The centers of the spheres of the bundle have the codrdinates

<__f,+ Mit#h _9itAt e, M+, +#’l:) @
a,+ \a,+ pa, a‘+7ta.+p.a a, + Aa + pa

From (2) it follows that if the centers of the three spheres §,
S,, 8, lie on a straight line, the centers of all spheres of the bundle
lie on that line. The center may be anywhere on that line, and
the radius of the sphere is then arbitrary. Hence a special case
of a bundle of spheres consists qf all spheres whose centers lie on a
straight line.

More generally, if the centers of S, S,, and S, are not on the
same straight line, they will determine a plane, and the centers
of all spheres of the bundle lie in this plane. This plane is the
plane of centers, and any point in it is the center of a plane of
the bundle. In this case the three spheres S, S;, S, intersect in
two points (real, imaginary, or coincident), and all spheres of the
bundle pass through these points. If the two points are distinct,
they are symmetrical with respect to the plane of centers; if they
are coincident, they lie in the plane of centers. Hence we see that
a bundle of spheres consists in general of spheres whose centers lie il
a fixed plane and which pass through a fized point.

The radical planes of the three spheres S, S;, and S, ta.ken in

are
p&ll‘s, GSSI— GIS’= 0,
a8 —asS,=0,
a,8,— a8, =0,

which evidently intersect in a straight line called the radical azis
of the bundle. It is perpendicular to the plane of centers and passes
through the points common to the spheres of the bundle. The
radical plane of any two spheres of the bundle passes through the
radical axis.
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Any sphere orthogonal to three spheres of a bundle is orthogonal
to all the spheres of the bundle because of the linear form of
condition (4), § 111. The centers of such spheres lie in the radi-
cal axis of the bundle, since by § 111 they must lie in the radical
plane of any two spheres of the bundle, and any point of the radical
axis is the center of such a sphere. It is not difficult to show that
these spheres form a pencil.

In fact, to any bundle of spheres we may associate an orthogonal
pencil of spheres and to any pencil of a sphere an orthogonal bundle.
T'he relation of pencil and bundle is such that every sphere of the pencil
18 orthogonal to every sphere of the bundle, the line of centers of the
pencil 18 the radical axis of the bundle, and the radical plane of the
pencil is the plane of centers of the bundle.

_.As far as the details of the above theorem have not been ex-
plicitly proved in the foregoing, the proofs are easily supplied by
the student.

Closely connected with the foregoing theorem is the following:
All spheres orthogonal to two fixed spheres form a bundle and all
spheres orthogonal to three fixed spheres form a pencil.

The foregoing assumes that the three spheres S, S,, S, are
not all planes. If they are, the bundle of spheres reduces to a
bundle of planes. Otherwise the bundle of spheres contains a
one-dimensional extent of planes through the radical axis of
the bundle.

113. Complexes of spheres. The spheres represented by the

equation 8,4+ A8, + pS,+ v8,=0, , @

where S, S,, §,, S, do not belong to the ‘same bundle or pencil
and A, w, v are arbitrary parameters, form a complez of spheres.
The radical planes of the four spheres S, S,, S,," S, taken in
pairs intersect in a point, and the radical plane of any two spheres
of the complex pass through that point. This point is the radical
‘center of the complex. From the properties of radical planes it
follows that the square of the length of the tangents drawn from
the radical center to all spheres of the complex is constant. There-
fore the radical center is the center of a sphere orthogonal to all
the spheres of the complex. Conversely, it is easy to see that any
sphere orthogonal to this sphere belongs to the complex. That is,
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the complex consists of spheres orthogonal to a fixed base sphere whose
center t8 the radical center of the complez.

If the four spheres intersect in a point that point is the radical
center. The base sphere is then a sphere of radius zero and the
complex consists of spheres passing through a point.

The above discussion assumes that the four spheres S, S,, ,, §,
are not planes. If they are, the complex simply consxst.s of all
planes in space. In the general case the complex contains a doubly
infinite set of planes which pass through the center of the base
sphere.

114. Inversion. Let O be the center of a fixed sphere S, &* the
square of its radius, and P any point. The point P may be trans-
formed into a point P’ by the condition that OPP' forms a straight

line and that OP.OP' =K. ¢

This transformation is an tnversion, or transformation by recip-
rocal radius. The point O is the center of inversion, and the
sphere § is the sphere with respect to which the inversion takes
place.

If the point O has the codrdinates (z,, y,, 2,), the equations of
the transformation are

7= z,+ ﬂﬁn:—xo),

Fy—y)
— PRI~ o),
y yo+ Rl (2)

z—z+_£_n)

where R'= (z —z)'+(y—y)+(z—-2)"

In this transformation the constants may be either real or
imaginary. If (z, y, 2,) is real and %’ real and positive, the
inversion is with reference to a real sphere. If (z,, y,, 2,) is real
and %’ real and negative, the inversion is with reference to a
sphere with real center and pure imaginary radius. In this case,
however, real points are transformed into real points.

From the definition and equations (2) it appears that any point
P has a unique transformed point P, and, conversely, unless P is
at the origin, or on a minimum line through O, or at infinity.
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To handle these special cases we take O-at the origin and write
equations (2) with homogeneous codrdinates as

ry' = Kyt,
ol ®

pt'=2+ y*+ 2%

From (8) it appears that the transformed point of O is indeter-
minate, but that if P approaches O along the line z: y:z=1:m:n,
the point P recedes to infinity and is transformed into the point at
infinity :m:n:0. Hence we may say that the center of inver-
sion is transformed into the entire plane at infinity. Conversely,
any point on the plane at infinity but not on the circle at infinity
is transformed into O.

If P is on a minimum line through O but not on the imaginary
circle at infinity, then 2/:y':2'=z:y:2 and ¢'=0. That is, all
points on a minimum line through O is transformed into the point
in which that line meets the imaginary circle at infinity. Con-
versely, if P is on the imaginary circle at infinity the transformed
point is indeterminate, but «’: y': 2/ = z: y : 2, so that any point on
the circle at infinity is transformed into the minimum line through
that point and the center of inversion.

Consider now a sphere § with the equation

a@+y+2)+2fr+2g9y+2hz+c=0. (C))
It is transformed into
ak*+ 21Kz + 2 gk’y + 2 bz + e(2*+ y*+ 2°) = 0. (©))

This is in general a sphere, so that in general spheres are
transformed into spheres. But exceptions are to be noted:

1. If e=0, a+ 0, (4) is a sphere through O and (5) a plane
not through O, so that spheres through the center of inversion are
transformed into planes not through the center of inversion.

2. If a=0, ¢ + 0, (4) is a plane not through O and (5) a sphere
through O, so that planes not through the center of inversion are
transformed into spheres through the center of inversion.

3. If a=0,¢=0, (4) and (5) represent the same plane through 0,
so that planes through the center of inversion are transformed into
themselves. ' '
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By an inversion the angle between two curves is equal to the
angle between the two transformed curves; that is, the trans-
formation is conformal. To prove this we compute from (2) (with
z,= 0, y,=0, z,=0),

dz = %:{(y’.}- 22— a)ydx — 2zydy — 2 z2dz2},
dy' = g{— 2zydz + (' — y'+ 7)) dy — 2yzdz},. Q)

dZ = g{— 2zzdz — 2 yzdy + (2*+ y*— 2*) dz}.

"Hence, if we place ds'’=dz'*+ dy'*+ d2'* and d&*= dz’+ dy*+ d7,

we have
ds' = —1’% ds.

Now, if dz, dy, dz correspond to displacements on a curve from
P, and 8z, 8y, 8z to displacements along another curve from P, the
angle @ between the curves is given by

dzdz + dydy + dzdz .
dsds

cos @ =

Similarly, the angle a’ between the transformed curves is
da’ 8z’ + dy' 8y’ + d2' &'

ddds ’
and it is easy to prove from (6) that cos@ =cosa’'.

Any pencil, bundle, or complex of spheres is transformed into a
pencil, bundle, or complex, respectively. The line of centers of the
pencil is not, however, in general transformed into the line of cen-
ters of the transformed pencil, but becomes a circle cutting the
spheres of the transformed pencil orthogonally. Also the radical
plane of the pencil is not transformed into the radical plane of the
transformed pencil, but into one of the spheres of that pencil.

Similarly, the plane of centers of a bundle is transformed into a
sphere cutting all the spheres of the bundle orthogonally, and the
radical axis of the bundle is transformed into a circle orthogonal
to the transformed bundle.

On the other hand, the base sphere of a complex is transformed
into the base sphere of the transformed complex.

cosa'=
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If we take a pencil of spheres intersecting in a real circle and
take the center of inversion on that circle, the pencil of spheres is
evidently transformed into a pencil of planes. If we take a bundle
of spheres intersecting in two real points 4 and B, and take A4 as
the center of inversion, the bundle of spheres becomes a bundle of
planes through the inverse of B. If we take a complex of spheres
and place the center of inversion on the base sphere, the complex
becomes one with its base sphere a plane ; that is, it consists of all
spheres whose centers are on a fixed plane.

EXERCISES

1. Prove that by an inversion with respect to a sphere S all spheres
which pass through a point and its inverse are orthogonal to S.

2. Prove that a point and its inverse are harmonic conjugates with
respect to the points in which the line connecting the first two points
intersects the sphere of inversion.

8. Prove that the inverse of a circle is in general a circle and note
the special cases.

" 4. Prove that if two figures are inverse with respect to a sphere S,
their inverses with respect to a sphere S, whose center is not on S, are
inverse with respect to S], the inverse of S, with respect to S,.

5. Prove that if two figures are inverse with respect to a sphere S,, their
inverse with respect to a sphere S, whose center is on S, are symmetrical
with respect to the plane P', the inverse of S, with respect to S,. Con-
versely, if two figures are symmetrical with respect to a plane P they are
inverse with respect to any sphere into which the plane P is inverted.
Therefore inversion on a plane is defined as reflection on that plane.

6. Prove that if S is a sphere of radius » and §' is its inverse, the
radius of S’ is equal to the radius of S multiplied by the square of the
radius of the sphere of inversion and divided by the absolute value of
the power of the center of inversion with respect to S.

7. Prove that any two nonintersecting spheres may be inverted by
an inversion on a real sphere into concentric spheres.

8. Prove that any three spheres may be inverted into three spheres
of equal radius.

9. Prove that inversion on a sphere with real center and pure imagi-
nary radius = is equivalent to inversion on a sphere with the same center
and real radius , followed by a transformation by which each point is
replaced by its symmetrical point with respect to the center of inversion.
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10. A surface which is its own inverse is called anallagmatic. Prove
that any anallagmatic surface cuts the sphere of inversion at right
angles if the point of intersection is not a singular point of the surface
and is the envelope of a family of spheres which cuts the sphere of
inversion orthogonally.

11. Prove that the product of two inversions is equivalent to the
product of an inversion and a metrical transformation or in special cases
to a metrical transformation alone.

115. Dupin’s cyclide. The transformation by inversion is useful
in studying the class of surfaces known as Dupin’s cyclides. These
are defined as the envelope of a family of spheres which are tangent
to three fixed spheres.

If the centers of the fixed spheres do not lie in a straight line we
may by inversion bring them into a straight line. To do this we
have simply to draw, in the plane of the centers of the three
spheres, a circle orthogonal to the three spheres and take any point
on that circle as the center of inversion. The circle then goes into
a straight line which is orthogonal to the three transformed spheres
and hence passes through their centers. This is a consequence of
the conformal nature of inversion. For the same reason the surface
enveloped by spheres tangent to the original three spheres is in-
verted into a surface enveloped by spheres tangent to three spheres
whose centers lie on a straight line.

We shall study first the properties of such a ' surface and
then by inversion deduce the properties of the general Dupin’s
cyclide.

Let us take the line of centers of three fixed spheres as the axis
of z and the equations of the spheres as

P+ y'+ =1}
2+ Y+ (z—¢)'=r}, Q)
2+y+E—c) =1,
Then, if the sphere
@E—a)’+@ -8+ (z—o)'=r @

is tangent to each of the spheres (1), the distance between the
center of (2) and that of any one of the spheres (1) must be equal
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to the sum or the difference of the radii of the two spheres. This
gives the three equations
@+ 8+ E=(r 1)}
@+ b+ - 2cec+e}=(rxr)’ )
a+ ¥+ —-2ce+cl=(rxr)’,
which have in general four solutions of the form
¢=const.,, r=const., a’+b’=const. ©))

Therefore the sphere (2) belongs to one of four families each
of which consists of spheres with a constant radius and with
their centers on a fixed circle. Each family obviously envelops a
ring surface. :

There are therefore in general four Dupin’s cyclides determined
by the condition that the enveloping spheres are tangent to three
fixed spheres.

Let us take any one of the solutions (4) and change the cobrdi-
nate system so that ¢=0. The equation of the family of spheres
may then be written

(z — a,cos 0)’+ (y — a,sin )+ 2°= 1", ()
where 6 is an arbitrary parameter and a, and r are constants.

The surface enveloped by (5) is

@+ ¥+ 2+ 0l — ) =4 a} (D + ¥). (6)
This is the equation of the ring surface formed by revolving about
the axis of z the circle (z—a)'+ =1 (M

Hence any Dupin’s cyclide is the inverse of the ring surface formed
by revolving a circle about an axis not in its plane.

The ring surface contains two families of circles forming an
orthogonal network. The one family consists of the meridian cir-
cles cut out by planes through the axis of revolution, the other of
circles of latitude made by sections perpendicular to that axis.

Since, by inversion, circles are transformed into circles, and angles
are conserved, there exist on any Dupin’s cyclide two similar
families of circles also forming an orthogonal network.

The ring surface is the envelope not only of the family of spheres
whose equation is (5) but also of the family with the equation

2+ y*+ (2 — a, tan 0)*=(a, secf — r)* ®



276 THREE-DIMENSIONAL GEOMETRY

This family consists of spheres with their centers on OZ each of
which may be generated by revolving about 0Z a circle with its
center on OZ and tangent to the circle (7). The spheres of this
family are tangent to the ring surface along the circles of latitude,
while the spheres of the family (5) are tangent to the ring surface
along the meridian circles. The family of spheres (8) may be deter-
mined by the condition that they are tangent in a definite manner
to three spheres of (5).

Hence any Dupin’s cyclide may be generated in two ways as the
envelope of a family of spheres consisting of spheres tangent to three
fized spheres. Each family of spheres is tangent to the cyclide along
a family of circles, the two families of circles being orthogonal.

The planes of each family of circles intersect in a straight line.
This follows from the theorems of § 112, since the inverse spheres
of the spheres (5) belong to the same bundle and the circles are inter-
sections of spheres of that bundle, so that their planes pass through
the radical axis of the bundle. Similarly for the spheres (8).

The circle (7) intersects the axis of z in two real, imaginary, or
coincident points. Therefore a Dupin’s cyclide has at least this
number of singular points. We shall see later that it also has
other singular points, but we shall confine our attention at present
to these two. Call them 4 and B. The spheres of one of the fami-
lies which envelop the cyclide intersect in 4 and B, as is seen in
the case of the ring surface. Consequently, if one of these points,
as 4, is taken as the center of inversion this family of spheres
becomes a family of planes, and the cyclide inverts into a surface
enveloped by spheres which are tangent to three of these planes.

If 4 and B-.are distinct the planes pass through the point B,
the inverse of B, and the cyclide is inverted into a cone of revolu-
tion, which is real if 4 and B are real, and imaginary if 4 and B
are imaginary.

If 4 coincides with B the planes are parallel and the cyclide is
inverted into a cylinder of revolution. We have accordingly the
theorem: A Dupin’s cyclide may always be inverted into a cone of revo-
lution which, in special cases, degenerates into a cylinder of revolution.

Consequently we may obtain any cyclide in which the singular
points 4 and B are distinct by inverting the cone

24y —m’=0 | ®
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from any real or imaginary center of inversion with respect to any
real or imaginary sphere; or, what amounts to the same thing, we
may transform the origin to any real or imaginary point and invert
from the origin. The equation of the cone is then

L @-'+ Y —-B - (z—-)'=0, 10)
and its inverse with respect to the origin is
@+ B miy®) (24 '+ ) — 2K (az + By — miyz) (& + ¥+ 27)

+ B (@ + y*—m’*) = 0. an

To consider the case in which the points 4 and B coincide, we
invert the cylinder .

@E-a)'+@y-B'=r a2

and obtain for its inverse

@+ 8- (@ +y'+ )2 (ar + By) &+ y'+5)
: FR@E+yH=0. 18) .

The cyclide is therefore a surface of the fourth order unless the
first coefficient in either (11) or (12) vanishes. But this happens
when and only when the cone (10) or the cylinder (12) passes
through the center of inversion.

If now we make the equations (11) and (13) homogeneous,
and place ¢ = 0 to determine the section with the plane at infinity,
we get the circle at infinity as a double curve when the surface is
of fourth order, and the circle at infinity, together with a stra.ight
line, when the surface is of the third order.

Hence a Dupin’s cyclide i8 a surface of the fourth order with
the circle at infinity as a double curve, or a surface of the third order
with the circle at infinity as a simple curve.

We proceed to find the singular points of equation (11) We
can without loss of generality so turn the axes that 8=0, and
will make the abbreviations

A= a’—m'y’,
R=2+y'+ 7,
L = az — miys,
and write the equa.tmn as
—2KLR + k‘(z’+ y’— mi) = 0. (14)
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The singular points are then the solutions of this equation and
the following, formed by taking the partial derivatives with respect

to z, y, and 2:
4 ARz — 2 aR —4KLz+42k'z =0,
4 ARy — 4Ly +2ky =0, 15)

4 ARz + 2’m*yR — 4 ¥*Lz — 2 I*'m*2 = 0.
By multiplying equations (15) in order by z, y, z and adding, and
subtracting the result from twice (14), we obtain
(4R — FPL)R =0. @16)
Also, by combining the first two of (15) we have
2 FayR = 0. an
From (17) we have either R=0 or y=0. Taking first the
condition y =0, but B # 0, from (16) and (15),

_2E ~1E,
LE TR
h R=-%
whence = m”
The point ak’ » 0 eLa is therefore a singular point. It is
a4+ a4y

the inverse of the vertex of the cone and is the point B of the
discussion on page 276.
Consider now the solution B =0 of equation (17). From (15)

we have either =0, y=0,2=0, or L=—2-: 2=0. The origin is

. therefore a singular point, the inverse of the section of the cone
with the plane at infinity, and is the point 4 of the discussion on
page 276. B

The alternative R=0, L= 92 =0 leads to the two singular points
(£' :t;c’—;, 0). These points fail to exist if @ = 0, but in that case
the inversion is from a point on the axis of the cone, and the
surface (11) is then a ring surface.

The two singular points just found are each connected with 4
and B by minimum lines.

If we consider in the same way equation (18), we obtain
similar results except that the singular point B coincides with 4 at
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the origin, since the assumption y=0 leads to the conclusion R=0.
The two points (EI% ’ i% ’ 0) are again singular points unless a=0,
when the surface (13) is a ring surface with a single singular point.

A Dupin’s cyclide which i8 not a ring surface has in general four
finite singular points two of which are comnected with the other two
by minimum lines. ‘Two of these singular points may coincide, in
which case the cyclide has three finite singular points two of which
are connected with the third by minimum lines.

It follows, of course, that the Dupin’s cyclides are not the gen-
eral surfaces of fourth order with the circle at infinity as a double
curve nor the general surface of third order through the circle at
infinity. These more general surfaces will be noticed in the next
section.

EXERCISES

1. Prove that any Dupin’s cyclide is anallagmatic with respect to
each sphere of two pencils of spheres.

2. Prove that the centers of each family of enveloping spheres of a
Dupin’s cyclide lie on a conic.

3. Prove that the two lines in which the planes of the two families
of circles on the Dupin’s cyclide intersect are orthogonal.

4. Prove that the circles on a Dupin’s cyclide are lines of curvature.
(A line of curvature on a surface is such that two normals to the surface
at two consecutive points of the line of curvature intersect.)

5. Prove that the only surfaces which have two families of circles
for lines of curvature are Dupin’s eyclides. (Exception should be made
of the sphere, plane, and minimum developable, for which all lines are
lines of curvature.)

116. Cyclides. A cyclide is defined by the equation
4@+ ¥+ D+ 0, P+ P+ D) + =0, ¢

where u, is a constant,  a polynomial of the first degree, and %, a
polynomial of the second degree in z, y, z. The Dupin’s cyclides
are special cases of the general cyclide.

If u,+ 0 in equation (1) the surface is of the fourth degree
and represents a biquadratic surface with the imaginary circle at
infinity as a double curve.
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If u,= 0, equation (1) is a general of the third degree and repre-
sents a cubic surface passing through the imaginary circle at infinity.

Degenerate cases of the cyclides may also occur if, in equation (1),
u,= 0 and v, is identically zero. The equation then represents a
quadric surface or even a plane. These cases are important only
as they arise by inversion from the general cases.

In order to study the effect of inversion on the cyclide we may
take the center of inversion at the origin, since the form of equation
(1) is unaltered by transformation of codrdinates. Such an inver-
sion produces an equation of the same form, which is of the fourth
degree if u, contains an absolute term and of the third degree if v,
does not contain the absolute term but does contain linear terms.
. In the former case the origin is not on the surface; in the latter
case the origin is on the surface, but is not a singular point. Hence

The inverse of any eyclide from a point not on it is always a cyclide
of the fourth order. The inverse of any cyclide from a point on it
which 18 not a singular point is always a cyclide of the third order.

In general the cyclide will not have a singular point. If it does
we may take it as the origin. Then in equation (1) the absolute
term and the terms of first order in u, disappear. By inversion from
the origin there will then be no terms of the fourth or the third
degree. Hence the cyclide with a singular point {8 the inverse of a
quadric surface. Conversely, as is easily seen, the inverse of a quadric
surface 18 a cyclide with at least one singular point.

Consider now a cyclide with two singular points 4 and B which
do not lie on the same minimum line. If we invert from A the
cyclide becomes a quadric surface with a singular point at B/, the
inverse of B. It is therefore a cone. Hence the cyclide with two
singular points not on the same minimum line 18 the inverse of a quadric
cone. Conversely, the inverse of a quadric cone from a point not on it
18 a cyclide with at least two singular points.

We have shown in § 115 that a Dupin’s cyclide of the fourth
order has in general four singular points. We shall now prove,
conversely, that a cyclide of the fourth order with four singular
points 18 a Dupin’s cyclide.

If the four points are 4, B, C, D they cannot all be connected
by minimum lines, since that is an impossible configuration. We
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will assume that 4 and B are not on a minimum line, and will
invert from 4, thus obtaining a quadric cone ¥ with its vertex at
B, the inverse of B. Any plane section of the cyclide through 4B
is a curve of the fourth order with two singular points at 4 and B
and two other singular points on the circle at infinity. It therefore
breaks up into two circles and is inverted into two straight-line
generators of the cone F. The cone is enveloped by a one-parameter
family of planes tangent along the generators. Therefore the
cyclide is enveloped by a one-parameter family of spheres tangent
along the circular sections through 4 and B.

The plane section determined by the points 4, B, and C has three
singular points besides the two on the circle at infinity. Therefore
it consists of a circle and two minimum lines, and since 4B is not
a minimum line, 4C and BC are. By a similar argument 4D and
BD are minimum lines. Hence CD is not a minimum line.

-We may accordingly invert the cyclide from C and obtain another
cone with the properties of #. In particular, the straight-line gen-
erators of this cone are the inverses of circles on the cyclide, and
its tangent planes are the inverses of spheres tangent to the cyclide.
Therefore the cone ¥ is enveloped by spheres, the inverse with
respect to 4 of the last-named family. Therefore F is a cone of
revolution and, by § 115, the theorem is proved.

EXERCISES
1. Prove that the envelope of spheres whose centers lie on a quadric
surface and which are orthogonal to a given sphere is a cyclide.
2. Discuss the plane curves called bicircular quartics, defined by the

- equation
1 u, (4 )+ u, (@ + ) + ¢, = 0,
and trace the analogies to the cyclides.

3. Prove that the envelope of a circle which moves in a plane so that
its center traces a fixed conic, while the circle is orthogonal to a fixed
circle, is a bicircular quartic. .

4. The intersection of a sphere and a quadric surface is a sphero-
quadric. Prove that a spheroquadric may be inverted into a bicircular
quartic and conversely.

5. Prove that the intersection of a cyclide and a spheré is a sphero-
quadric.



CHAPTER XVI
PENTASPHERICAL COORDINATES

117. Specialized coérdinates. Pentaspherical codrdinates are based
upon five spheres of reference, as the name implies. It is customary
to define them by use of the Cartesian equations of the five spheres,
but we prefer to build up the codrdinate system independently of
the Cartesian system, using only elementary ideas of measurement
of real distance. This brings into emphasis the fact that penta-
spherical coordinates are not dependent upon Cartesian codrdinates,
but that the two systems stand side by side, each on its own founda-
tion. One result is that certain ideal elements pertaining to the
so-called imaginary circle at infinity which are found convenient in
Cartesian geometry are nonexistent in pentaspherical geometry;
and, conversely, certain ideal elements of pentaspherical geometry
do not appear in Cartesian geometry.

Let OX, 0Y, and OZ be three mutually perpendicular axes of
reference intersecting at O, P any real point, OP the distance from 0
to P, and OL, OM, ON the three projections of OP on 0X, 0Y, 02
respectively. Algebraic signs are to be attached to the three projec-
tions in the usual way, but OP is essentially positive. We may then
take as coordinates of P the four ratios defined by the equations

E £k E:E=0P:0L: OM:ON:1 1)
and satisfying the fundamental relation
E+&+E-EE=0. ©)

It is obvious that to any real point corresponds a set of resl
coordinates and that to any set of real coordinates corresponds
one real point. The extension to imaginary and infinite points is
made in the usual manner.. In particular, as P recedes from O indefi-
nitely in any direction, the coordinates approach the limiting ratios
1:0:0:0:0, which are the codrdinates of a real point at infinity.
This, however, is not the only point at infinity, as will appear when

we consider the formula for the distance between two points.
282 '




PENTASPHERICAL COORDINATES 283

The relation (1) may be reduced to a sum of squares by replacing
the codrdinates £ by new coordinates z,, where

pE, = 2,— iz,

Pf2= Ty
PE3= zs’ (3)
PE;= Z,

pé=—(z,+ );

pr,= El— Eo= U(TPQ- 1)9
pr,=2§&,=0(20L),
pz,= 2 £,= o (2 0I0), 0
pr,=2E=a(20N),
pr,=i(k+ £)=oi(OP'+1),
and the coordinates z; satisfy the fundamental relation
o(x)=zl+ 2]+ 2} + «]+ . ()

whence

In these coordinates, which we shall use henceforth, a real point
has four of its codrdinates real and the fifth pure imaginary (the
proportionality factor p being assumed real). This slight incon-
venience, if it is an inconvenience, is more than balanced by the
symmetry of equation (5). The codrdinates of the real point at
infinity are now 1: 0: 0: 0: 4.

If B and E, are two real points with coordinates y, and z, respec-
tively, the projections of the line EE on 0X, OY, OZ, respectively,
are easily seen to be

2 Ya Zs Ys Z Ys

o ) : T ; 5 -
rtw, ytw, ztw ytwy ztw Yyt

and hence, since the square of the distance of the line EE is equal
to the sum of the squares of its projections, we compute readily, with
the aid of (5), the distance formula for the distance d between two
points

$=— 2(zy + 29, + 2y + 7Y, + zayn), )
@+ ) (y,+ %)
which is the same as
Pee @Y ™
(x1 + zzs) (.'/ 1 + Y, 5)

o (2, y) being the polar of w (z).
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The formula (6), thus derived for real points, will be taken as
the definition of distance between all kinds of points. From this it
appears that d is infinite when and only when one of the points
satisfies the equations z + tz,= 0 and o (z, y)# 0. Hence the locus
of points at infinity is given by the equation x, + iz,= 0.

Since the codrdinates of all points satisfy (5), we have for points
at infinity z,+dr,=0 and 2]+ 2]+ )= 0. Therefore the point
1:0:0:0:¢ is the only real point at infinity. The nature of the
imaginary locus at infinity will appear later. :

118. The sphere. A sphere is defined as usual as the locus of
points equally distant from a fixed point. This definition includes
all spheres in the usual sense and all loci which are expressed by
equation (6), § 117, in which g, is fixed and d = a constant. This

equation is
[29,+ @+ 07" )2,+ 292, + 292, + 292,
+[2y,+ i (y,+ ty)r*]z,= 0. (¢))
This is of the type '
az +az,+az,+az +azx,= 0, ®
where pa, = 2y .+ (y,+iy)r,
pa,=2y,
pa, =2y, ®)
pa,=2y,

Pa5= 2-'/5+ i(y1+ iys)r”
From these equations and the fundamental relation o (y)=0,

we have r2=a12+a22+a:+a‘n+a:
- (a,+ ta)’
Py1= al_ &%E&rﬂ’
PYs=
Pya—_- a]’ (4)
PY,= Ay .
P!/6= aﬁ_ i&%ﬁ r”

which give the center and the radius of any sphere (2) in terms of
the coefficients @, We have, then, the following statement, half
theorem, half definition.




PENTASPHERICAL COORDINATES 285

Every linear equation of the type (2) represents a sphere, the center
and the radius of which are given by equations (4).

It is convenient to represent by 7 (a) the numerator of * in (4) ;
that is, n(a)= o} + a}+ al + al+ o},
We have, then, the following classes of spheres: .

CAsg 1. n(a)+ 0. Nonspecial spheres.

Subcase 1. n(a)* 0, a,+1ia,# 0. Proper spheres. The center and
the radius of the sphere is finite, but neither is necessarily real.
The sphere does not contain the real point at infinity.

Subcase 2. n(a)#* 0, a+ ia,;= 0. Ordinary planes. The radius
is infinite. The center is the real point at infinity. Since a plane
is the limit of a sphere with center receding to infinity and radius
increasing without limit, we shall call this locus a plane. This
may be justified by returning to the coordinates §. The equa-
tion then reduces to a,§,+ a.§,+ a.f,— a §,= 0 with the condition
a;+ al+ a}+ 0. By repetition of the familiar argument of analyti-
cal geometry this may be shown to represent a plane. '

Since this case differs from the previous one essentially in that
the codrdinates 1:0: 0 : 0 : ¢ now satisfy the equation of the sphere,
we may say : A proper plane may be defined as a nonspecial sphere
which passes through the real point at infinity.

CAsE II. 5(a)=0. Special spheres.

Subcase 1. n(a)=0, a + ia,# 0. Point spheres. The radius is
zero and the center is not at infinity. It is obvious that the sphere
passes through its center y,= a,, and if y, is real the sphere con-
tains no other real point. The sphere does not contain the real
point at infinity.

Subcase 2. n(a)=0, a +1ia,=0. Special planes. The radius is
indeterminate. The center is a: a,: a,: a,: ia,, which is a point at
infinity. The equation of the sphere may be written

at +af+af —al=0, (a}+a;+al=0)
which, in Cartesian geometry, would be that of a minimum plane
(§ 80). In this case the sphere contains the real point at infinity.

Hence we may say: A special plane i8 a point sphere which

Dpasses through the real point at infinity.
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The locus at infinity is, as we have seen, z,+ ¢z, = 0. This comes
under Case II, Subcase 2, and is therefore a special plane with its
center at 1:0:0:0:¢; that is, the locus at infinity s a special
plane whose center is the real point at infinity.

119. Angle between spheres. The angle between two real proper
spheres is equal or supplementary to the angle between their radii
at any point of intersection. For precision we will take as the
angle that one which is in the triangle formed by the radii to the
point of intersection and the line of centers of the spheres. If 4
is this angle, d the distance between the centers, and » and #' the

radii, then &=+ '*— 2 ' cos .

If now the equations of the two spheres are

Ear’"d =0, zb.‘”‘ =0,
an easy calculation by aid of formulas (4), § 118, and (6), §117,

ives
g _ 2(ab, + ab,+ ab, + ab, + aby) + P43

7= (o ia5) Cby + i)

whence
ab, + a.b,+ ab,+ ab, + ab,

Vai+ai+a+ al+al Vb4 bi 4 b3+ bi+ b}

cosf= ¢))

This formula has been derived for real proper spheres intersect-
ing in real points. We take it as the definition of the angle
between any two spheres. The student may show that if one or
both of the two spheres becomes a real plane, this definition of
angle agrees with the usual one.

Two spheres Zam: 0, Zb@: 0 are orthogonal when
a‘bl+ ab,+ a.b.+ ab,+ a56‘= 0. )
If both of the spheres are nonspecial, this agrees with the usual
definition. If, however, za,a:‘= 0 is a special sphere, the condi-
tion expresses the fact that the center of za‘x,.= 0 lies on the
sphere Eb,.z‘: 0. Hence
The necessary and sufficient condition that a special sphere should

be orthogonal to another sphere is that the center of the special sphere
lie on the other sphere.
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EXERCISE

Prove that the coefficients @, in the equation of the sphere are pro-
portional to the cosines of the angles made by the sphere with the
coordinate spheres, and that the cosines themselves may be found by
dividing @, by Va2 + al+ a2+ a2+ a2. Compare with direction cosines
in Cartesian geometry.

120. The power of a point with respect to a sphere. If C is the
center of the sphere
Eaﬂi= 0,

with the radius », and P is any point with coordinates y,, the dis-
tance CP is easily calculated by (4), § 118, and (6), § 117, with
the result:

2 + ay,+ a,y,+ a9, + ay;)
CP' =— 2(ay, a:"/s. sYs .4.’/4 sYs +7 1
(a, +1a) (9, + 1) M
‘We shall place
S=CP — r2=_2(a1.'/1+aa'/¢.+alys+atya+aﬁ2 (2)
(a,+ 1) (41 + t%5)

and shall call S the power of the point y, with respect to the sphere.
If the sphere is real and the point y, is a real point outside the sphere,
the power is the square of the length of any tangent from the point
to the sphere. If the sphere is a point sphere, the power is the square
of the distance from the point y, to the center of the sphere. In all
other cases equation (2) is the definition of the power.

From (2) may be obtained the important formula for a non-
special sphere:

S___ 2  aytay+tay+ay+ay, 3
r Yt Vai+ai+ ai+al+a?

The above discussion fails if the sphere is a plane. We may,
however, obtain the meaning of formula (8) in this case by a limit
process. We have, from (2),

8=(PC—r)(PC+r)=PA(PC+7),
where PA is the shortest distance from P to the sphere. Then .

§=pA(P—0+l>-
r r
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Now let C recede to infinity along the line PC. The sphere
becomes a plane perpendicular to P4. But the limit of ?’ a8

r becomes infinite and @ + ia, approaches zero, is 1, from (1).

Therefore S
Limit o= 2 P4,

where P4 is the perpendicular from P to the plane. This result
may be checked by replacing z; by §; and using familiar theorems
of Cartesian geometry.

The equation of any nonspecial sphere may be written so that
n(a)=1. The equation is then said to be in its normal form, and
the denominator a;'+-a; + a;+ a}+ a; disappears from equation (3).

121. General orthogonal coordinates. Let us make the linear
substitution

= Oati+ a0+ ety ez + a7, (1=1,2,8,4,5) (1)
in which the determinant |&,| does not vanish. Then to any set of
ratios z; corresponds one set of ratios z], and since the quantities z;
satisfy a quadratic relation  (z) =0, the quantities z} satisfy another
quadratic relation Q ()= 0.

Then values of 2} which satisfy Q (2') = 0 correspond to one and
only one set of ratios of z; which satisfy w(2)=0. Therefore z
can be taken as codrdinates of a point in space and are the most
general pentaspherical codrdinates.

The sphere Za'.z‘= 0
becomes the sphere Zazz,f =0,
where Pa= a0, + aya; + Gyay + a0, + aya], ®

and the condition 5(a)= 0 for a special sphere goes into another
quadratic condition H (a')= 0.

The point at infinity takes the new coordinates a,, + i@, and the
condition that a sphere should be a plane is that its equation should
be satisfied by these coordinates.

The cobrdinates € of § 117 form a special case of these general
coordinates. We shall not, however, pursue the treatment of the
general case, but shall restrict ourselves to the case in which the
five codrdinate spheres are orthogonal. In this case no sphere can
be special, since, if it were, its center would lie on each of the other
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four spheres, and there would be four orthogonal spheres through
a common point, which is obviously absurd.

We may consider that each of the equations of the codrdinate
spheres has been put in the normal form, so that we have, in (1),

“&21 + a?e + “:: + a?a + a-?a =1 (8)

Then, by (8), § 120, the substitution is expressed by the equations
S,

pel =2 )
<

where S; is the power of the point z; with respect to the sphere
z,=0, and 7, is the radius of z]=0, since the factor — prran is the
1 (]

same for all five spheres. If any sphere z, =0 is a plane, then

the corresponding term i is to be replaced by 2P,, where P, is
the length of the perpend:cular from z; to the plane z;=0.
Since the five spheres in (8) are orthogonal we have
By + BioBig+ Ciyyyt+ Xy + C %= 0 ®
for all pairs of values of ¢ and %, ¢ + .
From a familiar theorem of algebra on orthogonal substitutions*

it follows that a3, + al,+ a:'. +ad+ad =1 (6)
and @, + 00, + 0y + 0,8, + ae, =0, (EF k) )

Consequently we have for z] the fundamental relation

a4 S 2+ 2] 2= 0, ®
and the condition for a special sphere is
al*+ al’+ al*+ al*+ a*=0. (©))
Moreover, by the theory of orthogonal substitutions, equations (1)
solve into =p (@2 + 02y + Gy 7y + a7 + By Ty)- 10)
By (4), §118, the radius 7/ of the sphere z;=0 is
1
. 11
= @, + i, 1)

Therefore the real point at infinity whose coordinates in the old
system z; are 1: 0: 0: 0 : ¢ has the new coordinates

pri= | a2

# Cf. Scott’s ““Theory of Determinants,’ p. 154.
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where, if any sphere 2, =0 is a plane, the corresponding codrdinate
z, i8 zero, as in fact happens when r,= oo.

- The equation  + ¢xr,=0 for the locus at infinity becomes,
fr(?m (10) and (11), E?—:= 0, as
A r

where, again, if any coordinate sphere is a plane the corresponding

term vanishes from (13).
It is now easy to see that the formula (6), § 117, for distance

becomes P 2(@ys + vy + iy + iyl + 2yl) ,

= (14)
225 215
R
so that the equation of a sphere with center y; and radius » is
» Vi
2 2yt r YT zr‘— 0. 15)
Identifying this with 2a{x§= 0 (16)
r <Y
we have pal=yi+ 27, 2;" an
From (11), with (8) and (5),
1
% _ Y
so that, from (17), ”zr,.‘za . (19)

By squaring (17), adding, and reducing by (8), (18), and
(19), we obtain the following formulas for the radius and the
ter of the sph 16):
center of the sphere ( )r’— za?
=T
[EE] (20)
Y 24,
The formulas of § 118 are only special cases of these.

EXERCISES
. s,
1. Prove the relation 21—_’ =—_2

2. Deduce for the element of arc ds*= Zﬂ;.
&;

r
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122. The linear transformation. Consider a linear transformation

PTi= By )+ BTt Gyt By Ty + @ Ty, ¢Y)

in which the determinant |a,| does not vanish and by which the

fundamental relation w(z)=0 is invariant. Then the relation
n(a)=0 is also invariant.

The relations (1) define a one-to-one transformation of space
by which a nonspecial sphere goes into a nonspecial sphere and a
special sphere into a special sphere. There are two types to be
distinguished.

1. Transformations by which the real point at infinity is invariant.
By such a transformation planes are transformed into planes and,
consequently, straight lines into straight lines. Since the trans-
formation is analytic it is a collineation.

Point spheres are transformed into point spheres; therefore,
expressed in Cartesian codrdinates, the transformation is one by
which minimum cones go into minimum cones, and consequently
the circle at infinity is invariant. Hence the transformation is a
‘metrical transformation.

Conversely, any metrical transformation may be expressed as a
linear transformation of pentaspherical codrdinates. This is easily
seen by use of the special codrdinates of § 117 and is consequently
true for the general codrdinates.

Hence a linear transformation of pentasphen'cal codrdinates by
which the real point at infinity is invariant 8 a metrical traanormatum,
and conversely.

I1. Transformations by which the real point at infinity is not inva-
riant. Among these transformations are the tnversions. That an
inversion may be represented actually by a linear transformation
of pentaspherical cobrdinates is evident from the example in the

coordinates £, § 117, pEl=KE,,
PEe = k’fﬂ’
PE& Kt
Eq= K Ei’
pEi= &,

and in fact any inversion may be so expressed by proper choice
of coordinates.
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Consider now the general case of a real transformation by which
the real point at infinity I is transformed into a real point 4, and
the same point 4, or another point 4’, is transformed into L
Since the transformation is real 4 cannot be at infinity. Let this
transformation be 7' and let S be an inversion with 4 as the center
of inversion. Then the product ST leaves I invariant and is there-
fore a metrical transformation, M. Therefore S7'= M; whence
T=8"'M. But §'=8. Therefore 7= SM. Hence

Any real transformation of pentaspherical codrdinates by which the
real point at infinity 8 not invariant 18 either an tnversion, or the
product of an inversion and a metrical transformation.

This does not exhaust all cases of imaginary transformations.
We may obviously have imaginary transformations of the metrical
type or inversions from imaginary points, so that the above theorems
hold for transformations by which the real point at infinity is trans-
formed into itself or into any finite point. Transformations, however,
by which the real point at infinity is transformed into an imaginary
point at infinity are of a different type. An example of such &
transformation is '

pTy=— 7 -2z, — iz,
34 . 5

pzé:—gz-xl + 2z, —2iz, +§zv
5 . 3.

pri= 5% — 2, — 2z, — 5@

pr= 2z,

pry= iz, + 2=, — .

We shall close this section with the theorem, important in subse-
quent work : If the codrdinate system i8 orthogonal the transforma-
tion expressed by changing the sign of ome of the codrdinates is an
inversion on the corresponding codrdinate sphere.

For let the sign of z, be changed. Then points on the sphere
z,= 0 are unchanged, and any sphere orthogonal to z,= 0 is trans-
formed into itself. This characterizes an inversion on z,= 0.

EXERCISES

1. Prove the last theorem analytically, using the formulas of §121.

2. Prove that the product of five inversions with respect to five
orthogonal spheres is an identity.
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123. Relation between pentaspherical and Cartesian coordinates.
If we take the axes OX, OY, OZ used in § 117 to define the special-
ized pentaspherical coordinates as the axes also of a set of Cartesian
coordinates, it is obvious that we have, for real points,

pr,=a' + y'+2—1 =2+ 9"+ 1,

pz,=2zx = 2at,
pT,= 2y = 2.1/t, (1)
pr,=22 =24,

pr=i(@+ ¢+ 7+ D) =i(@+y"+ 2+ ).

This establishes in the first place a one-to-one correspondence
between real points in the two systems. It may be used also to
define the correspondence between the imaginary and infinite points
introduced into each system. There exists, however, no reason
why such points introduced into one system should always have
corresponding points in the other. As a matter of fact a failure of
correspondence of such points does exist.

The Cartesian points on the imaginary circle at infinity fail to exist
in pentaspherical coordinates since values of z, y, 2, t which satisfy the
relations 2’ + y*+ 2’=0, t=0give z,: 7,:2,: 2,: 7,=0:0:0:0:0.
But any Cartesian point at infinity not on the imaginary circle
corresponds in pentaspherical coordinates to the real point at
infinity 1:0:0:0:%.

On the other hand, we have in pentaspherical geometry imagi
points at infinity satisfying the relations =} + z; + 7 = 0, z, + %= 0,
but not having z = z,= 2,= 0. These have no corresponding points
in Cartesian geometry since no values of z: y: z: ¢tin (1) give them.

This failure in the correspondence is of importance if one wishes
to pass from one system to the other. They are of no significance,
however, as long as one operates exclusively in one system.

The general pentaspherical coordinates are connected with Car-
tesian codrdinates by equations of the form :

pri=(a,+tay) (ZP+ '+ )+ 2a50+ 2a,y+ 2 @, .2— (@, —iay).

124. Pencils, bundles, and complexes of spheres. If > az,= 0 and
Eb.x..: 0 are two spheres, the equation

2 (a;+21b)z,=0 @
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represents a sphere through all points common to the two spheres
and intersecting neither in any other point. Such spheres together
form a pencil of spheres.

A pencil of spheres contains one and only ome plane unless it con-
sists entirely of planes.

This follows from the fact that the condition that equation (1)
should be satisfied by the codrdinates of the real point at infinity
consists of an equation of the first degree in A, unless both

=0 and zbg‘ 0 are satisfied by those coordmates. In the
latter case all the spheres (1) are planes.

A pencil of spheres contains two and only two special spheres (which
may be real, imaginary, or coincident) unless it comsists entirely of
special spheres.

The condition that (1) represents a special sphere is

1(a+ M) =n(a)+ M (a, &)+ N (d)=0,

which determines two distinct or equal values of A unless 5 (a)=0,
7(8)=0, n(a, b)= 0. The latter case occurs when the two spheres
Yaz,=0, 3bz,=0 are special spheres with the center of each on
the other.

The theorems of § 111 and others analogous to those of § 62 are
easily proved by the student.
If Ea.x..= 0, Eb,a:,: 0, Zc‘x,: 0 are three spheres not in the
same pencil, the equation

2(“-‘"’ Abi+ pe) =0

represents a bundle of spheres as in § 112. The bundle contains
a singly infinite set of planes and a singly infinite set of special
spheres. The relations between orthogonal pencils and bundles
found in §112 are easily verified here.

If Yaz=0, 3bz,=0, Jcz,=0, 3 dz,=0 are four spheres
not belonging to the same bundle, the equation

E(a‘+ A+ pe,+ vd)z,= 0

represents a complex of spheres. It consists of spheres orthogonal
to a base sphere and contains a doubly infinite set of planes and a

doubly infinite set of special spheres. The centers of the latter
form the base sphere.
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EXERCISES

1. Prove that the angle under which a sphere cuts any sphere of a
pencil is determined by the angle under which it cuts two spheres of
the pencil.

2. Prove that among the spheres of a pencil there is always one
which cuts a given sphere orthogonally.

3. Prove that the angle under which a sphere cuts any sphere of a
bundle is determined by the angles under which it cuts three spheres
of the bundle.

4. Determine a sphere orthogonal to four given spheres.

5. Determine a sphere cutting five given spheres under given angles.
When is the problem indeterminate ?

125. Tangent circles and spheres. Let y,, 2, f, be any three
points given in orthogonal pentaspherical codrdinates, and consider
the equations pT,= Y, + Az, + pt,. ¢

In order that z; should be the codrdinates of a point it is neces-
sary and sufficient that

3, Aet pt)*= 0. ©)
Since 3 yt=0, 3 z!=0, D'ti=0, equation (2) reduces to
AN+ Bu+ COap =0, (¢))

where 4 = Zy,z‘, B= Zy‘t‘, C= Ez‘t‘..
Therefore (1) may be written o

PE=Y:+ A2, — B+ On b @

or pz;= By,+ (Cy,+ Bz,— At)\ + Cz\% )

This represents a one-dimensional extent of points. Any sphere
which contains the three points y;, #, ¢, will also contain all the
points z;, and any point z; belongs to all the spheres through y,, z,, ¢,.
Therefore (4) represents a circle, including the special case of a
straight line.

Any equation f(=z, z,, 2,y 2,, )= 0, O
where f is a homogeneous polynomial of the nth degree, represents
a surface. To find where it is cut by any circle substitute from
(5) into (6). There results an equation of degree 2x in A, so that
the surface is cut by any circle in 2 » points.
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If Cartesian coordinates are substituted for z,in (6) the equation
is of the 2nth order and of the form

u, (" + g/"+ D +u @+ Y+ byt u=0,

where u, is a homogeneous polynomial of degree k£ not containing
(2*+ y*+ 2*) as a factor. The surface therefore contains the circle
at infinity and as an n-fold curve if u + 0. In the Cartesian
geometry the surface is cut by any circle in 4 n points, but the cir-
cular points at infinity count 2n times and do not appear in the
tetracyclical geometry.

The equation in A is

”
BY W o 0 90+ M BT L (Cyot Bty - =0. ()
[}

Now if g, is on the surface, then f(y)=0 and 2_1/‘ %=0, the
) .

latter because f is homogeneous. Therefore one root of (7) is zero.
Two roots will be zero if, in addition to y, being on the surface,

we have
of
Bza z,— AZa‘%t_

which is the same as

QJj
2 oy, Syt ®)

zy: i Ey‘t‘

If this condition is satisfied by the two points z and ¢, the circle
(1) is tangent to the surface (6) at y,. The condition is certainly
met if 2z and ¢; are both on the same sphere of the pencil

3(Z-pw)a=0. @

Any sphere of this pencil has accordingly the property that any
plane section of it through g, is a circle tangent to the surface (6).
Therefore (9) represents a pencil of tangent spheres to the surface.

If %: 0, all circles through y, meet the surface in two coinci-

dent points. The point y; is therefore a singular point. It is
obvious that the geometric meaning is the same as in the Cartesia
geometry.
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126. Cyclides in pentaspherical cobrdinates. Consider the surface

zaazf"’k =0. (au=a,) @
From § 123 and § 116 this is a cyclide. We have shown that if the
cyclide has singular points, it is the inverse of a quadric surface.
We shall therefore limit ourselves here to the general case in which
the singular points do not exist. Since, then, the equations % =0
]
have no common solution, it is necessary and sufficient that the
discriminant |a,| does not vanish.
It is a theorem of algebra that in this case the quadratic form
may be reduced by a linear substitution to the form

exl+ exi+ exi+ exi+ ezi =0, ©))
(where ¢+ 0), at the same time that the fundamental relation
o () is

We shall therefore assume that the equation of the cyclide is in
the form (2) and that the codrdinates are orthogonal.

From equation (2) it is obvious that the equation of the surface
is not altered by changing the sign of any one of the coordinates z,
But this operation is equivalent to inversion on the sphere z;= 0.
Hence

2+ 2]+ 2} + 2} + 2= 0. (¢))

The general cyclide is its own inverse with respect to each of five
mutually orthogonal spheres..

The pencil of tangent spheres to the cyclide at any point y, is,
by §125,

Z(c‘+ A) yz=0. @

Hence, in order that a given sphere
Saz=0 5)
should be tangent to (2), it is necessary and sufficient to determine
A and y; so that pay= (c; +0), )

and so that y, should satisfy the three equations (2), (8), (5).
This gives the three conditions

@ _ a4 _
2("'*‘*')2 z("ﬁ""x)’—o’ 2"."*‘7"—0’ M
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of which the first is a consequence of the last two. The last two
express the fact that the equation :

ch ~=0 @®)

has equal roots. This imposes a condition to be satisfied in order
that (5) should be tangent to (2).

When A has been determined from these equations, equations (6)
determine y, in general without ambiguity. Exceptions occur if
A =— ¢;, where ¢, is any one of the coefficients of (2). In that case
we have in (6) a,= 0, and y, cannot be determined from (6). How-
ever, if the other four codrdinates y, are determined, y, has two
values of opposite sign but equal absolute value, determined from
the fundamental relation (8). The corresponding sphere (5) is
orthogonal to z,= 0 and tangent to the cyclide at two points which
are inverse with respect to z,= 0.

The value of A may be taken arbitrarily as — ¢, ; whence a,=0.
The values of a,(¢+ k) must then be determined from (7) with
A=—c¢,. Each of the first two equations contain an indetermi-
nate term. The last equation becomes

> @ _0. Gk ®
TG G

The coefficients of (5) satisfy two equations, therefore, and the
spheres form a family of spheres which is not linear. In this family
a sphere can be found which is tangent to the cyclide at any
given point. For if A=—¢, and y; is any point on the cyclide,
equation (6) will determine a;,, and the a's will satisfy (9), as
has been shown. The spheres of the family therefore envelop
the cyclide. .

There are five such families of spheres, since A may be any one
of the five coefficients ¢,, Hence

The general cyclide s enveloped by five families of spheres, each
Jamily consisting of spheres orthogonal to one of the five codrdinate
spheres and tangent to the surface at two points.

We shall show that the centers of the spheres of each series lie on
a quadric surface.
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Take, for example, the series for which A =—¢ and a=0. If
y; are the coordinates of the center of a sphere of the series by (20),
§121,

_PS%_sur
24y, 9l
and ak=a'(yb— %ﬁ) (k1)
k
whence Pa, = -y—*ﬁ—r"/—‘ﬁ ’
k
and equation (9) becomes
@@=y’ 0, (k=2 8,4,5 1
=Y = y %y 0
z r’(ck_ l) ( ) ( )

which is the equation of the locus of the centers of the spheres of
the family under consideration.
By (4), § 121, equation (10) may be written

S, :
2r’(ck— c) an

and, finally, if S, and S, are expressed in Cartesian coordinates,
equation (11) is of the second degree, and the theorem is proved.
We may sum up in the following theorem :

The general cyclide may be generated in five ways as the envelope of
a sphere subject to the two conditions that it should be orthogonal to a
JSized sphere and that its center should lie on a quadric surface.

A surface which is its own inverse with respect to a sphere S
is called anallagmatic with respect to S, which is called the direc-
triz sphere. Such a surface is enveloped by a family of spheres
orthogonal to S and doubly tangent to the surface. For at any
point P of the surface there is a sphere tangent to the surface and
orthogonal to S. By inversion this sphere is unchanged. It is
therefore tangent to the surface at P/, the inverse of P.

The surface on which the centers of these enveloping spheres
of the anallagmatic surface lie is called the deferent.

The cyclide, therefore, is anallagmatic with respect to the five orthog-
onal spheres and has five deferents, each a quadric surface.
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EXERCISES

1. If @, is one of the five deferents of the cyclide, and S, the corre.
sponding directrix sphere, prove that the tetrahedron whose vertices
are the centers of the other five directrices is self-conjugate, both with
respect to Q; and with respect to S,.

2. Prove that on the cyclide there are ten families of circles, two
families corresponding to each of the five modes of generating the
cyclide.

8. The focal curve of any surface being defined as the locus of the
centers of point spheres which are doubly tangent to the surface, prove
that the cyclide has five focal curves, each being a sphero-quadric formed
by the intersection of a deferent by the corresponding directrix sphere.
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PART IV. GEOMETRY OF FOUR AND HIGHER
DIMENSIONS

CHAPTER XVII
LINE COURDINATES IN THREE-DIMENSIONAL SPACE

127. The Pliicker coordinates. The straight lines in space form a
simple example of a four-dimensional extent, since a line is deter-
mined by four codrdinates. In fact, the equations of a line can
in general be put in the form

z=1rz+p,

ik ®
and the quantities (7, 8, p, ) may be taken as the codrdinates of
the line. More symmetry is obtained, however, by the following
device. '

From equations (1) we have

Ty — 8T =1ra — p8, )
and we may place re — ps =1, )

thus obtaining five codrdinates connected by a quadratic relation.

If (2, ', ) and (2", ", 2") are any points on the line (1), we
may easily compute :
rigipiain:l=a'—a'":y —y':2"2 — 22 y'd — ' 2y — 2y 2 - 2,
and it is the ratios on the right-hand side of this equation which
were taken by Pliicker as the coordinates of a line.

These cobordinates, however, form only a special case, arising
from the use of Cartesian codrdinates, of more general co6rdinates
obtained by the use of quadriplanar coordinates. We proceed to
obtain these coordinates independently of the work just done.

The position of a straight line is fixed by two points (z,:2,:2,:2,)
and (¥,:9,:¥,:¥,)- It should be possible, therefore, to take as codr-
dinates of the line some functions of the codrdinates of these two

points. Furthermore, since any two points whose codrdinates are
301
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Az;+ py; may be used to define the same line as is defined by
and y;, the codrdinates of the line must be invariant with respect
to the substitutions .

pr=AZ+ r Y PYi=NEi+ B
Simple expressions fulfilling these conditions are the ratios of

determinants of the form |“ ¥
the expressions % Y
Pua= TYr— TpY;-
Since p,;=— p., there are six of these quantities ; namely,
Pu=2Y— Y
Pyu=TYs— TYo
P=2Y,—2Yy

. We will, accordingly, consider

Poyu= %Y, — T Yy
Pp=2Y,— TYp
Py = Ty — LYy

which are connected by the relation

A

9 Y Y Y
x: z: x: x: =%(Pmpu+ P,,P.,-i-pup“) =0. (4)
'yl y! y: y;

* It is obvious that to any straight line corresponds one and only
one set of ratios of the quantities p,.

As we have seen, the ratios of p, are independent of the partic-
ular points of the line used to form p,. If in particular we take
one point as the point 0:z,:z,: z, in which the line cuts the plane
z,=0, we have p ,=—2zy, p,=—2zy, p,=—=zy,; Whence
zizixT,=p P, P, Using in a similar manner the points in
which the line meets the other codrdinate planes, we have, as the
points of intersection with the four planes, the following four points:

0 : pl’ : pll : .pl"
—P, ¢ 0: p,:—p,
Py P TPy ¢ 0 : Py
=Py P P Py i 0,

®)
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The condition that these four points should lie on a straight
line is exactly the relation (4).

From (5) it follows that a set of ratios p, can belong to only
one line and that these ratios may have any value consistent
with (4).

Hence the ratios of p, may be taken as the coérdinates of a straight
line, and the relation between a straight line and its coordinates i8 one
to one. These coordinates are called Pliicker codrdinates.

Of course if a straight line lies completely in one of the cobr-
dinate planes, one of the sets of ratios in (5) becomes indeterminate.
This cannot happen, however, for more than two of the sets at the
same time, and the other two sets, together with (4), determine p,,.

128. Dualistic definition. A straight line may be defined by the
intersection of two planes u, and v,. Reasoning as in § 127 we are

led to place
G12™ %Y — %Yy

91s= UV~ Uy
0,6= %V — Uy )
Toa ™ Ug¥y— UV
Gy = Uy~ Ulp
. Qas = Up¥s— Uyg¥p
which are connected by the relation

2 (qlﬂqlu+ qlsq“+ quqn) =0. (2)

To any straight line corresponds one ratio set of ratios of gy,
and the four planes through the straight line and the vertices of
the tetrahedron of reference have the plane cotrdinates

0: 9 ¢ s ¢ 910

% 0: Qs ° — 1w

0P — st 0 G

e T Pl 0.

Therefore, to any set of values of the six quantities g, which

satisfy the relation (2), there corresponds one and only one line
with the codrdinates g¢;.

The relation between the quantities p, and g, is simple. From
(3) the plane

®

%t syt (= 0 €))
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passes through the line ¢,. If z; and y, are two points on the line
we have, besides equation (4), the equation

Qs+ Qs+ BuYu= 0. A ®)
From (4) and (5) we have :
D _ G _ e,
Py P Pu
Similarly, we may show that
Qu_ Qu_Tu_Iu_a_ s
P Piz Pun Pua Pis Pu
We may, accordingly, use only one set of quantities:

712 PP1a= 9u»
5= PP1s= s
T14= PP1s= Tay
784= PPs = Ta»
T2= PPia= s
753 = PP3s= TQra»
bound by the fundamental relation
o (1) =2(ryry + rigfa + ru7s) =0,

and may interpret in point or plane codrdinates at pleasure.

129. Intersecting lines. Two straight lines, one determined by
the points z; and y; and the other by the points 2} and y,, inter-
sect when the four points lie in the same plane, and only then.
The necessary and sufficient condition for this is

T T, Ty T,

N Y2 Y Y 0

z o x|

B Y% % Y
which is the same as

PraPut PPt Pulis+ Publist PuPis+ Pupi= 0. @

Also, dualistically, two lines, one determined by the planes
and v, and the other by the planes «, and v, intersect when the




LINE COORDINATES 305

four planes pass through the same point, and only then. The
necessary and sufficient condition for this is

U U U Y,
% Y Y Y 0
A A
LA A A A
which is the same as
0 N R O A P @
Either condition (1) or (2) is in terms of 7,
rirat 'u’::"‘ T+ Ta st Tl + Tt =0, )

which is more compactly written as
o(r,r)= Er’ — =0,

where @ (7, ') is the polar of the quadratlc expression (7).

130. General line coordinates. Consider any six quantities z; de-
fined as linear combinations of the six quantities r,. That is, let

PT;= GaTyg+ Gyt Gy + ATy + AT+ BTy @

with the condition that the determinant of the coefficients |, |
does not vanish. Then the relation between the quantities p, and
z, is ene-to-one, and z; may be used as the codrdinates of a line.

By the substitution (1) the fundamental relation o (r)=0 goes
into a quadratic relation of the form

£@ —-Eaax‘a:k— . (au=a,) ©))
In fact, by a proper choice of the coefficients in (1), the function
£(z) may be any quadratic form of nonvanishing discriminant and,
in particular, may be a sum of the six squares z;. The proof of
this may be given as a generalization of the similar problem in
space or may be found in treatises on algebra.
By the substitution (1) the polar (r, #') goes into the polar

T EG z’)=2x‘§—§= 0.

To prove this let r, and 7, represent two sets of values of the coor-
dinates r,, and let z; and 2} represent the corresponding values of the
coordinates z,; then r,+ A7), corresponds to z;,+ Az for all values of A

Therefore o(r+M)=§E(z + ),
or o(r)+2re(r, r)+No(r)=E@)+ 2ME(z, 2)+ NE@).
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By equating like powers of A we have
o(r, )= E(z, ).

Hence the ratios of any system of siz quantities x, bound by a
homogeneous quadratic relation E(x)=0 of nonvanishing discrimi-
nant, may be taken as the codrdinates of a line in space in such a
manner that the equation E(z, )= 0 8 the necessary and sufficient
condition for the intersection of the two lines z; and z|.

Of particular importance are coordinates due to Klein, to
which we shall refer as Klein coordinates. These are obtained by

the substitution
P xl = P 12 + p !

Pz¢=pla+Pn'
PZy=1(P1y— P
PZ,= Py + Poy
PZ= 1 (P1g— Py )s
PZy= i(Pu_.pn)‘
The fundamental relation is then
4z ta;+zl+zl42=0,
and the condition for the intersection of two lines is
2y, +2y,+ 2y, +2y,+ 2y, +zy,=0.

131. Pencils and bundles of lines. I. If a, and b, are two inter-
secting lines, then pz;= a;+ Nb, 18 a line of the pencil determined by
a, and b, and any line of the pencil may be 8o expressed.

The hypotheses are

E@=0, E®)=0, E(ab)=0.
Then :

1. z; are the codrdinates of a straight line, since
@)= E(a+MD)= E(@)+ 2ME(a B) + NE(H)=0.

2. The line z, lies in the plane of «; and &, and passes through
their point of intersection. To prove this let d; be any line cutting
both a, and b,. That is, d, is either a line through the intersection
of a; and b, or a line in the plane of @, and 5. Then §(a, d)=0,
and E(b, d)=0. Therefore

E(z d)=E(a+\b, d)= E(a, d)+ NS, d)=0.
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Hence z; intersects any and all of the lines d; and therefore lies
in the plane of @, and b, and passes through their intersection.

3. The value of A may be so taken as to give any line of the
pencil determined by a; and 3. To prove this let P be any point
of the pencil except its vertex, and let A, be a line through P but
not in the plane of ¢, and 5, We can determine A so that

E@ B)=E(a BH+NEG B)=0.
Hence z; intersects %;; and since % has only the point P in the

plane of a; and b, and z; lies in that plane, z, passes through P and
is any line of the pencil. The theorem is completely proved.

II. If a, b, and c; are three lines through the same point but mot
belonging to the same pencil, then pz;= a,+ \b,+ pc; 8 a line through
the same point, and any line through that point may be 8o represented.

By hypothesis, £(a)=0, £(6)=0, E(c)=0, £(a,b)=0, £}, ¢)=0,
£(¢, a)=0. Then:

1. z; are the codrdinates of some line, since £(z)=0.

2. Any line which cuts all three lines q;, 3, and ¢, cuts z. For,
if £(a, d)=0, E(b, d)=0, and £(c, d)=0, then E(z, d)= E(ad)
+AE(b, d)+ pE(e, d)= 0. Therefore z; passes through the infer-
section of a;, b, c,.

8. Values of x and u may be so determined that z, may cut
any two lines g; and 4; which do not cut the lines a,, b,, and ¢, We
have, in fact, to determine A and u from the two equations

E(@ 9+ NG, 9+ nE(e9) =0,
£ B+ AEQ, B+ pE (e, =0,
The theorem is therefore proved.

. If a, b, and c, are any three lines in the same plane but not
belonging to the same pencil, then pz,= a;+ Nb,+ pc; 18 a line in the
same plane, and any line in the plane may be so represented.

The proof is the same as for theorem II.

A configuration consisting of all lines through the same point
is called a bundle of lines. A configuration consisting of all lines
in a plane is a plane of lines. By the use of line codrdinates we
do not distinguish between a bundle and a plane of lines. In fact
each configuration consists of a doubly infinite set of lines each of
which intersects all of the others.
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EXERCISES

1. Prove that the cross ratio of the four points in which a straight
line meets the four planes of any tetrahedron is equal to the cross
ratio of the four planes through the line and the vertices of the
tetrahedron.

2. Prove that there are two and only two lines which intersect four
given lines in general position.

3. Prove that if the coordinates of any five lines satisfy the six
equations Az, + py; + vi + ps; + at, = 0,

the five lines intersect each of two fixed lines.

4. Show that if the coérdinates of any four lines satisfy the six

equations AZ; + py, + v&; + ps; = 0,

any line which intersects three of them intersects the fourth, and hence
the lines are four generators of a quadric surface.
5. Show that if the codrdinates of three lines are connected by the

8ix equations Az + py; + vz, = 0,

any line which intersects two of them intersects the third. Thence
deduce that the lines are three lines of a pencil.

132. Complexes, congruences, series. A line complez is a three-
dimensional extent of lines. It may be, but is not necessarily,
defined by a single equation which is satisfied by the codrdinates
of the lines of the complex. The order of a complex is the num-
ber of its lines which lie in an arbitrary plane and pass through
an arbitrary point of the plane; that is, it is the number of the
lines of the complex which belong to an arbitrary pencil.

A line congruence is a two-dimensional extent of lines. It may
be defined by two simultaneous equations in line codrdinates and
is then composed of lines common to two complexes. The order
of a congruence is the number of its lines which pass through an
arbitrary point; its class is the number of its lines which lie in an
arbitrary plane.

A line series is a one-dimensional extent of lines. It may be
defined by three simultaneous equations in line codrdinates. It
then consists of lines common to three complexes. The order of &
series is the number of its lines which intersect an arbitrary line.
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An equation S (=, 2, 2, 2,5 2, 7,) =0, (¢))
where f is a homogeneous polynomial of the nth degree in z,
defines a line complex of the nth order. Let a, and b, be any two
fixed intersecting lines. Then a;+ Ad; is, by theorem I, § 131, a line
of the pencil defined by a, and b, and this line will belong to the
complex (1) when A satisfies the equation

f(a1+ un’ an+ Xb’, aa+ Ma’ a4+ ML’ a5+ M&’ ac+ Me)= 0?
which is of the nth degree in A.

From the above it follows that through any fixed point of space
goes a configuration of lines such that » of these lines lie in each
plane through the fixed point. Since the relation between the
coordinates of the fixed point and those of any point on a line
of the complex is an analytic one, derived from (1), it follows
that any point of space ts the vertex of a cone of nth order formed
by lines of the complex.

Also if we consider a fixed plane, through every point of it go
n lines of the complex. Since, as before, we have to do with an
analytic equation,.-we infer that in any plane the lines of a complex
envelop a curve of the nth class.

A simple example of a line complex is that which is composed
of all lines which intersect a fixed line. For if a; are the coordi-
nates of a fixed line 4, the condition that a line z; should intersect

4 is, by § 130, E(a, 1:)= 0, (2)

which is a linear equation. Hence this complex is of the first
order. In fact through an arbitrary point in an arbitrary plane
goes obviously only one line intersecting 4. Through a fixed point
M goes a pencil of lines; namely, the lines through A in the plane
determined by M and 4. This is a cone of the first order. In any
plane m goes a pencil of lines; namely, the lines through the point
in which m intersects 4. These form a line extent of the first class.

Another example of a line complex is one of second order
defined by the equation

Plat P+ Pt pu+ P+ pas =0, ®
which, expressed in point codordinates, is
(xiy:_ $2y1)2+ (xxys - xsyl)n + (xnyg - x4y1)a+ (xsyL - x«-/qa)g
+(@y,— 29,)"+ (29,— 2,9,)'= 0. ®
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This is not the equation of a surface, since it contains two sets
of point coordinates. If, however, the coordinates y, are fixed,
(4) becomes the point equation of the cone of second order formed
by lines of the complex through y,.

If, dualistically, we express equation (8) in plane codrdinates v
and v; and hold v, fixed, we obtain a plane extent of second class
in w; which is intersected by the plane v,= const. in a line extent
enveloping a curve of second class.

Through an arbitrary point in an arbitrary plane go two lines
of the complex (8).

An example of a line congruence is that of lines intersecting
two fixed lines. It is represented by two simultaneous equations
similar to (2). It is of the first order, since through any point
but one line can be passed intersecting the two fixed lines. It is
of second class, since in a fixed plane only one line can be drawn
intersecting the two fixed lines.

Another example of a line congruence consists of all lines through
a point. This is of first order and zero class. Still another example
consists of all lines in a plane. This is of zero order and first class.

An example of a line series is that of lines which intersect three
fixed lines and is represented by three linear equations of the
form (2). Such lines are one family of generators on a surface of
second order (§ 96). The series is of second order, since any line
in space meets two lines of the series.

133. The linear line complex. The equation

Xz, + asxz+ asx|+ a4z4_+ anxs'*' Eele ™ 0’ (1)
where z, are general line co6rdinates, defines a linear line complex.
An example of such a complex is, as we have seen, that which is
composed of lines cutting a fixed line. Such a complex we call a
special linear line complez or, more concisely, simply a special complez.
The necessary and sufficient condition that (1) should represent a
special complex is that the equation (1) should be equivalent to

Exy=0;

that is, that pa; = —ag, ¢)

a .
where y, are the codrdinates of a péiﬁ’ and therefore satisfy the
equation E(y)=0. 1)
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Equations (2) can be solved for g, since the discriminant of ©))
does not vanish (§ 180). The results of the solution substituted
in (3) give a relation of the form

7(2)=0, ®
where 7 (@) is a homogeneous quadratic polynomial in a,.

We sum up as follows:

I. A special linear complex is composed of straight lines which
intersect a fixed line called the axis of the complex. A linear equa-
tion (1) defines a special complex when and only when the coefficients
a; satigfy the quadratic equation (4).

More in detail, let

EW =2afk.'/f.'/v (au=ay) )
Then equations (2) are
Y1+ 3G Yt @Yyt 0, Yt 0y Y+ 4 Yo = PSs ()]
from which, together with'(5), we have
ey tay,tay,+ay tay+ay= 0. )
From (6) and (7) we obtain
all al’ alﬂ all all ald al
21 aﬂ a’l a’l a“ aﬂ a’
a.l a” a” a“ a“ a“ al
K (a) = all al! aﬂ a44 a“ a“ ai
a5l a“ aﬂ aﬁl a“ a“ al
aﬂl aﬂ! a“ a“ a“ a“ ad
a a a a a O

al ]
=24ua.-“k= 0,
where 4,, is the cofactor of a, in the expansion of D=]a,]|

.0
Then ’ag_ = 4,0+ 4,0, + 4,2+ 4, 0, + 4,2+ 4,8,
- oy :

= ;‘ Yo
the last result coming from the solution of equations (6) for y,.
If we have Klein cotrdinates
n(@)=ai+a;+ e/ +al+a'+af,
0

MN=2a.
oa %

(1
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‘. We may sum this up in the following theorem :
’ 'H The éo&rdmatea of the axis of the complex (1) when it is special

are 87 If Klein codrdinates are used, the codrdinates of the axis of a

apectal complex: are the coefficients in the equation of the complez.

Returning to the general linear complex (1) (special or non-
special), .consider any point P. If a, b, and ¢, are any three lines
through P not in the same plane, then (theorem II, § 131) any
line through P has coordinates a;,+ Ad;+ uc,, and this line belongs
to the complex when

Saa+ XE%’H pYae=0 ®)

Equation (8) is satisfied for all values of A and u if the three
lines a;, b, and ¢, belong to the complex. Otherwise, assuming
that ¢, does not belong to the complex, we may solve (8) for s
and write the coordinates of the point x; in the form

PE= (aezaf"a - ciza-aa) + X(biza‘c‘— ciz“:bi)
= aj+ b,
where a; and ’:bﬁ are two definitely defined lines through P, and A
is arbitrary. ;l‘his proves the following theorem :
1. Through any arbitrary point in space goes a pencil of lines of
the complex unless in an exceptional manner all lmea through the point
belong to the complex.

The analysis would be the same if the three lines a, 3, and ¢
were taken as three lines in a plane, but not through the same
point, (theorem III, § 181). Hence

IV. In any arlntrary plane in space lies a pencil of lines of the
complex unless in an exceptional manner all lines of the plane belong
to the complez.

To complete the information given by these two theorems we
shall prove the two following:

V. If all lines through any ome point P belong to the complez, the
complez is special and the point P lies on the axis of the comples.

Let all lines through P (Fig. 56) be lines of the complex. Take
h, a line not belonging to the complex, and let @ and R be two
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points of A Through @ goes, by theorem III, a pencil of lines of
the complex of which P@Q is evidently one and 4 is not. Similarly,
through B goes a pencil of lines of the complex of which RP is
one and 4 is not. These two pencils lie in different planes, for if
they lay in the same plane the line

h would lie in both pencils and
be a line of the complex, contrary:
to hypothesis. The planes of the
pencils intersect in a line which
contains P. Call it ¢, and let S be
any point on e¢.

The line SP belongs to the com-
plex, since, by hypothesis, all lines
through P are lines of the complex. Fro. 56
The line SQ belongs to the com-
plex, since it lies in the plane of the pencil with the vertex @ and
passes through @. Similarly, the line SE belongs to the complex.

Therefore we have, through the point S, three lines of -the
complex which are not coplanar, since ¢ and % are not in the
same plane. Hence, by theorem III, all lines through S belong to
the complex. But § is any point of ¢, and since all lines whlch
intersect ¢ form a complex, the
theorem is proved.

V1. If all lines of a plane be- ' r
long to the complez, the complex - ‘
18 special and the plane passes
through the axis of the complex.

h

Let all lines of a plane m
(Fig. 57) belong to the com-
plex. Take A4, any line not of
the complex, and let ¢ and  be
two planes through 2, intersect-
ing m in the lines mg and mr. In the pla.ne q lies, by theorem IV,
a pencil of lines of the complex of which mg is one and A is not.
Similarly, in the plane r lies a pencil of lines of the complex
of which mr is one and % is not. These pencils have different
vertices, for otherwise they would contain k. Let ¢ be the line

Fie. b7
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connecting the vertices (¢, of course, lies in m). Take &, any plane
through ¢ intersecting ¢ in the line gs and r in the line 7.

Then ¢ is a line of the complex, since by hypothesis any line in
m belongs to the complex. Also gs and 73 belong to the complex,
since each is a line of a pencil which has been shown to be com-
posed of lines of the complex. The three lines do not pass through
the same point because ¢gm and »m have been shown to intersect ¢
in different points.

Therefore, by theorem IV, all lines in s belong to the complex,
and since 8 was any plane through ¢, all lines which intersect ¢
belong to the complex, and the theorem is proved.

134. Conjugate lines. Two lines are said to be conjugate, or re-
ciprocal polars, with respect to a line complex when every line of
the complex which intersects one of the two lines intersects the
other also. Let the equation of the complex in Klein codrdinates be

azr +azx,+agz,+az+az,+az=0, ¢))
and let y; and 2, be the codrdinates of any two lines. The condi-
tions that a line z; intersect y, and 2, are respectively

y1x1+ ysxf" -'/dzr'*' y4z4+ -'/azs"' Y%= 0’ (2)

2z + 27, + 22+ 27, + 2z, + 22,=0. 3)
We seek the condition that any line #, which satisfies (1) and (2)
will satisfy (8). This condition is that a quantity A shall be found

such that pz.= ¥+ \a, (t=1,238,4,5, 6) ®
But y; and 2z, both satisfy the fundamental relation

o+ 2+ 2+ i+ 2+ 2} =0.

Therefore, from (4), A=-— 2—%&‘» ®)
%
2y ay, '
and (4) becomes pPz;=y,— 2 —a, ©)
al'

which define the coSrdinates z; of the conjugate line of any line g,
From (5) follows at once the theorem:

I. Any line has a unique conjugate with respect to any nompeaal
complez. '
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If the line y, belongs to the complex, then Ea‘y‘= 0 and pz,=y..
Hence

II. Any line of a nonspecial complex is its own conjugate.

If the complex is special, za,?: 0. Therefore, unless also
Za,.y,.= 0, A = and pz;=a,. Hence

II. The axis of a special complex is the conjugate of any line not
belonging to the complex.

If the complex is special and the line y; belongs to it, A is
indeterminate. Hence

IV. A line of a special complex has no determinate conjugate.

The above theorems may also be proved easily by purely geo-
metric methods.

If two lines have codrdinates y, and z; which satisfy equations (6),
then any values of z; which satisfy (2) and (8) will also satisfy (1).
Hence

V. If two lines are comjugate with respect to a complex, any lkine
which intersects both of them belongs to the complex.

From this theorem or from the relations (6) follows at once:

VI. Two lines conjugate with respect to a nonspecial complex do not
intersect.

We have seen (theorem IV, § 183) that in any plane m there is
a unique point P which is the vertex of the pencil of complex
lines in m. Similarly, through any point P goes a plane m which
contains the pencil of complex lines through . When a point and
plane are so related, the point is called the pole of the plane,
and the plane is called the polar of the point.

If g and % are two conjugate lines with respect to a complex,
and P is any point on g, the pencil of lines from P to points
on h is made up of complex lines by theorem V. Hence follow
the theorems:

VII. The polar plane of a point P on a line g is the plane deter-
mined by P and the conjugate line h. As P moves along g the polar .
plane turns about h.

VIII. The pole of any plane m through a line g is the intersection of
m with the conjugate line h. As m turns about g its pole traverses h.
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. -185. Complexes in point codrdinates. It is interesting and instruc-
tive to consider the linear complex with the use of point cotrdinates.
A linear equation in general line codrdinates

Des=0 m
is equivalent to a linear equation o
Eaikpt‘k; 0 (a,=0, a,=—a,) - (@)

in p, codrdinates; and this, again, can- be expressed as:a bilinear
equation in point cotirdinates'

SaGn-zy)=0. O

If in equa.tlon (3) we place y; equal to consta.nts the equatlon
becomes that of a plane m.of which y, is the pole.
The plane codrdinates. of this plane are

U= Yyt a,y,+ ey,
PYU=— ALY, + @Y, — @Y, 0
PUy=— a)Y,— %Y, +a,9,

pU,= —a Y+ aY,— 0y

and to each point y, corresponds a unique plane unless

0 Oy . Oy a,.
Gy 0 a, —a, —0
Oy T Oy 0 L ’ .
. @y Ty L 0 o
that is, unless  (a,a,+ a0, + a,,)'=0. 5 e

" But a,a,+a,a,+a,0a,is the form which 7 (@) takes for the p,
coordinates. Hence we have a vefification of the fact that in s
nonspecial complex any plane has a unique pole.

Let us take two conjugate lines as the edges 4B (z,=0, z,= 0),
and CD (z,= 0, z,= 0) of the tetrahedron of reference for the point
. codrdinates. This can always be done by a collineation which
obviously amounts to a linear substitution of the line coordinates.

© I£0:0:y,:y, is a point P on 4B, its polar plane is, by (3),
- 0,29, + ¢, 29, + 4, (29,— xy'/a) —‘&4’25 ot a;a‘tzya'= 0
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This plane must pass through CD for all values of y, and y,.
Hence a,=a,=a,=a,=0, and the line complex reduces to
4 aupu+ Oy Py = 0, (5)
where neither of the coefficients can be zero if the complex is
nonspecial.

It is possible to make the ratio a,: a,, equal to —1 by a colline-
ation of space. To see this, note that if we place

D=0yt Ty=—GyT, T,=1I, I,=1,

h=0xY Bi=—0Yy %=Y» Yi=Yo
then pl,=a,p,,, and p}, =— a,,p,,, and the equation of the com-
plex becomes
Pu‘"Pu': 0. ®)

Consider now a special complex, and let its axis be taken as
the line 4B (z,=0, z,=0), the line coordinates of which are
P12= Pis=Puy=Pu=Pu= 0. The condition that a line should inter-
sect this line is, by (1), § 129,

Pu=0. ™
We may sum up in the following theoremn :
By a projective transformation of space the equation of any apecml
complex may be brought tnto the form
p,=0
and that of any nonspecial complex into the form

Pya— Pou= 0.

136. Complexes in Cartesian coérdinates. We shall now consider
the properties and equations of line complexes with the use of
Cartesian coordinates z:y:z:¢, by which the plane at infinity is
unique and metrical properties come into evidence.

For special complexes we have two cases, according as the axis
is or is not at infinity. In the former case the lines which inter-
sect it are parallel to a fixed plane. Hence o

In Cartesian geometry the special line complex consists etther of all
lines which intersect a fizxed line or of all lines which are parallel toa

Jized plane.
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Consider a nonspecial complex. In the plane at infinity is a
unique point I, the pole of the plane. The lines of space which
pass through I form a set of parallel lines not belonging to the
complex. These are called the diameters of the complex. Each
diameter is conjugate to a line at infinity, since the conjugate to a
diameter must meet all the pencil of lines of the complex whose
vertex is I. Conversely, any line at infinity not through I has a
diameter as its conjugate. In other words, the polar planes of points
on a diameter are parallel planes, and the poles of any pencil of paral-
lel planes lic on a diameter.

Consider now the pencil of parallel planes formed by planes
which are perpendicular to the diameters. Their poles lie in a
diameter which is unique. ZTherefore there is in each momspecial
complex a unique diameter, called the axis, which has the property of
being perpendicular to the polar planes of all points in it.

Referring to (4), § 185, if we replace z,:z,: z,: 2, by z:y:2:¢,
the pole of the plane at infinity is given by the equations

ay+az+at=0,
—-az +a,2—at=0,
: = 0T — gy +a,t=0,
which have the solution
ziy:z:it=a,i—a,a.:0. @

Any line through the point (1) is therefore a diameter, and if
(%, y, 2,) is any finite point of space, the equation of the diameter
through it is sz _y—y _z—2

(l” —a, a

“1s
The polar plane of (%, ¥, 2,) is, by (4), § 135,
(a9, + 0,2, + au)x +(= 0T+ a2 — a4,y
+(= ATy — Ayl + a“)z +(- 2,2 + ey, — a“zl) =0. (2)
The line (1) is perpendicular to the plane (2) when
Gl + gy + By _ = Byt + O — Oy — Ot — Gyt Gy g,

Ros —ay, a

13

Consequently, if (z, y, 2) in (8) are replaced by variable
coordinates (z, ¥, z), equation (8) becomes the Cartesian equation
of the axis of the complex.
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Let us take this axis as the axis of z. Then, from (1), a,=0,
a,,= 0, and, from (3), since the origin of codrdinates is on the axis,
a,=0,a,=0. The equation of the complex is then

a,P u+ U Pyu= 0, (4)
which agrees with (5), § 185.
In Cartesian coordinates equation (4) is
2y —2dy+k(z—2)=0, (®)
which associates to any point (7, ¥/, 2') its polar plane. ‘
From (5) it is obvious that the polar plane of P (7, ¥, 2)
contains the line zy’'— 2y =0, z=2', which is the line through
P perpendicular to the axis. The normal to the plane makes with

VL ot
the axis the angle cos™! _ﬁ’;—”ﬁ = tan™! _f’_k"i = tan™! %,

where » is the distance from P to the axis. This leads to the
following result:

The polar plane of any point P contains the line through P
perpendicular to the axis. If P i on the axis, its polar plane ts per-
pendicular to the axis. As P recedes from the aris along a line
perpendicular to it, the normal plane turns about this perpendicular,
the direction and amount of rotation depending upon the sign and the
value of k. If P moves along a line parallel to the axis, its polar
plane moves parallel to itself.

Any line of a complex may be defined by a point (2, ¥, 2) and
its neighboring point (z + dz, y + dy, z + dz). If in (5) we place
¥=z+dz, y=y+dy, Z=2+ dz, we have

zdy — ydz — kdz =0, ©)
which may be called the differential equation of the complex.

Equation (6) is of the type called nonintegrable, in the sense
that no solution of the form f(z, g, 2, ¢)=0 can be found for it.

It is satisfied, however, in the first place, by straight lines whose
equations are

z=g¢, y=maz. )
In the second place, on any cylinder with the equation
2+ y'=d* )
may be found curves whose direction at any point satisfies (6).
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" For the direction of any curve on (8) satisfies the equation

zdz + ydy =0,
and this equation combined with (6) gives the solution |
2
@+ y'=d, z=%tan"%+c, &)
2 ra® ‘

which are the equations of helixes with the pitch

It appears. from the preceding that any tangent line to a helix
of the form (9) is a straight line of the complex. We shall now
prove, conversely, that any line of the complex, excepting only
the lines (7), is tangent to such a helix.

Since z is assumed not to be constant, we may take the equation
of any line not in the form (7) as

z=mz+b, y=nz+p, (10)

with the condition &n — pm =k, which is necessary and sufficient
in order that equations (10) should satisfy (6).
The distance of a point (2, y,, 2,) on (10) from 0Z is

Vol + gi =/ w2+ 2(mb + np)z, + B+
: It is easily computed that this distance is a minimum when

__mb+mp nk mk

= 9 z=—, TS — —
1 m2+n2 1 m2+n2 yl m!+ n2

- The minimum distance is —k—, which we shall take & a in
\/ms + n

the equations of the helix (9). The direction of the helix at the

POint (xl" Yo zl) is ad

‘ - dx:dy:dz:—yl:zl:%:m:n:l.

This is the direction of the line (10), and our proposition is proved.
We have, therefore, the following theorem:

A Uinear nonspecial complex may be considered as made up of the
tangents to the helizes drawn upon cylinders whose azes coincide with

2
the azis of the complex, the pitch of each helix being 2%“, where a i
the radius of the cylinder and k the parameter of the comples,




LINE COORDINATES 4 321

137. The bilinear equation in point coordinates. The equation

zaazf.%= 0 @
is the most general equation which is linear in each of the two
sets of point codrdinates (z,:z,:z,:z,) and (¥,:¥,: ¥,°¥,)-

By means of (1) a definite plane is associated to each point
Y its equation being obtained by holding y; constant in (1).
Similarly, to each point z; is associated a definite plane.

In this book we have met two important examples of equation (1).

I. a,;=a,. Equation (1) then associates to each point y, its
polar plane with respect to the quadric surface

D aur iz, = 0.
The pole does not in general lie in its polar plane. Exceptions
occur only when the pole is on the quadric.

IL. a,,=— a,; whence a,=0. Equation (1) associates to each
point y, its polar plane with respect to the.line complex

Zaepac= 0.
The point y, always lies in its polar plane. This association
of point and plane forms a null system, mentioned in § 102, and here
connected with the line complex.

EXERCISES

1. Prove that a complex is determined by any five lines, provided
that they are intersected by no line.

2. Prove that a complex is determined by a pair of conjugate lines
and any line not intersecting these two.

3. Prove thata complex is determined by two pairs of conjugate lines.

4. Prove that if a line describes a plane pencil its conjugate also
describes a plane pencil, and if a hne describes a quadric surface its
.eon]ugate does also. ‘
5. Prove that a complex (or null system) is in general determined by
any three points and their polar planes.
6. Prove that any two pairs of polar lines he on the same quadric
‘surface.
. 7. Prove that the con]ugate to the axis of a nonspecial complex is
‘the polar with respect to the imaginary circle at infinity of the pole of
the plane at infinity with respect to the complex.
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138. The linear line congruence. Two simultaneous linear equa-
tions in line codrdinates,

2“@-‘= 0, Eﬁoxi= 0, @

define a congruence. Evidently equations (1) are satisfied by all '
lines common to two linear complexes. But all lines which belong
to the two complexes defined by equations (1) belong also to
all complexes of the pencil

2, (@+218)z,=0, (€

and the congruence can be defined by any two complexes obtained
by giving A two values in (2).
A complex defined by (2) is special when

n(a+18)=0;
that is, when 9 (a)+ 2Ay(a, B)+ A (B)=0. ®

In general equation (8) has two distinct roots. Hence we have
the theorem :

In general the linear congruence consists of straight lines which
intersect two fixed straight lines.

The two fixed lines are called the directrices of the congruence.
The directrices are evident conjugate lines with respect to any
nonspecial complex defined by equation (2).

If the roots of equation (8) are equal, the congruence has only
one directrix and is called a special congruence. This congruence
consists of lines which intersect the directrix and also belong to
a nonspecial complex. It is clear that the directrix must be a
line of this nonspecial complex, for otherwise it would have a
conjugate line and the congruence would be nonspecial. Hence
a special congruence consists of lines which intersect a fized line and
such that through any point of the fixzed line goes a pencil of con
gruence lines, the fixed line being in all cases a line of the pencil.

As the vertex of the pencil moves along the directrix, the plane
of the pencil turns about the directrix.

We have seen that a nonspecial congruence may be defined by
its directrices. If the directrices intersect, the congruence separates
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into two sets of lines, one being all lines in the plane of the direc-
trices (a congruence of first order and zero class)kand the other
being all lines through the point of intersecti:J the directrices
(a congruence of zero order and first class).

Wher the directrices do not intersect, the congruence is one of
first order and first class.

139. The cylindroid. We have seen that every linear complex has
an axis. In a pencil of linear complexes given by equation (2),
§ 138, there are, therefore, «o! axes which form a surface called
a cylindroid. We may find the equation of the cylindroid in the
following manner:

Let us take as the axis OZ the line which is perpendicular to
the directrices of the two special complexes of the pencil, as
the origin O the point halfway between the two directrices, as the
plane XOY the plane parallel to the two directrices, and as OX
and OY the lines in this plane which bisect the angles between
the two directrices. That is, we have so chosen the axes of refer-
ences that the equations of the two directrices of the special
complexes of the pencil are

y—mz=0, z=¢ (¢))
and y+mz=0, 2=—20 ©))
respectively.
The Pliicker coordinates of the line (1), which may be deter-
mined by the points (0, 0, ¢) and (1, m, ¢), are
PR=0, p=—c pR=-1 pP=—me ph=m p=0,
and the special complex with this axis is therefore, by (1), §129,
MP g — MEP1,— Pog— Pyg= 0.
Similarly, the codrdinates of (2) are
pR=0, pR=c¢, pR=-1, pR=—me pR=-m, pP=0,
and the special complex with this axis is
— MP1y— MEPy— Pgs+ Py = 0.
The pencil of complexes is therefore

A-=2)mp,;— A+ A)ymep,,— (1 + )‘)Pasi A=2N)ep,=0.
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By (8), § 186, the equati.(ms of the axis of any complex of the

pencil are
A-=MVmz—A+Myme _ —A+N)z+A—=N)ec
-1+ - —(1=M)m
_A=Mme—A+ Ny
- 0
which reduce to . ' y=1——-—x-mz,

[A=AM!m*+@A+A)]z=A=-A) A +mDe.
If we eliminate A from these equations, we have

@+ g+ Ty g, ®
which is the required equation of the cylindroid.

The equations show that the surface is a cubic surface with 0Z
as a double line. All lines on the surface are perpendicular to 0Z,
and in any plane perpendicular to OZ there are two lines on the
surface which are distinct, coincident, or imaginary according as
the distance of the plane from O is less than, equal to, or greater

1+m 2"

We may put the equation of the cyhndroxd in another form. We
shall denote by 2 a the angle between the directrices of the special
complexes of the pencil, by 6 the angle which any straight line
on the cylindroid makes with OX, and by » the distance of that

line from 0. Then m =tana, and;‘ :m tan 6.
Equation (8) then becomes
_ sm 2 0
=i 2a’

140. The linear line series. Consider three independent linear
quatlons S az,=0, > Ba=0, 27..';‘= 0. ¢))

These equations are satisfied by the coordinates of lines which
are common to the three complexes defined by the individual
equations in (1) and define a line series. Any line of the series
also belongs to each complex of the set given by the equation

E(X“ﬂ' mBi+ vy)z;= 0, ®
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and any three linearly independent equations formed from (2) by
giving to A, u, and » definite values determine the same line series
that is determined by (2).

A complex of the type (2) is special when

QA + pB + vy) = Np (@) + wn (B) + v'n (v) + 2 p (o, B)
+2pm (B M)+ 29 (v, @)=0. (8)

There are a singly infinite number of solutions of equation (8)
in the ratios A:pu:». Hence the lines which are defined by equa-
tions (1) intersect an infinite number of straight lines, the axes
of the special complexes defined by (2) and (8). These lines are
called the directrices.

The arrangement of the directrices depends upon the nature of
equation (8). In studying that equation we may temporarily in-
terpret A:u:v as homogeneous point codrdinates of a point in a
plane and classify equation (3) as in § 85.

Let us place (@) 2@ B) 1(a7)
D=|n(a,B8) 7(B) (87|
(&%) 2(By) 2(v)

CasgE I. D+ 0. This is the general case. Equation (8), inter-
preted as an equation in point codrdinates A : u:», is that of a conic
without singular points. To any point on this conic corresponds a
special complex of the type (2) whose axis is a directrix of the
series (1). To simplify our equations we shall assume that the
coordinates z, are Klein coordinates. Then (by theorem II, § 133)
if (A:p:v) and (A,:p,:v,) are two solutions of equation (2),
the axes of the corresponding special complexes, or, in other words,
the corresponding directrices of the series (1), are \a;+ u,8,+ v,
and M.”‘ l"ﬁﬁg"' Va;.

The condition that these two directrices intersect is

1@+ pB+vy Aa+pB+vy)=0,
which is exactly the same as the condition that each of the two points
(A,: 2 v) and (A g, 2 v,) should lie on the polar of the other with
respect to the conic (8). This is impossible, since each of the points
lies on the conic. It follows from this that no two directrices intersect.
From this it will also follow that no two lines of the given series .
intersect, for if they did each directrix must either lie in their
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plane or pass through their common point, and some of the
directrices would intersect.

The lines of the 'series (1), on the one hand, and their direc-
trices, on the other, form, therefore, two families of lines such that
no two lines of the same family intersect, but each line of one
family intersects all lines of the other. This suggests the two fam-
ilies of generators on a quadric surface. That the configuration
is really that of a quadric surface follows from the theorem that
the locus of lines which intersect three nonintersecting straight
lines is & quadric surface (see Ex. 6, p. 327).

We sum up in the following words:

In the general case (D + 0) the lines which are common to three
linear complexes form one family of generators of a quadric surface,
their directrices forming the second family.

A family of generators of a quadric surface is called a regulus.

Caskg II. D=0, but not all the first minors are zero. The curve
of second order defined by (8) reduces to two intersecting straight
lines and, by a linear substitution, can be reduced to the form

Ap=0.

To do that we must define the series by three complexes such that
1(®)=0, 7(B)=0, n(c)=0, n(},0)=0, 7(a ¢)=0, 7(a, B) 0.

These are three special com-
plexes such that the axes of
the first two do not intersect,
but the axis of the third inter-
sects each of the axes of the
first two. The axes lie, there-
fore, as in Fig. 58. The series
consists, therefore, of two pen-
cils of lines: one lying in the
plane of a and ¢, with its vertex at #’, the point of intersection
of b and c¢; the other lying in the plane of 4 and ¢, with its vertex
at F, the intersection of ¢ and e.

Cask III. D=0, all the first minors are zero, but not all the
second minors are zero. The conic defined by (8) consists of two
coincident lines. Its equation may be made »*= 0.
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We have then taken to define the series three complexes of
which two are special with intersecting axes, and the third is non-
special and contains the axis of the other two.

If @ and b are the two axes of the special complexes, F their
point of intersection, and m their common plane, then, since the
nonspecial complex contains « and b, F is the pole of m with
respect to that complex. Hence the lines common to the two
complexes form a pencil of lines which must be taken double to
preserve the order of the complex.

CASE IV. The case in which all the second minors of D vanish is
inadmissible, for in that case the three complexes in (1) are special
and their axes intersect. Then, from § 131, y,= a,+ »8;, and the
three equations (1) are not independent.

EXERCISES

Two complexes Za,:c‘ =0 and zb,a:,.= 0 are in tnvolution when
7(a, )= 0.

1. Prove that if p is a line common to two complexes in involdtion
the correspondence of planes through p, which can be set up by taking
as corresponding planes the two polar planes of each point of p with
respect to the two complexes, is an involution.

2. Prove that two special complexes are in involution when their
axes intersect. '

3. Prove that a special complex is in involution with a nonspecial
complex when the axis of the former is a line of the latter.

4. Prove that if two nonspecial complexes are in involution there
exist two lines, g and %, which are conjugate with respect to the two
and such that the polar planes of any point P are harmonic conjugates
with respect to the two planes through P and g and through P and %
respectively, and also such that the poles of any plane m with respect
to the two complexes are harmonic conjugates to the points in which m
meets g and A.

5. Prove that the six complexes x;= 0, where x; are Klein coordi-
nates, are two by two in involution. Hence prove by a transformation
of coordinates that there exists an infinite number of such sets of six
complexes mutually in involution.

6. Prove that the locus of lines which intersect three nonintersecting
lines is a quadric surface, by using Pliicker coérdinates and eliminating
one set of point codrdinates.
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141. The quadratic line complex. A quadratic line complex is
defined by an equation of the form
20urm=0.  (ay=a,)

We shall consider only the general case in which the above
equation can be reduced to the form

Zciz}'= 0, (e:+0) (€))
at the same time that the codrdinates z; are Klein cotrdinates
satisfying the fundamental relation

> z=0. )
Let us consider any fixed line y, of the complex and any linear
complex E“‘z‘r‘- 0, 3)

containing y,. In general the complex (8) will have two lines
through any point P in common with (1), for P is at the same
time the vertex of a pencil of lines of (3) and of a cone of lines
of (1).

Analytically, we take P, a point on y, and 2, any line of (3),
but not of (1), through P. Then any line of the pencil determined
by y; and z; is

PT= Y+ Az
and this line always belongs to (8), but belongs to (1) when and
only when 2 chﬁ‘z;"" xﬁzc?zr____ 0.

This gives in general two values of A, of which one, A = 0, deter-
mines the line y, and the other determines a different line. But
the two values of A both become zero, and the line y, is the only
line through P common to (1) and (8) when

 Yeya=0;
that is, when 2, has been chosen as any line of the linear complex

Ec‘y,:n‘= 0. 4)

In this case the polar plane of P with respect to (4) is tangent to
the complex cone of (1) at P, where P is any point whatever of y;
The complex (4) is accordingly called the tangent linear compler
at y,. It is often said that the tangent linear complex contains all
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lines of the complex (1) which are consecutive to y,, since any line
with coérdinates y,+ dy; satisfies (4). The discussion we have given
makes this notion more precise.

More generally we have at y; a pencil of tangent linear com-
plexes. For by virtue of (2) the complex (1) may be written

S\ (et m) =10, (5)
where u is any constant, and the tangent linear complex to (5) is
E(cl"*-"")y- (i 0. (6)

All these complexes have the same polar plane at any point P of y,.

If y; is not a line of the complex, equation (6) defines a pencil
of polar linear complezes.

The line y; is called a singular hine when the tangent linear
complex (4) is special. The condition for this is

Sei=0, ™

which says that ¢y, are the coordinates of a line, the axis of the
tangent complex. At the same time all the complexes (6) are special
and have the same axis.

This axis intersects y,, since zc,ﬁ: 0 (because y, is a line of the
complex), and the intersection of the two lines is called a singular
point, and their plane a singular plane. Any complex line y; for
which condition (7) holds is called a singular line.

Let P be a singular point on a singular line-y,, let 2, be any line
through P, and consider the pencil of lines

PE=yi+ A2 : - (®
The condition that z; belong to (1) is
N3leat=0, ®

since Y cy?=0, because y, is on (1), and Ycyz="0, because 2
intersects ¢y, at P. Then if z is a line of (1), all lines of the pencil
(8) belong to (1). On the other hand, if 2, is any line not belonging
to the complex (1), the line y; is the only line in the plane (yz2,)
which belongs to the complex. This makes it evident that at a
singular point the complex come splits up into two plane pencils
tntersecting in the singular line.
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In a similar manner we may take, p as a singular plane through
a singular line y,, 2,, any line in p intersecting y,, and again con-
sider the pencil (8). We obtain again (9), but the interpretation is
now that if 2, is any complex line in p, there is a pencil of lines in
p with vertex on y,. Consequently in a singular plane the complex
conic 8plits up into two pencils to which the singular line t8 common.

We shall now show that any point at which the complex cone
splits into two pencils i8 a singular point and any plane in which
the complex conic splits into two pencils is a singular plane.

Let 4 be such a point, and let the two pencils be a,+ A, and
a;+ pe,. Then

zcia? =0, Ecian‘bi= 0, zc‘a‘e,= 0. 10
The tangent complex at a; contains a,, b,, and ¢, by (10). There-
fore, by theorem V, § 133, it is special, and the point A lies on its
axis. Hence 4 is a singular point. The second part of the theorem
is similarly proved.
Now let a; and b, be two intersecting complex lines. Then

, 2a=0, =0, Yah=0, Yecal=0, Siedi=0. (11)
If the pencil a;+ Ab, belongs entirely to the complex we have also

zc.a-bi= 0. ¢))
We shall fix a, and take as b, that line of the pencil which
intersects a fixed line d; which does not intersect a,. a ﬁl

Then Sbd=0, Sad,+0. (18)

To determine b, we have five equations of which
three -are linear and two quadratic. There are there-
fore in general four sets of values of b, so that on
any line of the complex there are in gemeral four 4
singular points. '

Let the four points be 4,, 4,, 4,, 4, (Fig. 59) and
the four lines be ¥/, 8", ", 4", Then each of the
planes (ab’), (ab"), (abd'""), (ab""") contains a pencil
of lines and hence a second one distinct or coincident.
Therefore through any line on the complex there are four singular planes.

Since the codrdinates of the four lines b, satisfy three linear
equations, the lines belong in general to a regulus (§140) and do

FiG. 59
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not intersect. Therefore the four points 4 are in general distinct,
as are the four planes (ab). In order that two points or planes
should coincide it is necessary that the regulus should degenerate,
as in Case II, § 140. The condition for this is that the discriminant
of the equation

A’za?+ p’2d§+v’2c§a§ +2 XpZa‘d,.+2 p.vEc.a‘d¢+2 vhzc‘af =0

should vanish. By virtue of (11), and the fact that d; satisfies (2),
the above equation reduces to
”’2"?“?"‘ 2 X”’Ea:lii"' 2 pvzc,a,d‘= 0;
and the condition that its discriminant should vanish is
a2 =0,
since Ea,df# 0, by (18).

If this condition is met, @, is a singular line by the previous
definition, two of the points 4, 4,, 4,, 4, coincide into one sin-
gular point on a, and two of the singular planes coincide. More
precisely, if 4, and 4, coincide at 4 the pencils (ab') and (ad")
form the complex cone at 4, the two lines 4"’ and """ intersect on d
(compare § 140), and the points 4, and 4, are the vertices of the
pencils of complex lines in the plane (ab"’ 3""").

142. Singular surface of the quadratic complex. The singular
points and planes are determined by the complex line y; and the
intersecting line ¢y, where 3 cly?=0.

We take the pencil

p2=cy+ Ny, = (¢;+ M) Y.

Then z, satisfies the equations

G

g _ — 2_ 0.
2(c,.+7u)"'§-:"’2‘_0’ E(c‘+x)*z?“26‘y“0’

or, what: amounts to the same thing, the equations

1 1
2m23=0» 2(’0“_‘_——“2?—0- @
Equation (1) shows that 2, is a singular line of the complex

Ec‘ix”?=o' 2
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Since the lines 2z, and —:_Lx belong to the same pencil as g,

and cy,, the singular points and planes of (2) are the same as
those of Zc‘zf=0, no matter what the value of A. The com-
plexes (2) are called cosingular complezes.

We may use the cosingular complexes to prove that on any line
in space lie four singular points of the complex Y ca? =0, and through
any line go four singular planes.

Let ! be any line in space. We may determine A in (2) so
that ! lies in the complex (2); in fact, this may be done in four
ways, since (2) is of the fourth order in A by virtue of the relation

z2= 0. Then there will be four singular points of this new com-
plex on ! by previous proof, and these points are the same as the
singular points of Ec.z" =0.

It follows at once that the locus of the singular points of a quad-
ratic complezEc,z": 0 ts a surface of the fourth order, and the
envelope of the singular planes is a surface of the fourth class.

These two surfaces, however, are the same surface. For if two of
the singular points on ! coincide, two of the singular planes through
l also coincide. Therefore, if ! is tangent to one of the surfaces it
is tangent to the other. But [ is any line. Therefore the two sur-
faces have the same tangent lines and therefore coincide.

This surface, the locus of the singular points and the envelope
of the singular planes, is called the singular surface.

We shall not pursue further the study of the singular surface.
Its Cartesian equation may be written down by first transform-
ing from Klein to Pliicker codrdinates and replacing the latter
by their values in the coordinates of two points (z, y, 2) and
@, ¥, #). Then, if (¢, ¥, 2') is constant, the equation is that
of the complex cone through (&, ¥, 2/). The condition that this
cone should degenerate into a pair of planes is the Cartesian equa-
tion of the singular surface. It may be shown that the surface
has sixteen double points and sixteen double tangent planes
and is therefore identical with the interesting surface known as
Kummer’s surface.*

* Cf. Salmon-Rogers, ** Analytic Geometry of Three Dimensions,” and Hudson,
** Kummer’s Quartic Surface.”” The latter book contains as frontispiece a photo-
graph of the surface.
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EXERCISES

1. Prove that the tangent lines of a fixed quadric surface form a
quadratic complex. Find the singular surface. Note the peculiarities
when the quadric is a sphere.

2. Prove that the lines which intersect the four faces of a fixed tet-
rahedron in points whose cross ratio is constant form a quadratic com-
plex whose equation may be written Ap, p, + Bp,p,+ Cp, pu="0.
This is the tetrahedral complezx.

3. Prove that ih a tetrahedral complex all lines through any vertex
or lying in any plane of the fixed tetrahedron belong to the complex.
Find the singular surface.

4. Show that lines, each of which meets a pair of corresponding lines
of two projective pencils, form a tetrahedral complex.

5. Show that the lines connecting corresponding points of a collinea-
tion form a tetrahedral complex.

6. If the coordinates of two lines x; and y; are connected by the
relations

= Y

L
show that z, belongs to the complex Zc.a::' = 0 and that y, belongs to
the cosingular complex 1
2
2 o a ¥ = 0.

7. If z; and « are two lines of a complex C, and y; and y| their
corresponding lines, as in Ex. 6, of a cosingular complex C,, prove the
following propositions :

(1) If ; intersects y/, then = intersects y;.

(2) If &, intersects x} at P, and y, intersects y; at Q, the complex
cone of C at P and the complex cone of C, at Q degenerate into plane
pencils, and to a pencil of either complex corresponds a pencil of
the other. ‘

(3) If x, intersects z{ at P, in general y; does not intersect ¥, and the
complex cone of C at P corresponds to a regulus of C,. Also the com-
plex conic in the plane of z; and «; corresponds to a regulus of C,.

(4) Any two lines ; and ] of C which do not intersect determine a
cosingular complex C, in which the two lines y; and ), corresponding
to x; and x|, intersect. There are, therefore, two reguli of C through z;
and | corresponding to the complex cone and the complex conic of C,
determined by y; and y.



334 FOUR-DIMENSIONAL GEOMETRY

8. Prove that for an algebraic complex f(z, z,, x,, z,, %, ) =0 of
the degree n the singular lines are given by the equations

&=, 3(Z) =0

and that the singular surface is of degree 2n(n —1)?% where singular
line and surface are defined as for the quadratic complex.

143. Pliicker’s complex surfaces. In any arbitrarily assumed
plane the lines which belong to a given quadratic complex envelop
a conic. If the plane revolves about a fixed line, the conic describes
a surface called by Pliicker a meridian surface of the complex.
If the plane moves parallel to itself, the conic describes a sur-
face called by Pliicker an equatorial surface of the complex. It is
obvious that an equatorial surface is only a particular case of
the meridian surface arising when the line about which the plane
revolves is at infinity. In either case the surface has been called a
complex surface.

It is not difficult to write down the equation of a complex sur-
face. Let the line about which the plane revolves be determined
by two fixed points, 4 and B, let P be any point in space, and let
u, and v; be the codrdinates of the lines P4 and BP respectively.

Then the codrdinates of any line of the pencil defined by P4
and PB are u,+ Av, and this line will belong to the quadratic

complex ch:: =0 when A satisfies the equation

Ec‘u" +2 ch‘u‘vi + X’Eciv"'= 0. @

In general there are two roots of this equation, corresponding to

the geometric fact that in any plane through a fixed point there

are only two complex lines, the two tangents to the complex conic

in that plane. If, however, P is on that conic, the roots of (1)
must be equal; that is )

zc‘u" Zc‘vf’ - {ch.u,.v,. }’ =0. )]
Now u, involves the point cobrdinates of 4 and P linearly, and
v; involves in a similar manner the codrdinates of B and P. Hence
(2) is of the fourth order in the point codrdinates of P.
From the construction P is any point on the complex surfac
formed by the revolving plane about the line 4B. Hence Pliicker's
complex surfaces are of the fourth order.
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We may work in the same way with plane codrdinates; that
is, we may define a straight line by the intersection of two fixed
planes, @ and 8, and take M as any plane in space. Then the three
planes fix a point on /, and equation (1) determines the two lines
through that point in the plane M which belong to the quadratic
complex. Hence, if the codrdinates of M satisfy equation (2), M is
tangent to the complex cone through that point on I A little
reflection shows that such a plane is tangent to the complex sur-
face formed by revolving a plane about the line ! and that any
tangent plane to the complex surface is tangent to a cone of com-
plex lines with its vertex on /. Hence (2) is the equation in plane
coordinates of the complex surface. Therefore a complez surface
18 of the fourth class.

144. The (2, 2) congruence. Consider the congruence defined by

the two equations
| D az,=0, @

zclz: =0, (2)

which consists of lines common to a linear and a quadratic
complex. Through every point of space go two lines of the con-
gruence ; namely, those common to the pencil of lines of (1) and
the complex cone of (8) through that point. Similarly, in every
plane lie two congruence lines which are common to the pencil
of (1) and the conic of (2) in that plane. The complex is there-
fore of second order and second class and is called the (2, 2)
congruence. .

Consider any line y, of the congruence, and P any point on it.
Through P there will go in an exceptional manner only one con-
gruence line, when the polar plane of P with respect to (1) coincides
with the polar plane of P with respect to the tangent linear com-
plex of (2) at . This will occur at two points on g, This may
be seen without analysis from the fact that to every point on y;
may be associated two planes through y,; namely, the polar planes
with respect to (1) and to the tangent linear complex at y.. Hence
these planes are in a one-to-one correspondence, and there are two
fixed points of such a correspondence.

Analytically, if the complex (1) and the tangent linear complex
of (2) have at P any line 2 in common distinct from y,, they will
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have the entire pencil y;+ Az, in common. The conditions for

this are
23/ [ i= 0’

Ea:ziz‘ 0,
Ec‘y. = 0.

This determines a line series which, by § 140, degenerates into
two plane pencils with vertices on y,.

The points on y, with the properties just described are called
the focal points F, and F, of y, and the planes of the common
pencil of (1) and the tangent linear complex of (8) are called ,
the focal planes f, and f,. The focal points are often described
as the points in which y; is intersected by a consecutive line. The
meaning of this is evident from our discussion. For at F, and F,
the pencil of lines of (1) is tangent to the complex cone of (2), so
that through F, or F, goes only one line of the congruence doubly
reckoned.

The locus of the focal points is the focal surface. It will be
shown in the next section that the line y, is tangent to the focal
surface at each of the points 7, and 7, and that the planes f, and
J, are tangent to the same surface at ¥, and F, respectively.

145. Line congruences in general. A congruence of lines consists
of lines whose codrdinates are functions of two independent vari-
ables. For convenience we will return to the codrdinates first
mentioned in § 127 and, writing the equation of a line in the form

z=rz+8, y=pz+o, )

will take 7, 8, p, and o as the coordinates of the line. Then, if
r, 8, p, o are functions of two independent variables a, 8, the lines
(1) form a congruence.

Let ! be a line of the congruence for whicha =a, 8= B, Ifwe

place B=¢(a), ®

we arrange the lines into ruled surfaces; and if we further impose
on ¢ (@) the single condition

B,= (@), ®
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we shall have all ruled surfaces which are formed of lines of the
congruence and which pass through 7.

It is desired to know how many of these surfaces are develop-
ables. For this it is necessary and sufficient that there exist a
carve C to which each of the lines of the surface are tangent. The
lines of the surface being determined by (1), (2), and (3), the
coordinates of C are functions of a. The direction dz: dy: dz of C
therefore satisfies the equations

dz = rdz + zdr + ds,
dy = pdz + zdp + do, ’

where dr=<%+%¢'(a)> de, and similar expressions hold for

ds, dp, do. On the other hand, the direction of the straight line (1)
is given by dz = rde, dy = pds,
so that if the straight line and curve are tangent, z must satisfy '
the two equations

2dr+ds=0, zdp + do =0,
and therefore we must have

dpds — drdo = 0.

If we replace dr, ds, dp, do by their values, we have as an equation
for ¢ (a) one which can be reduced to the form

A4 (@) + Bp(a) +C=0.
From this equation with the initial conditions (8) we determine
two functions ¢ (a). They have been obtained as necessary con-
ditions for the existence of the developable surface through [, but

it is not difficult to show that if ¢ () is thus determined, the devel-
opable surface really exists. Hence we have the theorem:

Through any line of a congruence go two developable surfaces
formed by lines of the congruences.

Of course it is not impossible that the two surfaces should coin-
cide, but in general they will not, and we shall continue to discuss.
the general case.

To the two developable surfaces through ! belong two curves
C, and C,, the cuspidal edges to which the congruence lines are
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tangent. The points 7, and F,, at which [ is tangent to C, and C,,
are the focal points on I. The locus of the focal points is the focal
surface.

It is obvious that any line of the congruence is tangent to the
focal surface, for it is tangent to the cuspidal edge of the devel-
opable to which it belongs, and the cuspidal edge lies on the
focal surface. '

Let the line ! be tangent to the focal surface at 7, and F,, and
let C, be the cuspidal edge to which [ is tangent at F,. Displace !
slightly along C, into the position !' tangent to C, at #]. The line
U is tangent'to the focal surface again at 7, and the line F,F! is
a chord of the focal surface. As the point F] approaches F, along
C,, the chord F,F; approaches a tangent to the focal surface at F,,
and the plane of 7 and ! therefore approaches a tangent plane to
the focal surface at #,, But this plane is also the osculating plane
of the curve C,. Hence the osculating plane of the curve C, at F,is
tangent to the focal surface at F,.

An interesting and important example of a line congruence is
found in the normal lines to any surface, for the normal is fully
determined by the two variables which fix a point of the surface.
Through any normal go two developable surfaces which cut out
on the given surface two curves which are called lines of curvature.
These curves may also be defined as curves such that normals to
the given surfaces at two consecutive points intersect, for this is
only one way of saying that the normals form a developable
surface. Through any point of the surface go then two lines of
curvature.

The two focal points on any normal are the centers of curvature.
The. distance from the focal points to the surface are the principal
radii of curvature, and the focal surface is the surface of centers
of curvature. The study of these properties belongs properly to
the branch of geometry called differential geometry and lies out-
side the plan of this book. We will mention without proof the
important theorem that the lines of curvature are orthogonal.

We shall, however, find room for one more theorem ; namely,
that a congruence of lines mormal to one surface 18 mormal to the
Jamily of surfaces which cut off equal distances on every mormal
measured from points of the first surface.
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Let us write the equations of the normal in the form

r=a+lr,
y=RB+mr, . )]
z=ry + nr,

“where (@, B, v) is a point of a surface S; [, m, n the direction cosines
of the normal to §; and r the distance from § to a point P of the
normal. Then Ptmitnie1;
whence ldl + mdm + ndn = 0.

We have also lda + mdB + ndy = 0,

since the line is normal to S.

Suppose, now, we displace the normal slightly, but hold » constant.
The point P goes into the point (z + dz, y + dy, 2z + dz), where,
from (4),

dz = da + rdl,

dy = dB + rdm,

dz=dy+ rdn;
whence ldz + mdy + ndz = 0.

That is, the displacement of P takes place in a direction normal
to the line (4). From this it follows that the locus of points at a
normal distance r from S is another surface cutting each normal
orthogonally, which is the theorem to be proved.

EXERCISES

1. Show that the focal points upon a line I of a congruence can be
defined as the points at which all ruled surfaces which pass through I,
and are composed of lines of the congruence, are tangent.

2. Show that the singular lines of a quadratic complex form a con-
gruence, and that the singular surface of the complex is one nappe of
the focal surface of the congruence.

3. Show that in general there does not exist a surface normal to the
lines of a congruence, and that the necessary and sufficient condition
that such a surface exists is that the two developable surfaces through
any line of the congruence are orthogonal.
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4. Show that if a ruled surface is composed of lines of a linear
complex, on any line of the surface there are two points at which the
tangent plane of the surface is the polar plane of the complex.

6. Consider any congruence of curves defined by

fl(x’ Y, %, @, 0)=0,
-fﬂ(z) Y, 2, a,0)=0,

and define as surfaces of the congruence surfaces formed by collecting
the congruence curves into surfaces according to any law. Show that
on any congruence curve C there exists a certain number of focal points
such that all surfaces of the congruence which contain C are tangent
at these points,

6. Prove that if the curves in Ex. 5 are so assembled as to have an
envelope, the envelope is composed of focal points.



CHAPTER XVIII
SPHERE COORDINATES

146. Elementary sphere cotrdinates. Another simple example of
a geometric figure determined by four parameters is the sphere.’
We may take the qimntities d, e, f, r, which fix the center and
radius of the sphere

= Y+ — )+ =)=, )

as the coordinates of the sphere, and obtain a four-dimensional
geometry in which the sphere is the element.

It is more convenient, however, to use the pentaspherical coor-
dinates z; of a point and take the ratios of the coefficients a, in
th, i
° equatlon alzl+ ala'l+ alxl+ a4z4+ a5x6= 0 (2)
of a sphere as the sphere coordinates. This is essentially the same
as taking d, ¢, f, and ». In fact, if 2, are the codrdinates of § 117,
then by (4), § 117, equation (2) can be written

(a,+ia)(@P+y'+2)+ 2 arz+2ay+2az—(a,—ia)=0, (3)
and the connection with (1) is obvious. 4
By § 119 two spheres are orthogonal when and only when
‘ albl+ asb’+ aaba+ a‘b‘+ aﬁbs= 0, @
the coordinates z; being assumed orthogonal.
Consider now any linear equation
' e + cu,+eu + cu, + cu = 0, )
where ¢, are constants and u; sphere codrdinates. If we determine

a sphere with codrdinates ¢, (5) is the same as (4). Hence

A lnear equation in elementary sphere codrdinates represents a
complex of spheres consisting of spheres orthogonal to a fixed sphere.
If the fixed sphere is special the complex consists of spheres through

the center of the special sphere and is called a special complex.
841
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The word *“ complex ” is used in the same sense as in § 113, for
if @, B,, v, 8, are four spheres which satisfy (4), any sphere which
satisfies (4) has the codrdinates

° &+ N8B+ py,+ v8,.
Consider now the two simultaneous equations in sphere
codrdinates: 2 cat=0, 2 du,= 0. ®

Spheres which satisfy both of these equations belong to two
complexes. Therefore two simultaneous linear equations in elemen-
tary sphere codrdinates are satisfied by spheres which are orthogonal
to two fized spheres. These spheres form a bundle, for if a, B, ¥,
are any three spheres which satisfy (6), any sphere satisfying (6)
has the coordinates a;+ A8+ uy,.

All spheres which belong to the two complexes in (6) belong
to the complex Ec,.u‘+ xzd‘u‘= 0, and any two complexes of the
latter form determine the bundle. Among these complexes there
are in general two and only two special ones, and so we reach
again the conclusion that a dundle of spheres consists in general
of spheres through two fixed points.

Three linear equations,

Zc,.u,.= 0, Ed‘u‘= 0, Ee,.u..= 0,

determine spheres which are orthogonal to three base spheres.
These spheres form a pencil, since if a; and B; are any two spheres
satisfying (7), any sphere which satisfies (7) has the codrdinates
@+ AB;

We shall not proceed further with the study of the elementary
coordinates, as more interest attaches to the higher codrdinates,
defined in the next section.

'EXERCISES

1. Consider the quadratic complex za,-ku‘.u,=0, (a1 = ay) and
the polar linear complex of a sphere v;, defined by the equation
Ea,,v‘ub = 0. If the determinant |a,|# 0, show that to any sphere v;
corresponds one polar complex, and conversely.

2. Show that if v, lies in the polar complex of w;, then w; lies in
the polar complex of v, The two spheres v; and w; are said to be
conjugate.
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3. Show that the pencil of spheres defined by two conjugate spheres
has in common with the quadratic complex two spheres which are
harmonic conjugates of the first two spheres (the cross ratio of four
spheres of a pencil is defined as in the case of pencils of planes).

4. Show that the assemblage of all special spheres forms a quadratic
complex. Show that any two orthogonal spheres are conjugate with
respect to this complex, and that the polar complex of any sphere v; is
the complex of spheres orthogonal to v,

5. Show that the planes whxch belong to a qua.dratlc complex en-
velop a quadric surface. )

6. Show that any arbltra.ry pencll of spheres contams two spheres
which belong to a given quadratic complex, and that any arbitrary point
is the center of two spheres of the complex.

7. Show that the locus of the centers of the point spheres of a
complex with nonvanishing discriminant is a cyclide. :

8. Define as a simply special complex one for which the discriminant
|@a| vanishes but so that all its first minors do not vanish. ‘Show that
such a complex contains one singular sphere -which is conjugate to all
spheres in space. Show that the complex contains all spheres. of the
pencil determined by the singular sphere and any other sphere of
the complex, and that all spheres of such a pencil have the same polar
complex.

147. Higher sphere cobrdinates. Let z‘ be orthogonal penta-.
spherical coordinates whereby

0@=3d=0 md p@=3d . D
and let az+az+az+'a:v+a<v=0 .*'._(2)

be the equatlon of a sphere. To the five qua.ntltles a, a,,’ a.‘,_'c.i"_, a,
we will adjoin a sixth one, a, defined by the relatlon '

P e e o
The six qua.ntitie‘s are then bound by the quadratic relation -

and the ratios of these quantltles are taken as the coordlnates of the
sphere. This is justified by the fact that if the sphere is glven,
the codrdinates are determined; and if _the,coozjdmetes are given,
the sphere is determined.
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More generally, if @, a,, a,, a,, a,, @, are six quantities such that
PE= @10, + @0y + G0+ @ Oy + T O+ B Oy

“with the condition that the determinant |a,| shall not vanish, the
ratios @;: @, may be used as the coordinates of the sphere. Equa-
tion (4) then goes into a more general quadratic relation. We
shall, however, confine ourselves to the simpler a,.

By (20), § 121, the radius of the sphere

az +azr.+az+az,+ax=>0

i,

Consequently, to change the sign of a, is to change the sign of the
radius of the corresponding sphere. If, then, we desire to maintain
a one-to-one relation between a sphere and its codrdinates, we must
adopt some convention as to the meaning of a negative radius.
This we shall do by considering a sphere with a positive radius as
bounding that portion of space which contains its center, and a
sphere with negative radius as bounding the exterior portion of
space. Otherwise expressed, the positive radius goes with the inner
‘surface of the sphere, the negative radius with the outer surface.
A sphere with its radius thus determined is an oriented sphere.

If the sphere becomes a plane the positive value of a, is associ-
ated with one side of the plane, the negative value with the other.

A sphere is special when and only when a,=0.

148. Angle between spheres. By § 119 the angle between two
spheres with codrdinates a; and b, is defined by .the equation
a161+ a’b’+ aab-+ a‘b‘+ albi . @

acbc

Hence the angle 6 is determined without ambiguity when the
signs of the radii of the two spheres are known. If both radii are
positive, 8 is the angle interior to both spheres; if both radii are
negative, @ is exterior to both spheres ; and if the radii are of opposite
sign, @ is interior to one sphere and exterior to the other.

For special spheres the angle defined by (1) becomes indeter-
minate. More precisely, if a; is a special sphere the coordinate

cos 0 =—
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a,= 0 and the other five sphere codrdinates are the pentaspherical
coordinates of the center of the sphere. Therefore the condition
that the center of the special sphere a, lie on another sphere , is

ab +ab,+adb,+ a‘b‘-i- ab,=0.

Therefore if a, is a special sphere, b, any other sphere, and
0 the angle between a, and b, cos @ is infinite when the center of
a, does not lie on &, but is § when the center of a, lies on &,
A special sphere therefore makes any angle with a sphere on which
it center lies.

When 6 =(2k +1)’§' s n(a b)=ab+ab +ab+ad+ab=0,

and conversely. Hence we may say:

 The vanishing of the first polar of n(a) is the condition that two
spheres be orthogonal.

When =0, £(a, b)= ab + a,b,-l— ab+adb,+adb+adb =0, and
conversely. In this case the spheres are said to be tangent, but it
is to be noticed that spheres are not tangent when § = . The dif-
ference between the cases in which § =0 and those in which 6 ==
lies in the relation to each other of the space which the spheres
bound. In fact, if two spheres which are tangent in the elementary
sense lie outside of each other, they are tangent in the present
sense only when one is the boundary of its interior space, and the
other is the boundary of its exterior space; that is, the two radii
have opposite signs. If two elementary spheres are tangent so that
one lies inside the other, they are tangent when oriented only if
the radii have the same sign. We say:

The vaniaﬂing of the first polar of E(a) 18 the condition that two
spheres be tangent.

Two planes are tangent when they are parallel or intersect in a
minimum line (Ex. 8, § 81).
It is obvious that all these theorems are unaltered by the use
of the more general sphere coordinates of § 121.
The angle 6, made by the sphere a; with the codrdinate sphere
z,= 0 is given by the equation
0= 2%,
cos 6, a
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Consequently we have the theorem :

By the use of orthogonal codrdinates x, and the sphere codrdinates a,
the five coordinates a , a,, a,, a,, a, of any sphere are proportional to the
cosines of the angles which that sphere makes with the codrdinate
spheres. ' '

149. The linear complex of oriented spheres. Equation (1) of
§ 148 may be written

ab+adb+adb+ad+ab+ asbo cos 0 =0. (€))
Consider now a linear equation
eu, + eu,+ cu+ cu, + cu + cu,=0, @

where u, are higher sphere coordinates and ¢; are constants. The

spheres which satisfy this equation form a linear complez.
This equation may in general be identified with (1) by deter-
mining a fixed sphere, called the dase sphere, with the cotrdinates
a=c, (=128, 4,5), a= iVer+ el el + g+ey, (3

and determining an angle @ by the equation

' a cos 0 =c,. ' )
Equation (2) is then satisfied by all spheres which make the
angle @ with the base sphere. This angle is equal to 0 when and
“only when ¢,= a,; that is, when £(¢)=0. In the latter case the

complex is called special. '
We put these results in the form of the theorem:

A linear complex consists in general of spheres cutting a fized
sphere under a constant angle. If E(c)= 0 the complex is special
and consists of spheres tangent to a fixed sphere.

The words “in general” have been introduced into the theorem
because of the exceptional cases which arise when the base sphere
is special ; that is, when a,= 0. In that case the angle 6 cannot be
determined from (4). '

If at the same time that @,=0 the complex is special, then ¢,=0,
and the complex is

cu, + ecu,+ cu + cu + cu, =0,
with 20}: 0. Then ¢, are the cobrdinates of a point, the center of
the base sphere, and hence a special complex may consist of spheres
intersecting in a point.
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If when a;=0 the complex is not special, then ¢,+ 0, and the
angle 6 cannot be determined. A particular case in which this may
happen is when ¢, = ¢,= ¢,= ¢,=¢,=0, and the complex is

u,= 0.

This equation is satisfied by all special spheres. Therefore all
special spheres together form a nonspecial linear complex in which the
base sphere i3 indeterminate.

There remain still other cases in which a,= 0, but ¢, # 0. The
base sphere is then special and the angle @ is infinite, but the com-
plete definition of the complex is through its equation.

EXERCISES

1. Prove that the base sphere of a complex is the locus of the
centers of the special spheres which belong to the complex.

2. Prove that if ¢,= 0 in the equation of a complex, the complex
consists of spheres orthogonal to a fixed sphere, as in § 146.

3. Prove that in a special complex the coefficients in the equation
of the complex are the coordinates of the base sphere.

‘4. Prove that all planes together make a special complex with the
base sphere the locus at infinity.

5. Show that all spheres with a fixed radms form a linear complex
and determine the base sphere.

6. Discuss the relation between two complexes whose equations
differ only in the sign of the last term.

7. Two linear complexes 20,44,-: 0 and Zd,.u,.= 0 being said to be
in <nvolution when ed, + cd, + cd, + c¢d, + cd, + ¢, d, = 0, show that’
when the base spheres of the two complexes are nonspecial, the product
of the cosines of the angles which the spheres of each complex makes
with its base sphere is equal to the cosine of the angle between the
base spheres.

8. Prove that a special complex is in involution with every complex'
which contains its base sphere.

9. Show that the complex consisting of spheres orthogonal to a
nonspecial base sphere is in involution with the complex of all special
spheres.

10. Show that the six complexes u; = 0 are pair by pair in involution
and determine the relations of the base spheres.
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11. Conjugate spheres with respect to a linear complex are such that
any sphere tangent to both belongs to the complex, and any sphere of
the complex tangent to one is tangent to the other.

Show that if v, is any sphere, the conjugate sphere has the coordinates

22, %"
2
2

12. If a complex is composed of spheres orthogonal to a base sphere,
show that the conjugate of a sphere S is the inverse of S with respect
to the base sphere.

13. Find without calculation and verify by the formulas the con-
jugate of a sphere with reference to a complex of spheres with fixed
radius R.

14. Show that the conjugate of a sphere with respect to the complex
of special spheres is the same sphere with the sign of the radius changed.

PV =V — ¢

150. Linear congruence of oriented spheres. The spheres common
to two linear complexes

Ea'.u‘.= 0, zb‘u‘ =0 (1)

form a sphere congruence. Any sphere of the congruence (1) also
belongs to any complex of the form

2 (a+Ab)u,=0, ¢)
and any two complexes of form (2) can be used to define the

congruence.
Now (2) represents a special complex when A satisfies the

equation E(a+2)=0;
that is, E(a)+2ME(a, b))+ NEB)=0. )

Hence, in general, a sphere congruence consists of spheres tangent
to two spheres, called directriz spheres.

The exceptional cases occur when the roots of equation (3)
are either illusive or equal. In the first case equation (3) is
identically satisfied and all complexes of (2) are special. The
congruence may then be defined in an infinite number of ways
as composed of spheres tangent to two directrix spheres. The
condition that (8) be identically satisfied is & (a) =0, £(8)=0,
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£(a, 5)=0. The first two equations say that the defining com-
plexes are special; the third equation says that the base sphere
of either lies on the other.

If the two roots of (8) are equal, there is only one special com-
plex in the pencil (2). Suppose we take this as > au,= 0. Then,
since the roots of (8) are equal, £(a, 5)=0. This says that
the base sphere of the special complex belongs to the complex

bu;= 0. .

151. Linear series of oriented spheres. Consider now the spheres
common to the three complexes

Ea‘u‘= 0, Eb,.u,.= 0, Ec‘“‘= 0, @

which do not define the same congruence. These spheres form a
linear series.

A sphere of the series (1) belongs also to any complex of the
f
o > (a+ b+ ve) u,=0, )

and any three linearly independent complexes (2) may be used to
define the series. Among the complexes (2) there are a simply
infinite set of special complexes ; namely, those for which A, u, and

v satisfy the equation Eha+ pb+ve) =0, ®

The spheres of the series (1) form, therefore, a one-dimensional
extent of spheres which are tangent to a one-dimensional extent of
directriz spheres. :

The nature of the series depends on the character of equation (8).

We shall assume that the discriminant of (8) does not vanish.
If the quantities (A, u, ») are for a moment interpreted as trilinear
point codrdinates in a plane, equation (8) will represent a conic
without singular points; hence it is possible to find three sets of
values which satisfy (8) and are linearly independent. We have
corresponding to these values of (A, u, v) three linearly independent
special complexes, and may assume without loss of generality that
they are the three complexes in equations (1).

Then any one of the directrix spheres has the cobrdinates

@ 149) pv; = Aa,+ pb, + ve,, (4)
where E(Aa+ pb +ve)=0, E(a)=0, EB)=0, E(©)=0. (b)
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Now if a, B, and v, are any three spheres of the series (1), it is
obvious that the spheres v, in (4) satisfy the three equations -

Sa0=0 3 89,=0, >y =0. (6)

Conversely, any sphere satisfying equations (6) satisfy (4), for
three solutions of (6) are a, b, ¢, and the most general solution
is therefore Aa; + ub; + ve, where (since v; are sphere coordmates)
equation (8) must be satisfied.

Hence the directriz spheres form another linear series.

The special complexes which may define the series (6) are

3o+ 0Bt )= 0
where E(pa;+ B, +7y)= 0
The base spheres of these are simply the solutions of (1) Hence
the directriz spheres of the series (6) are the spheres of (1).
We have, therefore, two series of spheres such that each sphere of
one series 18 the tangent to each sphere of the other.

On the other hand, no two spheres of the same series are tingent.
To prove this note that by (5) we have

uk(a, B) + wEQ, c)+AE(e, ) =0,

and no one of these coefficients can vanish under the hypothesis
that the discriminant of (8) does not vanish. But a, b, ¢, are any
three directrix spheres, and hence the theorem.

By § 115 we are able to say immediately :

In the general case the spheres.of a linear series envelop a Dupin’s
cyclide. ‘

We shall not discuss the special forms of the linear series arising
when the discriminant of equation (3) vanishes.

152. Pencils and bundles of tangent spheres. If «; and b, are
any two spheres, then pu,= a, + M, o)

is a sphere when. and only when Ea,b,. =0; that is, when g, and
b, are tangent. In this case (1) represents o' spheres, each of
which is tangent to each of the others. We call this a pencil
of tangent spheres. In the notation of § 117 the condition for a
special sphere in the pencll is

" a,+Ab,=0, ¢)
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so that there is only one special sphere in the pencil unless a; and
b,, and consequently all spheres of the pencil, are special.
The condition for a plane in the pencil is
‘ a +ia+ N +1b)=0, 3
so that there is only one plane in the pencil unless all the spheres
of the pencil, including a; and d,, are planes.

In general the special sphere and the plane are distinct from
each other. Therefore the special sphere is a point sphere whose
center is in finite space. This center lies on all spheres of the
pencil by § 148. Hence the pencil is composed of spheres tangent
to each other at the same point. Such spheres have in common
two minimum lines determined by the intersection of the peint
sphere and the plane of the pencil. These statements may be veri-
fied analytically by writing the equations of the spheres in the
form (3), § 111.

Special forms of a tangent pencil may arise, however. For
example, it may consist of spheres having two parallel minimum
lines in common. The special sphere and the plane in the pencil
then coincide with the minimum plane determined by these mini-
mum lines. Again, the pencil may consist of point spheres whose
centers lie on & minimum line. The plane in the pencil is then
the minimum plane through that line. Or the pencil may consist of
parallel planes (§ 48). The special sphere in the pencil is then the
plane at infinity unless all the planes of the pencil are minimum
planes and therefore special spheres. Finally, the pencil may
consist of planes intersecting in the same minimum line (§ 48).
The special sphere is then the minimum plane through that line.

If a, b, and c; are three spheres not in the same pencil, then

pu;= a,+ Nb;+ pe; €))
is a sphere when and only when the three spheres are tangent each
to each. In that case equation (4) defines oo® spheres, each of which
is tangent to each of the others. It is a bundle of tangent spheres.
There are in the bundle oo *special spheres determined by the equation

a,+ \b,+ pe,= 0, ©))
and oo’ planes determined by the equation

a,+ i+ N (b, + b))+ p(e+ic)=0. ®
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In general, equations (5) and (6) have only one common solution,
so that the special spheres are point spheres. Since all spheres of
the bundle are tangent, the centers of the point spheres lie on a
minimum line which lies on all the spheres of the bundle. The point
spheres and the planes form each a pencil in the sense already dis-
cussed, so that any point of the common minimum line is the center
of a point sphere of the bundle, and any plane through the minimum
line is a plane of the bundle. From that we may show that any
sphere which contains that minimum line and is properly oriented
belongs to the bundle. For let v, be such a sphere and a! any plane
of the bundle. Since v, and a! have one minimum line in common,
they have another minimum line in common which intersects the
first one at a point P. Let b be the point sphere with center P.
Then v, is tangent both to a] and 4] at P, and therefore

pv;= a;+ 75}
if the proper sign is given to a}. But a!=a,+ \b,+ u'c; and
b= a,4+ \'b,+ u"c,, so that .
pv;=a;+ A'lb‘-" i
whence v, belongs to the bundle.

Summing up, we say: In general a bundle of tangent spheres con-
sists of all the oo® spheres which have a minimum line in common
and of no other spheres.

To avoid misunderstanding the student should remember that
we are dealing with oriented spheres and that, for example, three
elementary tangent spheres which lie so that two of them are tan-
gent internally to the third, but externally to each other, cannot
be so oriented as to be tangent in the sense in which we now use
the word.

Special forms of bundles deserve some mention. In the first
place, we notice that not all the spheres can be point spheres ; since,
if they were, the centers of three spheres would be finite points
not in the same line but in the same plane, so that each is con-
nected with the other by a minimum line, which is impossible.

The spheres of the bundle may, however, all be planes. Then
the special spheres must be minimum planes, which, since they are
_tangent, must form a pencil of minimum planes tangent to the
circle at infinity at the same point (§ 48). All planes of the bundle
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must pass through this point, and it is evident that any two
planes through this point either intersect in a minimum line or are
parallel, and in each case are tangent. Hence, as a special case a
bundle of tangent spheres may consist of oo? planes through the same
point on the imaginary circle at infinity.

153. Quadratic complex of oriented spheres. Consider the quad-
ratic complex defined by the equation

2 cu;=0. . (¢))

This is the form to which in general an equation of the second
degree in z; can be reduced, and we shall consider only this case.
Since the sphere coordinates satisfy the equation

Dut=0, ©))
the same complex (1) is represented by any equation of the form
Z(c,.+ wu;=0. ¢))

Now let y; be a sphere of (8), and 2, any sphere tangent to y,,
and consider the pencil of tangent spheres
PU=Yi+ Az ©))

This pencil has in common with (8) the two spheres corre-
sponding to the values of A obtained by substituting from (4) in (8).
This gives, with reference to the fact that y, satisfies (3),

2 A'2(0."" wyz+ x“z("ﬁ' r)zi=0.

The one common sphere is, then, always y;,, as it should be, but
-the other is in general distinct from y; and coincides with it when
and only when 2z, satisfies the relation

‘2(".'"‘ K Yz= 0;

that is, when z, lies on i;he linear complex

2(0.‘"‘ w) yau= 0. ®

This complex is called a tangent linear complex.

From the derivation a tangent linear complex through a sphere y,
is a linear complex which contains y; and has the property that any
pencil of tangent spheres belonging to the linear complex which



354 FOUR-DIMENSIONAL GEOMETRY

contains y; has, in common with the quadratic complex, only the
sphere y; doubly reckoned, unless the pencil lies entirely in the
quadratic complex. _

This definition is analogous to that given in point space for a
tangent plane to a surface by means of coincident points of inter-
section of a line in the tangent plane. The exceptional cases of
pencils entirely on the complex are analogous to tangent lines
which lie entirely on the surface.

It may also be noted that if y,+ dy, is any sphere of (1) adja-
cent to y;, so that Ec,y‘dy,: 0 and, from (2), 2 y.dy.= 0, the sphere
lies also in (5). The tangent linear complex contains all spheres
of the quadratic complex adjacent to y,.

Since w is arbitrary in (5) the quadratic complex (1) has a pencil
of tangent linear complexes through any sphere y,. Among these
there is in general one and only one which is a special complex,
for the condition that (5) be special is -

z(ci"' F')z $ =0, )
which, if we replace u by % and use (1) and (2), becomes
2

B 2 c'yi=0.
The special linear tangent complex is then in general (u,=0)

23/-' = 0.

In an exceptional manner, however, all tangent linear complexes

are special when E ey?=0. (6)
When this condition is satisfied the sphere y, is called a singular
sphere.

The conditions to be satisfied by the codrdinates of a singular
sphere are, accordingly,

2.%2= 0, 2"&«2: 0, 2"-‘2.%2: 0, U
which express respectively that y; satisfies the fundamental equa-
tion for sphere coordinates, that the sphere y; is in the complex (1),
and that it is a singular sphere. ,

The last equation also expresses the fact that c¢y; are the coor-
dinates of some sphere, and the second equation tells us that the
sphere ¢y, is tangent to the sphere y,. The two spheres therefore
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define a pencil. On the sphere y; there is, therefore, a definite
point P, the center of the point sphere of the pencil. The locus of
P is an oo extent of points forming the swiface of singularities.
In order to determine the degree of the surface of singularities
we shall take 2, any sphere of the pencil of tangent spheres defined

by % a,.'nd i Sf) that pz;=(6+N) Y ®
Substitution in (7) gives the equations

3 i ez
2(a..+ 7\)’ 2(0 + 7t.)g 2(c;+ 7\.)’
but simple linear combinations of these show that they are equiv-
alent to the three equations

2
2 _
2,2=0, 20‘.{_1 2(0 T 7\)2 =0. ®
Conversely, if 2, is any solution of (9) and we place u,= _:-7\

it is clear that u, is a singular sphere of the quadratic complex (1).
Therefore equations (9) are satisfied by all spheres belonging to
any pencil of tangent spheres defined by a singular sphere y; and
the sphere cy,, and, conversely, any sphere which satisfies (9)
belongs to such a pencil.

Let us now adjoin the condition that 2, should be a point sphere ;

namely, 2,=0. (10
Equations (9) and (10), then, define the points P. '

Consider now any straight line ! defined as the intersections of
two planes M and N. Take

zm.zi'—" 0 ] , 11
as the equation of any linear complex which has M as a base
sphere, and E"‘z _ (12)

a8 the equation of any linear complex which has N as a base sphere.

The point spheres of the complex (11) have centers on M, and
the point spheres of the complex (12) have centers on N, so that
the point spheres belonging to M and N have centers on the line /.

Hence the simultaneous solutions of equations (9), (10), (11),
and . (12) give the point spheres whose centers lie both on the
surface of singularities and on the line /. The number of these
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solutions is the number of points in which ! meets the surface of
singularities ; that is, the degree of the surface.

To solve these equations we may begin by eliminating A\ from
the last two of equations (9). Since the third equation of (9) is
the derivative of the second with respect to A, the elimination of
A gives the condition that the second equation should have equal
roots in A. Since the second equation in (9) is of the fourth order
in A, by virtue of the first equation in (9), the result of the elim-
ination of A is an equation of the sixth degree in 2} or the twelfth
degree in 2. This equation, combined with the first of equa-
tions (9) and the linear equations (10), (11), (12), gives twenty-
four solutions. Therefore the equation of singularities is of the
twenty-fourth order. '

Equations (9)—(12) may be otherwise interpreted by consider-
ing (11) and (12) as the equations of two complexes with base
spheres which are not planar and therefore intersect in a circle,
which may be any circle. The special spheres of the complexes
have their centers on this circle, and the special spheres which also
satisfy (7)—(9) are point spheres, since the condition that they be
planar adds a new equation which in general cannot be satisfied.
Hence, by the argument above, any circle, as well as any straight
line, meets the surface of singularities in twenty-four finite points.

If the equations are expressed in Cartesian codrdinates, the
circle will meet a surface of the twenty-fourth order in forty-eight
points. We have accounted for twenty-four finite points; the other
twenty-four must lie on the imaginary circle at infinity. Since the
plane of the finite circle meets the circle at infinity in two points,
we have the theorem: 7The surface of singularities contains the
tmaginary circle at infinity as a twelvefold line.

Return, now, to the pencil (8). There is one plane p in the
pencil which is tangent to y, at P and is uniquely determined by
¥;- Such planes form an o«o* extent which envelop a surface. To
show that this surface is the surface of singularities let y,+ dy, be
a singular sphere neighboring to y,, so that

Ey.dy‘= 0, 2"63/-‘13/‘= 0, 2".’ Yy, = 0. 13)
The pencil of tangent spheres defined by y,+ dy, and ¢,(y;+ dy,) is
o= (et 1) (y:+ dyo), 14
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and the condition that », should be tangent to z; is satisfied by
virtue of (7) and (18). Hence, in particular, the point P, the center
of the point sphere of (8), lies in the plane p' of the pencil (14);
that is, P is the limit point of intersection of two neighboring
planes p and is therefore a point of the surface enveloped by p.
This establishes the identity of the surface which is the locus of
P and that enveloped by p.

The class of the surface of singularities is the number of the
planes p which pass through an arbitrary line. To determine this
number we may again set up equations (9), (11), and (12), but
replace (10) by u + du, =0, (15)

which is the condition that %; should be a plane.

Any plane of either of the complexes (11) or (12) intersects
the base plane M or N respectively in a straight line, and therefore
the planes common to M and N pass through the line /. The solu-
tions of equations (9), (11), (12), and (15) give, therefore, the
planes tangent to the surface of singularities which pass through Z
Hence the surface of singularities is of the twenty-fourth class.

154. Duality of line and sphere geometry. Since line codrdinates
and higher sphere codrdinates each consist of the ratios of six quan-
tities connected by a quadratic relation, there is duality between
them. To bring out the dualistic properties we shall interpret the
ratios of six quantities z; connected by the relation

‘ i+ zi+ i+ 2}t ol +2p=0, »
on the one hand, as the sphere cotdrdinates a; of § 147 and, on the
other hand, as the Klein line coérdinates of § 130.

It is to be noticed that for a real line, as shown in § 130, we
have z, z,, z, real and z,, z,, z, pure imaginary. On the other
hand it follows from §§ 146, 147 that for a real sphere we have
z, z, z, z, real and z,, z, pure imaginary. Hence configurations
which are real in either the line or the sphere space will be
imaginary in the other.

It is also to be noticed that a sphere for which z,= 0 is peculiar,
being a special sphere, but the line for which z,= 0 has no special
geometric properties. The complex of lines z,=0 has, however,
a peculiar role in the dualistic relations. We shall call this com-
plex C. Its equation in Pliicker codrdinates is p,,— p. = 0.
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Two spheres whose coordinates differ only in the sign of z, are
the same in the elementary sense, but two lines whose coordinates
differ in the same way are distinct and conjugate with respect to
the complex C. The relation between sphere and line is therefore
in one sense one-to-two, but becomes one-to-one by the convention
of distinguishing between two spheres which differ in the sign of
the radius.

Any sphere for which z, + ¢z, = 0 is a plane, but the correspond-
ing line has no special geometric property. The complex of lines
z + iz, = 0, however, will have a peculiar role in the duality. We
shall call this complex S. It is special and consists of lines inter-
secting the line with codrdinates 1:0:0:0:¢ Its equation in
Pliicker codrdinates is p,, = 0.

We have now as immediate consequences of our previous results
the following dualistic relations:

Line space Sphere space
" A straight line. . A sphere.
A line of the complex C. A special sphere.
A line of the complex S. A plane.
A line of C but not of S. A point sphere.

A line of S but not of C.
A line of C-and of S.
Two lines conjugate with respeet

An ordinary plane.
A minimum plane.
Two spheres differing only in

to C. .

Two intersecting lines.

- A nonspecial complex.

A special complex consisting of
lines intersecting a fixed line.

A linear congruence consisting
of lines intersecting two lines.

A linear series forming one set
of generators of a quadric surface.

A quadratic line complex with
its singular surface. :

the sign of the radius.
Two tangent spheres.
A nonspecial complex.
A special complex consisting of

.spheres tangent to a fixed sphere.

A linear congruence consisting
of spheres tangent to two spheres.

A linear series forming one of
the families of spheres which en-
velop a Dupin’s cyclide.

A quadraticsphere complex with
its singular surface.

A pencil of lines corresponds to a pencil of tangent spheres,
and a bundle of lines to a bundle of tangent spheres. Consider &
point P and the oo® lines through it. They correspond in genersl
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to a bundle of tangent spheres which have in common a minimum
line p (§1562). It is therefore possible in this way to set up a
correspondence of the line space and the sphere space by whi