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PREFACE.
This paper was nominally "read" at a meeting of the

Aristotelian Society on December 13th, 1897. It is the ex-

cellent custom of that Society to circulate proofs of papers

among the members before the meetings, and I was thus able

to make the paper longer and more technical than would

otherwise have been possible ; but even so the mathematical

portion is compressed to the utmost, and a great deal is

necessarily left to the good will and intelligence of the reader.

Since writing the paper I have read up the modem litera-

ture of the subject, and I am confirmed in the impression, which

I got from Mr. Russell's book, that the conception of " order " as

the basis of so-called " Projective Geometry " is essentially new.

The only suggestion of this way of looking at the question which

I have found is in Pasch's Vorlesungen uher neuere Geometrie.

But though he sees that less than four points have no determinate

" order," he never extends the conception of order to continuous

quantities, nor does he grasp the connection between it and

" anharmonic ratio." It seems, therefore, worth while to bring

my views before a wider public, for, interesting as the discussion

before the Aristotelian Society was, it was chiefly my epistemo-

logical views which came in for criticism ; the geometrical points

were hardly discussed at all.

EDWARD T. DIXON.

January, 1898.

178634
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THE

FOUNDATIONS OF PROJECTIVE GEOMETRY

PART I

I HAD the honour of reading a paper on Natural Realism

before this Society last year, the object of which was not so

much to convert Idealists to realism (for I held, and hold still,

that they are all natural realists except in moments of

philosophic extasy), but rather to discover if possible what

modern Idealism really is. I failed
;

perhaps because my
remarks were too general in character. My opponents in

argument, while professing to be Idealists, adopted my con-

clusions and gave them their own interpretation, so that

apparently nothing was left to argue about. I propose

therefore to-night to discuss a special case only, our so-called

knowledge of space, and to see whether it does not provide a

test which shall discriminate between the methods, even if not

finally between the opinions, of idealistic and realistic philoso-

phers. I shall do so with special reference to a book which

has recently appeared on the subject by Mr. Russell, a member

of this Society, who is himself, if I mistake not, an Idealist of

the modern type.

Mr. Russell commences his book with the statement that

throughout the l7th and 18th centuries Geometry remained,

in the war against empiricism, "an impregnable fortress of

the idealists," meaning that they successfully maintained the

position that in Geometry at least we had obtained certain

knowledge about the real world, independently of experience.

" None but a madman, they said, would throw doubt on its

validity, and none but a fool would deny its objective reference."

He implies that modern idealists have receded from this
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position ; and it is the primary object of this paper to discover

whether they really have done so or not. Mr. Russell's book

professes to be an exposition of the position modern idealists

take up in reference to this question. We shall see whether it

differs in any essential from that of the idealists of the last

two centuries.

Before proceeding to consider in detail the constructive

portions of Mr. Russell's book, J must notice a point in which

his critical method, and that of the school of philosophy to

which he belongs, seems to me radically defective; and this

is the treatment of contradictions and ' antinomies.' It is

true that all Mr. Russell does is to attempt, and generally with

success, to explain them away. But this is not the case with

all modern philosophers; and that Mr. Russell allows himself

ever to attach any importance to so-called 'antinomies,'

without at once holding them up to ridicule, shows how much

he, like other modern philosophers, is still under the pernicious

influence of that arch-sophist Immanuel Kant. Consider for

example the 'antinomy of the point'—"There are different

points : all points are identical." Surely it is evident at once

that this is only a clumsy way of saying, "There are points

which differ in position, but are in other respects identical."

Mr. Russell's own statement of the antinomy is expressed in

rather more specious, or at least more involved, language; but

I think he might have explained it away in half the space he

actually devotes to it. In his treatment of the second antinomy

however he is not so happy. As stated by him, the contra-

diction arises solely from an ambiguous use of the term

' relation * ; and so far from explaining this ambiguity away, it

remains, and mars much of the reasoning throughout his book.

Surely he ought to have seen that when he says spatial figures

(he is referring to straight lines and planes) must be regarded

as 'relations,' he is using the word in a completely different

sense to that which it bears in the assertion that ' a relation is

indivisible.' To me it has always seemed that to talk of a

straight line as a ' relation,' or still more as ' the ' relation

between two points, is an abuse of language. One might

indeed fairly say that the fact that one, and only one, straight
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line can be drawn through two points iudicates the existence

of a relation between them ; but the relation is there whether

you draw the line or not; it is certainly not the same thing as

the line. But if it is desired, or found convenient, to call a

straight line ' the relation ' between two points it is of course

logically permissible to do so, 'provided that some other term,

such as 'relationship,' is used for the kind of abstract con-

ception which can not be divided.

But it is simple waste of time to discuss so-called an-

tinomies in detail. To talk of a contradiction in things,

whether objective or subjective, is sheer nonsense. To do so is

in itself simply to make a contradiction in terms. If you

attempt to apply two contradictory terms, or one which has

been defined in a self-contradictory manner, to any real thing,

it simply won't fit. You can not by doing so affect the nature

of the thing, nor find out anything, either positively or

negatively, about it. If your language is self-consistent and

free from contradictions you may employ its terms as symbols

for real things ; and in this way it may assist you to obtain

clear conceptions with regard to them. But if it is not self-

consistent, it is mere ' gibberish '
; and it passes my compre-

hension to understand how anybody could imagine that terms

which were admittedly contradictory could be of any use. If

anyone wishes to see the absurdities to which this sort of

' logic ' can lead, let him read Mr. Bradley's " Appearance and

Reality."

Mr. Russell devotes a considerable amount of space in his

introduction to the defining of the terms * a prion ' and
' wholly a pHori! I shall show that there is some reason to

doubt whether he really does confine himself to the definitions

of the terms which he gives at the beginning of his book,

when he uses them in the statement of his final conclusions.

But at present I wish to discuss the propriety of using the terui

a -priori at all. The term is philologically and historically

bound up with the view " that certain knowledge independent

of experience is possible about the real world," and if you do

not want to express this view it is better not to use a word

which in the minds of the enormous majority of your readers
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will certainly imply it. However, Mr. Russell defines the term

a 'priori in a new and special sense, in which a priori

knowledge, even if ' certain,' and ' independent of experience,'

may perhaps not be intended to be knowledge of the real

world. Whether he so intends it or not I am not able with

certainty to determine from what he says in his introduction

;

for he declines to discuss any psychological question. Even if

he agreed with Kant, that a priori knowledge is subjective,

this would not settle the question, for he gives two discrepant

definitions of ' subjective,' one of which, without any apparent

justification, he fathers on Psychology, and the other on

Physical Science. Nor is it any clearer what he means by
' experience.' He refers to Mr. Bradley for his definition, who

certainly includes sensations in the denotation of the term *

But Mr. Russell can not seriously mean that he believes in the

a priori character of the axioms of projective geometry

because without them a toothache would be impossible ! If he

had said those axioms were only relatively a priori, as he says

of the axioms of metrical geometry, he would only have

meant, according to his definition, that a science deduced from,

other axioms would not be the science of projective geometry

—

which is only another way of saying that the axioms do in fact

define the terms of the science— they are logically merely

definitions. With that I entirely agree, but what more does

Mr. Russell mean by ' wholly ' a priori ? That they are true of

any form of externality ? But is not this the same thing over

again ?— if I admit this, does it not simply define the term

' externality ' ? I might have some other theory of reality, not

based on Mr. Russell's axioms, and all he has proved against

such a theory would be that I had no right to call it a theory

of externality. I have pointed out elsewhere-|* that, unless we

define our terms independently but not inconsistently, no

proposition can be held to be more than an implicit definition

of any doubtful term it may contain. It was of course open

to Mr. Russell to have defined the term ' externality ' indepen-

* See "Appearance and lleality" p. 346.

t See my Essay on Reasoning, Deighton, Bell & Co. Also an article in

Mind, N. S. Vol. II., p. 339.
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dently and consistently. He might for example have defined

it as the conception we actually have, commonly called Space.

This would be what I have called a definition by denotation
;

and the other terms being defined by connotation, the assertion,

that certain axioms must be true of any form of externality,

would acquire real import. But this would have involved Mr.

Russell in a psychological discussion as to how we actually do

conceive space, and would have made the axioms dependent

upon subjective experience. What Mr. Russell is trying to do,

and it is herein that his idealism appears, is to obtain know-

ledge which shall be real, and yet not be " at the mercy of

empirical psychology." He wants to know something about

the psychological world, if not about the physical, ' a pHori '

;

in the good, old, undiluted sense. We will see how far he

succeeds.

fle commences the detailed discussion of the elements of

projective geometry by saying (§ 111) "The two mathe-

matically fundamental things in projective geometry are

anharmonic ratio and the quadrilateral construction." These

things may indeed be essential to the mathematical treatment

of the subject, but there are a number of preliminary pro-

positions which must be established before we can discuss them,

which Mr. Russell tells us nothing about at all, and he hardly

tells us anything even about the ' axioms ' upon which he

conceives them to be based. He does indeed enumerate these

axioms in a subsequent paragraph (§ 122); and I suppose he

relies on his readers' knowledge of the ordinary text books to

effect the requisite deductions. But in none of the ordinary

text books, so far as I am aware, are the preliminary propositions

deduced from axioms at all like Mr. Russell's, or even from

definitions which profess to be free from spatial implications.

The one possible exception with which I am personally

acquainted is Veronese's important work on the elements of

geometry; but though Mr. Russell quotes from this work he

can not have appreciated its importance, or he would have given

more attention to those preliminary propositions about which

he practically tells us nothing at all. For example, in the

diagram on p. 123 of Mr. Russell's book, if the section abed is
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given, and two points a" c" on the third section, how does Mr.

Russell deduce from his axioms that there is a point h" at all ?

And how that there is a point d" at all ?

Mr. Russell's treatment of ' anharmonic ratio ' and the

'quadrilateral construction' is just enough to whet the appetite

for knowledge without satisfying it. He tells us that two sets

of four collinear points each have the same ' anharmonic ratio

'

when corresponding points of different sets lie two by two on

four straight lines through a single point, or when both sets

have this relation to a third set. He adds, in a note, " There is

no corresponding property of three points in a line, because

they can be projectively transformed into any other three points

on the same line." But if this is so he expresses himself very

badly when he tells us that " The successive application to any

figure of two reciprocal operations of projection and section is

regarded as producing a figure projectively indistinguishable

from the first." He does indeed make his meaning clearer later

on, by saying that " Two sets of points or lines which have the

same anharmonic ratio are treated by projective geometry as

equivalent," (my italics) that is, two sets oi four points obtained

by projection and section are regarded as indistinguishable ; for

we know there is no anharmonic ratio between three. But

what is meant by the term ' anharmonic ratio ' if it is not used

solely on account of its numerical, if not metrical, significance ?

In Mr. Russell's exposition it seems merely designed to lead up

to the application of analysis to the problems of projective

geometry, by means of the quadrilateral construction. Why,
for example, does Mr. Russell assign certain numbers to the

points A, B, C, D in his quadrilateral construction ? In order,

he says, that the differences AB, AG, AD may be in hai'monical

progression. Is this merely because we called it an anharmonic

ratio ? Or is it merely in order to fit in with preconceived

spatial notions ? If Mr. Russell's preconceived notions had

been those of, say, spherical geometry, he would not have made
the differences a harmonical progression. Does the distinction

between the meanings of anharmonic ratio in Euclidian and

spherical geometry depend upon nothing of which we can take

cognizance without the notion of number ? Or if we did not
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care to apply numerical analysis to points at all, would anhar-

monic ratio be devoid of all significance ?

To answer this we must attempt to realise what significance

projective geometry could have, apart not only from spatial, but

even from numerical applications. Mr. Russell does attempt an

answer in §§ 117—124 in his book. He commences by giving

a definition which he admits contains a ' fundamental contra-

diction '
; but, not in the least deterred, he goes on to define

'quality in geometrical matters' in the belief that the rest of

his definitions will ' follow without difficulty
'

; and in the hope

that they will enable him to discover ' what sets of figures are

projectively indiscernible.' This he conceives himself to have

done in § 119, where he tells us that points "have no intrinsic

properties ; but they are distinguished solely by means of their

relations. Now the relation between two points is the straight

line on which they lie. This gives that identity of quality for

all pairs of points on the same straight line which is required

by our projective principle. If only two points arc given they

can not without the use of quantity be distinguished from any

other two points on the same straight line." Very well ; but

unfortunately, Mr. Russell sets out to prove this of three points

in a line, not of two, and it does not take three points to

determine a straight line. Accordingly in § 120 Mr. Russell

tries back, and thinks he can now see the reason for what may
previously have seemed ' a somewhat arbitrary fact,' namely the

necessity of four coUinear points for an anharmonic ratio. I

quote the important part of his explanation—" Given one

point no projective relation to any second point can be

assigned which shall in any way limit our choice of the second

point. Given two points, however, there is such a relation, the

third point may be given collinear with the first two. This

limits its position to one straight line, but since two points

determine nothing but a straight line the third point cannot be

further limited." Is this really the case ? Why not limit it by

saying it shall be between or outside the two given points ?

But I am anticipating. Mr. Russell goes on :
" Thus we see why

no intrinsic projective relation can be found between three

points which shall enable us from two uniquely to determine a
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third. With three given collinear points however we have

more given than a straight line." .... Where ? Do three

given collinear points determine a plane ? If not, how are

you going to perform the quadrilateral construction without

assuming something not given ? And if you may assume a

plane not given, why might you not do so before, and perform

a trilateral or some other construction to determine the third

point from the first two ? " and the quadrilateral con-

struction enables us uniquely to determine any number of fresh

collinear points." Precisely ; anharmonic ratio depends on that

beautiful quadrilateral construction, and the quadrilateral con-

struction on anharmonic ratio, in a charming, if somewhat

vicious, circle.

The point that Mr. Russell has missed is that if we are

given a number of collinear points we are given something

more than the relation that they are in a straight line. He
says (§ 121), "Let us begin with a collection of points on a

straight line. So long as these are considered without reference

to any other points or figures they are all qualitatively similar.

They can be distinguished by immediate intuition, but when
we endeavour, without quantity, to distinguish them con-

ceptually, we find the task impossible, since the only qualitative

relation of any two of them, the straight line, is the same for

any other two." The straight line however is not the only

qualitative relation between the points taken together. In fact,

as I shall show, the straightness of the line in ' projective

geometry ' is not a relation between the points in the line at

all, but a relation between them and points outside the line.

But there is another relation, or rather a system of relations,

between the points themselves which permits us to say they are

in a line and not spread over a surface. This system of relations

is constituted by the order of the points in the line. If we name

only two points, or as I shall show, even if we name three, we can

not distinguish any order among them, but if we name four or

more we can distinguish an order. And this order is what Mr.

Russell calls a ' qualitative,' as distinguished from a quantitative,

or even a numerical, relation. It does enable us to perform

what Mr. Russell, in the sentence quoted above, describes as " an
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impossible task." It is not necessary to take into consideration

any points external to the line to distinguish this order ; and,

unless we do consider such points, there is nothing to tell us

whether the line is straight or not—the relation of straightness

is a relation to points outside the line, not between the points

in it. If Mr. Russell, or geometers generally, had attempted

to define a 'line' qualitatively, that is to distinguish not a

straight from a curved line, but a line of any kind from a

surface, they would probably have been led to a completely

different conception of the meaning of projective geometry.

It is, in its abstract form, the science of the ordering, oi

cataloguing, of continuous groups, and the question whether

' projective ' methods can or can not distinguish one figure from

another is the question whether we can, or can not, distinguish

the order of the points in one from the order of the points in

the other; using this term in an extended sense which is

applicable not only to groups of more than one ' dimension,'

but also to continuous, as well as to discrete, groups.
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PART II

THE ELEMENTS OF A SCIENCE OF CATALOGUING CONTINUOUS

GROUPS.

1. I have shown elsewhere* that the ideal method of

founding a science is to define the terms by verbal definitions

by connotation, the primitive terms employed in the definitions

being only such as are ' well understood
'

; and to proceed, in

the first place, to a purely symbolic argument. We may always

afterwards ascribe to them any real import which the terms of

the science will bear, when we have sufficiently investigated

the formal consequences of our definitions. If our primitive

terms are not * well understood ' we shall sooner or later be led

to contradictions or ' antinomies
'

; if that should happen there

would be nothing for it but to try back, and make a fresh start.

If, however, we come to no contradictions or ' antinomies ' we

may feel confident that our primitive terms really were as well

understood as we took them to be. This confidence in our

primitive terms may be expressed as a (subjective) axiom as

soon as we have defined any terms which may be necessary to

express the axiom clearly.

2. By ^passing in review logical units of thought, I mean

thinking of them one after the other, or successively. If a

collection of units has been ordered or arranged in order, I

mean that it has been agreed that we shall pass the units in

review in certain ways only, and not in others ; so that after

any one unit we shall, in passing in review, (or I may say

simply in 'passing) think next of one of a certain number of

determined units which may be spoken of as ' contiguous ' to

it, and not of any other unit whatever in the collection. Such

an ordered collection I shall speak of as a group. I may now

express the axiom of the science thus

:

Any number of units may be conceived, discriminated

between, and arranged in order.

* See my Essay on Reasoning,
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By collating two groups, I mean regarding the order in

each as identical, by taking one unit in one group to correspond

to each unit in the other, and passing the corresponding units

in review together.

When I say that two units are in different parts of a group

with respect to a certain boundary, I mean that the units have

been arranged in order, so that in passing in review from the

one unit to the other in a different part of the group with

respect to the boundary, we must pass through some unit or

other which is in the boundary. Thus a boundary is itself a

group of units.

I shall call a group simple if it does not itself form a

boundary within itself If we were to collate a group which

was not simple with one which was, we should have to collate

one or more of its units with two different units in the simple

group.

I call a group uniform if the order proceeds in the same
way from every unit in it. If it contains more than two units

it must be possible to pass from one to a second throu<^di a

third, and therefore it must be possible to pass throuo-h the

third from the first to the second, and so on. Hence in any
uniform group a single unit can not form a boundary.

An uniform group of the Jlrst order is one in which any
two different units form a boundary; and a simple uniform

group of the oixler (l+r), where r is any positive integer, is

one in which any simple uniform group of the order r forms a

boundary, but one of a lower order does not.*

Thus sub-groups, as any groups of lower order than the

whole group we are considering may be termed, are boundaries

in the group of the order next above. As in a group of the

first order two units form a boundary, we may call them a oroup

of the order zero.

3. These definitions might be applied to discrete groups,

that is to groups of a finite number of distinct units. The

• Note.—I should like to call attention to the fact that so far as I am aware
in no elementary text book (unless my "Foundations of Geometry" comes under
that heading) is any proposition analogous to these definitions deduced or deducible

from the premises. Euclid simply begs the question in his Uth Book.

2
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theory of such groups, however, requires no special elucidation.

What wo are here concerned with are continuous groups, which

may be thus defined

—

When I call a group continuous, I mean that between any

two units in it any finite number of boundaries may be con-

ceived. To catalogue such groups it is necessary to have in

them certain boundary groups. These boundaries must be

defined in some way. We are not concerned to enquire how

we recognise individual units, or liow we know whether we can,

or can not, pass from one to another without passing through a

boundary. All we have to do is to establish a system of cata-

loguing which can be applied after these preliminary processes

of recognition have been performed. And similarly it is not

necessary to say how a boundary is to be recognised, if we lay

down as a definition the conditions which such recognition shall

imply. The system defined below is not a necessary or the

only possible system, but it is a possible one, and that is

sufficient for the purpose of the science.

The definition of the group of order zero might be accepted

as a mere verbal definition. But I may as well point out the

psychological reason for it. It is that in the only kind of com-

plete group which we conceive as a whole, that is without

intentionally or through ignorance confusing it with an incom-

plete group, two units are required to form a boundary. The

geometrical conception of a closed line is obviously a case in

point, but the same thing may be exhibited in non-spatial

groups. If I regard the numbers 1, 2, 3, 4, .5 as forming an

uniform group, I regard 5 as contiguous with 1 ; and conse-

quently any single number, say 3, does not by itself form a

boundary between two others, say 2 and 4, The subsequent

developments of the theory of order among continuous groups

may, I think, be held to show that this psychological fact is of

universal significance, but for the time being we may regard the

definition in question as purely arbitrary.

4. As I shall define 'unique' boundaries in terms of ' unique'

boundaiies of lower orders, the unique boundary of the order

zero, which I shall write U^, is defined as two units, either of

which uniquely determines the other, and which may be called
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' antipodal ' units. The unique boundaries of higher orders may

then be defined thus

—

An unique boundary of order r, U^ (where r is an integer

higher than zero and lower than n, the order of the whole group

we are cataloguing) is uniquely deternained by naming any

unique boundary of the order (?•— 1) [Uy_^, and one of the order

zero,
(
U^ not in the former, in the U^.

5. It must be carefully observed, that though I define an

unique boundary in terms of one of a lower order, there is

nothing which I have laid down as yet to define the unique

boundary of the lowest order at all. As far as this science is

concerned the antipodal relation between units in a JJ^, and the

relations which determine the uniqueness of a U^, are arbitrary.

They must be determined by methods which do not come into the

discussion of the science of continuous groups as such at all.

And consequently there is nothing in the science to determine

the whole collection as an ' unique ' group of the order n ; we

can only say it is a group of the order n. In any particular

application of the science our method of determining unique

bormdaries may be such as to define uniquely the whole group,

but this depends on considerations foreign to the abstract

science with which I am now dealing. This alone is sufficient

to distinguish my theory from that of Veronese* for he takes

the whole group to be defined by the sub-groups which it con-

tains ; and this shows, what indeed is otherwise evident, that

Veronese's theory is not free from geometrical pre-conceptions

;

and it is not therefore surprising to find that its scope is more

restricted than that of the theory I am now advancing.

And in the same way the choice of the ' order ' of the whole

group, or that of the highest unique boundary in it, is also

determined by considerations foreign to the abstract science of

cataloguing. I can illustrate this point at once by an analogy

from the case of discrete groups, though of course the analogy

can not be carried beyond a certain point. If we wish to be

able to find any named book in a library, what we do is to

prepare a catalogue. Now a catalogue is simply a group of

* See GrundzUge der Geometrie, the German translation of Veronese's work,

p. 219 (Teubner, Leipzig). And also p. 70 of this paper.
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units whose order is intuitively known. The simplest example

is the group of natural numbers, and we might catalogue the

library by simply numbering the books from 1 to as high a

number as was necessary. It is not at all necessary that the

numbers should be consecutive. If the book I want is number

3 and I see numbers 2 and 7 on the shelves, I know my book

must be between them—if there is only one book between

them either that is the one I want, or the one I want is not in

the library. Whether there are or are not books corresponding

to numbers 4, 5, 6 does not matter at all. In this way then

the library may be catalogued as a (discrete) group of the first

order. But I may also number the bookcases, the shelves in

each bookcase, and the volumes on each shelf separately. In

that case I have catalogued the library as a (discrete) group of

the third order. I might catalogue the rooms separately also,

and so make it a group of the fourth order. I might use letters

of the alphabet instead of numbers, in some or all cases, for we

also know intuitively the order of letters of the alphabet. The

arithmetical properties of the numbers have nothing to do with

it—it is their order only which is maile use of.

6. I must add a few words of explanation as to what I mean

by the unique determination of one group by others. This

sort of phraseology is indeed common enough in books on pro-

jective geometry and elsewhere, but it needs more precise

definition before it can be considered ' well understood.' If I

say that a group G is uniquely determined by groups A and B,

I mean not only that any group so determined by A and B is

the group G and no other, but further that the fact that it was

so determined by A and B involves all that can possibly be

said about it ; and therefore any conclusions about units in G,

which flow from the fact that they are in G, must be deducible

from the facts which determine A and B. And further, any-

thing that can be said about units in G without referring to the

determinations of A, must be deducible from the determinations

of B, and vice versa. This is a general principle which applies

not only to the particular cases of unique determination which

I have already mentioned, in the definition of unique groups,

but to other cases where units or unique groups are defined as
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being common to two or more unique groups, or in other ways

which come under the general head of unique determination.

The principle will be amply illustrated later on.

7. If A, B, be two simple, but not necessarily unique,

groups of the order (/* — 1) which are boundaries in a group of

the order r, and if two units in A are respectively in the two

different parts into which the boundary B divides the group,

then we can not pass from one of the units in .4 to the other,

while passing in review the units of the group A alone, without

passing through an unit in the group B. Therefore the units

common to the groups A and B form a boundary in A, that is

they form a group (or groups) of the order (r — 2).

8. For the sake of abbreviation I use the symbol Ur to denote

an unique boundary, or group, of the order r, and I shall call

the whole collection a complete group of the order n, or (r„

though we may use the symbol U^ if it is clearly understood

that in this case it is not defined, or determined, by unique

groups of lower orders. The unique group of the first order is

therefore a closed or complete group, and the lowest unique

group is that of the order zero, and consists of two units, each

of which determines the other uniquely, and which may be

called antipodal units. Since an unit determines a U^

uniquely, we may say a Z7, is determined by a ?7r_, and any

unit not in it, instead of saying a U„ not in it.

Any two different {U^)s, or two different units which are

not antipodal, {i.e. are not in a UJ determine a U^. Therefore

any three ( ?7Js, or any three units, not in a t/,, determine a U^

and a U^ not in it; and therefore a U„. Similarly any four

which are not in a U^ determine a U^. And generally, any

(r+ 1) units, or {Ug)s, which are not in a f7,._j, determine a f/^.

and any (p + 1) units, or U^s, which are not in a Up_^, if they

are in a U^, determine a Uj, which is wholly in that Ur. Thus

if any two unique gi'oups have a common unit, they have

common an unique group of units. In particular, if any unit

is in an unique group, so is its antipodal.

9. If a Up and a U^, A and B, have common a Us, C, and

no other units, then they determine a Up + q^s (which contains

both of them), uniquely. For if we take (s + 1) (UJs in C,
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which are not in a Ug-i, and {p-s) more {U^s in A, but not

in G, and therefore not in B, and which, with the (s + 1) {U^s
chosen in C, are not in one Uj,_^\ then in all we have (p+ 1)

(trjs in J., which determine A. If we now chose a (I7J in J^

which is not in C, it determines with A a Up^^ ; and with C a

ZJs+i, which is common to B and the Up_^_^. If we chose

another U^ in 5 not in this t/^ + i, it will determine with the

Up^^, containing A a Up_^_^,B,Vidi with the f/^ + i common to the

Up^^ and B, a Z7s+2, which is common to the U^^^ and B. And
so we go on, till we have chosen {q —s) (U^)s in B, and have a

Up + g-s which contains A, and a Ug+g-s, that is a ^7,, common
to the Up^g-s and 5, which is necessarily B itself.

Conversely if a U^ and a f/^ are both in one ?7„ they will have

at least a ?7^+,_r common, ii (p-^q) is greater than r. For if a

group of order s contained all the (11^)8 they had common, the

Up and the U^ would determine a Up + g.g- But they cannot

determine a group higher than r, since they are contained in a

group of order r. Hence r must be at least as great as

(p + q — s), or s must be at least as great as (p + q — r). If

p-\-q = r they must have at least a U^ common ; if it is less

than r however, they may have no common units at all.

We may say that a U^ and a U^ determine an unique group

common to them, in the same sense as that they determine an

unique group which contains them. In the one case the group

determined consists of the whole of the common units, and is

not any group of lower order contained in it, and in the other

case the group determined is the lowest order of group which

contains both of them, and not any higher group.

10. Perhaps a modern philosopher would be inclined to see

an ' antinomy ' in the fact that though all we can say about an

unit is that it is or is not in the same part of the group as

another unit, with respect to a given boundary, yet I speak of

units as being determined by being 'in' certain boundaries.

The apparent contradiction is however easily explained away

if we remember that a boundary is itself nothing but a group

of units, which may be reciprocally defined by the units which

are in different parts of the whole group, with respect to the

boundary, just as well as the units may be by the boundary.
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This is most readily seen in the cnse of a complete group of

the first order. If a and c are in different parts of such a

group with respect to J and (^ as a boundary, we may just as

well define the boundary {hd) by means of a and c, as the unit

a by means of the boundary {bd) and the unit c. Which is the

one to be defined, and which the one already understood,

depends on considerations outside the scope of a symbolic

science ; it must be determined for any particular application

of the science on grounds with which formal logic has nothing

to do. Thus we may always use units to catalogue boundaries,

as well as boundaries to catalogue units ; and the whole process

of cataloguing consists as a matter of fact of a combination of

the two processes. We may say of a that it is ' in '
the

boundary ahcd, and not in the same part of it as c with respect

to (hd) ; but this is only a first step in the cataloguing of a.

We "must go on to say {ahcd) is a boundary which is ' between

'

two units e and /, in a group of the second order, just as we

might have said h was in a boundary of the order zero ' between
'

a and c.

The assertion that a boundary is * between ' two units is in

fact merely the logical converse of the assertion that two units

are separated by a boundary. The boundary has in this case

become a logical unit of thought, though we reserve to ourselves

the right of subsequently analysing it as a group of subordinate

boundaries or of ultimate units.

11. If therefore we wish to catalogue a group of the order

n, we may say of any unit in it (1) it is in an unique boundary

of the order {n—l) which is 'between' two known units; (2)

in this boundary gi'oup it is in an unique boundary of the

order (w— 2) which is between two known units...and so on ; till

we come to {n) it is in an unique boundaiy of the lowest order,

zero, which is between two known units in a ?7j ; and lastly,

it is, or is not, a known one of the two units in this group.

Now since in any continuous group we may take any

number of boundaries between any two given units, the

determination of a boundary in this manner can never be more

than approximate. Though theoretically sufficient, in practice

any system of cataloguing of continuous groups can never be
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more than practically sufficient for the purpose in hand, what-

ever that may be. But the degree of approximation reached

will not depend on the order of the group ; that only determines

the number of approximate determinations. The degree of

accuracy can be made to depend on the accuracy with which

we can catalogue the units of a group of the first order,

as I shall proceed to prove. At present I wish to call

attention to the fact that to catalogue a group of the wth

order we have first to catalogue n groups of unique boundaries,

considered as logical units of thought for the time being. And,

while doing so, any proposition which is proved generally as

applicable to the cataloguing of units, applies i'pso facto to the

cataloguing of unique boundaries.

12. Without two distinct units we can have no boundary.

This is obviously true in the case of the only kind of group we

can clearly conceive as a whole, which is 'totus teres atque

rotundus ' ; of which a closed curve is an example. But

perhaps it is not quite so obvious that it is equally true in any

method whatever of cataloguing a group. If so, however, it is

only because we confuse our minds by introducing the term
' infinity ' into the discussion. Logically an unit or point ' at

infinity' is not different from any other unit or point; it is

only because we look at it from a different point of view that

it appears to us different. If, for extraneous reasons, we have

adopted this point of view, we must not let ourselves be led

into making statements which would obviously be erroneous if

we changed our point of view. That is why in this discussion

I have adopted the point of view from which the group can be

conceived ' totus teres atque rotundus.' If we "project points to

infinity " we are apt to lose sight of them, but if it is logically

done it can not alter the logical relations between them. Con-

sequently it is always true that it takes at least two distinct

units of thought to form a boundary. And there is no sense in

talking of a boundary unless it separates two units. Therefore it

requires at least four units in order that we may recognise any

order among them. This proposition is very important, and it

applies to all systems of cataloguing alike.

13. If in any complete group of the first order we are given
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two units which are uot antipodal, we are at the same time

given two more, namely their antipodals. And as the antipodals

are uniquely determined by the units, we are given the order

of the four units. It may be shown that an unit and its

antipodal are in different parts of the group with respect to

any other unit and its antipodal, considered as a boundary.

Let aa be two antipodal units in a complete group of the first

order (which may or may not be ' unique,' if it is a sub-group

in a higher group). Let us pass in review the units in one of

the parts into which [aa) divides the group, calling the unit

under review b, and its antipodal h'. If a^a^a^... be a succession

of the units passed under review, and a^a^a^... their antipodals,

then as we successively collate b with a^a/i^... we collate b' with

a^'a^a^'... ; and until b passes the boundary [aa), b' can not do so.

Therefore b, b', are always in the same, or always in different,

parts of the group with respect to the boundary (aa). But if

h' were in the same part as b, then (b'a) would form a boundary,

with respect to which b and a would initially be in different

parts of the group. And b reaches a without passing through

a ; it would therefore have to pass through b' ; which, however,

it can not do, since an unit and its antipodal are by definition

distinct. Hence b, b', are always in difevent parts of the group

Avith respect to (aa). Further, we see that if b passes any

unique boundary (a^a^'), V also passes the same unique boundary.

Hence the order of units is the same as the order of their

antipodals.

14. If besides {aa) {bb') we are given a fifth unit, c, we can

say of it that it is in one of the four parts into which the two

{U^s divide the whole group. We may for example say that it

is not in the same part of the group with respect to the

boundary {ab) as either of the antipodals of a and b, or we

may make a similar statement with respect to {ba), [ah') or

[b'a).

In the same way in a complete group of the second order,

if we have a complete group of units which forms a boundary

in the group of the second order, and is such that the antipodals

of the units are all in one part of the group with respect to

this boundary, then the group of the first order, with its
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antipodal group, divides the group of the second order into three

parts, and we can say of any unit not in either group, either that it

is not in the same part with respect to one of them as the anti-

podal group, or that it is in the same part, or that it is not in the

same part, with respect to the antipodal group as the original

group was. And similarly with groups of orders higher than

the second.

15. Now I have said that in any system of cataloguing we
can say of two units that they are separated by a boundary,

which must itself consist of at least two units ; and reciprocally

we may speak of a group of at least two units which forms a

boundary as 'between' two units. Bat we can not, without

further definition, speak of a single unit as ' between ' two others.

In a complete group, however, a single unit uniquely determines

an unique boundary, and we might speak of a single unit as

between two others, meaning that the U^ determined by it was

between them.

I intend, however, further to limit the use of this expression.

If I say unit a is between units b and c in a C/,, I mean not

only that the
(
U^ [aa] is between b and c, but that neither is

the [Ug) [hb') between a and c, nor the U^ [cc) between a and b.

This is the same thing as saying that a is in a different part of

the C/j, with respect to (5c) as boundary, from the antipodals of

b and c. Thus, in this special sense, we can, in a complete

group, speak of one unit as ' between ' two others, but it must

clearly be understood that this is only possible by an implicit

reference to their antipodals, and that if there were no uniquely

related pairs of units the expression would be meaningless. In

the case of a bounded group we might indeed give another

meaning to it by saying an unit was between two others if it

was in a different part of the group from the boundary of the

whole group, with respect to the boundary formed by the named
units within the group. But in that case, though not referring

to antipodal units, we should be referring implicitly to a

boundary assumed arbitrarily in the group, the units in which

would be specially related to all the other units in the group.

In the same way if a group of units with the group of

antipodal units form two boundaries which divide a group of
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order higher than the first into three parts, we may speak of

units as * between ' the two groups or ' within ' either of them.

If, however, we take {U^s as our units of thought, and

consider a [U^ as a group of the first order of such logical

units, we shall require two of them to form a boundary ; a

single U^ is not a boundary for ( f/Js. And conversely we can

not say that one
(
U^ is ' between ' two others in a Uy Nor,

in a U^, will a f/, be a boundary for [U^s\ and we can not

therefore say that a [U^] is between two [U^s; though it may

be between two units, one selected from each. But two {U^s

form a boundary for a U^ in a t/^ ; and therefore we may say

that two [U^)s are between two [U^s, or that two [U^s are

between two
(
U^s. And the group of

(
U^s which forms the two

antipodal groups of units which divide a U^ into three distinct

groups of units, forms a boundary for {U^)s, and divides the U^,

considered as a group of [U^s, into two distinct parts. We
may therefore say of a U^ that it is within or between the

groups of units, according as the units in it are so, and though

it sounds unfamiliar, we may retain the same expression and

say a C^ is within or between the single group of
(
U^s formed

by the two groups of units. Such a group of {U^s, which is

a boundary in a U^ for [U^s, I shall call a 5,. A group of

units which contains the antipodal of every unit in it, of which

a Z7j is a special case, I shall call an A group. Similarly among

higher orders of groups we may distinguish B from A groups,

according as they are, or are not, boundaries for
(
U^s. It will

be observed that a U^ is always an A„ though all [Ar)s are not

16. If we pass in review the units in any complete group,

and in so doing pass any boundary, we must repass that

boundary before we can return to the unit from which we set

out. Therefore on the whole we must pass that boundary an

even number of times. For example, either an A^ or a B^ in a

U^ must have an even number of U^s common with a B^ in it.

And any complete group of units in it has an even number of

units common with any other complete group. But to U^s an

A^ is not a boundary in a U.,. Hence a complete group of Uji

may have an odd number of U^s common with an A^. If the
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group is itself an A^ it will always have an odd number; for if

we trace an unit in one A^, the other A^ is a boundar}' for units

and the antipodal of the unit under review must be in the

opposite part of the U^ with respect to this boundary. There-

fore as we trace the unit under review from a given unit to its

antipodal, it must pass the boundary an odd number of times.

We shall at the same time have traced the U^ from the initial

U^ back to it again, and the Z7„ will therefore pass the boundary

an odd number of times, and we shall have passed in review

the whole group of (f/Js. Similarly an A^ has an odd number
of U^8 common with any A group, an even number with any B
group if they are boundaries for units in a group of higher order.

17. A group of {Up)s determined by a (C^.J, called the

origin of projection, and the various
(
JJ^s in a U^, which has

no U^ in the origin, is called a 'pencil of ( C^)s (each of which

is called a ray of the pencil) of the order g^. The Z7, is called

the initial section of the pencil, and any other U^ in the Up^

containing the whole pencil, which has no U^ in the origin, (and

which therefore has one U^ common with each ray) is called a

section of the pencil.

There are only two sorts of pencils which I intend to

discuss—pencils of [U^s of various orders, and pencils of various

unique boundaries of the first order. By means of one or other

of these we can reduce the question of cataloguing of units in

any group to that of cataloguing of units, or {U^s, in a U^.

This may be done as follows :

—

Take any two
(
U^s, Op O^, and the Z7, determined by them.

We may describe this as taking Oj as origin, and 0^ as section,

of a pencil of ( Z7Js of the order zero. Next take another Z/^, Og,

not in this pencil ; and take a pencil of
(
U^s with origin 0^ and

section [Ofi^, that is the U^ {Ofifi^. Then choose a fourth

U^, 0^, outside the pencil, and a pencil of the first order with

(Ofi^) as origin, and (O3OJ as section. Choose 0^, outside this

pencil, and a pencil of the first order with [Ofifi^ as origin,

and {Ofi^ as section ; and so on. In the end we have chosen

[n + 1), {U^8, and (w — 1), [U^s as sections of various pencils of

the first order. But we may equally well follow the process in

this way. Take an origin Oj, and a U^ {Ofi^ through it.
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Through 0^ take any f/", [Ofi^ as section of a pencil of the

first order of {U^s, with 0^ as origin. Through {0.fl^ take

any U^ {Ofifi^ as section of a pencil of the second order of

(
U^)s ; and so on, till in the end we have a U,^ determined by

the n {U^)s [0J)^...0„^,^, and a pencil of the order (w — 2) of

( Z7j)s, with Oj as origin. We want names for these two ways of

collating, and an obvious analogy suggests that we should call

them the Cartesian and Polar methods respectively. But the

methods are not logically distinct. In the polar method we

have to commence by collating together the rays of a pencil

of {U^s of the order (n — 2). In the cartesian method we have

however to collate together the sections of the various pencils of

(Z7Js of the first order, and they form a pencil of (Z/Js of the

order (w — 2). In the polar way of looking at it we must collate

together the rays of each pencil of ( U^s, though these need not

necessarily be collated with the rays of the next pencil. In the

cartesian way of looking at it we must collate together the

sections of the various pencils of any given order, but the sections

of pencils of different orders need not be collated together ; they

may, if we like, be catalogued independently on ditierent

principles; just as in a library we may catalogue the book-

cases by roman figures, the shelves in each book -case by

letters of the alphabet, and the books in each shelf by arable

numerals. The next question to be investigated therefore

is, how to collate together the rays of a pencil of {U^s of

any order.

18. I have now to prove a most important proposition,

namely, that if we pass in review a continuous series of sec-

tions of any pencil of {U^s, each ray of which therefore has a

single U^ common with each section, and if we trace the unit

common with the sections in each ray, from the unit in the

initial to the unit in the final section, then the orders of the

units so traced will be the same in the initial and final sections.

I shall call this process collation by projection. It is sufficient

for my present purpose to consider only the case of pencils of

the first order, where the section therefore is a U^; for as we

have seen, the cataloguing of the whole collection may be made

to depend on the collation and cataloguing of
(
U^)s. The proof
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however is general in its nature, and obviously extends to pro-

jection by pencils of U^s of all orders.

1 have to show that in passing in review sections of a pencil

of the first order of (C^)«, either no unit in the section under

review passes any boundary formed in the section by other

units, or else that every unit passes every boundary so formed,

in which case the order, though we may regard it as reversed,

remains the same as before, in so far as it is determined by

boundaries collated with each other. For the principle of

boundaries does not allow us to distinguish between ' passing

in review ' forwards or backwards.

Let oo' denote the origin of projection and abed ... a'b'dd' ...

the units in the section under review ; oao'a', oho'h', and so on,

denoting always the same rays, respectively. Let suffixes to

the letters denote corresponding units in particular sections,

the suffix zero those in the initial section, the suffix n those in

the final one.

Now hh' are always units in the ray o\o'b^', and this is a

boundary to units in the U^. Hence any other unit in the

section undej" review, say a, can not pass the boundary [bb') in

the section, unless it passes through the boundary ob^o'b^ in the

U^. Now a is always in the ray oa^o'a^, and the only units

common to this ray and the ray ob^o'b^ are the units o and o'.

Therefore a cannot pass ihe boundary [bh') in the section under

review unless it passes through o or o', which it can only do if

the section itself passes over oo, the origin of projection. Con-

sequently if the section does not pass over the origin, no unit

in it can pass the boundary formed by any two other units, and

therefore the order of the units collated by projection in the

initial and final sections must be the same.

Next suppose the section does pass over the origin. The
initial and final sections must have a U^ common, for they are

(
U^s in a U^. Let the one denoted by [a^a^) in the initial section

be this common f/^. And first let us suppose that, in passing

from the initial to the final sections, the section under review

always has the U^ («o^o') ^^ ^^' ^^'^ further let b be an unit

which passes through o as we trace it from b^ to Z>„.

Now those units in the ray a^oa^'o' which are in the same
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part of it with respect to the boundary {a^d^), as o is, and those

in the initial section aj>^a^h^ which are in the same part of it

with respect to the same boundary [a^a^), as 6 is, form a closed

group of units which divides the whole U^ into two distinct

parts, and we may say that as h passes along a ray of the pencil

from h^ to o it is always xuithin this group, and h' is always

within the antipodal group. As a^, a^ are units in this boundary

group, any unit in the section under review in the same part of

it with respect to {ajci^), as h is, will also be within the group.

Now if any one of the units in the section under review, besides

a^a^, were to pass through the initial section, they would all do

so together. And the units in the same part of the section

under review, with respect to [o/i^], as h is, must all pass into

or out of the boundary group together. Consequently, if one of

them, b, passes out through o, they have all got to pass out, and

they cannot do so otherwise than through o. That is to say, all

of them, with the possible exception of a and a, pass through o,

and their antipodals through o', as the section under review

passes over the origin of projection. And as they do so, each of

them will cross each of the boundaries in the U^ formed by the

rays corresponding to the others, and will therefore cross each

of tlie boundaries in the section under review formed by any

two other units. Thus the order of all the units in the section

under review, with the possible exception of a and a, will

remain the same.

Now 'pHimi facie we are unable to say whether a and a

pass through the origin or not. For though we can certainly

say they do not do so unless the section under review passes over

the origin, yet, if it does pass over we have no means of tracing a or

a, since the section and the ray a^o a^o' are then identical. But

for the same reason we cannot say positively that they do not

do so. We might therefore, merely for the sake of uniformity,

say that when the section passes over the origin, a and a pass

through it, and therefore a„ is identical with a^ and a„' with a„.

And it can be shown that in fact we must say so, for the sake

not only of uniformity, but of consistency. For there is no

reason why the section under review should always pass through

(a^ «(,'), and if it does not happen to pass through it at the
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moment it passes over the origin of projection, it will never

coincide with the ray [a^o a^'o'), and in that case without doubt

a and a' will pass through o or o'. Hence we are bound to say,

that if in projection the section under review passes over the

origin, then all the units, as we trace them from the initial to

the final section, pass through the origin; and consequently

their order in the section under review remains unaltered. It

is to be noted that if the section under review does not pass

over the origin, a^a^ are each collated with themselves. If,

however, the section does pass over the origin, each is collated

with its antipodal. If, however, we are not concerned to distin-

guish antipodals, or if we are only discussing {U^)s, then we

may say that the unit of thought common to the initial and final

sections is, in a single projection, always collated with itself.

19. In the course of this discussion I have successively

'collated' h^ with 5,, b^, b^, ... up to &„, and while passing the

sections in review I called the unit under review alwa5's b.

The symbols with suffixes always meant particular units, a

symbol without suffix meant sometimes one sometimes another

unit. I may say that I identified the units with the symbols

with suffixes, but I only collated them, temporarily, with the

symbols without suffixes. When the symbols are ' identified

'

with the units, to collate two symbols is to collate the two units,

and to ' identify ' two symbols is to identify the two units. For

example, if I say that \ is collated with 5„, I mean that the

units with which these are respectively identified are collated

together. If I say that a^ is identified with a„, I mean that the

units are identified. On the other hand, if the symbols are

only 'collated' with the units, to identify two symbols only

collates the units. For example, b was collated first with b^

and then with b„. The 'b' in each case was identified with the

' 6 ' in the other, but the result was only to collate b^^ with &„,

not to identify them. It will be seen therefore that the use of

symbols to denote units is simply an example of what I have

called 'collation,' and that what I call 'identification' with

symbols is really only a collation which it is agreed shall be

permanently maintained during the discussion in hand.

If our symbols have among themselves a well-understood
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order, to collate or identify them with units is to ascribe that

order to the units themselves. This collation with a well-

understood order is what I call cataloguing, as distinguished

from simple collation. How this cataloguing can be effected

in continuous groups it is the object of this paper to enquire,

but among discrete groups the process is sufficiently familiar

not to require elucidation. For the present purpose it is

sufficient to take as an example of a discrete group, whose

order is ' well understood,' the twenty-five letters of the

alphabet. In order that the group may be a ' complete

'

group, I include in it the same letters repeated, but with

accents to distinguish them, and regard any letter and the

same letter accented as antipodals. If we regard the letters

with suffixes in the above discussion as cataloguing the groups

of the first order in this way, then we always collate a„ with a^,

but whether we identify it with a^ or with a^, will depend upon

whether the section under review does or does not pass

over the origin as we trace it from the initial to the final

section.

This point being settled, no generality will be lost if in

future I assume (i) that the section under review always passes

through the U^[ao%), and (ii) that any other unit in it, by

which, in addition to {%%), it is completely defined, and by which

it may be said to be catalogued, passes only through units in

one ray which are ' between ' the units in the initial and final

sections which are to be collated together, and passes through

each of them only once. This convention will determine whether

the section passes through the origin or not, according as the

origin is or is not ' between ' the units in any one ray which are

to be collated together. It is therefore always possible to collate

together the units in two given sections which have a common
?7q by a single projection ; the section under review passing

through, or not passing through, the origin, whichever we please
;

and the units in the final section collated with the units in the

initial section in the one case, will be the antipodals of those

collated with them in the othei. Hence we infer that the order

of units is the same as that of their antipodals (which however

we knew already).

3
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20. Suppose we wish to collate together certain units in the

initial, and the same number in the final section, selected

arbitrarily. We may suppose the units in the initial section to

be catalogued by the symbols a^h^... and so on, and a^l>„... will

denote the units we collate with them respectively by projection.

To use these symbols to denote the arbitrarily selected units

would be to ascribe to them a certain order, which we must not

do, as they are to be selected arbitrarily. I shall therefore use

capital letters for the units of the final section, and shall conceive

these letters not to have any intrinsic order, so that they do not

catalogue the units which they denote. To catalogue them we

have to collate them with the already catalogued units in the

initial ray. Now we can say of c^ that it is ' between * a^ and d^,

and that it is not 'between' a^ and 6^. Hence it must necessarily

be impossible to collate a^ with A, h^ with B, and c^ with C, if C
is 'between' A and £; and similarly it must be impossible to

collate a^ with A, c^ with G, and d^ with D, if G is not between

A and D. Hence it can not always be possible to collate

together arbitrarily three units in a complete group with three.

But I shall show that it is always possible to collate two with

two by a single projection, if neither of them are in the ?7^

common to the initial and final sections, and by more than one

projection in any case, and further, that it is always possible to

collate two out of three with two out of three and the third with

the given third, or with its antipodal. Thus in any case it is

always possible arbitrarily to collate three U^s in a U^ with three

others in a U^, by one or more projections.

Let {a^a^), as before, be the U^^ in the initial section which

is also in the final one. Then by a single projection we can not

collate ttg with any unit A, unless this unit is also in the initial

section ; but if it is, we can effect the collation, whether A is

identified with a^ or a^, by tracing the section under review

either through, or not through, the origin ; which origin may be

taken anywhere in the U^ containing the sections, except in tlie

sections themselves.

Suppose further we wish to collate h^ with B in the final

section. We can do so by choosing any origin in the U^ {l\J^]-

If neither of the units in the origin is ' between ' h. and B we
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shall at the same time collate a^ with A. If one of them is

'between' h^ and B we shall collate a^ with A.

If further we wish to collate c^ with C, the origin must also

be in the U^ {CqG), and it is therefore definitely determined. If

one of its units is between b^ and B, and also between c^ and G,

then we shall collate h^ with B, c^ with C, and so we shall if

neither unit is between either h^ and B, or c^ and G. But in the

first case we collate a^ with A, and in the second a^ with A. If

one unit of the origin is between J„ and B, and neither unit

between c^ and C, we collate h^^ with 5, but c^' with C. And
similarly we can discuss the remaining possibilities. It is clear

enough from these illustrations how it comes about that we can

not always project three units on to three, but can always pro-

ject two out of the three on to two, and the third on to the

third oi: its antipodal, when one pair is in the U^ common to

the initial and final sections.

If no pair is in the common C(,, or if the two sections have

no common U^, we shall require two projections to effect the

collation. By one projection on to a section determined by,

say, a^ and B, we can collate a^ with a,, which is identified with

it in the intermediate section, b^ with J,, which is identified with

B or B', and c^ with Cj. Then by a second projection we can

collate rtj, h^, c^ with A ov A',B or B', C or C' as the case may be.

If the initial and final sections have two
(
U^)s common, that

is, if they are coincident, and if no pair of units to be collated

are identical or antipodal, it will require three projections. But

in the end we can always collate by projection two units out of

three with two, and the third with the third or its antipodal.

If we do not care to discriminate between antipodal units,

or if we are only concerned with C^s, we may say that we can

always collate three with three.

21. To anyone who thoroughly understood the expression

' unique determination,' as I employ it in this science, this would

be a foregone conclusion. It would be sufficient to say, "No
order is distinguishable among three units of thought however

we may grou]^ them ; and since projection is simply an unique

method of collation, that is of comparing orders, it must be

possible by projection to collate together any three (U^.s, and
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any three others, two and two. But since, in a complete group,

the selection of any three units carries with it ifso facto the selec-

tion of three antipodals, there is a certain order distinguishable

among them, namely by the relations with their antipodals.

Hence it cannot always be possible to project three units on to

three, unless we agree to overlook the distinction between

antipodals." This, I say, is a logically sufficient proof; but

from a philosophical point of view it is interesting to see how

the definitions work themselves out. In the next proposition I

shall however adopt at once the simple logical method, and leave

the detailed investigation to be worked out by others. The

logical principle may be enunciated thus. If a number of units

a, /8, 7 . . . are respectively determined by units a, b, c ... by

means of relations which determine them uniquely with reference

to certain other arbitrary factors, then any statement which can

be made about a, yS, T--- must be deducible from statements

made about a,b,c..., or about the arbitrary factors, or both.

And further, any statement which can be made about a, /8, 7 . .

.

independently of any determination of the arbitrary factors

must be deducible from a similar statement made about a,h,c ...

and vice versa.

22. Now suppose the [U^s abc... in a U^, A, are projected

by a pencil of U^s with any origin, and that any other section

of this pencil is again similarly projected from some other

origin, and so on p times successively. And next let A be

projected again by a succession of q different projections, by

pencils of ( f/,)s. If the corresponding pairs of rays in the pih.

and gth pencils have any common [U^s let them, or as many

of them as there may be, be denoted by greek letters corres-

ponding to the latin letters in the group A. And let the group

of
(
U^s so determined be called the group X.

If the group X consists of a single U^, a, corresponding to

a in ^, then there is nothing that can be said about a by itself,

without reference to the origins of projection, nor is there

anything that can be said about any other U^ in A with

reference to a, without reference to the origins of projection.

Even if X consists of two [U^s alone, a and /S, there is nothing

which can be said about them by themselves, nor is there
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anything that can be said about any other U^ in A with

reference to a and b alone, without reference to the origins of

projection. There is therefore no reason why the group X
should not consist of two (CJs alone.

But if there is any third U^, 7, in X corresponding to c in

A, then we can make a statement about c ; namely that it is in

a group of the first order in which [ah) forms a boundary.

Hence 7 must be in a corresponding group of the first order,

namely, X, in which (a/3) forms a boundary. And of any other

( f/g) c? in ^ we can say that it is, or is not, in the same part of

A with respect to the boundary [ah) as c is. There must there-

fore be in Jl" a corresponding U^, 8, of which we can say that

it is, or is not, as the case may be, in the same part of X with

respect to (a/3) as 7 is. That is, if X contains as many as three

{U)s it must be a group of the first order and contain a U^

corresponding to each U^'m A. We can not, however, say that

X must be an unique group of the first order, for as I have

pointed out there is no sense in calling A unique, except in

reference to units in a wider group which contains it. Hence

whether X is unique or not depends on units outside A, and

may be affected by our choice of origins of projection. If,

however, the ^^th and gth pencils are not in a U^, they have a

U^ common if they have more than one U^ common. There-

fore if three pairs of rays have common [U^s, X can only be

this common U^ ; and as every pair of rays have a common U^

in this f/j it is a common section of the /?th and gth pencils.

If, however, the f)th and 5th pencils are in one U^, X may

be a group of the first order, but not an unique group. In that

case let e be an unit (not U^ in A'' corresponding to an unit e

in A. Then in the U^ containing X the U^ [a^) forms a

boundary for units, and we can therefore say of e that it is,

or is not, in the same part of the U^ with respect to (a/3) as

another given unit is, or else that it is in the boundary (a/3).

We can correspondingly say that e is, or is not, in the same part

of A, with respect to [ah) as a boundary, as a given unit is ; but

we can not say it is in the boundary [ah). Hence if one other

unit e in A is not in the U^ (a/3), there can not be any other

unit in X which is in it, and conversely if e is in (a/S), every
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other uuit in A' must be in it also. That is to say, if three

units, no two of which are antipodal, or if three
(
U^s in X are

in a U^, then X is that U^, and is a common section of the pih

and qih. pencils, in which every pair of corresponding rays deter-

mines a f/g.

Now X must be either an A^ or a B^, that is, either it

consists of a single group of units containing the antipodals also

of each unit, or it consists of two distinct groups of units, one of

which contains all the antipodals of units in the other. For if

some and not all of the units had antipodals in one part of the

group, we should be able to say something about these units

which we could not say of the others, without reference to any

units outside X, and we could not say anything correspondingly

about the units in A. It is easily seen that if X is a 5^ as we

pass in review the units in A, the corresponding units in X will

all be in one part of the group till we come to an unit uniquely

related in some way to the origins of projection. This will be

the unit in X, which is in the U^ determined by the pth and

qth. origins.

Since an A^ must have an odd number of {U^)s common

with any other A^, if X has only two f/^^s common with any t/j

(which is a special case of an A^), it must itself be a i?j and not

another A^. This particular kind of B group, which is further

specialised by the connotation that it can only have two {UJs

common with any U^, I shall call a C group of the first order,

or C,.

23. We may in the same way investigate the nature of the

group X in the case of successive projections of the units of a

U^, A, by pencils of {U^)s. If there are only one or two {U^)s

in X, then as before we can say nothing about them ; nor can

we do so if there are only three, unless the three {U^^)s in A,

to which they correspond, are in one U^, which would be the

case just discussed. For if there are three iUg)s a, /3, 7, in X
corresponding to a, h, c, in A, which are not in one U^, we are

unable to make any statement in respect to a fourth U^, d, in A
with reference to a,b, c; for a U^ is 7wt a boundary for (

U^)s

in a t/j, and we can not therefore say that d is, or is not, in a

different part of the U^ from a, h, or c. But any two of the
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(trjs [ab], {be), {ca) form a boundary in A, and therefore if

there is a fourth U^, h, in A'^ corresponding to d in A, we can

say of any fifth C/^, e in ^, that it is, or is not, in the same part

of the U^ as d is, with respect to one or other of these boundaries.

Hence in this case it follows that X is a group of the second

order, in Avhich (a/8), (/Sv), (7a) determine boundaries. This

group must be a U^, and a common section of the pth and ^'th

pencils. For a, /3, 7 can not all three be in one U^ containing

thejMth and qih. origins of projection, since a, b, c were not in

one t/j ; and if S were not in the U^ determined by a, /9, 7, then,

as before, we could show that no other U^ in X, besides a, /3, 7,

could be in this U.^. But if X is a group of the second order,

it must have at least a group of the first order common with

the i/g determined by (ot, /3, 7). Hence, if there are four {11^)8

in X, which correspond to four in A, which are not in one (/,,

then they are in a f/^ ; which is a common section of the pth

and qih pencils. And similar results may be deduced in the

case of successive projections by pencils of ( f/Js of higher orders.

24. These results are very important. They might perhaps

have been deduced by methods more familiar to students of

projective geometry, though as a matter of fact I am not aware

that any exactly corresponding propositions are to be found in

the ordinary text books of the subject. It would probably be

possible to deduce them indirectly from the proofs of the

uniqueness of the quadrilateral construction, though the sig-

nificance of these proofs appears to have been misunder-

stood by most writers on the subject. But from the

philosophical point of view the proofs I have given are much
more interesting, as they enable us to trace the true meaning

of the results. The reason that we can not project any four

collinear points on to any other four is to be traced, not to the

fact that it takes two points to define a straight line, as Mr.

Hussell supposes, but to the fact that it takes two units, or

(i7p)s, to form a boundary which shall separate two other units,

or {U^)s, and consequently we can make a definite statement

about the order of four units, or (f/^js, but not about that of

any smaller number. It will, however, make this clearer to put

the results in another way. We may say that there exists a
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definite relation among any number of units, or [U^^s, in a U^

greater than three, which remains unaltered by projection.

Similarly there exists a definite relation among any number of

units or [U^s in a U^, greater than four, unless all or all but

one of them are in a U^, which is unaltered by projection.

Now I have already shown that in its ordinary sense, with which

we are familiar in dealing with discrete groups of units, the

' order ' of units, or {U^s, is unaltered by projection ; and further,

that this is so even in the extended sense in which I have

already used the word, that, namely, in which it is defined by

the relations of units or
(
U^s to boundaries, and which applies

to groups of a higher order than the first. This new relation

which we have discovered, which is unaltered by projection, is

in fact nothing but the 'order' of the units or {U^s in a new

sense, or rather in an extension of the old sense which can be

applied to continuous, as well as to discrete, groups. It is

because no ' order ' is distinguishable in a collection of less than

four units, even if we regard it as a group of the first order,

that we can always project three {U^s in a U^ on to any

three other [U^s in a U^. And it is because an order is

recognisable among three units, or more than three
(
U^s, that

we can not always project three units in a ' complete ' group on

to three, or more than three {U^s on to more than three; and

that in either case, when we have projected three on to three,

the remainder of the units in the initial group of the first

order are uniquely projected on to, or collated with, the units

in the final group. We shall become more familiar with this

extended sense of the term ' order ' as we proceed, but it is

already clear that it is a sense which is capable of exact

definition. It is no use ' rhapsodising ' loosely about ' qualita-

tive identity ' or calling a relation which, ex hypothesi is non-

metrical, ' anharmonic ratio.' If we can not strictly define our

terms they serve at best only to disguise our ignorance, and it

is more than probable that their employment will, sooner or

later, lead us into positive fallacies, of the kind known to

logicians as ' fallacies of the ambiguous middle.'

25. If in a complete group we collate the rays of a pencil of

{U^)s by means of the units in each in the section, we shall
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collate each ray twice over, with each of the two antipodal

units. To evade this difficulty we must collate together the

half-rays as divided by the origin of the pencil, collating

together the units in the origin, and two other units in each

half-ray. This would require the arbitrary selection of two

units in each half-ray, besides the origin ; but by the method I

am about to describe it is sufficient to chose two units in the

whole ray, one in each half of it, to collate a single ray, and

only two more, besides the origin, in one other ray of a pencil

of the first order, to collate the whole of the rays of the pencil

;

and, generally, 2« units besides the origin, to collate a pencil of

the order (w — 2).

I shall call this process of collation of half-rays in a pencil

reversion ; and in reference to the process I shall speak of the

origin as the 'pivot of reversion, and the section of the pencil as

the equator of the reversion. It will appear that reversion is

only a specially determined kind of projection, it involves no

new principle.

26. The simplest case of reversion is where we are concerned

only with two {U^s in a f/",. We have seen that if the origin

of projection is not in the U^ and the final section coincides with

the initial one, every unit is projected into its antipodal. But

if we take the origin of projection in the initial sectiou, the

collation of all units in it, with the exception of the origin, and

the units in the U^ which is supposed to remain always in the

section under review, is indeterminate. The unit in the origin

ma,y however be traced along any one of the rays of the pencil

to its antipodal. At the same time, since the section does not

pass through the origin, the units in the U^^ through which the

section under review always passes, are collated with themselves,

not each with its antipodal. Hence we collate a, b, a, h' with

a, U , a , h respectively ; that is, we can always regard the order

a, b, a , b' as identical with the order a, b', a', b, if we regard

aa, bb' as pairs of antipodal units. If these four units con-

stituted the whole collection, and we catalogued the collection as

a complete group by the letters a, b, a , b' this antipodal relation

would ipso facto be established, and what we have proved only

shows that it makes no difference to the ' order ' of the letters
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whether we read them forwards or backwards. If however we
catalogued the group as aa'bh' , then [ab], [ah') would be the

pairs of antipodal units, and in that case we could not collate

a, b, a, b' respectively with a, b' , a, b. The term 'singular

reversion' will do to denote this special case of projection.

27. I go on to the more general case of the reversion of the

whole of the units in each of the two halves of a single ray.

Let PP' be the pivot of the reversion and QQ the equator.

That is to say, P is to be collated with P, and P' with P', in each

half ray, but Q in one is to be collated with Q in the other, and

vice versa. Take any U^ through PP', and in it choose any two

origins of projection (0^ C/), [0^ 0^). To fix our ideas let 0^,

Og, be in the same part of the U^ with respect to [PP'), and let

Og be ' between ' 0^ and P.

Let D be an unit in the U^ between 0^ and 0^. If we pro-

ject the units of [PQ) on to a U^, [QDQ), from one origin, and

then project them back on to PQ from the other origin, P and

P' will always be collated with themselves, and Q will always be

collated with Q and vice versa, for in one case the section will

pass over the origin of projection, and in the other not. The

other units in PQ will however in general be projected differently,

according as we project first by 0^ then by 0^, or first by 0^ and

then by 0^. If however any one of them is projected on to the

same unit in either case, then, as we have seen, they will all be

projected on to the same unit in either case. It is easily seen

that any unit between P and Q will be projected on to an unit

between P and Q, and that the ' order ' of the units from P to

P' via Q will be the same as the order of the projected units

from P to P' via Q. Thus we shall have uniquely ' reverted

'

the half ray PQP' on to the half ray PQ'P'. It only remains

to be shown that an intermediate section QDQ' can always be

determined which will effect this, after we have chosen the

origins 0^ 0^ ; and that our choice of the origins 0^ and 0^, so

long as they are in a ?7j with P, does not affect the result.

It will simplify the discussion to neglect for the moment the

distinction between antipodal units, and regard unaccounted

letters as denoting [U^)s instead of units. In this case it is

evident that the distinction between pivot and equator dis-
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appears ; either may be regarded as pivot and the other as

equator—the reversion will be identical in either case. In order

to make my treatment of the question more readily comparable

with Mr. Russell's I will adopt the notation he employs in § 113

of his book, merely translating his paragraph, as literally as I

can, into my own language.

* Given any three
(
U^s A, B, 1) in one U^, the quadrilateral

construction finds the f/„ C into which A may be reverted with

B,D,as pivot and equator,' and (as I shall show) it also huds the t/„,

G which, together with A as pivot and equator, reverts B into IJ,

and further, shows us how to determine the intermediate section,

by means of which all the {Ug)s in a U^ may be reverted with

respect to a given pivot and equator. However, to continue the

translation, ' Take any U^, 0, not in the f/,, ABD, and which

determines [U^s with B and D. Take any U^ through A, having

(f/Js P and Q common with the [U^)s {OD), [OB), respectively.

Let R be the U^ common to the ((7,)s {DQ), [BF), and C the

U„ common to the {U,)s [OR) and [ABD). Then C is the i/„

required.

* To prove this, let T be the U^ common to the {U^)s {JJRQ)

and {(JA), and S the (f/„) common to the {U^]s [AR), {OB).

Then by projection with origin R and section [OB), we collate

A, B, G, D with *S', F, 0, D; and by a second projection, witli

origin A and section DQ, wc collate them with R, Q, T, D. But
again by a third projection with origin and section [ABD) wo

collate them with C, B, A, D. Thus the order ABCD is the

same as the order GBAD.'

28. Now at first sight this conclusion seems simply banal. TIjc

two orders are evidently the same, considered as discrete orders

of letters, except that one is written backwards. The point is,

however, that it is not only the discrete order of the four Us
which is the same, but the continuous order of the iuhole of the

[U^)s in ABD, which have been projected at the same time.

The simplest way to see this is to regard C as pivot, A as equator,

and [AQP) as intermediate section, 0, R being the origins of

projection. In this case, projecting first by as origin, if L be

the U^ common to [OC) and the intermediate section, we collate

A, B, G, D with A, Q, L, P, and then with R as origin we
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collate them with A, B, C, B. If we project by R first, we
collate A, B, C\ D with A, F, L, Q, and then with A, D, G, B,

obtaining the same collation in each case.

If any reverted order be projected, it projects into a reverted

order, taking corresponding units or
(
TJ^s as pivot and equator.

Hence it can easily be shown that G reverts into L with 0, R,

as pivot and equator. Consequently, to return to the former

discussion, if we wish to revert a U^, PQF'Q with respect to

FP' as pivot and QQ' as equator, taking 0^ 0^ as origins of pro-

jection, to find D we perform the ' quadrilateral construction,' so

that F reverts into I) with 0^ 0^ as pivot and equator.

But now let us discriminate between the units in each U^.

If the letters in Mr. Russell's discussion represent only units,

instead of
(
Ug)s, we can not say that the order ABGD is the same

as GBAD ; for, wherever the antipodals may come in, they will

serve to discriminate between the orders, unless {AG), [BD] are

themselves pairs of antipodal units, which would be the case of

singular reversion already discussed. It is, however, obvious that

in one of the projections he makes (the first in his diagram) the

section passes over the origin of projection, and in the other two

it does not. Hence, what he has shown in the case of his

diagram is that the order ABGD is the same as GBAD', if we

take the letters to denote units in a complete group. Thus we

discriminate between the pivot B and the equator D of the

reversion. Looking at the reversion in the other way, as obtained

by only two projections from R and from 0, in either order, in

one projection the section passes over the origin (namely when

R is the origin, in Mr. Russell's diagram) and in the other not.

Hence A reverts into A', and G is the pivot and A the equator

of the reversion.

29. We may determine a reversion by naming the pivot,

say G, and two units B and D, which shall revert into each

other. We have in this case clearly named three units in the

initial and three in the final sections, considering the reversion

as a projection. But if we name the pivot and equator we have

also named three units in each, namely G, A, and A' in one,

G, A', and A in the other. For in reversion, not only do we

collate B in the initial with D in the final section, but also D in
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the initial with B in the final. Similarly, not only do we collate

A in the initial with A' in the final, but A' in the initial with

A in the final section. The case where the equator is named is

a limiting case of the other, but it does not really by itself

suffice to determine the reversion, for as we have seen in

singular reversion the pivot and equator are named, but the

collation of the other units remains indeterminate. The

additional assumption implied in naming the pivot and equator

of a definite reversion is however merely that the other units

shall be reverted somehow ; if they are reverted at all they are

reverted in an unique manner.

We have seen that, so long as we are concerned only with

(t/g)s, the pivot and equator need not, or rather can not, be

distinguished. But even if we are dealing with units, the

construction I gave may be used whether P is regarded as pivot

or Q. P was made pivot by the fact that we chose that the

section should cross the origin in one projection and not in the

other. If it is made to cross it both times, or neither time,

Q will be collated with Q, and P with P', so that Q will be the

pivot and P the equator.

We have seen also that if we consider only four units

A, B, G, D in Mr. Russell's construction, we may regard either

A and B as pivot and equator, or C and D. The results as

regards other units in the U^ will however be totally different

in the two cases. Reversion of a U^ may be called a function

of two U^s, symmetrical with respect to them, or a function of

two units, though not symmetrical with respect to them ; but

it is not a function of four, rather than of the infinite number

contained in a whole U^.

30. But if we are careful not to attach to it any ' metrical

'

or spatial significance, we may usefully employ the term

' symmetrical ' in another way with respect to reversion. We
may say that in the case of complete groups it defines an order

.symmetrical with respect to the pivot, and in which the units

of the equator occupy symmetrical places. In the case of a

group of [U^s of the first order, the order defined is symmetrical

with respect to either pivot or equator, but iu a pencil of {U^]s

the symmetry with respect to the equator, though it still exists,
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is uot of the same nature as that with respect to the pivot, for

the equator is a U^ or higher group, and the pivot a [U^.

31. I return to the question of collation of boundaries. We
have to arrange a system by which the units in the various half

rays of each pencil of [U^s shall be collated in the simplest

manner, that is, with the fewest arbitrary assumptions. It will

be sufficient to show how the units in a pencil of the first order

of half U^s may be collated with each other, and with the section

of the pencil. We are already given two U^fi in each ray,

namely the origin and the U^ in the equator. It will obviously

be simplest to collate together the U^ in each ray which

constitutes at once the origin and the dividing boundary of

each half ray. As the unit in the section of the pencil belonging

to each half ray is used to collate the half rays, these units must
all be collated together, and therefore lue inust revert the units

in each ray with respect to the origin as pivot and the section

as equator by an unique reversion, which will completely collate

the units of the two halves of any one ray. If (Oj 0/), [0^ 0^),

(O3 O3') be the first three arbitrarily selected JJ^s out of the (/i+ 1)

which determine the system of pencils used to collate the whole

group, (Oj 0/) will be the first origin and (0^ O3 0,/ 0,') the first

section
; (0,^ O./) will be the second origin, and

(
0^ 0^) the U^ with

one of whose units the whole pencil of U^s will be collated in

the next stage of the process. Hence, to collate the two halves

of the section with each other we similarly revert it uniquely

with respect to
( 0^ 0,/) as pivot and

( 0^ OJ) as equator. To collate

together the section and the rays of the pencil, if we wish to do

so, we may collate together the pivots of reversion and the

equators in each case ; thus 0^ in the ray is collated with 0^ in

the section, and 0^ in the ray with 0^ in the section. Or we
may catalogue the rays and the sections independently. To
determine the collation completely, we have, however, to collate

together some third unit in each ray and in each section. I

will show how these third units may be determined for all the

rays of a pencil of the first order by choosing arbitrarily units

in two of them, or an unit in one and an unit in the section.

Select any two units, P^ between 0^, 0^, and P^ between

Oj, O3, in two rays of the pencil. Let R be the unit common
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to (O^P^) and (O^PJ, and between the units named in each.

Let Qj be the unit common to [O^R), [0^0^ between 0^, 0^,

and P2 the unit common to (P, QJ, and 0^ 0^ between 0^ and

0,'. Next, revert the U^
( 0^ OJ with respect to Pj as pivot, so

that (9, reverts into 0^ ; and let any unit X between 0^ and Pj

revert into an unit Y between P^ and 0^. And let Z be the

unit common to p^A' and P^F, between the units named in

each case.

Now if we pass in review a series of units in the place of

A'^, we get a series of units in the place of Z. And these units

are common to corresponding rays of two pencils with origins

P^, j).^, and with sections which have themselves been projected

from one and the same f/,. For Y was obtained from X by

reversion, which is only a special case of projection. Therefore

the locus of Z is either a f/, or a (7,. It is easy to show that it

is the latter, and that it passes through P^, P,^, and /?,/, which is

the unit into which P^ reverts with 0, as pivot and as

equator. For Z is within the boundary (\0.,P,^, since it is

between P^ and F, and F is between 0.^ and 0,. And if we
trace X to 0, at the same time we trace F to 0^ and therefore

Z to P^. And if we trace X to P, we trace also F and Z to P,.

The locus of Z will have one unit common with every half

ray in the pencil with origin Oj, and section [OJJ^). If we
collate together all these units, and the units in the origin

and section of the pencil, we shall completely determine the

collation of each half ray. And it can easily be shown that

the loci of all units collated together are (CJs, no two of which

will have a common ^7^. We may imagine the collation to bo

effected by passing in review the rays of the pencil as sections

of the group of (CJs, and tracing the units to be collated

together along these (CJs. This is what I shall call collation

of the rays of the pencil by reversion.

32. To determine the collation, besides the units , 0., O
,

we chose two more arbitrary units P^, P^. We might instead

have chosen the units P^, Q^, arbitrarily ; that is, one in the

initial ray and one in the initial section. If in the next stacre

of the process we choose a fresh arbitrary unit P^ in {0 0), it

will determine a fresh unit in every section. If on the other
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hand we choose Q^ and another arbitrary unit Q^ in 0^0^, it will

determine the arbitrary unit in every ray of the pencil with

origin 0^. Thus in the end we have only to choose [n] arbitrary

units (PjPj,...P„), or [P^Q.Q^ ... Q„_,) besides the (?2 + l) units

{0^0^ .. 0„^^), to determine the collation completely. If we

look at the whole collation from the polar point of view, we
should naturally choose the units {P^P^... P^^) arbitrarily. If

on the other hand we look at it from the cartesian point of

view, it would seem most natural to begin by selecting

(PjQj...
Q,j_i).

But it is of course logically indifferent which

we do. If we choose [P^Qi ... Q,t_i) arbitrarily in the initial

sections, we are choosing the corresponding units in all the other

sections by collation by reversion. In fact, the sections in the

cartesian way of looking at it are really rays of pencils, and

the rays in the polar way of looking at it their sections.

83. There is one property of unique boundaries which,

though not very directly connected with the present discussion,

deserves notice, not only on account of its intrinsic beauty, but

because of the prominent place it occupies in most works on

Projective Geometry ; and this is what is known as the Principle

of Duality. We have already seen that we may say that a U^

and a Ug determine a Us common to them in the same sense

in which they determine a Up + g^s containing them. And
generally, we may say a U^^ is determined by n

(
U^^)s just as

n{U^)s determine a U^^. To every proposition about {U^)s

will correspond one about ( t/„_Js, and so on. It must be noticed,

however, that the principle of duality applies primarily to the

whole considered as a group of
(
U^)s, and not considered as a

complete group of units. Now I have several times already

spoken of considering the group as a group of {U^.,)s instead

of one of units, and the time has come to consider more

exactly what this means.

34. I will take first the simplest case, that of a group cata-

logued as a complete group of the first order of units, each unit

of which determines another, which together with it forms a f7„.

Now we have seen that in cataloguing such a group of units by

means of unique boundaries we in the first place, as it were, run

to earth a U^, and then dig out of it the particular unit we want.
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But suppose we stopped at the U^, and so far from attempting

to dig out a particular unit we regarded it logically as an unit in

itself. In other words, suppose we started by cataloguing the

complete group ivithout establishing any unique relation between

pairs of units, but retained all the rest of my investigation, in so

far as it does not discriminate between the units in a ?7j as it

stands. This would indeed logically have been the best way of

starting the science, only it would have involved a re-investiga-

tion when we wished to get at what I have called the ' complete

'

method of cataloguing, whereas by the plan I have adopted, the

system in which there is no antipodal relation, which I will call

the Monistic system, is really being investigated all the time

alongside of the complete system. We have only to say that

the (CJs are the units of our collection, and our conclusions

about them apply at once.

35. In the monistic system, if we pass in review the units,

that is {U^]s, in a U^, we come back to the one with which we
started, and so we do in exactly the same way if we pass in

review the rays of a pencil of the first order of unique groups of

any order whatever. In a fT, it requires two units, i.e. [11^)8, to

form a boundary, and we cannot say that one U^ is ' between

'

two others. This introduces a complication into the method of

cataloguing, for we can no longer identify an f/j, or any unique

group, even approximately, by saying it is ' between ' two units

;

these being, on the M system, {UJs. We can only say it is, or

is not, in the same part of the group with respect to these two

{Ug)s as a third named (Z7J is. It would be interesting to go

on and investigate how this might most simply be done, but to

do so would be beyond the scope of the present paper. I will

merely call attention to a few more salient peculiarities of the

M system. A single unit, (?7J, may be finally determined by

two {U^)s in a U^, or by n (t/'„_Js in the whole collection. An
A^ does not divide a U,^, nor. an A„_^ the whole collection, into

two parts, for it is not a boundary to the units of the M system.

But a B group of the same order is a boundary, and divides the

group into two parts which may be distinguished from each

other by the fact that in one we can not have a whole A group

of any order, whereas in the other we may. Any A^ has an odd

4
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number of units common with any A,._^, but an even number

common with any B,._^ in a U,.. Hence an A^ must have at

least one unit common with any A,_^ if both are in one U,., but it

need not have any at all common with a jB^_j. We can always

collate by projection any three units, i.e. {U^)s, in a U^ with any

other three. The principle of duality applies without any

reservations.

86. In a complete group on the other hand, that is one

catalogued on what I shall call the U system, if we pass in

review the units of a U^ we reach first the antipodal of

the unit from which we started, and then, in order, the anti-

podals of all the units already passed in review, till we come

back again to the initial unit. If, however, we pass in review

the rays of a pencil of the first order, the case is different, for

these rays, considered as units of thought, are catalogued

monistically. To make the catalogue one on the U system we

have to take half rays, divided by the origin of the pencil. In

a i7j two units, or one U^, form a boundary. Hence we can

say a t/o is ' between ' two units. We can also, in the special

sense I have defined, say one unit is ' between ' two units, if

these are not themselves antipodal. Similarly, any unique

group of a higher order, being a boundary, can be said to be

* between ' two units. A B group is a double group of units, the

two parts being antipodal to each other, and it divides the

group in which it forms a boundary into three parts, and it may
be said that an unit is ' within ' one or other of the antipodal

groups, or 'between ' them. An A^ has an odd number of (UJs

common with any A group, and an even number common with

any B group, as in the M system. We cannot always collate

three units in a U^ with three others, but we can always collate

two and two, and the third with the third or its antipodal.

The principle of duality applies to unique boundary groups,

that is a U^ corresponds to a U„_^, and so on, not an unit with

a U^,.

37. We have now to consider certain other ways of cata-

loguing groups. There is one in particular which combines

certain of the advantages of both the M and U systems, in that

it is not necessary to establish an antipodal relation between
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every pair of units, and on the other hand we are still able to

speak of an nnit or an unique group as ' between ' two units.

But to explain this I must go back to my original definitions

and consider what is actually done when we establish the anti-

podal relation between two units. Suppose I have a collection of

four units, and arrange them as a group of the first order, abed,

d and a being considered contiguous. Here h and d form a

boundary which separates a and c. That is to say, if I pass in

review from a to c I must pass through h or d. But why not

pass straight from a to c ? There is no unit to be passed through,

no boundary. The answer is that I have agreed, by cataloguing

the collection as a group of the first order, not to do so. I may
say I have put a harrier between a and c, and also between

h and d, in addition to the boundary formed by {bd) in the one

case and [ac] in the other. Why, or how, I put the barrier it

is not for formal reasoning to enquire. Now, there being an

even number of units in my group, I may, if I please, just as I

erected a barrier, forge a connecting link between a and c,

h and d, and call them respectively antipodal units. If, however,

my collection consisted of an odd number of units, I could not

in this way establish an unique relation between pairs of units.

I am at present unable to say how far this analogy may be

carried in the case of continuous groups, or whether we ought

not to say that though cataloguing on the U system undoubtedly

implies an even number (however great) of units, yet cataloguing

on the M system does not necessarily imply an odd number.

But however this may be, the number of units in the U system

being even we may divide it by two, and consider a collection

of either an even or odd number of units to be catalogued as

one half of a f/" group of any given order. I shall call this the

semi-complete, or 8 system of cataloguing.

38. The simplest way of explaining it is to take the polar

way of looking at a catalogued JJ group of the order w, and

divide it in two by the section, or as I may call it the equator,

of the pencil of {U^s with origin [0^0^) ; and consider the S
group to be formed of those units only which are in the equator

or in the same part of the U group as 0^ is. It will then be

seen that in the 8 group there is an antipodal relation only
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between units in the equator, which will form an infinitesimally

small portion of the whole continuous group, and which may for

many purposes be neglected altogether. The conclusions we
reached in the discussion of the U system may now be applied

to the S system, by making certain provisos and reservations.

In the first place we observe that whenever we have ' run to

earth ' a Z/^ in the catalogue of the U group, if that U^ is not

in the equator, only one of its units is in the >S^ group ; and

therefore the trouble of 'digging one out' is saved us. If we
can afford to neglect units in the equator this means an

immense simplification of our catalogue. But it must not be

supposed that the units of the S group are simply units in the

U group. They are units which are defined as one or other of

the units of a U^ of the U group. The importance of this

distinction will appear if we pass in review the units in the S
group corresponding to U^s in a TJ^ of the U group ; say a ray

of the pencil of U^s, through 0^. As the U^ under review

passes towards the equator, the unit in the S group passes to

the equator, and when the U^ is in the equator the unit in the

S group is indeterminate. But the moment the U^ has passed

through the equator, the unit in the S group reappears as the

antipodal in the U group of the unit we were tracing before.

Hence, though in one sense the unit of the S group corresponds to

the unit in the U group, in another and more important sense it

corresponds to the U^. For the equator is not a boundary in

the (S^ group. And further, though we can say that one unit in

a ?7, is between two others (in the same sense that we can in

the U system), yet we can not say that a U^ is a boundary in

a U^, any more than we can in the M system, or that a single

unit is a boundary in a U^. We can say that a Z7j in a U^ is

' between ' two units, but not that it divides the U^ into two

distinct parts. Again, though, as in the U system, we can say

that one unit is between two others, in accordance with our

convention, yet ive can always collate by projection any three

units in a U^ with any other three ; for whether we take the

third unit or the antipodal of the third in the U system, we

take in the S whichever of them is in the half of the TJ system

we are using as a catalogue. B groups in the S system will
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appear in various forms. Either one or portions of both the

antipodal groups may be within it. C groups would be

particularly interesting to discuss, but I refrain. If parts of

both antipodal groups are within the S group the distinction of

' within ' and ' between ' the groups may be maintained If not,

we may say ' within ' and ' without.' In either case they are

boundary groups, while A groups are not. Two units always

determine a U^ unless both are in the equator. Two U^s in a

U^ have always one unit common, and may have two, if they

are in the equator. Two U^s in a U^ always have a U^ common,

but it may be a t/", in the equator. I need not say more, as

these consequences are sufficiently obvious and familiar to us

all.

39. There remains one, or perhaps I should say two, more

systems of cataloguing to be discussed. Instead of taking one

half of the U group to catalogue a collection I might take less

than half, namely, a portion defined by a boundary group in

the U group. I might take either one of the portions within

one of the antipodal groups, (I shall call this the H system) or

the portion between the antipodal groups (I shall call this the /

system). It will be seen that there is a very close logical

relationship between the two systems, though for practical

purposes one may be much more convenient than the other.

The boundary in the U group would naturally, if not quite

necessarily, be taken to be one of the C groups which we used

in collating the pencil of {U^s with origin 0,. Thus the H
group would be symmetrical with respect to the origin, and the

I group with respect to the section, of the first pencil of
(
U^s.

Any U^ would either lie wholly in the I group, or there would

be only a single portion of it in the H group, since a U^ can

not have more than two
(
U^s common with a C group. (If we

were to take any other B group as boundary we might have the

J7j determined by two units in an H group divided into two

distinct parts within the H group). The logical units in the H
group would be single units of the U group ; in the I group

on the other hand we might take either units or Uji, that is we

might catalogue the section of the pencil on the M or U, or >S'

systems, the only U^s in the I s^^stem which have as yet been
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catalogued being the rays of the first pencil. It is, however,

not worth while for my present purpose to enquire further into

the / system of cataloguing. I shall treat it merely as the cor-

relative of the H system. It will be found that in most

respects the peculiarities of the H system correspond with

those of the S, and those of the / with those of the U. We
may in fact regard an S group as a limiting case of an H group,

when the 1 group has shrunk up to nothing more than the

equator ; and similarly an U group as a limiting case of an 1

group, when the H group has shrunk up to the origin.

40. If we pass in review the units of a U^ in the H system,

starting from an unit within the boundary, we shall sooner or

later come to the boundary and have to stop. There is no

unique relation between the terminal units in the U^ as there

is in the S system, so we can not in any sense look upon them
as contiguous elements. I may mention that this and the other

conclusions I am about to draw are not merely due to the way
we are looking at the question, namely, considering the H group

as part of a complete U group. They can be proved inde-

pendently, from considerations affecting units in the H group

itself alone.

In the H system, as in the S and U systems, we can say of

one unit in a U^ that it is ' between ' two others. But more

than this, we can say that (together with the terminal units, or

one of them), it forms a ' boundary.' Similarly in a TJ„ a U,._^,

(together with the boundary group), forms a boundary. It divides

the whole group into two distinct parts.

We may have the whole of one of the groups of units in a

B group of
(
U^s within the H group, or we may have only a

part of it, or we may have part of each of the two groups of

units. If, however, parts of both groups are in the H group,

there is no longer any essential distinction between the three

parts into which the H group is divided. It is only by taking

into consideration parts of the B group without the boundary

that we can distinguish between the part ' between ' and the

parts ' within ' the two groups.

Within the // group an A^ may have an even number of

units common with another A group, or none at all. And with
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a B group it may have an odd number common, for the remaining

common units may be outside the H group.

We cannot always collate by projection any three units in a

i/j with any three, unless we are at liberty to take origins of

projection outside the boundary of the H group. Nor can it be

said that the order of units in two sections of the same pencil

of [U^s is identical, unless we neglect the boundary, for the

boundary will not in general come in between corresponding

units in the two sections. If we ignore units beyond the

boundary, there may be no units to collate with certain of the

units of the initial section.

The principle of duality applies in a yet more restricted

manner than in the U and S systems. In a U^ two U^s do

not always determine an unit or U^ at all in the H and /
systems; for they may determine one beyond the boundary,

which 'would not count. There is, however, another kind of

principle of duality which exists reciprocally between the H
and I systems. It may be shown by the ordinary methods of

projective geometry, that to each unit in the H group as ' pole

'

there corresponds a
(
U^^ wholly in the / group as ' polar.' If

we allow ourselves to discuss the / system as an ' imaginary

'

complement of the // system, we get in this way an * imaginary
'

principle of duality which may serve to obscure the anomalies

of the H method of cataloguing.

41. It appears from this discussion that the five systems are

not logically correlative. The most simple and logically perfect

is the M system, in which the U^ is closed, but no unique

relation is postulated between any two of its units, or between

any one and the group as a whole. The U and S systems

come next in order of simplicity, and the anomalies in the one

are in a sense complementary to those in the other. In the U
system, like the M, the U^ is a ' closed ' group, whereas in the

/S' system it is ' open.' In the U system we postulate an ' anti-

podal ' relation between each unit and a certain other unit ; in

the S system this is only done in the case of units in ' the

equator.' The H and / systems are also complementary to

each other, as the *S and U are, the U^ in the H system being

open, and in the / system sometimes open and sometimes closed.
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But the H, I systems are also complementary in another sense.

It is only by arbitrarily shutting our eyes to units ' beyond the

boundary' that they can be considered separately at all ; whereas

in the U and S systems this is not the case. We may use

abusive epithets towards units outside the pale, and call them
* imaginary,' but in any complete logical discussion of either the

H or the / system they will intrude themselves, nevertheless.

42. In the course of the discussion so far I have been

representing units by letters of the alphabet or numbers, and in

certain cases I have assumed that these symbols themselves had

a well understood order. But the order in question has never

been more than a discrete order, the catalogue which in reality

I have employed has been the time conception. And that is

why I have not attempted to catalogue groups of more than the

first order, except by collation of unique groups as pencils of the

first order. The time conception is the first and best understood

conception of a continuous group, and ' passing in review ' the

units in a group of the first order is, in effect, nothing but

collating them with units of the time series, used as a catalogue.

Until the group of numbers became ' well understood,' as a con-

tinuous group, it was not available as a catalogue for continuous

groups; and accordingly in primitive attempts at cataloguing

such groups it is not employed. I cannot say historically when

it first occurred to anybody to employ it so ; but the first attempt

is popularly associated with the name of Descartes. He however

did not regard the question from quite so abstract a point of

view as I have done, and it will be worth while to go over the

ground again in relation to my theory.

The advantage of cataloguing groups of the first order by

means of numbers is that they constitute a group which we can

' carry in our heads,' so that we instinctively recognise its ' order

'

in the vulgar, discrete, sense of the word. But before we can

apply it to the cataloguing of continuous groups we must under-

stand its order in the extended meaning of the term. We must

be able to 'project' the number series, that is, to apply such

transformations to each of its units as will enable us to collate

any three with any other tlirce, but which shall then determine

uniquely what fourth is collated with any given fourth.
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43. It is evident that whatever transformation we apply

must not alter the order of the units in the discrete sense, though

it may be that not every possible transformation which fulfils

this preliminary condition would in other respects be suitable.

The most general transformation of this kind would in mathe-

matical language be described as ' taking a one-valued function

'

of each of the numbers. But a few preliminary considerations

will enable us to divide the business of ' taking ' this function

into stages, and so simplify the matter.

In the first place, if we call an unit a, in a group of the first

order, '1'; J, '2'; and c, '3,' then, if we want to call i, '
1

' instead

of a, we may call c, ' 2/ and a, ' 0.' This is obvious in the case of

discrete groups. But further, it is generally obvious that we
may always call any one unit by any number we please, by add-

ing or subtracting from each number in the series an appropriate

constant. The only units whose numbers will remain the same

in spite of this treatment, will be the units we have called oc

and — X

.

Or else if we wish to call a * 2
' instead of '

1
,' we may do so

by multiplying each unit in the series by 2, instead of adding

one to each unit. In this way we may call any unit by any new
number, except that the units numbered zero and + oc will

remain unaltered. By these two methods we can change the

numbers of any two units for any other two, and so we have

only to determine in addition a 'function' to change the number

of a third in an assigned manner.

44. To do this, let us proceed thus. Suppose the series of

numbers to be represented by the algebraical symbols a, /S, 7, S, e,

and so on ; the symbols being ' collated ' with the numbers, but

not employed to catalogue them alphabetically.

First subtract a constant number, say a, from each. Then

take a one-valued function F, which I may call the ' projective

function,' of each of the differences. Next subtract again a

constant number, this time F{^~a), from each. And lastly

multiply the number so derived in each case by a constant

number, h. The derived series of numbers is

h{F{o]-F{0-o^)]; 0; h{F{y~a)-F{^-a)};
h[F{B-a)-F{l3-a]}, etc.
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I may call this process projecting the series of numbers, for it

collates the units in the original series with the corresponding

ones in the derived series.

Now project the series all over again, using a diffeient

function, F' instead of F, and a different constant, h' instead of

h, if we prefer to do so
;
putting any three numbers a'/SV which

it is desired arbitrarily to collate with a yS 7 in their places,

respectively, in the process. They will be collated through the

two derived series as an ' intermediate section,' if we can identify

the numbers derived from them respectively.

The numbers derived from /3, /S' are already identical, both

being zero. The numbers derived from 7, 7' can be made so

by choosing the ratio h : h' suitably. And whatever ratio is

selected the numbers derived from a, a will be identical if F{0)

and F' (0) are both infinite. And now, if S' is the number

collated with 8, it is determined by the equation

F{8-a)-F{^-a) _ F'{B'-a.')~F'{0'-a')

F{ry-a.)-F{^-a)~ F'{Y-a')-F'{/3'-a')'

The only conditions which, so far, limit the functions i^'and F\
are that they shall be one-valued, and that they shall be infinite

for zero value of the argument. They need not necessarily be

the same function.

This ratio, which I may call k, is the relation between four

numbers, in a continuous series, which remains unaltered by

projection. It defines, in fact, their ' order ' in the continuous

sense. With a', ^', and y constantly collated with a, /3, 7, any

value of k determines two units B and 8', which are collated

together.

The particular projective function, F, to be adopted in any

case, will depend on the system of cataloguing. But where we

are dealing with rays of pencils of iU^)s catalogued all on one

principle, as in reversion, it will be the same for all.

45. Now suppose that the (continuous) order of the units

a, /3, 7, 8 is the same as that of a, /8, S, 7 (it cannot, of course,

be the order in which I have written the symbols). That is,

suppose we revert 7 into 8 with respect to (a, /S) as pivot and

equator. Then
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F[h-a)-F{^-a) _ F {ri-a.)-F[^-a)

F{y-a)-F{i3-a]~F{B-a.)-F{0-a)'
.: [F{S-a)-F{8-a)Y={F{j-a)-F{^-a)Y.

Therefore either F{y-a)= F{B-a) (i),

or F[8-a) + F{y-a) = 2F{^-a) (ii).

Now equation (i) would represent a ' singular ' reversion, for

only three units enter into it; and singular reversion is only

possible if we discriminate between antipodals. In this case

therefore 7 and S must be antipodal, namely the units in the

equator of the reversion, and equation (ii) would not be true

unless 13 were identical with one or other of these units. In

the alternative, that is if 7, 8 are not antipodals in the U system,

or in any case in any other system, reversion is represented by

equation (ii). We may say that ordinary reversion is always

represented by (ii), and that in the U system, where alone it is

generally possible, singular reversion is represented by (i). The

former case is given by k = — 1, the latter by /^ = + 1.

46. We may now investigate the series of numbers appropriate

to the various systems of cataloguing. In every case it must be

remembered that any one unit, or U^, in a f/,, may be catalogued

by any number. There is no reason why more than one number

should not be assigned to each unit, or U^, but to each number

there must unambiguously be assigned one unit, or U^, as the

case may be.

In the M system there is no distinction between any one

unit of thought
( UJ and another, and if we pass in review the

whole group, starting from one numbered, say zero, we shall in

the end come back to the same U^ ; and this time suppose we

number it s. If we pass the whole group in review again, when

we return to the initial unit we shall number it 2s, and so on.

If we start with any other U^, numbered a, when we come back

to it it will be numbered (a + s), when we get to it a second

time (a + 2.s), and so on. Hence (a+ns), where n is any positive

or negative integer, must be collated with the same U^ as a.

If now we perform the process of projection upon the series of

numbers so obtained, since (a + ns) represents the same U^ as a,

F [a -\- ns) must represent the same U^ as F (a). And, moreover,

the function of a plus anything but an integral multiple of s.
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must not represent the same U^ as function of a. Hence the

projective function, which in this case we may denote by M,

must be a periodic function with the single period s. Either

the tangent or cotangent would answer this condition, but since

it must be infinite for zero value of the argument, it must be

the latter. Hence

M[<T) = cot-a.
^ ' s

Similar considerations show that in the case of the U system

the projective function must also be periodic. But in this case

we have the anomaly that we can not always project three units

on to any other three—there is an ambiguity as to whether it

is in any case the unit we want or its antipodal, on to which

we have projected a given unit. In the cataloguing by numbers

the corresponding ambiguity must be that after projection we

do not distinguish between a fourth unit and its antipodal.

Hence in this case it may be that the projective functions for

an unit and its antipodal are identical. This we find to be the

case. For if t be the whole cycle, so that [a + nt] is collated

with the same unit as a, and if 7 be the antipodal of a, as we

pass in review the units from 7 to (a + 1) the antipodal of the

unit under review passes from a to 7. Hence

a + c — 7 = 7 — a or 7 — a=-.

And consequently the equation representing singular reversion

shows us that

v{e) = jj{6^^^

and as in the case of the M system we deduce

CA(^) = coty6>.

In the S) system the only two antipodal units in a JJ^ are those

in the equator. We must therefore be able to revert one of

these into the other with any pivot, by singular reversion.

That is, if we call them 7, S, we must have

^(7-a)=ASf(8-a)

for all values of a. Further, there must be no units in the

series of numbers beyond 7 and 8, in either direction. Hence
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7 and S must respectively be positive and negative infinity;

and as in addition *Si (o) = cc , we may put

where r is any constant number.

In the HI systems, as in the case of the S, we can have no

units in the series of numbers beyond those collated with the

boundary—at least any numbers which there are must for some
reason be held not to count. The easiest way of finding the

appropriate projective function is to deduce it from that of the

*S system. The boundary in either case is a C group whose

units, on the >S' system, are all collated together. Hence on the

S system they all have the same number. As in the S function

we have an arbitrary constant at our disposal it does not matter

what number we choose, so for simplicity I take unity. Hence,

if 4> b^ the number collated on the H system, -^ that on the /
system, with the unit collated with p on the S system, we must

have <^ and y^ both infinite when p is unity, and when p is zero

(^ must be zero, when p is infinite >/r must be zero. These con-

ditions are fulfilled by putting

0=plog^, .^ = ^log^,

p = tanh -^

,

p = coth -^
,

V q

H
{(f>)

= coth -<f), I (i/r) = tanh - 1^.

Now in reality either of these systems of numbers catalogue

the whole of the U gioup, for the / part is catalogued by the

imaginary numbers on the H system, and the H part by

imaginary numbers on the /. For symbolic purposes therefore

there can be no possible objection to the HI systems. It is

only when we try to give them real import that any difficulty

arises.

To transform from the S to the U or M systems as we have

done for the H and / it is clearly only necessary to write

p = tan^ 6 = tan - a.'^

t 8

47. On any system of cataloguing it is convenient, though
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not necessary, to assign the numbers so that the fundamental

reversions in the process of cataloguing shall be purely arith-

metical reversions, that is, that they shall be effected with

reference to zero as a pivot by a mere change of sign. By this

convention if yS be the unit collated with the equator in the U

system, and /3 — - that collated with its antipodal, also in the

equator,

And if 7 be the unit collated with Pj, or y^, and we move the

zero of the series of numbers to Pj by substracting 7 from each,

we must have

^-7= 7, .. 7 = 2^8-

In the M system, by similar reasoning, the {JJ^s on the

equator will be collated with + - those in the G^ with + -. In

the S> system those in the equator, as we have already seen, are

collated with + cc , and those in the G^ by this convention will

also be collated with + cc , that is, they will not be distinguished

from the units in the equator. In the H system the units in

the equator will be collated with the 'imaginary' number iir,

which will be collated with the origin in the 7 system. From

the point of view of pure logic 'imaginary' numbers are just

as good as ' real ' ones ; we might use them just as effectively

for cataloguing a library (for the use of mathematicians onlyj.

To the mathematician who employs numbers to catalogue a

collection on the H system, the / system will always be present

in imagination ; he will call it ' imaginary.' It is only when we

try to give real import to the term that ' imaginary ' comes to

mean ' not real.'

48. I have now laid the foundations of the science of the

Cataloguing of Continuous Groups; but before proceeding to

consider its applications I wish to impress upon you very

strongly that it is not geometry at all. It is not only not

metrical, and not spatial, but it is not even necessarily numeri-

cal I have shown how groups may be catalogued by the aid
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of the number series, but I have also shown how they may be

catalogued without it. Geometry, and also Arithmetic, are

developments in special directions, or rather special applications,

of a far more general or abstract theory, which Mr. Kempe calls

the theory of Mathematical Form, and which includes the

theory of cataloguing of both continuous and discrete groups,

with or without the aid of numbers. It is almost inevitable in

thinking of the theory of continuous groups, at least of those of

lower order than the fourth, that we should attach more or less

spatial import to the terms. If, however, I have succeeded in

my exposition, it will be clear that this spatial import is not

necessary to the logical validity of the arguments employed.

The ' experience ' upon which they depend is not experience of

* externality,' except in the somewhat ambiguous sense in which

Time is spoken of as a ' form of externality.'

49. I may further point out that I do not, of course, claim

any originality for the propositions I have proved, considered as

propositions in ' projective geometry.' The object of the exposi-

tion has rather been to show that they are not essentially

geometrical propositions at all. I accept Mr. Russell's authority

for saying the philosophical principles of Projective Geometry

required further elucidation, though I cannot accept his exposi-

tion as a further elucidation of them.
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PART III

But if it is clearly realised that the science of the cataloguing

of continuous groups is not per se geometry, I may go on to

show how it is related to the latter science. And this can, I

think, be done without prejudging the question whether space

' is ' or ' is not ' Euclidian.

Mr. Russell, after revelling in contradictions in a manner of

which only a modern philosopher could fail to see the humorous

side, arrives at the conclusion that we must " give every geo-

metrical proposition a certain reference to matter in general,"

and thus distinguish a point from a position. He might have

found this conclusion much more simply expressed in my
Foundations of Geometry* I gave as the implicit definition

of position, the two assertions " (a) A position may be conceived

to be indicated by a portion of matter, called a point, which is

so small that for the purpose in hand variations of position

within it may be neglected
; (6) But a position is not the same

thing as a point, for a point may be conceived to move, that is

to change its position, whereas to talk of a position as moving,

is a contradiction in terms."

I carried out the same idea by distinguishing between a

(material) line and a ' path,' between an angle, the concrete

measure, and an ' inclination,' the abstract relation. I propose

to adopt similar distinctions here ; for I could not, like a modern

philosopher, go on, after admitting that my definitions contained

" a fundamental contradiction." I must however point out that

I do not, and did not in my former treatise, use the term
' matter ' in an objective sense, any more than, I presume,

Mr. Russell does in the passage I have quoted. The geometry

I was discussing then, and which I am discussing now, is purely

subjective, or ideal, geometry.

It is obvious that the group of positions in a line is a group

of the first order, which we may, and habitually do, collate with

* Deighton Bell and Co., 1891,
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the time series directly. I imagine myself as a material point

passing along the line. The line may be conceived as open or

closed, and taken by itself I might, if it is closed, catalogue its

units on the M or U systems, or if open, on the H or S. So"'iar

it is obvious that the choice of system is arbitrary. But further,

if it is regarded solely by itself, there is no logical reason for

regarding it as open rather than closed. The distinction lies in

the fact that, in conceiving the line * in space,' I have already

catalogued its points by means of my conception of space as a

catalogue. This would prevent my passing in review from one

end of a terminated line to the other ; such a line must there-

fore be catalogued on the H system, if it is to be catalogued by

itself The conception of an unterminated but open line, if we

do conceive such, would, as we shall see presently, indicate that

we had adopted the S system of cataloguing in our conception

of space. The conception of a straight line has undoubtedly

the property that ' in general ' it is determined by two points,

that is, we conceive the positions in a straight line as a U^ of

positions, and those positions are the logical units of our

catalogue ; though, if it is an M catalogue, they are what I have

called (?7Js. Further, it will be easily admitted that the group

of positions in a surface is a group of the second order, and the

group of positions in a volume one of the third order. In a

closed or bounded surface, a closed line, or one terminating in

the boundary, divides it into two distinct parts, and in a

bounded volume a surface terminated in the boundary divides

it into two parts. And as we conceive three points not in a

straight line as in general determining a plane uniquely, the

positions in a plane form a U^. As, however, we do not con-

ceive any positions outside a group of the third order, as this

group is our whole collection of positions, there is 'prima fade
no point in calling our whole space a U^ rather than a G^.

Now, how do we ' collate ' our conceptual space ? We do

so by ' the method of superposition.' That is, we pass in review

the series of positions occupied by points in a line or surface,

which is supposed, in virtue of the axiom of congruence, " Es

existiren in sick feste Korijer" to remain identical with itself.

We do not, however, conceive the points to pass along straight

5
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lines which meet in a point—we do not collate by projection.

The line or figure in superposition moves, that is, changes its

positions, by either ' rotation ' or ' translation.' But if our space

is catalogued on the U or M systems these two movements are

identical in nature, if on the S system the only distinction is that

in translation the axis of the rotation is in the equator, and on

the H or I system that it is beyond the boundary, so that trans-

lation is an ' imaginary ' rotation. We may say, therefore, that

superposition is effected by one or more rotations, and in one

rotation the axis of rotation 'remains fixed,' i.e., is always collated

with itself, and the positions through which the other points of

the figure pass are C^s. In fact, collation by superposition is

collation by reversion. The locus of each point is a group of

positions of the first order, such that no three positions in it

are in a straight line. The further properties of a circle

—

which distinguish it from other conies—are due to the assump-

tion that something more than the order of the points in a line

remains identical as we move it about. Of this I shall say

more presently.

Now our conceptions of space are essentially egoistic, / am
am the hub of my own universe ; and it is in reality always in

relation to a position conceived to be occupied by myself that

I conceive space. And with reference to that position I

conceive it to be perfectly symmetrical. This leads at once to

the rejection of the J system as incompatible with our con-

ception of space; for from that point of view, as we have seen,

space would be regarded as symmetrical with respect to a plane,

but not with respect to a point. We look at space primarily

from the polar, not the cartesian, point of view. Now from the

polar point of view we may, if we please, look upon one of the

C groups, the locus of P^ say, as the section, instead of the

equator. That is to say, we may catalogue the rays of the

pencil of (Z7Js by the units or {U^)s in them in this Cj. In

the case of space in the same way we may catalogue straight

lines radiating into space in all directions from any origin by

the positions of points in a sphere with that origin as centre.

In this way we may obtain at once a catalogue of the rays,

without begging the question whether the rays themselves are
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catalogued on the M, U, S, or H system. It is clear that the

two points on one ray are related as antipodals, and that the

catalogue of the ' celestial sphere ' is on the U system.

The logical consequences which would flow from the

adoption of the U, S and H systems have been sufficiently

worked out by the meta-geometers, and they have further been

illustrated by actually cataloguing groups of points on various

surfaces in space, with or without the assumption of an axiom

equivalent to the axiom of congruence. In the illustrations of

two dimensional spaces by surfaces of constant curvature such

an axiom is assumed, though in the case of surfaces of negative

curvature it is not assumed in quite the natural sense. In

illustrations of three dimensional hyperbolic spaces the axiom

is, however, frankly abandoned. Nevertheless, Mr. Russell

regards these illustrations as necessary to " prove the possibility
"

of U and H spaces, and I shall therefore give a similar illus-

tration of an M space ; after which Mr. Russell must hold it to

be just as " possible " as the others.

Mr. Russell gives an example of what he holds to constitute

an objection to M geometry, the geometry of Klein's ' elliptic

space.* I will reproduce what he says in a form slightly altered

to suit my present purpose. Suppose I take a triangle, one

corner of which is one yard in front of me, one corner one yard

to the right, and the third one yard to the left ; and I move

this triangle, with tlie first corner and the middle point of the

opposite side remaining in a fixed straight line, ' round the

universe
'

; so that the corners to the right and left of me return

to where they were before. If ' the universe ' were a pencil of

rays grouped on the M .system, the result would be that the first

time the triangle came round its vertex would be behind me,

and I should have to move it round a second time in order to

get it in front of me again. Mr. Russell says this "seems like

an action of empty space
;

" and though I can not quite follow

his reason for rejecting this appearance, I quite agree with him

that it is not so. After what I have said about the M system

the analogy I am about to propose is obvious. Instead of the

triangle as we have conceived it, push the triangle a couple of

yards upwards into the air ; and for each corner substitute the
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straight line determined by my position and the corner ; for each

side substitute the plane determined by me and the side. Both

lines and planes so substituted are to be continued upwards and

downwards through my position, indefinitely. Now in order

that the lines representing the corners of the base may return

to their initial situation, it is only necessary that the plane con-

taining them should be related through two right angles. But

when this is done, the line representing the vertex will not have

returned to its initial situation. To bring all three into con-

gruence at once, we must rotate through four right angles.

And generally, just. as the points on a sphere illustrate the U
system, so the diameters of the sphere illustrate the M system

of cataloguing.

It might thoughtlessly be objected to this illustration that

after all it was not a genuine illustration ofM space, since lines

are not points. Now if the illustration is to be regarded as

showing that it is possible that we do catalogue space on the M
system, this objection is perfectly valid. Only, there are similar

objections to all the illustrations which have been given of U
and H spaces. The great circles on a sphere are not straight

lines, any more than the diameters of it are points. The
geodesies of a surface of constant negative curvature are not

rigid lines, though they are rigid against bending in the surface.

We have, in both cases, substituted new conceptions and called

them by old names. The same is even more obvious when, for

example, Poincard substitutes for ' distance ' the logarithm of a

certain anharmonic ratio. All these illustrations illustrate the

logical processes involved in meta-geometry, but they do not in

the least degree illustrate the psychological processes which

would be required to conceive space as non-Euclidian. The

question whether the space we conceive is Euclidian or not, is

not a logical question at all, but a psychological one. It can be

determined with certainty ; not indeed with the verbal certainty

of formal logic, but with the absolute certainty of direct intuition.

I have already attacked this question of subjective geometry in

my book on the Foundations of Geometry, and from the point

of view which I there took up I have nothing particular to add.

I showed there, upon what I still believe to be perfectly sound
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logical and psychological principles, that our subjective geometry

is Euclidian, and no other. It may, however, throw some light

upon what T still consider to be psychologically the fundamental

elements of our space-conception (position, and direction, con-

ceived as independent of each other), to bring the views I then

expressed into relation with the theory of the cataloguing of

continuous groups,

I have already pointed out that in the latter theory collation

by reversion corresponds logically to the method of superposition,

but that psychologically the axiom of mobility, or congruence,

implies more than this. The theory of cataloguing by reversion

would allow us to collate together points on an ellipse just as

well as points on a circle, in the rays of a pencil of straight lines

of the first order ; it would not even be necessary that the origin

should be the centre of the ellipse. The conception of distance

as a relation between the positions of points in a straight line,

which is unaltered when the straight line is moved so that the

points occupy new positions, is psychologically a different con-

ception from that of the order of the points. And consequently,

if we conceive this sort of relation between the positions of space,

space is no longer any kind of continuous group. I have already

shown that it follows at once, that it is not an / group. If this

were the only new psychological relation assumed between the

positions of ' empty space,' it would remain indeterminate

whether the conception was that of an M, U, S, or H group. ?\

But as a matter of fact we conceive another relation between

two positions besides distance, namely direction. It is commonly

said that this conception is not independent of the other, that

no meaning can be attached to the statement that the direction

from A to B is the same as the direction from C to D, unless all

four points are in one straight line ; or else, unless we assume

space to be Euclidian. This argument is logically sound, but

psychologically it is putting the cart before the horse. We do

attach a meaning to the statement, and that proves that our

space-conception is Euclidian, and no other. I need not repeat

what I have said elsewhere on this point, but will consider more

particularly some of the psychological absurdities to which the

statement that our conceptual space is non-Euclidian would
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lead us. I must first, however, point out one important philo-

sophical consequence of the psychological import of the two

conceptions of distance and direction, as relations between two

positions. It is that these elementary conceptions define not

only the form in which we conceive particular figures, but also

the form in which we conceive ' empty space ' as a whole. They

are independent, not only of each other, but of what Mr. Russell

calls the axiom of dimensions. Just as we might conceivably

have a different conception of direction, such, for example, as

would be applicable to an H or U group, so we might conceivably

have a different conception of the number of dimensions of our

' empty space,' without our other elementary space-conceptions

being changed. We might in this way conceive space as.four-

dimensional, and I believe that, psychologically, this change

would be much more easily effected than any other. In my
Foundations of Geometry, I even went so far as to express the

opinion that we might come to conceive a space of four dimen-

sions in the course of a single life-time. But I do not think it

would be possible for most men, probably not for any, to obtain

a new conception of direction in the same sense that they have

the Euclidian conception ; and philosophers in general seem to

be agreed (though they do not express their agreement in this

form), that it would be impossible to alter our conception of

distance. It is admitted that meta-geometrical spaces are

* Euclidian in their smallest parts,' and that therefore the

Euclidian conception of space would be applicable to small

figures, even if not to large ones. I am convinced that if we
should find the Euclidian conception which we have of space

inapplicable to large objective figures, the easiest way out of

the difficulty would be to try if we could not conceive material

space as a boundary in an * empty ' Euclidian space of four

dimensions. However, this sort of speculation has little practical

value, and I return to more important considerations.

The most obvious of them is found in the answer to the

question—Do we conceive a straight line to be open, or closed ?

The answer to this is indeed so obvious that very little attention

has been given to Riemann's spherical space, and still less to

elliptical, or monistic, in comparison with ' hyperbolic ' space.
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It was perceived that, logically, spherical space was as valid as

hyperbolic—that the one was just as a priori possible as the

other. That, however, spherical space has never been considered

to be a practical possibility—that, for example, no astronomer,

as far as I am aware, has attempted to measure large triangles

for excess, but only for defect, is due to an instinctive recognition

of the importance of psychological considerations, combined with

an erroneous ascription to them of objective validity. It has

indeed been urged that we really conceive only a small part of

a straight line, just as, objectively, we can measure only a small

part of it; and that beyond the part we conceive it might return

and close on itself The answer, of course, is that the straight

line in our conceptional space is what we conceive it to be, and

nothing else. If I imagine a straight line which is not closed,

to be produced and then to become closed, I have altered my
original conception, and the produced line is no longer * straight

'

in the sense in which it was before. Moreover, I conceive shape

to be independent of size, and to say a closed line is infinitely

great does not alter my conception of its shape in the least

As, however, this may be held to beg the question at issue, for

it has been noted that Euclid's disputed axioms might be

deduced from the postulate that shape is independent of size,

I will waive this point, and examine some of the further

consequences of assuming that a straight line may be closed.

If I conceive two straight lines in a plane, each of them

perpendicular to a third, it may be shown by the method of

superposition that the figure is symmetrical with respect to the

third line ; that is, that the other two must intersect in both

directions from the third line, or in neither. Now, as far as I

conceive the two straight lines, they certainly do not intersect

—

I should not call them 'straight' if they did; and to say that

the straight lines which I conceive intersect somewhere else,

where I do not conceive them as intersecting, is to talk nonsense.

Subjectively, therefore, I hold that Euclid was perfectly correct

in saying that parallel straight lines do not intersect at all. But

as long as we are admittedly only talking symbolically it is quite

permissible to talk of parallel straight lines as intersecting ' at

infinity
'

; that being a locality which it is understood that we
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do uot conceive at all. In symbolic reasoning cc is no better,

and no worse, than any other symbol, if it is consistently used.

But as soon as we attempt to give any real subjective import to

such an expression as 'an infinite distance' or 'points at infinity'

we find we are unable to do so ; they remain purely symbolic

terms. This might be a serious drawback to our space-conception

were it not compensated for by the fact that we conceive shape

to be independent of size, and that consequently we may discuss

what happens at home without troubling ourselves about what

might or might not be said to happen 'at infinity.' It is as

easy to conceive the motion of the solar system through space,

as that of a vortex ring constituting an atom of matter, for we
may discuss the shape of figures independently of their sizes.

But we can not in any true sense be said to conceive ' points at

infinity'; and though to talk of such points is not logically

false, " non est geomietria." Geometry used to be regarded as

the most perfect of sciences, because its terms could all be ' well

understood
'

; and old fashioned geometers took care so to

exhibit their proofs that this should always remain so. The

modern habit of employing purely symbolic arguments, and still

calling the science geometry, is calculated to lead to serious

logical misconceptions—if indeed it does not indicate that they

exist already. I know some people who believe that the

* asymptotes of an ellipse,' or the ' circular points at infinity

'

really exist somewhere, only that our drawing boards are not

quite big enough to hold them. It ought to be clearly under-

stood, that when we begin to talk about what happens ' at

infinity ' we have left the ground of pure geometry and have

launched forth into abstract analysis.

However, the way of abstract analysis is a good way of

acquiring knowledge, if it is properly employed, and if we are

careful not to use our terms inconsistently. It is perfectly

legitimate to say, symbolically, that two straight lines with a

common perpendicular intersect ' at infinity '—if we say that

they intersect in both directions from the common perpendicular.

But it is not permissible to speak of them as intersecting on a

straight line, or plane, 'at infinity,' as is so often done. For,

either we must say that the intersections in the two directions
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from the common perpendicular are one and the same point ' at

infinity,' or that they are two different points. If we say

they are the same point, then the straight lines are regarded

as limiting cases of closed curves, and if we transfer our

attention to the point ' at infinity ' where they intersect, we see

at once that we are regarding space as a limiting case of one of

Klein's elliptic spaces, or as I should put it, that we are cata-

loguing positions on the M system, with infinity as the period

of our projective function. In this case the locus of the inter-

sections of straight lines in a plane which have a common
perpendicular within a finite distance of the origin, would be

the infinite plane itself, and not a straight line in that plane,

'at infinity.' Similarly the locus of the intersections of such

lines in space would be infinite space itself, and not a plane 'at

infinity.' If on the other hand we say that two straight lines

which' have a common perpendicular within a cognisible distance

of us, i.e., the parallel straight lines of Euclidian geometry,

intersect in two distinct ' points at infinity,' these two points

are uniquely related as antipodal points, and their locus is, not

a plane in the Euclidian sense of the term, for the points in a

plane have no antipodal points, but what may appropriately be

called a great sphere ' at infinity.' To use the same term for

this great sphere and an Euclidian plane leads to the

' antinomies.' In this way of looking at it we regard Euclidian

space as the limit, not of a Reimann's or spherical space, but of

what I have called an S group of the third order ; and it has

this great advantage—that it does not involve saying that straight

lines are closed line?, and therefore it constitutes the best sym-

bolic representation of our space-conception. We do as a

matter of fact conceive, not a boundary to our space, but a

' celestial sphere ' ever so far off, beyond which we do not

trouble ourselves to conceive anything. The points in which

we conceive any straight line to reach this celestial great sphere

are antipodal, and not identical, points. We can not, as I have

said, be truly said to conceive this great sphere, but we can,

quite naturally and easily, talk about it ; and so avoid certain

latent antinomies which surely we must all have suspected in

the ' plane at infinity.'
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It is worth while in this connection to point out an arith-

metical error Avhich is sometimes made, from a fancied

geometrical analogy. It is sometimes thought that positive

and negative infinity are arithmetically indistinguishable. We
can not indeed say that the difference of two infinites is zero,

unless we know by what process the limit was reached in each

case. But even if we distinguish the two infinities by suffixes

and write

we can add to both sides of the equation identically the same

infinity as the second, and so obtain, unambiguously, the result

—

+ cc, + x^ = 0,

that is, the sum of two positive quantities equated to zero;

which is a contradiction in terms.

We may of course collate + cc and — a; with the same unit

in a group of the first order, just as well as we may collate

+ TT and — TT. But this is arithmetically equivalent only to

equating a function of infinity with the same function of minus

infinity, and it only shows that the function is a periodic one.

The geometrical equivalent of this is the fact that I have

already noted, that if we say two straight lines which have a

common perpendicular intersect in one point only at infinity,

then the straight line is a limiting case of a closed curve. It is

of course only if we regard the straight line as open that the

distance measured along it between two positions is unam-
biguously determined, or that it can be unambiguously

represented by the difference of the numbers collated with the

positions. It is therefore only in this case that we can regard

the positions and numbers as identified, and not merely collated.

In my Foundations of Geometry, Part III., I have shown
that if we take the axiom of mobility in its natural sense, that

is, that neither the size nor the shape of geometrical figures

depends on their position in space, no mere extension of the

number of dimensions would allow us to conceive space as an

hyperbolic (though we might conceive it as a spherical) boundary

group in a higher group. The ' possibility ' of hyperbolic space

in this sense depends upon our ignoring changes of shape which

do not affect ' sizes,' as determined solely by measurements in
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space. Though this view is of course logically permissible, I

can not admit that it represents our actual conception of ' free

mobility.' I, however, also quoted a ' proof of Euclid's Xlth

Axiom,' by a M. Vincent, which deserves more notice than it

has hitherto received. I will briefly reproduce it here. I have

already shown that we must say that two straight lines in a

plane which have a common perpendicular either intersect each

other on both sides of that perpendicular, or on neither. The

proof is based on the latter assumption, and proceeds as follows.

Two straight lines at right angles in a plane divide the whole

plane into four equal quadrants. If we successively cut off from

one of these quadrants infinite ' half-bands,' by straight lines

through equi-distant points along one of the arms of the

quadrant, and at right angles to it, then these half-bands can

be shown by the method of superposition to be all equal to

each other. But the remaining portion of the quadrant can be

shown, by superposition, to be still equal to the original

(quadrant. Hence, we must say, that the area of a quadrant

is infinitely great in comparison with that of any half-band, or of

any finite number of half-bauds. But a sector containing any

finite angle is numerically comparable with a quadrant, and

therefore infinitely greater than any half-band. Hence, if from

the vertex of the original quadrant we draw a straight line

making any finite angle with the perpendicular line, it must

intersect the opposite side of any half-band.

Now the only objection I have ever heard urged against this

proof is to the effect that it is a kind of sacrilege to talk about

infinities in this way. No doubt it is very dangerous for incom-

petent persons to have anything to do with infinities, as it would

be for anyone but a trained metaphysician to attempt any

further determination of the absolute. But trained mathe-

maticians are accustomed to deal with infinities every day, and

are quite competent to determine whether this argument is

sound or not. There need, however, be no doubt about the

question, for it is easily shown that it is not really inconsistent

with Lobatchewsky's geometry at all. It depends on the

assumption, which is psychologically justifiable, that space is

' unbounded
'

; and meta-geometers admit that hyperbolic space
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is not unbounded. The importance of M. Vincent's proof is

that it brings home to us the fact that this peculiarity of hyper-

bolic space has a psychological, as well as a logical, significance.

Lobatchewsky may push his ' boundary ' to infinity, but he can-

not thereby push it out of sight altogether ; its influence is still

felt at home. We cannot regard space as hyperbolic, and

continue to assert the axiom of mobility in its ordinary sense

(even if we agree to neglect alterations of shape, such as occur

in figures moved about on a surface of constant negative

curvature, merely because they are not accompanied by altera-

tions in the dimensions of the figures as measured along geodesies

of space).

There is one last point, before I leave the subject of conceptual

space, which I particularly commend to the consideration of

Mr, Russell. It is that neither the principles of projective

geometry, nor the principle of duality, as enunciated by him,

are true without reservations of any one of the systems of

geometry which he regards as 'possible.' They, strictly speaking,

apply only to the M system, to Klein's elliptic space. In the

S system, or in Euclidian geometry, the reservations are so

slight that they may perhaps fairly be considered as merely

verbal. But still there are exceptions, though it will be

sufficient to point out the more important anomalies in the

U and H systems, and leave those in the S to be inferred

from them. In the U system it is not true that any three

units in a U^ can be collated with any other three, or in

geometrical language, that any three collinear points can be

projected on to any other three. We can, in general, only

project two on to two, and the third on to the third or its anti-

podal. And in the H system it is not true that the order of

units in a U^ is unaltered by projection ; unless we take into

account units beyond the boundary. That is, if we project

points in one 'straight line' in hyperbolic space on to another

straight line, there may, in the second, be no points at all

corresponding to certain points in the first. It cannot therefore

be said that the second section is ' projectively indistinguishable

'

from the first, unless we choose to recognise ' imaginary ' points

in the second section. But, if we do that, the raison d'etre of
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hyperbolic geometry is removed. We are only calling things

by different names, and not really conceiving anything different

from Euclidian space at all,

I submit that the fact that Mr. Russell has overlooked these

exceptions to the applicability of projective geometry to meta-

geometrical spaces, is due to the fact that he never really

conceived them as such ; that, in fact, his argument, so far as it

is valid, is purely symbolic ; and, in so far as it is invalid, it is

.so because it is tainted with spatial, and more particularly with

Euclidian-spatial, prejudices.

I may mention, for the benefit of those who have not made

a study of projective geometry, that the above is not the only

geometrical application of the theory of continuous groups. In

order that the positions of points in them may be regarded as

forming {U^s it is not necessary that lines should be 'straight,'

as long as they are drawn according to some rule which enables

us to consider space as a pencil of such lines with any origin,

the lines being in any case determined uniquely by the origin

of the pencil and one point in its section. The familiar illus-

tration is the system of geodesies on a surface of constant

curvature. The geodesies on any other surface would not do,

for here, although any particular geodesies drawn might not have

more than one or two common points, yet two points would not

uniquely determine any one of them. The difficulty in the case

of non-congruent surfaces is that we have no general rule by

which unique groups of positions can be determined. But it

may easily be shown that it is theoretically always possible to

determine various systems of them. If we stretch an elastic

membrane tightly over any congruent surface, say a plane or a

sphere, and draw on it projective diagrams, in straight lines or

great circles, and then remove the membrane and stretch it

again over any other surface whatever, say an ellipsoid or an

egg, the projective properties of the figures remain, and the

lines, or as many of them as have been drawn, are unique

boundaries. Similarly we might imagine a three-dimensional

diagram, drawn on a lump of elastic jelly, and we might then

screw up the jelly, or stretch or compress it, into any .shape

whatever, so long as we did not tear it anywhere, and our pro-
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jective diagram would lose none of its properties, for the order

of the points would be unaltered. It would of course be easy,

without making use of an elastic jelly, to draw such projective

diagrams ' free hand,' provided only that no two lines in the

diagram had more than one common point, and that the

diagram was only to contain a finite number of lines. The

necessity for some rule, by which to draw the lines, would only

arise if we wished to draw an infinite number, that is a con-

tinuous series, of them. In the case of surfaces of constant

curvature we have such a rule, if we make the lines all

geodesies. But it would be an error to suppose that the theory

of continuous groups applies only to surfaces of constant

curvature, or only to geodesic lines upon them.

As in our space-conception we have a well-understood

example of a continuous group of the third order, catalogued

by unique boundaries, we are able to use it as a catalogue for

other continuous groups of the second and third order, and so

to arrive at an intuitive perception of the relations among units

of such groups. This is what we do when we assist our

imagination by 'graphic ' representations of statistical and other

results. In the same way, if we admit the objective validity of

our space conception, we may employ ' graphic ' methods to solve

statistical and other problems which involve two or more

variables, whether these variables are in themselves spatial

quantities or not. It is worthy of note that the word 'graphic'

has acquired almost the same connotation as ' well-understood,'

simply because we regard our space conception, not without

truth, as ' well-understood.'

The questions which remain to be discussed are these—Can

we consistently catalogue the positions of material points in the

way I have described, collating them on the assumption that

there is an invariable relation of distance between the positions

of any two points in a rigid body, and that there is a relation

of direction between any two positions ? and if not, would it be

necessary to alter our space theory, or might not the adjustment

be made more simply by altering some of our physical hypotheses?

To these (]uestions I now proceed, but if ever I use ordinary

language, and say that material space ' is ' or ' is not ' Euclidian
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it must be understood that I do not intend thereby to institute

any comparison between material and conceptual space. To
perceive a material body is not to compare it with our conception

of it, nor is it only to believe that it exists ; but it is to intuitively

catalogue its points by means of our space-conception, and to

believe that method of cataloguing will be satisfactory. To say

the material body occupied a material space which was 'like'

our conceptual space, would lead to ' antinomies,' and therefore

I avoid doing so, whenever I do not forget myself.

Now the fact that we have an instinctive conception of space,

and that geometry is psychologically distinguishable from such

hypothetical theories as, for example, the wave theory of light,

proves that for the ordinary purposes of every day life the

ordinary theory of Euclidian geometry is, and has for generations

been, good enough. But more than this ; since the most far-

reaching and exact calculations of geodesy and astronomy have

been made on the Euclidian hypothesis, and have turned out

satisfactorily, the theory has already been tested more severely

than probably any other ; and from the point of view of Natural

Science there is nothing more to be done than to accept it fully

and frankly.

But from the point of view of philo.sophy it is not so much
the fact of the certainty which is of interest, as the epistemo-

logical grounds upon which it is based. I wish to show that its

certainty does not differ in hind, however much it may differ in

degree, from that of any other hypothesis of physical science.

Mr. Russell makes a great point of the superior certainty of

the 'axiom of dimensions' over that of, say, the law of gravitation.

The supposed superiority is however based on a misconception.

The certainty that conceptual space has only three dimensions

depends of course on utterly diflferent grounds from that of the

law of gravitation, but the certainty that our three-dimensional

conception is objectively sufficient, is only the same in kind,

even if superior in degree to that of any physical ' law.'

Astronomers used anxiously to watch any new comet, to see

whether it 'obeyed the law of gravitation' or not; and if they

have now given up doing so, it is because they find it easier to

explain any apparent discrepancies by hypotheses about meteor
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streams, and what not. In precisely the same way, Zollner

anxiously watched the medium Slade, and came to the conclusion

that his strips of hide did not 'obey the law of three dimensions,'

though perhaps other people might find simpler hypotheses to

account for the results. Zollner was however logically justified

in assuming that the fact that a three-dimensional space

hypothesis had been found sufficient to explain all previously

observed phenomena, does not prove that it will account for the

next phenomenon to be observed, any more than the fact that

the law of gravitation explains the movements of the planets,

proves that it will also explain the movements of the next new

comet. There is, moreover, no sense in saying that material space

' is ' or 'is not ' three-dimensional, rather than n dimensional.

All we can say is that the assumption of three independent

directions has hitherto sufficed to catalogue points in space

satisfactorily, and that you may safely ' bet your bottom dollar

'

that it will continue to do so.

Besides the ' axiom of dimensions,' Mr. Russell recognises

two others, which he calls the 'axiom of mobility' and the

' axiom of distance,' and he compares the latter with the ' axiom

of the straight line ' in projective geometry. I cannot however

help thinking this classification implies some confusion of

thought ; for it is the axiom of mobility which he says gives us

our criterion of spatial equality, and therefore our measure of

distance, and which moreover serves to define a straight line in

the sense in which that term is used in projective geometry.

The term ' axiom of mobility ' seems to me unfortunate in

another way—the axiom is not to the effect that it does not

require force to move figures about in space ; that would be a

dynamical, not a geometrical, axiom. It may be easy or difficult

to move figures in space ; all that the geometrical axiom asserts

is that when moved they do not, ipso facto, change their dimen-

sions. But whatever we call the axiom, the effect of it is to

enable us not only to compare objective distances, but to con-

struct objective straight lines and planes, independently of any

physical hypotheses about the nature of light. The assumption

of this ' axiom ' is equivalent, in my theory of cataloguing of

groups, to the two assumptions (1) that we can catalogue
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positions of material points as a continuous group by means of

unique boundaries (straight lines and planes), and (2) that we

can collate the positions by reversion in the way I have described

above, by assuming an invariable relation of ' distance ' between

the positions of any two points in a rigid body. This second

assumption, therefore, defines our method of cataloguing as either

M, U, S, or H. The further axiom or hypothesis required to

define ' material space as Euclidian ' may fitly be called the

hypothesis of direction, namely that there is a relation of

direction as well as of distance between the positions of any

two points of a material body ; or we may call it the axiom of

the independence of shape and size. It is this latter hypothesis,

or axiom, which meta-geometers have seen fit to doubt, but it is

a logical error to suppose that no physical experiments could

throw, a doubt upon the axiom of congruence, or that it can be

known, independently of experience, that a space hypothesis

built upon that axiom must fit the facts. It may be that under

any conceivable circumstances it would be simpler to reconcile

our explanations of the facts by altering some other hypothesis,

rather than this one, but this is a matter of practical convenience,

not of logical necessity.

I can best show that this is so by proposing a single experi-

ment to test the rival theories of objective geometry, which

will at the same time test the axiom of congruence. Mr. Russell

has pointed out that even if we found that large stellar triangles

bad a measurable ' defect,' we should probably attempt to explain

it by modifying our hypotheses as to the propagation of light

through interstellar space. It would require a much more

fundamental re-construction of our physical conceptions to

explain away the results of the experiment I am going to

propose; if they were not in accordance with the predictions

of Euclidian geometry. Whitworth's method of manufacturing

true planes, or ' surface plates,' depends solely on the objective

axiom or hypothesis of congruence ; and as the intersection of

two such true planes is a straight line, it enables us to construct

a series of material points occupying positions which form an
' unique group of the first order '—if we assume it to be possible

to catalogue the positions of material points by the method of

6
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unique boundaries at all. Suppose then that I construct three

such material ' straight edges,' each one yard long, and arrange

them to form a triangle ABC. I then, by the same method,

construct another straight edge, say one foot long, and by it

measure off AD, AE along AB and AC, each equal to one foot,

and place my one-foot rule with one end at D, and try whether

I can at the same time place the other end, E', at E. No
a 'priori reasoning can predict with certainty whether E' will

fall upon E, or whether it will fall short, or over. The hypothesis

of congruence, if objectively valid, tells me that whichever way

it falls in one part of the universe it will fall the same way in

any other, or at any other time. If, therefore, it fell short in one

place and over in another, or short one day and over the next,

we might indeed try to explain this by altering physical

hypotheses, but it might conceivably be so difficult to frame

a physical hypothesis to account for all the experiments, that

we should in the end abandon the axiom, ' Es existiren in sich

feste Korper,' as objectively valueless. But meta-geometers

draw a yet more far-reaching conclusion from this axiom. They

can, namely, calculate the exact amount by which E' will fall

short of, or over, £* in the case of triangles of any linear dimensions

whatever, if they are given the amount it falls short, or over, in

one particular case. This is a perfectly legitimate deduction

from the axiom, or hypothesis, of congruence, and it shows that

we have a yet more searching test of the validity of this

hypothesis, in that from the measurement of one particular

CMC we could predict the measurement in any other. The

objective application of the axiom of congruence is therefore

empirical—in exactly the same sense, if not in quite the same

degree, as the ' law of gravitation ' is. And this is where, I

believe, that Mr. Kussell's idealistic bias has misled him.

He calls the axioms of projective geometry ' wholly a priori^

by which he means something more than that they are neces-

sary merely in order to establish the conclusions of a particular

science. He says that they riiust be true of 'any form of

externality,' and that ' without them experience would be

impossible.' Whatever qualifying or minimising explanations

may be found in the rest of the book I am sure his readers
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will take this to mean that, in his view, we may apply either

Euclidian or meta-geometrical calculations to practical space-

measurements, with something more than empirical confidence.

Indeed, he says distinctly that the empirical element in geometry

"arises out of the alternatives of Euclidian and non-Euclidian

space "
; by which of course he understands Euclidian, spherical,

or hyperbolic space. Now I have shown how these alternatives

may be tested, not only as against each other, but as against non-

congruent geometries, without any reference to light-theories.

The result of one such test can not, even according to Mr. Russell,

be predicted on a 'priori grounds. But the test once made with

sufficient accuracy, the empirical element, according to Mr.

Russell, is decided once for all. We could predict from one

experiment exactly how far E' would fall short of, or over, E, in the

case of any triangles, whenever or wherever measured ; the

only possibility of failure of our prediction lying in the pos-

sibilities of inaccuracy in our first experiment. Does Mr.

Russell really believe that it is, on a p^'iori grounds,

impossible that we should have such an experience as that, say,

in England E' should always fall short of E, and in Germany
always fall over? Or is it impossible that the distance EE'
should be any other function of the linear magnitudes of the

triangles than those assigned by spherical or hyperbolic

geometry ?

There is of course one way by which Mr. Russell, or any

idealist, might seek to evade this question. He might say that

as a philosopher he had nothing to do with actual physical

measurements, that he recognised no reality beyond subjective

reality, and never intended his theories to have what I call

objective validity. But, if so, Mr. Russell has failed to achieve

the object he set himself in the Introduction to his book. He
is still on the horns of the dilemma that ' none but a madman
would throw a doubt on the validity of geometry, and none but

a fool would deny its objective reference.' He has still to

explain why practical men rely on the validity of Euclidian

geometry, and, if he thinks them fools for doing so, why it is

that predictions made on the strength of it always turn out true,

within the limits of experimental error.
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This is the test by which I proposed at the commencement
of this paper to distinguish between realistic and idealistic

theories of philosophy. It may be that the distinction is in

reality only verbal : Mr. Muirhead, for example, when I read my
paper on Natural Realism before this Society, called me an

idealist, and I called him a realist in reply. It may even be

that when idealistic philosophers talk about the absolute they

really mean something, which, if only I could learn their

language, I should recognise as something I have long been

familiar with. But even modern philosophers are ordinary

human beings in private life, and if this is the explanation of

their theories they must know enough plain English to be able

to translate them into ordinary language. There are of course

plenty of philosophers who do use plain language, such as Locke,

Mill, or even Herbert Spencer. And if T do not agree with

their views it is easy to trace where, in my opinion, they have

gone wrong. Though I may hold their theories to be erroneous,

they are perfectly intelligible. But with Idealism in its modern

form this is not the case. Modern philosophers talk the

language of genuine Idealism ; but instead of frankly abandon-

ing its errors they alter the meanings of its terms, much, or

little, according to the force of the criticisms directed against

them. The consequence is that to attack them is like punching

a bolster
;
you may make a dent, but soon after your back is

turned it will bulge out to its original shape again. If anyone

here can follow me in my theory, and agree in the conclusions I

have reached, I shall hail him with pleasure as a natural realist

;

only in that case I must really beg him finally to sever any

connection he may have had with a 'priori philosophy. If on

the other hand he thinks there is a logical necessity which

makes it impossible that triangles should have an excess in

England and a defect in Germany—then I shall know what to

think of him, as a philosopher.

EDWARD T. DIXON.
Caubbidoe,

August, 1897. _
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