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PREFACE.

"TN this tract only the outlines of the subject are dealt with.

Accordingly I have endeavoured to avoid reasoning dependent

upon the mere wording and on the exact forms of the axioms (which

can be indefinitely varied), and have concentrated attention upon

certain questions which demand consideration however the axioms are

phrased.

Every group of the axioms is designed to secure the deduction of

a certain group of properties. For the most part I have stated without

proof the leading immediate consequences of the various groups.

Also I have ignored most of the independence theorems, as being

dependent upon mere questions of phrasing, and have only investigated

those which appear to me to embody the essence of the subject;

though, as far as I know, no formal line can be drawn between these

two classes of theorems.

But there is one group of deductions which cannot be ignored in

any consideration of the principles of Projective Geometry. I refer to

the theorems, by which it is proved that numerical coordinates, with

the usual properties, can be defined without the introduction of

distance as a fundamental idea. The establishment of this result

is one of the triumphs of modem mathematical thought. It has been

achieved by the development of one of the many brilliant geometrical

conceptions which we owe to the genius of von Staudt. The definitions

of distance and of congruence, and the proof of the existence of groups

of ' congruence-transformations,' are reserved for a subsequent tract
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upon Descriptive Geometry. But these questions are dependent upon

the previous introduction of numerical coordinates.

For a full consideration of the various logical and philosophical

enquiries suggested by this subject, I must refer to Mr Bertrand

Russell's Principles of Mathematics. I need hardly say that the

formal references in the sequel do not exhaust the extent of my

obligations to him.

A. N. W.

Cambridge,

October, 1906.
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CHAPTER I.

FUNDAMENTAL CONSIDERATIONS.

1. The present tract on Projective Geometry is designed as

a supplement to an advanced school course of Greometry. It is also

meant to serve as an introduction to a detailed study of the various

questions connected with special systems of projective axioms. In

conformity with these objects an elaborate study of one special system

of axioms is not undertaken. Such a system is given here : it serves

as an example, and also as a text, upon which is based a discussion of

the various leading ideas which have to be taken account of in any

system of Geometrical axioms. It is hoped that a student, who is

acquainted with the discussion here given, will be able at once to

recognize the relation to the subject as a whole of the various detached

memoirs upon it.

A succeeding tract will deal upon the same plan with Descriptive

Geometry, including Ideal Points, Congruence, and Distance. None of

these topics are considered in the present tract which ends with the

introduction of numerical coordinates into Projective Geometry.

2. Geometry, in the sense in which it is here considered, is a part

of Pure Mathematics, and like all such sciences it is composed of

Definitions, Axioms, Existence Theorems, and Deductions. Here
' Definition ' will always be used in the sense of ' Nominal Definition,'

that is, as the assignment of a short name to a lengthy complex

of ideas. Accordingly, in this sense, the definitions are no essential

part of the subject. The geometrical axioms are statements about

relations between points ; but they are not statements about particular

relations between particular points. The class of points and their

relations are not otherwise specified than by the supposition that

the axioms are true propositions when they are considered as referring

to them.

w. 1



2 CHARACTERISTICS OF PURE MATHEMATICS [CH. I

Thus the points mentioned in the axioms are not a special

determinate class of entities ; but they are in fact any entities what-

ever, which happen to be inter-related in such a manner, that the

axioms are true when they are considered as referring to those entities

and their inter-relations. Accordingly—since the class of points is

undetermined—the axioms are not propositions at all : they are

prepositional functions*. An axiom (in this sense) since it is not

a proposition can neither be true nor false. The Existence Theorem

for a set of axioms is the proposition that there are entities so inter-

related, that the axioms become true propositions, when the points are

determined to be these entities and the relations between points to be

these inter-relations. An Existence Theorem may be deduced from

purely logical premises ; it is then a theorem of Pure Mathematics ; or

it may be believed as an induction from experience, it is then a

theorem of Physical Science. There is a tendency to confuse axioms

with existence theorems owing to the fact that, rightly enough,

Geometry in its elementary stages is taught as a physical science.

Some authors term the axioms 'definitions' of the undetermined

entities to which they refer. The enunciation of axioms is then said to

be the process of 'definition by postulates.' There is no objection

to this phraseology, so long as it is clearly understood that in general

—

and certainly in Geometry—the axioms do not characterize one unique

class of entities (the points) ; but that many—indeed an indefinite

number—of determinations of the class of points are possible,

consistently with the truth of the axioms t.

The Deductions are the ordinary propositions of Geometry. It is

habitual—and convenient—to enunciate these propositions in an

inaccurate abbreviated form. The true form is ' Such and such axioms

respecting points imply such and such conclusions
'

; but in practice

the protasis is always omitted. Thus instead of 'Such and such

axioms imply that the angles at the base of an isosceles triangle are

equal,' we find, 'the angles at the base of an isosceles triangle are

equal.' The deductions do not assume the existence theorem : but if

the existence theorem is untrue, the protasis in the deduction is false

whatever entities the points are determined to be. The proposition is

then true but trivial.

But if we abandon the strictly logical point of view, the definitions

—

* Of. Russell, Principles of Matheviatics, for a complete exposition of this

whole question, especially § 13 and Chapter I, and § 353.

t Cf. RuBsell, Principles of Mathematics, § 108.
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though in form they remain the mere assignment of names—are at

onc« seen to be the most important part of the subject. The act

of assigning names is in fact the act of choosing the various complex

ideas which are to be the special objects of study. The whole subject

depends upon such a choice. Furthermore, what is in truth an

alteration of the axioms and deductions may present itself in practice

as an alteration of the definitions. For example, if the axioms

involving the word 'plane' are left unaltered, while the definition

of ' plane ' is changed, the axioms are in effect altered.

There is a gain in the economy of the material employed when the

number of undetermined fundamental classes, such as points and

straight lines, is reduced to a minimum.

The requisites for the axioms are various. They should be simple,

in the sense that each axiom should enunciate one and only one

statement. A simple axiom is not necessarily easy to apprehend. The

total number of axioms should be few. A set of axioms must be

consistent, that is to say, it must not be possible to deduce the

contradictory of any axiom from the other axioms. According to the

logical 'Law of Contradiction,' a set of entities cannot satisfy in-

consistent axioms. Thus the existence theorem for a set of axioms

proves their consistency. Seemingly this is the only possible method

of proof of consistency. But the only rigid proofs of existence

theorems are those which are deductions from the premises of formal

Logic. Thus there can be no formal proof of the consistency of

the logical premises themselves. This is only one instance of the

absolute distinction between the premises of Logic, which are necessary

for reasoning itself, and the axioms of various mathematical subjects,

such as Geometry or the Theory of Magnitude, which occur as

prepositional functions in the hypotheses of the deductions of these

subjects. These deductions are redeemed from triviality by the belief

in the existence theorem for the axioms in question, which is arrived at

by formal reasoning or by some vaguer method. Some mathematicians

solve the difficult problem of existence theorems by assuming the

converse relation between existence theorems and consistency, namely

that, if a set of axioms are consistent, there exists a set of entities

satisfying them. Then consistency can only be guaranteed by a direct

appeal to intuition, and by the fact that no contradiction has hitherto

been deduced from the axioms. Such a procedure in the deduction of

existence theorems seems to be founded on a rash reliance on a

particular philosophical doctrine respecting the creative activity of the

1—2



4 DEFINITION OF GEOMETRY [CH. I

mind. But apart from its logical justification the procedure is in

practice often wise ; since simple axioms which appear to be consistent

probably are consistent, and as far as we know existence theorems can

probably be found for consistent axioms. Accordingly it is not well to

be hampered in the initial development of a new subject by the lack of

the existence theorem and of the attendant proof of consistency.

Practically all the existence theorems of Geometry are derived from

developments of the theory of number, namely, of integral numbers, of

rational numbers, of real numbers, and of complex numbers. It

is widely believed that an inductive proof can also be derived from

Physical Science.

A set of axioms should be independent, that is to say, the modified

set found by omitting any axiom and by adding its contradictory

should be consistent. Thus, according to what has been said above, the

proof of the independence of a set of axioms is in fact the proof of the

existence theorem for the modified set.

It will be recognized that the really essential logical requisites

respecting the foundations of a mathematical subject are that the

axioms should be consistent, and that their existence theorem should

be proved. Also, owing to the Law of Contradiction, both requisites

are secured by the proof of the existence theorem. All the other

desiderata—important though they be—are merely logical elegancies,

and an excessive insistence on them may do harm in checking the

production of creative ideas in the subject.

3. Geometry, in the widest sense in which it is used by modern
mathematicians, is a department of what in a certain sense may
be called the general science of classification. This general science

may be defined thus : given any class of entities K, the subclasses of

K form a new class of classes, the science of classification is the study

of sets of classes selected from this new class so as to possess certain

assigned properties. For example, in the traditional Aristotelian

branch of classification by species and genera, the selected set from the

class of subclasses of ^STare (1) to be mutually exclusive, and (2) to

exhaust K\ the subclasses of this set are the genera of K\ then each

genus is to be classified according to the above rule, the genera of the

various genera of K being called the various species of K\ and so on

for subspecies, etc. The importance of this process of classification is

obvious, and is sufficiently emphasized by writers on Logic. If the

genera are defined not as subclasses of K, but as classes with the
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corresponding species for their members, i.e. as classes of classes,

and the species as classes with the corresponding subspecies for their

members, and so on, till the lowest tjrpe of subspecies have members of

K for their members, we obtain a hierarchy of classes which it is

essential to consider in dealing with the general theory of cardinal

numbers. This fact illustrates further the importance of this traditional

system.

The Geometrical system of classification is yet more rich in

intrinsic mathematical properties, and dominates all external existence.

Geometry is the science of cross classification. The fundamental

class K, is the class of points ; the selected set of subclasses of K
is the class of (straight) lines. This set of subclasses is to be such

that any two points lie on one and only one Kne, and that any line

possesses at least three points. These properties of straight lines

represent the properties which are common to aU branches of the

science which usage terms Geometrical, when the modem Geometries

with finite numbers of points are taken account of. But no interesting

general Geometric science exists in which no other axioms are assumed.

The interest of Geometry lies entirely in the development and
comparison of its various branches. Most of the important Geometries

include, either as an undefined fundamental relation or as a relation

defined in terms of the fundamental concepts, the idea of the order of

points on a line. Now a linear sequence (or series) can be either open

or closed. A closed series returns into itself, like the points on the

circumference of a circle ; an open series does not return into itself, like

the series of integers arranged in ascending order of magnitude. The
leading division in those Geometries, which include the order of points

on lines, arises according as the straight lines are taken to be open

series, or closed series.

A definition of a plane can be given which holds for every geometry,

namely : If A, B, C are three non-collinear points, the plane ABC is

the class of points, such as JT, which satisfies the condition that some
line through X intersects at least two of the lines BC, CA, AB, not at

J. or ^ or C. But this definition is unnecessarily clumsy in particular

Geometries, and can be replaced by more suitable special forms. Also

one or more axioms respecting the intersection of lines in planes

are required. Here again a division among Geometries is reached,

according as any two coplanar lines are, or are not, necessarily to

intersect.

A Geometry will be called 'Projective' if two coplanar lines
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necessarily intersect. Thus Euclidean Geometry is not projective, but

becomes so when the various entities called the points at infinity on the

various lines have been defined, and added to the other points on the

lines.

It will be found that the appropriate kind of linear order for

a projective geometry is that of a closed series. A non-projective

Geometry will be called a Descriptive Geometry. The appropriate kind

of linear order for a descriptive geometry is that of an open series. In

Projective Geometry the subject viewed simply as a study of classifica-

tion has great interest. Thus in the foundations of the subject

this conception is emphasized, while the introduction of 'order'

is deferred. The opposite course is taken in Descriptive Geometry

since the purely classificatory part of the subject is clumsy and

uninteresting.



CHAPTER II.

AXIOMS OF CLASSIFICATION.

4. Throughout the rest of this tract we are concerned solely with

Projective Geometry. Thus, following the careful method of enuncia-

tion of the Italian school of writers on this subject*, we take as

undefined ideas that of ' a point,' and that of ' a line t joining a point A
with a point B ' ; also the line joining A with B will be denoted by ^4 B.

Then the following axioms are to be assumed :

I. Points form a class of entities.

II. There is at least one point.

III. If J. is a point, there is a point not identical with A.

IV. and V. If A and B are distinct points, the line ^^ is a class,

and all its members are points.

VI. If A and B are distinct points, the line AB is contained in

the line BA.
VII. If A and B are distinct points, ^ is a member of the

line AB.

VIII. If A and B are distinct points, the line AB possesses

at least one point distinct from A and B.

IX. If A and B are distinct points, and C is a point, distinct

from A, lying on the line AB, then B lies on the line AC.

X. If A and B are distinct points, and (7 is a point, distinct from

A, lying on the line AB, then the line AC is contained in the

line AB.
XL If A and B are distinct points, there is at least one point not

lying on the line AB.
XII. If ^, B, C are non-coUinear points, and A' is a point on BC,

distinct from B and C, and ^ is a point on CA, distinct from C and A
then the lines AA' and BB" possess a point in common.

* Cf. I Principii delta Geometria di Posizione, by M. Fieri, Aecad. B. di Torino,

1898.

t Note ' line ' here means the complete line and not the segment, which is

introduced later. Also 'line ' is ased in the sequel habitually for ' straight line.'
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Definition. If A, B, G are three non-collinear points, the plane

ABC is the class of points lying on the lines joining A to the various

points on BC.

Axioms I to XI hold in any geometry, projective or descriptive,

according to the definition of the subject ; but in descriptive geometry

they would be very inconvenient as axioms. Axiom XII is character-

istic of projective geometry. The definition replaces the definition of

a plane given in § 3. It will be noticed that if this definition were

applied to Euclidean Geometry, which is descriptive, the line through A
parallel to J5C would be omitted from the plane ABC. i

It can now be proved that any two distinct plintsl in a line

determine the line, and that any three non-collinear piin^ in a plane

determine the plane ; also that a line joining two pointt iiJa plane lies

wholly in the plane, and that any two lines in a plane Atersect.

5. The definition of harmonic conjugates, whiOT is the turning

point of the whole subject, can now be introduced. The definition* is

as follows : I) is the harmonic conjugate of B with respect to A and C,

if the four points are collinear, and if a complete quadrangle can be

found such that one pair of opposite sides intersect at A, another

pair of opposite sides at C, and the third pair of opposite sides pass

respectively through B and D.

The notation. Harm (ABCD), will be used to mean, D is the

harmonic conjugate of B with respect to A and C.

It can easily be proved that Harm (ABCD) implies Harm {ADCB)
and Harm (CBAD), also that, if A, B, Che any three distinct collinear

points, there is a point I) such that Harm {j^BCI)), and that in this

case I) will be distinct from A and C.

But three other essential theorems respecting harmonic conjugates

cannot be established without further axioms. The first theorem

is, that lla,Ym(ABCB) and Harm(^^Ci>') imply the identity of

D and D' ; the ^cond theorem is, that Harm (ABCD) implies

Harm (BCDA) ; and the third theorem is, that Harm (ABCD) implies

the diversity of B and D. %

6. Let FGHK be a quadrangle such that FG and HK pass

through A, FK and Gil through C,. GK through B, and FH through

D (cf. annexed figure).

* Cf. V. Staudt, Geometrie der Lage, § 8, paragraph 93.
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Let F'G'H'K' be another quadrangle (not shown in the figure) with

the same property except that FH passes through D' on A C. Firstly-

let F'G'H'K' be not coplanar with FGHK, then evidently any pair of

the lines FF' , GG', KK' intersect, and so do any pair of GG' , HH',

KK'. Also no three of these lines are coplanar. Hence they intersect

in the same point. Hence FH and F'H' are coplanar, and D and D'

must each be the point in which ABC intersects this plane. Thus D
and n coincide. Secondly let the two quadrangles be coplanar. Then

considering the triangles FGK and F'G'K', the pairs of homologously

named sides intersect iu the coUinear points A, B, C. Hence, if we

assume Desargues' Theorem respecting coaxial and perspective

triangles, FF', GG', KK' are concurrent. Similarly GG', HH' and

KK' are concurrent. Hence in the triangles FGH and F'G'H',

we have FF', GG', HH' concurrent.

Thus again using Desargues' Theorems, the pairs of homologously

named sides intersect in three collinear points. But J. and Care two

of these points. Hence D and If coincide.

Thus the proof of the required theorem depends on Desargues'

Theorems of Perspective Triangles.

Again the proof* that Harm {ABCD) implies Harm {BCDA) also

requires Desargues' Perspective Theorems. Also it requires the theorem

that B and D are distinct points. For (cf. annexed figure) let the

quadrangle EFGHh^ such that EF and GH are concurrent in A, and

EH and FG in C, and FH and EG pass respectively through D and B.

Let FH and EG intersect in K. Then (assuming that D and B are

distinct points) the triangles EFC and DBK are coaxial, and hence

by Desargues' Theorem ED, FB, and CK are concurrent, say in

the point L. Then the quadrangle EKFL has sides LE and FK
concurrent in D, sides LF and EK concurrent in B, the side LK

* Cf. V. Staudt, G. d. L. % 8, paragraph 96.



10 DESARGUES THEOREM [CH. II

through C, and the side EF through A. Hence we find Harm
{BCDA).

7. To prove Desargues' Theorems, first let the two coplanar

triangles ABC, A'B'C be in perspective, so that AA', BB\ CC are
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concurrent in 0. Assuming that the space is at least of three

dimensions, take any point S outside the plane, and join SA, SB, SC.

Then the planes SOA, SOB, and SOC have a common line of inter-

section SO. But in the line SO there are at least three points, and

thus there is on it a point S' distinct from ^S" and 0. Let S'A' and SA
intersect in A", S'B' and SB in B", S'C and SC in C". Let / be the

line of intersection of the plane A"B"C" with the plane ABC. Then

BC and B'C" intersect on /, and so do RC and B"C". Hence BC
and B'C intersect on /, and similarly for the other sides. Thus

perspective triangles are coaxial.

Secondly, let the two coplanar triangles ABC, A'SC be coaxial,

so that BC and B'C intersect on the line /, and similarly for CA and

CA', and for AB and A'B . Then by hypothesis a point A' exists

outside the plane, and a point S, distinct from A and A', exists on the

line AA'. Let SB and SC intersect the plane A'I in B' and C"

.

Then BC, BC, B'C" intersect on /, hence BB" and CC" are

concurrent. Thus the three lines ^'J.", BB', CO" are concurrent in

some point S' . Hence the three planes AAA", BBB', CC'C" have

the common line of intersection SS', which meets the plane ABC
in some point 0. Then AA, BB, CC are concurrent in 0.

Accordingly Desargues' Theorems can be proved, if three (or more)

dimensions are assumed in addition to the preceding axioms.

The requisite axiom can be worded* thus :

Xin. \i A, B, C are any three non-coUinear points, there exists

at least one point external to the plane ABC.
Peanot, and subsequently HilbertJ, have proved that, if the

Geometry be two dimensional, that is, if axiom XHI be excluded, the

preceding axioms together ^vith the contradictory of Desargues'

Theorem form a consistent system.

For consider plane Euclidean Geometry, made projective by the

addition of the line at infinity, and a set of Cartesian axes, Ox and Oy.

Consider all loci of the form

ny=f{y,mln)m{pe-a),

* Cf. Fieri, loc. cit.

t Cf. Sui fondamenti della Geometria, Rivista di Matematica, vol. rv. 1894,

p. 73.

J Cf. Grundlagen der Geometrie, 1899. A simplified form of Hubert's proof is

given by K. Th. Vahlen, Abstrakte Geometrie, Leipzig, 1905, p. 68. The proof in

the text, which is much simpler than any of those above mentioned, was given by

R. F. Moulton, A simple non-desarguesian Plane Geometry, Trans. Amer. Math. Soc,

vol. III. 1902.
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where m, n, and a are variable parameters, each set of values character-

izing one member of the family of loci, and f{y, m/n) is the same
function for all members of the family, defined as follows :

If m/n ^ 0, then /(y, m/n) = 1,

if m/n>0, y ^0, then f{y, m/n) = 1,

if m/n >0, y>0, then /(y, m/n) = c,

where c has some definite fixed positive value, not unity.

Call the loci of this family 'modified lines,' and include in the

family the line at infinity. Then a modified line consists of two parts,

portions of two straight lines, like the line A^^KM in the annexed

figure, or else, if m/n ^ 0, it is an ordinary straight line, for instance

PCi in the figure. A modified line may be considered as refracted at

the axis of w, when m/n is positive.

Solving the equations

ny = m{x- a), and niy = m^ {x - a^ ),

we find y - mmx (aj - a)/{nm-x - n-im)
;

and solving the equations

ny' = cm {x - a), and n-^y' - cnii {x - «]),

we find y = cmmi (a-i - a)/{nmi - nim).

Thus y and y' are either both positive, or both negative, or both zero.

Accordingly one and only one modified line joins any two points. It
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can therefore be easily seen that taking the points of the Euclidean

plane to be the points of axioms I—XII, and the modified lines

to be the lines of these axioms, then the axioms are all satisfied.

But Desargues' theorem of perspective triangles is not satisfied with

this detennination of points and lines. For notice that if the parts of

two modified lines below the axis of x{y <Qi) are parallel, the parts

above the axis of x are also parallel. Now (cf. annexed figure) let

A^BiC^ and A-yB^C^ be two triangles, both below the axis of x, and with

their homologous sides parallel ; also let the triangles be so placed that

PC2.C1, PB2B1, 3IKA2A1 are the modified lines through Ci and C.2,

Bi and B^, Ai and A^. Then evidently Desargues' Theorem is not

satisfied.

8. The theorem, that Harm (ABCD) imphes the diversity of B
and D, has been shown by Fano* not to follow from the preceding

axioms. This is proved by the consideration of a three dimensional

geometry in which there are only fifteen points. Since we are only

concerned with a finite number of entities, we can form our classes,

such as straight lines and planes, by mere enumeration of their

members. To facilitate this enumeration, choose any five of the

entities and name them a, b, c, d, e. Call these the simply-named

entities. The remaining ten entities are named {ah), (ac), . . . (de)
;

these are the doubly-named entities. Thus the fifteen points are

all named, and divided by their names into two types. Note that the

names (ab) and (ba) are not distinguished. Every straight line

contains three and only three points, and the relations between the

names of the points divide them into three types. Type I consists of

all classes such as the class composed of a, b and {ab) ; there are ten

examples of this type. Type II consists of all classes such as the class

composed of {be), {ac), {ah) ; there are ten examples of this type.

Type III consists of all classes such as the class composed of a, {be),

{de) ; there are fifteen examples of this type. Thus there are in

all 35 straight lines in this space. For example, d, e and {de)

compose a line of the first type, and {be), {cd) and {bd^ compose a line

of the second type, and e, {be), {ad) compose a line of the third type.

Any set of three points not of one of these types defines a plane.

There are ten types of sets of three non-collinear points, which may be

defined by examples thus :

* Sui postulati faiidamentali della Geometria projettiva, Giorn. di Matemat.,

vol. XXX. 1891 ; also cf. Fieri, loc. cit.
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Type Ihj a,b, c;

Type III by a, b, (cd)

;

Type V by a, {ab\ (be)
;

Type VII by {ah\ {ac), (de)
;

Type IX by (ab), (ac), (ad)
;

Type II by a, b, (ac) ;

Type IV by a, (ab), (ac)
;

Type VI by a, (ab), (cd)
;

Type VIII by a, (be), (bd)
;

Tyi)e X by (ab), (ac), (bd).

There are two types of planes, each plane containing seven points

and seven straight lines. Type I contains non-collinear triple sets from

Type I to Type VII inclusive ; while Type II of planes contains non-

collinear triple sets of Types VIII, IX and X. The annexed figures

illustrate the types of planes.

m

In these figures the named points on straight lines are points

on straight lines in the finite geometry, also the named points of

contact of the circles are collinear in the finite geometry. Now in the

example of Type I, (be) is its own harmonic conjugate with respect to

b and c ; and in the example of Type II, (dc) is its own harmonic

conjugate with respect to (ac) and (ad).

It is evident that the projective axioms hitherto given are all

satisfied. Also the Geometry is three dimensional. For there are

seven points on any given plane : take a point outside the plane,

and join it with each of the seven points ; there is one remaining point

on each of these lines. Accordingly all the fifteen points are thus

used up.

Hence an axiom, which we may call ' Fano's axiom,' is required.

XIV. If Harm (ABCD) holds, then B and I) are diverse points.

An equivalent form * of this axiom is, the three harmonic points of

* Cf. Fieri, Niwvi Principii di Geometria Projettiva Complessa, Trans. Accad. R.

di Torino, 1905. Note that subsequent references to Fieri refer to the other memoir

previously mentioned.
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a complete quadrilateral are not coUinear. The equivalence of the two

forms of the axiom is obvious from a figure.

The axiom which limits the Geometry to three dimensions will now

be given. It is not stated by Fieri, who never requires it in his

reasonings. It will be wanted here when we come to the introduction

of coordinates.

XV. There exists a plane a and a point A, not incident in a, such

that any point lies in some line possessing A and some point of a.

Note that this axiom is not true for Euclidean space. For the

plane through A, parallel to a, would be omitted. The property

is enunciated for one plane and one point. It can then be shown

to hold for every plane and every point external to it. Also it can be

proved that any two planes intersect in a straight line.



CHAPTER III.

PROJECTIVITY.

9. (a) When two figures can be derived one from the other by a

single projection, they are said to be ' in perspective
'

; when two

figures can be derived one from the other by a finite series of perspective

transformations, they are said to be ' projectively ' related. A property

of a figure, which is necessarily also possessed by any figure projective

with it, is called a ' projective property.' The symbol

{ABC...)^(A'B'C'...)

will mean that the range ABC. . . is projective with the range A'B'C ..
.,

A corresponding to A', etc. If a series of n perspective transformations

exists which finally transform the range ABC... into the range

A'B'C ..., the figures will be said to have a 'projective relation of the

nth degree,' and the fact will be expressed by {ABC.) Xn {A'B'C'...).

Thus {ABC...)l^n{A'B'C'...) implies {ABC... )i:: {A'B'C ...) • and

also {ABC...)~K-i{A'B'C ...) expresses that the ranges ABC... and

A'B'C... are perspectively related. Also if the vertex {U, say)

of a perspectivity is to be expressed, TTi will be replaced hy ~u-
(/3) The above is not v. Staudt's definition* of projectivity.

According to his definition, the points on two lines (which may
be identical) are projectively related when there is a one-one correspon-

dence between them, such that if ^, B, C, D are any four points

on one line, and A', B', C, D' are their correspondents on the other

line, then Harm {ABCD) and Harm {A'BCD') imply each other.

Let us call such a correspondence a ' Harmonically Projective ' relation

between the lines.

(y) There are now two propositions to be considered. One
of them is the proposition that a projective correspondence between two

* Cf. G. d. L. § 9, paragraph 103.
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lines is completely determined when the correspondents of three

distinct points on one line are determined on the other. This pro-

position has earned itself the title of ' The fundamental proposition of

Projective Geometry.' The other proposition is, that a harmonically

projective correspondence between two lines is a projective corre-

spondence. It will be found that these propositions cannot be proved

without further axioms.

(8) Since the quadrilateral construction is projective, it is easily

seen that it follows from our axioms that, if A, B, G, D satisfy

Harm {ABCD), the property is projective. Hence it immediately

follows that a projective correspondence between the points on two

Hues is a harmonically projective correspondence.

10. If the axes* of the ranges ABC... and A'BC ... are distinct,

and if w is greater than 1, then (^ABC...')~K^{^A'EC' ...) implies

{ABC...)~K^{A'BC' ...)\. The proof of this theorem requires two

lemmas.

Lemma I. If {ABCD...) Xi (AB"C"B"...),

and {AF'C"D'...)l^,{AFC'iy...),

then (ABCI)...)ir,(AB'C'iy...).

* The axis of a range of points is the straight line which possesses them all.

t Cf. F. Schur, Ueber den FundamentaUatz der projectiven Geometrie, Math.

Annal. vol. u. 1899.

W.
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For (cf. annexed fig.) let S and >S^' be the centres of the two per-

spectivities, and let BB' intersect SS' in Si (not shown in figure).

Then by Desargues' Theorem, since BB'B" and CC'C" are in per-

spective, the intersection of BB' and CC must be on SS', and

hence CC passes through Si. Similarly for BD', and so on.

Lemma II. A relation of projectivity of the 2nd degree between

the lines gi and g^, namely two perspectivities from gi to g^ and from g^

to g3 respectively, can be modified by replacing ^2 by any line not

passing through the point (gigs), and not joining corresponding points

of gi and gs*.

Let Si (cf. annexed figure) be the centre of perspectivity from gi to

^2, and >S'2 that from ^2 to ^3. Let LMhe the line which is to replace

g-i, where by h3T)othesis L and M are distinct, and L does not

correspond to M. Let Ai be (gig2) and B3 be (g^s). Then

(Pi-) m(P....) ^(Ps-).

Firstly, assume that M is not As- Project [P3...] from S2 on to AiM,
producing [P'---]. Then by Lemma I, (Pi...) Xi (P'---)- Hence

g.2 has been replaced by AiM. Now in exactly the same way, since L
and M do not correspond, by interchanging the roles of gi and ^3,

AiM can be replaced by LM. Secondly, if M coincides with A3,

by the first case replace ^2 by I'M', where L' is distinct from Ai and

M' from A3 ; and then, again by the first case, replace L'M' by LM.

* I am indebted to Professor Veblen of Princeton for the following proof, which

differs from Schur's. It was given by him in lectures (On the Foundations of

Geometry) in the University of Chicago, 1905. Mimeographed copies of the notes

exist. I have found them to be most instructive.
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The main theorem can now be proved. Let there be a perspective

relation from gi to ^2> from g., to g^, and from 5^3 to <7<. Through the

point (gfa, ^'4) draw any line h, so that (A, g^ does not correspond

to {gz, gt) on ga. Then by Lemma II, there are perspective relations

from gi to k and from h to g^, which give the same correspondents on g^.

Also by Lemma I the resulting projective relation ofthe 2nd degree

between h and gt can be replaced by a perspective relation. Hence the

projective relation of the 3rd degree between gi and g^ can be replaced

by one of the 2nd degree. Hence in a series of w perspective

transformations, sequences of three can continually be replaced by

sequences of two such transformations, either as above, or, in ex-

ceptional cases (when gi, g2, gs, g^ are not aU distinct) by a use of

Lemma I, as it is easy to see.

11. The proof of the 'Fundamental Theorem' can be reduced

to depend on Desargues' perspective theorem, and on Pascal's theorem

for the case when the conic is two straight lines (Pappus' Theorem)*.

Let A, B, C on the line g correspond to A^, Bi, Ci on the line gi.

By ,§ 10, the projective relation can be reduced to one of the 2nd

degree, and by Lemma II of § 10 the intervening line can be chosen to

join any two non-corresponding points of p and gi. Let it join A and

Bi ; call ABi the line g'. Then (to obtain a projective relation with

the required properties) the centre of the perspectivity between g and

g can be chosen to be the point (BBi . CCi), say S ; and the centre

of that between g' and gi must then be the point (^^1 . CCi), say S^.

By this projective relation P corresponds to Pi, by the intermediary of

P" on g'. Now if by any other projective relation P corresponds to P/

* This was pointed out without proof by H. Wiener, cf. Jahresbericht der

DeuUchen Math. Ver. vol. 1, 1890. The proof here given is due to Schur, loc.

cit.

2—2
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on gi, project P/ on to g' from Si into the point P". Then (ABCP)
is projective with {ABiC'P").

Hence if we can prove that these ranges, with the self-corresponding

point A, are in perspective, then BB^, CC, PP" are concurrent ; and

thence P', P", and Pi, P/ coincide.

To prove that two projective ranges (on lines g and ^') with a self-

corresponding point are in perspective, reduce by § 10 the projectivity
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to the 2nd degree, with g^ as the intervening line, and S, S' as the

centres of perspective. Then since the point (g, g) is self-corre-

sponding, either g^ or SS' passes through {g, g'). In the first case, the

theorem follows from Lemma I of § 10. In the second case let g^ cut

g and g in C and D', and let A be {g, g), and P, Pq, P' a variable

trio of correspondents on g, g^, g respectively. Then on the two lines

CD and A8S\ consider the hexagon CS'PoSUA ; by Pascal's Theorem

for two lines the three points {CS', SU), {S'P„ UA), (P^, AC)
are coUinear; that is, the points P, P, S" are collinear, where S"

is the point (CS', SD'). Hence the projective ranges [P] and [P] are

in perspective. Conversely, if the fundamental theorem is assumed,

Pappus' Theorem holds. For the proof wiU be the weU-known

projective proof of Pascal's theorem adapted to the case when the conic

is two straight lines.

12. The establishment of the Pappus Theorem can be investigated

as follows*.

Let two straight lines, intersecting in 0, contain respectively the

two trios of points Ei, E3, Es, and E2, E4, Eg, all distinct and

distinct from 0. Assuming three dimensions at least, there is a point,

(12) say, not in the plane OEiEa. Also on the line E^ (12), there is at

least one other point, (23) say, distinct from E-i and (12). Now the

plane EiEi(l2) intersects the line ^3(23) in the single point (34), say.

Hence the line Et (34) intersects the coplanar line Ei (12) in the

point (14). Similarly from Ea the single line Eg (16) (26) can be drawn

intersecting Ei (12) and E3 (23) in (16) and (26). Also similarly from

Ei the single line Es (54) (25) can be drawn intersecting E-i (12) and

^4 (14) in the points (25) and (54). If now we may assume that

E5 (25) and -£'6(16) intersect in (56), we may proceed as follows. Let

I) be the point (EiE. . E^E,), E the point {E^E^ . E^^l Ethe point

(E3E4, . EJEi), also let ir be the plane OE1E.2. Also mention the other

planes by all the marked points on them.

Thus I) lies in the planes

TT, {i^,^, (12) (14) (16) (23) (25)}, {^,£^, (14) (34) (54) (25)}.

Thus D is the intersection of the line (14) (25) with tt.

Again E is the intersection of the planes

TT, {E,Es(l&)(SQ)}, {EJSs(45)(2o)}, {^,£'3(12) (23) (25) (43) (36)}.

• Cf. Schnr, loc. cit., who refers this proof to Dandelin, Reeherches rumvellet,

etc., Annales de Gergonne, vol. xv.
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But, from the assumption as to the existence of (56), the planes

{^5^6 (16) (36)} and {^^^e (45) (25)}

form the single plane

{^,^e(16)(36)(45)(25)}.

Thus E is the intersection of the line (25) (36) with tt.

/(5,4) (56)j

r(2,5)

/(2.3) /(3,4) M^
'Ik'"

1(1.2) i(i,4) /.-" r'!

-'/ .-mL..--;

/E,

M
toT

Again F is the intersection of the planes

TT, {^^^4 (36) (34) (23) (14) (54)}, {^,^« (16) (14) (12) (36)}.

Thus i^is the intersection of the line (14) (36) with tt.

Accordingly i>, E, F all lie in the line

{tt. (14) (25) (36)}.

Thus the Pappus Theorem is established.

Conversely, if Pappus' Theorem is assumed, the existence of the

point (56) can be proved. For now D, E, and F are collinear ; also D
and i^'lie in the line {tt . (14) (25) (36)}. Then since E lies in DF, it

is the intersection of the three planes

TT, {(14) (25) (36)}, {^,£•3(12) (23) (25) (43) (36)};
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and hence E is the point of intersection of the line (25) (36) with w.

But ^ also lies in the intersection of

TT, {J5'^«(16)(36)}, {^^e(45)(25)}.

Thus the line (25) (36) must intersect EJH^- Hence the two planes

{^:^e(16)(36)} and {^5^e (25) (45)}

are identical ; and hence the point (56) exists.

The assumption [as to the existence of (56)] made in the course of

the proof of Pappus' Theorem has not been deduced from the preceding

axioms. Hilbert* has shown that Pappus' Theorem cannot be deduced

from axioms I to XV. Thus the 'fundamental theorem,' or some

equivalent theorem, must be assumed as an axiom.

But there is an entirely different line of proof (requiring farther

axioms) of the fundamental theorem, which may be called 'von

Staudt'st continuity proof.'

This proof in its original form contains an oversight, which was first

pointed out by KlemJ. The proof will be given here in its amended

form. The proof requires that relations of order among points on lines

should have been introduced.

Furthermore for the case of Greometries with a finite number

of points, it has been shown by J, H. Maclagan-\Vedderburn§ that

Pappus' Theorem can be proved without any further axioms, beyond

the aforesaid one of finiteness of number.

* Cf. loc. cit., chapter VI, and §§ 44 to 48 of this tract.

t Cf. Geometrie der Lage, § 9, paragraph 106.

J Cf. Zweiten Aufsatze iiber nicht-Euclidische Geometrie, Math. Anual. vol. vi.

1873.

§ Cf. A Theorem on finite Algebras, Trans. Amer. Math. Soc. voL vi. 1905, and

Finite Projective Geometries, by O. Veblen and W. H. Bussey, Trans. Amer. Math.

Soc. vol. vn. 1906, p. 246.



CHAPTER IV.

ORDER.

13. If A, B, C are three collinear points, the segment ABC—
written segm (ABC)—is defined* to be the collection of all collinear

points JT, such that there is some pair of points 3/ and 1/' satisfying both
A

Harm {AyCy') and Harm {ByXy). Also segm (ABC) is the collection

of all points on the line ABC which, do not lie on segm (ABC). The

extreme instances of the various definitions are so arranged that A and

C do not belong to segm (ABC), and that B does belong to segm (ABC).

The basis of these definitions can easily be perceived by considering

the Euclidean line made projective by adding in the point at infinity.

For if B on such a line lies between A and C, and X is any other point

between A and C, then, since pairs of harmonic conjugates separate

each other, the two point-pairs A, C and B, X define an involution

with real double points, say y and y . Thus in the Euclidean line, ifX
be any point in the segment ^C in which B also lies, the two points y
and y exist with the property described in the above definition of

segm (ABC). Conversely this characteristic property is here taken

as the definition.

It can be proved without any further axioms that the propositions,

D belongs to segm (ABC), and, B belongs to segm (ADC), imply each

other. Also if D lies in segm (ABC) and is distinct from B, then C

* Cf. Fieri, loc. cit.



13, 14] AXIOMS OF ORDER 25

lies in segm {BAD). Also if D lies in segm {ABC) and is distinct
A

from A, then G lies in segm {BAD).

Furthermore since the harmonic property of four points is projective,

it follows that both the properties ex-

pressed by D belongs to segm {ABC),

and D belongs to segm {ABC), are pro-

jective.

14. But further axioms are required

to complete the usual properties of

segments. They can be enunciated (c£

Fieri, loc. cit.) as follows :

XVI. If A, B, C are three distinct

collinear points, and D is distinct from

A and C, and belongs to segm {ABC),
then D belongs to segm {BCA).

XVII. li A, B, C are three distinct

collinear points, and D belongs both to

segm {BCA) and to segm {CAB), it

cannot belong to segm {ABC).

XVIII. If ^, B, Care three distinct

collinear points, and D is a point, distinct from B, belonging to

segm {ABC), then segm {ADC) is contained in segm {ABC).

The above are the three axioms of order. A relation of separation,

to hold between two couples, A and C, B and D, of collinear points,

can be defined thus : A and C wiU be said to ' separate ' B and D—
which will be expressed symbolically by S{ABCD)—when A, B, C, D
are four distinct collinear points, and D belongs to segm {ABC).

The conditions which must be satisfied by such a relation of

separation (S'), so that it may arrange the points on each line in a

closed order have been investigated by Vailati*. These conditions are

as follows

:

(a) 8 {ABCD) is equivalent to S {BA DC),

{^) S {ABCD) is equivalent to ^ (^DCB),

(y) S{ABCD) excludes S{ACBD),

* Cf. two papere in vol. v. of the Bivista di Matematica (Turin), 1895, Sulle

relazioni di posiziane trapunti cC una linea chitisa, and, Sulle proprieta caratteristiche

delle varieta a una dimensione. The whole question of order is exhaustively

considered by Russell, Principles of Mathematics, ch. XXIV and XXV.
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(8) If P, Q, B, S respectively stand among other terms in this

relation in any order with the same pair of

terms A and B, then either

S(FQBS), or S{PBQSl or S{FBSQ),

(c) If S {ABGD) and S {A CBE\
t\iQi\S{ADBE).

The relation of separation, S, as defined

above, can be proved to satisfy these con-

ditions.

15. A relation among the points on a line can be defined which
arranges them in an open order, with any arbitrarily assumed point A,
of the line as the initial point.

If ^, ^, C are three distinct collinear points, then E is said to

follow D in the ^-order (ABC), if any of the following cases hold :

(1) Z> lies in segm (ABC) and E in segm {ACD)
;

(2) D lies in segm {ABC), excluding A and C, and E lies in
A

segm {A CD), excluding A and D
;

(3) D coincides with A, and E is any other point of the line
;

(4) D coincides with C, and E lies in segm {ABC), excluding

A and C.

It can be proved that if A, B, C are distinct and collinear points,

and E follows D in the /S-order {ABC), and I) is distinct from A,

then the >S^-orders {ABC) and {ADE) are the same for any two points

of the line.

The ;S-order {ABC) is said to be 'concordant' with the *S'-order

{DEF)—expressed symbolically by {ABC) /S^-concord {DEF)—vfhen
either of the three following cases hold : In the >S^-order {ABC), either

(1) E follows D, E follows F, and F follows F, or (2) E follows D,

F follows E, and F follows D, or (3) B follows E, F follows E, and

Z> follows F. In the other three possible cases with respect to the

order of B, E, F on the line ABC, the /S^-orders {ABC) and {BEF)
are said to be discordant—expressed symbolically by {ABC) ^-discord

(DEF).

Then it can be proved that if J., B, Care three distinct collinear

points, and B, E, F are three distinct points on the line ABC, the

>S^-order {DEF) is concordant with one and only one of the >S^-orders

{ABC) and {ACB), and also that the ^"-orders {ABC) and {BCA) are

concordant.
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We thus arrive at the idea of a 'sense' (or, way) round a line* ; if

A, B, G are three distinct collinear points, and D, P, Q are three

distinct points on this line, and by some process of correspondence P is

related to Q, then, if {DPQ) S-concord {ABC), P will be said to move

to Q by this correspondence in the sense {A BC) from D.

Discordant senses {ABC) and (CBA) are also said to be 'opposed.'

Concordant senses are called the same sensa

16. If A, B, C be three distinct collinear points, the two segments
A,

segm {ABC) and segm {ABC) are called the 'segments between A and

C,' and they are said to be complementary to each other.

Segments, as defined above, possess, either two terminal points

—

such as A and C in segm {ABC),—w two bounding points belonging

to the complementary segment— such as A and C bounding segm

{ABC). The definition of a segment will now be enlarged so that this

property of being 'between' two points does not flow from the

definition.

A segment of a line is now defined to be a set of points on the line,

(1) which does not include the whole line, (2) which includes at least

two distinct points on the line, (3) which is such that, if A and B be

any two distinct points belonging to it, one of the two complementary

segments between A and B is contained entirely within it.
A

Thus, when A, B, C are collinear, segm {ABC) and segm {ABC)
are themselves both segments in this enlarged sense ; but, without a

further axiom, it cannot be inferred that every segment is ' between

'

two points.

A set of points on a line is said to be ' compact,' if every segment

between two distinct members of the set possesses at least one other

member of the set.

A set of points on a line is said to be ' everywhere dense,' if every

segment of the line contains at least one member of the set.

A set of points on a line can be compact without being everj'where

dense.

17. Since 'D belongs to segm {ABC),' and ^E belongs to segm

{ABC),' express projective properties of the ranges ABCD and ABCE,
it follows that *S^ {ABCD) expresses a projective property, and similarly

that, 'E follows D in the >Sf-order {ABC); and, '{ABC) S-
\^^^^^^

{BEF),' express projective properties.

• Cf. von Standt, Beitrage zur Geormtrie der Lage, § 3, and Fieri loc cit.
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Three important theorems must now be proved,

(a) UA,B,C are distinct, Harm (ABCD) implies S {ABCD).
For since we have Harm (ABCjD), points A', B', C, U, Fcan be

found as in the annexed figure. Then

{ABCD) Tu (A'B'C'JD) Xr (CBAB)

Hence, if S (ACBB) held, it would be projected into S (CABD).
But these two relations are inconsistent. Thus S (A CBD) cannot hold.

Similarly S {ACDB) cannot hold. Therefore S {ABCD) must hold.

(/8) Harm {ABCD) and Harm {AB.CD,) imply that 8{ABB,C)
and S {ADD^C) are equivalent.

For the conditions Harm {ABCD) and Harm {A B^CD^), render the

annexed figure possible. Hence

{ABB.C) -Xu {A' VV,C) X^ {UC'C'C) x^' (ADD.C).

Hence S{ABBiC) and S{ADDiC) are equivalent. This proposi-

tion may be loosely expressed by saying that B and D move in

opposed senses to or from C.
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(y) Harm (ABCD) and Harm {ABC.D,) imply that S (ABCC^)

and S (ABDDi) are equivalent.

For the conditions Harm (ABCD) and Harm (ABCiB,) im-

mediately secure the possibility of the annexed figure, apart from

the dotted line. Then in the triangles CVC and CiFjCi', the point

(CF.CiFi) is A', the point (VC . FjCi') is A, and the point

(CC . CiCi) is U. But A', A, U sltb collinear. Hence by Desargues'

Perspective Theorem, CCi, V\\, and C'C/ are concurrent.

Hence C'Cj' passes through B ; let it also cut AA'U in W.
Then

{ABCC) T/ {UBVV,) Xa (WBC'C) xY {ABDD,).

Hence .S (ABCC,) and /S' (ABDD,) are equivalent.

This proposition is loosely expressed by saying that C and 2) move

from J. (or B) in the same sense.

18. \i A, B, G are three distinct collinear points, the harmonic

system (ABC) is the system of points arrived at by the following

inductive definiton : A, B, C are the initial set of points, A, B, C, D^,

Z>2, A are the second set of points, where A, D«, D^ are respectively

the harmonic conjugates of A with respect to B and C, of B with

respect to C and A, and of C with respect to A and B, and the

{n + l)th set is derived from the 7ith set by adding to the wth set the

harmonic conjugates of each point of the «th set with respect to any

other two points of the nth set.

It is evident, from the projectivity of the harmonic relation, that a

harmonic system projects into a harmonic system. Furthermore since
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two sets of three distinct collinear points are projective, it follows that

any two harmonic systems are projective.

A harmonic system is compact For, if A and B are any two

points of a harmonic system, since any system possesses at least three

points, there is a third point Z> in one of the two segments between A
and B. Now take £J to satisfy Harm {ADBE), then ^lies in segm

(ADB). Hence there is also another point in the other segment

between A and B.

But a compact system possesses necessarily an infinite number of

points. Hence every harmonic system, and therefore every straight

line, possesses an infinite number of points. Accordingly the axioms

of order, given above, and Fano's axiom have excluded the geometries

with a finite number of points.

von Staudt in his proof of the fundamental theorem* wrongly

assumed that every compact system of collinear points must be every-

where dense. This theorem will now be proved for any harmonic

system. It will be called the Liiroth-Zeuthen theorem!. It will be

noticed that a fresh axiom is required.

19. (a) The new axiom, which will be referred to as the Dede-

kindj axiom, or as enunciating the Dedekind property, is as follows.

XIX. If u is any segment of a line, there are two points A and B,

such that, if P be any member of u distinct from A and B, segm

(APB) is all of u with the possible exception of either or both of A
and B which may also belong to ti.

Note that the axioms of order, viz, XVI, XVII, XVIII, and this

axiom need only be enunciated for one line. Then by projection they

can be proved for every line.

((3) Consider any segment of a hne, to prove that at least one point

of any given harmonic system of the line must lie within it. Let the

segment be enlarged (if possible at either end) to its full extent so long

as no fresh point of the harmonic system is included. Now assume

* Cf. Geom der Lage, § 9, paragraph 103.

+ von Staudt's tacit assumption was pointed out by Klein, Zwciten

Aufsatz iiber nicht Euclidische Geometric, Math. Annal. vol iv. 1873. The

proof here given was communicated to Klein simultaneously by Liiroth and

Zeuthen, and published by Klein in a ' Nachtrag ' to the previous article, Math.

Annal. vol. vii. , 1874.

J The importance of the property, here considered was first emphasized (for the

case of real numbers) by Dedekind, Stetigkeit und irrationale Zahlen, 1872. Engl.

Trnsl. Essays on the Theory of Numbers, by Prof. Beman, Chicago, 1901.
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that the line possesses the Dedekind-property. Then the enlarged

segment is bounded at each end by points, F and G say. If either F
or G belongs to the system, it does not belong to the enlarged segment.

Also all the points of the system (if any) in the enlarged segment belong

to the original segment.

Firstly let F and G both belong to the system. Then there is

another point A belonging to the system. Assume that it belongs to

the complementary segment. Take D so that Harm {AFDG). Then

D belongs to the enlarged segment and to the harmonic system.

Hence it belongs to the original segment and the harmonic system.

Secondly let F and G neither belong to the harmonic system.

Hence any segments, abutting on i^ or 6^ and contained in the

complementary segment, must contain points of the harmonic system.

Let J. be a point of the system in the complementary segment.

Take H, so that Harm {AFHG) (1).

Take J, so that Harm (AFGJ) (2).

Then (cf. ^ 11 a) ff lies in segm (FAG), and ^ in segm (AFG).

Now in segm (AGF) there is at least one point of the system. Let B
be such a point.

Take K, so that Harm {ABHK) (3).

Then by comparing (1) and (3), (cf § 17 /8) as i^moves to B,G moves
in the opposite sense to K. Also by hypothesis a series of points such
as B can be found running in sense (AFG) up to i^as a limit. Hence

(cf § 17 a) from (1) the corresponding points JTrun in sense (AFG)
up to 6= as a limit. Hence if C be any point in segm (GAJ), B andK
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may be supposed chosen so that K lies in segm {GA C). But at least
A

one point of the system lies in segm (GAJ) ; let C be such a point.

Take L, so that Harm (ABLJ) (4).

Take B, so that Harm (ABBC)
J5).

Then (cf. § 17 y) i> is in segm (BA C) ; and as J" moves to C in sense
A

(GFA), L moves to D in the same sense. Hence D is in segm (BAL).

But by comparison between (3) and (5), we have (cf. § 17 y), as C moves

to K in sense (GFA) D moves to H in the same sense. Hence B lies

in segm (HAG). Thus D lies in the common part of segm (BAL)

and segm {HAG), that is, in segm {HAL). But this segment is con-

tained in segm {FA G). Thus i) is a member of the system, and lies

in the enlarged segment. Hence it lies in the original segment.

Thirdly let one and only one of F and G—say F—belong to the

system.

Take A as before in the second case ; also take J so that

Y{&.vm{AFGJ) (1).

Then in segm {GFJ), a point C belonging to the system exists.

Take D so that Harm {AFDC) (2).

Then / lies as before in the second case. Also (cf. § 17 a) from (2),
A

D lies in segm {FA C) and is distinct from F. Again (cf. § 1 7 y) by

comparing (1) and (2), as J moves to Cin sense {GFA), G moves to
A

L> in the same sense. Hence I> lies in segm {FAG), and is distinct

from G. Thus a point of the system lies in the enlarged segment, and

hence in the original segment.

.

Accordingly from the three cases it follows that a harmonic system
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is everywhere dense on the Kne containiDg it. But in the proof the

Dedekind property is assumed as an axiom.

20. von Staudt's 'continuity proof of the fundamental theorem

(cf. 10) can now be completed. For consider any projective relation

which correlates A, B, C of one line with ^4', B', C" of another line.

Then by the projectivity of the harmonic property, the harmonic system

(ABC) is correlated in a determinate manner with the harmonic

system (A'B'C). But relations of order are projective. Also any

point on the first line not belonging to the harmonic system (ABC) is

(cf § 19) the limit of a class of points belonging to the system. Thus its

correlate on the other line must be the limit of the correlated class of

points of the other harmonic system. Thus the correlates of all the

other points on the two lines are definitely determined.

Hence the fundamental theorem can be proved by the aid of the

axioms of order and the axiom of the Dedekind property. Then
(cf § 11) Pappus' Theorem can be deduced.

Maclagan-Wedderburn's Theorem (cf. § 12) proves that the funda-

mental theorem holds for Greometries with a finite number of points,

and the above 'continuity proof shews that it holds for a Geometry

with an infinite number of points in which the above axioms of order

and the Dedekind property hold.

We will note in the subsequent work wherever a step in the

reasoning depends upon the fundamental theorem or upon the Dede-

kind property.

We can now prove that a harmonically projective correspondence

(cf § 9) is a projective correspondence. For, since a harmonic system

is everywhere dense, a harmonically projective correspondence is

completely determined when the correspondents of three points on one

of the lines are determined. But it has been proved that there is one

and only one projective correspondence which correlates these three

points to their assigned correspondents ; and furthermore (cf § 9) every

projective correspondence is a harmonically projective correspondence.

Hence the proposition follows.



CHAPTER V.

QUADRANGULAR INVOLUTIONS.

21. We have now to discuss the dependence of the theory of

Involutions upon the Fundamental Theorem. Here the axioms of order,

namely XVI, XVII, and XVIII, will not be required till § 32. The

projective definition of an involution, as a projective transformation of

a line into itself by which each point is interchanged with its corre-

spondent point, at once leads us into difficulties. For the essential

theorem on which all depends is that, if in a projective transforma-

tion two distinct points are interchanged, the transformation is an

involution *.

For consider a projective transformation which interchanges A and

B, and transforms Cinto D. Now (cf. figure) (ABCI))'as(TUVI))

X^C'S'WVC)X u (BADO), Thus there is always at least one projective

transformation which interchanges A and B, and also C and Z>. But

by the fundamental theorem, there is only one transformation which

interchanges A and B, and transforms C into D. Hence this trans-

* Cf. Schur, Ueber die Grundlagen der Geometrie, Math. Annal. vol, lv. 1902,
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formation must also transform D into C But this conclusion does

not follow without the fundamental theorem.

Again the general proposition concerning the involutory property

of a transversal section of a complete quadrangle does not follow

without the fundamental theorem. We can however, without the

fundamental theorem, prove the following propositions : If a transversal

cuts the three pairs of opposite sides of a complete quadrangle in A
and A\B and B',C and C then

(AA'BB'Cf) TT (A'AB'BC),

with two similar propositions. But it does not follow without the

fundamental theorem that the three projective transformations,

indicated in the three propositions, are identical

22. The important property for our present purposes is that of

three collinear point-pairs, A and A', B and B', C and C, through

which the pairs of opposite sides of a complete quadrangle pass.

There is aLso a further property of such point-pairs, in reference to a

quadrangle with the required property, which it is essential to consider.

Thus in the annexed figure consider those eight triple sets (formed out

of the six coUinear points) which do not contain two members of the

same point-pair, then of these the four sets, A, B, C, and A, B', C\ and

A' , B, C, and A', B', C, are such that the three sides of the quadrangle

EFGH through any set are concurrent in one of the angular points of

the quadrilateral; while the four sets. A', B\ C, and A\ B, C, and

A, B' C, and A, B, C are such that the three sides through any set

form a triangle. Let any member of the first four sets be called a

'copunctual' set, and let any member of the second four sets be called

a ' triangidar ' set

Write Involq {AA', BB', CC) to mean that the three point-pairs

(a) are collinear, (/8) he on the pairs of opposite sides of a quadrangle,

(y) and that such a quadrangle can be found for which the triple

set (J., B, C) is copunctual,

3—2
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23. A special case arises when one point-pair, say C and C,

coincide. Then the single point counts as one point-pair. The

assertion of the special case will be written in the form Invol,

{A A', BB', CO). The fundamental theorem is not required for the

following propositions.

(a) Harm (ALDU) and Harm (BLCU) imply Invol^ (AD,

BC, UU).

For (cf. figure) let US and UP be any two lines through SU, and

let >S^ be any point on US. Let SA and SB intersect UP in P and Q,

and let CP intersect US in S' and SB in H, and let S'Q intersect SP
in K and UA in D'. Let KH intersect US in M and UA in L'.

Then ( UBL'O) x^ ( USMS') T^ ( UAL'D '). But Harm ( USMS')
holds. Hence Harm [BL'CU) and Harm {AL'D'U) hold. Hence

from hypothesis L and L' coincide, and thence D and D'.

(y8) Involq {AD, BC, UU) implies that a point L exists such that

Harm {ALDU) and Harm {BLCU). This follows at once from the

figure of (a).

24. The fundamental theorem is not required for the following

propositions.

(a) Invol, {AD, BC, OU) and Invol, {AD, BC„ OU) imply that

C and Ci coincide.

Firstly let and U be distinct. Let (as in figure) SQPS' be a

quadrangle fulfilling the conditions of Involq {AD, BC, OU), and let

(as in figure) S^Q^PiS^' be a quadrangle fulfilling those of Involq

(AD, BC„ OU). Also let S'C and S^'C, intersect in C, and SS'

and UP in V, and S,S,' and UP, in V,. Then by Desargues'

Theorem, considering SQS' and SiQ^Si, since B, D, are collinear,

SS,, S'Si' QQi are concurrent. Similarly by considering SQV and

'S^i^i^i, since B, U, are collinear, SS,, QQi, VV, are concurrent.

Again by considering /S^PKand SiP^Vu since A, U, are coUinear,
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SSj, PPx, VVi are concurrent. Hence the three concurrences are at

the same point. Hence SSi, S'Si, PP^ are concurrent ; and hence by-

considering SPS' and SiPjSi, the three points 0, A, C are collinear.

Hence C and Ci coincide. Secondly let and U coincide. Then the

theorem follows from § 23 ()8) and from the uniqueness of the harmonic

point.

Corollary. Given five collinear points A, D, B, 0, U, there is one

and only one point C, such that Involq {AD, BC, U).

()S) If Involq {AD, BC, OU) holds, a quadrangle can be found

fulfiUing the conditions with the two sides through and C arbitrarily

assumed, and one of the vertices arbitrarily assumed on one of the

given sides.

For, whether and U are or are not distinct, draw any two Hues

OS and UP through and U. Take S any point on OS. Join SA
and SB, cutting UP in P and Q ; and draw DQ cutting OS in S'.

Then by (a) S'P passes through C. Hence the theorem is proved.

(y) Invol, {AD, BC, OU) impHes Involq {BC, AD, OU), and
Invol, {DA, CB, OU), and Invol, {AD, OU, BC), and so on. This

is obvious.

(8) Involq {AAu BB„ OU) and Invol, {A'A^, B'B^, OU) imply

luyo\ {A B',BA', OU).
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For by (yS) the quadrangles can be chosen, as in the figure, to be

SFQS,, and S^PQS'. Then by considering the quadrangle SPQS\ the

theorem follows. This proof holds whether and U do or do not

coincide.

25. (a) Involq {AD, BC, OU) and Invol^ {AD, BG, U,0) imply

that U and U^ are identical.

This theorem requires the fundamental theorem for its proof, or

—

what is the equivalent—it requires Pappus' Theorem.

For consider the quadrangle SS'BQ which satisfies the conditions

of Involq {AD, BC, OU). Then take 1\ to be the point {SB.S'A),

and Q, the point {SD. S'C).

It follows from § 24 (a) and § 24 (y) that FiQi passes through Ui

and that SS'F-iQi is a quadrangle satisfying Invol^ {AD, BC, UiO).

But by considering the hexagon PiSADS'Qi, it follows from Pappus'

Theorem that F, Q, and l/i are collinear. Hence U and fJi coincide.
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(^) If Invol, (AB, BC, OU) and Invol^ {AD, BC, U^O) imply

that U and U^ coincide, then the fundamental theorem follows.

This follows at once from the figure of (a). Thus the fundamental

theorem and (a) are equivalent.

26. A quadrangular transformation of a line (called the 'axis')

into itself is defined thus : Let A, A^, 0, U he four fixed points on

the axis, of which and U may coincide, then a quadrangular trans-

formation of any point Jl of the axis with the corresponding point JTi

is defined by Involq {AXi, JTAi, OU).

It follows from the corollary of § 24 (a), that to any point J." on the

line there is one and only one correspondent. Furthermore it foUows

from the figure of § 24 (a) that a quadrangular transformation is a

projective transformation of the second degree, the 'initial vertex' of

projection being (cf. fig. of § 24 (a)) S, the 'final vertex' of projection

being S', and UP being the 'auxiliary line' on to which the axis is

projected. The line SO is the 'line of vertices.' If and Z^" coincide

the figure of § 23 (a) illustrates the construction.

Furthermore it is evident that any projective transformation of the

second degree is a quadrangular transformation.

The points and U are self-corresponding points in the trans-

formation. By the aid of the fundamental theorem, it can easily be

proved that any projective transformation of a line into itself which

possesses at least one (real) self-corresponding point is a quadrangular

transformation.

The point A, in the above transformation, corresponds to the point

Ai. Also the transformation is completely determined by A and Ax,

and U. Furthermore (cf § 24 (y) and (8) since Involq {AX^, XA^,

OU) and Invol^ {AB^, BA^ OU) imply Invol^^ {BX^, XB^, OU), it

follows that any other two corresponding points B and Bi of the

transformation can replace A and Ai. Thus a quadrangular trans-

formation is completely determined by its self-corresponding points

(say, and IT) and by the correspondent of any one point (say, Ai

corresponding to ^4). Such a transformation will be represented by

(AA^O'-U-). But in the particular case when and ?^" coincide, the

symbol (AAiU'-U'-) wiU be replaced by the shorter symbol (AAiU^).

A quadrangular transformation, such as {AAi U'-), with only one

self-corresponding point will be called* a ' ProspectiArity.'

(ABC.) quad {A'B'€'...) wiU mean that there is a quadrangular

* Cf. Schnr, loc eit. Math. AnnaL vol. lv.
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transformation transforming A to A', B to B' , C to C, and so on : also

(ABC...) prosp (A'B'C...) will mean that there is a prospectivity

transforming A to A' , B to B', C to C

.

(a) (ABOU) quad (A'B'OU) and (ACOU) quad (A'C'OU)

implies that (ABCOU) quad (A'B'C'OU).

For in all the cases the quadrangular transformation is the trans-

formation {AA'O'^U^). This also holds when and U coincide.

Hence we have,

Corollary. (ABU) prosp {A'B'U) and {ACU) prosp {A'C'U)

implies {ABGU) prosp {A'B'G'U).

(/8) {ABOU) quad (A.B.OU), and (A.B^OU) quad (A^B^OU)
imply (ABOU) quad (A,B^OU).

For the conditions are Invol^ (^^i, ^^i, 0?/) and Involq

(^1^2, ^1^12, Of/). Hence (cf. § 24 (8)) Invol^ (Ji?^, ^^2, OU),

that is, (ABOU) quad (A,B^OU).

This also holds when and CT" coincide. Hence we have,

Corollary. (ABU) prosp (A^B.U), and (A,B,U) prosp (A.B.U)

implies (ABU) prosp (A^B^U).

(y) (AB...) quad (J'j9' ...) implies (^'^'...) quad (^^ .,.)

This follows from § 24 (y).
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LINEAR NUilERATION-SYSTEMS.

27. Pythagoras is said to have insisted to the verge of mysticism

on the fundamental importance of number in forming a conception of

the universe. This importance, as we now know, arises from the fact

that by the use of the system of positive and negative real numbers

all the points of three dimensional space can be systematically named,

using four numbers as four names for each point.

Furthermore, and it is here that the importance of the method of

naming arises, the names (.r, y, z, u) can be so a.ssigned, that a homo-

geneous indeterminate equation of the first degree represents a plane,

and so on.

This method of naming points was first performed by means of the

properties of distance, and the Cartesian Geometry resulted. But the

converse procedure has now to be established*.

* The germ of the method by which projective coordinates are here introduced

was first given by v. Staudt, Beitrdge zur Geovietrie der Lage, 1857, §§ 19, 20,21, in

the calculus of ' Wiirfen.' These ideas were applied to the problem under con-

sideration by Fiedler, Vierteljahrsschrift der naturforscbenden Gesellschaft in

Zurich, Bd. xv. 1871, and Liiroth, Math. Annal. Bd. vm. 1875, and R. Sturm, Math.

Anml. Bd. ix. 1876, also Fiedler, Die Darstellende Geometrie, 1st Ed. 1871, pp. 505

—580, 3rd Ed. 1888, much enlarged. But in none of the above is the method con-

sidered in relation to a very definite system of axioms. The theory is explained at

length by Lindemann in his edition of Clebsch's Vorlesungen itber Geometrie, vol. il

part 3. The exposition of the method is supplied by Hilbert, loc. eit. §§ 24—50, for

Descriptive Geometry with a Euclidean axiom. Hilbert's exposition is amplified

and completed by Vahlen, loc. cit. Both Hilbert and Vahlen consider the

question of the introduction of a 'generalized number-system' as coordinates when
the Fundamental Theorem and Pappus' Theorem do not hold, in fact the inverse

problem of §§ 44—48 below. Hilbert's exposition is applied to Projective Geometry
by Schur, Math. Annal. Bd. lv. 1902. I have made large use of Schnrs memoir.
But the subject has admitted of further simplification by the aid of Burali-Forte's

investigations, cf. loc. cit. § 28 below.
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We first indicate the existence of a complete system of magnitudes

associated with the points of any segment of a line. By taking any

of these magnitudes as an arbitrary unit, the points on the segment are

uniquely associated with the positive real numbers; then the points

on the complementary segment are associated with the negative real

numbers. Thus a one-one relation is established between the points

on any arbitrarily assumed line and the whole set of positive and

negative real numbers. Three homogeneous coordinates can then be

assigned to the points on a given plane, taking an arbitrarily assumed

triangle of reference ; and thence four homogeneous coordinates to any

point in space.

28. The fundamental properties necessary in order to constitute

a complete system of magnitudes must first be understood *.

The symbol + is not otherwise determined than by the assumption

that x^-y represents the entity, which is arrived at as the result of the

operation + upon the two entities x and y, when these entities are of

suitable character.

Any class is a 'field' with respect to +, if, when x and y are any

members of it, x -vy is also a member of it. Assume now that G^ is a

field with respect to +, and let small italic letters, », h, c, ..., be

supported always to represent members of G^ , unless they are other-

wise defined. The null members of Go are its members x such that

always a+x = a. Let G be Go, exclusive of its null members.

a>b, read as '« is greater than b,' is defined to mean that a member

of G, X say, exists such that a-b + x. Also b<a means the same as

a>b; b<ais read as * 6 is less than a.'

6a means the subclass of Go whose members are all ' less than ' a.

If M is a subclass of Go, Ou means the class of members of Go each of

which has the property of being less than a member of u.

A 'bounded existent' subclass of Go is a class which has some

members and is such that there exists a member of Go greater than

any member of this subclass.

* This subject has been exhaustively treated by Burali-Forte, cf . Formulaire de

Math(5matiques, iv. Thiorie des Grandeurs, Turin, Edition of 1895, also Les

proprietes formales des operations algehriques, Eivista di Matematica, vol. vi.

Turin 1899, which is the memoir of which parts are here briefly summarized, also

Sulla teoria generale della grandezza e del numeri, Atti dei Accad, R. di Torino,

vol. XXXIX. 1903. See also E. V. Huntington, A set of Postulates for Real Algebra,

Trans. Avier. Math. Sac. vol. vi. 1905, especially § 3, Theorem 30.
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The upper limit (if it exist) of a bounded existent subclass of Go,

u say, is the single member of Go, x say, such that 6x^6u.

The axioms which must hold, in order to constitute G<, a complete

system of magnitudes in respect to the operation +, are as follows :

(1) (to is a field with respect to +,

(2) a + h = h-\-a,

(3) a + (fe + c) = (a + 6) + c,

(4) a + c = h + c, implies a = b,

(5i) At least one null member of Go exists,

(og) At least one member of G exists,

(6) If a is a member of G^, a + 6 is a member of G,

(7) Either a = h, or, a< b, or, a>b,

(8) If a is a 6^, then at least one member of 6a is a G.

(9) Every bounded existent subclass of G, possesses an upper

limit.

Axiom (9) may be called the Dedekind axiom and should be

carefully compared with the Geometrical Dedekind axiom given

above.

It can now be proved that there is one unique null member of Go

:

call it 0+. Also if a + 6 = 0+, then, a = 0+, and, 6 = 0^.; and if

a + b^O+, then either a 4=0+, or, 6 + 0+. The ordinary elementary

properties of + and > and < can now also be proved.

Again the following definitions are made, Oj- stands for 0+, larfora:,

2x for x + x, and so on. These are the multiples of x.

The 'principle of Archimedes' is proved, namely that there always

exists an integer m such that ma > b ; and the existence of submultiples

is proved, namely that if m is any integer there always exists one

unique member of Go, x say, such that mx = a.

If r is the rational number jnjn, then ra is defined to be that single

member of G, x say, such that nx = ma.

Let 5 be any (positive) real number ; let u be the class of rational

numbers less than s, and with 5 as its upper limit ; and let ua denote

the class of members of Go expressible in the form ra, where r is a

member of u. Then sa is that member of Go which is the upper Hmit

of the class ua. Then if s and t are any (positive) real numbers, it can

be proved that

sa + ta-(s + t) a, sa + sb = s (a -r b), s (Jxt) = (sf) a.



44 NEGATIVE MAGNITUDES [CH. VI

Finally, taking any member of G, a saj'', as the 'unit' of magni-

tude, any other member of G can be expressed uniquely in the form

sa, where s is some appropriate real number. Thus with each member

of Go, d^ real number s is uniquely associated.

29. Continuing the suppositions of the previous article (§ 28),

subtraction is defined thus ; when h>a, 6 - a is the single member of

Go, X say, such that a-\-x = b. The ordinary properties of subtraction

can now be proved, remembering that negative quantities have received

no definition.

It is now easy to see the conditions necessary for a class to form a

complete system of positive and negative quantities. Let the class g

satisfy the axioms (1) to (5) with respect to the operation + ; also

let g be divisible into two exclusive classes G and Go, and let Go

satisfy all the axioms (1) to (9), and let G be the subclass of Go,

exclusive of the null element 0+. Finally let there be a one-one

correlation between the members G and G, so that if x and x are any

pair of correlates, x + x'^0+. Then the ordinary theory holds for

members of the class G ; and if a and b are any two members of g,

a-h has a meaning in all cases.

Also G together with 0+ also satisfies all the axioms (1) to (9).

The symbols > and < now want defining afresh in order to preserve

their usual uniform meaning throughout the whole of g.

The whole system of positive and negative real numbers can now

be associated by a one-one correspondence with the various members

of g, when any member a oi G has been taken as an arbitrary unit.

30. Prospectivities on the same line with the same self-corre-

sponding point will now be proved to have the properties of a system of

magnitudes.

Definition. {ABU") + {CD U^) is the transformation which results

from first applying the prospective transformation (^^Z7^) and then

applying the prospective transformation {CDU^).

(a) (ABU^) + (CDU'') is itself a prospectivity. This follows

immediately from § 26 (/3). Thus if it transforms F to G, we have

(FG U') = (AB U') + {CDU%

But we shall usually find it convenient to represent prospectivities

by reference to a given ' initial ' point 0, thus prospectivities will be

written as {OA U% {OBU% and so on.
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()3) {OCU') = {OA U^) + {OBV'-) is equivalent to Invol, {OC, AB,
UU)*.

For (cf. § 24 (yS)) in the figure S and Si are the initial vertices of

the prospectivity (OA U% and S and S^ of the prospectivity {OBU%

O A B C U

'riien it follows immediately from the figure, by considering the

quadrangle SS.PQ, that, (OCU^)^(OAU') + {OBU% impHes Invol,

(OC,AB, UU).
Again, if the quadrangle SS^PQ is constructed as in the figure,

with its sides through and C, A and B, U and U, then drawing

APS, we see at once that Invol, (OC, AB, UU) implies

(OCU') - (OA U') + {OBU%
{y) (OCU-) - (OA U^) + (OBU') is equivalent to (OA U) prosp

(BGU), and also to (OBU) prosp (ACU).
This follows at once from (fi).

The property expressed by (OAU^) + (OBU^) = (OCU') is pro-

jective. For it expresses the existence of a certain plane figure in rela-

tion to 0, A, B, C, U, with properties which can be wholly expressed in

terms of coUineations and intersections of lines. But such properties

are projective. Thus if r be any projective transformation and the

correlate of any point P is P„ we have (OA U') + (OBU') = (OCU%
implies (OrArU/) + (OrBrU/) = (OrCrU/).

31. (a) (OAU')-r(OBU-) = (OBU') + (OAU').

This follows at once from § 24 (y) and § 30 (fi).

(^) {(OA U') + (OB U')} + (OCU')
= (OA W) + {(OBU-") + (OCU'')\.

For put, using § 30 (a),

(OAU'')+ (OBU') = (OCiU') I.

(OBU')^ (OOU')^(OAiU-) 11.

(OCiU')+ (OCU') = (OI)U') III.

(OAU^) + (OArU') = (OB'U') IV.

* Cf. Schur, loc. cit. Math. Annal. vol.
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Then from I and IV and § 30 (/8), we have

Involq (OCi, AB, UU) and Invol^ {OU, AA^, UU).

Hence by § 24 (8) we have

lnyo\{C,A,,BD', UU) V.

Similarly from II and III and § 30 (/3) and § 24 (8), we have

Involq (CiJi, 57), UU) VI.

Hence from V and VI and § 24 (a), D and D' coincide.

(y) (OAU') + (OCU^) = (OBU') + (OCU'), implies

(OAU') = (OBU').

For (cf. § 26 (13)) we may put

(ODU') = (OA U') + (OCU') = (OBU') + (OCU').

Hence (cf. § 30 (ft)) we have Invol^ (OD, AC, UU), and Invol^

(OB, BC, UU). Hence (cf. § 24 (a) and § 24 (y)) A and B coincide.

(8) The prospectivity (OOU^) has the 'null' property. For

whatever point on the line A may be, we have

(00 U') + (OA U') = (OA U%

32. (ABU) prosp (A'B'U) implies that (AA' U) /S'-concord

(BB'U), and (ABU) >S^-concord (A'B'U).

For let (ABGDA'U) prosp (A'B'C'D'A"U). Then by the pro-

jectivity of >S^-concordance (cf. § 17), we have (cf. § 26) (ABU)
/S^-concord (GDU) is equivalent to (A'B'U) >S'-concord (C'D'U).

Hence, since >S^-concordance and /S'-discordance (cf. § 15) are the only

alternatives,

(ABU) >S'-concord (A'B'U) is equivalent to

(GDU) >Sf-concord (G'D'U) (1)

Again (cf. fig. 1 and § 21)

(AA'B'U) —g (AFLS) —g (A UB'B) T (B'BA U).

Hence by the projectivity of /S-concordance

(AA'U) /S-concord (A'B'U) is equivalent to
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{B'BU) .S-concord {BA U),

that is to {BB' U) ^-concord {AB U).

Hence, as before,

{AA' IT) /S-concord {BB'U) is equivalent to

{ABU) >S'-concord {A'B'U) (2).

Thus from (1) and (2), it follows that the following five proposi-

tions are equivalent, i.e. all true or all false, namely,

{AA'U) ;Sf-concord (BB'U),

{CC'U) S'-concord {DD'U),

{A A' U) ^-concord {A'A" IT),

(AB U) Concord {A'B'U),

{GDU) /S^oncord {C'D'U),

Call this result (3).

But (cf. fig. 2),

{AA'A"U) -A i {FNQU)—^. {S'MSU) X^ {A"A'AU)

Hence {AA"U) /S^-concord {AA'U) is equivalent to

{A"A U) >Sk;oncord {A"A U),

i.e. to {AA"U) /Sf-concord {A'A"U).

Hence by the theory of the two alternatives,

{AA' U) /S'-concord {A'A"U) is equivalent to

{AA"U) >S-concord {AA"U).

But this last theorem of the two equivalents is true. Hence

{AA'U) ;8'-concord {A'A"U) is true.

Hence all the results of (3) follow.

Note that the present article is the first article since §21, inclusive,

in which the geometrical axioms of order, viz. axioms XVI, XVH,
XVIII, have been required, except so far as they are required to

establish the fundamental theorem which was used in § 25.



48 NUMERATION-SYSTEMS DEFINED [CH. VI

33. (a) {OCU') = {OAU') + {OBU% implies that {OBU)
>S'-concord {ACU), and {OAU) S-

concord (BCU).

This follows at once from § 30 (y)

and § 32.

()8) Hence if B lies in segm

(OA U"), then, with the hypothesis

of (a), C also lies in segm (OA U),

and follows A in the ^S-order {OA U).

(y) Again if C lies in segm

{OA U) and follows A in the /S-order

(0^ U), there is a point B in segm

(0^ Z7) such that

{OA W) + {OBV) = {OCU^).

34. (a) Now consider the class, g say, of prospectivities on a

given line, with a given self-corresponding point U.

Take and E any two arbitrarily assumed points on the line,

distinct from U and from each other. Then any prospectivity of the

class g can be written in the form {OFU'% where P is any point on

the line. Now let Gq be the subclass of g formed by prospectivities

{OPU^), when P is either in the segm {OEU"^), or coincides with 0.

Then, assuming the determination of the meaning of + given in

§ 30, the class g satisfies axioms (1) to (5) of § 28 [cf § 30 (a),

§ 31 (a), § 31 (/8), § 31 (y), § 31 (8)]. Also G^, satisfies all the nine axioms

of § 28 [cf. § 33 {^), § 33 (y)]. Axiom (9) is proved by noticing that

from § 33 (a), and axiom XVJII of § 19, the upper limit of a bounded

existent class of G^ always exists.

The class G is the class g, exclusive of the subclass Gq. Thus G
is composed of prospectivities {0PU% where P lies in segm {OEU).

(/8) Now consider two points A and A' connected by

{OA U') + {OA' U') = {00U%
Then the annexed figure shews that Harm {AOA'U) is the

necessary and sufficient condition. Thus all the conditions of § 29 are

now satisfied.

Hence taking {OEV^) as an arbitrary unit, each prospectivity of g,

and hence each point of the line, is uniquely associated with a real

number ; and conversely all the real numbers, positive and negative,

are thus exhausted.

In this way is associated with 0, E with 1, and U with oo
; also
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the order of the real numbers agrees (cf. § 33) with the order of the

points on the line, taken in the sense (OEU).
Let the ' numeration-system [OEU] ' denote the above method of

assigning real numbers to points on the line OEU, where is the

'zero point,' ^the 'unit point,' and £7" the 'infinity point.*

35. The investigation of the present article is interesting, though

unconnected with the strict logic of our immediate investigation.

The set of real numbers of the form 7/^/2", where m and n are

integers, is everywhere dense among the positive real numbers. Now
in the numeration-system [OEU] any point whose number is of this

form can be constructed by a finite number of st^ps.

(a) For if P be the point with the number x, the point P^,

corresponding to mx, is constructed by

{OP^U') = (OPW) + (0PU^)+... torn terms.

This represents a finite number of constructions.

(/8) Again let G be the point which corresponds to any real

number x in the numeration-system [OEU], then the point corre-

sponding to ^x can be constructed.

For (cf figure) take S^ and S2 collinear with U, and P and Q
collinear with U, and G2 on the axis, so that

(OGU) X5. (PQU) Xs, (GG,U).

Thns (0GU')^(GG2U').
Let PG2 cut S1S2 in Si', and QG in L. Then considering the

quadrangle PGG^Q, we find that Harm (S^S^USJ. Let UL cut OS^

in 31, and OS. in X; and let S.2M cut OU in F.

Now considering the quadrangle GLPM, ML passes through U,

GP through <S'o, 3IP and GL through Si, and PL through Si'. Hence

AIG passes through Si'.

w. 4



50 AN AGGREGATE EVERYWHERE DENSE [CH. VI

Again, considering the quadrangle OFMN, we see that NF passes

through >S'i',

Hence finally, {OFU) -Ks, {NMU) X^.' {FGU).

Thus {OFU') + {OFU'') = {OGU%
and therefore F is the point \w.

(y) Thus, using (^) and starting from the point E which corre-

sponds to Ijbyw successive constructions the point 1/2" is constructed,

where n is any integer. Hence by the use of (a) the point w/2" is

finally constructed. Points corresponding to positive real numbers of

this form are everywhere dense in segm {OFU) ; and the corresponding

harmonic points with respect to and U are everywhere dense in

segm {OFU).



CHAPTER VII.

COORDINATES.

36. (a) In the numeration-system [OEU], let 0' correspond to

the real number a, and E' to the real

number b. Also let P correspond to

X in the numeration-system [OEU],
and to w in the numeration-system

[O'E'U]. To prove that

x-a + (b— a)x'.

For

(0PU') = (00-U') + (0'PU')...{1).

But by hypothesis

(OP[/^) = xliOEU%

{OPm)=^x{OE'ir) ...(2).

Now {OPV) = iOPU") + {aOU''')

^{OPu^)-{oaw) (3),

and {OE' U') = (OE' [/') - {OOV)

^h{OEU^)-a{OEU^)

^{h-a){OEU') (4).

Thusfrom(l), (2), (3), (4),

X (OEU') = a (OEU^) + ib-a) x {OEU%

Hence x = a + (b-a)x'.

()8) Since (cf. § 30 (8)) the property expressed by the addition of

prospectivities is projective, if the range (OEUP) is projective with

4—2
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the range {O'E'U'P'), then the number corresponding to P in the

numeration-system [OEU^^ is the same as that corresponding to P' in

the numeration-system [O'E'U'].

37. (a) Coordinates can be assigned as follows to any point P
on a plane. Take any triangle OUV, and any point E^ on OU, and

any point E^ on V. Let VP intersect C in M, and UP intersect

F in N. Let x be the number assigned to M by the numeration-

system [OEi U\ and y the number assigned to N by the numeration-

system [OE^V^ then x and y are the coordinates of P.

(y8) It is now necessary to prove that the equation of a straight

line is linear. First consider a line not passing through U, or V.

Let P {x, y) be any point on it. Let the line cut OIT, OV, UV in 0^,

Oi, 7" respectively, and also cut FEi in Ei and UEz in E2'.

Then by § 36 (/8) above x is the number assigned to P by the

numeration-system [OiEi'T], and y is the number assigned to P by the

numeration-system [O^Ez'T]. Hence by § 36 (a) we have a relation of

the form

y — mx + c

as the equation of the line OiO^T.

Secondly if the line passes through U or V, it follows from (a) that

the equation is of the form

y = h, or, x = a.
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(y) According to this assignment of coordinates, the coordinates

of any point on ZJFare (oo, x).

But the coordinates of any point

P, other than L, on the line OL,

are in a constant ratio (cf. (yS)).

Thus the infinities on UVma.y be

avoided, (1) by taking the coordi-

nates of L to be in the same

constant ratio as those of any other

point P on OL, (2) by writing ^/C,

ql^ for X and y, and taking ^= to

be the equation of the line VU.

38. (a) Assigning the homogeneous coordinates of points in a

given plane as in § 37 (y), let a, h, c and a, b', c be the homogeneous

coordinates of two points A and A'. Then the coordinates of any

point {6, (fy) on the line AA' can be written 6a + ^a', 6b + <^b', 6c + <^'.

The anharmonic ratio of a range of four such points, viz. [(^i, </>i),

(^2, </>2), (^3, «/»3), (^4, «^4)], is defined to be

(^i<^ - ^2<Ai) {0,^A - 6,<hWii>4 - ^A) (^3<^2 - 0^).

Then by the ordinary processes of analytical geometry, it is proved that

the equality of the two anharmonic ratios is the necessary and sufficient

condition that the two ranges {P^P^P^P^ and (QiQoQiQi) should be

projective.

(yS) Hence attending to the generation of homogeneous coordinates,

as in § 37 (y), from two numeration-systems, viz. on OF and OU (cf.

fig. § 37 (a)), it follows that if the range (PiP.PJ^i) on the axis OU
corresponds to (jti, x<i, x^, x^ in the numeration-system \OEU\ and

on the same axis Of/' the range (QiQ^QsQi) to (yi, y-2,yi, y*) in the same

numeration-system, then the necessary and sufficient condition for

iP,P,PJ'd X (Q^Q.QM
is (xi - X.) (x3 - x,)l(xi - x^) (xs - X.2) = Oi - ya) (ys- y^liy^ -yd (2/3

- yd-

Define (xi — x^) (x^ — x^Hxi - x^ {x^ - a^a) to be the anharmonic ratio

of the range (PiP^P^P^ in the numeration-system [OFU].

(y) Note that it has yet to be proved that the anharmonic ratio

as thus defined is the same for every numeration-system on the line.

When this proposition has been proved, it will follow (cf. § 41) as a

corollary that the anharmonic ratio as defined in (a) is the same
for any fundamental triangle OUV in the plane, and for any 'unit'

points L\ and Eo in OU and OV.
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39. (a) Consider ranges on a given axis referred to a given

numeration-system [0£U}. Now any two harmonic ranges are

projective (cf. § 9 (8)) ; hence cf. § 38 (y8) the anharmonic ratios in the

numeration-system [OEU] of all harmonic ranges on the axis are equal.

Now let B' correspond to - 1 in the numeration-system [OBU].
Then (cf. § 34 (/3)) we have Harm {OEUE'). But the anharmonic

ratio of this range is - 1. Hence the anharmonic ratio of all harmonic

ranges is -1.

()8) Now let F and Q be such that Harm {EPE'Q), and let cc

correspond to P, and ^ to ^ in the numeration-system [OEU\ Then

from (a) we find, xy=\.

(y) But with P and Q as in (/3), we have

(OEUQP)-x(UEOPQ).
Hence (cf. § 36 (yS)) since numeration-systems are projective, we

find that if cc corresponds to P in the numeration-system [OEU], then

- corresponds to P in the numeration-system [UEO].

40, (a) We can now consider the effect of shifting IT to V,
where U' corresponds to c in the numeration-system [OEU].

Let P correspond to w in the numeration-system [OEU] and to cc'

in the numeration-system [OEU']. Then (cf. § 39 (y)) P corresponds

to - and U' to 1/c in the numeration-system [ UEO], and (cf. § 36 (a))

P to
y

-T— in the numeration-system [U'EO], and (cf. § 39 (y)) to

^— in the numeration-system (OEU').

(/8) In the numeration-system (OEU) let 0' correspond to a,

E' to b, and U' to c. Also let P correspond to a in the numeration-

system [OEU] and to x in the numeration-system [O'E'U']. Then,

from (a) and from § 36 (a),

^,^(6-cX^-a)
(b -a)(x-c)'

(y) It follows immediately from (/8) that the anharmonic ratios of

any range on a given axis in all the numeration-systems on that axis

are equal. Thus the reference to the particular numeration-system

may be omitted in the specification of an anharmonic ratio.

(S) Considering any range (PiP^PsP^), let x correspond to P4 in

the numeration-system (P^P^Pi). Then, from § 38 (/8) and § 40 (y),

X is the anharmonic ratio of the range (PiP^PJP^).
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4L Let the homogeneous coordinates i, rj, ^ of any point P on a

given plane be arrived at as in § 37 (y), where OUV is the fundamental

triangle. Make the linear transformation

i=aiX + biy + CiZ,

rj = cu^ + Jay + C3«>

where the determinant of the transformation is not zero.

Then the three equations .r = 0, ^^ = 0, 2 = determine respectively

the three lines BC, CA, AB. Referred to x, y, z a& new coordinates

the points A, B, C are respectively the points (a, 0, 0), (0, P, 0),

(0, 0, y), where a, /8, y may be given any arbitrary values. The

coordinates of any point P on AC are (a, 0, ^y). Let Ei be the point

(a, 0, y).

Then the number corresponding to P in the numeration-system

[AE^C^ is the anharmonic ratio of {CE^AP), that is, 0. Similarly

(a, 0, 4>fi) is any point Q on AB, and E.. is the point (a, 0, P), and ^
is the number corresponding to Q in the numeration-system [J.^2^]-

Thus as in § 37 (y) the coordinates of the point R, where BP and CQ
intersect, can be taken to be x, y, z, where y'jx - 6, and y'/x =

<f>.

But in terms of the new coordinates (x, y, z) derived from the

algebraic transformation, the equation of the line BP is zlx = 6y/a,

and of CQ is ylx = <\>Pla.

Hence the coordinates {x, y, z) derived from algebraic transforma-

tion can be identified with those obtained from ABC by the method

of § 37 (y), by putting a = yS = y, or, as is easily seen, by the proper

choice of Ei and E^ when a, ^, y are given.
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42. (a) The assignment of coordinates in three dimensions is

conducted in a similar manner.

Let OUVW be any tetrahedron, and P any point whatever. Let

UP meet the plane OVW in Q, VP the plane OWU in B, and WP

the plane OUV m S. Also VS and WB intersect in L on OU,
US and WQ in M on OV, UB and VQ in N on OW.

Now on OU, V, OPT take arbitrary fixed points Ei, E^, E^. Let

cc, y, z be the numbers assigned respectively to L, M, N by the

systems [OE^U], [OE.V] and [OE^W\. Then x, y, z are the

coordinates of P.

These are made homogeneous by writing xju, y/u, z/u for x, y, z

respectively, and by applying reasoning similar to that in § 37 (y).

()8) The equation of a plane is of the first degree. For first

consider a plane not containing any of the corners of the fundamental

tetrahedron OUVW. Let it cut OU \n H^, OV \n H^, OW'in H^,

VW in K^, WU in K^, UV in K^. Also let P, coordinates

{x, y, Zy u), be any point on it.

Then (0 FT^) Xp (^i-S'siTs). Hence, referred to the triangle

HiK^K^, the coordinates of P are y, z, u.

Again {OUW)t viHiKJ^-i). Hence, referred to the triangle

H^K^iK^y the coordinates of P are x, z, u. Hence by the theory of the

transformation of coordinates (cf. § 41), we find a relation of the form

x=^ay + bz + cu.
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It is impossible to find other distinct relations of this form by

projecting from W. For if two such relations exist, by elimination a

relation of the form, ai/ + fiz + yii = 0, can be found. But (cf fig. of (a))

the coordinates y, z, u oi P are the same as the coordinates y, z^ u
of Q. Hence the above relation holds between the coordinates of Q.

But Q is any point on the plane OVW, while (cf § 37 (/3)) the relation

between y, z, u is characteristic of a single straight line on OVW.
Hence two linear relations between x, y, z, u cannot hold for any point

on a plane.

Secondly, the above reasoning holds if the restriction that the

plane does not possess any of the points 0, U, V, W is reduced to

the statement that it does not possess more than one of the points

U, V, w.
Thirdly, let the plane contain V and W, for instance let it be the

plane VLW of the fig. of (a), then the xiu of P is the xlu of L.

Hence x = du is the equation of the plane. Also the equation of the

plane UVWi^u-Q.



CHAPTER VIII.

EXISTENCE THEOREMS.

43. (a) The Dedekind Axiom (cf. § 19) is independent of the

other axioms. For consider the complete geometry, as we have now
deduced it, in which each point is denoted by four homogeneous
coordinates (a;, y, z, u), their ratios only being relevant. From this

complete set of points select those capable of representation by four

rational coordinates. Then the equation of any plane containing

three such points can be written,

lx + mi/ + nz+pu=0,

where /, m, n, p are rational numbers. Call these points the ' rational

points,' and these planes the ' rational planes.' A rational line is the

intersection of two rational planes. Then any two rational points lie

on a rational line, and any two rational lines intersect in a rational

point. All the axioms, with the exception of the Dedekind axiom, are

satisfied in a Geometry restricted to these points and lines. Further-

more the Fundamental Theorem also holds ; and the rational points on

any rational line form a compact closed series.

{f3) The existence theorem* for the complete set of axioms,

I—XIX, with the modification of XV into an axiom restricting the

number of dimensions to any finite integral number, n-1, can be

proved as follows : Let the n positive or negative real numbers

(xi, a?2, ... a^n) be considered as the name of a point, where x^, x^, ... x^

are not all zero, and {px-^, px^, . pXn), whereto is any real number not

zero, names the same point as (xi, x^, •• x,^. A straight line is defined

to be the set of points satisfying w - 2 independent homogeneous linear

equations involving Xi, x^, Xn as unknowns.

Then all the axioms are satisfied provided that we can specify the

set of entities which {xi, x^, ...Xn), for the various determinations of

{Xi, Xi, ...Xn) can be conceived to name. Now {x^, x^, ...Xn) can be

* Cf. Russell, Principles of Mathematics, § 413 and § 360 [note misprint ' real
'

for ' complex ' in line 21 of § 360.]
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taken as naming a certain many-one relation between all the n

integers 1, 2, ... « and some of the real numbers, namely that many-one

relation which correlates 1 to arj, 2 to a-o,... and n to iVn- Thus the

point (xi, a?2, x,, x^ is the class of correlations of which any typical

member is named by {axi, ax^, ax^, ax^), where «4=0. Accordingly

the complete set of points is the complete set of classes of ail such

correlations.

Hence if a purely logical definition can be given of the set of real

numbers, and if the set of real numbers as thus defined can be proved

from purely logical premises to possess the properties ordinarily

assigned to real numbers in pure mathematics, then the existence

theorem for the Projective Geometry based upon Axioms I to XIX, and

restricted to n dimensions, has been proved. Thus the vital importance

to Pure Mathematics of such a minute logical investigation into the

theory of real numbers is obvious*.

44. Hubert's proof that the Fundamental Theorem cannot be

deduced from Axioms I—XV will now be considered. Hilbertf himself

has published notes or headings of a proof rather than a proof itself.

The following summary is a condensation of a complete proof by

VahlenJ. The preliminary explanations will occupy more than one

article.

Consider a class K and two operations + and x with the following

properties

:

(1) ^is a class.

If a, b, and c are members of K, then

(2) a -1- 6 is a member of K,

(3) {a + b) + c^a + (b + c),

(4) a + b^b + a,

(5) a + b -a + c, implies b = c,

(6) There is at least one member of K, z say, such that z-^z = z^

(7) There is a member of K, x say, such that a^x = b.

Then it can be proved that there is only one member of K with

the property (6). Denote this member by 0. Also, when a and b are

any given members of K, there is only one member of K with the

* Of. Russell, loc. cit.. Part II and Part V.

+ Cf. loc. cit. §§ 31—35.

4: Cf. loc. cit. pp. 1—110.
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property of a: in (7). Denote by - a, the single member ofK with the
property, a + (-a) = 0; and write a - 6 for a + (- b).

Again make the same supposition that a, b, c are any members
of K, also write ab as a shortened form of a x 6. Then the following

further properties are to hold ofK and + and x :

(8) a (b + c)=ab+ ac,

(9) (b + c)a = ba + ca,

(10) {ab)c = a{bc),

(11) If a + 0, and a6 = ac, then 6 = c,

(12) If a =1= 0, and 6a = m, then 6 = c,

(13) There is at least one member of K, z say, such that zz = z,

(14) If a 4=0, there is at least one member of K, x say, such that

ax = b,

(15) If a + 0, there is at least one member of K, y say, such that

ya^b.

Then it can be proved that

aO = Oa = ;

also that there is one and only one member of K with the property

(13). Denote it by 1. Also it can be proved that the equations

ax = b, and ya = b, have each of them only one solution, assuming a =1= 0,

and 6 =# 0.

Let a~^ be defined to be the single member of^ such that aa~^ = 1.

Then it can be proved that a~^a= 1. But ba~^ must be distinguished

from a~^ b, except when b = a.

Let 2, 3, 4, etc. be defined thus: 2=1 + 1, 3 = 2 + 1, 4=3 + 1, etc.

All the members of^ which are thus obtained are called the 'integral'

members of K. If a is any member of K, and n is any integral member
of K, then na = an.

The 'rational' members of iTare those members of ^, r for instance,

such that there exist two integral members of IC, m and n say, such

that mr - n. Then if a is any member of K, and r is any rational

member of K, ra = ar. Evidently the integral members of K are

among the rational members of K.

45. These properties, namely (1) to (15) of §44, do not involve

the commutative law for multiplication, namely (th = ba, though of

course they are consistent with it. This possible existence of a class

with the above properties, but excluding the commutative law, can be
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verified by considering the class of quaternions, excluding imaginary-

quaternions, but including degenerate quaternions in the form of

positive and negative scalars, and the null quaternion. These satisfy

all the requisite axioms. It is to be noted that if a and b are any
quaternions, then, ab = ba, is not in general true.

46. Continue the assumption that ^ is a class satisfying (1) to

(15) of § 44, and that all the non-capital letters of any alphabet and

numerals are members of K, as specified in § 44.

Let ( X, y, z, u) define an object, which we will call a point.

Here x, y, z, u are not to be all identical with ; also, if a + 0,

(flw*, ay, az, au) defines the same point as (a?, y, z, u). Then a point is

a class of correlations, similarly to the other points defined in § 43 ()8).

Then x, y, z, u are the ' coordinates ' of the point (x, y, z, u). If

X, y, z, u are the coordinates of a point, and satisfy

x^+yri + zt, + Mr = 0,

where ^, rj, ^, r are not all equal to 0, then the point is said to lie in

the plane (I, rj, t,, r). Thus the plane {^, rj, I, r) is a class of points.

Also the planes (f, 17, ^, r) and (|a, rja, t,a, ra) are identical, where

a + 0.

A straight line is defined to be the intersection of two distinct

planes. Then it can be proved that three distinct planes intersect

either in a line or a point.

Then a line is determined by any two points on it. Also if

(^11^1, Zi, t*j) and (a-a, y^, z^, U2) are any two distinct points, any point

in the line possessing them both can be expressed in the form

{K^i + K^2, K^i + Ky^, K^^i + K^ni ^lUi + Ku^), and conversely any
point whose coordinates can be expressed in this form lies on the

line.

Also any three non-collinear points determine a plane. If

(a-,, ..., . ., ...), (x2, •••, ••., •••)> (^3> ••, ••-. ••) are three non-collinear

points, the coordinates of any point on the plane possessing them can be

expressed in the form (Xj Xi + X^^^ + K ^s, •••> •••, •••)•

Then Aj, Xo, Xg may be called the coordinates of a point in the plane,

referred to the triangle, formed by (.Tj, ..., ..., ...), (x^, ..., ..., ...),

(^•3, ..., ..., ...), as the fundamental triangle.

47. (a) It can easily be verified that, with the Geometry of § 46,

Axioms I—XII of § 4, and Axiom XIII of § 7 and Axiom XV of § 8

are all verified. Thus in this Geometry Desargues' Theorem holds.
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Indeed if the definitions of §46 be modified so as to reduce the

Geometry to two dimensions, it can still be proved * that Desargues'

Theorem holds.

(iS) Axiom XIV, in Pieri's second form, is also verified.

For let ABCD be any quadrilateral, and F, G, H be the three

harmonic points, as in the figure. Take ABC to be the fundamental

triangle. Then with this assumption, A is (1, 0, 0), B is (0, 1, 0),

C is (0, 0, 1), i> is (a, p, y) ; where no one of a, p, y is 0. Then since

F\\QS, on BC it is of the form (0, /*, v), and since it lies on AD \t is of

the form {6 + <^a, <^^, <^y). Hence ^ =- «^a. Thus F is (0, <^A <i>y\

that is, (0, )8, y). Similarly G is (a, 0, y), H is (a, /3, 0). Thus any

point on FG is {<^a, OP, (6 + <^) y}. Hence L, where FG and AB
intersect is given by ^ + ^ = 0. Thus L is {a, - (3, 0}. But since ft is

not 0, /8 and - (3 are distinct. Hence L and H are distinct. Hence

Axiom XIV holds.

48. We can now t prove that Pappus' Theorem does not follow

from Axioms I—XV.

Let (cf fig.) A, B, C and Ai, Bi, Ci be the two sets of three

coUinear points. Then we may choose, ^ to be (1, 0, 0), -ff to be

(0, 1, 0), C to be (1, )8, 0), A^ to be (0, 0, 1), B^ to be (A, /*, v), d to be

(A., fi, 1 + v) ; where /?, y, /a, v are each one not equal to 0.

The above choice of coordinates is consistent with A, B, C and

Alt Bi, Ci being any six points fulfilling the required conditions.

* Cf. Vahlen loc. cit. Part II, § 84.

t Cf. Vahlen, loc. cit., Part II, § 83 and § 110.
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Then D is on BCi and on B^C. Hence it can be expressed in both

the forms

{<^X, e + <f)fjL, <t> (l + v)} and {i + r]\, $fi + rjii, i/v}.

Ax
^'

Hence we may put

Thus r] - <}>v~^ +
<f> ;

and <t>\^i + <t>v-^\ + <t>\

thus i^- <f>v~^X.

Hence D is the point {X, /i + v~^fi-v-^\p, 1 + v}. Similarly E is the

point {fji^~\ At, 1 + y}, and F is the point (0, /x, v).

Thus any point on EF can be written in the form

IfD is such a point, we have the three equations

^/-)8"'-^ (1),

(x + i/)fi. =
fj.
+ v-'iJL-v-^\l3 (2),

a; + (a + y)v = 1 + v (3).

Thus from (2) and (3) we find

XV-' = v-i xPfJi-\

Substituting this value of a; in (1),

that is A/3/X-1 v = vkfifi-\
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Now put 8 = A^/A~\ and we find 8v = vS. Also v and 8 can be any

members of K. Thus Pappus' Theorem can only be true when the

commutative law for the multiplication of coordinates holds.

Hence it follows from § 1 1 and § 45 that neither Pappus' Theorem

nor the fundamental theorem are consequences of Axioms I—XV.
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