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PREFACE

It is probably fair to say, and has been said before by many
others, that graph theory began with Euler’s solution in 1735 of
the class of problems suggested to him by the Konigsberg bridge
puzzle. But had it not started with Euler, it would have started
with Kirchhoff in 1847, who was motivated by the study of
electrical networks; had it not started with Kirchhoff, it would
have started with Cayley in 1857, who was motivated by certain
applications to organic chemistry, or perhaps it would have started
earlier with the four-color map problem, which was posed to De
Morgan by Guthrie around 1850. And had it not started with any
of the individuals named above, it would almost surely have
started with someone else, at some other time. For one has only to
look around to see “real-world graphs” in abundance, either in
nature (trees, for example) or in the works of man (transportation
networks, for example). Surely someone at some time would have
passed from some real-world object, situation, or problem to the
abstraction we call graphs, and graph theory would have been
born.

Today graph theory is a vast and somewhat sprawling subject,
embracing as it does applications in many diverse areas: physics,
chemistry, engineering, operations research, genetics, economics,
psychology, and sociology, to name some. Dozens of books and
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proceedings of conferences on graph theory have appeared, mostly
within the last fifteen years, and the number of journal articles
dealing with graphs that have appeared in this time interval must
number in the thousands. Today there are journals devoted exclu-
sively to graph or network theory, and other journals, devoted
exclusively to combinatorial mathematics, in which many, if not
most, of the papers that appear are about graphs.

This recent explosion in a subject that was fairly dormant over a
long period of time creates a difficult situation for one who is
asked to edit a study on graph theory. Many facets of the subject
must be omitted entirely; others can be treated in only a sketchy
fashion. The resulting study will be biased by the editor’s
ignorance of some topics in the subject, and by his likes and
dislikes for topics he knows something about. These remarks
would apply to almost any editor; they certainly apply to me.
Some of the important omissions that I know about include the
fairly recent and lengthy affirmative resolution of the Heawood
map conjecture by Ringel and Youngs, the solution of the Shan-
non switching game by Lehman, and the work of Edmonds on
weighted matching theory, together with its application to very
practical generalizations of the Euler problem. The latter would
have brought us back to where it all started.

I shall let the papers that comprise the two volumes of this study
speak for themselves. Some of them have appeared elsewhere;
others appear here for the first time.

D. R. FULKERSON
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PERFECT GRAPHS

Claude Berge

1. INTRODUCTION

Let G be a simple graph (with no loops and no multiple edges),
and let y(G) be its chromatic number, i.e., the least number of
colors required to color the vertices of G so that no two adjacent
vertices have the same color. We shall denote by w(G) the clique
number of G, i.e., the maximum number of vertices in a clique.
Clearly, y(G) > «(G), because if C is a maximum clique of G, any
two vertices of C are joined, and all the vertices in C must have
different colors. However, for many interesting classes of graphs,
e.g., bipartite graphs, the equality holds.

When, for a graph, the equality holds, this does not give much
information about its structure because every graph augmented
with a large clique satisfies y(G) = «(G). For this reason, we need
the following concept: A graph G = (X, E) is said to be y-perfect
if, for every subset 4 C X, the induced subgraph G, of G satisfies
¥(G,) = w(G).

Now, denote by a(G) the stability number of G, i.e., the maxi-
mum number of vertices in a stable set (set of vertices that are
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2 Claude Berge

pairwise non-adjacent). Denote by 8(G) the partition number, i.e.,
the least number of cliques whose union covers all the vertices of
G.

If we consider a stable set S and a minimum partition of X into
cliques, then S cannot have more than one vertex in each of these
cliques; hence a(G) < 6(G). For several interesting classes of
graphs, e.g., bipartite graphs, the equality holds.

A graph G = (X, E) is said to be a-perfect if for every subset
A C X, the induced subgraph G, satisfies a(G,) = 6(G,).

When, in [1], we introduced these concepts, we started to
investigate some classes of graphs which could be proved to be
a-perfect or y-perfect. This list immediately suggested the follow-
ing conjectures:

1. (The “weak” perfect graph conjecture): Is it true that a graph

is a-perfect if and only if it is y-perfect?

2. (The “strong” perfect graph conjecture): If G is a simple graph,

is it true that the following three conditions are equivalent:

(1) G is a-perfect,

(2) G is y-perfect,

(3) G does not contain (as an induced subgraph) an odd cycle
without chords, and G does not contain the complement
graph of an odd cycle without chords?

The first conjecture, which is now settled (see section 6), is
interesting in itself; Fulkerson in [8], [9], gave an analytic in-
terpretation in his theory of anti-blocking polyhedra, and reduced
the conjecture to a lemma (Lemma 1 of section 6).

The second conjecture, which is stronger and still unsettled, can
also be simplified. We shall show that (1) implies (3): If G is a
graph satisfying (1), and if there exists a set 4 of vertices such that
the induced subgraph G, is a cycle of length 2k + 1 without
chords or, for short, G, = C,;,, then we have

a(Gy) = a(Cyeyy) = k,
0(Gy) = 0(Cyp) =k + 1.

Clearly, this contradicts (1).
Moreover, if there exists a set B of vertices such that
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Gy = Cyy 4, (the complement graph of C,; ), then
a(Gg) = o(Coys1) = 2,
0(Gg) = ¥(Casr) = 3.

Again, this contradicts (1).

However, it has not been proved that (3) implies (1), or, equiva-
lently, that (3) implies (2).

In the following sections, we shall study some classes of graphs
which are both a-perfect and y-perfect, and the reader can check
easily that they fulfill condition (3).

2. COMPARABILITY '‘GRAPHS

A graph G is said to be a comparability graph if it is possible to
orient each edge in such a way that the relation “there is an
oriented edge going from vertex a to vertex b,” or in short, a > b,
is a strict order. That is,

(1)a > b, b > c implies a > ¢,

(2) a > b implies not b > a.

Every induced subgraph of a comparability graph is obviously a
comparability graph; a characterization of such graphs has been
given independently by P. Gilmore and A. Hoffman [12] and by
A. Ghouila-Houri [11].

Example.

Bipartite graph. A graph is said to be bipartite if it has at least
one edge and if it does not contain any odd cycle. It is well known
that for such a graph G, one has y(G) = 2. If we color the vertices
with two colors, and if we direct each edge from the first color to -
the second color, the conditions (1) and (2) are trivially true, so the
graph G is a comparability graph. The converse is not true; the
graph of Figure 1 is a comparability graph, but not bipartite. The
reader can easily check that the graph of Figure 2 is not a
comparability graph.
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For a bipartite graph G with at least one edge, we have
w(G) =2 = y(G).

On the other hand, it is known that «(G) = 8(G). This is equiva-
lent to a very famous theorem of Konig. Thus, a bipartite graph is
perfect.

THEOREM 1: Every comparability graph is y-perfect.

Proof: Consider a graph G with an orientation > which satis-
fies (1) and (2). Thus, the graph G has no directed circuits, and, as
G is finite, to each vertex x we can assign a finite number f(x)
representing the length of the longest directed path issuing from x.
If max, f(x) = k — 1, there exists a directed path with k vertices.
There exists no clique with more than k vertices because such a
clique would contain a path passing through each of its vertices
(Theorem of Rédei), and the longest path contains only k vertices.
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Thus, we have
w(G) = k.

On the other hand, consider k£ colors 0,1,...,k— 1, and
assign color f(x) to vertex x. Two adjacent vertices x and y cannot
have the same color because if the edge [x, y] is oriented from x to
y, we have f(x) > f(»); therefore,

¥(G) < k.
As we have always

¥(G) > o(G) = k,
we have finally :

v¥(G) = k = o(G).

THEOREM 2: Every comparability graph is a-perfect.

Proof: A very famous theorem of Dilworth states: “If the
orientation of the edges of a graph G satisfies (1) and (2), then
a(G) is equal to the smallest number of disjoint paths which cover
all the vertices.” But to each path of G corresponds a clique, and
to each clique corresponds a path; therefore, we have a(G)
= 0(G).

3. TRIANGULATED GRAPHS

A graph is said to be triangulated if every cycle of length greater
than three possesses a chord, that is, an edge joining two non-
consecutive vertices of the cycle. Triangulated graphs arise in
many contexts.

Example 1.
Interval graphs. Consider on a line a finite family of intervals,
and draw a graph whose vertices represent the intervals, two
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vertices being joined if the two corresponding intervals intersect;
such a graph is called an interval graph.

We shall show that every interval graph G is triangulated.
Otherwise, there exists in G a chordless cycle pu
=[a}, a5 ..., a,a,] of length k > 3. Let 4, = [a;, B;] be the
interval of the family that is represented by vertex ;. Then, 4,_,
and A4, are two disjoint intervals (since the cycle p is chordless).
If, say, A; is at the right-hand side of 4,, then B, < B, < B,
< .-+ < B, < B, which is a contradiction.

The problem of characterizing a graph representing a family of
intervals was first put by G. Hajos [14] as follows: In a university,
each student has to go once a day to the library; at the end of the
day we ask each of them whom he has met, and we draw a graph
G whose vertices represent the students, two vertices being joined
if the two corresponding students met at the library. For each
student, we have corresponding an interval of time during which
he stayed at the library, and G is the representing graph of this
family of intervals. Hajos later gave an algorithm to locate the
intervals, and P. C. Gilmore and A. J. Hoffman [12] gave a
complete characterization of interval graphs. See also Lekker-
kerker and Boland [15].

Interval graphs arise also in psychology as follows: Consider on
a line a finite number of points P, P,, ..., P,, and an infinite
family of intervals £; two points, P, and P, are said to be
indistinguishable if there exists in £ an interval which contains both
P; and P,.

A problem which has been considered in psychosociology is to
characterize the graphs of indistinguishable pairs of points. In fact,
such a graph G is the representing graph of a family of intervals
I, I,, ..., I. Interval I, corresponding to point P, is defined as
follows: I, is the intersection of interval [P, + oo] with the union
of all the intervals of & which contain P,.

Consider two points P; and P, with P < P. If P, and P, are
indistinguishable, one has P el therefore IN I #0 . Conversely,
if N 1; #0, one has P, €], therefore P, and P; are indistinguish-
able.

Thus, each graph of indistinguishable pairs of points is a repre-
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senting graph of a family of intervals (and each representing graph
of a family of intervals is also a graph of indistinguishable pairs of
points).

Example 2.

A graph G is said to be a cactus if it is connected and does not
possess any cycle of length greater than 3. Cacti are considered in
physics and are obviously triangulated.

Example 3.

Given a graph G, its adjoint G* is a graph whose vertices
represent the edges of G, two vertices being joined if they repre-
sent adjacent edges of G. The graph G*, adjoint of a cactus G, is
triangulated. Assume that there exists in G* a cycle (uf,
uf, ..., u}) without a chord, with k > 3; it corresponds to a
cycle of G with edges u;, u,, . . . , #,. This contradicts the fact that
G is a cactus.

We must remark that “triangulated” and ‘“comparability”
graphs are two independent concepts. The graph pictured in
Figure 1 is a comparability graph, but it is not a triangulated
graph; on the other hand, the graph of Figure 2 is triangulated,
but is not a comparability graph.

LeMMA: If a triangulated graph G is connected and is not a
clique, it contains an articulation set which is a clique.

Proof: As G is not a clique, there exists at least two non-adjacent
vertices, so there exists at least one articulation set. Let A be a
minimal articulation set, whose removal creates several connected
components C, C’, C”, ... . Every element a of A4 is joined by an
edge to every component because, if not, 4 ~ {a} would be also
an articulation set, and 4 would not be a minimal articulation set.
Consider in 4 two distinct.elements @, and a,. There exists a chain

p=Ila,c,cp...56 a,), CpCy.vr GEC,
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and consider p a shortest chain of that kind. There exists also a
chain

we=layci,cp..cncpal, ey, EC,
and consider p’ a shortest chain of that kind. The cycle
p+w=[a,c,cp.nn,60ayc, 6. .., 0 a]
does not possess any of the following chords:
[a), ¢;] withi # 1,
[c ¢l withi =)+ 1,
[a,, ¢;] with i # p,

because p would not
be a shortest chain

because C and C’
AN are two disjoint
connected components.

[ay ¢/ withj # 1,
et e because u’ would not
[, cf] with i # j, be a shortest chain.

[ai’ ‘:;] Wlth] * 9,

As the graph G is triangulated, the cycle p + u’ (whose length is at
least 4) possesses a chord, and this chord is necessarily [a,, a,].

Thus, every pair of vertices a,, a, E 4 is joined, and therefore 4
is a clique.

THEOREM 3: (Berge [3]). Every triangulated graph is y-perfect.

Proof: Assume that the theorem is true for all graphs of order
less than n, and let us show that it is also true for a graph G of
order n. If G is a clique, the theorem is true. If G is not a clique, it
follows from the lemma that there exists an articulation set 4 that
is a clique.

Let C,, C,, ... be the connected components of the subgraph
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Gy_4 obtained from G by removing 4. By the induction hypothe-
sis, we have for all i,

Y(GAUC,) = w(GAUCI) < w(G).

We can color with w(G) colors the vertices of each G,
separately, and this gives a coloration of G with w(G) colors.
Hence, y(G) = «(G). Q.E.D.

THEOREM 4: (Hajnal, Suranyi [13]). Every triangulated graph is
a-perfect.

The proof is similar to the preceding one.

COROLLARY: Every interval graph is a-perfect.

This Corollary can be rephrased as follows: If (I}, I, . .., 1) is
a family of intervals on the line, and if the maximum number of
pairwise disjoint intervals is k, then it is possible to find k points on
the line such that each interval of the family contains at least one of
them.

This result was previously obtained by T. Gallai.

4. UNIMODULAR GRAPHS

Given a graph G with vertices x;, x5, ..., x,, let
C;; Cy - . . , C,, be its maximal cliques. A matrix M = (m), with n
columns and m rows, is said to be the clique-incidence matrix of G
if
i = { 0if x;

J .
Lif x,€C,.

DEFINITION 1: A graph G is said to be unimodular if its clique-
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incidence matrix M is totally unimodular (that is, if every square
submatrix of M has a determinant equal to 0, +1 or —1).

Obviously, if G is unimodular, a subgraph of G has a clique-
incidence matrix which is a submatrix of M; hence this subgraph
is also unimodular. An alternate definition is:

DerINITION 2: For 4 C X, a clique C of a graph G is said to be
even in 4 if |C N A| is even; G is said to be unimodular if every
non-empty subset A contains two disjoint sets 4, and 4, (not both
empty) such that each maximal clique C, even in A, satisfies
[CNA,| =|CnN4,.

The equivalence of the two definitions is a particular case of a
result of A. Ghouila-Houri [11].

Example 1.

A bipartite graph is unimodular, because it is well known that
the edge-incidence matrix of a bipartite graph is totally unimodu-
lar.

Example 2.

The adjoint G* of a bipartite graph G is unimodular, because
the clique-incidence matrix of G* is nothing else than the trans-
pose M* of the edge-incidence matrix M of G.

Example 3.

An interval graph is unimodular. We have seen that an interval
graph G can represent a family of points on a line, two points P,
and P; being joined if and only if there exists an interval wEQ
which covers both of them (see Example 1, Section 3). A set 4 of
vertices can be ordered by the natural order of the points of the
line that they represent: call 4, the points whose order is even,
and A, the points whose order is uneven. A maximal clique C
corresponds to an interval of points on the line. Thus, if C is even
in 4, we have [C N A4,| = |C N 4,], and, by Definition 2, the graph
G is unimodular.
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The concept of a unimodular graph is independent of the one of
a triangulated graph, or of a comparability graph. For instance,
the triangle inscribed in a hexagon (Figure 3) is triangulated but is
not unimodular.

The graph of Figure 4 is unimodular, but it is not a triangulated
graph, nor a comparability graph.

i FiG. 3

| Pl ; ; Y Fuo. 4

THEOREM 5: A unimodular graph G is a-perfect.

Proof: Actually, this statement is already given in different
forms by different authors. All we need is to prove that a(G)
= 0(G).

We shall define a stable set S by a vector

a=(a,a...,a,),

with o; = 1 if x;€S, o = 0 if ijS. A maximum stable set is
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given by a linear program in integers:

N a>0,

@a<l=(1...,1),

ByMa <1,

(4) maximize 27_,a;.
Condition (2) can be deleted, because it is contained in (3). The
dual linear program is:

MA=QALAH...,7,) 20,

2) M*A > 1,

(3") minimize 37 A,
We can also add

@ArA<i
because (2') and (3') imply (4'). In other words, we are trying to
find a minimal family of cliques which cover all the vertices. As
the matrix M is totally unimodular, by the duality theorem of
linear programming and the fact that unimodularity implies the
existence of integer solutions to the pair of dual linear programs
being considered, we have:

a(G) = max i @; = min i A = 6(G).
j=1 i=1

THEOREM 6: A unimodular graph G is y-perfect.

Proof: All we need is to prove that y(G) = w(G). Let k be the
largest number of elements in a clique. Consider the clique-
incidence matrix M, and find a vector @ = (a;, @y, . . . , a,) which
satisfies

©00,....,0<a<(1...,1,

{M’, a) = 1, if clique C; contains exactly k vertices, and

(M, a) < 1, if clique C, contains less than k vertices.

The point a = (1/k, 1/k, . .., 1/k) satisfies these inequalities,
hence they are consistent. But by the unimodular property of the
matrix M, there is an integral solution

a' =(a,al,...,a)).
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Consider the set S, of all vertices x; such that o = 1: it is a stable
set, and it meets all the cliques with k elements. Color with a first
color the vertices of S;,. The subgraph obtained by deleting S, is
also unimodular and its largest clique contains k — 1 elements.
Color with a second color a stable set S, which meets all the
cliques with k£ — 1 elements, etc.

By such a process, we can color all the vertices of G with k
colors; hence y(G) = k = w(G).

This theorem contains a fundamental theorem about bipartite
graphs, namely that the edge-chromatic number of a bipartite
graph is equal to the maximum degree of its vertices.

5. AN APPLICATION IN CODING THEORY

The following problem was raised by Shannon [19].

Consider the very simple case of a transmitter which can send
five signals a, b, c, d, e; at the receiving end, each signal can give
rise to two different interpretations: signal a can give p or g, signal
b can give g or r, etc . .., as shown in the diagram of Figure 5.
What is the maximum number of signals which can be used so
that there is no possibility of confusion on reception? The problem
reduces to finding a maximum stable set S of a graph G (Figure 6)
where two vertices are adjacent if they represent two signals which
can be confused; we take S = {a, c} and a(G) = 2.

In place of single letter signals, we could use “words” of two
letters, on condition that these do not lead to confusion on
reception. Using the letters @ and ¢ which cannot be confused, we
form the code: aa, ac, ca, ce. But a richer code is: aa, bc, ce, db,

a P
b q
4 r
d $

e t FiGc 5
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,.,Qb

d ¢ FiG. 6

ed. (It can be proved immediately that no two of these words can
be confused at the receiving end.)

By definition, the product of two graphs G = (X, E) and H
= (Y, F) is the graph G X H whose vertices are the pairs xy with
x € X,y € Y, two vertices xy and x’y’ being joined if one of the
following conditions holds:

(1) x = x" and [y, y’] € F,

Q) [x,x'1€ Eandy =)',

3 [x,x] € E and (y,y") € F.

With the graph G of Figure 6, two words xy and x’y’ can be
confused if they represent two adjacent vertices of the product
graph G X G = G2, and the richness of the code using two-letter
words is «(G?) = 5; in general, the maximum number of words
which cannot be confused in a code using n-letter words, is the
stability number of the graph

G"=GXGX...XG,

called the n-th power of G.

If a(G") > [a(G)]", then a code using n-letter words is better
than the trivial code based upon one-letter words. Shannon raised
the question of determining those graphs G which yield codes that
can be improved in that sense.

THEOREM 7: If the confusion graph G is a-perfect, then a(G")
= [a(G)]" (and no code is better than the trivial one).

Proof: First, we shall show that for two graphs G, H,
a(G X H) > a(G)a(H). 1)
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Let S be a maximum stable set of G, and let T be a maximum
stable set of H. Then the Cartesian product S X T is a stable set
in G X H. Hence

a(G X H) 3 |S X T| =|S| X |T| = a(G)a(H).
Now we shall show:
6(G X H) < 0(G)0(H). )

Let (C;, Cp, ..., C)bea family of p = 6(G) cliques whose union
covers G, and let (D,, D, ..., D,) be a family of g = 9(H)
cliques whose union covers H. Then (C; X D/1<i<p 1<
< ¢) is a family of cliques in G X H, and their union covers
G X H. Hence

0(G X H) < pq = 0(G)I(H).

From (1) and (2), we have

[«(6)]'< a(G") < 8(6™) <[0(G)]"
If G is a-perfect, a(G) = (G), and therefore

[«(G)]"= a(G").
Q.E.D.

If, for a set of signals, the noise is “linear”, that is, if the
confusion graph G is an interval graph, then it follows from the
Corollary to Theorem 4, that no code is better than the trivial one.

Theorem 7 also shows why the graph C; of Figure 6 is the only
confusion graph G with less than 6 vertices, whose “capacity”

sup™a(G") is greater than a(G).
n

The capacity of C; is still unknown.
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6. EQUIVALENCE BETWEEN THE CONCEPTS OF a-PERFECT AND Y-
PERFECT

In the preceding sections, we have proved that some classes of
graphs are both- a-perfect and y-perfect. There are other similar
results:

THEOREM 8: If every odd cycle of length > 5 admits an edge
such that the maximal cliques containing this edge contain at least
three vertices of the cycle, then the graph is a-perfect (Berge, Las
Vergnas, [6]).

This Theorem generalizes Theorem 5. It can also be proved that
a graph with the above property is y-perfect (Berge, [5]).

THEOREM 9: If every odd cycle of length > 5 possesses at least
two non-crossing chords, then the graph is a-perfect (Gallai, [10]).

A simpler proof of this theorem is in Suranyi, [20].

THEOREM 10: If every odd cycle of length > 5 possesses at least
two crossing chords, then the graph is a-perfect (Sachs, [18]).

THEOREM 11: If G is Planar, and if no induced subgraph of G is
isomorphic to Cy oy or to Cyyy, k > 2, then G is a-perfect.
(Tucker, [21)).

Clearly, all these theorems would be trivial if the strong perfect
graph conjecture were proved.

The first proof of the weak perfect graph conjecture appeared in
Lovasz [16]. In [17], Lovasz proved also a statement stronger than
the weak perfect graph conjecture (but weaker than the strong
perfect graph conjecture). Lovasz’s proofs are very closely related
to earlier work of Fulkerson on anti-blocking pairs of polyhedra
[8], [9]. In particular, Lemma 1 below and Fulkerson’s
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“pluperfect” graph theorem imply the weak perfect graph conjec-
ture, and the assumption (1) of Lemma 2 below is a special case of
Fulkerson’s “max-max inequality” for anti-blocking pairs of
polyhedra. Before proving this result, we need two lemmas.

LEMMA 1: Let G = (X, E) be an a-perfect graph: If x € X, let
H be the graph obtained from G by adding a new vertex x' and by
Jjoining it to all the neighbours of x. Then H is also a-perfect.

Proof: 1t suffices to show that a(H) = 8(H). Let C be a parti-
tion of G into 8(G) cliques, and let C, be the clique of C that
contains x. If there exists in G a maximum stable set containing x,
then

a(H) = a(G) + 1.
Since C U {x'} is a partition of H, it follows that
0(H) = a(G) + 1 = a(H).

If there does not exist in G a maximum stable set containing x,
then

a(H) = a(G).

Since D = C, — {x} meets all the maximum stable sets of G,

a(Gy_p) = a(G) — 1.
Therefore,

8(Gy_p) = a(G) — 1 = a(H) — 1.

Thus, we can obtain a partition of H into a(H) cliques by taking
D U {x’} and the a(H) — 1 cliques that partition X — D. Hence
a(H) = 0(H).

Q.E.D.

LEMMA 2: Let G = (X, E) be a graph, whose proper subgraphs
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are a-perfect, and such that
w(Gy)a(Gy) > 14| (4 C X). (1)

Let H be a graph obtained from G by replacing each X, €EX by a set
X, ={ylyL ...} and by joining yi and y! iff x; and x; are
adjacent in G. Then H satisfies also (1).

Proof: Assume that H does not satisfy (1), and has the least
possible number of vertices. We shall show that this leads to a
contradiction.

Clearly, max;|X,| # 1, and we may assume that |X,| = h > 2.
Let Y = u X,. Then

w(HY—X,) < w(H)’
a(Hy_y) < a(H).

Let y, € X,. By the minimality of H, the subgraph Hy_, satisfies
(1); hence

Y| - 1= Y =y < ‘*’(Hy—y,)a(HY—y,)
< w(H)a(H) < |Y| - L
Therefore, the equalities hold, and we can put:

w(HY—y,) = w(H) =p
a(HY-—y,) = a(H) =4q,

|Y| = 1= pgq.

Hy_x, can be obtained from Gy _,, by duplicating some vertices
as in Lemma 1; hence

6(Hy_x) = a(Hy_yx) < q.

Thus, Y — X, can be covered by g cliques of H, say
Cy;, €y ..., C,. We may assume that these cliques are pairwise
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disjoint and such that |C)| > |Cy| > - - - > |C,|. Clearly,

|G| < w(H) = p,
and

9
2 |Gl =1Y|—h=pg— (k=1

i=1
Hence, |C,| < p for at most h — 1 values of i, and, consequently,
[C=|Cyf ="+ = qu—h+lI =p-

Let H’ be the subgraph of H induced by CCUCU---U
Cy—n+1 U {»1)- The number of vertices in H’ is

n(H)=p(g—h+1)+1<pg+1=|Y|
By the minimality of H, H’ satisfies (1); hence
pa(H) =w(H)a(H) > n(H)=p(g—h+ 1)+ 1

Hence a(H) > q— h+ 1. Let S’ be a stable set of H' with
g — h + 2 vertices. Since C), C,, ..., C;_p415 {1} is a partition
of H' into ¢ — h + 2 cliques, y, € S’. Therefore, S = §’' U X, is
a stable set in H, and ¢ = a(H) > |S| = ¢ + 2 which is a contra-
diction. Q.E.D.

THEOREM 12: (Lovasz, [17]). For a graph G, the following condi-
tions are equivalent:

(1) &(Ga(G,) > 4] (AcX)

@ v(Gy) = @(Gy) (ACX)

() a(G,) =0(Gy) (4cX).

Proof: (1) implies (2). We shall show by induction on » that all
graphs of order n satisfying (1) satisfy also (2).

Let G = (X, E) be a graph of order n satisfying (1). By the
induction hypothesis, for 4 CX, A # X, the complement graph G,
is y-perfect, hence G, is a-perfect. Put (G) = p, and let & be the -
family of all the stable sets in G.
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We shall show first that there exists in G a stable set S such that
Ww(Gy_g) < w(G).

Otherwise, for each S € &, there exists a clique Cg C X — §
such that |Cg| = p. Let H be the graph obtained from the sub-
graph of G induced by U 3Cy by replacing each vertex x; by a set
X; such that |X;| = the number of Cy containing x,. We have

n(H) = Z|X| = X |Cs| =plS ],
SES
w(H) < «(G) = p,

a(H)=mEa7§(

U X;|= max TnG<|d] -1
X|=pax 3T cl<I5)

x €
From these three inequalities, it follows that
w(H)a(H) < p(|S]| = 1) < n(H).

This contradicts Lemma 2. Thus, there exists in G a stable set S
such that

W(Gy_g) < o(G) — 1.

We can color G by using a first color for the vertices in S, and
Y(Gx-s) = &(Gx_ ) colors for the other vertices. Hence

Y(G) < 1 + [w(G) — 1] = «(G).
Hence, v(G) = (G), and G satisfies (2).

(2) implies (1). Let G be a graph that satisfies (2). For each
A C X, there exists a coloring (4,, 4,, . .., Ay of G4 in ¢
= v(G,) = w(G,) colors. Hence

41 = 2 14) < 4a(G,) = (G )a(G,).

Thus, (1) follows.
(1) implies (3). Let G be a graph that satisfies (1); then its
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complement G satisfies (1), and, consequently, (2). Hence

a(Gy) = “’(G—A) = Y(EA) =6(G,).

Thus, (3) follows.

(3) implies (1). Let G be a graph that satisfies (3). Then C satisfies
(2), and (1). Hence

10.

(G, )a(Gy) = a(éA)w((-}'-A) > 4]
QED.
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TRANSVERSAL THEORY AND GRAPHS

Richard A. Brualdi

PREFACE

In a small community, there are a number of unmarried young
ladies and gentlemen. All of the young ladies are eager to be
married. If there were no other conditions, the only requirement
that would have to be fulfilled in order that we satisfy these young
ladies is that the number of available gentlemen be at least as
great as the number of young ladies. But even eager young ladies
do not enter into matrimony so hastily. Each of the young ladies
would eliminate some of the gentlemen as potential spouses for
reasons beknownst only to her and would, in effect, arrive at a list
of gentlemen who would be regarded as suitable spouses. Now
when is it possible for each of the young ladies of the community
to be wed to a gentleman whom she regarded as suitable? Surely
not always, for perhaps there are three young ladies whose lists
each contain only two gentlemen, the same two gentlemen in each
case. If not always, then under what circumstances? And when
these circumstances are not present, what is the largest number of
young ladies that can be accommodated?

23
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Consider an ordinary chessboard which has 64 squares arranged
in 8 rows and 8 columns, the squares being colored alternately red
and black. If one has a supply of dominos (pieces which consist of
2 squares joined on a side) there are many ways to cover perfectly
the squares of the chessboard with (32) dominos. By this we mean
that each domino covers two squares of the board, no two
dominos overlap (cover the same square) and each square is
covered by some domino. Now take a pair of shears and, by
cutting, remove some of the squares of the board. When is it
possible to cover perfectly the squares of the “pruned board”?
Obviously not always, for we need not even try if the number of
squares of the “pruned board” is odd. But even if this number
were even, it need not be possible, for each domino must cover
one red square and one black square of the “pruned board,” thus
requiring that the “pruned board” have as many black squares as
red squares. If we were to remove the two black squares adjacent
to a red corner square, but not the red corner square itself, then no
matter what we do to the rest of the board, we can never cover
perfectly the resulting “pruned board” with dominos, for the red
corner square can never be covered. When no perfect covering of
a “pruned board” is possible, what is the largest number of
dominos that can be placed on the “pruned board” with each
domino covering two squares and no two dominos overlapping?

A manufacturing company makes a gadget which is broken
down into n units. It employs m workers of different expertise,
each of whom is required to spend a number of hours completing
a certain task on each of the units. Let it be that the ith worker
requires a whole number a; hours to complete his or her task on
the jth unit (1 < i < m, 1 < j < n). What is the fewest number of
hours into which a timetable can be fitted to produce one of these
gadgets so that no worker is working on two different units at the
same time and no unit is being worked on by two different
workers simultaneously? Now the ith worker is required to spend a
total of r, = 37_,a; hours to complete his work on the gadget
while the jth unit requires a total of 5; = 27_,a; hours of attention
from the workers. If p is the largest of the numbers ry, ..., 7,,
$p, ..., S, then a gadget requires at least p hours to be completed.
But will p hours always suffice?

At first glance, these three problems might appear to be three
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separate problems with no direct connections. We shall see, how-
ever, that there is a common thread running through them. In-
deed, we shall show that the first two problems can be solved by
appealing to a single theorem in the relatively new branch of
combinatorial mathematics known as transversal theory. The third
problem can be solved by appealing to another theorem in this
subject on which the first theorem bears heavily. It is our intention
in this paper to explore the subject of transversal theory, trying to
capture its spirit, charm, and diversity without becoming too
involved with technical matters. Thus we shall often forsake gener-
ality for simplicity, hopefully whetting the intellectual appetite of
the reader. The connections between transversal theory and graph
theory will emerge in the ensuing discussion.

1. TRANSVERSAL THEORY AND THE MARRIAGE PROBLEM

Let us take as our starting point the problem of marriage raised
in the preface. Each young lady has prepared a list of gentlemen
and desires to marry one of the gentlemen on her list. In
mathematical terms, if G is the set of available gentlemen and L is
the set of young ladies, then with each / € L there is associated a
subset G, (the list) of G. The problem of marriage then is one of
choosing a g, € G, for each / € L in such a way that no two choices
are the same (no two of the ladies claiming the same gentleman).
The actual selection is called a system of distinct representatives
while the set of gentlemen { g, : / €L} thereby selected is called a
transversal. The problem of distinct representatives can be consid-
ered relative to any family of subsets of a set and there need be no
reference to marriage. The problem abstractly then is the follow-
ing:

Let E be a set and let A = (4, : i€ I) be a family,* indexed by
a set J, of not necessarily distinct subsets of the set E. A family
(e; : i€) is a system of representatives of U if e,E A, for each i€ I
and a system of distinct representatives if in addition the e, are

*We shall use round brackets for families of objects (elements, sets, etc.) whereby
objects may be repeated, and curly brackets for sets of objects.



26 Richard A. Brualdi

distinct: ¢; # ¢; for i, j€I with i # j. If (¢, : i€1) is a system of
distinct representatives of o, then the set {¢, : i€/} is called a
transversal of . Thus a subset T of E is a transversal of the family
¥, provided there is a bijection* ¢ : T—1 so that e € 4, for each
ecT. Of course, there may be several such bijections associated
with the transversal T, that is, transversals corresponding to
different systems of distinct representatives may be identical.

By way of illustration, let us consider the family U
= (A4,, Ay, 45, A,) where

A4,={1,2}, 4,={1,3,4}, 4;={3,4,5}, 4,=1{2,5).
Then the set {1, 2, 3, 5} is a transversal of this family o, since

1€4,, 3€4, 5€d, 2€A4,

The family (1,3,5,2) is a system of distinct representatives
associated with this transversal. The family (2, 1, 3, 5) is a system
of distinct representatives, since

2€4,, 1€4, 3€4, 5€4,

which also gives rise to the transversal {1, 2, 3, 5}.

A family of non-empty sets always has a system of representa-
tives since no attention need be paid to repetition. The family
B = (B,, B,, B;, B,) of non-empty sets where

B, ={1,2}, B,={2,3,4,5}, By={2}, B,={1,2},

however, has no system of distinct representatives or transversal,
since the sets B,, B,, B, have among them only two elements while
three would be necessary for a system of distinct representatives.
Indeed, we now can formulate one prerequisite for a family
A = (A, : i€ ) of sets to have a transversal and that is that any k
members of the family must contain between them at least &
distinct elements. If we let | X |** represent the cardinal number of a

*A map which is both injective (one-to-one) and surjective (onto).
**Usually |X| can be taken to be one of 0, 1, 2,..., co where n < oo for
n=0,1, ... .
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£

set X, then we can formalize this as follows: if the family
(4, : i€1) is to have a transversal, then

U 4,(> V]

ieJ

for each J C 1. What is surprising is that this condition* is also
sufficient for the existence of a transversal, and we are going to
prove this momentarily. Before doing so, however, we need to
bring out into the open an assumption which is implicit in our
formulation of the marriage problem. This is that the number of
members in the families considered is finite. We shall call a family
(4, : i€1) of sets a finite family if the indexing set I is a finite set.
This is to be so irrespective of whether the individual sets 4, are
themselves finite or infinite. If we wish, we can take the indexing
set of a finite family to be {1, 2, ..., n} for some positive integer
n. We shall have more to say about infinite families, families
where the indexing set is infinite, later.

THEOREM 1.1. The finite family N = (A4, : i€I) of subsets of a
set E has a transversal if and only if

U 4,

ieJ

>V Ve (1.1)

This theorem was proved by P. Hall [14] in 1935 but the roots of
the theorem predate Hall. Indeed, the theorem can be deduced
from a result about bipartite graphs which was proved by D
Konig [19] several years earlier. We shall discuss Konig’s theorem
in the next section, so let us now turn to proving Theorem 1.1,
which is commonly called the marriage theorem. The method of
proof is due to Halmos and Vaughn [16] and has been used quite
extensively in transversal theory. We have already remarked on

*If |I| = n < oo, there are 2" — 1 relations to be satisfied (the condition is
trivial for J =#) and these conditions are independent. To see this, let J, be a
non-empty subset of 7 = {1,2,..., n} and define 4, = {1,2,..., |Jo| — 1} for
i€Jgand 4, = {1,2, ..., n} otherwise.
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the necessity of condition (1.1) for the existence of a transversal,
S0 we now concentrate on proving its sufficiency and this is done
by induction on n = |I|. We take I = {1L2,...,n}. If n=1,
(1.1) says that 4, has at least one element e, and {e,} is a
transversal. Now suppose n > 1 and assume the theorem holds for
every family with fewer than n members. We distinguish two
cases.
For the first case, suppose that

U 4

ieJ

> |Jl+1

for all JC{1,...,n} with 1 <|J| < n— 1. Then choose any
€, €4, and consider the family (4;:2 < i< n) where 4]
=ANe}* If0 #JC{2,...,n)}, thensince 1 < |[J| < n -1,

iLEJJAi,|= (iLelei)\{el}
*lg

> +1-1=}J|

From the inductive assumption, we conclude there are distinct
elements ey, ..., e, with e,€45,...,e,€4;. Thus {e,
€y ...,e,} is a transversal of U.

The second case is then that there exists a JoC{L,...,n} with
1 < |Jo| € n — 1 such that

U 4, = [ol-
ieJy
The notation will be simpler if we take J, = {1, ..., k} where

*If X and Y are two sets, X\Y = {x : x€EX and xZY}.
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1< k< n-1 Let then F= u* 4, so that |F| = k and con-
sider the two families (4,: 1< i< k) and (A\F:k+1<i
< n). The first of these two families, having as members some of
the members of ¥, satisfies |U;c,4;| > |J| for all JC{1, ..., k}
and thus by the inductive hypothesis has a transversal which must
be F because of cardinality considerations. If the second family
also has a transversal, say 7, then surely TN F =0 and then
FUT is a transversal of 9. So consider any KC{k +1,...,n}
and calculate that ;

U @np)|=|( U A,~)\F|
i€k ieKuJ,

— |

U 4,

ieKuJy

> |KUJy — k
= |K|+ k — k = |K]|.

Invoking the inductive assumption again, we conclude that the
family (4,\F : k + 1 < i < n) has a transversal, and because of
our previous remarks we have proved the theorem.

We have seen that a family of sets need not have a system of
distinct representatives or transversal. Under such circumstances,
it is natural to ask how many sets of the family can be represented
by distinct elements. In the marriage problem formulation we are
asking for the largest number of young ladies that can be married,
each marrying a gentleman on her list. If ¥ = (4, :i€l) is a
family of subsets of a set E, then a subset P of E is a partial
transversal of @, provided there is an injection o : P — I with
eE€E A, for each e€P. The set P is then a transversal of the
subfamily A’ = (4, : i€I’) of A where I’ = {o(e) : eEP}.

Theorem 1.1 can be strengthened to give necessary and
sufficient conditions for a family to have a partial transversal of a
prescribed finite cardinal number.
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THEOREM 1.2. Let A = (A, : i€ ) be a finite family of subsets of
a set E and let r be a positive integer with r < |I|. Then U has a
partial transversal of cardinality r if and only if

|Ual>vi-an-n  wen. (12)

Observe that (1.2) is automatically satisfied if |J| < |I| — r.
Note also that when r = |I|, the theorem reduces to Theorem 1.1.

To prove this theorem, let F be a set of cardinality equal to
|Z] — r which is disjoint from E. Consider the family (4* : i€I)
where A* = A;uU F(i€F). Then an easy mental exercise estab-
lishes that (4, : 1€1) has a partial transversal of cardinality r if
and only if (4} : i €I) has a transversal. The latter holds, accord-
ing to Theorem 1.1, if and only if

U 4f

ieJ

> cl). (13)

But for J #8, U;c;4F = (U;e;4;)UF. Thus (1.3) is equivalent
to

IUAi +|F|> | (cI)
ieJ
or

|u4+an—o>v1 v cr),
ieJ

which is equivalent to (1.2).

COROLLARY 1.3. If A = (A, : i€ 1) is a finite family of subsets of
a set E, then the maximum cardinality of a partial transversal of %

equals
min {

U 4,|+ [1\J] :ng}.
ieJ
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This corollary, which follows immediately from the theorem,
solves the problem of marriage posed in the preface.
As a further consequence of the theorem there is the following:

COROLLARY 1.4. Let % = (A4, : i€ ) be a finite family of sub-
sets of a set E and let P CE. Then P is a partial transversal of
(4, : i€I) if and only if

( U A,.)nP|+ ] > P (CD)

ieJ

If P is a partial transversal of %, then |P| < |I|; on the other
hand, if the above condition is satisfied, then by taking J =80, we
see that |P| < |I|. The corollary now follows from Theorem 1.2
using the observation that P is a partial transversal of % if and
only if the family (4,nP:i€I) has a partial transversal of
cardinality equal to |P|.

Using the same method, we could also write down criteria for
the set P to contain a partial transversal of some prescribed
cardinality r.

There are a number of other extensions of Theorem 1.1 that can
be obtained by suitably modifying a given family of sets. We
mention only one more. The reader who is interested in pursuing
this can consult Ford and Fulkerson [11] where many of these
results are derived from their important max flow-min cut network
flow theorem by modifying a network, or Mirsky [23].

THEOREM 1.5. Let % = (A, : i€ ) be a finite family of subsets of
a set E. Let there be given a family (n; : i€I) of non-negative
.integers. Then there exists a family (B; : i€I) of pairwise disjoint
sets with B,C A, and |B,| = n; (i€1) if and only if '

u4l=2n Jco.

ielJ ieJ

To obtain this theorem from Theorem 1.1, define a new family
which is obtained from the family (4, : i €I) by ‘repeating’ 4; n;
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times (i€1). Formally let K;(i€) be a collection of pairwise
disjoint sets with |K| = n,(i€I) and let K = y,_,K,. Define a
family %* = (4} : kEK) by A} = 4, if kEK,. Then the desired
family (B, : i€I) exists if and only if the family A* has a trans-
versal. By Theorem 1.1, the latter is the case if and only if

U 4

kel

> L] (LCK). (1.4)

But if J={(i€l:LNK;,#0}, then Uy, 4F = U, 4, Thus
the left side of the inequality (1.4) depends only on J. But the
largest subset of K which gives rise to the same J is U, ,K,, and
this set has cardinality equal to =, ,n,. Thus (1.4) is equivalent to

UAi>2ni (J;I)’

ieJ ieJ

and this proves the theorem.

If we return to the setting of the marriage problem where the
sets A4, represent the sets of desirable gentlemen on the lists of the
~ various young ladies, then in a polyandrous society Theorem 1.4
gives criteria for each young lady to have the number of husbands
she wishes (all taken from her list) with the restriction that no
gentleman have more than one wife.

Theorem 1.2 can be generalized to infinite families of sets
provided we still seek only a partial transversal of some finite
cardinal number r. The theorem would then read that the family
(4, : i€1) has a partial transversal of cardinality r if and only if

U 4;

ieJ

+ [INJ] > r

for each subset J of I with /\J finite. The problem of finding
criteria for an infinite family of sets to have a transversal will be
considered in section 4.
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2. BIPARTITE GRAPHS AND THE CHESSBOARD PROBLEM

The ideas and theorems in section 1 have equivalent formula-
tions in the theory of bipartite graphs which we want to develop in
this section. We also investigate the problem in the preface con-
cerned with the placing of dominos on a “pruned chessboard”
with no two of the dominos overlapping. New problems are
suggested which we also consider. We first make a few remarks
about graphs in general.

Let G be a graph. Thus G has a non-empty set N of nodes along
with a set A of edges each of which is a set of two nodes. The
graph G is a finite graph if its set of nodes is a finite set. We speak
about two nodes x,y being adjacent if e = {x,y} is an edge.
Nodes x, y are then said to be incident with the edge e and the
edge e is said to join x and y. The nodes x, y are the nodes of the
edge e = {x,y}. A path P in the graph G is a sequence x,,
Xy ..., x, of n > 2 distinct nodes such that e,
= {x, X3}» - .-, €_1 = {X,_1> X,} are all edges of the graph. The
path P is said to join x, and x,; x;, . .., x, are the nodes of the
path while we refer to e, ..., e,_, as the edges of the path. A
cycle is defined like a path except x, = x;. The graph G is
connected if either it has exactly one node or it has at least two
nodes and for all x, y €N with x # y there is a path joining x and
y. .
- If G is a graph with node set N and edge set A and 4 C N, then
G, is the graph with node set 4 whereby two nodes x, y of 4 are
joined by an edge in G, if and only if they are in G. G, is called
the subgraph of G induced by A. If a graph G is not connected,
then the set N of nodes can be uniquely partitioned into sets
N,(i€I) such that Gy, is connected ({€7) and no two nodes in
different N;s are adjacent. The graphs G, are called the (con-
nected) components of G.

A set M of edges of a graph G which are pairwise disjoint is
called a matching in G. If A is a set of nodes such that each node
of A is incident with an edge in M, then A is said to meet the
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matching M and M is said to meet the set of nodes A. Thus if 4
meets the matching M, then so does any subset of 4. At the
present time, we are only interested in matchings in bipartite
graphs.

A bipartite graph is a graph in which the set of nodes can be
partitioned into two subsets X and Y with every edge joining a
node in X and a node in Y. Thus every edge e is of the form
e = {x,y} with x€X and y € Y. This partitioning will be unique
if and only if the bipartite graph is connected. If A is the set of
edges of the bipartite graph, then we designate the graph as
CX,A8,Y) or (Y,A, X). Let M = (¢, :i€I} be a matching in
(X, 4, Y) where ¢ = {x,y,} with x,EX, y,€E Y(EI), and let
X' = {x,:i€I}, Y’ = {y,: i€I}. Then we say that M matches
X’ and Y’ and that X’ and Y’ are matched.

Now let A = (4, : i€ I) be a family of subsets of a set E. Then
we may associate with this family the bipartite graph <7, A, E)
where for i€ I, eEE, {i, e} is an edge if and only if e €4,. This
bipartite graph contains all the pertinent information about the
family %, for from it one can determine the elements which belong
to each set of the family. Conversely, given a bipartite graph
(X, A, Y), we can associate two families of sets. One is the family
A = (A, : xEX) where for each x€X, 4, = {y : {x,y} EA};
the other is the family 8 = (B, : y€Y) where for each yeY,
B, = {x: {x,y}€A}. Two families A and B which arise in this
way from one bipartite graph are called dual families (and each is
called the dual of the other). Thus given a family (4, : i€ ) of
subsets of a set E we can construct the bipartite graph (I, A, E) as
above and then the dual family (4 :e€ E) where A}
={i€l:e€4,}.

Suppose now M is a matching in the bipartite graph {7, A, E)
associated with the family % = (4, : i€I) of subsets of E. If
M= {{i,e])},...,{ie}}, then iy, ..., i, are distinct elements
of I, e,...,e, are distinct elements of E and g€A, (1<k
< p). It follows that (e, : 1 < k < p) is a system of distinct
representatives of the subfamily 4, : 1 < k< p) so that
{e1, ..., e} is a partial transversal of %. Conversely, a system of
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distinct representatives of a subfamily of % gives rise to a match-
ing in the bipartite graph <7, A, E). We can then conclude the
following. The partial transversals of the family % are precisely
those subsets of E which are matched in <7, A, E) with some
subset of I; those subsets J of I which are matched in {I, A, E)
with some subset of E are characterized by the provision that the
subfamily (4, :i € J) have a transversal. Thus the family %
= (A4; : i € I) has a transversal if and only if 7 is matched in
{1, A, E) with some subset of E. If % is a finite family with
|I| = n, then ¥ has a transversal if and only if there is a matching
in (I, A, E) of cardinality n. This discussion serves to point out
that the study of systems of distinct representatives and partial
transversals of families of sets is equivalent to the study of match-
ings and sets that are matched in bipartite graphs.

The theorem we are about to prove was established by Konig
[19] prior to the establishment of Theorem 1.1 by Hall. Neverthe-
less, Hall’s theorem can be derived easily from Konig’s theorem.
We shall use Corollary 1.3 to derive Ko6nig’s theorem, although it
is possible to give an ad hoc proof with induction as the principal
tool. Before doing so, we need one additional concept. A set S of
nodes of a bipartite graph <X, A, Y) is said to be a separating set
(or separates X and Y) provided every edge in A has at least one
of its nodes in S.

THEOREM 2.1. Let {X, A, Y be a finite bipartite graph. Then the
maximum cardinality o of a matching equals the minimum cardinal-
ity B of a separating set.

To prove this, let M be a matching and S any separating set of
nodes. Each edge e € M has one of its nodes s, € S. Since no two
edges in M have a node in common, s, # s; for e, fEM with
e # f. Hence |M| < |S|. Because this is true for every matching M
and every separating set S, a < . It suffices now to show there is
a separating set with cardinality a. But a equals the maximum
cardinality of a partial transversal of the family (4, : x€X) of
subsets of Y associated with the given bipartite graph. Moreover
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by Corollary 1.3 there exists X, C X such that

a:

U 4,

xEeX,

+ X \X,|.

But then (U,ex4,) U (X \ X)) is a separating set, for if {x, y} is
an edge with x € X, y € Y then either x € X \ X, or x € X,, 50
that y € U, < 4,. Since this separating set has cardinality a, the
theorem is proved.

Let us now return to the problem of dominos on a “pruned
chessboard.” We take any m X n board whose mn squares are
arranged in m rows and »n columns. We assume the squares are
colored alternately red and black. Thus if two squares have a side
in common, they are colored differently. We now cut out some of
the squares of the board leaving a “pruned board.” We let R
denote the set of squares of the “pruned board” which are colored
red and B those colored black. We associate with this “pruned
board” a bipartite graph {R, A, B) where for rER, b€ B, {r, b}
is an edge if and only if r and b are adjacent squares (that is, have
a side in common). Thus r and b are joined by an edge if and only
if a domino can cover both squares simultaneously. Of course
every domino is to cover two squares of the “pruned board” and
these must have different colors. The two families of sets
associated with this bipartite graph are the families (B, : rER)
where for rER, B, is the set of all black squares of the “pruned
board” which are adjacent to r and the family (R, : b€ B) where
for b€ B, R, is the set of all red squares of the “pruned board”
which are adjacent to b.

Now suppose we have a collection D,,..., D, of non-
overlapping dominos on the “pruned board.” If D, covers red
square r; and black square b, then r, ..., r, are distinct and
so are by, ..., b. Moreover, {r, b;} is an edge of the bipartite
graph (R, A, B> (1 < i < t). Hence the set of edges
{{r;, b;}, ..., {r, b}} is a matching of cardinality ¢ in the bipar-
tite graph. Conversely, any matching of cardinality ¢ corresponds
to a set of 7 non-overlapping dominos on the ‘pruned board.” We
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can now apply our previous results to this situation to arrive at the
following conclusions:

(a) It is possible to cover perfectly the squares of a “pruned
board” with dominos* if and only if the number of red squares equals
the number of black squares and in the associated bipartite graph
{R, A, B) no set of fewer than |R|(= |B|) nodes is a separating set.
Alternately, if for any set R, of red squares, B (R,) is the set of black
squares which are adjacent to at least one red square in R, the latter
condition on separating sets can be replaced by

IB(Rg)| > |Ro|  (RoCR).

(b) The maximum number of non-overlapping dominos that can be
placed on the “pruned board” equals the minimum cardinality of a
separating set in the associated bipartite graph {R, A, B). Alter-
nately it equals

min{|B(Ry)| + |[R\Ry| : RyCR}.

The two formulations in (a) and in (b) arise from the two points
of view we have elucidated, bipartite graphs or families of sets.

Let us now consider another question relative to a “pruned
board.” A set of dominos on a “pruned board” is said to cover the
squares of the board provided every square is covered by at least
one domino. In contrast to a perfect cover, the dominos are
allowed to overlap. What is the smallest number of dominos that
will cover the squares of a “pruned board?” If as before R denotes
the red squares of the “pruned board” and B the black squares,
then at least max{|R|, |B|} dominos are needed to cover. But this
number won’t always suffice, as the pruned board in Figure 1
shows.

Of course we need to assume that each square is adjacent to
some square of the “pruned board,” for otherwise no set of
dominos can ever cover. To answer the above question, we shall

*Recall that this means that each domino covers two squares of the ‘pruned
board’ and every square is covered by exactly one domino.
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invoke another theorem of Konig [19] about bipartite graphs.
Rather than prove this theorem directly, we shall derive a theorem
of Gallai [13] about graphs in general and then deduce the second
theorem of Konig from the first and Gallai’s theorem.

A set 4 of nodes of a graph is called (internally) stable (also
called independent) provided no edge of the graph has both its
nodes in 4. Let oy denote the maximum cardinality of a stable set
of nodes. It should be realized that this is not necessarily the same
as the cardinality of a maximal stable set of nodes. For example
the graph with three nodes x, y, z and edges {x,y}, {x, z} has
ay = 2; yet {x} is a maximal stable set in the sense that no set of
nodes which properly contains {x} is stable. A set C of nodes of a
graph is said to cover the edges* of the graph if every edge has at
least one of its nodes in C. We let B, equal the minimum
cardinality of a set of nodes that cover the edges of the graph.
Similarly, a set F of edges of the graph is said to cover the nodes of
the graph provided every node is incident with at least one edge in
F. We set B, equal to the minimum cardinality of a set of edges
that cover the nodes. Lastly, we set «; equal to the maximum
cardinality of a matching in G. We can now state and prove
Gallai’s theorem.

*This coincides with the notion of a separating set of nodes that we defined for a
bipartite graph. It is more common to use the phrase ‘cover the edges’ in the
context of general graphs,



TRANSVERSAL THEORY AND GRAPHS 39

THEOREM 2.2. Let G be a finite graph with n nodes in which each
node is incident with at least one edge. Then

Let N be the set of nodes of G so that n = |N|. If 4 is a stable
set of nodes with |4| = a,, then every edge of G has at least one of
its nodes in N\A. Thus N\A covers the edges of G so that

n—a0=|N\A|>ﬂo
or

n > ag+ B

To obtain the reverse inequality, let B be a set of nodes which
cover the edges of G with |B| = B, Then since every edge has at
least one of its nodes in B, no two nodes of N\ B are joined by an
edge. Thus N\B is a stable set of nodes so that

n— By=|N\B| < a
or :

n < ay+ By

We conclude that ay + B, = n.

To obtain the other identity, let M be a matching with |M]|
= a,. For each node which is not a node of one of the edges in M
choose any edge incident with it. No two choices can be the same,
for if this happened there would be an edge e having no node in
common with any edge in M making M U {e} a matching of
cardinality e, + 1. These edges along with the edges in M thus

comprise a set of edges which cover the nodes of G with cardinal-
ity equaltoa; + (n —2a))orn — . Thus B8, < n — a; or &) +
B, < n. To obtain the reverse inequality, take a set D of edges
which cover the nodes of G with |D| = B,. If e = {x, y} is any
edge in D, then not both x and y can be incident with other edges
in D, for if they were, D \ {e} would still cover all nodes and
[D\{e}| =B, — 1.Leta,...,a, be those nodes of G which are
incident with two or more edges of D (of course there need not be
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any such nodes in which case D is a matching, and @y = 8, = n/
2). Let the set of edges in D which are incident with a; be D(a). If
{a;, b} is an edge in D(a,), then since g, is incident with at least
two edges of D, the edge {a;, b} is the only edge of D incident
with b. For i = 1,..., p choose an edge in D(a;). Then these p
edges along with all edges in D\(U%_,D(a)) form a matching M
in G and thus |M| < a,. If 4 is the set of all nodes incident with
edges in UZ_,D(a;), then

n—|A4 n— |A
IDl=lAl—p+——§l—l, |M|=——2|—'+p
so that
|D| + M| = n.

Since [M| < a; and |D|= B,, we conclude that a, + 8, > n.
Thus a; + 8, = n and the theorem is proved.

COROLLARY 2.3. If G is a finite graph with each node incident
with at least one edge, then ay = B, if and only if a; = B,

From the preceding theorem ay + By = «; + B8,. Thus if o
= B}, a; = B, and vice versa. Since according to Theorem 2.1,
o, = fB, for finite bipartite graphs, we conclude that also a, = 8,
and we have the second theorem of Kénig.

THEOREM 2.4. For a finite bipartite graph with each node incident
with at least one edge, the maximum cardinality of a stable set of
nodes equals the minimum cardinality of a set of edges that cover all
nodes. '

For a graph that is not bipartite, it need not be the case that
oy = B, and a; = B, The simplest example is a graph with 3
nodes x, y, z and edges {x,y}, {y, z}, {z, x}. For this graph
=1, B8,=2, a =1, B, = 2. The non-bipartite graph pictured
in Figure2hasay = By = a; = B, = 2.

Theorem 2.4 can be used to answer the question concerning the
covering of the squares of a “pruned board” with dominos by



TRANSVERSAL THEORY AND GRAPHS 41

FiG. 2

associating the bipartite graph (R, A, B) as before. A stable set of
nodes in this bipartite graph corresponds to a set of squares of the
“pruned board” no two of which can be simultaneously covered
by one domino while a set of edges that cover all nodes corre-
sponds to a set of dominos on the “pruned board” which cover all
the squares.

COROLLARY 2.5. Given a “pruned chessboard” in which each
square is adjacent to at least one other, the maximum number of
squares no two of which can be simultaneously covered by one
domino equals the minimum number of dominos which can be placed
on the “pruned chessboard” to cover all squares.

Most everyone has come across the following problem: If one
cuts out two diagonally opposite squares of an ordinary 8 X 8
chessboard, then it is impossible to cover the resulting “pruned
board” with 31 dominos (since there are 62 squares left, at least 31
dominos are necessary). This is so since the ‘pruned board’ has 30
red squares and 32 black squares and each domino covers one
square of each color. Suppose, however, we cut out exactly one red
square and exactly one black square, so that the resulting ‘pruned
board’ has 31 red squares and 31 black squares. Is it possible to
perfectly cover the squares of the “pruned board” with 31
dominos? Equivalently, does the associated bipartite graph
{R, A, B> always have a matching of cardinality 31? We shall use
Corollary 2.5 to answer this question and the corresponding ques-
tion for chessboards of any size. Thus we shall not approach the
problem from the point of view of matchings, as we have re-
marked we can, but from the point of view of coverings.
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THEOREM 2.6. Consider an m X n chessboard whose squares are
alternately colored red and black. Suppose at least one of m and n is
even and both are greater than one. Then if one red square and one
black square are cut out of the board, it is always possible to
perfectly cover the resulting ‘pruned board’ with (mn — 2)/2
dominos.*

Since either m or n is even, the m X n chessboard has mn /2 red
squares and the same number of black squares. Thus after remov-
ing one red and one black square, the “pruned board” has an
equal number, (mn — 2)/2, of red and black squares. Let
{R, A, B) be the bipartite graph associated with the “pruned
board.” Since m and n are both greater than one, each square of
the m X n board is adjacent to at least two others. Since to get the
“pruned board” we have removed only one red and one black
square, each square of the “pruned board” is adjacent to at least
one other. Thus Corollary 2.5 applies.

Suppose it were impossible to perfectly cover the “pruned
board” with (mn — 2)/2 dominos. Since the “pruned board” can
be covered with (mn — 2)/2 dominos if and only if it can be
perfectly covered with (mn — 2)/2 dominos, then according to
Corollary 2.5 there must exist a set S of mn/2 squares of the
‘pruned board’ no two of which are adjacent (a stable set of
cardinality mn /2 of the associated bipartite graph). We shall have
arrived at a contradiction when we show that in an m X n
chessboard (m, n > 1, m or n even) a collection of mn/2 squares
no two of which are adjacent consists either of all the red squares
or all the black squares.

For definiteness, suppose n is even. In any row of the m X n
board, we can choose at most n/2 squares no two adjacent (since
n/2 dominos cover the whole row of squares). Thus the set S
contains exactly n/2 squares from each row. If S contains all

*Since writing this article, we have seen an elegant direct proof of this theorem
by Ralph Gomory; see Mathematical Gems by Ross Honsberger (The Mathemati-
cal Association of America, 1973, pages 66-67).



TRANSVERSAL THEORY AND GRAPHS 43

squares of one color, say red, in some row, then S must also
contain all the red squares in the row immediately before and after
this row and, by repeating this argument, S contains only red
squares. So suppose S contains squares of both colors from each
row, in particular from the first row. Since S must contain either
the first or last square of each row (the interior squares can be
covered with (n/2) — 1 dominos), we may assume S contains the
first square of row 1 (the corner square) and that it is red. Suppose
the first black square in S is the rth square of the row (¢ is even),
and consider the second row. S must contain n/2 squares of the
second row and S can contain neither the first nor tth square of
the row. Since the remaining squares can be covered by
t—2 , n—t_n
7 Tz =27

dominos, S can contain at most (n/2) — 1 squares from the
second row. This is a contradiction, so that S consists of the red
squares or only of the black squares, and as we have remarked,
this proves the theorem.

An m X n chessboard with both m and n odd has (mn + 1)/2
squares of one color (let us fix this to be the red color, so that all
corner squares are colored red) and (mn — 1)/2 squares of the
other color. Since there is one more red square than black square,
it is impossible to perfectly cover the squares of the chessboard
with dominos. But if we cut out a red square, the preceding
discrepancy disappears. We show in the next theorem that we can
even do better. '

THEOREM 2.7. Consider an m X n chessboard whose squares are
alternately colored red and black with m and n both odd integers
greater than one. Then if two red squares and one black square are
cut from the board, it is always possible to perfectly cover the
resulting ‘pruned board’ with (mn — 3)/2 dominos.

The method of proof is the same as that of Theorem 2.6. Every
square of the m X n board, except for the four corner red squares
are adjacent to 3 or 4 other squares. The four corner red squares
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are adjacent to two black squares. Since the “pruned board”
results by cutting out two red and one black square, each of its
squares is adjacent to at least one other. According to Corollary
2.5 then, if we cannot perfectly cover the “pruned board” with
(mn — 3)/2 dominos, there exists a set S of (mn — 1)/2 squares of
the “pruned board” no two of which are adjacent.

S contains at most (n + 1)/2 squares from each row. Moreover,
if § does contain (n + 1)/2 squares from a row, they must be the
first, third, . . . squares in that row (and thus are all of the same
color). For, if S does not contain the first square of the row, the
remaining squares can be covered with (n — 1)/2 dominos and
thus S can contain at most (n — 1)/2 squares of the row. A simple
induction completes the verification of the above statement. For at
least (m — 1)/2 rows it must be true that S contains (n + 1)/2
squares of the row. Otherwise S contains at most

(m—3)(n+l)+(m+3)(n—-l)=mn—3
2 2 2 2 2
squares, which is a contradiction. No row of which S contains
(n + 1)/2 squares can follow another. Thus either S contains the
(n + 1)/2 red squares of each of rows 1,3,5,...,m or else S
contains (n + 1)/2 squares of each of (m — 1)/2 rows no two of
which are consecutive. In the latter case, all but at most one of the
other rows precedes or follows one of these (m — 1)/2 rows.
Suppose it is the case that S contains all the red squares in rows
1,3,5,..., m Since every black square in the remaining rows is
adjacent to one of these red squares, S must contain only red
squares. But the “pruned board” has only (mn — 3)/2 red squares,
and this is a contradiction.
If it is the case that S contains the (n + 1)/2 squares of one

color in each of (m — 1)/2 rows, then S must contain (n — 1)/2
squares from the remaining rows, since

m—1\(n+1 +(m+l)(n—l)=mn—l
2 2 2 2 2
Let these (m — 1)/2 = k rows be rows i}, i,, . . ., i, where 1 < i}
<...<ig<mlIfi,..., i all have the same parity then the
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k(n + 1)/2 squares of S that come from these rows are all of the
same color, say red. But then the squares of S in any row next to
one of these rows must consist of all the red squares of that row.
This accounts for all squares in S except possibly for those coming
from one row. But all black squares of this remaining row are
adjacent to the red squares of any row that follows or precedes it.
Hence the squares of this row that are in S are red too. Thus §
consists only of red squares. On the other hand if i, ..., i are
not all of the same parity choose the first consecutive pair i, i,
which are of different parity. Then i, ; — i, — 1 must be 2. For if
not, being even it would be at least 4, and there would be two or
more rows not preceding or following one of rows i, . . ., i,. But,
if, say, i; is odd and i, is even, then S contains all the red squares
in row i; and all the black squares in row i, ,. Thus S must contain
all the red squares in row i, + 1 and all the black squares in row
i1 — 1 =i, + 2. But each such red square is adjacent to one of
these black squares and we have a contradiction.

We conclude that any set S of (mn — 1)/2 squares of them X n
chessboard no two of which are adjacent all have the same color.
Thus the “pruned board”, having only (mn — 3)/2 squares of each
color, cannot contain a set of (mn — 1)/2 squares no two of which
are adjacent. As we have seen, this proves the theorem.

3. A TIME-TABLE PROBLEM

We take up now the third problem posed in the introduction.
This is the problem of designing a time-table requiring the fewest
number of hours. There are m workers w,, ..., w,, and a gadget
to be made which is broken down into » units u,, . . ., u,. Worker
w; is required to spend a; (a whole number) hours to complete his
or her task on unit #; (1 < i< m, 1 <j< n). We construct a
bipartite multi-graph (W, A, U, that is, a bipartite graph in which
several edges may be incident with the same two nodes. For this
multigraph, W = {w, ..., w,}, U= {u,,...,u,}, and there are
a; edges in A joining w; and u,. Now suppose A can be partitioned

. . ',
into ¢ matchings A,, . .., A,. We can regard A, (1 < k < ©) as the
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schedule for the kth hour by agreeing that if there is an edge in A,
joining w; and u 4 then w; spends hour k£ on unit . Since 4, is a
matchmg, no worker is required to spend the kth hour on two
different units nor during the kth hour is any unit receiving the
attention of more than one worker. Thus the partition A, . . ., A,
furnishes a timetable which permits one of the gadgets to be made
in ¢ hours.

Now as remarked in the preface if r, = 2iaa; 1 <i<m),
§=27a; (1< j<n), and p=max{r,...,7,5,...,5,}
then any timetable will require at least p hours. The question is
whether p hours suffice. If we define the degree of a node x, deg x,
of a multi-graph to be the number of edges incident with the node
X, then in (W, A, Uydegw,=r,(1<i<m)degu =5 (1<
< n), and p is the maximal degree of a node. Hence 1f we can
show that it is always possible to partition the edges of a bipartite
multi-graph into p matchings where p is the maximal degree of a
node, then p hours will always suffice for a timetable. We shall
prove this, taking Theorem 2.1 as our principal tool. We first prove
the following theorem:

THEOREM 3.1. Let {X, A, Y) be a finite bipartite multi-graph in
which the maximal degree of a node is p. Let X, be the set of nodes
in X with degree equal to p. Then there exists a matching M which

“matches X, to a subset of Y.

Consider the multi-graph (X, A,, Y) where A, consists of all
those edges in A which have one of their nodes in X,. Thus the
degree of each node in X, with respect to this multi-graph is p and
no node in Y has degree greater than p. We need to show that
there is a matching M in {X,, A, Y of cardinality |X,|. Accord-
ing to Theorem 2.1* such a matching M exists if and only if this
multi-graph has no separating set of cardinality less than |X,].

*Theorem 2.1 was stated and proved for bipartite graphs but applies equally well
to bipartite multi-graphs. Indeed neither the maximum nor the minimum in the
theorem can change if several edges now join two nodes when originally only one
did.
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Suppose 4 U B were a separating set with ACX,, BCY, |4U B
< |X,| — 1. Then every edge is incident with at least one node in
AU B. Since the degree of any node is at most p, there are at most
p(|X,| — 1) edges in A,. But since the degree of each node in X is
D, there are exactly p|X,| edges in A,. This is a contradiction,
which proves that the matching M exists.

‘According to Theorem 3.1, if (X, A, Y) is a finite bipartite
multigraph for which the maximal degree of a node is p and X,
respectively Y,, is the set of nodes of X, respectively ¥, which have
degree equal to p, then there exist matchings A, and A, with A,
matching X, with Y,CY and A, matching Y, with X,CX. The
next theorem and its proof, due to Mendelsohn and Dulmage [21],
shows how to find within A,UA, a matching which both X; and
Y, meet.

THEOREM 3.2. Let {X, A, Y) be a finite bipartite multi-graph
and let A, be a matching which matches X;CX with Y,CY(i
= 1, 2). Then there is a matching A’ CA, U A, which matches X' C X
with Y' CY where X,CX' and Y,CY'.

To prove this theorem, we shall use the much applied method
of alternating paths. Consider the bipartite graph
{X,UX,, A,UA,, Y,UY,>. Each node of this graph has degree 1
or 2; hence the connected components of this graph are either
paths or cycles whose edges alternate being in A; and A,. Each
node y € Y,\Y,, being incident only with an edge in A,, is in a
connected component which is a path P, joining y either to a node
X € X,\X, or a node z € Y|\'Y,. In the former case, the last edge of
the path is in A,; in the latter case it is in A,. Let A} consist of
those edges in A, and Aj the edges in A, which are edges of one of
the paths P,(y € Y,\Y)). Then (A\A))U 4] is a matching. If P,
joins y to x, it matches X, U {x} with Y,u{y}. If P, joins y to z,
then it matches X, with (Y,\{z})U{y}. The set of edges

(Al\ U A{)u U

er2\ Yl ye Yz\ Yl

is a matching having the required properties.
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Combining Theorems 3.1 and 3.2 as already indicated gives the
following theorem:

THEOREM 3.3 Let S, A, Y) be a finite bipartite multi-graph with

the maximal degree of a node equal to p. Then there exists a

matching A’ which matches X' C X with Y' C Y where X’ and Y’
contain all nodes of degree equal to p.

The final theorem of this section furnishes the sought after
solution of the timetable problem.

THEOREM 3.4. (Konig [19]). Let <X, A, Y) be a finite bipartite
multi-graph with the maximal degree of a node equal to p. Then the
set of edges A can be partitioned into p matchings A,,.. . ., A,

This theorem follows readily by induction from Theorem 3.3. If
p = 1, Aitself is a matching. If p > 1, then by Theorem 3.3 there
exists a matching A, such that the maximal degree of a node of the
multi-graph <X, A\A,, Y) is p — 1. By induction A\A, can be
partitioned into p — 1 matchings 4,, ..., A,. Then A}, 4,, ..., A,
is a partition of A into p matchings.

The method of alternating paths which yielded Theorem 3.2 will
be applied again in sections 4 and 6 to both finite and infinite
graphs.

4. TRANSFINITE FAMILIES OF SETS

To introduce this section, we return to the chessboard which we
now assume extends infinitely far in all directions (formally, we
consider the regular tessellation of the plane by squares). We
assume as before that the squares are colored alternately red and
black. We take a pair of scissors and cut out as many squares as
we wish (possibly an infinite number) to arrive at a “pruned
board.” When is it possible to perfectly cover the “pruned board”
with dominos? As in the finite case, we can associate a bipartite
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graph (R, A, B) with the “pruned board,” the only difference
being that now the sets of nodes R and B may be infinite. While
this is the case, every node of the graph is incident with only a
finite number of edges (indeed at most 4 edges). Thus if for rER,
B, is the set of all black squares of the “pruned board” whicn are
adjacent to the red square r and if for b € B, R, is the set of all red
squares of the “pruned board” adjacent to the black square b, then
both (B, : rER and (R, : b€ B) are (possibly infinite) families of
finite sets.

The problems that arise when R and B are allowed to be infinite
sets are significant. For a finite “pruned board” we concluded that
a perfect covering of the squares exists if and only if the sets R
and B have the same finite cardinal number and there is a
matching in {R, A, B) with cardinality equal to |R|. This type of
reasoning breaks down when R and B are infinite. Thus it is
possible that R and B have the same infinite cardinal number, that
there is a matching in <R, A, B) with R meeting the matching but
no matching exists which both R and B meet. The “pruned board”
in Figure 3 is an example where it is trivial to place dominos in a
non-overlapping fashion with all red squares covered but where it
is impossible to place dominos in a non-overlapping fashion with
all the squares (red and black) covered. Yet R and B are both
countably infinite.

FiG. 3

But suppose there is a matching in R, A, B> which matches R
to a subset of B and another matching which matches B to a
subset of R. Is there then a matching which matches R to B? In
other words, if it is possible to place dominos in one way so that
all red squares are covered and in another way so that all black
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squares are covered, is it possible to place dominos so that both
the red and black squares are covered? We shall prove a theorem
in this section which answers this question affirmatively.

We want first to obtain the analog of Theorem 1.1 for infinite
families of sets. To do this we will have to assume that the
individual sets are finite, as they are in the families (B, : rER)
and (R, : b€ B) above. An important tool for obtaining
transfinite analogs of many finite theorems is a selection principle
of Rado [28]. This principle gives the existence of a choice func-
tion for a family ¥ of sets which mimics the behavior of choice
functions of finite subfamilies. Suppose A = (4, : i€ ) is a family
of subsets of E. Then a choice function 8 of % is a map
0 : I-> U, 4, such that (i)€ A,(i€I). Thus (6(i) : i€T) is what
we have previously called a system of representatives of 2. If
{1, A, E> is the bipartite graph associated with 9, then a choice
function of ¥ is equivalent to a set A’ CA, such that each node in 1
is incident with exactly one edge in A'.

For K a finite subset of I, we write K C C 1.

THEOREM 4.1. Let A = (A; : i €1) be a family of finite subsets of
a set E. Suppose for each K C C I there is given a choice function 8,
of (A; : i€ K). Then there is a choice function 0 of W such that given
any J c C1 there is K with J CK C CI and 0(i) = 0, (i) for i€J.

Recently Rado [29] gave a short proof of this theorem which we
now present. It will be convenient to prove the theorem in the
terminology of bipartite graphs. Thus we have a bipartite graph
{1, A, E> with each node of I incident with only finitely many
edges in A. For each K C C I we are given a set A, C A with each
node of K incident with exactly one edge of A;. We need to show
there exists A* C A with each node of I incident with exactly one
edge of A* such that given J c C I thereis KwithJ C K cC [/
and A*N (J X E)=Ax N (J X E)}.

1J X E is the set of all unordered pairs {j, e} withj € J, e € E.
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If I is finite we can put A* = A,. So let I be infinite. Let 2 be
the set of all subsets A’ of A such that given any J C C I there is
an L with JCcLccl and A, N (J X E) CA". By putting
L = J we see A € ©, so that @ is non-empty. We partially order £
by set containment. Suppose A!, A% A%, .. ., are in @ with

A'DA2DA... .

Let A® = N % A" Take J C C I; since each node of I is incident
with only finitely many edges in A, there exists an integer k
(depending on J) such that A® O (J X E) = A* If L is such that
JCcLcclandA, n(J X E)CA%thenA, N (J X E) C A~
Thus A® € Q. According to Zorn’s lemma there exists a A* € Q
which is minimal with respect to the partial order. We show A* has
the required properties.

Let {i, e} be an edget in A*. By the minimality of A* there is a
J, with i € J, c ¢ I such that whenever J, CL CC J/ and A, N
(J, X E) C A*, then {i, ¢} € A;. Suppose {i, e,} and {i, e,} are
in A* If J* = J, U J,, then J* C C I so that there is L* with
J*C L*cc I and A;. N (J* X E) C A*. By definition of J,,
and J,, {i, e}, {i,e;} €4+ s0 that ¢, = e,. We conclude that
each node of I is incident with exactly one edge in A*. Moreover,
given J cC I, there is L with J C L cc I and A, N (J X E)
C A*; hence A, N (J X E) = A* 0 (J X E), since each node of
I is incident with exactly one edge of A*. This completes the proof
of the theorem.

We can now give the transfinite analogue of Theorem 1.1, which
was first proved by M. Hall Jr. [15].

-

THEOREM 4.2. Let A = (A, : i €I) be a family of finite subsets of
a set E. Then the following are equivalent:

(1) A has a transversal.

(2) Every finite subfamily of % has a transversal.

G Vsl 2 V] cch.

+By definition of €, i is incident with some edge in A®.
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Surely (1) implies (2), and using Theorem 1.1 we conclude that
(2) and (3) are equivalent. Suppose now (2) holds. Then for every
K c I there is an injective choice function @ of the family
(4; : iEK). Let 6 be the choice function of % whose existence is
given by Theorem 4.1. Let i, i,€1 with i, # i, and set K
= {i}, i,}. Then there exists J C CI with K CJ such that 6(i)
= 0,(i,) and (i) = 0,(i,). Since 8, is injective, 4(i,) # 0(i,).
Hence 6 is an injective choice function of %, so that (8(i) : i€ I) is
a system of distinct representatives and {6(i) : i€/} a transversal
of U.

It is to be observed that condition (3) of Theorem 4.2 is no
longer sufficient for a family of sets to have a transversal if the
assumption that the sets are finite is eliminated. The family
(4;:i=1,2,...) where 4, ={1,2,...}, 4, = {1}, 4,
={2},...,4, = {k— 1}, ... satisfies (3) but yet has no trans-
versal.

Theorem 4.2 is equivalent to the following theorem about bi-
partite graphs:

THEOREM 4.3. Let <X, A, Y be a bipartite graph in which the
degree of each node in X is finite. Then the following are equivalent:
(1) X is mdtched with a subset of Y.
(2) Every finite subset of X is matched to a subset of Y.
(3) There is no separating set of the form (X\A)U B where
AccX,BccYand|B|<|A|

We now derive the analog of Theorem 3.2 for infinite bipartite
graphs. The statement of the theorem remains the same, but for
the convenience of the reader we state it again. The theorem is due
to Ore [25]; a more exact statement of the situation is derived by
Perfect and Pym [26].

THEOREM 4.4. Let {X, A, Y be a bipartite graph and let A, be a
matching which matches X;C X with Y,CY (i = 1, 2). Then there is
a matching A'CA,UA, which matches X' CX with Y'CY where
X,CX ' and Y,CY'.
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As a corollary there is the following theorem of Banach [1].

COROLLARY 4.5. Let {X, A, Y)> be a bipartite graph. Suppose
there is a matching A, which matches X with a subset of Y and a
matching A, which matches Y with a subset of X. Then there is a
matching A’ C A, U A, which matches X and Y.

From Corollary 4.5 one easily deduces the Schroeder-Bernstein
theorem that if a and 8 are two infinite cardinal numbers with
a< Bfand B < athena = B.

Notice that Corollary 4.5 answers afflrmatlvely one of the
questions that was raised about “pruned boards.” Namely, if it is
possible to place dominos in one way so that all red squares are
covered and in another way so that all black squares are covered,
then it is possible to place dominos so that both the black and red
squares are covered. Moreover, the positions of these dominos is a
subset of the union of the positions of the first two placements.

We now turn to the proof of Theorem 4.4 and consider the
bipartite graph <X, U X, A, U4,, Y,U Y,)>. The proof is essentially
that of Theorem 3.2. The only difference is .that since the above
bipartite graph may be infinite, there are two more possibilities for
its connected components. Indeed since every node is incident
with 1 or 2 edges, the connected components are either paths
(finite, infinite in one direction, or infinite in two directions) or
cycles, in all cases the edges alternating in A, and A,. Each node
YEY,\Y, is in a connected component which is a path joining y
to a node in Y,\Y, or a node in X,\X,, or else an infinite path
beginning at y. If we let A} be the edges of A; and A} the edges of
A, in this connected component, then '

(an U w)o Uy

YEY,\Y, YEY,\Y,

is a matching with the required properties.
If Theorem 4.3 and Corollary 4.5 are combined, the following
theorem is obtained:
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THEOREM 4.6. Let {X, A, Y) be a bipartite graph in which the
degree of every node is finite. Then there is a matching which meets
all nodes of the graph if and only if

(1) there is no separating set of the form (X\A)UB where
AccX,BccYand|B|<|A|

(2) there is no separating set of the form (Y\C)U D where
CccY,DccXand|D|<|C|

Indeed, according to Theorem 4.3, (1) is equivalent to the
existence of a matching A, which matches X with a subset of Y
and (2) is equivalent to the existence of a matching which matches
Y with a subset of X. According to Corollary 4.5 the existence of
such nratchings A; and A, is equivalent to there being a matching
which matches X with Y.

Notice that Theorem 4.6 furnishes necessary and sufficient
conditions in order that a “pruned board” can be covered per-
fectly with dominos. Theorem 4.6 is equivalent to the following
theorem about a family of sets. Recall that if ¥ = (4, : i€l)isa
family of subsets of a set E, then A* = (4 : e€ E), where for
e€E, A = (i€l : e€E A}, is the dual family of .

THEOREM 4.7. Let N = (A, : i €I) be a family of finite subsets of
a set E such that every element of E is a member of only finitely
many of the A,(i€I). Then E is a transversal of U if and only if

M) {U;esdil > V| Jcci).

@ |V.epd?| > |[F| (FCCE).

We now take a global point of view. We take a bipartite graph
(X, A, Y) and let M, (respectively, My) be the collection of all
subsets of X (respectively, Y) which are matched with some subset
of Y. It is the nature of the set M, in which we are now interested.
An elementary property is that every subset of a member of M, is
also a member of M. If we regard M, as being partially ordered
by set inclusion, then M, need not contain maximal members.
The simplest way to see this is to take X to be an uncountably
infinite set and Y a countably infinite set and to put an edge
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joining each node of X to every node of Y. When the degrees of
the nodes in X are finite, then M, will have a maximal member.

THEOREM 4.8. Let {X, A, Y) be a bipartite graph in which the
nodes in X have finite degree. Then M, contains a maximal set.

According to Theorem 4.3 a set 4 is in M if and only if every
finite subset of A is. Let A, CA,CA4;C ... be an infinite ascend-
ing chain of sets in M,. Then 4 = U2 4, is in My, for if
A’C CA, then A’ C A4, for some k and hence 4" € My. If we now
invoke Zorn’s lemma, we conclude that M, contains at least one
maximal set.

The collection M, may contain maximal sets even when some
of the nodes of X are incident with infinitely many edges. A trivial
example is obtained by taking X and Y to be two infinite sets of
the same cardinality and all possible edges between X and Y.
Since then X € M,, X is a maximal set in My. A less trivial
example is one we have met previously as a family of sets.
Namely, take X = Y = {1,2,3,...} and take A = {{1, 1},
{1,2}, {1,3},...,{2,1}, {3,2}, {4,3},...). Then for each
positive integer k, X \{k} is a maximal set in M.

When M, has maximal members, the following theorem (taken
from [6]) gives some information about M, and the matchings in
(X, A Y.

THEOREM 4.9. Let (X, A, Y) be a bipartite graph. Then the
Jollowing statements hold:

(1) If B is a maximal set in My and C € My then there is a
matching which matches B and a subset of Y containing C.

(2) Let B,, B, be maximal sets in My. Let A; be a matching
which matches B; with the set C; C Y (i = 1,2). Then there is a
matching A’ C A, U A, which matches B, with C,.

(3) All maximal sets in My have the same cardinality.

(4) If B, is a maximal set in My and B, € My, then there exists
an injection o : B,\ B, - B, \ B, such that (B,\ {a(x)}) U {x} is
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a maximal set in My for each x € By\ B, and (B,\ {x}) U
{o(x)} € M. If B, is also a maximal set in My, then so is

(BN {x}) U {a(x)}.

Statement (1) follows easily from Theorem 4.4, for from this
theorem we deduce the existence of sets B’, C’ with B C B’ C X,
C C C’ C Y and a matching which matches B’ and C”’. Since B is
a maximal set in M,, B’ = B, which gives the desired conclusion.

To prove (2), we look at the bipartite graph {B, U B,, A, U
A,, C, U Cy). It follows as in the proof of Theorem 4.4 that the
connected components of this graph are either paths (finite, in-
finite in one direction, infinite in two directions) or cycles, in all
cases the edges alternating in A, and A,. Each node y, € C,\ C, is
in a connected component which is either a path P(y,, y,) joining
¥, to a node y, € C, or else an infinite path P(y,,-) beginning at
»1- The only other possibility is a path joining y, to a node
x; € B;\ B,; but then if A}' were the edges of A; and A} the
edges of A, in this connected component, (4, \ A3') U A}* would
be a matching which matches B, U x, with a subset of Y, which
contradicts the assumption that B, is a maximal set in M. Thus
the possibilities for the connected component containing the node
», are as given. If we use the above notation, then (3, \ A}") U A}
is a matching which matches B, with (C,\ {y,}) U {»,} in the
case of the path P(y,,y,) and with C, U {y,} in the case of the
path P(y,,-). At this point we could say, since these paths are
connected components and have neither nodes nor edges in com-
mon, that

A'=(A2\ U A{')u U ap

ne Yl\Y2 ne YI\YZ

is a matching which matches B, with a subset of Y containing C,.
But we want no nodes outside of C; to meet the required match-
ing. We therefore must look at the nodes in C, \ C,. By symmetry,
each node z, € C,\ C, is in a connected component which is
either a path Q(z,, z,) joining z, to a node z; € C;\ C, or else an
infinite path beginning at z,. In the first case Q (z,, z,) = P(z,, z5)
and the node z, does not meet the matching A’. It is precisely the
nodes z, of the second case that must be eliminated. We do this as
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follows. Let A (respectively, A¥) consist of all those edges of A,
(respectively, A,) which are in the connected components

P(y1,y2), P(y1,+), Q(22 21), Q(25); then
(a,\a%)uay
is the required matching.

Statement (3) is an immediate consequence of (2).

The proof of (4) uses the same technique to prove (2). We
consider the bipartite graph {B,U B,, A,U4,, C,U C,» where A,
matches B,C X with C;CY (i = 1, 2), and B, is a maximal set in
My. Each node x € B,\ B, lies in a connected component which,
because B, is a maximal set in My, is a path P(x, 6(x)) joining x
to a node o(x) € B,\B,. The map o : B,\ B;—B|\B, so defined is
an injection, since these paths are connected components and have

neither nodes nor edges in common. If A} and A3 are, respectively,
the edges in A, and A, of the path P(x, o(x)) (x € B,\B,), then

At = (ANADUALS, A = (A UA]

are matchings which match (B,\{a(x)})U{x} to a subset of Y
and (B,\{x})u{o(x)} to a subset of Y. Suppose B
= (B,\{o(x)})U{x} were not a maximal set in M,. Then there
exists z & B{ with B{U {z} € M,. If we replace B, with Bju{z} in
the preceding argument, we conclude that there is an injection
from (ByU{z})\B, = {x,z} to B\(Bju{z}) = {o(x)}. Since
z # x, this is a contradiction. Hence (B \{o(x)})U{x} is a
maximal set in M.

A similar argument shows that if B, is a maximal set in My so is
(BMx) U {a(x).

To conclude this section we take a look at what Theorem 4.9
means in terms of families of sets.

Suppose A = (4, : i€1) is a family of subsets of a set E. We
form the bipartite graph (I, A, E) as before, so that M, consists of
those subsets J of I such that the subfamily (4, :i€J) has a
transversal while My is the collection of partial transversals of U.
A maximal member of M, is a subset J of I such that (4, : i€J)
has a transversal but no subfamily (4, : i€ K) where J ¢ K has a

transversal. Statement (3) then says that any two subfamilies of %
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which are maximal with respect to the property of having a
transversal have the same cardinality. Statements (1) and (2)
translate to (1’) and (2’) below.

(1) If J is a subset of I such that the subfamily (4, :i € J) is
maximal with respect to the property of having a transversal, then
the collection of partial transversals of (A, : i € I) is the same as the
collection of partial transversals of (A, : i € J).

) If J,, J, are two subsets of I such that the subfamilies
(4;:i € J)) and (4; : i € J,) are both maximal with respect to the
property of possessing a transversal, then each transversal of A, :
i €J)) is a transversal of (4, : i € J,) and vice versa. (Note that
(1) said only that a transversal of (4, : i € J)) is a partial trans-
versal of (4; : i € J)).

5. MATCHINGS IN GRAPHS

Thus far, we have been primarily concerned with the concept of
a matching in a bipartite graph and several of its interpretations.
In a finite bipartite graph we have been able to give a criterion for
the existence of a matching of a prescribed cardinality. But the
notion of a matching applies to graphs which are not bipartite,
and one naturally wonders whether the criterion for bipartite
graphs can be extended to graphs in general. We shall prove a
theorem which is analogous to Theorem 2.1 and then specialize it
to obtain a criterion of Berge for the existence of a matching of
prescribed cardinality and a major theorem of Tutte for the
existence of a matching which all nodes meet, a perfect matching.
The theorems can be extended to infinite graphs when nodes have
finite degree.

Let G be a graph with N its set of nodes. For T C N, recall that
the subgraph of G induced by T, Gy, is the graph whose set of nodes
is T where two nodes in T are joined by an edge if and only if they
are joined in G. If SCTCN, then clearly (G;)g = Gs and we
shall make implicit use of this throughout.

Let T C N. The graph G\, need not be connected even if G is,
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and thus has in general several connected components. By an odd
component of Gy, we shall mean a connected component of Gy
which has an odd number of nodes. For 4 an arbitrary but fixed
set of nodes of G, we define p(T; A) to be the number* of odd
components of Gy, all of whose nodes belong to 4. Thus if
A = N, p(T; N) is the number of odd components of Gy

The proof of the following theorem is a reworking of a proof [5]
of a more general theorem which applies to infinite graphs.

THEOREM 5.1. Let G be a finite graph with node set N. Let ACN
and let t be a positive integer. Then there exists a matching in G
which at least t nodes of A meet if and only if

p(T; A) < 4] +|T| =t (TCN). (5.1)

Thus the maximum cardinality of a subset of nodes of A which meets
a matching equals

min{|4| + |T| — p(T; 4) : TCN}.
In particular A meets a matching if and only if
p(T; 4) < |T| (TCN).

It should be observed that (5.1) is a criterion for the existence of
a matching which ¢ nodes of 4 meet. The cardinality of this
matching may vary due to the fact that some edges of the
matching may have both their nodes in 4, while others may have
only one.

Suppose B C A with [B| = ¢ and there is a matching A which B
meets. Let 7 C N. For each odd component of Gy, all of whose
nodes belong to B (and thus to 4) there must be an edge in A
which joins a node of the odd component to 7. Thus the number
of such odd components does not exceed |7|. Hence

(|AN(N\T)| = p(T; 4)) + |T| > |BN(N\T)|.

*If there are an infinite number, we take p(T; 4) = co.
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Adding |4 N T| to both sides and using

|[ANT| + |BN(N\T)| > |B| =1,
we obtain

|| = p(T; 4) +|T| > 1,

which is the desired inequality.

We now turn to the sufficiency of (5.1) for the existence of a
matching which ¢ nodes of A meet, and to indicate the de-
pendency of p(T; A) on the graph G we write instead p(G : T; A).
The proof of sufficiency will be by induction on ¢ If # = 1 and
(5.1) is satisfied, then at least one node of A is incident with an
edge of G. Otherwise each node of 4 is an odd connected
component of G = Gy, so that p(G : 4; 4) = |A4| and (5.1) is
violated when T =8 . Assume now that ¢ > 1. Two cases need to
be distinguished.

CasE 1. There is a non-empty subset T of N for which
p(G:T;A)=|A| +|T| —¢. (5.2)

Let Gy (kEK) be the connected components of Gy,r which
either have an even number of nodes or else have an odd number
of nodes not all of which belong to 4. Set 4, = N,N4 (k€K).
Since

|4 < 14| = p(G:T; )=t~ |T| <1 -1,
|4,] < t — 1. Suppose there were an S C N, such that

P(Gy, : S5 4;) > |S| = 4] + [S]| — |44l
Then

p(G:TUS; A)=p(G:T; A) + p(Gy, : S; 4)

<(l4|+|T) - 1) +|S|
=|A4|+|SuT| -1t
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and we have contradicted (5.1). Thus for S CN,, p(Gy, : S; 4,)
< |S|, and by the inductive hypothesis there exists a matchmg A,
in Gy_which all nodes of 4, meet. This is true for each k€ K.

Now let Gz,(j€J) be the connected components of Gy, which
have an odd number of nodes all of which belong to A. Suppose
for some S C T, it were true that

p(Gy s T) > T+ S| - (IT| - 1) = |S| + L

(Note that ANT, = T, in this case.) Then a calculation like the
preceding one gives

P(Gg : TUS; 4) > |4 +|T| -

which again contradicts (5.1). Since |T}| < ¢ — 1, we conclude by
the inductive hypothesis that Gy, has a matchmg which all but one
node of 7; meets. This is so for "each JEJ.

Suppose for some j €J there were a node z € T, such that Gz
did not have a matching meeting all nodes of T\{z} Then by the
inductive hypothesis, there exists S C T)\{z} such that

P(Gpuny S TN (2}) > |S] + 1.

But |T;\{z}] is an even integer so that p(Gz\(,y : S; T\z}) — ||
is a positive even integer. Thus we have thé stronger mequahty

P(Grvany S5 TN(2}) > |S] + 2.
We now calculate that
pP(G:TuSU{z};4)=(p(G:T;4) - 1)
+p(GTj\{,} K 7}\{2})
>4l +|T)—t—-1)+|S|+2
= 4] +|TuSu{z}| — ¢

This inequality in conjunction with (5.1) (with T replaced by



62 Richard A. Brualdi

T U S uU{z}) means that
p(G:TuSuU{z}; 4) =|4] +|TuSu{z}| — ¢

This in turn means that in (5.2) we may replace T by TUS U {z}*

Repeating this enlargement of T as much as necessary, we
eventually arrive at a set 7 C N which satisfies (5.2) such that for
each zET,(j€J) there is a matching T';(z) in Gra() which all
nodes of T\{z} meet.

We now construct a bipartite graph <T, 4, J ), where for t€T,
j€EJ, there is an edge joining ¢ and j if and only if there is an edge
in G joining ¢ to some node in T;. We assert that this bipartite
graph has a matching A of cardmahty equal to | T|. If not, then by
Theorem 2.1 it has a separating set T°UJYT°C T, J°CJ) with
|T°UJ? < |T). We then calculate that

p(G: Ty 4) > I\l = [J| = ol > || + |To| = |T|
=p(G:T; 4) +|T| = |T|
= (4| +|T| - O + |T| - |T|
= 4| +|T,| - ¢
This contradicts (5.1). Hence A exists. Let the edges in A be
{tpji}s -« s {ts Jr} Where m = |T|. Choose a node z, €T, such
that {tk, } isan edgein G (k=1,...,m). Let A be the set of

these m edges For jeJ\J where J = {j,,...,j,), choose any
node z; in 7. Then

(kgKAk) ? ( Y rj(zj)) V (kgl rj"(zj")) N

jEINT

B

*Thus if we had chosen 7T to be a maximal subset of N satisfying (5.2), then
SU{z}CT, which is a contradiction. This part of the argument did not use the
fact that T 0. ‘
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is a matching in G which meets || — (p(G: T; 4) — |T|) =1
nodes of 4.

CasE 2. For all non-empty subsets T of N,
p(G:T;4) < |A|+|T| -t

There are two subcases we wish to consider.

(a) There exists an edge {x,y} in G with xEA4 and y £ 4.

Let N’ = N\{y}, 4’ = A\{x}, and G’ = Gy.. Suppose for
some 7' C N’ that

(G :T; A) > A+ T — (¢t —2).

But p(G: T'U{y}; 4) =p(G' : T'; A) + 1 if x is a node of a
connected component of G’y.p Which has an odd number of
nodes all of which except x belong to 4’, while p(G : T'Uy; A)
= p(G': T'; A’) otherwise. Thus p(G : T'U {y}; 4)
> p(G’ : T’; A"), so that ’

p(G:T'U{y);4)> |4+ |T|-t+2
=4+ |T'u{y} - ¢

We must have equality throughout and since T'U{y} #8, we
contradict the basic assumption of Case 2. Hence

p(G T A) <A +|T=(=1) (T'CN),

and so by the inductive hypothesis G’ has a matching A" which at
least  — 1 nodes of A’ meet. If an edge of A’ is incident with x,
then at least ¢ nodes of 4 meet A’; if not, A’U {x, y} is a matching
in G which at least 7 nodes of 4 meet.

(b) No node of 4 is joined by an edge to a node not in 4.

We may then assume, clearly, that N = A4, so that every match-
ing in G meets an even number of nodes in 4. If ¢ is not even, we
may replace ¢ by ¢ + 1. If we are no longer in Case 2, we return to
Case 1 where the inductive hypothesis will be applied to an integer
smaller than ¢ + 1 by an even integer (thus smaller than ¢).
Otherwise we proceed as follows:
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Let {x,y} be an edge of G. Let N’ = N\{x, y}. Suppose for
some 7'C N’ that

P(Gy - T N') > [N') + |T7| = (¢ - 2).

Since |N'| + |T'} — p(GN T’; N’) is an even integer as 7 is, we
have that

P(G:T; N)=p(Gy. : T'; N)
>N+ |T) = (1 — 4)
=|N|+|T| -1,

where T = T'U{x,y}. We must have equality throughout and
since T ##, we again contradict the basic assumption of Case 2.
Thus

PGy : TS N) <IN+ T = (t=2)  (T'CN),

and by the inductive hypothesis G’ has a matching A’ which ¢ — 2
nodes of N’ meet. Thus A’U {x, y} is a matching of G which ¢
nodes of N (= A4) meet.

The proof is now complete.

COROLLARY 5.2. Let G be a finite graph with set of nodes N.
There exists a matching in G with cardinality p if and only if

p(T)<|T|+(N|-2p) (TCN),

where p(T) is the number of odd components of Gy .
This corollary, derived by Berge [2] as a generalization of a
theorem of Tutte (Theorem 5.3), follows from the theorem by

taking 4 = N, and ¢ = 2p. For, a matching with cardinality p is
equivalent to a matching that 2p nodes of N meet.

THEOREM 5.3. (Tutte [30, 31]). For a finite graph G with node set
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N, there exists a perfect matching if and only if
p(T)<|T|  (TCN). (53)

This theorem follows from the preceding corollary. For, by
taking 7 =8, we see from (5.3) that G has an even number of
nodes. Now take 2p = |N|.

From the proof of Theorem 5.1, one can obtain some informa-
tion about the nature of those matchings in a graph which meet a
given set of nodes in maximum cardinality. The theorem which we
now give extends a result of Edmonds [9] (quoted in [10]) which
follows from his algorithm for obtaining maximum cardinality
matchings in a graph.

THEOREM 5.4. Let G be a finite graph with node set N and let
A C N. Let t be the maximum cardinality of a set of nodes in A
which meets a matching in G. Let M be the collection of subsets of A
which meet some matching in G. Let A* = N{B:B € M, |B|
= t}. Then the node sets (4, :j € J) of the connected components
of the graph G, 4. all have odd cardinality. Moreover, if T C N \
(Ujes4)) is the set of nodes not in U ;e A; which are joined to at
least one node in U ;¢ ;4;, then every matching in G which t nodes of
A meet contains }(|4; | — 1) edges in the graph G, meeting A; in
any prescribed subset of cardinality |4;| — 1 and an edge Jozmng
each node of T to a node in U ¢ ;4;.

This theorem follows from the happenings in the proof of
Theorem 5.1. The integer ¢ in the theorem is given by

t =min{|d| + |T| - p(T; 4) : TCN}.

Choose a T C N for which the minimum is attained. The nodes of
A in the connected components of G,,, which have an even
number of nodes or else ann 0odd number of nodes not all of which
belong to 4 are nodes in 4*. Likewise, all nodes of 4 in T are in
A*. The variability in which subsets of 4 meet matchings in G
comes from the nature of the matchings in the bipartite graph
which we constructed in the proof of Theorem 5.1.
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Just as we were able to extend results on matchings in finite
bipartite graphs to infinite bipartite graphs, provided certain nodes
had finite degree, we can extend our results on matchings to
infinite graphs. We will again make use of the selection principle
of Rado, Theorem 4.1.

THEOREM 5.5. Let G be a graph with N its set of nodes, and let
A CN. Assume that each node in A has finite degree. Then A meets
a matching in G if and only if every finite subset of A meets some
matching in G.

Let N, be the finite set of nodes which are joined by an edge to
a (a € A). Suppose for each F C C A there is a matching which F
meets. Thus there is a choice function 6 of (N, : a € F) such that
0r(a) € N,(a € A) where Op(a;) # 0(ay) (ay, a, € F,a, # a,)
and where if 8(a) = b € F then 0,(b) = a. Let § be the choice
function of (N, : a € 4) whose existence is given by Theorem 4.1.
Let A be the set of edges which join a and #(a) (a € A). We show
that A is a matching, from which the theorem follows. Let a,,
a, € A with a, # a,. If F = {a,, a,}, then there is an E with
F C E c c A4 such that

0(a) =0g(a) (i=12).

Thus 6(a,) # 6(ay) and if (a)) = a,, then 8(a,) = a,. This is
equivalent to A being a matching.

If we combine Theorem 5.5 with Corollary 5.1, we obtain the
following theorem:

THEOREM 5.6. Let G be a graph with N its set of nodes, and let
A C N. Assume that each node in A has finite degree. Then A meets
a matching in G if and only if

p(T; A) < |T| (TCCN). (54)

The condition (5.4) is easily seen to be necessary. Suppose now
(5.4) holds. Let Fc c A and let F* be the finite set consisting of
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the nodes in F and all nodes of G which are joined by an edge to
some node in F. There is a matching in Gp. that F meets if and
only if there is such a matching in G. According to Corollary 5.2
the former is the case if and only if

p(Gn: T; F) <|T| (TCF*). (5.5)
But clearly for each T C F*,
p(Gpe : T3 F) < p(G : T A).

Thus since (5.4) holds, so does (5.5). Hence for all FC C4, there
is a matching in Gp. (and hence in G) which F meets. The
conclusion now follows from Theorem 5.5.

As a corollary we obtain a theorem of Tutte [32].

COROLLARY 5.7. Let G be a graph with N its set of nodes, and
suppose every node has finite degree. Then there is a perfect match-
ing in G if and only if

(D) <|T| (Tcch)

where p(T) is the number of odd components of Gy\r-.

6. TRANSVERSAL AND MATCHING MATROIDS

In this section we want to explore the concept of a matroid on a
set and its relation to the primary subject of this article, transversal
theory. We shall develop only enough of the theory of matroids
which will be sufficient for our purposes and which hopefully will
enable the reader to put the theorems in reasonable perspective.
The concept of a matroid-abstracts the properties of linear inde-
pendence of points in a projective or affine space. Because of this
it is also referred to as a combinatorial geometry. It has become
clear recently that the concept of a matroid or combinatorial
geometry is very pervasive in combinatorial theory, and it has had
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a unifying influence on many combinatorial situations. The pio-
neering work on matroids was done by Whitney [35] in 1935, while
Tutte [33, 34] has vigorously developed its theory proving many
profound theorems. A systematic development of the theory can
also be found in [8].

Let E be a set. A matroid M on E is a non-empty collection of
subsets of E which satisfy the following two properties:

AEM A'CA imply 4'€ M. (6.1)
A, A,EM, |A||+1=]|4,] < o imply thereis an x € 4,\4,

such that 4, U {x} EM. (6.2)

Because a matroid M is non-empty, we have in view of (6.1) that
B € M. These properties are familiar to all of us who have studied
affine or linear spaces over a field or division ring and the notion
of linear independence of points or vectors. Indeed, if ¥ is such a
linear space and E C ¥, then the collection M of all subsets of E
which are linearly independent sets of vectors is a matroid on E¥.
In a vector space an infinite set of vectors is defined to be linearly
independent provided every finite subset of these vectors is. We
say that the matroid M on E is a finite-character matroid if the
following additional property is satisfied:

ForACE, AeMifA’'eMforallA'c CA. (6.3)

Of course, every matroid on a finite set is a finite-character
matroid. If M is a matroid on a set E, the members of M are
referred to as the independent sets; all other subsets of E are
dependent sets.

Matroids arise in many ways. We have already mentioned those
arising from linear spaces. From set theory we get the following
examples: Let E be a set and n a non-negative integer. The

fNot all matroids arise this way. Such matroids are called linear. The first
example of a non-linear matroid is due to Mac Lane [20].
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collection P (E) of all subsets of E and the collection @, (E) of
all subsets of E with at most n elements are finite-character
matroids, while the collection % (E) of all subsets of E which are
finite or countably infinite is an example of a matroid which does
not have the finite-character property (6.3) if E is an uncountable
set.

An example of a matroid from the theory of graphs is the
following. Let E be the set of edges of a finite graph G and let M
be the collection of subsets of E which do not contain the set of
edges of any cycle in G. For these ‘graphic’ matroids, the inde-
pendent sets are the edge sets of subgraphs of G which are forests.
The edge sets of simple cycles are the minimal dependent sets. If
we take the graph in Figure 4, then E = {a, b,c,d, e} and M
consists of the empty set, all singletons, all doubletons, and all
three element subsets of E except for {a, b, e} and {c, d, e}. There
are many other realizations of matroids some of which are the
subject of this section.

Let M be a matroid on a set E. A rank function p is defined on
subsets A of E in the following way. If for each positive integer n
there is an independent subset of E with at least n elements, we set
p(A4) = co. Otherwise, the number of elements in independent
subsets of 4 is bounded above, and we set p(4) = m if m is the
largest number of elements in an independent subset of 4. A basis
of M is any independent subset B of E which is not properly
contained in any other independent set. Thus if the members of M
are partially ordered by containment, the bases of M (if there are
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any) are the maximal members of M with respect to the partial
order. The matroid %¢(E) where E is an uncountable set has no
bases. Matroids on finite sets, of course, have bases; moreover,
every independent set can be enlarged to a basis. The same is true
for finite-character matroids, and this can be easily established by
use of Zorn’s lemma.

LeMMA 6.1. Let M be a matroid on E and let A C E with
p(4) = m < . Suppose B C A with B € M and |B| = m and
suppose F C A with F € M. Then there exists X C B \ F such that
FUXeE€Mand|Fu X|=m. Thus if o(E) < 0, any two bases
of M have the same number of elements.

If |F|=|B| we may take X =@. Otherwise |F| < |B| and
repeated application of property (6.2) furnishes the desired result.

There are three constructions for matroids that we are going to
make use of. The first two of these are rather simple. (1) Let M’ be
a matroid on E’ (i = 1,2) where E' N E?=0. Then M' ® M?
={A4'u4?: A'e M, 42 M?} is a matroid on E'U E?, called
the direct sum of M' and M2, (2) Let M be a matroid on E and let
ACE, then M, = {F: FCA, FEM} is a matroid on 4, called
the restriction of M to A. If M satisfies the finite character
property so does M,. (3) Let M be a matroid on the finite
set E and let 4 C E. Let B be a basis of Mg, (that is, a
maximal independent subset of E \ 4), then Mg,
={F:FCA, FUBEM} is a matroid on 4, called the contrac-
tion of M to A. When considering a contraction of a matroid, one
would do well to keep in mind the idea of taking the quotient of a
vector space by a subspace.

That the above three constructions lead to matroids is easily
verified. What is not so obvious is that the matroid Mg , does not
depend on the choice of the basis B of M, ,. This is the content
of the following lemma.

LEMMA 6.2. Let M be a matroid on the finite set E. Let ACE
and let B,, B, be bases of the matroid Mg, ,. Let F C A and suppose
FUB,EM. Then FUB,EM.
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Since B,, B, are bases of My, ,, for y € B|\\B,, B,U{ y} and thus
any set containing it is a dependent set. Likewise, for x € B,\ B,,
B,uU{x} and any set containing it is a dependent set. Therefore
FU B, is a basis of the matroid Mg, 5, Suppose FU B, were
not an independent set. Then there exists F’ c F such that
F’'UB, is a maximal independent subset of FU B,. Thus {y}
UF'UB,&M for ally e F\F’. But then { y}U F'U B,& M for all
y €(FU B;U By)\(F’'U B,) so that F’U B, is a basis of Mg 5,5,
But since |F’U B,| < |FU B,|, this contradicts the conclusion of
Lemma 6.1. Hence FU B,EM.

Let p', p2, p denote the rank functions of the matroids M, M2,
M respectively. Then the rank of F C E'U E? with respect to the
matroid M! @ M2 is p'(FNE") + p*(F N E?). The rank function
of M and M, agree wherever they are both defined (on subsets of
A) and we do not distinguish them. If p, denotes the rank function
of Mg 4, then for FCA, p,(F) = p(FU(E\A)) — p(E\A).

The first* connection between transversal theory (or, more
generally, matching theory in graphs) and matroid theory is
brought out in the following theorem of Edmonds and Fulkerson
[10}.

THEOREM 6.3. Let G be a graph with N its set of nodes. Let X be
a fixed subset of nodes. Let M(G, X) consist of those subsets of X
which meet some matching in G. Then M(G, X) is a matroid on X.
If every node of X has finite degree, then M(G, X) is a finite-
character matroid.

Any matroid that arises this way is called a matching matroid.
Before proving the theorem, we wish to state as a special result,
the following corollary which is a special case of the theorem.

COROLLARY 6.4. Let A = (A, : i€I) be a family of subsets of a
set E. Let M(N) be the collection of partial transversals of . Then
M) is a matroid on E. If each element of E is a member of only

*We are not speaking historically here.
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finitely many sets of the family, then M(N) is a finite-character
matroid.

The corollary follows from Theorem 6.3 by associating with the
family the bipartite graph (I, A, E) as before and then taking
X = E. Matroids whose independent sets are the partial transver-
sals of some family of sets are called transversal matroids. Every
transversal matroid is a matching matroid. The converse, surpris-
ingly perhaps, is also true for finite character matroids [10]. We
shall prove it later for matroids on a finite set. Just as the set of
partial transversals of the family % is a matroid on E, the collec-
tion of subsets J of I such that (4; : i € J) has a transversal is a
matroid on I. This follows by taking X = I in Theorem 6.3
applied to the graph (Z, A, E). This matroid is just the transversal
matroid of the dual family (4 : e € E)where A = {i€1: e €
4;).

In order to prove Theorem 6.3 it is enough to prove that the
collection M = M (G, N) of subsets of N which meet a matching
is a matroid. This is because M (G, X) = M (G, N),. To prove
that M is a matroid we need only verify property (6.2) of a
matroid, (6.1) being obvious. So let 4,, 4, be finite members of M
with |4,| < |4,]. Let A, be a matching which meets 4, (i = 1, 2),
and consider the subgraph G* of G whose edges are the edges in
A, U A, and whose nodes are the nodes of G incident with at least
one edge in A; U A,. Then each node of G* is incident with either
one or two edges of G* so that the connected components of G*
are either cycles or paths joining two distinct nodes, in each case
the edges alternating between A, and A,.

Suppose first there is an edge of A, which meets a node x of
A\ A,. Then A, is a matching which meets 4, U {x} and prop-
erty (2) of a matroid is satisfied. Now suppose that no edge of A,
meets a node of 4,\ 4,. Then since |4,| > |4,|, there is a con-
nected component of G* which is a path P such that all nodes of
A, that are nodes of P are nodes of 4, and, in addition, there is a
node x of P which is a node of 4, \ 4,. If AT is the set of edges of
A, which are edges of the path P (i = 1, 2), then (A, \ A]) U A} isa
matching in G which meets 4, U {x}. Thus property (2) of a
matroid is satisfied and M is a matroid.
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Suppose now X C N and each node of X has finite degree. We
want to show that M(G, X) is then a finite character matroid. So
let 4 C X and suppose every finite subset of A meets a matching in
G. According to Theorem 5.5, 4 itself meets a matching in G so
that 4 € M(G, X). This completes the proof of Theorem 6.2.*

Theorem 5.1 furnishes an explicit description of the rank func-
tion of the matching matroid that results from a finite graph.
Precisely, if G is a finite graph with node set N, 4 C N, and p is the
rank function of the matroid M(G, N), then

p(4) = min{|4| + |T| - p(T; 4) : TCN},

where we recall that p(T; A) is the number of odd components of
Gy r all of whose nodes belong to 4. In the same way Corollary
1.3 gives explicitly the rank function of a transversal matroid. If
A = (4;:i€]1) is a finite family of subsets of £, ACE, and p is
the rank function of the transversal matroid M (), then

o(4) = min{l( U A,.) NAl+|I\J|:J C 1}.
ieJ

This follows by applying Corollary 1.3 to the family (4,
NnNA4:iel).

We now turn to the problem of showing that every finite
matching matroid is a transversal matroid. Since a restriction of a
matching matroid is also a matching matroid (this follows from
the definition of a matching matroid), and since a restriction
of a transversal matroid is also a transversal matroid (if U
= (4; : i€I)is a family of subsets of E and X C E, then M(N)y is
the transversal matroid of (4,n X : i€I)), it is enough to show
that if G is a finite graph then M(G, N) is a transversal matroid.

We shall find it useful to introduce one new concept. If G is a
connected graph, an edge is an isthmus provided the deletion of
that edge separates the graph. An isthmus has the property that it
must be an edge of every spanning tree of G (a tree whose set of
nodes is the set of nodes of G and whose edges are edges of G).

*It is suggested that the reader work through the above proof for the special case
of a bipartite graph.
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The edge sets of spanning trees are the bases of the graphic
matroid associated with G. If M is a matroid on a finite set £ and
x EE, then x is an isthmus of M provided x is in every basis of M
(equivalently 4 U {x} € M whenever 4 EM).

LEMMA 6.5. If M is a matroid on a finite set E and F is a set of
isthmuses, then M is a transversal matroid if Mg, . is.

Let My, be the transversal matroid of the family ¥ = (4, :i €
I) of subsets of E\ F. Let K be a set with |K|=|F| and
K N I =4, and consider the family B = (B, : j € K U I) where
B, = Fifj € Kand B, = 4;if j € . Since each basis of M is the
union of a basis of Mg, and F, M is the transversal matroid of 8.

LEMMA 6.6. Let M be a matroid on the finite set E and suppose
F is a subset of E with the property that every basis of M contains all
but at most one element of F. Let M* be the matroid on (E\F)
U {x} where x is an element not in E\F whose bases are the sets
(B\F)u{x} if B is a basis of M containing F and B\F if B is a
basis of M containing all but one element of F. Then if M* is a
transversal matroid, so is M.

We first show that M* is really a matroid on (E\F)U {x}, and
for this we need only verify property (6.2) of a matroid. Thus let
A, A,€ M* with |4,| + 1 = |4,|. We distinguish several cases.

Caske 1. Suppose x€A4,NA,. Then A} = (4,\{x})U F and 4,
= (4,\{x})U F are in M. Hence there exists y EA\4(= A,\4))
such that Aju{y}EM. Thus 4,U{y} EM*.

CasE 2. Suppose xEA\A,. Then A=A NxHDUFEM,
while 45 = A,U(F\{f})EM for some fEF. Thus there exists
YEANAY(= A\A)) such that A{U{y}EM. Thus 4,U{y} EM*

Cast 3. Suppose x EA,\A4,. Then 4] = A\ U(F\{f})EM for
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some f€F while 45 = (4,\{x}U F € M. Hence either 41U {x}
€M, in which case 4,U{x}EM* or AjU{e}EM for some
eEA,\A,, e # x, in which case 4,U {e} EM*.

CASE 4. Suppose xZA,UA,. Then 4,, A;,CE\F so that 4,,
A,€ M. Thus there exists e € 4,\4, such that A,U{e}EM with
A,U{e} CE\F. But then 4,U{e}EM*.

Thus M* is a matroid. Suppose now M* is the transversal
matroid of the family (4, : i€I) of subsets of (E\F)U{x}. We
can assume no element of F is an isthmus because of Lemma 6.5.
Let K be a set with KNI =0 and |K| = |F| — 1. Define a family
A* = (A¥:i€eKUI) by AF = (A\{x})UF is x€A4, and iE€],
A¥ = A; if xZA, and i€, and A* = F if i€K. It is now a
straightforward matter to verify that M is the transversal matroid
of the family A*.

THEOREM 6.7 (Edmonds and Fulkerson [10]). Ler G be a finite
graph with node set N and let X C N. Then the matching matroid
M (G, X) is a transversal matroid on X.

As already pointed out, it suffices to show M(G, N) is a
transversal matroid. To prove this we make use of Theorem 5.4
which describes the structure of the matchings in G of maximum
cardinality, say p. According to the theorem if N* is the set of all
nodes which meet every matching of cardinality p, that is the set
of isthmuses of M(G, N),} then the node sets N;(jEJ) of the
connected components of Gy,y. all have odd cardinality.
Moreover, if T C N\N* is the set of nodes which are joined to at
least one node in U,c,N;, then every matching in G which has
cardinality p contains }(|N;| — 1) edges in the graph Gy and an
edge joining each node of T to a node in U, ,4,. By Lemma 6.5,
we need only show My, . is a matroid. But according to the
preceding remarks, each basis of My, . (or of M) contains all but

+This matroid has rank 2p.
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at most one node in N;(jE€J). By repeated application of Lemma
6.6, we find that M* is a matroid on J where for K CJ, K is an
independent set of M* if and only if there is an independent set of
My \n+ Which contains N, for each j € K. Moreover, we know
from Lemma 6.6 that MN\ ~+ 18 a transversal matroid if M* is. Let

= (4, :t € T) be the family of subsets of J such that j € 4, if
and only if there is an edge of G joining ¢ and a node in N. Then
M* is the transversal matroid of . Hence M*, thus M, ., thus
M are all transversal matroids.

The preceding theorem shows that every matching matroid on a
finite set is a transversal matroid. More generally, finite-character
matching matroids are transversal matroids. It is also well known
that transversal matroids (or finite-character transversal matroids)
are linear matroids, that is, one can identify the elements with
vectors in a vector space so that the independent sets of the
matroids correspond exactly to the linearly independent sets of
vectors. To see this let M be the transversal matroid of the finite
family A = (4, : i € I) of subsets of the finite set E, and let B be
the matrix whereby each i € I (e € I) corresponds to a row (col-
umn) and a 1 is placed at the (i, e) position if e € 4; and a 0 is
placed otherwise. Let the number of 1’s in B be k and let
Z), ..., z, be algebraically independent elements over the rational
number field Q. Replace each 1 of 4 by one of z,, z,, ..., z, so
that all of them are used. A set of columns of the resulting matrix
B* is a linearly independent set over the field Q(z, ..., z,) of
rational functions in z,, . . ., z, with coefficients in Q if and only
if the corresponding members of E comprise a partial transversal
of A. One can carry this a bit further to realize M (%) in a linear
space over Q (or any sufficiently large field) by letting
q(zy, . . ., ;) be the polynomial with integral coefficients which is
the product of all non-zero determinants of square submatrices of
B*. There exist rational numbers ry, ..., r, such that
q(ry ..., n)# 0. If we replace z; by r,(1 < i < k) in B*, the
columns of the resulting matrix give a realization of M (%) in a
linear space over Q[23].

A good characterization of transversal matroids can be found in

(7}
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7. TRANSVERSAL THEORY AND MATROIDS

In the preceding section we have seen one way in which the
theory of matroids bears on transversal theory—the collection of
partial transversals of a family of sets is a matroid. This already
sheds some light on some problems in transversal theory. For
instance, consider the problem of finding a transversal of a finite
family % = (4, : i € I') of subsets of a set E which contains a
prescribed subset M of E. In order for such a transversal to exist,
it is first necessary that ¥ have a transversal and then it is
necessary that M be a partial transversal of %. But this already
suffices, for then the transversals of ¥ are the bases of the
transversal matroid M (¥) while the partial transversals of % are
the independent sets of M (¥). If M is a partial transversal of U, it
is an independent set of M (), thus can be enlarged to a basis of
M (¥), which is then a transversal of % containing M. If we now
invoke Theorems 1.1 and 1.4, we have proved the following
theorem of Hoffman and Kuhn [18]:

THEOREM 7.1. Let A = (A, : i € I) be a finite family of subsets
of a set E and let M C E. There is a transversal of % containing M
if and only if the following two conditions are satisfied:

U4l> 1kl &cD. (1)
iek

(UA,.)an+]I\K| >M| (KcI). Q)

iek

But the theory of matroids bears on transversal theory in
another significant way. This was first recognized by Rado [27]
who considered the following problem: Suppose A = (4, : i € I)
is a finite family of subsets of a set £ and M is a matroid on E.
When does o have a transversal T which is an independent set of
the matroid M? Rado answered this with the following theorem:
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THEOREM 7.2. Let A = (A, : i€I) be a finite family of subsets of
a set E and let M be a matroid on E with rank function p. Then U
has a transversal T with T € M if and only if

p( U A,.) > K| (KcI).

iek

Theorem 1.1 is the special case of Theorem 7.2 obtained by
taking M = ® (E), the collection of all subsets of E. The rank
function of ? (E) is just the ordinary cardinality function.

Formulated in the language of bipartite graphs, Theorem 1.2
becomes the following: We have a finite bipartite graph <X, A, Y)
and a matroid M on Y with rank function p. We seek a matching
A’ which matches X with a subset of ¥ which is an independent set
in M. Theorem 7.2 then can be shown to be equivalent to: The
matching A’ exists if and only if

1Z n X| +|p(Z n Y)| > |X]|

for all sets of nodes Z which separate X and Y. In this form the
theorem of Rado is unsymmetrical, for while we are given a
matroid on Y and want our matching A’ to take this into account,
we make no such assumption for X§. This non-symmetrical
character of Rado’s theorem is eliminated by the following
theorem:

THEOREM 7.3. Let {X, A, Y be a finite bipartite graph. Let M
be a matroid on X with rank function p' and M? a matroid on Y
with rank function p®. Let t be a non-negative integer. Then there
exists a matching A* of cardinality t which matches an independent
set of M with an independent set of M? if and only if

PN ZNX)+pX(ZNY) > ¢ (7.1)

for all separating sets Z. Thus the maximum cardinality of a

+Of course, we could say that we have the matroid 9 (X) on X.
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matching A* with these properties is
min{p(ZNX) + pX(ZNY) : Z a separating set}.
Condition (7.1) is equivalent to
p'(X\4) + p*(4%) >t (4CX),

where for 4 C X, A is the set of all nodes in Y which are joined
by an edge to at least one node in 4. The set (X \A4)U 4% is always
a separating set, so that what we are saying is that only this kind
of separating set need be considered.

We have purposely not proved the three preceding theorems, for
we want to prove a more general theorem of which they are
special cases. All three of the theorems do admit direct proofs.

Our generalization is motivated by the classical theorem of
Menger [22]. Let G be a finite directed graph and let X, Y be
disjoint subsets of the nodes of G. Menger’s theoremf asserts that
the maximum cardinality of a set of pairwise node disjoint paths from
X to Y equals the minimum cardinality of a set of nodes which
separates X from Y. In the directed graph in Figure 5, {z,, z,} is a
set of two nodes which separates X from Y, while one easily finds
two node disjoint paths from X to Y. Theorem 2.1 is a special case
of Menger’s theorem where to be precise we should think of the
edges of a bipartite graph (X, A, Y as all being directed from X
to?Y.

We want to impose matroid structures on X and Y and require
that the set of initial nodes of the paths and the set of terminal
nodes be independent sets in the respective matroids. We now
make this precise.

A finite directed graph has a finite set N of nodes along with a
set of edges which are ordered pairs (x, y) of distinct nodes. The
edge (x, ) is regarded as having initial node x and terminal node y.
By a path 8 in G we mean a linearly ordered sequence

tMenger formulated his theorem for undirected graphs. The generalization to
directed graphs is proved by Ford and Fulkerson [12] from their powerful max-
flow-min cut network theorem.
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*1 Y1
X2 y2
X3 ® 12 Y3
3
FiG. §

(xp, X3, . . ., x,) of n > 2 distinct nodes with (x;, x;,,,) an edge of
G (1 < i < n— 1). The initial node of 9, In 0, is x,; the terminal
node of 0, Ter@, is x,. The set of nodes of 6 is Nod @
= {xp, X3 ...,x,}. If ©® is a collection of paths, In ©
= {Infd:0 € O} while Ter ® = {Ter § : § € ©}. The paths in
are pairwise node disjoint provided (Nod 6,) N (Nod 84,) = 9 for ,,
0,€0, 0,0, If §=(x;,...,x,) and 7 =(x,,...,x,) are
paths with (Nod #) n (Nod 7) = {x,}, then f+7 is the path
(X35 -+« 5 Xy .« ., X,,,). Suppose now X and Y are disjoint subsets
of nodes. A path @ from X to Y is a path with .Inf§ € X,
Ter § € Y with no other node of # in X U Y. A set Z of nodes
separates X from Y provided (Nod ) N Z # & for each path 8
from X to Y.
The following theorem [4] generalizes Menger’s theorem:

THEOREM 7.4. Let G be a finite directed graph with X and Y
disjoint subsets of nodes. Let M be a matroid on X with rank
Sunction p' and M? a matroid on Y with rank function p2. Then the
maximum cardinality of a set © of pairwise node disjoint paths with
In @€ M and Ter © € M? equals

min{ u(Z) : Z separates X from Y},
where w(Z) = pNZNX) + pAZNY) + |Z\(X U Y).

We call u(Z) the index of the separating set, relative to M and
M2, Note that if M' = P (X), M2 = P (Y), the theorem reduces
to Menger’s theorem since then u(Z) = |Z|. We now prove
Theorem 7.4.
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Let ® be a collection of pairwise node disjoint paths with
In® € M! and Ter ® € M2, and let Z be a set of nodes which
separates X from Y. Set Z,=2Z N X, Z,=ZNnY, Z,=Z\
(Z, U Z,). Let O, (respectively, ©,) consist of those paths § € ©
with In @ € Z, (respectively, Ter § € Z,), and let ©, = O\ (0, U
©,). Since In® € M', In ®, € M" and thus |8,| < p'(Z,). Simi-
larly we find |®,] < p*(Z,). All paths in ®, must contain a node of
Z,, and since paths in © and thus ©, are pairwise node disjoint,
|©g] < |Z,|. Hence

18] < 184] + 185 + |8] < p'(Z)) + p*(Z) +|Zo] = p(Z).

To complete the proof, we let k be the minimum index of a set Z
of nodes which separates X from Y and show by induction on the
number of edges of G that there is a set ® of k pairwise node
disjoint paths with In ® € M ! and Ter ® € M2 If G has only one
edge this is readily verified. Otherwise we distinguish two cases.
We may assume that each node of X is the initial node of at least
one edge and each node of Y is the terminal node of at least one
edge. We may further assume that there is no edge with both
initial and terminal node in X (or in Y), and that {x}eM’,
{y}EM?for each xEX,y€Y.

Case 1. Every set Z of nodes which separates X from Y and
has index k satisfies Z C X or Z C Y. In this case, let (x, z) be an
edge of G with x € X (and thus z&Z X) and let G’ be the directed
graph obtained from G by the removal of the edge (x, z). Consider
the graph G, the sets X and Y of nodes, and the matroids M' on
X and M?on Y. If all sets W of nodes which separate X from Y in
G’ have index at least k, the conclusion of the theorem follows by
induction. Otherwise there is a set W of nodes which separates X
from Y in G’ which has index less than k. But then WU {x} is a
set which separates X from Y in G and clearly p(W U {x}) < k;
we must have equality and since x€X but x&Y, WU {x}CX.
Likewise, W U {z} separates X from Y in G and has index k. Since
zZX, WuU{z}CY. But XNY =0 so that W=#0, k=1, {x}

‘€M ! and {z} € M2 The path (x, z) satisfies the conclusion of the

theorem.
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CASE 2. There is a set Z of nodes separating X from Y in G
which has index k such that ZgX, ZgY. We then put Z,
=ZNX, Z,=2nY, Zy=Z\(Z,UZ,), X,=X\Z,, and 7Y,
= Y\Z,. Then Y, ##; for if Y, =0, then YCZ and Y is a
separating set with u(Y) < p(Z) = k, which is a contradiction.
Likewise, X| #8. We let G' be the graph consisting of the nodes
and edges of paths in G from X, to Z,U Z,. The graph G! has
fewer edges than G, since no edge with a terminal node in Y, can
be an edge of G'. Consider then the graph G, the disjoint sets of
nodes X, and Z, U Z, and the matroid (M')gy, on X, and the
matroid ¥ (Zy) @ (M?),} on Z, U Z,. Let the index function for
these circumstances be denoted by u!, and suppose there were a
set of nodes 4 of G' which separates X, from Z, U Z, in G! with
p'(4) < k — p!(Z,). The set A U Z, is then a set of nodes of G
which separates X from Y in G. For, let 8 be a path in G from X
to Y. If Ind € Z,, § contains a node of 4 U Z,. Otherwise
Ind € X,. If Ter8 € Z,, then § is a path in G' from X to
Zy U Z, and thus 6§ contains a node of A. If Ter § & Z,, then
(Nod 8) N Z, ##0 and an initial subsequence of @ is a path in G!
from X, to Z, U Z, so that @ contains a node of 4. Thus 4 U Z,
separates X from Y in G. We compute that

MAUZ) =p((ANXYUZ) + p*(ANTY) + [ANX U TY)|
= 0'(Z) + (AN X)) + pANX) + [A\(X U V)|

=p'(Z) + u(4) < k.

This is a contradiction. Hence p'(4) > k — p'(Z)) for all sets of
nodes 4 of G' which separate X, from ZyU Z, in G'. By induc-
tion, we conclude there is a set ©, of k — p(Z,) = pX(Z,) + | Z,|
pairwise node disjoint paths in G' from X, to Z,uZ, with
In ©,E(M")gy, and Ter O, € P (Zy) ® (M?),,. From cardinality
considerations we conclude that Ter ©, = Z,uU B, where B, is a
basis of (M?),..

1Thus 4 C Zy U Z, is independent in ¥ (Zy) @ (Mz)z2 if (AN 2Z)e M
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Let G2 be the graph consisting of the nodes and edges of paths
in G from Z,U Z, to Y,. An analogous argument produces a set
0, of k — pX(Z,) = p'(Z)) + |Z,| pairwise node disjoint paths in
G? from Z,UZ, to Y, with In®,e(M"); & @ (Zo) and
Ter 0, e(M )®y From cardinality considerations again, In O,
= B,UZ, where B, is a basis of (M ')Z The paths in ©, and G,
can have only the nodes in Z, in common, for otherwise the
separating property of Z, is violated. Let ©® be the set of paths
which is the union of the following three sets:

@) {6,:0,€0,, Terb,€2,}
(i) {6,:0,€0,,In0,€Z,} :
(iii) {8,%8,: 6,€0,,0,€0,, Ter §, = In 0,E Z,}.
Then O is a collection of k pairwise node disjoint paths with
In® = B,uln®,EM' and Ter ® = B,uTer ©,€ M2 The
theorem is proved.

If it is allowed that X N Y 0 and that the paths from X to Y
can contain nodes of X and Y other than the initial and terminal
nodes respectively, then the notion of a separating set of nodes
needs to be replaced by that of a separating triple. A triple of
nodes (Z,, Z,, Z,) where Z,C X, Z,C Y is a separating triple (for
X and Y) provided every path # from X to Y satisfies In§ €Z,,
Ter € Z, or Nod 8)N Z, #4 . If the index of a separating triple
(Z,, Zy, Z,) is defined to be p!(Z,) + pA(Z,) + |Z,|, then the
preceding theorem remains valid provided degenerate paths, paths
consisting of only one node, are permitted. To see that these
changes are needed, consider the graph G which has three nodes
Xp, X,, ¥ and edges (x,, x,), (x,, y). Let the matroid M' on X
= {x,, x,} have as its independent sets only # and {x,}, and let
the matroid M? on Y = {y} have as its independent sets & and
{»}. The set {x,} is then a separating set with index 0; on the
other hand the path 8 = (x,, x,, y) satisfies {In 8} €M, {Ter 8}
€ M2, Examples of separating friples of index 1 are ({x,}, 9,4),
@ (%), 0), and ({ x}, {x,}, B).

As has already been remarked, Theorems 7.2 and 7.3 are special
cases of Theorem 7.4. The curious reader will probably want to
take the proof of Theorem 7.4 and see how it simplifies for the
special situations of Theorems 7.2 and 7.3.
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We now show how Theorem 7.2 can be applied to obtain some
results in the transversal theory of two families of sets. Let
A =(4;:i€])and B = (B; : jJ€J) be two families of subsets of
E. A set T C E which is a transversal of both % and B is called a
common transversal of A and B. The following theorem of Ford
and Fulkerson [11] gives a criterion for the existence of a common
transversal of two finite families of sets. The method of proof is
due to Mirsky and Perfect [24].

THEOREM 7.5. Let A = (A4, :1 < i < n) and B=(B:1<j
< n) be two families of subsets of E. Then % and B have a common
transversal if and only if

S +-n  (LIC{l,..., n)).

(u)o(us)

To prove this theorem, we consider the transversal matroid
M (B). Then ¥ and B have a common transversal if and only if %
has a transversal T with T € M(%B). By Theorem 7.2 this is the case
if and only if

(Ua)>in et m) (12)

iel

where p is the rank function of M(®8). But using Corollary 1.3 we
find that for X CE,

p(X)=min[ (U Bj)ﬂX +n—|J| :J(;{l,...,n}].

jeJ

Thus (7.2) is equivalent to

(ys)(ys)

and the theorem is proved.

+n—|J| >  (LIC(l,...,n})
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There are many known refinements and generalizations of
Theorem 7.4 for both finite and infinite families:

(1) The maximum cardinality of a set which is a partial trans-
versal of two families A =(4,:1<i<m), B=(B;:1< j
< n) is given by

min{ (iLEJIA,.)n(jLEJJBj) +n—|I|l+m-|J|:

Ig{l,...,m},Jg{l,...,n}}.

(2) The families (4, : 1 < i < n), (B;: 1 < j < n) have a com-
mon transversal which contains a prescribed set M if and only if

(ga)ol )] +|((ga)o(2))o

>+ [+ M -n (IJC{L,...,n}).

BRI A=(4,:i€]) and B = (B; : jJEJ) are two families of
finite subsets of a set E such that each element of E belongs to
only finitely many members of % and of 8B, then % and B have a
common transversal if and only if

(Ya)n( Y, 5)

+

>|K|-|L] (Kccl, LcclJ)

(13)

( U Ai)n(UB,)|>|L|—|K| (Kccl, LccJ).

ieINK JEL

(7.4)
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Indeed (7.3) is equivalent to % having a transversal 7, which is a
partial transversal of B, while (7.4) is equivalent to B having a
transversal T, which is a partial transversal of %. From T, and T,
the desired common transversal can be constructed.

Even further generalizations are possible. For a very general
theorem about common transversals, see [3]. Of course Rado’s
theorem, Theorem 7.2, admits a generalization to infinite families
of finite sets, provided the matroid has finite character. The reader
who is interested in exploring the subject of transversal theory is
encouraged to consult the book Transversal Theory by Mirsky [23]
and the many references given therein.

But what of common transversals of three finite families of sets,
each with the same number of members. While the jump from one
family to two families was accomplished without an excessive
amount of difficulty, the jump from two families to three families
is another matter. At present there are no known conditions which
are both necessary and sufficient for three families to have a
common transversal. Since the common partial transversals of two
families of sets is rarely a matroid, one cannot use the method of
proof of Theorem 7.5. If one can pinpoint one reason why the
problem of a common transversal of three families of sets is so
much more difficult, it is this lack of a matroid structure. This
problem of finding a criterion for three finite families of sets to
have a common transversal is probably the most outstanding
problem in finite transversal theory today.
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ON THE SHORTEST ROUTE THROUGH
A NETWORK

George B. Dantzig

The purpose of this paper is to give an efficient procedure for
obtaining the shortest route from a given origin to all other nodes
in a network or to a particular destination point. The method can
be interpreted as a slight refinement of those reported by Bellman,
Moore, Ford, and the author in [1], [2], [3], [4], and those proposed
by Gale and Fulkerson in informal conversations. It is similar to
Moore’s method of fanning out from the origin. However, its
special feature (which is believed to be new) is that the fanning out
is done one point at a time and the distance assigned is final.

It is assumed (a) that one can write down without effort for each
node the arcs leading to other nodes in increasing order of length
and (b) that it is no effort to ignore an arc of the list if it leads to a
node that has been reached earlier. It will be shown that no more
than n(n — 1)/2 comparisons are needed in an n node network to
determine the shortest routes from a given origin to all other nodes
and less than half this number for a shortest route to a particular
node. The basic idea is as follows:

Suppose at some stage k in the computing process the shortest
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FiG. 1

distances to k of the nodes from some origin are known as well as
the paths. Call the set of these points S. ‘

(1) Let P; be one of the nodes in S,

(2) let §; be its least distance to the origin @,

(3) let O; be the nearest node to P, not in S,

(4) let d; be the distance from P; to Q. Choose as the k + 1
point, Q,, where s satisfies

8, +d =Min(§;+d) j=12,...,k

The minimum distance of Q, to the origin is §, + 4, and the best
path to the origin is via P,. The reason is obvious, for if the best
path from Q, were via some other j in S or via several other points
not in § and then via some other j in S, then the distance is at
least §; + d; > &, + d,. In case of ties for minimum, several such
nodes Q, could be determined at the same time and the process
made more efficient.

It will be noted that the minimum requires only k comparisons
for a decision as to the (k + 1) st point. Hence in an n node
network no more than

142+ :---+(n—1D)=n(n-1)/2

comparisons are needed.

In practice, the number of comparisons can be considerably less
than this bound because after several stages one or more of the
nodes in S have only arcs leading to points in S (in the 8 node
example below only a total of 16 comparisons was needed instead
of 28 comparisons).

If the problem is to determine only the shortest path from a -
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given origin to a given terminal, the number of comparisons may
often be reduced by fanning out from both the origin and the
terminal simultaneously—adding alternatively one point at a time
to sets .S about the origin and S’ about the terminal.

Once the shortest distance from a node to origin is evaluated,
the node is conceptually connected directly to the origin by a
hypothetical arc with the specified shortest distance and discon-
nected from all arcs leading to other nodes evaluated earlier.
Nodes whose shortest distance to the terminal which have been
determined are similarly treated. Once the origin is reached by
either fanning system, the process terminates.

Example.

Distances on links of the network are as indicated in Figure 2.
Arrange the nodes in ascending order by distances to a given
node:

©) (A) (B) ©
OA-1 AB-3 BC-2 CB-2
OB-2 AC-3 BA-3 CD-2
AD-3 BG-4 CA-3

CG-3

CE-3

(D) (E) (F) )
DC-2 EF-1 FE-1 GF-1
DA-3 EC-3 FG-1 GC-3
DE-3 ED-3 GB-4

Step 1. Choose path OA; place its distance 1 above A column,
delete all arcs into A.

Step 2. Compare OB-2 and AB-(3 + 1) and choose path OB: place
its distance 2 above B column, delete all arcs into B.

Step 3. Compare AC-(3 + 1), AD-(3 + 1), BC-(2 + 2), and be-
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cause of ties choose paths AC (or BC) and AD; place
distance 4 above C and D columns, delete all arcs into C
and D.

Step 4. Compare BG-(4 + 2), CG-(3 + 4), DE-(3 + 4) and choose
path BG, place its distance 6 above G column, delete all
arcs into G.

Step 5. Compare CE-(3 + 4), DE-(3 + 4), GF-(1 + 6) and choose
path (CE or DE) and GF; place distance 7 above E and F
columns, delete all arcs into E and F.

Because of ties, many of the steps were carried on simultaneously.

The shortest paths from the origin to other nodes are along
paths OA, OB, AC, AD, BG, CE, GF, with alternative BC for AC
and DE for CE.
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ELECTRICAL NETWORK MODELS!

R. J. Duffin

INTRODUCTION

The history of science shows that the development of mathema-
tics has been accelerated by the use of models. Thus geometric
diagrams have served as models for algebraic relations. Gambling
has served as a model for probability theory. Gravitation has
served as a model for harmonic functions. Such models have
accelerated mathematical development for three main reasons: (i)
Attention is focused on significant problems. (ii) Models aid the
intuition in perceiving complex relations. (iii) New concepts are
suggested.

Since the days of Ohm and Kirchhoff, the study of electrical
networks has stimulated developments in practically every branch
of mathematics. For example, network models have contributed to

'Prepared under Research Grant DA-AROD-31-124-71-G17, Army Research
Office, Durham, North Carolina. This is an extension of the paper, “Network -
models,” SIAM-AMS Proc. 3 (1971), 65-91.
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topology, nonlinear differential equations, function theory,
boolean algebra, and information theory.

Networks are still an abundant source of mathematical prob-
lems. This paper describes several such problems which have
interested me. These problems are varied but will involve the
steady flow of electrical current through a network of resistors
obeying Ohm’s law. This is the classical Kirchhoff network and of
main concern here will be the joint resistance of such a network.

1. THE FOUR COLOR PROBLEM

One of the first network models which attracted my interest was
an electrical correspondence of map coloration. This can be il-
lustrated by the simple map shown in Figure 1 consisting of a
triangular region surrounded by three quadrilateral regions. This
map is colored by four “colors,” I, II, III, and IV. This coloration
has been chosen so that the color IV does not appear on the
boundary regions.

@
]

F1G. 1. A map coloration.

If a region has the color number X, let a cyclic current of X
amperes flow clockwise around the boundary of the region. Thus
IV amperes flows around the boundary of the triangle. Now
superimpose all of these cyclic flows. The strength of the resultant
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flow in the boundary edges is given in arabic numerals, and the
direction is indicated by arrows. Thus one edge of the triangle
separates regions colored IV and I, so the strength of the current
through this edge is IV — I = 3 amperes. Clearly, then, the edge
currents have strengths 1, 2, or 3. Moreover, the total current flow
satisfies Kirchhoff’s current conservation law. This comes about
because the total current flow is a superposition of cyclic flows.

Now consider an arbitrary map colored in four colors, I, II, III,
and IV, such that IV does not appear on the boundary. Then by
the same procedure given in the above example, it is seen that
there is a conservative flow in the edges such that the current
strength in each edge is 1, 2, or 3 amperes.

Conversely, suppose that there is a conservative flow through
the edges of a map such that the current strength in each edge is 1,
2, or 3 amperes. Now it is an elementary theorem of network
theory that any conservative flow can be achieved by a superposi-
tion of cyclic currents flowing clockwise around the edges of the
regions. Then the boundary regions have cyclic values +1, *+2,
=+ 3 because the cyclic current must be equal to the boundary edge
current. Next, observe that neighboring regions must have cyclic
currents differing by an integer. Thus by moving from region to
region it is seen that all cyclic currents are integer-valued.

Next, reduce the cyclic currents mod 4. Then we obtain a
coloration of the map in colors I, II, III, and IV. Since the edge
currents are not congruent to zero mod 4, it follows that adjacent
regions have different color. Moreover, the boundary regions are
not colored 1V. This proves the following theorem:

A planar map can be colored in four colors if and only if there is a
conservative flow through the edge network such that the current
through an edge has strength 1, 2, or 3 amperes.

To extend these ideas to networks which are not planar, I made
the following conjecture: consider a network such that every
branch (edge) is on some circuit. Then there is a conservative flow
such that the current through a branch has strength 1, 2, 3, or 4
amperes. Similar ideas were independently developed by W. T.
Tutte.
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F1G. 2. A simple circuit.

2. SERIES-PARALLEL NETWORKS

Shown in Figure 2 is a simple circuit containing a battery of
voltage E and a resistor of resistance R ohms. Then the current 7
flowing in the circuit is determined by the relation

E/I=R >0. (1)
This is Ohm’s law.

Shown in Figure 3 are two resistors connected in series. One
resistor has resistance A ohms and the other has resistance B
ohms. Then the joint resistance R between terminals 1 and 2 is
given by the formula

R=A4+ B. 2)

2 Fic. 3. Resistors in series.
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On the other hand, the two resistors could be connected in parallel

as shown in Figure 4. Conductance is the reciprocal of resistance

and conductances add in the parallel connection so
R'=4"'+B"\

Solving for R gives

R=AB/(4 + B) )

and this is the formula for the joint resistance R of two resistors in
parallel.

A§ 3B

2 o F1G. 4. Resistors in parallel.

To have a convenient short notation for the joint resistance of
resistors connected in parallel let

A:B=AB/(A + B). )

Then A4 : B may be regarded as a new operation termed parallel
addition [17]. Parallel addition is defined for any nonnegative
numbers. The network model shows that parallel addition is
commutative and associative. Moreover, multiplication is distrib-
utive over this operation.

Consider now an algebraic expression in the operations (+) and
( : ) operating on positive numbers 4, B, C, etc. An example is

R=A+B:(C+ D:E). )

To give a network interpretation of such a polynomial, read
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A + B as “A series B” and 4 : B as “A parallel B”; then it is
clear that the expression (5) is the joint resistance of the network
shown in Figure 5. Networks obtained from such polynomials are
termed series-parallel connections.

2 o

F1G. 5. A series-parallel connection.

Not every network is a series-parallel connection. In particular,
it can be checked that the Wheatstone bridge connection of Figure
6 is not a series-parallel connection. In fact, it follows from an
analysis given in [12] that a network is a series-parallel connection
if and only if there is no embedded network having the Wheat-
stone bridge configuration. Another simple characterization of
series-parallel connection has been given by Riordan and Shannon
[23].

¢

| o—

Fi1G. 6. The Wheatstone bridge con-
2 o— nection.
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According to a principle stated by Rayleigh [22] the current flow
through a network may be described as taking the paths of least
resistance. Alfred Lehman [18] used Rayleigh’s principle to derive
an interesting inequality termed the series-parallel inequality. He
considered a network such as that shown in Figure 7. Then the
joint resistance when the switch S is open is

R,=(4+ B):(C+ D).

B D§

2 o- FiG. 7. Lehman’s connection.

On the other hand, when the switch S is closed the joint resistance
is

Ry=A:C+ B:D.

But the current takes the paths of least resistance and there is less
constraint with the switch closed so

A:C+B:D<(A+ B):(C+ D). ©6)

This is the series-parallel inequality and in ordinary algebra it is
expressed as
AC BD _(4+ B)C+ D)

A+CTB+DA¥B+C+D "

It is worth noting that Lehman’s connection corresponds to
replacing the resistor E in the Wheatstone bridge connection with
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a switch. Let R, denote the joint resistance of Wheatstone’s
bridge. Then the following is a generalization of Lehman’s inequal-

ty:

This also is a consequence of Rayleigh’s principle. The inequality
on the right side of (7) is obtained by putting the resistor E in
series with the switch. The inequality on the left is obtained by
putting the resistor E in parallel with the switch.

3. THE PARALLEL ADDITION OF MATRICES

The various relationships just described become more interest-
ing and suggestive when the scalar formulation of Ohm’s law is
replaced by a vector formulation. For example, Figure 8 depicts a
resistor box with two pairs of terminals. The first pair is in circuit
1, denoted by a solid line, and the second pair is in circuit 2,
denoted by a dashed line. Then the currents and voltages in these
circuits satisfy equations of the form

E; = Ryl + Ry, E, = Ryl, + Ryl (8a)
In vector form, these equations can be written as
E = RI (8b)

If the box just contains interconnected resistors, then it results that
R is a symmetric matrix. Moreover, by the conservation of energy
it follows that R is positive semidefinite. Therefore, in what
follows, an arbitrary symmetric positive semidefinite matrix R
shall be termed a resistance matrix. For an appropriate generaliza-
tion where R is not symmetric, see [13].

Resistance boxes may be added in series as is shown on the left
side of Figure 9. If 4 and B are the resistance matrices of the two
boxes, then the joint resistance matrix R is given by

R=A4 + B. ®
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==

' AI
I ]

! [\) ¢'> : 2
-
EI— R Ed Ez
]
? 9 !
L
| I | Fi1G. 8. A resistor box.

In other words, series connection of resistance boxes corresponds
to addition of their matrices. (This assumes that the current I, in
the first circuit of box A4 is the same as the current in the first
circuit of box B. This can be achieved by use of isolation trans-
formers.) The right side of Figure 9 gives an abbreviated symbol-
ism for the series addition of resistor boxes.

Note that any current vector I can be the input to a resistor box.

I| * %Iz + I
& o |
A A
(] Q (-]
Ly i’ | P Y1
R $
B B
1
!

«4-0

I F1G. 9. Series addition of resistor boxes.
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However, not every voltage vector E can be an output if R is a
singular matrix. In any case, the following well-known theorem
relates the range spaces of semidefinite matrices:

Range(4 + B) = Range A + Range B. (10)

It is equally possible to connect the resistor boxes in parallel as
shown on the left side of Figure 10. The right side gives the
symbolic diagram. First, suppose 4 and B are nonsingular, then

R'=4"'+B7"!

where R is the joint resistance matrix of the parallel connection.
Solving for R gives

R=A(4 + B) 'B. (11)

Again it is convenient to have a short notation for the operation
on the right side of (11), so let

A:B=A(4+B) 'B (12)

define parallel addition of matrices A and B. Various properties of

I,* ilz +I

:'"i"".

s o -] 6 o o
A B A B
] l9_¢ S %
il

JHTL T

F1G6. 10. Parallel connection of resistor boxes.
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this new operation were developed in a joint paper with William
N. Anderson [2). Some of these properties will now be described.
Other developments of parallel addition are given in [26], [37] and
[39].

First, note that relation (10) shows that Range (4 + B)
D Range B for semidefinite matrices. Hence (4 + B)~'B is then
well defined. This shows that the operation 4 : B is defined for
any pair of positive semidefinite matrices.

By virtue of the network model, we expect that the parallel sum
is both commutative and associative. A direct proof of commuta-
tivity follows from the following manipulations:

A:B=(A+B-B)A+B) 'B=B-B(4+B) B,

B:4=B(A4+B) '4+B—-B)=B-B(4+B) B
This proves that

A:B=B(4+ B) 4. (13)

It is obvious from relation (12) that Range (4:B) C Range 4.
Likewise, relation (13) shows that Range (4:B) C Range B.
Further analysis gives that actually

Range (4 : B) = Range A N Range B. (14)

Relations (10) and (14) reveal a remarkable duality between series
addition and parallel addition of matrices.

To give an application of the above duality principle the net-
works shown in Figure 11a are now analyzed. Clearly, the joint
resistance matrix of the first network is

Ri=(A+B):(B+C):(C+ A).

If a, B, and y are the range spaces of A, B, and C respectively, it
follows from (10) and (14) that

Range R, = (a + B)N(B + Y)N(y + a).
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] ] |

P lalls]|]c ‘ A B

R, |

l B C AR |cC C

] [ =
A B

|
FiG. 1la. Matrices with the same range.

On the other hand, the joint resistance matrix of the second
network is

R,=A:(B+C)+B:(4+C().

Therefore, the range of this matrix is Range R, = an (8 + v) +
BN(y + a). The subspaces of a vector space form a modular
lattice. There are various identities which hold on a modular

lattice. In particular,
(a+BNB+NNEF+a)=an(B+7)+BN(a+y)
(15)
as is shown by Birkhoff [3]. This proves
Range R, = Range R,. (16)

The reader will see that there are various analogous procedures for
constructing networks with the same range.

The parallel sum operation is found to satisfy various inequali-
ties. Thus the norm, trace, and determinant satisfy the following
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inequalities:
4 : Bl < ||4]| : | B, 17)
tr(4 : B) <(tr 4) : (tr B), (18}
det(4 : B) < (det A4) : (det B). (19)

Here the notation (:) on the right side of these inequalities
denotes the scalar parallel operation. These inequalities give
further manifestations of the duality between series and parallel
addition.

The network connections used by Lehman to obtain the series-
parallel inequality can be extended to resistor boxes. It is then
found that

A:C+B:D<(4+B):(C+ D) (20)

for positive semidefinite matrices 4, B, C, and D. Here 4 < B
means that B — 4 is positive semidefinite.

The scalar inequality (7) refers to the Wheatstone bridge and is
a generalization of the series-parallel inequality. Presumably (7)
can be extended to matrices; however, this is an open question.

Another type of connection of resistor boxes is termed the
hybrid connection. In the hybrid connection some circuits are put
in series and some are put in parallel. Such a connection is shown
in Figure 11b. By use of the hybrid connection an elegant solution
of the network synthesis problem was found [25].

llv ¥ |2
‘ M adatatd

L13¢] 1 [3138
A [4] B
724¢f

[

K

'
l 2 Fic. 11b. Hybrid connection of resistor boxes.
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The joint resistance matrix R of the hybrid connection may be
termed hybrid addition of matrices 4 and B. Some recent studies
by George Trapp and the writer have revealed several properties
of hybrid addition. In particular, the series-parallel inequality (20)
is valid if 4 : B now denotes hybrid addition of 4 and B [34].

4, THE BOTT-DUFFIN DUALITY ANALYSIS

It has long been known that many theorems about electrical
networks have companion theorems obtained by interchanging
current and voltage variables and replacing resistance by conduct-
ance. A theory of this electrical duality was developed in col-
laboration with Raoul Bott [4]. To explain this approach it suffices
to consider a simple directed network such as shown in Figure 12.
This network has six branches, so let I,, I, . . . , I be the currents
flowing in the directed branches. Then Kirchhoff’s current law
states that the total current entering a node vanishes. For example,
at the node where branches (1, 2, 3) meet

I,-1,- I, =0,etc. 1)

Fi1G. 12. A directed network.

Let V,, V5, ..., Vg be voltage drops across the branches. Kirch-
hoff’s voltage law states that the voltage sum around any circuit
vanishes. For example, branches (1, 2, 4) form a circuit so

Vi+ Vo + Vy=0,etc. (22)
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It was observed by Herman Weyl [24] that the two laws of
Kirchhoff cause current and voltage to be orthogonal, i.e.

6
_ElzjVj =0. (23)
<

This holds for any current flow I satisfying Kirchhoff’s first law
and any voltage ¥V satisfying Kirchhoff’s second law. For an
application of (23) see [8].

Weyl’s theorem (23) was the inspiration for our general duality
analysis, but we changed (23) from a theorem to a postulate. Thus
consider a six-dimensional Euclidean space E. Let K be the
subspace of E corresponding to vectors V = (V,, V,, ..., Vy
which satisfy Kirchhoff’s voltage law. Then let P be the perpen-
dicular projection operator from E into K. Thus P is a symmetric
matrix such that P2= P. Let P'=1— P, then P’ is also a
perpendicular projection matrix and PP’ = 0. Moreover, P’ pro-
jects E into K’, the orthogonal complementary subspace of K. By
Weyl’s theorem, it follows that K’ is the space corresponding to

vectors satisfying Kirchhoff’s current law.
To relate the perpendicular projection matrix P to electrical

properties, let G be a diagonal matrix whose diagonal elements

g1 8 - - - » 8¢ are positive numbers giving the conductances of the
six branches. Then the discriminant D is defined as
D = det(GP + P’). (24a)
Thus D is a multilinear form in g;, . . ., g¢:
D=g &g+ - +8&&ss (24b)

Each term of D is a product of branches which form a tree of the
network.
The transfer matrix T is defined as

T=P(GP+ P)" . (25)

This matrix has the following physical significance: suppose that a
current source of strength 7 is inserted in branch 6. Then the
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voltage across branch 2 is ¥, = T,¢l. In fact all electrical properties
of the network are given by the transfer matrix T.
Electrical duality comes about by defining G’ to be a diagonal

matrix whose diagonal elements g}, g5, . . . , 8 are the resistances
of the branches. Then the dual discriminant is defined as
D’ = det(G'P’ + P). (26a)
Thus D’ has the form
D’ =gygige+ - - + 8188 (26b)

Each term of D’ is a product of branches whose complement is a
tree. The dual transfer matrix is

T = P(G'P'+ P)"\. 27

This matrix has the following physical significance: suppose that a
battery of voltage E is inserted in branch 6, then the current in
branch 2 is I, = Ty E.

We term the correspondence between primed and unprimed
symbols electrical duality. Moreover, there are various relations
between the primal and dual symbols. For example,

G'T +TG=1. (28)

A beautiful algebraic structure develops from the above con-
cepts. Moreover, two far-reaching generalizations are feasible: (i)
P can be chosen to be an arbitrary perpendicular projection
matrix. (i) G can be taken to be an arbitrary matrix. In this
generalization, 7 is termed the constrained inverse of G. The
constrained inverse exists if and only if the discriminant D # 0.
These generalizations also have electrical and mechanical in-
terpretations. See also [36] and [39].

5. HOW TO USE THE WANG ALGEBRA

K. T. Wang managed an electrical power plant and in his spare
time he sought simple rules for solving the network equations.
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These rules appear to have a connection with the Bott-Duffin
analysis. To make this connection, Bott and I restated his rules as
three postulates for an algebra:

Xy = yx, 6]
x+x=0, (ii)
xx = 0. (iif)

Here x and y are arbitrary elements of the algebra [5], [10].

To see how to apply the Wang algebra, consider the network
shown in Figure 13. Let the branch conductances a, b, c, d, and e
be regarded as independent generators of the Wang algebra. A
star element of the algebra is defined to be the sum of branches
meeting at a node. Thus the star element at node 3 is (@ + b + ¢).
To find the discriminant, the rule is to carry out the Wang product
of all stars except one. Then omitting the star at node 2 gives

D=a(a+b+c)d+e+c)=(ab+ac)d+e+c)

FiG. 13.

Thus the discriminant of the network is

D = abd + abe + acd + ace + abc. (29)
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It can be readily checked that the terms of (29) give all the trees of
the network of Figure 13.

To find the joint resistance R between nodes 1 and 2, the rule is
to write R as a fraction. The denominator of the fraction is the
discriminant D and the numerator N is the product of all stars
except those at 1 and 2. Thus

R_E_ad+ae+bd+be+cd+ce+ac+bc (30)
- D abd + abe + acd + ace + abc )

There are also simple rules for calculating the transfer matrices T
and T".

The network shown in Figure 13 is a series-parallel connection;
in fact, it is the same connection as is shown in Figure 5. Thus the
joint resistance R could also be calculated by the series-parallel
formula (5). However, the Wang rules apply even if the network is
not of series-parallel type.

A proof of the Wang rules was made by first observing that the
Wang algebra is the Grassmann algebra when the coefficient field
is the integers mod 2. However, the Grassmann algebra gave a
more general system of calculation and one which could be
directly related to the Bott-Duffin analysis.

For example, let the symbols a, b, ¢, and d now be regarded as
independent vectors of a real vector space E,. Then the vectors
(a+ d), (a+ b+ c), (d+ ¢ — a) form a basis of a subspace S
but they are not stars (or circuits) of any network. The Grassmann
algebra consists of the vectors of E, together with outer products
formed by the law xy = —yx for any two vectors x and y. Then
the outer product 7 associated with S is ‘

a=(a+d)a+b+c)d+c—a)
= abd + acd + abc + dac + dbc — dba — dca
2abd + 3acd + abc + dbc.

Then according to the Bott-Duffin rule the coefficients of the
discriminant are the square of the coefficients of the outer prod-
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uct; thus
D = 4abd + 9acd + abc + dbc.

Now a, b, ¢, and d denote real numbers.

6. WHAT IS A REGULAR MATROID?

There are ideal electrical networks which do not obey Kirch-
hoff’s law. For example, Figure 14 shows a double triangle net-
work linked with a magnetic ring of zero magnetic resistance.
Then by Ampere’s law, no electric current may link the ring, This
imposes a constraint in addition to Kirchhoff’s current law. Nev-
ertheless, the Bott-Duffin analysis applies without change. More
remarkable is the fact that the Wang algebra also works. For
example, the dual discriminant is given by the Wang product
D’ = afy where a, B, and vy are the three square circuits indicated
in Figure 14.

Fi1G. 14. A linked network.

This raises the following question: what characterizes subspaces
such that the discriminant can be calculated by Wang’s short cut
method? Let us term such subspaces quasi-Kirchhoffian. Then an
answer to the question is given by the following statement which
Bott and I proved in 1951 [S], [10]:
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QK THEOREM. Let S be an m-dimensional subspace of n-
dimensional real vector space E,. Let C be the set of those vectors of
S whose components are +1, —1, or 0. Then S is quasi- Kirchhoffian
if and only if C is an m-dimensional vector space under addition
mod 2.

To understand the application of this theorem, first suppose that
S is the subspace defined by Kirchhoff’s current law. Then C is
taken to be the set of current flows of unit strength. Thus a vector
C, of C is composed of one or more non-overlapping circuits.
Moreover, it is an easy exercise in graph theory to show that then
S satisfies the QK theorem.

The proof of the QK theorem in the general case proceeds by
treating C as a matrix of column vectors and showing that it is
totally unimodular. A matrix is totally unimodular if each minor
determinant has the value 1, —1, or 0. The concept of total
unimodularity plays an important role in integer linear program-
ming [40]. Thus Wang algebra and integer linear programming are
seen to be related.

Wang algebra leads directly to a generalization of graph theory.
To see this, term the vectors of C quasi-circuits. Then the QK
theorem has the following easy corollary:

QK COROLLARY: Let C, be a quasi-circuit whose first and second
components do not vanish. Let C, be a quasi-circuit whose first
component does not vanish but whose second component does vanish.
Then there is a quasi-circuit C5 whose first component vanishes but
whose second component does not vanish. Moreover, if the i-th
components of C; and C, vanish, then the i-th component of Cy must
vanish.

The QK corollary is obviously true if C, and C, are circuits of a
graph. In fact, it is this property which Whitney used as a
postulate to characterize a matroid [41].

Further analysis reveals that the QK theorem is a necessary and
sufficient characterization of the so-called regular matroids studied
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by Tutte [42]. An elegant analysis of the relation of regular
matroids to network theory is given by Minty [20].

7. SQUARING THE SQUARE

Is it possible to divide a square into squares no two of which are
equal? This puzzle resisted attack for years but fell before a
massive assault by Brooks, Smith, Stone, and Tutte. Making use of
an electric network model, these authors developed an example in
which a square was divided into 26 smaller squares [6]. The
minimum number is not known.

The network they employed may be described as a lumped
network equivalent to a distributed network. To understand this
correspondence, consider a situation when a rectangle is divided
into smaller rectangles such as shown in Figure 15. Suppose that
the rectangle is constructed out of a thin conducting plate such
that a unit square has a resistance of one ohm between opposite
sides. Since resistance is proportional to length and inversely
proportional to width, it follows that a square of any size has
resistance of one ohm. Thus if E is the height of the rectangle and
I its width, then the resistance from top to bottomis R = E/1I.

r |
: A '
1 |
S e
: 1Ec C ]
[ 'y K
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' v D ' E
I ' | !
! : P

Fig. 15. A rectangular network,
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The streamlines of current flow in the rectangle are vertical
lines. Thus, the flow will not be changed if cuts are made along the
vertical dashed lines separating the rectangles marked B, C, D, E.
The equipotentials are horizontal lines. Thus the flow would not
be changed if perfectly conducting bus bars are placed along the
solid lines forming upper and lower sides of the rectangles. By
virtue of these observations the plate may be regarded as a lumped
network having lumped resistors of value 4, B, C, D, and E ohms.
These resistances are determined by the dimensions. Thus if I is
the width and E is the height of the rectangle marked C, then
C = E./I etc.

Clearly the lumped network is the same as the series parallel
connection shown in Figure 5. Thus the resistance of the plate is

R=A+B:(C+D:E) (31)

because the cuts and bus bars do not change resistance. This
example of a rectangular network suggests the following conjec-
ture:

Every series-parallel connection has an equivalent division of a
rectangle into rectangles.

8. RAYLEIGH’S RECIPROCAL RELATION

Again consider a conducting plate having resistance of 1 ohm
between opposite sides of a unit square. Figure 16 shows a
curvilinear quadrilateral plate with sides 1, 2, 3, and 4. The sides 3
and 4 are insulated but sides 1 and 2 are connected to perfectly
conducting bus bars (denoted by heavy lines). Let R, be the joint
resistance between sides 1 and 2. Next, let sides 1 and 2 be
insulated and let bus bars be connected to sides 3 and 4. If R,, is
the joint resistance in this dual situation, then

Ry,Rs = 1. (32)

This is Rayleigh’s reciprocal relation [21].
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Fic. 16. A curvilinear quadrilateral.

To prove (32) draw the equipotential lines and the streamlines.
Since the potential u(x, y) is harmonic, the streamlines are the
equipotential lines of the conjugate harmonic function o(x, y). It
follows from the Cauchy-Riemann equations that the two sets of
equipotentials are orthogonal and divide the region into cur-
vilinear squares such as is shown in Figure 17. This breaks the
flow up into channels. One of these channels is denoted by
crosshatching in Figure 17. This channel is a series of 7 squares so
the total resistance is 7 ohms. It is seen that there are 4 channels in
parallel so this gives R,, = 7/4 ohms. Now consider the conjugate
problem; then Figure 17 again applies, but the equipotentials and
streamlines interchange roles. Thus a channel from side 3 to side 4
is a series of 4 squares and so the channel resistance is 4 ohms.
There are 7 channels so the total resistance is Ry, = 4/7 ohms.
This is the proof of (32) given by Rayleigh.

A surprising consequence of the Rayleigh relation arises when
the quadrilateral region has bilateral symmetry as in Figure 18. By
symmetry R,;, = R,,. Hence by Rayleigh’s reciprocal relation
R,; = 1 ohm.

These considerations raise the question of a lumped network
analog of Rayleigh’s reciprocal relation [9], [11]. To answer this
question consider Figure 19. A planar network is shown in solid
lines with two distinguished nodes, 1 and 2. Another planar
network is shown in dashed lines, and it has two distinguished
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2 FiG. 17. Conjugate functions.

| Fi1G. 18. Self-dual conductor.

nodes, 3 and 4. These networks are termed dual because of the
following properties: (i) Crossing branches give a one-to-one cor-
respondence between the networks. (ii) A region of one of the
networks contains one and only one of the nodes of the other
network. (iii) The distinguished nodes are on the boundary and are
not in a region. (iv) If branches cross, the resistances r and r* are
required to satisfy

mr* =1 (33)
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F1G. 19. Dual networks.

Under these hypotheses it follows that the reciprocal relation (32)
holds for the joint resistance of the two networks.

A proof of (32) can be given by noting that Kirchhoff’s current
law for the primal network defines the same constraint as Kirch-
hoff’s voltage law for the dual network. It follows immediately
from the Bott-Duffin analysis that the resistance of the primal
network is equal to the conductance of the dual network.

9. UPPER BOUND AND LOWER BOUND NETWORKS

The potential u(x, y) of a conducting plate satisfies Laplace’s
equation

3% /3x% + 3%/ /2 = 0.

To solve potential problems on a computer, Laplace’s equation is
approximated by the difference equation

u(x,y) = [u(x + h,y) + u(x — h,y)
+u(x,y + h) + u(x,y — h)]/4. (34)
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Physically, this corresponds to replacing the conducting plate by a
wire screen having square meshes of side h. Then Equation (34)
states that the potential at a node is the mean of the potentials at
the four neighboring nodes. This is clearly a consequence of the
laws of Ohm and Kirchhoff.

It is important to know the nature of the error in replacing the
plate by the wire screen. As an approach to this problem, consider
the rectangular plate shown in Figure 20. The plate is 4 cms. high
and 3 cms. wide so the resistance between the top edge and
bottom edge is 4/3 ohms. This suggests that the screen wire
should have a resistance of one ohm per centimeter. First suppose
that the screen is placed as shown by the dashed lines. Then the
horizontal wires carry no current but the current flows through
three vertical wires, each having a resistance of 4. The total
resistance is 4/3 ohms so there is no error in using the dashed
network. Next consider the network indicated by solid lines. Now
there are 4 vertical wires and this poses a problem. However, if it
is supposed that the wires on the boundary have resistance of 2
ohms per cm., then the correct joint resistance of 4/3 ohms is
again obtained.
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Fi1G. 20. Plate and screen.

Next consider an arbitrary region made up of squares. Such a
plate is shown in Figure 21. Let R be the joint resistance from
edge 1 to edge 2 when the other edges are insulated. Two screen
networks are shown in Figure 21. The resistance of the square
sides are to be 1 ohm inside and 2 ohms on the boundary. We
term the solid lines the upper network. Let R* be the joint
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resistance of the upper network between edges 1 and 2. We term
the dashed lines the Jower network. Let R be the joint resistance
of the lower network. Then the following inequality maintains:

R*< R < RL. (35)

Thus the upper network furnishes an upper bound to the conduct-
ance and the lower network furnishes a lower bound to conduct-
ance [9].

|
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' ] ' i ]
":"r{ b I Rl i R
L L 1 1
2 ' FiG. 21. An L-shaped plate.

The proof of (35) is obtained as a special case of a more general
theorem in which a polygonal region is triangulated in an arbitrary
fashion. Thus consider the polygonal plate shown in Figure 22.
The triangulation of this polygon is denoted by solid lines. The
solid lines are termed the upper network. An interior line p of this
network is given resistance

r=2/(cot a + cot 8) (36)

where a and 8 are the angles opposite the line p as shown in
Figure 22. If p is a boundary line, then the term cot a would be
omitted in this formula.

Let u(x, y) be the potential function for the plate problem. Let
w(x, y) be a function which is linear in each triangle but which is
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|
]
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continuous over the plate region. Then by Dirichlet’s principle

JI[ (5w [ (575 s

provided u =w on both boundary segment 1 and boundary
segment 2. Then by making certain transformations, this inequal-
ity is found to be equivalent to

1/Ry; < 1/Rjy 37

Fi1G. 22. A polygonal plate.

where R, is the joint resistance of the plate and where R} is the
joint resistance of the upper network. Thus the upper network
furnishes an upper bound to conductance.

To obtain a lower bound for conductance we may use Rayleigh’s
reciprocal relation R;, = 1/R;,. Here 3 and 4 denote boundary
segments complementary to segments 1 and 2. But by formula (37)
it follows that 1/R,, < 1/R3;. Thus

Ry < Ry, < 1/RY (38)

gives upper and lower bounds to R,,.
The lower network is defined to be the dual of the upper
network. The lower network is shown by dashed lines in Figure 22.
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The resistance of a dashed branch is the reciprocal of the resist-
ance of a branch it crosses. It follows that the joint resistance R}
of the lower network satisfies the reciprocal relation R = 1/R¥,.
Substituting this in (38) gives

RY% < R;, < Rf. 39)

This is the desired bounding relation. For further generalizations
see [14] and [16].

If a region is covered by a square lattice, then it can be
triangulated by inserting one diagonal in each square. It then
results that (39) gives the bounding relation (35) stated for square
lattices.

10. THE EXTREMAL LENGTH OF A NETWORK

Ahlfors and Beurling have introduced the concept of extremal
length of a curvilinear quadrilateral [1]. The relation of this
geometric concept to complex function theory has been developed
at extreme length in the literature so we shall only give the
definition. Consider the curvilinear quadrilateral shown in Figure
23. Then the extremal length is denoted by EL and is defined as

(fw ds)
EL = sup inf F

P fj;wzdxdy.

Here P is any path from side 1 to side 2 and w(x,y) is any
continuous nonnegative function defined over the region G.

To give an electrical interpretation of extremal length we im-
agine the quadrilateral G is a conducting plate of unit resistivity.
Let R be the joint resistance between sides 1 and 2. Then E = IR
where E is the battery voltage and 7 is the current flow. The power
input is EI = E?/R = I’R. On the other hand, if w(x, y) is the

2

(40)




4

ELECTRICAL NETWORK MODELS 123

FiG. 23. A region G.

strength of the current density, the power dissipated in heat is w?

per square centimeter. Thus by the conservation of energy

E%/R =ff6w2 dx dy. (a1)

If P is a streamline from 1 to 2,

E=fpwds. (42)

Combining (41) and (42) gives

(o)

R=—2_"— (43)

fj;;wzdxdy .

It is then possible to show that this choice of w and P is optimal.
Thus the extremal length is simply the joint resistance.

The concept of extremal length can be extended to networks in
the following way [11]: consider a network G with two dis-
tinguished nodes 1 and 2. A path P connecting nodes 1 and 2 is
designated in Figure 24 by arrows. Let r; denote the resistance of
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/
/O
o

2 F1G. 24. Paths and cuts.

branch j. Then the extremal length is defined to be

2

( ) rjwj)

EL = max min ———— | (45)
wo P

2w
G

Here w; is an arbitrary nonnegative function defined on the
branches. If w; is actually the strength of the current in branch 7
then 3 ;7 wj 1s the power dissipated in heat. If the path P follows
the dlrecuon of current flow from 1 to 2, then Zrw, = E, the
battery voltage. Thus by the conservation of energy, the joint
resistance satisfies

(46)

"N

—
aM |~

S

=

]
3

Again it can be shown that this choice of P and w is optimal.
Hence the extremal length of a network is equal to the joint
resistance.

The network shown in Figure 24 is planar; however, the defini-
tion holds for general networks. Moreover, the formulation of the
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network concept of extremal length suggests a related concept
termed extremal width. The extremal width is denoted by EW and

is defined as
(=)
Y
G

2

EW = max min —— . (CY))
v 2w

Here Q denotes a cut and is defined as a set of branches which
separate node 1 from node 2. A cut is indicated in Figure 24. If w;
is actually the current strength in branch j, then min Z ,w; = I the
total current. Also = gr,w? = I’R hence

1/R = (—%}E)— (48)

This is actually the optimal solution. Thus the following identity
holds:

(EL)(EW) = 1. (49)

It is worth noting that the definition of joint resistance by means
of extremal length makesno explicit appeal to either of Kirchhoff’s
laws.

If in relation (49) the maximization operations are omitted, then
an inequality results. Writing v; for r,w; gives the network inequal-
ity

% oW > (m}i,n ; vj)(inn % wj). (50)

This is termed the width-length inequality [11]. It holds for arbitrary
w; > 0 and v; > 0. Here v, is arbitrary because r; is arbitrary. A
special case of (50) had previously been found by Moore and
Shannon [43]; a generalization is given by Lehman [19].



126 R. J. Duffin

The fact that the width-length inequality holds for arbitrary
networks suggests that an analogous relation holds for conducting
bodies. Thus consider a topological image G of the cylinder. For
example, Figure 23 can serve to illustrate this situation but G is
now considered to be a solid body rather than a plate. Let the top
surface of the “cylinder” be denoted by 1 and the bottom surface
be denoted by 2. Thus P denotes a path in G from 1 to 2. Likewise
Q represents a surface cutting the body in two parts such that 1
and 2 are not in the same part. Then the following width-length
inequality was conjectured in [11]:

[ [ [ywas v a: >(igfLV¢s)(igffoWdA) (51)

where ¥V > 0 and W > 0 are arbitrary continuous functions.
Recently this inequality has been proved by W. R. Derrick [7],
[29).

11. DUAL PROGRAMS FOR OPTIMIZING HEAT TRANSFER

Again we are concerned with the joint conductance of a net-
work, but now an economic constraint is introduced in addition to
the physical constraints of Kirchhoff. The problem is expressed in
the form of a program. It results that the solution is obtained by
minimizing a norm over a vector space. This norm is of mixed
type. That is, part of the norm comes from the economics and part
comes from the physics.

Consider a network such as that shown in Figure 24, but
suppose that the branches are divided into two sets, « and 8. In set
« the conductances g; > 0 are fixed. In set B the conductances are
allowed to vary but are subject to the constraint

%gj<K, g >0.

This constraint corresponds to limiting the total weight of the 8
branches. The problem is to distribute the material so as to
maximize the joint conductance relative to terminals 1 and 2.
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Let M denote the maximum joint conductance. Then M satis-
fies the following duality inequality [15], [28].

lxlp > M > Ilynp .
xXES

Here ||x||p is 2 norm on the vector (x;, X, . . . 5 X,) defined as

_ 2 2
xl% = %gjxj + ng.xxj.

On the right, ||y||, is a norm on the vector (yy, ¥y - Vn)
defined as

Iy = 28," ;+ "(%ijl)z.

The constraints on the vectors x and y are: S. x;,...,x, are a
possxble set of potential differences on the branches correspondmg
to unit potential difference across the input terminals. 7.
Y1 - - - » ¥y ar€ @ possible set of branch currents corresponding to a
unit flow of current at the input terminals. In other words, the x;
satisfy the Kirchhoff voltage law and the y; satisfy the Kirchhoff
current law.

It is seen from the above definition that the norm || x|/, is a
mixture of a Euclidean norm and a Tchebychef norm. Likewise
the norm || y|| , is a mixture of a Euclidean norm and an L, norm.
These “mixed norms” would seem somewhat artificial if it were
not for the fact that they express the essence of a natural problem
of economics.

These inequalities for networks have analogies for continuous
bodies. Thus Duffin and McLain [32] have thereby determined the
most efficient design for a cooling fin. Bhargava and Duffin have
given extensions with the L, norm [28].

12. DUAL PROGRAMS FOR NONLINEAR NETWORKS

The networks and conducting bodies considered above are
assumed to obey Ohm’s law. In other words, there is a linear
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relation between current flow and potential difference. Now it is
desired to treat nonlinear networks, and these will be discussed in _
the light of the Legendre transform.

Let u(x) be a smooth convex function defined on an open
region R of n-dimensional space E. Then each point x of R is
mapped into a point y by the relation

= Ou
yj axj

Let R* be this map of R. Then the Legendre transform is defined
as

n
o= u(x) - Sy,
1

It is easily shown that v is a single valued function of y in R*.
The following duality inequality holds between a function u, its
Legendre transform v and a constant M [31]:

u(x)> M >0(y).
xES yET

Here the constraints are:
S. X E€RNK,
T. yER*NK.

Here K is a subspace of E and K’ is the orthogonal comple-
mentary subspace.

This simple duality inequality has many applications. In par-
ticular, it was used to treat certain geometric programs [31].
Another important application is to nonlinear networks [30]. Thus
let a network have n branches. Then Y; represents current in
branch j and x; represents voltage drop across branch j. Then for
each branch there is a functional relation of the form

Yi = gj(-"f,)
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In a common situation, the branch conductances are such that
g( ) is a continuous monotone increasing function. I have
termed such networks “quasi-linear” while Minty has termed them
“monotone” [35]. (In general g;(0) # 0.)

Let the function u(x) be defined as

u(x) =56,5)

where

G =f0 g(x) dx.

Let 7; be the inverse function to g;, so x; = ri(y)- Then it is easy to
check that

ooo=$H%mb»—nunn

is the Legendre transform.

The subspace K is the Kirchhoff voltage space. The subspace K’
is the Kirchhoff current space. The orthogonality of current and
voltage is an important concept due to Weyl. Weyl’s concept was
further developed by Bott and Duffin [4, 5] and by Tellegen [38].

The primal program is the minimization of u(x) under the
constraint S. A minimum point is a desired equilibrium state of
the system. The dual program is the maximization of v(y) under
the constraint 7. If the primal program has a minimum value M,
then the dual program has a maximum M. The value M has an
important significance for linear networks but not for nonlinear
networks.

13. TRIPARTITE GRAPHS WHICH JOIN NETWORKS

Section 3 concerned two resistor boxes 4 and B having n
terminals. These resistor boxes were interconnected to form a new
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resistor box C also having n exterior terminals. The interconnec-
tions discussed were termed series, parallel and hybrid. Clearly,
there are many other possible ways of interconnecting resistor
boxes. For example, the cascade connection shown in Figure 25 is
of considerable practical importance.

o] — &— -

1 2
*1 3% [°13
A B
02 4, 24,
—
'] * \ 4 |2 F16. 25. Cascade connection of resistor
{ boxes. )

To give a general analysis of the interconnection of resistor
boxes, Anderson, Trapp and I have introduced the concept of a
“junctor”. A junctor is a graph having 3n vertices divided into
three equal sets. In other words, a junctor is a tripartite graph. The
first set of vertices will be joined to resistor box 4. The second set
of vertices is joined to resistor box B. The third set will be the
terminals for the new resistor box.

A desirable physical property is that the junctor itself should not
restrict the possible current flows entering the boxes. Thus we
forbid unconnected terminals or short circuited terminals. A pre-
cise set of requirements which insures this behavior follows.

A junctor is a graph whose set of vertices is divided into three
equal classes, 4 = {q;}, B = {b,;}, and C = {¢;} such that

1. Each vertex is connected to some other vertex.
ii. No vertex is connected to another vertex of its own class.
iii. No vertex is connected to two distinct vertices of the same
class.
A junctor is thus specified by the three incidence matrices K, L,
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and M, where

P { 1 if vertex g; is connected to vertex ¢;,
=

0 otherwise,

_ { 1 if vertex b; is connected to vertex c;,
A

0 otherwise,
" = { 1if vertex g; is connected to vertex b,
=

0 otherwise.

It follows from the definition that K, L, M each have the
property that no row or column contains more than one 1.
Alternatively, we may specify the junctor J by the single adjacency
matrix.

0 M* K*
J=tM 0 L*
K L 0

F1G. 26. Symbolic junctor.

We will sometimes use the symbolic representative of the graph
and the adjacency matrices shown in Figure 26. Actual junctors
are shown in Figures 27 and 28. The adjacency matrices for the
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F1G. 27. The cascade junctor.

C Fic. 28. The hybrid junctor.

hybrid junctor are:

1 0 0 0 1 0 0
k=| 0 1 0 of ,_jo 1 0
00 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0
M| 0 0 00
0 0 0 1
0 0 0 0

-0 O O
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A terminal bank (or box) is a device with n terminals. No
mathematical properties of this device are assumed here; in the
application which motivated this work, the terminal bank is an
electrical network with n terminals but other interpretations can
no doubt be given. Given two terminal banks R, S, and a junctor
J, we may form a new terminal bank J(R, S) by identifying the
terminals of R with the vertices of class 4, the terminals of S with
vertices of class B, and calling the vertices of class C the terminals
of the new terminal bank.

If we have three terminal banks, R, S, and T, and two copies of
the junctor J, we may form the terminal box J(R, J(S, T)) with
adjacency matrix

R S T new
R 0 M*K | M*L K*
J(R,J(S, T)) = S K*M 0 M* K*L
T L*M M 0 L*?

new K LK L? 0

(M

This connection is shown symbolically in Figure 29.
Alternatively, we may form the terminal bank J(J(R, S), T)
with adjacency matrix

S T new
R 0 M* | K*M* K*?
JURS,T)= S | M | 0 |Lsm | L*k
T MK | ML 0 L*
new | K? | KL L 0

(n
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FIG. 29. J(R, J(S, T)).

Fi. 30. J(J(R, S), T).
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and symbolic representation given in Figure 30. In case
J(R,J(S, T)) and J(J(R, S), T) define the same connections
between the terminals of R, S, T and the new terminals, we say
that the junctor is associative.

Most of the junctors arising in the study of electrical networks
are associative, but the non-associative ones are of some interest.
An example of an associative junctor is the hybrid junctor.

We now characterize all associative junctors.

THEOREM A: The junctor J is associative if and only if the
vertices may be renumbered—the same permutation being used in all
three classes—so that the matrices K, L, and M are

I 0 0 I 0 0
K=o 1 of L=|0 0 0}
0 0 O 0 0 I
N 0 0
M=\0 0 P|
0 0 O

where P is a permutation matrix, and N is a diagonal matrix.

Proof: We omit the exact details, but summarize the basic idea.
We want to show that two vertices are connected by a path in
J(R,J(S, T)), if and only if they are connected by a path in
J(J (R, S), T). Since the product of adjacency matrices specifies
paths in a graph and we have the adjacency matrix representations
of (I) and (II), we need only compute the various connections.

Theorem A can be used to show that the series, the parallel, the
hybrid and the cascade junctors are all associative.
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FLOW NETWORKS AND
COMBINATORIAL OPERATIONS
RESEARCH

D. R. Fulkerson

PART I: FLOWS IN NETWORKS

1. Maximal flow. A directed network (graph) G = [N; &] con-
sists of a finite collection N of elements 1, 2, . . ., n together with
a subset @ of the ordered pairs (i, j) of distinct elements of N. The
elements of N will be called nodes; members of & are arcs. Figure
1.1 shows a directed network having four nodes and six arcs (1, 2),
(1,3),2,3),(2,4), (3, 2),and (3, 4).

Sometimes we shall also consider undirected networks, for which
the set @ consists of unordered pairs of nodes. For emphasis,
these will then be termed links.

Suppose that each arc (i, j) of a directed network has associated
with it a nonnegative number ¢;, the capacity of (i,j), to be
thought of as representing the maximal amount of some commod-
ity that can arrive at j from i along (i,j) per unit time in a
steady-state situation. Then a natural question is: What is the

139
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3 FiG. 1.1

maximal amount of commodity-flow from some node to another
via the entire network? (For example, one might think of a
network of city streets, the commodity being cars, and ask for a
maximal traffic flow from some point to another.) We may for-
mulate the question mathematically as follows: Let 1 and n be the
two nodes in question. A flow, of amount v, from 1 t0o n in
G =[N; &] is a function x from @ to real numbers (a vector x
having components x; for (i,j) in @) that satisfies the linear
equations and inequalities

v,i=1,
ini_zxji= —0v,i=n, (1.1)
J J )
0, otherwise,
0<x;<¢y (4j)in@. (1.2)

In (1.1), the sums are of course over those nodes for which x is
defined. We call 1 the source, n the sink. A maximal flow from
source to sink is one that maximizes the variable v subject to (1.1),
(1.2).

Figure 1.2 shows a flow from source node 1 to sink node 6 of
amount 7. In Figure 1.2, the first number of each pair bcside an
arc is the arc capacity, the second number the arc flow.

To state the fundamental theorem about maximal flow, we need
one other notion, that of a cut. A cut separating 1 and n is a
partition of the nodes into two complementary sets, I and J, with
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2 6,3 4
7,4 2,2
1 1,1 3,3 12,2 6
3, Y »S

3 8,7 5
Fic. 1.2

1in I, say, and n in J. The capacity of the cut is then

> ¢ (1.3)

iinl

jinJ
(For instance, if 7 = {1, 3,4} in Fig. 1.2, the cut has capacity
€1z + €35 + ¢4 = 17) A cut separating source and sink of mini-
mum capacity is a minimal cut, relative to the given source and
sink.

Summing the equations (1.1) over / in the source-set I of a cut

and using (1.2) shows that

o= (x,-j - xﬁ) <> Cyi (14)
I I

iin iin

jmJ jinJ
In words, for an arbitrary flow and arbitrary cut, the net flow
across the cut is the flow amount o, which is consequently
bounded above by the cut capacity. Theorem 1.1 below asserts
that equality holds in (1.4) for some flow and some cut, and hence
the flow is maximal, the cut minimal [11].

THEOREM 1.1: For any network, the maximal flow amount from
source to sink is equal to the minimal cut capacity relative to the
source and sink.

Theorem 1.1 is a kind of combinatorial counterpart, for the
special case of the maximal flow problem, of the duality theorem
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for linear programs, and can be deduced from it [5]. But the most
revealing proof of Theorem 1.1 uses a simple “marking” or
“labeling” process [12] for constructing a maximal flow, which
also yields the following theorem.

THEOREM 1.2: 4 flow x from source to sink is maximal if and
only if there is no flow-augmenting path with respect to x.

Here we need to say what an x-augmenting path is. First of all,
a path from one node to another is a sequence of distinct end-to-
end arcs that starts at the first node and terminates at the second;
arcs traversed with their direction in going along the path are
Jorward arcs of the path, while arcs traversed against their direc-
tion are reverse arcs of the path. A path from source to sink is
x-augmenting provided that x < ¢ on forward arcs and x > 0 on
reverse arcs. For example, the path (1, 2), (2, 4), (5, 4), (5, 6) in
Figure 1.2 is an augmenting path for the flow shown there. Figure
1.3 indicates how such a path can be used to increase the amount
of flow from source to sink.

Taking the flow change € along the path as large as possible in
Figure 1.3, namely € = 2, produces a maximal flow, since the cut
I'={1,2,4},J = (3,5, 6} is then “saturated.” (See Figure 1.4.)

The labeling process of [12] is a systematic and efficient search,
fanning out from the source, for a flow-augmenting path. If none
such exists, the process ends by locating a minimal cut.
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The following theorem, of special significance for combinatorial
applications, is also a consequence of the procedure sketched
above for constructing maximal flow.

THEOREM 1.3: If all arc capacities are integers, there is an
integral maximal flow.

It is sometimes convenient to alter the constraints (1.2) of the
maximal flow problem to

I; < x5 < ¢ (1.5)

Here / is a given lower bound function satisfying / < c. The
analogue of Theorem 1.1 is then

THEOREM 1.4: If there is a function x satisfying (1.1) and (1.5) for
some number v, then the maximum v subject to these constraints is
equal to the minimum of

~
&£
|
g"\
e’

(1.6)
iinf
jinJ

taken over all cuts 1,J separating source and sink. On the other



144 D. R. Fulkerson

hand, the minimum v is equal to the maximum of

2 (- ) (1.7)

iinl
jinJ

taken over all cuts 1, J separating source and sink.

The question of the existence of such a flow x, together with
another flow feasibility question, will be discussed in the next
section.

2. Feasibility theorems. The constraints of the maximal flow
problem are, of course, always feasible, since x = 0 satisfies (1.1),
(1.2) with v = 0. By changing the constraints in various ways,
interesting feasibility questions arise. Here we shall consider two
such, one involving supplies and demands at nodes, the other
lower bounds on arc flows, as in (1.5).

Let G = [N; @] have capacity function c, and let S and T be
disjoint subsets of N. With each i in S, associate a supply a; > 0;
with each i in T, a demand b, > 0, and impose the constraints

2 (= %) < a, iin S,
J

< —-b, iinT, 2.1)
=0, otherwise,
0< x; < ¢ (i,j)in @. (22)

In words, the net flow out of i in S is bounded above by the
supply a;, and the net flow into / in T is bounded below by the
demand b,, When are the supply-demand constraints (2.1), (2.2)
feasible?

This question is easily answered by applying Theorem 1.1 to an
enlarged network. Extend G = [N; @] to G* = [N*; @*] by
adjoining a source 0 and sink »n + 1, together with source arcs
(0, /) for j in S, and sink arcs (i, n + 1) for i in T. (See Figure 2.1.)
The capacity function c* on @* is defined by ¢ ; = a; forj in S,
ctps1 = b foriin T, ¢} = ¢; for (i,j) in @. The constraints (2.1)

1,
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and (2.2) are feasible if and only if the maximal flow amount from
source to sink in the enlarged network is at least 3, ;b;, that is, if
and only if a maximal flow saturates all sink arcs. Hence we need
only construct a maximal flow in order to check the feasibility of
(2.1), (2.2). By pushing the analysis a little further, using Theorem
1.1, the following theorem emerges [21].

THEOREM 2.1: The supply-demand constraints (2.1), (2.2) are
feasible if and only if, for each subset T’ of T, there is a flow x(T"')
that satisfies the aggregate demand 3, ; .b; without violating the
supply limitations at nodes of S.

Here, satisfying the aggregate demand over 7’ means that the
net flow into the set 7" must be at least ¥, ;, b, without regard
for the individual demands in 7”. The necessity of the condition is
of course clear; sufficiency asserts the existence of a single flow x
meeting all individual demands, provided the flows x(7T”) exist for
all subsets 7" of T.

It should be noted that if the functions q, b, ¢ of (2.1), (2.2) are
integral valued, and if feasible flows exist, then there is an integral
feasible flow. This follows from Theorem 1.3 and the conversion
of (2.1), (2.2) to a maximal flow problem. A similar integrity
statement holds for the situation of Theorem 1.4, and indeed, for
all the flow problems to be discussed in any detail in this survey.

We turn now to a consideration of lower bounds on arc flows,
as in (1.5), and pose the resulting feasibility question in terms of
circulations, i.e., flows that are source-sink free, instead of flows
from source to sink. (One can always add a “return-flow” arc from
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sink to source to convert to circulations.) Thus we are questioning
the feasibility of the constraints

S(x;—x)=0, iinN, (2.3)
J

I < x; < ¢y (i,/))in @. (24)

The following theorem answers the question [26]. Its proof can be
made to rely on Theorem 1.1 [15].

THEOREM 2.2: The constraints (2.3), (2.4) are feasible if and only

if
> Cy 2 > L (25)
iinl iinl
jinJ JjinJ

holds for all partitions I, J of N.

Again the necessity is clear, since (2.5) simply says there must be
sufficient escape capacity from the set I to take care of the flow
forced into I by the function /. But sufficiency is not obvious.

Other useful flow feasibility theorems have been deduced [19,
26). In each case, Theorem 1.1 can be used as the main tool in a
proof.

3. Minimal cost flows. One of the most practical problem areas
involving network flows is that of constructing flows satisfying
constraints of various kinds and minimizing cost. The standard
linear programming transportation problem, which has an exten-
sive literature, is in this category.

We put the problem as follows. Each arc (i, ) of a network
G =[N; @] has a capacity c; and a cost g;. It is desired to
construct a flow x from source to sink of specified amount v that
minimizes the total flow cost

> ayx; 3.1

(i,j)in @
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over all flows that send v units from source to sink. In many
applications one has supplies of a commodity at certain points in a
transportation network, demands at others, and the objective is to
satisfy the demands from the supplies at minimum cost.

By treating v as a parameter, the method for constructing
maximal flows can be used to construct minimal cost flows
throughout the feasible range of v. Indeed, the solution procedure
can be viewed as one of solving a sequence of maximal flow
problems, each on a subnetwork of the original one [14]. Another,
not essentially different, viewpoint is provided by the following
theorem [1, 29].

THEOREM 3.1: Let x be a minimal cost flow from source to sink of
amount v. Then the flow obtained from x by adding € > 0 to the flow
in forward arcs of a minimal cost x-augmenting path, and subtract-
ing € from the flow in reverse arcs of this path, is a minimal cost
Sflow of amount v + €.

Here the cost of a path is the sum of arc costs over forward arcs
minus the corresponding sum over reverse arcs, i.e., the cost of
“sending an additional unit” via the path.

Thus, if all arc costs a; are nonnegative, for example, one can
start with the zero flow and apply Theorem 3.1 to obtain minimal
cost flows for increasing v. (The cost profile thereby generated is
piecewise linear and convex.) All that is needed to make this an
explicit algorithm is a method of searching for a minimal cost flow
augmenting path. Various ways of doing this can be described.
One such will be given in Part II, section 1.

Another method [17] for constructing minimal cost flows poses
the problem in circulation format, that is, (3.1) is to be minimized
subject to (2.3), (2.4). This construction has a number of advan-
tages, principally in terms of generality and flexibility. For in-
stance, it may be started with any circulation; even (2.4) need not
be satisfied initially. Also, no assumption about the cost function
is required.

These methods produce integral flows in case the arc capacities
(and lower bounds) are integers.
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4. Maximal dynamic flow. Suppose that each arc (i,j) of a
network G has not only a capacity, but a transit time t; as well,
and that we are interested in determining the maximum amount of
flow that can reach sink » from source 1 in a specified number ¢ of
time periods. This dynamic flow problem can always be treated as
a static flow problem in a time-expanded version G, of G. For
example, if the given network G is that of Figure 4.1 and if each
arc of G has unit transit time, then G, is shown in Figure 4.2. (We
have included “storage arcs” leading from a location to itself one
unit of time later.)

Expanding the network in this way puts one back in the static
case. Moreover, arc capacities and transit times can vary with time
and this is still so. However, if each capacity and transit time is
fixed over time, the problem can be solved in the smaller network
G. Specifically, a maximal dynamic flow for ¢ periods can be
generated from a static flow x in G of amount v that minimizes

3 FiG. 4.1

FiG. 42
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the linear form

> xy— @+ 1o 4.1)

G.Jj)in@
over all flows in G from source 1 to sink n [14]. By adding the
return-flow arc (n, 1) to G with ¢,; = o0, ¢, = —(¢ + 1), the

problem may be viewed as one of constructing a circulation that
minimizes the “cost” form (4.1).

5. Multi-terminal maximal flow.* Heretofore we have phrased
statements in terms of directed networks. In this section we
confine the discussion to undirected flow networks, by which we
merely mean the following. A link (i, /) can carry flow in either
direction and has the same flow capacity each way. Thus one can
think of an arc (i,j) with capacity ¢; and an arc (j, /) with
capacity ¢; = c;. The assumption of a symmetric capacity func-
tion ¢ makes the results described in this section considerably
simpler and more appealing than they would otherwise be.

Instead of dealing with a single source and sink, we shift
attention to all pairs of distinct nodes taken as terminals for flows.
These flows are not to be thought of as occurring simultaneously.

Let v, denote the maximal flow amount from i to j. Thus the
function v is symmetric, v; = v;, and may be determined explic-
itly for an n-node network by solving n(n — 1)/2 maximal flow
problems. There is, however, a much simpler way of determining
the function o, one that involves the solution of only n — 1
maximal flow problems; in addition, there is a simple condition in
order that a symmetric function v be realizable as the maximal
multiterminal flow function of some undirected network [22].

THEOREM 5.1: A symmetric, nonnegative function v is realizable
by an undirected network if and only if v satisfies

v; > min(vy, vy) S
Sor all triples i, j, k.

*For a full discussion of this topic, see the paper by Gomory and Hu in this
volume.
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The necessity of the “triangle inequaltiy” (5.1) follows easily
from Theorem 1.1.

The condition (5.1) imposes severe limitations on the function v.
For instance, among the three functional values appearing in (5.1),
two must be equal and the third no smaller than their common
value. It also follows that if the network has n nodes, v can take
on at most n — 1 numerically different functional values. It is not
altogether surprising, therefore, that v can be determined by a
simpler process than solving all single-terminal maximal flow
problems. This process systematically picks out precisely n — 1
cuts in the network having the property that v; is determined by
the minimum one of these cuts separating i and j [22]. For
example, in the network of Figure 5.1 the relevant cuts are those
shown. Thus, for instance, since nodes 1 and 4 are separated by
the three cuts (1/2,3,4,5,6), (1,3/2,4,5,6), (1,2,3,5/4,6)
having capacities 8, 6, 6 respectively, then v,, = min (8, 6, 6) = 6.

6. Other flow problems. The flow problems that have been
discussed thus far all have the useful and pleasant feature that the
assumption of integral data implies the existence of an integral
solution. A number of flow problems that do not share this
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property have also been studied. Among these, we mention flows
in networks with gains [29], simultaneous multi-terminal flows [13],
and problems involving optimal synthesis of flow networks that
meet specified requirements [16, 22]. Methods of solution for such
problems are, in general, more complicated than methods for
those we have discussed. One rather surprising exception to this
statement is the following synthesis problem: Suppose it is desired
to construct an undirected network on a specified number of
nodes so that v; > r; for stipulated requirements r;, with the total
sum of link capacities of the network minimal. A very simple
combinatorial method of solution for this synthesis problem is
given in [22].

PART II: COMBINATORIAL PROBLEMS

1. Network potentials and shortest chains. Consider a directed
network in which each arc (i; j) has associated with it a positive
number a;, which may be thought of as the length of the arc, or
the cost of traversing the arc. How does one determine a shortest
“chain from some node to another? Here we have used chain to
mean a path containing only forward arcs, the length of the chain
being obtained by adding its arc lengths.

While this is a purely combinatorial problem, it may also be
viewed as a flow problem simply by imposing a cost a; per unit
flow in (i, ), taking all arc capacities infinite, and asking for a
minimal cost flow of one unit from the first node to the second.
An integral optimal flow corresponding to v = 1 singles out a
shortest chain.

Many ways of locating shortest chains efficiently have been
suggested. We describe one [10]. Like others, it simultaneously
finds shortest chains from the first node to all others reachable by
chains.

In this method, each node i will initially be assigned a number
m,. These node numbers, which we shall refer to as potentials, will
then be revised in an iterative fashion. Let 1 be the first node. To
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start, take 7, = 0, m, = oo for i # 1. Then search the list of arcs
for an arc (i, j) whose end potentials satisfy

™ + a; < m;. (1.1)

(Here oo + a = 0.) If such an arc is found, change #; to =/
= @; + a;, and search again for an arc satisfying (1.1), using the
new node potentials. Stop the process when the node potentials

satisfy

mt+a; > m (12)
for all arcs.

It is not hard to show that the process terminates, and that when
this happens, the potential 7; is the length of a shortest chain from
1 toj. (Here m; = oo at termination means there is no chain from 1
to j.) A shortest chain from 1 to j can be found by tracing back
from j to 1 along arcs satisfying (1.2) with equality (see Figure 1.1).

Practical applications that require shortest chains are numerous.
For instance, in making up a table of highway distances between
cities, a shortest chain between each pair needs to be found. A less

Fic. 1.1
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obvious application is the discrete version of the problem of
determining the least time for an airplane to climb to a given
altitude [2]. Some other applications will be discussed in following
sections. ,

While we have assumed positive lengths for the method de-
scribed above, this assumption can be weakened. Call a chain of
arcs leading from a node to itself a directed cycle. Then it is
enough to suppose that all directed cycle lengths are nonnegative.

If directed cycle costs are nonnegative, the minimum cost flow
problem of Part I, section 3, can be solved by repeatedly finding
cheapest chains in suitable networks. Because of the assumption
on the cost function a, we may start with the zero flow. Thus,
using Theorem 3.1, it is enough to reduce the problem of finding a
cheapest flow-augmenting path with respect to a minimal cost flow
x of amount v to that of finding a cheapest chain. Define a new
network G’ = [N; @'] from the given one G = [N; @] and the
flow x as follows: First, note that we may assume x;-x; = 0, since
a; + a; > 0. Now put (i, /) in @ if either x; < ¢; or x; > 0 and
define a’ by

a ={ a; f x;<g¢ and x; =0, (13)

—a, if x;>0.

Thus a chain from source to sink in the new network corresponds
to an x-augmenting path in the old, and these have the same cost.
Moreover, since x is a minimal cost flow, the function a’ satisfies
the nonnegative directed cycle condition. Hence the method of
this section can be used to construct minimal cost flows of
successively larger amounts.

2. Optimal chains in acyclic networks. If the network is acyclic
(contains no directed cycles), the shortest chain method of the last
section can be modified in such a way that, once a potential is
assigned a node, it remains unchanged. One can begin by number-
ing the nodes so that if (i,j) is an arc, then i <j. Such a
numbering can be obtained as follows: Since the network is
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acyclic, there are nodes having only outward-pointing arcs.
Number these nodes 1, 2, ..., k in any order. Next delete these
nodes and all their arcs, search the new network for nodes having
only outward-pointing arcs, and number these, starting with
k + 1. Repetition of this process leads to the desired kind of
numbering (see Figure 2.1).

Fic. 2.1

If we wish to find shortest chains from node % to all other nodes
reachable from k& by chains, the calculation is now trivial. Simply
define m, m 4y, - - - , W, Tecursively by

m =0
21)

75.=krl1}r<1j(7r,-+ay), J=k+1,...,n

Here the minimum is of course taken over i such that (i,j).is an
arc.

Longest chains in acyclic networks can be computed by replac-
ing “min” by “max” in (2.1).

The recursion (2.1), of dynamic programming type, can be
applied in a number of problems. We shall discuss three such
applications in the following sections.
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3. The knapsack problem. Suppose there are K objects, the i-th
object having weight w; and value v, and that it is desired to find
the most valuable subset of objects whose total weight does not
exceed W. Thus we wish to maximize

>y 3.1)
iin§
over subsets S C{1,2,..., K} such that
> ow < W. (3.2)
iin§

We take w, w,, . . ., g, W to be positive integers.

This combinatorial problem, commonly referred to as the
knapsack problem, can be viewed as one of finding a longest chain
in a suitable acyclic network. Let the network have nodes denoted
by ordered pairs (i, w), i=0,1,...,K, w=0,1,..., W. The
node (i, w) has two arcs leading into it, one from (i — 1, w), the
other from (i — 1, w — w)), provided these exist. (See Figure 3.1.)
The length of the first arc is zero; the other has length v. In
addition we put in a starting node and join it to all of the nodes
(0, w) by arcs of length zero. Then chains from the starting node to
(i, w) correspond to subsets of the first i objects whose total weight
is at most w, the length of the chain being the value of the subset.
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4. Equipment replacement. As equipment deteriorates with age,
and improved equipment becomes available on the market, a time
may be reached when the purchase cost of new equipment is
repaid by its potential future earnings. One is then faced with the
problem of determining an optimal replacement policy [9].

For simplicity, consider a single machine and suppose that at
the beginning of each of K periods of time it must be decided
whether to keep the machine another period or purchase a new
one. Let r(i, ) denote the revenue obtainable during period i from
a machine which starts the period at age ¢ (the function r may
reflect upkeep costs), and let c(i, ) denote the cost of replacing a
machine of age 7 with a new machine if the replacement occurs at
the beginning of period i. Thus replacing a machine of age ¢ at
period i gives a net return for the period of r(i, 0) — ¢(i, ?).

The acyclic network shown in Figure 4.1 indicates one formula-
tion in terms of chains. Again nodes are points (i, ?), i
=0,1,...,K,t=0,1,..., T. (Here T is some sufficiently large
integer; if we start with a machine of age 7, T = K + t will do.) In
general, two arcs, reflecting the possibilities of keeping or replac-
ing, lead from (i, ¢), the “keep” arc going to (i + 1, ¢ + 1), the
“replace” arc to (i + 1, 1). The first of these has length r(i, ), the
second has length r(i, 0) — c(i, ¢). We may also put in a sink node
with arcs of length zero leading into it from the nodes (X, ¢),
t=20,1,...,T. Then chains from (0, ¢) to the sink correspond to
the various replacement policies starting with a machine of age ¢,
the length of the chain being the total return from the policy.

A simpler network for this problem is shown in Figure 4.2. In
Figure 42 an arc (i,j) corresponds to keeping the machine
throughout periods i, i + 1,...,j — 1 and replacing it at the start
of period j, the associated length being the return obtained from
this action. Thus a longest chain from source 1 to sink K is to be
found.

The examples of this section and the preceding section are
typical discrete dynamic programming problems. Such problems
can always be viewed as seeking optimal chains in appropriate
acyclic networks.
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T=4

5. Project planning. One of the most popular combinatorial
applications involving networks deals with the planning and
scheduling of large, complicated projects [33]. Suppose that a
project of some kind (the construction of a bridge, for example) is
broken down into many individual jobs. Certain of these jobs will
have to be finished before others can be started. We may depict
the order relations among the jobs by means of an acyclic network
whose arcs represent jobs. To take a simple case, suppose there are
five jobs with the ordering: 1 precedes 3; 1 and 2 precede 4; 1,2, 3
and 4 precede 5. This may be pictured by the network shown in
Figure 5.1.

Notice that we have added a “dummy” job, the dotted arc of
Figure 5.1, to maintain the proper order relations among the jobs.
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Fi1G. 5.1

The use of dummies permits a network representation of this kind
for any project (finite partially ordered set).

Assuming that each job has a known duration time (dummies
have zero duration time), that the only scheduling restriction is
that all inward-pointing jobs at a node must be finished before any
outward-pointing job can be started, it follows that the minimum
time to complete the entire project is equal to the length of a
longest chain of jobs. Hence the minimum project duration time
can be calculated easily.

Although a fixed time has been assumed for each job, it may be
the case that by spending more money, a job can be expedited.
The question then arises: Which jobs should money be spent on
and how much, in order that the project be finished by a given
date at minimum cost? If the time-cost relation for each job is
linear, this problem can be shown to be a minimal cost flow
problem of the kind described in Part I, section 3 [18, 33].

6. Minimal chain coverings of acyclic networks. The following
question concerning acyclic networks has both theoretical and
practical interest: What is the minimum number of chains re-
quired to cover a given subset of arcs? We first show how flows
may be used to answer this question, and then give a practical
interpretation.

Let the subset of arcs be denoted by @’. To rephrase the
question, we seek the minimum number of chains in the acyclic
network G such that every arc of @’ belongs to at least one of the
chains. Theorems 1.3 and 1.4 can be used to provide an answer to
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the question; as sources in G take all nodes with only outward-
pointing arcs; as sinks take all nodes with only inward-pointing
arcs. Now place a lower bound of 1 on flow in arcs of &', 0 on
arcs not in @, and take all arc capacities infinite. Then an integral
flow through G of amount v picks out v chains in G that cover all
arcs of &', and the second half of Theorem 1.4 implies

THEOREM 5.1: The minimum number of chains in an acyclic
network needed to cover a subset of arcs is equal to the maximum
number of arcs of the subset having the property that no two belong
to any chain.

Theorem 5.1 is a mild generalization of a known result on chain
decompositions of partially ordered sets [8].

A practical instance of this situation arises if we think of an
airline, say, attempting to meet a fixed flight schedule with the
minimum number of planes, all of the same type [4]. Let the
individual flights be numbered 1, 2, . . ., n. Start and finish times
s; < f; are known for each flight, and the times #; to return from
the destination of the ith flight to the origin of the jth flight are
also known. The flights can be partially ordered by saying that i
precedes j if f; + #; < s5;, and the resulting partially-ordered set
represented by an acyclic network (as in the preceding section). A
chain in the network represents a possible assignment of flights to
one aircraft. The problem then is to cover the nondummy arcs
(those corresponding to actual flights) with the minimum number
of chains. Theorem 5.1 asserts that this number is equal to the
maximum number of flights, no two of which can be accomplished
by a single plane.

Problems of this nature become considerably more complicated
if the assumption of a fixed schedule is dropped. For instance,
suppose the times s,, f; are at our disposal subject to the restriction
that f; — s; = ¢, with the duration times ¢, known, as well as the
reassignment times #,. The problem might then be to arrange a
schedule completing all flights by a given time and requiring the
minimum number of planes, or to finish all flights at the earliest
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possible time with a fixed number of planes. For such scheduling
problems, there is very little known in the way of general theoreti-
cal results or good computational procedures. However, some
special results have been deduced [27, 31].

7. Assignment problems. The following is typical of an impor-
tant and well-known class of combinatorial problems having net-
work flow formulations. Suppose there are m men and n jobs, and
that it is known whether or not man i is qualified to fill job j,
i=12...,mj=12,...,n Whenis it possible to fill all jobs
with qualified men and how does one determine such an assign-
ment?

Using Theorem 1.3, the problem may be phrased in terms of
flows. Corresponding to man i take a source node i, to job j a sink
node j, and direct an arc from i to j if man i is qualified for job j.
(See Figure 7.1.) Impose a demand of 1 unit at each sink and let
each source have a supply of 1 unit. All arc capacities may be
taken infinite. The problem of assigning men to jobs thus becomes
that of constructing a flow (integral, of course) meeting the de-
mands from the supplies.

Combinatorial interpretations of Theorems 1.1 and 2.1 for this
situation lead in the first instance to a well-known theorem about
maximum matchings and minimum covers in bipartite networks
[35], and in the second instance to an equally well-known, and

1 1
2 2
3 3
4 4
Se [

6 Fic. 7.1
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equivalent, theorem concerning systems of distinct representatives
for subsets of a given set [24].

A more general assignment problem, usually referred to as that
of optimal assignment [36, 42], assumes that man i in job j is worth
a; units, and the total worth of an assignment is given by the sum
of the numbers a; taken over the individual man-job matchings in
the assignment. The problem then is to construct an assignment of
maximal worth. By taking the cost per unit of flow in arc (i, j) to
be —ay;, the optimal assignment problem is seen to be a special
case of the minimal cost flow problem.

More complicated personnel-assignment models have been for-
mulated in terms of flow networks. For instance, one which
involves the recruiting, training, and retraining of personnel to
meet stipulated requirements in various job specialties over time
has been treated in this way [23].

Applications of the optimal assignment model to other kinds of
problems are very numerous. We mention one which involves the
optimal depletion of inventory [7]. Suppose a stockpile consists of
m items of the same kind, and that the age ¢ of item i is known.
Also known is a function u(¢) giving the utility for an item of age ¢
when withdrawn from the stockpile, together with a schedule of
- demands specifying the times at which items will be required. The
problem is to determine that order of item issue which maximizes
the total utility while meeting the demand schedule. (For a con-
crete example, suppose one has m bottles of wine in his cellar, the
ages of -each being known, and consumes one bottle of wine
weekly. The utility function for wine might appear as in Figure
7.2.) The utility of item / issued at time j is given by u; = u(l; + j),
and hence the problem is to find an assignment of items to times
which is optimal in terms of the u;;.

If the utility function is convex, there is a simple rule for solving
the problem: Issue the youngest item first, then the next youngest,
and so on. This policy, sometimes called LIFO (last in first out),
may be shown optimal here by a simple interchange argument.
Similarly, if the utility function is concave, the reverse rule FIFO
(first in first out) solves the problem. In general, however, no such
simple rule works and an optimal assignment needs to be com-
puted.
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Fic. 7.2

8. Production and inventory planning. Problems involving
dynamic production and inventory programs for a single type item
have received considerable study. A very simple deterministic
problem in this category is the following: Suppose there are n
periods of time with known period demands b,, b,, . . ., b, for the
item, that the unit cost of production in period i is p;, and the unit
cost of storage from period i to i + 1 is s, What pattern of
production and storage meets the demands at minimum cost?

The network shown in Figure 8.1 assumes that production in
period i can be used to satisfy demand ‘in period i. The ith
“production” arc (source arc) has infinite capacity and cost p;; the
ith “storage” arc has infinite capacity and cost s; the ith
“demand” arc (sink arc) has capacity b, and zero cost. The
problem then is to determine a flow of amount v = Z;b, from
source to sink that minimizes cost. Clearly, production and storage
capacities may be introduced if desired. But if these are left
infinite, there is a very simple rule for solving the problem. For the
ith demand, compare the chain costs

Pptsp+ -+
Prtsy+ 0 +5,

p;
and take the smallest of these. Then send b; units of flow along the
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corresponding chain. An almost equally simple rule works in case
each period’s production cost is convex in the number of items
produced [30].

FiG. 8.1

If it is assumed that demands do not have to be satisfied, but
that unfulfilled demand in period i results in a penalty cost c; per
unit, we may place a flow cost —¢; on the ith sink arc and solve
the minimal cost flow problem parametrically in the flow amount
v, selecting that v which gives the least cost.

9. Optimal capacity scheduling. The model of this section, pro-
posed and studied in [41], is a rather general one which can be
shown to include several of those previously discussed here. One
version of the model is described in [41] as follows: “A decision
maker must contract for warehousing capacity over n time
periods, the minimal capacity requirement for each period being
deterministically specified. His economic problem arises because
savings may possibly accrue by his undertaking long-term leasing
or contracting at favorable periods of time, even though such
commitments may necessitate leaving some of the capacity idle
during several periods.”
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To put the problem mathematically, let d; be the minimal
capacity demand in period i. Let x;, i < j, be the number of units
of capacity acquired at the beginning of period i, available for
possible use during periods i,i + 1,...,j — 1, and relinquished
at the beginning of period j, and let a; be the associated unit cost.

Then the problem is to find x; > 0 that minimize

n  n+l
> D ayx; 9.1)
i=1j=i+1
subject to the constraints
kK n+1
> > x; 2 dy, k=12,...,n 9.2)
i=1j=k+1

To see that the constraints (9.2) describe flows, first rewrite (9.2)
as

k n+l
xy - yk = dk’ .Vk } 0. (9.3)
i=1j=k+1

Next, successively subtract the (kK — 1)-st equation from the kth,
k=nn-—1,...,2, to obtain an equivalent system of con-

straints. The result is

n

2 Xy =y =4,
j=2

n -1
2 xkj—zxik+yk—l—yk=dk_dk-p k=2,...,n,
J=k+1 i=1

n—1
- 2 Xin +y, = —dn’ (94)

i=1

subject to which the linear form (9.1) is to be minimized.
The corresponding network is shown in Figure 9.1. Here x; is
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the flow in (i, /) and g;; is the cost per unit of flow; y; is the flow in
(i + 1,9, with a,,, , = 0. Nodes i for which 4, — d;_,; > 0 are
sources with supphes d, — d, 1, nodes i for which d, — d,_, <0
are sinks with demands —~(d;, — d;_,).

Referring to Figure 4.2, Part II, and Figure 91 above, it is
apparent that the equipment replacement problem can be viewed
as a special case of capacity scheduling by taking 4, = 1, all i.

A number of other situations that can be interpreted in terms of
capacity scheduling are described in [41]. Mentioned are models
involving checkout and replacement of stochastically failing
mechanisms; determination of economic lot sizes, product as-
sortment, and batch-queuing policies; labor-force planning; and
multi-commodity warehousing decisions.

One application (the dynamic economic lot size model [43])
deals with the problem described in section 8, where production
costs now are concave functions of the number of items produced,
and demands must be satisfied. Generally speaking, concavity
makes minimization problems difficult, but here it can be seen
that it is uneconomical to both produce in a period and carry
inventory into the period, and hence there is an optimal policy of
the following kind. The total time interval is broken into subin-
tervals, with enough production at the beginning of each of these
to satisfy its aggregate demand. Thus finding an optimal policy
can be formulated in terms of capacity scheduling by letting a; be
the total cost (including storage) associated with producing enough
in period i to satisfy the demands for periods i,i +1,...,j — 1,
and by taking all 4; = 1. In short, the problem has been reduced to
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one of finding a cheapest chain from source to sink in the network
of Figure 9.1.

10. Minimal spanning trees. A network combinatorial problem
for which there is a particularly simple solution method is that of
selecting a minimum spanning subtree from an undirected net-
work each of whose links has a length or cost. We may illustrate
this problem with the following example. Imagine a number n of
cities on a map and suppose that the cost of installing a com-
munication link between cities i and j is a; = a; > 0. Each city
must be connected, directly or indirectly, to all others, and this is
to be done at minimum total cost. Clearly, attention can be
confined to trees (acyclic and connected networks of links), for if a
connected network contains a cycle, removing one link of the
cycle leaves the network connected and reduces cost. A minimal
cost tree can be found easily as follows [37]. Select the cheapest
link, then the next cheapest, and so on, being sure at each stage
that no subset of the selected links forms a cycle. After n — 1
selections, a cheapest tree has been constructed.

For example, in the network of Figure 10.1, this procedure
might lead to the minimal cost tree shown in heavy links.

While it is not difficult to prove that this method solves the
problem, it is nonetheless remarkable that being greedy at each
stage works. There are few extremal combinatorial problems for
which it does.

5 3 1 Fic. 10.1
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There is an interesting relation between the minimal spanning
tree problem and another, which sounds on the surface to be very
different. Think of the network in Figure 10.1 as being a highway
map, where the number recorded beside each link is the maximum
elevation encountered in traversing the link. Suppose someone
who plans to drive from i to j dislikes high altitudes and hence
wants to find a path connecting i and j that minimizes the
maximum altitude. This problem is related to the shortest chain
problem in the sense that methods for solving the latter are easily
modified to solve the former, and this is so in either the directed or
undirected case [40]. But it is also true in the undirected case that
the minimal spanning tree solves the problem, and for all pairs of
cities. That is, the unique path in the minimal spanning tree
joining a pair of cities minimizes the path height [28]. Here we
have used “path height” to mean the maximum number on the
path. '

There is also a min-max theorem concerning paths and cuts for
this problem. Call the minimum link number in a cut the “cut
height.” Then it may be verified that the minimum height of paths
joining two nodes is equal to the maximum height of cuts separat-
ing the two.

11. The traveling-salesman problem. Many problems that in-
volve minimal connecting networks, and hence superficially re-
semble that of the last section, have no known simple solution
procedures. For example, consider a network connecting a number
of cities, with the length of each link being known, and imagine a
traveling salesman who must start at some city, visit each of the
others just once, and then return to the starting city. How does the
salesman determine an itinerary that minimizes the total distance
traveled?

A cycle that passes through every node of a network just once is
usually called a Hamiltonian cycle. For brevity, we refer to it as a
tour. Thus the problem asks for a shortest tour. (Of course the
given network may contain no tour, but the existence question can
be subsumed by considering all possible links present, those not
corresponding to original ones having very large lengths.)
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Not a great deal is known, either theoretically or computation-
ally, about this problem, except that it is hard. On the theoretical
side, for instance, there seem to be no simple conditions that are
necessary and sufficient for a given network to contain a tour. On
the computational side, while many methods for determining a
shortest tour have been proposed, it is safe to assert that no one of
these would guarantee that a problem involving 100 cities, say,
could be solved in a reasonable length of time.

12. Minimal k-connected networks. In considering the synthesis
of reliable communication networks with respect to link failure,
the following question may be raised. Suppose given the complete,
undirected network G on n nodes, where again each link of G has
an associated number, the cost of installing a communication link
between its end-nodes. For each k=1,2,...,n— 1, find a
minimal cost k-link-connected spanning subnetwork of G [20].
Here a k-link-connected network is one in which at least k links
must be suppressed in order to disconnect the network. Another
way of characterizing this property is to say that every pair of
nodes is joined by at least k link-disjoint paths. Thus k£ might be
thought of as the “reliability level” of the communication network,
and the practical problem is to minimize cost while achieving a
stipulated reliability level.

For k =1, the problem is that of section 10, and hence is
readily solved. For k£ = 2 and all link costs 1 or oo, the problem
becomes that of determining whether a given network (the sub-
network of unit cost links) contains a tour, and is thus already
difficult. But if all link costs are equal, the answer is known. Here
the problem is to determine the minimum number of links re-
quired in a k-link-connected network on n nodes. For & > 2, there
is an obvious lower bound on the number needed, namely kn/2
(for even kn) or (kn + 1)/2 (for odd kn). These bounds can
always be achieved.
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MULTI-TERMINAL FLOWS IN A
NETWORK

R. E. Gomory and T. C. Hu*

First, let us distinguish the words “graph” and “network.” A
graph G is defined as a set of points (vertices, nodes) connected by .
lines (edges, branches, arcs). A network can be thought as a graph
with numbers associated with the nodes and arcs. The meanings of
those numbers depend on the specific case of application. In an
electrical network, the numbers associated with the lines may be
the resistances of the wires and the numbers associated with the
points may be the potentials at these points.

Since 1956, there has been a growing number of papers dealing
with network flow theory. This is not to be confused with the
electrical network theory which was first started by Kirchhoff in
1847. Network flow problems were first considered by Ford and
Fulkerson [3] and the interested reader is referred to the books by
Ford and Fulkerson [5] and Hu [8]. In the present paper, we

*The work of the second author is sponsored by the United States Army under
Contract No.: DA-31-124-AR0O-D-462 and National Science Foundation Grant G.
J. 28339.
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consider a special network flow problem which has also been
considered by Mayeda [10]. This paper is essentially the same as
the paper, “Multi-terminal Network Flows,” by Gomory and Hu
[6] but with some introductory material added to make this paper
self-contained.

We consider a network N consisting of nodes N, (i
=1,2,..., n) and arcs B; connecting the nodes N, and N,. Each
arc B; has associated with it a nonnegative number b called the
arc capacity. Throughout the paper, we assume that there are a
finite number of nodes, that the network is connected, and that the
arcs have no orientation, hence b; = b;. The arc capacity b; may
be thought of intuitively as representing the maximal amount of
some commodity that can go through the arc from N; to N;. For
example, the commodity may be “water” and the arc capacity may
indicate the cross-sectional area of the pipeline. Or the commodity
may be cars in highways, and b; indicates that the highway
between city i and city j is two-lane or four-lane. We shall
consider the case that there are two distinguished nodes N, and N,,
called the source and the sink, respectively.

The source is the entry of flow to the network, and the sink is
the exit of flow from the network. Mathematically, we define the
arc flows x;, and in particular the flows x,; from the source and x;
into the sink, as a set of nonnegative numbers satisfying the
following constraints:

-v if j=s
Sx;—Zxe=1< 0 if j#Es1 (1)
k

1

v if j=t
0< x; <b; forall ij. )

Note that flow is conserved at every node except the source and
the sink, and each arc flow X is bounded from above by b,-j, the
arc capacity. The value of the flow from N, to N, is v. A
fundamental question in network flow theory is to find the max-
imal value of v, given the b; of the network. To answer the

question, let us describe the notion of a cut in a network. A cut is
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denoted by (4, A) where A is a subset of nodes of the network and
A is its complement. A cut 4, A) is the set of arcs connecting a
node in A with a node in 4. Thus, a cut is a set of arcs, the
removal of which will disconnect the network. A cut separating N,
and N, is a cut (4, A) with N,EA and N,EA. The > capacity ofa
cut, denoted by b, 7, is Zb; where N,e4 and NJEA Due to the
constraints (1) and (2), the maximal flow value v from N, to N,
certainly cannot exceed the capacity of any cut separating N, and
N,. The cut with the minimal c¢apacity is called a minimal cut.
Now we can state without proof the well-known max-flow min-cut
theorem. (See Ford and Fulkerson [3] [4] [5).)

THEOREM 1: The maximal flow value from the source to the sink
is equal to the capacity of a minimal cut separating the source and
the sink.

There is a constructive proof of Theorem 1 and an algorithm to
locate a minimal cut, but we shall not discuss them here. If the b;
are positive integers and we interpret them as the number of edges
connecting node i and node j, then the minimal cut is the mini-
mum number of edges to be deleted to disconnect the graph into
two components, one containing N, and the other containing N,.
And the maximal flow value v is the maximal number of edge-
disjoint paths between N, and N,.

Given an n-node network with b; = b;, there are (3) possible
choices of pairs of nodes to be the source and the sink. For each
pair of nodes i and j selected, we can use the max-flow min-cut
theorem to find the maximal flow value f;. Thus we can get a
symmetric matrix of size n X n, where the (i, j) entry denotes the
maximal flow value f between N; and N, for i % j. It is con-
venient to take f; =

Consequently, for each network there are two associated sym-
metric matrices: The matrix B of the b; and the matrix F of the
resulting flows f;. Not any matrix can be an f; matrix, so it is
natural to ask when a given set of flow values f; can be realized by
some network. One answer in terms of the ablhty to repeatedly
partition the matrix F = (f;) in a particular way has already been
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given by Mayeda [10]. Here we give another necessary and
sufficient condition—a sort of “triangle inequality.”

This condition reduces the problem of deciding whether or not a
given matrix F is realizable by some network to the well-known
problem of constructing a maximal tree of a network—a problem
already solved in a very effective manner first by Kruskal [9] and
even more efficiently by Prim [11].

THEOREM 2: A necessary and sufficient condition for a matrix F
to be realizable is that

fa > min(f; f) (3)
for all i, j, k.

Proof: We first show necessity. Suppose the theorem were false
and for some i, j, k, f; < min(fj, fi). Then there exists by the
maximum-flow minimum-cut theorem [3] a cut or division of the
nodes into two sets 4 and 4 with N;E A and N, €4 such that the
sum of the capacities of the arcs connecting nodes in 4 with nodes
in 4 is f,. Now N; belongs either to 4 or A. If it is in A, then it is
cut off from N, by the cut; since the capacity of the cut is < f fiks
this is a contradiction. Similarly N; cannot be in A, for then it is
cut off from N,. Therefore, f;, > min(fj, f)-

Once established, the relation f;, > min(f;, f) has, by induc-
tion, the immediate consequence

j;'p > min(fij’ J;k’ Jats - - - ’fop) 4)

where N, N, ..., N, is any sequence of nodes.

Now for the sufficiency. For this we need first the notion of
spanning tree, then the notion of maximal spanning tree. The
notion of tree we take as known. (See, for example, [1]) A
spanning tree is simply a tree that includes all nodes. If there are
numbers n;; attached to the arcs of a tree, one may introduce the
value of a tree as the sum of the numbers n; on the arcs of the
tree.

Among spanning trees, there is one or more whose value is
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maximal among spanning trees. This is a maximal spanning tree
and can easily be constructed by Prim’s method. Any maximal
spanning tree has the following easily established property. Let N,
and N, be two nodes whose connecting arc is not in the tree; then
the number of that connecting arc satisfies n,
< min(ny, ny, . . ., n,,) where the n, . . ., n,, are numbers on the
arcs of the (unique) path connecting N, to N, in the tree. For if the
inequality did not hold, the smallest arc in the tree path could be
removed and the arc joining N; and N, substituted to form a tree
with value larger than the maximum.

We can construct a maximal spanning tree on the complete
graph of n nodes using f; as attached numbers to the arcs
connecting N, and N,. From the maximality we have as above for
a direct arc being compared with a path through the tree, f,

< min(fy, . . ., f,,), while from (4) we have the opposite inequal-
ity. So for any arc not in the tree
fp = min(f, . .. ,fop). (5)

However, this is precisely the flow which results if a network is
constructed with branch capacity b; = f; for arcs in the tree, and
b; = 0 otherwise. Thus any F matrix satisfying the condition is
realizable. This ends the proof.

To see if a given matrix is in fact realizable, one could construct
a maximal spanning tree using Prim’s method, then check to see if
condition (3) is satisfied. Actually, it is far more economical (and
extremely easy) to check (3) during the course of Prim’s algorithm
as described in the appendix.

We next turn to the problem of analysis, i.e., given a network of
arcs B; with capacities by, what are the resulting maximal flow
values f;? We have seen from (5) that any flow value is numeri-
cally equal to some flow value in the maximal spanning tree. As
there are only n — 1 arcs in a spanning tree (where n is the
number of nodes), there are only n — 1 numerically different flow
values possible. This makes it reasonable to suspect that all
n(n — 1)/2 flows f; can be obtained by something better than
doing n(n — 1)/2 flow problems. We will, in fact, show that all
flows can be deduced after only n — 1 flow problems have been
computed.
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FiG. 1

Consider first a network such as the one shown in Figure 1 with
a minimal cut (4, A) separating N, and N, N,€ 4, N,E 4.

Then let us construct a slightly different network, one in which
all nodes in A are replaced by a single special node P to which all
the arcs of the cut are attached (we can replace several arcs
connecting the same two nodes by one arc having the total
capacity). In this condensed network (Figure 2), consider the
maximal flow between two ordinary nodes, N, and N,. We shall
show

FiG. 2

LEMMA 1: The flow value between two ordinary nodes N, and N,
in the condensed network is numerically equal to the flow f, in the
original network.
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Proof: Let (B, B) be a minimal cut separating N, and N, in the
original network ‘and define sets of nodes

X=A4ANB3B, X =ANB,

Y = AN B, Y=A4nB.

Here X is the complement of X in A, Y is the complement of Y in
A. We may assume that N,€X, N,€X and N,EX. Let byy
= 2b; where N,EX and N,eY.

CASE 1. N;,€Y. Now
bz = byy + byy +bgy + by,
bgs = byx +byy +bgy + byy.

Since (B, B) is a minimal cut separating N, and N,, and since
(XU YUY, X) separates N, and N,, we have

bgs — by yuv,x = bxr by —bgy < 0. (6)

Since (4, A) is a minimal cut separating N, and N, and since
(XUXUY, Y) separates N; and N,, then

by —bxyxuy,v = bxy +bgy —byy< 0. ™

Adding (6) and (7) shows that b,3 < 0 and hence byy = 0. It then
follows from (6) and _(7) that byy — bgy = 0 also. Hence
(XUYUY,X)=(XuU4, X) is also a minimal cut separating N,
and N,.

Case 2. N;€Y. A similar proof shows that (X, XUAd) is a
minimal cut separating N, and N, in this case.

In other words, there is always a minimal cut separating N, and
N, such that the set of nodes A4 is on one side of this cut. Smce the
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flow value is determined by the value of this minimum cut, which
is unchanged by the condensing process, condensing 4 to a single
node does not increase the value of a maximal flow from N, to N,.
On the other hand, condensing process certainly cannot decrease
the maximal flow value between N, and N,.

Thus any flow between N, and N, in the condensed network
gives rise to an equal flow in the original network. This completes
the proof.

Since a cut in the condensed network gives a cut in the original,
and the maximal flow values are the same, a minimal cut in the
condensed network gives, simply by replacing P by 4, a minimal
cut in the original.

We now proceed to the analysis.

One procedure is simply this. We take two nodes and do a
maximal flow computation [4] to find a minimal cut (4, 4). We
represent this by two generalized nodes connected by an arc
bearing the cut value (Figure 3). In one node are listed the nodes
of A4, in the other those of 4. We now repeat this process. Choose
two nodes in A (or two in A), and solve the flow problem in the
condensed network in which 4 (or A4) is a single node. The
resulting cut has a value v, and is represented by a link connecting
the two parts into which 4 is divided by the cut, say 4; and 4,. 4
is attached to A, if it is in the same part of the cut as 4, to 4, if it
is in the same part as 4, (Figure 4).

The cutting is then continued. At each stage we have certain
generalized nodes (which may represent many nodes of the ori-

O
FiG. 3
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ginal network), and certain arcs connecting them. To proceed with
the computation, we select a generalized node 4; and two original
nodes N, and N, in 4,. Upon the removal of all arcs which
connect to A;, the network of generalized nodes falls into a
number of disconnected components. We condense each com-
ponent, except 4; itself, into a single node and solve the network
flow problem consisting of these condensed nodes and the original
nodes within A4,, and using N, and N, as source and sink. The
minimal cut obtained by this flow calculation splits 4; into two
parts, A;;, A,. This is represented in the diagram by replacing 4,
by two generalized nodes 4;, and 4,, connected by an arc bearing
the cut value. All other arcs and generalized nodes in the diagram
are unchanged except those arcs which formerly connected to 4,.
Such an arc is now attached to A4, if its component was on the
same side of the cut as the nodes in 4,;, and attached to A4, if its
component fell on the other side.

This process is repeated until the generalized nodes of the
diagram consist of exactly one node each. This point is reached
after exactly n — 1 cuts, for the diagram is a tree at all times, so
when the process stops it is an n-node tree and so has n — 1
branches, each created by solving a flow problem in a network
equal to or smaller in size than the original.

We then assert

LEMMA 2: The flow value between any two nodes is simply
min(vy, Uy, - - - 5 0,),

where the v; are values of a series of arcs of the tree connecting the
two nodes.

Before proceeding to prove this last assertion, it is probably a
good idea to illustrate the process by an example:

Taking as our B; network the net in Figure 5, we arbitrarily
choose nodes 2 and 6, and upon doing a flow problem we find the
minimum cut to be (as indicated in Figure 5) (1, 2, |3, 4, 5, 6) with
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capacity 17. This is represented by the diagram

To get the flow 1-2, we consider 3, 4, 5, 6 as a single node,
obtaining Figure 6, in which the minimum cut 1-2 is
(112, 3, 4, 5, 6) with capacity 18, so we obtain the diagram
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We next choose 3 and 6. Considering 1 and 2 as a single node
(Figure 7), we find the minimum cut (1, 2, 6[3, 4, 5), capacity 13.
So the diagram becomes

@18@17@13@

We next consider the flow 4-5, taking 1, 2, 6 as a node (Figure 8),
the resulting minimum cut being (4|1, 2, 3, 5, 6) with capacity 14.
So we have

FiG. 8
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Finally, we consider the flow 3-5, taking 1, 2, 6 as one node and 4
as the other to get the same network as above,

the minimum cut 3-5 being (3|1, 2, 4, 5, 6) with capacity 15, giving
as the final tree,

We would now assert that the maximum flow from 1 to 3, fi,, is
13, the maximum flow f¢ is 17, etc.

We now proceed to prove Lemma 2. Consider two nodes N, and
N;. We certainly have

f; < min(vy, . .., 0),

for each v; on the path connecting N; and N; corresponds to a cut
separating N; and N;. To show the reverse inequality is a little
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more difficult. Consider any stage of the construction

where we have arcs representing cuts and nodes representing sets.
We assert that if an arc of value v connects sets 4; and 4, then
there is a node N, in 4; and a node N; in 4, such that f; = v.

This is certainly true after the first cut. We will show that the
property is maintained. Consider an 4, about to be cut,

with 4; representing the set connected to 4, by the arc v. By the
induction hypothesis there is an N, in 4, and N, in 4; with f; = o.
After cutting N, from N, 4, divides into 4, and A,. We can
assume 4; is attached to Ai.p.
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Clearly N, and N, provide the desired flow f,, = v’ across the
new link. As to the old link of value v there are two cases:

(i) N, € A,

Then the flow f; = v is still applicable.

(i) N; € 4,.

Then consider the nodes N, N, N,, and N,. From C))]

fp > min(f;, £, Ip)

Since N; and N, are on one side of the cut whose value is v’ and
N; and N, are on the other, we know that the flow f, is unaffected
if A, is replaced by a single node or, what is the same thing, if all
arcs within 4, are given an arbitrarily large capacity M. Doing
this makes f;, large so we have

fp > min(f, f,)-
Since f; = v and f, = v’, we have
fp > min(v, ).

Since the cut separating N, and N, is of value v/, we must have
v’ > f; = v. So finally f, > v. As v is the value of a cut separating
N; and N, this implies f, = v. Thus N, and N, provide the two
needed nodes.

Since we now know that in the final tree the values on the links
actually represent flow values between the adjacent points, the
reverse inequality

fy > min(vy, ..., v,)

is once again just an application of (4).
This establishes the desired result

f; = min(oy, . .., v,).
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Hence the flow matrix for our example is

1 2 3 4 5 6
1 0 18 13 13 13 17
2 18 S 13 13 13 17
3 13 13 o0 14 15 13
4 13 13 14 00 14 13
5 13 13 15 14 00 13
6 17 17 13 13 13 ©

In any tree diagram an arc from N, to N, can be considered as
representing a cut of the nodes, since its removal divides the nodes
- of the tree into two sets, 4 and A4. If, in addition, each cut so
obtained is a minimal cut between N, and N, in some network N,
and the attached branch value in the tree is the capacity of the cut
in N, then the tree is called a cut tree of N.

We have just shown a way of obtaining a cut tree of a network
by solving n — 1 flow problems.

If we are interested in maximal flows between p nodes where
2< p< n, then only p — 1 flow problems are needed. This
generalization is discussed in [8]. The procedure is essentially the
same. We stop the computation when each generalized node
contains only one of the p nodes which are of interest to us.

Given an n X n matrix of nonnegative numbers r; (i = 1), we
shall call an n-node network N satisfactory if its ﬂows satts_)ﬁ)

fi= o @i )).

The synthesis problem we consider is the one of finding a
satisfactory network having smallest cost. If we say that the cost of
installing one unit of branch capacity between N, and N; is ¢,
then it seems necessary to use the apparatus of hnear program-
ming and this approach is developed in [7]. However, if we try to
find the satisfactory network of least total branch capacity, this is
equivalent to the case when ¢; = 1 for all i, j, i # j. Then special
methods can be devised, and 1t is this problem we take up now.
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‘We first introduce a tree T of dominant requirements. This is
simply any maximal spanning tree constructed using the 7; as arc
values. For example, given the requirements

@ =« 1 3
® 4 x 6 5 3
® 9 6 x 1 2
® 1 5 1 x 7
® 3 3 2 7 x

®

®@ o x 6 5 0
® 9 6 x 0 0
® o 5 0 x 7
® o 0 0 7 x

Any satisfactory network must of course satisfy all requirements
fy > r; where r; are attached to arcs in T. This is also sufficient
since the missing 7,, satisfy the usual relation

rp < min(ry, 7, - - » o)

where the r’s on the right hand side form the unique path in 7. In
any network satisfying the dominant tree requirements (dominant
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requirements for short), the flow f,, must automatically satisfy
Jp 2 min(f, fioo - -+, fp) > min(ry, ..., 7)) > 1,

and so satisfy all requirements.

Because of this, we shall henceforth consider only the dominant
requirements. This is not necessary, only convenient: the methods
we shall develop can easily be modified to apply directly to the
original requirement network, but the exposition is simplified and
essentials brought out more easily by working with the dominant
requirements.

We define the total branch capacity to be $1Z,..b;. We now
introduce a lower bound C, for this quantity. Consider any node
N, of the network. Let »; = max;r;, that is, u is the largest flow
requirement out of N,. Define CL =43,u. Then as any satis-
factory network N must provide capacities b capable of carrying
this flow out of N, 2b; > w, and thus the total branch capacity

=42.b; > 32 = CL This bound is due to Chien [2].

The number C, can also be computed directly from T without
reverting to the original requirement, since the same w, results if
the max;r; is taken only over branches of T adjacent to N,.

Now cons1der a fixed tree T with attached numbers r, and
resulting bound C,. If the r; are replaced by a different set r; a
new bound C; results. If we use r; = r; + r; on the arcs of the
same fixed tree we get C;’ always w1th

C/ < CL+Cp

but if ; (or rj) are “uniform” requirements, i.e., ry = B for all r;
in T, then, obviously, equality holds, so

Cf=ci+ Gy ©)

a result we will use in what follows.

One further remark is needed. If a branch capacity network B
with capacities b; and flows f; is superposed on another having the
same nodes, arcs and dlfferent capacities b;; and flows f/,-then the
resulting network is taken as having arcs with capacities
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b; = bj; + b;. The new flows f clearly satisfy
V> g+ gy (10)

Consider a requirement tree T with n — 1 requirements which
we will now designate. Let the smallest be 7, . Since all require-
ments can be written as ry;, + (r; — rp;y,), we can regard T as
being obtained by superposing a uniform requirement tree 7" with
uniform requirement r;;; on two smaller trees with requirements
r; — rmg For example, the dominant requirement tree in the
preceding example can be regarded as the superposition of a
uniform 5-tree, i.e., dominant requirement tree with 7; = 5 (Figure
9(a) and the two smaller trees in Figure 9(b) and 9(c)).

FiG. 9

If the uniform tree and the residual parts can be synthesized by
networks N,, N,, N, so that their individual C,’s are actually
attained, then by simply superposing the synthesized networks we
get new flows which by (10) equal or exceed the requirements,
while the total capacity used is by (9) equal to the lowest possible
amount C,;. From now on, we shall use the phrase “synthesizing
trees” to mean ‘“constructing a network with maximum flows
greater or equal to the requirements in the tree.”

The synthesis problem for 7 then has been reduced to the
synthesis of smaller trees and a uniform requirement tree, such
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that their lower bounds C, are actually obtained.

However, we can repeat the decomposition process on the
smaller trees until only uniform trees remain so that the problem is
actually reduced to synthesizing uniform trees.

This however is extremely easy. Given any tree 7’ with uniform
requirement B, the lower bound C; is n8/2 and a suitable network
is constructed by drawing any cycle through the nodes and then
assigning capacity 8/2 to each arc of the cycle. (In the smallest
case, n = 2, both links of the cycle coincide and a single arc of
capacity B is used.)

In the case of our example, to carry out the process we continue
the decomposition begun in Figure 9 by decomposing (b) further
so that the tree T becomes the sum of

(b)
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Each of the above is synthesized by a cycle,

Note that in synthesizing a uniform requirement tree we may
use any cycle passing through the nodes in any order. For ex-
ample, (a) could have been synthesized by a cycle with capacity
5/2.

with
resulting
graph
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Similarly, any convex combination of cycles can be used, i.e., if B
By, By, . .., are the capacities of a link in various cycles, then the
graph with A, B, + A, 8,, ..., 2\, = 1 is also a minimal synthesis
and can be used.

What we have shown is that the method of synthesis will
produce f; > r;. On actually checking the two networks synthe-
sized above, we find that the second meets all requirements in the
dominant tree exactly, while the first gives some excess flows-but
of course at no cost in capacity. We shall take up first the problem
of getting as much excess as possible and then the problem of
exactly meeting requirements in the dominant requirement tree.

Note that the numbers u; defined above are the ones that
determine C,, not the requirements. Consequently, once the u; are
determined, all r; can be revised upward to 7; = mm(u,, u;)
without affecting C; (and clearly no further i mcrease is possible on
any arc without affecting C,). If the new requirements F; are now
synthesized they will be met exactly, i.e., the resultmg flows f
satisfy f r;, for f > F; would necessitate, at either N, or N;,a
larger u and hence a larger C,. Also, the synthesized network has
for the same reason the following property: let f;, ; be the flows
provided by any other minimal capacity network satlsfactory with
respect to the original r;, then

f_;'j > f;}’ (au I,J)’

i.e., the network obtained by revising the requirements to F; and
then synthesizing provides, at no cost in total capacity, more (or
the same) flow between every pair of points as does any other
satisfactory minimal network. More flow between any pair of
points can be bought only by increasing total capacity.

We can summarize this property of uniform dominance in the
following theorem which involves , = max;r; and C, = }3 i0yt

THEOREM 3: Given requirements r;, there is a satisfactory net-
work N having capacity C, and giving flows

fy = min(u, »)  (alli # ),
while if f; are the flows from any other satisfactory network N, then
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either N’s total capacity C satisfies
C>C, or f;<f; (alli#)).

We now turn to the problem of exactly meeting the require-
ments in the general case and, of course, at minimal capacity. We
already know how to secure flows f; > the requirements 7. To
secure the opposite inequality, it is only necessary, after decompos-
ing the original requirements into a sum of uniform requirement
trees, to synthesize each uniform tree so that the links of the tree
represent not only requirements, but also minimal cuts of the
synthesized network. For instance, in our example the cut tree of
the cycle used in synthesizing the uniform requirement of 5
(Figure 9) does not have a cut of capacity 5 separating 1, 2 and 3
from 4 and 5, as it would if it were a cut tree. However the
synthesis by the cycle 1, 3, 2, 4, 5, 1 does have the required cut

tree. In superposing requirement trees that are also cut trees,
minimal cuts in the synthesized networks are superposed on
minimal cuts to form minimal cuts. (Clearly, if (4, 4) is the
minimal cut between N; and N; in one network and also in a
second, then it is also a mlmmal cut in the superposed network.)
Thus the original requirement tree is synthesized with a cut cor-
responding to each link. Hence the flow f; between two N, and N,
satisfies

Jy K min(rg, ry, . . ., 1),
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(where the r,, etc., are in T'), for each represents a cut separating
N, from N, i.e., if one can synthesize a uniform tree with desired
cut tree, then the original requirements tree can be synthesized as
a cut set tree, which results in exact synthesis.

To synthesize a given uniform tree as a cut tree is, however,
quite easy. We give the following rule: '

If T’ is a uniform requirement tree, it is synthesized as follows:

Preliminaries: Label all arcs in 7’ with a zero, and choose any
node as starting point. Label this node with 1.

In what follows, when we speak of labeling a node we mean to
assign the first node labeled the number 1, the second node
labeled the number 2, etc.

(1) Find the arc with smallest label v incident to the starting
node (any one will do if there are several).

(1a) If v # 0, you must label the node.

(1b) If v = 0, you may or may not label the node.

(2) Proceed over the arc mentioned in (1) to the next node,
increasing the arc label by 1.

(3) Continue this process until you return to your starting node
and find all incident arcs labeled 2. (This will happen.) Then stop.

We assert that at this point you will have traversed all arcs of
T’ exactly twice (all will be labeled 2), all nodes will be labeled,
and that the cycle consisting of arcs of capacity B/2 with the
nodes taken in order of their labeling (and then returning to the
starting node) is a synthesis of the desired cut tree.

Applying this process to the uniform 5 tree in our example gives
(among others) the cycle used in Figure 9 which resulted in exact
synthesis.

Proving that this general procedure works is rather tedious, so
we give the following procedure which is a specialization of the
one above and whose properties are more easily verified.

Suppose T’ is a uniform requirement tree whose edges all have
value 8. We may construct a cycle A, through all the nodes of 77,
such that A has T as a cut tree, as follows. Label any node of T’
with the number 1. Then repeat the following step until 7" is
completely labeled: If the last label was m, then label with m + 1
any unlabeled node which is then adjacent to node m, if such an
unlabeled node exists; if none exists, label with m + 1 an unla-
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beled node adjacent to a labeled node with the largest label
possible. When T is completely labeled, we define A to go from
node 1 to node 2 to node 3, etc., and finally to return to node 1.
We let every edge of A have capacity 8/2.

Proof: To see that T’ is indeed a cut tree of A, consider any
edge € of T". Suppose the two nodes of € are labeled i and j, with
i <j. Let k be the largest label which occurs in the component
of T’ — € which contains j. Then the minimal cut whose edges

are j — 1,; and k, k + 1 corresponds to €. (If j = 1, then j — 1
means the largest label, and if k = the largest label, then & + 1
means 1.)

We have been discussing the problems of realizability, analysis
and synthesis of multi-terminal network flows, where a pair of
nodes is selected as the source and the sink and all other nodes
serve as intermediate nodes. At a given time, only one pair of
nodes is selected to act as the source and the sink. These problems
are not to be confused with multi-commodity flow problems where
many pairs of sources and sinks are present, and each source has
its special kind of flow to its sink. All kinds of flows are simul-
taneously present in the network, and they share the same arc
capacity. For such problems, the reader is referred to Hu [8].

APPENDIX

The following algorithm is to construct a maximum spanning
tree and to check whether a given symmetrical matrix is realizable
during the construction of the tree. If one wants only the maxi-
mum spanning tree, then the algorithm in [9] or [11] is more
efficient. Geometrically, the algorithm is to choose the longest arc
(the largest number), and then the next longest arc and so forth
(arcs can be chosen only if they form a subtree). This will result in
many disconnected subtrees. For each of the subtrees, we check
that condition (3) is satisfied. Because the length of the arcs is
monotonically decreasing, any arc § which connects nodes belong-
ing to a single subtree but did not do so until the arc » was
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selected should have the same length as ». At the end, the
maximum spanning tree is formed when all the subtrees are
connected.

All this boils down to the following simple arithmetical steps in
the requirement matrix.

The requirement matrix has a border row on the top and a
border row in the leftmost column to indicate the ith row or jth
column, as shown in Table A 1.

In what follows, r; means a matrix element in a row with border
element i and column border element j. The algorithm is then the
repetition of the following two steps:

Step 1. Select the largest number in the matrix proper that has
not been selected or crossed out. (In the beginning, no number has
been selected or crossed out.) Let this number be r;.- Make a check
mark in its box. If p = min(i, j) and ¢ = max(i, j), change all ¢’s
in both borders to p’s. For example, if ;5 is chosen, then change

in the border row and column into

Step 2. Consider all entries (not yet crossed out or selected)
whose border entries are both p. If they are equal to the last entry
selected, cross them out and return to step 1. If even one of them
is not equal to the last entry selected, the matrix is not realizable.

Step 1 and Step 2 are repeated until n — 1 numbers are chosen.
If this can be done, the matrix is realizable.

Take the following table, for example.

®

O|Q|0|0[F 06
OQ|lal 7] 5] 3]6]a
@ ale6 | 7] 53
@ d | 3 | 9v| 4
® d | 8| 4
o [& P
® d

TasLE Al
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Step 1. Select r,s = 9 and change (5) into @

Step 2. The only number ry; is 9 itself, so no crossing out is
required.

Step 1. Select r,; = 8 and change @ into @ . The result
is shown in the following table:

QlOI0|I0|0|®
@Qfa| 7|5 |3 |6 4
® dle6 7|5 |3
©) d X 9¢| 4
©) a | 8y| 4
Q d 5
® d

TABLE A2

Step 2. Check if 3 = 8? As 3 # 8, we know that the matrix is not
realizable, but to illustrate the algorithm, we shall continue check-
ing. Cross out 3.

Step 1. Select r, =7 (r,; =7 can equally well be chosen).
Change @ to .

Step 2. Check r;; =77

Step 1. Select ry; = 7 and change all @ ’s into @ as
shown below.

QIO |O|®
®| 4 7v] 5 3 6 4
) afl 6] 7vl 5] 3
® d | X | ov] 4
O) d | 8v] 4
® a| s
® d

TABLE A3
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Step 2. Check if 5 = 776 = 7? 3 = 77, and cross out 5, 6, 3, etc.,
as shown in Table A 4.

QOO0 |®
Q] a| W X[X]|X] 4
® X7 | X] s
©) a [ XX 9y ¢
©) d | sy| 4
©) d | s
® d

TABLE A4

Step 1. Select 5 in the sixth column and change (§) into @

Step 2. Check if all elements in the sixth column equal 5.

It may be noted that if one rearranges rows and columns such
that rows and columns with same labeling are next to each other,
then the matrix is in Mayeda’s partitioned form.
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