salpmg [eiaqi] pue Bunsauibuz .\_.moxo.ccum [ '82ua128 JO AieiqIT [eUORRUIBIU| PUB Y} BIMUOWWO?) BY |

.A., M.Sc., Ph.D.

Head of Mathematics Department,
Sir John Cass College, London

p
<
k
“
2
0
4
v

Barry Spain m |

SPAIN

ANALYTICAL GEOMETRY




TH. ONWEALTH AND INTERNATIONAL LIBRARY
CIENCE, TECHNOLOGY, ENGINEERING
AND LIBERAL STUDIES

Joint Chairmen of the Hononary Editorial Advisory Board
SIR ROBERT ROBINSON, o.M, E.R.S.
and DEAN ATHELSTAN SPILHAUS

MATHEMATICS DIVISION

VOLUME 9

General Editors:
W. J. LANGFORD, E. A. MAXWELL, I. N. SNEDDON

ANALYTICAL
GEOMETRY



Analytical
Geometry

Barry Spain
M.A., M.Sc., Ph.D.

HEAD OF MATHEMATICS DEPARTMENT
SIR JOHN CASS COLLEGE, LONDON

PERGAMON PRESS
OXFORD * LONDON * PARIS * FRANKFURT

‘ THE MACMILLAN COMPANY
NEW YORK



PERGAMON PRESS LTD.
Headington Hill Hall, Oxford
4 & 5 Fitzroy Square, London W.1

THE MACMILLAN COMPANY
60 Fifth Avenue, New York 11, New York

COLLIER-MACMILLAN (Canada) LTD.
132 Water Street South, Galt, Ontario, Canada

GAUTHIER-VILLARS ED.
55 Quai des Grands-Augustins, Paris 6

PERGAMON PRESS G.m.b.H.

Kaiserstrasse 75, Frankfurt am Main

Copyright © 1963
PERGAMON PRESS LTD

Library of Congress Card No. 63-11611

Set in 10 on 12 pt Times and Printed in Great Britain by
PAGE BROS. (NORWICH) LTD.



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

AU AW~

Contents

1 INTRODUCTION

Coordinates
Distance between two points

. Ratio

Ratio-formula
Area of a triangle
Locus

II STRAIGHT LINE
Gradient
Equation of a straight line
Linear equation
Equation of the straight line through two points
Intercept form
Normal form
Angle between two straight lines
Intersection of two straight lines
Concurrency
Sign of the expression 4 = ax -+ by + ¢
Perpendicular distance of a point from a straight line
Bisectors of angles between two straight lines
Pencil of straight lines
Parametric equations of a straight line

III STRAIGHT LINES
Homogeneous equation of the second degree

13
14
17
18
19
20
22
24
25
26
27
29
31
33

38



vi

22.

23.
24.
25.

26.
217.
28.
29.
30.
31
32.
33.

34.
3s.

36.
37.
38.
39.

41.
42.

43.
44,
45.

CONTENTS

Page
Condition that S = ax®+2hxy+by*+2gx+2fy+
¢ = 0 represents two straight lines 39
Angle between the line-pair S =0 41
Bisectors of the line-pair ax?+2hxy+by? =0 42
Equation of lines joining the origin to the points of
intersection of S = ax®+2hxy+by*+-2gx+2fy+
¢ = 0 and the straight line ¥ = Ix+my+n =0 43
IV CIRCLE
Equation of a circle 46
Length of the tangent from a point to a circle 48
Circle with given diameter 50
Intersection of x2-+3% = r? and y = mx+c 51
Joachimsthal’s equation 52
Tangent to a circle 54
Condition that a line be tangent to a circle 56
Chord joining points of contact of tangents from a
point 57
Pair of tangents from a point to a circle 59
Parametric treatment of the circle 61
V SYSTEMS OF CIRCLES
Angle of intersection of two circles 65
Radical axis 67
Radical centre 68
Coaxal circles 69
. Intersecting coaxal circles 71
Non-intersecting coaxal circles 72
Conjugate system of coaxal circles 73
VI ELLIPSE
Ellipse 75
. P
Intersection of P -+ " 1and y = mx+c 77

Tangent properties 80



46.
47.
48.
49,

50.
51.
52.
53.
54.
55.
56.

57.
58.
59.
. Chord of contact
61.
62.
63.
64.

65.
66.
67.
68.
69.
70.
71.
72.
73.

CONTENTS

Parametric equations
Conjugate diameters
Normal

Geometrical properties

VII HYPERBOLA
Hyperbola
Tangent properties
Parametric equations
Asymptotes
Conjugate diameters
Normal
Geometrical properties

VII RECTANGULAR HYPERBOLA
Rectangular hyperbola
Parametric equations of rectangular hyperbola
Chord and tangent

Conjugate diameters
Normals

Concyclic points
Tangent properties

IX PARABOLA
Parabola
Parametric equations
Chord and tangent
Chord of contact
Diameters
Normals
Concyclic points
Geometrical properties
Tangent properties

ANSWERS

vii
Page
82
84
87
88

92
95
96
98
100
101
102

105
108
110
113
115
116
118
119

123
124
126
128
129
130
131
132
134



Preface

THIS textbook contains a treatment of the various topics in
analytical geometry which are required for the advanced and
scholarship levels in mathematics of the various Examining
Boards. The text begins with a chapter on coordinates, distance,
ratio, area of a triangle and the concept of a locus. This is followed
by chapters on the straight line, straight lines, circle, systems of
circles, ellipse, hyperbola, rectangular hyperbola and parabola.
The last four chapters can be taken in any order whilst chapters
three and five can be omitted.

The following selection of sections is recommended for the
Advanced Level syllabus of the University of London School
Examinations Council: 1~18, 20, 26-32, 35, 43-44, 46-50, 52-56,
58-59, 62, 65-67, 70 and 72.

Exercises have been provided for each section and, in addition,
each chapter ends with a miscellaneous set of examples. Further,
answers are supplied at the end of the book.

In the preparation of the text, I have benefited by the advice and
criticism of Dr. A. E. Maxwell. My thanks are due to him and to
Mr. A. J. Walker who read the manuscript and supplied a large
number of the exercises. Finally I wish to thank the authorities
of the University of London for permission to include examples
from Examination Papers.



CHAPTER 1

Introduction

1. Coordinates

Select two mutually perpendicular straight lines X’OX and
Y’OY (Fig. 1), called the x-axis and y-axis respectively. Let P be
a point in the plane of the axes and draw PL and PM perpendicular

\
M P
X 0 L X
v
Fic. 1

to the x-axis and y-axis respectively. The distances MP and LP,

which we shall denote by x and y respectively, are called the

coordinates of the point P with respect to the given axes. The

position of P is uniquely determined by its coordinates, and a

pair of coordinates determines a unique point in the plane if we
1



2 ANALYTICAL GEOMETRY

make the convention that the directions OX and OY are positive,
whilst the opposite directions OX’ and OY’ are negative. The
coordinates x, y are called the abscissa and ordinate respectively.

The axes divide the plane into four regions called the first,
second, third and fourth quadrants. The signs of the coordinates
in the four quadrants are shown in Fig. 2.

Y
Second quadrant First quadrant
x-ve x+ve
y+ve y+ve
X' 0 X
Third quadrant Fourth quadrant
x—ve xtve
y—ve y—ve
Y
FiG. 2

All points on the x-axis have zero ordinate, whilst all points on
the y-axis have zero abscissa. In particular, both coordinates of
the point O, called the origin, are zero.

The point P whose coordinates are x and y will often be denoted
by P(x, y) or (x, y). Note carefully that (x, y) and (y, x) represent
different points except when x = y.

EXAMPLES

1. Plot the points (3, 4); (—1, 4); (—1,0). Show that they are the vertices
of a square and find the coordinates of the fourth vertex.
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2. If N is the foot of the abscissa of the point P(x, y) and PN is produced
to Q so that PN = NQ, find the coordinates of Q.

3. If the point P(x, —y) is joined to the origin O and produced to Q so
that PO = 0Q, find the coordinates of Q.

4. ABCD is a parallelogram. If the coordinates 4, B, C are respectively
©, —1), (4, 3) and (2, 4), find the coordinates of D.

5. Show that the four points (a, b), (—a, b), (a, —b) and (—a, —b) form
the vertices of a rectangle whose diagonals intersect at the origin. What are

the coordinates of the points in which the axes intersect the sides of this
rectangle ?

6. Two vertices of an equilateral triangle are at (0, 0) and 24, 0). Obtain
the possible coordinates of its third vertex.

2. Distance between two points
In Fig. 3 draw P,L and P,M perpendicular to and P, N parallel
to the x-axis. Let P; and P, be the points (x;, ¥;) and (x5, y,)

Y
PZ
P, N
X' [¢] L M X
Vv

FiG. 3

respectively. Then P,NP, is a right-angled triangle in which
P,P;* = P,N* -+ NP,2. We have P,N = OM — OL = X, — x,
and NP, = MP, — LP, =y, — y,. Hence
PPy = +/ {(xz—x1)* + (:—y1)%-
In particular, the distance of P, from the origin is 1/(x,% + y,%).
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EXAMPLES

7. Calculate the distances of the following points from the origin:—
@) 2, —3); Gi) (=1, —1); GiD) (3, 4); (V) 2 cos 6, 2 sin 6); (v) (tan ¢, 1);
(vi) (a, b).

8. Calculate the distance between the points (i) (2, 3), (1, 1); (i) 2, —1),
(—1, —5); (iii) (a, 0), (0, b); (iv) (22 —1, t—1%), (¢%, —t —17).

9. Find the lengths of the sides of the triangle with vertices at the points
(5, —1), (7, 2) and (1, —4).

10. Show that the distance between the points (—1, 0) and (9, 5) is five
times the distance between (—1, 0) and (—2, —2).

11. Prove that the triangle with vertices at the points (0, 3), (—2, 1) and
(—1, 4) is right-angled.

12. Show that the three points (—%, —1), (—3, 1) and (v/3 —1, }v/3)
form the vertices of an equilateral triangle whose side is of length /5.

13. Show that the four points (1, —4), (1, 0), (3, —2) and (—1, —2) form
the vertices of a square and calculate the length of a diagonal.

14. ABCD is a rhombus. If the coordinates of 4, B and C are respectively
1, v/3), (0, 0), (2, 0), determine the coordinates of D and hence find the
lengths of the diagonals.

15. Prove that the distance between the points (ct2, 2ct) and (c/t2, —2¢/t)
is given by c(z+1/)2.

16. Show that the point (a(a+1)/2, b(b+1)/2) is equidistant from the
points (a, b) and (a2, b?).

17. If C is a fixed point given by (—g, —f)and a point P(x, y) is found so
that PC is a constant distance r, prove that x2+y?+2gx+2fy-+k = 0, where
k= g*+fr—r.

18. Find the coordinates of the point which is equidistant from the three
points (—5, —4), (—3, —2) and (—1, —6). Deduce the length of the radius
of the circumcircle of the triangle formed by the three points.

19. If A(—1, 3) and B(4, 2) are two fixed points and a point Q(4, k) is
chosen so that Q4 = QB, obtain a relation between & and k.

20. A4 and B are the points (2, —1) and (1, —3) respectively. If the point
P(x, ») is chosen so that PA = 2PB, show that x®+y*+10y-+15 = 0.

3. Ratio

Let P;, P, be two points and P a point on the line joining them.
Then P divides P,P, in the ratio P,P/PP,. It is essential in this
definition of ratio to regard distances measured in one direction,
say P,P,, as positive and in the other direction as negative.

Figure 4 illustrates the three possible cases which may arise. In
(a), the ratio is positive; in (b) the ratio is negative but numerically
greater than unity whilst in (c) the ratio is negative but numeric-
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ally less than unity. The ratio P,P/PP, never equals —1 for any
position of P.

A 5 5, @
P, Py P (b )
P ) s,
Fic. 4
EXAMPLE

21. Given the points P,(0, —2) and Py(0, 3), find the point P which divides
PP, in the ratio (i) %; (i) %; (i) — %; Gv) — 3.

4. Ratio-formula

We wish to obtain the coordinates of the point which divides
the join of two given points in a given ratio. Let Py(x,, y;) and
Py(x,, y;) be the two given points and let P(x,y) be the point
which divides P, P, in the ratio P,P/PP, = A/A,. In Fig. 5 draw
P,L,, P,L, and PL perpendicular to the x-axis. Then

Ao/Ay = PyP|PPy = L, L|LLy = (x — X)/(x3 — X)
from which
AgXy — AoX = A X — AyXy
and so
_ A xy + A%,
At A T

Similarly, by drawing perpendiculars P,M,, P,M, and PM on
the y-axis, we deduce that
Ay + /\23’2.

YE TN F A
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This proof is independent of the position of P on the line P, P,
and so these results are valid also for ratios which are negative.
In particular, the mid-point of the line joining (x,, ¥;) and

(x3, y2) is the point (3(x; + X2), 3(¥1 + ¥2))-

Y

FiG. §

Note: The ratio P,P/PP, has been taken to be Ay/A; (not A,/2,)
in order to agree with the result in Mechanics that P is the centre
of mass of masses A,, A, at P,, P, respectively.

Hllustration: Prove that the medians of the triangle formed by the
points Py(x;, ¥1), Po(xs, ;) and Py(x,, y;) are concurrent at the
point (3(x; + X3 + X3), 3(y1 + ¥2 + ¥3) ).

The mid-point of P,P; is at the point A,(3(x; + x3), (¥ + ¥3) ).
The point G which divides P,4, in the ratio 2/1 has coordinates

w28l Iy g Rt
2+1 ’ 241 ’
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That is, (30 + X, + x3), 3(y1 + 32 + y3). By symmetry, G,
called the centroid, lies on each median of the triangle and so
the medians are concurrent at the required point.

EXAMPLES

22. Verify the results of Example 21 by the ratio-formula.

23. Find the coordinates of the point which divides the line joining the
points (—1, —5), (1, —2) externally in the ratio 4 : 3.

24. Find the coordinates of the point which divides the line joining the
points (—3, 4), (5. 6) internally in the ratio 3 : 2.

25. If P(0, 4) divides the line joining (—4, 10) and (2, 1) internally, find
the point which divides the line externally in the same ratio.

26. In what ratio does the point (—1, —1) divide the join of (—5, —3) and
5,2)?

27. In the triangle ABC, A is the point (2, 5) and the centroid is at (—1, 1).
Find the coordinates of the mid-point of BC.

28. If the vertices of a quadrangle PQRS are given by (x,, ¥,) when r =
1, 2, 3 and 4 respectively, find the mid-point of the line joining the mid-points
of PQ and RS. Hence prove that the straight lines which join the mid-points
of opposite sides of a quadrangle bisect each other.

29. Ry, R; and R, divide the sides B,C,;, Ci4, and A,B, of the triangle
A,B;C, in the same ratio. Show that the centroids of the triangles A4,B,C,
and R,R,R; coincide.

5. Area of a triangle

Consider the triangle OP,P, (Fig. 6) with one vertex at the
origin and the others at P,(x,, y,) and Py(x,, ¥»). Draw P,L, and
P,L, parallel to and P, M perpendicular to the y-axis. The area 4
of the triangle OP,P, is given by

A = AOLP, — AOL,P; — AP,MP, — rectangle L,L,MP,
= § XY — Fxye — (%2 — X)) (02 — y1) — 102 — X))
= 3 (xys — X91).

We note that this expression for 4 changes in sign but not in
magnitude if (x;, y;) and (x,, y,) are interchanged. That is, the



8 ANALYTICAL GEOMETRY

area of a triangle is a quantity with a sign which depends on the
order in which the vertices are taken.
Introduce the angles L,OP; = a, and L,0OP, = a, and we obtain

A = } OP,. OP, (cos a, sin a; — COS ay Sin a;)
= %0P1.0P2 Sin (az‘— a'l)'

In order that A be positive, it is necessary and sufficient that
0 <ayg — oy < .

Y
P
Q. 2
P\
- \
-~
~ \
- \
<7 \
Q| \\\ \
=~
X (0] Ly Ly X
v

FiG. 6

At this stage we make the convention that the area correspond-
ing to the ordering O, P, and P, of the vertices is given by

A OPyPy =} (X195 — Xp)1)
== %OPI. Opzsin(az'—“ al)-

It follows that the area is positive if the vertices O, P, and P, are
in counter-clockwise order but negative if the vertices are taken
in clockwise order.
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The dotted triangle 0Q,Q, (Fig. 6) is an example of a triangle
for which the cyclic order of its vertices O, Q, and Q, is clock-
wise and so the area formula will produce a negative area in
keeping with the fact that sin (L,0Q, — L,0Q;) <O0.

Now let us calculate the area of the triangle formed by the
points Py(x,, 1), Pe(Xs, ¥,) and Py(x,, y3). The various possible
positions of the origin O relative to the triangle P, P,P, are depicted
in the seven diagrams of Fig. 7. Bearing in mind that the area of a

o]
OEPZ
P P P3 Py
Py P, P> o
] P3 Py P; P,
(o}
P P,

Fic. 7

triangle is positive if the vertices are in the counter-clockwise
order but negative if in clockwise order, the area equation

A P,P,Py = A OP,P, + A OP,Py + A OP,P,
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holds in all cases. Application of the formula A OP,P, =
1 (x1y2 — xp)1), etc. yields the result*

A PPPy = § (X1Y5 — XoYy + Xo¥3 — X3Ya + X3)1 — X1¥s)-

The points P;, P, and P, are collinear if and only if the area
of the triangle P,P;P; is zero. Hence a necessary and sufficient
condition for the collinearity of the points P, P, and Py is

X1(Ya—ys) + Xo(ys—y1) + X3s(y1—y2) = 0.

EXAMPLES

30. Find the area of the triangle with vertices at the points (0, 0), (12, 0),
(0, 5). Verify your result without use of the formula proved in this section.

31. Find the areas of the triangles with the following vertices: (i) (0, 0),
1, 3), @4, 2); @) ©, 0), (a, B), (B, »; (iii) (0, 0), (2 a sin a, 2 a cos a),
(sin B, cos B).

32. Calculate the area of the triangle with vertices at (i) (0, 2), (—2, 1) and
(=3, —2); (i) (=2, 3), (4, 3) and (1, 1).

33. Obtain k so that the area of the triangle with vertices at (—1, k),
(k—2, 1) and (k—2, k) is +123.

34. Find the area of the quadrilateral whose vertices are the points (1, —1),
(3, 1), (—2, 3) and (-1, —2).

35. If the vertices of a quadrilateral with area + 14 are (—1/2, 3), (—1, —2),
(3/2, —1) and (r, s) respectively, show that s+2r = 3.

36. Find the area of the triangle with vertices at (¢, (14-¢)), 2+2¢, t—1)
and (2—1, 2¢). For what values of ¢ are the three points collinear ?

37. Find the area of the triangle with vertices at (p—4, p+5), (p+3, p—2)
and (p, p—4). Explain why your result is independent of p.

38. If A, B, C, D are the points (3, 1), (7, —3), (8, —1) and (19, —3)
respectively, show that the areas of the triangles ABC and ADC are equal in
magnitude but opposite in sign.

39. A parallelogram ABCD has vertices A(1, 2), B4, 3), C(—5, —10).
Find the coordinates of D and the acute angle between the diagonals. Find
also the area of the parallelogram and the shorter of the two distances between
a pair of parallel sides. (U.L)

*The reader familiar with determinant theory will recognize this result in
the form

| X1 N 1

|
APPP; =} Xa Y2 1

X3 Y3 1
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6. Locus

Consider the straight line parallel to the x-axis through the
point (0, 2). All points of this line have the ordinate 2 but no other
points in the plane have ordinate 2. We say that y =2 or
¥ — 2 = 0 is the equation of this straight line.

Further, consider the circle of unit radius with centre at the
origin. The coordinates (x, y) of any point on the circumference
satisfy the equation x2 -- y2 = 1 but the coordinates of all other
points do not satisfy this equation. We say that x2 4 y2 = 1 is
the equation of this circle.

In general, a curve is defined by some geometrical property
common to all its points. This property determines an equation
which is satisfied by the coordinates of all points on the curve,
but not satisfied by the coordinates of other points. Conversely,
all points whose coordinates satisfy a given equation lic on a
curve called the locus corresponding to the given equation.

Some equations do not determine a curve as locus. For example,
the equation x2 + y2 = 0 is satisfied only by the coordinates of
the origin whilst no points have coordinates which satisfy the
equation x2  y2 1 = 0.

EXAMPLES

40. A point (x, ) moves so that its distance from the fixed point (a, 0) is
equal to its distance from the x-axis. Prove that the equation of the locus is
given by y* = a(2x—a).

41. Obtain the equation of the locus of a point which is equidistant from
the points (—1, 2) and (2, —2).

42. Obtain the equation of the locus of a point which is distant 3 from the
point (3, —1).

43. Find the equation of the locus of a point whose distance from (—1, 1)
is equal to twice its distance from the x-axis.

44. Obtain the equation of the locus of a point which divides the join of
(—1, —1) and a variable point on the circle of radius 2 with centre at the
origin in the ratio 3/2.

45. A point P(x, y) moves in such a way that the area of the triangle
formed with 4(1, —1) and B(5, 2) is of magnitude 5 units. Find the locus of
P and illustrate it in a diagram.
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MISCELLANEOUS EXAMPLES

1. Show that the three distinct points (¢,2,1,), (z.% #;) and (252, ¢;) can never be
collinear.

2. The four points 4(a, 0), B(8, 0), C(y, 0) and D(3, 0) are such that a and
Bare the roots of ax?+2hx+b = 0 and y, 3 are the roots of a’x?+2h'x+b"'=0.
Show that the sum of the ratios in which C and D divide 4B is zero if
ab’ + a’b = 2hk'.

3. What are the coordinates of 4 if the point (2, 1) divides the join of
(—2,—1) and A4 in the ratio 2/3?

4. Prove that the lines joining the mid-points of opposite sides of a quadri-
lateral bisect each other.

5. A and B are the points (cos ¢, sin #) and (sin #, —cos f) respectively.
Find the equation of the locus of the centroid of the triangle formed by 4,
B and the origin as ¢ varies.

6. Show that the points (a, 0), (at,?, 2at,) and (at,%, 2at;) are collinear if
tit, = —1.

7. Obtain the coordinates of the vertices of the triangle whose mid-points
are at (2, 1), (—1, 3) and (—2, 5).

8. A4, B and C are the points (—1, 2), (3, 1) and (~—2, —3) respectively.
L, M and N divide BC, CA and 4B in the ratios 1/3, 4/3 and —9/4 respectively.
Show that the points L, M and N are collinear.

9. The points A(1, —2), B(6, 10), C(26, 25) are vertices of a parallelogram
ABCD. Find (i) the coordinates of D; (ii) the area of the figure; (iii) the tan-
gent of the acute angle between the diagonals AC and BD. (U.L.)

10. Two vertices of a triangle are the points (25, 2), (10, —10) and the
centroid is the point (7, 4). Find the coordinates of the third vertex and show
that the triangle is right-angled.



CHAPTER II

Straight Line

7. Gradient

The gradient m of a straight line is defined to be tan 4, where ¢
is the angle which the straight line makes with the positive direc-
tion of the x-axis. Figure 8(a) illustrates the case when ¢ is acute
and so tan ¢ is positive and the straight line has positive gradient.
Figure 8(b) illustrates the other possibility when ¢ is obtuse but
less than two right angles. In this case tan ¢ is negative and the

vyl (a) {b)

FiG. 8

straight line has negative gradient. In particular, the gradient of
the x-axis is zero, whilst the gradient of the y-axis is infinite.

It follows immediately from the definition that the gradients of
parallel lines are equal.

Through two points P,(x;, ;) and Py(x,, ¥,) on a straight line

13
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draw P,T parallel to and P,T perpendicular to the x-axis. In either
case, we have

m = tan ¢ = TP,/P.T

since in the case of negative gradient we must measure P,T in the
negative direction. Hence

Yo — N,
Xog — Xy

m =

That is, the gradient of a straight line is equal to the ratio of the
differences of the ordinates and abscissae of any two points on it.

EXAMPLES

1. Calculate the gradients of the line determined by the two points (i) (1, 0),
©, 1); G) 1, —2), (=3, 1; (i) (—4, —3), 2, —5); (v) (tan fg, 1),
(— tan g, tan? ;—').

2. Prove that the quadrilateral given by the points (—1, 0), (3, 2), 4, 5)
and (0, 3) is a parallelogram.

3. Find the gradient of the line joining the points on the curve
y = 3x2—2x-+1 whose abscissae are —1 and 2.

4. What are the gradients of the lines joining the origin to the points of
intersection of y = x2 and 2y = x+1?

5. Write down the gradient of the chord joining the points (at,2, 2at,) and
(at,2, 2at;). What value does this gradient tend to as #;,—, tends to zero?

8. Equation of a straight line

It is clear that x = a is the equation of a straight line parallel
to the y-axis and distant a from it. Similarly, y = b is the equation
of a straight line parallel to the x-axis and distant b from it.

Next, consider (Fig. 9) a straight line of gradient m which
passes through the origin. Let (x, ) be the coordinates of a vari-
able point P on the straight line. Draw PL perpendicular to the
x-axis. Then the gradient of this line is LP/OL and so m = y/x.
Hence the equation of the straight line is

y = mx.
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Y’
FiG. 9

More generally, consider (Fig. 10) the straight line which passes
through P,(x,, »;) and makes an angle ¢ with the positive direction
of the x-axis. Let P(x, y) be a variable point on the straight line.
Draw P,L, and PL perpendicular to and P,T parallel to the x-axis.

Y
e
P
/ '
X 0 Ly L X
Y’

FiG. 10
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The gradient m of the straight line equals tan s = TP/P,T =
(» — yD/(x — x;) and so the equation of the straight line is

y—y=mx— Xy)-

Note that the equation is linear in x and y.

In particular, the straight line of gradient m which intercepts a
distance ¢ on the y-axis passes through the point (0, c) and so we
can put x; = 0, y; = ¢ and obtain the equation of the line in the
form

y=mx + c.

EXAMPLES

6. Obtain the equation of the straight line (i) through (—1, 2) making an
angle 45° with the x-axis; (ii) through (1, —3) with gradient 2; (iii) through
(—1,4) and (1, 2).

7. Write down the gradients and the intercepts on the y-axis of the
following straight lines: (i) y+2x = 3; (i) Sx—4y = 1; (i) x = 2+3y,
V) x/2—y/3=2; (V) xcos a + ysina=p; (vi) x/a + y/b=1.

8. Write down the equations of the straight lines which satisfy the following
conditions: (i) gradient } and intercept 2 on the y-axis; (i) gradient —2 and
intercept 3 on the y-axis; (iii) gradient —1 and intercept —1 on the y-axis.
Illustrate your lines in a rough sketch.

9. Which of the following pairs of straight lines are parallel?

(i) 3y—2x =5, 4x = 6y—3; (ii) ay—bx = ¢, ax = by-+c; (iii) x/fa—y/b = 1;
acy = bex—abc; (iv) x cos a—y sin @ = p, x = y tan a-+q sec a.

10. Obtain the equation of the straight line through the origin parallel to
the line given by 2y—3x = 4. In what way do the equations of parallel lines
differ?

11. Form the equation of the line with gradient 1/# which passes through
the point (at?, 2at).

9. Linear equation

We have seen that the equation of a straight line is linear in
x and y. Conversely, we now show that every linear equation
represents a straight line.

The general linear equation is of the form

ax + by +c=0.



STRAIGHT LINE 17

If 5 = 0, we can solve for x to obtain x = — ¢/a which repre-
sents a straight line parallel to the y-axis.
If b # 0, the equation can be written

¥y — (— ¢/b) = — (a/b)x,

which represents a straight line with gradient — a/b through the
point (0, — ¢/b).

Consider any point Py(x,, y;) whose coordinates satisfy the
equation ax; + by, + ¢ = 0. It is easy to verify that the gradient
of the straight line joining (x,, ,) and (0, — ¢/b) is — a/b and so
must lie on the straight line y — (— ¢/b) = — (a/b)x.

Thus a linear equation always represents a straight line, and no
points other than points of the straight line have coordinates which
satisfy the linear equation.

Further, it is clear from the work of this section that
kax 4 kby 4+ kc = O represents the same straight line as
ax + by +¢ =0. In fact, the equation ax + by + ¢c =10
contains two arbitrary constants, namely the two ratios
a:b:c It follows that the equations ax 4+ by + ¢ =0 and
ax + By + y = 0 represent the same straight line if and only
if afa = b/B = cfy.

EXAMPLES

12. If Ix+my-+3 = O represents the same line as 2y = 3x—1, determine
the values of / and m.

13. Find which of the following sets of three points are collinear: (i) (0, 0),
2,~1), (=4, 2); (i) {(a, b), (0, 0), (1/b, 1/a); (iii) (1,—1), (1, 1); (3,—2);
(iv) (2¢/a, c/b), (c/a, 0), ((1+c)/a, 1/b).

14. Prove that the equations x sin aty sec a = tan a and
X cos a+y cos a = ] represent the same straight line. .

15. Show that (b—c)x+(c—a)y+(a—b) =0 and (B*—cd)x+(E—a®)y+
(a®*—b®) = 0 represent the same line if b=c or c¢=a or a=b or
a+b+c=0.

10. Equation of the straight line through two points
Consider the straight line determined by the two points (x;, y,)
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and (x,, y,). The gradient of the line is (y, — yy)/(x2 — xy). Thus
the equation of the straight line is

oy =2 TN
y y 1 x2 _ xl (x xl)s
which can be written in the more convenient form*
Y= _ Je— N1
xX— X Xg — X1

The reader is asked to verify that the interchange of the suffices
1 and 2 leads to the same result.
Alternatively, the equation

alx — x) +b(y —y) =0
is linear in x and y and so represents a straight line, Further it is
satisfied by x = x, and y = y, and hence passes through (x;, ).

It passes through (x,, y,) and so by substitution

a(x, — x;) + b(y; — y1) = 0.
Elimination of the ratio a/b yields the previous result.

Illustration: The equation of the straight line joining (2, — 3) and
(—2,1)is
y+3_1-(=3_ 4
x—2 —2—2  —4

and so the resulting equation is x + y + 1 =0.

=—1

EXAMPLES

16. Obtain the equation of the straight line joining the points (i) (1, 2),
(—1,3); Gi) (1,9, @, —2); (i) (—1, —4), 2, —3); (V) (4, 0), 0, )).

* This equation can be written in the determinantal form

x y 1
X " 1 = 0.

X3 Y 1
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17. Find the equation of the line joining the points (at,?, 2at)) and
(ats?, 2at;).

18. Show that the equation of the line joining the points (z cos 8, b sin 6)
and (a cos y, b sin ¢) is given by

(. 0, 4 y( ) ¢)_ 0 4
E(l tanf“‘“’j)"'i, tan§+ tanE —1+tan§tani

11. Intercept form
The equation of the straight line which intercepts distances
a and b on the x-axis and y-axis respectively is

X y
atT =1
since this equation is linear in x and y and is satisfied by the
coordinates of the points (a, 0) and (0, b).
Alternatively, this equation can be obtained by noting that the
gradient is — b/a and that the line passes through the point (g, 0).
Note carefully that the sign of a is positive or negative according
- as the straight line cuts the positive or negative part of the x-axis,
whilst b is positive or negative according as the straight line cuts
the positive or negative part of the y-axis.

EXAMPLES

19. Find the equation of the straight line which intercepts distances 2 and
—1 on the x-axis and y-axis respectively.

20. Obtain the equation of the straight line through (2, —1) parallel to the
straight line which intercepts distances 2 and 3 on the x-axis and y-axis
respectively.

21. Write the following linear equations in intercept form:

@ 3y—x+9=0; (i) y = mx+c;
(i) Ix+my+n=0; (iv) xcosatysina = p.

22. Express the following equations in intercept form and hence write
down the intercepts made by the lines on the x and y axes respectively:

@) 3x/4—y/3 =1/6; (i) y=2x+4; (ii) 4x+3y—2=0.

12. Normal form
In Fig. 11 draw OL perpendicular to the straight line 4B. Let
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the angle between this perpendicular and the positive direction
of the x-axis be a, where 0<< a < 7. Let the length of OL be p,
considered positive if L lies in the first or second quadrant or on
the positive x-axis but negative if L lies in the third or fourth

1/ N\
a B
L
P
p a 3
X /A 0 X X 0 A\X
v {b) (a) .
Y Y
a aQ
XA p/|0 X X OoN\p A X
B
[ L
B\ /
Y (c) @
Fic. 11

quadrant or on the negative x-axis. Then in all cases correspond-
ing to 0 < a < m, the intercepts on the axes are p sec a and
p cosec o. Hence the equation of the straight line AB by the inter-
cept form is

x y _
pseca +pcose0a L
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which can be written in the so-called normal form
xcosa + ysina = p,

The equation ax 4 by -+ ¢ = 0 can be expressed in normal
form. By comparison with x cos a + y sin a = p, we have

(cos a)/a = (sin a)/b = — pjc.
Hence
- a b c
V@) e re P =T @
We select the solution a which lies in the first or second quadrant
and then p is uniquely determined.

Hllustration: Express x + 3y 4+ 1 = 0 in normal form.
The comparison with x cos a + y sin a = p yields

Cos a = , Sina =

cos a = (sin a)/3 = — p.

Thus cos e = + 1/4/(10), whilst sin & = 4- 3/4/(10). The appro-
priate solution for a is the acute angle tan—13 === 71° 30’ and it

follows that p = — 1/4/(10). Hence the normal form is
x cos 71° 30" + ysin 71° 30’ = — :3162.
EXAMPLES

23. Express the following equations in normal form: (i) 3x+4y—5 =10 ;
(i) 5x—12y426 =0; (i) x—y—1=0; (iv) x+1/3y+2=0.

24, Write the following equations in normal form and hence find their
distances from the origin:

() 3x—4y=75; (ii) y=mx+c;
Gii) Ix+my+n=0;  (iv) xjaty/b = 1.

25. A line has gradient —5/12 and is distant 2 units from the origin.

Determine the possible equations of the line in normal form.

13. Angle between two straight lines

We wish to calculate the angle ¢ between the two straight lines
whose gradients are m;, and m,. Consider the parallel lines through
the origin (Fig. 12) with gradients m, and m,. Then

tan ¥, = my, tan o, = m,
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and so
tan ¢ = tan (l/l —¢) = tan ¢2 - tanlpl — m2 — My
PV T I+ tandp tanyy 1A mymy

This formula yields the acute or obtuse angle between the two
straight lines according as i, is greater than or less than ¥,
respectively.

o

Fic. 12

Two straight lines are mutually perpendicular if and only if
¢ = }m. That is, tan ¢ is infinite and so 14mymy,=0. Hence
the product of the gradients of perpendicular straight lines is
equal to —1,



;
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The straight lines a,x+b,y+¢; = 0 and a,x+b,y+c, = 0 have
the respective gradients —a,/b, and —a,/b,. Hence the angle
between them is given by

_ % ( _&)
— b2 bl alb2 _ a2b1
tan ¢ 1 _%e\(_ 4  aay + bib,
sl A

and the straight lines are perpendicular if and only if
a,a,+b,b, = 0,

It is an immediate deduction that the straight line through
(x1, y» perpendicular to ax+by+c = 0 has the equation

b(x—xy) — a(y—y)) = 0.

More generally, any straight line perpendicular to ax-+by+c =0
has an equation of the form bx—ay+k = 0, where k is a constant
which can be determined by some further condition.

EXAMPLES

26. Find the acute angle between the following pairs of stralght lines:
() 2x—y+1=0,3x = y+5; (i) 4x+3y =1, x+5y—4=0;
(iii) 3x—2y+7 =0, 2x4-3y—1 = 0.

27. Calculate the angles of the triangle formed by the three straight lines
x+y=3,x+3y =3 and 3x+2y = 6.

28. Obtain the equation of the straight line through (—1, 3) perpendicular
to 6x—7y—1=0.

29. Prove that the line joining (2, —2) and (1, 2) is perpendicular to the
line joining (4, 1) and (8, 2).

30. Obtain the equations of the lines which pass through (1, 2) and make
an angle of 45° with the line 3x—y+7 = 0.

31. Prove that the four straight lines 4x—3y—5 =0, x—2y—10 = 0,
7x+y—40 = 0 and x+43y+10 = O form the sides of a cyclic quadrilateral.
(The reader is well advised to draw a rough sketch before calculating any
angles.)

32. A and B are the two fixed points (3, 2), (—3, —1) respectively. A point

B



24 ANALYTICAL GEOMETRY

P moves so that the angle APB is a right angle. Show that the locus of P is
given by x24-y?—y—11 = 0. What does this represent geometrically ?

33. Prove that any line perpendicular to the line x/a+y/b = 1 may be
written in the form x/b—y/a = ¢ where c is arbitrary.

34. Find the equation of the perpendicular bisector of the line joining the
points (a, 0) and (0, b).

35. Prove that the triangle PQR in which the points P, Q, R are respectively
@3, 5), (7, —1) and (1, —5) is right-angled at Q.

14. Intersection of two straight lines
The point of intersection of the two straight lines

a1x+b1y+cl = 0,
ax+by+c, =0
has coordinates (x, y) which satisfy both equations. Hence the

solution of the two simultaneous equations yields the point of
intersection at

bycs — by, €1as — Cz‘h)
aby — azb;’ ab, — azb,

There is a unique point of intersection of the two straight lines
unless the denominator a,b,—a,b, is zero, in which case the straight

lines having the same gradient (—a,/b;, = —a,/b,) are parallel or
coincident.
EXAMPLES
36. Find the coordinates of the vertices of the cyclic quadrilateral of
Example 31.

37. The triangle ABC has its vertices at the points 4(1, —1), B(3, 4) and
C(2, 5). Find the equations of the altitudes through A4 and B and obtain the
coordinates of their point of intersection O. Verify that the gradient of OC is
—2/5. What can you deduce about the altitudes of this triangle?

38. The two lines 2y = x+3 and y = mx—2 are inclined at an angle of
45°. Find two values for m and hence find the points of intersection of the
two pairs of lines.

39, Obtain the equation of the straight line through the point of inter-
section of x+3y+2 = 0 and x—2y—4 = 0 perpendicular to 2y+5x = 9.
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15. Concurrency
The three straight lines

ayx+byy+e; =0,
ax+byy+c, =0,
asx-t+byy+c3 =0

will be concurrent at the point (x, y) if x and y simultaneously
satisfy these three equations. The solution of the first and second
equations is displayed in the preceding section. Substitution in
the third equation followed by multiplication by (a,b,—a,b;)
yields the result*

ay(bycy—byey)+by(c1a,— o) +-c5(asb,—azh;) = 0.
That is,
1byC3+ayb 501+ A3biCa—a1bacy—anbyc3—ashycy = 0,

in which the terms with indices in the cyclic order 1, 2, 3 have
opposite sign to the terms with indices in the cyclic order 1, 3, 2.

Consider the three lines x+y+1 =0, x+y+2 = 0and x+y+
3=0. In this case a,=b,=a,=b,=a;=bz=c, = 1, ¢; = 2 and
¢; = 3. We readily verify that the above condition is satisfied,
but the three lines are parallel and so not concurrent. Thus the
condition for concurrency is a necessary condition but not a
sufficient condition.

It can be proved, but the details are somewhat tedious (and so
we omit them) that the condition of this section implies that the
straight lines are either (i) concurrent, (ii) parallel or (iii) such
that two at least of the three lines are coincident.

a, by Cy
a, b, Cy = 0 in determinantal form.

as by cs
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EXAMPLES

40. Verify that the straight lines x+2y =1, 3x—2y+4 =0 and
x—6y+6 = 0 are concurrent.

41. Show that a necessary condition for the concurrency of the three
straight lines ax-+by+c = 0, bx+cy+a =0 and cx+tay+b =0 is
a*+b*+c® = 3abc.

42, In the triangle formed by X(—1,1), Y(3,0) and Z(1, 4), prove that
the medians are concurrent.

43. Show that the line which passes through the points (6, 0) and (—2, —4)
is concurrent with the lines 2x—3y—11 = 0 and 3x—4y = 16.

44, Prove that the line through the point (—4, 6) concurrent with the lines
3x—2y+3 = 0 and 5x+6y—2 = 0 passes through the origin.

16. Sign of the expression u = ax+by-+c

Let the straight line u = ax+by+c = 0 intersect the join of
Py(x,;, ¥)) and Py(x,, ¥») at the point P where P,P[PP, = XpfA;.
The coordinates of P are (Ax+Ax)/(M+2;) and
(At A1)/ (A X,). Since P lies on u# = 0, we have

a(Axy 4 2x0) +b(Ay1+ Aoy (A + 25) = 0
from which we obtain that
A axy +by + ¢

A ax, + by, + ¢

FiG. 13
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If ax,+by,+c and ax,+by,+c have the same sign, the ratio
A/ Ay is negative and so P lies outside P, P, (Fig. 13a). Hence P, and
P, lie on the same side of the straight line # = 0. If, on the other
hand, ax;+by,+c and ax,+by,+ ¢ have opposite signs, the ratio
Ao/ A, is positive and so P lies between P; and P,. Hence P, and P,
lie on opposite sides of u = 0 (Fig. 13b).

The sign of ax;-}-by,+c has in itself no particular significance
since ax+by+c = 0 and —ax—by—c =0 represent the same
straight line. However, the straight line u = ax-+bydtc =0
divides the plane into two regions such that the sign of u is
positive for all points in one region and negative for all points in
the other region.

EXAMPLES

45. Show that the four points (3, —2), (—4, 1), (—1, —4) and (1, 3) each
lie in one of the four regions into which the straight lines x—2y = 2 and
3x+2y+6 = 0 divide the plane.

46. Show that the point (1, 4) lies outside the region defined by the lines
x+9 =2y and x+10 = 2y.

47. Prove that the points (2, —1) and (—3, —5) lie within vertically
opposite regions defined by the lines x—2y = 5 and 2x—y = 3 but that the
points (2, —1) and (1, —4) lie within adjacent regions defined by these lines.

48. The proof of the result of this section is not valid when P, P, is parallel
to u = 0. Devise a proof to fit this particular case.

17. Perpendicular distance of a point from a straight line

We wish to calculate the perpendicular distance d = PN
(Fig. 14) from the point P(x,y,) to the straight line ax+by+c = 0.
The equation of the straight line PN is

b(x—xy) — a(y—y) =0.
Let the coordinates of N be (a, 8). Then
b(a—x;) — a(B—yy) = 0.

Since N lies on ax-+by+c =0, we have aa-}b8-+c¢ = 0 which
can be written

a(a—x)+b(B—y) = —(ax,+by,+c).
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Squaring and adding these equations, we have
(@+b?) [(a—x;)* + (B—y0?] = (ax;+by+c)?
and so
‘_1x1+b.)’1_"|'_c
V(@*+b?) °
The sign of d is indeterminate, but from the previous section

we see that the lengths of the perpendiculars from points on the
same side of the straight line have the same sign.

d=+

Y

N

FiG. 14
If the equation is written in the normal form x cos a+y sin a=p,
the perpendicular distance from (xy, vy) is
-+ (x; cos a-Fy, sin a—p).
EXAMPLES
49. Calculate the perpendicular distances from (2, —1) to the straight
lines; () 4x-+3y = 2; (i) 5 — 2+ 1= 05 i) 2x—3y—1 = 0,
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50. Calculate the altitudes of the triangle in Example 27.

51. Find the radius of the circle with centre at (—1, —3) and which touches
the line 3x+2y—4 = 0.

52. Write down the perpendicular distances of the point (2, 1) from the
parallel lines 3x—4y+4 = 0 and 4y—3x+5 = 0 and hence determine the
distance between these lines.

53. Obtain the coordinates of the centroid of the triangle with sides along
the lines x+y—1 = 0, x—y—1 = 0 and x—3y+3 = 0. Hence, or otherwise,
prove that the point (2.8, 1.9) lies inside the triangle. (U.L.)

18. Bisectors of angles between two straight lines

The perpendicular distances from any point on the internal or
external bisector of the angle between two straight lines to the
lines themselves are equal numerically. Hence the equations of
the bisectors of the angles between u, = a,x+b;y+¢; = 0 and
Uy, = ax+b,y+c, = 0 are given by

ax+by+c,; ax+b,y+c,

V(a*+b,%) V(ai+b%)’
It must be emphasised that the positive sign does not always
correspond to the internal bisector. In fact, if ¢,c, is positive the
perpendicular distances from the origin to #; = 0 and », = 0 have
the same sign and so the positive sign corresponds to the bisector
of the angle which contains the origin. If c,c, is negative, we see
similarly that the negative sign corresponds to the bisector of the
angle which contains the origin.

In a numerical example, it is advisable to draw a rough sketch
and note the approximate gradients of the internal and external
bisectors.

Tlustration: Obtain the bisectors of the angles between the lines
7x—y+6 =0 and x+y+2 =0.

A rough sketch shows (Fig. 15) that the gradient of the bisector
of the acute angle is large numericalily, whilst that of the bisector
of the obtuse angle is small.

Both bisectors are given by

Ix—y+6 _ | x+y42
V(@9+1) V(I+1)°

==+
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Y

Tx—y+6:0

Y
Fic. 15

Thatis, 7x—y+6 = £+ 5(x+4y-+2) and so we obtain the equations
x—3y—2 =0 and 3x+y-+4 = 0. The first equation gives the
bisector of the obtuse angle.

EXAMPLES

54. Obtain the equation of the bisector of the acure angle between the
pair of lines: (i) x+2y = 1, 2x+y+3=0; (i) 3x—4y = 5, —5x+12y = 2.

55. Obtain the coordinates of the centre of the circle inscribed in the
triangle whose vertices are at (—7, —5), (17, 1) and (1, 14). Further, calculate
the radius of this inscribed circle.

56. Show that the point (3, —1) is equidistant from the lines 3x—4y—16=0
and 4x+3y—12 = 0.

57. The sides BC, CA and AB of a triangle have the equations
5x—12y—26 = 0, 3x+4y—10 =0 and 4x+3y+10 =0 respectively. Find
the coordinates of the incentre of the triangle and also the centre of the
circle escribed to AC.
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19. Pencil of straight lines

A system of straight lines passing through a given point is
called a pencil of lines and the given point is called the vertex of
the pencil.

Consider the two distinct non-parallel straight lines

U = ax+by+e; =0,

U = ayx+by+c, =0
and set up the equation

u = kyn+kyu, = 0.

This equation is linear in x and y and so represents a straight line.
Further, u vanishes at the point of intersection of the lines given
by #; = u, = 0. Thus the equation u = 0 represents a straight
line passing through this point of intersection.

Conversely, every straight line of the pencil determined by
=0 and u, =0 can be represented by the equation
kyu,+kou; = 0. For example, the particular line of the pencil
through (x;, y,) corresponds to the ratio ki/ks determined
uniquely from

k(axy+byyi+c,) + ko(ayx,+byy1+c;) = 0.

In numerical examples, it is convenient to put either ky or k,
equal to unity.

If the lines v, =0 and u, =0 are parallel, the equation
kyuy+kouy = O represents all the lines parallel to u, = 0 since they
all have the gradient —a,/b,. In numerical examples it suffices to
choose u;+k = 0 to represent all the straight lines parallel to
u; =0.

The straight line u; = ayx+bzp+c; = 0 is a member of the
pencil, if it can be expressed in the form kyu,-+kyu, = 0. This is
certainly true if

ke +koty+h gy =0
because we can solve to obtain
ug = —(ki/ks) uy — (ky/ks) U,
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Thus three straight lines 4, = 0, v, = 0 and u; = 0, no two of
which are parallel, are concurrent if constants k;, k, and k5 can
be found such that

kyuy+kotty+kaus = 0.
Hlustration 1: We can tackle Example 39 as follows:

The straight lines x+3y+2 =0 and x—2y—4 =0 form the
pencil

x+3y+24-k(x—2y—4) = 0.
That is,
(14-k)x+(B—2k)y+2—4k = 0.
This line is perpendicular to 2y+5x = 9 if
5(1+k) + 2(3—2k) =0,
from which k = —11. Substitution yields the equation
10x—25y—46 =0.

Tllustration II: Prove that the altitudes of a triangle are concurrent.
Let the vertices be at Py(xy, y1), Pa(Xz, »5) and Py(xs, ys). The
gradient of P,P, is (yo—Ys)/(xa—X3) and so the equation of the
altitude through P, is

Uy = (x—x%) (a—x3)+ (—y) (2—ys) = 0.
Similarly the other two altitudes are given by

U, = (x—xp) (X3—xy) + (y—r2) (ys—y1) =0,

ug = (x—x3) (x;—X2) + (V—ys) 01—y = 0.

A simple calculation yields u;+u,+u; =0 and so the three
altitudes are concurrent.

EXAMPLES

58. Obtain the equation of the straight line which passes through the
point of intersection of the lines x-+y = 3 and 2x = y+5 and (i) passes
through the origin; (ii) is parallel to the line Sx—y = 4; (iii) is perpendicular
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to the line 7x—5y+2 = 0; (iv) makes an angle 45° with the positive direction
of the x-axis.

59. Show that the medians of a triangle are concurrent.

60. Prove that the three perpendicular bisectors of the sides of a triangle
are concurrent. (The point of concurrency is called the circumncentre.)

61. Prove that the straight line x(2+¢)+y(1+1£) = 5+7¢ always passes
through a fixed point, whatever the value of ¢, and find the coordinates of
this point. (U.L.)

20. Parametric equations of a straight line
The straight line through (x;, y,) of gradient tan ¢ has the equa-
tion y—y;=(x—x,) tan ¢, which can be written
X=X __ Y—hnh

cos ¢ sin ¢ °

Equating each fraction to ¢, we obtain
X = x;-+1 cos ¢,
Yy =y+tsin .

Elimination of ¢ yields
2= (x—x) + (y—y)?

and so ¢ represents the distance between a variable point (x, y) of
the line and the fixed point (x;, y,). Hence, as ¢ varies from — oo to
+ o, the point (x, y) traces out all points of the straight line.
The equations x = x;4-tcoss, y = y,-+¢sin¢ are called the
parametric equations of the straight line and ¢ is called the para-
meter.

The equations

x =x,+1t, y = y+mt

also represent a straight line since the elimination of ¢ yields the
linear equation m(x—x;) =I(y—y,). In this case ¢, in general,
does not represent the distance between (x, y) and (x;, y,).

The parametric equations are often useful in solving problems
and we show their application in the following problems:
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Hllustration 1: Find the coordinates of the mirror image of (a, 8)
in the straight line ax+by+c = 0.

The straight line through (a, B) perpendicular to ax+by+c =0
has gradient b/a and so its parametric equations can be taken as

x =a+tcosl, y =B+tsinf

where tan 6 = b/a. Let the mirror image correspond to the value
t of the parameter. The mid-point of the line joining (a, 8) to its
mirror image is (a4 3¢ cos 0, B+4t sin ). This point lies on the
given line and so

a(a+-4t cos 0) + b(B+34tsin ) + ¢ =0,
from which
t = —2(aa-+bB+c)/(a cos 8+b sin 6).
Hence the mirror image is at

o Haotbfto 5 Aaatbftc)
atbtan@ °’ acos0+b |’

Substituting tan § = b/a and simplifying, we obtain that the

mirror image is at

(b*—a®)a—2abf—2ca —2abai(a*—b*B—2bc
a? + b2 > a? + b2 .

Hllustration II: A line is drawn through the fixed point P(a,8) to
cut the curve x2+y% = r? at 4 and B. Show that the product
PA . PB is independent of the gradient of the straight line.

Let the gradient be tan . Then the parametric equations of the
line through P are x = a-+£ cos , y = B¢ sin . The distances
PA and PB are the roots of the equation

(a-+1cos )% + (B+1 sin ¢)2 = r2,
That is,
2 -+ 2(a cos Y4B sin Y)t+a?+p2—r2 = Q,
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Hence, if t,, 1, are the roots of this quadratic equation, we have
Lty = a?4-B2—r2

But ¢ is the distance from (a, B) to the point (a-+ cos ¥, a7 sin )
and so

PA . PB = a?4B*—r?
which is independent of .

EXAMPLES

62. The straight line with unit gradient through the point 4 (3, —1) inter-
sects the straight lines 3x+2y = 2 and 2x—3y = 7 at the points B and C
respectively. Calculate the ratio AB/AC and explain the significance of the
sign of the result.

63. The straight line given by x = 7 cos y—g, y = 7 sin y—f cuts the curve
x*+y*+2gx+2fy+c¢ = 0. Determine the values of 7 at the points of inter-
section and show that they are independent of 4. Can you deduce anything
about the curve from this result ?

64. Find the equation of the chord of the curve 3x2+4y? = 28 whose mid-
point is the point (1, 1). Find also the length of this chord. (U.L.)

65. From the point P(1, 3) a line is drawn perpendicular to the line
8x—14y—31 =0 to meet it in Q and PQ is produced to R so that
PQ = QR. Find the coordinates of R and the equation of the line through
R which is parallel to the given line.

MISCELLANEOUS EXAMPLES

1. Prove that the points (1, 3), (—3, 3), (—10, 6) and (8, —6) form the
vertices of a rhombus.

2, Find 2 such that the straight lines x—2y—6 = 0, 3x+y—4 = 0 and
Ax+4y+A? = 0 are concurrent.

3. Obtain the locus of a point which moves so that its distance from the
straight line 2x—5y—1 = 0 is five times its distance from the point (1, 2).

4. Show that the points (—1, —4), (1, —3), (—2, —2) and (—1, —1) are
concyclic.

5. Obtain the equations of the two lines through the point of intersection
of x+6y—7 = 0 and 3x—2y+2 = O perpendicular to them.

6. Obtain the equations of the straight lines through (—2, 1) which make
an angle of 45° with the line 3y—2x = 2.

7. Find the coordinates of the circumcentre of the triangle formed by the
straight lines 3x—y—5 = 0, x+2y—4 = 0 and 5x+3y+1 = 0.
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8. Find the equation of the locus of a point equidistant from (x;, y,) and
(XZ’ Y 2)'

9. Show that the line joining the points (x;, ¥1) and (x,, y,) will subtend a
right angle at (xs, ya) if (xz3—x)) (x3—x3) + (¥3—yp) (¥3—y2) = 0. Hence,
obtain the equation of the circle on the line joining (x;, y1) and (x,, y2)
as diameter.

10. Prove that the straight line (A+2)x+(3A—1)y+A =0, where A is a
variable, passes through a fixed point and find its coordinates.

11. Obtain the coordinates of the point on the straight line 6x—y = 7
equidistant from the points (—1, 2) and (3, 4).

12. Find the coordinates of (i) the centroid, (ii) the orthocentre and (iii)
the circumcentre of the triangle formed by the three straight lines 2x+y = 42.
3x—y = 18 and 31x—17y = 336. Show that the centroid divides the join of
the orthocentre and the circumcentre in the ratio 2 : 1.

13. The extremities of a diagonal of a square are at (1, 2) and (—1, —3).
Obtain the coordinates of the ends of the other diagonal.

14. Find the equation of the straight line which passes through the point
(2, —1) and makes equal intercepts on the axes.

15. Obtain the equations of the straight lines parallel to the straight line
3x+4y—7 = 0 and at distance 2 from it.

16. Show that the straight lines x cos a+y sina = p and x cos By sin f=p
intersect at (p cos 3(a-+B)sec 2(a—p), p sin $(a+p)sec $(a—p)).

17. Obtain in normal form the equations of the bisectors of the angles
between x cos a+y sin a = p and x cos f+y sin § = q.

18. Obtain the equations of the diagonals of the parallelogram formed by
the four lines ax+by = 0, ax+by+c = 0, Ix+my = 0 and Ix+my—+n = 0.
What is the condition that this parallelogram be a rhombus ?

19. Prove that the area of the triangle formed by the three straight lines
¥y = mx-+c, ¥y = myx+c; and y = mgx-tc; is

! [(cs_cs)z + (cs—c)? + (cl—cz)z]‘
2 Lmy—my mg—my my—my

20. The sum of the reciprocals of the intercepts of a straight line on the
axes is constant. Show that the straight line passes through a fixed point.

21. Prove that the straight lines ax+b,y+¢, = 0 and ayx-+byy-+¢; =0
cut the axes in concyclic points if a,a, = byb,.

22. Obtain the equation of the locus of the foot of the perpendicular from
the origin to the straight line x cos 8+y sin § = a as 0 varies.

23. Two triangles ABC and PQR are such that the perpendiculars from A
to QR, B to RP and C to PQ are concurrent. Show that the perpendiculars
from P to BC, Q to CA and R to AB are also concurrent.

24. The vertices of a triangle lie on three given concurrent straight lines
and two of the sides pass respectively through given points. Show that the
third side will also pass through a fixed point.

25. Prove that the points (—3, 4), (1, —4), (3, 7) are the vertices of a right-
angled triangle, and find the equation of the line joining the mid-point of the
hypotenuse to the opposite vertex. (U.L.)
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26. The sides 0A, OC of a parallelogram OABC lie along the lines 3y = x,
y = 3x respectively and B is the point (4, 3). Find in their simplest forms,
the equations of the lines which contain the sides 4B, BC and the diagonal
AC. (U.L)

27. A line which makes an acute angle 0 with the positive x-axis is drawn
through the point P, whose coordinates are (3, 4), to cut the curve y® = 4x at
Q and R. Show that the lengths of the segments PQ and PR are the numerical
values of the roots of the equation 2 sin 8+4r(2 sin §—cos 6)+4 = 0. (U.L.)

28. The triangle ABC has its vertices at (4, 4), (5, 3) and (6, 0) respectively.
Obtain the equations of the perpendicular bisectors of AB and BC. Hence
calculate the coordinates of the circumcentre and the length of the circum-
radius of the triangle ABC. (U.L.)

29. The vertices B, C of a triangle ABC lie on the lines 3y = 4x, y = 0
respectively, and the side BC passes through the point (2/3, 2/3). If ABOCis a
rhombus, where 0 is the origin of coordinates, find the equation of the line
BC and prove that the coordinates of 4 are (8/5, 4/5). (U.L.)

30. A triangle is formed by the three lines x+y =1, 3x—y = 7 and
3y=x+13. Calculate (a) the area of the triangle, (b) the angles of the triangle,
(c) the coordinates of the circumcentre of the triangle. (U.L.)



CHAPTER III
Straight Lines

21. Homogeneous equation of the second degree
The general homogeneous equation of the second degree can
be written
ax*+2hxy+by? = 0,
That is,
(ax+hy)? — (B2—ab)y? = 0,
and so the equation represents the two straight lines

ax+{h++/(h*—ab) }y =0

ax-+ { h—+/(h®—ab) }y =0
through the origin. The straight lines are real if 42>ab. When
h®=ab the two straight lines coincide. (The case corresponding to
h*<ab will not be discussed in this book.)
If a =0, the equation 2hxy+by? = 0 represents the two
straight lines y = 0 and 2Ax+by = 0.

and

EXAMPLES

1. Find the equations of the lines represented by the following equations:
(i) 4x2—p% = 0; (ii) 2x2—5xy—3y2 = 0;
(iii) 4x2—20xy+25y* = 0; (iv) 3x244xy = 0.
2. Form the equations which represent the following pairs of lines:
) y=0, 4y =x; () 3x—y =0, x+3y = 0;
(iii) x =0,y = 0; (iv) y = nx, y = mx.

3. Find the angle between the straight lines represented by
mymyx®— (my+my)xy—+y* = 0 and hence prove that the angle between the
lines given by ax®+2hxy+-by* = 0 is tan~ 24/(h*—ab)/(a-+b).

4. Obtain the value of A for which the two straight lines 3x°— 8xy+ =0
are perpendicular to one another.

5. Calculate the angle between the two straight lines given by
x%42xy—4y* = 0,

38
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22. Condition that S=ax?-2hxy-}by?+2gx+2fy+c=0 repre-
sents two straight lines

We can represent the two straight lines lix+myy+n, = 0 and

Lx+myy--n, = 0 by the quadratic equation
(hx~+myy+ny) (lbx-+myy-+ny) = 0.
That is,
Ll - (lymy+Limy)xy-+-mymyy?
+(hng+bny)x+(myny-Hmyny )y +-nyny, = 0.

This suggests the following question: “ Does the general quad-
ratic equation

S = ax?4-2hxy+by*+2gx+2fy+c =0
represent two straight lines 7 If so, we can write
S = (hx+my+n) (bx-+myy-ny)

for some choice of 4, my, ny, I,, m, and n,. Comparison of co-
efficients yields

hbh=a; mmy =b ; mny, =c¢;
Lmy+lmy = 2h ; mng+mgny = 2f ; hny+Ln, = 2g. -
By calculation, we obtain
8fgh = (hmy-+Lmy) (myny+myny) (hny+Lny)
= 2hLmymonmns+1l(my?n.2-+m,n;?)
+mymy(lPne?+ b2y ®) - myng (1 2my? -+ Lm, %)
= 2abc+a(4f*—2bc)+b(4g2—2ca)+ c(4h®—2ab),
and so*
A= abc+2fgh—af?—bg2—ch? = 0.

* In determinantal form

A =

n 0
o
0 N0
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Consider the equation x24-y% = 0. In this case we have a=b=1,
c=f=g=h=0 and so A=0. Despite this, x2+-y% = 0 does not
represent two straight lines. Accordingly the vanishing of A is a
necessary but not a sufficient condition that S = 0 represent two
straight lines, called a line-pair.

A further calculation yields

(limy— lLymy ) =4(h®—ab) ; (myny—myny)® = 4(f*—bc ;
(hny—Lny)* = 4(g*—ca),
and so it is also necessary that
ht>ab; f2=bc; g = ca.
It can be shown that these inequalities are not independent when
A =0.

The complete result (which we shall not attempt to prove) is
that the necessary and sufficient condition that S = 0 represent
a line-pair is that A =0, h2 > ab or A =0, k% = ab, f?4g* >
c(a+b).

Tllustration: If S = ax*+2hxy-+by*4-2gx+2fy+c = 0 represents
a pair of non-parallel straight lines, show that the coordinates of
the point of intersection of the line-pair satisfy the three equations
w, = ax+hy+g =0,
U, = hx+by+f =0,
us = gx+fy+ec=0.
We have

S = x(ax-+hy—+g)+y(hx+by+f)+gx+fy+-c.

Thus the point of intersection of #; = 0 and u, =0 lieson .S = 0
if it also lies on u3 = 0. The solution of #; = u, = 0 is given by
( (if—bg)/(ab—h?), (hg—af)/(ab—h?)).

In the next section, we verify that ab—h2 3= 0 if the line-pair
S = 0 are not parallel lines. In view of A =0, it is readily
verified that this point lies on gx-+fy+c = 0.
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That is, the point of intersection of the line-pair S = 0 lies
on the three straight lines #, = 0, u, = 0 and u; = 0.

EXAMPLES

6. Find the equations of the lines represented by the following equations:
(i) Bx—1)2—9y2 = 0; (ii) x2—»*+-x-+3y—2 = 0;
(i) 3x2+xy—4yt—x-+y = 0; (iv) 3x2+xy—2y*—18x+17y—21=0.
7. Form the equations which represent the following pairs of lines:
() x=10,3x—y—2=0; (i) 2x—3y+1=0, 2x+3y+1=0;
(i) y = 2, 3x—4y+1 =0; (iv) x =y, x+2y+5 = 0.
8. Which of the following equations represent line-pairs ?:
(i) 2x*—6y*+3x+y+1 = 0; (i) 3x2—9xy+10x—12y+8 = 0;
(iii) 15x2—xy—28y2—14x+36y—8 = 0;
(iv) 10x2—xy—6y*—x+5y—1 = 0.
9. For what values of A do the following equations represent straight lines:
(i) x*—4xy—y*+6x+8y+A=0; (i) Ax2+5xy—2y*—8x+5y— A =0;
(i) 2Axy—y2+4x+2y+8 = 0; (iv) A(x*+y?)+2xy+2x—2y—1 = 0.
10. Prove that the line-pair x2+2xy—35y*—4x+44y—12 = 0 and the
line 5x+2y—8 = 0 are concurrent.
11. Find the point of intersection of the line-pair
3x2+4+4xy—4y*—20x—8y+32 = 0.
12. Calculate the area of the triangle enclosed by the line-pair
6x2—11xy+3y% = 0 and the line 2y+3x—9 = 0.

23. Angle between the line-pair S = 0

Let the line-pair S = ax?*+2hxy+by*+2gx+2fy+c = 0 con-
sist of the straight lines /i x+myy+n, = 0 and Lx+myy+n, = 0.
Then

S = Mlyx+myy+n)(lox+myy-+n,).
Comparing coefficients, we have
My, = a 5 Mlmy+Lmy) = 2h 5 Amymy = b,
and so
X(Lmy—ILm,)? = N(hmy+Lm,)2—A4NLLmm, = 4(h®—ab).
The angle ¢ between the straight lines (section 13) is given by

Lmy—bm,

tan ¢ = hLL+mymy’
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Hence, by substitution, we obtain

2\/(h2—ab)
at+b

The indeterminacy of sign is inherent in this equation because
the angle is ¢ or m#—¢.

We deduce that a line-pair consists of

(i) two parallel lines if h2 = ab,
(ii) two perpendicular lines if a+b = 0.

Further, the tan ¢ formula is independent of the coefficients
g, fand c. Accordingly, the equation of the line-pair through the
origin parallel to the line-pair S =0 is ax?*4-2hxy+by? = 0.
Note carefully that this equation may represent a line-pair even
if § = 0 does not.

tan ¢ = +

EXAMPLES

13. Prove that x2+6xy-+9y2+4x+12y—5 = 0O represents a pair of parallel
lines.

14. Show that 2x243xy—2y®*+5x—10y—12 = 0 represents two per-
pendicular straight lines and find their point of intersection.

15. Show that x*>+xy—6y?—x—8y—2 = 0 represents a line-pair and
calculate the angle of intersection.

16. Prove that the line-pair x2+4xy+y? = 0 and the straight linex+y = k
form an equilateral triangle.

17. Show that the two line-pairs 10x2+8xy-+»? = 0 and

5x2+12xy+6y? = 0 contain the same angle.

24. Bisectors of the line-pair ax?+-2hxy--by? = 0

Let the line-pair ax?*42hxy-+by® = 0 represent the two dis-
tinct straight lines ,x+m,y =0 and Lx-+m,y = 0. As in the
previous section we have

Moy = a 3 Mlymy-+lymy) = 2k 3 Amymy = b,

where A is some factor of proportionality.
The pair of bisectors is given by

hx+myy — lyx+mpy
V(h*-my?) V(b +m?).
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That is,
(B +my®) (Lix+myy)* — (h*+my?) (hx+myy)® = 0.
This equation simplifies to
(2m2—B2my?) (x2—y®) — 2(hmy—bmy) (Llp—mymy)xy = 0.

Since the lines of the line-pair are distinct, ,m,—Lm, # 0 and so
division by lym,— Lm, yields

(hmy+Lmy) (x2—y*) — 2(hly—myma)xy = 0.
Substituting for L, mym, and [;m,+Lm;, we have
h(x2—y?) — (a—b)xy = 0.

EXAMPLES

18. Write down the equation of the line-pair bisecting the angles between
the line-pairs (i) x2—y? = 0; (ii) 4x?—xy—3y2 = 0;
(iii) x2 cos 8+2xy—y®sin 6 = 0.

19. Show that x—y = 0 bisects the angle between the lines
4x*—11xy+4y* = 0 and write down the equation of the other bisector.

20. If the bisectors of the angles between the line-pair ax?+-2hxy+by? =0
coincide with the bisectors of the angles between the lines ax242Axy4-8y% =0,
prove that A(a—B) = AMa—b).

25. Equation of lines joining the origin to the points of inter-
section of S = ax®4-2hxy-+by?*+{2gx|2fy+c =0 and the
straight line u = Ix-tmy+n =0

Make the equations S = 0 and ¥ = 0 homogeneous by intro-
ducing a third variable z in the following way:
ax*+-2hxy+by*+-2gxz+2fyz+cz? = 0,
" Ix+my+nz =0.

Now eliminate z to obtain
n¥(ax2-+2hxy+by?) —2n(gx+1y) (Ix+my)+-c(Ix+my)? = 0.

This equation is homogeneous of the second degree and so repre-
sents a line-pair through the origin. To obtain the points of inter-
section of this line-pair with u = 0, substitute Ix+my = —n and
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the equation then reduces to S = 0. Thus the line-pair is cut by
u =0 at the points given by S = u = 0. Hence the equation
represents the pair of lines joining the origin to the points of
intersection of S = 0 and u = 0. Note carefully that this result is
valid even if § = 0 does not represent a line-pair.
Hlustration: Show that the lines joining the origin to the points of
intersection of the curve 2x24+6xy-+3y?+4x+2y—36 =0 and
the straight line x—2y—6 = 0 are mutually perpendicular.

The required line-pair through the origin is obtained by elimi-
nating z between the equations

2x24+6xy+3y2+-4xz-+2yz—3622 =0
and
x—2y—6z =0,
The result is
32x2+-6xy+3y%) + (2x+y) (x—2y) — 3(x—2y)* = 0.
This equation reduces to
5x24-27xy—5y* = 0.

The sum of the coefficients of x2 and y? is zero and so this equation
represents a pair of perpendicular straight lines.

EXAMPLES

22. Show that the lines joining the origin to the points of intersection of
the line-pair x2+xy—6y*—x—8y—2 = 0 and the straight line x—6y—2 = 0
are mutually perpendicular.

22. The line y+2x—3 = 0 meets the line-pair 4y2—14xy+6x2—13x+
11y+6 = 0 in 4 and B. If the line-pair intersect at C, prove that ABCO is a
cyclic quadrilateral, where O is the origin.
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MISCELLANEOUS EXAMPLES

1. Show that the line-pair through the origin respectively perpendicular to
the line-pair ax?+2hxy+by? = 0 is given by bx*—2hxy+ay* = 0.

2. Prove that the area of the triangle formed by the straight lines
ax®+2hxy-+by? = 0 and Ix+my+n = 0 is n2y/(h*—ab)/(am*—2him-+bm?).

3. Obtain the condition that one of the bisectors of the line-pair
ax®+2hxy+by* = 0 is the straight line Ix4+my = 0.

4. Find a condition that a line of the line-pair ax*+42hxy-+by? =0 (i)
coincides with (ii) is perpendicular to a line of the line-pair pg®+2gxy+ry*=0.

5. Find the condition that ax2+2hxy+by*+2gx+2fy+c = 0 should cut
the x and y axes in concyclic points.

6. Prove that the lines joining the origin to the points of intersection of
ax?+2hxy+by*+2gx+2fy+c = 0and Ix+my-+n = 0 are mutually perpen-
dicular if n%(a+b)—2n(gl-+fm)+c (I*+m?* = 0. In this case show that the
locus of the foot of the perpendicular from the origin to the line Ix+my+n=0
has the equation x?+y*+2gx+2fy+c = 0.

7. Show that all chords of the locus ax®*+2hxy+by*+2gx+2fy+c = 0
which subtend a right angle at the origin pass through a fixed point.

8. If the equation 2hxy+2gx+2fy+c =0 represents two straight lines,
show that they form a rectangle with the axes, having the straight lines
gx—fy = 0 and ghx+hfy+fg = 0 as diagonals.

9. Show that the product of the perpendicular distances from (a, ) to the
straight lines ax?+42hxy+by? = 0 equals (aa®*+2haf+b%/+/{(a—b)*+4h%}.

10. Obtain the coordinates of the centroid of the triangle formed by the
straight lines ax®+2hxy+by® = 0 and Ix+my+n = 0.

11. Show that the line which is terminated by the line-pair
ax?+2hxy+by*+2gx+2fy+c = 0 and which is bisected at (a, ) has the
equation (aa+48+g) (x—a) + (ha+6+f)(y—B) = 0.

12, The line-pairs ax®+42hxy+by*+2gx+2fy+c =0 and
ax®+2hxy+by*+2g.x+2fiy+c¢, = 0 form a parallelogram. Show that the
diagonal of the parallelogram common to both line-pairs is given by
2g—g)x+2(f—f)y+c—c1 = 0.
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Circle

26. Equation of a circle
If P(x,y) is any point (Fig. 16) on the circle with centre at
C(a,B) and radius r, we have

(r—af-H(—P) = r.
Y

v
FiG. 16
Conversely, this equation states that the distance between the
variable point P(x,y) and the fixed point C(a,B) is the constant
46
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distance r. That is, the equation represents all points on the cir-
cumference of a circle of radius r with centre at (a, ).
The equation of the circle can be written

X242 —2ax—2By+a2+p2—r2 = 0.

We see that
(i) this equation is quadratic,
(ii) the coefficients of x* and y? are equal,
(iii) there is no term in the product xy.
Conversely, the most general equation satisfying these three
conditions is

ax?+4-ay?+2gx+2fy+c = 0. (a#o).

We may write this equation in the form

g\* £\ gt

By comparison with (x—a)2+(y—B)? = r?, this equation repre-
sents a circle with centre at the point (—g/a, —f/a) and radius
V(g*+f*—ac)/a. The centre of this circle always exists but its
radius exists if and only if g2+f2>ac. If g2-+f2 = ac, then there
is only one point, namely its centre, on the circle and we refer to
it as a point-circle. (In this book, we shall not discuss the case
corresponding to g2+f 2<<ac.) :

There is no loss in generality if we choose @ = 1. Then the
standard form of the equation of a circle will be

S = x*+)y24+2gx+2fy+c = 0.

The centre of this circle is at (—g, —f) and its radius is

V(g*+f*—c).
Often, we shall select the origin as the centre of the circle. In
this case the equation

X242 = 2

will represent a circle of radius r.
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EXAMPLES

1. Find the equation of the circle with centre at (—1, 2) and whose radius
is 3.

2. Obtain the coordinates of the centre and the radius of the circle repre-
sented by 3x*+3y2—6x+4y—1 = 0.

3. Obtain the equation of the circle through the three points (1, 3), (2, —1)
and (—1,1).

4. Find the equation of the diameter of the circle x*+)y*—2x+4y =0
which passes through the origin.

5. Find the point which is diametrically opposite to (2, 1) on the circle
x2+y2—3x+5y—4 = 0.

6. Prove that the points (9, 7) and (11, 3) lie on a circle with the origin as
centre. Determine the equation of the circle.

7. Obtain the equation of the circle with centre on the x-axis and which
passes through the points (1, 4) and (3, 7).

8. Prove that the equation x2-+y?+2gx+2fy = 0 represents a circle which
passes through the origin. Find the equation of the circle which passes through
(0, 0) and (1, —5) and whose centre lies on y = 3x—11.

9. Prove that the locus of a point which moves so that its distance from the
point (1, 2) is k times its distance from the point (3, —1) is a circle. Obtain
the coordinates of the centre of this circle and hence show that the locus of
the centre, as k varies is the straight line joining the points (1, 2) and (3, —1).

10. Show that the locus of the mid-point of the line joining the origin to
the circle x2+y%+2gx+2fy+4c = 0 is also a circle and determine its centre
and radius.

11. Find the equation of the circle which passes through the origin and
cuts off intercepts a and b on the x- and y-axes respectively.

27. Length of the tangent from a point to a circle
Let O(x,, y;) be a point on the tangent at P (Fig. 17) to the
circle

x24y24+2gx+2fy+c =0

whose centre is at C (—g,—f) and whose radius is 1/(g>+f2*—c).
Since CPQ is a right angle, we have

QP? = QC*—CP* = (x;+8P+(n +/)—(€*+f*—¢)
= x> +y2-+2gx,+2fy,+c.
That is, the square of the tangent from a point to a circle is ob-

tained by the substitution of the coordinates of the point in the
equation of the circle, provided that the coefficient of x2 has been
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made equal to unity. (This can always be done by division with
the coefficient of x2).

The expression QC2—CP? is positive for points Q outside the
circle but negative for points Q inside the circle. It follows that

Y Q
P
X 0 X
¥

FiG. 17

x24y242gx+2fy+c > 0 for all points outside the circle but
< 0 for all points inside the circle.

EXAMPLES

12. Which of the following points are inside the circle of radius 3 whose
centre is at (1, —2): (i) (2, 3); (i) (2, 2); (i) 2, 1); Gv) 3, —D?

13. Obtain the lengths of the tangents from the origin to the circle
x2+y2+Tx—4y+16 = 0.

14. Calculate the length of the tangents from (5, 12) to thecircle x2+32=69.
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28. Circle with given diameter

We now obtain the equation of the circle on the line joining the
points A,(x;, y,) and Ay(x,, y,) as diameter.

Let P(x,y) be a variable point (Fig. 18) on this circle. The
gradient of A4,P is (y—yy)/(x—x;) whilst the gradient of A,P is

=y /(x—xy).

FiG. 18

Since 4,4, is a diameter, the angle 4,PA, is a right angle and so
the product of the gradients of the perpendicular lines 4;,P and
A,P is —1. Thus

y—h Y7V 4

X—X3 = X—X,

which can be written
(x—xp) (x—x)+(—y) (3—y2) = 0.

EXAMPLES

15. Obtain the equation of the circle on the line joining (—1, 2) and (2, —3)
as diameter. Are the points (i) (3, 2); (ii) (1, —3) inside or outside this circle?
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16. Determine the centre and radius of the circle
(x—x1) (x—x) +(y—y1) (y—y2) = 0 in terms of x;, x,, y; and y,.

17. By writing the equation x%+)2—3x—10y+21 = 0 in the form
(x—x) (x—x2)+(y—y1) (y—y») = 0 determine a pair of points which define
a diameter of the circle. Verify that the mid-point of this diameter is at
(3/2, 5).

18. A variable circle passes through the fixed point A(x,, y;) and touches
the x-axis. Show that the locus of the other end of the diameter through A
is given by (x—xy)? = 4y,y.

29. Intersection of x2+y% = r? and y = mx-}c¢

The circle x2-+)? = r2 and the straight line y = mx-c¢ inter-
sect at the points whose coordinates satisfy both equations.
Elimination of y yields

x2+(mx+c)? = r2

That is,
(14+m?x24-2mex+c2—r2 = 0.

This quadratic equation gives two values of x corresponding to
the two points of intersection of the straight line and the circle.
The straight line is a tangent if the two points coincide. In this
case the quadratic equation has equal roots. The required con-
dition is
m?ct—(14-m?) (c2—r?) =0,
which reduces to
¢ = r¥(1+4-m?).

(Note that this relation can also be deduced from the fact that the

perpendicular from the origin to the straight line y = mx--c¢

equals the radius r of the circle if the straight line is a tangent.)
It follows that the straight line

y = mx+ry/(14+m?)

touches the circle x2+y% = r2 for all values of m. For any value
of m there are two such tangents corresponding to the two values
of the square root of (1-+4+m?).
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Tllustration: Obtain the equations of the tangents through
(—2, 11) to the circle x24y* = 25.

The straight line y = mx--54/(14m?) always touches the given
circle. This line passes through (—2, 11} if

11 = —2m+5+/(1+m?®)
That is,
@m+11)% = 25(1+m?)

which simplifies to
21m?—44m—96 = (3m-+4) (Im—24) = 0.

Hence m = —g or 27—4 and so the tangents are given by

4x+3y—25 = 0 and 24x—7Ty+125 = 0 respectively.

EXAMPLES

19. Obtain the points of intersection of the straight line 3x—y+5 =0 and

the circle x2+y2—25 = 0.
20. Obtain the equations of the tangents to the circle x*+y* = 10 which

are parallel to the line y—3x = 7.
21. Obtain the equations of the tangents through (1,3) to the circle
x2+y2 =35,
22. Calculate the length of the chord y = x+2 of the circle x*+y* = 9.
23. If y—mx = 5 is a tangent to the circle x*+y* = 5, obtain the values of

m.

24, Show that ax+by+c = 0 is a tangent to the circle x24-y* = r* if
r}(a®+5b% = c2.

25. Find the condition that y = mx-c intersects the circle x24+y* = r? in
two distinct real points.

30. Joachimsthal’s equation
Let the two points 4;(x;, ¥;) and Ay(x,, y,) intersect the circle
S = x*+)2+2gx+2fy+c =0
at P, and P, (Fig. 19).
The coordinates of the point P which divides 4,4, in the ratio
Ao/A; (section 4) are

(Apx+ 2x9) (A4 A9), (Ays+ Aepa)/ (At A ).



CIRCLE 53

If this point P lies on the circle, we have

(A1x1+)\2x2)2 _{_()ﬁyl-i-)\gyz)z /\1x+)\zxz) +2f(/\1yl+'\z)’z) +

DN PN +2g( DN MEA
¢ =0.

On multiplication by (A;+ A,)?% this equation simplifies to

Y

FiG. 19

SyA2 42T A Ayt Sy = 0,
where
S; = 2 +»2+2gx,+ 2+,
Sy = X2+ yo21+2gx,+ 2+,
Tpe = Ty = XX+ 0102 t80a+x) (1 +y2)+c.

This equation in the ratio A,/A; (or Ay/2,) is called Joachimsthal’s
quadratic equation and its roots correspond to the two points
of intersection P, and P, of A;A4, and the circle.



54 ANALYTICAL GEOMETRY

EXAMPLES

26. Prove that the line joining the points (—6, 2) and (6, —2) is divided by
the circle x2+y?—18x—4y+40 = 0 internally and externally in the ratio 3 : 1.

27. The straight line joining the points 4(—5, 7) and B(4, —5) intersects
the circle x2+y*+x—2y—5 = 0 at the points P, Q. Obtain the ratios AP/PB,
AQ/QB and the coordinates of P and Q.

31. Tangent to a circle
First Method: Suppose A, lies on the circle

S = x2+y2+2gx+2fy+c =0

and A, is situated (Fig. 20) so that A, 4, touches the circle. Then
the points P, and P, of the previous section both coincide with 4,.
That is, Joachimsthal’s quadratic equation for A,/A, has coincident
roots Ao/}, equal to zero. This requires S; = 0 and T3, = 0. The
former equation is satisfied because 4, lies on the circle. Thus the
necessary and sufficient condition that 4,4, touch the circle is

T2 = XX+ Y1Y2Hg(00+x2) +f(0h+y2)+c = 0.

Hence the coordinates (x, y) of all points on the tangent at A4,
satisfy the equation

Ty = xx+yy+g+x)+fy+y)+c = 0.

That is, the equation of the tangent at A4, to the circle S =0 has
the equation T, = 0. It is worthy of note that the equation 7; = 0
is obtained from S = 0 by changing x? into x,x, y? into y,y, 2x
into x+x; and 2y into y4y,.

Second Method: The centre C of the circle is at (—g, —f) and so
the gradient of C4, is (y,+f)/(x;+g). The tangent at A, is the
straight line through A4, perpendicular to CA,. Thus the equation
of the tangent at A4, is

y=—y = —{ 1 +8/0r+f)} (x—xp),
which simplifies to

X, X+Y1y+8X-+fy = x 2+ 2 +gx /.
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Y
A
AZ
X' ¢} X
v
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But (x;, ,) lies on the circle and so S; = 0, which may be written
x4+t tgxn+/i = —ga—fh—ec

By substitution in the previous equation, it is easy to verify that
the equation of the tangent at 4, becomes T; = 0.

EXAMPLES

28. Obtain the equation of the tangents at the points (—3, —2) and
(—2, 5) on the circle x2+y2+12x—4y4+15 = 0.

29. Find the equation of the circle which passes through the point (1, —1)
and which touches the line 6x+y—4 = 0 at (3, 0).

30. Show that the line 2x-+y = 1 is a tangent to the circle
x24+y2+6x—4y+8 = 0.

31. If 4y—3x = k is a tangent to the circle x2+y2+10x—6y+9 = 0, find
the value of k and the coordinates of the point of contact.

C
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32. Prove that the circles x2+y? = 4 and x2+y26x-+8y—24=0 touch
and find the equation of their common tangent.

33. Obtain the equations of the circles which touch the x-axis at (5, 0) and
make an intercept of 24 on the y-axis.

32. Condition that a line be tangent to a circle
If the straight line Ix+my-+n = 0 is a tangent to the circle

x*+y*+-28x+2fy+c =0

the perpendicular from the centre (—g, —f) to the line
Ix+my-+n = 0 is equal to the radius v/(g2-+f%—c). That is,

(—lg—mf+n) __ N
+ VELm) V(g*+f2—o),

and so
(—lg—mf+n)® = (B+m?) (g*+f*—c)
which reduces to
(c—fH2+-2fglm+(c—g¥)m?—2fmn—2gnl+n? = 0.

This formula is too cumbersome to be remembered. The
reader is advised to use the method of this section in relevant
examples.

Hlustration: Use this method to solve the illustrated problem of
section 29,

The straight line Ix+my+n =0 is a tangent to the circle
x24y?—25 =0 if the perpendicular distance to it from the
origin is 5. That is,

£n/v/(P+m?) =5
and so
25(1*+m?) = n?,
Further, the point (—2, 11) lies on the straight line and so
—2I4+11m+n = 0.
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Elimination of n yields the quadratic equation
QI—11m)? = 25(12-+m?).
That is,
212-+44Im—96m? = (31—4m) (714+24m) = 0

from which [/ =4m/3 or —24m/7. We now obtain n from
—2I+11m--n = 0 and the corresponding results are n = — 25m/3
and —125n/7 respectively. Hence the equations of the tangents
are 4x-+3y—25 = 0 and 24x—7y+125 =0.

EXAMPLES

34. Prove that the line 2x+y = 4 is a tangent to the circle
x2+324+6x—10y+29 = 0.

35. Prove that 2x—3y = 14 is a common tangent of the two circles
x24+y*—4x—2y—8 = 0 and x*+)y*—10x—6y+21 = 0.

36. Obtain the equations of the four common tangents of the two circles
x24+y*+4x+3 = 0 and x%+y%*+4y+3 = 0.

37. Show that Ix+my-+n = 0 touches the circle (x—g)*+(y—f)*=r?
if (lg +mf+n)? = r*(2+m?.

33. Chord joining points of contact of tangents from a point
Let the tangents from A4,(x,, ;) to the circle
x24-y2+2gx+-2fy+c =0
touch the circle (Fig. 21) at the points Q,(a,, B;) and Qy(ay, 85). The
equations of the tangents at Q, and Q, are
ayx+Biy+g(x+a)+f(y+B)+c =0,
apX+Bpy+8(x+a)+f(y+B)+c =0
respectively. Since 4, lies on both tangents, we have
ayXy By +g0a+a) -+ +B)+e =0,
agXy+Boy1 8%+ 02) +f(+B)+c = 0.
That is, the points Q;(a;, B) and Qy(a,, B;) both lie on the straight
line
xx+yy+8x+x)+fr+y)+ec =0,
and so this is the equation of the required chord of contact.
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Note carefully that this equation has the same form as the
equation of the tangent at the point (x;, y,). However, in the case
of this section, the point (x,, y,) does not lie on the circle.

A
Y I
Q,
/ ,
X ) X
y
FiG. 21

Hlustration: Obtain the coordinates of the point of intersection
of the tangents to the circle x2+y?*—x-+y—2 = 0 at the points of
intersection with the straight line 5x—3y-4+1 = 0.

It is possible to solve for the coordinates of the points of inter-
section of the circle and the straight line, then to write down the
equations of the tangents and to solve these equations. It is more
instructive to use the method of this section. Let the required
point be (x;, ;). Then the chord joining the points of contact of
the tangents from (x,, y;) to the circle is

X x+yy—3(x+x)+30+yp)—2 =0.
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This straight line is identical with
5x—3y+1 =0,
and so

x—t _ntit_ —ix+8—2
5 -3 1 ’

Thus x, and y, satisfy the equations

3x 45y, = —1, 3x—5y=—11

whose solution is x; = —2 and y; = 1. Hence the required
point is (—2, 1).

EXAMPLES

38. Obtain the chord of contact of the tangents to the circle x®+y% = 5
from the point (—5, —5) and hence determine the equations of the tangents.

39. Find the chord of contact of the tangents to the circle
x2+4+y*—4x—6y+3 = O from the origin and hence prove that the equation of
the tangents is x2-+12xy+6y? = 0. (Compare Section 25.)

40. If the chord of contact of the pair of tangents from P to the circle
x24y? = a? always touches the circle x2+y%—2ax = 0 show that the locus
of P is the curve given by y? = a(a—2x).

41. Prove that the chord of contact of the tangents to the circle
x2+y%+2gx+2fy+c = 0 from the origin and (g, f) are parallel.

42. Obtain the coordinates of the points of contact of the tangents from
(2, 0) to the circle x2+y*—2x+6y+5 = 0.

34. Pair of tangents from a point to a circle
We saw in section 30 that the two points of intersection P;, P,
of A,4, and the circle

x*+y2+2gx+2fy+c =0
are given by the roots of the Joachimsthal quadratic equation
S1A12+27‘12’\1/\2+S2A22 =0,

where the two roots in Ay/A;, correspond to the two ratios
A,P,|P Ay and A, P,/P,A,.
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The straight line 4,4, is a tangent if both points P; and £,
coincide with L, (Fig. 22). In this case, Joachimsthal’s quadratic
equation

Y
A
L
Az
Lo
X 0 X
v
FiG. 22
has equal roots and so
8§18, — T2 = 0.
Thus the locus of the point 4, as A4, is held fixed is given by
S S—T,2 = 0.

This quadratic equation then represents the pair of tangents
AL, and 4,L, to the circle.
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EXAMPLES

43. Show that the pair of tangents from (—1, 3) to the circle x*+)% =5
are mutually perpendicular.

44. Obtain the equation of the pair of tangents which can be drawn from
the origin to the circle x2+3%+-8x+4-6y+21 =0 and calculate the angle
between them.

45. Find the equation of the tangents from (2, —3) to the circle
x2+3y24+6x—4y+8 = 0.

46. Prove that the tangents from the origin to the circle x*+y*+2gx+2fy+
¢ = 0 are mutually perpendicular if g2 42 = 2c.

35. Parametric treatment of the circle
Consider the point P on the circle of radius a, centre the origin,
and let the angle which OP (Fig. 23) makes with OX be 6. Then

Y
P
4
X o] X
Yl
FiG. 23

the coordinates of P are (a cos 6, a sin 6), and so the circle may be
represented by the parametric equations

x =acosf, y=asinb,
where 0 is a parameter.
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Let 4 and B (Fig. 24) be the points with parameters a and g
respectively. The equation of AB is

y—asina _ a(sin a—sin B)
x—acosa  a(cos a—cos )

__ 2cos ¥(a+P)sin 3(a—p) _ _ ¢cos 1(e+pB)
~ 2sin Y(a+t-P)sin §(B—a) sin $(a-+p)

Y
B
Vi A
X 0 - X
v
Fic. 24
That is,
xcos §(a-+-B)y+ysini(a+p) =alcosacosi(a+pP)+sinasing(at-p)]
=aq cos }(a—p).

Accordingly, the equation of the chord joining the points a and 8
is

x cos §(a-+p)+y sin (a+p) = a cos (a—p).

The tangent at 4 corresponds to the limiting position of the
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chord 4B as B tends to coincidence with 4. Hence the equation
of the tangent at A4 is

xcosatysine = a.

This result can also be seen from the normal equation of a straight
line (section 12).

EXAMPLES

47. Obtain the locus of the point P such that the tangent from P to the
circle x*+)* = a* is perpendicular to the tangent from P to the circle
x4y = b2,

48. Show that the coordinates of a point P on the circle (x—a)?+(y—b)2=r?
may be written in the form

x=a+trcosb, y=>b+rsinb
where @ is the angle which the radius to P makes with the x-axis.
Prove that the equation of the tangent to the circle at P is
(x—a) cos 0+(y—b)sin 0 = r.

Prove also that, if N is the foot of the perpendicular from the origin to the
tangent, the coordinates of N satisfy the equation y cos 6—x sin § = 0, and
deduce that the locus of N as P moves round the circle is

{x(x—a) + y(y—b) } = ri(x*+y?). (U.L)

MISCELLANEOUS EXAMPLES

1. The straight line y = mx-+c cuts off a chord of length 22 from the circle
x2+y? = a® Show that ¢ = (a®*— A?) (1+m?).

2. Find the value of A which makes the straight line fx+gy+A =0 a
diameter of the circle x2+y%+2gx+2fy+c = 0. Show that the extremities
of this diameter are equidistant from the origin.

3. Obtain the locus of the centre of a circle which cuts off fixed lengths a
and b on the x-axis and y-axis respectively.

4. Show that the locus of the mid-points of the chords of the circle
x2+y%+2gx+c = 0 which pass through the origin is the circle x2+y2+gx = 0.

5. P is a point which moves so that its distance from the point (a, 0) is k
times the distance from the point (—a, 0). Show that the locus of P is the
circle (called the circle of Apollonius) x2+)2—2Xax+a?=0 where
A = (14-k%)/(1—k?). What happens when k = 1?

6. Obtain the equation of the circumcircle of the triangle whose sides have
the equations 2x+y = 2, x—3y+1 = 0 and x—2y = 2.

7. Show that the equations of two circles can always be put in the forms
x24y24+-2g.x+c =0 and x2+)%+2g,x--c = 0. Explain the cases corres-
ponding to ¢ positive, zero or negative respectively.

8. Prove that the angle subtended at P(x;, ;) by the circle
S = x2+y:+2gx+2fy+c = 0 is 2cot~ { S,/ (g*+f*—¢) }.
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9. Show that the locus of points at which two intersecting circles subtend
equal angles is a circle passing through these points of intersection. (Hint:
use the results of examples 7 and 8.)

10. Show that the circles 25(x2-+y»+44x—42y+12 = 0 and
25(x2+y*)—76x+118y—28 = 0 have three common tangents which form
the sides of an equilateral triangle.

11, Prove that the area of the triangle formed by the two tangents through
(x1, y1) to the circle x2+)y% = a? and the chord of contact is
a(x®+y,2— @) 13/(x,2+,%)

12. Find the equation of the two circles which pass through the points
(0, 2) and (7, 9) and touch the x-axis. (U.L)

13. Prove that the circle which has as a diameter the common chord of the
two circles x2+y2+2x—5y = 0 and x2+y?+6x—8y = 1 touches the axes of
coordinates. (U.L)

14. Obtain the centres and radii of the circles x2+3y2—4x—5 = 0 and
x24y24+6x—2y+6 = 0. P is a point (h, k) such that the tangents from P to
both circles are equal. Prove that 102—2k+11 = 0. Hence show that the
locus of P is a line perpendicular to the line joining the centres of the two
circles. (U.L)

15. Two circles have centres (a, 0), (—a, 0) and radii b, c¢ respectively,
where a>b>c. Prove that the points of contact of the exterior common
tangents lie on the circle x2+y% = a®+bc.

Obtain the corresponding result for the points of contact of the interior
common tangents.

16. The vertices of a triangle are the points (0, 0), (14/3, 0), (3, 4). Prove
that the equation of the inscribed circle is 9(x*+y?)—48x—24y+64 = 0 and
that the equation of the escribed circle whose centre lies in the first quadrant
is x24+32—14x—Ty+49 = 0. (U.L)

17. Prove that two circles C; and C,, each of radius 12 and with centres not
on the x-axis, can be drawn to pass through the origin and to touch the
circle C whose equation is x2+y2—40x+384 = 0, and find the coordinates of
their centres.

Prove that the tangent to C; and C at their point of contact meets the
tangent to C, and C at their point of contact at the point (15, 0). (UL)

18. A circle S passes through the point (2, 0) and cuts the circle x2+y? = 1
at the ends of a diameter of that circle. Find the equation of the locus of the
centre of S.

Find the equation of S if it cuts the circle x2+y2—4y—5 = 0 at right angles.

(U.L.)

19. Show that the common tangents of the circles x2+y?*+2y = 0 and
x2+4+y2—6y = 0 form an equilateral triangle.

20. Show that the locus of a point which moves so that the chords of
contact of the tangents from the point to two fixed circles are orthogonal
is a circle.

21. Prove that the locus of a point which moves so that the sum of the
squares of its distances from the three vertices of a triangle is constant is a
circle whose centre is at the centroid of the triangle.



CHAPTER V

Systems of Circles

36. Angle of intersection of two circles

It is known from elementary geometry that the angles between
the tangents at 4, and A4, (Fig. 25), the points of intersection of
two circles, are equal. We define the angle of intersection of the

Fi1G. 25

two circles to be the common value of the angle between the two
tangents at either point of intersection.
Let the circles*

Sy = XP+y*+2gx+2y+a =0,
Sy = x2+y2 428X+ 2y +e, =0

* In this chapter S; and S, are not to be confused with the S; and .S; defined
in section 30.

65
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cut at an angle a. Their respective centres are at Cy(—g,, —f,) and
Cy(—g,, —f2)- Let the tangents at 4, to these circles cut C,C, in
L, and L, respectively. Since CyAL, and C,AL, are right angles, it
follows by addition that L,AL, and C,AC, are supplementary.
That is, the angle C,4C; is #—a. We have

A4,C2 = g +-f—a; A,C? = g+ — Gy
GG = (g1i—g)*+ (Li—*
Accordingly the cosine rule yields

(&1—g)*+(i—f)? = g’ HP—a+tg’+hi—c
+2v{(g2+f2— ) (g2 /2 —c2) }cos a

from which it follows that

cos a = at+e—28.8—2ff .
2V {8+t~ (g2t —c)}

Two circles are said to cut orthogonally if their angle of inter-
section is a right angle. We deduce that the two circles S; = 0 and
S, = 0 cut orthogonally if

2818, +2f1 fo—a1—¢ = 0.
This result can be directly obtained from
(&1—&+((i—f)* = (g2 +fP—c) + (g2 /P —cv),

since in the case of orthogonal circles, C; and C, coincide with
L, and L, respectively and C,4C, is a right angle.

EXAMPLES

1. Calculate the angle of intersection of the two circles 8(x2+3y24+2x)+3 =0
and 8(x2+y%+2y)+3 = 0.

2. Prove that the circles 2x2+2y*—7x+5 = 0 and x*+y*—6x+4y+8 = 0
cut orthogonally.

3. A circle passes through the point (a, b) and cuts the circle x2-y? = ¢?
orthogonally. Prove that the locus of the centre is the straight line
2ax+2by = a*+b%+c2.
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4. If §; = (x—a)*+(y—BY*—7: = 0and §; = (x— e +(y—fo)*—7* = 0
are any two circles, prove that the two circles ¥,5147,5: = 0 cut orthogon-
ally.

5. Prove that each circle of the system x2+y?+py—c = 0 is orthogonal to
each circle of the system x2+y%+ Ax+c = 0. Hence determine the equations
of the circles which are orthogonal to the circle x2+y%*+10x+1 = 0 and
which touch 3x—y—7 = 0.

37. Radical axis
Consider the two circles

Sy = x2+y* 281 x+2fiy+6, =0,
Sy = x*+y2+2gx+2fy+c; = 0.

The square of the length of the tangent from (x, y) to the circle
Sy = 0is x2+4324+2g,x+2f,y+¢,. Accordingly, the locus of points
(x, y) from which the tangents to S; = 0 and S, = 0 are equal
has the equation

x4yi-2gx4+-2f1y ¢ = X2+ 228 +2fay+ .
That is,
S$1—8; = 2(g,—g)x+2fi—f)y+e—c = 0.

This equation is linear and so represents a straight line, called the
radical axis of the two circles. The gradient of the radical axis is
—(g:—g»)/(fi—f>) whilst the gradient of the line joining the
centres of the two circles is (f;—/f3)/(g:—g2). Thus the radical axis
is perpendicular to the straight line joining the centres of the two
circles.

Figure 26a shows the case of intersecting circles and the radical
axis coincides with the line joining the points of intersection of
the circles.

Figures 26b and 26¢ illustrate the cases of non-intersecting
circles whilst Figs. 26d and 26e depict the intermediate cases of
two touching circles. In these two cases, the radical axis is the
common tangent at the point of contact of the two circles.
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EXAMPLES

6. Obtain the equation of the radical axis of the two circles
2(x*y)—5x+7y—1 =0 and 7(x*+py)+x—y =0

7. Prove that a circle which cuts the circles S, and S, orthogonally has its
centre on the radical axis of S; and S;.

38. Radical centre
Consider the three circles
St = x2+y2+-2gix+-2fiy+ei =0 (i=12,3).

The radical axes of the three circles taken in pairs are
S2—S8 = 0; S3_S1 = 0; S1—52 = 0.
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These straight lines are concurrent at the point given by
S]. == S2 = S3.

This point of concurrence is called the radical centre of the three
circles.

EXAMPLES

8. Obtain the radical centre of the three circles x*+y2—2x+6y = 0,
x2+y?—4x—2y+6 = 0 and x®+)2—12x+2y+30 = 0.

Further, show that these circles all cut the circle x24y*—6x46 =0
orthogonally.

9. Find the equations of the radical axes of the circles (x —2)2+(y—3)>=9,
(x—3)24+(y—2)? = 4, (x—6)*+y* = 7 and prove that they are concurrent.

What is the equation of the circle that is orthogonal to these three circles?

39. Coaxal circles
Consider the two circles

Sy = X242 4281 x+2f1y+¢, =0,
Sy = X2+ +2gx+2fy+c, =0
and set up the equation
’ S;+kS, =0.

The value k = —1 corresponds to the radical axis S;—S, = 0 of
the two circles, whilst any other value of k yields a circle.

Exercising due care that the coefficients of x? are unity in the
equations of the circles, we see that the radical axis of the two
circles corresponding to k, and k, is given by

SitkSe _ SitksSs.
Ik, 1k

That is,
(14-ko) (Sy+k1S5) — (1+ky) (S1+k,S) =0,
which reduces to
(ks—ky) (S;—S,) = 0.
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For two distinct circles k; % k, and so the radical axis of the two
circles is S;—S, = 0. Thus S,+kS, represents a system of circles,
called a coaxal system of circles, such that any two circles of the
system have a common radical axis.

Let us choose the common radical axis as the y-axis and the
line of centres (which is orthogonal to the radical axis) as the
Xx-axis.

The centre of the circle S;+kS, = 0 is at the point

(— (@ +kg)/(1+K), —(fit+kfR)/(14K)

and so f; =f; = 0.
The common radical axis has the equation

2(g1—gx+2fi—fIy+c—cy = 0.

Hence ¢, = c;. Accordingly, on division by (1+4k), the equation
S1+ kS, may be written

¥*+)2+2xx+c =0,

where we have put A = (g;-+kgy)/(1+k) and ¢ = ¢; = ¢,. This
equation may be written in the form

()2 = X,

EXAMPLES

10. Show that the equation x2+y2+2Ax+c = 0, where A can take any
value, represents a system of coaxal circles with the y-axis as radical axis.

11. Find the condition that the equations x24y%+42Ax+c = 0 should
represent (a) an intersecting coaxal system, (b) a non-intersecting coaxal
system, (c) a tangential intersecting coaxal system.

12. Obtain the equation of the circle, which is coaxal with the circles
x®*+y*+3x—4y+5 =0 and x*+4)*—5x+2y—1 =10 and which passes
through the point (3, 1). Find also the radical axis of the system.

13. If the circle x%+)?—3x+4y—2 =0 is one of the coaxal system
having its radical axis as the line 2x—3y = 1, find the circle of the system
that passes through the origin.

14. Obtain the equation of the coaxal system of circles with radical axis
Ix+my+n = 0 if one circle of the system is x3+y*+2gx+2fy+c = 0.
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40. Intersecting coaxal circles

We have seen in the last section that the equation of a coaxal

system of circles may be written in the form
(x4 2242 = X2—.

Consider the case when ¢ < 0 and so we may set ¢ = —a?, We
see that all circles of the coaxal system pass through the two fixed
points P(0, o) and Q(0, —a). The coaxal system is shown in Fig.
27a. The circle on PQ as diameter is the smallest circle of the
system.

P and Q coincide with the origin when a = 0. In this case, all
circles of the coaxal system touch the y-axis (the radical axis) at
the originZas shown in Fig. 27b.

Fic. 27
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EXAMPLES

15. If one circle of a coaxal system with radical axis x+3y—2 = 0 is given
by x*+y*—2x-+6y = 0, write down the equation of the coaxal system and
show that the system is a tangential one.

16. Show that the equation x2+)%+4+2x+6y—19+42A(x+y—3)=0
represents an intersecting system of coaxal circles. Obtain the equation of the
smallest circle of the system.

41. Non-intersecting coaxal circles
Now consider the case of the coaxal system of circles

(x+A)2+y2 = A—c

when ¢ > 0. Let ¢ = a2, and it follows that the circles of the
coaxal system are real if and only if A?> > a2 For A = +fa there
are two point circles of the system at the points R(e, 0) and
S(—a, 0) called the limiting points. The radical axis x = 0 cuts the
coaxal system where > = —a?, and so there are no points of
intersection of the circles of the system. Such a non-intersecting
system of coaxal circles is illustrated in Fig. 28.

-

o
| &/

FiG. 28

The radius of the circle S;+kS; = 0 is
Vv {(g1+kg)?+(fi+Hkfo)2— (1K) (e +kep) 3/(1+k),
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and so the limiting points of the coaxal system determined by the
two circles S; = 0 and S, = 0 correspond to the roots in k of the
quadratic equation

(81+kg)*+ (i +kf)* —(1+k) (e tke) = 0.

EXAMPLES

17. Obtain the limiting points of the coaxal system of circles determined by
9x%4+9y*+18x+5 =0 and 9x24+9y%*+18y+5 = 0.

18. Show that x2-+y2—12x+20+ A(x2+y2+6x+2) = 0 represents a non-
intersecting system of coaxal circles, and find the coordinates of the limiting
points.

42. Conjugate system of coaxal circles
We now find the condition that the circle

x*+)2+2gx+4-2fy+d =0
cuts the two circles
x24+y24 20 x+¢ = 0,
X242 420 x+c =0

of a coaxal system orthogonally. By the condition in section 36,
we have

gh—c—d =0,
gl—c—d =0.
Hence g = 0 and d = —¢, and so any circle of the coaxal system

x24-y24-2uy—c =0
cuts any circle of the coaxal system
x24-y2422x4+¢c =0
orthogonally. These two coaxal systems are said to be conjugate,

EXAMPLE

19. If a coaxal system is intersecting, with distinct points of intersection
P and Q, show that the conjugate system is non-intersecting with limiting
points at P and Q.
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MISCELLANEOUS EXAMPLES

1. If the four points of intersection of the straight lines Lx+my+n, = 0
and Lx-+my+n, =0 and the circles x*+y*+2gx+2fy+c;=0 and
x4y +2gx+2fy+c, = 0 respectively are  concyclic, show that
2(g,— g2 (myty—many) +2(fi—f2) (mla—naly) + (ex—co) (amy—lomy) =0.

2. Obtain the equation of the radical axis of the circumcircle and the nine-
points circle of the triangle formed by the points (— 2, 0), (3, 0) and (a, B).

3. Show that the coaxal system determined by thecirclesx2+y*+2gx+c,=0
and x%+32+2fy+-c, =0 have limiting points if (¢;—c))* > 4(f?g*—f2c,—g%y).

4. Prove that every circle which passes through the limiting points of a
coaxal system is orthogonal to every circle of the system.

5. Obtain the condition that the circle x2+y2+2g,x+2f,y+¢; = 0 should
cut the circle x2+y%+2g,x+2f,y+c, = 0 at the ends of a diameter. Deduce
that in general one and only one circle of a given coaxal system cuts a given
circle at the ends of a diameter.

6. A, and A, are points on the circles S, and S, respectively such that the
length of the tangent from 4, to S, is equal to the length of the tangent from
A, to S,. Prove that 4, and 4, are equidistant from the radical axis.

7. Show that any non-intersecting system of coaxal circles contains two
circles of zero radius.

Find these circles for the system

(x—1)24+ (=22 + Ax2+y2+2x+5) = 0. (U.L)



CHAPTER VI

Ellipse

43. Ellipse

We define an ellipse to be the locus of a point such that the
sum of the distances of the point from two fixed points is constant.
The two points are called the foci and the distance between the
foci is less than the constant in the definition.

Y
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In Fig. 29 select the mid-point O of the line joining the two
foci F and F’ as origin and OF as the direction of the positive
x-axis. lLet the constant sum of the distances be 2a. Since F'F<2a
we may introduce e<<l such that OF = qe. We call e the
eccentricity. Then the foci are at (ae, 0) and (—ae, 0).

75
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Let P(x, y) be any point on the ellipse. The definition now yields
v { (x—ae)*+y*}++/{ (x+ae)*+y*} = 2a,

where it is emphasised that the positive square roots are taken
everywhere in this section. Hence

(x+aep+y? = 2a—+/ {(x—ae)*} 1%,

which simplifies to
(x—ae)®+y* = ez(g—x)2. (a)
Similarly we may obtain
(x+ae)?+y? = ez(g+x)2- B

Let PL and PL’ be drawn parallel to the x-axis, intersecting the
straight lines x = a/e and x = —a/e respectively at L and L.
The above equations state that

PF=e¢PL and PF =ePL'.

Hence, we obtain an alternative definition of an ellipse as the
locus of a point such that its distance from a given point, called
the focus, is a constant ratio less than unity of its distance from a
fixed straight line. The straight lines x = --a/e are called the
directrices.

On further reduction, both equations («) and (8) become

(1—ed)x2-+y? = a*(1—e?).
Introduce the notation
b = av/(1—e?),
and so b<<a and the equation of the ellipse can be written in the
form

S
a b2
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The ellipse intersects the x-axis at the points 4(a, 0), 4'(—a, 0)
and the y-axis at the points B(0, b), B'(0, —b). These four points
are called the vertices whilst 0 is called the centre of the ellipse.
Further, 4’4 is called the major axis and B’B the minor axis.

If (x, ) lies on the ellipse, so does (—x, ), (¥, —y) and
(—x, —»). Hence the ellipse is symmetrical about both its
axes and about the centre. Any chord through the centre, called a
diameter, is bisected there.

The chord through the focus perpendicular to the major axis
is called the latus rectum. Substitution of x = ae in the equation
of the ellipse gives y* = b2(1—e?) = b%/a® and so the length of the
latus rectum FKF' is 2b%/a.

Note carefully that x2/424-y*/B% = 1 where B>>A represents
an ellipse with foci at (0, +-Be) and with its major and minor
axes along the y-axis and x-axis respectively, where
A =By/(1—¢?).

If a = b, the ellipse becomes a circle and both foci collapse into
the centre. In this case e = 0 and there are no directrices.

EXAMPLES

1. Obtain the coordinates of the foci of the ellipse
(@) x*/164-y%9 = 1; (ii) x2+3p% = 1; (ii)) e?x2+b%2 = 1 (b>a).

2. Find the equation of the ellipse which has foci at (4-2, 0) and eccentri-
city1/2.

3. Calculate the eccentricity and the latus rectum of the ellipse

@) x*+2y% = 6; (i) 3x2+4y% = 5; (i) x2tan2a+)2sec?a = 1,

4. An ellipse has eccentricity 4/3/2 and a latus rectum 2. Find the equation
of the ellipse if its centre is the origin.

5. An ellipse is drawn with its centre at the origin, a focus at (2, 0) and its
corresponding directrix the straight line 2x = 7. Obtain the equation of the
ellipse and calculate its latus rectum.

6. Determine the foci and latus rectum of an ellipse whose major and
minor axes are 6 and 4 respectively.

x2 y2
44, Intersection of 52+—2 = 1 and y=mx-+c

The ellipse x%/a®+-y2/b® = 1 and the straight line y = mx+c¢
intersect at the points whose coordinates satisfy both equations,
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Elimination of y yields

(mx+c)* _

A
That is,
(a2+ bZ) et B 1 =0
This quadratic equation gives the two values of x corresponding
to the two points of intersection of the straight line and the

ellipse. The straight line is a tangent if the two points coincide.
In this case the quadratic equation has equal roots. The required

condition is
m?c? 1 m?\/c?
5= (@) ()

c? = a’m?4-b2.

which reduces to

It follows that the straight line
y = mx++/(a*m?4-b?)

will touch the ellipse for all values of m. For any value of m there
are two parallel tangents corresponding to the two values of the
square root.

The straight line Ix+my-+n =0 has gradient —I//m and
intercept —n/m on the y-axis. Hence this straight line touches the

ellipse if
n 2 l 2
(3] o4
This relation simplifies to

a2 -b*m? = nl.
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llustration: Find the locus of the points of intersection of
perpendicular tangents to the ellipse x2/a2+y?/b? = 1,
The equation of a tangent to the ellipse is

Y = mx-++/(a*m?+b?).
This tangent passes through the point (a, g) if
B = ma++/(a?m®+-b?),
which simplifies to
(a?—a®m2—2afm-+-£2—b% = 0,

Hence there are two tangents through (o, ) corresponding to
the roots m,; and m, of this quadratic equation. If these tangents
are perpendicular mym, = —1 and so (B2—b?%)/(a?—a2) = —1.
That is,

a?+p2 = a®+-b?,

from which we deduce that the locus of (a, 8) is the circle
xX34y? = g2 D2,

This circle is called the orthoptic circle or director circle.

EXAMPLES

7. Prove that y = 2x+5 is a tangent to the ellipse x%/4+»%9 = 1 and find
the point of contact.

8. Show that the line x cos a+y sina = p touches theellipse x2/a?+ yib?=1
if p? = a®cos? a+b%sin? a.

9. If m is the gradient of a common tangent to the ellipses x*/a®+ y2[b? =
and x*/p®+y?q® = 1, show that m? = (g2— b?)/(a®—p?).

10. Obtain the equations of the tangents to the ellipse x*/5 +y¥4 =1
which are parallel to the line y = x—2.

11. Obtain the locus of the foot of the perpendicular from a focus to the
tangents to the ellipse x2/a%4-y?/b? = 1.

12. Find the equations of the tangents to the ellipse 4x%+9y% = 1 which
are perpendicular to 2x+y = 1.

13. Find the equations of the tangents of gradient m to the ellipse
x2at+y2bt = 1,

From an external point P two tangents are drawn to this ellipse. If they are
inclined to each other at 45° show that P lies on the curve
(x?—a®?4-6 (x2—a?) (2—b?)+(32—b2)?2 = 4x2y2, (U.L)
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14. Obtain the equation of the tangent to the ellipse (x/a)*+(y/b)* = 1 at
the point (xy, ¥1).

Deduce that the line Ix+my+n=0 is a tangent to the ellipse if
a2 +-b*m? = n?, and find the coordinates of the point of contact when this
condition is satisfied. Find the point on the ellipse 4x%4-9y* = l at which the
tangents are parallel to the line 8x = 9y.

45. Tangent properties
As in section 30, consider the two points 4;(x;, y;) and Ay(xz, ¥2)
chosen such that 4,4, intersects the ellipse

(Fig. 30) at the points P; and P,.

.
&

Fic. 30

The coordinates of the point P which divides 4,4, in the ratio
Ay/ Ay (section 4) are
{2+, A+ 2A92)/(A+ ) 3
If this point P lies on the ellipse, we have

1 ()‘1x1+ )‘2x2)2 1 ()‘lyl"" )‘2J’2)2_1 -0

@\ At A W P
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On multiplication by (A, A,)?, this equation simplifies to
SiAEF2T A 0+ 8,22 = 0,
where
S1 = x.2la*+y,2 62—
S§? = x, a2+, /b?—
Ty = Ty = xyX5/a%+y1y, /b2 —

This equation is called the Joachimsthal quadratic equation and
its roots correspond to the two points of intersection P, and P,
of 4,4, and the ellipse.
It is now clear that the methods of sections 31, 33 and 34 apply
to the ellipse with the results
(1) the equation of the tangent at (x;, y,) is

XX
X1 X +y1y

(i) the equation of the chord joining the points of contact of
the tangents from (x,, y,) is also

XX
1 +yly

5

(i) the equation of the pair of tangents from (x;, 1) to the
ellipse is

X 2 y 2 .X2 y2 A XX »y
(“al*z‘+l;2—1)(gz+b§— ) (;2 +5—1) =0
The normal, defined to be the straight line perpendicular to
the tangent at the point of contact, at (x,, y,) has the equation

yl(x—xl)_xl(y_yl) =0
b2 a? )
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Illustration: Show that the straight line x—y = 5 is tangent to
the ellipse x2-+4y® = 20 and find its point of contact.

We have a2 =20, B2 =5,l=1, m= —1, n = —5 and so
a®I2--b?m? = n?, showing that the line is a tangent.

Let the point of contact be at (x;, y,). Then x,x+4y,y = 20
and x—y = 5 represent the same straight line. Thus

X _4n 20
1 =1 5
Hence x; = 4 and y, = —1 and so the required point of contact
is (4, —1).
EXAMPLES

15. Find the equations of the normals to the ellipse x+6y* = 154 at the
points (2, —5) and (10, 3).

16. The tangent at P to an ellipse cuts the directrix corresponding to the
focus F at Q. Show that the angle PFQ is a right angle.

17. Obtain the locus of the mid-point of the portion of a variable tangent
to the ellipse x?/a?--y2/b® = 1 intercepted between the axes.

18. If P is any point on the ellipse x3/a?+y2/b* = 1 and the foci are denoted
by F and F’, prove that FP and F’P are equally inclined to the tangent at P.

19. Prove that the product of the distances of the foci from any tangent to
the ellipse x?/a2+y*/b* = 1 is equal to b2

20. If PQ is a focal chord of the ellipse x*/a*+y?%/b* = 1 prove that the
tangents at P and Q intersect on the corresponding directrix.

21. The normal at the point P on the ellipse x2/a®-y?/b* = 1 cuts the x-axis
at G. If Q is the point of intersection of the line through G parallel to the
y-axis and the line joining P to the centre of the ellipse, find the equation of
the locus of Q.

22. Obtain the condition that the line y = mx-+c should be a normal to
the ellipse x2/a®+y?/b® = 1.

46. Parametric equations

Draw the circle (Fig. 31) called the auxiliary circle on the
major axis A’'A as diameter. Let the ordinate through P(x, ») cut
the circle at Q and introduce the angle 40Q = 6. Then
x = ON = 0Q cos 6 = a cos 0. Substitution in the equation
x2[a%-+y2[b% = 1 of the ellipse yields y = b sin 4.

As 0, called the eccentric angle, varies from O to 27 the point P
travels once round the ellipse in the counter-clockwise direction
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Fig. 31

starting at 4 and finishing at 4. Consequently we may say that
the ellipse has the parametric equations

X = a cos 0, y = b sin 0.

The equation of the chord joining the two points with para-
meters a and 8 is given by

y—bsina bsina—bsinB _ b 2cos }(a+p) sin §(a—p)
x—acosa acosa—acosf a 2 sin }(a+p) sin 3(F—a)

_ _bcos}(a+h)
 asin }(a+p)°

This equation reduces to
2 cos J(a+P)+} sin a-+B) = cos Ha—p).

The equation of the tangent at the point 8 follows from this
equation by making « = 8 = 6 and the result is

x Yeng
acos 0+b sin 8 =1,
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EXAMPLES

23. Show that the tangents at the points o and B on the ellipse
x = acos 0,y = bsin 8, intersect at the point (a cos 3(a+p)/cos $(a—B),
b sin ¥(a+B)/cos H(a—B)).

24. Find the equation of the locus of the mid point of the chord joining
the points a and B on the ellipse x = a cos 6, y=b sin 0 given that a-}8 is
constant.

25. Prove that the line joining the points a and 8 on the ellipse x = a cos 9,

. . a B e—1 e+1
y = bsin 0 passes through a focus if tan 5 tan 5= orl or —o where e
is the eccentricity.

26. P and Q are the points « and g on the ellipse x = acos 8, y = b sin 6.

2
If PQ subtends a right-angle at A(a, 0), show that tan% tan g = — %and
deduce that PQ passes through a fixed point. Further, obtain the coordinates
of this fixed point.

27. The tangent to the ellipse x2/a®*+y?/b* = 1 at P(a cos 8, b sin 6) cuts
the x-axis at T. N is the foot of the ordinate of P and NP produced cuts the
circle x2+y? = a?at S. Prove that the tangent at S to this circle passes through

.If the circle PST touches the x-axis at 7, show that tan® 8 = b/a.

47. Conjugate diameters

Consider a system of parallel chords of the ellipse x = a cos 6,
y = bsin 8. Let 4 and B (Fig. 32) corresponding to eccentric angles
a and B respectively be the ends of one of the parallel chords.
Then the mid-point P(x, y) of AB has coordinates

x = g(cos a+cos B) = a cos }(a+p) cos $(a—B),

y = g(sin a-tsin B) = b sin 3(a+B) cos 1(a—p).

From the previous section, the constant gradient m of the
parallel chords is

m = —(b/a) cot }(a+p).
Elimination of a+pB and a—f between these three equations yields
y/x = —b%a*m.
Thus the locus of P is the diameter
b2x+atmy = 0,
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called the diameter conjugate to the parallel chords. Let us
denote its gradient by m’ = —b%*a?m. It follows that
m = —b*a’m’ and so by symmetry we see that the locus of the
mid-points Q of all parallel chords with gradient m’ is the
diameter with gradient m. That is, each of the diameters y = mx

and y = m’x bisects the chords parallel to the other. They are
called conjugate diameters. The relation between the gradients
m and m’ of conjugate diameters is

mm' = —b?/a2,
Suppose S and T, with eccentric angles 6 and ¢ respectively

(Fig. 32) are the ends of two conjugate diameters. The gradient
relation becomes

bcos0 bcosd b2

asin 0 gsing¢ g
which reduces to
cos (f—¢) =0
and so
10— = 2.

That is, the eccentric angles at the ends of two conjugate diameters
differ by =/2. In Fig. 32 we may take S to have eccentric angle 6
and T the eccentric angle 8-+w/2.
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Illustration: Obtain the equation of the chord of the ellipse
x%/a%+y?/b*—1 = 0 which has its mid-point at 4(x;, yy).

Let the gradient of the required chord be m. The gradient
(Fig. 33) of OA is y/x;. The diameter 0OA is conjugate to the
chords parallel to the chord with mid-point at 4 and so

m(yy/x,) = —b?aP.
That is m — —b2x,/a%; and so the equation of the required chord
is
y—n = —(O*x/a’y)(x—x)
which can be written
xyx[a*+yy[b? = x.*la*+y,*[b>

U

N

v

FiG. 33

Alternatively, the parametric equations of a straight line through
A are
x =xttcosy, y=y +tsing

where ¢ measures the distance from A4 along the line to the point
with parameter . This line intersects the ellipse, where

(x,+1 cos P)2/a®+(y+1 sin $)*/b°—1 = 0.
If A is the mid-point of the chord UV, then AU+AV = 0. Hence
the sum of the roots of the quadratic equation in ¢ is zero and so
(xa/a?) cos $+(2/b?) sin ¢ = 0.

Substitution in this equation of cos ¢ = (x—x)/t,
sin ¢ = (y—y,)/t yields on reduction the equation already obtained
for the chord UV.
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EXAMPLES

28. Find the equation of the chord of the ellipse 3x2+4y? = 28 whose mid-
point is (1, 1). Determine also the length of this chord.

29. Obtain the' mid-point of the chord 4y = 2x+3 of the ellipse x24-2y2=1.

30. Find the equation of the diameter of the ellipse 3x2+4y* = 2 which
bisects the chords parallel to the line 2x+4y—1 = 0.

31. Determine the gradients of the chords of the ellipse x2-3y% = 2 which
are bisected by the diameter 3y = 4x.

32. If $’OS and T'OT are conjugate diameters of the ellipse x%/a®+y?/b2=1,
prove that (i) 0S*+OT? = a®-+b2 (i) the area of the parallelogram formed by
the tangents at the ends of the conjugate diameters is 4ab.

33. If OP and OQ are conjugate semi-diameters of an ellipse with face at
F and F’, prove that PF. PF’' = OQ*

48. Normal
The tangent at the point # on the ellipse x = acos 8,y = bsin §
is (x/a) cos 0+(y/b) sin 6 = 1 and so the normal at 0 is

sﬂ;)—(’(x—a cos 0)—°—°:—0(y—b sin 0) = 0,

which simplifies to
ax sin 8—by cos § = (a?—b?) sin 6 cos 0.

To find the number of normals which pass through the point
A (x;, y) we must find the number of solutions in 8 of the equation

ax, sin §—by, cos § = (a2—b?) sin 8 cos 6.
To solve this equation, substitute tan 46 = ¢t and so

sin 8 = 2t/(14-1%) and cos 8 = (1—2)/(1+1?). After simplification
the equation reduces to

byt -2ax,+ @b+ 2axy— a6 —by, = 0.

This equation has at most four real roots and so, in general, not
more than four normals can be drawn from a point to an ellipse.

EXAMPLES

34. Prove that the normals at the points « and 8 on the ellipse x = a cos 6,
y = bsin @ intersect at the point ( (a2—b?) cos B cos 3(a+B)/acos } (a—p),
—(a®—b? sin a sin 8 sin $(a-}-p)/cos 3(a+H)).

D
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35. Obtain the condition that Ix+my = 1 should be a normal to the
ellipse x2?/a®-+y?%/b® = 1.

36. If the normals at the points a,, as, as, @, on the ellipse x2/a?-y*/b? = 1
are concurrent prove that a,+a,+a;+a, = (2r+1)7 where n is an integer.

37. The normal at a point P of the ellipse x*/a®-+y?/b* = 1, focus F and
eccentricity e, cuts the x-axis at R. Prove that FR = eFP.

49. Geometrical properties

Let the tangent at P(a cos?, asin 6) on the ellipse x%/a?--y2/b% =1
intersect the major axis and the directrix x = afe at T and R
(Fig. 34) respectively. Let the normal at P intersect the major

z Y
P 1
R
\
X' A\ F 0] GNF T X
4
¥
Fic. 34

axis at G. Let PN be perpendicular to the major axis, PL per-
pendicular to the directrix and FZ, F'Z’ be the perpendiculars to
the tangent at P from the foci Z and Z' of the ellipse.

Equations («) and (B) of section 43 state that

PF = a(l1—e cos 0); PF" = a(14-e cos 6).
The equation of the normal at P is
ax sin 8—by cos 6§ = (a*—b?) sin 8 cos 6 = a®e? sin 6 cos 0,
and so G is the point (ae? cos 6, 0). Accordingly
F'G = ae(l1+e cos 0) = ePF’
and
GF = ae(1—e cos 0) = ePF.
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Hence
PF'|PF = F'G|GF

and so the normal PG is the internal bisector (the tangent at P is
the external bisector) of the lines joining P to the two foci.
From the coordinates of G we also have that

OG = ¢®0ON.
The equation of the tangent at P is
bx cos 8+-ay sin § = ab,
and so T is the point (a sec 8, 0) from which it follows that
| ON.OT = &
Further, we have

ab(e cos —1) ,
1/ (b? cos? 8-+a2 sin? 6)’

ab(e cos 04-1)
1/ (b% cos? 0-+a? sin §)’

FZ = 4

F'Z' =+

and so
a®b?(e? cos? —1)
b? cos? 0-+-a? sin2 0
a?b?(e? cos? 6—1)

—_ — 2
- :{:az(l—-ez) cos? 6-+qa? sin? 6 + b

FZ . FZ' = 4

Since F and F’ are always on the same side of the tangent at P it
follows that

FZ.F'Z =b

Again from the equation of the tangent at P, we have that the
coordinates of P are (a/e, b cosec 0 (¢e—cos 6)/e) and so the
gradients of PF and FR are respectively b sin 6/a(cos 6—e) and
{b cosec 8 (e—cos 0)/e}/(a/e—ae). The product of these gradients
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is —b%/a%(1—e%) = —1. Thus PF and FR are mutually perpen-
dicular.

Similarly, if the other tangent to the ellipse through R touches
the ellipse at P’, then P'F and FR are mutually perpendicular.
Hence P, F and P’ are collinear.

That is, the tangents at the ends of a focal chord intersect on the
corresponding directrix.

EXAMPLES

38. Show that the foot of the perpendicular from a focus of an ellipse on
the tangent at either end of the latus rectum through the other focus is at the
point of intersection of the minor axis and the auxiliary circle.

39. Prove that the distance of a point on an ellipse from a focus is equal
to the perpendicular distance from the same focus to the tangent to the
auxiliary circle at the corresponding point.

MISCELLANEOUS EXAMPLES

1. Prove that Ix+my-+n = 0 is a normal to the ellipse x*/a*+?/b? = 1 if
a[I2+-b%*m® = (a®—b®)?*/nP.

2, If 6 and ¢ are the eccentric angles of two points collinear with a focus
of an ellipse, show that cos 4(0—¢) = +e cos 3(8+¢).

3, The lines joining the point P to the foci F and F’ of an ellipse cut it
again at A and B. Prove that the tangents at 4 and B intersect on the normal
at P.

4. Straight lines are drawn through the foci of an ellipse perpendicular to
a pair of conjugate diameters. Show that the locus of their point of intersec-
tion is an ellipse with the same eccentricity as the original ellipse.

5, P is the point 6 on the ellipse x = a cos 8, y = b sin § and F is the focus
(ae, 0). Show that the circle described on PF as diameter touches the auxil-
iary circle at (a(e+cos 8)/(1+e cos ), b sin §/(1+e cos 6) ).

6. Show that the angle between the pair of tangents from (x;, y,) to the ellipse
x}a*+y2b2—1 = 0 is tan~Y 24/[ (b*x:2+a*, 2 —a?bd)/(x 2+ 12 —a®— b ] }.
Hence find the locus of points which subtend an angle #/4 with the
ellipse.

7. Determine the equation of the four common tangents of the ellipses
x242y% = 3 and x2-+14y? = 7. Further, obtain the coordinates of the two
points of contact in the first quadrant.

8. A semi-diameter OP of the ellipse x%/a®-}-y%/b® = 1 meets the curve at
P(acos ¢, bsin ¢). Find the length of OP and its inclination to the major
axis. OP, OQ are two perpendicular semi-diameters of this ellipse, show that
1/OP2+1/00* = 1/a*+1/b2 (U.L)

9. The tangent at a point on an ellipse cuts the axes Ox, Oy in T, T” respec-
tively and the normal at the same point cuts Ox, Oy in N, N’ respectively.
Prove that, numerically, OT . ON = OT’. ON’.
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10. The normal at P(a cos 8, b sin 8) on the ellipse x?/a®+y%/b? = 1 cuts
the x-axis in G. N is the foot of the perpendicular from the origin O to the
tangent at P. Show that (a) PG . NO is independent of 6, (b) as P moves on
the ellipse the locus of N is given by (x2+32%)? = a?x24-b2)2, (U.L.)

11. Show that the ellipse may be parametrically represented by
x = a(1—13)/(1+¢%), y = 2ft/(1+4¢?) and find the equations of the chord joining
the points #, and ¢, and of the tangent at the point 7.

12. The product of the perpendiculars from the centre of an ellipse
x%/a®+y?/b* = 1 and from a point P to the line joining the points of contact
of the tangents to the ellipse from P equals A. Show that the line of contact
touches the ellipse x%(a®*+ ) +y2/(b2+ ) = 1.

13. Two conjugate diameters of the ellipse x2/a®+y%/b? = 1 intersect the
straight line x/a+y/b =1 at L and M. The straight lines drawn through L,
M perpendicular respectively to these diameters intersect at Q. Show that
the locus of 8 is the straight line ax-+by = a®+4b2.

14. Show that the locus of the mid-points of chords of the ellipse
x%/a®+y?/b®* = 1 which pass through the fixed point (a, §) is given by
x(x—a)/ar+y(y—B)/b* = 0.

15. Prove that the circle on the line joining a point on an ellipse and a
focus as diameter touches the auxiliary circle.

16. T(), b) is situated on the tangent to the ellipse x%/a®+)%/b* = 1 at an
end of its minor axis. Show that the equation of the other tangent through T
to the ellipse is 2bAx+y(a®— A?) = b(a®+ A%). Further, show that this line
touches the circle through T and the two foci of the ellipse.

17. Obtain the equations of the common tangents to the ellipses
a?x®+b%*? = 1 and b2x2+a%y? = 1.

18. The circle, having as diameter the line joining the foci of an ellipse,
meets the minor axis in L and M. Prove that the sum of the squares of the
perpendiculars from L, M on any tangent to the ellipse is 2a2. (U.L)

19. A pair of conjugate diameters of an ellipse, centre O, cuts the tangent
at a point P in L and M, and OQ is the semi-diameter conjugate to OP. Show
that LP . PM = OQ?.

20. The tangents to an ellipse, centre O, at the points P and Q are at right
angles. The cotresponding points on the auxiliary circle are p and g. Show
that Op and Ogq are conjugate semi-diameters of the ellipse.

21. The perpendicular from the centre O of an ellipse, focus F, on the
tangent at any point P intersects FP at R. Show that the locus of R is a circle.




CHAPTER VII

Hyperbola

50. Hyperbola

We define a hyperbola to be the locus of a point such that the
difference of the distances of this point from two fixed points is
constant. The two points are called the foci and the distance
between the foci is greater than the constant in the definition.

g
<
o

alo

x:-5 v X=

Fic. 35

In Fig. 35 select the mid-point O of the line joining the two
foci F and F’ as origin and OF as the direction of the positive
x-axis. Let the constant difference of the distances be 2a. Since
FF’ > 2a we may introduce e > 1 such that OF = ae. We call e
the eccentricity. The foci are at (ae, 0) and (—ae, 0).

Let P (x, y) be any point on the hyperbola. The definition now
yields

[V {(x+ae)*+)y2}—+/ {(x—ae)*+)?}| = 2a
92
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where |z| denotes +z, whichever is positive.
If x > 0, we have

VAi(x+ael+y*}— v/ {(x—ae)*+y*} = 2a,
whilst if x < 0, we have
VA(x—ae)+y*}—+/{(x+ae)*+y*} = 2a.
We emphasise that the positive square roots are taken everywhere

in this section.
As in section 43 we obtain

(x—ae)®+y? = e2(x—g)2, (o)
and
(x+aey+y? = ez(x+g)2- ' ®

Let PL and PL’ be drawn parallel to the x-axis, intersecting the
straight lines x = a/e and x = —a/e respectively at L and L’. The
above equations state that

PF = ePL and PF' = ePL'.

Let QM and QM’ be drawn (from a point Q with negative
abscissa) parallel to the x-axis, intersecting the straight lines
x = afe and x = —a/e respectively at M and M’. The above
equations then state that

OF = eQM and QF = eQM’,

Hence, we obtain an alternative definition of a hyperbola as
the locus of a point such that its distance from a given point,
called the focus, is a constant ratio greater than unity of its
distance from a fixed straight line. The straight lines x = tafe
are called the directrices.

On further reduction the equations («) and (8) become

(e2—1x2—)? = a(e2—1).
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Introduce the notation
b = ay/(e—1),
and the equation of the hyperbola can be written in the form

2 2

The hyperbola intersects the x-axis at the points A(a, O) and
A'(—a, O) called the vertices. Further O is called the centre and
A’A the transverse axis. The y-axis is called the conjugate axis
and it does not intersect the hyperbola.

If (x, y) lies on the hyperbola, so do (—x, y), (x, —») and
{(—x, —»). Hence the hyperbola is symmetrical about both its
axes and about the centre. Any chord through the centre is called
a diameter but we shall see later that not all diameters intersect
the hyperbola.

There are no real points on the curve corresponding to
—a < x < a and so the hyperbola consists of two branches,
extending to infinity in each of the four quadrants.

The chord through either focus perpendicular to the transverse
axis is called the latus rectum. Substitution of x = ae in the
equation of the ellipse gives y? = b%e?*—1) = b*/a? and so the
length of the latus rectum is 25%/a.

EXAMPLES

1. Calculate the eccentricity and latus rectum of the hyperbola
(i) x2—y? = 6; (ii) 4x2—2y® = T; (iii) x®cos? §—y%sin § = 1.

2. Find the foci of the hyperbola (i) x?/4—y*/3 = 1; (ii) x2—2)% = 1;
(iii) a®x2—b2%y? = 1, (b>a).

3. Obtain the equation of the hyperbola with eccentricity 3/2 and foci at
(£2,0).

4. A hyperbola, centre at the origin, has eccentricity 34/2/4 and latus
rectum 4/2/4. Determine the equation of the hyperbola.

5. Find the foci and latus rectum of a hyperbola whose transverse and
conjugate axes are respectively 6 and 4 and whose centre is the origin.

6. A hyperbola, with centre at the origin, has a focus at (3, 0) and the
corresponding directrix is the line x = 2. Obtain the equation and the length
of the latus rectum of the hyperbola.
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51. Tangent properties

The corresponding results of sections 44 and 45 for the ellipse
apply to the hyperbola with the change of +52 into —&2. The
reader is advised to work through the details. Here we merely
list the results.

The hyperbola x%/a®—3?/b* =1 and the straight line
Y = mx+-c intersect at the points whose abscissae satisfy the
equation

1 m? 2mex  c?
(E—zﬁ)x”—T—Fz—lﬂ-

The straight line y = mx+-c is a tangent if
c® = a®m2—ph?
and so the straight line
Y = mx++/(a*m*—b?%
will touch the hyperbola for all values of m.
The straight line Ix-+my+n =0 touches the hyperbola if
a?lP—b*m? = n?,
The locus of the points of intersection of orthogonal tangents
is the orthoptic circle or director circle and its equation is
X242 = 2—p2,

This circle exists only when a > b.
The equation of the tangent at (x;, y,) is

XX Ny _

a? bz
and this is also the equation of the chord joining the points of
contact of the tangents from (x;, y;) when this point is not on the
hyperbola.

The equation of the pair of tangents from (x;, »,) to the ellipse is

xz 2 x2 2 XX ¥y 2
G g ) (o
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The normal has the equation
»(x—x)/b*-x(y—y)a* = 0.

EXAMPLES

7. Prove that x-+y+2 = 0 touches the hyperbola 3x2—5y* = 30 and find
the point of contact.

8. Prove that the line xcosa+ysina=p touches the hyperbola
x2ja2—y*[b® = 1 if p® = a® cos® a—b? sin? a.

9. Obtain the equations of the tangents to the hyperbola 4x*—11y* = 1
which are parallel to the straight line 20x—33y = 13.

10. Find the equations of the tangents to the hyperbola x%/16—y*/9 = 1
which are perpendicular to 3y+2x—4 = 0.

11. Pis any point on the hyperbola x*/a*—y?/b* = 1. A tangent is drawn at
P and cuts the directrix at Q. Prove that PQ subtends a right angle at a focus
F.
12. Prove that the locus of the points of intersection of perpendicular
tangents to the hyperbola x*/a?—y?*/b* = 1 (a>b) is given by x*+y* = at—b?.

13. Prove that the tangents to a hyperbola at the extremities of a focal
chord intersect on the corresponding directrix.

14. Obtain the equation of the normal to the hyperbola 3x?—2y% = 1 at
the point (1, —1).

15. Prove that the line 4y = 3x—7 is a normal to the hyperbola
4x2—3y? = 1 and find the point of the hyperbola at which the line is normal.

16. Show that the product of the perpendiculars from the two foci on any
tangent is —b2.

52. Parametric equations

Draw the circle, called the auxiliary circle, on the transverse
axis (Fig. 36) 4’4 as diameter. Let PN be the perpendicular from
P(x, y) to the x-axis and construct the tangent NT to the circle.
Denote the angle AOT by 0. Then

x =ON = OTsecl =asech.

Substitution in the equation x2/a?—y?/b* = 1 of the hyperbola
yields y = b tan 6. As 6 varies from 0 to =/2 the point P traverses
the portion of the hyperbola which lies in the first quadrant
starting from 4 and tending to infinity as 6 tends to =/2. Next, as
@ varies from =/2 to =, the point P traverses the portion of the
hyperbola in the third quadrant from infinity to 4’ since both
sec @ and tan 0 are negative for 7/2 < 8 < m. As 6 varies from
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m to 37/2, P traces out the portion of the hyperbola in the second
quadrant from A’ to infinity. Finally, as 6 varies from 3#/2 to 2n,
the point P returns to 4 from infinity in the fourth quadrant.
That is, P traces out every point of the hyperbola as 8 ranges from
0 to 27. Consequently we may say that the hyperbola has the
parametric equations

x=asect, y=btan.
Y

¥
FiG. 36

The equation of the chord joining the two points with para-
meters a and B is given by

y—btana btana—btanf b sin (a—p)

x—aseca aseca—asecB a cosf—cosa

b 25sin §(a—pB) cos $(a—p) b cos }(a—p)
" a 2sin }(a+P) sin Y(a—B) a sin i(a—p)

This equation reduces to

Z cos Ha—p) — y sin §(a+B) = cos }(a+H).

It follows that the equation of the tangent at 6 is

f’?—zsin(i:cos&
a b
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EXAMPLE

17. Show that the tangents at the points « and g on the hyperbola
x = asec 0, y = btan 0 intersect at

(a cos } (a—P)/cos ¥(a+B), bsin }(a+B)/cos (a+h))-

53. Asymptotes
The diameter y = mx intersects the hyperbola x?/a®—)?/b* = 1
at the two points where

1 m2
x2 (EE—F) = 1.

These points are real if and only if
—bja < m < ba.

As m tends to either of -b/a the coordinates x of the points of
intersection tend to infinity. Thus the two diameters of gradient

Fic. 37

4+ b/a, with the equations x/a+y/b = 0 and x/a—y/b = 0, called
the asymptotes of the hyperbola, divide all diameters into two
classes (Fig. 37). One class comprises those diameters, of gradients
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numerically less than b/a, which intersect both branches of the
hyperbola. The second class consists of those diameters, of gra-
dients numerically greater than b/a, which do not intersect it. These
diameters, however, intersect the hyperbola x2/a®—y?/b? = —1
in real points whilst the diameters of the first class do not
intersect this hyperbola, which is called the conjugate hyperbola.

The tangent to the hyperbola at the point (a sec 8, b tan 6) has
the equation

x_ Y sin @ = cos 4.
a b

For 6§ = =/2 and 3w/2 these equations become respectively
xfa—y{b = 0 and x/a+y/b = 0. That is, the asymptotes are the
limiting positions of the tangent as the point of contact tends to
infinity.

The angle between the asymptotes is 2 tan—! (b/a) = 2 sec~1e.

When a = b, the asymptotes are perpendicular to one another
and the curve is called a rectangular hyperbola.

EXAMPLES

18. Calculate the eccentricity of a hyperbola if the angle between the
asymptotes is (i) 60°; (ii) 90°.

19. The tangent at a point P on a hyperbola intersects the asymptotes at
A and B. Prove that P is the mid-point of 4B.

20. Prove that the area of the triangle formed by the tangent at any point
of a hyperbola and the two asymptotes is constant.

21. Show that the feet of the perpendiculars from a focus of a hyperbola
to an asymptote lie on the corresponding directrix.

22. Show that the product of the perpendiculars from any point of the
hyperbola x2/a*—y*/b* = 1 to the two asymptotes is equal to a?b?/(a%+b?).
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54. Conjugate diameters

Consider a system of parallel chords of the hyperbola
x =asecl,y = btan0. Let 4 and B, corresponding to parameters
a and B respectively, be the ends of one of the parallel chords.

Then the mid-point P(x, y) (Fig. 38) of AB has coordinates
x = ; (seca 4 sec f) = %(cos a + cos B)/cos a cos B =

a cos $(a-+P) cos $(a—p)/cos a cos B
y = g(tan o+ tan ) = g sin (a+pB)/cos a cos B =

b cos }(a+P) sin $(a+-B)/cos a cos B
from which
y/x = b sin }(a+B)/a cos }(a~B).

Y

Y
Fic. 38

From section 52, the constant gradient m of the parallel chords is
m = b cos $(a—p)/a sin 1(a+p).
Elimination of a and 8 between these two equations yields
y/x = b*la*m.
Thus the locus of P is the diameter
b2x—a?my = 0,
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called the diameter conjugate to the parallel chords. Let us denote
its gradient by m’ = b%a?m. As in the case of the ellipse (section
47), each of the diameters y = mx and y = m’x bisects the chords
parallel to the other. They are called conjugate diameters and the
relation between their gradients is

mm’ = b%a?.
Thus one of these two gradients is arithmetically greater than
whilst the other is arithmetically less than b/a. That is, of two

conjugate diameters, one intersects whilst the other does not
intersect the hyperbola. '

EXAMPLES

23. OP and OQ are conjugate semi-diameters of the hyperbola
x%a%—y?/b?® = 1. Calculate OP2—O0Q?2.

24. Show that the tangents at the two points P and Q on a hyperbola
intersect on the diameter conjugate to PQ.

25. Show that the equation of the chord of the hyperbola x?/a?— bt =1
which has its mid-point at (xy, y,) is x,x/a®—y,y/b? = x,2/a®—y,2[b%.
55. Normal

The tangent at the point 6 on the hyperbola x = asec 9,
y = btan 6 is x/a—(y/b) sin 8 = cos 6 and so the normal at 8 is

sin 6 (x—a sec 6)/b + (y—b tan 6)/a = 0,
which simplifies to
ax sin 6 4 by = (a®-+-b2) tan 6.

To find the number of normals which pass through the point
A(x, y;) we must find the number of solutions in 6 of the equation
ax, sin 0 + by, = (a*+b?) tan 6.

Substitute tan 36 = ¢t and so sin 6 = 2t/(14+?) and
tan 6 = 2¢/(1—#). The result after simplification is the quartic
equation

by,t*+-2(ax,+-a*+4-b*)1*+ 2(—ax, + a2 +b2)t—by, = 0.
This equation has at most four real roots and so not more than
four normals can be drawn from a point to a hyperbola.
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EXAMPLES

26. The normal at the point P on an hyperbola of eccentricity e intersects
the axes at 4 and B. Show that the locus of the fourth vertex of the rectangle
formed by A, B and the centre of the hyperbola is a hyperbola of eccentricity

e/r/(e2—1).
27. Show that Ix+my-+n = 0 is a normal to the hyperbola x?/a?—y?/b*=1
if a?/I2—b%[m* = (a®+b%?/n%.

57. Geometrical properties

Let the tangent at P(a sec 6, b tan 6) on the hyperbola
x2/a2—y?/b?® = 1 with foci at F and F’ intersect the transverse axis
at T (Fig. 39). Let the normal at P intersect the transverse axis at

elo

/.

L
]
Pd

=

\
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G. Let PN be the perpendicular to the major axis and PL be the
perpendicular to the directrix.
Equations (a) and (8) of section 50 state that

PF = a(e sec 0—1); PF’' = a(e sec 6+1).
The equation of the normal at P is
ax sin 0+by = (a?+0?) tan 0 = a%® tan 6
and so G is the point (ae? sec 8, 0). Accordingly
F'G = ae(1+-e sec 0) = ePF’
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and
FG = ae(e sec 6—1) = ePF.
Hence
PF'[PF = F'G/FG

and so the normal PG is the external bisector (the tangent at P is
the internal bisector) of the lines joining P to the two foci.

As in the case of the ellipse, we also obtain

OG = €20ON and OT . ON = a2

EXAMPLES

28, Show that the tangent at a point on a hyperbola is the internal bisector
of the angle between the lines joining this point to the two foci.

29. Prove that the asymptotes of a hyperbola intersect the directrices on
the auxiliary circle.

30. Prove that the foot of the perpendicular from a focus to a tangent to a
hyperbola lies on the auxiliary circle.

MISCELLANEOUS EXAMPLES

1. A straight line intersects a hyperbola at P and Q and its asymptotes at
R and S. Prove that PR = QS.

2. Given that a>k>b>0 prove that the ellipse x2/a®+y%/b? = 1 intersects
the hyperbola x?/(a®—k?)+y*/(b*—k?) = 1 in four real points. If P is any one
of these points, prove that the tangents at P to the two curves are perpendicu-
lar. Find the equation of the circle which passes through the four points.

(U.L)

3. Show that the hyperbola x?/a®—3?/b* =1 may be parametrically
represented by x = a(1-+1%)/(1—1%), y = 2bt/(1—1*) where ¢ is a parameter.
Obtain the equation of the chord joining the points #, and #,. Deduce the
equation of the tangent at the point z.

4. Prove that the point [g(ﬂ-;), —g(t—;) ] lies on the hyperbola
x%[a®—y?/b* = 1. Find the equation of the chord joining the points #, and 7,
and hence deduce the equation of the tangent at the point 7.

5. The straight line Ix+my-n = 0 intersects the hyperbola x2/a®—y2b?=1
at the points L and M. Prove that the equation of the circle on LM as dia-
meter is (@*2—b*m?) (x*+y*) +2n(a*lx—b*my) +a®b*(I*+m?) +n%(a*—b?) = 0.

6. The tangents at the points P, Q on a hyperbola cut an asymptote at L,
M respectively. Show that PQ bisects LM.

7. P is a point on, and O is the centre of, the hyperbola x?/a>—y2/b? = 1,
The diameter conjugate to OP intersects the conjugate hyperbola
x%[a®—y?[b* = —1 at R. Show that the locus of the point of intersection
of the normals at P and R is a*x*—b%? = 0.

8. P,P,is a chord of the ellipse x*/a?+y2/b* = 1 perpendicular to the major
axis. The tangent at P, to the ellipse intersects the hyperbola x2/a?—y?/b* = 1
at Q, and Q,. Show that P;Q, and P,Q, are tangents to the hyperbola.
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9. The chord of contact of the tangents through P to the hyperbola
x%/a®—y?/b? = 1 subtends a right angle at the origin. Show that the locus of P.
is the ellipse x2/a*+y?/b* = 1/a®—1/b2. (Use the method of section 25.)

10. Fand F’ are the foci of a hyperbola, eccentricity e and centre O. OP and
OQ are a pair of conjugate diameters. The straight lines through F and F’
respectively perpendicular to OP and OQ intersect in L. Show that the locus
of L is a hyperbola with eccentricity e//(e?—1).

11. A variable tangent to a hyperbola intersects the asymptotes at L and M.
Show that the angle which LM subtends at a focus is equal to half the angle
between the asymptotes.

12. The normal at a point P of the hyperbola x?/a®—y?*/b% = 1, centre O,
intersects the transverse axis at G. The diameter conjugate to OP intercepts
the conjugate hyperbola at Q. Prove that PG/OQ = b/a.

13. L and M are the feet of the perpendiculars from the focus of a hyper-
bola to the tangent and normal respectively at a point P on the hyperbola.
Show that L and M are collinear with the centre of the hyperbola.

14. Show that the points P(ap, bp) and Q(aq, —bq) lie one on each of the
asymptotes of the hyperbola x?/a*—y?/b* = 1.

If the mid-point R of PQ lies on the curve, show that pg = 1 and that PQ
is then the tangent at R. Show that, in this case OP . OQ is constant, where O
is the origin. (U.L.)

15. A is a fixed point on a hyperbola. A variable line through the origin
intersects lines through P parallel to the asymptotes at B and C. Show that
the fourth vertex D of the parallelogram ABCD lies on the hyperbola.

16. Prove that the equation of the tangent to the hyperbola x?/a®—y2/b%* = 1
at the point (3a(z+1/¢), 3b(t—1/t) ) is x(#2+1)/a—y(t2—1)/b = 2t.

A variable tangent to the above hyperbola cuts the asymptotes at L and M.
Prove that the locus of the centre of the circle OLM, where O is the origin,
is given by the equation 4(a?x2—b2y?) = (a®+b?)2. (U.L)

17. Prove that the point P whose coordinates are (a sec 0, a tan 6) lies on
the rectangular hyperbola x*—y? = a2

If Q is the point whose parameter is 0+72—r and R(x,, y,) is the mid-point of

PQ, prove that y,/x, = sin 84cos 6 and find the locus of R. (U.L)
18. The tangent at P to the hyperbola x2/a*—y?/b? = Xintersects the hyper-
bola x2?/a?—y?/b? = p at the points Q and R. Show that P is the mid-point of

QR.



CHAPTER VIII

Rectangular Hyperbola*

57. Rectangular hyperbola
The asymptotes of the hyperbola x2/a?—y2/b? =1 are given

Y

v
Fic. 40

* Apart from section 57, this chapter is independent of the two previous
chapters on the ellipse and hyperbola and so readers, omitting sections 57
and 64, can study the rectangular hyperbola merely as the curve with the
parametric equations x = cf and x = ¢/t.

105
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by the straight lines x/a+y/b =0 and x/a—y/b = 0. These lines
are mutually orthogonal if @ = b and the curve is then called a
rectangular hyperbola. PU and PV are the perpendiculars (Fig. 40)
from P (x;, y1) on the rectangular hyperbola
x2—y? = a?
to the asymptotes x—y =0 and x+y =0 respectively. Thus
PU = |x,—y|/v/2 and PV = |x;+x1l/v2
and so
PU. PV = |x2—y?/2 = a¥/2
since (x;, y,) lies on the hyperbola.

Y

FiG. 41
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That is, the product of the perpendiculars from a point on a
rectangular hyperbola to the asymptotes is constant.

Introduce ¢? = 4%2; then we can write the equation of the
rectangular hyperbola in the form

xy = ¢

referred to the asymptotes as axes (Fig. 41).

P

v
FiG. 42

From the relation b = a+/(e2—1) it follows that the eccen-
tricity of a rectangular hyperbola is /2.

If we substitute x = ¢t in the equation xy = 2, we obtain
y = cft. That is, as ¢ varies, the point (ct, ¢/r) always lies on the
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rectangular hyperbola xy = ¢ Accordingly, the rectangular
hyperbola can be represented by the parametric equations

x = ct; y = c/t.

EXAMPLE

1. Find the coordinates of the centroid and the circumcentre of the triangle
formed by the three points #,, 7, and #; on the rectangular hyperbola x = ct,
y = ¢/t. Deduce that the locus of the circumcircle of the triangle whose
centroid is at the fixed point (e, f) is given by the equation
(x—3a/2) (¥ — 3B/2) = c*/4.

58. Parametric equations of rectangular hyperbola
Figure 42 depicts the general shape of the curve whose equation
Y

FiG. 43
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is xy = c2. This curve can also be represented by the parametric
equations x = ct, y = ¢/t.

For t = 0, the coordinate y has no finite value. When ¢ is small
and positive, x is small and y is large, both being positive. As ¢

—ve

FiG. 44

increases, x increases and y decreases. For infinite value of ¢, the
coordinate x has no finite value. Thus as ¢ varies from zero to
infinity, the point (ct, c/t) traverses the portion of the curve in the
first quadrant in the direction marked. For negative values of ¢,
both coordinates x and y are negative and so as ¢ varies through
negative values from minus infinity to zero, the point (ct, c/f)
traverses the portion of the curve in the third quadrant.
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If the point P, (ct, ¢/t) with parameter ¢ lies on the curve, then
the point P, (—ct, —c/f) with parameter —1 also lies on the curve.
That is, the curve is symmetrical about the origin, called the
centre. Any chord through the centre is called a diameter and is
bisected there. The axes of coordinates are called the asymptotes.

The sign of xy—c? is clearly negative for points in the second
and fourth quadrants. The coordinates of any point such as
P or P’ (Fig. 43) are numerically less than the coordinates of the
points Q or Q' respectively. Since xy—c? =0 at Q and Q, it
follows that xy—c? is negative at P and P’. On the other hand,
the coordinates of any such point as R or R’ are numerically
greater than the coordinates of the points S and S’ respectively.
Hence xy—c? is positive at R and R’. The sign of xy—c? is illus-
trated in Fig. 44.

EXAMPLE

2. Pis the point ¢ on the rectangular hyperbola x = ¢t, y = ¢/z. Show that
the circle on the line joining P to the centre as diameter intersects the hyper-
bola again at the point (c/v/'t, c¥/?).

59. Chord and tangent
The equation of the chord joining the points P, and P, (Fig. 45)
with parameters ¢, and ¢, respectively is given by

y—clty _cli—cfty 1
x—ctl ct]_—'ctg t1t2

and simplifies to
x+t1t2y—c(t1+t2) = 00

It follows that the equation of the tangent at the point P with
parameter ¢ is

x+2y—2ct = 0.
The tangent at P passes through 4 (a, ) if
1?B—2ct+a = 0.
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Y
P, 2
P i
X' 0 X
¥
FiG. 45

This equation has two roots corresponding to the two tangents
through 4. These tangents exist if and only if the quadratic
equation in ¢ has real roots. That is

af—c? < 0.

Hence tangents can be drawn to the rectangular hyperbola from

points in the regions marked —uve in Fig. 44.

Illustration: Show that the orthocentre of the triangle formed by

three points on a rectangular hyperbola also lies on the hyperbola.
Consider the three points Py, P, and P; (Fig. 46) of parameters

t;, t; and 5 respectively on the rectangular hyperbola x = ct,
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Y

P>

H il

Ps

FiG. 46

y = ¢/t. Let L, L, and L be the respective points of intersection
of the altitudes with the opposite sides of the triangle P, P,Ps3.
The equation of the chord P,P; is

x+ttsy—c(ta+t) =0
and so the equation of P,L, is
tots(x—ct)—(y—c/t)) = 0.
That is,
Litsx—y = c(titts—1/t).
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Similarly the equation of P,L, is

tshx—y = c(tylsts—1/ty).
Solving these equations, we see that the orthocentre H is at
the point (—cftityts, —ctyityts). This point clearly lies on the
rectangular hyperbola and in fact has the parameter — 1/¢,%,¢5.

EXAMPLES

3. P is any point on the rectangular hyperbola xy = ¢? with centre O.
Prove that OP and the tangent at P are equally inclined to one of the asymp-
totes.

4. The tangents at P and Q, two points on the rectangular hyperbola
xy = c? intersect at 7. Prove that the line joining 7 to the centre of the hyper-
bola bisects the chord PQ.

5. Find the equation of the tangent to the rectangular hyperbola xy = c2
at the point (ct, c/t). Show that the area of the triangle formed by this tangent
and the axes of coordinates is independent of ¢. Show also that the centroid
of the triangle lies on the rectangular hyperbola 9xy = 4c2. (U.L.)

6. Show that the equation of the chord joining the points (ct,, ¢/t;) and
(cty, ¢/t) on the hyperbola xy = ¢ is t,t,y+x = c(t,+1,). Circles are drawn
on chords of the rectangular hyperbola xy = ¢2 parallel to y = x as diameters.
Prove that they all pass through two fixed points on the hyperbola. (U.L)

7. Two parallel tangents are drawn to a rectangular hyperbola. Another
tangent cuts these at 4 and B. Prove that the lines joining 4 and B to the
centre are equally inclined to the asymptotes.

60. Chord of contact
Let the tangents from 4 (x;, y,) (Fig. 47) to the rectangular
hyperbola x = ct, y = ¢/t touch at the points P, (ct,, ¢/t;) and
P, (ct,, c/ty). The equations of the tangents at P, and P, are
x+t2y—2ct, =0,
x+t2y—2ct, =0
respectively. Since A lies on both tangents, we have
x1+t12y1—2ct1 — 0,
X1+t2,—2ct, =0
which may be written in the forms
yictFxcfty = 2¢?,
Ayctyx,¢/t, = 22
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FiG. 47

That is, the points P; (cty, ¢/t;) and P, (cty, ¢/ty) both lie on the
straight line

yoxtxy = 2c2

Thus this equation represents the chord joining the points of

| contact of tangents from the point (x,, 1) to the hyperbola.

‘ Note that this equation represents the tangent at (x;, y) if
this point lies on the hyperbola, since the substitutions x; = ct,

‘ y, = c/t reduce the equation to x-r2y = 2ct.
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EXAMPLE

8. Prove that the line joining a point to the centre of a rectangular hyper-
bola is never perpendicular to the chord joining the points of contact of the
tangents from the point to the hyperbola.

61. Conjugate diameters
Consider a system of parallel chords of the rectangular hyper-
bola x = ct, y = ¢/t. Let A and B (Fig. 48), corresponding to

Frc. 48

parameter values ¢, and ¢, respectively, be the ends of one of the
parallel chords. Then the mid-point P (x, y) of AB has coordinates
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c 11 c
x = 5(tith), y= —;(;I-erz) =5(L+1)/hit.

From section 59, the constant gradient m of the parallel chords
is
m= — l/tltZ‘
Elimination of #,-+#, and #,#, between these three equations yields
y/x = —m.

Thus the locus of P is the diameter

mx+y =0,
called the diameter conjugate to the parallel chords. Let us denote
its gradient by m’ = —m. Since m = —m’, it follows by symmetry

that the locus of the mid-points Q of all chords parallel to CD
with gradient m’ is the diameter OP with gradient m. That is,
each of the diameters y = mx and y = m’x bisects the chords
parallel to the other. They are called conjugate diameters and the
relation between their gradients is

m+m = 0.

EXAMPLE

9. A straight line parallel to the line y = mux cuts the rectangular hyperbola
xy = ¢®at P and Q. Prove that the mid-point of PQ lies on the line y = —mux.
Find the length of the chord of the rectangular hyperbola xy = 4 whose mid-
point is (—3, 4). (U.L)

62. Normals
The tangent at (ct, ¢/f) to the rectangular hyperbola x = ct,
y = ¢/t has the equation

x+t2y—2ct = 0.
Hence the equation of the normal at (ct, c/?) is
2(x—ct)—(y—cft) = 0. '
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That is,
Bx—ty+c(l—1%) = 0.
The normal at ¢ passes through the fixed point (x,, y,) if
Bx;—tyn+e(1—1%) = 0.
That is, ¢ is a root of the quartic equation
ct—x B34 pt—ec =0

and so not more than four normals, corresponding to the roots
4, t, t3 and ¢,, can be drawn through (x;, ;) to the hyperbola.
The actual number of normals equals the number of real distinct
roots of this quartic equation.

From the theory of equations,

htttt3+-1, = x/c,
t2t3+t3t1+t1t2+t4(t1+t2+t3) =0,
higtgtty(tats+tst,+1:15) = —n/ec,
tilot3t, = —1."

Eliminating #, from the second and fourth of these equations,
we see that if the normals at the points ¢,, ¢, and #; are concurrent,
then

tists(fatsttsty+-1ity) = ty+1y+t,.

EXAMPLES

10. Show that tytoty(tots+tsty+111,) = t,+1,+1, is a sufficient condition
that the normals at the points #,, 7, and #; on the rectangular hyperbola
X = ct, y = ¢/t are concurrent.

11. P and Q are the points (ct, ¢/t,) and (ct,, ¢/t;) on the rectangular
hyperbola xy = ¢2 If PQ is normal to the curve at P, prove that 13,41 = 0.

12. The normal at the point ¢ of the rectangular hyperbola x = ct, y = ¢/t
is produced to cut the hyperbola again at N. Determine the coordinates of &,

13. P is the point (3, 4) on the rectangular hyperbola xy = 12. The normal
at P cuts the curve again at Q. Find the coordinates of the mid-point of PQ.
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14. Prove that the gradient of the normal at the point (ct, c/f) of the rect-
angular hyperbola xy = ¢? is 2. PQ and PR are perpendicular chords of this
hyperbola. Prove that QR is parallel to the normal atP. Show further that,
if QR passes through the foot of the perpendicular from P to the x-axis, then
the locus of the centroid of the triangle PQR is the curve y = 2¢*/9x—
9x3/8¢c2. (UL)

63. Concyclic points
Consider the four points t;, t,, t3 and ¢, on the rectangular
hyperbola x = ct, y = ¢/t. The point (ct, c/t) lies on the circle

x2+y24-2ex+2fy+k =0
if
c24-c2f+-2gct+-2fcft+k = 0.

That is,
cAtr4-2gct3+ki2+2fct4-c? = 0.

The four roots ,, f, t3 and ¢, of this quartic equation correspond
to the four points of intersection of the circle and the hyperbola.
From the theory of equations,

bittttatty = —2g/c,
tats+taty+hita - 1y(tH - tg) = K/,
tytsts+ta(tats+tsty+talo) = —2f]c,
titotsts =1

The first three of these equations determine the values of g, fand
k corresponding to the circle through the four points #,, t,, 3 and
t, of the hyperbola. The fourth equation yields the necessary
condition #,%,t5¢, = 1 that these four points are concyclic.

EXAMPLE

15. Show that #,f,fsf, = 1 is a sufficient condition that the points #;, 2, 75
and ¢, on the rectangular hyperbola x = ct, y = c/t are concyclic.
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64. Tangent properties

In this section, we obtain the tangent properties of the rectangu-
lar hyperbola xy = ¢2 without using the parametric representation
x=ct,y = ¢/t

As in section 30, consider (Fig. 49) the two points 4, (x,, y,)
and A, (x,, y,) chosen so that 4,4, intersects the hyperbola

S=xy—c?=0
at the points P; and P,.
Y
Az
A,Pl
X ) / X

P>

Yl

FiG. 49
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The coordinates of the point P which divides 4,4, in the ratio
Ay A (section 4) are

[(A1+ Aax0) (A A9), (At Aay2) (A A1
This point P lies on the hyperbola if

{(wx1+ 2o2) /(A4 2D HAw1+ 2ep2) (A + A9) }—c* = 0.
On multiplication by (A, Ap)?, this equation simplifies to
) SiA2+2T 1M X+ S0:2 = 0,
where
S; = xyn—cf,
Sy = Xpyp— 2,
Ty = T = $(xyatx91)— 2
The roots of the quadratic equation correspond to the two
points of intersection P, and P, of 4,4, and the hyperbola. Hence
by the methods used in sections 31, 33 and 34 we have the results
that
(i) the equation of the tangent at (x;, y,) is

Yix+x,y—2¢% =0,

(i) the equation of the chord joining the points of contact of
the tangents from (x;, y;) (when the point is not on the
curve) is also

Vix+xy—2¢% =0,

(iif) the equation of the pair of tangents from (x;, y,) to the
hyperbola is

Ce—eDxy—c)— Fx+xy)—c?)? = 0,
(iv) the normal at (x;, y;) has the equation
X(x—x)—y(y—y) = 0.
That is,

X X—Yyy = X 2=y
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MISCELLANEOUS EXAMPLES

1. A diameter of the rectangular hyperbola xy = ¢2 cuts the curve in A and
B. The point P (ct, c/t) is on the same branch of the hyperbola as A.
PA (produced both ways) meets the x-axis in L and the y-axis in R. PB meets
the x-axis in M and the y-axis in Q.

(a) Show that the triangle PLM is isosceles,

(b) Show that the triangles BAR and BPL are equal in area,

(c) Obtain the locus of the centroid of the triangle PLM as ¢ varies. (U.L)

2. Prove that the straight line y = ax+b is a tangent to the rectangular
hyperbola xy = ¢?if b = +2¢\/(—a).

Find the equations of the tangents to the hyperbola xy = 36 which are
perpendicular to the line 4y—x—3 = 0.

3. A circle cuts a rectangular hyperbola in four points. Show that the
centroid of these four points bisects the join of the centres of the circle and
the hyperbola. Further, prove that the sum of the squares of the distances
of these four points from the centre of the hyperbola is equal to the square on
the diameter of the circle.

4. A, B and C are three points on a rectangular hyperbola. Prove that the
circle through the mid-points of the sides of the triangle ABC passes through
the centre of the hyperbola.

5. PAand PBarethe perpendiculars froma point P of arectangular hyperbola
ona pair of conjugate diameters. Show that 4B is parallel to the normal at P,

6. T is the point of intersection of the tangents P and Q to a rectangular
hyperbola with centre at the origin 0. PT intersects OQ at L and QT intersects
OP at M. Show that the points O, T, L and M are concyclic.

7. Two rectangular hyperbolas are situated so that the asymptotes of one
of them coincide with the axes of the other. Prove that the tangents at a
point of intersection are mutually orthogonal.

8. 4 and B are any points on a rectangular hyperbola, whilst P and Q are
the extremities of a diameter. Show that the angles which AB subtends at P
and Q are either equal or supplementary.

9. Obtain the locus of the mid-point of a variable chord of length 2¢ of the
rectangular hyperbola xy = c2.

10. The tangent to the rectangular hyperbola xy = c? at the point (ct, c/f)

intersects the conjugate hyperbola xy = —¢? at the points A4 and B. Show that
the tangents at 4 and B to the hyperbola xy = —¢? intersect on the hyperbola
xy = c2 (U.L)

11. Prove that the equation of the normal at the point P(ct, ¢/t) on the
rectangular hyperbola xy = 2 is £3x—#y+c(1—¢4) = 0.

Find the parameter of G, the point inwhich this normal meets the hyperbola
again.

If O is the centre of the hyperbola prove that OP? = ¢2PG. (U.L)

12. The asymptotes of a rectangular hyperbola meet at O and through O
is drawn a line, parallel to the normal at a point P on the curve, meeting the
curve at the points R and S. Prove that the normals at R and S are parallel to,
and equidistant from, the line OP.
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13. The tangent at P intersects the asymptotes of a rectangular hyperbola
at A and B whilst the normal at P intersects the straight line y = x at C.
Prove that PA, PB and PC are all of equal length.

14. The tangent at P to a rectangular hyperbola meets the x-axis in T and
the y-axis in 7”. Show that TP = PT".

The normal at P meets the x-axis in N and the y-axis in N’ and N” is the
reflection of N in the y-axis. Show that the points T, N’, N” and T’ lieona
circle whose centre is on the normal at P. (U.L)

15. The normal at P(ct, ¢/t) to the rectangular hyperbola xy = ¢? meets
the curve again at Q. Determine the parameter of Q.

QR is the diameter through Q of the hyperbola. Show that the locus of the
mid-point of PR as P varies is 4x%° = c*(x*+ %)% (U.L.)

16. A and B are two points on the rectangular hyperbola xy = ¢ whose
centre is 0. The mid-point of 4B is M and the mid-point of OM is N. If N
is on the hyperbola, show that the chord 4B touches the hyperbola xy = 4c2.

(U.L)

17. If PQ and RS are perpendicular chords of a rectangular hyperbola,

show that PR is perpendicular to QS and PS is also perpendicular to QR.



CHAPTER IX

Parabola

65. Parabola

The locus of a point P such that its distance from a fixed point,
called the focus, is equal to its distance from a fixed straight line,
called the directrix, is defined to be a parabola.

Choose O, the mid-point (Fig. 50) of the perpendicular from the
focus F to the directrix DD’, as origin and select the positive
x-axis in the direction OF. Let OF = a; then by the definition of

x=-a

D} Y

FiG. 50
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the parabola we have PF = PL, where L is the foot of the per-
pendicular from P to the directrix. Accordingly

(x—a@P+y* = (et-ar,
which simplifies to
2 = dax.

The focus is at F (a, 0) and the equation of the directrix is
x = —a. O is called the vertex and O X the axis. If the point (x, y)
lies on the parabola, so does (x, —y) and so the parabola is
symmetrical about its axis. There are no points on the parabola
with negative values of x. The y-axis is a tangent to the parabola
at the origin.

The chord K’K through the focus perpendicular to the axis is
called the latus rectum. At K and K’ we have x = a and so
y* = 4a?, from which we obtain that K (a, 24) and K’ (a, —2a)
and so the length of the latus rectum is 4a.

EXAMPLES

1. Obtain the equations of the parabolas which have the following foci
and directrices: (i) (2,0); x = —2; (i) (1, 2); x+y = 2; (iii) (1, —1); y =0.
2. Obtain the focus and latus rectum of the parabola y? = 12x. ’

3. Find the locus of the mid-point of the chords of the parabola y? = 4ax
which subtend a right angle at the focus.

4. P is any point on the parabola y?* = 4ax with vertex at O. Q is the foot
of the perpendicular from P to the y-axis, R is the foot of the perpendicular
from Q to OP and QR produced cuts the x-axis at K. Prove that K is a fixed
point and find its coordinates. Further, obtain the equation of the locus of R.

5. Show that the straight line y = mx 4 a/m touches the parabola y?=4ax
for all values of m.

66. Parametric equations

If we substitute y = 2at in the equation »? = 4ax of a parabola,
we obtain x = qr2. That is, as ¢ varies, the point P (af?, 2af)
always lies on the parabola y? = 4ax. Accordingly, the parabola
can be represented by the parametric equations

x =at?, y=2at
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As t varies from zero to infinity, the point P traverses the
portion of the parabola which lies in the first quadrant, starting
from the origin and tending to infinity. As ¢ varies from zero to
minus infinity through negative values, the point P traces out the
portion of the parabola which lies in the fourth quadrant starting
at the origin and tending to infinity.

The sign of y*—4ax is clearly positive for points in the second
and third quadrants. The abscissa of any point such as P (Fig. 51)

FiG. 51 -

is positive and is less than the abscissa of the point Q where a
parallel to the axis through P cuts the parabola. Since y2—4ax =0
at Q, it follows that y>—4ax is positive at P. On the other hand,
the abscissa of R is positive but greater than the abscissa of S,
the point where the parallel through R to the axis intersects the
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curve. Hence y2—dax is negative at R. The sign of y2-—4ax is
depicted in Fig. 52.

Y
+ve
+ve
—-ve
X' (o] X
~ve
+ve
+ve
¥
FiG. 52
EXAMPLE

6. P is the point # on the parabola x = at?, y = 2at. Show that the circle on
the line joining the vertex to P as diameter intersects the parabola again in
two real distinct points provided that 22 > 16.

67. Chord and tangent
The equation of the chord joining the points #, and #, on the
parabola x = ar?, y = 2at is given by
y—2at, 2at;—2at, 2
x—at?  atP—at? -+t
and simplifies to

2x—(t;+t)y+2at,t, = 0.
It follows that the equation of the tangent at the point ¢ is
x—ty+at? = 0.
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The tangent at the point ¢ passes through A4 (xy, y,) if
at*—yt+x;, = 0.

This equation has two roots corresponding to the two tangents
through A. These tangents exist if and only if this quadratic
equation in ¢ has real roots. That is

yi¥—dax; > 0.

Hence two distinct tangents can be drawn to the parabola from
points in the regions marked +ve in Fig. 52.
Hllustration: Obtain the locus of the points of intersection of
perpendicular tangents to the parabola y* = 4ax.

Let the points of contact of the perpendicular tangents be t,
and #,. Then the equations of the tangents are

X— t1y+at12 = 0,

x_tgy_l—atgz =
from which x = at,t,.

The perpendicularity condition is (1/t,)(1/¢;) = —1. That is,
t,t, = —1 and so the required locus is the directrix with equation
X = —a.

EXAMPLES

7. The tangent is drawn at any point P on the parabola y? = 4ax and cuts
the axis of the parabola at 7. Prove that PT is bisected by the tangent at the
vertex.

8. The tangent at a point P on the parabola y? = 4ax cuts the axis of the
parabola at Tand N is the foot of the ordinate at P. Prove that the mid-point
of NT is the vertex of the parabola.

9. Obtain the condition that Ix+my = 1 be a tangent to the parabola
y? = 4ax.

10. If the tangents at two points P and Q of the parabola y2 = 4ax are
orthogonal prove that PQ passes through the focus.

11. Find the coordinates of the point of intersection of the tangents at
the points #, and ¢, on the parabola x = at?, y = 2at.

12. Obtain the equation of the tangent to the parabola y? = 12x at the
point (3¢2, 61).

Prove that the foot of the perpendicular from the point (3, 0) to this tangent
1ies on the line x = O for all values of z.
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13. Py, P;, Py and P, are distinct poinis on the parabola y* = 4ax. The
chords P, P, and P,P, pass through the focus. Prove that the chords P,P; and
P,P, intersect on (or are parallel to) the directrix.

14. Obtain the condition that the line y = mx-c should be a tangent to
the parabola y* = 4ax. Hence, or otherwise, find the equation of the tangent
to the parabola y? = 8x perpendicular to the line 2y = x—3.

15. O is the vertex of the parabola y? = 4ax. P and Q are points of the
parabola such that POQ is a right angle. The tangents to the parabola at
P and Q intersect at 7 and M is the mid-point of PQ. Show that
2a.TM = p*+16a®, where p is the distance of 7M from the axis of the parabola.

68. Chord of contact
Let the tangents from A,(x;, ;) to the parabola x = ar?,
¥ = 2at touch the parabola (Fig. 53) at the points P, (at,2, 2at,)

Y
Pl
Al
X Q X
Py
v
Fi1G. 53

and P, (at,?, 2at,). The equations of the tangents at P; and P, are
x—ty+at?2 =0,
x—tytat? =
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respectively. Since 4, lies on both tangents, we have
x—tntan® =0,
xX;—tytat? =0
which may be written in the forms
2at,y, = 2a(at®+x,),
2at,y = 2a(at?+x,).
That is, the points P, (at?, 2at,) and P, (at,% 2at;) both lie on the
straight line
Ny = 2a(x+x).

Thus this equation represents the chord joining the points of
contact from the point (x;, y,) to the parabola.

Note that this equation represents the tangent at (x;, y,) if
this point lies on the parabola, since the substitution x, = ar?,
y1 = 2at reduces the equation to x—zy--ar? = 0.

EXAMPLE

16. Obtain the chord of contact of tangents drawn from (—1, 3) to the
parabola y? = 12x.

69. Diameters

We now investigate the locus of the mid-points of a system of
parallel chords of the parabola x = ar?, y = 2at. The mid-point
P of the chord joining the points with parameters ¢, and ¢, has
coordinates

x = 3a(t? + £0; ¥y =a(ti-+1).
From section 67, the gradient m of this chord is given by
m = 2/(t;+1,).
For a system of parallel chords m is constant and we see that the

locus of P is the straight line
y = 2alm

which is parallel to the axis of the parabola.
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Any straight line parallel to the axis is called a diameter and
we say that the diameter y = 2a/m is conjugate to the direction
with gradient m.

EXAMPLES

17. Show that the mid-points of all chords parallel to 3x+4y = 2 of the
parabola y* = 12x lie on the straight line y+8 = 0. Show also that tangents
at the extremities of any one of these chords intersect each other on this
diameter.

18. The tangents at P and Q of a parabola intersect at 7. Show that PQis
bisected by the diameter through T of the parabola.

19. Prove that the tangents at (x,, y;) and (x,, y,) on the parabola y? = 4ax
intersect on the diameter 2y = y,+y,.

20. P is any point on the parabola y? = 4ax. If the diameter through P
bisects a focal chord, show that the length of the focal chord is 4FP where Fis
the focus.

70. Normals
The tangent at (ar?, 2at) to the parabola x = ar?, y = 2at has
the equation

x—ty+tar® =0.
Hence the equation of the normal at (ar?, 2at) is
t(x—at®)+y—2at = 0.
That is,
x4y = af*+2at.
The normal at ¢ passes through the fixed point 4 (x,, y,) if
at’+12a—x,)—y, = 0.

This is a cubic equation and so three normals at most can be
drawn through a point to a parabola. From the theory of equations

i+ttt =0,
Lstish+hty = (2a—x,)/a,
Lty = y/a.
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Thus if the normals at the points #,, #, and t, are concurrent, then

t1+t2+t3 = 0.

EXAMPLES

21. Show that the normals to the parabola y* = 8x at its points of inter-
section with the line 2x—3y+8 = 0 intersect on the parabola.

22. Obtain the coordinates of the point of intersection of the normal drawn
at the points #,, £, on the parabola x = at? y = 2at.

23. Obtain the condition that the line Ix-+my+n = 0 should be a normal
to the parabola y* = 4ax.

24. The normal at a point P of the parabola cuts the axis at N. Prove that
P and N are equidistant from the focus of the parabola.

25. Find the equation of the normal to the parabola y? = 4ax at the point

(at?, 2ar).
If the normal meets the coordinate axes at G and H, prove that the locus
of the mid-point of GH is the curve ay* = 2x*(x—a) (U.L)

26. A variable chord PQ of the parabola y* = 4x is drawn parallel to the
line y = x. If P and Q are the points with parameters p and g respectively,
show that p+q = 2.

Find also the locus of the point of intersection of the normals to the
parabola at P and Q.

27. The normal at P (ar?, 2at) on the parabola y? = 4ax cuts the x-axis at
G and O is the origin. Show that OG = a(2+t?) and PG = 2a+/(1-+1%).
Deduce that, for all positions of P on the curve PG*/OG is never less than 2a
nor greater than 4a.

28. P and Q are two points on the parabola y* = 4x such that the chord
PQ subtends a right angle at the vertex. Show that the locus of the point of
intersection of the normals at Pand Q is y® = 16x—96.

29. Show that if #,-+2,--75 = 0, the three normals at the points #, #, and 75
on the parabola x = ar®, y = 2at are concurrent.

30. Show that the locus of the intersection of normals at the ends of a system
of parallel chords of a parabola is a straight line which is normal to the curve.

31. If the normals at the points #, £, and ¢, on the parabola x = at®, y = 2at
are concurrent, show that the centroid of the triangle formed by these three
points lies on the axis of the parabola.

71. Concyclic points
The point (af?, 2at) of the parabola y* = 4ax lies on the circle
x24y24-2gx+2fy+c =0
if
a2t +4a2t24-2gat*+-4aft+c = 0.
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That is,
a**+-2a(2a-+g)t*+-4aft+c = 0.

The four roots ¢, 1,, t; and ¢, of this quartic equation correspond
to the four points of intersection of the circle and the parabola
X = at?, y = 2qt. From the theory of equations

it tyttgtt, =0
Lzttt +httt(th+ 1) = 2Q2a+g)/a,
htats+1(Lts+ 1t +4ty) = —A4f [a,
titytsty = cla?,

The first equation yields the necessary condition #,+ 1,4 £4-+ ty,=0
that these four points of the parabola are concyclic. The re-
maining three equations determine the values of g, f and ¢ cor-
responding to the circle through the four points.

Let one of these points be the origin and so #, = 0 (say). Then
t;+t+1t; = 0 and so the normals at the three other points of inter-
section of a circle through the vertex of a parabola with the
parabola are concurrent. (Compare Example 29.)

EXAMPLES

32. Prove that the extremities of any two chords of the parabola perpendicu-
lar to the axis are concyclic.

33. A circle cuts the parabola y* = 4ax in four points. If the normals at
three of these points are concurrent at (k, k), prove that the circle passes
through the vertex and obtain its equation.

72. Geometrical properties

Let the tangent at P(af?, 2af) on the parabola y? = 4qx, (Fig. 54)
with focus at F, intersect the x-axis, y-axis and directrix at T, Rand
O respectively. Let the normal at P intersect the x-axis at G. Let N
and L be the feet of the perpendiculars from P to the x-axis and
directrix respectively.

The equation of the tangent at ¢ is

x—ty+ar? =0,
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and so the coordinates of R, T and Q are
RO, at); T(—ar?, 0); O(—a, a(2—1)/t).
The equation of the normal at P is
tx+y = at*-+2at
and so G is at the point G(at?+2a, 0). Further, we have
Fa,0); D(—a, 0); L(—a,2at); N(at, 0).

Y
P
L
R
K
X' T \lo /F N G X
P
Yl
FiG. 54

Simple calculations yield that
() TO = ON = ar?,
(i) FP = LP = TF = FG = a(1+1%),
(iii) FR = RL = av/(1+12).
It follows that the triangles FPR and LPR are congruent and
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so the tangent at P bisects the angle between the perpendicular
from the point P to the directrix and the line joining P to the focus.
Further, the points F, R and L are collinear.

We also see that the locus of the feet of the perpendiculars
from a focus to a tangent is the tangent at the vertex of the

parabola.
Further calculations show that
(iv) NG == 2a,

(v) OF = QL = a(1+13)/t.

It follows that the triangles PFQ and PLQ are congruent and so
PFQ is a right angle. Similarly, if the other tangent to the parabola
through Q touches the parabola at P’, then P'FQ is a right angle
and so P, P’ and F are collinear. \

Again, we have from the congruent triangles PFQ and PMQ
that PQ is the bisector of the angle FOM. Similarly, P'Q is the
bisector of the angle FOQM'. Hence PQP’ is a right angle.

Thus, the tangents at the ends of a focal chord intersect at
right angles on the directrix.

EXAMPLES

34. The perpendicular from the vertex O of a parabola to the tangent at
P intersects the parabola again at L and the tangent at M. Show that the
product of OL and OM is numerically equal to the square on the semi-latus
rectum.

35. O is the vertex of a parabola. P is a point of the parabola and the
perpendicular through P to OP cuts the axis of the parabola at L. Show that
OL is equal in length to the focal chord parallel to OP.

73. Tangent properties

In this section, we obtain the tangent properties of the parabola
y2 = dax without using the parametric representation x = as?,
y = 2at.

As in section 30, consider the two points (Fig. 55) 4,(x;, ;) and
Ay(x,, y5), chosen so that 4,4, intersects the parabola

S=)*—4dax =0

in points P, and P,.
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The coordinates of the point P which divides 4,4, in the ratio
Ao/ A (section 4) are

((Ax+2x) /(A +20), (Ayr+ 210/ (A+ A0)).
This point P lies on the parabola if
A+ 2727 (M4 222 —4a( Ay x;+ Aoxy) /( At2) =0.
On multiplication by (2,4 A)%, this equation simplifies to
S1A2+2T A A+ SeM? =0,
where
S, = y.2—dax,,
Se = y,2—4ax,,
T, = T21 = yye—2a(x,+x,).
The roots of the quadratic equation correspond to the two
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points of intersection P, and P, of 4,4, and the parabola. Hence
by the methods of sections 31, 33 and 34 we have
(i) the equation of the tangent at (x;, y,) is

yy1—2a(x+x,) =0,

(ii) the equation of the chord joining the points of contact of
the tangents from (x;, ,) (when this point is not on the
curve) is also

y—2a(x+x) =0,

(iii) the equation of the pair of tangents from (x;, y,) to the
parabola is

(r*—daxy) (*—4ax)— {(yny—2a(x+x)}* = 0.
(iv) the normal at (x,, y,) has the equation

nx—x)+2a(y—y,) = 0.

MISCELLANEOUS EXAMPLES

1. Find the equation of the common tangent to the parabolas y? = 4ax,
2x? = ay. Show that the distance between the points of contact is 73 times the
distance of the tangent from the origin. (U.L)

2. Show that the equation of the tangent to the parabola y? = 4ax at the
point P(ap?, 2ap) is py—x = ap?.

Q(aq?, 2aq) is a second point on this parabola and p > ¢. The tangent at
P and the diameter through Q meet at R; the tangent at Q and the diameter
through P meet at S.

Prove that PQRS is a parallelogram of area 2a%(p—q)3. (U.L)

3. Find the finite values of m and c such that the line y = mx4-c touches
both the hyperbola 4xy = 1 and the parabola y? = 4x.

Find also the distance between the points of contact. (U.L)

4. P and Q are two points on a parabola whose focus is S. The tangents
at P and Q meet at 7, and the normals at P and Q meet at N; R is the mid-
point of TN. Prove that the angle T'SR is a right angle.

If the chord PQ passes through the focus of the parabola, prove that the
locus of R is a parabola with its axis lying along that of the first parabola and
with its vertex at S.

5. Q is the foot of the perpendicular from a fixed point L to the diameter
through the point P of a parabola. Show that the line through Q perpendicular
to the tangent at P passes through a fixed point for all positions of P.
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6. Obtain the coordinates of the centroid and orthocentre of the triangle
formed by the points (az,2, 2aty), (at,2, 2at,) and (at;2, 2at ;). Hence deduce that
these points are the vertices of an equilateral triangle inscribed in the parabola
y:=dax if 8(t,+t,+15) + 3(ta+2)(ts+1)(t+12) = 0 and
12+ tg® + 3(tta st Hht) 12 = 0.

7. Prove that the orthocentre of the triangle formed by three tangents to a
parabola lies on the directrix.

8. Show that a circle on a focal chord of a parabola as diameter touches
the directrix.

‘9. Q is any point on the tangent at P to a parabola, focus F. L and M are
the feet of the perpendiculars from Q to FP and the directrix respectively.
Show that FL = QM. Deduce that the tangents from a point to a parabola
subtend equal angles at the focus.

10. The tangent to the parabola y? = 4ax at the point P(ar2, 2at) meets
the y-axis at the point Q and the line joining Q to the focus cuts the parabola
in the points L and M. Prove that if L (or M) is the point (at,?, 2at,) then
t,24-2t,—t = 0.

Determine the position of the point P if the line LM is divided by the focus
into segments whose lengths are in the ratio 1 : 2. (U.L)

11. If the tangent to the parabola y? = 4ax at P (a¢?, 2at) is the normal to
the parabola y? = 4ax at the point Q (—at,?, 2ar,) prove that 12 = 4/2+1,
4,2 = 4/2—1 and that PQ? = 8y/2a% (U.L)

12. If O is the vertex of the parabola y? = 4ax, show that the normal at
P(ar?, 2at) meets the perpendicular bisector of the line OP at the point
(2a+3ar?, —3atd).

Hence obtain the equation of the circle through O which touches the
parabola at the point P. (U.L)

13. Find the finite value of m for which the line y = mx-2a touches the
parabola y? = 4ax and find the coordinates of the point of contact Q.
If the line through Q and the focus (a, 0) meets the parabola again at R, find
the coordinates of the point of intersection of the tangents at Q and R.

(UL)

14. A chord of the parabola y? = 4ax is drawn through the point P
(aT?, 2aT) on it. If this chord meets the parabola again at Q (ar2, 2at) and is
normal to the parabola at Q, show that there are two positions Q,, Q, of Q.

If P describes the parabola, show that the chord Q,Q, passes through a
fixed point. (U.L)

15. If the normal to a parabola at a point P on it intersects the axis at G
and GP is produced to Q so that GP = PQ, obtain the equation of the locus
of Q.

16. The tangent to the parabola y? = 4ax at P (at? 2at), where >0,
touches the circle x?+4y2+2ax = 0 at Q. Show that # =4/3 and find the
equation of PQ and the length of PQ.

Calculate, in degrees and minutes, the angle subtended by PQ at the focus
of the parabola. (U.L)
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ysin135° = —1;
(iv) x cos 60°+
ysin 60° = —1.
24. (i) x cos 126° 52"+
ysin 126° 52" = —1;1;
(ii) xcosa+ysina =
c/A/(1+m?)
where e = tan~! (—1/m);

¢/ +m?;

(iii) xcos a+ysina =
—nfr/(B+m?)
where a = tan— (m/l);
—n/z/(P+m?);
(iv) xcosatysina =
ab/r/(a*+b%)
where o = tan™! (a/b);
ab/r/(a*+b?).
25. xcos 67° 18+
ysin 67° 18" = +2.
26. (i) 8° 8’;
(ii) 41° 49’;
(i) 90°.
27. 11° 19, 26° 34’ and 142° 7°.
28. 7x+6y—11 = Q.
30. x—2y+3 =0and2x+y—4=0.
34. 2(ax—by) = a*—b=.
36 (6’ '—2)9 (Sy 5): (_ 1’ '—3),
2, —9).
37. y=x—2;6y=27—x; 5%, 3%.
38. —1/3, 3; (—4%, —3/5),
12, —275%).
39. 10x—25y = 46.
49. () 3/5;
(ii) 89/13;
(iii) 64/13/13.
50. 34/2/7, 34/10/5, 34/13/13.
51. 4/13.
52. 6/5, 3/5; 1%.
53. (4/3, 1).
54. (i) 3x+3y=2;
(il) 64x—112y = 55.
55. (7/2, 4); 34/17/2.
57. (0, 0); (—173, 23).
58. (i))x—8y=0;
(i) 5x—y = 13;
(iii) 15x+21y = 47;
(iv) 3x—3y—7=0.
61. (—2,9).
62, —1/2.
63. 14/(g*+f2—0).
64. 3x+4y = 7; 5.
65. (5, ~4); 4x—Ty—48 = 0.
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2.
3.
5.

6.
7.
8.

9.
10.

11.
12,

ANSWERS

Miscellaneous Examples

2 or —4.

25x2+20xy +4y?—54x—
126y+144 = 0.

120x—20y—11 = 0,

40x+60y—73 = 0.
Sx—y+11 = 0; x+5y—3 = 0.
(—6/7, 2/7).
200 —x)x+20n—y2)y =
X2y — Xt~y
(x—x7) (x—x;) +
O—y) 3=y = 0.

(=177, —2/7).
3/2, 2).
@ (=1, 1/3);

@) (33, —1);
(iii) (—18, 1).

13. (5/2, —3/2), (—5/2, 1/2).
14. x+y=1.
Chapter 111

1. (@) 2x+y=0,2x—y = 0;

2

aUd W

P o

(i) 2x+y =0, x—3y = 0;
(iii) 2x—5y = 0;
(iv) x=0, 3x+4y = 0.
(i) xy—4y* = 0;
(ii) 3x2+8xy—3y2 = 0;
(iii) xy = 0;
@iv) mnx*—(m+n)xy+y* = 0.

. taf;_l {imy—my) /(1 +mymy)}.
. tan-1 2V/5/3).

3x—3y—1 = 0;
(i) x+y—1 =0, x—y+2
(i) x—y = 0, 3x+4y—1
(iv) 3x—2y+3 =0,
x+y—7=0.

0;
0;

15.
17.

18.

22,
25.
26.

29.
30.

11.
12.
14.
15.
18.

19.

3x+4y+3 = 0 and
3x+4y—17 = 0.
x cos #(a+P)+y sin 4(a+-p) =
#Hp+q) sec 3(a—f),
x cos ¥(m+a+pB)+
ysin $(z+a+p) =
3(p—q) cosec Ha—p).
(na—Ilc)x+(nb—mc)y = 0,
(na-+lc)x+mb+mc)y+cn = 0;
n*(a?+b%) = (12 +m?).
x4y = a2,
x+2y = 5.
y—3x4+9=0,x-3y+5=0,
6x+22y = 45.

. x—y=1;x-3y=1;(1,0),5.

2x+y = 2.

(a) 4;

(b) 53° 8, 63° 26’, 63° 26°;
© (7/4, 3/4).

(i) 3x2—xy—2x=0;

(i) 4x2—9y? +4x-+1 = 0;
(i) 3xy—4y*—6x+9y—2 = 0;
@(v) x2+xy—2y2+5x—5y = 0.

. (i), (iii).

(i) —11;
(i) £3;
(i) 1, —1/2;
@iv) —1.
3, 1/2).
13-
(2/5, —11/5).
45°,
() xy = 0;
(i) x*+14xy—y? = 0;
(iii) x2—xy—y? = Q.
x+y =0,

Miscellaneous Examples

. h(m?— 1)+ Im(a—b) = 0.

(1) 4(hr—bq) (aq—hp) =
(bp—ar)?;

(ii) 4(ag+hr) (bg+hp) +
(ap—br)2 = 0.

S.
10.

a=bh.
(2n(hm—bl)/3(am®— 2him -+ bI?),
2n(hl—am)/3(am®— 2him -+ b12)).
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Chapter IV

Yk

NAWN

x*4y*4+2x—dy—4 = 0,

. (1, —2/3; 4/3.

5(x*+yH)—11x—9py—12 = 0.
y+2x = 0.
(1, —6).

. x24y? = 130.
. 2(x%4+y)—41x+7 = 0.
. x2+y2—6x+4y = 0.
. (—8/2, —f12); 3/ (&2 +f>—4e).
. X3 4+yi—ax—by = 0.
. (iv).
4

. 10.
. x2+y2—x+y—8 = 0;

(i) outside, (ii) inside.

. (30atx0), 301t+y);

%\/ {1 —x)2 + (v — )%

. (—1,3)and 4,7) or (—1,7) and

“, 3).

36.

38.
42,
4.

45.
417.

. (0: 5)9 ('_39 _4)-

. y—3x = £10.
. 2x+y—5=0,x—-2y+5=0.
. 24/7.

+2

. rX(14m?) > ¢t

. 1/2,2;(—2,3),1, —1).

. 3x—4y+1 =0,4x+3y—7 = 0.
. 3(x2+y*)+6x+4y—8 = 0.

. 52; (-8, D.

x2+y2—10x+26y+25 = 0.
x+1=0,y+1=0,
x+y+2+4/2=0.
x—2y—5=0,2x—y+5=0.
(0’ —1); (3, _2)-
5x2—24xy+12y* = 0,

tan~1 (84/21/17).
2x+y—1=0; x+2y+4 = 0.
x24-y? = a®+b2.

Miscellaneous Examples

2fz.

. 2(ax—by) = a*—b2.
. T2 +y?)—61x—25y+52 = 0.
. X2+)2+16x—34y+64 = 0,

x2+y2—8x—10y+16 = 0.

Chapter V

1.
5.

11.

2.
S.

cos™ (3/5).
x2+y?—6y—1 =0,
Ix2+9y2+26y—9 = 0.

6. 37x—51y+7 = 0.
8.
9. 2x—2y—5 = 0,8x—6y—25 =0,

@3, 0).

3x—2y—10 =0,
x2+y2—10x—5y+31 = 0.
(@c<0,

(b)c >0,

©c=0.

14.
15.
17.
18.

12.

13.
14.

15.
16.

17.
18.

2,0,3;(=3,1,2.
x2+)? = a*—bc.
(36/5, +48/5).

x =3/4,x*4+)y*—3x—3y—1 = 0.

3x24+3y2—11x+3y = 0,

4x—-3y+3=0.
x24-yt—T7x+10y = 0.
x?+y*+2gx+2fy+c+

Mix+my+n) = 0.
x2+y*—2x+6y+
A(x+3y—2) = 0.
x24+y2—5x—y+2 = 0.
(—1/3, —2/3), (—2/3, ~1/3).
“4,0), (—2,0).

Miscellaneous Examples

ax—(3a2+F— 3 X)p[2B— 2 = 0.
28182+ 2f1fot 2 =2 g2 +f)+a.

7

(1’ 2)’ ('—25 _1)-
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Chapter VI
1. () (£4/7, 0); 14. xx/a®+y,p/b® = 1,
(i) (£4/(2/3), 0); (—aln, —b*m|n), (£0-4, F0-2).

wN

[ 2 -

(iii) (£+/(b*—a?/ab, 0).

. x3/16+4+y%/12 = 1.

(@) 1/4/2,4/6;
(i) 1/2,4/(15)/2;

(iii) cos a, sin 2a.

. x%[16+y2/4 = 1.

. X133 = 1, 6/4/7.

. (£4/5, 0), 8/3.

. (—8/5, 9/5).

.y =Xx+ 3.

. X242 = g2,

. 6x—12y - 5=0.

. ¥ = mx +4/(@®m*+b).

15.

17.
21.
22.
24.
26.
28.
29.
30.
31.
3s.

15x+y—25 =0,
9x—5y—75=0.
a?/x+b2ly = 4.

x2/a+y2[b% = (a®—b%)?/at.
cXa?+m?b?) = m*(a*—b%>2.
ay = cbx, where ¢ is constant.
(a(a®—b*)/(a*+b%), 0).
3x+4y =1, 5.

(—1/2, 1)2).

3x = 2y,

—1/4.

a[I*+-b*m? = (a®*—b?)2.

Miscellaneous Examples

. (X 4y?)2—42x2—62y%+313 = 0.
. x £2y = 43,1, 1), (7/3, 1/3).
. 4/(a® cos? ¢+b2 sin? ¢),

tan—! {(b/a) tan ¢}.

Chapter VII

1.

nhaWw

D +/2, 24/6;

(ii) \\;3, 0/7;

(iii) cosec 8, 2 cos 6 cosec? 6.
(i) (+4/7, 0);

(i) (£4/(3/2), 0);

(i) (£4/(a2+-b/ab, 0).

. x2[4—y2[5 = 4/9.
. xP—8y? = 2,
. (£4/(13), 0), 8/3.

11.

b(1—tt)x+alt,+t)y—
ab(1+1,15) = 0,
b(1—12)x+2aty—ab(1+1% = 0.

17. x + y +4/(1/a®+1/b%) = 0.
6. x2—2y? = 6,4/6.
9, 20x—33y = +1.
10. 2y = 3x 4 64/3.
14. 2x — 3y = 5.
15. (1, —1).
18. (i) 24/3/3;
(i) 4/2.
23. +(a®—bY).

Miscellaneous Examples

. X24y? = @4 h2— k2.
. bx(1+4t)—ay(t,+t) =
ab(1—t,1,),

bx(14-13)—2ayt = ab(1—1?).

Chapter VIII

1.

(c(ty+12+15)/3,
c(1/t,+1/ts+1/15)/3),

(c/@titsts) + c(ty+12+15)/2,
chtytsf2 + c(1/t+1/t+1]15)/2).

4

17

9. 20/4/3.

. bx(14+-1t) +ay(l—4ty) =
ab(t;+1,)
bx(1 4+ +ay(1—12) = 2abt.
., (yZ_x2)8 — a2(2x2_y2)'

12, (—cft3, —ct3).

13.

(=1/6, 7/8).
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2.
9.
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Miscellaneous Examples

(€) 3xy = c.
4x+y 124 = 0.
xy(x*4y%) = c*(x*+xy+y7).

Chapter IX

1.

)
=mOoh WN

A\ W

(i) y* = 8x;
(i) x*+y*—2xy—4y+6 = 0;
(i) x24+2y—2x+2 = 0.

. (3,0), 12
- (P —2a%) +

4(a*+2ay*—6a*x) = 0.

. (4a, 0), x>+y? = 4ax.
. I+ am?® = 0.
. (atyty, a(ty+1)).

11. —1/e,
15. —1/¢2

12, x—yt43¢2 = 0.
14. ¢ =a/m,2x+y—1=0.
16. y = 2x—2.
22. (a(t®+titp+-1,2+2),
—atyt,(t; +15).
23. al*+2alm*+m?n = 0,
26. 2x+y = 12.
33. 2(x*+y»)—2(h+2a)x—ky = 0.

Miscellaneous Examples

. 4x+2y+a=0.
.m= —1,c= —1,3[4/2.
. (a(t2+12+1,9)/3,

2a(t,+1:+t5))/3,
((—4a—altyts+tst, 1,8,
a(ty-+ty) (t3+1) (412 +
2a(t,+t+15))

10. (8a, +41/2aq).

12, x®4y*—a(d+3t)x+atdy = 0.

13. 172, (4a, 4a), (—a, 3a).

15. y* = 16a(x+2a).

16. x—+/3y+3a =0, 34/3aq,
100° 54,
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