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Preface to the Second Printing
of the Second Edition

This edition is essentially a reprinting of the Second Edition, with the addi-
tion of two items to the Supplementary Bibliography, namely, Dodson and
Parker: A User’s Guide to Algebraic Topology, and Gray: Modern Differential
Geometry of Curves and Surfaces.

This latter text is very important since it contains Mathematica programs
to perform all of the essential differential geometric operations on curves and
surfaces in 3-dimensional Euclidean space. The programs are available by
anonymous ftp from bianchi.umd.edu/pub/ and are being used as support
for a course at, among other places, UMIST: http://www.ma.umist.ac.uk/kd
/ma351/ma351.html .

June 1997 Kit Dodson
Manchester, U.K.

Tim Poston
Singapore



Preface to the Second Edition

We have been very encouraged by the reactions of students and teachers using
our book over the past ten years and so this is a complete retype in TEX, with
corrections of known errors and the addition of a supplementary bibliography.
Thanks are due to the Springer staff in Heidelberg for their enthusiastic sup-
port and to the typist, Armin Kollner for the excellence of the final result.
Once again, it has been achieved with the authors in yet two other countries.

November 1990 Kit Dodson
Toronto, Canada

Tim Poston
Pohang, Korea
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Introduction

The title of this book is misleading.

Any possible title would mislead somebody. “Tensor Analysis” suggests
to a mathematician an ungeometric, manipulative debauch of indices, with
tensors ill-defined as “quantities that transform according to” unspeakable
formulae. “Differential Geometry” would leave many a physicist unaware that
the book is about matters with which he is very much concerned. We hope
that “Tensor Geometry” will at least lure both groups to look more closely.

Most modern “differential geometry” texts use a coordinate-free notation
almost throughout. This is excellent for a coherent understanding, but leaves
the physics student quite unequipped for the physical literature, or for the
specific physical computations in which coordinates are unavoidable. Even
when the relation to classical notation is explained, as in the magnificent
[Spivak], pseudo-Riemannian geometry is barely touched on. This is crippling
to the physicist, for whom spacetime is the most important example, and
perverse even for the geometer. Indefinite metrics arise as easily within pure
mathematics (for instance in Lie group theory) as in applications, and the
mathematician should know the differences between such geometries and the
positive definite type. In this book therefore we treat both cases equally, and
describe both relativity theory and (in Ch.IX, §6) an important “abstract”
pseudo Riemannian space, SL(2;R).

The argument is largely carried in modern, intrinsic notation which lends
itself to an intensely geometric (even pictorial) presentation, but a running
translation into indexed notation explains and derives the manipulation rules
so beloved of, and necessary to, the physical community. Our basic notations
are summarised in Ch. 0, along with some basic physics.

Einstein’s system of 1905 deduced everything from the Principle of Rela-
tivity: that no experiment whatever can define for an observer his “absolute
speed”. Minkowski published in 1907 a geometric synthesis of this work, re-
placing the once separately absolute space and time of physics by an absolute
four dimensional spacetime. Einstein initially resisted this shift away from
argument by comparison of observers, but was driven to a more “spacetime
geometric” view in his effort to account for gravitation, which culminated
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in 1915 with General Relativity. For a brilliant account of the power of the
Principle of Relativity used directly, see [Feynman]; particularly the deduc-
tion (vol.2, p.13-16) of magnetic effects from the laws of electrostatics. It
is harder to maintain this approach when dealing with the General theory.
The Equivalence Principle (the most physical assumption used) is hard even
to state precisely without the geometric language of covariant differentiation,
while Einstein’s Equation involves sophisticated geometric objects. Before any
detailed physics, therefore, we develop the geometrical setting: Chapters I - X
are a geometry text, whose material is chosen with an eye to physical useful-
ness. The motivation is largely geometric also, for accessibility to mathematics
students, but since physical thinking occasionally offers the most direct insight
into the geometry, we cover in Ch. 0, §3 those elementary facts about special
relativity that we refer to before Ch. XI. British students of either mathemat-
ics or physics should usually know this much before reaching university, but
variations in educational systems — and students — are immense.

The book’s prerequisites are some mathematical or physical sophistication,
the elementary functions (log, exp, cos, cosh, etc.), plus the elements of vector
algebra and differential calculus, taught in any style at all. Chapter I will
be a recapitulation and compendium of known facts, geometrically expressed,
for the student who has learnt “Linear Algebra”. The student who knows
the same material as “Matrix Theory” will need to read it more carefully, as
the style of argument will be less familiar. (S)he will be well advised to do a
proportion of the exercises, to consolidate understanding on matters like “how
matrices multiply” which we assume familiar from some point of view. The
next three chapters develop affine and linear geometry, with material new to
most students and so more slowly taken. Chapter V sets up the algebra of
tensors, handling both ends and the middle of the communication gap that
made 874 U.S. “active research physicists” [Miller] rank “tensor analysis”
ninth among all Math courses needed for physics Ph.D. students, more than
80% considering it necessary, while “multilinear algebra” is not among the first
25, less than 20% in each specialisation reommending it. “Multilinear algebra”
is just the algebra of the manipulations, differentiation excepted, that make
up “tensor analysis”.

Chapter VI covers those facts about continuity, compactness and so on
needed for precise argument later; we resisted the temptation to write a topol-
ogy text. Chapter VII treats differential calculus “in several variables”, namely
between affine spaces. The affine setting makes the “local linear approxima-
tion” character of the derivative much more perspicuous than does a use of
vector spaces only, which permit much more ambiguity as to “where vectors
are”. This advantage is increased when we go on to construct manifolds; mod-
elling them on affine spaces gives an unusually neat and geometric construction
of the tangent bundle and its own manifold structure. These once set up, we
treat the key facts about vector fields, previously met as “first order differ-
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ential equations” by many readers. To keep the book selfcontained we show
the existence and smoothness of flows for vector fields (solutions to equations)
in an Appendix, by a recent, simple and attractively geometric proof due to
Sotomayor. The mathematical sophistication called for is greater than for the
body of the book, but so is that which makes a student want a proof of this
result.

Chapter VIII begins differential geometry proper with the theory of con-
nections, and their several interrelated geometric interpretations. The “rolling
tangent planes without slipping” picture allows us to “see” the connection
between tangent spaces along a curve in an ordinary embedded surface, while
the intrinsic geometry of the tangent bundle formulation gives a tool both
mathematically simpler in the end, and more appropriate to physics.

Chapter IX discusses geodesics both locally and variationally, and exam-
ines some special features of indefinite metric geometry (such as geodesics
never “the shortest distance between two points”). Geodesics provide the key
to analysis of a wealth of illuminating examples.

In Chapter X the Riemann curvature tensor is introduced as a measure
of the failure of a manifold-with-connection to have locally the flat geometry
of an affine space. We explore its geometry, and that of the related objects
(scalar curvature, Ricci tensor, etc.) important in mathematics and physics.

Chapter XI is concerned chiefly with a geometric treatment of how matter
and its motion must be described, once the Newtonian separation of space and
time dissolves into one absolute spacetime. It concludes with an explanation
of the geometric incompatibility of gravitation with any simple flat view of
spacetime, so leading on to general relativity.

Chapter XII uses all of the geometry (and many of the examples) previ-
ously set up, to make the interaction of matter and spacetime something like
a visual experience. After introducing the equivalence principle and Einstein’s
equation, and discussing their cosmic implications, we derive the Schwarzschild
solution and consider planetary motion. By this point we are equipped both
to compute physical quantities like orbital periods and the famous advance
of the perihelion of Mercury, and to see that the paths of the planets (which
to the flat or Riemannian intuition have little in common with straight lines)
correspond indeed to geodesics.

Space did not permit the coherent inclusion of differential forms and inte-
gration. Their use in geometry involves connection and curvature forms with
values not in the real numbers but in the Lie algebra of the appropriate Lie
group. A second volume will treat these topics and develop the clear expo-
sition of the tensor geometric tools of solid state physics, which has suffered
worse than most subjects from index debauchery.

The only feature in which this book is richer than in pictures (to strengthen
geometric insight) is exercises (to strengthen detailed comprehension). Many
of the longer and more intricate proofs have been broken down into carefully
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programmed exercises. To work through a proof in this way teaches the mind,
while a displayed page of calculation merely blunts the eye.

Thus, the exercises are an integral part of the text. The reader need not
do them all, perhaps not even many, but should read them at least as carefully
as the main text, and think hard about any that seem difficult. If the “really
hard” proportion seems to grow, reread the recent parts of the text — doing
more exercises.

We are grateful to various sources of support during the writing of this
book: Poston to the Instituto de Matemadtica Pura e Aplicada in Rio de
Janeiro, Montroll’s “Institute for Fundamental Studies” in Rochester, N.Y.,
the University of Oporto, and at Battelle Geneva to the Fonds National Su-
isse de la Recherche Scientifique (Grant no. 2.461-0.75) and to Battelle Insti-
tute, Ohio (Grant no. 333-207); Dodson to the University of Lancaster and
(1976-77) the International Centre for Theoretical Physics for hospitality dur-
ing a European Science Exchange Programme Fellowship sabbatical year. We
learned from conversation with too many people to begin to list. Each author,
as usual, is convinced that any remaining errors are the responsibility of the
other, but errors in the diagrams are due to the draughtsman, Poston, alone.

Finally, admiration, gratitude and sympathy are due Sylvia Brennan for
the vast job well done of preparing camera ready copy in Lancaster with the
authors in two other countries.

Kit Dodson
ICTP, Trieste

Tim Poston
Battelle, Geneva



0. Fundamental Not(at)ions

“Therefore is the name of it called Babel;
because the Lord did there confound the language
of all the earth”,

Genesis 11, 9

Please at least skim through this chapter; if a mathematician, your habits
are probably different somewhere (maybe f~! not f~) and if a physicist,
perhaps almost everywhere.

1. Sets

A set, or class, or family is a collection of things, called members, elements,
or points of it. Brackets like { } will always denote a set, with the elements
either listed between them (as, {1,3,1,2}, the set whose elements are the
number 1, 2 and 3 — repetition, and order, make no difference) or specified
by a rule, in the form { z | z is an integer, 2% = 1} or { Integer = | 2 =1},
which are abbreviations of “the set of all those things z such that z is an
integer and z2 = 1” which is exactly the set {1, —1}. Read the vertical line I
as “such that” when it appears in a specification of a set by a rule.

Sets can be collections of numbers (as above), of people ({Henry Crun,
Peter Kropotkin, Balthazar Vorster}), of sets ({ {Major Bludnok, Oberon},
{1,-1},{this book} }), or of things with little in common beyond their
declared membership of the set ({passive resistance,the set of all wigs,3,
Isaac Newton}) though this is uncommon in everyday mathematics.

We abbreviate “z is a member of the set S” to “zisin S” or z € S, and
“zisnotin S” to z &€ S. (Thus for instance if S = {1,3,1,2,2} thenz € S
means that z is the number 1, or 2, or 3.) If z, y and z are all members of S,
we write briefly z,y,2 € S. A singleton set contains just one element.

If every z € S is also in another set T, we write S C T, and say S is a
subset of T'. This includes the possibility that S = T'; that is when T'C S as
wellas S CT.

Some sets have special standard symbols. The set of all natural, or
“counting”, numbers like 1,2,3,...,666, ... etc. is always N (not vice versa,
but when N means anything else this should be clear by context. Life is
short, and the alphabet shorter.) There is no consensus whether to include 0
in N; on the grounds of its invention several millenia after the other counting
numbers, and certain points of convenience, we choose not to. The set of all
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real (as opposed to complex) numbers like 1, \/%-, ~m, 8.2736 etc. is called

R. The empty set @ by definition has no members; thus if § = {:c €N |
z? = —1} then S = 0. Note that # C N CR. (0 is a subset of any other set:
for “Q ¢_ N” would mean “there is an z €  which is not a natural member”.
This is false, as there is no z € @ which is, or is not, anything: hence § C N.)
Various other subsets of R have special symbols. We agree as usual that
among real numbers

a < b means “a is strictly less than 4” or “b — a is not zero or negative”

a < b means “a is less than or equal to b” or “b — a is not negative”

(note that for any @ € R, a < a). Then we define the intervals

b

[a,8] ={z€R|a§z§b} . including ends

la,b[={z€R|a<z<b} not including ends
[a,b[={z€R|a<z<b}
Ja,)l={z€R|a<z<b}

} including one end.

When b < a, the definitions imply that all of these sets equal @; if
a = b, then [a,b] = {a} = {b} and the rest are empty. By convention the
half-unbounded intervals are written similarly: if a,b € R then

]-00,b] = {z |2<b}, [a,00[={z |z >4a},
]—o0,b[={z|z<b}, Ja,00[={z|z>a}

by definition, without thereby allowing —oo or co as “numbers”. We also call
R itself an interval. (We may define the term interval itself either by gath-
ering together the above definitions of all particular cases or — anticipating
Chapter III — as a convex subset of R.)

By a > b, a > b we mean b < a, b < a respectively.

A finite subset S = {a;,a3,...,a,} C R must have a least member,
min S, and a greatest, max.S. An infinite set may, but need not have extreme
members. For example, min[0, 1] = 0, max[0, 1] = 1, but neither min]0, 1] nor
max]0, 1] exists. For any t € ]0,1[, 1t <t < 1(t + 1) which gives elements of
]0, 1[ strictly less and greater than ¢. So ¢t can be neither a minimum nor a
maximum.

We shall be thinking of R far more as a geometric object, with its points
as positions, than as algebraic with its elements as numbers. (These different
viewpoints are represented by different names for it, as the real line or the
real number system or field.) Its geometry, which we partly explore in VII.§4,
has more subtlety than high school treatments lead one to realise.
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SuT

If S and T are any two sets their intersection is the set (Fig. 1.1a)

SNT={zeS|zeT}
and their union is (Fig. 1.1b)

SUT={1:|1:€S, orzeT, orboth}.
By S less T we mean the set (Fig. 1.1a)
S\T:{z€S|z¢T}.

If we have an indezing set K such as {1,2,3,4} or {3,Fred,Jam} la-
belling sets Sz, Skred, Syam (one for each k € K) we denote the resulting set
of sets {S3, SFred, Syam} by {Sk}rex. K may well be infinite (for instance
K =Nor K =R). The union of all of the Sy is

USkz{z|zESkforsomekeK}
keK

and their intersection is

ﬂSkz{x|zESkforalIk€K},
kEK

which obviously reduce to the previous definitions when k has exactly two
members.

To abbreviate expressions like those above, we sometimes write “for all”
as V, “there exists” as 3, and abbreviate “such that” to “s.t.”. Then

ﬂSkz{z|x€Ska€K}, US’kz{z|3kEKs.t.z€Sk}.
k€K keK



4 0. Fundamental Not(at)ions

ESNT =0, S and T are disjoint; {Sk}rex is disjoint if S N S; = 0,
Vk£1l€K.

When K = {1,...,n} we write Uy x St as U=, Si or S1US2U---US,,
by analogy with the expression ) ;_, z; = z; + 2 + -+ - + z, where the z;
are things that can be added, such as members of N, of R, or (cf. Chap. I) of
a vector space; similarly for ﬂ:;l S;=51NSN---NS,.

We shorten “implies” to =, “is implied by” to <, and “=> and <” to
<= . Thus for example,

zeN=>z2eN, zeR<zeN,
I was married to John <= John was married to me, or in compound use
teS=2>zel]| <= z€T«z€S].
The product of two sets X and Y is the set of ordered pairs
XxY={(z,y)|z€X, yeY}.

The commonest example is the description of the Euclidean plane by Carte-
sian coordinates (z,y) € R x R. Note the importance of the ordering: though
{1,0} and {0,1} are the same subset of R, (1,0) and (0,1) are different ele-
ments of RX R (one “on the z-axis” the other “on the y-axis”). R x R is often
written R2. We generally identify (Rx R)x R and R x (Rx R), whose elements
are strictly of the forms ((z,y),z) and (=, (y,z)), with the set R3 of ordered
triples labelled (z,y,z), or (z!,22%,23) according to taste and convenience.
Here the !,2,3 on the z’s are position labels for numbers and not powers.
Similarly for the set

R":RxRx...sz{(zl,:cz,...,:c")|:cl,...,:c"€R}

of ordered n-tuples. (Note that the set R! of one-tuples is just R.)
A less “flat” illustration arises from the unit circle

Sl={(z,y)€R2lz2+y2=l} .
The product S* x [1,2] is a subset of R? x R, since S C R?, [1,2] C R.
(Fig. 1.2, with some sample points labelled.)
S is one of the n-spheres:

st ={(a",....a") [ @)+ + (@) =1} CRHL.

S? is the usual “unit sphere” of 3-dimensional Cartesian geometry, and S° is
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(0,2

0.2

simply {—1,1} C R!. The higher spheres are logically no different, but take
a little practice to “visualise”.

A relation g on a set X is a subset of X x X. We generally abbreviate
(z,y) € o to z py. Typical cases are

{(z,y) eR? |y — z is not negative} CRx R,
this is the relation < used above, and
{ (z,v) | z,y are people, z is married to y} ,

on the set of people. Various kinds of relation have special names; for in-
stance, < is an example of an order relation. We need only define one kind
in detail here:

An equivalence relation ~ on X is a relation such that

HzeX=>z~z
(ii)yz~y=>y~c
(i) z~yandy~z 2>z~ 2.

For example, {(:c,y) | 2? = yz} is an equivalence relation on a set of
numbers, and ¢ = {(z,y) | z has the same birthday as y } is an equiva-
lence relation on the set of mammals. On the other hand, o = {(z,y) |
¢ is married to the husband of y} is an equivalence relation on the set of
wives in many cultures, but not on the set of women, by the failure of (i).

The important feature of an equivalence relation is that it partitions X
into equivalence classes. These are the subsets [z] = { yeX | y~=z }, with
the properties

(i) = € [z], we say z is a representative of [z],
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(i) either [¢] N [y] = 8, or [] = [4],
(iii) the union of all the classes is X.
This device is used endlessly in mathematics, from the construction of the
integers on up. For, very often, the set of equivalence classes possesses a nicer
structure than X itself. We construct some vector spaces with it (in II§3,
VII§1). The example on mammals produces classes that interest astrologers,
and o partitions wives into ...?

2. Functions

A function, mapping or map f: X — Y between the sets X and Y may be

thought of as a rule, however specified, giving for each # € X exactly one

y € Y. Technically, it is best described as a subset f C X x Y such that
Fi)ze X =>3yeYst (z,y)€f

Fii) (z,9),(z,y) € f=>y=y"
These rules say that for each z € X, (i) there is a (ii) unique y € Y that we
may label f(z) or fz. A map may be specified simply by a list, such as

f : {Peter Kropotkin, Henry Crun, Balthazar Vorster}
— { z | z is a possible place }

Peter Kropotkin — Switzerland

Henry Crun — Balham Gas Works
Balthazar Vorster — Robben Island

An example of a function specified by a rule allowing for several possibilities

is
1 ifreNandz>0

g:R—-R:z—{ -1 ifzeNandz<0
1 ifzgN

(Fig. 2.1a uses artistic license in representing the “zero width” gaps in the
graph of g — which, as a subset of R x R, technically is g.) Often we shall
specify a map by one or more formulae, for example (Fig. 2.1b,c)

2 >0
h:RoR:z—{ % L2
{0 if<0’
g:]0,00[—R:z+—logz .
All these satisfy F 1) and Fii). Notice the way we have used — to specify

the sets a function is between and ~ to specify its “rule”. (Technically,
g :z + logz is short for ¢ = {(z,y) | y = logz} C ]0,00[ x R.) This
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Fig. 2.1

distinction between — and — will be consistent throughout the book. We
also read “f : X — Y” as the statement “f is a function from X to Y”.

If f: X =Y, we call X its domain, Y its range, and the subset {y I
y = f(z) for some x € X} of Y its image, denoted by f(X) or fX. We
generalise this last notation: if S is any subset of X, set

fS:f(S):{yly:f(z)forsomezES}

the image of S by f. Note that f({z}) = {f(z)} for any z € X, as sets.
We are committing a slight “abuse of language” in using f to denote
both a map X — Y and the function

{SISQX}—»{T'TQ_Y}:SH{yIEleSs.t.f(z)zy}
that it defines between sets of subsets: generally we shall insist firmly that

the domain and range are parts of the function’s identity, just as much as
the rule giving it, and S +— fS is different in all these ways from z — fz.
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This precision about domain and range becomes crucial when we define the
composite of twomaps g : X - Y and f:Y — Z by

fog: X —Z:zw f(g9(z)); so (fog)(z)is “fofgofz”.

If, say, we wish to compose ¢ and h above, we have

. _ _J(logz)? ifz>1
hoq.]O,oo[—»R.zr—-»h(q:c)—{ 0 152> 0

but g o h cannot satisfy F i; how can we define g o h(—1), since log 0 does not
exist? Or consider s:R— R :z — sinz:-

[:c € R] = [sz < 1] = [log(sz) <0 when deﬁned]

= [log(log(s:c)) never deﬁned]

so we cannot define g o g o s anywhere. (Note that formally “differentiating”
z +— loglogsinz by the rules of school calculus gives a formula that does
define something for some values of . What, if anything, does the rate of
change with z of a nowhere-defined function mean? What is the sound of
one hand clapping?) So insisting that X and Y are “part of” f: X — Y is
a vital safety measure, not pedantry.

So we should not write down f o g unless (range of g) = (domain of f).
We may so far abuse language as to write fog for z — f(gz) when
(image of g) = (domain of f) or when (range of g) C (domain of f); this
latter is really the triple composite f o o g with the inclusion map

i : (range of g) < (domain of f):z — =z

quietly suppressed. Note also the amalgam of C and — for inclusions.

We sometimes want to change a function by reducing its domain; if
f:X =Y and S C X we define f restricted to S or the restriction of f to
S as

fls:S—=Y:zm f(2)

or equivalently f|s = f o1, where i is the inclusion S — X.

Notice that f|s may have a simpler expression than f: for A : R — R
as above, hlg o[ is given simply by z z%. It thus coincides with klfo,00f
where k : R > R : 2 — z?, though h(z) is not the same as k(z), (we write
h(z) # k(z) for short) if z < 0. This is another reason for considering the
domain as “part of” the function: if a change in domain can make different
functions the same, the change is not trivial. (To regard f and f|s as the
same function and allow them the same name would lead to “h : R — R is the
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Fig. 2.2

same as h|jg o[ is the same as k|jo o[ is the same as k” which is ridiculous.)
When we have this situation of two functions f,¢g : X - Y, S C X, and
fls = g|s, we say f and g agree on S.

A function f : X — Y defines, besides S — fS from subsets of X to
subsets of Y, a map in the other direction between subsets. It is defined for
al TCY by

f(T)={s|f)eT}CX,

the inverse image of T by f. If fX NT = @, then f—(T) = @; the inverse
image of a set outside the image of f is empty. (Likewise if fSNT = 0,
(fls)=(T) = 0.) Some images and inverse images are illustrated in Fig. 2.2.
There f is represented as taking any £ € X to the point directly below it —
a pictorial device we shall use constantly.

In general f*, a map taking subsets of Y to subsets of X, does not come
from a map Y — X in the way that S — fS does come from f : X - Y.
If for every y € Y we had f~({y}) a set containing exactly one point, as we
have for y on the line C in Fig. 2.2 (rather than none, as to the right of C,
or more than one, as to the left) than we can define f~ : Y — X by the
condition f~(y) = the unique member of f<~({y}); otherwise not. We can
break this necessary condition “every f~({z}) contains exactly one point”
into two, that are often useful separately:

f X — Y is injective or into or an injection if for any y € Y, f=({y})
contains at most one point.

Equivalently, if f(z) = f(z') €Y =z =12'.

f:X — Y is onto or surjective or a surjection (dog latin for “throwing onto”)
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if forany y € Y f~({y}) # 0. This means it contains at least one point.
Equivalently, if fX =Y (not just fX CY, which is true by definition).

f:X =Y is bijective or a bijection if it is both injective and surjective.

There exists a function f~ : Y — X such that {f~(y)} = f~({v})
Vy € Y, if and only -if f is bijective. For if there is such an f, each
F=({y}) ={f~(v)} # 0 since f- satisfies Fi, and

f(2)=f(@") =y, say = 2,2 € f~({s}) = {f~(v)}

=z =z’ since f* satisfies Fii

so f is bijective. Conversely if f is bijective the subset g = {(y, z) |
(2,9) € f} C Y x X satisfies Fi, Fii for a function ¥ — X and
{9(¥)} = F~({y}) Vy €Y, so we can put f= = g. Notice that f, when it
exists, is also a bijection.

(It is common to write f=! for £, but this habit leads to all sorts of
confusion between f*~(z) and (f(z))~! = 1/f(z), and should be stamped
out.)

We can state these ideas in terms of functions alone, not mentioning
members of sets, if we define for any set X the identity map I : X — X :
z — z. Now the following two statements should be obvious, otherwise the
reader should prove them as a worthwhile exercise:

A function f : X — Y is injective if and only if
dg:Y > Xst.gof=Ix:X—X.

A function f : X — Y is surjective if and only if
dg:Y > Xst. fog=Iy:Y Y.

Neither case need involve a unique g. If X = {0,1}, Y = [0,1] then
1:X <Y :zm z (Fig. 2.3a) is injective with infinitely many candidates
for g such that go f = Ix. (for instance take all of [0, 2] to 0 and all of 12,1]
to 1.) Similarly the unique (why?) map [0,1] — {0} is surjective, and any
g :{0} — [0,1] (say, 0+ 3) has fog = I{g) (Fig. 2.3b). But if £ is bijective
by the existence of g : Y — X such that gof = I, and ¢’ : Y — X such that

X Y Y
Qs 0 0 & .
() o 10}

Fig. 2.3
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fog' = Iy then we have

g=gol,=go(fog')=(g90f)og’ =Ixog =4

By the same argument, if A : Y — X is any other map with ho f = I, then
it must equal ¢’ and hence g, or with f o h = Iy it must equal g. Then we
have a unique inverse map that we may call f~ as above, with f~ o f = Ix,
fof~ = Iy. We may omit the subscript when the domain of the identity is
plain from the context.

When maps with various ranges and domains are around, we shall some-
times gather them into a composite diagram such as

xLw
X—W-—2—0Y —T, or Fl lg
! g h q
M—T
G

where the domain and range of each map are given by the beginning and
end, respectively, of its arrow.

This helps keep track of which compositions are legitimate. For instance,
if f: X —>Y and g:Y — Z are both injections, then we have two diagrams

X —Y —7 and X—Y—17Z
f g f= 9=

which make clear that we can form the composites g o f and f* o g, but
not fog (since g(y) € Z, and f(z) is not defined for 2 € Z) or g~ o f. The
composite g o f is again a bijection, with inverse (go f)~ = f~ o g*, since

(f=og™)o(go )= f~o(g=og)of = f~olyof=f~of=Ix
(gof)o(fTo0g )=go(fofT)og =golyog” =gog™ =1z .

We assume the existence and familiar properties of certain common func-
tions: notably
+:RxR—-R:(z,y)—~z+y,
Xx:RxR—-R:(z,y)— 2y,
—:R—>R:z— -2,
z ifz>0

modulus:R—+R:zb—>|:c1={_x fz<0’

whose precise definitions involve that of R itself, and the corresponding di-
vision, subtraction and polynomial functions (such as z +— z3 + z) that can
be defined from them. When constructing examples we shall often use (as
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already above) the functions
exp:R —]0,00[: 2 > exp(z) = €” ,
(its series is mentioned only in IX.6.2), its inverse natural logarithm
log : ]0,00[ — R : z +— (that y s.t. e/ = z)
the trigonometrical functions
sin:R—R, cos:R—-R,
and (in IX§6 only) the hyperbolic functions
sinh:R—=R, cosh:R—R,

taking as given their standard properties (various identities are stated in
Exercise 1X.6.2). Among these properties we include their differentials

£ (exp)(z) = exp(z) , 4(log)(z)=1,
4 (sin)(z) = cosz, L(cos)(z)=—sinz,

4 (sinh)(z) = coshz , £(cosh)(z) =sinhz,

since to prove these would involve adding to the precise treatment of differ-
entiation in Chap. VIII the material on infinite sums necessary to define exp,
log, sin and cos rigorously. This seems unnecessary — when the functions are
already familiar — for the purposes of this book. (The physics student, who
may not have seen them precisely defined, should, if assailed by Doubt, refer
to any elementary Analysis text, such as [Moss and Roberts].)

Finally we define the map named after Kronecker,

NN 0Ty [0 Hi#]
§:NxN {0,1}.(1,,)._.{1 His

and the standard abbreviations 6]‘:, §;; and 6' (according to varying conve-
nience) for the real number 6(i, j). Thus, for instance,

6l =63=06%=1, §2=6=6=0.
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3. Physical Background

In 1887, Albert Abraham Michelson and Edward Williams Morley tried to
measure the absolute velocity of the Earth through space, as follows.

Light was believed to consist of movements, analogous to water or sound
waves, of a luminiferous (= light-carrying) ether. (The name is descended
deviously from the theories of Aristotle, in which heavenly bodies — only —
are made of a luminous element, “ether” or “aether”, instead of terrestrial
earth, air, fire and water. Such an element is rather unlike the 19th Century
omnipresent something, whose only discernible property was carrying light
by its oscillations.) Any attempt to allow currents or eddies in the ether led to
the prediction of unobserved effects. Therefore it seemed reasonable to allow
the ether to enjoy absolute rest, apart from its light-carrying oscillations.
Hence an absolute velocity could be assigned to the Earth, as its velocity
relative to the ether. Thus the crucial experiment is equivalent to measuring
the flow of ether through the Earth. Since the ether was detectable only by
its luminiferosity, any such measurements had to be of light waves.

The problem is analogous to that of measuring the speed of a river by
timing swimmers who move at a constant speed, relative to the water, as light
waves were believed to, relative to the ether. This constancy followed from
the wave theory of light; Newton’s “light corpuscles” had no more reason for
constant speed than bullets have. (In what follows, remember that “speed”
is a number, while “velocity” is speed in a particular direction: the man who
said he had been fined for a “velocity offence” had been driving below the
speed limit, but down a wrong-way street.) The wave characteristics of light
were also used essentially in the experiment; the times involved were too
short to measure directly, but could be compared through wave interference
effects. For the optical details we refer the reader to [Feynman], and limit
ourselves here to the way the time comparisons were used.

Suppose (Fig. 3.1) that we have three rigidly linked rafts moored in water
flowing at uniform speed v, all in the same direction. The raft separations
AB, AC are at right angles, and each of length L. If a swimmer’s speed,
relative to the water, is always ¢, her time from A to C and back will be
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where the speeds ¢ — v, ¢ + v are relative to the rafts. For swims from A to
B, the velocities add more awkwardly (Fig. 3.2). Then she achieves a cross
current speed of (c? — v®)!/? giving a time from A to B and back of

7 - 2L
Y/~

/. T’
v=efl-—=,
T

so that measurement of the ratio T} /T gives v as a multiple of the “measuring
standard” velocity ¢. Minor elaborations involving turning the apparatus take
care of not knowing the current direction in advance, and the possibility that
AB # AC.

The analogous experiment with ¢ as the enormous speed of light (which
Michelson was brilliant at measuring) and v as the relative velocity of Earth
and ether, required great skill. Repeated attempts, ever more refined, gave
v = 0, even when the margin of error was held well below Earth’s orbital
speed and the experiment repeated six months later with the Earth, halfway
round the sun, going the other way. Thus two different velocities, v and —v,
both appeared to be zero relative to the unmoving ether!

In retrospect, this experiment is seen as changing physics utterly (though
it did not strike Michelson that way). More and more ad hoc hypotheses
had to be added to conventional physics to cope with it. The Irish physicist
Fitzgerald proposed that velocity v in any direction shrunk an object’s length
in that direction by (1 — v?/¢c?)!/2. Hendrik Antoon Lorentz suggested the

Simple algebra then gives
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same (the effect is now known as the Lorentz-Fitzgerald contraction). He
also saw that to save Newton’s law “force = mass times acceleration” the
mass of a moving object had also to change, this time increased by the same
factor.

Every effort to get round these effects and find an absolute velocity hit
a new contradiction or a similar “fudge factor”, as though there were a con-
spiracy to conceal the answer. Henri Poincaré pointed out that “a successful
conspiracy is itself a law of nature”. and in 1905 Albert Einstein proposed
the theory now called Special Relativity. He assumed that it is completely
impossible, by any means whatever, to discover for oneself an absolutely ve-
locity. Any velocity at all may be treated as “rest”. From this “Principle of
Relativity” he deduced all the previously ad hoc fudge factors in a coherent
way. Moreover, he accounted effectively for a wide range of experimental
facts — both those then known, and many learnt since. His theory is now
firmly established, in the sense that any future theories must at least include
it as special case. For no experiment has contradicted those consequences of
the theory that have been elaborated to date.

One such consequence caused great surprise at the time, and leads to a
“spacetime geometry” which — even before gravity is considered — is different
from the “space geometries” studied up to that time. It even differs from the
generalised (non-Euclidean and n-dimensional) ones investigated in the 19 th
Century. By the Relativity Principle, every observer measuring the speed of
light in vacuum must find the same answer. (Or Michelson and Morley would
have got the results they expected.) Consider a flash of light travelling at
uniform speed ¢, straight from a point X; to a point X3. Then any observer
will find the equation

_ distance from X; to X
©= Yime taken by light flash

exactly satisfied. But another observer may easily measure the distance dif-
ferently, even on Newtonian assumptions, since “arrival” is later than “de-
parture”. (A minister in a Concorde drops his champagne glass and it hits
the floor after travelling — to him — just three feet, downwards. But he drops
it as he booms over one taxpayer, and it breaks over another, more than
500ft away.) Then the Principle requires that the time taken also be mea-
sured differently, to keep the same ratio ¢ (using, we must obviously insist,
the same units for length, and time — otherwise one observer can change ¢
however he chooses). This created controversy, above all because it implied
that two identical systems (clocks or twins for instance) could leave the same
point at the same moment, travel differently, and meet later after the passage
of more time (measured by ticks or biological growth) for one than for the
other. This contradicted previous opinion so strongly as to be miscalled the
Clocks, or Twins, Paradox; cf. IX.4.05. (Strictly a paradox must be self-
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contradictory, like the logical difficulties that were troubling mathematics at
the time. Physics has had its share of paradoxes, such as finite quantities
proved infinite, but this is not one of them. There is nothing logically wrong
about contradicting authority, whether Church, State or Received Opinion,
though it may be found morally objectionable.) With the techniques for
producing very high speeds developed since 1905 — near lightspeed in parti-
cle accelerators — and atomic clocks of extreme accuracy, this dependence of
elapsed time on the measurer has been confirmed to many decimal places in
innumerable experiments of very various kinds. We consider its geometrical
aspects in Chap. IX (since it is a failure of geometric rather than physical
insight that gives the feeling of “paradox”) and its more physical, quantita-
tive aspects in Chap. XI. The following remarks explain some terminology
chosen in Chap. IV.

Choose, for our first observer of the above movement of a light flash,
coordinates (z,y, z) for space and t for time with t = z = y = 2z = 0 labelling
“departure”. (We choose rectangular coordinates (z,y, z) if we can, though
this is usually only locally and approximately possible in the General theory.
The discussion below then leads to the structure we attribute to spacetime
“in the limit of smallness” where the approximations disappear, so it remains
satisfactory for motivation.) In these coordinates, “arrival” is labelled by
the four numbers (¢,z,y,2). Then equation * becomes, using Pythagoras’s

theorem,
T EY
h t
or equivalently
-2y’ - 22=0.

The Principle requires this to be equally true for an observer using different
coordinates with the same origin, “departure” labelled by (0,0,0,0), but
giving a new label (t/,2',y',2’) to “arrival”. As remarked above, ¢’ will in
general be different from ¢. But we must still have

(') - (=) - () — ()2 =0

with the same value of ¢. It follows fairly easily (the more mathematical
reader should prove it) that there is a positive number S such that for any
“time and position” labelled (T, X,Y, Z) by one system and (1", X',Y’, Z')
by the other, not just the possible “arrival” points of light flashes with “de-
parture” (0,0,0,0), we have

c2(TI)2 _ (XI)Z _ (Y/)Z _ (ZI)2 = S(CZTZ _ X2 _ Y2 _ ZZ) .

Now the Principle requires that both systems use the same units; in particular
they must give lengths
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VX2 +(2) = VX +Y?+ 27

to points for which they agree are at time zero, so that 77 = T' = 0. There
always will be such points (a proof needs some machinery from Chapters I-
IV), so S can be only 1. Up to choice of unit, then,

AT - X2-v?2-272

is a quantity which, unlike T, XY, Z individually, does not depend on the
labelling system. This is in close analogy to the familiar fact of three-
dimensional analytic geometry, used above, that

z? + y? + 2? = (distance from origin)?

does not depend on the rectangular axes chosen. It is common nowadays
to strengthen the analogy by choosing units to make ¢ = 1. For instance,
measuring time in years and distance in light years, the speed of light becomes
exactly 1 light year per year by definition. Or as in [Misner, Thorne and
Wheeler], time may be measured in centimeters — in multiples of the time
in which light travels 1c¢m in vacuum. (Such mingling of space and time
is ancient in English, though “a length of time” is untranslatable into some
languages, but is only fully consummated in Relativity.) This practice gives
the above quantity the standard form

T2 - X2-Y2-22

independently even of units (though its value at a point will depend on
whether your scale derives from the year or from the Pyramid Inch.) We
examine the geometry of spaces with label-independent quantities like this
one and like Euclidean length, from Chap. IV onwards.

Two ironies: Michelson lived to 1933 without ever accepting Relativity.
Modern astronomers, who accept it almost completely, expect in the next
decade or so to measure something very like an “absolute velocity” for the
Earth. This derives from the Doppler shift (cf. X1.2.09) of the amazingly
isotropic universal background of cosmic black body radiation.



I. Real Vector Spaces

“To banish reality is to sink deeper into the real;
allegiance to the void implies denial of its voidness.”

Seng-ts'an

1. Spaces

1.01. Definition. A real vector space is a non-empty set X of things we call
vectors and two functions

“vector addition” : X x X —- X : (z,y) —z+y
“scalar multiplication” : X x R — X : (z,a) — za

such that for #,y,2 € X and a,b € R we have
(1) =+ y =y + =, (commutativity of +).
(i) (= +y)+ 2 ==+ (y+ 2), (associativity of +).

(iii) There exists a unique element 0 € X, the zero vector, such that for
any # € X we have  + 0 = z, (+ has an identity).

(iv) For any ¢ € X, there exists (—z) € X such that # + (—z) = 0,
(+ admits inverses).

(v) Forany z € X, zl = =.
(VI) (2 +y)a==zatys, (distributivity).
(vii) z(a+b) = za + =b,
(viii) (za)b = z(ab).
This long list of axioms does not mean that a vector space is immensely

complicated. Each one of them, properly considered, is a rule that something
difficult should not happen. English breaks (i), since

killer rat # rat killer
and similarly (ii), since

killer of young rats = (young rat)killer
# young(rat killer) = young killer of rats .

In consequence the objects that obey all of them are beautifully simple, and
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the theory of them is the most perfect and complete in all of mathematics
(particularly for “finite-dimensional” ones, which we come to in a moment
in 1.09). The theory of objects obeying only some of these rules is very much
harder. English, which obeys none of them, is only beginning to acquire a
formal theory.

If a vector space is “finite-dimensional” it may be thought of sim-
ply and effectively as a geometrical rather than an algebraic object; the
vectors are “directed distances” from a point 0 called the origin, vector
addition is defined by the parallelogram rule and scalar multiplication by
za = “(length of &) x a in the direction of =”. All of linear algebra (alias,
sometimes, “matrix theory”) is just a way of getting a grip with the aid of
numbers on this geometrical object. We shall thus talk of geometrical vectors
as line segments: they all have one end at 0, and we shall always draw them
with an arrowhead on the other. To forget the geometry and stop drawing
pictures is voluntarily to create enormous problems for yourself — equal and
opposite to the difficulties the Greeks had in working with raw geometry
alone, with no use of coordinates at all. (Often other pictures than arrows
will be appropriate, as with vectors in the dual space discussed in Chapter IIL.
But reasoning motivated by the arrow pictures, within any particular vector
space, remains useful.)

Fig. 1.1

In this context, the real numbers used are called scalars. The only reason
for not calling them just “numbers”, which would adequately distinguish
them from vectors, is that for historical reasons nobody else does, and in
mathematics as in other languages the idea is to be understood.

The term real vector space refers to our use of R as the source of scalars.
We shall use no others (and so henceforth we banish the “real” from the
name), but other number systems can replace it: for instance, in quantum
mechanics vector spaces with complex scalars are important. We recall that
R is algebraically a field (cf. Exercise 10).

Notice that properties (ii), (iii) and (iv) are sufficient axioms for a vector
space to be a group under addition; property (i) implies that this group is
commutative (cf. Exercise 10).

1.02. Definition. The standard real n-space R™ is the vector space consist-
ing of ordered n-tuples (z!,...,z") of real numbers as on p. , with its
operations defined by

&
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(zli""zn).*_(yl!""y"):(zl+y1"")zn+yn)

1

(z},...,z")a = (az',...,az")

(cf. Exercise 1).

1.03. Definition. A subspace of a vector space X is a non-empty subset
S C X such that
z,yeS=>(z+y)€S

z€S, aeR=>2a€S.

For instance, in a three-dimensional geometrical picture, the only sub-
spaces are the following.

(1) The directed distances from origin 0 to points in a line through 0,
(a line subspace).

(2) The directed distances from origin 0 to points in a plane through
0, (a plane subspace).

(3) The trivial subspaces: the whole space itself, and the zero subspace
(consisting of the zero vector 0 alone). By Exercise 2a this is con-
tained in every other subspace.

Sets of directed distances to lines and planes not through 0 are examples
of subsets which are not subspaces, (cf. Exercise 2). Nor are sets like S
(cf. Fig. 1.2).

1.04. Definition. The linear hull of any set S C X is the intersection of all
the subspaces containing S. It is always a subspace of X (cf. Exercise 3a).
We shall also say that it is the subspace spanned by the vectors in S.

Thus, for instance, the linear hull of a single vector is the intersection of
all line subspaces and plane subspaces etc. that contain it, which is clearly
Jjust the line subspace in the direction of the vector. Similarly the linear hull
of two non-zero vectors is the plane subspace they define as two line segments
(Fig. 1.3) unless they are in the same or precisely opposite direction, in which
case it is the line subspace in that direction. The linear hull of three vectors
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plane
Fig. 1.3

may be three-dimensional, a plane subspace, a line subspace or (if they are
all zero) the zero subspace.

1.05. Definition. A linear combination of vectors in a set S C X is a finite
sum z;a! + 24?2 + --- + z,a", where ;,...,2, € S and a!,...,a” € R.
(cf. Exercise 3b)

al+b3

***** b3

Fig. 1.4

1.06. Notation. The summation convention (invented by Einstein) repre-
sents z;a! + - - - + #,a™ by z;a’, and in this book x;a* will always represent
such a sum. (Be warned: this is mainly a physicist’s habit. Mathematicians
mostly use Y i, #;a* for sums, and by z;a‘ would mean z,a', or z3a?, or
x,a". There are good arguments for either, and if you go further you will
meet both. We shall always favour physicist’s notation in this book, unless
it is hopelessly destructive of clarity.) Evidently =; a) or z,a” represent the
same sum equally well, as long as we know what x,,...,2, and al,...,a"
are, and s0 1, j, a etc. are often called dummy indices, to emphasise that while
«; need not be the same vector as z;, z;a’ is always the same as z; al. It is
often convenient to “change dummy index” in the middle of a computation —
this makes use without explicit mention of the identity z;a’ = z;a’.

The convention does not apply only to writing down linear combinations.
For example, if we have real-valued functions fi,..., f, and ¢*,...,¢", then
fig* is short for fig' +- -+ fag". (This expression will emerge in later chap-
ters as the value of a covariant vector field applied to a contravariant one -
we have not forsaken geometry.) Invariably, even if there are a lot of other

indices around, a}*b%* for instance will mean apFb 4+ a;;';"b;’, where n
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is (hopefully) clear from the context. The Kronecker function (cf. Chap. 1.2)
often crops up with the summation convention, as :1:56;: = z; in change of
index for example; beware however, § = n.

Notice that the convention applies only if we have one upper and lower
index (though a;b* means the same as b'a; — order does not signify); if we
want to abbreviate z!y! + z%y% + --- + z"y" we must use Y ., z'y*. This
is not as daft as it seems. The position of the indices usually have geomet-
rical significance, and the two kinds of sum then represent quite different
geometrical ideas: Chapter III is about one, Chapter IV about the other.

1.07. Definition. A subset S C X is linearly dependent if some vector in S
is a linear combination of other vectors in S. (Notice that 0 is always a linear
combination of any other vectors, for 0 = 20+ y0, so any set containing 0 is
linearly dependent if we say for tidiness that {0} is linearly dependent too.)
Equivalently (Exercise 4), S is linearly dependent if and only if there is a
linear combination z;a* = 0 of vectors #; € S, with not all the a* = 0. If §
is not linearly dependent, it is linearly independent.

Geometrical example: a set of three vectors in the same plane through
the origin is always linearly dependent. To have three independent directions
(only the directions of the vectors in S matter for dependence, not their
lengths; why?) we need more room. This leads us to

1.08. Definition. A subset 8 C X is a basis for X if the linear hull of 3 is
all of X, and S is linearly independent.

Intuitively, it is clear that a basis for a line subspace must have exactly
one member, whereas a plane subspace requires vectors in two directions, and
so forth; the number of independent vectors you can get, and the number you
need to span the space, will correspond to the “dimension” of the space. Now
our concept of dimension does not rely on linear algebra. It is much older and
more fundamental. What we must check, then, is not so much that our ideas
of dimension are right as that linear algebra models nicely our geometrical
intuition. The algebraic proof of the geometrically visible statement that if
X has a basis consisting of a set of n vectors, any other basis also contains n
vectors, is indicated in Exercises 5-7. (The same sort of proof goes through
for infinite dimensions, but we shall stick to finite ones.) Hence we can define
dimension algebraically, which is a great deal easier than making precise
within geometry the “concept of dimension” we have just been so free with.
But remember that this is an algebraic convenience for handling a geometrical
idea.

1.09. Definition. If X has a basis with a finite number n of vectors, then
X is finite-dimensional and in particular n-dimensional. Thus R3 is 3-
dimensional, by Exercise 9. The number n is the dimension of X. We
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shall assume all vector spaces we mention to be finite-dimensional unless we
specifically indicate that they are not. If a subspace of X has dimension
(dimX — 1) it is called a hyperplane of X by analogy with plane subspaces
of R3. (What are the hyperplanes of R2?)

1.10. Definition. The standard basis £ for R™ (cf. Definition 1.02) is the set
of n vectors ey, es,...,e, where e; = (0,...,0,1,0,...,0) with the 1 in the
i-th place. (cf. Exercise 9)

Exercises 1.1

1.  The standard real n-space is indeed a vector space.

2. a) Any subspace of a vector space must include the zero 0.
b) The set {0} C X is always a subspace of X.

3. a) The linear hull of S C X is a subspace of X. .
b) The linear hull of S C X is exactly the set of all linear combinations
of vectors in S.

c¢) A subset S is a subspace of X if and only if it coincides with its linear
hull.

4. Prove the equivalence of the alternative definitions given in 1.07.

A subset of a linearly independent set of vectors is also independent.

6. If Bis a basis for X then no subset of 3 (other than g itself) is also a
basis for X.

7.a) f B ={=z1,...,2,} and B’ = {y1,...,Ym} are bases for X then so is
{y1,21,... ,&j—1,&j41,.-.,%n} for some omitted z;. Notice that the
new basis, like 3, has n members.

b) Prove that if ¥ < n, then a set consisting of y;,...,yx and some
suitable set of (n — k) of the ®;’s is a basis for X. Deduce that m < n.
¢) Prove that m = n.

8. If Bis a basis for X then any vector in X is, in a unique way, a linear

combination of vectors in 5. If therefore,

i WY
zia' =y =z;b
where the z;, a:_',- € 3 then the non-zero a'’s are equal to non-zero ¥’s

and multiply the same vectors. They are called the components of y
with respect to .
9.  Prove that {e;,...,e,} is a basis for R".

10. A group (X,«) is a non-empty set X and amap * : X x X — X
such that * is associative, has an identity, and admits inverses. Thus
(R, +) and (R\ {0}, x) are groups and in fact this double group struc-
ture makes the real numbers a field because + and x interact in a
distributive way.
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2. Maps

In almost all mathematical theories we have two basic tools: sets with a
particular kind of structure, and functions between them that respect their
structure. We shall meet several examples of this in the course of the book.
For sets with a vector space structure, the functions we want are as follows.

2.01. Definition. A function A : X — Y is linear if for all z,y € X and
a € R we have

A(z+y)=Az+ Ay
A(za) = (Az)a .

The terms linear map or mapping, linear transformation and linear operator
for such functions are frequent, though the latter is generally reserved for
maps A : X — X, which “operate” on X. (It is also the favourite term in
books which discuss, for example, quantum mechanics in terms of operators
without ever saying what they operate on. This is perhaps intended to make
things easier.) We shall use “linear map” for a general linear function X — Y,
“linear operator” in the case X — X, omitting “linear” like “real” where no
confusion is created.

The set L(X;Y) of all linear maps X — Y itself forms a vector space
under the addition and scalar multiplication

(A:X->Y)+(B:X>Y)=A+B:X—>Y:2— Az + Bz
(A:X—>Y)a=4a :X—-Y:z+—(Az)a

as is easily checked. So is the fact that the composite BA of linear maps
A: X -Y,B:Y — Zis again linear. We show in 2.07 that dim L(X;Y) =
dimX -dimY.

2.02. Definition. The identity operator Ix on X is defined by Ix(z) = =,
for all . We shall denote it by just I when it is clear which space is involved.
A scalar operator is defined for every a € R by (Ia)z = za for all z € X.
Such an operator is abbreviated to a, so that za = az.

The zero map 0: X — Y is defined by 0z = 0.

A linear map A : X — Y is an isomorphism if thereisamap B: Y — X
such that both AB = Iy and BA = Ix. (Notice that it is possible to have
one but not the other: if A :R? — R®: (z,y) — (z,y,0) and B :R® - R?:
(z,9,2) — (=,y), then BA = Ig: but AB # Igs.) Weread A: X =Y as
“A is an isomorphism from X to Y”.

Such a B is the inverse of A and we write B = A*~. A is then invertible.

A : X — Y is non-singular if Az = 0 implies & = 0, otherwise singular.
(cf. Exercise 1) Evidently an invertible map is non-singular.

If z# 0, Az = 0 then = is a singular vector of A.
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2.03.Lemma. A function A: X — Y is an isomorphism if and only if it 1s
a linear bijection.

Proof. If A is a bijection, there exists B : Y — X (not necessarily linear)
such that AB = Iy, BA = Ix. If A is also linear, consider y,y’ € Y. For
some z, &’ € X wehave y = Az, y’ = Az, since A is surjective, and y+y' =
Az+ Az’ = A(z+2'), (Alinear). So B(y+y') = BA(z+2') = I(z+2') =
z +2' = (BA)z + (BA)z' = B(Az) + B(Az') = By + By'. Similarly
B(ya) = (By)a, and hence B is linear. Conversely, an isomorphism is linear
by definition and a bijection by the existence of its inverse. 0

2.04. Corollary. If A is non-singular and surjective, it is an isomorphism.

Proof. Non-singularity implies that A is injective by Exercise 1, and hence
bijective. The result follows. 0

2.05. Lemma. If B is a basis for X, then (i) any linear map A : X - Y
is completely specified by its value on (3, and (ii) any function A : 8 — Y
extends uniquely to a linear map A: X - Y.

Proof. Let z € X be the linear combination b;a‘ of elements of 3. By
linearity of A, Az = A(b;a’) = (Ab;)a’, which depends only on z (via the
scalars a') and the vectors Ab;. Thus A is fixed if we know its values on g,
and since z = b;a’ in a unique way (Exercise 1.8), we can without ambiguity
define A by Az = (Ab;)a’, and check that A so defined is linear. a

or

Fig. 2.1

Geometrically: think of a parallelogram or parallelepiped linkage at-
tached to the origin. Move the basic vectors ®,y, z around, and their sums
(given by the parallelogram law) are forced to more in a corresponding way.
If not only the parallelogram law but also scalar multiplication is to be pre-
served, it is clear that defining an operation on basic vectors is enough to
determine it everywhere.

2.06. Corollary. If X is an n-dimensional vector space, there is an isomor-
phism A : X — R".
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Proof. Pick any basis {by,...,b,} for X, then define
A
{bl,...,bn}ﬁ{el,...,en}:b,-Ze.- .

The functions A and B extend to A and B between X and R*, and if z € X,
y € R™ we have

BAz = BA(b;d')
= B((Ab;)a’)
= B((e:)e’)
= (Be;)a’
= b;a’

==z
so that BA = Ix, and similarly AB = Ig~. ]

2.07. Matrices. By the last lemma any finite-dimensional space is a copy
of R® — so why not just use R", instead of all this stuff about vector spaces?
The reason is that to get the isomorphism A you had to choose a basis, and
an ordering for it. Once you have done that, you have “chosen coordinates”
on X, because you can label a vector by its image Az = (a},...,a"). (In
the presence of a basis we shall use such labels quite often, sometimes abbre-
viating them to a single representative a‘.) But there may be no particular
reason for choosing any one ordered basis (as in interplanetary space, for
instance) or — worse — good reasons for several different ones. Moreover, it is
often easier to see what is going on if a basis is not brought in. However for
specific computations a basis is usually essential, so the best approach is to
work with a general vector space and bring in or change a basis as and when
convenient.

A basis enables us to write down vectors in an n-dimensional vector
space X conveniently as n-tuples of numbers, and to specify a map A to
an n-dimensional space Y by what it does to just the set of n basis vectors
{b1,...,bs}. This involves giving an ordered list of the n vectors A(b;) =

cia} = Cla} + - +emal = (a}-,...,a}") “in coordinates” according to an
ordered basis ¢, ..., ¢, for Y. Given this, we know that for a general z =
bja’ = (z!,...,z") “in coordinates” we have

Az = A(bjz’) = (Ab;)z? = (aj,...,aP)z’ = (ajl-ri,...,a;-"zj) .

Thus A is specified in this choice of coordinates by the mn numbers aj.. It
is convenient to lay these out in the m by n rectangle, or matriz
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1 1

a? al .
. - |5 [a}], [A], or A for short.
m m

a4 an

If we have not already labelled the entries of, say, [B], and want to refer
to its entry in the i-th row and j-th column we shall call it [B]}. Notice

that the columns here are just the vectors A(b;), written in “ci,...,cm

coordinates”. If in a similar way the vector z = (z!,...,2") in “by,...,b,
1
T

coordinates” is written as a column matrix | : [, then the rule for finding
:L.n

Az in coordinates is exactly the rule for “matrix multiplication” (cf. also
Exercise 2). By 2.04, once we have chosen bases every map A has a matrix
A and every matrix defines a map.

~ If we define, in terms of these bases for X and Y, the mn linear maps
L! such that

1
Li(z'b + - +2"b,) = 2'c;

with the matrix for L! being

[0 ... 0 oo 07
0

0 ... 01 0 ... 0|« j-throw
0

0 .. 0 ..o
1

i-th column

we get a basis for L(X;Y) since
A=dL

using the usual addition for maps (2.01; cf. also Exercise 3).

Thus the aj- are just the components of A, considered as a vector in
the mn-dimensional space L(X;Y), with respect to the basis induced by
those chosen for X and Y. Notice that we have proved, for general finite-
dimensional X and Y, that

dim(L(X;Y)) = dimX - dimY .
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The identity on X, regarded as a map from “X with basis 8”7 to “X
with basis 5” must always have the matrix

10 ...0

1 .
(.) = [6;] ,

0 1

whatever g is. All that is involved is the use of the same basis at each “end”
of the identity map. This matrix is therefore called the identity map.

Notice that the matrix representing a map from X to Y depends on
the particular basis chosen for each. If several bases have got involved, it is
sometimes useful to label a matrix representation according to the particular
bases we are using. Thus we write the matrix for A, via bases 3, 8’ for
X, Y respectively, as [a}]g’. Then, if we have the matrix [b:]gjl, similarly
representing B : Y — Z, the representations fit nicely and we have BA
represented by [bja} = [b:]g:l [a;:]g,, with the basis #' “summed over” and
vanishing in the final result like the numbers s or i it is indexed by. If two
different bases for Y are involved in defining the two matrices we can still

algebraically “multiply” them but we cannot expect it to mean very much.
For this and other purposes, we need to be able to change basis.

2.08. Change of Bases. If we have bases 8, #’ for X, changing from 8 to
B’ involves simply looking at the identity map I : X — X as a map from
“X with basis #” (call it (X, 8) for short) to (X, ). This we can represent,

just as in the last section, by [I]g . That is a matrix whose columns are
the vector I(b;), for b; € B, written in #’-coordinates. But as I(b;) = b;,
this just means the coordinates of the vectors in £ in terms of the basis 3.
Multiplying the column matrix [z]?, representing  according to 3, by the

n x n matrix [I]5 p 8ives the column matrix representing  according to 3":
(15 [=)f = (=" .

There is a sneaky point here: most often when changing bases you are
given the new basis vectors, f’, in terms of the old basis 3, rather than the
other way about. Putting these n-tuples of numbers straight in as columns
of a matrix gives you not the matrix [I]g, of the change you want, but the

matrix [I]Z,, for changing back. To get [I]gl you need to find the inverse of
[I]g,, since clearly

(5,105 = 15 = [68] = (115, = (105 (105,

(Fortunately this inversion is one computation we shall not need to do ex-
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plicitly; we shall just denote the inverse of any [a;:], if it has one, by [&f],
“defining the @’s as the solutions of the n equations ala} = &,”. This is
a physicist’s habit, except for the ’s we have put in. In may physics books
and articles you have to remember that “aj when j = 2, i = 3” is not

the same as “af when j = 3 and ¢ = 2”. If you find that peculiar, put
the “’s in yourself.) This need for the inverse is somewhat unexpected when
first met and you should get as clear as you can where it comes from. The
nineteenth century workers were really bogged down in it, in the absence
of the right pictures. The worst pieces of language we are stuck with in
tensor analysis started right there. We discuss this further in II1.1.07 and
VIIL.4.04.

It is important to be conscious that although matrix multiplication gen-
eralises the ordinary kind, each entry @l of [a;:]" depends on the whole ma-
trix [a;] It is not just the multiplicative inverse (a;'-)‘1 (as is emphasised by
Exercise 7). This point does not seem deep when we are discussing only linear
algebra, but in the differential calculus of several variables it has sometimes
caused real confusion (see VI1.4.04(2)).

So, [I]g' changes the representation of a vector. To change that of an
operator, so as to apply it to vectors given in terms of ', just change the
vectors to the old coordinates, operate, and change back:

(A1}, = (17 LA,

or equivalently aj- = biaf 5;-, where bi&,"gz- = 6;

When two matrices are related by an equation of this kind, P = RQR*"
for some invertible matrix R, they are called similar. Thus we have shown
that the matrices representing a map according to different bases are similar.
Conversely, any pair of similar matrices can be obtained as representations

of the same map (Exercise 6), so the two concepts correspond precisely.

2.09. Definition. The kernel ker A of A : X — Y is the subspace { z€eEX l
Az =0 }, of singular vectors of A. Note that by Exercise 1 (an easy but
very important exercise), A is injective if and only if ker A = {0}.

The tmage AX of A is the subspace { yeyY l y = Az for some £ € X }
(cf. Exercise 4)

The nullity n(A) of A is dim(ker A), the dimension of the kernel.

The rank r(A) of A is dim(AX), the dimension of the image.

Geometrically, in the case A : R? — R? : (z,y) — (2(z —y), (z — y)), for
example, see Fig 2.2.

The image and the kernel are as shown, and the rank and the nullity
each 1. This illustrates a general proposition; the number of directions you
squash flat, plus the number of directions you are left pointing in, is the
number of directions you started with. More formally:
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i ! ]AI{},O]=I2,i]-
[O,Ili

: A b

(1,0) e
.@oci

& A(0,)=(2; N
‘{g} z
Fig. 2.2

2.10. Theorem. For any finite-dimensional vector space X and linear map
A: X =Y, we have
n(A)+r(A)=dimX .

Proof. An exercise in shuffling bases, and left as such. (Exercise 5) O
2.11. Corollary. A linear map A : X — Y is non-singular if and only if
r(A) =dimX. O
2.12. Corollary. An operator A : X — X is non-singular if and only if A
s an isomorphism. a

2.13. Corollary. Suppose dimX =dimY, and A: X =Y is linear. Then

A is an isomorphism if and only if it is injective
and
A is an isomorphism if and only if it is surjective.

Exercises 1.2

1. A linear map A : X — Y is non-singular if and only if A is injective
(if Az = Az’ what is A(z — 2')7).

2. If, with bases chosen for X, Y, Z we have maps A : X — Y and
B : Y — Z represented by matrices [a}], [b], then their composite
BA : X — Z is represented by the matrix [b]a{].

3. If, with bases chosen for X and Y the maps A, B from X to Y have
matrices [a}], [b;] respectively, then the matrix f A+ B : X - Y :
z — Az + Bz is [a} + bi].

4. a) The kernel of a linear map X — Y is a subspace (not just a subset)
of X.

b) The image of a linear map X — Y is a subspace of Y.

5. If B ={by,...,b,} is a basis for X, w = {dy,...,d} is a basis for

X'C X and A: X —Y is a linear map, then the following hold.
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a) There is a basis {d;,...,d,} for X including all the vectors in w
(cf. Exercise 1.7);

b) the vectors Ady, ..., Ad, span the image of A;

¢) if y is in the image of A, as the image of both the vectors # and =’
in X (soy = Az = Az'), then &’ = = + z, where z is in the kernel
of A.

d) If ker A = X', deduce from (b) that the vectors Ady41,..., Ad, span
the image of A, and thence and from (c) that they are a basis for it.

e) Deduce Theorem 2.10.

6. a) Deduce from 5(d) that if # = {b1,...,bn} is a basis for X, and A :
X — Y is an isomorphism, then A3 = {Ab,..., Ab,} is a basis
forY.

b) If B is a basis for X and A : X — X is an isomorphism, the change
of basis matrix [I]ﬂAp is exactly the matrix ([A]g)*‘

c) Hence, if matrices P, Q are similar by P = AQA*, and P,Q, A are
the maps X — X defined by P, @, A via the basis 3, then @ represents
P in the basis AS.

. 12 _ 1 3 _[-1 2

7.  Defining A = [1 1}, B = [1 1], c = [1 _1], show that
_Aa_J1 0 _[3 23 _ {13 24
AC_CA_[O 1],AB_[2 1%],3/1_[2 21

3. Operators

Operators (linear maps from a vector space to itself) have a very special role.
Among the definitions involving only this special class of maps are

3.01. Definition. An operator on X which is an isomorphism is called an
automorphism. The set GL(X) of all automorphisms of X form a (Lie)
group, the general linear group of X, under composition (cf. Exercise 1.10).
(Not under addition; I + (—I) = 0, which is not an automorphism.)

3.02. Definition. An operator A : X — X is idempotent if AA = A.
Essentially, this means that A is projecting X onto a subspace, as in the

Fig. 3.1
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figure (where the ~+’s indicate the movement under A of a sample of vectors),
and a vector having arrived in the subspace L is then left alone by further
application of A. Hence we shall often call A a projection onto A(X). An
important class of such operators will concern us in Chapter IV.

3.03. Definition. A vector  # 0 is an eigenvector of A : X — X if Az =
x ) for some scalar A. Then A is an eigenvalue of A, and z is an eigenvector
belonging to A. The set of eigenvectors belonging to A, together with 0, is a
subspace of X (easily checked), the eigenspace belonging to A.

(Eigenvectors are sometimes called characteristic vectors, and corre-
spondingly eigenvalues are called characteristic roots or values. This conveys
the feel of the German “eigen-” but is more cumbersome and less sonorous.
However, ...values are almost always denoted by A, just as unknowns are
by z and beautiful Russian spies by Olga.)

We have already met one example; ker A is the eigenspace belonging
to 0. Another is familiar; a rotation in three dimensions must leave some
direction — the axis of rotation — fixed, and so we have eigenvectors in that
direction belonging to the eigenvalue 1. If A is the identity, then the whole
of X belongs to the eigenvalue 1. Reflection in the line z = y is

A:R*SR?:(2,9)— (y,2)

in this case we have eigenvalues +1.

eigenspace
belonging to-|

eigenspace
belonging to+!

Fig. 3.2

3.04. Definition. For L(X; X) we have not only addition and scalar multi-
plication as for L(X;Y) but a “multiplication” defined by composition. For
any operators A, B their composites AB and BA are again operators on X .
The operator algebra of X is the set L(X;X) with these three operations.
This is an “algebra with identity”: for all A, B,C € L(X;X), a € R we have

A(BC)=(AB)C (associativity of composition)
A(B+C)= AB + AC

(A+ B)C = AC + BC } (distributivity)
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a(AB) = (aA)B = A(aB)
AI = A=1IA (composition has an identity)

as for numbers. Unlike that of numbers, this multiplication is not commu-
tative (AB # BA in general). Either multiply [8 (1)] and [(1) 8] both
ways round, if you are best convinced by algebra, or wave your hands in the
air: If A is “rotation through 90° about a vertical axis”, and B is “rotation
through 90° about a northward axis”, both clockwise, experiments with your
elbow as origin will show that AB # BA.

There are two important functions from L(X; X) to R, one preserving
multiplication and the other addition; the determinant and the trace.

3.05. Determinants. The determinant function may be regarded in sev-
eral ways. Algebraically, one may start with either matrices or linear maps.
We shall give here a geometric account of it, with the matrix proof of its
properties (the least instructive but most direct) indicated in the exercises.
(Manipulations of this kind are unilluminating to see, but essential practice.)
In Exercise V.1.11 it emerges from some rather more sophisticated algebra,
which corresponds more closely to the geometry below and amounts to a
rigorous version of the same ideas.

Consider the map A : R? — R? with matrix [(I; 2] in the standard

basis, and examine its effect in the unit square (Fig. 3.3). The area of the
unit square is 1; the area of the parallelogram to which it is taken may be
found, for instance, by adding and subtracting rectangles and right-angled
triangles. Now any other shape may be approximated by squares. The area
of these squares is evidently changed by A in the same proportion as the
unit square, so taking a high-handed Ancient Greek attitude to limits it is
clear that the area of any figure is multiplied by the same quantity (ad — bc),
which we shall call det A.

Thus “what A does to area” is to multiply it by det A, which quantity
therefore, although given as (ad — bc) in terms of the entries for a matrix
for A, does not depend as those entries do on the particular basis chosen

Area of 1

| gram = /]|~ £
= (%cd+ad+%ab)
- (Yab+cb+kcd)
= ad - bes

Fig. 3.3
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Fig. 3.4

for R2. Conveniently, not only the number det A but the formula for it are

1 g1
independent or the basis. For any bases at all, if [A] = [Z% :g] then
1 6

det A = a}a2 — aja? . (Equation D2)

(This is a manipulative algebraic fact, and as such left to the exercises.) It

1 a1
will often be useful to write the determinant of a matrix 4 = [Z% a%] (or
1

1 1 a;
the determinant of any map A represents) as Zé Z% .
1 @

The alert reader may have noticed that we have sneakily assumed that
“area” is well-defined, which for R? is true, but how about an arbitrary
two dimensional space? In fact, more than one measure of “area” is possi-
ble, but the “multilinear” ones appropriate to a vector space are all scalar
multiplies one of another (Exercise V.1.11), so “what A does to area” is in-
dependent of which measure we pick — they are all multiplied in the same
proportion.

In a similar fashion, if X is 3-dimensional “what A does to volume” is
naturally independent of basis, and is represented by the equally invariant
formula

2 2 2 2 2 2
1]1a a 1]a a3 1|87 a5
detA=ay| 3 3|-az| 3 J|+az| 3 3|,
a; a3 gy a3 6y a3
aj a; a3
where [A] = |a? a3 a2|. Or expanded in detail,
a} o} df

det A = alaZa3—-alaZad—alalad+alalad+alalal—alalal . (Equation D3)

This can be checked by “Euclidean geometry” calculations of the volume of
the parallelepiped to which A takes the unit cube (Fig. 3.5).
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In four dimensions, starting with the obvious definition for “hypervol-
ume” of a “hyperbrick” by multiplying all four edge lengths together, the
same approach leads to a determinant for A. In any basis we have

ajajazay
a}a3ajal
detA=| 33 3 3
a1a3830,
adatadal
aja3aj a}adal ajajal aja3a3
1 1 1 1
= a1 |aja3ad | — a3 | alada} | + a3 |afadad | — g |afadal| |
aja3a} ajaza} ajajal ajaja3

(Equation D4)

And so forth for higher dimensions. If you are ready to believe that det A is
only and exactly “what A does to volume” you can ignore the next section,
as being preparation for proving the obvious. The important thing about
determinants is that they exist and have nice properties, not the algebra
which justifies the properties.

3.06. Formulae. The general way to find the determinant of any operator
A from an n x n matrix representing it should now be clear: go along the
top row taking alternately + and — each entry times the determinant of the
(n — 1) x (n — 1) matrix got from A by leaving out the top row and the
column that the entry is in (Fig. 3.6). (Notice that the number of multiplica-
tions needed altogether is n! which increases rather fast with n; for example
5! = 120, 7! = 5,040. This is why finding the determinant of matrices big-
ger that 4 x 4 occurs as an exercise only in computer textbooks. Reducing
the number of multiplications is an art in itself.) This describes well how to
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compute it, though rather uneconomically, but does not lead straight to a
formula convenient for proving general properties of n x n determinants. To
get such a formula, it is best to back off and approach matters a little more
symmetrically.

Firstly, notice that in any one of the actual multiplies that are involved
(in for instance D3 above) no two of the entries multiplied are in the same
row or the same column. Typically, they appear arranged like the asterisks
in Fig. 3.7 — exactly one entry in each row and column. Moreover, all such
arrangements of n entries do get multiplied up and added, with either a +
or a — sign, to get the determinant. If they all had + signs, we’d be home,
but we must find a systematic way to indicate which multiple has which sign.
Now since each such set of entries, M say, has exactly one member in each
column, we can list M in the order of the columns containing its members:

M = {aT",...,a7"}

say, where m; means “the number of the row in which the element of M in

column ¢ sits”. Clearly, M is completely specified by my,...,m,, or to put
it a little differently, by the function

m:{1,...,n} = {1,...,n}:i—m,; .

Since the elements of M are all in different rows, m is a bijection from the
finite set {1,...,n} to itself — that is, a permutation of the numbers 1,...,n.
(This and its properties could be related to the geometry, at the expense
of greater space. At the moment we want the quickest possible algebraic
back-up for the geometry that will follow this section.) Now (Exercise 1la),
any permutation can be built up by successively switching neighbouring pairs
(1,2,3,4,5 goes to 1,2,4, 3,5 for example), and this can generally be done in
several different ways. Moreover (Exercise 1b), the number of such switches
required in any such building up is for a given permutation either always
even or always odd. This lets us define the sign of m:

B 1= (=1
sgn(m) = { 1= (—I)Odd

even

according as m is an
odd

} combination
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of switches. Finally, it turns out that the sign of m is exactly the sign we want
for our multiple. (Exercise 1c,d) So if we denote the set of all permutations
of 1,...,n by S, (it is in fact a group (cf. Exercise 1.10) — the symmetric
group on 1,...,n) we can at last write down a nice closed formula

det[a}] = Z sgn(m)al*'ay’? ... a7"
meSn

for the determinant of a matrix.

With this we can prove algebraically the important properties of de-
terminants that are geometrically obvious, but harder to prove rigorously
(Exercises 2-5). Returning to the geometrical viewpoint, we can see these
properties directly.

3.07.Lemma. detI =1.

Proof. Either calculate from the matrix [6;:], or observe that I leaves volume,
along with everything else, unchanged. a

3.08. Theorem (The Product Rule). For any two operators A, B on X,
det(AB) = det Adet B .

Proof. det A is what applying A multiplies volumes by.

det B is what applying B multiplies volumes by.

det(AB) is what the operation of (applying B and then applying A)
multiplies volumes by.

End of proof. (Compare Exercise 2.) uj

3.09. Lemma. IfA: X — X and dim X = n, then det(aA) = a" det A.

Proof. det(aA) = det(a(TA)) = det((aI)A) = det(al)det A. Evidently
al, which multiplies the length of each side of the n-cube by a, multiplies its
volume by a™. 0

3.10. Theorem. An operator A on X is an automorphism if and only if
det A £ 0.

Proof. If A is an automorphism, then there exists A~ such that AA— = TI.
Hence
det Adet(A™) =det(AA")=detI =1

and thus 1

dera) 7 0

Conversely, if A is singular, the unit cube is squashed flat by A in
the direction of some singular vector. Thus its image has zero volume, so

det A =
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det A = 0. (This argument is made rigorous, via algebra, in Exercise 4.) Thus
if det A # 0, A is non-singular and hence by 2.12 A is an automorphism. 0O

3.11. Orientation. By 3.10 all automorphisms have non-zero determinant.
Hence they fall naturally into two classes — those with positive and those
with negative determinant. Now if X is 1-dimensional, A : X — X reduces
to multiplication by some scalar a. The determinant det A is just a, and is
positive or negative according as A preserves or reverses direction. In two
dimensions det A is positive according as A merely distorts the unit square
into a parallelogram or turns it over as well. In three dimensions, det A
is positive or negative according to whether A preserves or exchanges left
and right handedness, apart from warping hands. We are led to a general
definition:

) v
I

(o] Av

or negative
(o] v
|a
Av o
Fig. 3.8

or negative

Fig. 3.9
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An automorphism A : X — X is ortentation preserving or reversing ac-
cording as det A is positive or negative. (A precise definition of “orientation”
is given in Exercise XI.3.1)

3.12. Remark. If A : X — Y is a linear map from X to a different space Y,
even with dimX = dimY, then det A is not defined; we could change “what
A does to volume” by altering our measure of volume at one end but not at
the other. However, if we pick ordered bases 3, 8’ for X and Y they define an
isomorphism B : Y — X (cf. proof of 2.06), and hence a quantity det(BA)
since BA : X — X. This is exactly the result of computing the determinant
of the matriz [A]g'. Now since B is an isomorphism, A is an isomorphism
if and only if BA is an automorphism (Az =0 <= BAz = 0, since B is
non-singular: then apply 2.12), that is if and only if det(BA) # 0. Thus the
determinant of any matrix representing A remains a valid test for singularity.

If we have a measure of volume already chosen at each end, with a little

care det A can be reinstated in its full glory as “what A does to volume”
(cf. Exercise V.1.12).

3.13. Characteristic Equation. One of det’s many uses is concerned with
eigenvalues:

A is an eigenvalue of A <= Az = Az for some non-zero =
< Az -z =0 for some non-zero x
< (A- M)z =0 for some non-zero =
< det(A-AI)=0. (by 3.10)

Now for any choice of basis, giving a matrix [aj] for A, det(A — A1) is a
polynomial in A. Its coefficients are various terms built up from the a’’s.
Hence ) is an eigenvalue of A if and only if A is a real root of the n-th
order polynomial equation det(A — AI) = 0, which is therefore called the
characteristic equation of A. (With real vector spaces, complex roots are
-1

R E R? — R?, rotation through 90°, has characteristic

irrelevant. For: [

E

equation

§b,) Ab 4

oY
B
o
(1

Fig. 3.10
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o=aa(( 712 )
73

with no real roots. Clearly from the picture there are no eigenvectors or
corresponding eigenvalues.)

3.14. Trace. The meaning of the trace of an operator is less clear geometri-
cally than that of the determinant. Algebraically, it is very simple defined:
if [4] = ¢},

trace A=trA=al+a2+...+al

=a! in the summation convention.

It is obvious that tr(A + B) = tr A + tr B, and a simple check (Exercise 6)
shows that this formula, like that for determinant, gives the same answer
regardless of the basis in terms of which A is expressed.

Trace can partly be thought of by its role in an important special case,
where it measures how “close to the identity” an operator is. Each diagonal
entry such as a3 is “the 3rd component of the image Ab3 of the basis vec-
tor b3” in by,...,b, coordinates. If A is a rotation, so keeping all vectors
the same length (and while we’re assuming we are in a situation with length
defined we might as well take the basis vectors to be of unit length), this
comes to exactly cosaz where ag is the angle bs has been turned through.
(If we have lengths defined, then we have angles, by ¢? = a% + b? — 2abcosa
for a triangle.) The trace is the sum of these cosines, and thus for a rotation
varies from n = trI = dim X to —n. For the rotation in 3.13, all vectors
turn through 90°, and the trace is 0+ 0= 0.

This description is complicated for general operators by the fact that,
trivially, tr(aA) = a(tr A), so that the “size” of an operator comes into
play; the trace function is the only major one in linear algebra that seems
to be genuinely more algebraic than geometric. Like the determinant, it
can be defined without reference to a basis (cf. V.1.12) but this takes more

ba

COS a3
Fig. 3.11
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theory than the coordinate approach and in this instance is no more intuitive.
(An example in which trace is intimately involved is discussed at length in
Chapter IX.6.) If A is a projection, tr A is just the dimension of its image,
as is obvious by a convenient choice of basis.

Exercises 1.3

1. a) Any permutation m can be produced by successively switching neigh-
bouring pairs. (Hint: get the number m* (1) into 1st place and pro-
ceed inductively.)

b) If tyty ...t is a composite of neighbour-switches ¢;, then

(tltz e t},)'— =ity ... 11 .

Show that if such a composite ends up with everything where it
started, h must be even. (Hint: show that any given switch must
be used an even number of times.) Deduce that if

5189 ... Sk=m=1ily ... 1

then k + h is even and hence (—1)¥ = (~1)*.

¢) Check that the signs in equations D2, D3 and D4 coincide with the
signs obtained by considering permutations.

d) Prove by induction that this holds in general.

2. Let [a}], [b}] be square matrices with determinants det A, det B, re-
spectively.
a) Show that if m € Sy, then sgn(m) = sgn(m~"') and deduce that

—_ 1 2 n
det A = Z G Gy - Gy
meES,

That is, rows and columns may be interchanged without altering the
determinant.

b) Prove that the determinant function on matrices defines a linear func-
tion on the space of possible i-th columns for any fixed choice of the

other columns, for any i = 1,...,n.
c) Consider [a}] as the ordered set of columns (ai,a},...,a}) where for
instance .
a3
i_|%
ay =
a3

For any m € S,,, prove that sgn(m)det A = det(aim,afng, . afn").
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d) Prove that if [c}] = [a},b}] then, from part (b)

det C = det[c]] = ) b71672...b7" det(al,,, al ).

my 1 Bmgr -1 Bm,
meS,

e) Deduce Theorem 3.08: det C' = det A det B.

. a) Deduce from 3.07 and 3.08 that if A is invertible then det A~ =
(det A)~1.

b) Deduce from (a) and 3.08 that for matrices P, @, R with R invertible,
if P = RQR" then det P = det Q. Hence deduce that if P represents
P according to the basis 3, for any other basis 5’ we have det([P]g:) =
det P.

If A: X — X is singular then X has an ordered basis § whose first
member is a singular vector for A. Deduce by considering [A]g that
det A = 0.

. Prove, from the general formula, that for any n x n matrix A = [a}]:
a) det(bA) = b" det A, where bA = [ba}].

b) If B is obtained by multiplying some row or column of A by b, det B =
bdet A.

¢) If B is obtained by adding some multiple of one row (or column) of A
to another row (or column) of A, det B = det A.
(Results (b) and (c) can save a great deal of work in computing large
determinants by hand. But who does, nowadays?)
If b} = ciaf'c';-, where ci&,"é'} = 6;: (so [E;] = [cL]"), then b} = af.
Let #3,...,z; be eigenvectors belonging to eigenvalues Aj,..., A of
an operator A. If z; = 21;2 z;b1, for some bs,...,br € R, then
0 = Ti, @ibi(hi — M), so that @5 = T s @i RS if Xy # Ay,
as ;é 0.
Deduce inductively that if Aq, ..., A are distinct, &1, ..., Z} are inde-
pendent.

For any projection P : X — X, the only choices of y € P(X),
z € ker P such that z = y+ z are y = P(z), 2 = = — y (cf. VIL
Exercise 3.1d).



II. Affine Spaces

“Let the thought of the dharmas as all one bring you

to the So in Itself: thus their origin is forgotten

and nothing is left to make us pit one against another.”
Seng-ts’an

1. Spaces

Our geometrical idea (I.1.01) of a vector space depended on a choice of some
point 0 as origin. However, just as for bases, there may be more than one
plausible choice of origin. Similarly, it may be useful to avoid committing
oneself on the question (a fact discovered by Galileo). For this purpose, and
for the sake of some language useful even when we have an origin, we shall
consider affine spaces.

The basic idea is a return to the school notion of a vector, as going from
one point A to another point B in space. Points are just points, without
direction, but their separations have direction and length. Thus we define:-

AB

—

Fig. 1.1

1.01. Definition. An affine space with vector space T is a non-empty set X
of points and a map
d: XxX-T,

called a difference function, such that for any z,y,z € X:-
Ai) d(z,y) +d(y,2) = d(z,2)
Aii) The restricted map d; : {z} x X — T : (z,y) — d(z,y) is bijective.
Condition A1) says that “going from z to y, then y to 2” is a change
by the same directed distance as going directly to z. It has two important
immediate consequences:
(a) Put y = z = z, then

2d(z,z) = d(z,z) + d(z,z) = d(z, z) .
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y
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Fig. 1.3

So d(z,z) = 0 for all z € X, hence
(b) putting z =z,

d(z,y) +d(y,z) = d(z,z) = 0

so d(z,y) = —d(y,z) for all z,y € X.

Condition Aii) just says that given z € X and ¢ € T, there is a unique
point to be reached by “going the directed distance ¢, starting from z”. We
denote this point by z + ¢: if t = 0, £ + ¢ = z by (b) above. Similarly, if V
is a subset of T' we denote {z+t|t€ V} byz+ V.

1.02. Tangent spaces. We can use the bijection d. given by Aii) to define
a vector space structure for {} x X from that of T', by

(z,9) + (z,2) = d (d,(z,y) + dy(z, z))
(z,y)a = d ((d(z,y))a)

(cf. Exercise 1). The set {«} x X with this structure will be called the tangent
space to X at z, and denoted by T, X.

For a one-dimensional T' we have a picture, but two dimensions of T
require four for the analogous diagram. If v € T, X we denote z +d,(v) also
by z + v.

The vectors in T, X are called tangent or bound vectors at z; the vectors
in T are called free. The reason for the word “tangent” will become appar-
ent when we start bending pieces of affine spaces around and sticking them
together to make manifolds. (Even if an affine space X has a vector space
with some other symbol, S say, we shall still call {} x X with this vector
space structure 7 X, to keep the association with “tangent”.) We call d; a
freeing map, its inverse a binding map.
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projection l

Fig. 1.4

1.03. Subspaces. The requirements for a subspace of a vector space X were
essentially that it should be again a vector space (I.1.03). Since we already
knew that  + y and y + z, etc., were equal, it was only needful to require
that within the subspace they should still be well defined.

In the same way, X’ C X is an affine subspace or flat of X if

i) d(X' x X') is a vector subspace of the vector space T for X, and

i) X' is an affine space, with vector space d(X’ x X') and difference
function

d: X'x X' -d(X' xX"):(2,y) — d(z,y) .

If d(X’ x X') is a hyperplane of T, then X' is an affine hyperplane of
X. Evidently if V is a vector subspace of T and ¢ € X, then z 4+ V is an
affine subspace of X.

Notice that any vector space X has a natural affine structure, with vector
space X itself and the difference function

XxX->X:(z,y—y—=.

Hence we may talk of an affine subspace, or hyperplane, of a vector space X,
which need not be a vector subspace of X (cf. 1.06 below).

The affine subspace generated by a set S, or affine hull H(S) of S (com-
pare 1.1.04), is the smallest affine subspace containing S. (It is easy to show
that the intersection of any set of subspaces is again a subspace, so

ﬂ{ X' | X' an affine subspace of X }

is a subspace. Evidently it contains S and it is contained in every other such;
so it is the smallest, (cf. Exercise 1.1.3a).) Pairs of points generate lines, non-
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collinear triples generate planes, etc. We could define “affine independence”
analogously to Definition 1.1.07 (for instance three points in a straight line
are dependent) together with “affine rank” etc.: we shall not develop this
beyond a consistency check in Exercise 2.3.

1.04. Definition. The translate X' + t of an affine subspace X' of X by a
vector t € T is defined as the affine subspace { z+t | z € X'} (cf. Exercise 2b,
and Definition 3.03).

Two affine subspaces X', X" of X are parallel if d(X' x X') =
d(X" x X").
1.05. Lemma. Two affine subspaces X', X" of X are parallel if and only if
X" =X'+1 for some t € T (not necessarily unique).

Proof.
1) If X', X" are parallel, choose ' € X', " € X" and set t = d(z',z").
Then
y' € X" d(x”,y”) € d(X" % X//)
= d(z",y") e d(X' x X')
<= d(z',y") = d(z',z") + d(z",y") by A1)
=s+t, wherese€d(X'xX')
= yeX +t (cf. Exercise 2b)
Hence X" = X' + t.
2) If X" = X'+t,and z”,9" € X" then

d(",y") = d(d5 (8), di5 (1)
for some z’,y’ € X’ (definition of X’ + t)
=d(d; (t),d; (t - d(z, ¥))) (cf. Exercise 2d)
=t (t-d(z',y))
=d(z',y')

Fig. 1.5
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ed(X'x X').
Hence,
d(X" x X") Cd(X' x X')
Similarly
d(X'x X'y Cd(X" x X") .
Hence,

d(X' x X') = d(X" x X"). O

1.06. Lemma. For X a veclor space, X' C X is an affine subspace of X if
and only if X' is a translate of some vector subspace of X.
Proof. If X' is an affine subspace of X, set X" = {z —y | z,y€ X'} =
d(X’' x X").

Then X" is a vector subspace of X by definition (1.03), and

dX" x X"y=X" since 0 € X"
=d(X' x X')

and X' is a translate of X” by Lemma 1.05.
If X’ is a translate of a vector subspace then it is an affine subspace by
Exercise 2c. g

1.07. Definition. The dimension, dim X, of an affine space X is the dimen-
sion of its space of free vectors (cf. also Exercise 2.3).

1.08. Coordinates. If we choose an ordered basis for T', we have an iso-
morphism A4 : T' — R", by 1.2.06. If we then “choose as origin” some point
a € X, the composite bijection

Co: X = T,X 257 AR

z — (a,z)  d(a,z)

defines a “choice of coordinates” for X, or chart on X. (A chart of an
ocean assigns, as labels to points of the ocean, pairs of numbers — 23° N,
15° W etc. — and thus is essentially a function: Ocean — R2. Unlike charting
a plane, however, we cannot choose coordinates nicely all over the Earth;
longitude, for instance, is not defined at the poles. This leads us to the
notion of local chart that we use for manifolds.) Notice that we are not using
Ca to make X a vector space, in contrast to the way we make T = {a} x X
a vector space by d,; we are just using it for labelling points. In the same
way one does not add the coordinates of Greenwich to those of Montreal and
get anything of any significance. Fixing an origin for X and a basis for T,
we label points £ € X by their images in R™; this is illustrated in Fig. 1.6 for
two such choices for the plane (if you don’t bend it) of this page.

The basis 8 = (by,...,b,) for T defines a basis (d;(b1), ...,ds (b,)) for
each T; X. We denote this basis by S, and its members also by Bz, ..., Bnz.
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Fig. 1.6

If we have two different choices of origin and basis, a,3 and d’, §’ say,
to change from the first system of coordinates to the second we must apply

R* - R":(z!,...,2") — [I]gl t | + A(d(d',a))

where A is the map T' — R" given by the basis #’. In the formula for
individual coordinates, this becomes

2 = b;z’ + a

where bj— is the i-th coordinate in the 8’ system of the j-th vector in 3, and
a* is the i-th coordinate of the vector d(a’,a) from a’ to a in the #’ system.
We shall not often need this particular operation.

Exercises I1.1

1. If T has the vector space structure defined in 1.02, thend, : T, X — T
is an isomorphism.

2. a) Find a subset S C R such that any vector v € R (treating R as a
real vector space) occurs as u — w for some v and w € S, so that S
satisfies 1.03i but S is not a flat of R.

Show that if X’ C X satisfies 1.03i, and also X’ = z+d; (X'x X')
for some z € X', X’ is a flat of X.
b) Foranyz € X', X' +t={(z+t)+s|sed(X' xX')}.
¢) Prove that X’ + ¢ is an affine subspace of X.
d) Prove that if z,2’ € X, t € T, thenz' +t = z + t + d(z,2') =
z+t—d(z,z).
e) Prove that if ¢),8, € T, (z + ;) + t; = 2+ (11 + ¢2).
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2. Combinations of Points

We cannot add two points z, y in an affine space X, any more than we can
add the positions of London and Glasgow. But we can talk about the point
“midway between them”: namely, the point z + %d(z, y) reached from z by
going halfway to y (translating by half the difference vector). But z+1d(z,y)
is a rather asymmetrical name for a symmetrical notion; so is y + %d(y, z),
which ought to be the same point. Indeed,

y=z+d(z,y),
so ¥+ 3d(y,z) = z + d(z,y) + 3(~d(z,y)), by Ai) in 1.01, hence
y= %d(y, r)=z+ -;-d(:c,y) .
So we give it the symmetrical name
3T+

without asserting that %x, %y, or + here mean anything: we are just abbre-
viating £ + -%d(m, y) and y+ £d(y, ) symmetrically. (But when they do have
separate meanings, because X is a vector space, no ambiguity arises. Giving
X its natural affine structure (1.03),

z+3dz,y)=z+3(y-z)=tz+1iy

anyway.)

Of course, -21:1: + %y lies on the line through z and y. So in fact does any
point z + Ad(z,y): this is a special case of Exercise 2b, which we need not
prove yet. Again, z + Ad(z,y) is asymmetrical in starting from z, and we
have

y+(1=2A)d(y,z) = z+d(z,y) - (1 — A)d(z,y) = =+ Ad(z,y)
and we would prefer a symmetric notation.
2.01. Definition. The affine combination
pr+ Ay, where p+ A =1
of z,y € X is the point defined equivalently by
z + Ad(z,y) or y+ pd(y,z) .

(Notice that uz + Ay is not defined if u+ A # 1.)

We shall further abbreviate pz + (—A)y to pz — Ay, as in Fig. 2.1. Notice
that pz + Ay is between z and y exactly when A, u are both positive.
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Fig. 2.2

What about repeating this ¢ combination process? For example, what
is “the point midway between z and 3 3% + y”'? Very conveniently,

3Gz +3y)+ 32
coincides with

12 +3Gyv+32)
and with

1v+3G3z+32)

(Fig. 2.2, Exercise 1a). We can unambiguously call it
i,

multiplying out the brackets. In general, for A1,..., 4 € R we can take a
“repeated combination” of z1,...,2z5 € X

Az +(1- )\1)( 1:2+ (1_ a 221\1))(1_)?\13_ ,\21'3

+(1_ 1-;13— ,\2)(1—)\1 3‘32_,\3”4"' (1“ -\ i4A2_A3)zs)))

which multiplies out to

Mz 4 A2z + A3z3 + Agzq + (1= Ay — A2 — Az — Ag)zs .
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2.02. Definition. Given z;,...,2x € X, and Aq,...,Ar € R such that
Zle Ai = 1, the affine combination

Mz + o+ Anzy

is defined in terms of 2.01 as

A n—1
/\1$1+(1—A1)(1_2/\1272+("'+(1_ 1—/\1—"'—An-2)z">.“>

(where, by Exercise 1b, the order in which we take the terms A;z; does not
affect the point defined.)

The requirement that Zle A; = 1 imposes a little extra care in manip-
ulation. For instance, the statements

r=y+w-—z, %z+%y=lw+-21z,

are meaningful, since they have names of points on each side. But the super-
ficially equivalent

T-w=y-—2z %z—%w:%z——%y
z+z=y+w ct+y=w+z

equate expressions we have not defined. (we could define them, but expres-
sions like z—y would have to refer to “points at infinity” — can you see why? -
and would take us into projective, not affine, geometry).

This gives us an “internal” expression (Exercise 2a) for the affine
hull (1.03) of S C X, as the set of affine combinations of points in S. This

1s precisely analogous to the two descriptions of linear hulls in 1.1.04 and
Exercise 1.1.3b. We can also define the convez hull C(S) (Fig. 2.3) as

k
{Mzi++ Mz |2 €5 M>0,i€{l,.. .k}, keN, Y N=1}.
i=1
Also, convez sets are those S with C(S) = S. Now, (Exercise 2b) a flat
has H(S) = S and since S C C(S) C H(S), a flat is always convex. Convex

P
CoN
y Cipa} ~ S
q

Fig. 2.3
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sets are of great practical importance, for instance in linear programming
and control theory. We shall not develop it here: but note that intervals in
R are convex.

Exercises I1.2

1. a) Prove from Definition 2.01 that

Mpz+(1-p)y) +(1-N)z

=Apz+(1-Ap) (1\1(—1:__7::—)y+ (1—--(1-—”2) z) .

b) For any permutation
m:{l,...,k} = {l,...,k}:i—>m; (cf. 1.3.06),

with A\y,..., At ERst. Ay +---+ Ay =1,and z1,...,zx € X, then

Az +(1 —Al)(lizl\lzz‘*'""f‘ (1" 1- N :\k._.%__,\,c_z)z") )

Am
=Am Zm, +(1 —z\ml)(1 _,\’ Ty + -
my

A 1
+(1- P Jom) )

M2

2. a) Prove that the affine hull H(S) of S C X (1.03) consists exactly of
the set

{A1$1+"'+Ak.’ﬂk |a:1€S, 1€{1,,k}, kEN} .

b) Prove that S is an affine subspace of X if and only if H(S) = S.
(cf. Exercise 1.3c)

3. Suppose that S = {z1,...,zx}, contained in an affine space X, does
not satisfy an equation

i = T+ F A1 Ticr A1 Zigr o+ Ak
for any ¢. Then using Definition 1.07
dmH(S)=k-1,

and H(S) = X if and only if ¥ = dim X + 1.
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3. Maps

One attraction of affine combinations is that they are “intrinsic to the space”:
one could argue that the idea of the midpoint of z and y is more basic than
“z plus % the difference vector from z to y”, which was our definition. It is
certainly several thousand years older, and one can pinpoint the introduction
of the more general pz + Ay to Eudoxus’s theory of proportions. We had the
machinery of Chapter I to hand, however, so Definition 1.01 was technically
more convenient.

The structure-minded reader will find it a fruitful exercise to define an

affine space as a set X with a map
A: X xXxR—-X

to be thought of as
(2,90 = (1= Nz + Ay

satisfying appropriate axioms, and construct the corresponding T and d.
Notice (Fig. 3.1) that by Exercise 1, starting with Definitions 1.01, 2.01
d(z,y)=d(z',y) < te+3/ =32"+3y.

So starting from affine combinations, we could define
(@,9)~ @@, Y) &= tz+iy =1+ 1y,

and prove from the chosen axioms that ~ is an equivalence relation. Then T'
as the set of equivalence classes

[z ={(E¥)| @y~ Y)}

and d as the map
XxX->T:(z,y)~ [(z,y)]

should have the structures of vector space (I.1.01) and difference map (1.01)
if good axioms for A have been picked.

[

S h
N f\\\\\*;
. -
N/ —

\é/ o
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We leave this programme to the reader, but it motivates our next def-
inition. With any kind of “set with structure” we are interested in maps
from set to set that “respect the structure”. With vector spaces it was linear
maps; now, it is those that preserve affine combinations.

3.01. Definition. A map A : (X,T) — (Y,S) between affine spaces (or
P — @ between convex sets in X, Y) is affine if for any z,z' € X, A € R
(or z,z' € P, 0< A <1) it satisfies

A(1 =Nz +A2') = (1 - N)Az + Mz .

(We shall only want the convex sets case in Chapter IX, with P and Q
as intervals in R: cf. Exercise 9.)

From the way we built up the meaning of multiple combinations in §2,
it is clear that this implies

A1z + -+ Apze) = M Az + -+ M Ay

and (applying Exercise 2.2a) that
A(H(S)) = H((A(S)) -

Thus A preserves affine combinations and affine hulls: in particular, using
Exercise 2.3b, A : X — Y carries flats to flats (such as lines to lines, or lines
to points — why to nothing else?). Note that the map taking all of X to the
same y € Y is a perfectly good affine map, just as the zero map between
vector spaces is linear. Affine maps may squash flat, but never bend.

3.02. Definition. An affine map A : X — Y takes all pairs of points in X
separated by a given free vector ¢ € T to pairs of points in Y all separated
by the same vector in S, which we may call At. (This is just a rephrasing of
Exercise 2.) Exercise 3 checks that A is a map T — S and is linear, so we
may call it the linear part of A. Clearly for any z, € X,

A(z) = A(zo + d(z0,z)) = Az + A(d(z0, z)) , Vz € X,

so if we know the linear part of A and the image of any point in X, we know
A completely. A linear map, indeed, #s its own linear part (Exercise 8).

3.03. Definition. An affine map A : X — Y is an affine isomorphism if
there is an affine map B : Y — X such that AB, BA are identity maps. An
affine isomorphism X — X is an affine automorphism.

A translation of X is a map of the form z — x4 ¢, for some free vector ¢.
(One can add and scalar multiply translations just like their corresponding
free vectors, and this gives yet another approach to defining an affine space.)
Evidently every translation is an affine automorphism, and the translate of
a subspace (Definition 1.04) is its image under a translation.
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3.04. Definition. The image AX of an affine map A : X — Y is its set-
theoretic image { Az | z € X }. Since X is (trivially) an affine subspace of
itself, AX is a flat of Y.

The rank r(A) of A is dim(AX) < dim(Y). (Definition 1.07)

The nullity n(A) of A is the nullity of the linear part of A.

3.05. Components. Applying the equation after Definition 3.02, it is clear
that fixing origins Ox, Oy for X and Y, and bases for T, S, we can write A

z! al
A(z!,...,z") = 4] [ : } + [ : } .
xn aﬂ

Here [A;] is the matrix for A given by the choosen coordinates and (a!,...,
a™) are the coordinates of A(Ox) in the chart used on Y. In individual
components,

(Az)' = A;r’ +d

where X is n-dimensional and Y is m-dimensional.

Exercises II.3

1. a) Prove that = + %d(z,y) =z + %d(z' ,y) if and only if d(z,y) =
d(z',y'). (Hint: let d(z’,y’) = d(z,y) + ¢, and observe d(z,y) =
d(z,y) + d(y, ') + d(z',v/').)

b) Deduce that d(z,y) = d(z’,y/) if and only if 1z + 1y = 12/ + 1y,

2. Deduce from Exercise 1b that if A : (X,T) — (Y, S) always satisfies
A(3z+312') = L Az+ 1 Az’ (in particular, if A is affine), then d(z,y) =
d(z',y') = d(Az, Ay) = d(A', AY').

3. IfA:(X,T)—(Y,s) is affine then:

a) A= {(t,s) |3z € X st.d(Az,A(z +t)) = s} is a mapping S — T..
(So A satisfies Axioms Fi, Fii on p. . Use Exercise 2 for Fii.)

b) A(t; +t2) = Aty + Aty (choose ¢ € X and consider = + 2¢;, = + 2,
and the point midway between them.)

c) A(At) = AAt (consider A(z + At)).

4. IfA:X —Y is affine then:

a) For any flat Y’ of Y, A~ (Y’) is a flat of X: in particular, for any
y €Y, A= ({y}) is a (perhaps empty) flat of X.

b) For any y,y' € AX CY, dim(A*{y}) = dim(A~{y'}) = n(A4).

¢) n(A)+r(4) =dimX.

5.a) f YY" C AX are parallel subspaces of Y then A=Y’ and A~Y"
are parallel subspaces of X.
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b) Deduce that if y,y’ € AX then A={y} and A={y'} are parallel flats

of X.

An affine map is an affine isomorphism if and only if its linear part is
an isomorphism, and hence if and only if it is a bijection.

Affine maps A,A’ : X — Y have the same linear part if and only if
A’ =To A, where T is a translation Y — Y.

Let X, Y be vector spaces, alias X , Y when considered in the natural
way as affine spaces (with free spaces X, Y). Show that a map M :
X — Y is linear if and only if M (Ox) = Oy and, considered as
M : X —Y,it is affine. Deduce that M then c01nc1des with its linear
part M as a map between sets.

a) Any affine map A between convex sets P C X, Q C Y is the restriction

of an affine map A : X — Y, and A is uniquely fixed by A if and only
if H(P) =

b) If P, @ are intervals in R, and R has its natural affine structure with

vector space R, then for any affine map A : P — @ there are unique
numbers a;,a; € R such that

A(p) = a1p+ay for all p € P.



III. Dual Spaces

“A duality of what is discriminated takes place in
spite of the fact that object and subject cannot be defined.”
Lankavatara Sutra

1. Contours, Co- and Contravariance, Dual Basis

1.01. Notation. Throughout this chapter X and Y will denote finite-dimen-
sional real vector spaces, and n and m their respective dimensions.

1.02. Linear Functionals. Just as the linear maps from X to itself have a
special role and a special name, so do those from X to the field of scalars, R.
They are called linear functionals on X, or dual or covariant vectors. (The
term “covariant” is to distinguish them from the vectors in X, which are
called contravariant. This is related to the “backwardness” of the formula for
changing basis discussed in 1.2.08; we shall look at it in more detail in 1.07.)
The space L(X;R) of linear functionals on X forms a vector space (as does
any L(X;Y); cf. 1.2.01) which will generally be denoted by X* and called
the dual space of X.

Geometrically, a linear functional may best be thought of by its “con-
tours”. The geographical function “H = height above sea-level” is very
effectively specified on a surface by drawing lines of constant height — that
is, by drawing the sets H~(h) for various values of h. (Fig 1.1). Similarly,
a non-zero linear functional £ on an n-dimensional space will have contours
that are lines for n = 2, planes for n = 3, (Fig 1.2) and parallel affine hyper-
planes in general. (They will be parallel by Exercise I1.2.3, and hyperplanes
since f #0=> fX =R = r(f) = 1= n(f) = dim(X)— 1 by Exercise I1.4d.

1.03. Dual Maps. From a linear map A : X — Y, we do not get naturally
any map X* — Y™*; a function A defined on X cannot be expected to change
a function f € X™* also defined on X to one defined on Y. However, we have
a natural way to get a map the other way:

AV Y- X*":f—foA,

we call A* the dual map to A.

(This kind of reversal of direction is also called “contravariant”, a habit
that arose in a different part of mathematics entirely and conflicts with the
usage for vectors, turning it from an oddity to a nuisance. However, both are
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Fig. 1.2

too well entrenched to shift, so we shall be physicists and simply avoid this

other usage for the word. But if you read mathematicians’ books you must
beware of it.)

1.04. Lemma. dim(X*)=dimX.

Proof. Choose a basis 3 = by,...,b, for X. Using the coordinates this gives
us (1.2.07) we can define n functionals

b:X->R:(d,...,a")~d, fori=1,...,n.

Any functional f, using § and the standard basis {e;} for R = R!, must
have a matrix [f], say. It follows that
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(Fl=[ff - fa]
= fH10 ... 0]+ £2[010 ... 0]+ ...+ £1[00 ... 01]
= f}[b]
= [f;lbi]~
Now, f = f!b' in a unique (why?) way, so g* = {b!,...,b"} is a basis
for X*, giving f coordinates (f1,...,fl) = (f1,...,fa) for short, and so

dimX* = n = dimX. (This is in fact, just a special case of the general
result (1.2.07) that dim(L(X;Y)) = dim X -dimY’, since X* is just L(X;R)

and dimR = 1)) 0
1.05. Remark. It is tempting to identify X* with X, since using the basis
bl,...,b" constructed in the proof of 1.04 we can set

B:B—pB b b, fori=1,...,n

and by 1.2.05, 1.2.06 this determines an isomorphism B : X — X*. However,
this has great disadvantages, because the isomorphism depends very much
on the choice of basis. Moreover, dual maps become confusing to talk about,
because if X* “is” just X, and Y* “is” just Y, by virtue of isomorphisms B,
B’ defined in this way, A* goes from Y to X; you identify A* with B~ A*B’.

X+ Ay

BI Ta'

X —Y
A

But if we choose a new basis -%,B = %bl, eer, -%b,, for X, (and leave (' alone)
we get a new basis for X*, whose i-th member is a functional taking %b,-,
instead of b;, to 1. It thus takes b; to 2 so the new basis (38)* is 2b*, ..., 2b",
and the new isomorphism B” : X — X* defined by %b.- —2b i=1,...,n,
is equal to 4B. Therefore

(Bll)o—AtBI = %Bo—A‘BI ,

not at all the map just identified with A*  though constructed in the same
way. Moreover, identification of X* with X is a particularly bad habit if
carried over to infinite dimensions, where there may be no isomorphism, not
just no natural one.

1.06. Dual Basis. Although the dual basis 3* = b',...,b" constructed for
X* in 1.04 should not be used to identify X* with X, it can be used very
effectively to simplify the algebra. Given a vector 2 € X and a functional
f € X*, with coordinates (z!,...,z") and (fi,..., fs) according to 8 and
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B*, we have
f(=) = (Fib')(bjz’)
= /i (B (b))
= fiz! §;
= fiz'
— a nice simple formula. So when we have a basis § chosen for X we usually
choose the dual basis #* for X*. Notice that the dual basis £* = e!,...,e"

to the standard basis £ for R (cf. 1.1.10) consists simply of the coordinate
functions:-

e€:R"-R:(z,...,2") 2
Now, if we have bases 8 = by,...,b, for X, 8’ = b{,...,b}, for Y, giving
an m X n matrix A = [A]g for A: X — Y, what is the matrix [A"‘]g,.?
If f=(f1,.-.,fm) in “dual coordinates” on Y*, then
A*f = A*(f;bY) .
Hence,

(A*£)b; = (A" (f;67))bs

= f;b" (Ab;) (definition)
= f;b(a},...,al) since b; = (0,...,1,...,0)
T
i-th place
= fidl (definition of b;),

for any b; € 8. Therefore in dual coordinates on X*, A* f is (a’i fise- dd fi)
This is exactly the result of applying the n x n matrix A*, the transpose of A,
obtained by switching rows and columns in A:-

rai o T
a .. D d

ai d

becomes .

. am

am .

L .
In formulae,

[A7] = [A]'

(A7)} = (A .

Thus the use of dual bases nicely simplifies the finding of dual maps.
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1.07. Change of Basis. Since it is useful to have the basis of X* dual to
that of X, when we change the basis of X from # to 8’ we want to change
that of X* from f* to (f’)*. Suppose then that as usual we are given the
new basic vectors (b)) = (b}b;) = (bl,...,b7) in terms of the old basis. To

change the representation of a vector z with old coordinates (z!,...,z"), we
have to work out
z! z! bl b1 a2t
mg |+ | =) A
z" A B I S z"

The i-th column of the matrix to be inverted is just the old coordinates of b;
(cf. 1.2.08). If we have f € X* represented by (f1,..., fa) in the coordinates
dual to the old basis, what are its new coordinates? To get them we want

the matrix [I x.]gl.', = C* for short. Evidently Ix. = (Ix)*, so by 1.06 the
matrix C* is exactly the transpose of the matrix [I x]g,, uninverted.
I »
(X*,ﬂ*)(—i)* (X*,B/*)
(X, 8) —(X,8")

Ix

So to find the new coordinates of f, just work out

B 8 [f

O S A

where the rows of the matrix are given by the old coordinates of the b;’s.
This is what is meant by the statement that dual vectors “transform
covariantly”, since

fl=Hf;  compared with b =bib;

1 $

shows that the dual vectors “co-vary” with the basis in transformation of their
components. Contrariwise, we need the inverse matrix for the transformation
of ordinary or “contravariant” vectors:

(') = l;;:r] ,  where ~;Iri =6,
as shown in 1.2.08.
1.08. Notation. Consistently with what we have used so far, and with phys-

ical practice, lower indices for the components relative to a basis of a single
object, such as in
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a=(a,...,a,), a®=(d...,dd)

will indicate covariance, and upper indices such as in
— (p! 1
b=(,...,0"), ;.k_(bj,,, ,Jk)

will refer to contravariance. (These examples emphasise that there may be
more indices around, when the vector is one of a family labelled by these
further indices — as with the b;’s in a basis.)

Thus in general a;b* will refer to the value a(b) of a applies to b (or
b(a), via the identifications in the next section). The reader will notice that
the numbering by, ...,b, or b*,..., b of the vectors in a basis (which are not
the components of an object) is done with indices the other way up. This
is peculiar, but standard. It permits us to use the summation convention
not only to represent a(b) but — as we used it in Chapter I - for linear
combinations, like

(al,...,a")za"b,- .

Since we shall normally suppress reference to the basis that we are using and
work with n-tuples (or, for instance, m X n x p x ¢ arrays) of numbers defined
by the use of it, this should not cause too much confusion.

(Warning: it #s in fact possible to regard the n vectors in a basis as the
components of something called an n-frame. At that point the summation
convention becomes more trouble that it’s worth. We shall simply dodge this
problem by only using “frame” in the traditional physicists’ sense as short
for “frame of reference”. That is a particular choice of basis or coordinate
system, two notions which we sometimes wish to separate (cf. I1.1.08), neither
of which is an object with variance at all.)

1.09. Double Duals. Though there is no natural map X — X* (“natural”
meaning “independent of arbitrary choices”; this intuitive idea can be re-
placed by the beautiful and useful formalisation that is category theory, but
we shall skip the formalities here) there is a very nice map

0: X - (X*)':z-[fr f(2). (cf. Exercise 1).
Now for any basis 8 = by, ..., b, for X with dual basis 3* = bl,...,b" for X*

and the basis (8*)* = (b!)*,..., (b")* dual to that for (X*)*, the isomorphism
X — (X*)* defined on bases by b; — (b*)* is exactly the map 4. For,

) (£) = () (f1,-- -, fn)
=fi
= (fib' + -+ fab")(b;) ,  since bi(b;) = 6]
= f(b)
= (0(5:))(f) -
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Thus, 6 is an isomorphism, and so thoroughly “natural” that we can use it
to identify (X*)* with X, and (b;)* with b;, without ever creating difficulties
for ourselves. We shall simply regard X and X* as each other’s duals, and
forget about (X*)*; in fact this is why the word “dual” is used here at all.
The practical-minded among us may find comfort in this identification. For,
we started with abstract elements in X but dual vectors had a role, they
attacked vectors by definition; now we have a role for vectors, they attack
dual vectors!

CAUTION: The above argument rested firmly on the finite-dimensiona-
lity of X. We can always define 8, and it will always be injective, but without
finite bases around it is not always surjective. This is sometimes not realised
in physics texts, particularly earlier ones such as [Dirac].

Exercises II1.1
1. a) Prove that for any # € X there is a linear map
‘z' X' >R f f(2).
b) Prove that the map
0: X - (X*):xz—"z*,

which by a) takes values in the right space (X*)* and is thus well
defined, is linear.

2. Prove, by considering matrices for the operators A and A* in any
basis and its dual and applying Exercise 1.3.2a) that det A* = det A.
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“He who is wise sees near and far
As the same,

Does not despise the small

Or value the great:

Where all standards differ

How can you compare?”
Chuang Tzu

1. Metrics

So far, we have worked with all non-zero vectors on an equal footing, uncon-
cerned with the idea of their length except in illustration (as in 1.3.14), or of
angles between them. All the ideas we have considered have been indepen-
dent of these concepts, and for instance either of the bases in Fig 1.1 can be
regarded as an equally good basis for the plane. Now, the notions of length
and angle are among the most fruitful in geometry, and we need to use them
in our theory of vector spaces. But this means adding a “length structure”
to each vector space, and since it turns out that many are possible we must
choose one — and define what we mean by one.

To motivate this, let us look at R? with all its usual Euclidean geometry
of lengths and angles, and consider two of its non-zero vectors v and w, in
coordinates (v!,v?) and (w!, w?). By Pythagoras’s Theorem, the lengths |v|,
|w| of v, w are \/(v1)? + (v2)?, \/(w')? + (w?)? respectively. The angle

may be found by the cosine formula for a triangle:

u? = v} + |w|? - 2jv||w|cosa .

Applying Pythagoras, this gives
(@' —w')? + (v —w?)? = ((v1)? + (v?)?) + ((w')? + (w?)?) - 2Jv| lw|cos @ .
Multiplying out and cancelling, we get

—2v'w! - 2?w? = ~2Jv| |w|cos o .
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(vIv8)

(w'wd)

(1,0

Fig. 1.2

So,
v ! 4 v?w? = |v||w|cosa .

The left hand side of this involves coordinates, but the right hand side in-
volves only Euclidean, coordinate-free, ideas of length and angle. Denoting
|v] - |w| cos @ for short by v - w, we can get both lengths and angles from it
directly:

|v|=(v-v)§ @ = cos™ o
| ol
It has nice neat properties; v - w = w - v, and “w goes to v - w” is a linear
functional for any v (Exercise 1). In coordinates it has a very simple formula

v-w=viw +vw?.

This depended for its proof only on the z! and z? axes being at right angles
(so that we could apply Pythagoras) and the scales of them being right (the
basis vectors (1,0) and (0,1) being actually of length 1). Also we can use
it, itself, to define these conditions. For two non-zero vectors v, w with an
angle a between them have

v w=0 < |v||lw|cosa=0
<= cosa=0, since |v| # 0 # |w|

—~ il
a==
2

and a basis vector b is of length 1 exactly when b-b = 1. So the argument
establishing the formula works for any basis b;, by for R? provided that
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b.--bjzé,-,- .

In any such basis, v - w will have the formula vw! + v?w?. So this “dot
product” carries complete information about lengths and angles, and defines
neatly in what bases it has a simple formula. It looks, then, like a good
candidate for a “length structure”: all that remains is to formalise it. So,
on to the definition — generalising while we’re at it, because we shall want
a different sort of “length” for vectors in a “timelike direction” than for
“spacelike” ones, when we come to spaces that model physical measurements
(cf. 1.04). Moreover we shall find such generalised structure on, for example,
the space of 2 x 2 matrices (cf. IX.§6).

1.01. Definition. A bilinear form on a vector space X is a function

F:XxX—-R
which is “linear in each variable separately”. That is to say it satisfies
Bi) F(z+2',y) = F(z,y) + F(z',y)
F(z,y+y')=F(z,y)+ F(=z,y)
Bii) F(za,y) = aF(z,y) = F(z,ya).
The geometrical significance of a bilinear form depends on what further prop-
erties it has (the “dot product” discussed above is a bilinear form, but so is
(v,w) — 0, for instance. We need more conditions on a “length structure”
than just bilinearity). A bilinear form in X is
(i) symmetric if F(z,y) = F(y,z) forall z,y € X.

(ii) anti-symmetric (or skew-symmetric) if F(z,y) = —~F(y, =) for all
z,y€E X.

(iii) non-degenerate if “F(z,y) = 0 for all y € X” implies =z = 0.
(iv) positive definite if F(z,z) > 0 for all 2 # 0.

(v) negative definite if F(z,z) < 0 for all z # 0.

(vi) indefinite if not either positive or negative definite.

The most significant types of bilinear forms are among the non-degenerate
ones. Specifically:

(vii) A metric tensor on X is a symmetric non-degenerate bilinear form.
We will often follow physicists’ practice in shortening this to just
“metric”, despite a certain risk (V1.1.02) of confusion.

(viii)) An inner product on X is a positive or negative definite metric
tensor (cf. Exercise 3). We shall always take it to be positive unless
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otherwise indicated: there is no essential difference since a change
of sign changes one to the other, without altering the geometry.

(ix) A symplectic structure on X is a skew-symmetric non-degenerate
bilinear form.

(We shall not be concerned with symplectic forms here, but they play a
central role in classical mechanics. See for instance [Abraham and Marsden],
[Maclane (1)], or for a brief exposition [Maclane (2)].)

We denote the space of all linear forms on X by L%(X;R) or (L(X, X;R)
(cf. Exercise 4).

If S is a subspace of X, then F is symmetric/anti-symmetric/.../
symplectic on S according as the restriction

SxS—R:(z,y)— F(z,y)

is symmetric/anti-symmetric/. .. /symplectic (cf. Exercise 5).
It will often save writing to call a subspace on which a metric tensor is
non-degenerate a non-degenerate subspace of X.

1.02. Definition. A metric vector space (X, G) is a vector space X with a
metric tensor G : X X X — R. In particular:

An inner product space (X, G) is a vector space X with an inner product
G: XxX—-R

For a given metric vector space (X, G) we shall often abbreviate G(z,y)
to z - y and (X, G) to X, when it is clear by context which metric tensor is
involved.

We shall reserve the symbol G exclusively to metric tensors (including
inner products).

1.03. Definition. The standard inner product on R" is defined by
n

(-’Bl,--.,x")-(yl,...,y") =zlyl 4. 42y = Zziy.' .
i=1

Notice that we cannot use the summation convention here, since both
sets of indices are upper;  and y are both contravariant vectors. The summa-
tion convention operates where we are combining something covariant with
something contravariant, a(b) = ;' say, (cf. II1.1.08): an operation which
depends only on general vector space definitions, and has this formula with
respect to any basis and its dual. An inner product or metric tensor is exira
structure. To give it a nice formula we must have a basis nice with respect
to it, as we indicated at the beginning of the chapter. We examine this more
precisely in §3.

The Lorentz metric on R? is defined by

(zO’ 21,22,23) ) (yO’yl’yZ’yl‘)) = IOyO - xlyl - z2y2 - z3y3 .
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The indices run 0-3 instead of 1-4 by convention, for no particular reason
except to make the odd coordinate out in the formula more distinctive. This
metric originates in the physics discussed in Chapter 0.§3. For a single vector
z = (20,2}, 2%, 2°)
it gives us
-z =(2°)? - (2') - () - ()%,

a more systematic expression of the relativistically invariant quantity ¢ —
z? — y? — 2? that we encountered before. The analogy with the Euclidean
[v] - [w| cos e, for the dot product of two distinct vectors, can be elaborated
using cosh a instead. We explore some of the geometry behind this in Chap-
ter IX.§6.

Caution: some authors use z'y' + z2y? + z3y3 — z%y* (essentially the
negative of the metric above) as “the” Lorentz metric. And it is not cus-
tomary in the journals to mention which has been chosen: you just have to
work it out. We shall mention the differences made by this choice at the
appropriate points.

The determinant metric on R* is defined by

Tz y= (1:1,1!2,133;34) : (yl’yZ,yIi’y‘l)
— %(xly:; + z4y1) _ %(mayz +22y3) .
For this metric
1

2
z z
x-x = det .

The determinant of n x n matrices for n # 2 is not associated in this way
with a metric tensor on R®’. But the particular case of n = 2 gives us, in
Chapter IX, a short cut to an explicit example of indefinite geometry in Lie
group theory that is important in itself.

1.04. Definition. In a vector space X with metric tensor G-

The length |2|g of the vector = is /z - «. (we shall suppress the G
if only one metric is in question.) Notice that with an indefinite metric a
non-zero vector may have positive, zero or imaginary length. For example,
in the Lorentz metric,

1(1,0,0,0)|=1, |(1,0,1,0)=0, ](0,0,1,0)]=v-1.

For this reason -z is far more important than || since the imaginary num-
bers are adventitious; they obscure the essentially real (rather than complex)
structure in use.

In the situation of Chapter 0.§3, a vector labelled (1, 0,0,0) or (—1,0,0,0)
by some observer represents a separation purely in time from the origin, with
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no difference in spatial position — according to that observer. These vectors
have positive Lorentz dot product with themselves. On the other hand a
point labelled (0,z!,z2,23) by someone, with a “purely spatial” separation
from the origin according to this label, gives a negative number. Finally, pos-
sible “arrival” points for light flashes with “departure” at (0,0,0,0) or vice
versa give zero, by the Principle of Relativity (as we say in Chapter 0.§3). We
shall see (Exercise 3.5) that the sign of # - # completely determines whether
the spatial or temporal part of the separation  can be eliminated by a suit-
able choice of coordinates. Borrowing language from this case even when not
thinking of physics we shall call =

timelike if z -2 > 0
spacelike if 2 -2 < 0
lightlike or null if -2 =10 .

1.05. Examples. For the sake of the examples they provide, we introduce
here the (non-standard because there are no standard ones) symbols H? for
R? with the metric

(zo,zl) . (yo,yx) — xOyO _ xlyl
and H3 for R® with the metric

(=°,2,2%) - (1%, 0" 9°) = 2%° - 2'y' — 2%

In H? the null vectors are all those of the form (z,z) and (z,—z). In
H3 the null vectors are those (z°, z!, z2) with (z!)? + (22)? = (z°). Fig. 1.3
shows z as null, y spacelike and z timelike in each diagram. For R* with
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the Lorentz metric (which we shall call Lorentz space and denote by L*) a
similar picture is true but hard to draw.

The set {z I z -z = 0} of null vectors is called the null cone or light
cone of X: it is never a subspace of X with any non-degenerate indefinite
metric (Exercise 6).

1.06. Definition. A norm on a vector space X is a function
X—-R:zw|z|

such that for all z,y € X and a €R,
Ni) ||=|| = 0 implies = = 0.
Nii) ||zal| = [a |2}
Nii) [Jz + yll < ll2]l + [l
A partial norm satisfies (Nii) but not necessarily (Niii), and only
N’i) ||lz|]| > 0 for all z € X

instead of (Ni) (cf. Exercise 7a).

On an inner product space (X, G) we have a norm given exactly by
length, |z| = ||z]|¢ = +/= - ® (Exercise 7b) but for a general metric vector
space v/« -  need not be real, so that this does not define a function X — R.
We can however define, for a metric vector space (X, G’),

lzlle = +VIG' (=, 2)| -

If G’ is an inner product this coincides with the length and we shall use | |
and || || indifferently; in general || || is a partial norm (Exercise 7c).

In any metric vector space (X, G) we shall abbreviate || ||g to || ||, when
possible without confusion. We shall call ||z|| the size of , as against the
length |2|.

A unit vector  in a metric vector space is one such that ||z|| = 1.

Any non-null vector 2 may be normalised to give the unit vector "-3" in
the same direction.

1.07. Lemma. In any inner product space (X, G) we have, for anyz,y € X

z-y<|z||yl

with equality for z, y non-zero if and only if y = za, for some a € R (when
the two vectors are collinear.)

(This is obviously necessary to make possible the equation =,y =
|2||y|cosa of the remarks opening this chapter. It is called the Schwarz
inequality and it is false for || || when G is indefinite.)
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Proof. For any a € R,
(za~y) - (za—y)=za-za—-y-za—za-y+y-y
=(z-z)a’— (22 -ya+y-y.

Since G is positive definite, z - z > 0 for all z, and so in particular
(z-2)a® - (22 -y)a+y-y>0 for all a.
Therefore the quadratic equation
(z-z)a*-(2z -yla+y-y=0
in a cannot have distinct real roots, hence

(22 9)? — 4(z )y ¥) <O
(z -y’ <(z-2)(y-v)

-y <vz-z/y-y

z -y < |l|l{vll
In the case of equality, the equation has exactly one real root (a = g: L=
H) and for this value we have precisely
(za-y) (za-y)=0.
Hence by the definiteness of G
rxa—y=0
rza=vy. O

1.08. Definition. Two vectors , y in a metric vector space are orthogonal
whenever
z-y=0.

If the metric is an inner product, this coincides with the Euclidean idea of
“at right angles” (for which orthogonal is just the Greek) but in an indefinite
metric vector space a null vector is orthogonal to itself. Fig. 1.4 shows several
pairs of vectors in H2, with each matching pair orthogonal.

For any & € X, the set 1 of vectors orthogonal to it is a subspace of
X,sinceif £-y=0=x -y we have

z-(y+y)=z-y+z-y =0, =z(ya)=a(z-y)=0.

(1 can be pronounced “z perp.”, from perpendicular.) This idea should
be familiar for R with the standard inner product (Fig. 1.5a); for H3 it is
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Fig. 1.4

Fig. 1.5
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Fig. 1.6

illustrated in Fig. 1.5b—f. The plane in Fig. 1.5d is a good example of a
degenerate subspace larger than a null line.

In a similar way, the set of vectors y for which z - y equals some given
number a, is an affine subspace parallel to z*. (In the inner product case, it
is the set of vectors “with component ]ﬁ[ in the x direction” as in Fig. 1.6.
Notice how this geometrical idea depends on orthogonality.)

Via orthogonality, then, we can go from vectors in X to parallel slicings
of X. We have in fact found a transfer from X to X*, since these slices,
for z € X, are exactly the affine hyperplane “contours” (cf. I111.1.02) of the
linear functional

z*: X—>R:y—z.y.

Similarly, given a function f we have a “gradient vector” for it: we can
choose a vector = in the unique direction orthogonal to ker f, and with a
length indicating how “steep” the functional is — how closely the contours
are spaced. A metric tensor, then, gives us a geometrical way of changing
from contravariant vectors to covariant ones and vice versa. As usual, the
algebra gives us a grip on this (in the next theorem) which is useful in proofs
and computations, but the geometry is the heart of the matter.

1.09. Theorem. For any non-degenerate bilinear form F on a vector space
X, the map
Fl X - X*

(m*:X—> R )
xr =
y— F(z,y)
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is linear and an isomorphism.

Proof. For any 2,2,y € X,a €R

(Fi(z+='))y=F((=+ 2'),y) = F(z,y) + F(=',y) = Fi(z)y + Fi(z')y

= (Fi(2) + Fi(="))y
So,
F\(z +2') = F\(z) + F)(=') .
And
F\(za)y = F(za,y) = aF(z,y) = a(F)(z)y) = (aF(=))y .
So

Fi(za) = (Fi(z))a .
Hence F) is linear. Since F is non-degenerate,
Fi(z)=0= F|(z)y=0forall y
= F(z,y)=0forally
>z=0.

Thus ker(F)) = {0}, so that n(F}) = 0 (cf. 1.2.09).
Hence by Theorem 1.2.10 and II1.1.04 we have

dim(F| X) = r(F}) = dim X = dim X* .

So, F| X = X*, since X* is the only subspace of itself with the same dimen-
sion. So F| is an injective (Exercise 1.2.1) and surjective linear map, and
hence an isomorphism by 1.2.03. (Notice, once again, that finite dimension
is crucial). Continuity is involved in such infinite dimensional versions as are
true.) o

1.10. Notation. The inverse of the isomorphism F| will be denoted by F;.
In the sequel we shall make extensive use of G| and G induced by a metric
tensor G.

1.11. Lemma. A non-degenerate bilinear form F on a vector space X in-
duces a bilinear form F* on X* by

F*(-f;g) = F(FT(f))FT(g))

(that is, change the functionals to vectors with F;, and then apply F) which
is also non-degenerate and is symmetric/anti-symmetric/. .. /indefinite (cf.
1.01) according as F is.

Proof. We shall prove non-degeneracy, and leave the preservation of the other
properties as Exercise 8.
If for some f € X* we have F*(f,g) =0 for all g € X*, this means

F(FT(f),FT(g)) =0 for all gc X,
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So,
F(Fi(f),y) = 0 for all y € X (F; surjective).
Hence
Fi(f)=0 (F non-degenerate),
and
f=0 (F injective).
Thus F} is non-degenerate. 0

1.12. Corollary. A metric tensor (respectively inner product) G on X in-
duces a metric tensor (respectively inner product) G* on X*. a

Exercises IV.1

L.

Prove by Euclidean geometry (no coordinates) that if for v, w geo-
metrical vectors (directed distances from 0) in Euclidean space, with
lengths v, w, we define

V-w=vWwcosa

where a is the angle between them, then

a)v-w=w-v
b) (va) - w = a(w - v)

Jv-(u+w)=v-u+v- w.

There are 30 possible implications, such as “(iv)=(v)” among prop-
erties (i)—(vi) in 1.01. Which are true? Which properties always con-
tradict each other?

The “dot product” v - w defined in Exercise 1 is an inner product.

Addition and scalar multiplication of bilinear forms defined pointwise:~

(F + F')(=z,y) = F(z,y) + F'(=,y)
(Fa)(=,y) = a(F(z,))

make L2(X;R) a vector space.

Which of properties (i)-(iv) in 1.01 must hold for F on any subspace
of X if they hold for F on X7 (Test by looking at, for instance, line
subspaces.)

forallz,ye X

In H? the null vectors do not form a subspace. Deduce with the aid
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