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Preface

Since 1909, when my Differential Geometry of Curves and Surfaces was

published, the tensor calculus, which had previously been invented by
Ricci, was adopted by Einstein in his General Theory of Relativity, and

has been developed further in the study of Riemannian Geometry and

various generalizations of the latter. In the present book the tensor

calculus of cuclidean 3-space is developed and then generalized so as to

apply to a Riemannian space of any number of dimensions. The tensor

calculus as here developed is applied in Chapters III and IV to the

study of differential geometry of surfaces in 3-space, the material treated

being equivalent to what appears in general in the first eight chapters

of my former book with such additions as follow from the introduction

of the concept of parallelism of Levi-Civita and the content of the tensor

calculus.

Of the many exercises in the book some involve merely direct appli-

cation of the text, but most of them constitute an extension of it.

In the writing of the book I have received valuable assistance and

criticism from Professor H. P. Robertson and from my students, Messrs.

Isaac Battin, Albert J. Coleman, Douglas R. Crosby, John Giese, Donald

C. May, and in particular, Wayne Johnson.

The excellent line drawings and half-tone illustrations were conceived

and executed by Mr. John H. Lewis.

Princeton, September 27, 1940 LUTHER PFAHLER EISENHART.

In this edition a number of errors have been corrected in the text.

On page 298 there are notes dealing with revisions not incorporated

in the text.

Princeton, April 9, 1947 LUTHER PFAHLER EISENHART.
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CHAPTER I

Curves in Space

1. CURVES AND SURFACES. THE SUMMATION
CONVENTION

Consider space referred to a set of rectangular axes. Instead of

denoting, as usual, the coordinates with respect to these axes by x, y, z

we use x
1

,
x

2

,
a:

3

,
since by using the same letter x with different super-

scripts to distinguish the coordinates we arc able often to write equa-
tions in a condensed form. Thus we refer to the point of coordinates

2
1

,
x
2

,
x

3
as the point x\ where i takes the values 1, 2, 3. We indicate

a particular point by a subscript as for example x\ ,
and when a point

is a general or representative point we use x 1 without a subscript.

When the axes are rectangular, we call the coordinates cartesian.

In this notation parametric equations of the line through the point

x\ and with direction numbers u
1

, u, u* are*

(1.1) x
{ = x\ + u

{

t (i
= 1,2,3).

This means that (1.1) constitute three equations as i takes the values

1, 2, 3. Here t is a parameter proportional to the distance between the

points x\ and x*, and t is the distance when u 1 are direction cosines,

that is, when

(1.2) Z (u')* = I,
i

which we write also at times in the form

z uv = i.

<

An equation of a plane is

(1.3) aix
1 + a2 x

2 + a3 x* + a = 0,

where the a's are constants. In order to write this equation in con-

densed form we make use of the so-called summation convention that

when the same index appears in a term as a subscript and a superscript

this term stands for the sum of the terms obtained by giving the index

* See C. G., p. 85. A reference of this type is to the author's Coordinate Oeom-

etry, Ginn and Company, 1939.

1



2 CURVES IN SPACE [Cn. I

each of its values, in the present case the values 1, 2, 3. By means of

this convention equation (1.3) is written

(1.4) aiX
{ + a = 0.

This convention is used throughout the book. At first it may be

troublesome for the reader, but in a short time he will find it to be

preferable to using the summation sign in such cases. A repeated index

indicating summation is called a dummy index. Any letter may be used

as a dummy index, but when a term involves more than one such index

it is necessary to use different dummy indices. Any index which is not

a dummy index and thus appears only once in a term is called a free

index.

Since two intersecting planes meet in a line, the two equations

(1.5) a tx
l + a =

0, b ix
i + 6 =

0,

that is,

aiz
1 + a2z

2 + a3z
3 + a =

0, b&
1 + 62z

2 + 63z
3 + 6 =

0,

are equations of a line, provided that the ratios a\/b\ ,
a2/62 ,

a3/63 are

not equal; if these ratios are equal the planes are coincident or parallel

according as a/6 is equal to the above ratios or not.*

An equation (1.4) is an equation of a plane in the sense that it picks

out of space a two dimensional set of points, this set having the property
that every point of a line joining any two points of the set is a point of

the set; this is Euclid's geometric definition of a plane. In like manner

any functional relation between the coordinates, denoted by

(1.6) f(x>, x
2

,
x

3

)
=

0,

picks out a two dimensional set of points, by which we mean that only

two of the coordinates of a point of the locus may be chosen arbitrarily.

The locus of points whose coordinates satisfy an equation of the form

(1.6) is called a surface. Thus

(1.7) Z Jx* + 2a/z
y + 6 = 0,

i

where the a's and 6 are constants, is an equation of a sphere with center

at the point a { and radius r given by

* C. G., pp. 100, 101.

t C. G., p. 128, Ex. 14.
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Whenever throughout this book we consider any function, it is under-

stood that the function is considered in a domain within which it is

continuous in all its variables, together with such of its derivatives as

are involved in the discussion.

Since an equation which does not involve one of the coordinates does

not impose any restriction on this coordinate, such an equation is an

equation of a cylinder. Thus

(1.8) f(x\ x
2

)
=

is an equation of a cylinder whose generators, or elements, are parallel

to the x
3

-axis, each generator being determined by a pair of values

satisfying (1.8). If x\ , x\ are two such values, the generator is defined

by the two equations

x = Xi ,
x = Xi ,

these being a special form of (1.5) in this case. It does not follow that

when all three coordinates enter as in (1.6) that the surface is not a

cylinder, but that if it is a cylinder the generators are not parallel to

one of the coordinate axes. Later (12) there will be given a means

of determining whether an equation (1.6) is an equation of a cylinder.

Two independent equations

(1.9) MX\ x\ z
3

)
=

0, h(x\ x\ z
3

)
=

define a curve, a one dimensional locus, for, only one of the coordinates

of a point on the locus may be chosen arbitrarily. A line is a curve,

its two equations being linear, as for example in (1.5). A curve, being
one dimensional, may be defined also by three equations involving a

parameter, as

(MO) x* = /(0,

which are called parametric equations of the curve. These are a gen-

eralization of equations (1.1). The functions f in (1.10) are under-

stood to be single-valued and such that for no value of t are all the first

derivatives of f equal to zero; the significance of this requirement

appears in 3.

If <p(u) is a single-valued function of u, and one replaces t in equations

(1.10) by t = <p(u), there is obtained another set of parametric equa-

tions of the curve, namely

Since all the first derivatives - are not to be zero for a value of u,
du
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there is the added condition on <p that ~- ^ 0; this means that the
an

equation t = <p(u) has a unique inverse.*

Thus the number of sets of parametric equations of a particular curve

is of the order of any function satisfying the above condition. When,
in particular, one of the coordinates, say z

3

,
is taken as parameter, the

equations are

(1.12) *'=/V), *
2

=/V), *
3 = x

3

,

the forms of the /'s depending, of course, upon the curve. From the

form of (1.12) it follows that the curve is the intersection of the two

cylinders whose respective equations are the first two of (1.12).

When all the points of a curve do not lie in a plane, the curve is said

to be skew or twisted. The condition that a curve with equations (1.10)

be a plane curve, that is, all of its points lie in a plane, is, as follows

from (1.4), that the functions/
1

be such that

(1.13) <Hf + a -
0,

that is

aj
1 + a,f

2 + a,f + a =
0,

where the a's are constants. Differentiating equation (1.13) three

times with respect to t and denoting differentiation by primes, we ob-

tain the three equations

(1.14) 0^=0, a</*"
=

0, a t.f"'
= 0.

In order that the a's be not all zero, we must havef

/" f f
(1.15) /"' = 0.

f" f" f"
Conversely, we shall show that if three functions f(t) satisfy this

condition, constants a t and a can be found satisfying (1.13); and conse-

quently that the curve x
l = f(t) is plane. If (1.15) is satisfied there

exist quantities 6,- , ordinarily functions of t, such that

(1.16) bif =
0, bf =

0, &/"' = O.J

*
Fine, 1927, 1, p. 55. References of this type are to the Bibliography at the

end of the book,

t C. G., p. 114.

t C. G., p. 116.
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Assuming that the 6's in these equations are functions of t and differ-

entiating the first two of these equations with respect to
t, the resulting

equations are reducible to

(1.160 blf =
0, bif = 0.

The 6's in the first two of (1.16) are proportional respectively to the

cofactors of the elements of the last row in the determinant (1.15).*

The same is true of the b"s in (1.160- Consequently we have

7 / 7 ' |/
01 __ 02 __ 03

bi

~
62

~
63'

If we denote the common value of these ratios by <p'(0> we have on

integration

where the a's are constants. Substituting in the first of (1.16) and

discarding the factor e*, we obtain

a,/" = 0.

On integrating this equation with respect to
t, we obtain an equation

of the form (1.13). Hence we havet

[1.1] A curve with equations (1.10) is a plane curve, if and only if the

functions f satisfy equation (1.15).

When for the curve with the equations

(1.17) x
1 =

Clt, x = cj, x
3 = cj

the expressions for x are substituted in an equation of a plane (1.4),

we obtain a cubic equation in t for each of whose roots the corresponding

point of the curve lies in the given plane. The curve (1.17) is called a

twisted cubic. When a curve meets a general plane in n points, it is

called a twisted curve of the n*
1

order.

* C. G., p. 104.

f In the numbering of an equation or equations, as in (1.3), the number pre-

ceding the period is that of the section and the second number specifies the par-

ticular equation or equations. The same applies to the number of a theorem but

in this case brackets are used in place of parentheses. This notation is usecl

throughout the book.
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From (1.17) we have that the projections of the curve upon the

coordinate planes have the respective equations

dx
2 -

(1.18)

)

2 =
0, x =

0,

dx
3 - c^x

1

)

3 = 0, x
2 =

0,

d(x
2

)*
-

cl(x*)
2 =

0, x
1 = 0.

These curves are shown schematically as follows for positive values of

the c's:

FIG. 1

From (1.18) it is seen that the curve is the intersection of the three

cylinders whose equations are the first of each pair of equations

(1.18), the generators of these cylinders being parallel to the x
3

-,

x
2
- and x*-axes respectively.

It will be found that many formulas and equations can be put in

simpler form by means of quantities e f /* and e
l}k

defined as follows:

when two or three of the indices have the same

values
;

1 when the respective indices have the values 1, 2, 3;

2, 3, 1 or 3, 1, 2;

1 when the respective indices have the values 1, 3, 2;

3, 2, lor 2, 1,3.

Consider, for example, the two equations

a#* =
0, a,?/

1 =
0,

from which it follows that*

(1.19)
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Thus, denoting by 1/r the factor of proportionality, we have

rai = eijkx
j

y
k = emx

z

y* + e^V = x
2

y* x*y
2

,

and consequently (1.20) may be written

rai = eijkx'y
k

.

Applying this process to the last two of equations (1.14) we have

ra t
= e ijkf'f

k

'",

and when these expressions for a, are substituted in the first of equations

(1.14) we obtain

(1.21) ewff'f" =
0,

which is equation (1.15), as one verifies by forming the sum indicated

by the summation convention as each of the indices independently takes

the values 1, 2, 3.

EXERCISES

1. Parametric equations of a line normal to the plane (1.4) and passing through
a point of the curve (1.10) are

(i) X i
<HU,

where u is a parameter; as t and u take all values equations (i) give the coordi"

nates of points on the cylinder whose generators pass through points of the curve

and are normal to the plane (1.4); when in equations (i) we put

the resulting equations are parametric equations of the projection of the curve

(1.10) on the plane (1.4).

2. The equation

is an equation of the plane through three points of the twisted cubic (1.17) with

parameters t\ , tz and t 3 .

3. The plane

3c 2c 3a 2x l 3ciC 3ax 2 + ciC 2x3
CiCjCsa

3 =

for each value of the constant a meets the curve (1.17) in three coincident points

at the point t = a.

4. There pass through a given point x\ in space three planes with equations
of the form of the equation of Ex. 3, and if a\ ,

a 2 , 03 denote the corresponding
values of a, we have

0-1 0^.2 ~*

4_ 4. _ *
4. 4_ -* m _ A

C] Cl C|

/
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from this result and Ex. 2 it follows that an equation of the plane through the

three points in which these three planes meet the cubic (each in three coincident

points) is

ScsOrJz
1 -

x\x*) + CiC 2 (z
3 -

x\)
=

0,

which plane passes through the point x\ .

5. Four planes determined by a variable chord of the cubic (1.17) and four

fixed points of the cubic are in constant cross-ratio.

6. The curve

xl = a cos t, x* = a sin t, x 3 = 6 sin 2t

is the intersection of a circular cylinder and a hyperbolic paraboloid.
7. Determine f(t) so that the curve

x l a cos t, x z = a sin I, x 3 =
f(t)

shall be plane ;
what is the form of the curve?

8. By means of the quantities e,-/* and eljfc one has

eijk an a2y
a8 jfe ,

and, if the determinant is denoted by a, then

e
lmn

auamjank

9. Show that

where

5/
= 1 or according as i j or i ^ j;

from this result it follows that

-h ekihCjih)
= 0.

2. LENGTH OF A CURVE. LINEAR ELEMENT

Consider a curve with the equations

(2.1) *'=/(*),

and the arc of the curve between the points PQ and Pa for which the

parametric values are / and ta respectively. Consider also inter-
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mediate points P\ , PI ,
for which the values of the parameter are

ti, tz ,
. The length h of the chord PkPk+i is given by

where fc
= tk + di(tk+l

-
tk) < t < 1,

the second expression for 4 following from the mean value theorem of

the differential calculus, where the prime denotes the derivative. As

the number of intermediate points Pk increases indefinitely and each

h approaches zero, the limit of the sum of the lk's is the definite integral

r
;,

By definition this is the length of the arc PoPa - If then s denotes the

length of the arc from the point of parameter t Q to a representative

point of parameter t,
we have

This gives s as a function of i; we denote it by

(2.3) s = ^(0,

where <p involves tQ also.

From (2.2) we have

(2.4) ds* = (dx
1

)

2 + (dx
2

)

2 + (dx*? = E dx< dx\
i

dfi
where dx l =

-y-
dt. As thus expressed ds is called the element of length,

at

or linear element, of the curve.

As remarked in 1 there is a high degree of arbitrariness in the choice

of a parameter for a curve. In what follows we shall often find that it

adds to the simplicity of a result, if the arc s is taken as parameter.

From (2.2) we have

[2.1] For a curve with equations (2.1) the parameter t is the length of the

curve measured from a given point, if and only if

-
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It is evident that s is defined by (2.2) except when

Since it is understood now, and in what follows, that we are considering

only real functions f of a real parameter, that is, one assuming only

real values, there is no real solution of (2.6) other than f constant, that

is, the locus is a point. If we admit complex functions of a complex

parameter, the curves for which (2.6) hold are called curves of length

zero, or minimal curves. There are cases in which it is advisable to

consider such curves, but unless otherwise stated they are not involved

in what follows.

Consider a curve defined in terms of the arc 5 as parameter. Let P
and P of coordinates x

1

and x
l

be points for which the parameter has

the values s and s + e. By Taylor's theorem we have

(2.7) x< = J + x*'e + ^'"e
2 + jU'"V + (i

=
1, 2, 3).

* 12

Here and in what follows an x with one or more primes means that the

arc s is the parameter and the primes indicate derivatives with respect

to s: if the parameter is other than s, we write and similarly for
at

higher derivatives.

In this notation (2.5) is

(2.8) Zz'V" = 1.

Differentiating this equation with respect to s, we have

(2.9) xyv = o.

If we denote by I the length of the chord PP, it follows from (2.7),

(2.8) and (2.9) that

(2.10) -
2
= -

2 (x*
- z? = 1 + Z ax'"V" + fx- x- ;e

c
2

c
z

i

From this result it follows that as P approaches P along the curve the

ratio of the chord to the arc c approaches unity as limit.
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3. TANGENT TO A CURVE. ORDER OF CONTACT.
OSCULATING PLANE

The quantities x x
1

in (2.10) are direction numbers of the line

through P and P, and (x
1

x*)/l are its direction cosines. From (2.7)

and (2. 10) it follows that

,. X*'
-

x*' r x*'
- x* c

lim - = lim - = x .

I el
Since by definition the limiting position of the line through P and P
as P approaches P along the curve is the tangent to the curve at P, we

have

[3.1] When for a curve x
v

are expressed in terms of the length of the arc

from a given point as parameter, the quantities x
1
'

are direction cosines of

the tangent at a point x\

If x
1

for a curve are expressed in terms of a parameter t,
the quantities

dx
{

are direction numbers of the tangent. Thus the tangent is not
at

defined if all of these quantities are zero, which possibility was excluded

in 1.

As a result of this theorem we have as parametric equations of the

tangent to a curve at a point x
1

(3.1) X { = x
1
'

+ *'

d,

where X 1

are coordinates of a representative point on the tangent and

d is the distance from the point x
1

to the point X\* We define positive

sense along the tangent as that for which d in (3.1) is positive, this

means that a half line drawn from the origin parallel to the tangent

makes with the coordinate axes angles whose cosines are x* . This

same convention applies to any line associated with a curve when direc-

tion cosines of such a line are given in terms of quantities defining the

curve.f

*C. G., p. 85.

t Here we define sense by means of direction cosines, which means that a line

has two sets of direction cosines, differing in sign. This is not the convention

adopted in C. G., pp. 77, 78.
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If we denote by a
1

the direction cosines of the tangent, we have from

the above result and (2.2), when the parameter t is any whatever,

(3.2)
dt

ds
A /V ^X%^
V ^TtTt

The plane through a point of a curve and normal to the tangent at

the point is called the normal plane at the point; an equation of this

plane is

(3.3) Z (X
{ - zV =

0,

where a are given by (3.2).*

Parametric equations of any line through the point x
1

of a curve are

(3.4) X 1 = x
1 + u

{

t,

where u
1

are direction cosines of the line. The square of the distance

of the point P(x
l

) from this line is given byf

x - x x - x

(3.5)
x*-x* x

l -x l

When the point P is a point of the curve, its coordinates being given

by (2.7), the expression (3.5) becomes

cf - [ <x
1
'

u'
2 - x' u}t 4-

l
(x

1
"
u - x

2" uVI \Js It JU Hi J C |^
'~

yo/ Ut JU Hi J C

L ^

_

[(x
2

'

u* - x
3 - x

1
'

Thus d is of the order of c unless the u
1

arc proportional to x
1

;
since in

the latter case both of these sets of quantities arc by theorem [3.1]

direction cosines, it follows that u ex
1

'

,
where e is +1 or 1, and

that the distance of a point on the curve nearby x
1

is of the second, or

* C. G., p. 92.

t C. G., p. 96.
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higher, order. The distance is of the third order if also x
1
"

are pro-

portional to x*', and of the (n + l)
tfl

order if x
l
"

,
z

1

'", ,
x

i(n)
are

proportional to x
1
'

. In general, n = 1 and the contact of the tangent
with the curve is said to be of the first order] for n > 1, the contact is

of the n
ih

order.

If the equations of the curve are in terms of a general parameter t,

as (2.1), we have since t is a function of s

(

. dtf = dj_
dt dV = dV /dtY

dx^ (f_t
( ' }

Ts
~

~di ds' ds2

~
~dt2 \ds) Hi ds2 '

" '
'

Hence the tangent at a point t for which t satisfies for some value of n

(> 1), if any, the equations

dV dV d
k
x*

(1 8)
** - dik - di" (k-2 ^(O.O) -y-r -y-~ , (K Z, y U)
dx l dx2 dx*

~dt dt ~di

has contact of the nth
order.

By definition the osculating plane of a curve at a point P(V) is the

limiting position of the plane determined by the tangent at P and a

point P of the curve as P approaches P along the curve. Since the

plane passes through P its equation is of the form

(3.9) a t-(JT
-

x')
=

0,

where a t
-

being direction numbers of the normal to the plane must be

such that

(3.10) atx*' = 0.

Equations (3.9) and (3.10) express the condition that the tangent at P
lies in the plane.* Substituting in (3.9) for X 1

the expressions (2.7)

for x and making use of (3.10) we obtain

(3.11)

As P approaches P, that is, as c approaches zero, we have in the limit

(3.12) atf" = 0.

* C. G., p. 120.
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In order that equations (3.9), (3.10) and (3.12) be satisfied by a's not

all zero, we must have*

(3.13)

X1 -*1 X2 -*2 X3 -x3

m e (X' - * =
0,

which is an equation of the osculating plane at the point x\

When the curve is defined by (2.1) in terms of a general parameter t,

it follows from (3.7) that an equation of the osculating plane is

(3.14)

If the tangent at a point has contact of higher order than the first,

equation (3.14) is satisfied identically. In this case from (3.11) arid

(3.7) it follows that an equation of the osculating plane at a point for

which the tangent has contact of order n 1 is

= 0.

When a curve is plane and its plane is taken for the plane x* =
0,

equation (3.13) is equivalent to x
3 =

0, that is, the osculating plane
of a plane curve is the plane of the curve. Conversely, when all the

osculating planes of a curve coincide, the curve is a plane curve since

all of the points of the curve lie in this plane.

1. The curve

EXERCISES

x 1 = a cos t, x2 = a sin t, x3 = bt

lies on a circular cylinder (see Fig. 2); find the direction cosines of the tangents
to the curve and show that the tangent makes a constant angle with the generators
of the cylinder; the curve is called a circular helix.

* C. G., pp. 115, 121.
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FIG. 2. Circular helix

2. By definition a cylindrical helix is a curve lying on a cylinder and which
meets all the generators under the same angle; if this constant angle is denoted

by e,

') dt
t

are parametric equations of a cylindrical helix; is any cylindrical helix so defined?

3. By definition a conical helix is a curve lying on a cone which meets all the

generators of the cone under the same angle; if this angle is denoted by 0, x* =
/*'(0

are equations of a conical helix, if the functions /* satisfy the conditions

where the a's are constants not all of the same sign; is any conical helix so defined?
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4. Find an equation of the osculating plane of the twisted cubic (1.17) and

compare the result with Ex. 3_of 1.

5. The distance of a point P on a curve from the osculating plane at a nearby

point P is of the third order at least in the arc PP; and for any other plane through
P not containing the tangent at P the distance is of the first order; discuss the

case of planes containing the tangent at P.

6. The curve with the equations

where t = V"^> /(O ^ s anY function of t, and primes indicate differentiation

with respect to the parameter t, is a minimal curve, and any minimal curve is so

defined; discuss the case when/(0 = erf* -h Czt + c 3 ,
where the c's are constants.

7. If at every point of a curve the tangent has contact of the second order

with the curve, the latter is a straight line.

8. In terms of the arc s as parameter equations of the circular helix (Ex. 1) are

8 s bs
x l = a cos ._

,
x2 = a sin jr.=- ,

re
3 = . ------ -;V a2 + J>

2 V a2 + 6 2 V a2 + &2

each osculating plane of the helix meets the circular cylinder on which it lies

in an ellipse.

9. The curve

x 1- = a sin 2
t, x2 = a sin t cos t, x3 a cos t

is a spherical curve, that is, lies on a sphere; its normal planes pass through the

center of the sphere; the curve has a double point at (a, 0, 0), and the tangents
to the curve at this point are perpendicular to one another.

10. Find an equation of the osculating plane of the curve

a?
1 = a cos t -f b sin t, x2 = a sin t -f b cos t, x 3 = c sin 2f;

find also two equations of the form (1.9) as equations of the curve.

^/4. CURVATURE. PRINCIPAL NORMAL. CIRCLE OF
CURVATURE

Let P and P be two points on a curve C, As the length of the arc

between these points, and A0 the angle of the tangents at P and P,

that is, the angle between two half-lines through any point and having

the positive senses of the two tangents. The limit of as As ap-
As

proaches zero, measures the rate of change of the direction of the

tangent at P. This limiting value, denoted by K, is called the curvature

of C at P, and its reciprocal, denoted by p, the radius of curvature] from
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their definition it follows that K and p are non-negative. When C is a

plane curve, the definition of curvature here given is that usually given
in the differential calculus.

In order to derive in terms of s an expression for K in terms of the

quantities defining a curve C, we consider the auxiliary curve F with

the equations

. fa*
(4.1) ** =

TT>as

which in consequence of (2.8) is a curve upon the sphere of unit radius

with center at the origin. The radius of the sphere at any point of F

is parallel to the tangent to C at the corresponding point, that is, the

point with this tangent. The curve F is called the spherical indicatrix

of the tangents to C. If we denote by <r the arc of F, it follows from

(4.1) and (2.4) that "-*
From the definition of K we have

K = lim
A8=0

= lim
A0 A<r

A<7 As

Since A0 is the length of the arc of the great circle between the points

on the unit sphere corresponding to P and P on C
Y

,
the limit of is

A(7

unity in consequence of the result at the close of 2 and the fact that

Ad and Aa have a common chord. Consequently as follows from (4.2)

/\T^=
y ?

For a straight line, with equations (1.1) in which t is the arc, one has

K = 0, which is evident also geometrically from the fact that the tangent

to a straight line at each point is the line itself. In order to obtain the

expression for K when the equations of the curve are in terms of a

general parameter t,
we observe that from (2.3) we have

(4 4) *=! '=_<?!'
( '

ds v
"

rfs
2

*>''

where primes denote differentiation with respect to I, and from (2.2)

(4.5) ^



18 CURVES IN SPACE [Cn. I

the second following from the differentiation of the first. Substituting

in (4.3) from (3.7) and making use of (4.4) and (4.5), we obtain

(4.6)
- - ' ' x dt*

From (2.9) it follows that the line through the point x* of a curve

dV
and with direction numbers -r-r- is perpendicular to the tangent at the

as2

point, and thus is one of an endless number of normals to the curve at

the point. If we define quantities (3

l

by

f - "'

it follows from (4.3) that (3

l

are direction cosines of the positive sense

of this normal.* Its equations are

(4.8) X* = x' + fl'd,

where d denotes the distance of the point X
%

from the point x
l

of the

curve. This normal is called the principal normal of the curve at the

point. When the expressions (4.8) are substituted in the equation

(3.13) of the osculating plane, the equation is satisfied for all values of d,

in consequence of (4.7), that is, the principal normal at a point lies in

the osculating plane at the point. Hence the osculating plane at a

point of a skew curve is the plane determined by the tangent and

principal normal of the curve at the point.

The circle in the osculating plane with center at the point

(4.9) r = z
t
'

+ P/3

f = *' +V
K

and of radius p is called the circle of curvature of the curve at the point

x
l

and its center the center of curvature of the curve for the point x\

Evidently this circle and the curve have a common tangent at x\

EXERCISE

1. When a curve is defined in terms of a general parameter t by (1.10), the

direction cosines /3* of the principal normal are given by

18*-W" -*"/*'),

where <p(t) is defined by (2.3), and primes denote differentiation with respect to t.

* See the statement about positive sense after equations (3.1).
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2. For a cylindrical helix, as defined in 3, Ex. 2,

esc 9
'

19

0,

where e is -f 1 or 1 so that K is positive.

3. Let P be a point of a curve; a circle C with a common tangent to the curve

at P is determined by requiring that it pass through another point Q of the

curve; the limiting circle as Q approaches P along the curve is the circle of curva-

ture of the given curve at P.

4. Find the function <p(t) so that the curve

<p(t) sin t dl, x* =
/ <p(t) cos t dt, <f>(t) tan tdt

shall be a curve of constant curvature.

5. Determine the form of the function <p(t) so that the principal normals to

the curve

x l
t,

are parallel to the x2x 3
-plane.

sin t, x*

6. The circle of curvature of a curve at a point of the curve has contact of the

second order with the curve; every other circle which lies in the osculating plane
and is tangent to the curve has contact of the first order; accordingly a circle of

curvature is called an osculating circle of the curve.

7. Find equations of the surface consisting of the principal normals of a circu-

lar helix (see 3, Ex. 1), and show that the locus of the center of curvature is a

circular helix.

8. Find the coordinates of the center of curvature of the curve

x l = a cos t
t

x* = a sin t, a cos 2t.

5. BINORMAL. TORSION

The normal to a curve at a point P which is normal to the osculating

plane at P is called the binormal at P. Evidently it is perpendicular

to the tangent and to the principal normal at P. From (3.13) it follows

that

x
3

'

x
1

'

x
3
"

x
1

'

x
1

'

x
r

x
1
"

x
2 '
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are direction numbers of the binormal. In order to find direction co-

sines of the binormal we make use of the identity

(5.1)

The reader should verify that this is an identity whatever be the quanti-

ties involved without any use of the primes as indicating derivatives.

When in particular the quantities x
1

'

and x
l
"
have the meaning ascribed

to them in 2, it follows from (2.8), (2.9) and (4.3) that the left-hand

member of (5.1) is equal to K
2

. Hence direction cosines 7' of the bi-

normal and the positive sense along the latter are defined by

(5.2)

y
1 = p(x

2 '

x
3" - x

2 - x
3
"

x
1

'),

= p(x
1 - x

These expressions may be written in the form

(5.3) x
k " - x

k

'),

with the understanding that z, j, A; take the values 1, 2, 3 cyclically.

Hence equations of the binormal are

(5.4) X* = x' + y'd.

The significance of the choice of sign in (5.2) is seen when we observe

that the expressions (3.2), (4,7) and (5.2) for a', (3\ and y
l

respectively

are such that

(5.5)

1 2 3

a a a

= +1,

as is readily verified since the right-hand member of (5.1) is equal to K
2

.

The result (5.5) means that the positive directions of the tangent,

principal normal and binormal of a curve at each point of a curve have

the mutual orientation of the x
1

-, x- and z
3

-axes respectively (Fig. 3).*

1

C. G., p. 162.
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From the equations

Z V =
0,

(5 ' 6) v * 2
i2^ =
1,

t

'Y =
0,

and from (5.5) it follows that each element in the determinant equation

(5.5) is equal to its cofactor.* This result may be written

(5.7)
' = 0V - 0V, ff = 7'

as i, j, A: take the values 1, 2, 3 cyclically.

7V, 7''
=

FIG. 3

From the definition of the binormal it follows that the binomials of

a plane curve are the normals to the plane at points of the curve, and

consequently have the same direction at all points of the curve. For a

skew curve the direction of the binormal changes. If A0 is the angle

of the positive directions of the binomials at two points of parameters
kn

8 and s + As, the limit of - as As approaches zero measures the rate
As

of change of the direction of the binormal at the point of parameter s,

and consequently the rate of change of the orientation of the osculating

*C. G., p. 161.
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plane. This limit is called the torsion of the curve and is denoted by r.

Sometimes the curvature, as defined in 4, and the torsion are called

the first and second curvatures respectively of the curve.

In order to obtain an expression for T, we introduce the spherical

indicatrix of the binomial, that is, the curve defined by

(5.8) X i = y\

Evidently this is a curve upon the unit sphere with center at the origin,

and such that the radius of the sphere to any point of the curve is

parallel to the positive binormal to the given curve at the point with

the same value of the parameter s. The linear element of the indicatrix

|S given by

i 2 v dy* dy* , 2
da =

2Lj -T- ~r as
as ds

By an argument similar to that used in 4 we have

dy
l

In order to find expressions for -7- ,
we differentiate with respect to

as

s the equations

and obtain

<5.io, ? y^ =
o,

From (4.7) and (3.2) we have

(5.11) ^ = tf,
as

from which and the third of (5.6) it follows that the second of (5.10)

reduces to S<*'-T- ^- From this equation and the first of (5.10)
t as

we have* in consequence of the second set of equations (5.7) that

dy
i

.

-f- is proportional to 0* and from (5.9) that the factor of proportionality
as

* C. G., p. 104.
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is T or r. Thus far T is defined by (5.9) to within sign; we choose the

sign so that we have

(5.12) ^ -
rft.

We are now in position to obtain an expression for r in terms of the

derivatives of x\ In fact, if we differentiate (5.3) with respect to s,

the result may be written in consequence of (5.12)

If this equation is multiplied by (I

1

and summed with respect to i, the

result becomes in consequence of the third of (5.6) and (4.7)

(5.13)

From the definition of torsion it follows that T is zero for a plane

curve. Conversely, if r is zero at every point of a curve, the latter is

plane in accordance with theorem [1.1] and equation (5.13). At points

of a curve, if any, for which the determinant in (5.13) is zero the osculat-

ing plane is said to be stationary.

EXERCISES

1. When a curve is defined in terms of a general parameter J by (1.10), the

direction cosines 7* of the binomial are given by

7* -^tfY" -/*"/*'),
^3

as i, j, k take the values 1, 2, 3 cyclically, where <?(0 is defined by (2.3) and primes
denote differentiation with respect to t\ also the torsion of the curve is given by

r r

2. The curvature and torsion of a circular helix, as defined in 3, Ex. 1, are

constants, namely

a -b
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3. For a cylindrical helix, as defined in 3, Ex. 2,

cot e (/i'/2" -/>"/j')

from which result and that of 4, Ex. 2 it follows that

r = 6K COt 0,

that is, K/T is a constant.

4. Find the curvature and torsion of the curve

x i = e ', x* = e~'
t

x 3 = V2 t.

5. The curvature and torsion of the curve

x l = a(3t
-

J
3
), x* = 3aJ 2

,
z 3 = a(3 -f

are given by

1

6. Find the points of the curve of 3, Ex. 9 at which the torsion is equal to zero.

7. When two curves are symmetric with respect to a point, or a plane, their

curvatures at corresponding points are equal and their torsions differ in sign.

8. A necessary and sufficient condition that the circle of curvature have con-

dK
tact of the third order with the curve at a point is that at the point T = 0,

=

(see 4, Ex. 6); at such a point the circle is said to superosculate the curve.

9. If and <p are the angles made with a fixed line in space by the tangent
and binormal respectively of a curve,

sin 6 dB _ K

sin <f> d<f> r'

10. A necessary and sufficient condition that the principal normals of a curve

are parallel to a fixed plane is that the curve be a cylindrical helix.

11. If the curve xi

(s] is a cylindrical helix so also is the curve with the equations

X t- = p^- I pds.

12. The curvature and torsion of the curve

si =
I

f(t) sin t dt, x2 - I f(t) cos t dt, x3 - l/(0*(0 dt

are given by

- - A /I + V + ^2

/y (!+*)" / 1 + ^ + 1'*

from this result it follows that the curves for which K or r is a constant can be

found by quadratures.
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6. THE FRENET FORMULAS. THE FORM OF A CURVE
IN THE NEIGHBORHOOD OF A POINT

If the second set of equations (5.7), that is,

/3*
= y

ja
k

y
k
a3

as i, j, k take the values 1, 2, 3 cyclically, are differentiated with respect

to s, the result is reducible by (5.11), (5.12) and (5.7) to

Gathering together this result, (5.11), and (5.12), we have the following

set of equations fundamental in the theory of skew curves and called

the Frenet formulas:

fn -,
A da d/3' f i ^ oV <

(6.1)
_ = K0 = _(m + ry ) }

= Tp .

as as as

On replacing (3

l

in the second set of equations (6.1) by - x" (see
K

equations (4.7)), the resulting equations are reducible to

fJif
(a. o\ l 9*1 /a* *

(6.2) x K?a + -r /3 KTJ .

as

Differentiating with respect to s and making use of (6.1), we obtain

2
__

We observed following equation (5.5) that the positive directions of

the tangent, principal normal and binormal at each point of a curve

have the mutual orientation of the coordinate axes. If then we take

for coordinate axes these lines at a point PQ of a curve and measure

the arc from the point, we have at PQ

(6.4)
1
'

= d[ , p* - di , y = 55 ,

where 6y are Kronecker deltas defined by

(6.5) 5* = 1 or according as i = j or i 5* j.

By Maclaurin's theorem we have that the coordinates x
1

of any point

on the curve are given by

(6.6) x' = (*'V + s(*'"V + ri(^"")os
3 + (*'"")</+ ,

l iz
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where a subscript zero indicates the value of the quantity at P . From

(3.2), (4.7) and (6.4) we have

(Oo =
i, (*Oo= **i.

From these results, (6.2), and (6.3) we have from (6.6) for this choice

of coordinate

i KO 3 i / UK \ 4
x
=*-<>* -leM-

2 ,1 /^K\ 3 ,
1 /<?KfR >7\ ~2 Kb

(6.7) x =-

+
6

1

4 [_c?s ds

It follows from these equations that in the neighborhood of a point,

if any, at which K = the curve approximates a straight line. Also

if K ? the curve with s increasing crosses the osculating plane at the

point, from the positive to the negative side when r > and vice-versa

when T < 0; in the former case the curve is said to be left-handed and

in the latter right-handed at the point. At a stationary point, that is,

when r = 0, the curve remains on the same side of the osculating plane

in the neighborhood of the point (provided dr/ds ^ 0), since in this

case the sign of a;
3
does not change with s for .sufficiently small values

of s.

These results follow in fact when we consider only the first terms in

each of equations (6.7), that is, the approximate curve

(6.8) x
l =

s, *
2 =

|
s
2

, *'=-^V,

in which KQ and TO are constants. This curve is a twisted cubic, whose

projections upon the coordinate planes are shown in Fig. 1, the x -,

x
2

-, and
3
-axes being respectively the tangent, principal normal, and

binomial of the curve at the point of the given curve which is the origin

of the coordinate system used.

The coordinates X t

of a point in the osculating plane to a twisted

curve are given by

(6.9) X i = x
{ + ua* + vf

for suitable values of u and v. We raise the question of determining

u and v as functions of s so that the locus of the points of coordinates
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X 1

given by (6.9) shall be an orthogonal trajectory of the osculating

planes. Differentiating (6.9) with respect to s and making use of

(6.1), we obtain

= I i +
CJ - VK \ a

l

-f 1 UK -f J!W _
VTy\

ds \ ds / \ ds/

i yi
Since - - are direction numbers of the tangent to the desired locus,

as

u and v must be such that '|- are proportional to 7', that is, the co-
ds

efficients of a
1

arid /3

T

must be zero. If we introduce the parameter cr,

defined by

<"=/*,

this gives the following conditions to be satisfied:

(6.10) ^ + I - v = o, + U = Q.
da K da

Differentiating the second of equations (6.10) with respect to a and

substituting from the first of (6.10), we obtain

(6.11)

From the theory of linear ordinary differential equations it follows that

the general solution of equation (6.11) may be obtained by quadratures.

When such a solution has been obtained and substituted in the second

of equations (6.10), u is given directly. Hence we have

[6.1] The orthogonal trajectories of the osculating planes of a skew curve

can be obtained by quadratures.

EXERCISES

1. For a plane curve the Frenet formulas are

ds
'

ds

and equations of the curve are

I cos ds, x2
/ sin a ds,



28 CURVES IN SPACE [Cn. I

where

from equations (i) it follows that <r is the angle which the tangent to the curve

makes with the o^-axis.

2. When all the osculating planes of a curve have a point in common, the

curve is plane.

3. The locus of the centers of curvature of a twisted curve of constant curva-

ture is an orthogonal trajectory of the osculating planes of the curve, and is a

curve of constant curvature.

4. A tangent to the locus of the centers of curvature of a twisted curve C is

perpendicular to the corresponding tangent to C; it coincides with, or is per-

pendicular to, the principal normal to C only at points for which r = 0, or = 0.
ds

5. When for a cylindrical helix (see 3, Ex. 2) the generators of the cylinder
are parallel to the 3

-axis, then a 3 = cos 6, and from the Freriet formulas it

follows that

(i)
3 =

0,
~ -

0, * + TV* = 0.
as

If a function a is defined by

a 1 = sin 6 cos ff
y

a2 = sin 8 sin a,

then

da
l e sin a /3

2 e cos <r, K e sin 6
,

ds

where e is -f-1 or 1 so that K is positive, and

7 3 = 6 sin 0, r =* en cot 9

(see 5, Ex. 3).

6. For a curve for which T/K =
c, where c is a constant, it follows from the

Frenet formulas that

7* =* ca -f 5*,

where 6* are constants, from which it follows that S a*6* = const., that is, the

curve makes a constant angle with the lines of direction numbers
,
and hence

is a cylindrical helix.

7. The equations

-a f (y
j
'dy

k -

as i, j t
k take the values 1, 2, 3 cyclically, where a is a constant, and 7* are func-

tions of a single parameter such that S 7*7* =
1> are equations of a curve of

torsion I/a and 7* are direction cosines of the binormal. Does it follow from
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this result that any curve on the unit sphere can serve as the spherical indicatrix

of the binorinals of a curve of constant torsion?

8. If C is a curve of constant torsion, for the associated curve with the equa-
tions

the curvature is constant.

9. When two twisted curves are in one-to-one correspondence with tangents
at corresponding points parallel, the principal normals at corresponding points
are parallel, and also the binomials; two curves so related arc said to be dcducible

from one another by a transformation of Combescure.

10. The equations

(i) x { = x{ + eta,

where a is a constant, are equations of a curve C whose points are on the tangents
to the curve xl

(s) and at the constant distance a from the corresponding points
of contact; the arc s, the direction cosines a* of the tangent, and the curvature

K of C arc given by

I
= / \/l -f aV ds,

A/1 + a2
/

2 K2 T2

(l + a2 *2 )
3

(l + a2 *2 )
2

'

the tangents to C are parallel to the corresponding osculating planes of the

given curve.

11. In order that the curve C in Ex. 10 be a straight line it is necessary and

sufficient that T = and a 2
H = cc

2
*/", where c is an arbitrary constant. If

we put c = a2
,
we have

ds

From this result and Ex. 1 we have

x2 8 I

from which and equation (i) of Ex. 10 for i = 1 we have that the locus C is the

x2-axis. The curve is called the tractrix. In terms of <r, the angle which the

tangent makes with the x l
-axis, equations of the curve are

xl = a cos ( a / d<r == a [log (sec a- + tan <r) sin <r] .

J COS <r
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12. A curve whose principal normals are the principal normals of another

curve is called a Bertrand curve; if x* and *
are the coordinates of corresponding

points on the respective curves C and C and s and corresponding arcs, one has

$< - x* + hfif,

a*j--(l-*h)J + %(f-Thv*.ds ds

Since /5*
=

e/3
1

by hypothesis, where e is +1 or 1, it follows that h is a constant;

denoting by co the angle between the osculating planes of C and its conjugate C,

one has a 1 = cos co a* -f- sin co 7*; 7* = e ( sin to a1

-h cos co 7*) ;
from the Frenet

formulas for C it follows that co is a constant and

sin co ds hr
K sin co T cos co =

,

=
.

h ds sin co

Also K and T for C are given by

_ e sin2
co

K + er cot co -f
- =

0, rr = -----

;

h /i
2

thus e is to be chosen so that 7c is non-negative.
13. A curve for which

an -f- br =
1,

where a and b are constants different from zero, is a Bertrand curve; the equa-

tions (see 5, Ex. 12)

si = f
f(t) sin t dt, x* = f f(t) cos t dt, x3 = f f(t)t(t) dt

j

where 4>(t) is any function of t and

a and 6 being constants different from zero, are equations of a Bertrand curve.

14. A circular helix is a Bertrand curve; it has an infinite number of conju-

gates, each lying on a circular cylinder with the same axis as that of the given

helix.

15. A necessary and sufficient condition that the osculating planes of a Bert-

rand curve and of its conjugate coincide is that the curve be a plane curve; any
curve parallel to the given curve is a conjugate curve.

16. If C is a curve of constant torsion, the curve with equations

- ax* + b + s

J
,

where a and b are constants, is a Bertrand curve.

17. The binomials of a curve are the binormals of another curve, if and only
if the given curve is plane.
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18. In order that the principal normals of a curve C be the binomials of a

curve C, it is necessary and sufficient that

(i)
== a(*

2 + T ),

where a is a constant; then equations of C are

& = a* + o0*;

carves C satisfying the condition (i) can be found by quadratures (see 5, Ex. 12).

7. INTRINSIC EQUATIONS OF A CURVE

When equations (6.3) are differentiated successively with respect to

s and in each 'case the derivatives of a\ (3

l

,
and y

l

are replaced by their

expressions from the Frenct formulas (6.1), we find that each derivative

of x\ is expressible linearly and homogeneously in a
1

, ff, and y\ the

coefficients being functions of *, r, and their derivatives of various orders

with respect to s. Consequently the coefficients of further terms in

(6.7) as derived from (6.6) involve only the values of K, T, and their

derivatives for s = 0, because of the particular values (6.4) at the origin

in the coordinate system used. Hence, if for two curves the functions

K and r of s are the same functions, the expressions for x* for each curve

relative to the axes consisting of the tangent, principal normal, and

binormal of each curve at the point s = are the same. Since either

set of axes can be brought into coincidence with the other by a rigid

motion, we have:

[7.1] Two curves whose curvature and torsion are the same functions re-

spectively of the arc are congruent.

1 From this it follows that a curve is determined to within its position

in space by the expressions for K and T in terms of s. Consequently

(7.1) K = /!(), T = MS)

are equations of the curve. Since they are independent of the coordin-

ate system used, they are called intrinsic equations of the curve.

From the manner in which equations (6.7) were obtained, it follows

that K and T derived from these equations by means of (4.3) and (5.13)

are power series in s, the coefficients being values of K, r, and their

derivatives evaluated for s = 0. Consequently if we have any two

equations (7.1) in which /i(s) is a non-negative function of s, the cor-

responding equations (6.7) are equations of the curve for which (7.1)

are the intrinsic equations. Although this method of obtaining x
%

as

functions of s gives the equations of a curve for given functions f\ and
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/2 in equations (7.1), it gives these equations as infinite series. We
shall consider another approach to this problem which may in certain

cases lead to finite expressions for x*.

The three sets of quantities a\ /?*, and y
l

as i takes the values 1, 2, 3

are seen from (6.1) to be solutions of the following system of ordinary

differential equations where K and r are given functions of s:

,n O x du dv
/ , \ dw

(7.2) =
KV,

- = -
(KU -f TW), = TV.

as as as

If we have three sets of solutions, u
1

,
v

l

,
w l

]
u

2

,
v
2

,
w2

\ u\ v\ w
3

of these

equations, which may be denoted by u\ v\ w
l

for i 1, 2, 3, and put

(7.3) ttV -f- vV + w'w j = c
ij

(i, j = 1, 2, 3)
>

we find by differentiation that in consequence of (7.2) the c's are con-

stants. We define quantities by

(7.4) a - a\u, $ =
a,kV

k

, T
I = aiw

k

,

where the a's are constants, and seek under what conditions these a's

can be chosen so that

(7.5) etc? + /3

l

'/?

y + yy = t" (i, j = 1, 2, 3),

where

(7.6) <5

U = 1 or according as i = j or i ^ j.

This choice is made in order that a\ /3

l

,
and 7* shall be direction cosines

of three mtitualy perpendicular vectors. Substituting from (7.4) in

(7.5) and making use of (7.3) we have

(7.7) ala\c
kl = d

ij
.

If the determinant
|

c
kl

\

is different from zero,

c
kl
xkxi -

is an equation in homogeneous coordinates x\ ,
x2 ,

xs of a non-degenerate

conic in the plane. With respect to this conic a\ , a\ , al ; a\ , a\ , al ;

i , 2, 3 satisfying (7.7) are the coordinates of the vertices of a self-

polar triangle, and consequently an endless number of sets of a) satis-

fying (7.7) can be found.* For such a set of a* the quantities a\ ft\ y
l

defined by (7.4) are solutions of equations (7.2), that is, we have equa-

tions (6.1), the signs of a] having been chosen so that equation (5.5)

holds.

* Veblen and Young, 1910, 1, p. 282.
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If then we define z* by

(7.8) x* = a* ds,

for the curve so defined s is the arc and a direction cosines of the tan-

gent. Also from (7.8) and (6.1) we obtain by differentiation equations

(4.7) and (6.2), from which it follows that K and r are the curvature and

torsion of the curve, and /3

l

and y
l

direction cosines of the principal

normal and bmormal respectively.

Thus we have shown that three sets of solutions of equations (7.2)

for given functions K and r of s lead by quadratures (7.8) to a curve

for which K and r are the curvature and torsion, provided that the de-

terminant
|

c
l

|

is not equal to zero. That there are sets of solutions of

equations (7.2) satisfying this condition follows from the theory of such

sets of equations, namely that there exists a unique solution for a given

set of initial values of u, v and to.* Since c
kl

are constants, it follows

that one has only to choose the initial values of the three sets of solu-

tions so that it shall follow from (7.3) that the determinant of the c's is

not equal to zero.

EXERCISES

1. A solution of the equation

di* d . d*u f d2 /1\ 1 dK dT "I du d /K\
-log TKZ - + K I

-
I -f - -r -f K2 + r2

-f KT
[

-
]
u 0,

ds3 ds ds2

[_
ds2

\K/ KT ds ds J ds ds \rj

and v and w given by

v = w =
K ds

1 /d*u 1 dK du

constitute a solution of equations (7.2); and any solution of (7.2) is expressed

in terms of three sets of solutions by (7.4) for suitable values of the constants aj .

2. If u, v, w are solutions of equations (7.2) such that u2
-f v 2

-f- W* =
1, the

quantities a and co defined by

I w u iv
'

are solutions of the Riccati equation

\-\-w u -\~ iv 1 w

*.*!/!_!._A
ds 2\ T J

*
Goursat, 1924, 1, vol. 2, p. 368.
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3. The general integral of an equation of Riccati

de
-- = L + 2MB + M?2

,

ds

where L, M, JV are functions of 3, is of the form

_
aR + S'

where a is an arbitrary constant, and P, Q, R, S are functions of s.

4. From theorem [7.1] and 5 Ex. 2 it follows that a necessary and sufficient

condition that a curve be a circular helix is that its curvature and torsion be

constant; show also by means of Ex. 1 that this condition is sufficient.

5. Establish the statement made about the number of solutions of equations

(7.7) by purely algebraic methods.

8. INVOLUTES AND EVOLUTES OF A CURVE

As shown in 3 the equations

(8.1) X 1 = x
{ + ua*

are parametric equations of the tangents to the curve C defined by x
l

as functions of the arc s. For a particular tangent u is the distance

between the points x
l

and X\ If u is replaced in equations (8.1) by a

function of s, the resulting equations are equations of a curve F whose

points lie on the tangents to the given curve. Differentiating equation

(8.1) with respect to s, one has in consequence of (3.2) and (6.1)

,QO N dX i

( du
(8.2) _^i+
Since r are direction numbers of the tangent to F, if the latter curve

as

is to be such that its tangent at each point is perpendicular to the

tangent to C through the point, it is necessary and sufficient that

Zi dX l

n

<

a
*r

=
-

Since X/ ^
T =

0, this condition is that
t

(8.3) ^+1 =
ds

from which it follows that

(8.4) u = c - *,
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where c is an arbitrary constant. Hence there is an infinity of such

curves F, each defined by

(8.5) X* = x* + (c
-

)a*

for a particular value of c. They are called the involutes of the given

curve. From (8.4) it follows that the length of the segment of any

tangent to the curve determined by two involutes has the same value,

the difference of the c's of the two involutes.

FIG. 4. Involute of the circular helix of Fig. 2

When a curve C is defined in terms of a general parameter t, the

determination of s requires a quadrature (2.2), and then the involutes

are given directly by (8.5).

An involute when c s is positive may be described mechanically as

follows: Take a string of length c, fasten one end at the point of the

curve for which s = and bring the string into coincidence with the

curve
;
when the string is unwound from the curve and is kept taut, the

other end point describes the involute as is seen from (8.5).

From (8.2) and (8.4) we have

(8.6) ^*!-(c -,)48<.
as

Hence we have

[8.1] A curve has an infinity of involutes] a tangent to an involute at a

point X
1

is parallel to the principal normal to the curve at the corresponding

point x\
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If F is an involute of a curve C, we say that C is an evolute of F, that

is, it is a curve whose tangents are normal to F. Suppose then that we
start with a curve of coordinates x

l

,
and seek its evolutes. Since the

points of an evolute lie in the normal planes to the curve, its equations
are of .the form

(8.7) X* = x* + up + vy\

where u and v are functions of s to be determined. From these equa-
tions in consequence of (3.2) and (6.1) we have by differentiation with

respect to s

/0 ON dX l

/1 \i (du . \ i . (dv \ t
-

(8.8)
- - = (1 UK)a + I + VT

] $ +
[

UT
} 7 .

as \as / \tts /

Since these quantities are direction numbers of the tangent to an evolute,

they must be proportional to X 1

x\ that is, to ufi* + vy\ which as

follows from (8.7) are direction numbers of the line joining the points

X 1

and x\ Consequently we must have u I/K and

du . \ (dv

When this equation is written in the form

dv du f 2
,

2\
U
ds-

V
Ts

=(u +V}T'

we see that its integral is

(8.9)
V = tan (co + c),
u

where by definition

(8.10) co = I T ds,

and c is an arbitrary constant. Substituting these results in (8.7), we

obtain

(8.11) X*' = x
1
'

+
1

(/3* + tan (co + c) 7'').
K

For each value of c these are equations of an evolute. Consequently a

curve has an infinity of evolutes. Since the curve is an involute of each

evolute, we have
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.2] A curve C has an infinity of evolutes', the principal normal to an evolute

is parallel to the tangent to C at the corresponding point.

From equations (8.11) and (4.9) it follows that the points of all of

these evolutes corresponding to a given point on the given curve lie on

the line, called the polar line, parallel to the binormal and through the

center of curvature for the given point on the curve. Moreover from

[8.9) it follows that to + c is the angle which the line joining a point on

bhe curve to the corresponding point on an evolute makes with the

3sculating plane of the curve at this point. Hence we have

.8.3] When each of the normals to a curve C which are tangent to an evolute

s turned through the same angle about the corresponding tangent to C, the

Inormals in their new position are tangent to another evolute of C.

From (8.11) and (8.10) it follows that it is possible to choose c so that

t he points of the corresponding evolute lie in the osculating planes only

in case co is a constant, in which case r =
0, that is, when the curve is

plane. In this exceptional case this evolute is the locus of the centers

3f the circle of curvature and is a plane curve, except when the given

rnirve is a circle, in which case the locus is the center of the circle.

Phis evolute is the one which in the differential calculus is called the

3volute of the plane curve. However, a plane curve has an infinity of

jvolutes, as c in equations (8.11) takes all possible values. From the

form of these equations it follows that these evolutes lie on the cylinder

whose generators arc the normals to the plane of the given curve at

points of the evolute in the plane, that is, the evolute for which c = co.

Moreover, from the remark preceding theorem [8.3] it follows that the

tangents to each evolute make constant angles with the generators of

this cylinder and consequently these evolutes are cylindrical helices

(see 3 Ex. 2). Hence we have

$.4] A plane curve other than a circle has an infinity of evolutes, each of

which is a helix of the cylinder whose right section by the plane of the curve

is the plane evolute of the curve.

EXERCISES

1. The involutes of a circular helix (3, Exs. 1, 8) are plane curves, which

also are involutes of circular sections of the circular cylinder upon which the

helix lies.

2. For an involute (8.5) for which c s is positive the arc, direction cosines

Df the tangent, principal normal, binormal, and the curvature and torsion are
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given by

8 - f (c
-

S)K da, 5*' - /3',

_. ica' -t- ry' _, rot' - Ky'
&*= , 7* - - -/=VK2 + T2 V 2 + T2

lM;)' ,._JCI
C-S '

(C
-

)(* + T2 )

3. A necessary and sufficient condition that the involutes of a twisted curve

be plane curves is that the curve be a cylindrical helix (see 6, P]x. 6).

4. Find the evolutes of the curves of 5, Exs. 4 and 5.

5. For an evolute (8.11) the arc, direction cosines of the tangent, principal

normal, and binormal, and the curvature and torsion are given by

3 s85
/ T I

~
I + ~ tan (w + c ) sec (" + c) ds,

Jo Lds \V K J

a* = cos (w + c)/3* -f- sin (co + c)y
{

, ft* ea\

7* = e [ sin (w + c)j9
l
-f cos (w -f 0)7*],

en cos (w + c), K sin (w + c)

sec (a, + c) (
-

)
+

T
tan ( + c)

Lds \V K J

where e is -J-l or 1 so that K is positive.

9. THE TANGENT SURFACE OF A CURVE. THE POLAR
SURFACE. OSCULATING SPHERE

When for any curve the two parameters s and u are eliminated from

the three parametric equations of its tangents, namely

(9.1) X 1
'

= x\s) -f W(s),

we obtain a single equation in the X\ Consequently (see 1) the locus

of points on the tangents to a curve is a surface, called the tangent

surface of the curve, and each of the tangent lines is called a generator

of the surface. When the curve is defined in terms of a general param-
eter t equations of the tangent surface are

(9.2) X' = *<) + ',
at

where now u is not the distance of the point X
1

from the point x as

it is in (9.1).
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When 5 and u in (9.1) are given particular values, equations (9.1)

give the coordinates of a point on the surface. Thus the locus is two

dimensional, which is another proof that the locus is a surface. If in

(9.1) we replace u by a function of s, say <p(s), the resulting equations
are parametric equations of a curve on the surface. In particular, if

we put u = c s, where c is a constant, then, as follows from 8, the

curve for each value of c is an involute of the given curve. Consequently

FIG. 5. Tangent surface of the circular helix of Fig. 2

all the involutes of a curve lie on its tangent surface. They are the

curves which intersect the generators of the surface at right angles,

that is, the involutes are the orthogonal trajectories of the generators.

Since there is only one set of orthogonal trajectories of a set of lines, we

have

[9.1] The orthogonal trajectories of the generators of the tangent surface of

a curve are the involutes of the curve.

According as u in equation (9.1) has a positive or negative value the

point lies on the portion of the tangent drawn in the positive direction
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from a point on the curve or in the opposite direction. Hence the

surface consists of two parts, or sheets, one part consisting of all the

points for which u ^ 0, the other of the points for which u ^ 0. Thus
the curve forms a common boundary of the two sheets.

In order to get an idea of the form of the surface in the neighborhood
of the curve, we recall from 6 that in the neighborhood of the point
P (s

= 0) the curve approximates the twisted cubic

(9.3) J =
s, *> =

where KQ and TO are the curvature and torsion of the given curve at the

point PO ,
the tangent, principal normal, and binormal at PO being the

coordinate axes. Noting that s is the arc of the given curve but not

of the cubic, we have that equations of the tangent surface to the curve

(9.3) are

(9.4) X1 = s + u, X2 = + i, J3 = -

In this coordinate system the plane x
l

is the plane normal to the

given curve and to the cubic at P
,
and cuts this tangent surface in

the curve F for which u = s. From the second and third of equa-
tions (9.4) it follows that equations of this plane section are

2 3

v l _ n V2 KQS V3 _ *OT()Sx -o, x - --, x -
3
-.

On eliminating s from the second and third equations we see that the

curve is a semi-cubical parabola with the negative half of the principal

normal for cuspidal tangent. Since this is the case at every ordinary

point of the curve, that is, every point at which neither K nor r is zero,

we have

[9.2] The tangent surface of a curve consists of two sheets which are tangent

to one another along the curve, and thus form a sharp edge, namely the curve.

The curve is called the edge of regression of the surface. An idea of

the form of the surface in the neighborhood of the curve may be had

from Figs. 5 and 6.

The line with the equations

(9.5) X 1
'

= x
{ + pp + uy*

for each value of s is the polar line, as defined in 8, corresponding to

the point x
%

on the curve for this value of s, and the parameter w is the
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distance of a point on the line from the corresponding center of curva-

ture, namely the point x + p/3\ Since equations (9.5) involve two

parameters, s and u, it follows that the totality of the polar lines of a

curve constitute a surface; it is called the polar surface of the curve.

We shall show that this surface is the tangent surface of another curve

defined by (9.5) when u is replaced by a suitable function of s.

FIG. 6

If u is any function of s, we have from (9.5) in consequence of (3.2)

and (6.1)

/A <*\ dX* (dp . \ Q i . (du
(9 - 6) -"

These are direction numbers of the tangent to the curve (9.5) for u a

given function of s. If the polar line with respect to the given curve is

to be the tangent to the curve (9.5) for u equal to some function of s,

the direction numbers must be proportional to 7*. This requirement is

satisfied, if and only if u = --. Hence we have
T ds

[9.3] The polar surface of a curve is the tangent surface of the curve with

the equations

r ds

Consider the sphere 2 with center at the point of coordinates (9.7)

for a given value of s and passing through the corresponding point x
l

on the curve, that is, the point for this value of s. Evidently the circle

of curvature for the point x lies on 2, and the square of radius R of 2

AM'
\r d*J

'is p
2

-f (---). We shall show that S has contact of the third order

with the curve at P, that is, if R + 5 denotes the distance between the

center of 2 and a point P on the curve such that the arc PP is s, then

5 is of the order of s
4

. In order to establish this result we make use of

equations (6.7). The center of the sphere corresponding to the point
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FIG. 7. A twisted curve with normal planes, centers of curvature, an evolute, and

the polar developable
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of the curve at the origin of the coordinate system used in (6.7) is at

the point ( 0, p,
-

1 . Hence we have
\ r ds/

(fi + a)
= i

i' + (p -3) + (_!*_\ T ds

On substituting for x* from (6.7) we find that 2Kb + d
2

is equal to an

expression in the fourth and higher powers in s as was to be proved.

Hence we have

[9.4] The sphere through an arbitrary point P of a skew curve and with

center given by (9.7) has contact of the third order with the curve at P.

This sphere is called the osculating sphere of the curve at the point P.

Hence we have

[9.5] The polar line for a point of a curve is tangent to the locus of the

center of the osculating sphere of the curve at the corresponding point.

The previous results are represented in Fig. 7 in which the curve

is the locus of the points M, Af i ,
A/2 , ;

the points C, C\ ,
C

Y

2 ,

-

are the corresponding centers of curvature; the planes MCN,
MiCiNi ,

are normal to the curve; the lines CP, C\P\ ,
are the

polar lines; and the locus of the points P, P\ ,
is the edge of regres-

sion of the polar surface.

A curve all of whose points lie on a sphere is called a spherical curve.

The normal planes to such a curve pass through the center of the

sphere. The coordinates of the center are given by equations (8.7),

where u and v must be such functions of ,s that ~ = 0. From (8.8)
ds

it follows that u = - = p and that
K

(9.8)
Ci

.

p + TV =
0,

*? -
pr = 0.

ds ds

From the first of these equations we have v - and hence the
T ds

coordinates of the point are given by (9.7). When this value of v is

substituted in the second of (9.8), we have the following condition to

be satisfied by p and r:

(9.9) pr+~
ds
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From (9.7) it follows that the square of the distance between the points

(1

d \ 2

-
) ,

which is a constant when the condition (9.9)
T as/

is satisfied.

Conversely, when the condition (9.9) is satisfied it follows from (9.7)

that r = 0. Thus, when equation (9.9) is satisfied, all the normal
as

planes to the curve pass though a fixed point, which is at the same

distance from the points of the curve. Hence we have:

[9.6] A necessary and sufficient condition that a curve be spherical is that

its intrinsic equations satisfy the condition (9.9).

Also we have proved incidentally that

[9.7] When all the normal planes to a curve have a point in common, the

curve is spherical.

EXERCISES

1. The tangent surface of the cubic (1.17) is an algebraic surface of the fourth

order.

2. The osculating plane of the curve (9.3) at the point s = is the plane
x 3 =

0, which meets the tangent surface (9.4) in the generator and in the parabola
x 1 = 2s/3, x2 = K s 2

/6 ,
whose curvature is 4*0 ;

thus the osculating plane at a

point P of a curve meets the tangent surface in a generator and in a curve whose

curvature at P is three-fourths of the curvature of the curve at P.

3. The polar surface of a plane curve is a cylinder, whose right section is the

plane evolute of the curve.

4. Any sphere which contains the circle of curvature for a point P of a non-

spherical twisted curve and which is not the osculating sphere at P has contact

of the second order with the curve at P.

5. The angle between the radius of the osculating sphere of a twisted curve

at a point /* and the locus of the center of the sphere is equal to the angle between

the radius of the circle of curvature and the locus of its center.

6. When a twisted curve is spherical, the center of curvature for a point is the

orthogonal projection of the center of the sphere upon the osculating plane.

7. The only spherical curves of constant curvature are circles.

10. PARAMETRIC EQUATIONS OF A SURFACE.

COORDINATES AND COORDINATE CURVES
IN A SURFACE

Equations (9.2) and (9.5) of the tangent surface and polar surface

of a curve respectively are particular cases of three equations of the

form

(10.1) x< =f(u\u
2

) (i= 1,2,3).
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Suppose now that one has three such equations where f are one-valued

functions of two variables u and u. If the functions f are such that

it is possible to eliminate u
1

and u from these equations and obtain a

single equation

(10.2) F(x\ x\ x
3

)
=

0,

then in accordance with the definition of a surface in 1 equations (10.1)

are equations of a surface. This idea was used in 9 in establishing

that equations (9.2) are equations of a surface.

In order to determine whether three equations (10.1) in which the

fs are functions of the ?/s are equations of a surface, we define quanti-

ties A l}
thus

c d
ii

AC/
1
'

fA du 1 du 1

(10.3)
d(u

l

,
u2

df
du*

df
du2

(i,j= 1,2, 3;

that is, A
13

is the jacobian of/
1

and /
;

with respect to u and u. If

A
1

'

2
is identically equal to zero, then there is a functional relation be-

tween x
}

and x
2

,
that is, <pi(x

l

,
x

2

)
= 0.* If also A n =

0, there is a func-

tional relation ^(x
1

,

3

) 0, and thus the locus is a curve and not a

surface (see 1). It is readily shown that if A 12 = /I
13 = then A 23 = 0'.

Hence we have

[10.1] Three equations (10.1) are equations of a surface, if the jacobian

matrix

df
... ... du1

(10.4)

df df
2

du2 du2

a/
3

du2

is of rank two, that is, not all of the determinants of order two are identically

zero.

It is to be observed, as just remarked, that if two of these determinants

are identically zero, the third also is, and the rank is less than two

(see Ex. 6).

The definition of a surface by three equations in terms of two variables

u
1

and u'
1

as in (10.1) was introduced by Gauss.j Formerly a surface

*
Fine, 1927, 1, p. 257.

t 1827, 1.
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was defined by a single equation (10.2), until Monge used the particular

form

(10.5) z
3 = f(x\ x).

The latter had advantages over the form (10.2) in the investigation of

certain types of surfaces. However, the method of Gauss is in many
respects superior to both the other methods. It is customary to refer

to equations of the form (10.1) as parametric equations of a surface.

In particular, the method of Monge is equivalent to the following

equations :

(10.6) x
1 = x\ x = x\ a;

3 = f(x\ x*),

where now a;
1

and x
2
are the variables u and u

2

.

Another interpretation of theorem [10.1] is that u
1

and u
2

are inde-

pendent variables, and thus that the locus is two dimensional. When
in equations (10.1) u

1

and u
2
are given particular values, these equations

give the coordinates of a point in the surface, as viewed from space in

which the surface lies, that is, the enveloping space. However, one may
consider the situation in the surface itself without reference 4 to the

enveloping space, and say that u
1

and u are coordinates in the surface

of a point in the surface. An example of this is the use of latitude and

longitude as coordinates in the surface of the earth.

It should be remarked that, if one eliminates u and u
2

from equations

of the form (10.1) and obtains an equation of the form (10.2) it may be

that equations (10.1) apply to only a portion of the surface with the

resulting equation (10.2) (see Ex. 3). However, in consequence of

theorem [10.1] it follows that two of the equations (10.1) can be solved

for u
1

and u
2

, namely two for which the corresponding A
IJ

is not iden-

tically zero, and when these values are substituted in the third one ob-

tains an equation similar to (10.5). This equation defines the same

surface or portion of a surface as equations (10.1), and thus for the

coordinates x
1

of a point in the surface u and u are uniquely defined.

When in equations (10.1) u is given a constant value and u varies,

the locus is a curve, as viewed from the enveloping space, its equations

being of the form (1.10) with u as parameter; moreover, it is a curve in

the surface. There is an infinity of such curves in the surface, one for

each value of u
2

',

we call them the coordinate curves u
2 =

const., and also

the ^-coordinate curves. In like manner there is an infinity of coordinate

curves u
1 =

const., and called also the u -coordinate curves. They are

the analogue of the lines parallel to the coordinate axes in the plane

referred to a cartesian system. When the plane is referred to polar



10] COORDINATE CURVES IN A SURFACE 47

coordinates, they are the analogue of the lines through the pole of the

system, and of the circles with center at the pole (see Fig. 8).

The surface with equations of the form

is a cylinder whose equation of the form <f>(x

l

,
x

2

)
= is obtained on the

elimination of u
1
from the first two of equations (10.7); in this case the

curves u
1 = const, are the generators of the cylinder, and the character

of the curves u
2 = const, depends upon the form of the function f.

FIG. 8. Coordinate curves in a surface

In general the coordinate curves are not straight lines but curves.

Accordingly some writers call u
1

and u curvilinear coordinates in the

surface, but we call them simply coordinates in the surface.

If in equations (10.1) we replace u
2

by

(10.8) u
2 = ^(u

1

),

the resulting equations are equations of a curve, as viewed from the

enveloping space. Since this curve is in the surface, an equation of

the form (10.8) is an equation of a curve in the surface expressed in

terms of the coordinates u
1

and u
2
in the surface, as is also an equation

of the form

(10.9) >(u
l

,
u* 0.
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For example, for a cylinder (10.7) the equation (see 3, Ex. 2)

f\u\ u) - cot
/ V(fT+(?~'fdu

l =

is an equation of a curve in the cylinder which intersects the generators

under the constant angle 0, that is, the curve is a cylindrical helix. Also

each of the equations

as i takes the values 1, 2, 3 and the c's are constants, is an equation of

the family of curves in which the corresponding planes x c
l

in space

cut the surface with equations (10.1).

If in (10.1) we substitute for u
1

and u
2

the expressions

(10.10) u
a = <p(u'\ u'~) (<*

=
!, 2),

where the <p's are independent functions of u'
1

and u'
2

,
that is,

we obtain another set of parametric equations of the surface, say

(10.12) x'=f"(u'\u'-) (i=l,2,3).

Consequently there is great generality in the choice of two coordinates

in terms of which a surface is defined by moans of equations of the

form (10.1).

We refer to (10.10) as a transformation of coordinates in the surface.

If the jacobiau (10.11) is identically zero, this means that there is a

functional relation between the <p's, say F(<p\ </)
=

0, and then from

(10.10) it follows that the coordinates u'
a
for a =

1, 2 apply only to

the curve F(u ,
u

2

)
= and not to the whole surface. Another signifi-

cance of the condition (10.11) is that equations (10.10) can be solved

for u'
a *

say

(10.13) u'
tt =

<p'

a
(u, u

2

),

which equations give the coordinates u'
a

of a point of coordinates u
a

in the i^-system. Equations (10.13) define the inverse of the transforma-

tion (10.10).

It should be remarked that even if (10.11) holds, there may be values

of u'
a
for which the jacobian is equal to zero. Eor such values there is

*
Fine, 1927, 1, p. 334.
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not a unique inverse (10.13), and special consideration has to be given
to such cases. However, the discussion which follows presupposes that

for the domain considered the condition (10.11) holds. Clearly for

such a domain no two of the u
l
- or ^/-coordinate curves can intersect.

From (10.10) it follows that the coordinate curves u
a = c

a
in the

?4-system have the equations

in the ?/-system, and from (10.13) that the coordinate curves u'
a

c'
a

in the w'-system have the equations

<p'

a
(u\ u) = c

ra

in the u-system. However, for a transformation

(10.14) u
1 = v(u

/l

), u
2 = v(u'

2

)

or

(10.15) u = <p\u
f2

), ?/ -
<p*(u'

1

)

the net of coordinate curves, that is, the two families of curves u =
const, and u

2 =
const., is not changed but. the coordinates are changed,

as is readily verified.

KXERCISKS

1. The equations
x l a sin u 1 cos u2

,
x 2 = a sin u 1 sin u 2

,
x 3 = a cos w 1

,

where a is a constant, are parametric equations of a sphere of radius a. What
are the coordinate curves u 1 = const, and u 2 = const.?

2. A surface with the equations

(i) x 1 = u 1 cos u2
,

x 2 u 1 sin u 2
,

x 3 =
<p(u

l
)

is the surface generated when the plane curve with equations

x 3 = <p(x
l
), x2 =

is revolved about the z 3-axis
;
such a surface is called a surface of revolution. What

are the coordinate curves u 1 = const, and u 2 = const.? The latter are called

the meridian curves', by what change of coordinates can the equations of Ex. 1

be given the form (i)?

3. The equations

/ CLi((li ti
1
) (fl U2

}
A I *

Y (en
-

dj) (ai
-

a*)
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in which the a's are constants, and i, j, k take the values 1, 2, 3, cyclically, are

equations of a central quadric; it is

an ellipsoid when a\ > u l > a > u1 > ai > 0,

an hyperboloid of one sheet when ai > w l > a 2 > > a s > w 2
,

an hyperboloid of two sheets when a\ > > a 2 > u l > as > u2
.

4. A surface which is the locus of a line perpendicular to a fixed line, called

the axis, and satisfies a further condition is called a right conoid; equations of a

right conoid are

x 1 = w l cos u 2
,

x* = u l sin u 2
,

x* =
v?(u

2
);

when ^(w 2
)
= a cot w2 + 6, where a and 6 are constants, the conoid is a hyperbolic

paraboloid.
5. Find equations of a right conoid whose axis is the x 3-axis and which contains

the ellipse

(X2 )
2

,
(*

3
)
2

iXl = a _|_
- = 1.

fc
2 C2

6. When the rank of the jacobian matrix (10.4) is two and one of the deter-

minants of the second order is identically zero, the surface is a cylinder.

11. TANGENT PLANE TO A SURFACE

The tangent at a point P to a curve upon a surface

(11.1) x
1
'

= f(u, M
2

) (i
=

1, 2, 3)

is called a tangent to the surface at P. It is evident that there are an

infinity of tangent lines to a surface at a point. We shall show that

ordinarily these lines lie in a plane, called the tangent plane to the surface

at the point.

If we define a curve through a point x
l

by the equations

(11.2) u =
<f"(f) (a =

1, 2),

we have from (11.1)

dJ = df^
du

df^ d^
dt du 1 dt du2 dt

'

Hence equations of the tangent at x are (see 3)

'

4.^
i

dt
+

dy?

where I is a parameter. Eliminating I - - and I from these equa-
at at
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tions, we obtain

(11.3)

X 1 -

dli
1

a/
1

du 2

df
du l

9w2

df
dul

df

= 0.

For particular values of u and u
,
that is, at a point on the surface,

this is an equation of a plane. Since the equation is independent of

the functions <p and # in (11.2), it follows that this plane contains all

the tangent lines to the surface at the point, and consequently is an

equation of the tangent plane at the point. At points of the surface,

if any, for which the cofactors of the elements of the first row in the

determinant (1 1.3) are simultaneously equal to zero, the equation (11.3)

is not denned. Such points are called singular points of the surface,

and all other points are called ordinary points. Hence we have

[11.1] The. tangents at an ordinary point on a surface to the curves on the

surface through the point lie in a plane,] when the surface is defined by para-

metric equations (11.1), equation (11.3) is an equation of the tangent

plane at the point x
l

.

For the tangent surface to a curve with the equations (9.1) the equa-
tion (11.3) reduces to

X 1 - X2 -x2 - x

which hy means of (5.7) is

(A"'
-

Since this equation does not involve ?/, the tangent plane at one point

of the surface is tangent to the surface at each point of the generator

through the given point. Comparing this equation with (3.13), we
have in consequence of (4.7)

[11.2] The tangent plane to the tangent surface of a curve is the same at

all points of a generator; it is the osculating plane of the curve at the point

where the generator is tangent to the curve.
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In order to obtain an equation of the tangent plane to the polar sur-

face of a curve, we note that in consequence of equations (6.1) we have

from (9.5)

ar dp ,

r"
du

Hence in this case equation (11.3) is reducible to

X 1 -xl X2 - x
2 X3 -

3
1

/3

2

/3

3

=0,

where in this equation X
1

are current coordinates. In consequence of

(5.7) this equation reduces to

From the form of the equation and the fact that it does not involve u 1

we have

[11.3]. The tangent plane to the polar surface of a carve is the same at all

points of a generator ;
it is the normal plane to the curve at the point whose

polar line is this corresponding generator of the polar surface.

In order to find an equation of the tangent plane to a surface defined

by a single equation

(11.4) f(x\ x\

we assume that, x
!

for the surface are expressed in the form (11.1) in

terms of two coordinates 11 and u\ When these expressions are sub-

stituted in (11.4) the resulting equation is an identity in u
l

and w
2

,
and

consequently the derivatives of this identity with respect to u and u

are equal to zero. Hence we have

From these equations it follows that the quantities - are proportional

to the cofactors of the elements of the first row in equation (11.3).*

Consequently an equation of the tangent plane to the surface (11.4)

* C. G., p. 104.
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at a point x* is

(11.5)

EXERCISES

1. Find an equation of the tangent plane to the sphere with equations of the

form in 10, Ex. 1, and show therefrom that the tangent plane at a point is normal

to the radius of the sphere at the point.

2. Find an equation of the tangent plane at a point of a cylinder with equa-
tions (10.7), and show that the tangent planes at all points of a generator are

the same plane.

3. Find an equation of the tangent plane at a point of the cone a\x^ -f a-zx
2
*

-f

rtsx
3 =

0, where the a's are not all of the same sign, and show that the tangent

planes at all points of a generator are the same plane.

4. For a surface with the equation (10.5) an equation of the tangent plane is

(X* - x')
|

+ (X* - x*) ^ - (X' - x3
)
=

0;

this result follows also from (10.6) and (11.3).

5. The tangent plane to the right conoid (see 10, Ex. 4)

x 1 = u l cos it
2

,
x2 = u 1 sin u2

,
x 3 = a sin u2

at a point on the generator ?/
2 = meets the conoid in the generator and in an

ellipse.

6. The tangent planes at points of a generator of the right conoid

x l = u 1 cos u*, x2 = u 1 sin u2
,

x* = a \/tan u2

meet the plane x 3 = in parallel lines.

7. The normal to the tangent plane to a surface at the point of tangcncy is

called the normal to the surface at the point; the normals to any right conoid

(see 10, Ex. 4) at points of a generator are one family of rulings of a hyperbolic

paraboloid.

8. A surface with equations of the form

x 1 = u 1 cos w2
,

x 2 = u 1 sin u 2
,

x 3 = <p(u
1
} -f "" 2

,

where a is a constant, is called a helicoid; the coordinate curves w l = const are

circular cylindrical helices; find an equation of the tangent plane.

9. The distance of a point Q on a surface from the tangent plane to the surface

at a nearby point P is of the second order at least in comparison with the length

of the arc PQ.

12. DEVELOPABLE SURFACES. ENVELOPE OF A
ONE-PARAMETER FAMILY OF SURFACES

From the form of the equation (11.3) of a tangent plane to a surface

it follows that ordinarily this equation involves both of the parameters

u
1

and u
2

,
and consequently in general there is a double infinity of
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tangent planes to a surface. This is the case, for example, with a

sphere, the tangent plane at a point being normal to the radius of the

sphere at the point, as one sees geometrically (see 11, Ex. 1). How-

ever, we have seen that the tangent planes along a generator of the

tangent surface of a curve coincide, this tangent plane for any generator

being the osculating plane of the curve at the point of tangency of the

given generator. Likewise the tangent planes to a cylinder, or a cone,

along a generator are the same as is evident geometrically. Hence the

tangent planes to a tangent surface of a curve, to a cone, or to a cylinder

involve only one parameter, and consequently these surfaces are the

envelopes of a one-parameter family of planes. They are called

developable surfaces, since any such surface can be developed upon a

plane, that is, rolled out without stretching or contracting any part of

it. It is evident that this can be done with a cylinder or a cone.

We desire to show that with the exception of cylinders and cones

every developable surface is the tangent surface of some curve. We
consider first the more general problem of finding the envelope of a

one-parameter family of surfaces.

An equation

(12.1) /(*', x\ x
3

;
u

1

)
=

involving a parameter u as well as the x's is an equation of a one-

parameter family of surfaces, each of which is defined by (12.1) when

u
l

is assigned a particular value. Consider now the curve of intersec-

tion of the surfaces (12.1) and /(a;
1

,
x'

2

,
a:

3

;
u -f Aw

1

)
= for particular

values of u and Aw
1

. This curve is the curve of intersection also of

(12.1) and the surface

f(x
l

, x\ x*]u
l + ^^f(x\ x\ zYu

1

There is such a curve unless /(x
1

, x\ x
3

; u) =
<p(x

l

, x\ z
3

) + ^(w
1

), in

which case the preceding equation does not involve x\ We assume,

therefore, that u
1

does not enter in this manner. As Aw
1

approaches

zero this curve approaches a limiting curve defined by (12.1) and

(12.2) |,
= 0.

The curves defined by (12.1) and (12.2) as u
1

takes all values are called

the characteristics of the family of surfaces (12.1). They form a surface

E, called the envelope of the surfaces (12.1). Each surface of the family

and the envelope have one of the characteristics in common, arid, as we



12] ENVELOPE OF A FAMILY OF SURFACES 55

shall show, are tangent to one another along this characteristic
;
that is,

at each point of the characteristic the surface and envelope have the

same tangent plane.

Let the coordinates x of a point on the envelope be expressed in terms

of u
l

and some second parameter u, say x* = f(u
l

,
?/

2

). With this

choice of coordinates the coordinate curves u const, are the char-

acteristics. When these expressions for x
l

are substituted in (12.1),

the resulting equations are identities in u
l

and u
2

,
and consequently

the derivatives of this expression with respect to u and u are equal

to zero. In consequence of (12.2) we have

From these equations it follows that the cofactors of the elements of

the first row in the equation (11.3) of the tangent plane to the envelope
ftf

are proportional to
., and consequently an equation of the tangent

plane to the envelope at the point x
l

is

This is an equation of the tangent plane to a surface (12.1) for a given
Tf

value of u
1

,
as follows from (11.5). Since u

2
does not enter in -~, it

follows that at each point of a characteristic the corresponding surface

(12.1) and the envelope have the same tangent plane.

We consider now in addition to equations (12.1) and (12.2) the

equation

(12.3)
du

We denote by

(12.4) x' = /(')

the common solution, if any, of equations (12.1), (12.2) and (12.3).

Equations (12.4) are equations of a curve on the envelope of the sur-

faces (12.1) since they are solutions of (12.1) and (12.2), and for a

value u
1 = a

1

the corresponding point of the curve (12.4) is a point of

the characteristic u
1 = a

1

. We wish to show that at this point the

curve and the characteristic have a common tangent line.

If the expressions (12.4) are substituted in (12.1) and (12.2) the re-
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suiting equations are identities in u
1

,
and consequently their derivatives

with respect to u are equal to zero. In consequence of (12.2) and (12.3)

the result of differentiating (12.1) and (12.2) with respect to u
1

is

(12.5) /"-<>,

where the prime indicates differentiation with respect to u
1

. At a point

of the curve (12.4) the quantities/
2

'

are direction numbers of the tangent
to the curve at the point.

A characteristic u
1 = a

1

is the intersection of the surfaces defined by

(12.1) and (12.2) for this value of u\ From (11.5) it follows that the

tangent planes to these two surfaces at the point x\ =
/'(a

1

) are re-

spectively

Taken together these are equations of the line of intersection of these

two planes, that is, the tangent at x\ to the characteristic u
1 = a

1

.

From these equations and (12.5) it follows that/
1

'

are direction numbers

of the tangent at x\ to the characteristic. Consequently the charac-

teristics are tangent to the curve (12.4), and accordingly the latter is

the envelope of the characteristics. It is called the edge of regression

of the envelope E of the surfaces (12.1). Gathering together these

results we have

[12.1] The envelope of a one-parameter family of surfaces is a surface

which is tangent to each surface of the family along a curve, the characteristic

corresponding to the particular surface] the characteristics are tangent to a

curve, the edge of regression of the envelope.

When all the characteristics have one and only one point in common,
that is, when equations (12.1), (12.2) and (12.3) admit a common solu-

tion only for a particular value of it
1

,
this point is a degenerate edge of

regression.

We apply these results to a one-parameter family of planes with the

equation

(12.6) a,*
1
'

+ a =
0,

where a and a are functions of a parameter u
1

with the understanding

that a, arc not proportional to a set of constants c t
-

,
that is, that the

planes of the family are not parallel.* In this case equations (12.2)

* C. G., p. 101.
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and (12.3) are respectively

(12.7) aV + a' = 0, a-V + a" =
0,

where the primes denote differentiation with respect to u. From (12.6)

and the first of (12.7) it follows that the characteristics are straight lines.

If the determinant .4, defined by

(12.8) A =

a?

a\

ai

a 3

u
0,3

is not identically zero, equations (12.6) and (12.7) admit a unique solu-

tion (12.4), and by theorem [12.1] the envelope is the tangent surface

of the curve (12.4), unless the functions f(u) in (12.4) are constants.

If f(u
1

) are constants c\ then from (12.6) we have a = OjC
1

,
in which

case all of the planes of the family pass through the point c
1

. When
all the planes (12.6) have a point in common, the envelope is a cone,

unless all the planes have a line in common. In the latter case the line

of intersection of the planes (12.6) and the first of (12.7) must be in-

dependent of u
1

}
that is, that line and the one with equations (12.7)

must coincide. The condition for this is that the matrix

a\ 02 as a

(12.9) ai 02 as a

a\ a 2 as a

be of rank less than three.* Hence we have

[12.2] The envelope of a one-parameter family of non-parallel planes

(12.6) for which A, defined by (12.8), is not identically zero is the tangent

surface of a curve, or a cone', in the latter case a = o t-c
l

,
where the c

j

s are

constants, and c
1

are the coordinates of the vertex of the cone.

We consider next the case when ^4=0. In this case there are quanti-

ties h
1

,
h

2

,
A

3
such thatf

(12.10) h'ai = 0, Va'i =
;

h*a" = 0.

Differentiating the first two of these equations, we obtain in consequence
of the third

(12.11)

* C. G., p. 125.

t C. G., p. 116.

h''a,i
=

0,
= 0.
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From these equations and the first two of (12,10) it follows that a( are

proportional to the corresponding a, ,
and consequently a, are propor-

tional to constants c,- ,
the factor of proportionality being a function

of u
l

,
in which case the planes (12.6) are parallel. Since this case has

been excluded from this discussion, it follows that the h's are constants

so that equations (12.11) do not exist. Since a are direction numbers

of normals to the planes,* it follows from the first of (12.10) that all of

the planes are parallel to a line of direction numbers h{
. Consequently

the envelope is a cylinder, or all the planes have a line in common.
The former case arises when the three equations (12.6) and (12.7) do not

have a common solution, that is, when the matrix (12.9) is of rank threef.

As remarked above, the planes pass through a line when the rank of

the matrix is less than three. Hence we have

[12.3] When for a family of non-parallel planes a^
1 + a = the deter-

minant (12.8) is identically zero, the envelope of the planes is a cylinder or

all the planes have a line in common according as the rank of the augmented
matrix (12.9) is three or less than three,

We seek now a necessary condition upon a function/^
1

,
x

2

,
x

3

) in order

that the surface

(12.12) f(x\ z
2

,
z

3

)
=

shall be a developable surface, Assume that the surface is defined by
the equations x

l

<f>\u
l

,
u

2

), whore u
l = const, are the generators and

u = const, another set of coordinate curves. When those expressions

for x
l

are substituted in (12.12), the resulting equation is an identity in

u and u
2

,
and consequently

(12.13)
/,.g

=
0, *g =

0,

f)f

where / =
.

,
and the summation convention is applied. An equation

9x*

of the tangent plane to the surface (12.12) at the point x
l

is

(12.14) (X*
-

x*)fi
= 0.

Since equation (12.14) does not involve u by hypothesis its derivative

with respect to u is equal to zero. Therefore, in consequence of the

*C. G., p. 92.

t C. G., p. 126.
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second of (12.13) we have

(12.15) (X
i -x i

)fi
,'

dxl
- =

0,

where

59

Since M' = const, are the generators of the surface by hypothesis, their

equations are given in accordance with (12.1) and (12.2) by (12.14) and

which in consequence of the first of (12.13) reduces to

(12.16) (X'
-

z'XA/ --!
= 0.

On comparing equations (12.15) and (12.16) with (12.13), we see that

(12.17) (X*
-

x'tfij
=

tfj ,

where t is a factor of proportionality. In order that the three equations

(12.17), and (12.14) be consistent, it is necessary* that the equation

(12.18)

fll /12 /13 /I

/21 /22 /23 /2

/31 /32 /33 /3

/i /, /,

be satisfied in consequence of (12.12) or identically.

Conversely, if this condition is satisfied and x* <p*(u
l

, u} are equa-

tions of the surface, that is, satisfy (12.12) identically, when these

expressions for x* are substituted in (12.18) the resulting equation is an

identity in u
1

and u. Hence there exist functions a* and a of u and

u
2
such that

(12.19) offa + afi
=

0, afc = 0.

If any one of the quantities/, is equal to zero identically, then (12.18)

is satisfied identically and the surface is a cylinder whose generators are

* C. G., p. 139.
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parallel to a coordinate axis. There remains to consider the case when

each/; is not identically zero, and we write the equation (12.14) of the

tangent plane to the surface (12.12) in the form

(12.20) X 1

The quantities /2//i , /a//i ,
and *///! are functions of u

l

and u
2

,
their

form depending upon the functions <p

l

(u
l

,
u

2

). In order that the surface

(12.12) be developable it is necessary and sufficient that there be co-

ordinates u'
1

and u'
2
in the surface such that /2//i , /3//A ,

and &*/,-//i

shall be functions of one of them, say u'
1

. This means that these three

quantities must be functions of the same function, say \ls(u
l

,
u2

), in

which case u'
1 =

\l/(u

l

,
u

2

) and u'
2

is any other function of u and u

such that the jacobian of this function and \l/ is not identically zero.

If this condition is satisfied, the surface is developable and the curves

t(u
l

,
u

2

)
= const, are its generators. Hence a sufficient condition that

the surface be developable is that when (12.19) are satisfied the jacobian

of each pair of the quantities fz/fi , /s//i ,
and xji/fi with respect to u

1

and u
2
be identically zero. The jacobian of the first two of these quanti-

ties is

_!_

/I

which is equal to*

(/A/
- A/w) | (A/w

-
A/w)^

(A/W
~

A/1/) T-l (/i/W A/lj)

/I A

dx* dx'

In consequence of (12.19) and (12.13) this determinant is equal to zero.

Because of this result and (12.13) the jacobian of x*fi/fi and each of

the quantities fz/fi and /a//i can be shown to be equal to zero. Hence

we have

[12.4] A necessary and sufficient condition that J(x
l

}
x

2

,
z

3

)
= be an

equation of a developable surface is that equation (12.18) be satisfied in

consequence of the equation f(x
l

y
x
2

, x*)
= or identically.

*
Fine, 1904, 1, p. 505.
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Consider the equation

(12.21) c
'|i

=
'

where the c's are constants. Evidently any solution of this equation
satisfies (12.18) identically. Also (12.21) is the condition that the

normals to such a developable surface b^ perpendicular to a line with

direction numbers c\ Hence we have

[12.5] A necessary and sufficient condition that a surface f(x
1

J
z

2

,
z

3

)
=

be a cylinder is that f be a solution of an equation (12.21) in which the

c's are constants.

EXERCISES

1. The envelope of the planes normal to a curve is the polar surface (see 11) ;

the polar surface is also called the polar developable.

2. The envelope of the plane normal to the principal normal to a curve at a

point of a curve is called the rectifying developable of the curve; equations of its

characteristics are

X = x< + (rot*
-

iry<)J,

where t is a parameter, and equations of its edge of regression are

ds ds

3. If each of the generators of a developable surface, other than a cone or

cylinder, is revolved through the same angle about the tangent to an orthogonal

trajectory of the generators at the point of intersection, the locus of the resulting

lines is a developable surface whose edge of regression is an evolute of the given

trajectory.

4. The edge of regression of the family of planes

(I
- w2

)zi -f i(l + w2
)*

2
-f 2ux* + /(u) = 0,

where i = \/ 1 and u is the parameter, is a minimal curve; the envelope is

called an isotropic developable surface.

5. Find the edge of regression of the developable surface which envelopes the

hyperbolic paraboloid ax 3 = x lx* along the curve in which the paraboloid is cut

by the parabolic cylinder x l = bx*.

6. The curvature and torsion of the edge of regression of the family of planes

aiX* -f a = 0, where the a's are functions of a parameter u, are given by
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where

a D
a','

a

a'

//
a

a"'

primes denoting differentiation with respect to u.

7. For a family of spheres

(JB*
- a1

') (a;*
-

a*')
- a2 -

0,
t

in which the a's are functions of the arc of the curve C of centers, the edge of

regression consists of two parts with corresponding points symmetric with respect

to the corresponding osculating plane of C, unless

(i) a2
(l
- a' 2

)
-

p
2
[l
-

(aa')'l
2 - 0,

where p is the radius of curvature of C; when the condition (i) is satisfied, the

edge is a single curve, Ci ,
its points lying in the osculating planes of C, and the

spheres of the family are the osculating spheres of C\ .



CHAPTER II

Transformation of Coordinates.

Tensor Calculus

13. TRANSFORMATION OF COORDINATES. CURVILINEAR
COORDINATES

In the preceding chapter x\i =
1, 2, 3) denote cartesian coordinates

of space referred to rectangular axes. There are many such coordinate

systems, and the relation between two such systems x
l

and x ft
is given

by equations of the form

(13.1) x
i =

atx"' + 6*.

The coordinates x
/l

refer to a set of rectangular axes whose origin in the

z-system is &*, and a] , a] , a] are the direction cosines of the z"-axis

with respect to the z-system. These direction-cosines satisfy the

conditions*

(13.2) ZaX =
5, fc , Zaja* = 3*,

i t

where the quantities $,* and d
3k

,
called Kronecker deltas, are defined by

(13.3) djk and 8
jk = 1 or according as j = k or j ^ k.

Moreover the determinant of the quantities a] ,
that is,

(13.4)

02 #3

is equal to +l.f
If we denote by a<

3
the cofactor of a} in the determinant (13.4) divided

by the determinant, then

(13.5)

where d] ,
also called Kronecker deltas, are defined by

(13.6) 6y
= 1 or according as i = j or i 9* j.

* C. G., pp. 161-164.

fC. G., p. 162.
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The second set of equations (13.5) is equivalent to the statement that

the sum of the products of the elements of the j
ih column and the co-

factors of the corresponding elements of the i
th column is equal to the

determinant or zero according as i j or i ^ j* If then we multiply

equation (13.1) by a,'* and sum with respect to i, we obtain

(13.7) a,'V -
&*')

=
{*<*/*''

= **''' = *'*

Hence the loci x'
k = const, are parallel planes for which the quantities

a** are direction numbers of the normals to these planes in the x-system.f

However, if the first set of equations (13.2) for j ^ k are not satisfied,

the axes of the x'-system are not mutually perpendicular, as follows

from the remark following equations (13.1). Hence in this case the

x'-system is an oblique system of coordinates.

We consider next the case, when the determinant (13.4) is equal to

zero. In this case equations (13.1) in the x"s are consistent only when
the three determinants obtained on replacing the elements of a column

in the determinant (13.4) by x
l

6
1

,
x
2

6
2

,
x

3
6
3

respectively are

equal to zero.J Consequently in this case the quantities x'
1

are defined

only at points of the locus with these equations, and thus are not co-

ordinates for the space.

Equations (13.7) define the inverse of the transformation (13.1).

Moreover, equations (13.1) define the inverse of the transformation

(13.7) as follows from (13.5).

Polar coordinates constitute another type of coordinates frequently

used in space, particularly in astronomy. With reference to a cartesian

coordinate system x
1

polar coordinates x'
1

are defined by

(13.8) x
1 = x'

1

sin x'
2
cos x'

3

,
x

2 = x'
1

sin x'
2
sin x

/3

,
x

3 = x'
1

cos x'
2

.

The inverse of this transformation is

(13.9) x'
1 = VX xV

,
x'

2 = cos"
1 iL^,

,
x

/3 = tan"
1 -*

.

From these equations it follows that x'
1

is the distance of the point P(x
l

)

from the origin of the x-system; x'
2

is the angle which the line OP
makes with the x

3

-axis; and x
/a

is the angle which the projection of OP
on the xV-plane makes with the positive x^axis.

From (13.9) it follows that the loci x'
1 = const, are spheres with

* C. G., p. 110.

t C. G., pp. 92-93.

J C. G., pp. 124.
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as center; the loci x'
2 = const, are right circular cones each of which

has its vertex at and the #
3
-axis for axis

;
and the loci x'

z = const, are

planes through the z
3

-axis. We call these surfaces the coordinate

surfaces in the z'-system. In like manner the coordinate surfaces of

the x'-system defined by (13.1) and (13.7) are planes, which as shown

are mutually orthogonal only in case equations (13.5) are satisfied.

Equations (13.1) and (13.8) are particular cases of equations

(10 1A\ * _ ,-i/V 1
<r'

2 v fZ
}

^lO.lU^ X <p \X ,
JO

,
JC J,

where the tp's are one-valued functions of x'
1

,
x'

2

,
x'

3

. For any such

functions tp\ these are equations of transformation to a general set of

coordinates a;'
1

,
x''

2

,
x'

3

, provided that the functions tp

l

are independent.
If they were not independent there would be one, or two, relations of the

form F(tp
l

, tp

2

, tp*)
=

0, and in that case (13.10) are not equations of a

transformation of space; they have meaning only at points of the

locus with this equation, or equations. A necessary and sufficient

condition that the functions tp

1

be independent is that their jacobian,

namely

(13.11)
a?

be not identically zero* (see (1.19)).

When this condition is satisfied, there may be particular values of

x'
1

for which the jacobian is zero, but in general this is not the case,

that is, about a point x'
1

for which
dtp

a?
there is a domain for which

this inequality holds. For such values of x'
1

equations (13.10) can be

solved for a;'*; we denote such a solution by

(13.12)
" =

*'V, *,

These equations define the inverse of the transformation (13.10).

For equations (13.1) the jacobian (13.11) is the determinant (13.4).

When this determinant is not equal to zero, the a,'* exist and equations

*
Fine, 1927, 1, p. 253.

t Fine, 1927, 1, p. 253.
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(13.7) are the inverse of equations (13.1) and give the coordinates x
fi

for a point in terms of the x's of the point.

For equations (13.8) the jacobian (13.11) is found to be equal to

(a/
1

)

2
sin x'

2
. Since this quantity is not identically zero, polar coordi-

nates apply to all points of space, but they are not uniquely defined

when x
fl = or when sin x'

2 =
0, that is, at or on the x

3

-axis. Thus

at 0, x
rl = and x'

2
and x'

3
can take any values, that is, all the co-

ordinate surfaces x'
2
-const. and x'

3
-const. pass through 0. For any

point on the x
3

-axis, x'
3
can take any value, that is, all the coordinate

planes x'
3 = const, meet in the x

3
-axis. In these cases the coordinate

surfaces are degenerate, that is, xfl
is a point, and x'

2 =
0, TT, a line.

But for all other points equations (13.9) hold and are the equations of

the inverse.

When the expressions (13.12) for x'
1

are substituted in (13.10) we have

*' - *V l

, *'\ v'
3

)
=

0,

which are identities in the x's, as follows from the definition of (13.12).

Since they are identities, the left-hand member does not vary with any
of the x's, and consequently the derivative with respect to each x

1

is

equal to zero. Hence we have

dx' = dy d<p'
k

dx> d<p'
k dx>

'

where A; is a dummy index. Since x* and x 3
for i 7^ j are independent,

the left-hand member is + 1 or according as i = j or i j j. Accord-

ingly these equations may be written

where 6} are defined by (13.6). Since i and j take the values 1, 2, 3

there are nine equations in the set (13.13).

If we consider the expressions (13.10) for x" substituted in (13.12), we

obtain analogously to (13.13)

(13.14) ^^.-J.v '
dxk ax'^

'

When the jacobian of the transformation (13.10), namely (13.11)

denoted by
dx

,
is multiplied by the jacobian of the inverse (13.12),

dx'

one obtains in consequence of (13.13) a determinant in which each
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element of the main diagonal is +1 and every other element is zero.

Hence we have

dx'

dx
(13.15) 1,

that is, either jacobian is the reciprocal of the other. Thus the relation

between equations (13.10) and (13.12) is such that either is the set of

equations of the inverse transformation of the other.

If in equations (13.13) we give i a fixed value and let j take the values

dx* dx
i

, dx
i

1, 2, 3, we have three equations of the first degree in ^ , ^ and T .

Solving these equations for these quantities, we obtain (see Ex. 1)

(13.16)
dx<

Although we started this section, interpreting x
v

as cartesian co-

ordinates in space, and took equations (13.10) as equations of a trans-

formation from such coordinates to any other, in deriving the properties

of the transformation (13.10) and the inverse (13.12), no use has been

made of the fact that x* were cartesian coordinates. Therefore all the

results of this section apply equally well when equations (13.10) give

the relation between the coordinates of any two general systems what-

ever in space. Thus, if x
l

are any set of coordinates, equations (13.1)

and (13.8) define a transformation of coordinates; but the geometric

interpretation of the new coordinates in these two cases given above

applies only to the case when x
%

are cartesian coordinates.

We consider now in connection with a transformation (13.10) a second

transformation

(13.17) x =

it being understood that the jacobian
dx

is not identically zero.

When these expressions for x'
1

are substituted in equations (13.10),

the resulting equations denoted by

/1Q 1Q"\ T* /rY'r" 1 T//2
sr

lfZ}
^lO.AOy */ */

\^JLf ,
l/

,
*/ ^

define a transformation from x
l

into #"*, called the product of the trans-

formations (13.10) and (13.17). Since

dx* dx* dx
tk

dx"' dx'k dx">''
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it follows from the rule of multiplication of determinants that

dx dx' dx

and hence that the jacobian of the product of two transformations <

coordinates is the product of the jacobians of these transformation

We say that transformations of coordinates have the group proper

by which we mean that the product of any two such transformations is

transformation of coordinates.

If x
l

are cartesian coordinates, each of equations (13.12) for a parti'

ular value of an x' is evidently an equation of a surface in space, an

for three particular values of x'
1

,
x'

2
and z'

3

these are equations of thr(

surfaces in space intersecting in the point with these coordinates in tl

z'-system, as discussed above in the case of linear equations (13.1) an

polar coordinates (13.8). In like manner for particular values *

cartesian coordinates x\ equations (13.10) are equations in the c<

ordinates x
ft
of the planes through the point x

1

parallel to the coordinai

planes x
1 = 0.

If x
1

and x
f%

are any coordinates whatever, equations (13.12) f(

particular values of x'
1

,
x'

2

,
x'

3

are equations of three surfaces, define

in terms of the coordinates x\ which pass through the point (x
fl

,
x'

2

,
x'*

and similarly for equations (13.10).

Another way of stating the above remarks is that in any coordinai

system each of the equations

(13.19) x
1 = c

1

,
x

2 = c
2

,
x

3 = c
3

for particular values of the constants c is an equation of a surface f(

which one of the coordinates is a constant for all points of the surfac

the values of the other two coordinates determining a particular poir

on the surface. Thus equations (13.19) are equations of surfaces whic

are the analogue of planes parallel to the coordinate planes of a re<

tangular coordinate system. As the constant c* in any one of thes

equations takes on a continuum of real values, the equation is a

equation of a family of surfaces. Thus each of these equations

an equation of an endless number of coordinate surfaces. In the x

system defined by (13.10) equations of these coordinate surfaces ai

<f>\x
fl

,
x

/2

}
x'

3

) c\ There passes one and only one surface of eac

family through each point in space for which the jacobian of the trani

formation from cartesian coordinates to the coordinates in question

not zero. At points where the jacobian vanishes the new coordinate

are not uniquely defined, as remarked in the case of equations (13.8
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Any two of equations (13.19) for particular values of the c's are

equations of the curve of intersection of the corresponding coordinate

surfaces. Along such a curve the remaining coordinate is a parameter;
thus x

l

is a parameter for (any) one of the curves x c and x
3 = c

3
.

We call these curves coordinate curves, and, in particular, an x^coordi-

nate curve one for which x
l

alone varies, and thus will serve as a param-
eter. These curves are the analogues of lines parallel to the coordinate

axes in cartesian coordinates. Since these curves are not in general

straight lines, the corresponding coordinates are called curvilinear.

From the above discussion it follows that whatever be the coordinates

x
l

in general the locus defined by an equation f(x
l

,
x
2

,
a:

3

)
= is a surface,

and the locus defined by ,two independent equations fi(x
l

,
x

2

,
x

3

)
=

0,

f*(x
l

,
z
2

,
z

3

)
= is a curve. This is equivalent to the definition of a

surface as a two-dimensional locus, and of a curve as a one-dimensional

locus (see 1).

EXERCISES

1. It follows from (13.5) that

and that a) is the oofactor of a<
;

in the determinant
| aj* |

divided by the

determinant.

2. From (13.3) and (13.6) it follows that

and consequently 5^' is the cofactor of 5;,- in the determinant
|
8a

\
(see (13.16))

3. From (13.6) it follows that

4. From (13.4) and (1.19) it follows that

e **!<*!; "
I a/ I

ei J

e^ka\a^a
n
k

| oj |

elmn .

5. By giving to i and j different values one verifies that the cofactor of a} in

the determinant (13.4) is given by

6. Determine the coordinate surfaces x fi const, for each of the following

transformations, in which x i are cartesian, and find the points for which the

jacobian is equal to zero:

(i) zl = x'W* cos x/3
,

x2 - z' lz'2 sin x'\ 2x3 - (x'i)
2 -

(z'
2
)
2

;

n*'
1 -^)^2 -^*'8

-^)"!*

-[ (a/-a<)(a*-a<)
-

J
'
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where i, j, k take the values 1, 2, 3 in cyclic order, that is 1, 2, 3; 2, 3, 1
; 3, 1, 2,

and where a 1 > a* > a3 > 0.

7. Discuss the coordinate curves for each of the systems in Ex. 6 and also

for (13.8).

14. THE FUNDAMENTAL QUADRATIC FORM OF SPACE

We have seen in 2 that for a curve in space defined by equations of

the form

(14.1) x" = f(0,

the x's being cartesian, the differential of length of the curve is given by

d/ = i
1

Accordingly we say that the element of length, or linear element, ds of

space is given by

(14.2) ds
2 = (dx

1

)'

2 + (dx
2

)'

2 + (dx*)\

by which we mean that, when the differentials dx
1

from (14.1) are

substituted in (14.2), the expression for ds obtained therefrom is the

differential of arc length of the curve (14.1). The right-hand member of

(14.2) is called thefundamental quadraticform of space.

In terms of any other coordinate system x
n we have from (13.10)

(14.3) dx
1

r dx'
3

,

and from (14.2)

/* A ,\ 72 v^ I dx ^ ,t\/ dx
(14.4) ds =

2-r I
TJ
dx 11

Tk

where

from which it follows that a/*
=

a*/ .

Since the coordinate system x
ft

is any whatever, it follows that in any
coordinate system x* the fundamental quadratic form is

(14.6) ds
2 = ait dx* dx\

where a, is symmetric in the indices i and,;, that is, a,-/
=

a,-f . When, in

particular, the coordinates x* are cartesian, we have (14.2), and con-

sequently

(14.7) an = $
,

ds
2 = 6<y da? dx'.
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In the case of polar coordinates (13.8) we have from (14.5)

(14.8) . ad =
1, aj, = (z'

1

)

2

,
an =

(a;'

1

)

2
sin

2
x'

2

y

a,ij
= for i ^ j.

Hence in polar coordinates the fundamental form is

(14.9) ds
2 =

(dx'
1

)

2 + (x
fl

)

2

((dx'
2

)

2 + sin
2
x'

2

(dx*)
2

).

We desire now to find the relation between the coefficients a,/ and a*/

of the fundamental form in any two coordinate systems z* and x'\

Since the element of length ds does not depend upon a coordinate system,
the fundamental forms in any two coordinate systems are equal. Hence
we have

Q/ijdx dx ==
djci dx dx .

Substituting for dx
1

and dx 3 from equations of the form (14.3), we have

t'
k
dx fl = 0.

Since this equation must hold for arbitrary values of the dx"s, and the

expression in parentheses is symmetric in k and Z, it follows that

(14.10) aii = a

In order to obtain this result, one takes dx'
1 ^ 0, dx'

2
dx'

z =
0, and

gets equation (14.10) for k I = 1. In like manner, as one takes

every other two of the differentials equal to zero, one gets (14.10) for

h = I = i
} 2, 3. In order to obtain the remaining three equations

(14.10) for k 7* I, one takes one of the differentials equal to zero at a time,

and the others not equal to zero. That there are only three of these

equations follows from the fact that in any coordinate system a*/ = ai* ,

as previously shown.

If we multiply (14.10) by ^
- and sum with respect to k and Z,

uX OX

we have on making use of (13.13)

dx c/cc
m dx ox dx dx

Hence, on changing indices, we have the following equations

- v / dx'
k
dx'

1



72 TRANSFORMATION OF COORDINATES [Cn. II

connecting the a's and a"s which are equivalent to (14.10), but in

inverse form.

If we denote by a' and a the determinants of the quantities a t'/ and a,-,-

respectively, we have from the rule for the multiplication of deter-

minants

(14.12)
dx

i

dx
j

ail
' '* 'i

dx dx

dx'
a

dx

dx'

For the values 5 t; of the a's, that is, when the coordinates are cartesian,

the determinant is +1. From this result and (14.12) we have

[14.1] The determinant of the coefficients of the fundamentalform of euclid-

ean space in any coordinate system is positive.

Since a 9 0, functions a
lk
are defined uniquely by

(14.13) a
ih
aki = 5} .

In fact, on solving these equations for a
tlc

in the manner which led to

(13.16) from (13.13) we have

/n-nx a cofactor of a^ in a
(14.14; a =-

.

a

Since a i;
=

a,-,- ,
it follows from (14.14) that a

lk = a*
1

,
that is, the quanti-

ties a
lk

are symmetric in the indices, in this case superscripts. In

particular, when au =
$</ ,

we have a j = 6
tJ

(see 13, Ex. 2).

If a denotes the determinant of the quantities a
tA

,
it follows from

(14.13) that the product of the determinants a and a is equal to the

determinant for which each element of the main diagonal is +1, and

every other element is zero. Hence

(14.15) a 35
a

For any other coordinate system x
n
the coefficients a t

-

;

- of the funda-

mental form are given by (14.10). By means of equations of the form

(14.13) functions a'
lk

are uniquely defined. We shall show that the

following relations hold between the functions a/t; and a
kl

:

In fact, if we take the equations

j*
a a**
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which are of the form (14.13), and substitute for akh expressions of the

form (14.11), we obtain

u , dxfi
dx'

m
,

& dim T-I -T-T = Ok.
dx* dx

dx"
If now we multiply by ,. and sum with respect to

I, we have
ox

k i dx
fi

dx'
j

, dx'
m

kl dx" , dx" dx"
a - dim ^

= a dkh
i

Oh
i -^

.

dx" dx'
m

Since is equal to tfm ~-
h
-

,
we can write the above equations in the

ox ox

form

( kidx^dx" ,

\ dxk dx 1
aim

(we say equations, because j and h being free indices there are 9 of these

equations). For a fixed value of j as h takes the values 1, 2, 3 we have

three equations, linear and homogeneous in the three expressions in

parentheses as m takes the values 1, 2, 3. Since
dx'

0, we have on
dx

changing indices

k i dx
fti

dx
tj

,
.,- na

a k V/ ahm ~~ dm =
-

dxh dx 1

Multiplying by a'
mi

and summing with respect to m, we obtain finally

(14.16).

EXERCISES

1. Show that \/(in dx 1 is the differential of length of an a^-coordinate curve;

apply this result to the case when the x's are polar coordinates.

2. Show that when in (14.13) an = for i ^ j, then

. ~
,

ai; =
(i * /).

an

3. Show that in any coordinate system x i the expression

is the square of the differential of length of a curve on any coordinate surface

x3 = const., the curve being denned by x l /
l

(0> x<t /
2
(0-

4. When the coordinates x { are cartesian, the coefficients an of the funda-

mental form in the coordinates x fi for a transformation (13.1) are given by
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and the determinant a' of these quantities is given by

a'
| a} |;

consequently the coefficients a(,- are constants.

5. Show that the fundamental quadratic forms of space in the coordinates x fi

of 13, Ex. 6 are respectively

(i) [(z'i)
2 + (x'*)*] ((dx'

1
)* + (dx'*)*] + (x'

l
x'*)*(dx'*)*;

j _^ //; x'*)(x
fk

X'*)(dx'*)*
(l

li(x'i
-a^)(x'

i
-a*)(x'

i -a^
)

where j and k are the numbers 1, 2, 3 other thari i.

15. CONTRAVARIANT VECTORS. SCALARS

From the equations (13.12) of a transformation of coordinates, namely

(1*1} f' j
t

fi
(<r

l r2
r*}

\JLOJiJ X <p \X ,
X

,
JC J)

we have

(15.2) dx" = ^ dx*.

Thus whatever be the coordinates in two systems in transforming from

one system to the other differentials undergo a linear homogeneous

transformation, the coefficients being in general functions of the co-

ordinates. In this sense a transformation of coordinates induces a

linear homogeneous transformation of differentials of the coordinates.

If equations (15.2) are multiplied by .-. and summed with respect to j,
dx ;

we have in consequence of (13.13)

(15.3) -

f
.dx'

3 =
7 .

h
dx

h = dldx
h = dx

1

,

as the inverse of (15.2). Equations (15.3) are, in fact, equations (14.3),

which were obtained from the inverse of (15.1). If in (15.3) we replace

dx13

by dx /J = -^ dx"
k
obtained from (13.17), we have

~~

dx'' dx"k
~~

dx"k

Hence the set of induced transformations has the group property (see

13).

If x
l

in (15.1) are cartesian coordinates, the differentials dx
1

are direc-

tion numbers of a direction in space, the direction being that of the line
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segment with end points x* and x
% + dx\* The differentials dxri

given

by (15.2) determine the same direction in the z'-system, since a direc-

tion is independent of a coordinate system. However, whereas when
the z's are cartesian coordinates the direction determined by fixed dx

l

is

the same everywhere in space, the corresponding values of dx'
1

given by
(15.2) depend upon the point at which the direction is considered, unless

dx"

8?
= ah >

the a's being constants. From these equations we obtain in this ex-

ceptional case by integration equations (13.1), in which case the co-

ordinates x
tl
are cartesian or oblique according as equations (13.2) hold

or not. Consequently, although for any transformation of cartesian

coordinates into other coordinates by equations not of the form (13.1)

differentials dx'
1

determine a direction at a point, they are not direction

numbers of a line in space in the sense that the same values of dx'
1

determine the direction of the line at every point of it, as is the case with

differentials of cartesian coordinates.

In 3 we saw that for a curve with equations

(15.5) x* = /(0,

where the coordinates x
l

are cartesian, the quantities

evaluated at a point of the curve are direction numbers of the tangent

vector at the point. If for a coordinate system x'
1

we put

we have in consequence of (15.2)

(15.6) ")-r')|.

Thus the quantities {"() determine at each point of the curve its tangent

vector in the z'-system.

We consider now three functions of cartesian coordinates x' which we

denote by \
l

(x). The values of these functions at each point in space

*C. G,, p. 84.
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may be taken as direction numbers of a vector at the point. Such a

set of vectors is called a vector-field. If we put

(15.7) dx' = p\',

where p is any function of the z's, these values of the differentials at each

point of space are also direction numbers of the vector determined by
X* at the point. Consider for any other coordinate system x

ft
the

functions of the x"s denoted by \'\x') and defined by

/ico^ \ /i (r'} \ j(^ ^X
^lU.O/ A \JU ) A \Ji ) 7

7

when the x's in the right-hand members are replaced by their expressions

in the x"s which define the transformation of coordinates. When we

compare these equations and (15.7) with (15.2), we see that

(15.9) dx
fi =

pX"'(z'),

that is, the quantities \
n
(x') define in the x"$ the vector-field defined by

\\x) in the x's. Just as equations (15.3) were obtained from (15.2), so

equations (15.8) are equivalent to

(15.10) \'(x) = X'V) *~
,

and thus equations (15.8) and (15.10) are reciprocal in character.

For a third coordinate system x"
1

we have analogously to (15.10)

X'(x) =
x"(*")^7/i.

From these two sets of equations we have

,

j(
,. dx^ ^ ,,

k(
,

dx^

dx
fh

If we multiply this equation by . and sum with respect to i, we have

in consequence of (13.14)

/h

A'*(,') = X"VO grt
.

Hence the equations (15.10) have the group property ,v
and consequently

in any two coordinate systems x
1

and x'
1

the quantities X*(#) and X
/l

(')>

which in the respective systems determine at each point the vector of a

vector-field, are in the relation (15.10). The quantities X* and X
/l

are
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called the components in the z-system and z'-system respectively of a

contravariant vector. As thus defined there is a contravariant vector at

each point in space, that is, a vector-field. When the coordinates are

cartesian, they are direction numbers of the vector; their geometric

significance in any other coordinate system is shown in 16.

From the foregoing discussion it is seen that a contravariant vector

is entirely defined by its components in any one coordinate system,
and then its components in any other system are determined. Hence
one may assign arbitrary functional expressions to X

1

in the z-system.

For example, one may take X
1

as constants, and then in general the

components in another coordinate system are not constants. If the

coordinates x* are cartesian and the X* are constants, all the vectors are

parallel, since they have the same direction numbers. But in a general

coordinate system constant components do not define parallel vectors.

At times in the consideration of a geometric problem one arrives at

equations of the form (15.10) connecting certain quantities X* and X'*

in any two coordinate systems. In this case we say that the geometric

entity thus defined analytically is a contravariant vector whose com-

ponents are X* and X
/l

in the respective coordinate systems.

If functions X* and X'
1

defined at points of a curve and not throughout

space, satisfy equations of the form (15.8), X
1

are said to be the compo-
nents of a contravariant vector at points of the curve; an example is

afforded by equations (15.6).

Consider the differential equations

(
. c .

1>k
dx dx

2
dx

3

(15.1D ir
= ^ =

-)?'

where X
1

are the components of a contravariant vector. From the

theory of such equations it follows that their integral is given by two

equations of the form

(15.12) f,(x\ x\ x
3

)
= Cl , fr(x

l

, x\ x
3

)
= c2 ,

where the c's are arbitrary constants,* and that /i and /2 are two inde-

pendent functions which are solutions of the equation

(15.13) X'g-0.

For each pair of values of Ci and c2 equations (15.12) are equations of a

curve. Through a point in space for which the functions /i and /2

*
Fine, 1927, 1, pp. 322, 325.



78 TRANSFORMATION OF COORDINATES [On. II

are single-valued there passes one and only one curve of the family.

Such a two-parameter family of curves is called a congruence.

From the discussion of equations (15.7) and (15.9) it follows that in

any other coordinate system x
11
the equations (15.11) are

X' 1 X /2
X'3

'

and that their integral consists of the equations in the x"s obtained

from (15.12), when the x's are replaced by the functions of the x"s

which define the transformation of coordinates.

From (15.11) and (15.13) we have

,
.

From these equations it follows that when the x's are cartesian dx
1

,

and consequently X*, are direction numbers of the tangent vector at a

point to the curve of the congruence (15.12) through the point. Hence

in any coordinate system X* are the components of such a tangent vector.

If /is any function of x
l

and/
7

the function of x
fl
obtained from/ when

x
l

are replaced by the functions of x
/l
which define the transformation of

coordinates, we have

(15.14) f(x
l

,J,x*)=f(x'
l

,vP,x'\

Either of these functions is called the transform of the other. From
this equation we have

(15 15)U5>16'
9/ - df>-

From this result and (15.10) we have

(^^^K\ x' # - x"
dx

'

%' dx
'"

- x" df
'

K" - x" df
'

(15.16) X - - X w.

Wkw - X --
a,-
- X

Wi
.

Hence the transforms of the solutions of an equation (15.13) are solu-

tions of the equation

(15-17) A'^-0.

Any function /(x
1

,
x

2

,
x

3

) and its transform in any other coordinate

system define in their respective coordinate systems an entity called a

scalar. Whenever in considering a problem one arrives in two coordi-

nate systems at quantities which are transforms of one another in the
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sense of (15.14), one says that the entity so denned is a scalar. For

example, since either of the first and last members in (15.16) is a trans-
om

form of the other, we say that X* . is a scalar, meaning that its transform

in any other coordinate system is the analogous expression, in this case

EXERCISES

1. For a linear transformation z* *
ajz'', where the a's are constants, the

coordinates are components of a contravariant vector in the two coordinate

systems; in consequence of Euler's theorem the most general transformation for

which this is true is when tp
i in (13.10) are homogeneous functions of the first

degree in z' 1
.

2. Show that in any coordinate systems \\\ , 0, 0; 0, \\\ , 0; 0, 0, \\\ are com-

ponents of the tangents to the coordinate curves, the subscript of a X indicating
that it applies to the curve of parameter z*, where i has the value of this sub-

script; also that these components may be written

where the subscript h\ for h =
1, 2, 3 denotes the vector, the 5's are defined by

(13.6), and the ^'s are non-zero functions of the z's.

3. Show that in any other coordinate system z'* the components of the vectors

(i) of Ex. 2 are given by

dx"

4. What are the components in any coordinate system x fi of the vector whose

components in the z's are

where /* are any functions of z 1
,
z2

,
z 3 which involve x l at least?

5. Three contravariant vectors of components \*h \

in which h\ for h =
1, 2, 3

indicates the vector, are independent, that is, there are no functions a of the z's

such that

(i) aiX{, +aiX{, + OsXJ,
-

0,

if and only if the determinant
| x{j |

is not identically zero. Show that in this

case any vector X* is expressible in the form

for suitable values of the 6's as functions of the z's.

6. Show that when the determinant in Ex. 5 is equal to zero there exist func-

tions 01 , 02 , a* such that equations (i) hold; discuss the geometric meaning of

the cases when all the a's are different from zero and when one of them is equal

to zero.
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7. Given a contravariant vector X 1
'

in any coordinate system z 1

'; show that,

d<p
if

<f>

1 and ^>
2 are independent solutions of the equation X* = 0, and^ is a solution

dx*

<p

of the equation X*
.

=*
1, the jacobian

dx*
0; also that in the coordinate

system x fi denned by x' 1- = v>'(z) the components of the given vector are 0, 0, 1 .

16. LENGTH OF A CONTRAVARIANT VECTOR. ANGLE
BETWEEN TWO VECTORS

Let X* be the components of a contravariant vector in any coordinate

system x
%

and consider the quantity a,XV, where a t
,-
are the coefficients

of the fundamental form (14.6). In consequence of (15.10) and (14.11)

for any other coordinate system x'
1

we have, using (13.14),

(16.1)

Hence for any contravariant vector X
1

the expression a t,XV is a scalar

(see 15). In cartesian coordinates o/XV assumes the form X^X'X
1

,

t

as follows from (14.7). At each point it is the square of the length of the

line-segment whose orthogonal projections upon the coordinate axes are

X*; that is, X
1

are the rectangular components of the vector. Hence we

have

[16.1] // X
1

are components in any coordinate system of a contravariant

vector and a,-/ are the coefficients of the fundamental form in this coordinate

system, the quantity ai/X'X' is a scalar; it is the square of the length of the

line-segment whose rectangular components are the corresponding X's in a

cartesian coordinate system.

Hence in any coordinate system a set of components X* define at

each point in space a vector whose length and direction are determined

by X*. Presently we shall see what the geometric significance of the

components X* is in any coordinate system.

When, in particular, X* are such that

(16.2) a</AV =
1,

we say that the vector is a unit vector. In this case the components
X

1

in a certesian system are direction cosines of the vector at each point.

For two vectors Xl and \l we have

(16.3) a,X*iX',
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as follows directly when we proceed as in the case of (16.1). Thus
a t yXiX2 is a scalar. If the coordinates are cartesian, in which case the

components are direction numbers, this scalar is } XiXj If this

quantity is divided by V(^XlXlX^XM), the resulting expression is

i

the cosine of the angle of the two vectors.* Hence we have:

[16.2] // Xl and Xj are the components of two contravariant vectors in any
coordinate system, the angle (^ 180) between the two vectors at a point is

given by

(16.4) cos 6 = ~-=^

As a corollary we have:

fl6.3] A necessary and sufficient condition that at each point the contra-

variant vectors Xl and \\ be perpendicular is that the equation

(16.5) a t-/x{xj
=

be an identity in x\

When the vectors Xl and Xj are not perpendicular at every point in space,

that is, when (16.5) is not an identity, they are perpendicular at each

point of the surface whose equationin the x's is given by (16.5).

For an ^-coordinate curve dx
l = for i ^ k

; consequently 5l for k

fixed and i 1, 2, 3 are components of the contravariant vector tangent
to the curve. From (16.4) we have that the angle at a point between the

tangents to the x
k
- and ^-coordinate curves is given by

_ a ki

Hence we have

[16.4] In any coordinate system the cosine of the angle between an x
l
-

coordinate curve and an x
j
-coordinate curve at any point is equal to the

value of aa/\/anajj at the point.

If at a point a,-/
= for i, j 1, 2, 3 and i 9 j, the three coordinate

curves are mutually perpendicular, and consequently at the point the

tangent planes to the three surfaces are mutually perpendicular. In

this case we say that the coordinate surfaces through the point are

orthogonal to one another at the point. If this situation exists at every

* C. G., p. 86.
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point, we say that the coordinate surfaces form a triply orthogonal family

of surfaces. Hence we have

[16.5] The coordinate surfaces for a given coordinate system form a triply

orthogonal system, if and only if the coefficients ai}-(i ^ j) of the funda-
mental quadraticform in this coordinate system are equal to zero identically.

Suppose now that we consider any vector X* and find the angle which

it makes with each of the vectors

(16.6) X1

, 0, 0; 0, X
2

, 0; 0, 0, X
3

,

which are tangent vectors to the z
1

-, x
2

-, and x
3

-coordinate curves re-

spectively. If we denote these respective angles by for i = 1, 2, 3,

we have from (16.4)

(16.7) V

Since the lengths of the vectors (16.6) are

X
1

, \Xo22 X
2

,

the sum of the projections of these lengths upon the line of the vector X*

is in consequence of (16.7)

that is, x/OtfX'X
7 which is the length of the vector X* , This means that

the vector X* at a point P is the diagonal from P of the parallelepiped

whose sides are the lengths of the vectors (16.6). Hence we have

[16.6] For a contravariant vector X* in any coordinate system the geometric

significance of the components X* is that the length of the vector at any point P
is the diagonal of the parallelopiped whose edges are line segments, with P as

initial point, tangential to the coordinate curves at P and of the respective

lengths VW X*.

When the coordinate curves through a point are mutually perpen-

dicular, the parallelopiped is rectangular, but only when the coordinates

are cartesian are X
1

the lengths of orthogonal projections of the length of

the vector upon the tangents to the coordinate curves at the point.

EXERCISES

1. When space is referred to polar coordinates (13.8), the coordinate surfaces

form a triply orthogonal system.
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2. Determine the character of the coordinate surfaces x' =* const, for the

transformation

a:* - z'i cos z' 2
,

xs = z'i sin a;'
2

,
z 3 - z' 8

,

and show that they form a triply orthogonal system; the coordinates z' 1
'

are

called cylindrical.

3. If X* and /**' are unit contravariant vectors perpendicular to one another,

1-

4. If /x
l and y*. are contravariant vectors perpendicular to a contravariant

vector \ {

,
so also w/u* -f w* for any values of u and v are the components of a

contravariant vector perpendicular to X*; for two sets of values u\ , v\ and W2 , v-t

such that

UiUtdijuW + (uiVz + M 2Vi)ai,M
lV 4- ViV&ijvW =

the vectors Mi/x
1 + ^i"

1 and M2/u* + viv* are perpendicular.
5. If \\\ are the components of three mutually perpendicular unit contra-

variant vectors, where h for h = 1, 2, 3 denotes the vector and i the components,
then

Zxi,A{, -a"

17. COVARIANT VECTORS. CONTRAVARIANT AND
COVARIANT COMPONENTS OF A VECTOR

Given any function /(x
1

,
z
2

,
x

3

) in any coordinate system, we have

(17 1)
9/ - 9// bX

"

U7a; a?~to^^'

where/' is the transform of the given/ for the transformation of the x's

into any other coordinates x'\ When we compare these equations with

(15.10) we see that --- and
t
are not components of a contravariant

dx l dx2

vector in their respective coordinate systems. However, they do belong

to a new class of functions X,- and X of the x's and x"s respectively (with

indices as subscripts) related thus

(17.2) A< =
A,'g'.

If one has two sets of functions so related and multiplies these equa-

tions by T, and sums with respect to i. one obtains
dx'k

' a" a a
;)

which shows that the relation is reciprocal, as was shown to be the case

with contravariant vectors (see Ex. 1).
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Two sets of functions X and X,' of the x's and x"s related as in (17.2)

are said to be the components in their respective coordinate systems of a

covariant vector, there being a vector at each point of space. We observe

that the indices of a covariant vector are written as subscripts, whereas

for a contravariant vector they are written as superscripts, and that

the partial derivatives enter in different manners in (15.10) and (17.2);

but that in each case the dummy index applies to one coordinate system
and the free index to the other. As remarked in the case of contra-

variant vectors, a covariant vector is completely determined by its com-

ponents in one coordinate system, and its components in any other

system are determined by the above equations. Also whenever one

has, no matter how derived, two sets of functions satisfying equations

(17.2) or (17.3), one concludes that the entity under consideration is a

covariant vector. For example, from (17.1) it follows that for any

function / of the x's the derivatives --. and the derivatives with respect

to x'
1

of the transform of / are components in their respective systems
of a covariant vector; this covariant vector is called the gradient of/.

Hence we have

[17.1] The gradient of a scalar is a covariant vector.

If X* and X'* are components of a contravariant vector in coordinate

systems x
l

and x'\ we have from (14.10) and (15.8)

, k dx
{

dx3

fc dx
tk

aklX =
*'ai*fc?'

X
0^

(17.4)
.h.i dx3 dx3

-OuXfc-^-OtfX -,,.

We note that these equations are of the form (17.3), which means that

the linear combinations a,-/X* of the components of the given contra-

variant vector in the x-system, and the linear combination a^-X'* in the

z'-system are components in their respective systems of a covariant

vector. In this sense we have

[17.2] // X
1

are the components of a contravariant vector, a,-/X* are the com-

ponents of a covariant vector.

From (14.16) and (17.3) we have

tih , kl dx
fi

dx'
h

dx
3

a Xi = a -
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Comparing this result with (15.8) we have

[17.3] I/ X t
- and X are the components of a covariant vector in their respec-

tive coordinate systems, atJ
X and a'

t;

X; are the components in these

respective systems of a contravariant vector.

When we apply this theorem to the covariant vector of components
a, t-X

J

,
we have in consequence of (14.13)

a
lh

a,i\
3 = 5/V = \

h

,

that is, we obtain the vector X* from which the covariant vector was

derived in accordance with theorem [17.2]. Similarly, if we start with

a covariant vector X; ,
find the corresponding contravariant vector by

theorem [17.3], and then from it the corresponding covariant vector by
theorem [17.2], we obtain the original vector X,- .

In view of the above results we say that X* and Xi are the contra-

variant and covariant components respectively of the same vector, if

(17.6) X t
- = a,,V, X

1
'

= a% ,

either of which set of equations, as we have seen, implies the other.

When the coordinates are cartesian, in which case a,-/
= S/ ,

a 13 = 5
U

,

the corresponding contravariant and covariant components are equal

(see Ex. 6) and are direction numbers of the vector, as shown in 15.

In consequence of the first of (17.6) and (14.13) we have

/.. ,- x t'/v -v ij \h~ \k J\h \k \J\k
(^Littj a AjAy a ahi\ Ct&yA 0/iA t*&yA Ct/fcA A .

Since the last of these quantities is a scalar, as shown in 16, the first

quantity is a scalar. From this result and theorem [16.1] we have

[17.4] The square of the length of a vector ivhose covariant components are

X is equal to the scalar a l>/

X tXy .

If Xi|i and X2| are the covariant components of two vectors, and Xli

and Xj| their respective contravariant components, by a procedure
similar to that used in (17.7) we obtain

(~\7 $^ fl*
J\ -\ . /7--\* \'

From this result, equation (17.7), and theorem [16.2] we have

[17.5] The angle 6 (^ 180) between the vectors at a point of two vectors

whose covariant components are \m and \z\i is given by

(17.9) cos 9 = ==
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The geometric significance of the contravariant components of a vec-

tor is stated in theorem [16.6]. Now we derive the geometric signifi-

cance of the covariant components. In consequence of the first of

(17.6) we may write (16.7) in the form

X,
(17.10) /jb i -=,

Van
where is the angle which the vector at a point makes with the o^-coor-

dinate curve through the point. The left-hand member of (17.10) is

the length of the orthogonal projection upon the tangent to the

^-coordinate curve of the length of the vector \
l

at the point. Hence
we have

[17.6] The geometric significance of the covariant components X of a vector

is that at each point P X/\/a^ is the length of the orthogonal projection

of the vector upon the tangent at P to the x*-coordinate curve through P.

In 15 and 16 we introduced the concept of a contravariant vector

and derived properties of such vectors. At the beginning of the present

section we defined the concept of a covariant vector. When one com-

pares equations (15.10) and (17.2) giving the relations between the

components of the two types of vectors in two coordinate systems, one

observes that they are essentially different and might conclude that the

two vectors are different entities. However, it has been shown with

the aid of the coefficients a,-/ of the fundamental form that the two

entities are in fact identical, but that it is their determining components
which have different geometric significance.

Were it not for the existence of the fundamental form a i}
- dx

1

dx 3

,
we

should be compelled to treat contravariant and covariant vectors as

different geometric entities. There are types of geometry in which no

such form occurs as part of the theory, and in these geometries a dis-

tinction is made.

Consider in connection with the above remarks a covariant vector X t
-

.

From (17.2) and (15.3) it follows in consequence of (13.13) that

\i dx' = x; dx",

that is, \i dx
1

is a scalar. Hence the equation

(17.11) \tdx* =

is of the same form in any coordinate system. If d\x
%

and dzx
l

are two

sets of differentials satisfying this equation which are not proportional,

it follows from the equations

X,- dix* = 0, \ t dzx
i =

0,
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and (17.11) that any solution of the latter is of the form*

dx
l = ci dix* +

Hence at each point in space every direction dx* satisfying equation

(17.11) is in the plane determined by the point and by the directions

dix* and d&\ Consequently we say that a covariant vector determines

a plane at each point in space.

It is not true that every equation of the form (17.11) admits an

integrating factor, that is, a function t of the x's such that (see Ex. 9)

(17.12) t X, dx
i =

d<f>,

where <p is some function of the x's. But when such an integrating
factor exists, <p

= const, is an integral of the equation, and we have as

equivalent to%(17.11) the equation

This is the condition that each set of differentials satisfying the original

equation determines at a point a tangent to the surface <f>
= const.

through the point. Hence when the equation (17.11) admits an inte-

grating factor, the planes determined by the vector X t are the tangent

planes to a family of surfaces.

Suppose now that we invoke the metric properties of space based

upon the fundamental form ay dx
l

dx\ and that we replace X t
- in (17.11)

by a,-,V, obtaining

a ii\
i dx

i = 0.

In consequence of theorem [16.3] we have that the directions dx
l

satis-

fying equation (17.11) are perpendicular to the vector X*. Consequently
at each point the given X are the covariant components of the normal

to the plane determined by X t . When furthermore the equation admits

an integrating factor, X are the covariant components of the normal to

the surfaces <f> const. Hence we have

[17.7] When a covariant vector is the gradient of a function <?,
or its com-

ponents are proportional to the components of a gradient, the vector-field

consists of vectors normal to the surfaces <f>
= const.

EXERCISES

1. Show that equations (17.2) possess the group property, as defined in 13

after equation (13.18).

* C. G., pp. 115-116.
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2. If X, /* and X'*, /*,' are the components in the re-system and s'-system respec-

tively of a contravariant and covariant vector, XV =
X''/i 7

'

,
that is, X^i is a scalar.

3. When x i are polar coordinates, the covariant components of the vector with

contravariant components X* are

4. If for two sets of quantities m(x) and M'(S') we have

where the X^| and \h \
for h =

1, 2, 3 are the components of three independent
contravariant vectors (see 15, Ex. 5), then the m and /* are the components in

their respective coordinate systems of a covariant vector. Does this follow if

equations (i) hold for fewer than three contravariant vectors?

5. If X| for h =
1, 2, 3 are three independent contravariant vectors (see 15,

Ex. 5), and X{| is the cofactor of Xj[i in the determinant
|
X{| |

divided by the

determinant, then xj' are the components of a covariant vector for each value of h.

6. In order that corresponding contravariant and covariant components of a

vector be equal in the coordinate system re*, the contravariant components X*

must satisfy the equations

(i) (a if
-

<,-)X*
=

0,

that is, the rank of the determinant
| an 8^

\

must be less than 3. For equa-
tions (i) to hold for every vector the coordinate system must be cartesian.

7. From theorems [16.6] and [17.6] it follows that \i/\/aa is equal to the sum
of the orthogonal projections upon the tangent to the ^'-coordinate curve of the

lengths of the vectors (16.6).

8. Show that the equations

d& _ dtf _ dx*

Xi X2 X3

in one system of coordinates do not transform to equations of the same form in

another system. Compare with equations (15.11).

o<p
9. From equations (17.12) one has . t X t

- from which one obtains
dx l

8V ax, dt
'

* r~, T r~, x
*

>

noting that equations obtained from these by interchanging i and j must hold,

and multiplying these equations by e iik\k and summing with respect to i and j,

one obtains

as a necessary and sufficient condition that an equation (17.11) shall admit an

integrating factor.
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18. TENSORS. SYMMETRIC AND SKEW SYMMETRIC
TENSORS

The equations (14.10) connecting the coefficients of the fundamental

quadratic form in two coordinate systems are of the type

(18.1)

There is a similarity between these equations and (17.3) in the sense

that the indices are subscripts in both cases and that the derivatives

occur in similar manner. We say that functions b'k i and &,/ of the x"s

and x's respectively related as in (18.1) are the components hi their

respective coordinate systems of a covariant tensor of the second order,

and that a covariant vector is a covariant tensor of the first order, in

each case ther-order being equal to the number of subscripts. Also we
refer to the subscripts in each case as covariant indices.

Similarly equations (14.16) are of the type

There is a similarity between these equations and (15.8) in the sense

that the indices are superscripts in both cases and that the derivatives

occur in similar manner. We say that functions Vkl
and V j

related as

in (18.2) are the components in their respective coordinate systems of a

contravariant tensor of the second order, and that a contravariant vector

is a contravariant tensor of the first order. Also we refer to the super-

scripts in each case as contravariant indices.

If X* and Mi are the components of a contravariant and a covariant

vector respectively, it follows from (15.8) and (17.3) that

,* / < dx'
k
dxj

x M '
= XM''a?a^-

These equations are of the type

(18.3) ^') = bVW^g-
We say that functions b'

k
i and &*/ are the components in their respective

coordinate systems of a mixed tensor of the second order. The com-

ponents have one contravariant and one covariant index, and so we say

that the tensor is contravariant of the first order and covariant of the

first order.
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From (18.1) we have

/cte^aa^ ax* bxj
dx'

k
dx'

1

(18.4)

kl
dxh dxm

ij
dx'kWl ~dx* dx"

= bij&h&m = bhm .

In like manner, we have from (18.2) and (18.3)

h ,ki dx
1

dx
j

_ ij
b *~ b

>

and

These results show the reciprocal character of the equations of tensors

of the second order, that is, all coordinate systems are on a par.

Equations (17.3) and (18.1) are particular cases of the equations

, 1Q7 v ,/
,

dx 81 dx* dx'
m

(18.7) W.-r.-W-...^^
.-. ^

the 6's and b"s being functions of x's and x"s respectively and having m
indices (subscripts), where m is any positive integer. In this case the

b's and b"s satisfying these equations by means of the transformation

equations are said to be the components in the x-system and x'-system

respectively of a covariant tensor of the mih order.

Equations (15.8) and (18.2) are particular cases of the equations

a/>. /r i ;w/r 2 A/*.'
r

"8 -8> *
........ -'.......--'

the b's and b
n
s being functions of x's and x"s respectively and having m

indices (superscripts), where m is any positive integer. The &'s and

b"s satisfying these equations are said to be the components in the

z-system and x'-system respectively of a contravariant tensor of the mih

order.

Equations (18.3) are a particular case of the equations

the b's and b"s being functions of x's and x"a respectively and having m
upper indices and n lower indices, where m and n are positive integers.

The b'a and b"s satisfying these equations are said to be the components
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in the z-system and x -system respectively of a mixed tensor of order

m + n, contravariant of order m and covariant of order n.

We observe that in each set of equations (18.7), (18.8) and (18.9)

the number of sets of partial derivatives entering in the equations is

equal to the order of the tensor, but the way in which they enter depends

upon whether the indices are contravariant (superscripts) or covariant

(subscripts). In the case of a scalar, as defined in 15, there are no

such sets of derivatives in the one equation (15.14) which expresses the

equality of a function and its transform. Hence a scalar is called a

tensor of order zero.

When one applies to a tensor of any order and type the processes

used to obtain (18.4), (18.5), and (18.6) from (18.1), (18.2), and (18.3)

respectively, one obtains equations which are the inverses of (18.7),

(18.8), and (k8.9) respectively. This shows that the equations giving

the relations between the components of any tensor in two coordinate

systems are reciprocal in character, and thus that no one coordinate

system has a preferred position in the definition of a tensor.

From the above definition of tensors it follows that one may choose

arbitrarily the components of a tensor in one coordinate system, and

then the components in any other coordinate system are determined by

(18.7), (18.8) or (18.9) (see Ex. 1). Frequently in the consideration of a

geometric problem we deal with a geometric entity and find that its

(analytical) components in two coordinate systems are related as in

(18.7), (18.8) or (18.9). Then we say that we are dealing with a tensor.

For example, at the beginning of this section we observed that equations

(14.10) are of the type (18.1), and so we say that the coefficients of the

fundamental quadratic form are components of a covariant tensor of

the second order, or briefly that an is a covariant tensor of the second

order. We call it the covariant metric tensor, because, as we have seen,

it enters into the determination of arc lengths, magnitudes of vectors

and of angles. In like manner, we call a
tj
the contravariant metric tensor.

Because of the linear homogeneous character of equations (18.7),

(18.8) and (18.9) and their inverses we have

[18.1] // all the components of a tensor are equal to zero in one coordinate

system, they are equal to zero in every system.

Such a tensor is called a zero tensor.

From the form of equations (18.7), (18.8) and (18.9) it is clear that

the relative order (position) of the indices plays a role in these equations.

It may be, however, that in the case of certain tensors when two contra-

variant (or covariant) indices are interchanged the new component is
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equal to the original one. In this case the relative order of thes<

particular indices is immaterial. From the form of equations (18.7)

(18.8) and (18.9) it follows that if this is true for certain indices in on<

coordinate system it is true for the corresponding indices in even

system. For example, suppose that 6 l6283 ... m = &
2 i3 *> then

(18.7) we have

/ dx^dx^ dx'
m

(18.10)
''i""""- - '""^^i "

9^

When the relative order of two or more indices is immaterial, we sa]

that the tensor is symmetric with respect to these indices. When th<

relative order of all the indices is immaterial, the tensor is said to be j

symmetric tensor. Thus the metric tensors a/ and a" are symmetry
tensors. A general tensor of the second order, whether contravariant o:

covariant, has 9 different components, whereas a symmetric tensor hai

only 6 different components.
When for a tensor two components obtained from one another by th<

interchange of two particular indices, either contravariant or covariant

differ only in sign, the tensor is said to be skew-symmetric with respect t(

these indices. It can be shown that if a tensor is skew symmetric ii

any two indices in one coordinate system, it has this property in even

system. For example, if the tensor b8l82 ... 8m is skew-symmetric in thi

first two indices we have (18.10) with a minus sign in the second anc

third members of these equations. When a tensor, whether contra

variant or covariant, is skew-symmetric with respect to every pair o

indices, it is called a skew-symmetric tensor.

From equation (14.12) and the definition of a scalar in 15 it followi

that a is not a scalar.

and x's such that

we say that b is a relative scalar of weight p. Thus the determinant (

of the components a,-,- of the covariant metric tensor is a relative scala

of weight 2, and from (14.15) and (14.12) it follows that the determinan

of the contravariant metric tensor is a relative scalar of weight 2

A relative scalar of weight 1 is called a scalar density.

In similar manner if the b"s and b's are such that instead of equation]

(18.7), (18.8) and (18.9), we have equations with the factor
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the right-hand members of these equations, we say that the 6"s and b's

are the components in their respective coordinate systems not of tensors

but of relative tensors of weight p of the order and type determined by
the character of their indices. In consequence of (13.15) and the above

observation concerning the reciprocal character of equations (18.7),

(18.8) and (18.9) it follows that the corresponding equations for relative

tensors are reciprocal.

For a transformation of coordinates for which the jacobian ,

dx

is positive, we have from (14.12)

(18.11) yV = Va
dx

d?

If the jacobiaU is negative, by a change of the sign in one of the equa-
tions of the transformation the resulting jacobian is positive. Hence

there is no loss in generality in understanding that equation (18.11)

holds. Thus \/a is a scalar density. From (18.11) and the definition

of relative tensors we have :

[18.2] If b
r

8
\'.'.'.

r

8 are the components of a relative tensor of weight p, then

&!---r/aiP are Me components of a tensor.

EXERCISES

1. If the Kroneckcr deltas 6) are taken as the components of a mixed tensor

in one coordinate system, the components in every other coordinate system are

of the same kind; that is, 5J is a mixed tensor of the second order.

2. If bij and c* J are components of covariant and contravariant tensors respec-

tively, the quantities 6 j,-c
j'* are components of a mixed tensor of the second order,

and &i/c' is a scalar.

3. If ha and ca are two symmetric tensors such that

buCki bucjk -\- bjkdi bkicn = 0,

then c, = pbn ,
where p is a scalar.

4. How many functions are required to define a skew-symmetric covariant

tensor of the second order?

5. For any skew-symmetric tensor all the components having two, or more,

indices alike are equal to zero.

6. If bij is a skew-symmetric tensor and X* is a contravariant vector, then

6</XV 0; conversely, if 6 t-,X*X
J

' = for an arbitrary vector, &,-,- is a skew-

symmetric tensor.

7. Since
dxi dx* dxk

~~T: 7, r
dx '* ox * ox m

Ex. 4), the quantities

are the components of a relative tensor of weight 1; e lj* are components of a

relative tensor of weight +1.
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8. The quantities

e l< >*

enk * \/a enk ,
'*

7=Vo
are the components of covariant and contravariant tensors respectively of the

third order, when the jacobian (13.11) is positive.

9. The rank of the determinant
| fe, |

of a tensor 6
;
is called the rank of the

tensor; show that the rank is invariant under any transformation of coordinates.

10. When the rank of a covariant tensor 6 t-, is three, the cofactors of 6, in the

determinant
| &/ |

are components of a relative contravariant tensor of

weight two.

11. When the rank of a covariant tensor &,-/ is two, there exist two relative

contravariant vectors X* and /** each of weight one, such that the cofactor of ba
in the determinant

| 6*, |
is equal to XV; when ba is symmetric, X* and /u* are

the same vectors.

19. ADDITION, SUBTRACTION AND MULTIPLICATION OF
TENSORS. CONTRACTION

From the form of equations (18.7), (18.8) and (18.9) it follows that

the sum or difference of two tensors of the same type and order is a

tensor of the same type and order. The same is true of any linear

homogeneous combination of tensors of the same type and order, the

coefficients being constants or scalars.

If we take two tensors of any type and order, and form all possible

products of a component of one tensor and a component of the other,

we obtain a tensor whose order is the sum of the orders of the two given

tensors. The number of contravariant, or covariant, indices is equal to

the sum of the numbers of contravariant, or covariant, indices of the

given tensors. For example, we have from (18.9)

and thus b
tJ
kC

l

m are components of a mixed tensor of order 5, contra-

variant of order 3 and covariant of order 2. This process is general, so

that by multiplying the components of any number of tensors we obtain

a tensor, called the product or outer product of the given tensors, which

is contravariant and covariant of orders which are the respective sums

of the contravariant and covariant orders of the tensors multiplied.

Another process for obtaining a tensor from a given tensor, or a

product of tensors, is called contraction. We have used this process in

obtaining the covariant components of a contravariant vector in equa-

tions (17.4). Thus the product a,-yX* of the metric tensor a,-/ and the

vector X* is a mixed tensor of the third order, contravariant of the first
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order and covariant of the second order. Each quantity a,-yX* of this

tensor for particular values of j is the sum of three components of this

mixed tensor, and from (17.4) it follows that these quantities are com-

ponents of a covariant vector; that is, by the summation of one contra-

variant and one covariant index we have obtained a tensor of order 2

less, the contravariant and covariant orders being each one less than

for the original tensor. This process is called contraction. It applies

also to any mixed tensor, and we have

[19.1] By the contraction of any contravariant index with any covariant

index there is obtained a tensor of order one kss contravariant and one kss

covariant.

For example,

(19.2)

dx'
p
dx'

9 dx
k

dx
l

dx
m

dx
'9

dx a*
m

* dx
'q dx dx

"

When, in particular, contraction is applied to the product of two tensors,

the resulting tensor is called an inner product of the two tensors.

The process of contraction may be applied in more than one way,
and more than once. Thus from (19.2) we have

jim T~7f

When, in particular, we apply contraction twice to the product tensor

ctj/xV, we obtain the scalar a t-/XV which by theorem [16.1] is the square

of the length of the vector X*. This is a particular case of the following

theorem, which is a consequence of theorem [19.1]:

[19.2] When as the result of contraction of one or more pairs of indices

there remain no free indices, the resulting quantity is a scalar.

An application of contraction, which is used frequently in tensor cal-

culus, is what is called lowering a contravariant index by means of the

covariant metric tensor a,-/ and raising a covariant index by means of

the contravariant metric tensor a
11

. This process was used in obtaining

the covariant components of the vector X*, and the contravariant com-

ponents of the vector X t . In carrying out this process it is important
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that the position of the index affected be not ambiguous. For example,
we have the following tensors derived from the tensor bijk ;

b
l

jk
= a

1

bijk ; 6, k
= a

jl

bijk ; 6,-/
= a* '&,/*. ;

(19 3)'

ilm il jmj il m il kmi i Imp il jm kpi
b k = a a' buk ;

6 /
- a a o,-;* ;

6 = a cr a ^ t//k .

In similar manner we have

We remark that this process is reversible. Thus from the first of

(19.3) we have

dlmb jk
=

0>lmO>
1

bijk
=

dmbijk
= bmjk ,

which is the tensor from which b
l

ik was obtained.

At times in order to indicate the position from which an index has

been raised or lowered a dot is placed in the original position of the

index; thus the first of (19.3) would be &!# . This notation emphasizes
the position of an index.

Instead of referring to the quantities b
l

,k, 6A , ,
b
lmp

in (19.3)

as different tensors, we shall say that the quantities of each set are a

set of components of the same tensor. Any set of components deter-

mines the tensor, but in different manner according to the character

of the indices, as was seen in 17 to be the case with the contravariant

and covariant components of a vector. When we apply this process to

the tensor a,-/ itself, we obtain

and hence we refer to a,-/ and a 11
as the covariant and contravariant

components respectively of the metric tensor.

Let now bl\m and 6'J7 be functions of x
l

and x'
1

respectively, such that

6I{mX* and &',7X" are components in their respective coordinate systems
of a tensor, and X* and X

7 *

components of a contravariant vector. From

this hypothesis it follows that

i/px" - i*i ^ dx 'P dx
'q

d*
h

d*
m
- hu v*^ dx

'P
b^

Or. t A - bkim \ ---
-^ ^-r tt

-
t>k im \

dx
,9 dxi

-

ax/v

that is,

pa r<y dx'
p
dx'

q
dx" dx

l

dx
n
\,,

at -*Um WrW9Wj\ =0.

If these equations hold for every contravariant vector X*, and conse-

quently for any three independent vectors, the quantity in parentheses
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is equal to zero, and hence bi'im is a mixed tensor of the fifth order. By
a similar argument we have

[19.3] // a set of functions b
r

p
l

i.'.'?? an^ &9i-'-
m

f x
*

and x
'{

respectively

are such that b
r

p
l

i'.'?p h ...p n\
Ph and

b^.'.'^"
.

Qn\
rqh

for any ph and qh are

components of a tensor, where X* and X'* are components of an arbitrary

vector in these respective coordinates, then the given functions are com-

ponents of a tensor.

A similar theorem holds if X* is replaced by any arbitrary tensor, and

a covariant, or contravariant, index is contracted with a contravariant,

or covariant, index of [the given functions. Indeed, it suffices to take

a tensor which is the product of distinct arbitrary vectors, in which

case the result follows by repeated application of Theorem [19.3]. This

is sometimes called the quotient law of tensors.

EXERCISES

1. Show that it follows from the identity

that any covariant tensor of the second order is the sum of a symmetric and a

skjew-symmetric tensor; is the same true of a contravariant tensor of the second

Order?

2. If bij = 61 1,-; -f bait
1

/ 1
where fru,-/ is symmetric in the indices and 62|/ is

skew-symmetric, then

bn dx i dx }
' = bi\n dx i dx'.

3. If 6i/X*V is a scalar for X' an arbitrary contravariant vector, then &,- -f frji

are components of a tensor; if fr$/ are symmetric in the indices, then bij are the

components of a tensor.

4. If &*,-X/i'i'A is a scalar for arbitrary vectors X*', /**, and vi , 6\/ is a tensor.

5. If bak dx* dx' dxk = for arbitrary values of the differentials, then

&123 + ^231 + &S12 + &138 + &321 4* ^213 = Oj

what is the condition when &/* is symmetric in i and j?

6. If b*' are components of a tensor, and ab*' + cfr ;'* =
0, where a and c are

scalars, b { > is either a symmetric or skew symmetric tensor.

7. When the coordinates are cartesian, the various components in (19.3) with

the same values of the indices are equal.

8. Show that

0*2/2

and consequently these determinants are the components of a covariant tensor

of the sixth order which is the outer product of the tensor e<;* (18, Ex. 8) with

itself.
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20. THE CHRISTOFFEL SYMBOLS. THE RIEMANN TENSOR

At times equations involving the first derivatives of the components
of the metric tensor are given simpler form by means of the following

symbols :

(20.1) [ij, k]

(20.2) {''}
= a"

k

(ij, *].

Observe that from their definition [ij, k] and < ..> are symmetric in i

and j. The symbols defined by (20.1) and (20.2) are called the Chris-

toffel symbols of the first and second kinds respectively.* We now derive

equations involving these symbols which are of frequent use.

From (20.2) and (14.13), namely

(20.3) a
ji
aik

=
,

we have

(20.4) att

Also from (20.1) we have

(20.5) ^ =
[ij, k] + [kj, i].

ox1

Differentiating (20.3) with respect to x
l

,
we have

Multiplying by a**, summing with respect to k, and substituting from

(20.5), we have

"a?
~~

dxl

"" a ^ * J ' tj

from which we have, in consequence of (20.2),

(20.6) ? = -

* The forms of these symbols as defined by Christoffel, 1869, 1, p. 49, were

Lk\ an<*
l^I '

ku^ we have adopted the above forms because they are in keeping

with the summation convention.
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If we denote by A
is
the cofactor of a<, in the determinant as

| a</ 1

and apply to this determinant the rule for the differentiation of a

determinant, we have

da _ 8a</ ,<,-~~

the last expression being a consequence of (14.14). From this result

and (20.5) we have

dd a dda }/r-T i i r i -i\ r* i

a?
- '

a5?
" " (l1*' Jl + IA * = 2a

\

and consequently

where since i is repeated the summation convention applies, that is,

the right-hand member is the sum of three symbols. Dummy indices

often occur in expressions involving Christoffel symbols.
We now find the relation between the Christoffel symbols of the

second kind in two coordinate systems. To this end we differentiate

with respect to x'
r
the equations

(20.8) a',,
= a g, ?j~

(i, j, p,q=l, 2, 3),

and obtain

(209) ^==^'-^1^^.+ /ax*' aV dx
j aV

^ *

dx'r dxk dx'v dx' dx'r ^{dx'* dx'*dx'r 9x' dx'v

By suitable changes of free and dummy indices in the above equation,

we have the following equations

If from the sum of these equations we subtract (20.9) and divide the

resulting equation by 2, we have hi consequence of (20.1)
'

j k i 2 j

(20.10) [pq, r}'
=

(ij, k] -4^ rr + at, rr

where [pg, r]' is formed with respect to the tensor ajy .
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From (14.16) we have

/rt dx __ h i dx'
T

dx * dx

If we multiply the left- and right-hand members of equation (20.10) by

a"
r

7 and a
hl

: respectively, and sum with respect to r, we have in
dx * dx 1

consequence of (20.2)

$V dx* ... ,, hi dx
{

dxj ^ , AU < aV

which reduces to

(2011) - aV
v ;

ax^ a?*

These are the relations which we set out to obtain. On comparing

(20.10) and (20.11) with (18.7), (18.8) and (18.9), we see that neither

[ij, k] nor < ..> are components of a tensor (see Ex. 5).

If we differentiate equation (20.11) with respect to x'
r

,
and subtract

the resulting equation from the one obtained therefrom on interchanging

the indices q and r, we obtain

_
dx'ikj dxh

ijj dx'* dx'* dx'

(h\ (
a
2^ a^ _ _aV_ a^

WJ \dx'*~dx'* dx fr ~dx'Pdx'r dx'*

= (JL I s V - I
s
\'\ ~

\dx'* \prj dx'r
\pq) ) dx'<

4. ^ }
_i_z_

(prj dx'*dx'* \pq) dx
f

'dx'r
'

On substituting for the second derivatives in this equation their ex-

pressions from equations of the form (20.11), we obtain

(20.12) Rh

ijk
~

p
~L ~ = R"pqr^ ,

where by definition
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(I being a dummy index indicates summation), and where R"pqr is the

similar expression in the Christoffel symbols formed with respect to a'/ .

If equations (20.12) be multiplied by r and summed with respect
dxh

to h, we have

(20.14) V = B*'S-.B-.
dx

k

From the form of these equations it follows that Rh

ijk ,
which are called

Riemann symbols of the second kind, are the components of a tensor

contravariant of the first order and covariant of the third order (see

(18.9)). It is called the Riemann tensor of the fourth order. From

(20.13) it follows that this tensor is skew-symmetric in the indices j

and A;.

The quantitfes Rn ik which are defined by

(20.15) Rnjk = dihR'nk ,
R nk = a

l

Rnjk

are called Riemann symbols of the first kind. They are the components
of the Riemann tensor with all four indices covariant.

When the coordinate system is cartesian, the coefficients of the funda-

mental form arc constants, namely 5 t
-

;
. In this case the Christoffel

symbols of either kind arc zero, as follows from (20.1) and (20.2).

From (20.13) it follows that in this case the components of the Riemann

tensor are equal to zero, and by theorem [18.1] that the components
are zero in every coordinate system. Hence we have

[20.1] The Riemann tensor of euclidean 3-space is a zero tensor.

This does not mean that the Christoffel symbols in any coordinate

system are equal to zero, but that the functions (20.13) of these symbols

are equal to zero.

If gij is any symmetric covariant tensor such that the determinant g

of gij is not zero, that is,

(20.16) g ^ | git \
* 0,

quantities g
13
are defined uniquely by

(20.17) g"gik = ft .

As in the case of a" in 14 it can be shown that g
t}

is a symmetric con-

travariant tensor.

Similarly to (20.1) and (20.2) we can define Christoffel symbols by
means of ga and g

tj
in which case it is advisable at times to use the
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tion < ., > to indi
IWt

notation < ., > to indicate this fact. Likewise a Riemann tensor in terms
[Wjo

of these symbols can be defined by (20.13). Ordinarily the Riemann
tensor so defined is not a zero tensor (see 23).

EXERCISES

1. Show that

act . . oa^i.
* * __ * _ r

/jif
vi _ \/! jui

dx* dx*
'

2. Show that if an = for i 9* j

(i

where a repeated index does not indicate summation and the notation (i, j, k 5^)

means that no two of i, j, k are equal.

3. When x i are polar coordinates (see (14.8)) all the Christoffel symbols are

equal to zero except the following:

2\-/ 3U- I
1 !--* /

12f-13 #' 22
*'

33

4. When x i are cartesian, one has from (20.11)

Show that from these equations one may derive equations of the form (20.11) in

general coordinate systems x fi and x"\

5. For any linear transformation (13.1) the Christoffel symbols of the second

kind are related as components of a mixed tensor of the third order.

6. Show that for Christoffel symbols formed with respect to any tensor gn
satisfying (20.16)

7. Using (20.15), (20.13) and Ex. 6 show that

(i) Rink - /-. W, 1}
-
/. [#, 1] + /*.) Ilk, h] - (

h
\

(lj, A],
ox' ox* ml It/cl
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where the symbols [ij, k] are formed with respect to any ga satisfying (20.16);

and that in terms of ga we have

() p = 1

w*

8. Show that it follows from Ex. 7 (ii) that

(i) Rink -fl/* -#i - fljwi ,

and

(ii) Run 4- BUM + Rw* - 0.

9. Show that

fl*w* - 0.

10. From (20.14) it follows that for the quantities RH defined by

one has

and consequently RH are the covariant components of a tensor of the second

order, which is called the Ricci tensor;* from (20.13) and equations analogous to

(20.7) one has

I

where g is defined by (20.16).

11. If < > and < > are Christoffel symbols formed with respect to sym-
\jkj a \jkj ^

metric tensors ay and ga such that
| a, |

^ and
| ga \

7* 0, then the quantities

< > are components of a tensor of the third order.

V*J.

21. THE FRENET FORMULAS IN GENERAL COORDINATES

If the coordinates x
ft
are cartesian and x

l

are any general coordinates,

equations (20.11) become

dx'idx"* wj a*'* ax

* See 1904, 2, p. 1234.
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since the a'
r

s are constants in the this case and consequently the

f i V
Christoffel symbols < ., \ are all zero.

(JK)

We consider now a curve with the equations x
fl =

f(t). When these

expressions are substituted in the equations x
l

<p\x'
1

,
x'

2

,
a;'

3

) con-

necting the two sets of coordinates x
l

and x'\ we obtain equations of

dx
1

the curve in terms of x
1

and t. The derivatives ----- are given by

<
-

dx*
from which it is seen that are the components of the contravariant

CLI>

dx fi

vector whose components -,- in cartesian coordinates x'
1

are direction
at

numbers of the tangent to the curve. Differentiating equations (21.2)

with respect to t we have

.

dV dx'*dx rk
dt dt dx /J

'

dt2
'

which in consequence of (21.1) may be written in the form

dx
h
dx

l

_<fx"
'

dX*
_.. _ _ _

p
. _..- + _.. _ _ _ . _..

f

' V (fy'
j

Since for cartesian coordinates x
n
the symbols < ., > are zero, ., may

(JK) (it-

be given the same form as the left-hand member of (21.3), namely
d

2
x'

j
. (j\ dx'

k
dx'

1

n ,. . ...
lf

...

"V'2" "^"
i ii f ~A~ IT * Consequently on comparing this result with

dt I J
dt dt

(15.6) and (15.10), we have

[21.1] For a curve defined in terms of any coordinates x
l

the quantities

fx* (i\dx
j
dx

k
.

f t
. .

,
. .. .

4- ^
> -- are components of a contravanant vector, meaning mat

dt {3^) dt at

in any coordinate system the components have this form.

If the arc s is the parameter we have from (21.2) and (3.2)

where a!
1

are components in the x"s of the direction cosines of the

tangent to the given curve, and consequently of the unit vector tangent
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to the curve. From equations (21.4) and (15.10) it follows that a

defined by

(21.5) a
4 =

J-ds

are the contravariant components in the x'a of the unit vector tangent
to the curve. This result is in keeping with the observation in 15

that when a coordinate system is cartesian the contravariant components
of a unit vector are direction cosines of the vector. Accordingly if /3'

1

and 7'* are direction cosines of the principal normal and binormal of a

curve defined in cartesian coordinates x'\ that is, their contravariant

components in these coordinates, the contravariant components of these

respective unit vectors in any coordinate system x
%

are given by

In cartesian coordinates x" we have from (4.7)

(21.7) ^"
=

K/3,

where K is the curvature of the curve. In any coordinates x* in conse-

quence of (21.6) and (21.7) we have from (21.3)

(fx
1

I i\ dx
3 dx

k

_ i

ds*
+

\jkl ds ds
~

*** '

which because of (21.5) may be written

(21.8)
d
^ + \ .

ds

If we differentiate equations (21.6) with respect to s, and make use

of the Frcnet formulas (6.1) and equations (21.1) and (21.6), we obtain

' '

dx'
k

li-

ds'' fi\ 3x* dx
1

dx'
k

ry")
OJL

'

idx

ds
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From these results and (21.8) we have

[21.2] When a curve is defined in terms of general coordinates x*, the

Frenet formulas are

do^ + \i\ aid^ = <

ds \jk\ ds

> f +U}'f --<+->

*+l i
\v'

dsf = rlf
ds
*

\jk}
y

~ds~
T/* '

where a, 0*, and 7* are the contravariant components of unit vectors having

the directions of the tangent, principal normal, and binormal respectively

of the curve, s being the arc of the curve, and K and T the curvature and

torsion respectively.

Consider now the equations of motion in cartesian coordinates x
ft

(2UO) -^=~Sdt2 dx' 1

of a particle of mass m in a field of potential V. From Theorem [21.1]

it follows that in general coordinates the left-hand members of these

equations are the expressions given in Theorem [21.1] multiplied by m,
and that they are contravariant components of a vector. Consequently
the right-hand members in general coordinates must appear as contra-

variant components of a vector. In 17 it was shown that in any

coordinate system . are covariant components of a vector and that
ox*

a*' . are its contravariant components. Hence in general coordinates
dxj

x
%

equations (21.10) are

(21.11) 1

Another way of arriving at this result is to note that

m

are the components of a contravariant vector. From (21.10) we have

that the components of this vector in cartesian coordinates are equal
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to zero, and consequently they are equal to zero in any coordinate

system, and one obtains (21.11) in any coordinate system.

EXERCISES

1. In any coordinate system the equations

ds*
+

U*J da ds

are the differential equations of the straight lines in space.
2. When x { are polar coordinates equations (21.11) are (see 20, Ex. 3)

l

/da*\* . /efcc3Yl W
xl

[
I x1 sin2 x*[ I = --

.

\dt J \dt ) J dx1
'

2dxl d&

dt

""

(

3. If X*() are components of a contravariant vector at points of a curve x*(

the quantities

are components of a contravariant vector at point of the curve.

4. If X l
'(s) in Ex. 3 are such that the quantities (i) are identically zero, the

vectors X 1 are parallel, that is, the components of the vectors in any cartesian

system are constants.

22. COVARIANT DIFFERENTIATION

By theorem [17.1] we have that the partial derivatives of a scalar,

that is, a tensor of order zero, are the components of a covariant vector,

that is, a tensor of the first order. In this section it will be shown that

this is the only case in which the derivatives of a tensor are components
of a tensor, but at the same time we shall find expressions involving

derivatives of a tensor which are components of a tensor.

We consider first a contravariant vector X
1

,
and differentiate with

respect to x
3
the equations

(22.1) X> = X
"'^'

with the result

= t ,P aV dx

a*' ax' a^ ax'"
^
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In consequence of (20.11) the right-hand member of this equation is

equal to

*?L. f ?*!! ^1 4- \" ([
l V -^ - I*'\ ^~ \\

dx* Idx'* dx'P
+

\\pql dx 'i

\hkj dx'v dx'*)]

'

i I ' 'N II ~ 7" 'N 7 7 f A r 7~

ao: /fl

(r^J / dx'p {hkj dx* dx 9

f C/A
_l_ \ / r J f I \

^"^ &X

Hence equation (22.2) may be written

* *
(22 3) + X(22.3) . + X

Consequently, if we define X*, by

and similarly X
/p

, 7 , equation (22.3) is

,i _ VP d^_aa;"
y
~

- 9
ax'p a?

Hence by (18.6) X*,- and X
/p

, g are the components in their respective

coordinate systems of a mixed tensor of the second order. We say
that the component X*/ is obtained from the contravariant vector X* by
covariant differentiation with respect to x

3
.

If we differentiate the equations

x'
-

x-
ax

'

Kp - A>
to*

with respect to x iq and make use of (20.11), we obtain

(22.5) x^-Xw^i;,
where

(22.6) ^--
and similarly for X' P(C . Consequently X,-,/ are components of a covariant

tensor of the second order, which is said to be obtained from the co-

variant vector X t
- by covariant differentiation.
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Consider next the covariant tensor &,/ ,
and differentiate with respect

to x'
r

the equations

(22.7)
'' ' dX

*

Making use of equations of the form (20.11), we obtain

r|

- / ..
j j ^ r-

j
I t . \

f

JP_V _ ...*.' . . . _1_ A . . I _____ I J \

3r
.

from which by means of (22.7) and suitable choice of dummy indices

we have

^ - v*

= /a^_
\az*

Hence, if we put

(22.8)
-

ii ' k
=

a .*

and b
f

PQt r for the left-hand member of the above equation, we have that

6/,fc are components of a covariant tensor of the third order, which we

say is obtained from 6*/ by covariant differentiation.

By proceeding in like manner one may show that

and

(22,0) ^
are mixed tensors of the third order, which we say are obtained by
covariant differentiation.

By referring to (22.4), (22.6), (22.8), (22.9) and (22.10), one observes

that in every case covariant differentiation is indicated by a covariant

index preceded by a comma; that each expression contains the deriva-

tive of the original tensor with respect to x
k

,
where k is this index; and
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that corresponding to each contravariant index there is added a term

involving a Christoffel symbol, and corresponding to each covariant

index there is subtracted such a term. All of these expressions are

particular cases of the following general rule for covariant differentiation :

(22.11)

When equations (20.5) are written in the form

(22.12)

we see from (22.8) that

(22.13) a,-/,*
= 0.

Also when equations (20.6) are compared with (22.9), we see that

(22.14) aij
[k
= 0.

By 18 Ex. 1, 6) are the components of a mixed tensor. From (22.10)

it follows that

(22.15) 5} ffc
= 0.

Hence we have

[22.1] The tensors a,-/, atj

,
and 5} behave as constants in covariant differ-

entiation.

When the Christoffel symbols are formed with respect to any tensor

ga such that the determinant g 7* 0, the above results concerning

covariant differentiation hold equally well. However, it is advisable

in such a case to use the term covariant differentiation based upon g i} .

Thus we should say that the results of the first part of this section

involve differentiation based upon the metric tensor a,-, of space.

Since we shall have occasion later to use covariant differentiation not

based upon the metric tensor of space, it is understood in what fol-

lows that we are dealing with properties of covariant differentiation

based upon a general tensor g^ .

From the form of equations (22.11) it follows that the covariant

derivative of the sum, or difference, of two tensors of the same order

and type is equal to the sum, or difference, of the covariant derivatives
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of the two tensors. We consider next the covariant derivative of the

product of two tensors, and in particular the following:

(22.16)

which is the same as the rule for ordinary differentiation of a product.

Since a tensor formed by multiplication and contraction is a sum of

products, we have in particular

(22.17) (bac
fl

).
= c

jl
bii>m + bijC

jl

,m .

The results for these particular cases illustrate the following general

theorem :

[22.2] Covariant differentiation of the sum, difference, outer and inner

product of tensors obeys the same rules as ordinary differentiation.

If we differentiate covariantly the tensor X,, ?
defined by (22.6), we

have

= A (^i _ x l
h
^\ - ( - x

_ _ _
ax* \ax'/ ax* \y/ ax*

'fcj
ax' jfcj

/am ;*yn /*~ x*
Va?w ~

W\*J V'

Since

(2218)(ZZ'* }
a?

we have in consequence of (20.13)

(22.19) Xu*
-

A*,

In like manner for a tensor &/ we have

(22.20) b iitk i
- biM = b

fc/B
fc

i

and in general

l,---,m

(22.21) b
ri

.... Tm ,kl
-

brj-.-r,,.!*
= ]C ^ .
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Thus far we have been dealing with covariant tensors. We shall

now find the corresponding results for contravariant and mixed tensors.

Instead of proceeding directly to do so we make use of the fact that

g
ll

,j
= by an argument similar to that which led to Theorem [22.1].

Thus, considering \
l

as the contravariant components of the co-

variant vector X t ,
we have

From this result, (22.19), and (20.15) we have

X* - X* = Q
il

(\ X )
= a

il

\ o
hmR = a

il

\
mR

From equations (ii) of 20 Ex. 7 and the second set of (20.15), we have

il-n <lr> p
g flmljk ~~g Klmjk = ~

ft m jk

Consequently

(22.22) X*,,-*
-

X'.ki
= -Xmfl*wy*.

Similarly it can be shown that

I hi rhi km *I?'1 ^m 7^ 1

,jk
~"

,kj
~

fC mjk OK mjk ,

From restilts of this type and (22.21) we have the following general

formula :

_
Z-J Vat sp-tt ljk

The equations (22.19) to (22.23) are known as Ricci identities after

Ricci to whom they are due.*

From the manner in which equations (22.19) were derived it follows

that, when they are satisfied, equations (22.18) follow. Since similar

results follow from equations (22.20)- (20.23), we have that when co-

variant differentiation is used, Ricci identities take the place of the

ordinary conditions of integrability, that is, that equations such as

(22.18) are satisfied (see 23).

Although the tensor calculus as developed thus far has been in terms

of three coordinates the results apply in general to any number of

coordinates. In the remaining two chapters the tensor calculus is

applied in the case of two coordinates. In General Relativity it is

* Cf. Ricci and Levi-Civita, 1901, 1, p. 143.
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applied to spaces of four dimensions. Its use is fundamental in Rie-

mannian Geometry of n dimensions.*

EXERCISES

1. Show that \i,j
=

\j,i ,
if and only if X{ is a gradient.

2. Show that for covariant differentiation based upon the metric tensor an

The scalar X*ti is called the divergence of X*.

3. Show that a necessary and sufficient condition that the second covariant

derivative of an arbitrary tensor be symmetric in the indices of covariant differ-

entiation is that the differentiation be based upon the metric tensor an of euclid-

ean space.

4. Given any contravariant unit vector X 1

', we have along a curve

. dx*

where /* is a contravariant vector; at each point of the integral curves of equa-
tions (15.11) yu

l
is the principal normal vector to the curve (see (21.9)).

5. Even if the curve in Ex. 4 is not an integral curve of equations (15.11), the

vector JJL

{
is perpendicular to the vector X* at each point of the curve.

6. For any scalar/ the quantity o 1
'

'/.,- is a scalar, and it is equal to the ex-

pression

7. In cartesian coordinates the equation

(i) a'' '/,,
=

is

L ,
=

o,

and thus (i) is the equation of Laplace in general coordinates; in polar coordinates

it is

ay i ay i ay 2 a/ i a/J
I ._ J

J
I _ J - I pQf j.2

*^- _- Q
im x'r x< x l ox 1

(x
1
)* ox6

8. When X* satisfy the equations

X*.y
-

0,

they are the contravariant components of a field of parallel vectors.

*
See, 1926, 1.
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23. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS OF
THE FIRST ORDER. MIXED SYSTEMS

In this section we discuss the existence of solutions of certain systems
of partial differential equations of the first order of the kind which

arise in various geometric problems; that is, whether there exist func-

tions of the independent variables which satisfy the equations iden-

tically.

Consider the system of equations

(23.1) g = ^',... )(r; *>,...,*)

where the ^'s are functions of the 0*8 and the x's. It is understood that

the following treatment applies to a domain in which the functions ^?
are continuous and have continuous derivatives up to the order entering

in the treatment. Equations (23.1) are equivalent to the system of

total differential equations

(23.2) dO" = tf dx\

as is seen when equations (23.2) are written

and it is required that these equations hold for arbitrary values of the

differentials.

Differentiating equations (23.1) with respect to x
3 and in the result

replacing the derivatives of the 0's by their expressions from (23.1),

we obtain

dt? dtf
*' '

Since the left-hand member of these equations is symmetric in i and j y

it follows that the right-hand member must be equal to the expression

obtained from it on interchanging i and j, that is, it is necessary that

the functions \fr be such that by

(23 3) + ** ~ + ''

*!(23-3) . +w +,
-

. + w ^
t, ;

-
1,

The conditions imposed upon the functions ^? by equations (23.3) are

called conditions of integrability of equations (23.1), meaning that if

equations (23.1) are to admit solutions, either equations (23.3) are
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identities in d* and x\ or there are relations between these quantities

which must be satisfied by 6" to be solutions of the system (23.1).

When equations (23.3) are identities in the 0" and x* the system is

said to be compktely integrable, or to be a complete system. With regard

to such systems Darboux* has established the theorem

[23.1] A complete system of equations (23.1) admits one and only one set

of solutions 8* such that for arbitrary initial values XQ of the x's the functions

6* reduce to arbitrary constants c
a

.

We consider next the case when equations (23.3) are not identities

in the 0's and the x's, and refer to them as the set of equations E\ .

If m of these equations, say <p

l =
0, , <p

m =
0, are independent,

that is, if the jacobian of the <p's with respect to the 0's is not identically

zero, these equations can be solved for the 0's as functions of the x's,

and the solution of these equations is unique,f If then any other of the

set E\ is independent of the above equations, and the expression for the

0's are substituted in this equation, there results a relation between the

x's, which is contrary to the hypothesis that the x's are independent.

Consequently, if there are more than m independent equations in the

set E\ , equations (23.1) do not admit a solution. If there are exactly

m independent equations <p

l =
0, , <p

m =
0, we differentiate each of

these equations with respect to x
1

, ,
x
n

,
thus obtaining mn equa-

tions, and in them substitute for the derivatives of the 0's the expressions

\l/i from (23.1). If these equations are satisfied identically when the

solutions
a
of the equations <p

l =
0, , <p

m = are substituted, then
a
constitute a solution of equations (23.1), and the only solution. If

these equations are not satisfied identically, equations (23.1) do not

have a solution.

If the number of independent equations in the set E\ is less than m,

we differentiate the independent ones with respect to the x's, substitute

from (23.1) for the derivatives of the 0's and denote the resulting set of

necessary conditions by EZ . If the number of independent equations

in the sets EI and E% is greater than w, there is no solution of equations

(23.1), as shown by the argument used above. If the number is m,

by the process described above we determine whether there is a solution

(which is unique) or not. If this number is less than m, we differentiate

the equations of the set E* ,
substitute from (23.1) and denote the

resulting set of equations by E* .

Proceeding in this manner we get a sequence of sets of equations.

*
1910, 2, pp. 326-335.

t Fine, 1927, 1, p. 253.
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If all of the equations of one of these sets are not equivalent to equa-
tions of the preceding sets, the set introduces at least one additional

condition upon the 0's. Consequently, if equations (23.1) are to admit

a solution, there must be a positive integer N such that the equations of

the (N + l)
th set are satisfied because of the equations of the preceding

N sets; otherwise more than m independent equations would be ob-

tained, and thus there would be a relation between the x's. Moreover,
from the above argument it follows that N ^ m.

Suppose then that there is a number N(^ m) such that the equations
of the sets

(23.4) L\ ,

.

,
EN

are consistent but that each of the sets introduces one or more condi-

tions upon the 0's independent of the conditions imposed by the equa-
tions of the preceding sets, and that all of the equations of the set

(23.5) EH+I

are satisfied in consequence of the equations of the sets (23.4). Suppose
that there are p(^ m) independent conditions imposed by (23.4), say

Gj(Q] x) = for j =
1, , p. This means that the jacobian matrix

of the G's with respect to the 0's is of rank p, that is, if p < m at least

one of the determinants of order p of the matrix is not identically zero,

and consequently the equations G, = can be solved for at least one

set of p of the 0's as functions of the remaining
J

s and the x's. If

p = m, the equations G 3
can be solved for the 0's in terms of the

x's, and these 0's are a solution of equations (23.1), since they satisfy

the equations of the sets (23.4) and (23.5).

We consider now the case when p < m. By a suitable renumbering
of the 0's, if necessary, the equations (7,

= can be solved for
1

, ,

71

,
which result we write as follows:

(23.6) 6" - ^(6
P+1

, ,
e
m

; x)
=

(
=

1, , p).

From these equations we have by differentiation

30" dp 86 8<p

v

f
.

,
.

Replacing the derivatives of the 0's by means of (23.1), we have

(23.7) tf-tf-.o,
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which equations are satisfied in consequence of (23.4) and (23.5), as

follows from the method by which the sets (23.4) and (23.5) were

obtained. From (23.7) and the preceding set of equations we have by
subtraction

(23.8)
-

,;
- *t*r _ ,A = A =

i,
... ,P; \

v }
ax

^
90* \ax* *v V = p + 1, , m)

Consider now the set of equations

Mf
(23.9)

where ft are the functions of
P+I

, ,

m
,
and the x's obtained from

ft when 0", for v =
1, , p, are replaced by their expressions from

(23.6). For an^ solution of equations (23.9) we have from (23.8)

(23.10) ^ -
ft = 0,

where ft are the functions obtained from ft when
1

,
-

,

P
are replaced

by the functions in terms of
P+1

,

...
,

m
,
and x* as given by (23.6).

Consequently any given solution of (23.9) and 0" from (23.6) constitute

a solution of (23.1).

We take up now the question of the solution of equations (23.9).

The conditions of integrability of these equations result from

dx> Wdx* Wdx^'~"dxi Wdx* !& dx* \OT,T
= p + 1, -, m)

9

when 0" are replaced by their expressions from (23.6). From (23.3) for

a = p + 1,
-

,
m we have

and these are identities when the expressions (23.6) for 0" are substi-

tuted, since (23.6) satisfies all of the sets (23.4) and (23.5). Substituting

the expressions (23.6) for 0" in both sets of the above equations and

subtracting, we have

which equations are satisfied in consequence of (23.9) and (23.10).

Hence the system (23.9) is a complete system, and by theorem [23.1]

its solution involves m p arbitrary constants. Consequently we have
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[23.2] In order that a system of equations (23.1) which is not complete

admit a solution, it is necessary and sufficient that there exist a positive

integer N( ^ m) such that the equations of the sets EI , ,
EN are con-

sistent for all values of x
%

in the domain under consideration, and that the

equations of the sets EN+i are satisfied because of the equations of the

preceding sets; if p(< m) is the number of independent equations in the

first N sets, the solution involves m p arbitrary constants; if p = m,
the solution is completely determined.

It is evident from the above discussion that when a positive integer

N exists such that the conditions of the theorem are satisfied, they are

satisfied also for any integer larger than N, since if the set EN+\ are

satisfied so also are all subsequent ones. However, it is understood in

the theorem and in any of its applications that N is the least integer for

which the conditions are satisfied.

The abov^ theorem applies also to the case when there are q func-

tional relations between the 0's and x's which must be satisfied in addi-

tion to the differential equations (23.1), say

(23.11) f(6; x)
=

(7
=

1,
- - -

, q).

Equations (23.1) and (23.11) are said to constitute a mixed system. In

the case of a mixed system we denote the set of equations (23.11) by
EQ and include in the set E\ of the theorem also such conditions as arise

from (23.11) by differentiation and substitution from (23.1). Then the

theorem holds with the difference in this case that we have the sets

#o , EI , ,
EN instead of the sets EI , ,

EN ,
and that the equa-

tions of the set EN+i are satisfied because of the equations of the pre-

ceding sets.

As an application of the preceding results, if we define quantities p
h

p by

(23-12) .-A,

equations (20.11) may be written

dx'i

(23.13)

and (20.8) as

(23.14)



23] PARTIAL DIFFERENTIAL EQUATIONS 119

Equations (23.12), (23.13) and (23.14) constitute a mixed system for

which x
l

and p
h

p are the dependent variables, that is, they are the 0's

of equations (23.1), and xfp
are the independent variables. Moreover,

equations (23.14) are the set EQ referred to above.

From (23.12) it follows that we must have

/oq i K\ dP
h

p _ dp*
(23 ' 15)

a?i-5?J'

which are satisfied identically by (23.13), and the conditions of integra-

bility of (23.13) are

(23.16) fiWUpf = flVP? >

as follows from (20.12). Since equations (20.11), and consequently

(23.13) were obtained by differentiating (23.14) it follows that no condi-

tions are imposed by differentiating the equations of the set EQ in this

case, and consequently equations (23.16) are the set E\ .

Although the above results were developed from the fundamental

tensor a t ,
of euclidean 3-space, they apply equally well to any covariant

tensor g^ , provided only that the determinant g of the t /s is not zero,

as discussed at the close of 20.

From the definition (20.13) of the Riemanuian tensor it is seen that

only if the Riemann tensor is a zero tensor is it possible to have all the

Christoffel symbols < > equal to zero for some coordinate system x
fl

.

(pq)

\ r V
If there are coordinates re" for which < > are zero, equations (23.13)

IP#J

become

and equations (23.16) reduce to

Since the tensor 72\/* is a zero tensor, these equations are satisfied

identically, and consequently the system (23.17) and (23.12) is a com-

(~
t \

=
^J

can be chosen arbitrarily, as follows from theorem [23.1], and then the
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x's as functions of the x"s are completely determined as solutions of the

system of equations (23.17), which are in fact

*\2 h ( L *\ * 3
o x . 1 n 1 dx dx ,.

_i_ / s n
dxfp dxfq

\ij) dx'p dx'q

Furthermore it follows from the manner in which equations (20.11) were

derived from (20.8) that the solutions are such that

* j
dx dx /

Qi] ~"f
~

T~ == n n
ftl* P (\Y *

**'

where the g"s are constants. That they are constants follows from

equations of the form (20.5) when the corresponding Christoffel symbols

'

are zero.

If g > it follows from an equation of the form (14.12) that g' > 0.

If the quantities g^ > are not equal to 5 t-/ ,
it follows from the theory of

algebraic quadratic forms that there exist linear transformations* with

constant coefficients by means of which the quadratic form is trans-

formed into (14.2). Hence we have

[23.3] A symmetric covariant tensor gafor which the determinant is positive

is the metric tensor of euclidean 3-space, if and only if the Riemann tensor

formed with respect to g^ is a zero tensor.

Although this result has been derived for the case when n =
3, there

is nothing in the proof which limits the result to this value for n, that is,

it applies to any case for n > 1 .

Although euclidean space of any dimensions n is characterized by the

property that there exist coordinate systems for which the Christoffel

symbols are equal to zero, we shall show that for any space there exist

coordinate systems for which at a given point the Christoffel symbols

are all equal to zero. In fact, if the space is referred to a general co-

ordinate system x
l

and \ ., ? denote the values of the Christoffel symbols

for this coordinate system at the point xl ,
and coordinates x'

1

are de-

fined by

x* = xi + x
fi -

i
{

*

fc|
*"'*'*,

* See B6cher, 1907, 1, Chapter 10.
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then the point xfi = is the point XQ ,
and at this point

- * a2 ~< f
'

*< 9 * _ _ J *=
p

dx'*dx'<

T \

Substituting these values in (20.11), we find that < >= at the point,

as was to be proved. Hence we have

[23.4] Even when the Riemann tensor based upon a tensor g^ is not a zero

tensor, a coordinate system can be found such that at a given point all of the

Christoffel symbols in this coordinate system are equal to zero.

In this coordinate system at the origin, that is, x
n =

0, the covariant

derivative of a tensor is the ordinary derivative. In particular, we have

<

'

= dR"pqr _? _ /iV _ _j>
2

{

**'
dx'' dx'"dx

r
'\prl dx''~dx''\pq

as follows from (20.13). From these equations we have

pfl i n/l i ft/I f\v pqr,s \
-tl/ prs,q I

**/ p$q,r
"

The left-hand members of these equations are components of a tensor.

Since they are equal to zero at the point in one coordinate system, they

are equal to zero at this point in any coordinate system. Moreover,

this result can be obtained at each point of the space, and consequently

we have

[23.5] For any space and in any coordinate system

(23.18) VW + fi'/im,* + R'jmk.i
= 0.

Since the covariant derivatives of g
ik

are equal to zero, we have

R l

jkl tm =
(g* Rhjkl) tm =

9* Rkjkl tm .

From this result and (23.18) it follows, since the determinant of g
th

is not equal to zero, that (on changing indices)

(23.19) R i1k i,m + Rijim.k + Rnmk,i = 0.

Equations (23.18) and (23.19) are called the Bianchi identities. They
hold in any space of any dimensionality and in any coordinate system.*

* See 1902, 1, p. 351.
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EXERCISES

1. Find the mixed system of differential equations of the type (23.1) for which

is the general solution, a and b being arbitrary constants; what is the system
EQ in this case?

2. When the functions t" in (23.1) are linear and homogeneous in the 0's,

the equations of the sets E\ , ,
EN have this property; and in order that the

equations (23.1) have a solution, it is necessary and sufficient that there exist

a positive integer N (^ ra) such that the rank of the matrix of the sets of equa-
tions E\ , , EN is m q (q ^ 1), and that this be the rank also of the equa-
tions of the sets EI , , EN+I .

3. Consider the Riemann tensor RUM based upon a tensor ga ,
where i, j =

1, , n; because of equations (i) of 20, Ex. 8 there are n 2
= n(n l)/2 ways

in which the first pair of indices are like the second pair, and n^(n^ l)/2 ways
in which the first and second pairs are different, and consequently there are

7*2(7*2 -f- l)/2 distinct components as regards equations (i); however, there are

n(n l)(n 2)(n 3)/4! equations of the form (ii) of 20, Ex. 8; hence there

are n 2
(n

2
1)/12 distinct components of the tensor.

4. For n = 3 there are 6 distinct components of the tensor RHU ,
and there

are 6 equations

show that the solutions for RUM of these equations are given by

r>

Rijkl
=

ffilRjk ~f QjkRil QikRjl
~

QjlRik + ~
(ffikffil

~
QilQjk),

where

R -

5. Since

Rth

one has from (23.18) on contracting for i and I

Rjk.m Rjm.k + R*jmk,i 0;

if this equation is multiplied by g*
k and summed with respect to j and fc, one

obtains



CHAPTER III

Intrinsic Geometry of a Surface

24. LINEAR ELEMENT OF A SURFACE. FIRST
FUNDAMENTAL QUADRATIC FORM OF A

SURFACE. VECTORS IN A SURFACE

Consider upon a surface with the equations

(24.1) *' = f(u\ M
2

) (t
=

1, 2, 3),

x
l

being cartesian coordinates in the space in which the surface is im-

bedded, a curve defined by expressing u and u as functions of a param-
eter

t,
thus

(24.2) u
a = v'(t) (a = 1, 2).*

Looked upon as a curve in space, its element of length ds is given by
(see 2).

(24.3) ds
2 = Edx'dx

1

.

t

From (24.1) we have

(24.4) dz* = ^ du
a m du

}^ '
3w du

}

where as follows from (24.2)

(24.5) du
a = d

4r di-

at

Substituting from (24.4) in (24.3) we have

(24.6) ds* = ge du
a
du',

where the quantities g^ are defined by

* In general in what follows Latin indices take the values 1, 2, 3 and Greek

indices the values 1, 2.

123
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The expression for ds given by equation (24.6) is called the linear

element of the surface in terms of coordinates u
1

and u
2

. The right-hand
member of (24.6) is called the first fundamental quadratic form of the

surface. Although the linear element was derived in seeking the

element of length of a curve on the surface looked upon as a curve in

the euclidean 3-space in which the surface is imbedded, the significance

of the linear element of the surface is that once it has been obtained

for a surface the arc of any curve (24.2) is given by

In particular, for the coordinate curves u
2 = const, and u

1 = const.

the respective elements of length are given by

(24.8) dsl =
flfnCdtt

1

)

2

, dsl = gn(du*)\

Consequently gu > and #22 > unless the respective coordinate curves

are minimal curves (see 2). Hence, if we are dealing with real surfaces

and real coordinates, we have that g\\ and #22 are positive functions.

A change of coordinates to a new set u'
1

,
u'

2
is defined by means of

equations

(24.9)
' = fV 1

, tt") (a = 1, 2),

3/|l i2\

provided the jacobian , ,L is not identically zero. From (24.9)
o(u

i

,u *)

we have

(24.10) du* = %Cdu
n

(a, 7 = 1,2).
OU 7

When these expressions are substituted in (24.6) we obtain

(24.11) ds
2 =

g'yt du
n

du'\

where

10 A 10\ ' dU dU^

(24.12) ^ = ^
9
_._.

From (24.7) it follows that gap = gpa ,
that is, the 0's are symmetric

in the indices. Since equations (24.12) are of the form (18.1) we say

that gap are the components of, or that ga$ is, the covariant metric tensor

of the surface; it is symmetric and of the second order.
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If we denote by g the determinant of the 0's, that is

(24.13) g =
012 022

we have from (24.7), analogously to (5.1),

(24.14) 9** \9ae \

= (A
12

)

2 + (A
23

)

2 + (4
31

)

2

,

where A 13
are defined by (10.3).

On the understanding that we are dealing only with real quantities

it follows from (24.14) that g is never a negative quantity. It is equal
to zero only in case

(24.15) A 12 = A 2* = An = 0.

These equations cannot be identities in the u's, as follows from theorem

[10.1]. However, equations (24.15) may be satisfied by certain values

of u and u. The points having such values for coordinates are called

singular points, as remarked in 11; they may be isolated points, or

constitute one or more singular curves on the surface. Only ordinary

points, that is, non-singular points, on a surface are considered in this

book, unless the contrary is stated.

Since g T functions g
a&

are uniquely defined by

(24.16) 0"V =
6? ,

where

(24.17) d" = 1 or according as a = y or a 7* y.

In fact, equations (24.16) are equivalent to

/Q j - Q\ 11 022 12 21 012 22 011

As in 14 it can be shown that it follows from (24.12) that

(24.19)' g' = nt ^- ^-

where g'
a?

bear to g'ap the relation (24.18). Thus g
aft

is a contravariant

tensor; it is called the contravariant metric tensor of the surface and is

of the second order.

We observe that equations (24.12) and (24.19) are of the same form

as (14.10) and (14.16) respectively, which refer to the fundamental

quadratic form of euclidean 3-space in two general systems of coordi-

nates x* and x'
1

.
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As stated in 10, the use of two coordinates u
a
in the definition of a

surface, as in equations (24.1), was introduced by Gauss. He used

p and q as coordinates and wrote (24.6) in the form

ds
2 = E dp

2 + 2F dpdq + G dq\

This notation, at times with u and v used in place of p and g, has been

followed generally, but in what follows we use (24.6), since it enables

one to write equations in simpler form with the use of the summation

convention.

From (24.4) it follows that at each point of the surface differentials

du
1

and du
2
determine in the enveloping space a direction tangential to

the surface (see 11) for which dx
l

are direction numbers. Accordingly
we say that at each point of a surface differentials du

a
determine

a vector in the surface. Moreover, since equations (24.10) for a trans-

formation of coordinates in the surface are of the form (15.10), we say

that du
a
are the contravariant components of the vector at each point.

One would expect from geometric considerations that for a curved sur-

face vectors with the same components du
a
at different points would

have different directions as viewed from the enveloping space. This

expectation is verified analytically by (24.4), since ordinarily the quan-
d

*

tities - are functions of the u's, and consequently vary from point

to point in the surface.

Consider two sets of functions X
ot

(u
1

,
u

2

) and X
/flf

(w
;1

,
u'

2

) in two co-

ordinate systems u
a
and u'

a
in the surface related as follows

(24.20)

which are equivalent to

(24.21) X'
a = X* ^J

in view of the identities

(24.22)
dU

"
9M" dU

'"
dU>

these being analogues of (13.13) and (13.14). Since (24.20) and (24.21)

are of the form (15.10) and (15.8) respectively, we say that,X
a
and

X'
a

are the components in their respective coordinate systems of a

contravariant vector in the surface, there being one such vector at each

point of the surface.
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If we define quantities
*

by

(24.23) *-*?
it follows from (24.20) that

(24.24) ? = X
*~*

The quantities
-

: and - are direction numbers in the enveloping space
du1 du2

of the tangents to the coordinate curves u = const, and u
1

== const,

respectively in the surface, that is, the u
1

-coordinate curves and the

u-coordinate curves. Since are linear homogeneous combinations

of these direction numbers, they are direction numbers of a line tangent
to the surface, as follows from the results of 11, and consequently are

the components in the enveloping space of the contravariant vector

whose components in the surface are X
a

.

Two sets of functions X(w
1

, u) and \'a (u
fl

,
u'

2

) which are related as

follows

(24.25) \a - X0
~

,
X' =

X0 ^-a

(either set of equations being equivalent to the other in consequence
of (24.22)) are the components in their respective coordinate systems
of a covariant vector in the surface (see 17). From the results of 19,

which apply to any number of coordinates, it follows that if X
a
are

components of a contravariant vector in the surface, then

(24.26) X = gib'

are the components of a covariant vector, since ga$ is a covariant

tensor. Also if X are the components of a covariant vector, then

(24.27) X
a = 0%

are the components of a contravariant vector, since g
aft

is a contra-

variant tensor. As in 17, we say that two sets of functions X
a
andX

of u
a
related as in (24.26) and (24.27) are the contravariant and covariant

components respectively of the same vector in the surface. The geomet-

ric significance of these components is shown in 25.

From (24.23), (24.7), and (24.27) we have

/o/i ocA \^ **' > \ a \0 ~ay\
(2<.2#) 2^ f

= X X gap = g X
1
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The first member of these equations is the square of the length of the

vector as viewed from the enveloping space (see 16 following (16.1)).

From 19 it follows that ga0\
a
\ft and g

ay
\a\y are scalars. Hence we have

[24.1] For a vector whose contravariant and covariant components are

X
a
and X respectively each of the scalars <70X

a
X^ and a/3XaX0 is equal to

the square of the length of the vector.

As a corollary we have

[24.2] A necessary and sufficient condition that \
a
and \a are the contra-

variant and covariant components of a unit vector in the surface is that

(24.29) 00XV =
1, 0^XaX0 = 1.

EXERCISES

1. For a sphere with equations of the form in 10, Ex. 1 the coefficients ga p

of the linear element are given by

0n = a 2
, 012 =

0, 022 = a2 sin2 u l
.

2. When equations of the tangent surface of a curve with equations x i =

/*(u
l
), where u l is the arc, are written in the form (see (8.5))

^-a^ + U2 -^),
dul

the curves u2 = const, are the orthogonal trajectories of the generators, and in

consequence of (2.8), (2.9), and (4.3) one has

011
= JC

2
(W

2 - W 1
)
2

, 012 = 0, 022 = 1.

3. For any surface of revolution, when the equations are given in the form

in 10, Ex. 2,

,011
= 1 + >'

2
, 012 = 0, 022

= M1
*,

where the prime indicates the derivative.

4. The equations

u 1

x l = u 1 cos w2
,

x2 = u 1 sin u2
,

x* = a cosh" 1

a

xz

are equations of the surface of revolution of the catenary xl = a cosh about

the z3-axis (see 10, Ex. 2); this surface is called the catenoid. In this case

Mi

\/\ -f ^'2 = /
2 so that for the coordinates u' 1

,
w2 where u' 1 = V w l a2

V u 1 - a2

0ii
-

1, 012 - 0, 022
- a 2 + (u'i)

2
-

Does this change of coordinates change the coordinate curves?



25] ANGLE OF TWO INTERSECTING CURVES 129

5. For a right conoid with equations of the form in 10, Ex. 4,

011
=

1, 012 0, 022 M 1 + <?'

6. On a surface with the equations

x l = u l cos u2
,

x2 = ul sin u2
,

x3 = <p(u
l
) + au2

,

where a is a constant, the curves u1 const, are circular helices (see 3, Ex. 1),

and

0ii = 1 -f <f>' , 0i2 =
a<f>', 022 = u 1 + a2

;

such a surface is called a helicoid] all the curves u2 = const, are congruent plane

curves; a is called the helicoidal parameter.

7. When in Ex. 6 v(u l
)
= 0, the helicoid is a right-conoid as follows from 10,

Ex. 4, and

0n =
1, 012 = 0, 022 = a2 + u 1

*;

this surface for any non-zero value of a is called a skew helicoid.

dua

8. Along any curve on a surface the quantities are the contravariant com-
as

ponents of the unit tangent vector.

25. ANGLE OF TWO INTERSECTING CURVES IN A
SURFACE. ELEMENT OF AREA

We have seen in 24 that values of du
a
determine at each point of a

surface a vector tangent to the surface whose components dx* in the

enveloping space are given by (24.4). From the standpoint of the en-

veloping space the direction cosines a* of this tangent vector are -r-
as

(see 3). In consequence of (24.4) and (24.6) we have

du"

(25.1)
' = *L* = -

""

Since dx* are direction numbers of such a tangent to the surface,

and the quantities - are functions of the u's, it follows from (24.4)

that the direction of a vector of components du
a
depends not only

upon these components but also upon the point of tangency. However,
values of the differentials du

a
determine a direction at each point of

the surface.

For a curve on the surface defined by equations of the form (24.2)

we can find from (25.1) the expressions for a* in terms of
t, giving the

direction cosines in the enveloping space of the tangent at any point of
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the curve. Equations (24.5) give values in the surface of the compo-
nents du" of this vector.

Suppose now that at a point on a surface we have two vectors in

the surface of components diu
a
and diu

a
,
and we denote by a\ and 0:2

the direction cosines of the tangent vectors so determined in the en-

veloping space. An angle 6 between these tangents is given by

Zdx
1

, a 6x*

' dlU
cos 6 =

which because of (24.7) becomes

(25.2) cos 6 = --

0/3 d\ U
{

In terms of at and a\ we have

z
sin

2 6=1 cos
2 =

2 j2

ai

From (25.1) we have

a a

a 2 a 2

dua

dua

dx
3

d\U
a

dua dis

dx
j d2 u

a

dua d2 s

dx
1

dx
3

~du l bu l

dx
{

dx 3
'

From this result and (24.14) we have

sin = g

d2 u6

2 *

di u d\ u

* See remark following (5.1); also C. G., p. 80.
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Thus far 6 is one of two angles whose sum is 360, and the formula

(25.2) does not distinguish between these two angles. This ambiguity
is removed, if we take

/or- ON -

a r dl u
1

d*d - diU
2

dzu
1

(25.3) sm 6 \/g -.^

The significance of this choice is shown later.

From (25.2), and also from (25.3), it follows that the angle between

tangents of components d\u
a
and dzu

a
depends not only upon these

components but also upon the point of tangency unless ga$ are con-

stants. We show later that gap are constants only in case of developable

surfaces, and then only for particular sets of coordinates.

If two curves defined by equations

a a /i \ a a/. \
U =

<pi (ti), U =
<f>2 (k)

have a point in common, for values of t\ and k at the point we can

obtain from (25.2) and (25.3) the angle 9 between the tangents to the

curves at the point of intersection, that is, the angle of the two inter-

secting curves.

In order to find at a point the angle co of the coordinate curves u
2 =

const, and u
1 = const., for the directions in which u

1

and u
2

respectively

are increasing, we take

(25.4) diu
1 > 0, dtu

2 =
0, <W =

0, d*u
2 > 0,

and obtain from (25.2) and (25.3)

(25.5) cos co = gg_, sin co =_, co .

V 011022 V011022

Thus co is the angle formed by the vectors at the point in the directions

hi which u
1

and u
2

respectively are increasing and such that

< co < 180.

From the first of these equations we have

[25.1] A necessary and sufficient condition that at each point of a surface

the coordinate curves meet at right angles, that is, are orthogonal to one

another, is that g\2
= 0.

In this case the coordinate curves are said to form an orthogonal net

(see 24, Exs. 1-5, 7).

We next apply equations (25.2) and (25.3) to find the angle 0o in

which a curve upon the surface meets a coordinate curve u
2

const.

If at the point of intersection the components of the tangent to the
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curve are denoted by du
a
and we use the first two of (25.4), replacing

d*u in (25.2) and (25.3) by du
a

,
we obtain

(25.6) cos sin 0o = Vgdu2

and consequently

(25.7) tan

From the second of (25.6) it follows that the angle between the direc-

tions for which u is increasing on a curve u =
const., and u is increas-

ing on the given curve lies between and 180. Thus 0o is the angle

(0 < < 180) through which the vector du > 0, du = must be

rotated to be brought into coincidence with the tangent vector to the

curve in the direction for which du > 0. This is the sense in which

the first of these vectors is rotated through the angle w to be brought
into coincidence with the vector du =

0, du
2 > 0, and may be called

the positive sense of rotation.

We shall show that the angle through which the vector diu
a
must

be rotated in the positive sense to be brought into coincidence with

the vector d^u
a

is given by (25.3). We say that this is the angle which

the vector dzu
a
makes with the vector d^u". In fact, if 0i and 2o denote

the angles made at a point by the vectors d\u
a
and d^u" with the vector

du > 0, du
2 =

0, it follows from (25.6) that

sin (02o
-

The right-hand member of this equation reduces to the right-hand

member of (25.3). If now
lo < 2o ,

=
2o
-

0i ,
and if 0i > 2o ,

= 2?r 0i 4- 02 ;
in either case the left-hand member of the above

equation is sin 0.

For a transformation of coordinates (24.9) we have from (24.12) that

<25 '8) 0'
=

I *t, 'i , >*\
\,d(u

l

y
U 2

)_

where g' and g are the determinants of g'a$ and ^ respectively. Also

for this transformation of coordinates equation (25.3) becomes

d,u
fl

sin =
\/gf

d2 u'
2
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the plus or minus sign to be used according as the jacobian is positive
or negative. If we denote by w' the angle between the coordinate

curves u'
a =

const., and if 6 denotes this angle in the u-system, we
have from (25.5)

P-

sin 6 = rt sin co'.

This means that positive sense with respect to the ^-system and uf-

system is the same or opposite according as the jacobian is positive or

negative. Hence we say that a transformation of coordinates is positive

or negative according as the jacobian is positive or negative. However,
if a transformation is negative, and if in the equations of the transforma-

tion one replaces u'
1

or u'
2

by u'
1

or u'
2

,
the sign of the jacobian is

changed, and the new transformation is positive. This change does not

change the coordinate curves u'
a =

const., but merely the positive sense

on one family of coordinate curves. Hence there is no loss of generality,

if we understand in what follows that a transformation is positive unless

there is a statement to the contrary.

Consider now two vectors of contravariant components Xf
(

and X?|.

If at a point on the surface we take differentials dot," and dzu
a
given by

we have from (25.2) and (25.3)

cos 6 = - - .- ?-?.-LL1!

6 being the angle which the vector X?| makes with the vector

We have, on changing dummy indices,

and
xl x2 \2 >1 !>, _20x 2ax l/3x

Ai|X2| Xi|X2|
= 9 Xl| a</ A2|/3 9 \l\a9 \Z\ft

(9
U
9
22

(9
rl2

)

2

)(Xi|iX2 |
2 Xi| 2X2 |i).

From these results, (25.9), (24.18) and theorem [24.1] we have

COS0

sin0 =
V9
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From the first of equations (25.9) and (25.10) we have

[25.2] A necessary and sufficient condition that at a point the vectors X?
(

and X?| be perpendicular is

0/9Xi|X2|
=

XlX2|
=

Xi|X2| a
= g Xi|aX2|/3

=
0,

Xi| and X2|a being the covariant components of the respective vectors.

When, in particular, we denote by 0i and 62 the angles which the vector

X" makes with the vectors X
1

,
and 0, X

2

respectively, that is, the angles

which the vector X
a
makes with tangents to the curves w

2
-const. and

u = const, respectively, we have from (25.9)

(25.11) cos 0!
= gg^!

^, cos 2
=

ap x
a
\(*

If then in the tangent plane at a point P, we lay off the vectors X";

X',0; 0, X
2

,
and note that the lengths of the last two vectors are \/<7n X 1

and \/022X
2
respectively, we have from (25.11) that the projection of

these lengths upon the line of the vector X
a
are respectively

The sum of these two vectors is \^ga$\
a
\P, that is, the length of the

vector X
a

. Again from (25.11) we have that the projections of the

vector X
a
upon the tangents to the curves u2 = const, and u = const,

at P are respectively

gai X
a

<72 X
a

Noting that the numerators of these expressions are the covariant

components of the vector X", we have (see theorems [16.6] and [17.6])

[25.3] At any point P of a surface the vector \
a

is the diagonal from P of

the parallelogram whose sides are segments of the tangents at P to the curves

u const, and u
1 = const, of the respective lengths \/gn X

1

and \/gw X
2

;

and the projections of the vector upon these tangents are the covariant com-

ponents of the vector divided by v^fu an& V022 respectively.

We define two sets of numbers ettp and e
aft

as follows:

(25.12) en = e22 = e
11 = e

22 =
0, el2 = e

12 =
1, e21 = e

21 = -1.
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For a transformation of coordinates in the surface we have

du" du* _ du du* _^'i'^t 7*" '

If the transformation is positive, we have

consequently

du

In like manner it can be shown that

e
75

__ <?* du'
y
du'

6

Vg' Vg du" du(*'

Hence we have

[25.4] The quantities

(25.14) 6a = <W<7,
aft = ~

Vg

are the components under a positive transformation of a skew-symmetric

covariant and contravariant tensor of the second order respectively.

From (25.14) and (25.12) we have

(25.15) e
aV = 7<

X/J = 5*
a

Also the second of equations (25.9) may be written

(25.16) sin0= -

Hence we have

[25.5] A necessary and sufficient condition that a unit vector X| makes a

right angle with a unit vector
\!"|

is that

(25.17)
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Consider a unit vector X and the vector whose covariant components
Ma are given by

(25.18) M = *jf.

Since /*X
a = it follows from theorem [25.2] that /* is perpendicular

to the vector X
a

. Its contravariant components are given by

a ofl a/3 -*y / a2 \ 1 al x 2\ /~
^ = g *

= 9 = "
g '^

^ ^
/ a2 01 al 02 \ /- ^ /3a x= (99 -

Q 9 ) Vg \s
= f x^ .

From (25.18), (25.19), and (25.15) we have

M
a
M = XX =

1,

that is, jit" is a unit vector, and

(25.20) ea/J\V =
a/JXV\ = X

a
Xa = 1.

Hence by theorem [25.5] we have

[25.6] The quantities na defined by (25.18) are the covariant components

of the unit vector which makes a right angle with the unit vector X".

Consider next upon a surface the curvilinear quadrilateral formed by
the coordinate lines, the vertices being the four points P(w

1

,
u

2

),

Q(u
l + du\ u

2

), R(u, u + du
2

), S(u + du\ u + du
2

). To within

terms of higher order the lengths of the sides PQ and PR are V^u du
1

and V022 du
2

,
and the sides opposite them have these respective lengths

to within terms of higher order. Since the distances of Q and R from

the tangent plane to the surface at P are of the second order in com-

parison with PQ and PR (see 11, Ex. 9), it follows that when Q, R,

and S are projected orthogonally upon the tangent plane to within

terms of higher order these projections are the vertices of a parallelogram

of sides \/g\\ du
1

and \X022 du
2

. The area of this parallelogram is

equal to

sin co \/gn du \/</22 du = \/g du
1

du
2

,

the latter expression following from (25.5). Accordingly we have that

the element of area da of a surface is given by

(25.21) da = \/g du
1

du
2

,
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by means of which may be found by integration the area of any portion

of a surface by evaluating the definite integral

. j du
1

du*

for appropriate limits.

EXERCISES

1. Find the angle of the coordinate curves of a helicoid defined in 24, Ex. 6.

2. When the coordinate curves on a surface are the curves in which the surface

is intersected by the planes x 1 = const, and x2 = const., the parametric equations
of the surface are

r l r l T2 _ T 2 T3 _ {(T\ r2>
i

'

X X
,

X X, X J^X ,
X ),

the linear element is

ds 2 =
(1 -f- p\) dx l

-f 2p\pzdx
ldx* + (1 + pl)dx* ,

a/-
where pa 33

,
and the angle w of the coordinate curves is given by

oxa

COS CO = -p

^l+pJXl+p?)

3. When the coordinates of the enveloping space are general coordinates x 1

,

equations (24.7) are replaced by

ax* dx>

where o/ is the covariant metric tensor of space.

4. When the coordinates of the enveloping space are general coordinates x*,

the form of equations (24.23) is not changed,
5. Find the element of area of a sphere of radius a as defined in parametric

form in 10, Ex. 1 (see 24, Ex. 1), and use the result to find the area of the sphere.

6. If 0j and 02 denote the angles at a point on a surface which the vectors

diua and diua make with the vector du 1 > 0, du2 = at the point

cos (02
~

0io) cos 0> sm (02o
~~

0io)
= sm 0>

where cos 6 and sin are given by (25.2) and (25.3). In particular,

cos (w - )
=

7=-- 2 -7- ,
sin (w - )

=
ds

where w and 0o are given by (25.5) and (25.6).

7. From (25.15) it follows that



138 INTRINSIC GEOMETRY OF A SURFACE [Cn. Ill

8. From (25.12) and (25.14) it follows that

(i) ea(
*

gay g& - ge^ ,
eap g

at
<f*

- e^ ;

g

(ii) ^ gay g& -
fra , 4*9^ it* - 7'

J

(iii) 9
a(*

*ya 40

(iv)

26. FAMILIES OF CURVES IN A SURFACE. PRINCIPAL
DIRECTIONS

Upon a surface defined in terms of coordinates u
a
an equation

(26.1) f(u\ W
2

)
=

is an equation of a curve, as remarked in 10. If this curve is defined

also by equations

in terms of a parameter t,
and these expressions are substituted in (26.1)

the resulting equation being an identity in t does not vary with t and

consequently the derivative with respect to t is equal to zero; that is,

_# ^=0
du dt

From this equation and (24.5) we have that differentials du
a
determining

the tangent at any point of the curve satisfy the equation

(26.2) ^ du
" = Q -

Thus one of the differentials may be chosen arbitrarily (^ 0), and the

other is given by (26.2) when the values of u1

and u* for the point are
\f

substituted in -- .

dua

Consider an equation

(26.3) f(u\ u
2

)
=

c,

where c is an arbitrary constant. For each value of c equation (26.3)

is an equation in the coordinates u
a
of a curve in a surface defined by

equations of the form (24.1). Through each point of the surface for

which / is single-valued there passes a curve of the family of curves

(26.3). In fact, when the curvilinear coordinates u
1

,
u

2
of a point are
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substituted in (26.3), a value of c is uniquely determined, and evidently

the equation (26.3) in which c is given this value is an equation of a

curve through the point.

An equation

(26.4) Mul

,
u

2

)
=

is an equation of the same family as (26.3), if /i is a function of/, that

is, f\(u
l

,
u

2

)
=

/^(/(u
1

, u}). For, in this case a locus of points for which

/ is a constant is also a locus for which fi is a constant. Conversely, if

every curve of the family (26.4) is a curve of the family (26.3), then /i

must be a function of /. For, as follows from (26.2) the differentials

du" determining the tangent to the curve of each of the families (26.3)

and (26.4) are given by

du
du* =

0, du* = 0.
dua

If then each curve of one family is to coincide with a curve of the other

family, we must have

df_ dj\

du 1 du 1

~du
2 du2

= 0,

from which it follows that / and /i are functions of each other.

Consider next the differential equation

(26.5) Madu
a =

0,

where Mi and M* are functions of the u's. In accordance with the

theory of such equations there exists a function t(u, u
2

), called an

integrating factor* such that a function / is defined by

(26.6)

and thus

du"
tMa (

=
1, 2),

tMa du" =
df.

Consequently /(u
1

,
u

2

)
=

c, where c is an arbitrary constant, is an inte-

gral of (26.5). If there is another integral of (26.5), say fi(u
l

,
u

z

)
=

Ci,

corresponding to another integrating factor ^ ,
it follows from (26.6)

*
Fine, 1927, 1, p. 292.
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and similar equations in fi and t\ that the jacobian of / and /i with re-

spect to u
1

and u
2

is equal to zero, and consequently fi is a function of

/. Accordingly, and in view of the results of the preceding paragraph,
an equation (26.5) is an equation of one, and only one, family of curves

on the surface. We say that this family of curves is the family of

integral curves of the equation (26.5).

We seek now the differential equation whose integral curves are the

orthogonal trajectories of the integral curves of equation (26.5). If we
substitute in equations (26.5)

du = pMz ,
du

2 = pM\ ,

this equation is satisfied whatever be p. If then we substitute these

expressions in place of dzu
1

and d^u in the equation

(26.7) gap dzu
a
d&? =

0,

which from (25.2) is the condition that at a point of the surface the

vectors diu
a
and dtu

a
are perpendicular, we obtain on discarding the

factor p

(gi0M2
- gwMi) d\u

ft = 0.

Hence we have

[26.1] The orthogonal trajectories of the integral curves of an equation

Ma du
a = are the integral curves of the equation

(26.8) (<7nM2
-

flfuMi) du
1 + (<7i2M2

- g^M,) du
2 = 0.

As a corollary we have (setting M2
= and MI = successively)

[26.2] The orthogonal trajectories of the coordinate curves u
1 = const.

are the integral curves of the equation

(26.9) gndu
1 + 22 du

2 = 0;

and of the curves u
2 = const, they are the integral curves of

(26.10) gudu
1 + gudu

2 = 0.

If /(w
1

,
u

2

) is any function, for a change of coordinates in the surface

we have

df __ df du f(i

~du
a du'P du"

'

where/' is the transform of/ (see 15). From (24.25) it follows that
r\f

are covariant components of a vector, the gradient of /(17),
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From this result and (26.6) one has that the quantities Ma in equation

(26.5) are covariant components of a vector. Since its contravariant

components are g
ai*Ma ,

we have

ga^M, du* = 5]My du* = Mp du* = 0.

Hence from (25.2) we have that Ma in equation (26.5) are the covariant

components of the field of normals to the integral curves of the equa-
tions (26.5), these normals being tangent to the surface at the cor-

responding points of the integral curves.

Consider next a differential equation of the first order and second

degree of the form

(26.11) aapdu
a
du? = au(duf + 2an dudu

2 + a<n(du
2

)

2 =
0,

where a\\a^ a?2 ^ 0. This equation is equivalent to the two equations

(0i2 + V a\i an 022) du
l + 022 du =

0,

(26.12) _____.

(ai2 V ai2 1111022) du
1 + Owdu = 0.

We seek the condition that the integral curves of these equations, and

consequently the two families of integral curves of equation (26.11),

are orthogonal to one another, that is, form an orthogonal net (see 25).

These integral curves are real or conjugate imaginary according as

011^22 #12 is a negative or positive quantity. If we denote the dif-

ferentials in the two equations (26.12) by d\u
a
and d2u

a
respectively,

solve these equations for diu and d2u
2

,
and substitute in (26.7), we have

[26.3] The two families of integral curves of an equation aap du
a
du*

form an orthogonal net, if and only if

(26.13) 0iia22
-

20i2ai2 + 0au = 0.

Under a change of coordinates the equation (26.11) becomes

(26.14) a^du
n

du'* = 0,

where

, 0fl , CN / du du* , dun du'
6

(26.15) a, 5
=

oafl ^-y
~-

/6 ,
aa, = a 7 ,

,
.

Thus aap are the components of a covariant tensor of the second order,

and there is no loss in generality in assuming that it is a symmetric

tensor (see 19, Ex. 2). In consequence of (24.18) the condition (26.13)

may be written

(26.16)
a/5

a0 = 0.
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The left-hand member is a scalar quantity, whose vanishing is the condi-

tion that the integral curves of equation (26.11) form an orthogonal net.

We consider now the equations

(26.17) (a*
- r g*) \* = 0,

from which it follows that quantities X^ are determined to within a

common factor for each root r of the determinant equation

(26.18) |

aaf>
- r gaf} |

= 0.

It is evident that equations (26.17) do not admit a common solution

other than X^ = unless r is a root of equation (26.18). Since a
a/9 and

tt are covariant tensors, it follows that in any other coordinate system
the left-hand member of equation (26.18) is equal to

Since the jacobian is different from zero, we have in the coordinates

u'
a
an equation of the form (26.18), and since r is unaltered by a change

of coordinates, it is a scalar. Moreover, the equations (26.17) trans-

form into

which are equivalent to (a'ys r0^a)X
/fi =

0, where

that is, each set of quantities X^ satisfying (26.17) for suitable values of

r are the contravariant components of a vector.

When the determinant (26.18) is expanded, one obtains the quadratic

equation

(26.19) (0ii0
-

0L)r
2 -

(011022 -f 0220H
- 2a120i2)r + (011022

- o) = 0.

The discriminant of this equation, namely

(On022 + 22011 2012012)
2

4(0n022 0l2)(Oll022
~

812),

reduces to

(26.20) (011022
-

02201l)
2 + 4 (012011

-
011012) (12022

~
^22012).

Since the roots of equation (26.18) are scalars, if they are real and

distinct or equal in one coordinate system, the same is true in any co-
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ordinate system. Suppose then that the coordinate curves form a real

orthogonal net. For such a system the expression (26.20) reduces to

(011022
-

0220n)
2 + 4a?20ii022 ,

which is non-negative since g\\ and #22 are positive (24). Hence the

roots of (26.18) are real. They are distinct, unless the above expression

is equal to zero. In this case

an 022 n= ai2 = 0,
011 022

that is, aa/j

=
tgap ,

in which case r =
t, and equations (26.17) are

identities, and thus do not determine quantities X*
3

.

We consider now the case when a
a/3 are not the same multiple of ga$ ,

that is, the tensor aap is not proportional to the tensor ga$ . We denote

by 7*1 and r2 the roots of equation (26.18), and by X?) and X^i the corre-

sponding vectors; thus we have

(26.21) (a*
-

ri0a/J)A?i
=

0, (aap
- r^X?, = 0.

If we multiply these respective equations by X"| and Xf| ,
sum with re-

spect to a in each case and subtract the resulting equations, on changing
indices suitably we get

= 0.

Since r2 ^ r\ we have the first of the equations

(26.22) 00X? I
X?,

=
0, fl^XfiX?,

=
0,

the second being a consequence of the first and either of (26.21). From
the first of (26.22) it follows from theorem [25.2] that the two vectors

X?| and \"\ are orthogonal, that is, the two vectors at each point are

perpendicular.

These two vectors at each point are the tangents to the curves of an

orthogonal net on the surface. In order to obtain the differential

equation of which these curves are the integral curves, we replace X"

by dv? in equations (26.17) and eliminate r from the two equations, as

a takes the values 1, 2. The result is

di0 du? 02/3 du
ft

(26.23)

which upon expansion is

(26.24)

=0,

0220ii) du
l
du*

2,+ (0U022
-

022012) du = 0.
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Since these integral curves form an orthogonal net, when they are

the coordinate curves we have in this coordinate system the first of

the equations

(26.25) 12
=

0, m, =
0,

and the second follows from the fact that in this coordinate system the

coefficients of du
l *

and du* in (26.24) are equal to zero, since (26.24)

must be satisfied separately by du
l

and du 0, and gu arid g2z

are different from zero. In this coordinate system the directions of the

integral curves of equation (26.11) are given by

= -4-

V I?

and consequently these directions are equally inclined to the curves

u const, as follows from (25.7). As a result of the foregoing discus-

sign we have

[26.4] // aap is a tensor not proportional to the fundamental tensor ga$ ,

the integral curves of the equation (26.23) form a real orthogonal net, and

bisect the angles of the integral curves of the equation aa$ du
a
duft ~ 0.

We call the directions determined by (26.17), that is, the directions

of the integral curves of equation (26.23), the principal directions for

the tensor aap . Another property of these directions and the significance

of the roots of equation (26.18) follow from the consideration of the

expression

(26.26) '

At a point the value of r depends not only upon the point, but also upon
the direction A" at the point. The maximum and minimum values of

r at a point are given by the directions for which - =
0, that is,

oXa

MX
7XVX -

OyaXVfcpX* = 0.

By means of (26.26) this is expressible in the form (26.17), and we
have

[26.5] At a point of a surface the maximum and minimum values of the

expression (aap\
a
\

ft

) / (gap\
a
\^) are given by the principal directions for

the tensor aap ,
these directions being perpendicular.
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EXERCISES

1. Find upon a sphere the two families of curves which bisect the angles be-

tween the meridians and parallels, and then find the linear element of the sphere
when these are the coordinate curves (see 10, Ex. 1 and 24, Ex. 1).

2. By definition a curve upon a surface of revolution which meets the meridians

under constant angle is a loxodromic curve; the equation of loxodromic curves is

(see 10, Ex. 2 and 24, Ex. 3) is

1

~f VI + <?'
2 dul + 6u2 + c = 0,

where 6, c are constants, b being the cotangent of the constant angle.

3. On the skew helicoid (see 24, Ex. 7)

x 1 = u 1 cos w 2
,

x2 = u 1 sin u2
,

x3 = aw2

the integral curves of the equation

(du1
)
2 - (u l

*

-f a2
)(du

2
)
2 =

form an orthogonal net.

4. An angle 6 between the integral curves of the equations

Mi* dua =
0, M za du

a =

is given by

g
a*
MiaMtf

cos e

5. By means of (24.18) and (25.14) equation (26.8) may be written

y du? = 0.

6. Derive the result expressed by equation (26.16) by showing that this scalar

is equal to zero when the integral curves of (26.11) form an orthogonal net and

are the coordinate curves.

7. For the paraboloid

xl = au l cos w2
,

x 2 = bu l sin w 2
,

x* = $u l
(a cos 2w2 + b sin2u2

),

where a and b are constants, find an equation of a curve on the surface such

that the tangent planes along the curve make a constant angle with the o^a^-plane;

find the edge of regression of the developable surface which is the envelope of

the tangent planes to the surface along one of these curves.

8. For a surface *S with equations of the form

x i = eh *f(u
l
) cos(u l

-f u2
), x2 = e*

2

/(w
1
) sin(u

l
-f u2

), x3 = e*ttV(ul
),

where h is a constant, the curves w 1 = const, lie on the quadric cones
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and cut the generators of the cone under constant angle, that is, they are conical

helices (see 3
?
Ex. 3). Such curves are also called spirals, and the surface S is

called a spiral surface.

9. The first fundamental form of the surface S of Ex. 8 is

' + /
2 + W) du l du*

where a prime indicates a derivative with respect to u 1
;
the orthogonal trajec-

tories w'2 *= const, of the curves u1 = const, can be found by quadratures and
the linear element is reducible to the form

ds 2 - es
""(dw'*

2

4 ^(u') du'2
*),

u' 1
being a suitable function of u l

.

27. THE INTRINSIC GEOMETRY OF A SURFACE.
ISOMETRIC SURFACES

In 24-26 it has been shown that the metric properties of a surface,

that is, lengths of curves, angles between intersecting curves, and areas,

are expressible completely by means of the first fundamental form of

the surface. It is true that these results have been obtained by the

consideration of these quantities from the standpoint of the enveloping
euclidean space. In this sense the metric properties of the surface are

induced by the euclidean metric of the enveloping space. However,
once the formulas for the measurement of length, angle, and area have

been found in terms of the first fundamental form of the surface, there-

after these metric formulas may be used without considering the surface

as imbedded in space. For example, since the first fundamental form

of a sphere of radius a is (see 24, Ex. 1)

(27.1) ds* = a((du
1

)

2 + sin
2
u

l

(du*)\

the coordinate curves being meridians and parallels of latitude, all the

metric properties of the sphere are obtainable by the use of the formulas

of 24-26 applied to the form (27.1).

In the next chapter we consider geometric properties of a surface in-

volving its shape as viewed from the enveloping space and we find that

they are expressible in terms of the first fundamental form and another

quadratic differential form, called the second fundamental form of the

surface. In order to distinguish between the properties expressible

entirely in terms of the first form from those expressible only in terms

of the two forms, we say that the intrinsic geometry of a surface consists

of the properties expressible in terms of the first form alone.

When two surfaces are such that there exists a coordinate system on
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each in terms of which the first fundamental forms of the two surfaces

are identical, the intrinsic geometry of the two surfaces is the same.

This means that so far as measurement on the two surfaces is concerned

there is no difference in the two surfaces, no matter how different the

surfaces may appear to be as viewed from the enveloping space. Two
such surfaces are said to be isometric. From (24.12) it follows that, if

the fundamental forms of two surfaces are identical for one coordinate

system on each, they are identical when any and the same transforma-

tion of coordinates is applied to the two surfaces.

An example of isometric surfaces is afforded by the catenoid and the

skew helicoid (see 24, Exs. 4, 7). From geometrical considerations it

follows that a cylinder and a cone are isometric with the plane, since

either may be rolled out upon a plane and thus brought into coincidence

with a portion of the plane. In the case of a cylinder this is shown

analytically in Ex. 1, the coordinate curves ufa = const, on the surface

corresponding to a rectangular cartesian system in the plane.

In 12 it was noted that in general the tangent planes to a surface

constitute a two parameter family, but that there is a group of surfaces

whose tangent planes constitute a one parameter family. Such a sur-

face is called a developable surface, since it can be rolled out upon a

plane, just as a cylinder or cone can be. In view of this property it is

evident that a developable surface is isometric with a plane. It was

shown also that with the exception of cones and cylinders a developable

surface is the tangent surface of a curve, the tangent planes to the

surface being the osculating planes of the curve.

In 24, Ex. 2 it was stated that the first fundamental form of the

tangent surface of a curve is

(u* -uYSdu
1 * + du

2

*,

u
1

being the arc of the curve. Since this expression does not involve

the torsion r of the curve, it follows that the tangent surfaces of the

curves which have the same first intrinsic equation K = f\(u) but

different second intrinsic equations r =
f*(u

l

) (see (7.1)) are isometric.

In particular, when r = we have the tangent surface of the given

twisted curve isometric with the plane, the correspondence being be-

tween points of the surface, and points of the tangents to a plane curve

with the same intrinsic equation K fi(u
l

) as the given twisted curve.

Since the tangent planes to the surface are the osculating planes of the

curve of which the surface is the tangent surface, when the developable

surface is rolled out upon the plane, the tangents of the curve become

the tangents to the plane curve of the same curvature K and the principal
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normals of the former become the normals to the plane curve in its

plane. With respect to a rectangular coordinate system in the plane
the direction cosines of the tangent a

a
and of the normal /3" are such

that

C97 9^
<* - dX dc*

a
- rtf ^ -

(27.2) ---, ^-^ , -5J-
-*

i

as follows by processes for the plane which gave the Frenet formulas

for a twisted curve; they follow also from (6.1) for r = 0.

In 12 we showed that any developable surface other than a cylinder

or a cone is the tangent surface of some curve C, it being the envelope
of the osculating planes of C. For a point x* on C the coordinates of

any point in the corresponding osculating plane are given by (see 6)

(27.3) X { = x
i + ua + vff,

for suitable values of u and v. When the developable surface is rolled

out upon a plane, the curve C becomes a plane curve F. The tangent
and principal normal to C at a point go into the tangent and normal

to F at the corresponding point, and consequently the point X
1

given

by (27.3) goes into the point of coordinates

(27.4) X" = x
a
-f ua

a + v(3
a

,

where X a
and x

a
are cartesian coordinates and where x

a
, a", and /3

a
are

appropriate functions of s, which is the same for both curves, and u

and v are the same numbers as in (27.3). Differentiating equations

(27.4) with respect to s, and making use of (27.2), we have

, . dX I du \ a (dv
(27.5) _.. = ^+__^ +

{-
+

If u and v are such that

/^~ n \ du
,

. dv .

(27.6)
- KW + 1 = 0,

-- + KU =
0,

as as

then X a
are constants, that is, such values of u and v determine in each

osculating plane of the curve a point such that all these points go into

the same point in the plane when the surface is developed upon the

plane. Equations (27.6) being the same as (6.10), whose solutions

u and v determine an orthogonal trajectory of the osculating planes,

we have

[27.1] When a developable surface, other than a cone or cylinder, is de-

veloped upon a plane, all the points of an orthogonal trajectory of the

tangent planes to the surface go into one and the same point of the plane.
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EXERCISES

1. When equations of any cylinder are given in the form

* l = AC" 1
), & =

/i(t*i), & - u,

the first fundamental form is

(f{
2 +/2 2

)(<*w
1
)
2
4- (du*).

In terms of parameters u' 1 and u'2 defined by

the form is (du'
1
)
2 + (du'

2
)
2

. What are the coordinate curves in this case?

2. On a cylinder with equations as in Ex. 1 the helices, that is, the curves which
meet the generators under constant angle, are defined by

where a, b, c are constants.

3. Given a surface of revolution with equations as in 10, Ex. 2 and a right

conoid with the equations (see 10, Ex. 4)

x l = u' 1 cos u' 2
,

x2 = u' 1 sin w' 2
,

x3 = ^(w'
2
);

in order that a surface of revolution and a right conoid be isometric with the

meridians of the former corresponding to rulings on the latter, it is necessary
and sufficient that u' 2 = /(u

2
), and_ w

VI 4- <?"> du l = du'\ w /lf
-f t'* =

;

show that it follows that the surface of revolution is a catenoid (see 24, Ex. 4)

and the right conoid is a skew helicoid (see 24, Ex. 7).

4. When the polar developable of a curve (see 12, Ex. 1) is developed upon a

plane, the points of the curve go into one, and the same, point of the plane.

28. THE CHRISTOFFEL SYMBOLS FOR A SURFACE. THE
RIEMANNIAN CURVATURE TENSOR. THE GAUSSIAN

CURVATURE OF A SURFACE

From the definition (20.2) of Christoffel symbols of the second kind,

and (24.18) it follows that the Christoffel symbols formed with respect

to the first fundamental form of a surface are (no indices being summed)

oa 2g

l

2g

I

2g
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From (20.5), (20.6) and (20.7) we have

Vg _

in all of which the summation convention applies.

From the expression in 20, Ex. 7 for the covariant components of

the Riemann tensor it follows that the tensor is skew-symmetric in the

first two indices and also in the last two indices. Consequently for a

surface

(28.3) RaaBf = Rctfay
=

0, #1212 = #2121 = "~
#2112 = "~

#1221-

Hence every non-zero component is equal to #1212 ,
or to its negative.

From the form (ii) of Ex. 7 in 20, we have

<28 '4) rr ^ f ^ r ^
. r/\M /^+ Hww\iij

When a surface is isometric with the plane, there necessarily exist

upon it orthogonal nets with respect to which as coordinate curves

011
=

022
=

1, 012
=

0,

the net in the plane consisting of lines parallel to the coordinate axes.

Hence #1212 = in this coordinate system and consequently in every

coordinate system by theorem [18.1]. Conversely, if the Riemann

tensor for a surface is a zero tensor, it follows from theorem [23.3],

which applies to any n-space for n > 1, that there exist coordinate

systems on the surface with respect to which the above equations hold.

Hence we have

[28.1] A surface is isometric with the plane, if and only if the Riemann

tensor is a zero tensor.

The quantity K defined by

(28.5) K #1212
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is called the Gaussian curvature of a surface, and also the total curvature

of a surface. As thus defined it is an intrinsic property of the surface

as was shown by Gauss.* The geometric significance of the Gaussian

curvature of a surface as viewed from the enveloping space is treated

in 46.

From (28.5), (28.3) and (25.14) we have

(28.6) R<x0yi
==

and consequently (see 25, Ex. 7)

(28.7) K

Hence from theorems [25.4] and [19.2] it follows that (see Ex. 8)

[28.2] The Gaussian curvature of a surface is a scalar.

From (28.2) and analogously to theorem [22.1] we have

[28.3] The covariant derivatives of ga& and of g
a&

are equal to zero.

We leave it as an exercise to show that in consequence of the third of

equations (28.2)

[28.4] The covariant derivatives of eap and of e
a^

are equal to zero.

Although we have defined K to be the Gaussian curvature of a surface

with the first fundamental form gap du* du^
y
it is advisable also to speak

of K as the curvature of the quadratic form ga$ du
a
du&

. In 26 we

considered the integral curves of the equation aa^du
a
duft = and

pointed out that these curves are real only in case the determinant

a s= ana22 c& is non-positive. When this determinant is negative,

which is the condition that there be two distinct families of real curves,

we say that the form aa$ du
a
duft

is indefinite just as we say that the first

fundamental form of a surface is definite with g > 0. When a is nega-

tive, it is possible to find real coordinates u
a
such that

aa/3 du* du* = t du
1

du\

where t is some factor. In this case u
a = constant are the integral

curves. We wish to consider particularly the case when t = 1. In this

case the curvature of the right-hand member is zero, and consequently

this case can arise only when the curvature of the left-hand number is

zero since curvature is a scalar.

*
1827, l, p. 236.
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When t = 1, we factor the left-hand member of the above equation
and write the equation as follows

(/
j i i #12 ~h "V a , 2\f / j i , #12 "V & 7 21V#n du +--~=^- du

){ Van ** H--^- du*
}

Van A Van /

= du
1

du
2

.

We replace this equation by the two

(28.8) __

X~" d^
)
= rf"

2

.

an /Van
where e" and e~" are to be determined. Evidently they arc integrating

factors of their respective equations. Consequently ^ is such that

- ai2
"

From these two equations one can obtain
,
and -~ . Their condition

du1 du2

of integrability is necessarily satisfied by the fact that the curvature of

the above form is zero. Hence M can be found by a quadrature and

then u and u
2

by further quadratures from (28.8) . We accordingly have

[28.5] When a quadratic form aap du
a
du? is indefinite and its curvature is

zero, real coordinates u
l

and u can be found by quadratures in terms of

which the form is equal to du
1

du
2

.

When the form is definite, u
1

and u
2
as derived by the above processes

are conjugate imaginary. If then ii
1

and u
2
are replaced by u

1 + iu
2

and u
1

iu respectively we have the following theorem :

[28.6] When a quadratic form aap du
a
du^ is definite and its curvature is

zero, real coordinates u
1
and u

2
can be found by quadratures in terms of

which the form is (du
1

)

2 + (du
2

)

2
.

As a corollary of this theorem we have

[28.7] Upon a developable surface cartesian coordinates can be found by

quadratures, that is, the coordinates are cartesian when the surface is

developed upon a plane.
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EXERCISES

1. When the coordinate curves on a surface form an orthogonal net, the cor-

responding Christoffel symbols are (see 20, Ex. 2)

du
""""

^ a),

from which and (28.4) it follows that

R = _V^11

4-
92^ 4- [Y 4-1212 * ^ *

4- [f
d
*2\ , ??Li ??

2. The components of the Ricci tensor (see 20, Ex. 10) for a surface

are given by

t-" /2im,
9

and the scalar curvature K of the surface by

3. For a sphere of radius a with the equations of the form in 10, Ex. 1 it fol-

lows from Ex. 1 and 24, Ex. 1 that

0n 022 a2
'

4. For a surface of revolution with the equations

xl = u 1 cos w 2
,

x2 = u 1 sin w2
,

x3 =
<f>(u

l

),

it follows from Ex. 1 and 24, Ex. 3 that

TJ i a
jr ^1212
A. =

"Hi + / 2
)
2

5. For a surface with the first fundamental form

a 2
[cos

2
w(<iw

1
)
2
-f sina w(dw 2

)
2
],

where w is a function of u 1 and w2

Rim = a2 sin w cos <
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6. The integral curves of the equation

gap du* du*

are conjugate imaginary curves of length zero, that is, minimal curves (see 3).

7. The equations

where a is a constant, i = \/l, and u 1 and u1 are conjugate imaginary, are para-
metric equations of a sphere of radius a; the coordinate curves are minimal lines.

8. In consequence of the remark following (28.3)

9 t*v^)l2
u^ J

consequently K is a scalar.

9. From equations analogous to (20.15) and from (28.3) and (28.5) it follows

that

10. From 20, Ex. 7 and (28.5) it follows that

_

(i)

d / 2 fyi2 1

and in consequence of (25.5)

, __

(ii)

11. When the equations of a surface are of the form in 25, Ex. 2 the Christoffel

symbols have the values

1

d*f
where g - 1 +/} -f/1, and/^ - -
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12. From the definition (22) of the covariant derivative based upon gap of

the contravariant components Xa of a vector, namely

and from (28.2) one obtains

The scalar X*
ia

is called the divergence of the vector Xa (see 22, Ex. 2).

13. For the covariant derivative Xa ,0 of the covariant components X of a vector

one has that

1

is a scalar, called the curl of the vector Xa ;
when the curl is equal to zero, the

vector is a gradient (see 17).

14. If Xa and Xa are the contravariant and covariant components of a unit

vector, one has X?0Xa = Xa ,0X
a =

0, from which it follows that

where n
a

is the vector perpendicular to the given vector, and v$ is some vector.

15. When the coordinates are chosen so that an indefinite quadratic form

reduces to 2aia du l du1 the curvature of the form is given by

29. DIFFERENTIAL PARAMETERS

If <p is any function of u and u
2

, a
are the covariant components

of a vector, the gradient of <p y
as observed in 26. Consequently the

quantity A#> defined by

is a scalar (see theorem [19.2]). It is the square of the length of the

gradient
~
a by theorem [24.1], Also

uU

(29.2)

where <p\ and ^>2 are any functions of u
1

and u
2

,
is a scalar.
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Consider also the quantity

/9o o\ / \ _ 1 d(<Pi > ^2) _ /3 d<pi d<?2
(29.3)

e.te,*,)--^^-^-. ^.
In consequence of theorem [25.4] this quantity is a scalar for a positive

transformation .

The scalars A#>, Aifo. , <p2), 0i(v?i , <?2) are called differential parameters

of the first order, involving as they do derivatives of the first order.

In order to give a geometric interpretation to these differential

parameters, we note that for any function <p of u
1

and u
2
one has

(29.4) *"-<>.

where du
a
are the contravariant components of the tangent vector at

a point of each curve of the family <p(u
l

, u) = const. From (29.4)

and theorem [25.2] it follows that this tangent vector and the vector

~-~ at each point are perpendicular.

For two families of curves <pi(u
l

t
u2

)
= c\ and ^(u

1

,
u2

)
= c% the

angle 6 which the normal vector at a point makes with the normal
dua

vector
a
at the point, and consequently an angle between the curves

uU

at the point, is given by

(29.5) cos e = ***'<
,

sin 6 = -

as follows from (25.10), (29.2), and (29.3) (see Ex. 5).

From (29.5) we have

[29.1] Two families of curves v\(u , u) = const, and ^(u
1

,
u

2

)
= const.

form an orthogonal net, if and only if AI(^I , <p2)
= 0.

From (29.5) it follows that the following identity holds between the

differential parameters of the first order:

(29.6) (Ai

When, in particular, we take <p\ u
1

, <pz u
2

,
we have from (29.1),

(29.2), and (24.18) in the coordinate system u
a

(29.7)
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Since differential parameters are scalars, when Aiw
1

, Aiw
2

, Ai(t*
1

,
u

2

)

are written out in another coordinate system w'
a

,
we have

(29 .8 ) /*-*",$,
that is, equations (24.19). Since g\\ , #22 and g are positive quantities

when u and u
2

are real coordinates (see 24), it follows from (29.7)

that Aip is a positive scalar when y is a real function.

Let <p be a solution of the differential equation

(29.9) A** =
1,

and \j/ a solution of the equation

(29.10) Aifo *) =
0,

in which <p is the given solution of (29.9). By theorem [29.1] the curves

<t>
= const, and ^ = const, form an orthogonal net. If they are taken

as the parametric curves u'
1 = const, and u'

2 = const, respectively,

it follows from (29.7) that g[ z
=

0, g'
=

g'ng'zz, and

_!, = Alu" = A1V = 1,

011022

and consequently the linear element is

(29.11) ds
2 = (du'

1

)

2 + g
f

2 2 (du'
2

)

2
.

From this result it follows that along a curve \l/
== u'

2 =
const., rfs =

du;1

,
and thus the distance along this curve from a curve <p

= c\ to a

curve p = 02 is equal to C2 Ci . Since this distance is the same along

all curves ^ =
const., we say that the curves <p

= const, are parallel

curves.

Since A#> has been shown to be positive for a real function p, if Aip

is a positive function of <p, say

(29.12) Ai?

a real function /(<p) is defined by

From (29.1) one has for any function f(<p)
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Hence for the above function /(<?) one has Ai/(<p)
= 1. Accordingly

f(<f>)
= const, are parallel curves, and therefore <p

= const, are. Hence
we have

[29.2] // <p is any real function of real coordinates u
a
and

the curves <p
= const, are parallel curves.

For example, when the linear element is

ds
2 =

<p

2

(u
l

)(du
1

)

2

1 =
,
as follows from (29.7) and consequently the curves u

l

const, are parallel.

The quantities <p,ap ,
defined by

/9Q1QN _ d
2

?
(29 ' 13) ^"
being the second covariant derivatives of <p, are the components of a

symmetric covariant tensor of the second order. Consequently the

quantity Aj#> defined by

(29.14) A^ 3 g
af

><p,af}

is a scalar. It is called the fundamental differential parameter of <p of

the second order] it involves derivatives of the second and first orders.

The differential parameters AI^> and A#> were introduced by Lame**

for space referred to general coordinates in his study of physical prob-

lems. They were introduced in the study of the geometry of a surface

by Beltrami.f

In order to write A#> in another form, we note from the definition

(22.4) of the covariant derivative of a contravariant vector that the

covariant derivative of the vector g
ay ^-

a (= g
ay

<?,<*) is given by
uU

(29.15) (g
a\,^ = ^ foV.) + *

By theorem [28.3] the left-hand member of the above equation is equal

to
a
V.a/3 . From this result and (29.15) it follows that (29.14) can be

written

*
1859, 1, pp. 5, 17.

1 1864, 1, pp. 359, 365.
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In consequence of this result and (28.2) we have

(29.16) -

which because of (24.18) may be given the form

i f o / d
<f>

d<f>\ I d <f> d <f>

(29.17)

' "

EXERCISES

1. Show that

a

duy
><x ' Y

2. Show that

A2 ua g*"* < > (a " 1
, 2) .

3. The following are differential parameters of the second order:

4. If / and g are any functions of u 1 and u2
,

A,/ -^ A2 u
a + r-fi Ai w + 2 f- Ai(uS M2

) + r-p A! w2
.

awa ^w 1 du^w1 9u2

5. At a point of a curve ^(ul
,
u2

)
= the unit normal vector - /\/A^ makes

dua

dwa

a right-angle with the unit tangent vector- when the latter is chosen in direc-
ds

tion so that by theorem [25.6]

dtp dv?- VAHP*- -

If for two intersecting curves ^(u 1
,
u2

)
==* and ^(u 1

,
u 2

) one has respectively

the expression (29.5) for sin is equal to (25.3) (see (25.15)).
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6. On a surface of revolution (see 10, Ex. 2) the curves u l = const., that is,

the orthogonal trajectories of the meridian curves, are parallel curves (see 24,

Ex.3).

7. For a helicoid, as defined in 24, Ex, 6, the helices are parallel curves, and
their orthogonal trajectories are the integral curves of the equation

find the linear element of the surface when the helices and their orthogonal

trajectories are the coordinate curves, and show that any given helicoid is iso-

metric with some surface of revolution.

8. When there exists upon a surface an orthogonal coordinate net such that

the quantities g\\ and gn are functions of u l alone or u2
alone, the surface is

isometric with a, surface of revolution.

9. If v>is a solution of the equation A \<f>
=

0, the curves <? const, are imaginary,
as follows from (29.7).

10. Of the differential parameters AIV?, AI(V?, <A), &*<?, i(<f>, <A) the last is the only
one which changes sign (but not magnitude) when a transformation is negative.

11. When the coordinate net is orthogonal,

from this result and (29.7) it follows that if u a are solutions of the equation

(i) A!(V>, Atf>)
= 2A 2^(Ai^

-
1)

other than those for which A\<f>
=

1, then

,

In this case the fundamental form may be written

(ii) ds 2 = cos2 du^ + sin2 du*
;

if <p is any solution of (i) such that AW ^ 1, the function ^ of the orthogonal

trajectories ^ = const, of the curves v>
= const, can be chosen so that the funda-

mental form is

ds* = cos2
dip

1
-f sin2

efy
2

.

12. When the linear element is the form (ii) of Ex. 11 and one effects the trans-

formation of coordinates

u = u /l + w' 2
,

w2 = u' 1 -
u'*,

the linear element becomes

(i) ds2 = (du'iy + 2 cos co du'i du'* + Wu' 2
)
2

,

where w(= 20) is the angle of the new coordinate curves. A net with respect to

which as coordinate the linear element is of the form (i) is called a Tchebychef
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net', a necessary and sufficient condition that the coordinate curves form such a

net is

When the linear element is gap du
a du? and one effects the transformation

u' 1 =
J VW du l

,
u f* =

I \/gz2 du\

the new coordinate curves form a Tchebychcf net; the determination of all such

nets is equivalent to the solution of equation (i) of Ex. 11.

30. ISOMETRIC ORTHOGONAL NETS. ISOMETRIC
COORDINATES

When the coordinate curves on a surface form an orthogonal net

such that g\i
=

gzz
=

?, in which case the linear element of the surface is

(30.1) ds
2 = t

2

(du* + du
2

*),

the elements of length of the u- and ^-coordinate curves are tdu
1

and t du respectively. Hence the coordinate curves divide the surface

into small squares to a first approximation. Such a net is called an

isometric orthogonal net and u
a
isometric coordinates.

From (29.7) it follows that a necessary and sufficient condition that

two families of curves ^(u
1

,
u

2

)
= const, and ^(u

1

,
u

2

)
= const, form

an isometric net and that <p and \l/ be isometric coordinates is that

(30.2) A^> = A^, A^?, ^) = 0.

In this case the linear element of the surface is

(30.3) ds
2 = t(dj + <ty

2

),

where t
2

is the reciprocal of the common value of the two members of

the first of equations (30.2).

When the linear element is in the form (30.3) it follows from (29.17)

that

A2u
a = (a = 1, 2).

It will now be shown conversely that each real solution of the equation

A2
= determines an isometric orthogonal net.

If v is a solution of the differential equation of the second order A%d =

0, we have from (29.16)

(30.4) (V0a1
*.) + (V0 <fV) - 0.
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From this equation it follows that a function ^ is defined by

(30.5)

since (30.4) expresses the condition of integrability of equations (30.5).

If these equations are multiplied by gy\ and gy2 respectively and the

resulting equations are added, we have

0700Va =
-7^(071^,2
Vflf

The left-hand member of this equation reduces to <p,y . For the values

7 = 1 and 7 = 2 these equations are reducible, in consequence of (24.18),

to

(30.6) *M

Expressing the condition of integrability of these equations, we have

which by (29.16) is equivalent to the condition A2^ = 0.

If equations (30.5) are multiplied by <p,i and <p,2 ,
and the resulting

equations added, we have

which in consequence of (29.1) and (25.14) may be written

(30.7) A1V> = e
aV^ -

Likewise, if equations (30.6) are multiplied by ^,2 and \l/,i respectively

and the resulting equations are subtracted, we have

(30.8) *
aV^ = A!*.

From these two equations we have the first of equations (30.2).

Again, if equations (30.5) are multiplied by \l/,i and ^,2 ,
and the

resulting equations are added, we have the second of equations (30.2).

Hence we have

[30.1] Any real solution <p of the equation A2
= and the function $

obtained by quadrature from the corresponding equations (30.5) are iso-

metric coordinates of an isometric orthogonal net.

If now we define coordinates u and u by

(30.9) ? =
/i(t*

1

), * = /2(A
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the linear element (30.3) becomes

(30.10) ds* = f(f*du* + /JV).

Thus the linear element is no longer of the form (30.1), but the coordi-

nate curves are the same as before (see (10.14)). For the form (30 10)

(30.11) JH
= #

022 1/2

where U\ and Uz are functions of u
l
and u

2

respectively.

Conversely, if for an orthogonal net on a surface the quantities gu
and 22 are in the relation (30.11), the linear element is of the form

(30.12) ds
2 = t(U\du

l * + V\du*).

If then we define coordinates u'* by

tdu
1

,
u'

2 =
I Uidu

2

,

the coordinate curves are the same as before, but the linear element is

ds
2 = t

2

(du'
12 + du'

2

*).

Hence we have

[30.2] When for an orthogonal coordinate net, the condition (30.11) is

satisfied, the net is isometric, and the isometric coordinates can be obtained

by quadratures.

If any function of <p, say f(<p) is a solution of the equation A2
=

0, in

which case f(<p) is one of a pair of isometric coordinates, we have from

(29.16)

(30.13) Atf/'fo) + AtfTk) =
0,

where the primes indicate derivatives with respect to <p. When this

equation is written in the form

we have that, if kyp/ &\<P is a function of <p, say F(<p), then the function

f(<p) obtained by two quadratures from

(30.14) f(<p) = e-l
r(*d * = e-/^^/A^)dv>

is such that/(^>) is an isometric coordinate. Hence we have

[30.3] A necessary and sufficient condition that a family of curves <p
=

const, and their orthogonal trajectories form an isometric net is that A#> =
or that the ratio of A^ and A#> be a function of<p.
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From (30.4) it follows that (30.13) may be written in the form

2

<P.a)
= 0.

Hence a function ^ is defined by

(30.15)

and ^ is such that the second of (30.2) is satisfied, that is, the curves

\l/
= const, are the orthogonal trajectories of the curves <p

= const, and

form with the latter an isometric net.

Equations (30.15) follow also from (30.5) when <f> is replaced

Consequently in place of (30.6) we have

(30.16) /'(o? fl
= Vg 0"*,* , /'(?)*,i

= - Vg 0*W
From (30.15) and (30.16) we have similarly to (30.7) and (30.8)

= e
a(
*<p>a \l/,p

=
..y-r-r Al^,

that is, in place of the first of (30.2) we have

(30.17) Aif =

From this result, equations (29.7), and (30.14) we find that the linear

element is

(30.18) ds
2 = (dj + f

If u and u are isometric coordinates of an isometric orthogonal net,

that is, if the linear element is of the form (30.1) and functions <p and ^
are defined by

~
(30.19) <p + ty = f(u d= m2

), * -
i* = /o(^ + iu

2

),

where / and / are conjugate functions, we have

A? + d*
2 = //o(^

12 + du
2

*).

Consequently the linear element is

ds
2 = L (d*

2 + dtf\
J Jo

and hence <p and ^ are isometric coordinates of a real isometric orthogonal

net, different from the given one since v and
\l/ are not functions of u

1

and u
2

respectively, or of u
2
and u

1

respectively.
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When the linear element is of the form (30.1), equations (30.5) become

d<p __ a^ d<? _ _a^
du1

~
aw"2

'

aiT2
""

aw"1
'

that is, the Cauchy-Riemann equations,* the integrals of which are

given by (30. 19). Hence we have

[30.4] When one isometric orthogonal net is known for a surface, all other

such nets may be obtained directly by equations of the form (30.19).

EXERCISES

1. The meridians and their orthogonal trajectories on a surface of revolution

(see 24, Ex. 3) form an isometric net.

2. The rulings on a skew helicoid and their orthogonal trajectories form an

isometric orthogonal net (see 24, Ex. 7).

3. When the coordinate curves of a surface form an isometric orthogonal net,

the curves

u l
-f- w2 = const., u l u2 = const.

are the bisectors of the angles of the coordinate net, and form an isometric orthog-
onal net.

4. When on a surface two families of curves <p const, and \f/
= const, form

an isometric orthogonal net such that

the surface is isometric with a surface of revolution.

5. For a plane referred to cartesian coordinates the equations

u* -j- ivP

define an isometric orthogonal net consisting of two families of circles.

6. For a central quadric with parametric equations of 10, Ex. 3

~-rr. ^' W (, ft -I,*, a* ft),aa .
f

.

4(ai - wa)(a 2
-

?4
a
)(a3

- wa)

hence the coordinate curves form an isometric orthogonal net.

7. The equations

. I wi *z . n , 4 /
v*z V" l

/'1 I i\^1 I IN
a;

1 = db /(/ ul u?
t

x* = - \/ (1 -4- fliw
l)u 4- fliw

2
),

2 aia2

aiu i
4.

*
Fine, 1927, 1, pp. 408, 409.
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in which the o's are constants are equations of a paraboloid. For the coordinate

system u"

di oa , flN aiai
g"""l^r

(" u)
u-

and consequently the coordinate curves form an isometric orthogonal net.

31. ISOMETRIC SURFACES

In this section there is derived a necessary and sufficient condition

that two surfaces S and S f be isometric (see 27), their respective first

fundamental forms being

(31.1)

The surfaces are isometric if there exist two independent equations

(31.2) <p(u\ u
2

)
=

<p'(u'\ u12

), *(u\ u
2

)
= V(u'\ u'

2

)

establishing a one-to-one correspondence between points of S and S'

such that by means of (31.2) either of the quadratic forms (31.1) is

transformed into the other. Since differential parameters are scalars,

it follows that a necessary condition that S and S' be isometric is that

(31.3) Ai? = AV, Aifo *) = A XV, *0, Ai* = A^',

where the differential parameters on the left and right are formed with

respect to the respective forms (31.1). Conversely, the conditions

(31.3) are sufficient conditions that S and S' be isometric. In fact, if

the curves <f>
=

const., \l/ const, are taken as coordinate on S and

<?'
=

const., \f/'
= const, on /S', in consequence of (29.7) the respective

quadratic forms may be written in the form

2Ai(<p, \l/)d<pd\l/

-
Af (*, *)

* - 2AiV, rtdy'ty' +

Hence when there exist two independent equations (31.2) such that

(31.3) are satisfied, the surfaces S and S' are isometric.

Since by theorem [28.2] the Gaussian curvature is a scalar, a necessary

condition that surfaces S and S' with the fundamental forms (31.1) be

isometric is that

(31.4) K(u\ M2

)
= K'(u'\ u'\
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where K and K' are the Gaussian curvatures of S and S' respectively.

We now seek a necessary and sufficient condition that S and S' be

isometric.

We consider first the case when K and K' are equal constants, that is,

(31.5) Rim =
ag, #(212 = ag'.

If a =
0, each surface is isometric with the plane by theorem [28.1],

and consequently with the other.

In order to discuss the case a ^ we remark that equations (31.5)

are equivalent to

(31.6)

We apply to this case the discussion of equations (23.12) and (23.13)
\ a

for the functions u
a
of u'

1

,
u l<L and the functions p$ =

r/J

. Because of

(31.6) the corresponding equations (23.16) are satisfied in consequence of

that is, equations (24.12). These equations, three in number, are the

set #0 ,
and all the sets EI ,

are satisfied because of the set EQ .

Since there are six functions u
a

, p and three equations in the set EQ ,

we have in consequence of theorem [23.2]

[31.1] Two surfaces of equal constant Gaussian curvature are isometric,

the equations giving the one-to-one correspondence involving three arbitrary

constants.

In this connection it must be remarked that such correspondence
is limited to domains for which theorem [23.2] applies.

When K is not a constant, we consider in addition to (31.4), the

equation

(31.7) A!# = Ai'X'.

We note that AI# ^ for K real (see 29). If then equations (31.4)

and (31.7) are independent, these equations establish a correspondence

between S and S' which is isometric, if and only if

(31.8) Ai(X, A!#) =
Ai'CK', A{X'), AiAiK = Ax'AjX'.

If equations (31.4) and (31.7) are not independent, and they are to be

satisfied, we must have

(31.9)
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where / is some positive function of K and Kf

respectively. In this case

we may take for equations (31.2) equations (31.4) and

(31.10)

unless

(31.11)

If equations of the form (31.11) do not exist, then equations (31.4),

(31.9), (31.10) and

(31.12) AiCK, A2K) = b[(K', A2''), ^i^K = ti^K'

constitute a necessary and sufficient condition that S and S' be isometric.

We consider finally the case when both (31.9) and (31.11) are satisfied,

including the possibility fr(K) =
fi(K')

= 0. Itfi(K) 7* 0, the ratio of

AzK and AiX is a function of K, and by theorem [30.3] the curves K =
const, and their orthogonal trajectories \l/ const, form an isometric

net, the function ^ being obtained by a quadrature (see 30). Further-

more, the respective quadratic forms are by (30.18)

(31.13) -.

j(&)

and when A2^ =
0, ^K' =

0, by (30.3), they are

(31.14) L
(dK

* + d**\ (dK'
2

In either case it is seen from (31.13) and (31.14) that the equations

K = K', j,
= ^ + a,

where a is an arbitrary constant, define the isometric correspondence of

the two surfaces.

We have thus treated all possible cases and as the result have

[31.2] Given two surfaces whose Gaussian curvatures are not constant',

it can be determined directly, that is, without quadratures, whether the

surfaces are isometric.

When (31.9) and (31.11) are not both satisfied, the equations deter-

mining the correspondence are given directly, whereas in the case when

(31.9) and (31.11) are both satisfied, the determination involves a

quadrature. In this case the correspondence can be effected in an

infinity of ways. What this means geometrically follows from the

observation that from the forms (31 .13) and (31.14) it is seen that S and
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S' are isometric with a surface of revolution (see 24, Ex. 3). When one

considers a surface of revolution from the standpoint of the enveloping

space, one sees that a surface of revolution is isometric with itself in an

infinity of ways, each such correspondence being given by a suitable

rotation of the surface about its axis.

It should be remarked that for any two surfaces in isometric corre-

spondence such correspondence is established only for the domains for

which the equations given above, such as (31.4), (31.7), and (31.10),

are independent in each of the cases considered.

EXERCISES

1. When the linear element of a surface is written in the form

(i) ds2 - dwl2 + 022 du
2
*,

one has

.
9 log A/(7,, __ 1

from which it follows that

A(w l
, Azw 1

)
= -K -

(A 2w 1
)
2

.

Hence for any function v> the equation

-K -

is an identity.

2. If equations (31.4) and (31.9) are satisfied, for the functions <r and<r' defined

by

f
dff

, = f
dK'

J f(K)
f

* ~
J f(K')

'

the equation (31.10) reduces to A 2<r
= A

2a', and the equation Ai(er, Ajo-) =

Aj(o-', A^tr') is a consequence of (31.10) and (31.4) (see Ex. 1).

3. The equation (i) of Ex. 1 is the linear element of a surface isometric with a

surface of revolution if 22 is a function of u l alone (see 24, Ex. 3). In order that

the surface have constant Gaussian curvature 22 must be a solution of the third

of equations (ii) of Ex. 1, in which K is a constant. If K 7* 0, there are the

two cases

1 u l ul

(i) K == -

, VW - & cos |- c sin -
,

a2 a a

1 ul ul

(ii) K
, \/022

- b cosh he sinh
,

a2 a a

where b and c are arbitrary constants.
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4. For a surface with the linear element

where a is a constant, the Gaussian curvature is equal to 4a.

32. GEODESICS

< fThe Christoffel symbols < n > and < f in two coordinate systems u
a

\py) IH
and u'

a
respectively in a surface are in the relation

w*"'
du''du"

This result follows from (20.11), which result is general and applies to

any transformation of coordinates in any number of variables, provided

only that the determinant of the covariant tensor with respect to which

the Christoffel symbols are formed, in the present case gap, is not equal to

zero.

For any curve on the surface defined by u
a
as functions of s, and for

any transformation of coordinates, we have

duT = ^ <hf du
a

_ du du"

ds du" ds
'

ds du ffi ds

Thus X" defined by

(32.3) X" -
d~

are contravariant components of the tangent vector to the curve, and

it is a unit vector since from (24.6)

(32.4) ^^^=1.
Differentiating the second set of equations (32.2) with respect to s and

making use of (32.1), we have

107 J dw'M dw'7 ds ds
'

from which it follows that

(w *\ <?uja\ du* duy
_ du

(d*
u* f X \' du" du^\

(6Z ' b) ~^ + 1 -- r

~d~s 'A
~
to*\d*

*W ds ds)'
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If we differentiate (32.4) with respect to s, we obtain^^
O"*

ds2 ds
"*"

d^ ds ds ds

From this result and (28.2) we have

/ ^ (<fu* ,
( a \ du* du>\ du* n

(32.6) Qaf> [
- + < V

)
= o.

\ ds2
\dy) ds ds ) ds

If then we put (changing dummy indices)

/ x d
2

u
a

i a duft duy

it follows from (32.5) that p" are the contravariant components of a

vector at each point of the curve, which may be a zero vector (that is,

ju"
= 0). From (32.6) it follows that if the vectors ju

a
at points of a curve

are not zero vectors they are perpendicular to the tangents at the cor-

responding points; this case is considered in 34.

We consider now the curves at each point of which the vector p
a

is a

zero vector, that is, the curves for which u
a
as functions of s are solutions

of the equations

These curves are called geodesies.

Before considering geodesies on a general surface, we observe that, if

the surface is a plane and the coordinates are cartesian, equations (32.8)

<fu
reduce to -r-v- = 0, the integral of which is

ds*

u = a" + 6%

when the a's and b's are constants. Hence the geodesies of a plane are

straight lines, and conversely any straight line is a geodesic. The reader

should compare the results in this section concerning geodesies on any

surface with the properties of straight lines in the plane. From the

form of equation (32.8) it follows that isometric surfaces (27)
have the same equations of geodesies. In particular, the geodesies on a

developable surface are such that they become straight lines when the

surface is rolled out upon a plane. A characteristic property of geodes-

ies on a surface as viewed from enveloping space is shown in 44.
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A solution of equations (32.8) is determined by initial values of u
a

and -7- ,
that is, the values when s = 0. For such values we obtain

ds

dV
from (32.8) the corresponding initial values of -T ,

and from the result
as2

of differentiating (32.8) corresponding initial values of all higher deriva-

tives of u
a

. In accordance with the theory of the existence of integrals

of ordinary differential equations,* the corresponding integral of equa-

tions (32.8) is given by

^QO crt ^_
(32.9) u = ui1 + (du\ 1 (d\\ , 1 /dV\

Vrfs7o
s +

2V^7o
s

l3\"rf?/o'

for values of s for which the series converge, the subscript indicating

initial values. If we differentiate the equation

(32.10) ga^ d^ = const.,
as as

we obtain (32.6), and consequently any integral of equations (32.8)

satisfies (32.10). Hence, in order that s in a solution (32.9) shall be the
/

,
\

arc, it is necessary and sufficient to choose the initial values f .

)
so

\ as /o

that (32.4) be satisfied.
/ 7 a\

Since the values 1
-
r

-
) determine the direction of the geodesic at the

\ ds /o

initial point u"
,
we have the following fundamental theorem :

[32.1] Through each point in a surface and in any given direction there

passes a unique geodesic.

From (32.8) and (32.6) we have

[32.2] The coordinate curves u
a

const, for a = 1 or 2 are geodesies, if

and only if

(32.11)
" = (a = 1 or 2; ft

= 2 or 1).

*
If we put

~~- = p
a

,
these equations and -f <

a
> ptpi 0, which are equa-

ds ds (0y)

tions (32.8), are of the form discussed by Darboux (see 23).
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When the coordinate curves form an orthogonal net, equations (32.11)

reduce to -^ =
(see 28, Ex. 1). Hence we have

[32.3] When the coordinate curves on a surface form an orthogonal net, a

necessary and sufficient condition that the curves u
a = const, be geodesies is

that gpp ,
where 13 ^ a, be a function of u

&
alone.

Thus for example, the meridians on a surface of revolution are geodesies

(see 24, Ex. 3), as are the rulings on a right conoid (see 24, Ex. 5).

Returning to the consideration of the series (32.9), and the remarks

preceding (32.9), we see that if we put

(32.12) u=
\ ds

we have

u" - uS = u* + a
a
u12 + bu l

u
2 + cu* + - -

,

where a, 6, c, ,
are functions of ul ,

and ul . These series are con-

vergent for values of u
1

and u2
in absolute value less than some fixed

quantity. Since the jacobian of u
a
with respect to uft

(a t & = 1
, 2) for u

a =
is equal to +1, these series may be inverted giving u

a
as power series

iri'U
1

ul and u
2

ul ,
which are convergent so long as u

a
u" in

absolute value are less than some fixed quantity.* For such values of

u
a

UQ the values of u
a
are uniquely determined, and consequently

there passes only one geodesic through the points UQ and u" . Moreover,
from (32.4) and (32.12), it follows that the length of the arc of the geo-

desies between these points is given by
2 / \ -a -S

S =
(gap)QU U .

Hence we have

[32.4] Through two sufficiently near points on a surface there passes one

and only one geodesic.f

In order to find the rate of change with respect to s along a geodesic

of the angle 0o which the geodesic makes with the curves u =
const.,

we differentiate with respect to s equation (25.7) written in the form

= tan
r

* See Goursat, 1924, 1, vol. 1, p. 474.

f See Darboux, 1889, 1, p. 408.

du
a
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Making use of (28.2) and (24.6), the resulting equation is reducible

to

d0o ,- dw
1 dV _ du* dV

ds ds*

d_0o = ,-
[dw

1

ds
Vg

[ds

rtai^(32.13)

dw^ /dV f
\
du* dw'N _ Vg f 2

\
d-

ds \ds2
^VySJ ds ds/ U \laj ds

'

where aS are denned in (25.14). This result holds for any curve on a

surface. When the curve is a geodesic, the above equation reduces in

consequence of equations (32.8) to

^O^.lrt/ I
A

1
I

"-"
~

\laj ds

Consider now in a surface an orthogonal net of coordinate curves for

which the curves u = const, are geodesies. By theorem [32.3] the

coordinate u can be chosen so that the linear element is

(32.15) ds
2 = du

l * + gvdu\

From this result it follows that the length of the segment of a curve

u = const, between the curves u
1 = Ci and u

1 =
c% is given by

du = Cz Ci .

Since this length does not depend upon u
2

,
the lengths of the segments of

all the geodesies u
2 = const, between any two orthogonal trajectories

are equal. In consequence of this result and theorem [32.1] we have

the following theorem of Gauss:*

[32.5] Given any curve C upon a surface and the geodesies orthogonal to C;

when equal kngths are measured from C along these geodesies, the locus of

their end points is an orthogonal trajectory of the geodesies.

The curves thus defined are called geodesic paralkls to the curve C.

From the discussion of equations (29.9) and (29.11) it follows that the

curves there called parallel are geodesic parallels. From theorem [29.2],

and the above discussion we have

[32.6] A necessary and sufficient condition that a family of curves <p
=

const, be geodesic paralkls is that A#> =
F(<p), where F(<p) is any positive

*
1827, 1, p. 241.
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function of<p;<f> is the length of the geodesies measured from one of the curves

<p
=

const., if and only if Aiv?
= 1.

Suppose then that PI and P% are points of a surface through which

there passes only one geodesic, and that we take this for the curve

u = of a system of geodesic parallels u = const, and for u = const,

their orthogonal trajectories, so that we have the linear element (32.15).

An equation of any other curve which passes through PI and PI is of

the form u
z =

<p(u
l

), and the length of the arc PiPz of this curve is given

by

where u\ and u\ (> u\) are the values of u at the points PI and PI

respectively. Since the arc PiP2 of the given geodesic is u\ u\ ,
and

022 being positive the quantity 1 + g^~ is greater than one, we have the

following fundamental theorem:

[32.7] // two points in a surface are such that only one geodesic passes

through them, the length of the segment of the geodesic is the shortest distance

in the surface between the two points.

If one has a solution <p(u\ w
2

, a) of the equation

(32.16) A#

such that involves the constant a, when the solution is substituted in
da

(32.16) and the resulting identity is differentiated with respect to a,

we have

(32.17)

Consequently for each value of a the curves

(32.18) =
b,

da

where b is a constant, are geodesies, being the orthogonal trajectories

of the curves ^>
=

const., which by theorem [32.6] are geodesic parallels.

For a particular point u% the components du of the tangent to a geodesic

9
2

through the point are given by
^

du" = for each value of a. Con-
dadua

versely, if du
a
are given, the corresponding value of a is determined by
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this equation since a geodesic is uniquely determined by a point and a

direction. Then 6 is determined by the equation

d(p(uQ ,
UQ , a) _ ,

da

Hence all of the geodesies in a surface are given by (32.18), and we have

[32.8] // <p(u
l

,
u

z

, a) is a solution of the equation Ai<p
= 1 such that -

da

involves the constant a, the equation

da

for all values of the constant b is the finite equation of the geodesies of the

surface, and the arc of the geodesies is measured by (p.

A surface possessing an orthogonal parametric net with respect to

which the linear element is

(32.19) ds
2 = (A, + A^(B\du

l " +

where A a and Ba are functions of u
a
alone is called a surface of Liouville.

For such a surface equation (32.16) is reducible to

a
We seek the solution of this equation such that each member of this

equation is equal to a constant a, and find that <p is given by the two

quadratures

a du

Hence by theorem [32.8] an equation of the geodesies is

(32.20) [ L^ du
1 - I -7JL^. du

2 =
26,

J VAi + a J vAz - a

and we have

[32.9] The geodesies on a surface of Liouville, when its linear element is

given in the form (32.19), can be found by two quadratures.
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We close this section with the derivation anew of the equations of

geodesies, using the property of geodesies in theorem [32.7]. To this

end we consider a curve C with the equations

(32.21) M" = f(0,

and two points PI and PI on the curve with the respective values t\ and

ti of the parameter t. Any curve in the neighborhood of C and passing

through the points PI and P% is defined by

(32.22) u
a = /"(O + AO

for a sufficiently small absolute value of the constant e, and for functions

w"(0 such that

(32.23) "&) = co
a
fe)

= 0.

The arc s of C between PiP2 is given by

(32.24) s =
I Vg^F'f' dt s

j 9(f\ f , f
1

, f ) <ft,

and the arc Si of C\ by

(32.25) Sl
-
I

2

<p(f
l + ceo

1

,/
2 + ceo

2

,/
1

'

+ eco
1

'

J 2
'

+ eco
2

') dt,
1

r

where the primes indicate differentiation with respect to t. In order

that the arc s of C be the minimum of the arcs of the curves through PI

and Pz in the neighborhood of C, it is necessary that the derivative of

$i with respect to c be zero for c = 0, that is,

' + J?, ')
dt = 0.

oj /

Since it is understood that the derivatives involved are continuous in the

interval ti, k ,
on integrating by parts the second term in the integrand,

we obtain in consequence of (32.23)

r' 2 /** d 5

Since this equation must hold for arbitrary functions
*
such that

(32.23) is satisfied, we have the equations of Euler

a
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From the definition (32.24) of <p we have, noting that/
a
is u

a
,

py du* du
y

di ^L = 2 du dt dt

d/ ds

dt dt

Substituting these expressions in (32.26), we obtain

fs

dt2 6w7 dt dt 2 dua dt dt dt ds
'

di

which is reducible by means of (28.2) to

d
2

s\

+ /
"

V u/c/
I A

I _ t
I 7j 7 7

, I
^ '

j at at at ds

Since gf 5^ 0, it follows that

(V> 97^
dV

(32.27) _

When the parameter Z is the arc these equations reduce to (32.8).

EXERCISES

1. The great circles on a sphere are its geodesies.

2. A necessary and sufficient condition that there exist upon a surface a family
of geodesies whose orthogonal trajectories also are geodesies is that the surface

be isometric with the plane.

3. The geodesies on a cylinder are helices (see 27, Ex. 2).

4. When the linear element of a surface of revolution is written in the form

(see 24, Ex. 3)

(i) ds 2 =
(1 + v'

2
) du^ + u^ du*\

2 du*
from the second of equations (32.8) one obtains by integration u l =

c, where
as

c is an arbitrary constant. From this result and (i) it follows that

oV _ \/V
2 - c2

da ui
-y/i + ^'
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/\/l
4. ^'2-

. du1
4- d, where d is

w1 V u1 ~ c2

a constant, is an equation of the geodesies.

5. When the linear element of a surface of revolution is written in the form

ds* du? + <A
2
(w

l
) du**,

where c and d are constants, is an equation of the geodesies in the surface, and

consequently in any surface isometric to it.

6. If a family of geodesies and their orthogonal trajectories on a surface form

an isometric net, the surface is isometric with a surface of revolution.

7. A necessary and sufficient condition that u* = v(u l
) be an equation of a

geodesic is that

where the primes indicate differentiation with respect to u l
.

8. A necessary and sufficient condition that <p be a solution of the equation

Ai<p = 1 is that ds* d<p* be a perfect square.

9. If v?
= a0i -f 02 ,

where 0i and 2 are functions of w l and w2
,
are solutions

of the equation Ai<p
= 1 for all values of the constant a, the curves 9\ const.

arc minimal curves, and the curves 2
= const, are geodesic parallels.

10. When the linear element of a spiral surface is written in the form (see

26, Ex. 9)

ds* = e**[du l
*

+ U^u 1
} du**],

the equation AIV? = 1 admits the solution e"
2

/'(w
1

), where ^ is any solution of the

1/,2

equation i^'
2

-f-
-- =

1; by the integration of this equation one obtains all the
Ui

geodesies in the surface.

11. The orthogonal trajectories of the curves 0(w 1
,
w2

)
= const, are integral

curves of the equation (see theorem [26. ll)

2
0, a du 1 -

gUO,t du* = 0.

The integral <f>(u
l

,
w2

)
= const, of this equation is given by

(J<0 t V <P t

where t is an integrating factor. If the curves = const, are geodesies, by a

suitable choice of t the function <p is such that Ai<p = 1. Hence t is given by

t*

1 =-gT g7<*ea
Q

(2

By means of 25, Ex. 8 the right-hand member of this equation reduces to - Ai0
Q
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and consequently <p is given by the quadrature

12. If the integral curves of an equation Ma dua = are geodesies, their orthog-
onal trajectories are given by the quadrature

y&
a5Ma drf

f /-(g
azMa du^ - <f

l

Mfidu*) f*.~
J
V \/^MaM7

~
J *

13. If = t(u l
,
u 2

, a), where a is a constant, is a first integral of the equa-
aw 1

tion of Ex. 7, it follows from theorem [32.8] and Ex. 12 that the finite equations
of the geodesies is

9 f (0ii -f 012 !/0 du1 + (012 -f 022^) du?
I -~.-^==:= = b.

a J \f Qn -f- 2012^' + 022 ^2

14. Surfaces isometric with surfaces of revolution and the quadric surfaces

(see 30, Exs. 6 and 7) are surfaces of Liouville.

15. A surface of constant Gaussian curvature is a surface of Liouville, in con-

sequence of theorem [31.1] and 31, Ex. 3.

16. For a surface of Liouville with the linear element (32.19) the angle
which a geodesic makes with the curves w 2 = const, is given by

A i sin 2 A 2 cos 2
0o -h a =

0,

where a is the constant appearing in (32.20).

33. GEODESIC POLAR COORDINATES. GEODESIC TRIANGLES

In accordance with theorem [32.1] through a point P of a surface there

passes a geodesic in each direction. Consider a domain about P such

that no two geodesies through P meet again within the domain. When
then the geodesies through P are taken for the parametric curves u =
const, and their orthogonal trajectories the curves u

1 = const, the linear

element of the surface for the domain under consideration is of the form

(32.15) by a suitable choice of the parameter u
1

. If u
1

is replaced by u
1

plus a constant, the form (32.15) is unaltered. It follows from the

discussion following (32.15) that u
1

may be chosen so that it is the dis-

tance along each geodesic from the point P. Thus each curve u
1 =

const, is the locus of a point at a constant distance from P, this distance

being measured along the geodesies through P. In this sense the curves

u
1 = const, are geodesic circles.

/)/!*

Since at P =
0, it follows from (24.7) that 022 = at P, as is

du2

also 0i2
= 0. The former result follows also from the fact that the arc

of a curve u
1 = const, between two geodesies u

2 = and u
2

c\ is
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?c\

given by / ^/^fwdu
2

,
and this quantity approaches zero in the limit as u

l

JQ

approaches zero. In like manner the angle at P between these geodesies

is given by

the right-hand member being obtained by the use of differentiation to

evaluate the indeterminate form of the left-hand member. Con-

sequently a necessary and sufficient condition that the coordinate u
2

be the angle made at P with the geodesic u
2 = by the coordinate

curves u
2 = const, is that (

-~-
)

= 1. In this case the coordinates
\ du l

/i-o
are called geodesic polar coordinates, because they are analogous to polar

coordinates in the plane. Hence we have

[33.1] A necessary and sufficient condition that the coordinates in terms of

which the linear element is

(33.1) ds
2 = du

1 * + 022 du*

be geodesic polar coordinates is that

/Q0 C%\ (n \ fl I
* ^2 \ 1

(33.2) (022Ji-o
-

0, I I
- 1.

Consider, for example, the sphere with the equations

1 . U o 2 U . 2 3 U
x = a sin cos u

,
x = a sin sin u

,
x = a cos .

a a a

The curves u = const, are the great circles through the point (0, 0, a).

Now an =
1, 0i2

=
0, 022

= a
2
sin

2

,
which satisfy the conditions of

a

theorem [33.1].

From 28, Ex. 1 we have that for the linear element in the form (33.1)

the Gaussian curvature (28.5) of the surface is given by

(33.3) XBB _1 .

V022 dU

If K =
0, \/022

= av< ~t~ k, where a and b do not involve u1
. In

order that the conditions (33.2) be satisfied, we must have a =
1,

6 = 0, that is,

(33.4) ds
2 = du

12 + u
l

*du
z
\
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This is the linear element of the plane in polar coordinates, and conse-

quently, the surface is isometric with the plane. Conversely, if a

surface is isometric with the plane, its linear element can be given the

form (33.4). Thus we have another proof of theorem [28.1].

IfK ^ for a surface referred to polar geodesic coordinates, it follows

from (33.3) and (33.2) that

(33.5)

where KQ is the value ofK at the pole of the coordinate system.
From (33.2) and (33.5) we have

Hence the perimeter and area respectively of a geodesic circle of radius u
l

are given by

(33.6) T v^ <*"
2 = 2* ti

1 - K u13 +.

(33.7)

We consider next the integral of the absolute value of the Gaussian

curvature over a geodesic triangle, that is, a triangle whose three sides

are geodesies, the triangle being of such size that no two geodesies

through a vertex meet again within or on the triangle, and such that

that K has the same sign within and on the triangle. Such a triangle

is shown in Fig. 9. We choose a geodesic polar coordinate system with

pole at P. and with the sides PP\ and PP^ as the geodesies u = and

u a. In consequence of (33.3) the integral is

(33.8) / = e K v^ du
l

du -e

where e is +1 or 1 according as K is positive or negative. Integrating

with respect to u
1

between the limits and u
1

,
we have, in consequence

of (33.2),
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From (32.14) we have along the geodesic PiP*

and consequently

(33.9) / = e
(1

du
2 + /

7

d6\ = e(a + p + y - *).

We say that I defined by (33.8) measures the total curvature of the triangle.

From (33.9) it follows that for a geodesic triangle such that no two

geodesies through at least one of the vertices meet again within or on the

triangle, and such that the Gaussian curvature has the same sign at all

points of the same, the total curvature of the triangle is equal to the

excess over 180 of the sum of the angles of the triangle or to the deficit

FIG. y

from 180 according as the Gaussian curvature is positive or negative.

If for a geodesic triangle geodesies through each vertex meet again

within the triangle and thus there does not exist a polar geodesic system
with one of the vertices as pole which system applies to the whole

triangle, it is possible to subdivide the given triangle into a number n

of smaller geodesic triangles, for each of which a polar geodesic system

holds, in consequence of theorem [32.4]. Equation (33.9) applies to

each of these triangles, and when the corresponding equations are added

one obtains e times the sum of all the angles of the n triangles minus nir.

The situation at all the vertices of the smaller triangles except at the

vertices of the given triangle is the same as when a plane triangle is

subdivided into n small triangles. In this case the sum of all the angles

is nw, and since the sum of those at the vertices is TT, it follows that the

sum of all the others is (n l)?r. Hence in the case of a geodesic

triangle divided into n geodesic triangles when we subtract (n l)?r
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which is the sum of the angles not at the vertices of the given triangle we
obtain the right-hand member of equation (33.9). Hence we have the

celebrated theorem of Gauss*

[33.2] The total curvature of a geodesic triangle such that at all points K
has the same sign is equal to the excess over 180 of the sum of the angles of

the triangle or the deficit from 180 according as K is positive or negative.

As a consequence of this theorem we prove the following :

[33.3] Two geodesies on a surface of negative curvature cannot meet in two

points and enclose a simply connected area.

For suppose two geodesies through a point A meet again in a point B,
and enclose a simply connected area, as in Fig. 10. In consequence of

theorem [32.4] it is possible to find two points C and D on the two

geodesies sufficiently near to A so that there is a unique geodesic through
C and D, thus forming two geodesic triangles ACD and BCD. The total

curvature of these two triangles is equal to 2ir minus the angles

FIG. 10

at A
, B, C and D. But the sum of the angles at C and D is 2^, and thus

the total curvature of the two triangles is a negative quantity, whereas

it is understood to be positive, as defined in (33.8). Hence the theorem

is proved.

It follows from theorem [32.6] that if 6 is a solution of Ai0 =
1, the

curves 6 = const, are geodesic parallels, and 6 is the arc of the orthogonal

geodesies measured from one of the parallels. If then we take two curves

Ci and Cz not geodesically parallel, their geodesic parallels form a net on

the surface. If u
1

and u denote the geodesic distances of these parallels

from Ci and C% respectively, they are solutions of Ai0 =
1, and in the

coordinate system u
a
we have from (29.7)

(33.10) ?5 = 11 = 1.

g g

From these equations and (25.5) we have

1 cos co

*
1827, 1, p. 246.



33) GEODESIC POLAR COORDINATES 185

where w is the angle of the two coordinate families of geodesic parallels.

Hence the linear element of the surface is

/oo 1 1 \ , 2

(33.11) ds =2 du
l * + 2 cos w du

l
du

2 +
sm*a>

A similar result follows, if we take for coordinate curves geodesic circles

with centers at two points F\ and F2 on the surface.

Conversely, equations (33.10) follow from (33.11), and consequently
when the linear element of a surface is of the form (33.11), the co-

ordinate curves are geodesic parallels which may be two families of

geodesic circles.

If we put

(33.12) u'
1 = \(u

l + v
2

), u'
2 = $(u

l -
u),

a curve u'
1 = const, or u'

2 = const, is the locus of a point such that the

sum or difference of the geodesic distances from C\ and C2 ,
or the points

Fi and F2 as the case may be, is a constant. In the latter case these

curves are analogous to ellipses and hyperbolas in the plane. Ac-

cordingly they are called geodesic ellipses and hyperbolas not only in this

case, but also when the distances are measured from curves C\ and C2 .

From (33.12) and (33.11) we find that in terms of the coordinates u'
a

the linear element of the surface is

(33.13) rf.C + C*.
sn 2 cos

L L

Conversely, by means of (33.12) the linear element (33.13) is trans-

formed into (33.11), and consequently when the linear element of a

surface is expressible in the form (33.13), that is, when + =
1,

011 022

the coordinate curves are geodesic ellipses and hyperbolas. As in the

case of confocal ellipses and hyperbolas in the plane, we have

[33.4] A set of geodesic ellipses and hyperbolas form an orthogonal net.

EXERCISES

1. The angles of any two families of geodesic parallels on a surface are bisected

by the corresponding geodesic ellipses and hyperbolas.

2. In order that a coordinate system of geodesic ellipses and hyperbolas on a

surface form an isometric orthogonal net, it is necessary that the linear element be

reducible to the form

where V\ and 17 are positive functions of u1 and us
respectively.
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3. When the plane is referred c a system of confocal ellipses and hyperbolas,
whose foci are at the distance 2a apart, the linear element can be written

4. A necessary and sufficient condition that an orthogonal coordinate net on a

surface be a system of geodesic ellipses and hyperbolas is that

Qn 9u

where f/i and Uz are positive functions of u 1 and w2
respectively.

5. If an orthogonal coordinate net is to be a system of geodesic ellipses and

hyperbolas in two ways it is necessary and sufficient that there be two sets of

positive functions UQp(ct
=

1, 2), where Ua i and Ua z are functions of u l and it
2

respectively such that

(i)

' ^ + ^-1;
011 022

in this case the linear element of the surface is reducible to the form in Ex. 2.

6. If the conditions (i) of Ex. 5 are satisfied, it follows that

lUu + (1
- Un l

011 022

which for t a constant is of the form (i) ; consequently, if an orthogonal net con-

sists of a system of geodesic ellipses and hyperbolas in two ways, it is such a

system in an endless number of ways.
7. When two families of geodesies on a surface meet under constant angle and

their orthogonal trajectories are the curves u" = const., the angles in (33.11) is

a constant, and consequently the surface is isometric with the plane.

8. When 022 in theorem [33.1] is a function of u 1
alone, it follows from (33.2)

and (33.3) that for a surface of constant Gaussian curvature one has (see 31,

Ex. 3)

1 u 1

(i) K =
~*> 022

= a2 sin 2 -;
a2 a

1
.

u1

(ii) K =
, 022

= a2 sinh2
.

a2 a

9. If C denotes the circumference of a geodesic circle of radius a, the Gaussian

3(2?ra C)
curvature K at the center of the circle is given by lim

,
as follows

from (33.6).

34. GEODESIC CURVATURE

We return to the consideration of equations (32.7) when /z

a
is not a

zero vector, that is, when the curve is not a geodesic. From (32.6) it
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follows that this vector is perpendicular to the tangent vector to the

e, that is, t

and obtain

du
a

curve, that is, to the unit vector . We replace M" in (32.7) by

/ 4 n <?u
a

/ a\du? duy

(34.1) -J-T ~M* ( -j- -j-'
= "oV >

rfs
2

\fly) ds ds

where now it is understood that n" is the unit vector which makes a

right angle with the unit vector -
,
that is, (see theorem [25.5]),

as

/o49 \ du
l

2 du
2

i 1
(34.2) M M =

.

ds ds ^/g

Since /*" in (34.1) is a unit vector, the absolute value of KO is the length

of the vector whose components are the left-hand members of equations

(34.1). We call the vector p
a
the curvature vector of the curve at a point,

and Kg the geodesic curvature of the curve.

From (34.1) and (34.2) we have

s ds

For a geodesic AC^
= as follows from (34.1) and (32.8). Conversely,

if Kg 0, it follows from the first form of (34.3) that

_ du~

where < is a factor to be determined. In consequence of (32.6) we have
7 (J 7 /3

that =
0, since gra -i r- = 1. Hence we have

as ds

[34.1] A necessary and sufficient condition that a curve be a geodesic is

that the geodesic curvature of the curve be zero.

When the coordinate curves form an orthogonal net, for a curve u =

const, we denote the geodesic curvature by KOI and take = =.
,

as V0ii
that is, we take the tangent vector in the direction of u

l

increasing.

By means of 28, Ex. 1 we have from (34.3)

(34.4) M - 1 I

V02J
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In like manner for a curve u
1 =

const., if we take -^
=

-^== ,
the

geodesic curvature Kgi is given by

(34.5) M - - log

~dul

From (34.2) and the choice = =. in the first case and =

=. in the second case it follows that in the first case ju
2
is positive, and

V022
in the second case ju

1

is positive. Hence in the first case the normal ju"

is tangent to the curve u
1 = const, and in the direction in which u

2
is in-

a

p.

FIG. 11

creasing, and in the second case it is tangent to the curve u
2 = const,

and in the direction in which u
1

is increasing.

Consider now any curve C on the surface, and two nearby points P and

PI on C. At P and P\ draw the unique geodesies g and g\ tangent to C,

and denote by Q their point of intersection and by A^ the angle under

which they meet, as shown in Fig. 11. We shall prove the following

theorem:

[34.2] The limit of the ratio as PI approaches P along the curve is the
As

geodesic curvature of C at P.

In order to prove this theorem we take the curve C as the curve u
1 =

of an orthogonal coordinate
nefy

The tangent geodesic at P makes

with the curve u
2 = c (>ci) the angle 37T/2 and with the curve u

2 = ci

the angle TT + a, hence A0 = a ir/2. From (33,9) applied to the
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geodesic triangle QP\R we have

7 = e (A* + ? + a - TT = e(ty + A0 ).

As PI approachs P along the curve, approaches zero and consequently
As

^approaches -^ ,
the latter being given by (32.14). Hence we have

As as

lim
** = - de = y-i i

2
\ =

As ds gn \12J ds

and thus in consequence of (34.5) the theorem is proved.
In view of this result geodesic curvature of a curve on a surface is a

generalization of curvature of a plane curve, and from theorem [34.1]

we have that a geodesic is a generalization of a straight line in the plane.

The geometric significance of geodesic curvature as viewed from the

enveloping cuclidean space is established in 44.

We shall show in what manner the quantity KO for a curve ^(u
1

,
u

2

)
=

const., is expressible in terms of differential parameters of (p. To this

end we observe that for the coordinate system used in establishing

equation (34.4) we have from (29.7), (29.2), and (29.16)

/ 9w2

By means of these expressions equation (34.4) can be written in the form

In any other coordinate system the curves w
2 = const, are defined by

an equation <p(u
l

,
u

2

)
= const., and consequently we have the theorem

of Beltrami:*

[34.3] The geodesic curvature of a curve <p
= const, is given by

By means of (29.16) the quantity in brackets is equal to

d

*
1865, 1, p. 83.



190 INTRINSIC GEOMETRY OF A SURFACE [Cn. Ill

and consequently (34.6) may be written in the following form due to

Bonnet:*

(347) , =
( }

In particular, if KQ \ and KU Z denote the geodesic curvatures of the

curves u
2

const, and u = const, respectively of any coordinate

system, we have (see (24.18))

(34.8) 7 v 03* a)

I J

of which (34.4) and (34.5) are particular cases when the coordinate

curves form an orthogonal net.

Equation (32.13) gives the rate of change with s of the angle which a

curve makes with the curves u = const. By means of this result the

geodesic curvature of the curve, as given by (34.3), is expressible in the

form

(34.9) J%
-*

ds

With the aid of this equation we establish an important result due to

Bonnet. To this end we use the formula of Green, namely

In this formula the surface integral is applied to a simply connected

portion of the surface, and the curvilinear integral to the contour C,

the positive sense of the latter being such that as a point describes C in

this sense the portion of the surface is on the left.f It is understood

that /ii , /i2 and their first derivatives are finite and continuous within

and on the contour.

From (34.10) and (34.9) we have

(34.11)

itW
JJ {.du*\gu {ll) / 3W \ 0n (M)/J
S

*
1860, 1, p. 166.

t Fine, 1927, 1, p. 337.
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Since the left-hand member of this equation is independent of the co-

ordinate system u
a

,
the same is true of the right/-hand member. By

(25.21) the element of area in any coordinate system is da Vg du
l

du
2

.

If then the coordinate system is such that the linear element is of the

form (33.1), one finds by means of 28, Ex. 1 that the quantity in

1 rfi /

brackets in (34.11) multiplied by l/Vg reduces to -= _???,

as the reader should verify. From this result and (33.3) it follows that

in any coordinate system the integrand of the right-hand member of

(34.11) is Kd<r.

If the contour C consists of arcs of curves forming a curved polygon
with exterior angles 0i , ,

6P ,
the first integral in (34.11) is equal to

2?r 2^ 6i . Hence we have the Gauss-Bonnet theorem:*

[34.4] For a simply connected portion S of a surface for which the Gaussian

curvature K is finite and continuous and the geodesic curvature KO of the

contour C is finite and continuous

(34.12) I KO ds + II K Vg du du
2 = 2* - if0< ,

,s

where Q\ ,

-

,
6P are the exterior angles at the vertices of the contour C

if any.

When the coordinates u
a
undergo any transformation, the quantities

/xa in the right-hand member of (34.10) are seen to be the covariant

components of a veator. The integrand hi the left-hand member of

(34.10) is equal to (ju2 ,i fjLi t^)du
l

du
2

. In terms of the quantities e^

defined in (25.14) equation (34.10) may be written

du\(34.13) I Ma du
a = -

//
a
%,0 Vg du

1

s

If X
a

is any vector, then /i defined by

(34.14) M =^
are the covariant components of a vector since t$a are the covariant

components of a tensor (see theorem [25.4]). When the expressions

from (34.14) are substituted in the left-hand member of (34.10), we

* See 1848, 1, p. 131.
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obtain in consequence of (25.14), (28.2) and 28, Ex. 12

X% V<7 du
1
dw

2
.

Hence another form of the formula of Green is

(34.15) II \
a
a V0 du

1

du
2 =

I e/teX" du* = -
f Vft tf ds,

a

where

a

(34.16) V^^^;
thus vp are the covariant components of the unit vector which makes a

right-angle with the unit vector -r by theorem [25.6], and whose di-
ds

rection depends upon the sense of rotation (25).

EXERCISES

1. The parallels on a surface of revolution are curves of constant geodesic

curvature.

2. A small circle on a sphere has constant geodesic curvature.

3. When a surface has an orthogonal net such that the curves of one family

are geodesies, and those of the other family have constant (7* 0) geodesic curva-

ture, the surface is isometric with a surface of revolution.

4. For a family of loxodromic curves upon a surface of revolution (see 26,

Ex. 2), that is, curves which make the same constant angle with the meridians,

the geodesic curvature of all these curves is the same at their points of inter-

section with a parallel.

5. For a surface with the linear element

du1
* + du*

2

"
(Ut + V*Y

where Ua is a function of ua
alone, KO\

= U'z ,
Kgt

= V{ ,
where the primes indicate

differentiation with respect to the argument, that is, the coordinate curves have

constant geodesic curvature. Conversely, when the curves of a coordinate

orthogonal net have constant geodesic curvature the linear element is reducible

to the above form.

6. If the curves of one family of an isometric orthogonal net have constant

geodesic curvature, the curves of the other family have the same property.



34] GEODESIC CURVATURE 193

7. The geodesic curvature of the integral curves of the equation M du*

is given by

- _L _?_ ( V0
a/9 Afa \

Vg du^ \vV5M7Mj/

8. Derive the theorem of Gauss [33.2] from theorem [34.4].

9. From (34.8) and (25.5) one has

10. From the discussion of (34.11) it follows that

this should be verified by means of (28.5), (28.2) and (20.13).

11. From 28, Ex. 10 and (34.8) one obtains the formula of Liouville

"^
J

12. When the coordinate curves form an orthogonal net, the formula of Liou-

ville may be written

and equation (34.9) may be written (see 28, Ex. 1)

d6
Kg

* h cos 00*01 sin #0*02.
as

13. From (29.2) and (29.14) one has

f
I Ai(*, ^) d<r = If [(g

a(
><f>,a t),(i

- *

,s s

from which and (34.15) ijb follows that

I
j*AiU

^) da +
J j t^vdv =

a a

14. From (29.16) and 28, Ex. 12 one has

a a

and from this result and (34.15)

/ / Aa ^>d(T - -
J

Va
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35. THE VECTOR ASSOCIATE TO A GIVEN VECTOR WITH
RESPECT TO A CURVE. PARALLELISM OF VECTORS

Let C be any curve upon a surface defined by u
a = /

a
(s), where s is

the arc of C, and let X* be the components of a family of unit vectors one

at each point of C, X" being functions of s. Since the vectors are unit

vectors,

(35.1) ^\V = 1.

Differentiating this equation with respect to s and making use of (28.2),

we obtain

*

The components X'
a
of these vectors in any other coordinate system

u'
a
are given by

(35.3) X" = X'"~
,

X" = X
a a-

.

du'' dua

Differentiating the first of these equations with respect to s and making
use of (32.1), we may write the resulting equation in the form

/ 4>
d\" T a dus du /dX" f MV du

(35.4) ^ + X

Hence, if we put

it follows from (35.4) that v
a
are the contravariant components of a

vector, and from (35.2) that the vector v
a
at a point is perpendicular

to the vector X
a
at the point. Following Bianchi* we call v

a
the vector

associate to \
a
with respect to the curve C.

When in particular the vector X
a

is the tangent vector -=-, v
a

is the
as

vector Kgn" in equation (34.1), and we have

[35.1] The vector associate to the tangent vector with respect to a curve is

the geodesic curvature vector of the curve.

Following McConnellf we call the left-hand member of (35.5) the

*
1922, 1, p. 161.

1 1931, 1, p. 179-181; see also Synge, 1926, 2.
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intrinsic derivative of X
a
for the curve C and denote it by ,

that is,
ds

(35.6) . +
6s ds Vv0J ds

Thus the intrinsic derivative of a contravariant vector for a curve is a

contravariant vector. In like manner by means of (32.1) it can be

shown that the intrinsic derivative of a covariant vector Xa defined by

/N 6X _ d\a

is a covariant vector.

If X
a
and Xa are the contravariant and covariant components of a

vector defined at all points of a surface, then for a curve one has

,OKQN A"
x

duf 5\a du*
(35.8) = X.0 ,

= X
(/j

.

ds ds ds ds

In like manner if one has a tensor a^'.'.'.fj denned at all points of a

surface, at points of a curve the quantities

(35.9) .^;
are the components of a tensor of the same order. The results con-

. cerning intrinsic differentiation follow from equations (32.1), just as the

results concerning covariant differentiation in 22 are a consequence of

the corresponding equations (20.11). Hence for intrinsic differentiation

the rules of the ordinary calculus as regards the differentiation of the

sum, difference and product of quantities apply (see 22). Also just

as the covariant derivative of a scalar is the ordinary derivative of the

scalar, so the intrinsic derivative of a scalar is the ordinary derivative.

From the above results and theorems [28.3] and [28.4] we have

[35.2] For any curve

(35.10) ^ =
0, *f

= 0, ^ =
0,

* = 0.
OS OS OS OS

du
a

From (25.16) we have that the angle made with the unit vector -
T
-

ds

tangent to a curve C by a unit vector X* at all points of C and not

tangent to C is given by
7 C(

(35.11) sin0 = af~ A*.
as
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In consequence of (35.10), (34.1) and (35.5) the intrinsic derivative of

equation (35.11) is reducible to

(35.12) cos 6 f = t.8 (*,/ A> + $-' /) .

as \ as /

When C is a geodesic, that is, when KO = 0, the condition that the

angle 6 be a constant is

du
a

a n

-&' =0>

that is, either / is a zero vector (/ =
0), or the vector / is tangent

duft

to C. In the latter case we should have from (35.2) gaA\
a

-=- = 0, the
as

duP

intrinsic derivative of which is ga0v
a = 0; that is, v

a
is normal to C.

us

Hence v
a = and we have

[35.3] The unit vectors \
a

at points of a geodesic make equal angles with

the geodesic, if and only if

(35.13) . +
ds ds (70) ds

When the surface is a plane, in which case a geodesic is a straight line,

the vectors X are parallel in the euclidean sense. Accordingly it is a

natural generalization to say that the family of vectors X
a
satisfying

(35.13) are parallel with respect to the geodesic involved.

Although we have introduced the notion of the parallelism of vectors

at points of a geodesic, we make a further generalization and say that

given any curve, where u
a
are functions of the arc, the functions X

a

satisfying (35.13) are the components of a family of parallel vectors with

respect to the curve] this concept is due to Levi-Civita (see 45). From
the theory of differential equations of the form (35.13) it follows that

any such family of parallel vectors is completely determined by the

values of the components at some point of the curve, that is, by initial

values of X" for the value of s at the point. Since equations (35.13)

involve the equations of the curve, it follows that if one has two curves

intersecting at two points Pi and P2 ,
and finds with respect to each of

the curves the families of parallel vectors having the same values at

Pi ,
in general the vectors at P2 will be different for the two families.

Thus parallelism as just defined is relative to a curve. When the surface

is a plane referred to cartesian coordinates, equations (35.13) reduce to
TV O

j-
=

0, that is, X
a
are constants, and parallelism is absolute, that is,



35] PARALLELISM OF VECTORS 197

it is not relative to a curve. In this case the vectors are parallel in the

euclidean sense.

Since for X
a = -= equations (35.13) are equations of geodesies, we

have that the tangents to a geodesic are parallel with respect to the

curve, and in this sense geodesies may be called the straightest lines on

the surface. In this connection it is interesting to observe that for the

domain about a point P within which no two geodesies through P meet

again coordinates u" can be chosen in terms of which equations of the

geodesies through P are given by (32.12), that is,

du<

where u
a

is a given set of coordinates on the surface. Thus hi this

coordinate system equations of the geodesies through P are of the form

of equations of straight lines in the plane referred to cartesian coordi-

nates. The equations of geodesies not through P do not have this

simple form in this coordinate system.

Since equations (35.13) involve only the first fundamental form of a

surface, parallelism is an intrinsic property of a surface. As a conse-

quence we have

[35.4] // X
a
are the components of a family of paralkl vectors with respect

to a curve on a surface, they are the components of vectors paralkl with

respect to the corresponding curve on a surface isometric with the given

surface.

If X
a
are the contravariant components of a unit vector-field such that

(35.14) X
a =

0,

the vectors of the field at two points PI and Pa are parallel with respect

to every curve through the two points and thus are absolutely parallel.

In particular, for the plane referred to cartesian coordinates equations

dX
a

(35.14) reduce to - =
0, that is, X* = const. The conditions of

du*

integrability of equations (35.14), namely the Ricci identities (see

(22.22))

(35.15) X js7 X"7
= X R tt

wy = X g
at

RtWy>

are satisfied identically for a plane, or any surface isometric with the

plane. In this case equations (35.14) are completely integrable, that is,
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a field of absolutely parallel vectors is determined in any coordinate

system by initial values of X.

Conversely, in order that there be a field of absolutely parallel unit

vectors hi a surface, its contravariant components must be solutions of

equations (35.14), and consequently from (35.15) one has that

h'RtW-Y 0, which equations are equivalent to (see (28.3))

X 7^2112 = 0, X /^1212
== 0.

Hence #1212 = and we have

[35.5] A necessary and sufficient condition that there be a field of abso-

lutely parallel unit vectors in a surface is that the surface be isometric with

the plane.

In the plane the angle of two vectors not at the same points is by
definition the angle between either vector at its point of application

and a vector at this point parallel to the other vector. In consequence

of theorem [35.5] this definition does not apply to a general surface.

However, we can speak of the angle of two vectors relative to a curve,

this angle being the angle between either vector at its point of applica-

tion and a vector at this point parallel to the other vector with respect to

the curve. The angles thus formed at each point are equal, these being

the angles referred to in Ex. 2.

We return to the consideration of equations (35.5) when v
a

9* 0, and

recall that the vector v" is perpendicular to the vector \
a

. We write

equations (35.5) in the form

(35.16) .- +
ds ds \yff) ds

where now v" is the unit vector which makes a right angle with the

vector X
a

. In this case the absolute value of r is the length of the

associate vector.

Differentiating intrinsically the equation

=
o,

we have in consequence of (35.10) and (35.16)

Since v is a unit vector and X* makes a right angle with it, we have

analogously to (35.16)
~ = r'\

ft

. On substitution in the above equa-
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tion we find that r' = r. Hence we have

(35.17) I '1/11 7 ** *

ds ds \yP) ds

When, in particular, X
a

is the unit tangent vector to a curve, v
a
is the

curvature vector of the curve, and r is the geodesic curvature. Conse-

quently we have

[35.6] // X
a
and ju

a
are the contravariant components of the unit tangent

vector and unit curvature vector of a curve on a surface, then

5\ ** J\ a
OA aA

,

(35.18)

ds ds \yfij ds

These are the Frenet formulas of a curve in a surface (see 21).

If the unit vectors X
a
(s) are parallel with respect to a curve C, the

angle 6 which X
a
makes with a unit vector n

a
(s) at each point of C is

given by (see (25.16))

sin 6 = apn
a
\^.

Taking the intrinsic derivative of this equation and making use of the

first of (25.9) and (35.13), one obtains

In consequence of Ex. 2 the expression in parentheses is independent
of the choice of the parallel vectors X

a
,
and consequently

d6 V

When, in particular, ju

a
is the unit tangent vector to C, this equation

becomes, in consequence of theorems [35.1] and [25.5],

(35.19) *--,,

where KO is the geodesic curvature of C. Hence we have*

[35.7] // a vector undergoes a parallel displacement along a curve C the

arc-rate of change of the angle which the vector makes with the curve is the

negative of the geodesic curvature of C.

* See 1927, 2, p. 136.
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Consider a smooth closed curve C in a surface, enclosing a simply
connected region, and a vector X at a point P of the curve. Let this

vector be displaced parallel to itself around C in the positive sense, and
denote by X its final position at P, and by y the angle X makes with X.

This angle is equal to its rotation relative to the tangent to C plus the

rotation of the tangent about C, namely 2ir. In consequence of (35.19)

we have

(35.20) <p
= 27r -

/ K, ds =
/ / #V0 rfw

1

rfw
2

,

C
5

the last expression being a consequence of theorem [34.4], We observe

that this result is independent of the position of the point P on C and
of the vector X.

EXERCISES

1. The covariant components Xa of a set of unit vectors parallel with respect to

a curve are solutions of the equation

2. For two families of unit vectors X" and X parallel with respect to a curve

the angle between the vectors at a point is the same for all points of the curve.

3. A necessary and sufficient condition that the unit tangent vectors to the

curves ua = const, for a = 1 or 2 be parallel with respect to a curve C is that the

latter be an integral curve of the equation

fiy

4. The unit tangent vectors to a family of geodesic parallels (32) at points of

intersection with each of the orthogonal geodesies are parallel with respect to

the geodesic.

5. When the coordinate curves of a surface form a Tchebychef net (29, Ex. 12) ,

in which case the linear element is du 1
-f 2 cos w du 1 du2 + dw2

,
the tangents to

the parametric curves of either family at their points of meeting with a curve of

the other family are parallel with respect to the latter.

6. Let PI ,
P 2 , PS be the vertices of a geodesic triangle on a surface, and

0i , ^2 , 03 the interior angles at these respective points; when the tangent vector

at PI to the geodesic PiP2 is transported parallel to itself around the triangle in

the direction PiP 2P8Pi it makes the angle TT 0i 2 8 with its original direc-

tion at Pi .

7. If Xa
(s) is a solution of equations (35.13) and one puts Xa M*V(s)> where

<p(s} is any function of 8, then

/rf/i
1

I -I-

\d,

dua\ /dp* A ( 2 }
du- 1_ \ I Jl- \

.jp
) *

{ -
/J/ <b ds^ *

\ftaf ds



36] CONFORMAL CORRESPONDENCE 201

is independent of v?(), and this is the condition that a family of non-unit vectors

be parallel with respect to the curve.

8. Show that theorem [34.2] is a consequence of equation (35.19).

9. Given a field of unit vectors Xa and the curves C to which these vectors are

tangent; from (35.18) one has

(i) X^ = KaM
a

, M^X? - -*<Aa >

where /*
a is the unit vector at each point P of a curve C normal to C and *g is the

geodesic curvature of C at P. Since M
a
Ma -

1, XaM<* = 0, one has (see 28, Ex. 14)

from which and the second of equations (i) it follows that X% = *, and con-

sequently fJL a =
Kg.

36. CONFORMAL CORRESPONDENCE OF TWO SURFACES

In 27 we defined as isometric two surfaces such that there exists on

each a coordinate system in terms of which the first fundamental forms

of the two surfaces are identical. For two isometric surfaces corre-

sponding lengths are equal, and corresponding angles are equal as

follows from (25.2) and (25.3). The converse is not true, that is, the

equality of lengths is not a consequence of the equality of angles. We
consider now the case when two surfaces are in one-to-one correspond-

ence such that corresponding angles are equal. In this case the corre-

spondence is said to be conformal.

Given two surfaces S and S expressed in terms of coordinates u
a
and

u
a

,
a one-to-one correspondence is established between points of the

two surfaces by equations of the form

a a/ -1 _2\u =
<p (u ,

u ),

provided the jacobian of the ^s with respect to the u's is not identically

zero. If then we change the coordinates u
a
on S into coordinates u

a

by means of the above equations, corresponding points on the two

surfaces have the same coordinates. In terms of these coordinates we

denote by gap and g^ the components of the first fundamental tensors

of S and 5 respectively.

The orthogonal trajectories of the curves u
1 = const, on the two

surfaces are the integral curves of the respective equations (see [26.2])

(36.1) 12 du + 022 du =
0, 012 du + 22 du = 0.

Since these trajectories correspond, we must have

12 __ 022

012 022
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In like manner from the equations

(36.2) gn du
l + giz du

2 =
0, fa du

1 + g^ du* =

of the orthogonal trajectories of the curves u* = const, we must have

fa = 12

(7ii ^u

Hence we have the three equations

(36.3) ^ = r
2

(*,
=

1, 2),
9*&

where r is a function of u
1

and if. Consequently

(36.4) ds
2 = r

2
ds

2
.

Conversely when (36.3) is satisfied it follows from (25.2) and (25.3) that

any two corresponding angles on the two surfaces are equal, and we have

[36.1] A necessary and sufficient condition that two surfaces having two

corresponding nets of curves as coordinate curves be in conformal correspond-

ence with points having the same coordinates corresponding is that the first

fundamental forms of the two surfaces be proportional.

We say that the correspondence is direct or inverse according as corre-

sponding angles have the same or opposite sense.

In 30 it was shown that the first fundamental form of a surface is

expressible in the form

(36.5) t\du
iz + du

2

')

and that in terms of real coordinates u'
a
defined by (see (30.19))

(36.6) u'
1 + iu'

2 = f(u db iu
2

), u'
1 - iu

/2 = fQ (u + iu
2

),

where / and /o are conjugate functions, the first fundamental form is

(36.7) -t, ((du'
1

)

2 + (du'J).
f /

Thus the equations ufOC = u" determine a conformal correspondence of

the surface upon itself, and from theorem [30.4] it follows that the most

general correspondence is defined by (36.6). Hence we have

[36.2] When a pair of isometric coordinates u
a
of a surface are known, the

most general conformal correspondence of the surface with itself is obtained

by making the point (u
1

,
u

2

) correspond to the point (u
fl

,
u'

2

), where u'
a

are defined by equations (36.6).
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Also we have

[36.3] When for each of two surfaces a pair of isometric coordinates u
a

and u'
a
are known, the equations u'

a = u
a
define a conformal correspondence

of the surfaces, and by means of equations of theform (36.6) applied to one of

the surfaces all the conformal correspondences of the two surfaces are

obtained.

Thus a conformal correspondence can be established between any two

surfaces and in a great variety of ways, but it is not possible to establish

an isometric correspondence of any two surfaces, that is, the particular

conformal correspondence for which r = 1 (see 31).

If we denote by and 0o the angles made at a point by a curve with

the curves u
2 = const, and u'

2 = const, on a surface with the funda-

mental forms (36.5) and (36.7) respectively, it follows from (25.6) that

- .

fl
du

l

,du* a , .

fl
/ du'\du'

2

cos 0o ,
sin 0o = 7=-.

- _ . cos
,
sin =

,
.

which in each case is an abbreviated way of writing two equations.

From these expressions we have, since e
t9

cos + i sin
,

' du l -idu*' du' l -idu' 2
'

From these equations according as the first or second signs are used in

(36.6) we have

777-1 r-j- ,
,

^ ^r
.

MUI -
iu*) fQ(u + iu

2

)

If and 0o are the angles made by a second curve with the curves

u
2 = const, and u'

2 = const, respectively, it follows from the first of

(36.8) that 0o
~

0o = ^o
-

^o ,
and from the second that 0o

-
0o=

(0o 0o). Consequently we have

[36.4] In the conformal correspondence of a surface with itself defined by

(36.6), angles have the same or opposite sense according as the first or

second signs are used in (36.6).

From the foregoing discussion it follows that conformal correspond-

ence is intimately related to functions of a complex variable. In treat-

ments of the latter there is extensive study of conformal correspondence

in the plane (see Exs. 1, 2).
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EXERCISES

1. For the plane referred to cartesian coordinates the equation

c2

-f ix*
xl - iz

defines a conformal correspondence of the plane upon itself such that the lines

xa const, correspond to two families of circles all passing through the origin

with the centers of the circles of each family on one of the coordinate axes; also

corresponding points are on a line through the origin and their distances r and
f from the origin are in the relation rr c 2

.

2. In terms of coordinates ua in the plane defined by

u l x l
-\- ?'x

2
,

u2 = x l ix2
,

where xa are cartesian coordinates, an equation of any real circle not passing

through the origin is of the form

(i) au lu* -f bit* -f cu 2
-f d =

0,

where a and d are real numbers, and b and c are conjugate imaginaries. The

equations

a 3 ul
-f- a4 68 w2 + 64

define a conformal correspondence of the plane upon itself such that circles

correspond to circles or straight lines.

3. For the unit sphere with the equations

1 -f uW '

-f uM ' +M2 '

u l and u2
being conjugate imaginaries, equation (i) of Ex. 2 is an equation of a

circle on the sphere, and equations (ii) of Ex. 2 define a conformal correspondence
of the sphere with itself in which circles correspond to circles.

4. When in Ex. 3 the second of equations (ii) in Ex. 2 is replaced by

a4 u* - a s

it
2 =

a2 ii
2
-f ai

'

the correspondence of the sphere with itself is isometric, and defines a rotation of

the sphere into itself, when the a's are chosen so that the correspondence is real.

5. The equations of Ex. 3 and

l

for the plane define a conformal correspondence of the sphere and the plane, such

that corresponding points are on the line with the equations

X1 X2 _X^z 1

tii + tf^W-t*1
)

~
-2~ '



37] GEODESIC CORRESPONDENCE 205

where X i are cartesian coordinates in space; thus corresponding points lie on a
line through the point P (0, 0, 1), and consequently a line in the plane corresponds
to the circle on the sphere which is its intersection by the plane determined by
P and the line; this correspondence is called the stenographic projection of the

sphere on the plane.

6, When two surfaces S and S are referred to coordinates ua and g =
g, cor-

responding elements of area (see 25) are equal, and the correspondence is said

to be equivalent. If g ^ g and one effects the change of coordinates u' 1 = ^(u 1

,
u2

),

u' 2 = u 1 on S, where v? is denned by

then g'(u'
1

,
u' 2

)
= g(u'

1
,
w' 2

), and consequently an equivalent correspondence
between S and S is denned by the equations u' 1 u 1

,
u'* = u2

.

7. Let S and S be two surfaces such that the points with the same coordinates

ua
correspond, and let gap and gap be the first fundamental tensors of S and S

respectively; if. the correspondence is not conformal, on each surface the integral

curves of the equation obtained from equation (26.24) when aap are replaced by
gap form an orthogonal net, as follows from theorem [26.4] ;

if the correspondence
is conformal, any orthogonal net on one surface corresponds to an orthogonal
net on the other surface.

37. GEODESIC CORRESPONDENCE OF TWO SURFACES

In this section we consider the relation between two surfaces S and S
in one-to-one correspondence such that to each geodesic on either surface

there corresponds a geodesic on the other, corresponding points having
the same coordinates, as shown in 36. In this case the two surfaces

are said to be in geodesic correspondence.

Since the arc of a curve is peculiar to the curve and thus cannot be

taken as a common parameter of corresponding curves on the surfaces

S and S, it is necessary to express the equations of the geodesies in

terms of some common parameter t, that is, u
a
as functions of t. In

consequence of (32.27) we have as equations of the geodesies on the

surface S in terms of a general parameter t

,_ . du
1 /dV / 2

\ du" duA _ du
1 /dV f 1

\ dj/ duA _
W7-i;

~di\dP
+

\fofdt dt) d* \ d<
"*"

VrJ <B dt)

In like manner equations of geodesies on S are

,_ ~ du
1

(<f
u

1

/T\ du> _ _ nW7 '
" + ~

2

du> duT\ _ du
2
/d

2
u

1 m Af du

d<~ *7 d* V d<2 W * ^

bols <

"
> are formed with respect

[pyj

fundamental tensor fa of S. Since it is understood that the coordinate

where the Christoffel symbols <

"
> are formed with respect to the

[pyj
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curves on S and S are such that the points on the two surfaces with

the same coordinates correspond and that the parameter t is the same
for both surfaces, on subtracting equations (37.1) from (37.2), we obtain

/Q7 Q x (du 2 du
2

i \ du** du 1

(37.3) .^--a-- =0,

where

/Q7 ,,\ a
(37-4) a,, =

If we denote by <
**

> and <
"

> the Christoffel symbols for a coor-
1/37J 107J

dinate system u'
a

,
it follows from equations (32.1) and analogous equa-

tions for S that

which are equivalent by (24.22) to

/A duft duy
du'

Hence, a/f7 are the components of a mixed tensor, contravariant of the

first order and covariant of the second order (see 20, Ex. 11), sym-
metric in the indices /3 and 7 as follows from (37.4).

Equation (37.3) must be satisfied identically; otherwise we should

have an equation of the first order and third degree satisfied by all the

geodesies; this would mean that through each point there would pass

at most three geodesies. Thus it could not be true that a geodesic

passes through a given point in any given direction. In order to obtain

the conditions upon the tensor a^y so that equation (37.3) shall be an

identity, we observe that this equation may be written in the form

f<* u * \ dif du 1
du* n

for a j* M and that the latter is an identity for a =
ju. If these equa-

tions are to be satisfied identically, we must have (see 19, Ex. 5)

Contracting for /* and e, that is, putting ju
= and summing with

respect to c, and noting that S{
= 2 and that a$y is symmetric in ft
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and 7, we obtain as a necessary condition

Since a y is a tensor, a\ t is a covariant vector, which we denote by
3oy (see 19). From this result and (37.4) we have

When these expressions are substituted in (37.2), the resulting equation
reduces to (37.1), and consequently (37.5) are sufficient as well as

necessary conditions that S and S be in geodesic correspondence.

Contracting equations (37.5) for a and /3, we have in consequence. of

the third of equations (28.2)

From (25.8) it follows that Q/g is a scalar, and consequently ay is the

gradient, that is ay = ,
where <f>

= -
log -

. Hence we have
du"Y o g

[37.1] A necessary and sufficient condition that two surfaces with funda-
mental tensors gap and ga$ be in geodesic correspondence is that their

Christoffel symbols be in the relation

/OT a\
(37.6)

the function <p is equal to -
log

-
.

6 g

If we denote by R'w the Riemann tensor for ga$ ,
we find from (37.6)

and (20.13)

(37.7) R'pyS
=

R'fiyl + &l<f>0y
~ 6 y ty* ,

where

(37.8)

,^r being the second covariant derivative of <p based upon gap .

From (28.5) and (28.3) we have

(37.9) KM =

Contracting for and 6, we obtain, since 61 = 2,

(37.10)
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Contracting (37.7) for e and 6, we have

(37.11) RH = B* + **,

from which, (37.10), and a similar equation for Rpy we have

(37.12) V* = Kg* - Kg* ,

where K is the Gaussian curvature of S.

We consider, in particular, the case when K is a constant. From

(37.8) and (37.12) we have

(37.13) vrf =
p,a <p,0 + Kgtt

- Kgap .

Finding the covariant derivative based upon the tensor gra/3 ,
we have

(37.14) <f> >afo
=

<t>,ay<f> tp + <f>,a <f>,0y
- K

>y gap

From equations similar to (28.2) we have

from which on substituting from (37.6), we obtain

>
ty

Substituting this expression in (37.14) and replacing the ga$ by their

expressions from (37.13), we obtain

<P,a07
=

2(<^,a <f>,fa +
(37.15)

from which it follows that

<f>,a!3y

From the appropriate Ricci identity (22.19) and (37.9) we have

and consequently

0.

From these equations we have that K is a constant, since the deter-

minant of gap is not equal to zero. Hence we have the theorem of

Beltrami:*

*
1869, 2, p. 232.
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[37.2] The only surfaces in geodesic correspondence with a surface of con-

stant Gaussian curvature are surfaces of constant Gaussian curvature.

We consider in particular the case when K = and assume that the

coordinates u
a

are cartesian. In this case the covariant derivatives

of (p in (37.15) are ordinary partial derivatives. If then we put y =

\ log 9 and thus understand that 6 > 0, equation (37.15) reduces in

this case to

(37 ' 16)

and from (37.13) we have

(200,/3 0,a 0,0).

The integral of (37.16) is

ft + bau* + c,

where aap ,
ba and c are constants. By suitable transformations of the

cartesian coordinates this expression for is reducible to one or the

other of the forms*

B = aau
2

+ c,
= cm

12 + 2Jm
2 + c,

depending on the values of a0. The expressions for gap for these ex-

pressions for are respectively

en M\ * - - ai(a2u
22 + c), -aiCfcuV, a2(aiu

12 + c)
(37.17) 011,012,0*2=

------^--srr~~\2~~~~ "'
K(aa u

a + cY

and

tt7 itt - - * a(<2bu
* + c)> ~<*>u

l

,
-b2

(37.18) 0n , 0i2, ^22
=

js- ra 2
-~-

.y-
(au + 2bu + c)

From these expressions we have respectively

. ab
y r?2/ a* I \3 ' ** r^2/ 1* i 01. 2 i \3"K (aa u + c) K (au + 2bu + c)

The constants and the domains of the variables must be such that

> 0. Also both 0n and 022 must be positive. This means for (37.18)

that K is negative, since is necessarily positive.

* C. G., p. 227.
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We return to the consideration of the general case and assume that

the surfaces S and S are referred to the orthogonal net on S which cor-

responds to an orthogonal net on S (see 36, Ex. 7). In this coordi-

nate system equations (37.6), on putting <p
= log 0, reduce to (see

28, Ex. 1)

_ = __ g^a (8 7* d)
Sw du* gw du*

Expressing the condition of integrability of the first two of these equa-

tions, we obtain ~-^ = and consequently 6 = U\U^ . where U\
dul du2

and Uz are functions of u
1

and u respectively, both having the same

sign since 6 must be positive. Then from the first two of the equations

we have gaa = T^TT (ft ^ a)- When these expressions are substituted
U aUfl

in the third of the above equations we find that

gaa
= (Ua -

Hence by a suitable choice of the coordinates without changing the

coordinate lines the fundamental forms of S and S are reducible to the

respective forms

07.10 W.-W + '),
-J-' + .

Consequently we have the theorem of Dini* (see 32) :

[37.3] A necessary and sufficient condition that a surface be in geodesic

correspondence with another surface is that it be a surface of Liouville.

EXERCISES

1. When the equation (37.3) is written

the condition that it be an identity is

afi * 2a? 2
- a^ ~ 2aJ 2

-
a\ t

- aJ 2
-

0,

which are equivalent to

al,
- i (ja; t + ;aj,)

-
5?a7 + %af

.

*
1870, 1, p. 278.



37] GEODESIC CORRESPONDENCE 211

2. The results of Ex. 1. follow also from the equation of 32, Ex. 7.

3. Since the first of the forms (37.19) is not altered when C/i and U\ are replaced

by Ui -f a and C7 2 4- a, where a is a constant, the second of (37.19) may be replaced

by

/ 1

\C/2 +
1 W du? du**

a Vi

4. For a surface with the first fundamental form

the correspondence defined by u l =
,
u2 == is a geodesic correspondence of the

u2 u l

surface with itself.

5. From (37.7) and (37.11) one finds that

here

and similarly for W l

py i . Thus the tensor W'^s has the same components for two

surfaces in geodesic correspondence. Determine under what conditions it is a

zero tensor.

6. From (37.6) one has U^y
=* nj7 ,

where

and similarly for Iljy . Thus the quantities IIJ7 are equal for two surfaces in

geodesic correspondence. In terms of these quantities equations (37.1) and

(37.2) become

drt

dt



CHAPTER IV

Surfaces in Space

38. THE SECOND FUNDAMENTAL FORM OF A SURFACE

In the preceding chapter we considered a surface in space defined by
three equations

(38.1) *< = f(u\ u) (i
=

1, 2, 3),

where x are cartesian coordinates. Applying the euclidean metric we
found that lengths of arcs and angles between curves in the surface are

expressible in terms of the first fundamental tensor gap defined by

(38.2) '--?|1S <,*-l,2>.'

Thus the euclidean metric of space induces a metric on a surface ex-

pressible in terms of the tensor ga$ . Throughout the preceding chapter

we considered the geometry of a surface in terms of this tensor, and

without any further reference to the character of the surface as viewed

from the enveloping space. From this point of view any two de-

velopable surfaces are equivalent to one another, and to a plane, that is,

have the same metric properties. Also any surface isometric with a

surface of revolution is equivalent to the latter. However, as viewed

from the enveloping space two such surfaces may be entirely different

in form. It is this question of the geometry of a surface as viewed

from the enveloping space which is the subject of the present chapter.

This study involves the consideration of the form of a surface in the

neighborhood of an ordinary point and its position relative to the

tangent plane at the point.

In 10 quantities A
13
were defined by

A { J d(/ >/ )"
'

and it was shown in 11 that the tangents to all the curves through an

ordinary point x\ that is, one for which the three quantities A
tJ
are not

* In what follows Latin indices take the values 1, 2, 3 and Greek indices the

values 1, 2.

212
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all equal to zero, lie in a plane containing this point, called the tangent

plane, and that an equation of the plane is

=
o,

where x are current coordinates.

In consequence of the identity

(38.4) g= \gafi
=

0n<722
-

g\*
= (A

12

)

2 + (A
2

established in 24, the quantities X
1

defined by

dx 3
'

8x

(38.5)
1 du l du l

dx
k

X { = A jk

Vg Vg
du2 du2

where i, j, k take the values 1, 2, 3 cyclically, are such that

(38.6) Zrr = i.

Accordingly an equation of the tangent plane is

(38.7) X' (z
l -

x'')
=

0,
I

and X 1

are direction cosines of the normal to the surface at the point x\
that is, the normal to the tangent plane at the point.

From (38.5) it follows that*

(38.8)
du"

= o (a =
1, 2),

and using (38.4) one may verify that

(38.9)

dx
3

dx
1

< _
'du

1 du1 du1

dx
1

dx
2

dx*

~du2 du2 du*

X 1 X2
X*

= Vgt-

We have from (24.4) and (24.8) that ~ - are the direction cosines
V0H 9?/

1

* C. G., Theorem [26.4].

t In (38.5) and (38.9) \/g means the positive square root; this convention is

always used.
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of the vector from a point u" on a surface tangent to the curve u* =
const, and in the direction in which u

l

is increasing; and similarly for

1 Ar*
and the curve u

l = const. Hence if the coordinate net on a

surface is an orthogonal net, equation (38.9) expresses the fact that the

ft
\

ft

positive tangent vectors of components ^ ,

- and the normal vector
uU uU

X* have the same mutual orientation as the x
1

-, x
2

-, and x
3

-axes.* If

the coordinate curves do not form an orthogonal net, we consider the

v2 = const-

FIG. 12

result of applying a positive transformation so that the new coordinate

curves shall be the given curves u
1

const, and their orthogonal

trajectories, the equations of such a transformation being of the form

u'
1 =

(p(u
l

,
u

2

), u'
2 = u

2
. Then equation (38.9) transforms into an

equation of the same form in consequence of (25.13) and positive sense

in the surface is unaltered as shown in 25. Hence the mutual orienta-

tion of the vectors =.
t ,

=. n ,X* is as shown in Fig. 12 what-
V011 dW l

V022 dU2

ever be the coordinate curves.

* C. G., p. 162.
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For a curve in the surface through two nearby points x* and x* we
have

(38.10)
ds /o 2

where a subscript zero indicates the value of a quantity at x
l

and s is

the arc from the point x\ Since x* are functions of the coordinates u
a

,

we have

(3811) ^ = ^^1* dV _ aV du
a
dv? dx* <fu

ds dua ds
'

ds2 du*du* ds ds dua ds2
'

Consequently because of (38.8) the distance p of the point PI(X) from

the tangent plane (38.7) at P(x) is given by*

(38.12) p
2 \ as ds

where B indicates the sum of terms of the third and higher orders in s,

and where by definition

(38 - 13) *--*
In consequence of (38.8) equations (38.13) are equivalent to

(38.14) rfa0=ZxXa9 ,

i

where x*a$ is the second covariant derivative of x\ that is,

(3815) *< - aV - d
W8.15) Xta,-

Since x
l

being functions of u" are scalars as regards a change in the

coordinates u", as are also X\ it follows from (38.14) that dap are the

components of a symmetric covariant tensor of the second order, being

the sum of three covariant tensors each multiplied by a scalar. It is

called the second fundamental quadratic tensor of the surface, and

daft
du

a
du* is called the second fundamental quadratic form of the surface.

It is shown in 39 that a surface is completely characterized by its first

and second fundamental forms and thus that the distinction between

two isometric surfaces as viewed from the enveloping space is based

upon their respective second fundamental forms. Two surfaces which

have the same first fundamental form but different second fundamental

forms are said to be applicable.

* C. G., p. 95.
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Gauss,* who introduced the second fundamental form, used the ex-

pression Ddp
2 + Wdpdq + D" df, as have many subsequent

writers. We have adopted the expression dap du
a
duft

,
since it enables

one to write equations in simpler form with the use of the summation

convention.

From (38.13) and (38.8) we have

(38.16) daft
= - Z

'

= - Z -

-

Since X 1

are scalars as regards a change of coordinates w
a

,
it follows

again from (38.16) that da^ are the components of a symmetric covariant

tensor of the second order.

If we differentiate equations (38.2) with respect to u 1 we obtain

"' "

+ z
"" "

i dua dut du* i du* But dua duy
'

If we permute the indices a, 0, 7 cyclically twice, we obtain the two

equations

__ x~
+

But i du-*dua &ufi

""

a??
'

dx*
y^

dV dx* _ dyya

dua i dua du* du"*

~
~du?

'

Subtracting from the sum of these two equations the preceding one, and

making use of the definition (20.1) of the Christoffel symbols of the

first kind, we obtain

From this result and (38.15) we have (see (20.4))

Li- fa*
r * i \* dx* dx* ( d\ r o i n

*:
=

laf, y]
- L = W, 7]

-
8

= o.

Comparing these equations with (38.8), we have that x*ap is some

multiple of X*, say x*ajj
= hapX\ Multiplyuig by X 1

and summing
with respect to i, we have from (38.6) and (38.14) hap = dap ,

and conse-

quently the following equations of Gauss :f

(38.18) X*afi
=

dafiX*.

*
1827, 1, p. 234.

f 1827, 1, pp. 233, 234.
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We wish now to find expressions for -
. From (38.6) it follows that

A V*
from which it is seen that for each value of a are direction numbers

dua

of a vector orthogonal to the normal. Hence each such vector is a

linear he

we have

%

linear homogeneous function of the two tangential vectors -

a
. Thus

dX* * 6V

where the expressions for fa are to be determined. In order to find

these expressions, we multiply both sides of the above equation by
bu"1

and sum with respect to i, and hi consequence of (38.16) and (38.2)

obtain

Multiplying both sides of this equation by g
yS and summing with respect

to 7, we obtain because of (24.16)

Consequently the desired equations are

)
-

EXERCISES

1. When da ft
*

0, it follows from (38.19) that the surface is a plane.

2. When

,

011 012 #22

dX i dp
it follows from (38.19) that - = t

-
. From the conditions of integrability

dua dua

of these equations it follows that t is a constant, since ?* 0. Hence X* tx i + fl*,

and the surface is a sphere.

d*x<
3. If a straight line lies entirely on a surface,

-

along the line. From
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(38.11) and (38.13) it follows that the line is one of the integral curves of the equa-
tion

dua duP = 0.

4. For a surface of revolution with the equations

x 1 u 1 cos u2
,

x2 u 1 sin u2
,

x8 = <P(U
I

),

one finds that

^>' cos u2
, v>' sin it

2
,

1

dn , rfia , c?22 -. .

VI + *>'
2

5. For a helicoid with the equations (see 24, Ex. 6)

x 1 = u1 cos u2
,

x2 a u1 sin u2
,

x* ^(u 1

) + fl^2
,

one finds that

a sin w2 u1
#' cos u2

, (a cos u2 + w1
v>' sin w2

) ,
w1

VulS
(l -f <f>'*) + a2

6. Two points x' and * are symmetric with respect to the point xj ,
if and only

if x l

-f i ~
2xj . Two surfaces symmetric with respect to a point are isometric,

and their second fundamental forms differ only in sign.

7. For any surface

A,x< = 1
- X'

2

, A,(x>-, xO - - XW (i * ;),

where the differential parameters are formed with respect to ga& (see 29).

39. THE EQUATION OF GAUSS AND THE EQUATIONS OF
CODAZZI

In order that tensors gap and da$ be the fundamental tensors of a

surface it is necessary that the conditions of integrability of the equa-

tions (38.18) be satisfied, that is,

(39.1) x*a y
-

x*,fi
= zUVy ,

as follows from equations of the form (22.19). By means of (38.19)

these equations of condition are reducible to

Q
i

RtafaW + (dafi.y
~ da y,ft) X* =

0,
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since Ifah = Q
ot

R*fa (see (20.15)). If these equations are multiplied

by 5
and summed with respect to i, we get, by means of (38.2), (38.8),

and (24.16), the first of the following equations, and the second, when
the above equations are multiplied by X 1

and summed with respect to i:

(39.2)
ay ** aft y6 '"^ ~ '

Because of (28.3) the first set of equations (39.2) which are not satisfied

identically are equivalent to

(39.3) d\\dm C?12
= Rim

From this result and (28.5) we have the equation of Gauss*

(39.4) K Run

9 011022 012

Since dap is a symmetric tensor, the second set of equations (39.2)

consists of the two equations

(39.5) daa.fi
-

da*,.
= (**0);

they are known as the equations of Codazzi because they are equivalent

to equations derived by him.f Equivalent equations had been derived

earlier by Mainardi.J When the expressions for the covariant deriva-

tives in (39.5) are written out, these equations become

/on a\ act ap jij n / _^ Q\
(39.6) T

- ~ - dai< a f +dw< > = (a 7* ft).dw dua
(aft) [aaj

When equations (38.19) are differentiated covariantly with respect

to u
d

,
on noting that the covariant derivative of gap is zero by theorem

[28.3] and making use of (38.18), one obtains

*

a5
= g

y
( d7,5 r-p + dayddiX

1

} .

Since X* are scalars, the condition of integrability of (38.19) is X*aa
=

Xja . This condition is satisfied because of the second set of (39.2),

that is, the Codazzi equations.

Having shown that the first and second fundamental tensors of a

*
1827, 1, p. 234.

t 1869, 3, p. 275.

| 1856, 1, p. 395.
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surface satisfy the equations (39.3) and (39.5), we inquire whether two
tensors satisfying these equations are the fundamental tensors of a

surface. This means that there must exist solutions x* and X 1

of equa-
tions (38.18) and (38.19) which satisfy the equations (38.2), (38.6) and

(38.8). In order to answer this question we put

(39.7)
* - <

in terms of which equations (38.18) and (38.19) are

(39 -8) -*
and equations (38.2), (38.6) and (38.8) are

(39.9) Z p'.pt
=

g.f, E XiX i

=1, Z XV. = 0.
t t i

Equations (39.8) and (39.9) constitute a mixed system of the type con-

sidered in 23. The conditions of integrability of equations (39.8) are

satisfied because of (39.3) and (39.5), this being in fact the manner in

which equations (39.3) and (39.5) were obtained. Equations (39.9) are

the set EQ in the terminology of 23. When they are differentiated it is

found that the resulting equations are satisfied in consequence of (39.8),

and consequently there are no sets E\ , E$ , ,
in the terminology of

23, to be satisfied. Equations (39.9) constitute six conditions upon
the nine functions p

v

a and X\ and thus by theorem [23.2] for a mixed

system the solution of the mixed system involves three arbitrary con-

stants. When such a solution is given the equations of the surface are

given by the quadratures

(39.10) z' =
fp'.

dif

as follows from (39.7), where 6* are three additional constants. From
the second and third of (39.9) it follows that X* are the direction cosines

of the normal to this surface,

We give an interpretation of the six arbitrary constants involved in

the present problem. We observe that if x
l

and X 1

constitute a solu-

tion of equations (38.2), (38.6), (38.8), (38.18), and (38.19), so also do

the quantities x* and X* defined by

(39.11) x = a,V + &', 1' = ajX
J

,

where the a's and b's are constants and the a's are subject to the six

conditions
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(39.12) Z ctai = tjk (j, * -
1, 2, 3).

t

From the form of the first set of equations (39.11) and from (39.12)

it follows that two surfaces defined by x
v

and x* may be obtained from

one another by a rotation and a translation, that is, by a motion. Since

these equations of motion involve the same number of arbitrary con-

stants as the general solution of the present problem, it follows from

the above discussion that any two surfaces with the same tensors ga$

and da/9
are transformable into one another by a motion in space. Hence

we have

[39.1] Two sets offunctions gap and da$ which satisfy the equations of Gauss

and Codazzi and such thatg > are the components of the first and second

fundamental tensors of a surface which is determined to within a motion

in space.

EXERCISES

1. When a surface is defined by an equation x3 = /(x
l

,
z2

) (see 25, Ex. 2), one

finds that

X 1

1
X2

,
X3 = --====

, d,, di 2 . rf22 = )

V 1 + Pi + pi \/l + p\ + pi

where

2. For a right conoid with the equations (see 10, Ex. 4)

x l = u1 cos u2
,

x* =* u 1 sin u2
,

x* = v

one finds that

xs^ x* = -- "v> ~ cos "v> "'

the locus of the normals to the surface along a generator is a hyperbolic

paraboloid.

3. For a central quadric with the equations in 10 Ex. 3 one finds that

~ a)
'
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where i
t j, k take the values 1, 2, 3 cyclically, and

ua uP
:
-

-r,
-

7
--

rr (0 ^ a), dn 0.

(ai ua) (a2 wa ) (a 3 ua )

4. For a paraboloid with the equations of 30, Ex. 7 one finds that

X\ , Xz , Xs

l -h fla^
2
),
- V'oiaa

A

a?(a,
-

a,)(i*
a - M^)

.

"
. a/1

-----
-^r-4 ^ a2 Aua

(l + aiw
a
)

where

A V [ai(ai aa)^ 1 a2] [ai(i a 2)w2 a2 ] .

40. NORMAL CURVATURE OF A SURFACE. PRINCIPAL
RADII OF NORMAL CURVATURE

dx
i

Consider any curve C upon a surface. Its tangent vector at
ds

any point P is perpendicular to the principal normal and binormal to

the curve and the normal vector X 1

to the surface. These three vec-

tors are shown in Fig. 13 lying in the plane of the paper, and it is under-

stood that the tangent vector to the curve at P is normal to the plane

of the paper and is directed toward the reader; the line PR represents

the line of intersection of the plane of the paper and the tangent plane

to the surface at P. Denote by w (see Fig. 13) the angle made by the

normal vector X 1

with the principal normal, whose components are

denoted by
l

. Hence on making use of (4.7) we have

(40.1) cos & = Z Xff = P Z X1^ ,

i i as2

where p is the radius of curvature of C at P. In consequence of (38.11),

(38.8), (38.13), and (24.6) we obtain from this equation

(40 2)
P gap du

a duft

'

Thus ?-?-? is equal to the ratio of the values of the second and first

P

fundamental quadratic forms of the surface for the direction of the

curve at P, that is, for differentials du
a

giving the direction of the

tangent to the curve at P.

Since the right-hand member of (40.2) is completely determined by
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the values of the differentials du*, it follows that the quantity
cos "

P
is the same for all curves through P having a common tangent at P,
denoted by PT. Since by hypothesis p is a positive quantity, it follows
that according as cos o> is positive or negative for one of these curves it

is the same fo- all of the curves. For a curve whose direction at P
satisfies the equation

(40.3) da0du*du
ft =

0,

either 1/p = at P or the osculating plane at P is the tangent plane
to the surface at P as follows from (40.2).

Consider, in particular the plane curve in which the surface is cut by
the plane determined by the normal to the surface at P and the tangent
PT called the normal section of the surface for the direction PT. In
this case is or 180 according as the principal normal to C and the
normal X 1

have the same or opposite directions. If we denote by pn

the radius of curvature of this plane curve at P, assumed to be positive,
we have

(40.4)
cos o> e

Pn

where e is +1 or -1, according as the principal normal to C and the
normal X* have the same or opposite directions.
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Hence we have the theorem of Meusnier:*

[40.1] The center of curvature at a point P for a curve on a surface is the

projection upon its osculating plane of the center of curvature of that

normal section of the surface which is tangent to the curve at P.

If now we define a quantity R for a direction du
a
at a point u

a
by

(40 5) - = C0 r

- = d^ du<Xdu0

R p

it follows from (40.4) that the absolute value of R is the radius of

curvature of the normal section of the surface for the given direction,

and that R is positive or negative according as the normal of the plane
section at u

a
and the normal X 1

to the surface have the same or opposite

directions. The quantity R defined by (40.5) is called the radius of

normal curvature of the surface at a point u
a
for the direction du

a
.

A normal section of a plane being a straight line, l/R = in this

case. A normal section of a sphere being a great circle R is equal to

the radius of the sphere. In both these cases the value of R does not

vary with the direction du
a

. Conversely, if R is not to vary with du
a

,

it is necessary and sufficient that dap = 0, or that dap be proportional

to gap ;
in the former case the surface is a plane, and in the latter a

sphere (see 38, Exs. 1 and 2).

In order to find the directions at a point on a surface for which l/R
is a maximum or minimum, we note that equation (40.5) is of the form

(26.26). Consequently these directions are given by the values of du
a

satisfying the equations

(40.6) (dap
- ~

g^
du* =

0,

as follows from (26.17) and the discussion following (26.26), and the

corresponding values of l/R are the roots of the determinant equation

(40.7)
, 1

~~

R
= 0.

Thus the directions sought are the principal directions for the tensor dap ;

these directions are called the principal directions of normal curvature.

They are given by the equation

(40.8)

du
a

g\adu*
*
1776, 1, p. 489.

0,
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as follows from (26.23), and they are real by theorem [26.4]. When
theorem [26.5] is applied to this case, we have

[40.2] At each point of a surface) other than a plane or a sphere, equation

(40.8) determines the two directions for which the normal curvature is a

maximum or minimum, these directions being perpendicular.

The values of R for these directions, called the principal radii of

normal curvature
,
are the roots of the equation (40.7), that is

(40.9) (dndu
-

dl2)R
2 -

(dngn + dKgn - 2dl2g^R + g = 0.

If these roots are denoted by pi and p2 ,
it follows from (40.9) and (39.4)

that

(40.10) = (*ll(fa
- & =

Jf,
pip2 g

(40.11)
PI p2 g

From (40.10) we have the following theorem of Gauss:*

[40.3] The curvature K at a point of a surface is equal to the reciprocal of

the product of the principal radii of normal curvature at the point.

The quantity
- + -

,
denoted by Km ,

is called the mean curvature
Pl P2

of the surface at a point. Equation (40.11) gives its expression in terms

of the two fundamental tensors of the surface.

Ordinarily the principal radii at a point are unequal, but there may
be points at which they are equaL Such a point is called an umbilical

point. From (40.10) and (40.11) it follows that

[40.4] A necessary and sufficient condition that a point u
a
be an umbilical

point is that at the point

(40.12) (g
af

daf)* = -(dudn-<&).
9

From geometric considerations it follows that every point on a sphere

is an umbilical point. For this reason an umbilical point is sometimes

called a spherical point.

The centers of curvature of the principal normal sections of a surface

*
1827,1, p. 231.
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at a point, that is, the normal sections in the principal directions, are

given by

(40.13) xj = x* + piX\ xj - x* +

These centers are called the principal centers of curvature for the point.

When the Gaussian curvature K is positive at a point P of a

surface, the principal radii have the same sign. Since in this case

dud<n d\2 > 0, as follows from (40.10), the second quadratic form

daft
du

a
du$ has the same sign at a point for all values of du

a
,
there

being no real values of du
a
for which the quadratic form is equal to

zero. Consequently it follows from (38.12) that points in the neighbor-
hood of P lie entirely on one side of the tangent plane. A surface at

all points of which K is positive is called a surface of positive curvature.

When K < at a point P, the principal radii differ in sign. In this

case equation (40.3) defines two real directions at P for each of which

R is infinite. From theorem [26.4] we have that the bisectors of the

angles between these directions are the principal directions at P. Since

the principal radii differ in sign and since the second fundamental form

for a point can change sign only at the directions given by (40.3), it

follows that in the neighborhood of P part of the surface lies on one side

of the tangent plane and part on the other, these parts being separated

by the two branches of the curve in which the surface is cut by the

tangent plane at P, the tangents at P to these branches having the

directions given by (40.3). A surface at all points of which K <
is called a surface of negative curvature. From the considerations of

this and the preceding paragraph it follows from geometric considera-

tions that ellipsoids, hyperboloids of two sheets and elliptic paraboloids

are surfaces of positive curvature, and that hyperboloids of one sheet

and hyperbolic paraboloids are surfaces of negative curvature.

When K = at a point, the directions given by (40.3) coincide,

since in this case d\\dn d\* =
0, and for this direction R is infinite.

In this case the coefficient of |s
2
in (38.12) is a perfect square and the

question ofwhether the distance p has always the same sign depends on the

terms of higher order. Consider, for example, a cylinder whose cross-

section has a simple inflection at a point P. K = for all points of the

surface, and the surface lies on both sides of the tangent plane along the

generator through P.

EXERCISES

1. If a segment equal to twice the radius of normal curvature for a direction

PT at a point P on a surface is laid off from P on the normal to the surface in the
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appropriate direction, and a sphere is described with the segment as diameter, the

circle in which the sphere is met by the osculating plane of any curve through P
and with the direction FT is the circle of curvature of the curve.

2. When the coordinate curves of a surface are such that g\i dn **
0, l/R

is a maximum or minimum in the direction of the coordinate curves, and

!_ _ <*u i _ dn

Pl 011 P2 022

in this coordinate system the points, if any, for which dn 22 d^gn - are

umbilical points.

3. Show analytically that each point of a sphere is an umbilical point.

4. The tangent to the mcrdians and parallels of a surface of revolution are the

principal directions at each point of the surface; the principal radii of a surface

with the equations of 10, Ex. 2 are given by

1 <?" 1 <f>'

Pi (1+*/1
)
1 ' 1

'

P* u'UW) 1 / 2
'

(see 24, Ex. 3 and 38, Ex. 4) ; p 2 is the segment of the normal between the point
of the surface and the axis of the surface.

5. Let P denote the center of normal curvature in the direction bisecting the

principal directions at a point P of a surface, and PI and P 2 the centers of normal

curvature in directions equally inclined to this bisector
;
then P, Pi ,

P
, Pa form a

harmonic range.

6. Let RI , J?2 , , Rm denote the radii of normal curvature for m (> 2) direc-

tions such that the angle of two adjoining directions is 27r/m; then

m\R l

+
'Rz

+ '" +
l/"2\*

+
*/'

7. From 30, Ex: 6 and 39, Ex. 3 it can be shown that the points

, ,

. Altai - a2) /o8 (a2
- a8)

x l =
A/ ,

x2 =
0, x3 -

A/
Y ai

- a8 y ai
- as

are umbilical points of an ellipsoid, and

. /ai(ai
-

as) /a2(a2
- a3 )

x l - A/ ,
x2 = A/ ,

& -
K ai

- a2 K a -
ai

of a hyperboloid of two sheets; and that there are no umbilical points on a hyper-

boloid of one sheet.

8. The principal radii of normal curvature of the surface of revolution of a

parabola about its directrix are in constant ratio.

9. The surface of revolution of a circle of radius a about a line in the plane of

the circle at the distance 6(> a) from the center of the circle is called a torus', the

Gaussian curvature of the surface at a point P is positive, zero, or negative ac-

cording as the distance of P from the axis is greater than, equal to, or less than 6.
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41. LINES OF CURVATURE OF A SURFACE

The integral curves of the differential equation (40.8), that is, the

equation

(diign
-

di#ii) du^ + (dug?* d&gLi) du
1
du

2

(41-1) 22+ (di2022 dvfliz) du =
0,

are called the lines of curvature of a surface. We have seen that they
form a real orthogonal net, and that the tangents to the two curves of

the net at a point are the principal directions of normal curvature at the

point. We now give another characteristic property of the lines of

curvature.

The normals to a surface at points x* of a curve C form a ruled surface,

whose equations in parametric form are

(41.2) x* = a* + tX\

the quantities #*, X *

being expressed in terms of the arc s of C, and t

being a second parameter, namely the distance of the point x from

the point x\ In order that the ruled surface be the tangent surface of

a curve F, and thus a developable surface, the normals to the given

surface being the tangents to F, the equation t = /(s) of the curve F

must be such that are proportional to X\ From (41.2) it follows
as

that this condition is

/.., O x
,

dt v , , v
(41.3) -7- + t -5 + T- A = AIA .

ds ds ds

Multiplying these equations by X* and summing with respect to t, we
have in consequence of (38.6) and (38.8) that

(41.4)
* =

k,

and consequently (41.3) reduce to

In order that the normals to the surface along a curve shall form a

cone, it is necessary that the equation t = f(s) be such that the point x

dx*
defined by (41.2) be the vertex of the cone, in which case -=- = 0. In

ds

this case we have (41.3) with h =
0, and from (41.4) t = const., and

again we have equations (41.5).
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When equations (41.5) written in the form

**' dx'

du
"

da;**

are multiplied by s
and summed with respect to i, we obtain in conse-

ovP

quence of (38.16)

(41.6) (to-ti^^-O.
Since these equations are equivalent to (40.6) with t = #, and the

equations (40.8) are a consequence of (40.6), we have

[41.1] A necessary and sufficient condition that the normals to a surface

along a curve form a developable surface is that the curve be a line of curva-

ture; when the developable surface is the tangent surface of a curve, equa-

tions of this curve are (41.2) where t is the principal radius of normal

curvature of the line of curvature concerned', the developable surface is a

cone, if and only if the corresponding principal radius is a constant along
the curve.

The proof of this theorem is not complete until one considers the

iyi
possibility of the normals forming a cylinder, that is, ^ = 0. In

as

this case we have, using (38.16),

v dx
i dX {

_ ^ ax* dX<
du*_ _ , <hf _ f 9

v

r du* ds
" r w> du* ds

~
*>&

" (a ~ ' } *

A curve for which these two equations hold is evidently an integral

curve of equation (40.8), and consequently is a line of curvature. In

order that the above equations for a =
1, 2 be consistent we must have

d\\d& di2 = along the curve. Hence from (39.4) and theorem [28.1]

either the surface is a developable surface and the curve is a generator,

or K = at least at all points of the curve.

jyi
Since the condition -7

= holds along each generator of a develop-
as

able surface, we have

[41.2] The lines of curvature of a developable surface are its generators and

their orthogonal trajectories.

In order that the coordinate curves be lines of curvature, it is neces-

sary and sufficient that

(41.7) in 012
-

(fa 0u =
0, du 022

- fa QK =
0,
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as follows from equation (41.1). Consequently gn = du =
0, unless

the two fundamental forms are proportional, which is the case only when
the surface is a plane or sphere (see 38, Exs. 1,2). Hence we have

[41.3] A necessary and sufficient condition that the lines of curvature be

coordinate, that is, the coordinate curves, on a surface other than a plane or

sphere is that

(41.8) diz = 012
= 0;

any orthogonal net on a plane or sphere satisfies these conditions.

When the lines of curvature are coordinate, equations (38.19) re-

duce to

r\ yi -j

\ t

(41.9) - =
a (a = 1, 2; a not summed),

in consequence of (41.8) and (24.18), the principal radii being given by

(41.10) l = *i, ! =^.
Pi 011 P2 022

When the lines of curvature are coordinate, the Codazzi equations

(39.6) reduce to (see 28, Ex. 1)

du* 2 \(hi foj du2

~
'

(41.11)

h
du l 2

!

In consequence of (41.10) these equations are expressible in the form

A /A
+ 1/1_1>

(41.12)
9M2W 2VP1 "

PI

EXERCISES

1. When a line of curvature is a plane curve and the normals to the surface

along the curve lie in the plane of the curve, the developable surface of the normals

consists of the tangent lines to the plane evolute of the curve.

2. The lines of curvature of the tangent surface of a curve are the tangents to

the curve and its involutes.

3. The meridians and parallels of a surface of revolution are the lines of curva-

ture of the surface (see 24, Ex. 3 and 38, Ex. 4).
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4. The coordinate curves on a central quadric with the parametric equations
in 10, Ex. 3 are the lines of curvature of the quadric (see 30, Ex. 6 and 39, Ex. 3).

5. The coordinate curves on a paraboloid with the parametric equations in 30,

Ex. 7 are the lines of curvature of the paraboloid (see 39, Ex. 4).

6. The lines of curvature of a spiral surface as defined in 26, Ex. 8 can be found

by quadratures.

42. CONJUGATE DIRECTIONS AND CONJUGATE NETS.
ISOMETRIC-CONJUGATE NETS

Consider a curve C on a surface and the tangent planes to the surface

at points of the curve. The envelope of this one parameter family of

tangent planes is a developable surface (12). Through each point of

the curve there passes a generator of the developable surface. The

generator of the surface and the tangent to the curve at the point are

said to have conjugate directions. In order to find an analytic expression

for conjugate directions we consider the equation of the tangent plane

(42.1) ZW-*')-0,
i

where x
l

are current coordinates, and X v

and x* are functions of the arc

along the curve. On differentiating (42.1) with respect to s we have in

consequence of (38.8)

This equation and (42.1) are equations of the generator of the de-

velopable through the point x\ The quantities x* x
l

are direction

numbers of the generator, and they are proportional to - 5w, where

du" are differentials in the direction conjugate to the tangent to the

curve at the point (see (24.4)). In consequence of this observation

and equations (38.16) we have from (42.2)

(42.3) dapdifdu* =
0,

which gives the relation between the differentials du* for C and du" for

its conjugate direction. From the form of (42.3) it is seen that con-

jugacy of directions is reciprocal, that is, if a direction is conjugate to a

given direction, the latter is conjugate to the former.

Comparing equations (42.3) and (26.7), we observe that the second

fundamental tensor bears to conjugacy the same relation which the first

fundamental tensor bears to orthogonality.
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The directions conjugate to each of the curves

(42.4) <p(u\ u
2

)
= const.

at each point of the curve are given by (see (26.2) )

-
5) *'

Looking upon this equation as a differential equation in du
a

,
we have

that its integral curves and the curves <f>
= const, form a net, such

that a curve of each family passes through a point of the surface and

at the point their directions are conjugate. Such a net is called a

conjugate net.

From (42.3) it follows that the curves conjugate to the curves u =
const, are the integral curves of the equation

(42.6) dndu
1 + dizdu = 0.

In order that they be the curves u
l = const, we must have du =

0,

and conversely. Hence we have

[42.1] A necessary and sufficient condition that the coordinate curves form
a conjugate net is that d^ be zero.

From this theorem and theorem [41.3] we have

[42.2] The lines of curvature of a surface form a conjugate net, and the

only conjugate net which is an orthogonal net.

From equations (38.18) it follows that when the coordinate curves

form a conjugate net each of the coordinates x* is a solution of an equa-
tion of the form

(42.7)
o 6

\
i

i
%

aw1 du2 o,

where in general a
1

and a
2
are functions of u

a
.

Conversely, if x
l

for i = 1, 2, 3 are linearly independent solutions of

an equation of this type, then



42] CONJUGATE DIRECTIONS AND CONJUGATE NETS 233

from which and from (38.5) and (38.13) it follows that du = 0. Hence
we have

[42.3] Iff(u
l

,
u

2

) for i = 1, 2, 3 are three linearly independent solutions

of an equation of the form (42.7), the coordinate curves form a conjugate

net on the surface with the equations x
l = f(u

l

,
u

2

).

When the lines of curvature are coordinate, we have", since g& 0,

In this case not only are x
l

solutions of an equation of the form (42.7)

but also the sum of their squares, that is /^ x
l

x
l

,
is a solution as one

verifies by substitution, and conversely. Hence we have the theorem

of Darboux:*

[42.4] A necessary and sufficient condition that the coordinate curves be

the lines of curvature on the surface defined by three linearly independent
solutions of an equation of the form (42.7) is that the sum of the squares

of these solutions is also a solution.

Darbouxf has applied this result to the proof of the following theorem :

[42.5] When a surface S is transformed into a surface Si by an inversion,

the lines of curvature of S are transformed into the lines of curvature of Si .

An inversion, or a transformation by reciprocal radii, is defined by

(42.8)
c'
-

xj)
j

where c is a constant, and the point xl is the center of the transforma-

tion. From (42.8) it follows that

(42.9)

l

\
(

i i

i _ i __ C_(Xi
X

which shows the reciprocal character of the transformation.

Suppose now that x
l

are solutions of an equation (42.7), then xl

given by (42.8) are functions of u
a
which are solutions of the equation

in 0i resulting from the substitution

(42.10) = =,-
*
1887, 1, p. 136.

1 1887, 1, p. 208.
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in equation (42.7), as follows from the second of equations (42.9), XQ

being constants. If 2 x
*

x
*

ls a solution of (42.7), then as follows from

the first of (42.9) and (42.10) c
4

is a solution of the equation in 0i ,

which consequently is of the form (42.7). Since (42.7) admits unity

for a solution, it follows from (42.10) that the equation in 0i admits

the solution 2w, x lx l ,
and theorem [42.5] follows in consequence of

theorem [42.4].

For a surface of positive or negative curvature, dndn dlz ,
denoted

by d, is not equal to zero. Consequently quantities d aft
are uniquely

defined by

//IO 11\ ^J tt/^J a .

(4J.11; a dpy
= o y ;

in fact

(42.12) d
u = ~

,
d

12 = - ^ ,
d
22 = -1

.

a da
If then we define quantities 2#> and 2i(^, ^) by

these are scalars for a transformation of coordinates u
a

,
since it follows

from (42.11) as in 14 that d aft
is a symmetric contravariant tensor.

From (42.13) we have

J yl _ ^ ._ d? ^ U
2 = ^ ^11

rf
'

rf
'

(42.14)

and consequently in terms of any net tp
= const., ^ =

const., the second

fundamental form may be written

2 CI"A f i\J_J/ i T -Jf/ 2

(42.15)

We define also the quantity &*p by an equation analogous to (29.16),

namely

where e is +1 or 1 according as K is positive or negative for the

portion of the surface under consideration. If then <p is any real solu-
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tion of the equation A#> =
0, a real function ^ is obtained from (see

(30.5))

by a quadrature. Proceeding as in 30, we find from these equations

that

and

Aiy? = e&it, Ai(*?, \l/)
=

0,

so that the second fundamental form (42.15) becomes

---(dj + edf).

In case the coordinates are such that the second fundamental form is

(42.17) \(du
l * + edu*),

the coordinate curves are said to form an isometric-conjugate net.

When for a conjugate net on a surface

(42.18) -

new coordinates can be chosen in terms of which the second fundamental

form assumes the form (42.17). The coordinates are called isometric-

conjugate when the second fundamental form is of the particular form

(42.17).

Proceeding as in 30, we have analogously to theorem [30.3]

[42.6] A necessary and sufficient condition that a family of curves $ =
const, and their conjugate trajectories form an isometric-conjugate net is

that A#> = or that the ratio of A^ and Ai<p is a function of (p.

EXERCISES

1. The coordinate curves on a surface defined by

a) *<-/{( tti) +rtw
form a conjugate net. Each of the curves u 2 const, may be obtained from the

curve x* ~ /{ (u
l
) by a suitable translation, and the curves a1 = const, by a suitable

translation of the curve x* /j(w
2
); and the tangents to one coordinate family at

points of a curve of the other family are parallel. A surface with equations of the
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form (i) is called a surface of translation, and the curves x i = f\(u
l
) and x* /^M 2

)

are called the generating curves.

2. The coordinate curves form a conjugate net on the surface

_
/(i*

1
) + *("2

)

'

3. The meridians and parallels on a surface of revolution form an isometric-

conjugate net (see 38, Ex. 4.)

4. The lines of curvature on a central quadric and on a paraboloid form an iso-

metric-conjugate net (see 39, Exs. 3 and 4).

5. The coordinate curves form an isometric-conjugate net on the surface

6. When the coordinate curves of a surface form an isometric-conjugate net

eX 2
1 X

and the coordinates are isometric-conjugate, then K =
. If one puts

- = -p ,

9 P V0
then d\\

* % d Z2 = ,
and the equations of Codazzi (39.6) are

P P

7. When the coordinate curves on a surface are isometric-conjugate and the

coordinates are isometric-conjugate, equations (42.16) reduce to

When e 1^ a solution of these equations is <p -\- i\l/ f(u
l

-f- iu
z
), and when e = 1,

<?
= /i(u

l + w2
) + /2 (w

l - w2
), * = / t (w

l + u 2
)
-

/,(M i - w2
).

8. When a plane is subjected to an inversion it is tranformed into a plane or a

sphere according as the given plane passes through the center of the inversion or

not; when a line is subjected to an inversion it is transformed into a line or a circle

according as the given line passes through the center of the inversion or not.

9. From (42.8) one obtains

2^ dx\ dx\ -
ryrT-7_ k _ r

,

jt

and consequently a transformation by reciprocal radii is conformal.

10. When a cone of revolution is subjected to a transformation by reciprocal

radii whose center is not on the cone, the lines of curvature on the new surface are

circles, and this surface is the envelope of a family of spheres having a point in

common, the spheres being the transforms of the tangent planes to the cone.

11. A necessary and sufficient condition that a conjugate net on a surface be a

Tchebychef net (see 29, Ex. 12) is that the surface be a surface of translation.
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43. ASYMPTOTIC DIRECTIONS AND ASYMPTOTIC LINES.
MEAN CONJUGATE DIRECTIONS. THE

DUPIN INDICATRIX

A direction at a point in a surface which is self-conjugate is called

asymptotic. From equation (42.3) it follows that the asymptotic
directions at each point of a surface are given by

(43.1) dafidu*du
ft = Q.

The integral curves of this differential equation of the first order and

second degree are called the asymptotic lines of the surface. Accordingly
an asymptotic line is a curve whose tangent at any point is an asymp-
totic direction at the point. From (43.1) it follows that the asymptotic
directions upon a surface are conjugate imaginary, real and distinct, or

real and coincident according as d\\dn A is positive, negative, or

equal to zero. From this result and (39.4) we have

[43.1] The asymptotic lines are conjugate imaginary',
real and distinct, or

real and coincident on a surface, or any portion of a surface, for which

the Gaussian curvature is positive, negative, or equal to zero.

From theorem [26.4] applied to equation (43.1) and equation (40.8)

we have

[43.2] On a surface, or portion of a surface, for which the Gaussian curva-

ture is not equal to zero, the lines of curvature bisect the angles formed by

the asymptotic lines.

When a straight line lies entirely in a surface, the tangent plane to

the surface at each point of the line contains the line. From the

definition of asymptotic lines it follows that (see 38, Ex. 3) :

[43.3] When a straight line lies entirely in a surface, it is an asymptotic

line of the surface,

In 41 we saw that the generators of a developable surface are also

lines of curvature. From (40.1) and (40.2) we have

[43.4] The osculating planes of a curved asymptotic line are tangent to the

surface along the curve.

From equation (43.1) we have

[43.5] A necessary and sufficient condition that the asymptotic lines be

coordinate is that

(43.2) du = cfe = 0.
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From this result and (40.11) it follows that the asymptotic lines form

an orthogonal net, if and only ifKm = - + - = 0. A surface for which
Pi P2

the mean curvature Km is equal to zero is called a minimal surface;

the property of such a surface which justifies the term minimal is

established in 50. From (40.11) it follows also that when the minimal

curves (2) on such a surface are coordinate, that is, g\i
=

#22
=

0,

then c?i2
= 0. Hence we have

[43.6] On a minimal surface the asymptotic lines form an orthogonal net

and the minimal lines a conjugate net; each of these properties characterizes

a minimal surface.

From theorem [43.5] and equations (38.18) it follows that, when the

asymptotic lines are coordinate, the quantities x
l

as functions of u

and u
2
are solutions of two equations of the form

/ , O x d 6 dd . dO d 6 dQ dd
(43-3) = - + _, _, = o -, + (!-

where in general the a's are functions of u
a

. By an argument similar

to that which led to theorem [42.3] we have

[43.7] When two equations of the form (43.3) admit three linearly inde-

pendent solutions f(u
l

,
u

2

) for i = 1, 2, 3, the coordinate curves are the

asymptotic lines on the surface with the equations x
v

f(u
1

, u).

When equations (43.2) are satisfied, and we put 1/p = dn/\/g, then

the Gaussian curvature is given by

(43.4)

and the Codazzi equations (39.6) reduce to

<
'-**

by means of equations (28.2), namely

(436) _w>b; ~~a^ \fiaj"

The conditions of integrability of (43.5) are
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from whichr and (43.6) we have also

(438)(*6 '*}

Conversely, if three real functions ga& such that g > satisfy the

condition (43.7) and these functions and the function p determined to

within sign by the quadrature (43.5) satisfy the equation

(43.9) ^L
2 = -I,

then gap , du = dm =
0, dn \/g/p satisfy the equations of Gauss and

Codazzi, and in accordance with theorem [39.1] we have

[43.8] If a real tensor ga0 for which g > satisfies the equation (43.7) ,

and gap and a function p determined to within sign by (43.5) satisfy the

equation (43.9), then ga$ is the first fundamental tensor of a surface of

negative curvature upon which the asymptotic lines are coordinate] this

surface is determined in space to within a motion and a symmetry with

respect to a point.

The possibility of symmetry with respect to a point (see 38, Ex. 6)

is due to the fact that the sign of p is not determined by (43.5).

When the lines of curvature of a surface are coordinate, and the

angles which a pair of conjugate directions at a point make with the

tangent to the curve u const, at the point are denoted by 6 and 6',

that is (see (25.7)),

(43.10) tan = A, tan V = A*,V gudu1 ' V gn du})

the equation (42.3) with du = may be written hi the form

(43.11) tan 6 tan 0' = - P2
,

Pi

where

(43.12) 1 - *!, -

1
- = *!.

Pi gn P2 022

From this equation we obtain

cot 6 + pi tan 6
(43.13) tan (6

-
0')

=
Pi
-

P2

If we equate to zero the derivative with respect to tan 6 of the right-

hand member of this equation, we find that the values of tan for
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which this derivative is zero are Vp2/Pi >
and that for tan =

when
| pi >

|
P2 |

then tan (0
1
) is a minimum. This direction is

real only at a point for which K is positive, and from (43.11) we have

that in this case tan 6' tan 0, that is, the two conjugate directions

are equally inclined to the lines of curvature. Conversely if the latter

condition holds, it follows from (43.11) that tan
2

p2/pi . Hence

we have

[43.9] A necessary and sufficient condition that there exist a pair of real

conjugate directions at a point P in a surface which make equal angles

with the tangents to the lines of curvature at P is that the Gaussian curvature-

be positive at P
;
the angle 6 of one of these directions is given by tan 6 =

\/p2/pi )
an angle between these directions is the minimum of the angles

between conjugate directions at P.

From (43.10) it follows that these conjugate directions are given by

du 1 y 022 Pl' dU l

\ 22 Pi'

For both of these directions the radius of normal curvature is given by

r> _ n y _ Pi p2~ ~ ~
2T '

in consequence of (43.12). Thus the radius of normal curvature is the

mean of the principal radii of curvature. Accordingly we call these

directions the mean-conjugate directions.

When the lines of curvature are coordinate and denotes the angle

which a direction at a point P makes with the curve u const, at P,

the equation (40.5) may be written in the form

(43.15)
1 cos

2

,
sin

2

R Pl P2

in consequence of (25.6) and (43.12). This equation is called the equa-

tion of Euler. From it we have that the angle which an asymptotic
direction makes with the curve u const, at the point is given by

(43.16) tan
2 = - p2

.

Pi

This result follows also from (43.11) and the definition of asymptotic

directions as self-conjugate.

We have remarked in 40 that at a point of a surface at which K >
the principal radii have the same sign, and that R for any other normal
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section has the same sign. If in the tangent plane at such a point P,

we take P for the origin of a cartesian coordinate system, and the

tangents to the directions of the principal radii pi and p2 for the x- and

2/-axes respectively, and lay off on each line through P and in both direc-

tions from P line segments of length \/\~R\, where R is the correspond-

ing radius of normal curvature, an equation of the locus of the end points

of these segments is found from (43.15) to be

(43.17)
IPI!

yM
Thus the locus is an ellipse, whose principal axes are the principal direc-

tions at P, and from (43.11) it follows that conjugate diameters of the

ellipse* are conjugate directions on the surface.

FIG. 14 FIG. 15

When K < 0, the principal radii pi and pz differ in sign, and certain

values of R are positive and others are negative. In this case the

locus of the end points of the segments \/j~Bl, as shown in Fig. 15,

consists of the two conjugate hyperbolas with the equations

(43.18)
Pi P2 Pl P2

The asymptotes of these hyperbolas are given by ~ + - =
0, which

Pl P2

equation is equivalent to equation (43.16), that is, the asymptotes are

the asymptotic directions at the point, which accounts for the name of

these directions. In this case also equation (43.11) gives conjugate

diameters of the hyperbolasf as well as conjugate directions on the

surface.

According as K is positive or negative at a point the conic defined

by equation (43.17) or (43.18) is called the Dupin indicatrix at the point.

* C. G., p. 192.

t C. G., p. 192.
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Hence a point of a surface at which K is positive or negative is some-

times called elliptic or hyperbolic.

EXERCISES

1. The asymptotic lines on a surface of revolution can be found by quadratures

(see 38, Ex. 4).

2. When the coordinate curves on a surface form an isometric-conjugate net,

the asymptotic lines can be found by quadratures.
3. The coordinate curves on a surface of translation with the equations

are plane curves, the planes of one family being perpendicular to those of the other

family, and the curves form an isometric-conjugate net.

4. The catenoid (see 24, Ex. 4) and the skew helicoid (see 24, Ex. 7) are ap-

plicable minimal surfaces.

5. From (43.8) and theorem [43.7] it follows that a necessary condition that two

equations of the form (43.3) admit three linearly independent solutions is that

da\\ da,z2

6. For a surface of constant negative curvature 1 /a 2 referred to its asymptotic
lines the coordinates can be chosen so that

0n =
022

= a2
, 0i2 = #2 cos co,

whereto is a solution of the equation

6'co
= sm co.

7. The integral curves of an equation aa0du
aduP = form a conjugate net, if

and only if

+ 022^11 - 2oi 2di2 = 0.

8. The surface with the equations

x l = ac(ul + u2
), z2 = bc(u

l - u2
), x* = 2cw 1u2

,

where a, 6, c are constants, is a hyperbolic paraboloid referred to its rulings, that

is, its asymptotic lines; find the equations (43.3) in this case.

9. The surface with the equations

xl x* x* _ u1 + w2
,

1 w1 ^2
,
u1 u*

a
'

b
'

c 1 4- u1 u2

where a, 6, c are constants, is a hyperboloid of one sheet referred to its rulings, that

is, its asymptotic lines; find the equations (43.3) in this case.

10. A necessary and sufficient condition that the asymptotic lines on a surface

form a Tchebychef net (see 29, Ex. 12) is that the surface have constant Gaussian

curvature.
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11. For a minimal surface referred to its lines of curvature one has from equa-
tions (41.12) that

011
= PlU\ , 022 = Pit/ 2 ,

where U \ and Uz are functions of u l and w 2
respectively; hence the lines of curva-

ture on a minimal surface form an isometric net (see (30.11)).

12. Given two surfaces S and S with the respective second fundamental forms
daft

dua du& and da$ dua duft

;
a necessary and sufficient condition that the asymptotic

lines on S correspond to a conjugate system on S, corresponding points being
those with the same values of ua on the two surfaces, is that

dn eta + ^22 dn 2di2 dn =* 0;

when this condition is satisfied the asymptotic lines on S correspond to a con-

jugate system on S.

13. On the two surfaces of Ex. 12 the integral curves of the equation

di a du
a

dza du
a

=
dia dua dza du

a

form a conjugate net on each surface (see theorem [26.4]).

14. From (43.14), (40.10) and (40.11) it follows that the radius of normal
curvature in either mean-conjugate direction is given by

when this expression for R is substituted in (40.5) the integral curves of the re-

sulting equation are the mean-conjugate curves of the surface.

15. When the mean-conjugate curves of a surface of positive curvature are

coordinate

dn d-n

, dn = 0.

011 022

44. GEODESIC CURVATURE AND GEODESIC TORSION
OF A CURVE

Consider any curve C upon a surface and the tangent plane to the

surface at a point P of C. Project orthogonally upon this tangent

plane the portion of the curve in the neighborhood of P and let C'

denote the resulting plane curve. The curve C' is a normal section of

the projecting cylinder and C is a curve upon this cylinder, and con-

sequently theorem [40.1] may be applied to the cylinder to determine

the relation between the radius of curvature p of C and r of C'. This

relation is

(44.1)
I = C

-^,
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where ^ is the angle which the principal normal to C makes with the

tangent plane to the surface at P, that is, with the normal to C' in this

plane. From this result it follows that the normal to the osculating

plane of C at its center of curvature for the point P meets the tangent

plane to the surface at P in the center of curvature of C' for the point

P, and by theorem [40.1] this same normal meets the normal plane
section of the surface at P and tangential to C in the center of curva-

ture of the normal section. In Fig. 13 Cn is the latter point, and C\

and Cg the centers of curvature of C arid C' respectively.

In order to find the coordinates of the center of curvature of C', we

make use of the components X* of the unit normal vector to the pro-

jecting cylinder. Since this normal is perpendicular to the tangent to

C and lies in the normal plane, we have

These conditions are satisfied by

(44.2)
v* _ v j ax vk axA A - A -7- ,

ds ds

where i, j, k take the values 1, 2, 3 cyclically, from which we have

^iX
lX l = 1. By the choice (44.2) the positive sense given to the

dx
i

vector X 1

is such that the tangent to C, that is, the vector
,
the

as

vector X\ and the vector X 1

have the same mutual orientation as the

x
1

-, x
2

-, and x
3

-axes*, since

(44.3)

If we put

(44.4)

dx
1

dx
2

dx*

ds ds ds

x1 x 2 r
X 1 X2 Xs

dua '

dx
i

_ du dx
i

ds
~

~ds dua

then M" and are the components in the surface of the tangent vectors

X 1

and respectively (see (24.23)). From the discussion following
as

* C. G., p. 162.
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(38.9) we have from (44.3) that the vector /z

a
makes a right-angle with

the vector --
. Hence from (25.19) and the first of (44.4) we have

as

yax =e

(44.5)
dx

l

\di/

The angle ^ in (44.1) is equal or supplementary to the angle between

the principal normal to C and the vector X 1

according as the latter is

in the direction PCg in Fig. 13 or in the opposite direction. Hence from

(44.1) we have

(44.6) -
r

where /3* are direction cosines of the principal normal to C at P, and

where e is +1 or 1 according as the angle between the principal

normal and the vector X 1

is acute or obtuse. In consequence of (4.7),

(44.5), and (38.17) we have

e = ^a dv?
y- a^ dV

r ds i dua ds2

_ ya du? y* dx
l

7
ds i dua

ya du I r~ -, du du
f

. d u\=
Qy$ ~T~ \

i^ J
a J ~r~ i

" "T #s ^r^ )j

where [5c, a] are Christoffel symbols of the first kind formed with re-

spect to the tensor gap . Since ^^[7^, 0] = \

"
? by (20.2), by means of

the identities of 25, Ex. 8, the above equation may be written with a

change of indices in the form

(447) -
\ * ' ' / aP 71 JO 1^

1 fr I J 7

r ds\ds2
(yo) ds ds

Comparing this result with equation (34.3) we have that e/r is equal

to the geodesic curvature KO of the curve C, defined intrinsically in

34, and that KO is positive or negative according as the vector X 1

is in

the direction PCg in Fig. 13, or in the opposite direction. Accordingly

the center of curvature of the projected curve C' for its point of contact
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with the given curve C is called the center of geodesic curvature of C for

this point. In view of the above results we have

[44.1] The normal to the osculating plane of a curve C on a surface at the

center of curvature for a point P of C meets the tangent plane to the surface

at P in the center of geodesic curvature of C for the point P, and the length

of the line segment with end points P and the center of geodesic curvature is

equal to the reciprocal of the absolute value of the geodesic curvature of C

for the point P.

From the above discussion, equation (44.1), and theorem [34.1] we
have

[44.2] A necessary and sufficient condition that a curve be a geodesic on a

surface is that its principal normal at each point of the curve be normal to

the surface at the point.

When a curve C is defined by an equation <f>(u

l

,
u

2

)
=

0, or as an

integral curve of a differential equation Ma du" = 0, its geodesic curva-

ture Kg can be found directly (see (34.7) and 34, Ex. 7). From (40.2)

we have that- may be found directly. Also from (44.1) we have
P

fAA ON SU1 "
(44.8) KO

=-
,

o

since ^ = o> -or --co according as e is +1 or 1. Hence p and
2i i

co can be found directly. We shall show that the torsion r of the curve

also may be obtained in terms of co and the fundamental tensors of the

surface. Consequently the intrinsic equations in space of the curve

C can be found directly.

From the definition of co in 40 it follows that

(44.9) sin co = Z *V,
i

where 7* are the direction cosines of the binormal of C. Differentiating

equation (44.9) with respect to s, and making use of the Frenet formulas

(6.1) and equation (40.1), we obtain

/ A A 1 1\\ - ^ j -yfi i

(44.10) cos.- - r = T ~

ls
= -dg> Ts

y
a
-,

the last expression following from (38.19). Since the binormal is in

the plane of the vectors X 1

and X*, we have

7* = dX* + bX',
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where a and b are to be determined. The vector y* makes with the

vectors X 1

and X 1

the angles w - and u> TT respectively (see Fig. 13).
2t

On multiplying the above equations by X 1

and summing with respect

to z, and also by X 1

and summing with respect to i
}
we find that a =

sin w, 6 = cos w. Consequently

7* = sin a> X* COS a> X 1

.

When these expressions are substituted in the right-hand member of

(44.10), the result is reducible, in consequence of (38.8) and (44.5), to

- , -v <rr dll* dlf \^ #* dZ*
cosco^r/ </* ^ (/

- i,
3Mv a

- = -cos U,TO ,

where

57 , du
a
du?

^

-
d&gu) du du

C>onsequently (44.10) reduces to

When cos d> 7^ 0, that is, when the curve is not an asymptotic line,

we have

(44.12) r = ~ + T..
as

We consider now the exceptional case when the curve is an asymptotic

line, and assume that the asymptotic lines are coordinate, that is,

du dw 0. With this choice the direction cosines of the tangent

a
1

and of the binormal 7* of a curve u = const, are given by

--
i> v

l = eX *>

n du

where e is +1 or 1 as the case may be. From (5.7) we have for the

direction cosines of the principal normal

e
( jdx

k

_ k dx 3\

v^\ ^l ^v
as i

t j, k take the values 1, 2, 3 cyclically.
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From the Frenet formulas (6.1) we have

-77 F=^ Tds i du

the last expression following from (38.19). Substituting the above ex-

pressions for 0*, we obtain in consequence of (38.9)

T = ^ = ---.
V<7

In like manner the torsion of an asymptotic line u
l = const, can be

shown to be equal to \/ K. Hence we have the theorem of Enneper:

[44.3] The square of the torsion of an asymptotic line at a point of a surface

is equal to the absolute value of the Gaussian curvature at the point] the

torsions of the two asymptotic lines through a point differ in sign.

In both of the above cases r = rg as follows from (44.11). Con-

sequently equation (44.12) holds also in this case since w is constant for

an asymptotic line. Since rQ is a function only of a point and a direc-

tion at a point as follows from (44.11), the quantity T is the same
CIS

for all curves at a point having a common tangent. It is equal to r

for any curve for which w is a constant, and in particular for the geodesic

through the point in this direction. Accordingly rg is called the

geodesic torsion of a curve. From (44.11) and (41.1) we have

[44.4] A necessary and sufficient condition that the geodesic torsion of a

curve be zero at a point is that the curve be tangent to a line of curvature

at the point.

EXERCISES

1. A plane curve on a surface is a geodesic, if and only if the tangent planes to

the surface along the curve are perpendicular to the plane of the curve.

2. On the rectifying developable of a twisted curve (see 12, Ex. 2) the given
curve is a geodesic, and thus becomes a straight line when the developable surface

is rolled out upon a plane.

3. Straight lines on a surface are the only geodesic asymptotic lines.

4. At each point of an orthogonal net on a surface the geodesic torsions of the

two curves of the net differ only in sign.

5. A geodesic line of curvature is a plane curve, and a plane geodesic line is a

line of curvature.

6. When two surfaces meet under a constant angle, the geodesic torsions of the

curve of intersection with respect to the two surfaces are equal; if the curve of

intersection is a line of curvature of one of the surfaces, it is for the other also;
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if two surfaces intersect along a curve which is a line of curvature of each, they
intersect under constant angle.

7. When a surface is met by a plane or a sphere under constant angle, the curve

of intersection is a line of curvature of the surface.

8. The geodesic torsion of a curve is given by

1/1 A .-
1 1 sin 26,

2 \P1 P2/

where 6 is the angle made by the curve and the line of curvature at the point for

which pi is the radius of normal curvature.

9. A necessary and sufficient condition that the curves u* = const, on a surface

be straight lines, and thus that the surface be a ruled surface, is that

o, n
= o.

10. Upon a surface straight lines are the only plane asymptotic lines.

11. Show that

from this it follows that any family of parallel planes intersect a minimal surface

in curves which together with their orthogonal trajectories form an isometric net.

45. PARALLEL VECTORS IN A SURFACE

In 35 we gave an intrinsic definition of parallelism in a surface.

We now interpret parallelism from the view-point of the space in which

the surface may be considered as imbedded. Denoting by
*

the com-

ponents in space referred to cartesian coordinates x
l

of the unit vectors

X" at points of a curve C, we have

(45.1) --X'..

Differentiating with respect to s, we obtain

2 *

T= L + \

ds
~~

~ds ~du
a du^du^ ~ds

(d\* .J \dtAdx* ,
, Y , du< <= I -f X^v ^

i + \ r

dys-j~ X ,

\ds \y&) ds / dua ds

the last expression being a consequence of (38.18). Since ^ T = 1
t

we have analogously to (35.5) that the vector 77* associate to the vector

{
*

in space is given by

(45.3)
=

.
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The vector 77* is in general different from the associate vector of X
a
in

the surface (see theorem [45,1] and Ex. 3). If then equation (45.2)

is multiplied by - - and summed with respect to z, one obtains in
on?

consequence of (38.2), (38.8), and (45.3)

IAKA\ ^ i dX
*

(45.4) *-
If the vectors at points of a curve are parallel as viewed from the

enveloping space, their components in this space are constant, that is

d*~ = 0. Hence the right-hand member of (45.4) is equal to zero.
as

and, since g ^ 0, the quantities X
a
satisfy (35.13). The same result

follows if ]C i?*
=

0> that is, if the vectors associate to the vectors

*

are normal to the surface. Conversely, if equations (35.13) are

satisfied, either the associate vector 77* is a zero vector, or it is normal

to the surface. Hence we have

[45.1] A necessary and sufficient condition that vectors along a curve in a

surface be parallel with respect to the curve is that the vectors be parallel

as viewed from the enveloping space or that the associate vectors in this

space be normal to the surface.

We have remarked that the tangents to a curve are parallel with respect

to the curve, if and only if the latter is a geodesic. In this case the

vector rj

l

in (45.3) is the principal normal (see (4.7)), and consequently

theorem [44.2] is a particular case of theorem [45.1].

As a consequence of theorem [45.1] we have

[45.2] // two surfaces are tangent to one another along a curve, vectors

parallel with respect to this curve in either surface are parallel also in the

other surface.

From this theorem we have that if the vectors X
a
at points of a curve

C in a surface S are parallel with respect to C, they are parallel with

respect to C in the developable surface which is the envelope of the

tangent planes to at the points of C, and conversely. In consequence

of theorem [35.4], when this developable surface is rolled out upon the

plane the set of parallel vectors go into vectors which are parallel in

the euclidean sense. If then one has such a developable surface and

C' is the curve into which C goes, in order to find geometrically a set of

vectors parallel with respect to C, one has only to take a set of vectors
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parallel in the euclidean sense at points on C', and when the develop-
able is rolled back over the surface the resulting vectors are parallel

with respect to C.

The notion of parallelism of vectors in a Riemannian space of any
number of dimensions is due to Levi-Civita.* He introduced the

notion of infinitesimal parallelism which in terms of a surface imbedded
in a euclidean space is as follows: Given two nearby points Po and PI

of a curve in a surface corresponding to values s and s + ds of the arc

of the curve, and vectors X
a
(s) and

ds
'

terms of higher degree in ds being neglected; by definition the vector at

PI is parallel to the vector X
a
at Po ,

if as viewed from the enveloping

space it makes the same angle with an arbitrary vector tangential to

the surface at Po as the vector X
a
at P does. Such a tangential vector

a dx*
is given by a . The components of the vector at PI as a vector of

the enveloping space are given by

, dx
l

, ^ y , du*/ .dx*
i v

\ dua

which follows from (45.2) and (35.5). The condition that the two

angles mentioned be equal is

dx
l

. - yj du

In consequence of (38.2) and (38.8) this equation reduces to

s - 0.

Since the a's are arbitrary, and the determinant g > 0, we have VQ
=

0,

that is, the vector X" must satisfy equations (35.13) at P
,
and con-

sequently depends upon the direction P Pi on the surface. Having
arrived at this result, Levi-Civita| used equations (35.13) to define a

family of vectors X
a
parallel with respect to a curve.

EXERCISES

1. When the coordinates xl
of the enveloping space are any whatever, the

equations (45.3) are

*
1917, 1.

f 1917, 1, p. 179.
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where the Christoffel symbols < , . > are formed with respect to the metric tensor
(fij)a

ay of space.

2. A necessary and sufficient condition that vectors in a surface parallel with

respect to a curve C be parallel as viewed from the enveloping space is that the

direction of the vector at each point of C be conjugate to C.

3. A necessary and sufficient condition that the associate vector with respect
to a curve C of a tangent vector to a surface coincide with the associate vector

with respect to C of the tangent vector as looked upon as a vector in the surface

is that the latter be conjugate to the curve C.

4. In order that the normals to a surface along a curve C be parallel, it is neces-

sary that dnc?22 rf?2 along C; in this case C is an asymptotic line.

5. Show by means of equations (38.19) that a necessary and sufficient condition

that the vector associate to the normal vector to a surface with respect to a curve

C on the surface be tangent to C is that C be a line of curvature.

6. Show by means of equations (38.19) that a necessary and sufficient condition

that the vector associate to the normal vector to a surface with respect to a

curve C on the surface be perpendicular to C is that the curve be an asymptotic

line.

46, SPHERICAL REPRESENTATION OF A SURFACE.
THE GAUSSIAN CURVATURE OF A SURFACE

The Gaussian curvature of a surface has been derived as an intrinsic

property of a surface and it has been shown that it is equal to the

reciprocal of the product of the principal radii of normal curvature,

when the surface is considered as imbedded in space. These results

are due to Gauss, who has also given an interpretation of curvature as

a generalization of the concept of curvature of a curve. In arriving at

this result Gauss* introduced the concept of the spherical representation

of a surface. In accordance with this concept one takes the unit sphere,

that is, the sphere of unit radius with center at the origin, and makes

correspond to each point P of the surface the point P in which the sphere

is met by the radius parallel to and with the same sense as the normal

X* to the surface at P. Thus to a point of coordinates x
v

corresponds

the point of coordinates x\ where

(46.1) *' = X\

We denote by ds the linear element of the sphere, written

(46.2) df = E dx
{

dx< = Z^~ du du* = ha(> du
a
du$

,

*
1827, 1, p. 226.
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haft being thus defined. In consequence of (38.19) the quantities

are expressible in the form

, \^ dXl dX l

, s 7 x-< dx
%

dx
l

which in consequence of (24.7) and (24.18) reduces to

(46.4) A* = 4^W.
In order to give these expressions another form, we have

hn = g d\\

~
dfn

in consequence of (40.10) and (40.11). Proceeding in like manner we
have

(46.5) h^ = daftKm -

Accordingly the linear element of the spherical representation may be

written in the form

(46.6) ds
2 = Km dali du* du* -

and in consequence of (40.5) in the form

(46.7) ds
2

--

If h denotes the determinant of the quantities hap ,
we have from

(46.4) and the expression (40.10) for K
(46.8) \/h = eK\/g,

where e is +1 or 1 according as K is positive or negative at the point

under consideration.

If we denote by X
1

the vector normal to the sphere at the point

x
l

,
we have analogously to (38.5)

dXj 3Xk

(46.9)

du1 du1

d& dX*

u* du2

as i, j, k take the values 1, 2, 3 cyclically. Substituting from (38.19)

and making use of (38.5) and (46.8), we have

1

Vh
A12

g
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which reduces in consequence of (15.5) and (39.4) to

(46.10) X { = eX\

where e is -fl or 1 according as K > or K < 0.

From this result it follows that according as a point of a surface is

elliptic or hyperbolic, that is, K > or K < 0, the vectors X 1

and

X 1

have the same or opposite sense, that is, the positive sides of the

tangent planes to the surface and to the unit sphere are the same or

opposite. This is seen also from equations (41.9) when the lines of
n vi

curvature are coordinate, since for an elliptic point the vectors -
dua

have the same sense as the corresponding vectors
a
or both have the

opposite sense, whereas for a hyperbolic point one has the same sense

arid the other opposite sense.

If then we have a bounded portion of a surface such that K has the

same sign at all points and on the boundary C, and we denote by C
the contour of the corresponding bounded portion of the unit sphere,

it follows that as a point P describes the curve C the corresponding

point P on the sphere describes the curve C in the same or opposite

sense according as K is positive or negative. The areas of two such

portions of the sphere and surface are given by

\/h du
1

du
2 =

II eK\/g du du, f \/9 du
l

du

respectively, the limits of integration being the same for the two inte-

grals. From this result it follows that the limit of the ratio of these

two integrals as the portion of the surface shrinks to a point (and con-

sequently also the portion of the sphere) is equal to the value of eK at

the point. When K = at all points of a bounded portion of a surface

and on the boundary, this portion of the surface is developable. Since

the normals to a developable surface at all points of a generator are

parallel, it follows that the spherical representation of C for a developable

surface is the segment of a curve, and consequently of zero area. Hence

the above result applies to the caseK =
also, and we have the following

theorem of Gauss*:

[46.1] The limit of the ratio of the area of the spherical representation of a

bounded portion of a surface and the area of this bounded portion as the

latter shrinks to a point is equal to the absolute value of the Gaussian curva-

ture at the point.

*
1827, 1, p. 226.
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We consider now further consequences of the preceding results. Since

the radius of normal curvature of a surface at a point depends upon the

direction of the normal section unless the surface is a plane or a sphere

(see 40), it follows from (46.7) that the correspondence between a

surface other than a plane or a sphere and its spherical representation

is conformal (see 36), if and only if Km =
0, that is, when the surface

is a minimal surface. For a sphere - = = = -
. where a is the

R pi p2 a'

radius of the sphere; in this case ds
2 = ds

2
. Hence we have

a2

[46.2] A surface and its spherical representation are in conformal cor-

respondence, if and only if the surface is a sphere or a minimal surface.

In both of these cases to an orthogonal net on the surface corresponds

an orthogonal net on the unit sphere. From (46.5) it follows that the

coordinate curves on a surface and the unit sphere are orthogonal nets

only in case Km = or d12
= 0. Hence we have

[46.3] The lines of curvature of a surface are represented on the unit sphere

by an orthogonal net; this is a characteristic property of the lines of curva-

ture of a surface which is not a minimal surface nor a sphere.

This theorem is also a corollary of the following theorem:

[46.4] The tangents to a curve in a surface and to its spherical representa-

tion at corresponding points are parallel, if and only if the curve is a line

of curvature.

In order to establish this theorem we assume that the surface is referred

to a coordinate system such that the given curve is a curve u = const,

and that the coordinate curves form an orthogonal net. For the given

curve the quantities
- and - must be proportional, being direction

numbers of parallel lines by hypothesis. Hence from (38.19) we have

diyg*
2

0. Since g
12 = for an orthogonal coordinate net and

g
22

T* 0, we have di2
= and the theorem is proved.

In what follows we derive for a surface various results which are

expressible in terms of the two tensors da$ and h<# . Equations (41.5)'

express the condition that the normals to a surface along the curve
-, <x

whose unit tangent vector has components r- form a developable
as

dX i

surface. If these equations are multiplied by s and summed with
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respect to i, the resulting equation in consequence of (38.16) and (46.3)

is

(46.11) (d.f
-

tM d
-f = =

1, 2).
as

Eliminating from these two equations, we obtain

dia du
a

dta du
a

hia du* hta du"

which in consequence of (46.5) is equivalent to the equation (40.8) of

the lines of curvature, as was to be expected.
7 a

In order that quantities r be determined by (46.11), t must be a
as

solution of the determinant equation

= 0.

In 41 preceeding theorem [41.1] it was shown that t is one of the

principal radii of normal curvature (see Ex. 7). Hence the principal

radii pi and pz are roots of the equation

(huhw hi%)R (diJim + dyjiu Qduhi^R
(46.12)

+ (AiAi- A) =0.

Hence we have

Pi ~r P2

(46.13)

_
P1P2 ~ ""

~~h

where the quantities h
aft

are defined uniquely by

A"V =
? ,

that is (see (24.20)),

(46.14) V 1

-^, h
n
=-^, h

K = ^.h fi n

From (38.16), (46.10), and (46.3) it follows that the coefficients of

the second fundamental form of the spherical representation are given by

_ y ax; ar = _ y ar ar
i du" drf i

6
du drf



46] SPHERICAL REPRESENTATION OF A SURFACE 257

From this result, (46.10), and equations of the form (38.18) we have for

the spherical representation

where the Christoffel symbols are formed with respect to the form (46.2).

By means of equations (38.19), that is,

equations (46.15) may be given the form

(46.17) dq^'fl+'W'l*

1

-

If we differentiate (46.16) covariantly based upon g^ and make use of

(38.18), we obtain

, .tdx* .,

on noting that the covariant derivative of g
y*

is equal to zero. In

consequence of (46.16) and (46.4) these equations may be written

From these equations and (46.17) we have

Multiplying by and summing with respect to f, we obtain
"

that is,

< -*{;}+*
If we multiply these equations by <?*, as defined by (42.11), and sum

with respect to v, we obtain



258 SURFACES IN SPACE [Cn. IV

The left-hand member of equations (46.15) is the second covariant

derivative of the scalars X 1

based on ha$ . We indicate such covariant

derivatives by placing a bar over the index of covariant differentiation
;

thus we write (46.15) in the form

(46.20) X;# = -
hafiX*.

Differentiating covariantly with respect to uy and noting that hap.y = 0,

we obtain

.. T ..

Applying the appropriate Ricci identities (22.19) to this covariant

differentiation, namely

Y { --- V*--* ^^ P5

A, a/37
~

A.a-y^
~~

T"5 ** 07

where -fi^ are of the form (20.13) in terms of the symbols < \>, we

obtain

r

Multiplying these equations by - and summing for z, we obtain in
9w*

consequence of (46.3)

(46.21)

which expresses the fact that the Gaussian curvature of the sphere is

equal to +1.
In terms of this covariant differentiation of dav based upon ha$ equa-

tions (46.18) are expressible in the form

(46.22) Ul + ^
({j}

-
{j})

-
0,

from which it follows that

(46.23) dm &
- d*t = 0.

We now derive an important set of formulas. Since
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and the equations

T x' (x1 dx
*

- x"
dx

'} - o^ X
V 3^

*
*r)-'

where J] indicates the sum as i, j, k that the values 1, 2, 3 cyclically,

are identities, it follows that

fAt*c\A\ -vi dX -vk dX dX
i

dX
(46.24) X' -, - X -- - a. ^ + a2 ^ ,

where i, j, k take the values 1, 2, 3 cyclically, and the a's are to be

ftV*
determined. Multiplying these equations by and summing with

dua

respect to i, the resulting left-hand member is equal to zero identically,

and we have

= daihia + a 2/l2a

/J V*

Again multiplying the equations (46.24) by -
(/3 ^ a) and summing

dup

with respect to i, we have in consequence of (46.9) and (46.10)

where the sign on the left is + or according as a =
1,

= 2 or a = 2,

0=1. From these two sets of equations we obtain

_ hi$e hue _
an
-~Vh'

a =
Vh'

" l
~

and consequently equations (46.24) are

*ii~)=eVhh*'^,
(46.25)

"" "" ^"^

as z, 7, A; take the values 1, 2, 3 cyclically, where e is +1 or 1 according

as the Gaussian curvature is positive or negative.

EXERCISES

1. The spherical representation of the lines of curvature of a surface of revolu-

tion is an isometric orthogonal net.

2. The osculating planes of a line of curvature and its spherical representation

are parallel (see 6, Ex. 9).

3. If K and ic denote the radii of curvature of a line of curvature and its spherical
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representation, and *g and KO the radii of geodesic curvature of these respective

curves, then

Kds - *d8, Kg ds = Kg dS.

4. The spherical representation of a plane line of curvature is a circle.

5. The tangents to a curve on a surface and to its spherical representation at

corresponding points are orthogonal, if and only if the curve is an asymptotic line.

6. The angles between the asymptotic lines at a point on a surface and their

spherical representation are equal or supplementary according as the Gaussian

curvature of the surface is positive or negative at the point.

7. The principal directions for the tensor hap (see 26) are the principal direc-

tions of normal curvature
;
find the relation between r in (26. 17) and R for this case.

8. When the asymptotic lines are coordinate, it follows from (46.18) that

9. When the coordinate curves form a conjugate net, it follows from (46.18) that

0. aiogdq _ / 1 / I =: _
du Wj' W/

10. The asymptotic lines on a minimal surface form an isometric orthogonal

net, as do also their spherical representation.

11. From (46.4) one obtains

and from (46.5)

ga$ = (PI + P2)dap

12. A necessary and sufficient condition that the linear element of a surface

referred to a conjugate net be expressible in the form

ds* = p*(hndu? - 2hndu lduz

is that the Gaussian curvature of the surface be positive and that the coordinate

conjugate net be the mean-conjugate net (see 43).

13. Theorem [46.4] and Ex. 5 are equivalent respectively to Exs. 5 and 6 of 45.

47. TANGENTIAL COORDINATES OF A SURFACE

From the equation of the tangent plane to a surface at the point

x
l

, namely

(47.1) Z)X*(x*-s*) =0,
i

where
*

are current coordinates, we have that the algebraic distance

W of the origin from the tangent plane is given by

(47.2) W = Z XV-
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Looking upon this equation as an identity in u
a

,
we have in conse-

quence of (38.8)

(47.3) W-E 9
-*,?.

dua i dua

dX* dX*
For each point P on a surface the quantities X\ - and - are the

ou du2

components of independent vectors, as follows from (38.6) and

(47.4) Z X*
d~~ = 0.

i dua

Accordingly the direction numbers x
l

of the line segment OP, where

is the origin, are expressible in the form

\ yi
~i V T

1 l>
a

x = aX -\- o .

dua

In order to determine a and b
a we multiply these equations by X

1

and
AX*

sum with respect to i, and again by fl
and sum with respect to i,

Ow

with the result, in consequence of (47.2), (47.3), and (46.3),

TT7 II. 8W
a = W

,
6 ha* =

p
.

If the second set of these equations is multiplied by h?
y

,
where the

latter are defined by (46.14), and summed with respect to 0, we obtain

Hence we have

(47.5) x
*

u u

If these equations are differentiated covariantly based on ha$ ,
we

have in consequence of (46.20) and the fact that the covariant deriva-

tive of h
a(i

is equal to zero

dx< dX< < dW .at dX* , a/5 , i dW- = W- + A - + k --
dut dtf du^ dua

(47.6)
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From these equations we have (see (38.2) and (38.16))

- ? (
W + *"

= W2
hafi + 2WW.au + tf*WMWM ,

and

(47.8)

Conversely, given any four functions X 1

and TF of coordinates u"

such that ^iX'X
1 =

1, we have (47.4), and equations (46.20) follow

from the definition (46.3) of hap and the discussion in 46. From (47.6)

we have

Consequently X
1

are direction cosines of the normal to the surface for

which x
l

as functions of u
a
are given by (47.5). Since (47.2) follows

from (47.5), W is the algebraic distance of the origin from the tangent

plane at the corresponding point. Four such functions X 1

and W are

called tangential coordinates of the surface. There can be no relation

between the X's and W of the form a t-X
l + bW =

0, where the a's and

b are constants. For, if there were, it would follow from (47.8) and

(46.20) that dap =
0, and consequently the surface for which x

l

are

given by (47.5) would be a plane (see 38, Ex. 1), in which case the

X's would be constants. Hence we say that X %

and W are linearly

independent (constant coefficients) and we have

[47.1] Four linearly independent (constant coefficients) functions X 1

and

W of coordinates u
a
for which ^iX

l

X* = 1 are tangential coordinates

of a surface whose equations x
l

f(u
l

,
u

2

) are given by (47.5), and whose

two fundamental tensors are given by (47.7) and (47.8).

If one has any four functions
1

,

2

,

3

,

4

linearly independent (con-

stant coefficients) and one puts

(47.9) *' = -, TT=- (t
= l,2,3),

9 <P

where p
2 = 12 + 22 + 82

,
then X 1

and W satisfy the conditions of

theorem [47.1]. Consequently from four linearly independent (con-

stant coefficients) functions of u
1

and u
2
one obtains the tangential
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coordinates of four different surfaces according as one chooses three

of the functions to define X 1

by (47.9), that is, as one chooses the three

functions which are direction numbers of the normal to the surface.

When the coordinate lines on a surface form a conjugate net, the

tangential coordinates X 1

and W are solutions of an equation of the

form

(47 ' 10)

as follows from (46.20) and (47.8). Conversely, if X 1

and W are four

linearly independent (constant coefficients) solutions of an equation

(47.10) such that < X fX { =
1, it follows from equation (47,10) and

(46.20) that

(a
/ <X\\ dX

l

, /i
a ~

i^/J M* + (b

From these equations we have

and consequently for the surface with equations (47.5) we have d\z = 0,

as follows from (47.8). Hence we have

[47.2] Four linearly independent (constant coefficients) solutions X*, W
of an equation of the form (47.10) such that ^iX^X* 1 are the tangential

coordinates of a surface upon which the coordinate curves form a conjugate

net.

If one has any four linearly independent (constant coefficients)

solutions
1

, ,

4
of an equation of the form (47.10), the functions

X\ W defined by (47.9) are solutions of an equation of the form (47.10)

and satisfy the conditions of theorem [47.2]. Hence we have

[47.3] Four linearly independent (constant coefficients) solutions of an

equation of the form (47.10) determine four surfaces upon each of which

the coordinate curves form a conjugate net
;
each surface is determined by

which three of the four solutions are direction numbers of the normals to

the surface.

When the asymptotic lines upon a surface of negative Gaussian curva-

ture are coordinate, that is, d\\ = d, =
0, the tangential coordinates

X %

and W are solutions of two equations of the form

/ .1 > 1 1 \ d 89 . $0
i i />

d dd . d0.i_
(47.11) ^an^ +a^ + M, ^ = a, _, + a,,- + M,
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as follows from (46.20) and (47.8). By an argument similar to that

which led to theorem [47.2] we obtain

[47.4] Four linearly independent (constant coefficients) solutions X 1

,
W

of two equations of the form (47.11) such that
]T),-

X*X % = 1 are the tangen-

tial coordinates of a surface upon which the coordinate curves are the

asymptotic lines.

Also by an argument similar to that which led to theorem [47.3] we
obtain

[47.5] When two equations of the form (47.11) admit four linearly inde-

pendent (constant coefficients) solutions, these solutions determine four

surfaces upon each of which the coordinate curves are the asymptotic lines;

each surface is determined by which three of the four solutions are direction

numbers of the normals to the surface.

From (47.6) and (47.8) we have

(47.12) =-*.""

For a surface of negative Gaussian curvature referred to its asymptotic

lines we have

(47.13) dn = dn =
0, dlz

=

where from (46.13) p
2 =

pip2 . In consequence of (46.14) equations

(47.12) are in this case expressible in the form

(47.14)
dx

l
,~ """ "'

which in consequence of (46.25) are equivalent to

(47.15)

where i, j, k take the values 1, 2, 3 cyclically. If then we define func-

tions y* by

(47.16) v' = yp X*.
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these equations become

(47 17) -
v '

au> aw1 aw1

/' a 2 V w aw2

where f, j, k take the values 1, 2, 3 cyclically.

For the values (47.13) equations (46.23) reduce to

C47.W

Analogously to (28.2) we have

and consequently (47.18) are equivalent to

_
12'

, ^3^
------

\12'

In consequence of this result and equations (46.15) we have from (47.16)

fA~oi\ 1

(47 '21)

from which it follows that the conditions of integrability of (47.17) are

satisfied.

Conversely, we have

[47.6] // v
1

^
v
2

,
v are any three linearly independent (constant coefficients)

solutions of an equation of the form

(47 -22)

where X is a function of u
a

,
the coordinate curves on the surface whose

coordinates are given by the corresponding quadratures (47.17) are the

asymptotic lines, and the Gaussian curvature of the surface is equal to

For, the conditions of integrability of (47.17) are satisfied by solutions

of (47.22). If then we define X* by (47.16) with p = < ?V, equations

(47.17) are reducible to (47.15), from which we obtain

v dx* 3X i

_ v dx
i

dX* _ A , v dx
i dX i

_ K
'

~ ~
' dl2 - " * ~ Vhp '
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the last being a consequence of (46.9) and (46.10). From this result

and (46.13) it follows that K = -!/(, /V)
2

.

Equations (47.17) are called the formulas of Lelieuvre.*

EXERCISES

1. On the envelope of the family of planes

2 (U\ + Ufa* + U, + C/2 - 0,

i

where U\ , U\ are functions of u l
,
and TJ\ , Ui of w 2

,
the coordinate curves form a

conjugate net of plane curves.

2. On the envelope of the family of planes

cos u l x l + sin u l x* -f cot u2 x3
-f Ui -f U z

=
0,

where Ui and 17 2 are functions of u l and u2
respectively, the coordinate curves are

plane lines of curvature.

3. The conditions of integrability of equations (47.12) are equivalent to equa-
tions (46.23).

4. In consequence of (47.19) equations (46.23) are equivalent to

JL^_J_^.^l/^\. f^if*"! - *&fi\ - ^* /"
du* Vh 9w7 Vh Vh I/

35/ V^W/ V^IW V^

5. When a surface is referred to its asymptotic lines, the equations of Ex. 4

reduce to

6. A necessary condition that the coordinate curves on the unit sphere are the

representation of the asymptotic lines on a surface is that

If
dul

\l2

when this condition is satisfied, the coordinate curves on the sphere are the

representation of the asymptotic lines on a family of surfaces, which are homo-
thetic transforms of one another, and the equations x* = /*(t*

J

,
u 2

) of the surfaces

can be found by quadratures.

7. In order that equations of the form (47.11) admit four linearly independent

(constant coefficients) solutions it is necessary that

8. The most general right conoid is defined by equations (47.17) for the values

1

1888, 1, p. 126.



47] TANGENTIAL COORDINATES OF A SURFACE 267

9. When a surface is referred to its asymptotic lines, a necessary and sufficient

condition that the lines u2 = const, be straight, and thus that the surface be ruled,

is that the normals to the surface along each curve uz = const, be parallel to a

plane, as can be shown by means of equations (47.17).

10. When the asymptotic lines in one system on a surface arc represented on the

sphere by great circles, the surface is a ruled surface.

11. When the equations of the unit sphere are of the form of 28, Ex. 7 with

a 1, the coordinate curves are the asymptotic lines of the sphere and equation

(47.21) is

a + M'M*)' r-^r -20,

of which the general integral is

o wVtt
1
) +0=2 --- --

where <f> and i are arbitrary functions of u l and u 2
respectively.

12. Find the equation (47.21) when the surface is a hypcrboloid of one sheet;

when a hyperbolic paraboloid. (Sec 43, Exs. 8, 9).

13. When the coordinate curves on the unit sphere satisfy the condition

l j2 /r\/2)
/ \12J\12J'

they represent the asymptotic lines on a surface whose total curvature is of the

form

14. When the coordinate curves on the unit sphere form an orthogonal net a

necessary and sufficient condition that the curves w 2 = const, be circles, that is,

curves of constant geodesic curvature, is that

xk ai log V"" -M
15. When upon the unit sphere the curves of one family of an orthogonal iso-

metric net are circles, so also are the curves of the other family (see 34, Ex. 6).

16. When the equations of the unit sphere are

V,x
'
x

'

the coordinate curves are circles whose planes are

x \
_|_ W i(x

3 _
i)
=

o, x2 + w2
Cr

3
1) = 0,

and they form an orthogonal net, since the linear element is

4(dw l2
4- <*u 22)
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These curves are the spherical representation of the plane lines of curvature of

surfaces for which

W - o
U' + U*

"~+u''+l'

y functions of u l and u2

the unit sphere are

V 1 a2 sin w1

, V 1 a2 sinh w2
,
cos u l

-f a cosh u2

where Ui and / 2 are arbitrary functions of u l and u2
respectively.

17. When the equations of the unit sphere are

X^L
,
Ji

,
.A

cosh w2
-f- a cos u1

where o is a constant (| a
|
< 1), the coordinate curves are circles whose planes are

\/l - a2 x1 - tanw1
(a:

3 -
a) =

0, \/l - a2 x2 - a tanhu2 fa;3

J
0,

and they form an orthogonal net, since the linear element is

a _ (1
- a'Xdtt

1
* + du*)

(cosh uz
-f- a cos w1

)
2

'

These curves are the spherical representation of the plane lines of curvature of

surfaces for which

w ^ ^*2 (Ui + I/a)

cosh u2 + a cos w1
'

where f/i and / 2 are arbitrary functions of u 1 and it
2
respectively.

18. When a = in Ex. 17, the curves w 2 = const, on a surface with this spherical

representation lie in parallel planes and the planes of the curves u 1 = const,

envelope a cylinder.

48. SURFACES OF CENTER OF A SURFACE. PARALLEL
SURFACES

In 41 it was shown that the normals to a surface S along the lines

of curvature C\ and Cz through a point P on a surface form two develop-

able surfaces DI and D2 ,
and that the coordinates of the points PI and

P2 on the edges of regression of these surfaces corresponding to P, that

is, on the normal to S at P, are given by

(48.1) *{ = *' + piX
1

, xi = x' + ptX',

where pi and p2 are the principal radii of normal curvature at P. The
surfaces Si and Si ,

which are the* loci of the points PI and P2 respec-

tively, are called the surfaces of center of the surface S. When S is a

sphere, in place of two surfaces of center, there is only the center of

the sphere. Also it is evident geometrically that the normals to a

surface of revolution at points of a parallel form a right circular cone
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with vertex on the axis of the surface, and consequently, the axis is one

of the surfaces of center (see Exs. 1, 2, 3). In what follows we consider

only the case where neither of the surfaces Si and S2 is degenerate.

The edges of regression FI and F2 of the developable surfaces DI and

D2 lie on the respective surfaces Si and S2 . Since the normal at P is

tangent to FI at PI and to F2 at P2 ,
this normal is a common tangent

to Si and S2 ,
and consequently the normals to S are common tangents

of the surfaces Si and S2 . Since the generators of DI are tangent to

S2 ,
it follows that DI is the envelope of the tangent planes to S2 along

a curve F2 ,
and that at P2 the directions of F2 and F2 are conjugate as

follows from the definition of conjugate directions in 42. In like man-
ner the developable D2 envelops Si along a curve F[ and at PI the direc-

tions of FI and F[ are conjugate.

The tangent planes to DI and D2 along their common generator,

namely the normal at P, are perpendicular, since they are determined

by this normal and the tangents to Ci and C2 at P. This tangent

plane to DI is the osculating plane of FI at PI ,
and is perpendicular to

the tangent plane to Si at PI ,
since the tangent plane to D2 is this

tangent plane to Si . Hence FI is a geodesic on Si by theorem [44.2],

and similarly F2 is a geodesic on S2 . Accordingly we have

[48.1] The edges of regression of the developable surfaces consisting of the

normals to a surface along the lines of curvature of one family are geodesies

on the surface which is the locus of these edges; the developable surfaces

which consist of the normals to the surface along the lines of curvature of

the other family envelope this surface of center along the curves conjugate

to the edges; the osculating planes of the edges on one surface of centers

are tangent to the other surface of centers.

We now obtain in an analytical manner the results which have just

been deduced geometrically. We assume that the surface S is referred

to its lines of curvature, and that pi and p2 are the radii of principal

curvature for the directions of the respective curves u = const, and

u
l

const, at a point. Accordingly we have

(48.2)
- =

,

- =
, rfi2

=
012

= 0.

Pi Q\\ P2 022

Making use of (41.9), we obtain from the first of (48.1)

* *v t A
0X1 dpi v t dxi dpi v i
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FIG. 16. A surface and its two surfaces of center
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from which one finds for the components g'ap of the first fundamental

tensor of the surface of centers Si

MR^ // - fdpl\ n - 8pl 3pl n - (Spl\ -L (\ Pl
(48 '4) gn -

(w) ' g" - M M> g" ~
\M)

+
V p

Hence the linear element of Si may be written

(48.5) ds\ = dpl
P2,

from which it follows that the curves u =
const., that is, the edges of

regression of the developable surfaces D\, are geodesies (see (32.15)),

and their orthogonal trajectories are the curves for which pi
= const.

From (48.3) we have ]T t
-

t

= (a =
1, 2), from which it

du l dua

follows that
,
are direction numbers of the normal to Si, a result

du l

which we obtained previously from geometrical considerations. Hence

the direction cosines of the normal to Si are given by

(48.6) Xi= ~^,
where ei is + 1 or 1 so that there shall hold for Si the results analogous
to (38.9). By substitution it is found that this means that i is +1

or 1 according as (
-

*

1
) -,

is positive or negative.
\P2 / du l

If c? a/3 denotes the second fundamental tensor of Si ,
one finds from

equations analogous to (38.13) on making use of (41.9) and (38.17)

, ,4 =
0,

pi

(48.7)

Pl

the last expression being a consequence of (41.12). Since d'n =
0, the

second part of theorem [48.1] is established anew.

In like manner from the second of equations (48.1) we obtain as the

fundamental tensors of the second surface of centers S*

(48.9)
Pi gn dw Pi
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where the normal X\ to 82 is given by

(48.10) x> = _^^V 022 dt*

From the foregoing results we have by (40.10) that the total curva-

tures Ki and KZ of Si and S2 respectively are given by

dp2 dpi

.
---

\2^ 2 7
(pi P2)* dpi (pz

du l aw2

We inquire next under what conditions the normals to a -surface S
are normal to a second surface S. The equations of such a surface S
are given by

(48.12) x* = a
1
'

+ tX\

where t is to be determined so that

that is,

It follows from these equations in consequence of (38.8) and (47.4)

that t is a constant, and that for any constant t these equations are

satisfied. Hence we have

[48.2] // segments of constant length are laid off along the normals to a

surface from points of the surface, the locus of their other end points is a

surface with the same normals as the given surface.

Two surfaces in such relation are said to be parallel. It is evident that

there is an endless number of surfaces parallel to a given surface, that

the lines of curvature correspond on all these surfaces hi consequence
of theorem [41.1], and that the family of parallel surfaces have the

same surfaces of center.

If gap and dap denote the first and second fundamental tensors of the

surface S with equations (48.12), we obtain in consequence of (38.16)

and (46.3)

9(>
= Z ^^ =

$<*(*
- 2da /j + ?he,

(48.13)
'

.

, df OX* , ..
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Since the surfaces S and S have the same surfaces of center, it follows

from (48.1) and similar equations for S that the principal radii of normal

curvature of S are given by

(48.14) Pi = Pi t, P2 = P2 t.

If *S is a surface of constant total curvature I/a
2

,
we have

(PI + 0(P2 + = a
2

.

When in particular t = a, this equation reduces to

Pi Pz a
'

and we have the following theorem of Bonnet*:

[48.3] Among the surfaces parallel to a surface of constant total curvature

I/a
2

,
there are two of constant mean curvature =tl/a respectively at the

distances + a from the given surface.

Also we have conversely

[48.4] Among the surfaces parallel to a surface of constant mean curva-

ture one has constant positive total curvature and another constant mean
curvature.

From (48.3) it follows that the normals to the surface S are tangents
to the curves u

2 = const, on Si ,
which from (48.5) are seen to be geo-

desies. We shall prove the converse theorem

[48.5] The tangents to the geodesies on any surface are normal to a family

of parallel surfaces.

We assume that the surface is referred to a family of geodesies u
2

const, and their orthogonal trajectories, and write the linear element in

the form (see (32.15))

(48.15) ds
2 = du* + g^du

2
*.

The tangents to the geodesies have equations of the form

(48.16) x* = x* +
r^L,

from which we have

d# = <*L(
i i

dr \,^ (d* dr

- > -~, >--i
2 Md

(48 ' 17)
/d

2 '

+ r^*l + &**)
*
1853, 1, p. 437.
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In order that the tangents to the geodesies be normal to a surface (48.16)
n i

r must be such that T\- - dx = for all values of du
1

and du
2

. Since
du1

from which we have

one finds that the conditions upon r are

Consequently

(48.20) r = c - w
1

,

where c is an arbitrary constant. Each value of c determines a partic-

ular one of the family of parallel surfaces normal to the tangents to

the geodesies u = const, on S, and the theorem is established.

The given surface S is one of the surfaces of center of these parallel

surfaces. In order to find the other surface of center S we note from

theorem [48.1] that (48.16) are equations of S provided that r is such

that dx are direction numbers of the tangent to the edge of regression

of the envelope of the tangent planes to S along a curve conjugate to

the geodesies u const. Since this tangent must lie in the correspond-

ing tangent plane to S which is also the corresponding osculating plane
IT*'

of the edge on S, the direction numbers of whose normal are -,
du*

*\ i

r must be such that ]T) 2
dx* = 0. In consequence of (48.18), (48.19),

t ult

and

Y -4-Y??-
d
*
X

*

=0 Y d
*
X

*

= -
d^-

i &? duz
*

i fa 1 du1 du2 ' idu* du 1 du*
~

Z'du 1

which result from (48.18), we have

Hence

(48.21)
du1
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and equations of S are

(48.22) *'"*'- J- ==s
'-

From (34.5) it follows that r given by (48.21) is the radius of geodesic

curvature of the curves u
1

const, and consequently (48.22) gives the

centers of geodesic curvature of these curves. If then we say that the

surface S defined by equations (48.22) is the surface complementary to

the surface S as determined by the family of geodesies u
2 = const.

on S, we have

[48.6] A complementary surface of a surface S is the locus of the centers

of geodesic curvature of the orthogonal trajectories of the geodesies on S
which determine the complementary surface.

It follows from the above definition that either surface of centers of

a given surface is a complementary surface of the other. Moreover,
from equation (48.5) of the linear element of the surface of center Si it

follows that the geodesies which determine the other surface of center

82 as a complementary surface of Si are the orthogonal trajectories of

the curves pi
= const, on Si . Also from the linear element of the

surface Sz , namely,

which follows from (48.8), one has that the surface Si is the complemen-

tary surface of 2 which is determined by the geodesies orthogonal to

the curves p%
= const, on $2 . Hence we have the following theorem

of Beltrami*:

[48.7] The centers of geodesic curvature of the curves pi
= const, on Si

and of p2
= const, on $2 are corresponding points on S* and Si respectively,

corresponding points being the points of tangency of a common tangent to

the two surfaces.

EXERCISES

1. One of the surfaces of center of a surface of revolution is the axis, and the

other is the surface of revolution of the evolute of the meridian curve of the

surface.

2. For the envelope of a one-parameter family of spheres one of the surfaces

of center is the curve of centers of the spheres.

*
1865, 1, p. 18.
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3. In order that the surface of center Si be a curve, it is necessary and sufficient

that 0n02j g(\ 0; it follows from (48.4) that in this case pi is a function of u2

alone.

4. The surfaces of center of a helicoid (see 38, Ex. 5) are helicoids with the

same axis and the same parameter as the given helicoid.

5. The surface

ab u1
4- w2

'

b u1
-f w2 a u 1

-j- w2

has the following properties: the coordinate curves are plane lines of curvature,'

pi
= u2

, pj = u1
;
the surface is algebraic of the fourth order; the surfaces of

center are focal conies.

6. A necessary and sufficient condition that the asymptotic lines correspond on

the two surfaces of center of a surface is that there be a functional relation be-

tween the principal radii of the surface. When there is such a functional relation

the surface is called a surface of Weingarten.

7. Equations of the lines of curvature on Si and 2 are respectively

022 dpi dp2 0n ^22 ,

022 dp2 011022 .
~ ' ~" . "1~

P2 )

J

a necessary and sufficient condition that the lines correspond on the two surfaces

is that pt p2 =
a, where a is a constant, in which case A" i

= K<t 1 /a
2

,
and the

asymptotic lines on the two surfaces correspond.

8. Show that, in consequence of (41.12), A'
L pi

=
1, A 2 p!

=-
, where the

PI Pz

differential parameters are formed with respect to (48.4); then from (34.6) it fol-

lows that the radius of geodesic curvature of the curves pi = const, on Si is equal

to p2 PI ,
from which follows theorem [48.7].

9. The surfaces parallel to a developable surface are developable surfaces.

10. The surfaces parallel to a surface of revolution are surfaces of revolution.

11. Lines of curvature on two parallel surfaces are the only corresponding

conjugate nets.

12. A necessary and sufficient condition that the asymptotic lines on a surface

correspond to a conjugate system on a parallel surface is that the two surfaces be

surfaces of constant mean curvature in the relation of theorem [48.4],

13. From (48.20) and (48.21) it follows that the principal radii of normal curva-
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ture of the parallel surfaces normal to the tangents to the geodesies u2 const,

of a surface S with the linear element (48.15) are given by

pi - Ul
C, p2

- Ul - C

a log

14. If S is a surface applicable to a surface of revolution, the tangents to the

curves corresponding to the meridians of the surface of revolution are normal to a

family of surfaces of Weingarten as follows from Exs. 6 and 13.

15. From theorem [26.4] it follows that the left-hand member of equation (41.1)

of the lines of curvature of a surface is an indefinite quadratic form (see 28).

When the lines of curvature are coordinate, this form divided by \/g is reducible

by (41.10) to

by means of (41.12) and 28, Ex. 15 the curvature of this form is reducible to

2pip2 d (pi, pa)
u

hence the curvature is equal to zero for a Weingarten surface and in consequence
of theorem [28.5] the lines of curvature on a surface of Weingarten can be found by

quadratures.

49. SPHERICAL AND PSEUDOSPHERICAL SURFACES

A surface whose Gaussian curvature K is a constant not zero is called

a surface of constant curvature. According as K is positive or negative

the surface is called spherical or pseudospherical.

We consider first spherical surfaces and put K = I/a
2

. When such

a surface is referred to a family of geodesies u = const, and their

orthogonal trajectories, the linear element is of the form

(49.1) ds
2 = du

l * + 022 du*.

From (28.5) and 28, Ex. 1 we have that gn is such that

/Mo <>\
d
2

VJ7M _ 1 /

(49.2; t
a

= v 022

The integral of this equation is

/ x / , lx I*
1

, 2x U
l

(49.3) V022
=

<P\U ) cos + ^\u ) sin .

a a
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From (34.5) we have that the geodesic curvature K& of the coordinate

curves u
1 = const, is given by

(49.4) M =
.

If, in particular, the coordinate curves are chosen so that the curve

u
1 = is a geodesic, the curves u1 = const, the geodesic parallels to

this geodesic, and the curves u
2 = const, their geodesic orthogonal

trajectories, it follows from (49.4) for the curve u
1 = that \l/(u

2

)
=

in (49.3). Hence by a suitable choice of the coordinate u
2
the linear

element becomes

(49.5) ds
2 = du

l * + c
2
cos

2 - du
2 *

,

&

where c is a constant. From this it follows that c(u\ u\) is the arc

of the geodesic u
1 = between the curves u

2 = ul and u
2 = u

2
.

From the foregoing discussion it follows that all spherical surfaces of

the same Gaussian curvature are isometric, and consequently all these

surfaces have the same intrinsic properties. However, there is a dis-

tinction between spherical surfaces of the same curvature as viewed

from the enveloping space. This is seen, in particular, when we con-

sider spherical surfaces of revolution.

A surface of revolution with the x
3
-axis for axis of revolution is de-

fined by the equations

(49.6) x
1 = u

1

cos u
2

,
x
2 = u 1

sin u
2

,
x

3 = ^(u
1

),

the function <p determining the character of the rotated curve. In

terms of these coordinates the linear element is

(49.7) ds
2 =

(1 + *>V)
2

) du
1' + u1 *

du
2
\

When we compare this equation with (49.5), we have

du
12 = (1 + <f>'(u)

2

) du
iz

,
u

1 = c cos -
,

u
2 = u

2

,

a

from which it follows that

=
f A/1- ^sin^J V a? a

Consequently equations of a surface of revolution with the linear

element (49.5) are

(49.8)

1 U 2 2 U . .2
x c cos cos u

,
x = c cos sin u

,

a a
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There are three cases to be considered according as c is equal to greater
than, or less than a.

CASE 1. c = a. Now equations (49.8) are

(49.9) x
l = a cos cos w

2

,
x
2 = a cos ^ sin u\ x* = a sin ^a a a

'

which are seen to be equations of the sphere of radius a with center at
the origin.

We observe before taking up the other two cases that the expression
for x in (49.8) is an elliptic integral and consequently in each case x*
is expressible by means of appropriate elliptic functions.

Fir,. 17. A spherical surface of revolution of the hyperbolic type

CA8E
1

2 '

2

C > a ' From the expression in (49.8) for x* it follows that

-sin
2 - ^ - and consequently Vc'^a2 ^ u l

^ c. Since x
3
is periodic,

the surface consists of a succession of like parts or zones each of which is

bounded by minimum parallels of radius \/c2 - a2
,
the greatest parallel

of each zone being of radius c, as shown in Fig. 17. The angle which
the tangent to a meridian curve makes with the plane z

3 = is given by

tan 6 = - -
c . u- sin
a a

These spherical surfaces are said to be of the hyperbolic type.
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CASE 3. c < a. In this case ^ u
l

^ c, u
l

being equal to zero

when u
1 = mair/2 where m is any odd integer. At these points the

meridian curve meets the axis under the angle sin"
1 -

. Since x
z

is
a

periodic, the surface consists of a succession of like zones each being

spindle-shaped as shown in Fig. 18, the greatest parallel of each zone

being of radius c. These spherical surfaces are said to be of the elliptic

type.

FIG. 18. A spherical surface of revolution of the elliptic type

If the linear element of the sphere (49.9) is written in the form

u* having been replaced by v
a

,
the equations

v
1 =

establish an isometric correspondence between the sphere and the sur-

faces of cases 2 and 3 such that meridians of the latter correspond to
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great circles v
2 = const, of the sphere. The points of either of the former

surfaces whose coordinates are such that

u\ ^ u ^ u\ ,
27r ^ u

2

^ 0,

are the points of the zone of the surface between the parallels u
1 = u\

and u
1 = u\ . The coordinates v

a
of the corresponding points of the

sphere are such that

Hence when c > a and the surface is applied upon the sphere the zone

of the surface not only covers the corresponding zone of the sphere,

but there is an overlapping; whereas when c < a the zone of the surface

fails to cover the zone of the sphere.

The form (49.5) was obtained from (49.3) by taking <p(u
2

)
=

c,

t(u
2

)
= 0. For any constant values of p and ^ the expression (49.3)

can be written in the form

(49.10) V<722
= c cos

[ +
\ a

where b and c are arbitrary constants. According as we take 6 =
0,

7T/2, or 7T/4 we get the following respective forms of the linear

element

(i) ds
1

du
l *

+ c cos
2

du
2

*,

a

(49.11) (ii) ds
2 = du

l * + c
2
sin

2 - du
2

\
a

(111) ds
2 = du

l *

+ c
2
cos

2

(- -
j

\a 4

We have seen that for first of these forms the curve u
1 = is a geo-

desic. For the form (ii) u
1

and cu
2

/a are polar geodesic coordinates by
theorem [33.1], and for the form (iii) the curve u

1 = has geodesic

curvature I/a.

For a pseudospherical surface of curvature I/a
2
one has in place

of (49.3)

u
1

u
1

(49.12) -v/022
=

<f>(u ) cosh h $(u ) sinh .

a a
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When (i) the curve u
1 = is a geodesic, (ii) the coordinates t*

1

, cu*/a
are polar geodesic, or (iii) the curve u

1 = has geodesic curvature

I/a, the linear element has the following forms respectively:

(i) ds
2 = du

l2 +
a

(49.13) /..\ ,2 i I 2 . 2 i 2 U i 22

(n) ds = du + c sinh du
,

a

(iii) ds = du
1 + c

2
e
2" /0 du

2
.

Any case other than these for which <p(u) and ^(w
2

) are constants may

be obtained by taking for V^22 either of the values c cosh ( + b }

V \
or c sinh ( + 61, where 6 and c are constants. By change of the co-

ordinate u
1

,
the corresponding linear elements are reducible to (i) or

(ii). Hence the forms (49.13) are general for the case when <p(u
2

) and

\l/(u
2

) are constants.

The forms (49.13) are linear elements of surfaces of revolution whose

equations are given by (49.6) where for the respective forms we have

(i) ii
1 = c cosh -

,
x

3 = I J\ - ~ sinh
2 - du

1

;

a J Y or a

(49.14) (ii) u = c sinh -
,

x
3 =

f A/1 - ? cosh
2- du

1

;

a J Y or a

(iii) u
1 = c e

u la
,

x* -

In considering these three cases in detail we remark that the integrals

in (i) and (ii) are elliptic and consequently in each of these cases x* is

expressed by means of appropriate elliptic functions.

CASE (i). The maximum and minimum values of sinh
2

are a
2

/c
2

and 0, respectively and consequently the maximum and minimum
values of the radius u

1

are yV + c
2 and c respectively. At points of a

maximum parallel the tangents to the meridian curve are perpendicular

to the axis of rotation and at points of a minimum parallel they are

parallel to this axis as follows from the value of dx^/du
1

. Since #
3

is

periodic the surface consists of a succession of spool-like zones, see Fig.

19, the maximum parallels being cuspidal edges. These pseudospherical

surfaces are said to be of the hyperbolic type.
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CASE (ii). In order that the surface be real, c
2

g a
2

,
a restriction not

necessary in either of the other cases. If we put c = a sin 6, the maximum

and minimum values of cosh
2

are csc
2

and 1 respectively, and the

corresponding values of the radius u are acos 6 and 0. The tangents
to the meridians at points of the maximum circle are perpendicular to the

axis of rotation and at points for which u =
0, the tangents make the

angle 6 with the axis. The surface is made of a succession of zones

FIG. 19 FIG. 20

FIG. 19. A pseudospherical surface of revolution of the hyperbolic type
FIG. 20. A pseudospherical surface of revolution of the elliptic type

similar in shape to hour glasses. Fig. 20 represents such a zone, the

maximum parallel being a cuspidal edge. These pseudospherical

surfaces are said to be of the elliptic type.

CASE (iii). If we make the substitution sin0 = - e
u la

in (49.14)

(iii), we obtain

u
1

a sin 8, a[cos log (esc 8 + cot 8)].
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7 3

From this result we have that -
r
= cot 0, and consequently 6 is the

ail
1

angle which the meridian makes with the axis of rotation. One finds

that the length of the segment of a tangent to a meridian from the point

of contact to the axis of rotation is a, and consequently the meridian

curve is a tractrix (see 6, Ex. 11). These pseudospherical surfaces are

said to be of the parabolic type. They are called pseudospheres. See

Fig. 21.

FIG. 21, A pseudospherc (pseudospherical surface of revolution of the

parabolic type)

From (49.4) we find that the geodesic curvature of the parallels of the

surfaces with the linear elements (49.13) are given by the respective

expressions

(i)
- tanh

:

a a

/\ ^
(u)

- coth ,

a a
'

Since no one of these expressions can be transformed into any other,

if u
1

is replaced by u
l + c, where c is a real constant, it follows that two
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pseudospherical surfaces of revolution of different types are not appli-

cable to one another with merdians in correspondence, whereas we have

just found this to be the case between different types of spherical surfaces

of revolution.

The results (49.11) and (49.13) constitute another proof of the first

part of theorem [31.1], and more particularly we have

[49.1] The linear element of any surface of constant curvature I/a
2

or

I/a
2

is reducible to the respective forms (i), (ii), (iii) of (49.11) or

(49.13) according as the coordinate geodesies are (i) orthogonal to a

geodesiCj (ii) pass through a point, or (iii) are orthogonal to a curve of

constant geodesic curvature.

We proceed now to the consideration of surfaces of constant curvature

when the lines of curvature are coordinate. To this end we assume

that the Gaussian curvature of the surface is equal to e/a
2

,
where e is

+ 1 as 1 according as the surface is spherical or pseudospherical.

If such a surface is referred to an isometric-conjugate net (see 42),

we have

I A C\ 1 K\ ^U O*22 1 J A
(49.15) =. = e - = -

, du = 0.

Vg Vg a

When the expressions for du, dzz in (49.15) are substituted in the Codazzi

equations (39.6), the resulting equations are reducible, in consequence of

(28.1) and (28.2), to

/dgn dgv 9 dgu
** U?

- e w - 2 ^
Since g ^ 0, these equations are equivalent to

dgu dfito , 9 du __ n~ e + 2e -
-

(49.16)

These equations are satisfied by

(49.17) 0u
-

e022
=

const., QU = 0;

hence we have

[49.2] The lines of curvature on a surface of constant Gaussian curvature

form an isometric-conjugate net.
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For the case of spherical surfaces the equations (49.17) are satisfied by

(49.18) 0n = a
2
cosh

2

0, g^ =
0, g22 = a

2
sinh

2

0,

and from (49.15) we have

(49.19) dn = d& = a sinh 6 cosh 6, di2
= 0.

When these values are substituted in the Gauss equation (40.10), where

K is given by (28.5) and 28, Ex. 1, one obtains

(49.20) -^ + ~f, + sinh cosh 6 = 0.

du du

Conversely, in consequence of theorem [39.1] we have

[49.3] For each solution of equation (49.20) the quantities (49.18) and

(49.19) determine a spherical surface, the lines of curvature being coordinate.

For the case of pseudospherical surfaces the equations (49.17) are

satisfied by

(49.21) 0n = a
2

cos
2

6, g^ =
0, 22

= a
2
sin

2

0,

and from (49.15) we have

(49.22) dn = -^22 = a sin cos 0, dJ2
= 0.

When these values are substituted in the Gauss equation, one obtains

(49.23) ^4 -
-^4

- sin cos = 0.

dvT du

Hence we have

[49.4] For each solution of equation (49.23) the quantities (49.21) and

(49.22) determine a pseudospherical surface, the lines of curvature being

coordinate.

EXERCISES

1. The lines of curvature and the asymptotic lines on a surface of constant

Gaussian curvature can be found by quadratures (see 48, Ex. 15).

2. When the linear element of a pseudospherical surface is in the form (49.13)

(iii), the surface defined by

dxi

xl - xl - a
dm

is pseudospherical, and the tangent planes to the two surfaces at corresponding

points are perpendicular.



49] PSEUDOSPHERICAL SURFACES 287

3. The helicoids

xl u1 cos M2
, x2 = u1 sin it

2
,

=-
/ /4/ --

J y a2 k

where a, ft, and A; are constants, are spherical surfaces.

4. A helicoid whose generating curve is a tractrix is a pseudospherical surface;
it is called a surface of Dini.

5. For a pseudospherical surface defined by (49.21) and (49.22) the linear ele-

ment of the spherical representation is

ds* = sin2 6 du? + cos2 du**.

6. The surfaces of center of a pseudospherical surface are applicable to a

catenoid.

7. On a surface of constant curvature the area of a geodesic triangle is in a

constant ratio to the difference between the sum of the angles of the triangle and
two right angles (see theorem [33.2]).

8. When upon a surface there is more than one family of geodesies which

together with their orthogonal trajectories form an isothermal system, the surface

is of constant curvature.

9. When the equations of the sphere with center at the origin and radius a are

written in the form

x l = a sin w l cos u2
,

x2 = a sin w 1 sin u2
,

x3 a cos u l
,

the linear element is

(i) ds* = a2
(du

l2 + sin2 u l
du**).

The equation of any great circle of the sphere is of the form

(ii) A sin w l cos w2 + B sin u 1 sin u 2
-f- C cos u 1 =

0,

where A, B, C are constants not all zero; this is an equation of the geodesies on any
surface of Gaussian curvature I/a

2 in terms of the coordinate system for which

the linear element is (i).

10. When in equation (ii) of Ex. 9 u1 and u2 are expressed as functions of a

general parameter t and this equation is differentiated twice with respect to /,

and A, B, and C are eliminated from the three equations, one obtains

du^tfu* dwl dw2
~|

du*r#ul
. /dw2

V~]--h 2 cot w1 -- -- -- sin w1 cos u1
1 1 =0:

dt L dlz dt dt J dt
[_

eft
2

\ di / J

since this is the equation (37.1) for the case when the linear element is (i) of Ex. 9,

this is an analytic proof of the fact that equation (ii) is an equation of the geo-

desies of the surface with this linear element.

11. When the coordinates on a pseudospherical surface are such that the

linear element is

ds 2
a*(du** -f sinh2

?/
1 du2

*),

an equation of the geodesies is

(i) Atanh u 1 cos u* + B tanh u 1 sin u2 + C -
0,

as may be verified by the process used in Ex. 10.
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12. When equation (ii) of E)x. 9 is divided by cos u l and the terms multiplying
A and B in this equation are equated to x and y and similarly the terms multiply-

ing A and B of equation (i) of Ex. 11, these equations define the correspondence
between the surface and the plane in accordance with which geodesies on the sur-

face are represented by straight lines in the plane.

13. When the coordinates on a pseudospherical surface are such that the linear

element is of the form (iii) of (49.13), an equation of the geodesies is

* / + c2 u2
') + #cu2 + C =

0,

as may be verified by the process used in Ex. 10; in this case the equations

:
= cu*. y

determine a conformal representation of the surface upon the plane such that any

geodesic in the surface is represented in the plane by a circle with its center on

the x-axis or by a line perpendicular to this axis.

50. MINIMAL SURFACES

In 43 a minimal surface was defined as one whose mean curvature is

equal to zero. In this section we establish a property of minimal

surfaces which accounts for their name, and then derive other properties

of such surfaces.

Consider a surface S in space denned by the equations

(50.1) x< = /V, u
2

).

Consider upon this surface a simply connected region R with curve C
as contour and for this region consider the integral

(50.2) / =
II Ldul

du\

R

where L is a function of the x's and their first derivatives . Let
dua

(/(w
1

,
u

2

) be three arbitrary functions such that

(50.3) w'V, u
2

)
= along C.

Then

(50.4) *'=/' + ',

where e is an infinitesimal, define another surface S nearby S and con-

taining the curve C. When these expressions are substituted in the

function L in (50,2), we have for S the corresponding integral

(50.5) *
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In order that / shall be a minimum for all the surfaces passing through
C it is necessary that the derivative of / with respect to e be equal to

zero for * equal to zero. From (50.5) we have that this condition is

f f (dL i . dL doA , i , 2 n
/ / I . w H--:

--
1 du du =

0,
J J \dx

l

dx]a dua
j

R

where x\a = . This equation may be written in the form
oua

f f i/dL d dL\j i, 2 , [ f d / i dL\, i , t n//(. ----
I du du + I I 1 co r-

)
du du = 0.

JJ \ax* dua dxl
, a / JJ dua

\ dx]a/
R

'

R

In consequence of (50.3) the second of these integrals is equal to zero

and, since the first integral must be equal to zero for arbitrary functions

o>* subject to the condition (50.3), we have

(506) A dL -^ =l5U 'b;
dU*d$a d*

These are the generalized equations of Eukr. When these conditions

are satisfied the surface S is said to be an extremal for the integral (50.2).

We consider now the particular case when the integral (50.2) is the

integral of area, namely,

(50.7) / =
//

In this case the equations (50.6) are

where g is the determinant
| ga0 \

and

(50.9) gaft

Now we have

*&
z? 2 <\/g fyfr ^!

x\a + g^xti 0? * a)
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From these equations we have in consequence of (28.2)

the last expression being a consequence of (38.18).

From (50.9) it follows that \/g does not involve x
l

; consequently the

second term of (50.8) is identically zero. Hence for the equations

(50.8) to hold we must have g
ayday = 0, which by (40.1 1) is the condition

that the mean curvature be equal to zero. Hence we have

[50.1] A minimal surface is an extremal for the integral of area.

The determination of whether this is the minimum area for a given

contour involves derivatives of higher order and is an important problem
in the calculus of variations. However, any surface satisfying theorem

[50.1] is called a minimal surface.

Lagrange using the equation of a surface in the Monge form (see 10)

derived as the differential equation of minimal surfaces (see 39, Ex. 1)

(1 + pl)rn
-

2pip2rn + (1 + P?)r22
= 0;

in this notation the left-hand member is the expression for mean curva-

ture. Lagrange raised the question of finding the minimal surface for a

given contour. Plateau gave a physical realization of this problem by
means of a glycerine film, it being a consequence of surface tension of such

a film that the surface would assume the form having a minimum area.

Accordingly, this problem proposed by Lagrange is now known as the

Plateau problem. The mathematical solution of this problem for a given

contour has been the subject of study by mathematicians up to the

present time.

From (40.11) it follows that when minimal curves on a minimal

surface are coordinate, these curves form a conjugate net. In this case

0u =
022

=
c?i2

= 0. From the first two of these equations it follows

from (28.1) that

12}
=

{i

2

2}
=

-

From these results we have from (38.18) that
2
= and con-
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sequently

(50.11) x* = U\ + Ul,

where U\ and Ul are functions of u\ and ul respectively. These func-

tions must be such that

which are the conditions that g\\ #22
= 0. Since the first of equations

(50.12) expresses that the sum of the squares of three quantities is zero,

and since the three quantities -(1 u
1

*),
-

(1 + u
12

), and u
l

possess this

property, it follows that the most general solution of the first of equations

(50.12) consists of the above expressions multiplied by an arbitrary

function of u
l

, say, F(u
1

). Since the same argument applies to the

second of equations (50.12), we have for equations (50.11) satisfying the

conditions (50.12)

(50.13) z* = 1
/ (1 + ul

')F(u
l

)du
l - *-

f (1 + u
2

*)H(u)du
2

,

x
3 =

I u
l

F(u
l

)du
l + f u

2

H(u
2

)du
2

.

From these equations we have that the linear element of the surface is

(50.14) ds
2 =

(1 + uu)
2

F(u)H(u
2

) du
l

du
2

.

From this it is seen that for the surface to be real u and u must be

conjugate imaginary and H must be the function conjugate to F. It

was in order to effect this result that the negative sign was used before

the second integral in the second of equations (50.13).

From (50.13) we have for the direction cosines of the normal to the

surface

(W 1 O Y 1 Y2 Y3 - & + A*V - U
1

)* & - D
^DU.ID; A

,
A

,
A ---

T~+~tf^
~~~

'

from which one finds that the linear element of the spherical representa-

tion is

/,nift x ,-t 4du
l

du
2

W.16) ds =
.
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Also by means of (38.13) one finds

(50.17) dn = -FU1

), du =
0, dv - -H(u

z

).

From (50.14) and (50.17) one finds that the differential equations of the

lines of curvature and of the asymptotic lines are respectively

(50.18) F(u
1

)du
1' - H(u*)du

2 * =
0,

(50.19) F(u
l

)du
l* + H(u

2

)du
2* = 0.

From the form of these equations we have

[50.2] When the minimal lines of a minimal surface are coordinate, the

equations of its lines of curvature and of its asymptotic lines can be found

by quadratures.

Equations (50.13) are known as the equations of Enneper.* From
these equations it is seen that the problem of minimal surfaces is that of

functions of a single complex variable (see Ex. 5).

Weierstrass,t who also derived equations (50.13), remarked that these

equations can be put in a form free of all quadratures. This is done by

replacing F(u*) and H(u
2

) by f'"(u
l

) and h"'(u
2

) respectively, where the

primes indicate differentiation, and then integrating by parts. This

gives the equations

x
l =

(50.20) j = .

It is clear that the surface so defined is real when/and h are conjugate

imaginary functions of the conjugate imaginary coordinates u
1

and w
2

.

In this case (50.20) may be written

(50.21)

x
3

*
1864, 2, p. 107.

1 1866, 1, p. 619.
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where in these equations $1 denotes the real part of the expression

following SR. Equations (50.20) are of particular value in the study of

algebraic surfaces, for it is evident that when / and h are algebraic on the

elimination of u
l

and u* from these equations the resulting equation

will be algebraic in x
1

,
x
2

,
and x*. The converse of this is also true.*

EXERCISES

1. A minimal surface is a surface of translation (see 42, Ex. 1) ;
when its equa-

tions are of the form (50.13) a necessary and sufficient condition that the gener-

ating curves be congruent is that

2. When equations (50.11) are equations of a minimal surface, so also are the

equations

xi
- e*U{ +e-i

"U{ (j- 1,2,3),

where i V 1 and a is a constant. These minimal surfaces as a takes different

values arc called associate minimal surfaces; the normals to these surfaces at

points with the same coordinates ua are parallel.

3. When a in Ex. 2 is equal to ir/2, the surface is called the adjoint of the surface

with the equation (50.11); the lines of curvature on either surface correspond to

the asymptotic lines on the other, and the tangents to the curves with the same

equation ^(u
1

,
u2

)
= on the two surfaces are orthogonal.

4. If x{ denote the coordinates of the adjoint surface of the surface with the

equation (50.11), the equations of Ex. 2 may be written

x j

a
= cos a tf 4- sin a x{ ;

the plane determined by the origin of coordinates, a point P on a minimal surface,

and the corresponding point on its adjoint contains the corresponding point on

every associate surface and the locus of these points is an ellipse with center at

the origin.

5. From 44 Ex. 11 it follows that for a minimal surface A 2 x
i

'

= 0; when the co-

ordinate curves form an isometric orthogonal net, we have that x* are solutions

of the harmonic equation

from which it follows that for any real minimal surface

) +fi(u* - iu2
),

where/* and/J are conjugate imaginary functions, which is in accord with equa-
tions (50.13).

*
1909,1, p. 261.
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6. When in equations (50.13)

h ft* h t>**

,<> . *
i_, aM . * <_

where a and 6 are constants, and one puts u l = e*
1^" 1

and u2 = e"
1
**"

1

, one ob-

tains equations of the following form

x l b (cos a cosh w1 cos u* sin a sinh w 1 sin w2
)

x2 6 (cos a cosh iZ
1 sin u2

-f sin a sinh ul cos u2
),

x3 =* b( ul cos a + u* sin a),

which are equations of minimal helicoids (see 24, Ex. 6).

7. When a in Ex. 6, the surface is the catenoid (see 24, Ex. 4) ; when a =

ir/2, the surface is the skew helicoid (see 24, Ex. 7).

8. If two minimal surfaces correspond in such manner that at corresponding

points the tangent planes are parallel, the minimal curves on the two surfaces

correspond; for two such surfaces the locus of the point which divides in constant

ratio a line-segment joining corresponding points is a minimal surface.

9. The spherical representation of the lines of curvature of a minimal surface

is an isometric orthogonal net (see 43, Ex. 11 and (46.5)).

10. If one family of the lines of curvature on a minimal surface are plane

curves, those of the other system are plane curves also (see 46, Fix.4; 47, Ex. 15).

11. Show that the surface

xl au1 + sin ul cosh w2
,

x2 = w2 + a cos ul sinh w2
,

x3 s* \/l <j2 Cos u 1 cosh U*

is minimal and that its lines of curvature are plane curves.

12. The surfaces of center of a minimal surface are applicable to one another

and to the surface of revolution of theevolute of the catenary.

13. The surface for which F = H = const., say 3, is called the minimal surface

of Enneper; it possesses the following properties:

(a) it is an algebraic surface of the ninth degree whose equation is unaltered

when x l
,
x2

,
x3 are replaced by x2

,
x l

,
x3

respectively;

(b) it meets the plane x* = in two orthogonal straight lines;

(c) if we put it
1 = wl iu 1

,
the equations of the surface are

and the curves u 1
const., u1 = const, are the lines of curvature

;

(d) the lines of curvature are rectifiable unicursal curves of the third order and

they are plane curves, the equations of the planes being

x 1 + &x* - 3u l - 2w 1
' =

0, x2 - u*x* - 3w2 - 2w2
' - 0;

(e) the lines of curvature are represented on the unit sphere by a double family
of circles whose planes form two pencils with perpendicular axes which are tangent
to the sphere at the same point ;
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(f) the asymptotic lines are twisted cubics;

(g) the sections of the surface by the planes xl and x* = are cubics, which

are double curves on the surface and the locus of the double points of the lines of

curvature
;

(h) the associate minimal surfaces are positions of the original surface rotated

through the angle a/2 about the 3
-axis, where a has the meaning of Ex. 2.

(i) the surface is the envelope of the plane normal, at the midpoint, to the join

of any two points, one on each of the focal parabolas

x l = 4W1
,

z2 = 0, x3 = 2wl2 - 1
;

z 1 =
0, z2 = 4tf2 x3 - 1 - 2w*';

the planes normal to the two parabolas at the extremities of the join are the

planes of the lines of curvature through the point of contact of the given plane.
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NOTES

p. 51 : The definition of singular points requires restatement, the
cofactors in equation (11.3) may not be all zero in one coordinate

system and yet all vanish in another. For example, in the coordinates
r^f f^f

u'
a

,
where u l = u' 1

*, u 2 u' 2 the quantities -r~ = - - 2u' 1 are
du 1 du 1

equal to zero for u' 1 = and consequently the cofactors in the M"S,
even if all the cofactors in the w's are not zero for u 1 = 0. Accord-

ingly we say that a point is singular, if it is impossible to choose a
coordinate system in which all of the cofactors are different from
zero.

p. 79, Ex. 1: Replace "are" in second line by "are related as".

p. 120, line 10 and Theorem [23.3]: Replace "If > 0" by "If the

quadratic form gijdx
{dx* is positive definite."

p. 152, second line above Theorem [28.51: Insert after "imaginary"
the clause, "since /z is a pure imaginary as follows from the above

equations."

p. 164: Replace (30.19) by
(30.19) u 1 + iu 2 =

f(<p + if), u 1 - iu 2 =
fo(<p

-
it).

Then, ds 2 = Pf'fKdv* + cty
2
),

where t is obtained from t on replacing u 1 and u 2 by their values from

(30.19).

p. 188, third line from bottom: After "net," insert the clause, "of

which the curves u 2 = const, are geodesies (see Theorem [32.5])."

And in last line replace w + a by 2ir a.

p. 202, beginning line 17: See Note, p. 164.

p. 221, Theorem [39.1]: Replace "such that g > 0" by "such that

gapdu
adu ft is positive definite."
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an, a", a, 70, 72.

*S 12.

Angle, of curves in a surface, 130-132,

137, 145; of vectors, 133.

Applicable surfaces, 215; see Isometric

surfaces.

Arc of a curve, 9.

Area, element of, 136; minimum, 290.

Associate, vector, 194, 250, 252; mini-

mal surface, 293.

Asymptotic directions, 237, 241.

Asymptotic lines, 237-239, 243; co-

ordinate, 237, 238, 242, 260, 266;

orthogonal, 238; straight, 237, 267;

geodesic, 248; spherical representa-
tion of, 260, 266, 267; plane, 249;

osculating plane of, 237; tangential

coordinates, 264, 265.

0S 18.

Beltrami, 158, 189, 208, 275.

Bertrand curves, 30.

Bianchi, 194.

Bianchi identities, 121.

Binormal of a curve, 19.

Bonnet, 190, 273.

Calculus of variations, 290.

Catenoid, 128, 242, 294.

Center of curvature, of a curve, 18; of a

curve in a surface, 227; principal, of a

surface, 226.

Characteristics of a family of surfaces,

54.

Christoffel symbols, for space, 98, 102,

121; as components of a tensor, 100,

102, 103; for a surface, 149, 153, 154;

relations between for a surface and

its spherical representation, 257, 260.

Circle, of curvature, 18; osculating, 19;

superosculating, 24.

Circles, orthogonal system, on the

sphere, 267.

Codazzi equations, 219, 230, 236, 238.

Combescure transformation of curves,
29.

Complementary surfaces, 275.

Conformal correspondence, of two

surfaces, 201-205; of a surface and its

spherical representation, 255; of a

surface with itself, 203; of a plane
with itself, 204; of a sphere with the

plane, 204; of a sphere with itself,

204; of a surface of constant -curva-

ture with the plane, 288.

Congruence of curves, 78.

Conjugate directions, 231, 241.

Conjugate net, 232, 243; coordinate,

232, 235, 236; orthogonal, 232; of

plane curves, 266; spherical represen-

tation, 260; tangential coordinates,

263; isometric-, 235, 236; mean-, 240,

243, 260.

Conjugate systems in correspondence,
243.

Cone, 53, 57.

Conoid, right, 50, 53, 129, 149, 221, 266.

Coordinates, in space, 63-68; cartesian,

63, 70, 88; cylindrical, 83; see Polar

coordinates, Tangential coordinates;
in a surface, 48; xl

,
xz

as, 137, 221.

Coordinate curves, in space, 69; in a

surface, 46, 127.

Coordinate, net, 49; surface, 68, 81.

Contraction of indices, 95.

Contravariant, index, 89; tensor, 89,

90, 91; vector, 77, 82, 126; compo-
nents, 85, 88, 127, 134.

Covariant differentiation, 107-112; of

sum, difference, outer and inner

product of tensors, 111; of a,,, a*'', 5J-,

110; of gaf,ir*, eat, *, 151.

Covariant, index, 89; tensor, 89, 90, 91;

vector, 84, 127; components, 85, 86,

88, 127, 134.

Cubic, twisted, 5, 7, 8, 16, 44.

Curvature of a curve, 16; radius of, 16;

center of, 18; circle of, 18; constant,
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19, 23, 24, 28; first, 22; second, 22;

geodesic, see Geodesic curvature.

Curvature of a surface, total, 151; see

Gaussian curvature, Mean curvature.

Curvature, of a quadratic form, 151; of

a triangle, 183.

Curvature, normal, of a surface, 224;

radius of, 224, 227; center of, 224;

principal radii of, 225; principal

centers of, 226.

Curvature tensor, see Riemann tensor.

Curve, definition, 3; plane, 4; twisted,

or skew, 4; length of, 9; arc of, 9;

minimal, or of length zero, 10; form

of, 26; of constant curvature, 19, 24,

28; of constant torsion, 24, 28, 29, 30.

Curvilinear coordinates, 47, 69.

Cylinder, 3, 53, 61, 149.

dap, da
fi, 215, 216, 221, 234, 262.

da, S>, S 8, 25, 32.

J,
125.

D, Z)', D", 216.

Aiv, Ai(v>i, ?2), e(v>i, *>2 ), 155, 156, 159,

160.

A 2?>, 158, 159.

Darboux, 115, 173, 233.

Developable surface, 54, 57-61, 152;

tangent planes, 147, 148; isotropic,

61; polar, 61, 149; rectifying, 61, 248;

edge of regression, 61
; tangent sur-

face of a curve, 57; isometric with a

plane, 147; Gaussian curvature, 150;

geodesic in a, 178; of normals to a

surface, 229; lines of curvature, 229.

Differential parameters, of the first

order, 155, 156, 159, 160; of the second

order, 158, 159.

Dini, 210.

Dini, surface of, 287.

Direction cosines, of tangent, 12; of

principal normal, 18; of binormal,

20, 23.

Divergence of a vector, 113, 155.

Dupin indicatrix of a surface, 241.

E, F, Gt
126.

eat* 6'
1

'*, 6, 93, 94.

,*, <>*, 94, 97.

eaftt **, 134, 138.

*,<**, 135, 137,138,151.

Edge of regression, 56, 61.

Element, of area, see Area; linear, see

Linear Element.

Ellipsoid, 50; see Quadrics, central.

Elliptic point of a surface, 242.

Enneper, 248, 292.

Enneper, minimal surface of, 294.

Envelope, of a one-parameter family of

surfaces, 54-56; edge of regression,

56, 62; of characteristics, 56; of a one-

parameter family of planes, 57, see

Developable surfaces; of a family of

spheres, 62.

Equations, parametric, of a line, 1
;
of

a curve, 3; of a surface, 46.

Equivalent representation of surfaces,

205.

Euler, equation of, 240; equations of,

177, 289.

Kvolute of a curve, 36, 38.

Family, one-parameter, of surfaces, 54;

characteristic, 54; of planes, 57; of

spheres, 62; of curves in a surface,

138-141; of geodesies, 174.

Formula, of Green, 190, 192; of Liou-

ville, 193.

Frenet formulas, 25, 27; in general

coordinates, 106; in a surface, 199.

Fundamental quadratic form, of space,

70; first, of a surface, 124; second, of

a surface, 215.

Fundamental tensor, of space, 91; first,

of a surface, 125, 262; second, of a

surface, 215, 262.

g, 101, 125.

9a, 9ij
>
101.

ga(i , g*, 123, 125, 137, 151, 262.

7', 20.

Gauss, 45, 151, 174, 184, 216, 219, 225,

252, 254.

Gauss, equations of, 216; equation of,

219.

Gauss-Bonnet theorem, 191.

Gaussian curvature of a surface, 151,

154, 193, 225, 255.
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Generator, of a developable surface, 59;

of a surface of translation, 236.

Geodesies, 170-179, 187, 246; equations

of, 171, 179, 197; coordinate, 173;

plane, 248; in a surface of Liouville,

176.

Geodesic correspondence of two sur-

faces, 205-211 ; of constant curvature,

209.

Geodesic curvature, 186-193, 199, 201,

243-245; center of, 246, 275; radius of,

276; curves of constant, 192, 267.

Geodesic, circles, 180, 186; ellipses and

hyperbolas, 185, 186.

Geodesic parallels, 174, 200.

Geodesic polar coordinates, 180-182.

Geodesic torsion, 247-249.

Geodesic triangle, 183, 184, 200.

Gradient, 84.

Group property, 68.

h, 253.

hap, fr*, 253, 256.

Helicoid, 53, 129, 218; parameter of a,

129; isometric with a surface of revo-

lution, 160; surfaces of center, 276;

spherical, 287; pseudospherical, 287;

minimal, 294.

Helicoid, skew, 129, 145, 165, 242, 294.

Helix, circular, 14, 16, 19, 23, 30, 34, 37;

conical, 15; cylindrical, 15, 19, 24, 28,

37, 38, 149, 178.

Hyperbolic point of a surface, 242.

Hyperboloid, 50, 242; rulings, 242; see

Quadrics, central.

Index, dummy, 2; free, 2; contra-

variant, 89; covariant, 89; lowering,

95; raising, 95.

Indicatrix, of Dupin, see Dupin;

spherical, of tangent, 17; of binormal,

22.

Inner product of tensors, 95.

Intrinsic, equations of a curve, 31, 147;

geometry of a surface, 146; deriva-

tive, 195.

Inversion, 233, 236; preserves lines of

curvature, 233.

Involute of a curve, 35, 37, 39.

Isometric surfaces, 147, 150, 166-169,

171, 197.

Isometric, orthogonal net, 161-165;

coordinates, 161; -conjugate net, 235,

236.

K, 151, 154, 193, 225.

Kmt 225.

K, 16.

KO , 187, 245.

Kronecker deltas, 25, 63.

Lagrange, 290.

Lam6, 158.

Lelieuvre, formulas of, 266.

Levi-Civita, 196, 199, 251.

Line of curvature, 228, 229; equation,

228, 277; coordinate, 230; conjugate,

232, 233; normal curvature of, 229;

geodesic torsion of, 248; geodesic,

248; two surfaces intersecting in a,

248; spherical representation of, 255;

osculating plane of, 259; plane, 230,

249, 260, 266, 268, 276; spherical, 249;

under an inversion, 233.

Linear element, of a curve, 9; of space,

70; of a surface, 124; of the spherical

representation, 252.

Linearly independent (constant coeffi-

cients), 262.

Lines of length zero, see Minimal lines.

Lines of shortest length, 175.

Liouville, formula of, 193; surface of,

176.

Loxodromic curve, 145.

Mainardi, 219.

McConnell, 194.

Mean-conjugate net, 240, 243, 260.

Mean curvature of a surface, 225.

Meridian of a surface of involution, 49.

Metric tensor, of space, 91
;
of a surface,

124, 125.

Meusnier, theorem of, 224.

Minimal curve, 10, 16; on a surface, 124;

on a sphere, 154.

Minimal surface, 238, 249, 288-295;

asymptotic lines, 238, 260, 292;

minimal lines, 238, 291; spherical
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representation, 255, 260, 294; heli-

coidal, 242, 294; of revolution, 242;

lines of curvature, 243, 292, 294;

algebraic, 293; surfaces of center, 294;

adjoint, 293; associate, 293; of En-

neper, 294.

Monge, 46, 290.

Normal plane to a curve, 12.

Normal section of a surface, 223; princi-

pal, 225, 229; radius of curvature of,

223, 224; center of curvature of, 227.

Normal to a curve, 18; see Principal

normal, Binormal.

Normal to a surface, 53, 213, 229.

Order of contact, 13, 16.

Orthogonal net, 131, 141, 144, 156, 205;

coordinate, 131, 193; of geodesies,

178; see Isometric orthogonal net.

Orthogonal coordinate surfaces, 81.

Orthogonal trajectories, of a family of

curves, 140; of a family of geodesies,

174, 175, 180.

Osculating circle of a curve, 19.

Osculating plane, 13, 16; equation of,

14; stationary, 23; through a fixed

point, 28; tangent plane of tangent

surface, 51; edge of regression, 57;

of asymptotic line, 237; orthogonal

trajectories, 27, 148.

Osculating sphere, 43, 44.

Outer product of tensors, 94, 97.

Paraboloid, 145, 165, 242; fundamental

quantities, 166, 222; rulings, 242;

lines of curvature, 231, 236; of nor-

mals to a ruled surface, 221.

Parallel curves on a surface, 157, 158,

174.

Parallels, geodesic, 174.

Parallel surfaces, 272, 273, 276; funda-

mental quantities, 272; lines of

curvature, 272, 276; of surface of

constant curvature, 273; of surface

of revolution, 276; asymptotic lines,

276.

Parallel vectors, in space, 107, 113; in

a surface, 196-200; 249-252.

Parametric equations of a line, 1; of a

curve, 3; of a surface, 46.

Partial differential equations of the

first order, 114-118, 122; mixed sys-

tem, 118.

Plane, 1, 217; surface isometric with a,

150.

Plane curve, 4, 5; curvature, 17; in-

trinsic equations, 147.

Plateau problem, 290.

Point of a surface, ordinary, 51; singu-

lar, 51; elliptic, 242; hyperbolic, 242;

umbilic, 225, 227.

Polar coordinates, 64, 82, 88, 102, 107,

113.

Polar line of a curve, 37.

Polar, surface of a curve, 41, 52; de-

velopable, 61, 149.

Principal center of normal curvature,
226.

Principal directions, for a tensor &$,

144; of normal curvature, 224.

Principal normal of a curve, 18, 24, 30,

31.

Principal radii of normal curvature,

225.

Pseudosphere, 284.

Pseudospherical surface, 277, 281-284,

286; of revolution, 281-284; lines of

curvature, 285, 286; asymptotic lines,

242, 286; geodesies, 184, 287, 288; of

Dini, 287; surfaces of center, 287.

Quadratic form, definite, 151, 152;

indefinite, 151, 152, 155; see Funda-

mental quadratic form.

Quadrics, central, equations, 49; funda-

mental quantities, 165, 221; lines of

curvature, 231, 236; asymptotic lines,

242.

Rhn, Rhijk, 100-103, 150, 151, 207.

P, 16.

Rectifying developable, 61, 248.

Representation, equivalent, 205; see

Spherical representation.

Riccati equation, 33, 34.

Ricci, tensor, 103, 122, 153; identities,

112.
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Riemann, symbols, 101; tensor, 101,

103, 120-122, 150, 153.

Scalar, 78, 91; relative, 92; density, 92.

Singular, point on a surface, 51, 125;

curve on a surface, 125.

Skew curve, 4.

Sphere, 49, 53, 128, 145, 154, 217, 258,

267.

Spheres, family of, 62, 275.

Spherical curve, 16, 43, 44.

Spherical indicatrix, of the tangents
to a curve, 17; of the binormals of a

curve, 22.

Spherical point of a surface, 225.

Spherical representation of a surface,

252-260; fundamental quantities, 253,

260; lines of curvature, 255; asymp-
totic lines, 260, 267; conjugate net,

260; area of closed portion, 254;

isometric net, 267.

Spherical surface, 277-281
; parallels to,

273; of revolution, 278-281
; geodesies,

287; lines of curvature, 285, 286;

asymptotic lines, 286.

Spiral surface, 146, 179, 231.

Stereographic projection, 205.

Summation convention, 1.

Superosculating circle, 24.

Surface, definition, 2; imbedded in

space, 123.

Surfaces of center, 268-272; fundamen-

tal quantities, 271; Gaussian curva-

ture, 272; asymptotic lines, 276; lines

of curvature, 276.

Surface of constant mean curvature,

273.

Surface of constant Gaussian curva-

ture, 170, 186, 287; see Spherical

surface and Pseudospherical surface.

Surface of Liouville, 176, 180.

Surface, of positive curvature, 226; of

negative curvature, 226.

Surface of revolution, 49, 149, 160;

meridian, 49, 165; fundamental quan-

tities, 128, 218; Gaussian curvature,

153; loxodromic curve, 145, 192;

geodesies, 178, 192; lines of curva-

ture, 230, 236, 259; asymptotic lines,

242; of constant curvature, 169;
surface isometric with a, 160, 165,

169, 179, 277; principal radii, 227;
surfaces of center, 275; parallel

surfaces, 276.

Surface of translation, 236, 242, 293;

generating curves, 236.

Surface of Weingarten, 276, 277.

Symmetry with respect to, a point, 24,

218; a plane, 24.

Synge, 194.

r, 22.

rg ,
247.

Tangent, to a curve, 11; positive sense,

11; to a surface, 50.

Tangent plane to a surface, 50; distance

to, 53; osculating plane of asymptotic

line, 237.

Tangent surface of a curve, 38; edge of

regression, 40; form of, 40; tangent

plane, 51; generators, 38; lines of

curvature, 230; linear element, 128.

Tangential coordinates of a surface,

260-264.

Tchebychef net, 160, 200, 236, 242.

Tensor, contravariant, 89, 90; co-

variant, 89, 90; mixed, 89, 90; order,

90, 91; zero, 91; symmetric, 92, 97;

skew-symmetric, 92, 93; relative, 93,

94; addition, subtraction, multiplica-

tion of tensors, 94; inner product, 95;

outer product, 94, 97; quotient law,

97.

Torus, 227.

Torsion, of a curve, 22, 23; constant, 23,

24, 28, 29, 30; of an asymptotic line,

248; of a geodesic, 248.

Tractrix, 29; surface of revolution of a,

284; helicoid whose generating curve

is a, 287.

Transform of a function, 78.

Transformation of coordinates, in

space, 64-68; inverse, 65; linear, 63,

79; product, 67; in a surface, 124;

positive, 133.

Transformation, of Combescure, 29;

by reciprocal radii, see Inversion.
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Triply orthogonal family of surfaces,

82.

Twisted curve, 4; cubic, 5, 7, 8, 16, 44;

of nth order, 5.

Umbilical point, of a surface, 225, 227;

of a quadric, 227.

Vector in space, contravariant, 77;

covariant, 84; length, 80, 85; unit, 80;

significance of components, 82, 86;

contravariant and covariant com-

ponents, 85, 88.

Vectors in space, independent, 79, 88;

angle of two, 81, 85; perpendicular,

81, 83.

Vector in a surface contravariant, 126;

covariant, 127; length, 128; unit, 128;

contravariant and covariant com-

ponents, 127; significance of com-

ponents, 134.

Vectors in a surface, angle of, 133;

perpendicular, 134, 135, 136; asso-

ciate, 194, 250, 252; parallel, 196-200,

249-252.

W, 260.

Wm t
211.

Weierstrass, 292.

Weingarten, surface of, 276; lines of

curvature, 277.






















