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PKEFACE.

T BELIEVE that the system of geometry I have set forth in

this book is logically sound, and that consequently the more

it is discussed and criticised, the more firmly will it become

established. I shall therefore be very glad to see any criticisms

of my views, whether friendly or hostile, either in the public

press, or addres!Bi0itiig6^]^vtoi[jl,ni?iaagkAif^feV|iven below.

But I have already1b§QS7tMthl^yrjg|jP;rfrg^g s^ch a wide

one, criticism is apt l^'6£8§6i^(fe3MJ^i'Q,9d with a view to

keeping it to the point I would suggest to my critics and

opponents in argument that they should consider categorically

the following questions :

—

(i) Do you accept the requirements I have laid down for

a logical definition ? (see p. 21).

(If not, please state which of them you object to, why

you object to it, and what you would propose to substitute

for it.)

(ii) Do you entertain a mental concept (which I shall call

by the name ' direction') such that the assertion " A Vector is a

given amount of transference in a given direction, irrespective

of the point of departure," is intelligible to you ?

(iii) If so, does not this concept fulfil all the four require-

ments of my definition of ' direction ' ?

http://www.archive.org/details/foundationsofgeoOOdixouoft



iv PREFACE.

(Whether you think these properties are established by

Euclid's geometry, or not, is immaterial. If you grant this

you have granted my Axiom II. ; for this does not assert

any objective fact at all.)

(iv) Do you accept the logical accuracy and permissibility

of my remaining definitions and axioms ?

(Objections on the score of convenience and simplicity had

better be considered elsewhere.)

(v) Do you admit the formal accuracy of the proofs of

propositions in my Books I. and II. ?

(N.B. If you admit this there can no longer be any doubt

as to the sufficiency of my premises.)

(vi) Do you admit the objective applications of my three

Axioms, and therefore of my system of geometry, as discussed

in Chap. I. of Part. III. ?

(vii) If you admit that there is a theoretical doubt as to

the objective counterpart of my second Axiom, please give

any criticisms which may occur to you on the remainder of

Part III.

Now, if there is no flaw in the line of argument I have

adopted, it follows that my conclusions are true, and con-

sequently that any objection taken to them outside this line of

argument, however specious it may sound, must contain a fallacy.

I might therefore refuse to discuss such an objection. But the

objector might truly urge that, conversely, if his objection was

irrefutable, there must be some hidden fallacy in my argument.

And therefore, though I prefer arguing in my own way, having

devoted a good deal of thought to the subject, and having come

to the conclusion that my line of argument is the most direct,

and the easiest to discuss ; I shall nevertheless feel bound

to give the best answer I can to any reasonable objection

whatever.



PREFACE. V

I must here point out that, this book being intended for the

study of geometricians, I have not entered upon the question

whether beginners could readily be brought to understand it or

not. If it is not logically sound, to discuss such a question

would be useless. But if it is acknowledged to be logical, I

have no doubt that it could be drummed into the head of the

average schoolboy as easily as Euclid. But I prefer to postpone

this question till the more important one is at least on a fair

way towards settlement ; when I shall, I hope, bring out a

text-book for beginners founded on my method.

EDWARD T. DIXON.

12, Bakkston Mansions,

South Kensington,

January, 1891.
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PART I.

ON THE LOGICAL STATUS OF THE SCIENCE

OF GEOMETRY.

CHAPTER I.

Can we be absolutely certain of anything in this world ?

Or is all our knowledge only empirical and approximate ? Is

there such a thing as necessary truth, and if so how are we
to know when we have attained it ?

These questions open up perhaps the most disputed branches

of Logic and Metaphysics. Under one form or another the

contest has been raging round them ever since the time of

Aristotle. The line of battle has sometimes shifted forward,

sometimes back, sometimes it has changed front, so that quite

new issues seemed to be at stake. But the status of the Science

of Geometry has always been the key of the position ; though

the combatants on both sides have often confined their energies

to flank attacks, in despair of making any impression on the

citadel.

It was a prevailing idea among the ancients, though

perhaps it was never distinctly formulated, that if a man only

had a perfectly clear brain, if, that is, he could only always

think logically, he could know everything. Hence the import-

ance which was ascribed to formal logic, and hence the

systems of philosophy founded upon data supposed to be known
* a priori! These fallacious methods would probably have been

abandoned much earlier than they were, had it not been for

the apparent success obtained in one instance, namely, in

D. 1



2 PART I,

Geometry. Here at least it seemed that a real knowledge

of the external world had been deduced from a priori con-

siderations alone. When, barely 300 years ago the great

Francis Bacon vigorously denounced such a priori reasoning,

and founded the school of experimental science, neither he nor

his disciples appear to have applied their reasonings to upset

this accepted view. And that he did not at once revolutionise

scientific thought is evident from the celebrated dictum of

Descartes, put forward half a century later, that 'everything

which w^e can clearly and distinctly conceive, is true.' Bacon

indeed advocated experiment as a means to help the imperfect

deductive power of man, rather than as an end. It was left

to later philosophers, of whom Mill may be taken as a type, to

make a fetish of this means, under the name of Induction, to

exalt it above deduction and even to assert that all knowledge

whatever is gained by it alone. Such a theory of course involved

Mill in an attack on the deductive citadel—the science of Geo-

metry. It is not necessary here to examine the details of this

attack (which has moreover been most ably done in a recent

work by Prof Jevons) as the general considerations to be

advanced presently will I think be sufficient to repel it. Other

philosophers have been driven to take up rather different ground.

Kant for example divided all judgements into analytic judge-

ments, in which what is asserted in the predicate is already

contained in the connotation of the subject, and synthetic

judgements, in which something is added to this connotation.

And he maintained that there are certain judgements of the

latter class whose truth could be known a priori. Among

these he classed the Axioms of Geometry, and so cut the

Gordian knot. But to further exemplify his views he was

ill-advised enough to put the axioms of Arithmetic into the

same category, and in this latter case the fallacy is easily

exposed, as I hope to show presently.

But let us first consider how we come to know anything at

all. Philosophers of the inductive school say 'By induction

from experience.' But what is experience ? It is easy to put

a case on paper—"in so many instances antecedent A was

followed by consequent a "—and so on. But how do we know

anything about either A or a ? A little thought must convince

anybody that the only things of which we have any direct
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cognisance whatever are our own subjective impressions, our

sensations and thoughts, and that no one can be absolutely

certain that such a thing as an objective world exists at all. If

I say ' I had a tooth-ache this morning,' I cannot be absolutely

certain that the ache was due to a bad tooth, I cannot even be

absolutely certain that there is any objective entity corre-

sponding to what I mean by ' my tooth ' at all. Besides I may
have only dreamed the tooth-ache, or my memory may have

played me a trick, perhaps it was not this morning that I felt

the ache. But at any rate while the ache is going on I can be

ahsolidely certain of its subjective existence ; which subjective

existence is no less real even if I am dreaming the while. And
though in the case of a tooth-ache this truth is painfully

evident, it is not less true in the case of the feeblest sensation

or thought. We have direct cognisance, each of us, of what

goes on in his or her mind, and though we may subsequently

forget it, though we may misrepresent it in trying to convey it

to the mind of another person, while it is passing in our mind

it is to us absolute truth, that is, the thoughts or sensations are

absolutely there ; though they may, or may not correspond

to objective realities in the external world. If therefore we
confine Descartes' dictum to purely subjective applications it is

strictly true.

Here then we have absolute certainty. Each of us can be

absolutely certain of what he is feeling or conceiving at any

given moment, and if there are any of his conceptions which he

can call up at will he can be absolutely certain that those

conceptions have to him a real existence ; subjectively, in his

own mind, be it understood ; though not necessarily objectively,

outside it.

In view of these considerations the old classification of

branches of knowledge, that is, sciences, as deductive and
inductive will need modification. The old designations are

indeed very misleading, for there hardly exists a branch of

knowledge in which deduction does not play an important part.

Perhaps there was little or no true deduction in Astrology ; or

at least it was an excessive and unwarranted use of induction

that led its votaries into error. Probably to the old salt

"weather wisdom" is purely inductive. But it is only since

deductive methods have been applied to them that Astrology

1—2
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and weather wisdom have entered the ranks of the sciences, as

Astronomy and Meteorology. In the same way it was deduction

not induction that raised Alchemy to Chemistry, and the labour

of cataloguing animals and plants to the science of Biology.

The real distinction between what used to be classed as

' inductive ' and ' deductive ' sciences lies, not in their ' methods,'

but in the premises upon which they are founded. In the one

case the premises are drawn from observation and experiment,

and are not only inductive but objective, in the other they are

directly apprehended by the mind and can therefore only be

subjective.

It was maintained by some philosophers of the inductive

school that inasmuch as the conclusion of a syllogism is

contained, or implied, in the premises, no new knowledge can

be attained by deduction. Such an argument is however the

merest quibble. It is of course true that if you grant the truth

of the premises you grant the conclusion. But to say that

therefore you know the conclusion because you know the

premises is a flagrant non sequitur. Why otherwise do we

ever learn anything beyond the premises of a science ? Can

we, because we know the premises of Arithmetic, be said to

know the product of 3'1416 x 2'7183 before v/e have multiplied

out ? It most certainly is possible, very materially, to increase

our knowledge by deduction alone ; and if there are in our

minds any suitable subjective certainties which we can use as

premises, it may be possible to establish extensive (subjective)

sciences, whose (subjective) conclusions will be necessary truths,

as their premises are.

Let us then examine what kinds of premises a deductive

science may have. They may be classed under four heads

—

(1) Objective facts, (2) Postulates, (3) Definitions, (4) Axioms.

Under the head of objective facts I mean to include all facts

known by ' observation and experiment,' that is therefore, all

objective propositions which we may regard as established

truths. I have however already shown that they cannot be

necessary truths and with them therefore we are not at present

concerned.

Postulates are objective propositions about whose truth

there yet remains some doubt, or whose truth is only provision-

ally asserted until all the consequences that would flow deduc-
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tively from it have been examined. Or else they are subjective

propositions, dealing with an imaginary state of things ; and in

this case the conclusions drawn from them are their necessary

consequences, if the deduction has been strict, though they

are not necessarily true. Thus the wave theory of light is

founded on the postulate that a certain elastic medium, the

aether, pervades all space. This postulate now-a-days almost

ranks as an objective fact, for the consequences which flow

deductively from it have been found to tally so exactly with

what is actually observed. But if it had not been so, the

postulate might still have been assumed subjectively, and, as a

mental exercise, an imaginary wave-theory of light might have

been worked out.

The logical status of a definition has long been a matter of

debate. The common view is that, it being a purely verbal

proposition, it can convey nothing but philological knowledge.

But just as I have shown that knowledge can be truly increased

by deduction, so it may be by definition. Thus if I am told

that an even number is one which can be divided into two equal

(integi'al) parts, this definition may suggest to me a completely

new conception, from which I may be able to deduce a whole

new science, which without it I could never have attained.

But apart from suggesting something new, if a definition

enables us to analyse a concept which we formerly entertained

only vaguely, it may enable us to deduce results from it which

perhaps we already knew were true, but which we could not

before connect with that concept formally. But, lastly, it is a

characteristic of that marvellous instrument, Language, that by

its aid we are actually able to reason accurately about things

we do not clearly conceive ; and this we are enabled to do by

defining a word or symbol hy its attributes, without necessarily

conceiving its meaning as a whole at all. For example, we may

define the symbol V —1 in symbolic language thus

—

J — 1 X/s/ — 1 = — 1,

and from this definition most important results can be deduced,

such as the series from which the values of the trigonometrical

ratios are calculated, and this without ever attaching any

definite denotation to the symbol J — 1.

Thus all that is logically required for a definition is one or
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more assertions with regard to the word to be defined or its attri-

butes. Having made the assertions it may be that there is no

objective reality corresponding to the word—there may not be

anything in the world possessing the named attribute or combina-

tion of attributes. It may further happen that we know of no

subjective concept corresponding to it; that our minds are not

able to form a concept combining the attributes ; but unless the

assertions are inconsistent, that is unless the falsehood of one

can be deduced from the truth of another, the definition remains

logically sound, and we may deduce theorems from it which

may, or may not, turn out useful or interesting, but which at

least are logically true.

In such definitions by assertion it is not necessary that the

word to be defined should be the subject of each proposition, as

is usually the case ; but it is necessary that it should be clearly

understood ivhich word is being defined. It might indeed be

possible by two assertions each about two unknown words to

define them both, just as by two simultaneous equations we

may define two unknown quantities ; but there would seldom

be any advantage in such a course. And in any case the

meanings of all the other words in the definition must be

known. The propounder of a scientific theory is not of course

expected to teach his readers to speak, it is only necessary for

him to define the terms peculiar to his science, or those to

which he wishes to attach peculiar meanings. He may therefore

assume that the meanings of all other words are known to his

readers.

It having been taken for granted that a definition could not

impart any new knowledge, many propositions which are really

definitions have been commonly classed as axioms, especially

where the word to be defined does not appear as the subject of

the sentence, or Avhere it is not quite clear which word requires

definition. Thus Euclid's first eight axioms do not assert anything

which is not contained in the connotation of the words ' equal

'

'whole' 'part' &;c. So, though they would be very bad definitions

of these words, they are logically nothing more. So also in his

ninth axiom the only question is which of the words is supposed

to be unknown ; for this proposition also only expresses what is

part of the connotation of its terms.

A definition, then, lays down the connotation which a word
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is to bear, but does not assign to it its denotation ; it does not

assert that there is any objective thing, or even subjective idea,

corresponding to it. It is indeed possible to have a science

founded partly, or even entirely, on definitions without asserting

that there exist any things corresponding to the terms or

symbols defined, and such a science will be ready to hand if

any things are found possessing the attributes connoted by the

definitions. Algebra is strictly such a science. The symbols

used, a, 6, x, y &c. are defined, that is, their connotation is

laid down, when the distributive commutative laws, and law

of indices are asserted about them. But no denotation is laid

down for them—it is a mistake to allow beginners to suppose

that they are merely numbers in disguise. It is indeed true

that, within certain limits, numbers do possess the attributes

ascribed, to algebraical symbols; and, within those limits,

algebraical results are arithmetically true. Within other limits

vectors obey the same laws, and hence some algebraical formulae

may be given geometrical interpretations. But pure algebra is

independent of such applications, and consists in results deduced

from definitions alone, and its logical basis would be just the

same even if it had no practical applications.

The last class of premise we have to consider is the Axiom,

or necessary truth. Kant defined an ' apodictic ' truth as one

the negation of which was inconceivable. This involved him

in a difficulty, for though you or I may be unable to conceive

the negation of a given proposition, perhaps some one else, in a

future generation if not now, may be able to do so. Thus any

one might assert that " J — 1 is an impossibility " and might

maintain that the assertion was apodictically true—until some-

one found a conceivable interpretation for the symbol. We
have however found a better criterion of necessary truth above.

We have seen that a necessary truth can only refer to the

subjective concepts of an individual, which are actually present

to his mind, and for an abiding conviction of its truth it is

therefore necessary that the concepts be such as his mind can

call up at will ; and then the realisation of its truth depends

upon the direct apprehension of the relations of subject and

predicate. For example if I say ' cogito, ergo, sum ' I have a

perfect subjective consciousness that I do think, and I conclude

with absolute certainty that I do (subjectively) exist. But if I
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were to conclude that my body existed, objectively, I should be

guilty of a fallacy. And obviously it would be merely begging

the question to say ' cogitat, ergo est.'

The simplest form of axiom, then, is that which merely

asserts that a thing, defined in a certain way, is conceivable

;

or may conceivably undergo certain operations. Every man
can pronounce with certainty upon such propositions whether

they are true to him or not, if he understands the terms in

which they are stated. In the case of those axioms I shall

bring forward I cannot doubt that everybody will assent to

their truth ; but if any exceptional individuals should be found

to deny them, that is to deny that they are able to conceive the

things named, their denial will only reflect on their individual

mental capacities, and need not raise any doubts in the minds

of others.

Let us then apply these considerations to the simplest

* deductive ' science, that of Arithmetic. Kant maintained that

some of the dicta of Arithmetic were ' synthetic judgements a

priori! He instanced the equation 7 + 5 =12. He was

indeed correct in saying that the conception of 12 is not the

same thing as that of (7 + 5). But the truth of the above

equation can be directly deduced from the conceptions of 7, 5,

and 12. This is therefore only another proof that new know-

ledge may be gained by deduction. For we may define 7 as

1+1 + 1 + 1 + 1 + 1 + 1 and 5 as 1+1 + 1 + 1 + 1, and if these

definitions be substituted in the left side of the above equation,

it becomes the definition of 12. It is thus evident that as far

as simple addition goes, and so also with simple subtraction,

Arithmetic is purely a matter of definition. When however we
come to multiplication and division we require two axioms

which may be stated thus :

—

(1) Units may be conceived to be added together to form

numbers, which may themselves be treated as units.

(2) Any unit may be conceived to have been formed by
the addition of any number of sub-units, which may themselves

be treated as units.

Thus, to prove that " 2 x 3 = 6 " the symbols mean "consider

S's as units, and add two of them together. The result will be
the same as six of the original units" which follows from the

definitions of 2, 3, and 6. Thus also 3x2 = 6 and therefore
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2x3 = 3x2. In this way the commutative law of Arithmetic

is established, and the distributive law may be proved equally

easily, and so any rule of Arithmetic.

It might indeed be urged that the above two axioms were

in reality only two more implicit definitions, that they only

helped to define ' unit ' and ' number.' That they are, however,

something more may be shown by taking an instance in which,

though they might still conceivably be true, they might also be

false. Thus,—Are two twopenny apples worth fourpence ?

May we add each of the two pennies for each apple together to

form twopences, and then add the twopences as if they were

units ? The answer is No ; there may be a reduction on taking

a quantity, or if the vendor wants to eat one of the apples

himself he may ask more than fourpence for the two. When
he said one apple for twopence he did not mean that each

twopence might be treated as an unit to make fourpence for the

two apples.

We have then established a science whose conclusions,

interpreted subjectively are necessary truths. As a matter of

fact the premises of Aiithmetic are so commonly true among

the objective units, as we believe them to exist, that its

conclusions are often thought to be as true objectively as they

are subjectively. If you grant that there are two apples each

worth twopence, and that the twopences may be added together

just as the individual pennies were, then the two apples are

worth fourpence, but the above objective assumptions are not

necessary truths. Besides the perfect subjective Arithmetic we

have therefore an objective Arithmetic, whose objective premises

are established by induction, and which is therefore imperfect,

in the sense of not dealing only with necessary truths.

Well then, in Geometry ought we not to find precisely the

same thing ? Ought there not to be a perfect subjective

Geometry, as well as an applied objective one, the applicability

of the former to the latter being a matter to be determined by

induction from observation and experiment ? It is the object

of this book to show that such is the case, to establish the

perfect Geometry, and to examine the grounds on which we

may believe that it applies to the objective space in which we

live.
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It would be folly to attempt to substitute a new thing for an

old one, unless one is first convinced that there was something

bad in the old one, which will be remedied in the new. Before

therefore attempting to introduce a new system of Geometry I

must point out what I consider the defects of the old ones.

That there are some defects has long been recognised. It

has for a long while past been pretty generally admitted that

Euclid's last Axiom is not a necessary truth. Great is the

ingenuity which has been expended by Geometricians in

attempting to find an ' apodictic ' substitute for this ' Axiom.'

Legendre thought he had proved its truth from the other

data of Geometry, but he himself had afterwards to admit that

his argument was fallacious. After so conspicuous a failure

most Geometricians seem to have reconciled themselves to the

idea that the ' Axiom ' could never be made apodictic, and to

have regarded attempts to do so in the same light as attempts

to square the circle. This is, I suppose, the reason that they

have overlooked a proof given by M. Vincent of Paris (quoted

by Mr F. W. Newman in his " mathematical tracts ") which I

give, with certain trifling modifications, at the end of this

chapter.

But, on the other hand, a great many Geometricians still

imagine that the proposition " Two straight lines cannot enclose

a space " is an a priori necessary truth. If it is only taken to

refer to subjective concepts it may indeed be so regarded, if it

is taken as the definition of ' straight
'

; and though it would be

by no means a complete definition, as far as it goes it would be

irrefutable. But it is perfectly evident that Geometricians do

not regard it only subjectively. They deduce objective con-

clusions from it, and it can only be held by them to refer to
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objective straight lines. Now it is a sufficient definition of an

objective straight line to say that two straight lines of a given

small length cannot enclose a space. From this definition it is

possible to mechanically construct ' straight ' edges of the given

length, on the principle on which Whitworth constructs his

surface plates; and two of these 'straight' edges being joined

together with only a small part of their respective ends over-

lapping, we get a longer 'straight' line. By continuing this

process it is theoretically possible to produce a ' straight ' line to

any length whatever, (unless it should at some point rejoin

itself) And how can we be certain that two such 'straight'

lines diverging from a given point will never meet again ?

There is no a priori reason why this should be so. All we can

say off-hand is that, as a matter of fact ' straight ' lines have

never been known to behave in such a manner ; but we are

bound to confess that they have been traced only through an

infinitesimal portion of the infinite space we dwell in, if so be

that they do not intersect again.

As however this axiom has generally been assumed to be a

necessary truth, it has been deduced from it that parallel

straight lines, as Euclid defines them, are necessarily possible.

For it may be shown that two 'straight' lines which have a

common perpendicular must either intersect on both sides of

that perpendicular or on neither, since the figure is symmetrical

with respect to it. That the reality of parallel lines depends so

directly upon this Axiom has not however been generally recog-

nised, simply because Euclid does not prove it in the above way,

but by means of his 16th proposition, the proof of which, as

it stands, merely begs the question at

issue. To complete the proof it is A j
necessary to appeal not only to his

10th Axiom but to another which he

does not lay down ; to the eftect that,

in a plane, 'it is impossible to pass

from one side of an unterminated line ^

to another, without intersecting it '—an omission which I am
glad to see a recent editor^ has noticed, though he has not

noticed the want of the Axiom in this proposition. For in Euc.

1. 16, having shown that the triangles GEF, AEB are con-

1 The ' Pitt Press Euclid ' by H. M. Taylor.
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gruent, and therefore the angles ECF, EAB equal, Euclid goes

on " But the angle ECD is greater than the angle ECF (Ax. 9)."

Now 'Ax. 9
' only says " the whole is greater than its part,"

and to assume that the angle EOF is ' part ' of the angle ECD
is to beg the question at issue. The proof should be completed

thus—' Since the line CEFC is unterminated, if any part of the

straight line CD is within CEEC it must intersect its boundary

twice ; for if it is produced far enough there must be points in

it in either direction outside this limited space (new Axiom).

But CD already intersects PE in B, and EC and FC in 0, and

so cannot intersect either of them again' (Ax. 10). Therefore

CD is wholly without the triangle ECF, and the angle ECF is

therefore * part ' of the angle ECD, and is less than it (Ax. 9).

Thus, granting neither of the two Axioms, but defining a

* straight' line as one which is in general determined if two points

on it are given, we have two alternatives to Euclidian Geo-

metry—we might either have more than one ' straight ' line

through a given point fulfilling Euclid's definition of parallel, with

respect to a given straight line, or we might have none at all,

in which case any two straight lines which intersected at all

would intersect twice. These alternatives have been already

examined by Mr G. Chrystal^ though his treatment of the sub-

ject led him to rather erroneous conclusions. For he seems to

consider that the former alternative, which he calls hyperbolic

Geometry, is the only one worth practical consideration, whereas,

as we shall see, it is in reality inconsistent with the self-congru-

ence of space, which he himself assumes, and may be shown

to be untenable by the proof given at the end of this chapter of

Euclid's Axiom 12.

Let us examine Euclid's premises more closely, in which, as

we have seen above, are included his definitions as much, if not

more, than his postulates and axioms.

A term generally denotes a thing or idea, and connotes its

attributes. Hence also a definition may indicate the denotation,

or detail the connotation of a term.

We have already seen that for deductive purposes the connota-

tion is the only important thing to lay down. Thus Euclid's first

definition " A point is that which has no parts or no magnitude"

1 Paper on ' Non Euclidian Geometry ' in ' Proceedings of Eoyal Society of

Edinburgh,' Vol. x., 1879—80.
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though it does not tell us what a point is, is nevertheless a

useful definition, as it tells us at any rate that it does not

connote magnitude or the possibility of subdivision. The defi-

nition ought not however to have been expressed as if it ex-

plained the denotation of the term. An instant of time cannot

be said to have parts or magnitude, but ' a point ' is not ' an in-

stant' The definition ought merely to assert, as part of the

connotation of the term "A point has no parts and no magnitude."

Similarly it is not true that a line is length. Length is only one

of the attributes of a line. The same remark applies to his defi-

nition of a surface. Now how comes it that neither of these

two fundamental definitions is ever referred to throughout

Euclid's elements ? There are I think three reasons. First,

Euclid has expressed the most essential part of the connotation

of the term ' straight ' line elsewhere, namely in his 10th Axiom.

Secondly, because he assumes the items of connotation of the

term surface, when necessary, without referring to any definition

or Axiom. But chiefly it is because, if Euclid ever tried to

make any use of these definitions, he would be confronted with

the question 'What are length, breadth, and thickness?' A
question to which he provides no answer.

Euclid's definition of a ' straight ' line is generally acknow-

ledged to be useless. It is merely a paraphrase of the word
' straight,' and by no means a good one. Euclid himself

defines a 'plane' surface in a similar manner—the definition

substituted for it in modern editions being the only one of the

first nine from which any deductions are made, and this one is

used illogically, for he never postulates or proves that the thing

defined as a ' plane ' can exist.

Next we read "A plane angle is the inclination of two

lines to one another in a plane, which meet together, but are

not in the same direction." What does this mean ? If an

angle is only another word for an inclination how does this

definition assist matters? Or does Euclid recognise the in-

clination of two lines which do not meet ? What has the plane

got to do with it ? Is the angle between lines which meet but

are not in a plane, as between the meridians of longitude at

the pole, essentially different from the angle between two

intersecting arcs of circles in the same plane ? Why does

Euclid here admit the word 'direction' which he has so
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carefully banished from the rest of his work ? Why does he

trouble to give a special definition of a plane rectilineal angle,

unless it is that in this case he can dispense with the awkward

word, and pretend that ' straightness' has nothing to do with

' direction,' for which it has been substituted ?

Again, why does he speak of angles as contained by straight

lines ? Why did he in I. 16 quoted above, call the angle ECF
part of the angle ECD ?

The answers to all these questions are really simple enough,

if we only make up our minds to use Euclid's own word,

' direction,' a little more freely. By ' inclination ' Euclid means

difference of direction. This is why two curved lines must

extend in different directions from their common point, to have

an inclination at that point, and it is because he tacitly assumes

that a straight line always extends in the same direction from

any point in it, that in the case of the definition of a plane

rectilineal angle the word direction may be left out. An angle

is something different from an inclination, which is used to

measure it, just as a two-foot rule is not a distance, but is used

to measure distances. To Euclid there can be little doubt that

an angle meant a portion of a plane, a sector cut oiT between

two intersecting straight lines. In the same way a figure,

such as a triangle, or circle, was to him not an arrangement of

lines, but a piece of a plane ; as it were a figure cut out of

paper, of which the lines were merely the boundaries. Thus

when in I. 4 he says " The whole triangle ABC coincides with

the whole triangle DEF, and is equal to it " he clearly refers to

them as triangular pieces of planes whose areas are thus

proved to be equal. Euclid's angles are really corners of such

figures cut out of a plane. This is confirmed by the easy way
in which he extends the use of the word angle to the corner of

a solid figure where three or more planes meet, calling it a

' solid angle ' as opposed to a plane angle, a solid figure being

merely hounded by the planes, as a plane figure is merely

bounded by lines. That this view of an angle is confessedly

taken by some Geometricians will appear from M. Vincent's

proof quoted below, and from the fact that Mr Newman accepts

it without comment. Though perhaps Euclid never acknow-

ledged it to himself, these angles, these sectors of planes, were

of course areas, of infinite extent, but such that they bore
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finite ratios to each other, which ratios measured the inclina-

tions of the bounding lines ; some given sector, or the whole

plane, being taken as an unit. Thus if he had ever considered

curvilinear angles after defining them, he would either have

had to explain that a curvilinear angle was equal to the

rectilinear angle between the tangents at the ' angular point,'

or he would have become involved in the doctrine of limits.

According to this view then, in the figure of i. 16 the angle

EOF actually is a part of the angle EGD. But another com-

mon interpretation of the word ' angle ' is that it is a quantity

of revolution, from one direction to another. This is the way

it is regarded in Trigonometry, and it is a way which has many

advantages. But when Geometricians introduce it into ele-

mentary text books they almost invariably forget that a straight

line may be revolved from one direction to another in various

ways, describing various conical surfaces the while, and perform-

ing various quantities of turning, and that there is therefore

no reason why the amount of turning which measures the

inclination of GE to OF should be part of that which measures

that of GE to GD, unless the method of rotation is further

defined. This is sometimes done by saying the rotation must

take place in the plane containing the lines, and that therefore

in the above instance the angle EGP is only part of the angle

EGD because GF is in the plane of GE and GD. This would

be right enough if the word plane were so defined that we
could deduce from the definition that, in revolving in it from

GE to GD a straight line must pass once, and only once

through GF. But if this result can be obtained otherwise, the

conception of a plane may be altogether omitted, and with

advantage, as it is by no means a simple concept, and an angle

is a sufficiently difficult thing for a beginner to grasp without

any unnecessary complications being involved in it.

It is obvious from the above considerations, that an inclina-

tion can never be greater than that measured by two right-

angles,—or as it is in some modern books conveniently called,

a straight angle. This inclination is that between two opposite

directions. An Euclidian angle, that is, a sector of a plane, could

strictly speaking never be greater than a whole plane, that is,

four right angles, unless we are permitted to count some parts

of the plane twice. But a Trigonometrical angle, that is, a
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quantity of revolution (under certain conditions), may be as

great as we please, one or more whole revolutions. Thus one

inclination may be measured by at least two Euclidian angles,

or by any number of Trigonometrical angles. A great deal of

the difficulty of Elementary Geometry is really caused by the

confusion of these three distinct concepts. My definition of an

angle is so framed as to restrict the meaning of the term to the

smallest positive trigonometrical angle.

There is little to be said about Euclid's remaining defini-

tions. In that of Parallel straight lines we again come across

that curious condition " In the same plane " ; a condition

which in the subsequent axiom about straight lines which are

not parallel, is, curiously enough, omitted from all text books,

as far as I know, which gives the axiom at all ! The definition

of parallel lines is logically good, but of course it remains to

be proved that such things really exist. It has already been

pointed out how this may be done by the aid of Euclid's 10th

Axiom, though Euclid's own method is unsatisfactory.

As to Euclid's postulates, they are logically needed, since

definitions cannot be taken to assert the reality of the things

they define. But I think it is improbable that it was for this

purpose that Euclid wrote them down. To him they merely

represented permission to perform certain operations in Geo-

metrical drawing. This is why he has no postulate about

drawing planes—he knew of no practical method of drawing

them, as straight lines are drawn on the black board, and

accordingly he quite overlooks the logical necessity of a

postulate or theorem to prove that they are conceivable.

Most of the Axioms have already been discussed. The

tenth I have shown not to be a necessary truth, if it is taken

objectively, as clearly it is intended to be. The eleventh is

quite unnecessary, as it may be proved as a theorem, by the

method of superposition. The twelfth however may be proved,

if the self-congruence of space is admitted, that is, if we assume

that geometrical figures may be carried about in space without

any change of size or shape. This proof is virtually that of

M. Vincent referred to above.

We have seen already that two * straight,' that is self-con-

gruent, lines in a plane which have a common perpendicular,

must either intersect on both sides of the perpendicular, or on
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neither. In the latter case, the ' straight ' lines are of infinite

length, and enclose a part of the infinite plane in which they

lie, which we may call a ' band.' If OA, PB be two straight

lines enclosing half such a band, on one side of the common
perpendicular OP, and OP be indefinitely produced, to X, and

Q taken in it so that QP = PO, and QG drawn likewise perpen-

dicular to OP
;
QG, PB enclose another half-band which may

be shown by superposition to be equal to that enclosed by PB
and OA. And so other bands may be cut off from the plane

by straight lines RD...Szc. But it may be shown by superposi-

tion that the remaining quadrant of the infinite plane XRD is

still equal to XOA. Hence the area of a half band is infini-

tesimal compared with that of a quadrant of the infinite plane,

that is with an Euclidian right angle.

But the area of any finite Euclidian angle is comparable

with that of a right angle.

Therefore the area of any finite Euclidian angle is infinitely

greater than that of any band of finite width.

Hence if any straight line OK on the same side of OA as

PB make any finite angle with OA, the whole area of the angle

KOA is greater than that of the band BPOA and therefore

PB must intersect OK.

This proves Euclid's 12th Axiom. The proof does not

seem quite satisfactory, chiefly because the accepted definitions

of the terms involved do not admit of its being stated in strictly

formal language. But as I prove the same thing by a more

comprehensive and formal method later on, there need be no

doubt as to its correctness.

D.
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But though I have criticised Euclid's premises, and in them

those of most systems of geometry, in some detail, I have not

yet mentioned what I take to be his fundamental misconception,

and that of nearly all subsequent writers on the subject. Even
though it is not explicitly stated in Euclid, it seems that he, in

common with most modern philosophers, regarded the concep-

tion of space as a fundamental attribute of the human mind,

which requires no definition or discussion, being necessarily

one, and unalterably the same, to every one. This is the view

that was taken by Kant, and so energetically combated by

Helmholz, and lately again by Mr Herbert Spencer. Helmholz

indeed attempted to analyse the conception of space, and got

so far as to call it a " Dreifachige Manigfaltigkeit," a three-fold

multiplicity, which at least expresses the fact that its constitu-

tion is somehow intrinsically connected with the number 3.

But Euclid's expression, applied by him to 'a solid,' that is,

a limited portion of space, that it has " length, breadth and

thickness," really means as much, and might be made to mean

a great deal more if length, breadth and thickness were

properly defined. As I have already kicked over the traces

in making use of the word * direction,' I may as well say at

once that they are measurements made in three different,

that is, completely different, or as I call them, independent

directions. If therefore we say 'Space extends from every

position in it in three independent directions,' and if further

we add ' and the directions in which it extends from any two

positions in it are the same,' we have a definition of the concept

* space ' in terms of the concept's ' position ' and ' direction,'

from which it will be seen all the known properties of space

can be deduced. And it follows that the conception of space
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is not a fundamental one at all, but that those of position and

direction are more fundamental than it.

It is not necessary, even if it were possible, to explain what

the terms * position' and 'direction' denote. Every one who
speaks English must have some idea of their denotation, and

for logical purposes it is only necessary to lay down their

connotation strictly. Every one knows more or less what is

meant by the position of a thing, or the direction of one thing

from another, in contradistinction to the thing or things them-

selves. We may talk of the position of the Solar system, when
comparing it with the positions of the fixed stars. But, if we
wish to compare the positions of things within a more limited

space, it will be evident that there are, within the solar system,

many different bodies whose positions differ from each other.

Again, within one of these bodies, the earth for example, there

are many positions, and if we are dealing with positions within

a yet smaller compass, we shall have to use yet more minute

bodies to indicate them. Though physicists used to tell us

that the 'atoms' of matter were indivisible, the theory has

lately been advanced that each atom is a vortex ring of

seething aether; and the theory of such vortex rings involves

the consideration of differences of position within an atom.

When therefore I say that a position may be conceived to be

indicated by a minute particle of matter I do not mean to

assert any objective truth, but merely to suggest a convenient

way of picturing a position to oneself. The second part of the

definition of position (for which see Part II.) being added to

guard against any confusion of a position with any material

thing or point, a position not being a material entity at all.

In the same way a direction does not consist of two

points—the points are only used as a convenient way of indi-

cating it. A direction should be conceived as something purely

abstract, so that we may speak of two straight lines as extending

in identically the same direction, not in equal, parallel, or

similar directions. This conception of direction has proved a

stumbling-block to many—but chiefly, I am convinced, because

from their youth up they have been taught to look at geometry

from the Euclidian point of view, which attempts only to recog-

nise material dimensions, lengths, areas and Euclidian angles,

that is, pieces of planes, and to discard abstract distances and

2—2
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inclinations, that is, differences of position and direction. So

much is this idea ingrained in our language and ways of

thought, that it is difficult to persuade many, even of those

who have never formally learnt Euclid, and much more those

who have spent the greater part of their lives in learning and

teaching it, that it is possible so to grasp Direction, as an

abstract concept. Even when confronted by the enormous

development of modern vector theories, even while themselves

advocating these theories as one of the greatest developments

in modern scientific thought, they will still argue that sameness

of direction is, as a matter of fact, an idea deduced from Euclid's

definitions of a straight line, and of parallel straight lines

;

although Euclid himself had spoken of sameness of direction

in his eighth definition, prior to giving any workable definition

of straightness, or of parallelism. To such objectors it may be

replied that it is of very little consequence how they obtained

the conception of sameness of direction, so long as they have

got it ; but seeing that, except in the one instance referred to

above, Euclid carefully evades the word direction, and that in

no text-book or course of oral instruction, so far as I know, is

any effort made to explain that ' sameness of direction ' means

Euclidian parallelism, it is at least very doubtful that they

acquired the concept through Euclidian teaching. Nor can it

fairly be maintained, until it has been proved by experiment,

that those who have not learned Euclid, or become imbued

with Euclidian ideas, are incapable of forming this conception.

On the contrary, I have tried the following experiment on a

few persons who had not studied Euclid—standing a little way

from them I extend my arm in any direction, and ask them to

extend theirs " in the same direction." Excepting those who

were too shy to make the attempt, all have made a more or

less intelligent effort to do as I requested them, showing that

though their conception of sameness of direction was vague,

and probably inaccurate, the conception was there, and only

wanted training to develop it. That is to say, they had some

idea of its denotation, though the connotation of the term

required to be exactly defined to them.

To do this I have laid down four assertions about direction.

I have already pointed out that I am logically free to define a

word by laying down any assertions I please with respect to it,
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as long as they are (i) not demonstrably incompatible with each

other. But if the definition is to form the basis of a deductive

science it is further advisable (ii) that the assertions should be

independent, as, if one or more could be deduced from the

remainder they might with advantage be omitted, and after-

wards proved as theorems. And, where it is required to define

logically a term whose denotation is already known, it is further

necessary not only that (iii) the assertions should be commonly
accepted as true with respect to it, but that (iv) they should

restrict the meaning of the term exactly to its accepted denota-

tion, neither more nor less, and should do so in the simplest

manner that can be devised. Now my four assertions form a

good definition, for (i) they are certainly not incompatible, for

all geometricians will admit that (iii) they are as a matter of

fact true, about what is commonly understood by the terms

direction and sameness of direction, whether they prove this

by Euclid or otherwise. The only questions to be examined
then are (ii) whether they are independent and (iv) whether

they restrict the denotation correctly. I think I may fairly

claim to shift the burden of proof of the former proposition on

to the shoulders of anyone who denies their independence,

merely observing that it has been the attempt to deduce the

fourth assertion from the other three which has been the true

cause of failure in all previous attempts to make use of

'direction' in elementary geometry. But if anyone should

succeed in deducing one of my assertions in the definition of

direction from the others, he will in no wise have damaged my
theory of geometry, but on the contrary, he will have improved

it, by enabling me to substitute a somewhat simpler definition

of direction for the one I here present. And as to the fourth

question, the sufficiency of the definition, the proof of the

pudding will be found in the eating, for no one will say that it

restricts the denotation too much, since they have granted

clause (iii), and, if the results I deduce are deduced fairly,

there can be no doubt as to the sufficiency of the premises.

But though I think these considerations and arguments
might be enough to enable my theory of directions to compete
with Euclid, if I had a fair start ; he unfortunately has the

advantage of me by some two thousand years; and I must
therefore adduce a few more considerations to show the
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extreme importance, and fundamental character of the concept

Direction.

The idea of a straight line is in common life associated

either with the idea of self-congruence, of a line which can

twist about itself without apparent motion, of a stretched

string, or of a ray of light. From all these conceptions,

definitions may be framed, which, as I show in Part III., all

lead to the same result. But there remains one conception of

a straight line ; that namely which Newton had in his mind

when he said that if a material particle were unacted on by

any forces, it would remain at rest, or continue to move with

uniform velocity in a straight line. There can, I think, be

little doubt that the words 'a constant direction' might be

substituted for the last three words in this law of motion,

without altering the sense. He did not mean a straight line

as defined by any of the four methods indicated above, for

results can be deduced from the law of motion which are not

necessarily possible if straight lines are only so defined. From

the law of motion it follows that it would be tlieoretically

possible (by gyroscopes, Faucoult's pendula, or other methods)

to determine the velocity, and axis, of rotation of the earth

absolutely, and hence to fix absolutely a direction in space,

although we cannot fix a position. And if we had two particles

the resultant force on each of which vanished, but which

remained at the same distance apart, each must be at rest, or

moving with uniform velocity in a constant direction. Thus

the direction from one to the other is a fixed direction, and

since we cannot say they are absolutely at rest, both may be

moving in the same direction, though not in the same straight

line.

In view of these facts it must be difficult for anyone to

maintain that ' direction ' is a less fundamental concept than

even ' position.' But even if any one should deny the bearing

of such a dynamical argument on the elements of geometry, it

surely must settle at once the question whether or not a

definite meaning can be, or commonly is, attached to the

epithet ' same ' when applied to directions of straight lines

which do not intersect 1

The propriety of including the fourth of my assertions in

the definition of direction, given in Part II., has been shown
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logically to follow from the fact that it is acknowledged to be

true of what is generally denoted by that word, and that if it

were omitted the definition would include more than the

word direction is truly held to denote. But it will probably

none the less be maintained, by some supporters of Euclidian

methods, that the attribute ascribed to direction in this fourth

assertion is, to use old fashioned language, an 'accident,' not

a ' property ' of the term. I have indeed already pointed out

that, if so, its truth ought to be deducible from the remainder

of the definition ; and that if this can be done, so far from

upsetting my theory, it would only strengthen it. But I think

I can show direct reason for believing that the attribute in

question is a property ; and that as a matter of fact it is always

assumed by anybody who uses the expression * extending in the

same directions ' in the same sense as ' parallel.'

For surely, if it is conceivable that a point may move in a

given direction from A to B, or else in two other directions,

from A to G and G to B respectively, then must it not follow

that if a point may also move from A to B' in the same

direction as A to B, it may also rfiove from A to some point C'

in the direction AG and from C' to B' in the direction CB'^ In

books on the theory of vectors, not only is this assumed, but it

is further assumed that the transferences in the respective

directions must be proportional, or at least, (which comes to

the same thing), it is assumed that, in vector language,

a + /S = /3 + a.

And so far from attempting to justify this assumption by an

appeal to Euclid, it is usual to commence by proving Euclid's

proposition that 'the straight lines which join equal and

parallel straight lines towards the same parts are themselves

equal and parallel,' by it; the above equation being in fact

merely Euclid's proposition in vector language. It will be seen

therefore that my fourth assertion about direction does not assert

as much as the assumption upon which vector theories are based,

for it asserts nothing as to the magnitude of the transferences.

Again, if it were required to determine whether two straight

lines in space, say two poles stuck in the ground, were ' in the

same direction' or not, the first thing that would occur to

anyone to do would be to place himself ' in a line ' with them,
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and see whether they ' covered correctly ' or not. That is, he

would see whether, when one of two intersecting rays of light

to his eye (say one along the ground) intersected both poles,

and another (say to the top of the far pole, to prevent the

chance of its going over the top of either of them) intersected

one of the poles, it would also intersect the other. In fact, he

would at once apply the test supplied by my fourth assertion

about direction. But this assertion has also another aspect.

In the former one it corresponds to Euclid's assertion about

parallel lines, that they are in one plane. In its other aspect

it corresponds to what has been proposed as a substitute for

Euclid's 12th Axiom, being in fact only another way of

wording Playfair's Axiom, namely : If a straight line in the

same plane with two parallel straight lines intersects one of

them, it shall also intersect the other, and this of course is the

only aspect of the assertion which is likely to be combated.

But it is here that the difference of the definitions of the

terms straight line, parallel, and so on, by direction, or other-

wise, comes in. Taking the former system of definitions, but

omitting my fourth assertion about direction, if AB, CD be the

two poles stuck in the ground ' in ^
the same direction,' and OBD be

the straight line of sight along

the ground intersecting them in

B and D, the point B being

between 0, the observer's posi-

tion, and D, then as we have

seen 00 will intersect AB, but ^

the question remains, will OA necessarily intersect DO pro-

duced ? We can only conceive its not doing so by imagining

either OA or BO to be bent outwards—that is, no longer to

extend constantly in the same directions. And, as we have not

predicated anything concerning the size of the figure, but only

concerning its shape (see Part II. def. 15) the difficulty will not

be in any way altered on however large a scale the figure be

conceived. But if a straight line is defined by any of the

other methods, and OD is only asserted to be parallel to ^5 in

the sense that however far they may be produced they do not

meet, nothing has been predicated concerning the shape of the

figure, and though when drawn of a moderate size its shape
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may be, as near as we can tell, the same as if we had used the

definitions by direction, this is no guarantee that the shape

would remain the same if its size were indefinitely increased.

To prove this would require propositions not proved by Euclid

till his sixth book !

(I hope it is unnecessary to remind the reader that the

above appeal to his imagination is not made to prove a

substitute for Euclid's famous axiom, but merely in the hope

of calling his attention to the fact that in reality my fourth

assertion about direction is already part of the connotation he

unconsciously ascribes to that term.)

I have been unable to find in any work on elementary

geometry any formal or satisfactory definitions of the terms

line, surface, and solid, or space. I have already pointed out

that Euclid's definition is of no use, because no definite con-

notation is ascribed to the terms length, breadth and thickness.

It is however common in more modern text-books to try at

least to describe the denotation of the terms line, surface and

solid in one of two ways. The one way is to begin with a solid,

with which the reader is supposed to be familiar, or with space,

and to say that that which bounds a solid, or separates one

part of space from another, is a surface, and that that which

bounds a surface, or separates one part from another is a line,

and that which bounds a line, or separates one part from

another, is a point. The other way is to begin with a point

and to say that a moving point describes a line, a moving line

a surface, and a moving surface a solid, or space. Often both

methods are given without any effort to show that they lead to

the same results. The first method was formerly, at any rate,

the commonest, but it has one fatal drawback—it assumes that

everybody's conception of a solid, or space, must necessarily be

one and unalterably the same, which I think I can show not to

be the case. The second method pretends to define the con-

ception of space in terms of that of a point, or position ; which

latter conception certainly is of so elementary a character that

we may fairly assume it to be the same to everybody. But in

this method also there is a fatal fallacy—it is, namely, impossible

to define space in terms of a position alone ;
direction must also

be taken into account. The subterfuges that some geometricians

make use of to disguise this fact are positively amusing. One
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of them for example thinks he has done so by making use of

the word ' way ' instead of ' direction ' 1 Thus, he defines space

as " a three-way spread, with points as elements." It is indeed

true that a point moving any ' way,' that is, in any direction,

from each position in it, describes a line of some sort, and that

such a line moving in any way (unless it everywhere moves

along itself) describes a surface of some sort ; which surface in

moving describes a solid of some sort. And if the line is a

plane curve and moves in its own plane, it may indeed be said

to describe that plane, but parts of the plane may be described

twice or three times over, and other parts not at all. And so a

curved surface in space, moving in space, may describe part of

that space two or three times over and other parts not at all.

In order that such a definition of space may be satisfactory and

complete, it is necessary to stipulate that the moving point

shall move always in the same way (that is, direction) or the

opposite ; that the moving line shall always continue to point

the same way (that is, that it shall remain parallel to itself),

and that a given point in it shall move always in one way or

the opposite, different from the ways in which the moving line

points. And similar restrictions must be placed upon the

movement of the surface so described, in order that it may
describe space. These conditions of course involve the concep-

tion of direction as I define it, and to evade the use of the

word by speaking of ' so many way spreads ' is not only begging

the question but is positively inaccurate. For, the description

of a plane as a two-way spread and a solid as a three-way one

is not enough, since a line, even a straight one, has two ' ways,'

namely forwards, and backwards, and a plane has not only two,

but an infinite number of * ways.' It is therefore clear that

something analogous to my definition of ' independent direc-

tions ' is necessary to distinguish the three ' ways ' which a

' spread ' must have to enable it to rank as a solid, besides some

workable definition of what a ' way ' is. And this definition

must clearly contain a clause corresponding to my fourth

assertion, for if not the surface, described as above by the

motion of a straight line, would not possess the property that

any straight line having two points in it would not lie wholly

in it ; that is, it would not be a plane according to the accepted

definition.
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There are a few more points among my premises to which

I must briefly call attention. The conception of ' opposite

'

directions follows as an obvious consequence of the fact that

two points are required to indicate a direction, and that

therefore when we name one, we at the same time indicate

a second direction, which stands in a peculiarly intimate

relation to the first. From the definition of dependence of

directions we see that a direction is 'dependent' upon its

opposite direction, but is independent of any other single di-

rection ; for the movements contemplated in that definition

are merely movements in certain straight lines, and may be

either one way or the other along them. (N.B. there is no

assumption, or assertion about this—it is merely a matter of

verbal definition.) This definition of independence of direction

may at first seem wordy, and arbitrary; but the reader will

soon see that it merely expresses in precise language what we
meant (nine) pages back when we agreed that space might be

said to extend in three ' independent ' directions from any given

position in it.

I draw a distinction between distance and a linear dimension,

such as length, which I think will be found convenient. A
distance is the diiference^ between two positions, and is an

1 I feel bound to protest here against a criticism of the late Prof. De Morgan
in a review of a book of Mr Wilson's, which he published in the Athenaum, and

to express my surprise that so accurate a thinker could have been guilty of it.

He says a propos of a definition of Mr Wilson's, " Is a direction a magnitude ?

Is one direction greater than another ? We should suppose so, for an angle, a

magnitude to be halved and quartered, is the ' difference of direction ' of ' two

straight lines which meet one another.' " Clearly neither Mr Wilson nor I use

the word difference in the sense it is used in Arithmetic, when we say that 5 is

the difference of 12 and 7 ! If two positions or directions are not the same,

they must be different, and that difference is called a distance, or inclination, as

the case may be. These * differences ' are not magnitudes, but the magnitudes

used to compare them are lengths, and angles, respectively. If Mr Wilson did

not make this clear, I hope at least that I have done so.



28 PART I.

abstract notion—it does not necessarily imply that there is, or

even might be, a straight line between them. Thus it may be

measured by an amount of transference, under fixed conditions.

But length is a concrete measure of an actual figure ; it is a

piece of a straight line of given dimension, which may be carried

about and compared with other straight lines. So other

dimensions may be regarded as material things, pieces of

planes or solids. On this view also an inclination is not a

dimension but an abstract notion, analogous to a distance ; but

an Euclidian angle, a piece of a plane, even though an infinite

piece, is precisely analogous to an area. These conceptions are

brought out clearly enough in the definitions.

The assigned methods of measuring distances and inclinations

are purely arbitrary, and that they are feasible has to be deduced

from the axioms, later on. It is also shown in the text that the

methods are convenient, as they measure the quantities with

the minimum amount of transference and twisting respectively.

The method of measuring a straight angle is an obvious ex-

tension of that used for any other angle ; but, in as far as it is

arbitrary, it too is shown to be feasible and convenient.

One of the features of my method is that I do not separate

the text in the usual manner into ' Plane ' and ' Solid Geometry,'

but rather into the geometry of lines, and the geometry of

surfaces and space. In ordinary Plane Geometry all the figures

are supposed to be 'in a plane.' This is rather hard on a

beginner, who can hardly be expected to have any clear idea of

what a plane is, and the result is that he is apt to miss the

force of this important restriction. Even his teachers do the

same thing, as witness the fact already referred to that in, I

believe, no text-book is the necessary condition noted that the

straight lines in Euclid's 12th Axiom must be 'in one plane.'

Again in Euc. I. 4, we read, " Therefore the whole triangle ABC
coincides with the whole triangle DEF". I am sure that nine

people out of ten miss the meaning of this sentence, which is,

that their planes coincide. For why should they do so ? Did

Euclid ever lay down an axiom that two planes cannot enclose

a space ? And if this fact is deducible from his other axioms,

where is the theorem in which he deduces it ? Yet this little

sentence, which I am convinced most people overlook as a piece

of Euclidian circumlocution, is the basis of a very large portion
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of Euclid's reasoning, including his celebrated 47th proposition,

and the greater part of his second and sixth books

!

In my method I postpone all mention of planes, even their

definition, till the second book. In the first book, however, I

prove everything Euclid proves in his first book, which does

not refer to plane areas ; and two propositions which Euclid

gives (though in slightly different forms) in his eleventh book.

I am thus able to postpone the definitions of the terms surface,

plane, &c., to the second book ; where also I give definitions of

terms which are either not defined at all in ordinary text-books,

or whose definitions would require modification to be brought

into accordance with my system. In my second book I prove

everything in Euclid s eleventh (except one proposition referring

to proportion) and several other highly important propositions

which do not appear in any of the ordinary text-books.

My three axioms, being the foundations of a purely sub-

jective science, merely assert the power of the human mind to

conceive certain things, the nature of the things in question

being explained in the definitions. They do not assert any

objective fact at all. Of course it would be possible for any

given man to deny that he could conceive those things. I do not

anticipate coming across many such people, but as they would

be no more capable of understanding Euclid than of under-

standing my geometry, I do not at present care to argue with

them.

My second axiom might be paraphrased thus—Space may
be conceived to extend from every position in it in the same

directions. For if the positions can be conceived, of course

points may be conceived to occupy them, forming straight lines

&c. The full import of this axiom can only be explained later

on, but in case anyone should object that Euclid proves that

a straight line can be drawn through any point parallel to

any given straight line, whereas I have to assume it, I must

refer him to my remarks above, where I show that Euclid's

pretended proof really rests on the debatable assumption con-

tained in his 10th Axiom.

I have deferred stating my third axiom till the beginning of

the second book. I do this, not only because the beginner

would not easily understand it until he had become more

familiar with the idea of independent directions, but also to
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emphasise the fact that the propositions in my first book in no

way depend upon it.

As the system of geometry I present in Part II. is a purely

subjective one, I do not of course require any powers to draw
straight lines, or perform any constructions as Euclid does. I

only ask the reader to conceive the lines and figures, not to

draw them, and only add the diagrams in the book to aid his

imagination—he is on no account to suppose that the words in

the text refer to the actual lines in the diagrams. Euclid

himself virtually abandons his geometrical drawing in his

eleventh book, and falls back on hypothetical constructions.

But on the other hand my imaginary constructions are hardly

hypothetical. Each of them is strictly justified by appeals to

the axioms of the science. Thus, I prove by those axioms that

an angle may be conceived to be measured by the method I lay

down in the definition,—that a plane may be conceived through

any given position extending in any two given independent

directions,—that a plane may be conceived to revolve about a

fixed straight line in it, and so on. These, and similar points,

are overlooked in every other geometry with which I am
acquainted, even where actual constructions are made, as in

Euclid.

I have presented Part II. of this book almost in the form I

should propose to give to an elementary text-book of geometry,

though perhaps a few of these explanations would have to be

incorporated with it. A beginner might very well assume its

objective application at first, it would not be necessary or

advisable to trouble him with such metaphysical subtleties.

It would evidently be easy upon this foundation to build up

the remainder of a complete work of Elementary Geometry.

But in the meanwhile, all the fundamental propositions having

been demonstrated (including the fact that two planes cannot

enclose a space, required in Euc. i. 4), the superstructure may
be bodily taken from the ordinary text-books.

NOTE.

I feel it necessary here to refer briefly to some previous attempts to

make use of ' direction ' in elementary treatises on geometry, and to the

strictures which have been passed upon them. For I have already found

a disposition on the part of my opponents in argument to save themselves
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trouble by shifting the above-mentioned criticisms bodily on to my
shoulders. Now I am of opinion that the reviews to which I specially

refer, where they resist the temptation to be funny, are in the main just

and logical. Neither Mr Wilson, nor Mr Willock, the chief exponents of

' the direction theory ' make any attempt to give a workable definition of

'direction,' or 'sameness of direction ;' and their definitions of 'angle' are

hopeless jumbles of the three concepts I have taken pains to distinguish

above. The consequence is that they lay themselves open to the accusation

of having defined parallel straight lines as such as make equal angles with

any transversal. Such a charge could not lie against me, for I on the

contrary, define sameness of direction, that is parallelism, first, and 'angle'

by it. Besides this, not having defined 'sameness of direction' properly

they either assume Euclid's 12th Axiom after all, or are led into positive

fallacies in the attempt to do without it.

But in any case I think I may claim from my critics the courtesy of

first-hand criticism, and that they shall not dish up against me the stufi"

that somebody else wrote, against some other theory, at some other time.



PAET II.

A SUBJECTIVE THEORY OF GEOMETRY, DEDUCED
FROM THE TWO FUNDAMENTAL CONCEPTS,

POSITION, AND DIRECTION.

BOOK I.

on straight lines, and angles.

Definitions.

1. Implicit definition of Position :

—

(a) A position may be conceived to be indicated by a

portion of matter, called a point, which is so small that for

the purpose in hand variations of position within it may be

neglected.

(6) But a position is not the same thing as a point,

for a point may be conceived to move, that is, to change its

position, whereas to talk of a position as moving, is a contradic-

tion in terms.

2. Implicit definition of Direction

:

(a) A direction may be conceived to be indicated by

naming two points, as the direction from one to the other.

(h) If a point move from a given position constantly in

a given direction, there is only one path, or series of positions

along which it can pass. (Such a path may be called a ' direct

path,' and a continuous series of points occupying such positions,

a straight line ; see definition 4.)

(c) If the direction from A to 5 is the same as the

direction from B to C, that from A to is also that same

direction.
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{d) If two unterminated straight lines which intersect,

are each intersected by a third straight line in two separate

points, any unterminated straight line' extending in the same

direction as this last one, which intersects one of the two

former, shall also intersect the other.

3. The direction from 5 to J. is said to be opposite to that

from A to B.

4. A straight line is a continuous series of points extending

from each of them in the same two opposite directions.

(Note. Since a straight line which extends from A io B
also extends from B to A, it must always extend in two opposite

directions.)

5. If a point may be conceived to move from one position

to another in a given direction, or else along a series of straight

lines extending in a succession of directions, the single direction

is said to be dependent upon those other directions. But if it

is impossible to move the point from the one position to the

other by any series of straight lines whatever, in those

directions, the single direction is said to be independent of

them.

6. The difference between two positions is called the

distance between them.

It is conventionally measured by the amount of transference

required to move a point from the one position to the other in

a constant direction, that is, along a straight line. (N.B. The
propriety of this convention will appear when it is shown, in

Prop. 16, that the amount of transference so required is a

minimum.)

7. The difference between two directions is called their

inclination to one another.

The measure of an inclination is called an angle and is the

amount of twisting required to turn a straight line from the

one direction to the other, with the condition that in turning it

shall pass through a continuous series of directions all inter-

mediate between and dependent upon the directions whose

inclination is to be measured. (N.B. The possibility of so

measuring an inclination is shown in Prop. 5, and its propriety

appears when it is shown in Prop. 17 that the amount of

twisting so required is a minimum.)

D. 3
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8. The measure of the inclination of two opposite direc-

tions is called a straight angle.

A straight angle is measured by the twisting of a straight

line from the one direction to the other keeping it always in

directions dependent upon the opposite directions and some

third direction chosen arbitrarily. (N.B. Since no third

direction can be dependent upon two opposite directions, the

ordinary convention fails in measuring a straight angle. The

propriety of this supplementary convention appears however

when it is shown in Prop. 6, that whatever third arbitrary

direction is chosen the result will be the same.)

9. An angle equal to half a straight angle is called a right

angle.

10. The phrase 'parallel to ' may be taken to be equivalent

to 'extending in all the same directions as...'

Hence two straight lines are said to be parallel, if they both

extend in the same two opposite directions.

11. The phrase 'perpendicular to...' may be taken to be

equivalent to 'equally inclined to all the directions in which...

extends.'

12. A triangle is the figure formed by the three straight

lines joining three points, which are not in one straight line*

two and two. The points are called the corners of the triangle.

The angle between the directions from one corner to the two

others is called an interior angle (or merely an angle) of the

triangle, and that between the direction from one corner to a

second, and that from the second to the third is called an

exterior angle.

13. A quadrilateral consists of four straight lines joining

four points, no three of which are in a straight line, two and

two, in order. If the sides form two pairs of parallel straight

lines, it is called a parallelogram (for names applied to other

quadrilaterals, see end of Prop. 23 of the first book.)

14. If two figures can be conceived, (either at once or at

different times,) to occupy exactly all the same positions, they

are said to be congruent to one another.

15. The size of a geometrical figure is determined by the

distances between the various points in it; its shape by the

inclinations of the directions from one to another of the various

pairs of points in it.
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Acdoms.

I. Any geometrical figure may be conceived to be moved

from any one part of space to any other, except in so far as it is

restricted by the other axioms (see Book ii. Prop. 14, corollary

(iii)), without its size or shape being in any way altered.

II. A straight line may be conceived to extend from any

given position to any distance, in any given direction.

(N.B. A third axiom is added at the beginning of Book li.)

NOTE.

A direction may be 'given' by naming two points, as the direction

from one to the other, (D. 2. a.) or if it is not important to distinguish it

from the opposite direction, it is enough to name a straight line extending

in it. Hence by the second axiom we may conceive a straight line through

one given point extending to another, or, as it is called, 'joining' the two

points ; we may conceive a terminated straight line to be produced either

way as far as we like ; we may conceive a straight line through one given

point, extending in the direction from a second given point to a third ; or

we may conceive a straight line through a given point parallel (see D. 10.)

to a given straight line.

The expression 'Join -45' is used as an abbreviation for 'Conceive a

straight line joining the points A and BJ
A position, or point, is denoted by a single letter of the alphabet, as

'the point A'
The distance between two positions, or the terminated straight line

between them when considered in reference to its length, is denoted by the

two letters denoting the positions or extremities of the line, with a bar

over them thus, 'the distance AB,^ or 'the straight line CD.^

A direction is denoted by the letters denoting the points which indicate

it, taken in order^ as ' the direction AB.^ Thus the opposite direction to AB
is ' the direction BA^

An angle may be denoted as ' the angle between the directions AB^ and

C2).' But if it is between the directions from one point to two others it is

merely denoted by the three letters denoting the points, that denoting

the point from which the directions lie being placed in the middle. Thus

the angle between the directions AB and AC \^ called simply 'the angle

BAC^ or 'the angle CAB^ A straight line may be denoted by the letters

denoting two or more points in it. If there are only two letters the order

is indifferent, but if there are more than two they are (if possible) placed

in the order they actually lie, either forwards or backwards, but this rule

need not be followed where the order of the points themselves is not

determinate.

3—2



36 PART II.

N.B. It must be observed that a direction (and consequently an

inclination and an angle also) has no position in space. Thus we may
freely talk of the angle between the directions AB and CD even if the

straight lines AB and CD do not intersect, and to speak of the angle

between AB and J. (7 as 'the angle at A ' (as Euclid sometimes does) is

incorrect, as also it is to talk of 'the angle between two straight lines.'

Moreover as each straight line has two opposite directions, there are four

angles 'between them,' not one, if we consider the phrase merely an

abbreviation for 'between their directions.'

Proposition I.

Two parallel straight lines cannot intersect, nor can any two

straight lines intersect in more than one point.

For, if two parallel straight lines had a common position, and

from this position a point were to move in either of the two

opposite directions in which they both extend from it, it could

only move along one path [D 2 (b)] and therefore there could

not be more than one straight line through this position in the

given directions.

And if any straight line extend from a point ^ in a given

direction to the next point B, and from B to the next point 0,

the direction BC is the same as AB [D 4], and therefore the

direction AG is the same direction [D 2 (c)]. So it may be

proved that the direction AD to the next point, and so to any

point on the same side of A is the direction AB. In the same

A C
H-l-H
B

way the direction from A to any point on the other side of A
isBA.

Therefore no two straight lines can have two common

points, for if they had they would extend in the same directions,

and also intersect, which is impossible (see above).

Therefore Two parallel straight lines &c. Q. E. D.

Corollary. Two straight lines cannot enclose a space.

Note. The references in brackets refer to the premises or previous

propositions: D = definition, A, axiom, P, postulate, c, corollary.
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Proposition II.

If each of two unterminated straight lines intersect each of

two intersecting straight lines in two separate points, they shall

either he parallel to one another, or shall intersect.

For if two straight lines AB, A'B' each intersect each of the

two intersecting straight lines AA', BE, which intersect in 0,

in the separate points A, B and A', B'

,

Conceive a straight line through A' parallel to AB. [A 2.

Then the straight lines OAA', OB which intersect in 0, are

met by the straight line AB'va. separate points, and one of them,

OAA' is met by the parallel straight line A'G in A'

.

Therefore OB is also met by this straight line in some point

(7 [D 2 (d)]. Now, if G is the same point as B', the straight

line A'G is the same as A'B', [I. 1], which latter is therefore

parallel to AB.

But if G is not the same point as B', then the two straight

lines GB'B, A'B' , which intersect in B', are met by the straight

line A'G in separate points, and one of them, GBB' is met by

the parallel straight line AB m B.

Therefore the unterminated straight lines AB, A'B' must

intersect. [D 2 {d).

Therefore If each of two &c. Q. E. D.

Proposition III.

If each of two unterminated straight lines intersect each of

two parallel straight lines, they shall either he parallel to one

another, or shall intersect
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For if two unterminated straight lines AB, A'B' each

intersect each of two parallel straight lines AA', BB', in A, B,

and A', B\

Let G be any third point in AB, Join GB\ [A 2.

Then the straight lines GBA, GB' which intersect in G, are

met by the straight line BB' in separate points, and one of

them, GBA is met by the parallel straight line AA'.

Therefore the other, GB', also intersects ^^' in some point

D. [D 2 {d).

Now, if A' is the same point as D, the straight line A'B' is

the same as the straight line OB'D, and therefore intersects

AB in a, [I. 1.

But if A' is not the same point as D, the unterminated

straight lines AB, A'B' each intersect each of the two inter-

secting straight lines AA'D and GB'D in separate points.

Therefore they are either parallel, or intersect. [I. 2.

Therefore If each of two &;c. Q. e. d.

Proposition IV.

If each of two straight lines luhich intersect are intersected by

a transverse straight line in separate points, any straight line

through their point of intersection, which also intersects the

transverse straight line, is in a direction dependent upon their

directions.

And conversely, any straight line through their point of

intersection in a dij'ection dependent on their directions either

intersects, or is parallel to, any such transverse straight line.

For if OA, OB be two straight lines intersecting in 0, and
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ABhQ di> transverse straight line intersecting OA in A, and OB
inB,

And if OX be any other straight line through 0, intersecting

AB in X,

Through X conceive an unterminated straight line XZ,

parallel to OA. [A 2.

Then, since the straight lines BXA, BO, which intersect in

B, are met by the straight line ^0 in separate points, and one

of them BXA is met by the parallel straight line XZ, in X,

Therefore BO is also met by XZ in some point Z [D 2 (d)].

Hence a point may be conceived to move from to X in the

direction OX along the straight line OX, or along the straight

lines OZ, ZX, in the directions OB, OA.

Therefore the direction OX is dependent upon the directions

OA, OB. [D 5.

And conversely,

If the direction OX is dependent upon the directions OA,

OB,

Then it must be possible to move a point from to some

point X in OX in the direction OX, or else to move it to X by

a series of straight lines OZ, ZX in the directions OB, OA.

[D5.

Let B be any other point in OZB, join BX.
Then since the straight lines BZO, BX, which intersect in

B are met by the straight line ZX in. separate points ; and one

of them BZO is met by the parallel straight line OA in 0,
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Therefore BX is also met by OA in some point J. [D 2 {d)\

and therefore OX intersects the transverse straight line AB,

And iiA'B' be any other transverse straight line, intersecting

OA in A\ and OB in B\

Then the two straight lines AB, A'B' each intersect each of

the two intersecting straight lines OAA' , OBB' in separate

points.

They are therefore either parallel, or they intersect. [I. 2.

But if they are parallel,

Then the straight lines OBB', OX which intersect in 0, are

met by the straight line BX in separate points, and one of

them, OBB', is met by the parallel straight line B'A' in B\

Therefore OX also intersects B'A'. [D 2 (c^).

And if A By A'B' are not parallel, let them intersect in P.

Therefore the straight lines PA', OX each intersect each of the

intersecting straight lines PAX, ^'^0 in separate points.

Therefore PA'B' and OX are either parallel, or they

intersect. [I. 2.

Thereiove If each of two &c. ^ q. E. D.

Pkoposition V.

A straight line may he conceived to he twisted from any one

given direction to any other which is independent of it, so as to

measure the angle hetween them, in one, and only one way.

For if be any fixed point, straight lines OA, OB may be

conceived in the given directions from to points A, B \^K 2],

which will not be one and the same straight line, since the

directions are independent.

. And a straight line may be conceived joining AB, and

one from to any point X in AB.
[

also

[A 2.
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And the point X may be conceived to move along AB from

A to B, that is in the constant direction AB, in one and only

one way. [D 2 (6).

As it does so OX is twisted from the direction OA to OB in

one, and only one way.

And since the directions in which OX extends are always

intermediate between, and dependent upon the directionsOA and

OB [I. 4], the twisting of OX measures the angle AOB. [D 7.

Therefore A straight line &c. Q. E. D.

Corollary. If any direction he intermediate between and

dependent upon two others, the sum of the angles it makes with

those two directions is equal to the angle they make with each

other. For the twistings of a straight line to measure the

former angles are parts of the twisting which measures the

latter.

Pkoposition VI.

The inclination of two opposite directions is a constant

inclination ; and the conventional method of measuring it always

gives the same angle.

For if OA, OB be straight lines from any point to points

A, B,\n opposite directions.

And if O'A', O'B' be two other straight lines from any point

(J to points A', B', in any other two opposite directions.

Then since the direction J. is opposite to OA [D 3], it is

the same as OB. Therefore AOB is one straight line.

So also A'O'B' is one straight line.

Therefore if the straight line AOB be conceived to be moved
so that falls on 0' and A in A'B [A 1], the straight lines

will become one and the same straight line [I. 1], that is OB,

O'B' will also coincide.

Therefore the inclination of OA to OB is the same as that

if OA' to O'B' in the new position, and the inclination was not

altered by the movement of AOB [A 1]. Therefore the incli-

nations of the opposite directions were the same.

And if the inclination of OA to OB be measured by twisting

a straight line from OA to OB, keeping it in directions dependent

on the directions OA, OB, 00, . [D 8.
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And if the inclination of O'A' to O'B' be measured by a

A. ,X A',

straight line keeping it in directions dependent on O'A', O'B,

0'G'\ OG, O'C being any arbitrarily chosen directions, [D 8.

Then either the angles AOG, A'O'G' must be equal, or one

must be greater than the other, say AOG than A'O'G'.

In the latter case as a straight line OX revolves to measure

the angle AOB, before reaching OG it will reach some situation

OX such that the angle AOX is equal to A'O'G'.

Hence if the whole figure AGB be conceived to be moved

and placed so that coincides with 0' [A 1], AOB with

A'O'B', either OG, or in the latter case OX, may be made to

coincide with O'G'.

Therefore in the former case the figures are congruent, and

therefore the twisting of the same straight line measures both

straight angles, which are therefore equal.

In the latter case the straight angle AOB measured by

a straight line twisted through directions dependent on OA,

OB, and OX is equal to the straight angle A' O'B', and since

this straight line in revolving passes through OG [I. 4], it gives

the same angle as one twisted through directions dependent on

OA, OB and OG.

Therefore The inclination &c. Q. E. D.

Corollary, (i) Hence the sum of the angles between any

direction and two opposite directions is a straight angle.

(ii) Hence also a right angle, which is half a

straight angle, is a constant angle.
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Proposition VII.

The angle between two directions is equal to that between the

directions opposite to them.

For if AOA\ BOB', be any two straight lines through any

point ; OA, OB being two given directions, and OA' OE the

directions opposite to them,

If we conceive one end, OX of a straight line XOX' to

revolve from OA to OB, measuring the angle AOB, the other

end OX' will at the same time be revolving from OA' to OB'

and measuring the angle A' OB'.

Therefore the angle between OA and OB is equal to that

between OA' and OB'.

Therefore The angle &c. Q. E. D.

Proposition VIII.

The sum of the interior angles of any triangle is a straight

angle.

For if ABC be any triangle.

Conceive the side BG to be produced to D, [A 2.

And through G conceive a straight line GE in the direction

BAy to any point E.
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Then because the directions GE^ CD are respectively the

same directions as BA, BG,

The angle DGE is the same as the angle GBA,
And because the directions GE, CA are respectively opposite

fco the directions AB, AG,

The angle EGA is equal to the angle BAG. [I. 7.

But since a point can be conceived to move from 5 to ^ in

the direction GE, or else by straight lines BG, GA in the

directions GD, GA,

The direction GE [D 5] is dependent on the directions GD,

GA ; and it is intermediate between them.

Therefore the sum of the angles DGE, EGA is equal to the

angle DGA. [I. 5 c.

Therefore the sum of the angles GBA, BAG, AGB is equal

to the sum of the angles DGA, AGB.
That is, to a straight angle. [I. 6 c. (i).

Therefore The sum &c. Q. E. D.

Corollaries, (i) Hence the exterior angle of a triangle, as

ACD is equal to the sum of the two interior opposite angles CBA,
BAG.

(ii) Hetice also the sum of any two angles of a triangle is

less than a straight angle, and any exterior angle is greater than

either of the interior opposite angles.

Proposition IX.

If each of two straight lines intersect each of two intersecting

straight lines, or of two parallel straight lines, in separate points,

and

(i) if their directions on the same side of one of the trans-

verse straight lines are equally inclined to one of its directions

;

or

(ii) if they make with its opposite directions angles whose

sum is a straight angle ; or

(iii) if their directions on opposite sides of the transverse

line make equal angles with its opposite directions ;

the straight lines shall he parallel.

For if each of two straight lines AB, GD intersect each of

the two straight lines EF, KL, which either intersect or are

parallel,
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Then ABy CD either intersect or are parallel. [I. 1 and 2.

But they cannot intersect, for if they did, in say

:

(Then if EF intersect AB in and CD in H, OGH would

be a triangle, and therefore)

(i) The exterior angle EGO would be greater than the

interior opposite angle GHO [I. 8 c. (ii)], whereas it is not, if

the directions GB, HD of the straight lines AB, CD on the

same side of EF are equally inclined to the direction HE, or

GE,oiEF;

(ii) The sum of the interior angles BGH, DHG of the

triangle OHG would be less than a straight angle. [I. 8 c. (ii).

And since the sum of the four angles AGH, BGH, CHG,
DHG is two straight angles [I. 6 c. (i).

The sum of the angles AGH, CHG would be greater than

a straight angle,

Whereas in both cases they are equal to a straight angle, if

the directions oi AB and CD on the same side of EF make
with its opposite directions angles whose sum is a straight

angle,

(iii) And the angle AGH would be greater than the

interior opposite angle DHG of the triangle OHG [I. 8 c. (ii)],

whereas it is not, if the directions GA, HD of the straight lines

AB, CD on opposite sides of EF make equal angles with its

opposite directions.

So it may be proved that none of the conditions in the

enunciation can hold unless AB i^ parallel to CD.

Therefore If each of two &c. Q. e. d.

Corollary. And, conversely, it is evident that if AB is

parallel to CD all the conditions in the enunciation will hold,

from the definitions of the terms, or as special cases of Proposi-

tions 6 cor. (i), and 7.
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Proposition X.

If two triangles have two sides of the one respectively equal

to two sides of the other, and the angles between the directions of

those sides equal, they shall he congruent to each other.

For if the sides AB, J. (7 of a triangle ABC are respectively

equal to the sides BE, DF of a triangle DEF,

And the angles BAG, EDF hetween the directions of these

sides are equal,

Then the triangle ABC may be conceived to be moved,

[A 1], and placed upon DEF, so that the corner A falls upon

D, the side AB upon DE and, since the angles BAC, EDF are

equal, the side AG upon the side DF.

And since AB is equal to DE and AC to DF, the corner B
will fall upon E, and C on F.

Therefore BC will coincide with EF [I. 1] and consequently

the triangles are congruent. [D 14.

Therefore, If two triangles &c. q. e. d.

Corollary. Hence if two sides of a triangle are equal, two of

its angles, namely, those between the directions of the equal sides

and the third side, are equal.

For ii AB in the above proof had been equal to AC, the

triangle ABC might also have been moved so that AB fell on

DF, and AC on DE, and the triangles would also have been

congruent so. Hence both the angles ABC and ACB would be

shown to be equal to DEF, and therefore to each other.
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Pkoposition XI.

// two triangles have two angles of the one respectively equal

to two angles of the other, and have two corresponding sides

equal, they shall be congruent to each other.

For if ABC, DBF be two triangles which have two angles

of the one respectively equal to two angles of the other,

Then since the sum of the three angles of every triangle is

a straight angle, [I. 8.

The third angles of the two triangles are also equal.

Hence if BG, EF are corresponding equal sides,

The triangle ABC may be conceived to be moved [A 1] and

placed so that the corner B falls on E, the side BG on EF, and

since the angle ABG is equal to the angle DEF, the side BA
upon the side ED.

Then since BG is equal to EF, G will fall upon F\ and

since A is in BA, it will fall upon ED, or ED produced.

Hence if a straight line through F be twisted from the

direction FE towards the direction FD [I. 4], measuring the

angle EFD [I. 5], and always intersecting ED, or BA, it will

also measure the angle BGA. And since the angles EFD,
BGA are equal, it must reach FD and GA both at once.

Therefore A must coincide with D, and the triangles be

congruent.

Therefore If two triangles &c. q. e. d.

Corollary. Hence if two angles of a triangle are equal, the

two opposite sides are equal.

For if the angle ABG in the above proof had been equal to

the angle AGB, the triangle ABG might also have been moved

so that G fell upon E, and B on F, and the triangles would also

have been congruent so. Hence both the sides AB, AG would

be shown to be equal to DE, and therefore to each other.
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Proposition XII.

The greater side of every triangle is opposite to the greater

angle,

And conversely, the side which is opposite to the greater

angle is the greater side.

For if one side ^C of a triangle ABC be greater than

another AB,

There must be some point D between A and C such that

AD is equal to AB, Join BD. [A 2.

Then because Z) is in AG between A and C, the direction

BD is intermediate between and dependent upon the directions

BA, BG. [I. 4.

Therefore the angle ABC is greater than the angle ABD.

_ _ [1.5 c.

But since the sides AB, AD of the triangle ABD are equal,

The angle ABD is equal to the angle ADB. [I. 10 c.

And as the angle ADB is an exterior angle of the triangle

BGD, it is greater than the interior opposite angle BGD.
[I 8 c. (ii).

Much more therefore is the angle ABG greater than the

angle ^Oi), or ^(75.

Therefore the greater side of every triangle is opposite the

greater angle.

And conversely, the side which is opposite to the greater

angle is the greater side.

For, if not, it must be either equal to or less than the other.

But if it were equal, the opposite angles would be equal

[I. 10 c], whereas they are not.

And if it were less, the angle opposite to it would be the

less (see above), whereas it is the greater.

Therefore The greater side &c. Q. E. D.
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Proposition XIII.

If two triangles have two sides of the one respectively equal

to two sides of the other, hut the angle between the directions of

those sides greater in the one triangle than in the other, the third

side of theformer tHangle shall he greater than the third side of

the other.

And conversely, if the third side of the one triangle he

greater than the third side of the other, the angle opposite to

it in the former triangle shall he greater than the corresponding

angle of the other.

For if the sides AB, AG oi dt, triangle ABC are respectively

equal to the sides DE, I)F of a triangle DEF,
But the angle BAG be greater than the angle EDF,
Then, of the sides AB, AG, one must be not less than the

other. Suppose AG to he that one.

Through A conceive a straight line to be twisted from A B
towards AG, always intersecting BG in X [I. 5], until it has

described an angle equal to EDF.

A

Then since the angle EDF is less than the angle BAG, X
will be between B and G. [I. 5 c.

Then since AG \& not less than AB, the angle ABG is not

less than the angle AGB. [I. 12.

And since AXG is the exterior angle of the triangle ABX,
The angle AXG is greater than the interior opposite angle

ABG. [I. 8 c. (ii).

Therefore it is greater than the angle AGB.
Therefore the side AG oi the triangle AXG is greater than

the side AX. [I. 12.

Hence if G be the point in AX, in the same direction from

A SiQ X is, and at the same distance from it as G, the point X
will be between A and G.

Therefore the direction GX is intermediate between and

dependent upon the directions GA and GG. [I. 4.

D. 4
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Therefore the angle AGG is greater than the angle XGG.
[I. 5 c.

And similarly, because X is between B and (7, the angle

BGG is greater than the angle XGG. [I. 5 c.

But since J.G^ is equal to AG,
The angle AGG is equal to the angle AGG. [I. 10 c.

Therefore the angle BGG is greater than the angle AGG
and much more therefore is it greater than BGG. (See above.)

Therefore the opposite side BG of the triangle BGG is

greater than the side BG. [I. 12.

But since the sides AB, AG oi the triangle ABG are

respectively equal to the sides DE, DF of the triangle DEF,
and the angle BAG is equal to the angle EDF,

Therefore the triangles are congruent, and BG is equal to

EF. _ [I. 10.

Therefore BG is greater than EF.

And conversely, if BG is greater than EF, the angle BAG
shall be greater than the angle EDF.

For, if not, it must be equal or less.

But if it were equal BG would be equal to EF [I. 10],

which it is not,

And if it were less, BG would be less than EF (see above),

whereas it is greater.

Therefore the angle BAG must be greater than the angle

EDF.
Therefore If two triangles &c. Q. e. d.

Proposition XIY.

If tiuo triangles have the three sides of the one respectively

equal to the three sides of the other, they shall be congruent.

For if one angle of the one were either greater or less than

the corresponding angle of the other, the side opposite to this

angle would be greater or less than the corresponding side of

the other triangle, whereas it is equal to it. [I. 13.

Therefore the angles between the directions of any two

sides of the one triangle must be equal to the angle between

those of the two sides equal to them of the other triangle.

Hence the triangles are congruent. [I. 10.

Therefore If two triangles &c. Q. E. D.
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Pkoposition XV.

If two triangles have two sides of the one respectively equal to

two sides of the other, and an angle of the one triangle opposite

one of those sides equal to that opposite the equal side of the

other triangle, then the angles of the two triangles opposite their

other equal sides shall either he equal, or their sum shall be a

straight angle.

For if two sides AB, AG of a triangle ABC are respectively

equal to two sides DE, DF of a triangle DEF, and if the

angles ABC, DEF opposite the equal sides AG, DF be equal,

The triangle ABG may be conceived to be moved [A 1]

and placed so that the corner B falls on E, BA on ED, and

BG on EF, since the angle ABG is equal to DEF.
And since AB i^ equal to DE, A will fall upon D.

And since G falls on EF, either it falls upon F, and the

triangles are congruent,

Or else it falls at some other point G in EF, and DGF is a

triangle.

Of the two points G and F, one of them, say G, must be

between the other and E.

Then since the sides DG, DF of the triangle DGF are

equal, the angle DGF is equal to the angle DFG. [I. 10 c.

But the sum of the angles DGE, DGF is a straight angle.

[I. 6 c. (i).

Therefore the sum of the angles DGE, that is AGB, and

DFE is a straight angle.

Therefore If two triangles &c. q. e. d.

Corollaries. Hence (i) if besides the conditions in the enun-

ciation it is known that the doubtftd angles are either both

greater, or both less, than a right angle, the triangles are

congruent ; for then the sum of the doubtful angles cannot be

a straight angle.

4—2
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(ii) If the known equal angles are either right angles, or

greater than right angles, the triangles are congruent ; for since

the sum of the known and the doubtful angle in either triangle

is less than a straight angle [I. 8 c. (ii)], both the doubtful

angles must be less than right angles.

(iii) Or, if it is known that one of the doubtful angles is a

right angle, the triangles are congruent ; for then in either case

the other doubtful angle is a right angle and therefore the

triangles are congruent. [I. 11.

Proposition XVI.

Any two sides of a triangle are together greater than the

third.

For if ABG be any triangle,

Then if its sides are all equal, obviously any two of them

together are greater than the third.

But if not, one of them, say AB, must be not less than

either of the others, and greater than one of them, say A G.

Then there must be some point D between A and B, at

the same distance from J. as (7 is. Join CD. [A 2.

Then since the sides AG, AD of the triangle AGD are equal,

The angles AGD, ADG are equal. [I. 10 c.

And therefore since their sum is less than a straight angle,

each of them is less than a right angle. [I. 8 c. (ii).

But the sum of the angles GDB, GDA is a straight angle.

[I. 6 c.

Therefore the angle BDG is greater than a right angle.

And the sum of the angles BDG, BCD is less than a straight

angle. [I. 8 c. (ii).

Therefore the angle BGD is less than a right angle.

Therefore the angle BDG is greater than the angle BGD.
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Therefore the side BG of the triangle BCD is greater than

BD. _ _ [I. 12.

To these unequals add the equals AG and AD respectively.

Therefore BG, GA are together greater than BD, DA, that

is, than BA.
And since no side of the triangle is greater than BA, any

two sides of the triangle are together greater than the third.

Therefore ^ni/ ^wo &c. Q. E. D.

Corollary. Hence a straight line is the shortest path between

two positions. For any other path may, within any assignable

limits of accuracy, be supposed to be made up of a succession

of short straight lines. And instead of traversing such a

cornery path, it would, by this proposition, always be shorter

to miss out the next coming corner, and to go straight to the

next but one. A fortiori would it be shorter to miss out all

the corners, and go straight from the one position to the other.

(Note. This is why the distance between two positions

was defined as the amount of transference along a straight line

between them.)

Proposition XVII.

Any two of the angles between three independent directions

are together greater than the third.

For if be any position, and if straight lines OA, OB, OG
be conceived extending from it in any three independent

directions,

Then, if the three angles between them are all equal,

obviously any two of them are together greater than the third.

But if not, one of them, say AOB, must be not less than

either of the others, and greater than one of them, say AOG.

Conceive a straight line [A 2] joining any two points A
and B in the given directions from 0, and conceive a straight

line to revolve from OA towards OB, always intersecting AB
in D, until the angle AOD is equal to AOG. [I. 5.

Then D will be between A and B, since the angle AOB is

greater than AOG. [I. 5 c.

Let G be the point in the third given direction from 0, at

the same distance from it as D is. Join GA, GB. [A 2.
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Then since the direction 0(7 is independent of the directions

OA, OB ; 00 cannot intersect AB, and is not in AB. [I. 4.

Therefore ACB is a, triangle. [D 12.

Therefore AG, GB are together greater than AB. [I. 16.

And since the sides OA, 00 of the triangle OAO are

respectively equal to the sides OA, OD of the triangle OAD,
and the angle ^00 is equal to the angle A OB,

The triangles are congruent, and therefore AC is equal to

AJb. [I. 10.

But AG, GB are together greater than AB, DB,

(See above.)

Therefore GB is greater than DB.

But the sides OG, OB of the triangle OBC, are respectively

equal to the sides OD, OB of the triangle OBD.

Therefore the angle COB is greater than the angle DOB,
[I. 13.

To each of these unequals add the equals AOG, AOD re-

spectively.

Therefore the angles BOG, COA are together greater than

BOD, DOA, that is, the angle BOA. [I. 5 c.

And since none of the three angles are greater than BOA,
any two of them are together greater than the third.

Therefore Any two &c. Q. E. D.

Corollary. Hence the shortest way of twisting a straight line

from one direction to another is as in measuring the angle

between them.

For any other way of twisting it may, within any assignable

limits of accuracy, be supposed to be made up of a succession

of short twistings as in measuring the angles between a series

of directions. And instead of twisting it through such a

succession of directions it would, by this proposition, always be

shorter to miss out the next coming direction, and to twist it
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as if measuring the angle to the next but one. A fortiori

would it be shorter to twist it at once as if measuring the

angle from the first direction to the last.

(Note. This is why an angle was defined as the amount

of twisting through a continuous series of directions inter-

mediate between and dependent upon the extreme directions.)

Proposition XVIII.

The sum of the angles between any three independent direc-

timis is less than two straight angles.

For if be any position and if straight lines be conceived

through extending in any three independent directions

OA, OB, OG to points A, B, G,

Join AB, BG, GA
;

Then since the direction OA is independent of the direc-

tions OB, OG ; OA cannot intersect BG. [I. 4.

And since AO does not intersect BG, the direction AO is

independent of the directions AB and AG. [I. 4.

Therefore the angles OAB, OAG are together greater than

BAG. [I. 17.

Similarly the angles OBA, OBG are together greater than

ABG and the angles 0GB, OGA are together greater than BGA.
Therefore the six angles OAB, OAG, OBA, OBG, 0GB,

OGA together, are greater than the three angles of the triangle

ABG,
That is, than a straight angle. [I. 8.

To each of these unequals add the three angles AOB, BOG,

GOA,
Then the nine angles of the three triangles OAB, OBG,

OGA, that is, three straight angles, are together greater than

one straight angle together with the three angles AOB, BOG,
GOA.
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Therefore these three angles are together less than two

straight angles.

Therefore The sum &c. Q. E. D.

Proposition XIX.

One, and only one, straight line can he conceived to a given

straight line from a given point without it, in a direction per-

pendicidar to it.

For if be any point outside a straight line AB,
Let G, D be any two points in AB. Join 0(7.

Then if the angle OCA is equal to the angle 0GB, OG is

perpendicular to AB. [D 11.

But if not, then since the sum of the angles OGA, 0GB is

a straight angle [I. 6 c. (i)], one of them must be greater and

the other less than a right angle. [D 9.

Let 0GB be the one that is less than a right angle.

Since every straight line through in a direction dependent

on the directions OG and OD either intersects AB, or is parallel

to it, [I. 4
If a straight line OP through revolve from OG towards

B, remaining in directions dependent upon OG and OD, it will

continue to intersect AB ow that side of G on which B is, until

it is parallel to AB,
That is, until the sum of the angles POG, 0GB is a straight

angle. [I. 9 c.

But since the angle GB is less than a right angle, before

this OP will reach a direction such that the sum of the angles

POG, 0GB is a right angle. In this direction let it intersect

AB in E.

Then OEB is the exterior angle of the triangle OGE and
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is therefore equal to the sum of the two interior opposite

angles EGG, GGE [I. 8 c. (i)], that is, to a right angle.

But the sum of the angles GEB, GEA is a straight angle

[I. 6 c], that is, two right angles. [D 9.

Therefore the angles GEB, GEA are equal, and OE is

perpendicular to AB. [D 11.

But no other straight line from G \>o AB can be so, for if

one as GD were, the angles GDE, GED would be both right

angles, and therefore their sum a straight angle, whereas being

interior angles of a triangle their sum must be less than a

straight angle. [I. 8 c. (ii).

Therefore Gne, and only one, &c Q. E. D.

Proposition XX.

The shortest path to a straight line from a point without it is

the straight line perpendicular to it.

And of all other straight lines to it from the given point,

those tuhich meet it at equal distances from the foot of the

perpendicular are equal, and those which meet it nearer the foot

of the perpendicular are shorter than those which meet it farther

off.

For if be any point outside a straight line AB,

A D F C E B

Conceive a straight line GO from to (7 in ^i^, in a

direction perpendicular to AB. [I. 19.

Conceive a straight line from to any other point D in AB.

Then since GDC is a triangle, the sum of the angles GDC,
GOD is less than a straight angle. [I. 8 c. (ii).

But the angle GOD is half a straight angle. [I. 6 & D 11.

Therefore the angle GDC is less than half a straight angle,

and therefore less than GOD.

Therefore the side 0(7 of the triangle GGD is less than the

side GD. [I. 12.
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Therefore 00 is the shortest straight line, and a fortiori

the shortest path from to AB. [I. 16 c.

And if E be any other point in AB at the same distance

from 8iS D is,

The sides 00, GD of the triangle OOD are respectively

equal to the sides 0(7, GE of the triangle OGE, and the angles

OOD, OGE are equal.

Therefore the triangles are congruent, and OD is equal to

6e. [I. 10.

And if F be any point nearer to than D or E is, say on

the same side as D,

Then it may be shown as above that the angle OGF being

a right angle, the angle OFG is less than a right angle.

[I. 8 c. (ii).

Therefore the angle OFD is greater than a right angle.

But the angle ODF is less than a right angle, and therefore

less than OFD.
Therefore the side OF of the triangle OFD [I. 12] is less

than the side OD.

Therefore The shortest 'path &c. Q. E. D.

Proposition XXI.

The straight lines which join those extremities of two equal

and parallel straight lines which lie in opposite directioris from
the others, bisect one another ;

And those which join those extremities which lie in the same

directions from the others, are themselves equal and parallel.

For if AB, GD be two equal and parallel straight lines, the

direction from A io B being the same as that from to D,

Then if a straight line through A be conceived to revolve

from the direction AG towards AD and so on, remaining

always in directions dependent on AG and AD, it will continue

to intersect GD on the same side of (7 as D is, until it is

parallel to GD, that is, coincident with AB. [I. 4.

Therefore the direction AD is intermediate between, as

well as dependent upon, the directions AG, AB.

Therefore AD must intersect GB between G and B, in 0,

say. [I. 4.
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Similarly GB intersects AD between A and D, in 0.

Then, since the directions AB, AD are respectively opposite

to the directions DC, DA,
The angle BAO is equal to the angle GDO. [I. 7.

Similarly the angle ABO is equal to the angle DOO,

And the sides AB, CD of the triangles GAB, ODG are equal.

Therefore the triangles are congruent. [I. 11.

Therefore AG is equal to GD and BG to GG, that is, AD,

GB bisect one another in 0.

And since GA is equal to GD and GB to GG, and the

angles AGG, DOB of the triangles AGG, DGB are equal.

Therefore the triangles are congruent. [1. 10.

Therefore -4(7 is equal to BD,
And the angle AGB is equal to the angle GBD.

Hence the two straight lines AG, BD each intersect each of

the intersecting straight lines ADy BG in separate points, and

their directions GA, BD on opposite sides of one of these

straight lines, make equal angles with its opposite directions

GB, BG.

Therefore they are parallel. [I. 9.

And they have been shown to be equal.

Therefore The straight lines &;c. Q. E. D.

Proposition XXII.

The perpendicular distance of any point in a straight line

from a straight line parallel to it, is constant.

For \i A, B be any two points in a straight line to which a

straight line GD is parallel,

Conceive the straight line AG from A to GD perpendicular

to GD, [I. 19.

And let D in GD be in the same direction from C as J5 is

from A, and at the same distance from it.
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Then AB, CD are equal and parallel straight lines.

AB.

Therefore also AG and BD are equal and parallel. [I. 21.

Therefore BD is the perpendicular to CD, and is equal to

Therefore The perpendicalar &c. Q. E. D.

Proposition XXIII.

The opposite sides and angles of a parallelogram are equal

to one another.

For if ABDG be a parallelogram, AB \^ parallel to Gl).

[D 13.

Let X in CD be the point in the same dii'ection from G as

B is from J., and at the same distance from it,

Then AB, GX are equal and parallel straight lines.

Therefore AG and BX are equal and parallel straight lines.

[I. 21.

But BD is parallel to AG. [D 13.

Therefore BX and BD extend in the same directions from

B, and they are therefore one and the same straight line. [I. 1.

And as both X and D are in GD also, thej^ must be one

and the same point. [I. 1.

Therefore AB and GD are equal, as also are AG and BD.

And since AB is parallel to GD, the sum of the adjacent

angles of the parallelogram BAG, AGD is a straight angle.

[I. 9 c.
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And for the same reason the sum of the angles AGD, GDB
is also a straight angle.

Therefore the angle BAG is equal to the angle GDB.
And similarly the angle AGD is equal to the angle DBA,
Therefore The opposite sides &c. Q. e. d.

Corollaries, (i) Hence if it is possible for a point to move

from one position to another by nfioving certain distances in two

given directions successively, these movements may be taken in

either order.

(ii) Therefore also, if it is possible for a point to move from
one position to another by moving certain distances in any

number of given directions, these movements may be taken in

any order whatever. For any desired change of order may be

effected by repeatedly interchanging the order of two conse-

cutive movements. We see therefore that the dependence or

independence of a given direction on certain other directions,

is an intrinsic relation between the directions, and has nothing

to do with the magnitude, or order of the transferences selected

to test it by.

(iii) If two adjacent sides of a parallelogram are equal, all

its sides are equal. Such a figure is called a rhombus.

(iv) If two adjacent angles of a parallelogram are equal,

all its angles are equal, and they are all right angles. For the

sum of two adjacent angles is a straight angle. Such a figure

is called a rectangle. A figure which combines both the

properties of a rhombus and a rectangle is called a square.
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on planes and space.

Lemma.

If each, one of any group of directions is dependent upon a

certain number of them, each of which is independent of the

remainder in that number ; then each one of the luhole group of

directions is dependent upon any similar number of independent

directions chosen fi^om among the group.

Let the letters of the alphabet ab z denote the direc-

tions in the group, and let a certain number of them, ah k

say, denote the certain number of directions, each of which is

independent of the remainder, upon which all the directions

are dependent.

The proposition will be proved by showing that for any

one, a, of the independent directions a—k, we may substitute

any one, z, of the remainder, and each one of the whole group

will be dependent upon b—k and z\ provided only that z is

independent of 6

—

k.

For by hypothesis, z is dependent upon a—k.

Therefore it is possible to move a point from some position

B

A

A to another Z, by a straight line AZ extending in the direction
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z, or by a succession of straight lines AB, BG, CD KZ in

the successive directions a,b,c k. [Do.

The distances to be moved along some of these lines may

perhaps be zero, but since the direction z is independent of the

directions h—k, the distance along AB cannot vanish, for else

it would be possible to move a point from A to Z hy straight

lines in directions b—k only.

Therefore it is possible to move a point from A to j5 by a

straight line in the direction a, or else by straight lines AZ,

ZK DC, CB in directions z and k c, h, respectively.

Therefore the direction a is dependent upon the directions

z and h—k. And if x be any other direction whatever in the

group, then by hypothesis a movement in direction x may be

replaced by movements along straight lines in directions a— k.

But we have already seen that a movement along a straight

line in direction a may be replaced by movements along

straight lines in the directions z and h—k.

Therefore a movement in direction x may be replaced by

movements along straight lines in directions z and h—k, for

the order of the movements is indifferent. [I. 23 c. (ii).

Therefore If each one &c. Q. E. d.

Note. We see from this proposition that directions may be

classified in groups, as follows

:

(a) Groups dependent upon one independent direction.

Such a group contains only two directions, the given direc-

tion, and the one opposite to it. But there are any number of

such groups (see A 3).

(b) Groups dependent upon two independent directions.

Such a group contains all the directions in which a straight

line extends while revolving to measure a straight angle.

There are also any number of such groups (see A 3).

(c) Groups dependent upon three independent directions.

Material space, as we ordinarily conceive it, consists of only

one such group, and it is with such a space that we are here

concerned (see A 3).

Such groups may, for brevity, be spoken of as groups of one,

two, or three independent directions.
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Additional Acdom.

III. Space may be conceived as extending from every posi-

tion in it in three and only three independent directions.

[Since (Ax. II.) a straight line may be conceived to extend

in any given direction from any given position, all directions

conceived by virtue of Axiom III. belong to one group of three

independent directions, and the directions in which space extends

are the same from every position in it.]

Further definitions.

16. A continuous series of positions extending from each

one of them in a complete group of one, two, or three indepen-

dent directions, is called a ' spread! If the directions in which

it extends from every position in it are the same, it is called a

regular spread.

17. A spread of one independent direction is called a line,

and a regular spread of one independent direction a straight

line (see also D 4). If however the directions in which it

extends vary gradually from point to point in the line, it is

called a curved line.

18. A spread of two independent directions is called a

surface, a regular spread of two independent directions a plane

surface, or merely a plane. If however the directions, or some

of them, in which it extends vary gradually from point to point

in the surface, it is called a curved surface.

19. The spread of three independent directions called space

is a regular spread (see A 2, 3). Any limited portion of it is

called a geometrical solid.

20. A dimension is a measurement made upon a figure

with a view to determining its size.

21. Linear dimensions are measures of the extension of

portions of spreads of one independent direction, that is, of

lines.

22. Among linear dimensions, length, breadth, and thick-

ness, are measured along three straight lines in independent

directions. Circumference is measured round a closed line

surrounding the figure, &c.
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23. Superficial dimensions are measures of the extension

of portions of spreads of two independent directions, that is,

of surfaces.

24. Among superficial dimensions plane areas are measured

over planes, and curved areas over curved surfaces, &c

25. Volumetric dimensions or volumes are measures of the

extension of portions of spreads of three independent directions,

that is, of solids. Since by Axiom III. we have only conceived

one such spread, we need only conceive one kind of volume.

26. If two planes intersect in a straight line, the angle

between directions in each perpendicular to that straight line

is called the angle between the planes.

27. A tetrahedron is a figure consisting of six straight lines

joining four points, which are not in one plane, two and two.

28. A parallelepiped is a figure consisting of twelve straight

lines forming the intersections of three pairs of parallel planes.

(The terms tetrahedron and parallelepiped are often also

used to denote the envelopes formed by the planes in which

these straight lines are, or the geometrical solids which they

enclose.)

29. Two positions are said to be on opposite sides of a

point when they lie in opposite directions from it; in other

words, when the point is in the straight line joining the posi-

tions, and between them

;

So two positions are said to be on opposite sides of a line or

surface if the straight line joining them intersects the line or

surface once between them

;

But if the line or surface intersect the straight line joining

the positions twice between them, each of the positions is on

the opposite side of the line or surface to a position in the

straight line between the two intersections, and they are there-

fore on the same side of the line or surface as each other.

So generally, two positions are said to be on the same, or

opposite sides of a line or surface, according as the straight

line joining them intersects that line or surface an even or an

odd number of times, between them.

NOTE.

With reference to the dej&nitions of the words parallel and perpen-

dicular, the reader is requested to observe that they apply equally to

D. 5
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planes, or to a plane and straight line. Thus one plane is parallel to

another if it extends in all the same directions as it. So a plane is parallel

to a straight line if it extends in its two directions ; but it would not be

accurate on this definition to speak of the straight line as parallel to a

plane. From the definition of perpendicular, it is not strictly accurate

to talk of anything but a direction as perpendicular to anything. But

since if two straight lines are at right angles, each of the directions of

either is perpendicular to the other, the straight lines, may be called

perpendicular. So with a straight line and a plane. But it would be

wrong to speak of two planes which are at right angles, as perpendicular to

each other.

A plane is denoted by three letters denoting three points in it which

are not in a straight line (see ii. 3).

Pkoposition I.

A 'plane may he conceived through any given position extend-

ing in any two given independent directions.

For if be a given position,

Then straight lines may be conceived through to points

^, -B, in the given directions from 0. [A 2.

And a transverse straight line may be conceived joining

AB. [A 2.

And straight lines may be conceived from to every point

in AB, and also one through parallel to AB. [A 2.

These straight lines are all in directions dependent upon

the directions OA, 05, and their directions include. all which

are so dependent. [I- 4.

And the directions form a continuous series. For clearly

those of the straight lines which intersect AB form a continuous
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series, since the positions 'va. AB form a continuous series. [D 4.

And the remaining directions, namely, the two in which AB
extends, form part of the continuous series, the straight lines

in which intersect any other transverse straight line AB' not

parallel io AB.
Therefore a continuous series of positions has been conceived

extending from in a complete group of two independent

directions, dependent on the directions OA, OB.

Moreover, it extends from any other point P in it in the

same, and no other directions.

For, since the straight line OP is wholly in the series of

positions, it extends from P in the directions PO and OP.

And if it extends from in any other direction to any

point X,

Through P conceive a straight line PY parallel to OX, and

let F be any point in it. Join Y. [A 2.

Then since it is possible to move a point from to F by

the straight line OY, or else by the straight lines OP, PY,
The direction OF is dependent on the directions OP, PY,

[D 5.

That is, on the directions OP, OX.

But each of these is dependent on the directions OA, OB.

Therefore the direction OF is dependent on the directions

OA and OB. [Lemma.

Therefore the point F is in the series of positions.

Similarly any point in PF is in the series of positions.

Therefore the series extends from P in the direction PY, that

is, the direction OX, and so in any direction in which the series

extends from 0.

And it extends in no other direction.

For if it extends in any direction PZ, and Z be any point in

this direction from P, in the series of positions.

Then the direction OZ is dependent on the directions OA,
OB, as also is the direction OP.

Therefore the direction PZ, which is dependent on the

directions OP, OZ, is dependent on the directions OA, OB.

[D 5, Lemma.
Therefore A plane may he conceived &c. q. e. d.

Corollaries, (i) Hence an unterminated straight line may
be conceived to revolve in a plane about, a fixed point in itself,

5—2
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describing an angle, and before it has completed a straight angle

it will have passed once, and only once, through every point in the

plane. •

(ii) Hence also any number of straight lines through a

fixed point, in a plane, may be conceived to revolve similarly, and

if they revolve at the same rate their situations relative to each

other will remain unaltered.

(iii) And therefore any portion of a plane may be con-

ceived to revolve in that plane, round any fixed point in it, and

may therefore be moved to any part of the plane without any

alteration of shape or size, so far as this can be accomplished by

translation and such rotation alone.

Proposition II.

If a straight line intersect a plane which is parallel to it, or

if a straight line intersect any plane in two separate points, it is

wholly in the plane.

For if a straight line intersect a plane which is parallel to

it, a point moving from the intersection in either of the

directions in which the straight line extends would move along

the straight line, and also along the plane, for both extend in

these two directions. [D 10.

Therefore the straight line is wholly in the plane.

And if a straight line intersect a plane in two separate

points, both straight line and plane extend in the directions

from one of the points to the other, and the straight line

extends in no other directions.

Therefore the plane is parallel to the straight line and

therefore, as above, it wholly contains it.

Therefore If a straight line &c. Q. e. d.

Proposition III.

One plane, and only one, can be conceived through—
(i) any three points which are not in a straight line

;

(ii) any straight line, and a point without it

;

(iii) any tiuo straight lines which intersect one another

;

(iv) any two parallel straight lines.

For (i) since the three points are not in a straight line,
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The directions from one of them to the other two are

independent directions [D 5], and therefore a plane may be

conceived through this point extending in those independent

directions, and it will contain the other two points. [II. 1.

And any plane containing the three points must also extend

from the first point in the directions of the other two, and

therefore be one and the same plane.

(ii) Any two points being taken in the straight line, one

and only one plane can pass through these and the given point,

and as the straight line intersects this plane in two separate

points it is wholly in it.
.

[II. 2.

(iii) Besides their point of intersection a point may be

selected in each of the intersecting straight lines, and one and

only one plane conceived through these three points (see above)

which will contain both the straight lines. [II. 2.

(iv) Any point being selected in one of the parallel straight

lines, one and only one plane may be conceived through this

point and the other straight line (see above), and since this

plane is parallel to the first straight line, and the straight line

intersects it, it is wholly in it. [II. 2.

Therefore One plane, and only one &c. Q. E. D.

Proposition IV.

Two unterminated st^^aight lines in a plane either intersect or

are parallel.

For if AB, CD be any two unterminated straight lines in a

plane, which are not parallel,

Conceive a straight line [A 2] joining any point A in one

and any point (7 in the other.

Then the plane extends from A only in the independent

directions AB, CD, and in directions dependent upon them.

[D18.
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.

Therefore since it extends in the direction A G, this direction

is dependent upon the directions AB, CD.

Therefore since it is possible to conceive a point to move
from A to G along AG it is possible to conceive it to do so

along straight lines in the directions AB, CD. [D 5.

Therefore the straight lines AB and GD, which are in those

directions, must intersect each other.

Therefore Two unterminated &c. Q. E. D.

Proposition V.

Any straight line, to which a plane is not pay^allel, intersects

that plane in a single point.

For if ^5 be any straight line, and GDE a plane which is

not parallel to it,

Conceive a straight line joining any point ^ in ^5 to any

point G in GDE.
Then since the plane is not parallel to AB, the direction

AB is independent of the directions GD, GE in which the plane

extends.

Therefore the direction AG i^ not independent of the three

independent directions AB, GD, GE. ' [A3.

Therefore, since it is possible to conceive a point to move
from A to G along AG, it is possible to conceive it to do so

along straight lines in the directions AB, GD, GE. [D 5.

The first of these motions is along the straight line AB, and

the others along straight lines in the plane GDE,
Therefore AB and GDE intersect,

And since the plane GDE is not parallel to AB, AB i^ not

wholly in it. [D 18.

Therefore it cannot intersect it in more than one point. [II. 2.

Therefore Any straight line &c. Q. E. d.
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Proposition VI.

Two 'parallel planes cannot intersect one another,

And any two plants which are not parallel intersect in a

straight line.

For if two planes which are parallel had a common point,

each would extend from that point in all the same directions,

and they would therefore be one and the same plane. [D 10.

But if they are not parallel, let J. be a point in one of them,

ABC, which is not in the other, DEF.

Then the plane DEF cannot extend in both the independent

directions AB, AG, for it is not parallel to the plane ABC.
[D 10.

Let it therefore not extend in the direction AB,
Therefore a straight line AB will intersect it in a single

point P. [II. 5.

And if the plane DEF extends in the direction AG, Sb

straight line through P in this direction is wholly in both

planes. [II. 2.

But if not, a straight line A also intersects the plane GDE
in a single point Q [II. 5], which is not the same as P, since A
is the only point common to AB and AC [I. l],and A is not in

the plane GDE.
Therefore a straight line PQ intersects both planes in two

separate points, and is therefore in both of them. [II. 2.

And no point outside this straight line can be in both

planes, or they would be one and the same plane. [II. 3.

Therefore Two parallel planes &c. q. e. d.

Corollary. Two planes cannot enclose a space.
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Proposition VII.

If a plane intersect two parallel planes it does so in two

parallel straight lines.

For if it intersects them at all, it does so in two straight

lines. [II. 6.

And these straight lines being in one plane must either

intersect or be parallel. [11. 4.

But they cannot intersect, since they are in parallel planes,

which do not intersect. [II. 6.

Therefore they are parallel.

Therefore If a plane &c. Q. E. D.

Proposition VIII.

If a direction he perpendicidar to each of two iiitersecting

straight lines, it is perpendicular to a plane determined hy them.

For if a direction be perpendicular to each of two straight

lines AO, BO which intersect in 0,

Through conceive a straight line GOG' in this direction

and let G, G', be any two points in it equidistant from 0.

And if OP be any other direction in which the plane extends

which is determined by OA, OB,

Through P a straight line may be conceived in the plane

which is not parallel to OP, OA, or OB [II. 1 c. (i)], and which
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therefore does not pass through 0, but which does intersect OA,

and 05, in two separate points A and B, [II. 4.

Join the points G, C to the points A, B, and P.

Then since the direction 0(7 is perpendicular to AO, the

direction AG is also perpendicular to GGG'.

Therefore A is equidistant from the points 0, G', which are

equidistant from 0, the foot of the perpendicular. [I. 20.

Similarly it may be shown that B is equidistant from G, G\

Therefore in the triangles AGB' , AG'B the sides J. 0, 05 are

respectively equal to the sides AG\ G'B and the side AB is

common.

Therefore the triangles are congruent. [I. 14.

But if the triangle AGB were placed so as to coincide with

AG'B, PO wou]d coincide with_PO'.

Therefore PG is equal to PG'.

And in the triangles PGO, PG'G the sides GO, CV are also

equal, and the side PO is common.

Therefore the triangles are congruent [I. 14] and the angle

POG is equal to the angle POG', and therefore each of them is

a right angle. [I. 6. c. (i).

Therefore the inclination of 00 to OP is the same as to OA
or OB. [1.6. c..(ii).

Thus the direction 00 is equally inclined to every direction

in which the plane determined by OA, OB extends.

Therefore the direction GO is perpendicular to the plane.

[D 11.

Therefore If a direction &c. Q. E. D.

Proposition IX.

In a plane, through any given point in it, one and only one

straight line can he conceived in a direction perpendicular to

a given straight line in the plane.

If the given point is without the given straight line the

proposition has already been proved [1. 19]; for the perpendicular

from the point to the straight line is in the plane containing

them.

But if not, a straight line through the given point may be con-

ceived to revolve in the given plane, starting from the directions
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of the given straight line, and describing an angle. And before

completing a straight angle it will have passed through every

point in the plane, and therefore have extended in every direction

in which it extends. [II. 1. c. (i).

And during this revolution, when it has twisted through

a right angle, its directions will be equally inclined to the

opposite directions of the given straight line [I. 6. c. (ii)] ; that

is, they will be perpendicular to it once [D 11]," and once only,

during the revolution.

Therefore In a plane &c. Q. E. D.

Proposition X.

Through any given point one, and only one straight line may
he conceived in a direction perpendicular to a given plane.

For if be the given point and OA a straight line through

in any direction in which the given plane extends.

Through conceive a plane [II. 1] OAB parallel to the

given plane, and in i-t conceive the straight line OB in a

direction perpendicular to OA. [II. 9.

Conceive any point in a direction from independent

of the directions OA, OB, [A 3.

Through 00, OB conceive a plane, and in this plane con-

ceive the straight line OD perpendicular to OB. [II. 3.

Then since the planes OBA, OBG, are not parallel, they

intersect only in the straight line OB. [II. 6.

Therefore the straight lines OD, OA are in independent

directions.

Through OA, OD therefore conceive a plane [II. 3], and in

this plane conceive the straight line OE, in a direction perpen-

dicular to OA. [II. 9.
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Then since the direction OB is perpendicular to the straight

lines OA and 02), it is perpendicular to the plane AOD, and

therefore to the straight line OE in this plane. [II. 8.

Therefore OE is perpendicular to OB, and it is so also to

OA, and therefore to the plane AOB, and to the given plane to

which AOB is parallel. [II. 8.

And if any other straight line OF through could be in a

direction perpendicular to the given plane, or to AOB,

A plane could be conceived through OE and OF [II. 3],

which would not be parallel to the plane AOB, and would

therefore intersect it in a straight line [II. 6], to which the

directions OE, OP would be perpendicular. [II. 8.

But the straight lines OE, OF are in one plane with this

intersection, and therefore cannot both be in directions perpen-

dicular to it. [II. 9.

Therefore Through a given point &c. Q. E. D.

Proposition XI.

Through any given point one, and only one plane may he con-

ceived to which a given direction is perpendicular.

For if be the given point and OA a straight line through

in the given direction.

Through conceive two more straight lines, [A 2], such

that the directions OA, OB, 00 are independent. [A 3.

Through OA, OB, and OA, 00 conceive two planes [II. 1],

and in them conceive the straight lines OD, OE in directions

perpendicular to OA. [II. 9.
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Since the planes AOB, A 00 are not parallel, they only

intersect in the straight line OA. [II. 6.

Therefore the du-ections OD, OE are independent. Conceive

a plane through OD, OE. [II. 3.

Then OA is perpendicular to both OD and OE, and there-

fore to the plane DOE. [II. 8.

And if it were perpendicular to any other plane through 0,

and F were any point in this plane and not in DOE,
Conceive a plane through OA, OF [II. 3]. Then this plane

would not be parallel to the plane DOE, and therefore it would

intersect it in a straight line OG. [II. 6.

And OA would be perpendicular to OF and OG.

But OF and OG are in the same plane as OA, and therefore

could not both be perpendicular to it. [II. 9.

Therefore Through any given point &c. Q. E. D.

Peoposition XII.

The shortest path to a plane from a point without it is a

straight line in a direction perpendicular to the plane.

And of all other straight lines to it from the given point,

those which meet it at equal distances from the foot of the per-

pendicidar are equal, and those which meet it nearer the foot of

the perpendicidar are shorter than those which meet it faHher off.

For if be any point outside a plane ABC,
Conceive a straight line OP [II. 11] in a direction perpen-

dicular to ABC. Then since ABG is not parallel to OP it

must intersect it in a single point P. [II. 5.

If OA be any other straight line to A in the plane, from 0,

O

then AP is in the plane [II. 2], and therefore OP is perpen-

dicular to P^. [D 11
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Therefore OP is less than OA. [I. 20.

Thus OP is the shortest straight line, and a fortiori the

shortest path from to the plane.

And if B be any other point in the plane, at the same

distance from P as ^ is.

Then the sides AP, PO of the triangle APO are equal to

the sides BP, PO of the triangle BPO respectively, and the

angle APO is equal to the angle BPO, since OP is perpen-

dicular to the plane APB.
Therefore the triangles are congruent, and OA is equal to

OB. [I. 10.

And if G be any point in the plane nearer to P than A,

Some point D in AP is at the same distance from P as (7 is,

and is therefore nearer than A is.

Therefore the straight line OD is equal to 00 (see above),

and less than OA. [I. 20.

Therefore also 00 is less than OA.

Therefore The shortest path &c. Q. E. D.

Proposition XIII.

The perpendicular distance of any point in a straight line

or plane from a plane which is parallel to it, is constant.

For ii A, Bhe any two points in a straight line or plane to

which a plane GDE is parallel,

Conceive a straight line J. in a direction perpendicular to

the plane GDE. [II. 11.
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Then as GDE is not parallel to AG, it will intersect it in a

single point G. [II. 5.

Through G conceive a straight line GD equal and parallel

to AB. [A 2.

Then since the plane GDE is parallel to AB, D will be in

this plane.

Join BD. Then BD is also equal and parallel to AG,

[I. 21.

Therefore it is the perpendicular from B to the plane GDE.

_ [11.10.

And it is equal to AG, the perpendicular from A.

Therefore The perpendicular distance &c. Q. E. D.

Proposition XIV.

An unterminated plane may he conceived to revolve round any

fixed straight line in it, describing an angle; and before com-

pleting a straight angle it will have passed once and only once

through every point in space.

For ii ABhQ any fixed straight line in a plane and any

point in it,

Conceive a plane GOD through 0, to which AB i^ perpen-

dicular. [II. 11.

Then a straight line XOY through may be conceived to

revolve in this plane, describing an angle. [II. 1 c.

And in every position of it a plane may be conceived

through it and AB. [II. 3.

And since as XOY revolves in the plane GOD, XOY is

always in a direction perpendicular to AB, the intersection of

any two situations of the plane.

Therefore the plane XOA in revolving describes an angle.
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[D 26], namely the same as that described by XOY in the

plane COD.
And if P be any point in space,

Through P conceive a plane PO'Q parallel to the plane

GOD. [III.

As this is not parallel to AB, it will intersect it in a single

point 0'. [II. 5.

And the plane XOA will intersect the parallel planes COD,
PO'Q in parallel straight lines XOY, X'O'Y. [II. 7.

Hence as the plane XOA revolves describing an angle,

X'O'Y' wdll revolve in the plane PO'Q describing the same
angle.

But as XO Y' revolves, before completing a straight angle

it will pass once and only once through every point in the

plane, and therefore through P. [II. 1 c. (i).

Hence as the plane XOA revolves, before completing a

straight angle it will pass once through P.

And it cannot pass through P except when X'O'Y' does, for

if it did, it would coincide with the plane P O'Q [II. 3] which it

does not, since it contains AB, which is not wholly in that

plane, but perpendicular to it.

Therefore An unterminated plane &c. Q. E. D.

Corollaries, (i) Hence also any number of planes through

a fixed straight line may he conceived to revolve similarly^ and if

they revolve at the same rate their situations relative to one

another will remain unaltered.

(ii) And consequently any geometrical solid may he conceived

to revolve in space round any fixed straight line in space, and

may therefore he moved from any one part of space to any other

y

without alteration of shape or size, so far as this can he accom-

plished hy translation and such rotation alone.

(iii) Hence any plane figure may he conceived to he moved

into any given plane, so that any point in it shall fall upon a

given point in that plane, any straight line through that point, on

a given straight line through the given point, and any other point

in it on either side of the given straight line in the given plane.

For any point in the figure may be moved to the given point

by a translation, that is, without altering the direction from

any one point to any other in the figure. And then the plane

of the figure and the given plane will intersect in a straight line,
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[II. 6], by a rotation round which the plane figure may be brought

into the given plane. The figure may now be rotated in the

given plane [II. 1 c. (iii)] round the given point till any straight

line through it coincides with the given straight line. And
lastly, if any other point in the figure is on the wrong side of

the given straight line, it may be brought on to the right side

by revolving the plane figure through a straight angle round

the given straight line.

This corollary shows that none of the movements of figures

we have conceived in the past propositions have been incon-

sistent with axioms II. and III.

Proposition XV.

It is impossible to pass fronn one side of an unterminated

surface in space to the other, luithout passing through the surface.

For if 0, P, be any two points on opposite sides of an

unterminated surface in space,

Then a straight line OP intersects the surface an odd

number of times between and P. [D 29.

The proposition will be proved by showing that however P
may move in space, if it does not pass through the surface, the

number of intersections between and P will always remain

odd, and can therefore never vanish.

For in whatever direction P may move, unless in the

direction of or the opposite direction, OP will commence to

generate a plane. [II. 1.

Therefore however P moves, except in the direction of or

the opposite, OP will describe a spread which from every point

in it extends in the same directions as a plane, that is, a surface.

And if P only moves in the direction of and the opposite,

the number of intersections between and P will remain

unaltered, unless P passes through one of them, that is, through

the given surface.

Therefore as P moves OP will generate a surface bounded

by the path of P, the point 0, and two situations of the straight

line OP.

And from any of the intersections of OP with the given

surface, this surface and that described by OP extend in all the

directions in which two planes would
;
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Their intersection therefore extends in all the directions in

which the intersection of two planes would

;

That is, in two opposite directions. [II. 6.

Therefore the intersection of the two surfaces consists of one

or more lines which are not terminated, unless by the boundaries

of the surface generated by OP.

Hence if A be one of the intersections between and P, as

OP revolves A will describe a continuous line on the surface

generated by OP, and the intersection A can only vanish if at

some point B this line bends back as OP moves forward,

And in this case, before reaching B, OP must have inter-

sected the continuous line traced by ^ in a second point A'

^

which therefore vanishes together with A as OP passes the

point B.

And the line described by A cannot be terminated in the

path described by P, unless P passes through the given surface,

nor can it be terminated at 0, since is not in the given

surface.

Thus as OP revolves the intersections can only appear or

disappear two at a time.

Therefore It is impossible &c. Q. e. d.

Corollary. In the same way it may he shown that in a plane

it is impossible to passfrom one side to the other of an untermi-

nated line without passing through the line.

Note. In this proposition contacts of the second order must be

counted double intersections, of the third order triple, &c. Also if the

given surface intersects or touches itself it must be counted double at such

D. 6
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points, &c. It is not necessary to discuss these special cases here, but

they might perhaps be a reason for omitting this proposition from an

elementary text-book.

Proposition XVI.

If two tetrahedra have their six corresponding sides respec-

tively equal, they shall be equal in every respect, that is to say,

the angles between the directions of corresponding sides shall be

equal, and the angles between corresponding plane faces shall

also be equal.

And if their corners are similarly situated with r^espect to

each other in space, they shall be congruent to each other.

For since the corresponding sides of the tetrahedra are

respectively equal, they consist of four pairs of corresponding

triangles, whose three sides are respectively equal.

Therefore these corresponding triangles are congruent to

each other. [1. 14.

Therefore also the angles between the directions of corre-

sponding sides which meet at a corner are equal, for they are

angles of corresponding triangles.

Conceive one of the tetrahedra to be moved and placed so

that one of its triangles coincides with the corresponding

triangle of the other, which is congruent with it. [A. 1.

Let ABC be this triangle, and D, ^the remaining corners

of the two tetrahedra.

Now since the triangles ADB, AEB are congruent (see

above),

If they were applied to each other so as to coincide, one
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perpendicular [I. 19] could be conceived from their common
corner D, or E, to the side AB, meeting it in one point P.

Therefore even though D, E do not coincide, the perpen-

diculars from them on AB meet it in the same point P.

Similarly, conceive perpendiculars from D and E on AG
meeting it in one point Q.

And in the plane ABC conceive straight lines through P
and Q in directions perpendicular to AB, AG respectively.

[II. 9.

These straight lines are not parallel, for if they were, in the

plane ABG two straight lines AB, AG through A would be in

directions perpendicular to the same straight line, which is

impossible.

Therefore they intersect in some point 0. [II. 5.

Join DO, EO,

Then as the direction AB \^ perpendicular to both PD and

PO it is perpendicular to a plane containing them [II. 8], and

therefore to DO in this plane.

Similarly the direction AG is perpendicular to DO.

Therefore the direction DO is perpendicular to both AB and

AG, and therefore to the plane ABG. [II. 8.

Similarly EO is perpendicular to the plane ABG.
But only one straight line may be conceived through a given

point, in a direction perpendicular to a given plane. [II. 10.

Therefore DOE is one straight line.

And since the triangles DAB, EAB are congruent,

(see above)

The perpendiculars DP and EP are equal.

And the side PO is common to the two triangles DPO,
EPO.

Also the angles DOP, EOP opposite the equal sides DP,
EP are equal, and moreover they are right angles.

Therefore the triangles are congruent [I. 15. c (ii)], and

therefore the angles DPO, EPO are equal.

But these angles are the angles between the planes DBA,
EBA, since PD, PO, PE are perpendicular to AB. [D 26.

So it may be shown that the angles between any two

corresponding planes are equal.

Through A conceive a straight line AR parallel to BG, to

any point R. Join DR, ER, OR,

6—2
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Then since DOE is perpendicular to the plane ABC (see

above), and OR is in this plane, it is perpendicular to OR,

Therefore RO is the perpendicular from R on DOE.

But it was shown above that the triangles DPO, EPO are

congruent. Hence D and E are equidistant from 0.

Therefore RD is equal to RE. [I. 20.

And also AD is equal to AE, and AR is common to the

triangles DAR, EAR.

Hence the triangles are congruent [I. 14], and therefore the

angle DAR is equal to the angle EAR.

Therefore the angles between the directions of corresponding

sides of the tetrahedra which do not meet at a corner, as the

sides BC, AD and BG, AE, are also equal.

And since it has been shown above that DO is equal to

EO, and is in the same straight line with it,

If the corners of the tetrahedra are similarly situated with

respect to each other, D and E will be on the same side of 0,

and will therefore be one and the same point.

Therefore the tetrahedra are congruent.

Therehve If two tetrahedra &c.
'

Q. E. D.

Corollaries, (i) Hence if two tetrahedra have three sides

meeting at one corner of the one respectively equal to the corre-

sponding three of the other, and have the three corresponding

angles between their directions respectively equal, they shall he

equal in every respect. For the third sides of each of the three

triangles meeting at the corner, will be respectively equal

also. [I. 10.

(ii) Or if they have the six angles of each, between the

corresponding sides which meet at two corners, respectively equal,

and the sides between those corners equal, they shall be equal in

every respect. For the other four sides meeting at those two

corners are respectively equal [I. 11], and therefore the tetra-

hedra are equal in every respect. [c. (i) above,

(iii) Hence a direction may be determined with reference to

two given independent directions by giving its respective inclina-

tions to them, if it is also known which side it is of a plane

determined by those given directiotis.
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Proposition XVII.

The four diagonals of a parallelepiped, that is, the four

straight lines joining its opposite corners, intersect in a single

point, which bisects each of them.

For a parallelepiped consists of the intersections of three

pairs of parallel planes. [D 28.

And each pair intersects each of the other planes in a pair

of parallel straight lines. [II. 7.

Hence the parallelepiped consists of twelve straight lines,

four of which extend in each of three independent directions,

Or of twelve straight lines joining eight points, two and two,

three meeting at each point and extending from it in three

independent directions.

Hence if AB, CD, EF, GH be four parallel sides of a

parallelepiped, AE, BF, GG, DH a second four, and AG, BD,
EG, FH the remainder,

ABDG is a parallelogram. [D 13.

Therefore AB is equal to GD. [I. 23.

Similarly GD is equal to GH.

Therefore AB, GH are two equal and parallel straight lines.

Therefore AH and BG bisect one another, in say. [I. 21.

Similarly AG, FH are equal and parallel straight lines.

Therefore AH and GF bisect one another, and they there-

fore do so in also.

Similarly ED passes through and is bisected by it.

Therefore The four diagonals &c. q. e. d.



86 PART II.

Table of Theorems with their equivalents in Euclid.

Proposition Euclid's equivalent Proposition
Euclid's

equivalent

I. 1 I. D 35 and A 10 1.21 I. 33
2 none 22 none
3 none 23 L34
4 none IL 1 none
5 none 2 L D7
6 I. 14 and c. A 11 3 XI. 2 (?)

7 L 15 4 L D35
8 I. 32 and c. I. 16, 17 5 none
9 I. 29 and c. I. 27, 28 6 XI. D 8, P. 3
10 I. 4 and c. I. 5 7 XL 16
11 I. 26 and c. I. 6 8 XL 4
12 I. 18, 19 9 I. 11

13 I. 24, 25 10 XL 6, 11, 12
14 1.8 11 XL 5

15 (analogous to VI. 7) 12 none
16 I. 20 13 none
17 XL 20 14 none
18 XI. 21 15 none
19 I. ]9 16 none
20 none 17 none

Proofs are given of all Euclid's theorems (and such of his

problems as are of theoretical importance,) in his first and

eleventh books, with the exception of those in his first book

which deal with plane areas, and of one in his eleventh book

which treats of proportion, and of one other theorem ; this one

is his I. 21, a theorem of no importance. It may however be

easily deduced, after my I. 16, if an equivalent condition is

substituted for the implied one that the point * inside the

triangle ' is in the same plane as the triangle, or as it stands

after my II. 3.



PART III.

ON THE APPLICABILITY OF THE FOREGOING
SUBJECTIVE GEOMETBY TO THE GEOMETRY

OF MATERIAL SPACE.

CHAPTER I.

Having thus established the foundations of subjective

geometry of three independent directions, we may now confront

the question: Is there a corresponding objective geometry;

and if so, does it follow the same laws ?

The question whether there is or is not an objective world

at all, is a metaphysical one of the abstrusest character, and

involves the discussion of the logical basis of the inductive

method in its most abstract form. We need hardly, however,

attack this question directly here, as no practical man will

doubt that the outer world has a real objective existence. But

it may be useful to consider briefly how we attained to our

knowledge of its objectivity.

I think it will be generally agreed that the lower forms

of animal, and possibly the higher forms of vegetable life,

though they can hardly have formed the conception of

an objective external world, do feel certain subjective im-

pressions of pleasure and pain, of heat and cold, and so on.

At what point in the scale of existence automatic and reflex

actions are divided from voluntary ones, and whether even

voluntary actions necessarily imply a consciousness of objective

existence, is open to dispute. But those, at any rate, who

believe in Evolution can scarcely doubt that, after a certain

period of development with only a subjective consciousness,

after an epoch of many generations of life with experiences

only recognised as subjective, the perception that these were
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due to an objective environment must have sprung into being.

And as such a perception must have been of great advantage

to the percipient, it would only require natural selection to

confirm and extend it. Thus we might have, and probably

have, an instinctive consciousness of the objectivity of our

environment, without this consciousness constituting a direct

apprehension of an objective fact ; and this consciousness there-

fore does not add anything to our reasons for believing that

our environment is objective. Such a consciousness might

indeed seem to Kant to constitute an ' apodictic ' truth, but it

does not constitute a necessary one.

Granted then that there is an objective universe, is its

geometry identical with the subjective geometry we have been

considering ? The question we have to answer is merely this :

Are the axioms of that subjective geometry true in the material

universe ?

The first axiom, that any geometrical figure may be con-

ceived to be moved from any one part of space to any other,

except in so far as it is restricted by the other axioms, without

its shape or size being altered, is subjectively a truism ; but

considered objectively it raises several difficult points. We
may indeed take it to be sufficiently established by induction

that a material body may be moved to any part of space ; and

further we have doubtless sufficient ground for believing that

any forces required to produce such motions are accounted for

otherwise than by any change of size or shape which the body

is required to undergo by the nature of space, on being moved.

But we have no a priori reason for assuming that such a change

of size or shape would require force to produce it, and to discuss

whether it is produced or not we are thrown back upon first

principles.

Size and shape depend on distances and inclinations respec-

tively, which in our subjective geometry were measured by

amounts of transference and twisting. In virtue of the first

axiom we were enabled to substitute direct comparison by the

method of superposition for these methods of measurement.

But if the axiom is not objectively true, presumably the size

and shape of the figure applied would alter, on being moved,

in the same way as that to which it was applied, and so the

method of superposition would not prove that two congruent
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figures were of the same size or shape when in different parts

of space. If we attempt to define ' amount of transference' or

of * twisting' strictly we can only do so by the aid of Newton's

first law of motion, which would introduce the conception of

time. For just as I have already shown that the words * in a

straight line ' in his law can only be construed as meaning what

I mean by the phrase ' in a constant direction/ so the words

' uniform motion ' mean nothing but ' motion with a constant

amount of transference in any given portion of time.' And the

only measure we have of time is the motion of a body not

acted on by any forces (the rotation of the earth is the ordinary

standard, and very closely approximates to an ideal one).

Thus we should seem to be defining in a vicious circle; and

though this is not quite the case, for the law of motion implies

a consistency between the measures of distance or inclination,

and time, deduced from it, yet the criterion it affords is difficult

to apply as a practical test. However, since from this law of

motion the most remote results have been deduced, and have

been found to correspond with objective facts, its truth, at

least in so far as it asserts that a body not acted on by any

effective forces moves a constant distance in a constant time,

may fairly be assumed. And so the first axiom of subjective

geometry may be translated into the first objective fact of the

geometry of material space.

It will be convenient to consider the third axiom next, and

to discuss whether material space is a spread of three inde-

pendent directions, that is, whether it does extend from every

position in it in a complete group of three independent direc-

tions. That it does do so is established by a pure induction.

The objectivity of my arm being granted, I know I could

extend it in three independent directions, and in any direction

dependent upon them, from my present position in space, or

from any position I have ever occupied (where I was not

obstructed by material objects). And by induction I infer that

the rest of space is like those parts of it with which I am
acquainted. Other instances and facts might be adduced

proving the same thing ; but the logical proof must be of the

same nature, namely, a generalisation from a limited number
of known instances, to an unlimited number of unknown
ones, and though of course it is amply good enough for



90 PART III.

all practical purposes, it establishes only an objective fact,

not a necessary truth. It applies with equal force to prove

that material space extends from no position in it in less than

three independent directions, or from no position in more.

Thus we have established the second objective fact on which

to base the geometry of material space.

I have already pointed out in Part I that the remaining

axiom may be paraphrased into a form of which the objective

counterpart would be : Material space extends from every

position in it in the same directions. Now we have already

granted that from every position in it it extends in three

independent directions, and in all directions dependent upon

them. Therefore if from any position B in it it extended in

any direction in which it does not extend from a position Ay

this direction could not be dependent upon the three indepen-

dent directions in which material space extends from A. And
we should therefore have four independent directions to deal

with.

. Now I am aware that there exists, not only among the

ordinary public, but even more among geometricians, a rooted

prejudice against what they would call ' Geometry of Four

Dimensions,' but which I prefer to call geometry of four inde-

pendent directions. If therefore any of my readers is of opinion

that ' A Fourth Dimension ' or a Fourth independent direction

is a priori inconceivable, and an impossibility ;—then I have

no more to say. He has ipso facto granted the objective truth

of my remaining axiom, and consequently admitted that my
subjective geometry may also be applied objectively to the

geometry of material space—which is all I desire to prove.

The remainder of this book is not for him : if he reads it,

and thinks it transcendental folly, let him at least not presume

to criticise what, by his own confession, he does not understand.



CHAPTER II.

I HAVE already had occasion to point out that, if we are

careful to reason with formal accuracy, it is not essential that

we should be able to picture to ourselves clearly every link in

the deductive chain, and that intelligible results may be truly

deduced by the aid of symbols whose denotation is unintelli-

gible to us. It is therefore no argument against the theory of

geometry of four independent directions which I am about

to advance, to say that a fourth independent direction is

inconceivable. Personally, I believe it to be by no means

inconceivable, and I shall subsequently give my reasons for

this belief But lest the reader should imagine that the

validity of my investigation into the foundations of the science

of geometry in any way depends upon this conceivability, I put

the investigation, or the essential part of it, first, and the ex-

planation afterwards.

If such an investigation has never been made before, it is

simply because the foundations of geometry, especially those of

what is generally spoken of as ' geometry of three dimensions

'

have never before been laid down with formal accuracy. We
have already seen that even in his first book Euclid assumes

several things which are not stated in his postulates or axioms.

But in his eleventh book he seems to abandon all attempts at

laying down his premises with formal accuracy, and simply

appeals to the supposed intuitive knowledge of his reader.

The first three propositions of his eleventh book are most

extraordinary examples of such slipshod reasoning, and what is

more extraordinary still, is that scarcely any effort has been

made by more modern geometricians to improve them ! The

existence, even, of the first proposition is only due to a strange

confusion of ideas. Up to this Euclid has been drawing straight
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lines freely without ever considering whether they might or

might not have loose ends hanging out of the plane in which

he tacitly assumes all his former figures to have been drawn.

It is only now dawning on him that the existence of this plane,

which is really nothing but the pedagogue's black-board, is a

matter which he ought not so airily to have taken for granted.

Again, the second proposition contains simply no formal reason-

ing whatever, but is merely an appeal to the experience or

intuitive knowledge of the reader. Take the second paragraph^

verbatim, thus—" Let any plane pass through the straight line

EB " Where is the postulate by which it is allowed to

conceive, or draw, any plane through a given straight line ?

" and let the plane be turned round EB " How do we

know that a plane can be turned round a fixed straight line ?

" produced if necessary " (i.e. the plane, not the straight

line). But there is no postulate about producing planes "

until it pass through the point (7." Now in this last respect

alone, as far as I know, has it occurred to any one materially to

improve this proposition. In a recent work^ an ' axiom ' is

specially interpolated to cover this difficulty. The ' axiom ' in

question I prove in a theorem (II. 14), namely, that before a

plane revolves through a straight angle round a fixed straight

line in it, it will pass through every point in space. Again, in

the next proposition, what right has Euclid to assume, as he

does, that if two planes cut one another their common section

must be a line, at all ? Why should it not be a single point ? in

which case his proof would break down. It is the adroit manner

in which Euclid begs this question which saves him from having

to lay down anything corresponding to my third axiom.

The geometry of three dimensions, as usually put forward,

is not then a formal deductive science, though apparently it

satisfies the wants of most men. But what I maintain about

my geometry of three independent directions is that it is

strictly formal,—the truth of every proposition in it depends

solely on the truth of the stated premises. And if one of those

premises were altered we could see at once which of the propo-

sitions would have to be altered, and we should probably be

able to determine the alteration required. If the third axiom

1 Todhunter's Euclid, Macmillan, 1875.

2 Geometry in Space, by Mr K. C. J. Nixon.
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is to be altered, it is at once evident that no change is produced

in the first book, as the axiom was not even stated till the

beginning of the second. And it is easy to trace which of the

propositions in the second book depend upon it.

They are namely these :—V., that part of VI. which asserts that any

two planes which are not parallel intersect in a straight line, VII., for

without the axiom the intersections might only be single points, X. and

XI., when they assert that onlyowQ plane or straight line maybe conceived,

XIV., when it asserts that the revolving plane passes through every point

in space, XV. ; and from XVI. we may remove the restriction that the

corners of the tetrahedra must be similarly situated in space, in order

that they may be congruent.

Now let us substitute for the third axiom the following

postulate,

—

Let it be granted that the positions of points may vary

in four, but not in more than four independent directions.

And let us see what happens to the above seven proposi-

tions. Thus it appears that we are no longer able to assert in

proposition V. that the direction AG cannot be independent of

the three independent directions AB, CD, CE. But \i AB
intersects the plane CDE, it will be so dependent. Therefore

AB does not necessarily intersect the plane. It may pass from

one side to the other without intersecting it at all. That is

to say, the positions of points which appear to us the same,

even though picturing to ourselves a three dimension model,

instead of a diagram on paper, may in reality be different
;
just

as when looking at an ordinary diagram representing a three

dimension figure, positions appear the same in it which may
yet be different in reality. Thus within the bounding surface

of a solid of three dimensions we must allow for an infinite

number of positions which do not form part of that solid, but

lie away from it in a fourth independent direction. Therefore

the whole of the ' three dimension space ' we are in the habit of

considering is only an infinitesimal portion of the space of four

independent directions assumed by the postulate, just as a plane

is only an infinitesimal portion of a space of three independent

directions.

Let us therefore invent a special name for such limited

portions of the new space, and lay down the following new
definition.
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A spread of three independent directions is called a form, a

regular spread of three independent directions a regular form.

The spread of four independent directions, the new space, is

by the second axiom a regular spread, for this axiom is, of

course, still to hold good.

Thus the space we have hitherto been considering is a

regular form, and to make the seven propositions enumerated

above still hold true we have only to prefix the words, " In a

regular form " to their enunciations, just as the enunciations of

several other propositions in the same book commence with the

words, " In a plane."

It will not be necessary to give all the elementary proposi-

tions of geometry of four independent directions in extenso as I

have done those of three. For the logical processes by which

they are established are in most cases obvious extensions of

those used in Book II., and the reader can if necessary readily

enough supply them himself. But in the subjoined syllabus of

enunciations one or two of the most important proofs have been

sketched out.

SYLLABUS OF ENUNCIATIONS FOR BOOK III.

[In this syllabus the letters r. f. mean regular form, p. plane, s. 1.

straight line, i. d. independent direction, P. postulate].

I. One, and only one, r. f can he conceived through any given

point, extending in any three given i. d's.

This is only another way of enunciating IL 14.

II. (i) If a p. intersect a r.f in three points not in a s. I. ; or

(ii) if a s. I. intersect it in two separate points ; or

(iii) if either a p. or a s. I. to which it is parallel inter-

sect it at all, then they shall be wholly in it.

III. One and only one r.f can be conceived through

(i) four points not in one p.,

(ii) a p. and a point without it,

(iii) two p's. which intersect in a s. I., and so on.

IV. Any s. I. to which a r.f is not parallel intersects it in

a single point.
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For if A be any point in a s, 1. AB\.q which a r. f. CDEF is not parallel,

the four directions AB^ CD^ CE^ CF are independent. Therefore the

direction ^C is not independent of them (P). That is, it is possible to

move from ^C by a s. 1. AC^ or by s. I's. in directions AB^ CD, CE, and

OF (D 5). The first of these motions is in the s. 1. AB, the others in the

r. f. CDEF. Therefore they intersect. And they cannot intersect in more

than one point. [III. 2.

y. Any p. to luhich a r.f. is not parallel intersects it in a

single s. I.

For if J be a point in the p. ABC not in the r. f. DEFG ; since the

r. f. is not parallel to the p. it is not parallel to both ABj AC. Therefore

one of them, AB, intersects it in a single point P (III. 4). If the r. f. is

parallel to AC, a s. 1. through P parallel to AC ib in both p. and r. f.

(III. 4). If not AC intersects the r. f. in a single point Q, and the s. 1.

PQ is in both p. and r. f. And they cannot intersect in any point outside

PQ (III. 2).

yi. Two parallel r. f's. cannot intersect; and any two

which are not parallel intersect in a p.

For if ABCD, EFGH be two r. f's. which are not parallel, and A be

any point in the first which is not in the second, then EFOH is not

parallel to all of AB, AC, AD. Therefore it intersects at least one of them
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in a single point, P (III. 4). And EFGH is not parallel to either of the

p's. ABC, ABB. Therefore it intersects each of them in a s. 1. PQ, PR
(III. 5). Therefore also the p. PQR is in both r. f's. And they cannot

intersect in any point outside this p. (III. 2).

VII. Any two p's. extending in four i. d's. intersect in a

single point.

For if ABC, DBF he two p's. which extend in four i. d's., and if A be

any point in the first which is not in the second, then the direction AB
is not independent of the four i. d's. AB, AC, BE, BF (P). Therefore

it is possible to move from J. to Z) by a s. 1. ^2) or by s. I's. in these foiu*

directions (D 5). But the first two of these motions are in ABC, and the

other two in BEF. Therefore the planes intersect, and they cannot

intersect in more than one point, else a r. f. might be conceived through

them [III. 3], in which case they would not extend in four i. d's.

Corollary. If two p's. extend in only three i. d's. they do not

intersect at all, unless both are in one r.f
For if they only extend in three i. d's, either they are both in one r. f. or

two parallel r. f's. may be conceived through them. And as these parallel

r. f's. do not intersect, neither do the p's. they contain.

VIII. If each of two i. d's. in one plane he at right-angles to

each of two in another, any direction in the mie p. is perpendicular

to the other p.

This follows at once from the definition of perpendicular. Two such

planes may be called perpendicular to each other.

IX. One, and only one, p. may be conceived through a given

point perpendicular to a given p. ; and it intersects in a single

point.

For if B be the given point and ABC the given p. conceive a s. 1. BP
to a point P in a s. 1. AB in the p. ABC, perpendicular to AB (I. 19) ; and

in the p. ABC conceive PC in a direction perpendicular to AB (II. 9),

and conceive BQ to a point Q in PC, in a direction perpendicular to PC
(I. 19). Then BQ is perpendicular to the p. ABC (II. 8). And if R be

any point in a direction from B independent of QB, AB and ACin the
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same way R8 may be conceived to >S' in ABC^ in a direction perpendicular

to it. Then since R is not in a r. f. ABCD, SR is in a direction independent

of QD, AB, AC. Therefore it is not parallel to QD. Therefore a p. DEF
may be conceived through D in the directions QD, SR which is perpen-

dicular to the p. ABC (III. 8 and 7), and which intersects it in a single

point Q. And if any other p. through I) were perpendicular to ABC, it must

also contain DQ, and therefore be in one r. f. with the p. BEF (III. 5).

But the p. ABC would intersect this r. f. in a single s. 1. which therefore

would be perpendicular to both the p's. through BQ, and in one r. f. with

them, which is impossible (II. 11).

X. If a direction be perpendicular to each of three i. d's. in

a r.f it is perpendicular to the r.f
A mere extension of my II. 8, or Euclid's XI. 4.

XI. One, and only one, s. I. may be conceived through a given

point in a direction perpendicular to a given r.f And conversely

one and only one r.f may be conceived through a given point to

which a given direction is perpendicidar.

XII. The perpendicular s. I. is the shortest path from a

given point to a given r.f And, of all other s, ^'s....and so oii.

XIII. An unterminated r. f may be conceived to revolve

about any fixed p. in it describing an angle. And before it has

completed a straight angle, it will have passed once, and only

once, through every position in the new space offour i. d's. we are

considering.

For if ABC be the fixed p. and any point in it, through one, and only

one, p. DEF can be conceived perpendicular to ABC (III. 9) and a s. 1.

XOY \n this p. may revolve describing an angle, and a r. f. may always be

conceived through this and ABC (111. 3), which will revolve with it, describing

the same angle. And a p. may be conceived through any point P in the

new space, parallel to the p. in which XOY revolves (III. 9), which will

intersect the p. ABC in a single point 0' and the r. f. XOAB intersects

this p. in a s. 1. parallel to XOY. And so on, as in II. 14.

Corollaries, (i) Hence any number of r.fs. may be conceived

to revolve siinilarly about the same p.

(ii) And consequently any figure of four dimensions may
be conceived to revolve about a fixed p. in it.

Hence two tetrahedra which have their six sides respectively equal

must be congruent. For their bases being made to coincide, the vertex of

one may be revolved about its base till it coincides with the vertex of the

D. 7
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other. In doing so the moving vertex will however have to leave the r. f.

containing the other tetrahedron, only returning to it every time it has

revolved through a straight angle.

XIV. If two pentangular bodies have their ten sides re-

spectively equal, they shall be equal in every respect, and if their

corners are similarly situated ivith respect to each other, they

shall be congruent.

By a pentangular body I mean the figure formed by the straight lines

5.4
joining five points not in a r. f. two and two. Thus there are ^p-^, that is

10 sides. The proof is precisely analogous to II. 16.
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In the last chapter the elements of geometry of four

independent directions were carried as far as I had previously

carried those of geometry of three ; and I think it must now be

evident to the reader that they might without difficulty be

carried further without our having any clear idea of what the

words ' a fourth independent direction/ mean. I shall therefore

now attempt to show how an idea can be formed of the

meaning of those words, and if even I fail, the reader will

recognise that my main argument is in no way damaged by the

failure.

Perhaps the most striking change introduced into geometry

by conceiving variations of position in a fourth independent

direction, is the possibility of getting past an unterminated

surface without passing through it. To take the simplest case,

conceive a material plane, and a material point moving towards

it, and getting past it. What does one mean by asserting that

at some moment the point must have intersected the surface ?

That at that moment the position of the point must have been

identical with some position now occupied by a point belonging

to the plane. The plane and point being material bodies this

would seem self-evident, but so far from being a necessary

truth, it is only one of the experimental facts upon which we
found our belief in the second Objective Fact of material

geometry ; and if the plane and point are not supposed to be

material, but merely mental concepts, the assertion no longer

has a leg to stand on. We are undoubtedly able to conceive a

space of three independent directions, and if we imagine points

not to be material, we may conceive any number of them
apparently occupying the same position in such a space, but

their positions in reality differing in a direction in which we
have not power to move material points. In just the same

7—2



100 PART III.

way if we were to look at a motionless view through a hole in

a screen, it would have just the appearance of a perfect picture,

painted on a plane surface. We should see its length and

breadth but be unable to judge its depth. We might see two

lines cross each other, without being able to assert positively

that they intersected, for at their apparent point of intersection

one might be at a greater depth than the other. To get a true

idea of what was before us we should need to regard the view,

or picture, from another point of view—under ordinary circum-

stances indeed, we do regard every picture from two points of

view, namely from our two eyes. So also if we actually had

before us a figure of four dimensions, we could not find it out,

because we could not move so as to get another view of it.

But as the four dimension figures we have to deal with are not

actually before us, but are merely mental concepts, we may
conceive ourselves, mentally, to walk round them, or to twist

them round so as to expose various views to us, each of which

views we can mentally picture to ourselves as a model in

three dimensions. As these models are merely geometrical

projections, their shape can be determined by the methods of

formal geometry we have indicated above. For we have seen

that the material space we commonly conceive is, geometrically,

a regular form. The differences of position in a figure of four

dimensions, which we do not perceive in a model of only three,

are dimensions of the figure measured in a fourth independent

direction, which is perpendicular to this regular form. Hence

the model is found by projecting every point in the real figure

by a straight line perpendicular to material space. Thus the

apparent length of any straight line in the three dimension

model is its true length, multiplied by the cosine of the angle

it makes with its projection in material space ; and so on, just

as in ordinary orthogonal projection.

I am rather shy of here introducing a device, which however

I have found most useful myself, to aid me in conceiving figures

of four dimensions. For I have found it very difficult to

prevent people from taking the shadow for the substance, from

thinking that what I mean to put forward merely as an illus-

tration, is in some way intended as physical fact. But having

warned the reader, I must run the risk, and trust to him not to

misunderstand me.
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Let us then picture to ourselves figures of four dimensions

by conceiving models, or diagrams in material space (which for

this purpose we conceive as a regular form), which diagrams

are orthogonal projections of the true figures, and let us

conceive the distance of every point in the figure from a

regular form parallel to material space (but all on one side of

the figure), to be represented in the diagram by the degree of

blackness of the corresponding point in the diagram. The
fourth dimension of the figure, over and above the length

breadth and thickness of the diagram, we may call its solidity

;

for just as its thickness is the difference in height of its top

and bottom, so its new dimension is the differences of the new
measurements of its opposite boundaries in the new direction,

that is the difference between two degrees of blackness, which

we may accurately represent by a certain degree of density

given to each point. Care must be taken however to dis-

tinguish between ' solidity ' which is a dimension of a body, and

the 'blackness' which we have used to represent a measurement
from a fixed regular form—which is in fact a coordinate—and

which we may call ' concentration.' Thus if we consider a three

dimension solid, such as a sphere, it is clear that corresponding

to any vertical line through it, it has only one thickness, but

its surface has two heights. So with a body of four dimensions

it will, at any point in its three dimension diagram, have only

one solidity, but its boundary will have two concentrations.

A representation of the body by its solidity cannot therefore

give a perfect idea of its shape, to do which a double diagram,

of concentrations of its two boundaries, is required. But any

such a diagram of concentrations may be regarded as a diagram

of solidities of a body bounded by one irregular boundary,

and by the regular form from which the concentrations are

measured.

Thus in a diagram of concentrations a line will be a line

of varying blackness, unless material space is parallel to it.

A straight line will not only necessarily appear straight in the

diagram, but its degree of blackness will vary uniformly from

one end to the other. Two parallel straight lines will appear

as parallel straight lines, of shade varying at the same rate and

in the same direction. A plane in the same way will appear as

a plane shaded in parallel lines of shade whose blackness varies
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uniformly in one direction. Similarly a regular form will

appear as a cloud in space, stratified in parallel plane strata

whose blackness varies uniformly in one direction. Hence,

even if two lines appear to intersect, they do not really do so,

unless at their apparent intersection they are equally shaded.

Thus a straight line appearing to intersect a plane need not

necessarily do so. Two planes may appear to intersect, but,

unless there are points of equal shade in their apparent inter-

section, they do not do so in reality. As however their shadings

vary uniformly, they will vary uniformly along the straight line

in material space along which they appear to intersect. Hence,

unless the lines of shade are both parallel to this line, in which

case there is no variation of shade along it, or unless the

shadings in both planes vary at the same rate in the same

direction along it, one of the shadings will somewhere along the

apparent intersection overtake the other. And at this single

point we shall have a true intersection. In the other cases there

will in general be no intersection at all, for the planes are in

parallel regular forms, but if there is one point of intersection

there will be a whole straight line—and both planes are in one

regular form. Again with a little effort of imagination two

regular forms may be conceived in space at once. If their

planes of uniform blackness are not parallel, each plane in one

regular form will intersect all the planes of the other, in

straight lines. Of all these however only one will be a true

intersection, namely where the plane intersects the other plane

of the same blackness. It may readily be seen that all those

real intersections of each plane in one form with the corre-

sponding plane in the other form, together constitute a properly

shaded plane, the intersection of the two regular forms. If the

planes of uniform blackness in the two forms are parallel, any

one of them will not in general intersect the corresponding one

in the other form. But unless also the shading of the two forms

varies at the same rate in the same direction, that is unless

the regular forms are parallel, at some point the shading

of one form will overtake that of the other, and here a whole

plane of uniform blackness from each form will coincide, and

we get a plane of intersection—to which material space

happens to be parallel. The intersections of straight lines and

planes with a regular form may be similarly imagined.
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If we conceive two intersecting lines, the true angle between

their directions would not be the same as the apparent one,

just as in a plane diagram the angles between straight lines

are altered. The shading would however indicate the alter-

ation. For if we took two points of equal shading in the two

straight lines, and joined them, material space would be

parallel to the straight line so found, and therefore by a

revolution round it, the pair of intersecting straight lines might

be brought into a regular form parallel to material space, when
the angle would appear at its true magnitude. Hence the

perpendicular from the intersection of the two straight lines on

the axis round which they were twisted, would increase in

length until they were in a regular form parallel to material

space, and therefore the angle within which this perpendicular

fell would be diminished, and the other angle increased by the

twisting, in a manner which may easily be understood from the

analogous case of plane projections with which we are all

familiar. It is to be observed that in the revolution here

contemplated no apparent revolution would take place. The
figure would appear to remain in the same plane, the angles

only expanding or contracting by the straight lines sliding in

the plane, and the parts remote from the axis becoming more,

or less, black until they assumed the shade appropriate to the

regular form in which the axis lay, parallel to material space.

In the same way we may conceive the revolution of a

tetrahedron about its base. If we suppose the base to be

fixed in material space, the three sides ending in the vertex

will all be shaded, growing either more or less black towards

the vertex, if this is not in material space. If therefore it

start from material space, say towards the black direction, it

will grow darker and darker. Since the perpendicular from

the vertex always reaches the base in the same point, and

since the angles it makes with directions in the base are all

equal, and being right angles are not foreshortened by the

projection, the perpendicular will not appear to revolve, but

only to become shorter, until the vertex apparently sinks into

the plane of the base, here attaining its maximum blackness,

namely so much blacker than the base as corresponds to a

difference of concentration equal to the length of the perpen-

dicular. After this the vertex will emerge at the opposite side
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of the base again, still apparently moving in the same straight

line, but getting less and less black, until as it returns to its

original shade, the perpendicular regains its original length.

By a similar succession of phases, the vertex becoming lighter

in shade however, instead of darker, the revolution may be

completed, and the vertex return to its original position.

In Book II. we saw that two tetrahedra might be equal in

every respect, but yet not congruent. This phenomenon is one

of which we have every-day experience—as in the case of

* right-' and ' left-hand ' boot. And it may have struck the

reader that the expression used in the enunciation of my
proposition II. 16 'If the corners are similarly situated in

space ' is rather an indefinite test of right- or left-handedness to

give in what professes to be a formal text-book. But the fact

is there is no formal geometrical test to apply, the only other

appeal would be to the right and left hand of the reader, or to

some other objective thing, which could have no place in a

subjective geometry. In that geometry we were conceiving

figures in a regular form, and we now see that it is a mere

chance which way we might happen to conceive them to be

placed in that form—whether in the same or in the opposite

way to another figure equal in every respect. The same thing

in the case of plane figures is evident. No one can define a

scalene triangle as right- or left-handed, simply because it

might be put into a given plane either way up. If however

we had a set of triangles which never moved out of a plane, we
might label one right-handed, and every other triangle equal in

every respect would be either right-handed like it, or left-

handed. So it is with us in material space. I am in material

space and cannot get out of it. I therefore mentally label one

of my hands ' right ' and the other ' left ' and no confusion can

arise. But if I ever, by magic or other arts, were allowed to

move in a fourth independent direction, I might on my return

find my right hand where my left used to be—I should have to

wear my right-hand boots on the foot I used to call my left

—

with the exception of the pair I wore during my mystical

journey, which would of course have turned with me. But

to return to serious reasoning, I commend the question of

right- and left-handedness to the consideration of Euclidian

geometricians, and ask them to discuss it from their point of
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view, and either to frame a geometrical definition of it, or to

explain why they cannot do so.

In geometry of two independent directions a point is fixed

if its distances from two fixed points remain constant. This

may be expressed by saying that a triangle is the simplest

rigid frame. Similarly in geometry of three independent

directions a tetrahedron is the simplest rigid frame, and in

geometry of four, a pentangular body. In a pentangular body

there are five corners, and a side connects every two, that is in

•5 4
all r-^ =10 sides, a plane face connects every three, that is

5.4.3'

=10 faces, and a regular form connects every four, that

is
., a o A

~ ^ regular forms. This method is general, and

SO we can calculate the corresponding figures for a rigid frame

of any number of dimensions.

A point moving in a constant direction generates a straight

line, this straight line moving parallel to itself in a second

direction, a plane. In the same way a spread of any number of

independent directions may be generated. But if each of these

motions is limited in amount, we generate a terminated straight

line, a parallelogram, a parallelepiped, and what we may call a

parallel body in geometry of four independent directions. A
parallel body will have twice as many corners as a parallele-

piped, that is 16. At each corner four sides will meet, extending

in four independent directions, that is the number of sides is

16 X 4 X J = 32. Every two sides meeting at a corner determine

a plane face, each face however unites four corners. Hence the

4.3 1
number of plane faces is 16 . z-^ • 7 = 24. Every three sides

meeting at a corner determine a regular form, but each regular

form, or parallelepiped, unites eight corners. Hence the number

of ree^ular forms is 16 . ^
' '

• ^ = 8.^ 1.2.3 8

The above results are summarised in the following table,

which it is not quite superfluous to give, as similar but incorrect

tables have been given before.



106 PART III.

Number
ofi.d's.

of dimensions of most ex-

tended body
of Cai-tesian axes

of axis planes

of axis forms

of axis spaces of four i.d's.

and so on

of corners of rigid frame

of sides „

of plane faces „

of regular forms „

and so on

of corners of parallel frame

of sides „

of plane faces „

of regular forms „

and so on

1 2 3 4

1 3 6

1 4

1

1 2 3 4 5

1 3 6 10

1 4 10

1 5

1 2 4 8 16.

1 4 12 32

1 6 24

1 8

7i{n- 1)

1.2

n{n-l){n-2)

1.2.3
7i{n-\){n-2){n-Z)

1.2.3.4

(^+ 1)

{n-\-\)n

1.2

{n+ \)n{n-\)
17273

{n-\-\)n{n-V){n-2)

r72.3.4

2»

n .
2»»-i

n{n— 1) 9H-2
1.2 -^

n{n-\){n-'2.)

1.2.3
.
2"-3

The reader will do well, if he really wishes to become

familiar with geometry of four independent directions, to

picture these figures, and the other more complex ones, to

himself from various points of view, and to picture them as

twisting from one view to another. If he commences to do

this by the aid of the shading convention he will find after a

little practice he will even be able to dispense with this aid,

and to truly conceive a fourth independent direction, in the

same way, if not with the same ease, as he conceives the third.
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We may now discuss an alternative to the supposition that

material space is a regular form, which the two objective facts

we have accepted still leave open. When the gifted author of

' Flatland ' conceived a race of beings living in a land of two

dimensions, he tacitly assumed that that land was a plane :

—

it does not seem to have occurred to him to conceive a race

living on the surface of a sphere, or to discuss the views of

geometry they would be likely to entertain. If the sphere

were very large compared with their powers of locomotion, they

might indeed never find out that it was not a plane—for the two

objective facts of their material space corresponding to those we
have accepted as true about ours, would still hold good. In

line land there would indeed be two possible alternatives, the

line might either be a circle, or a helix. I propose then to show

at once that for us too there is an alternative, if we only grant

the two objective facts corresponding to my first and third

subjective axioms ; and I shall subsequently show that this is

the only alternative consistent with the truth of those objective

facts.

The objective facts which we have accepted determine, the

first, that material space possesses the property that any portion

of it is congruent with any other equally extensive portion, for

any geometrical figure which exactly occupies the first portion

may be made to exactly occupy the second, without change of

size or shape. It is, in fact, " Ein in sich selbst congruenter

Raum," that is, a self-congruent space. The second objective

fact determines that that space is a form, whether a regular one

or not.

We are naturally led at once to seek for a self-congruent

form in the analogue of the sphere. We may define a circle as
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the locus, in a spread of two independent directions, of all points

at a given distance from a given point in it ; and it may be

conceived to be generated by a point in a straight line revolving

about a fixed point in itsslf, in such a spread. A sphere is a

similar locus in a spread of three independent directions, and

may be conceived to be generated by the revolution of

a circle about a diameter, in such a spread. The locus of

all points in a spread of four independent directions at a

given distance from a given point in it may similarly be

conceived to be generated by the revolution of a sphere about

one of its diametral planes. For the regular form containing

the sphere will, before completing a straight angle, have passed

through every point in the spread of four independent directions,

and, as in each situation of it the sphere contains all points in it

at the given distance from the given point, or centre, the locus

generated, when the revolution through a straight angle is

complete, is the locus required. Moreover the locus is a form.

For if a plane be conceived through the radius vector to any

point in the locus, and extending in any direction perpendicular

to the radius vector, the extremity of the radius vector may
describe a circle in that plane, and in the locus. But in the

space of four independent directions there is a whole group of

three independent directions, each of which is perpendicular to

the radius vector; and therefore the extremity of the radius

vector may commence to move in any one of these directions.

Hence we may call the locus a ' circular form,' and say it extends

from every point in it in a complete group of three independent

directions, each of which is perpendicular to the radius vector.

In more familiar language, the radius vector is perpendicular to

the tangent-regular-form at every point.

We can picture to ourselves the generation of a circular

form, just as we pictured the revolution of a tetrahedron about

its base. If the revolution of the sphere is about a diametral

plane to which material space is parallel, each point in the

sphere will merely appear to move in a straight line perpen-

dicular to the axis plane, those on one side becoming lighter,

and the others darker in shade as they appear to approach

the axis plane. After reaching the axis plane, when the whole

sphere will merely appear as a circular disc, with a double

shading on it, becoming both lighter and darker towards the
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centre, the points of the sphere will appear respectively to

emerge from the axis plane on opposite sides, and their shading

to return to its original intensity as they approach material

space again. During the intermediate stages the shape of the

sphere will appear to be a more or less oblate spheroid. Thus

if the sphere was not originally in a regular form parallel to

material space, it would have begun by looking like an oblate

spheroid, one pole of which was more, and the other less, black

than the equator, which would be of a uniform shade. If then

the revolution did not take place about the equatorial plane,

each point in the sphere would not simply appear to move in a

straight line perpendicular to the axis plane, but would appear

to describe an ellipse of greater or less excentricity. If the

axis plane extended in the direction of concentration, the

sphere would always look like a doubly shaded circular disc, as

described above, and the revolution of the sphere would merely

appear like the ordinary revolution of such a disc about a

diameter—though of course that diameter would be a doubly

shaded line, which in reality represented an equator of the

sphere. In any of these cases the same result would be produced;

namely a spherical ball, doubly shaded from the circumference

towards the centre, the one shading growing blacker, and the

other less black, as it proceeded inwards.

It is not impossible to imagine two shaded clouds occupying

the same space, and forming thus a diagram of concentration of

a circular form. But we may also, at the cost of a certain

loss of information, simply conceive, as a diagram of solidity, a

spherical ball, of a density at the centre corresponding to the

thickness of the ball, that is the length of a diameter, and at

every other point in it to the length of a chord at right angles

to the straight line from the centre to that point. Thus the

density would vanish at the circumference of the ball, but it

would not fade away by imperceptible degrees, but would end

quite abruptly, since at the circumference the circular form

would extend in the direction of concentration.

But to proceed with the investigation of the geometrical

properties of the circular form, in continuation of Book III.

XV. // a regular form intersect a circular form, the inter-

section is a sphere. For if a perpendicular be conceived from

the centre of the circular form to the regular form, all points in
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the intersection must be equidistant from the foot of this

perpendicular, for if they were not they could not be equi-

distant from the centre of the circular form (III. 12). If the

perpendicular is not less than the radius of the circular form

there will of course be no intersection, and if it is equal there

will be a contact. It will not be necessary to mention such

obvious special cases in the other propositions.

XVI. If two circular forms intersect, their intersection is a

sphere. For the centres of the two spheres and any point in

the intersection form a triangle, all of whose sides are constant

in length, and whose base is immoveable. And the perpendicular

from the vertex, the point in the intersection, must meet this

base always in the same point, and be of constant length, for

any two situations of the triangle are congruent to each other

(I. 14). Hence the intersection consists of all points at a fixed

distance from the fixed foot of the perpendicular, and in direc-

tions from it perpendicular to the straight line joining the

centres of the spheres—that is therefore, in a regular form

(III. 11). Therefore the intersection is a sphere.

XVII. If a plane intersect a circular form, the intersection

is a circle. This may be proved in the same way as proposition

XV.

XVIII. If a sphere intersect a circular form, the intersection

is a circle. For the intersection of the regular form in which

the sphere is and the circular form is a sphere (III. 15). And
that the intersection of this sphere and the given sphere, which

are both in one regular form, is a circle, may be proved as in

III. 16, unless the centres of the two spheres coincide. In this

case, since by hypothesis they intersect, they must be one and

the same sphere.

XIX. If three circular forms intersect, their intersection is

a circle. For the intersection of two of them is a sphere, and

the intersection of this with the third a circle (III. 18).

XX. If a straight line intersect a circular form, it does so

in two, and only two, points. For the intersection consists of

points equidistant from the foot of the perpendicular from the

centre on the straight line. If this perpendicular is equal in

length to the radius of the circular form there is of course only
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one point common to the straight line and form—but in this

case the straight line does not intersect, but only touches it.

If a regular form through the centre of a circular form

intersect it, the radius of the sphere of intersection is obviously

the same as that of the form. In all other cases it is less.

Hence such a sphere may be called a great sphere in the

circular form. In the same way the intersection of a plane

through the centre with a circular form may be called a great

circle, and the points of intersection of a straight line through

the centre, two poles. The intersection of two great spheres

is a great circle, and the intersection of two great circles, or

three great spheres (if they intersect at all), is a pair of poles.

Through two great circles which intersect, or any three points

which are not in the same great circle, a great sphere may be

conceived. Thus the great circles joining three points which

are not in one great circle form a spherical triangle, the radius

of whose sphere is that of the circular form. Hence it may be

shown as in spherical trigonometry that \i A, B, and G be the

angles of the triangle, and A its spherical area, and p the radius

of the circular form,

—

P

Now we have seen that a circular form may be conceived

to be generated by the revolution of a sphere round any

diametral plane. The whole circular form may therefore re-

volve in any way about its centre without ever occupying any

new positions. Hence any figure in it may be carried from any

one part to any other part of a spread of this form, without

undergoing any change of size or shape. Moreover such a figure

may revolve about any diameter of the circular form in any way,

that is, remaining in the circular form it may revolve about

any point in it, that is a pole of such a diameter. Similarly

the figure may revolve about any diametral plane of the circular

form, that is, remaining in the circular form, it may revolve

about any great circle in it. It follows therefore that a space

of the shape of a circular form is a self congruent space of

three dimensions, and as far as the two objective facts we have

accepted as true go, there is nothing to distinguish material

space from such a space. If it were such a space it would follow

that the things we call straight lines wei'e really great circles,
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and the things we call planes great spheres of circular space.

Let us consider whether we really know anything to preclude

this possibility.

What do we actually know about the things we call straight

lines ? If I say that the edge of a certain ruler is ' straight ' I

may mean that it extends in the same direction from every

point in it, but if my assertion is challenged I have to fall back

upon some other test of straightness. There are four ways in

which the straightness of a line may be tested, and upon each

of them a geometrical definition of the term ' straight line ' has

been founded by one or other writer on the subject. The four

tests are these

:

1. Take three approximate straight edges, and fit them
against each other two and two, noticing where they touch.

By scraping down the places where they touch each may
ultimately be made to coincide exactly with the other two all

along. In practice this method is used with plane surfaces, not

straight edges, and straight edges are got by the intersection

of two such surfaces. This may be called the Whitworth test

of straightness or flatness, for it was Sir Joseph Whitworth who
first made practical use of it. It corresponds to the definitions

* Two straight lines, or planes, cannot (in general) enclose a

space.'

2. Take a rigid rod, supposed to be straight, and twist it

about two fixed points in itself (the rod may be conceived as a

thin right circular cylinder—and in the limit, as a line). If

straight, it will not change its position. Thus a turned wooden

ruler of uniform thickness, is 'straight.' The corresponding

definition may be stated thus—*A straight line is such that

it may be twisted about two fixed points in itself without

change of position.'

3. Take a fine light flexible thread and stretch it tightly

between two points. The * straight ' line thus produced (the

sag of the string owing to its weight being neglected) is very

frequently used, by bricklayers, gardeners, and so on. It

corresponds to Legendre's definition, which may be paraphrased,

in order not to use terms in a different sense from what I have

given to them in this book, thus 'A straight line is the shortest

path between two positions.'

4. But perhaps the commonest test of all in every-day
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life is that a straight line is the path of a ray of light—in an

uniform medium, that is in one in which it is propagated with

the same velocity in all directions. Hence it follows that,

whether on the wave theory of light or on the emission theory,

the locus of a given phase of a given wave, or of particles which

started at a given moment, as the case may be, is the locus of

a number of points whose distances from the origin of the

disturbance are equal. The path of a ' ray ' of light is an

orthogonal trajectory of a series of such loci, and a straight

line may therefore be defined as such a trajectory.

I believe one or other of these four tests corresponds to

every definition of a straight line which has been made use

of in geometry, except the definition by direction. Euclid's

definition may perhaps be excepted, as having no meaning

whatever, but he uses the first test of straightness above cited.

Plato said ' A straight line is that of which the extremity hides

all the rest, the eye being placed in the continuation of the

line.' This is of course the fourth test. Legendre, and the

majority of foreign geometricians I believe, have adopted the

third test. One author only, as far as I have discovered ^

makes any theoretical use of the second test, deducing it from

the idea of the locus of the points of contact of two spheres

with given centres. Thus the test approximates very closely

to the fourth test. The same author defines a plane in an

analogous manner, which is equivalent to defining it as the

locus of all points at equal distances from two given points.

Now it would be easy to show that in a regular form all

these tests would be fair tests of the straightness of a line.

But it is not difficult to show that if space is a circular form all

the tests are equally applicable, but that all give, not a straight

line but, a great circle.

For (1) through three points which are not in a straight

line one plane only can be drawn. Hence through two points

not in a diameter of a circular form, and the centre, one plane

only can be drawn, and therefore through two such points in

a circular form only one great circle can pass. We have there-

fore only to assume that material space is so large a circular

form that we have never attempted to draw more than one

' straight ' line through two points at opposite ends of a dia-

^ ' Geometry without Axioms,' T. P. Thomson.

D. 8
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meter, and it would seem to us that two 'straight' lines,

(though they were really great circles) could not enclose a

space.

(2) As a diametral plane of a circular form can be twisted

about itself without any change of position, so can a great circle

in the circular form. The way Mr Thomson deduces his defini-

tion from the idea of a series of spheres touching each other

may also be followed out in a circular form. For a sphere in a

circular form is the intersection of that circular form with a

regular form. Its centre is the foot of the perpendicular from

the centre of the circular form upon this regular form, and is

therefore not in the circular form at all. The apparent centre

is a point in the circular form in the diameter through the

true centre, and the apparent radii are arcs of great circles

through this apparent centre. Let A, B therefore be the

apparent centres of two spheres in a circular form whose centre

is 0, and let P, Q be their true centres, and let the two spheres

touch each other at G, in the circular form. Then the

regular forms containing the spheres intersect in a plane

through G. And, since both spheres touch this plane, the

directions PG, QG are perpendicular to it. But since the

circular form extends from G in the same directions as this

plane does, the direction 0(7 is also perpendicular to it. Now
since the directions OP, OQ are perpendicular to the straight

lines GP, GQ, these straight lines are not parallel. Therefore

they determine a plane, which must therefore be perpendicular

to the plane of contact of the two spheres, through C, and

which must therefore contain also OG, which is perpendicular

to this plane. (III. 9.) Hence the point G is in the plane

OPQ, that is in the plane GAB. Therefore it is in the great

circle AB, and this great circle is therefore the locus of such

points of contact.

(3) That a great circle is the shortest path from one point

to another in a circular form may be proved in the same way

that it is proved in spherical trigonometry. Or, since all the

premises, from which the analogous proposition is proved for a

regular form, apply in a circular form, if the lines in the

figure are none of them as great as a semi-circumference of a

great circle, the proof that a straight line is the shortest path

in a regular form applies to prove that the great circle is the
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shortest path in a circular form, if it is not so great as a semi-

circumference. (The fact that the exterior angle of a triangle

is greater than the interior and opposite is proved in Euclid's

manner, supplemented in the way I have indicated in Part I.)

(4) I have already shown that the true centre of a sphere

in a circular form is not in that form, but in the radius vector

to the apparent centre, or pole, of the sphere. The centres of

a series of increasing spheres with the same apparent centre

will therefore be a series of points in this radius vector, ap-

proaching the centre of the circular form. Any one of these

spheres, from any point in it, extends in directions which are

perpendicular both to its own radius vector from its true centre,

and to the radius vector from the centre of the circular form.

That is to say, it extends in directions perpendicular to a plane

containing its own true centre, the centre of the circular form,

and the point in question. This plane also contains its apparent

centre, and is the diametral plane, whose intersection with the

circular form constitutes the great circle, which is the apparent

radius vector to the given point. The sphere therefore extends

from the given point in directions to which the directions in which

this apparent radius vector extends, are perpendicular. Thus,

such a great circle, through the apparent centre of the series of

(apparently) concentric spheres, is an orthogonal trajectory of

the series ; and so fulfils the last test we have of ' straightness.'

Thus the two objective facts* we have accepted as true are

not enough to prove that material space is not a circular form.

Moreover if it was a circular form of large radius, we might

easily not find it out without having first logically investigated

the possibility of its being one, and its consequences. This will

be evident if we merely consider how many generations of men
lived and died without ever finding out that the surface of the

earth is a sphere, and not a plane. And yet they had far more

obvious means at hand wherewith to deal with the problem,

for their * straight ' lines were at least straight enough to detect

the curvature of the surface of the earth.

The method to be employed in this case will however doubt-

less have occurred to the reader at once. It is by measuring

the angles of triangles, for excess. The discussion of this

method is however better postponed until we see that its

results would really be conclusive. To do this we must in-

8—2
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vestigate whether there are no other forms which are sell-

congruent, besides the regular and circular forms ; and this

w^hen we conceive the possibility of the variation of positions

not only in four, but in any number of independent directions.

It would be difficult to conduct this investigation by the

geometrical methods I have hitherto employed, so I embrace

the opportunity of showing how readily the conception of direc-

tion, as I have advanced it, adapts itself to the development of

the theory of analytical geometry; and I shall outline that

theory from the very beginning in order to show that its methods

are perfectly general, and that it is by a pure mathematical

induction, not by mere reasoning from particular to general

assertions, that its methods are applied to geometry of any

number of independent directions.
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The primary object of analytical geometry is the numerical

representation of differences of position and direction. For we

cannot even conceive such a thing as an absolutely fixed point,

we can only assume that a certain point is fixed, that is, that it

does not change its position, and determine the positions of all

other points by reference to it. So also, although the common
acceptance of Newton's first law of motion seems to make it

probable that we do conceive of absolutely fixed directions, we
have no geometrical test for fixity of direction, and so, geometri-

cally, directions also can only be determined relatively. The

problem of analytical geometry is then to determine positions

and directions with reference to a given point, whose position is

assumed to be unalterable, and one or more given directions.

The most elementary conception of geometry is that of

a single position, of a single, fixed, point. Such a point,

the datum from which we start, is called the ' Origin.' If

besides this we conceive any other points, they lie in one or

more directions from the origin. And having once conceived

a direction, we may conceive positions varying in this direction

from any position we have already conceived.

Let us then start with an origin A, and a second position B.

Then we have conceived the direction AB. Let G therefore be

another point in this direction from B. Since we have also

conceived the direction BA we may also conceive points in this

direction from A, that is we may conceive any point in the

unterminated straight line AB.
If now the distance AB he represented by unity and the

distance AC hy 3, say, the positions of B and G with reference

to A as origin may be represented by the numbers 1 and 3

respectively. But now suppose we take B as origin, then
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the position of G will be represented by the distance BC,

that is by {AG — AB) or 2. If we apply the same rule to

the case of the position A, since its position was formerly

represented by 0, its position will now be represented by

(0 — 1), or — 1. Hence if we represent positions on one side

of the origin by positive numbers, or coordinates as they are

called, and those on the opposite side by negative numbers,

a single number, with its proper sign, will represent any

position. And we obtain the following universal rule :

—

If the origin is moved to a position whose old coordinate

was a, a position whose coordinate was formerly x will now be

represented by (x — a).

Thus we can analytically determine any position, in a given

direction or the opposite, from a given origin 0, by a single

(positive or negative) coordinate, x. If we now conceive

another position besides all these, it lies in a new direction

from 0, and we may conceive a similar series of positions

in this new direction, each determined by a single coordinate

y, from the origin 0, or from any of the positions formerly

determined by a coordinate x from 0. Thus we have a system

of positions determined by two measurements in independent

directions from ; x and y. By the first corollary to proposi-

tion I. 23 the order in which these measurements are made is

indifferent. And as they are quite independent measurements

the rule about change in the coordinate consequent on changing

the origin, given above, will apply to each separately. Thus if

the origin is moved to a position whose old coordinates were

(a, h) the new coordinates of {x, y) are {x — a), (y — b).

If we now consider yet another position not included among

these, we conceive a third independent direction, and to deter-

mine a position we require three coordinates. The rule for

change of origin applies as before to each separately. And
so we may go on ad libitum. Hence in a space of any number

of independent directions, if the origin is moved to a point

(abc.) and if (xyz...) be the old and (x'y'z ...) the new coordi-

nates of any point, we have

x' = x-a; y' = y-b; z' = z-c\.,,\

and x = x -\-a\ y = y -\-b\ z = / + c;...)

Straight lines through the origin in the given independent
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directions in which the coordinates are measured are called the

coordinate axes. Every two of these determine a plane, called

an axis plane. Every three determine a regular form, called an

axis form. And so on. Thus in geometry of four independent

directions there are four axes, six axis planes, and four axis

forms.

The obvious way of indicating a direction analytically is by

giving the coordinates of a point at unit distance from the

origin. It follows from the principles of similar triangles

established by Euclid in his sixth book, that if {xyz...) be

the coordinates of any point at a distance s from the origin,

/OC 1J z \
its direction from the origin is represented by ( - , -

, -...).
yo s s /

To find its direction from any other point {xyz.,.) whose

distance from it is 8 we have only to move the origin to the

point {xy'z'...), so that the coordinates of {xyz...) become

(x — x'){y — y'){z — z)...', and therefore its direction from

—
-,— ,

-—7^, —r— ...)• Simi-

larly, to find the direction of the point (x'y'z...) from (xyz...)

we move the origin to (xyz...); and as s, the distance between

the points, remains the same, the direction is represented by

(
—

-,— , —^ , —7— ...
I

J that is, by the same numbers, or
\ s s s J

direction coefficients as we may call them, as before, but wdth

their signs reversed.

To find an expression for the distance of any point from the

origin, let OL, LM, MN,... be the coordinates (xyz...) of any

position P at a distance s from the origin 0. Let (a^y...) be

the angles which OP makes with the directions of the axes, and

conceive perpendiculars PAy PB, PC... from P to each of the

axes.

Then if each of the points L, M,N,... be projected upon OP
by straight lines perpendicular to it, it is obvious that OP is

equal to the sum of these projections, that is that

s=^x cos 0L-\-y cos fi -\-z cos 7 +

^ . OA OA ^
rJut cos a = 7^^ = — • HenceOP s

s' = x.OA+y. OB + Z.OC+ ,
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and OA is equal to the sum of OL and LA, that is to the sum

of X, and the sum of the projections of y,2... upon the axis of oo,

by straight lines perpendicular to it. That is, if (xy) represent

the angle between the directions of x and y, and so on

s^ = x.x-\-x.y cos (xy) + x ,z cos {xz) +

+ y .X cos (yx) -\- y .y-\- y . z cos (yz) +

-h z .X cos (zx) + zy cos {zy) + z .z +
and so on

= a?2 + 2/2 ^ ^2 _|_ ^ 2xy cos (xy) + 22/2" cos (y^) + (2),

7) . 7) — X
there being p terms of the first kind, and ^ '^ — of the second.

If (Imn...) be the direction coefficients of the direction OP,

X u
dividing the above equation by s^ we get, since Z = - , m = -^

S o

and so on,

l^-\-m^ + n^+ ... + 2lm cos (xy) + 2mn cos (yz) + . . . = 1 (3).

This equation of condition subsists then for all direction coeffi-

cients.

The distance of (xyz...) from any other point (xy'z ...) can

be deduced at once from the above formulae by moving the

origin to (x'y'z',..), that is by writing (x — x') for x, (y — y)
for y and so on in the formula (2). If the axes are all at right

angles to each other the cosines of the angles between them are

all zero and so equations (2) and (3) become

The condition that any number of directions 12... q shall not

be independent of each other in a space of^ independent direc-

tions, may be found from the consideration that if they are not,

after moving a distance 5i, from the origin in any one of the

given directions it must be possible to return to it by move-

ments (positive or negative) s^ s^. . .Sq in the remaining directions.

Hence given any value of s^ it must be possible to find values of

S2S^...Sq to satisfy the p equations

^i^i -r ^2^2 ~r ^3^3 I
Sq^q ^^ ^

S^m^ + 827712 + SsTUs + SqTTlq = > .

and so on
.

We have then to eliminate (^ — 1) quantities from p equations.
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If we can do so, we may divide by s-^, the remaining quantity,

and have left one or more equations of condition that the direc-

tions shall not be independent. Thus if q is greater than p
these equations will contain some of the variables s^s^.,. and

so a solution can always be found, i.e. the directions are not

independent. If q is equal to or less than p we obtain one

or more conditions, in the form of determinants equated to zero.

As such symmetrical determinants occur frequently in the next

few pages, I shall use the symbol (/> for a determinant

formed of columns of Z's, m's and so on, the rows being distin-

guished by the suffixes 123 p. If the number of letters in

the numerator is less than the number of suffixes, the number

is to be made up with columns of units.

The condition then that p directions be not independent is

Imn
'''123 .p^^'

where all the 21 letters appear in the numerator. The conditions

that any less number, q, be not independent are of the same

form, but only q of the p letters appearing in each numerator

and of numbers in each denominator. Hence ii p — q = r, the

number of conditions may be written either

p .p— \ .p—2 p — r-i-1 p .p — 1 .p —2 p - q + 1_ —^ or —
,

but of this number only (r -\-l) are independent, for they are all

deduced from p equations after eliminating (^ — 1) quantities.

The condition that two directions may be at right angles is

easily found. For if the directions 1 and 2 are at right angles

the distances of a point (^imini...) from two points {l^m-^n^...)

(— I2, — m^, — ihy...) each at unit distance from the origin, must

be equal. Hence

(^1 - kf + (^^1 - ^2)' + {ni-n^y +

+ 2 (^1 — ^2) {^nh — '^2) cos {xy) +

= (^1 + kf + (mi + m^y + (n, 4- n,y +

+ 2 (?i 4- ^2) (^1 -I- ma) cos (xy) -f-

From which we deduce the condition

Zi^2 + Wima + 7iin.2 4- . . . -r (liTii. + ^2^1) cos (xy) 4- . . . = 0. . . (5).
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In the case of rectangular axes this reduces to

^1^2 + ^1^2 + ^h'^h + =0.

The condition that two directions may be identical or oppo-

site may be put in a similar form, namely

^1^2 + m-jn^ + n{fi^ + = ±1 (6).

For if to twice the above equation (6) with the lower sign

we add the equations

^i^ + mi^ + wZ-F- = 1,

k^ + mi-\-n^^+ = 1,

or if from these we subtract twice equation 6 with the upper

sign, we get

(^1 ± kf + (^1 ± m^f + {n, ±n;f+ &c. = 0,

which requires that each of the expressions in the brackets

should vanish.

It is easy in a similar manner to find the trigonometrical

ratios of the angle between any two directions. For the dis-

tance between the points (lirnin^) and (l^m^no), both being at

unit distance from the origin, is the chord of this angle. Hence

if the axes are rectangular we have

sin — = 4 J(li — Ly + (mi - m^ + {n^ — m^f + &c.

= s/|^ (1 — I1I2 — m^jn^ — Uin^ — &c.),

4V'-COS ^ = A / i — sm-^ -^

= J^(l + 1-^1,2 + nijm^ + UtU^ 4- &c.),

A A
cos A = cos^ — — sin^ — = l^l^ -H m^m^ + 7^71^ + &c.,

sin A = Jl — (kk + m^m^ + 11^11^ + &c.y

;

and the latter expression may easily be shown to be equal to

/ , Imy ( , mnY !

^

the bracket containing determinants formed from all the com-

binations of the coefficients two at a time. The conditions (5)
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and (6) may therefore be replaced by equating this expression

to 1 and respectively. Similar expressions for oblique axes

may be found by exactly the same methods.

We have seen that the directions of the axes must be

independent directions, but with this restriction it is still

possible to twist them into various directions. Any possible

alterations in the directions of the axes may be performed by

successive twists of two axes at a time in their own axis plane,

and each of such twistings will only affect the coordinates

parallel to the axes twisted, though in the case of oblique axes

it will also affect the angles between these axes and the rest.

Suppose, for example, in a space of four independent directions

it is required to twist the axes into four new independent

directions 1, 2, 3, 4 that is, until they pass through the four

points {lim{)ijc-^ {l^m^njc.^ and so on, all at unit distance from

the origin. This can be done in six stages, thus

—

A rotation in brings the axis that of y that of z and that
the plane of of X to to to of w to

{xy) l^m^OO ^2 wig 0000 0000
(y^) \m^00 ?2 ^2 n^ mg n^ 0000
{zw) l^m^OO ?2 ^2 ^2 m^ Mg ^3 m^ Jc^

{wx) l^ m^ k^ ^2 ^2 ^2 mg Wg ^3 1^0 m^k^

{xz) li TUi n^ Jc-^ ^2 WI2 ^2 ^ '0 TYk/o 't'Q "^0 l^ m^ k^

{wy) li mj n^ ^1 Ic^m^n^h^ k^s^sh li m^ t\ k^

The coordinates in the table being all referred to the original

axes. This method is sometimes convenient. Or else general

formulae may be obtained thus,

—

We observe that if a point can move from the origin to a

given position by a movement s, in a direction (Imn ), it

can also move to it by movements Is, ms, ns, in the direc-

tions of the axes of {x, y, z ) respectively, these being the

coordinates of the position.

Let it then be required to find the coefficients (V/aV )

of a direction referred to a set of axes {xy'z ), whose

coefficients referred to a given set of axes {xyz ) were

(X}iv ), the directions of the new axes referred to the old

being {lxm{n-i_ ) (l^m^n^ ) and so on.

Then by hypothesis a point can move from the origin to
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the point P, at unit distance from it, whose old coordinates are

(X/Az/ ), either

(1) by movements (X/ai/ ) in the directions of the axes

oi(cc, y, z ) respectively, or

(2) by movements (X'fM'p ) in the directions of the

axes of (x'ys! ) respectively.

But these latter movements may be replaced as follows

—

X' by (^iX'), (miX'), {n-^) in the directions {xyz ) re-

spectively [for (X'OO ) is a point at distance X' from the

origin in the direction {h^m-jix )],

y^' by iliii), {m^fi), (n^fi') ... in the same directions, and so on.

Or, as the movements may, by (I. 23, cor. (ii)) be taken in

any order, a point may be moved from the origin to P by

movements

(^iX' 4- ZsA*'' + Isv' + ) in the direction of x
;

(mjX' + niifi -\- m^v' + ) in the direction of y ;

(tIiX' + thifji! + n^v + ) in the direction of z
;

and so on.

These therefore are the coordinates of P referred to the

axes {xyz ). That is to say,

X = ^X' + l^fji! + l^v + ,

jM = uiiX + m^/Jb' + lUsV +
p = n{\f + 7i2fi + 7I2V +

and so on

.(7).

Whence we get also

—

X' =

X /^ p ...

h ni2 % ...

Is rris Us ...

^__

<}>

Imn...

(-)^->'=

123...

\ fJb V .

li nil 7ii .

L nio Tio ..

<!>

Imn...

12377,

x<^
mn

.

WT.
+(-)^-v^5*:^+&c.

Imn...

123...

X</)
mn...

13..T

In...
+ (-)^-V<^^ +&C

4>

Imn...

123777

y(S),
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and so on ; where, in the determinants in the numerators of the

second expressions, one number, namely that corresponding to

the coefficient (V) on the left of the equation, and one letter,

namely that corresponding to the coefficient (\) of each de-

terminant, is omitted, leaving determinants of the order (p — 1).

To deduce from these formulae the new coordinates

{x'y'z ) of a position whose old coordinates were {xyz )

we observe that the distance of the position from the origin s,

is unaltered ; and its direction from the origin, referred to the
(OC tl z \
-, -, - I. Substituting these in (8)
S O o J

we get the values of the coefficients of the same direction

referred to the new axes, that is, of - , - , and so on. As the
5 s

equations are all homogeneous the s multiplies out, and the

result is the same as if we had written x for \, x' for X' and so

on, throughout equations (7) and (8).

If only two axes are rotated in their own plane the formulae

(7) and (8) reduce to

*12 J

In the special case where both the old and new systems

of axes are rectangular, equations (8) may be much simplified.

This may be proved by the method of successive rotations of

two axes at a time, referred to above. In this case, since the

direction at right angles to {I, m) in the plane of {xy) is the

direction (— m, I), equations 9 become

\ = lX' — mix

fi = rnXf + l/jf

Hence the effect on the coordinates (xyz ) of any posi-

tion, of a twist of the axes of (xy) in their own plane till they

pass through the points (liiUiOO ) (l^niiOO ) that is, till

the axis of x extends in the direction

li mi

and ^; = '^ + '»^ I
(10).

Jli^ + m^^ JWVrrh^
0, 0.
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is that they become respectively

l^x + m^y
^
— TTiiX + l^y

z\ w\ &c.

And the new coefficients of the direction ilj{\n{a^ ) are

sjl^ + m-^ ; ; % ; A^j ; &c.

Hence the next twist, in the axis plane ixz), has to bring the

axis of X into the direction

A^ + m^^ . % ^,
/ U 17- -, 0; occ.

Therefore the coordinates of P after this twist become

U)

and the new coefficients of the direction {l^m^n^ ) are

Jk^ + TTii^ + nj^; 0; 0; k\ &c.

If we continue this process {p — \) times, that is, if we

twist the axis of x with reference to each of the other axes in

succession, the direction coefficients (l^m^n^...) become all zero

except the first, which is unity since

l-^ 4- m^ -\-n^+ {p terms) = 1,

and the coordinate x of the position P becomes

X =-l^x-\- m^y + n^z + \

Similarly y = l^x + m^y ^-n^-^-
|

2^ ^l^x + 7nzy-\-n^z-\- f ^
'

and so onj

and in these equations as before we may write X' for x, and

X for X, and so on, and so get the new direction coefficients of a

direction. For example, the old coefficients of the old axis of x

were (1, 0, 0, 0, ). Thus the new coefficients of the old

axis of X are {l^ljiz )• Thus, considering the axes ix'y'z )

as the original ones, formula (11) gives for the coordinate ^ of a

position referred to the other axes

X — l^X + Z22/' + I3Z' +

which agrees with (7).
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If {xyz ) is any point in a space of p independent

directions what is represented by a single equation

—

F{xyz )=0 (1).?

The equation obviously represents the locus of a number of

points obeying certain conditions. As (in general) the variables

may vary continuously in the equation, the locus will (in general)

be a spread of some kind. Let us then investigate the direc-

tions in which it extends from any point in it.

If (^ + A^) (y + ^y) (z -{- ^2) be a point in the locus

near (ocyz ) at a distance As from it, then the direction

from (xyz ) to it is represented by the direction coefficients

Ax Ay Az
As' As' As

If the distance As is indefinitely diminished, in the limit this

direction is a direction in which the spread extends from the

point {xyz ), and its coefficients are

dx dy dz

ds' ds ' ds

Now s is some function of xyz Hence differentiating

(1) with respect to s we get

dF dx dF dy dF dz _
dx ' ds dy ' ds dz ' ds ^

^'

dF
The quantities -^, are constant at any given point in the

locus, and may be replaced by letters XYZ which are

understood to be dependent on xyz , the coordinates of the

dx
given point. The quantities -^ &c. are the direction coef-
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ficients of any direction in which the spread extends from this

given point, and may be replaced by (XyLti/ w). Thus the

equation

X\-{-YiJL + Zv + = (3),

determines in what directions the spread extends.

Now the p quantities (Xfiv w) are not quite indepen-

dent, for as we have seen, being direction coefficients, they are

connected by an equation of condition which we found in the

last chapter (formula 3). This condition also prevents their all

being zero. Hence we may consider one of them X, to be

determined by this condition in terms of the others, and not to

be zero, we may therefore divide equation (3) by X and have

left an equation of the first degree in (jd — 1 ) arbitrary variables,

fJb V (O

X' X X'

Now in equation (3) any one of the constant quantities

XY will be zero for every point in the locus, if the cor-

responding coordinate does not appear in equation (1). But

even if it does appear, the quantity may be zero for a particular

point in the locus, for it is got by differentiating F with respect

to one of the variables in it, and then giving these variables

particular values, which may of course make the result vanish.

But suppose that at a given point {x'y'z' ) in the locus, q
out of the f quantities X, F, do not vanish, including

X. Then (3) becomes an equation in (^q—V) arbitrary ratios

^, -, -. We may therefore assign any values we please
A X X

to all but one ( say -
]
of these ratios and also to all the (p — q)Xj

coefficients which do not occur in the equation, and we may

then determine ^ . Suppose we ascribe the value zero to each
X

one of these arbitrary ratios. We have then found one direc-

tion in which the spread extends, which we may denote by

(Xi/^iOO ).

Now vary each of the (p — 2) arbitrary values we have

assumed in turn, making each in turn unity instead of zero for

instance. In the case of the {q — 2) arbitrary ratios which appear

in the equation (3) a redetermination of ^ will be necessary

;
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but in the case of the {p — q) which do not appear in the equa-

tion this will not be necessary. We shall now have (p — 1)

directions in which the spread extends from {x'y'z' ). It

only remains to show that they are independent directions,

and that all other directions in which the spread extends are

dependent upon them.

Now the complete determinant formed from these (p — 1)

direction coefficients (Xji/i Wi) (X^v^ ^2) omitting

any one of the coefficients, /^i/xg from each, may be de-

veloped thus

—

\Z^ ft)

"^12 {p-D
V ft) , . „^ , V ft)

=^'''' 23...""."(^-1) + ^''^'^''^
34.....'."(p-l).l

V ft)

+ ±^"-""Pl2 (p-2)-

Now none of the quantities Xi, X2 are zero, and of each

of the quantities {v ft)) in each direction after the first, all

are zero except one, in each direction, whereas in the first

direction all are zero. Hence each determinant on the right

of the above equation has a complete row of zeros (that cor-

responding to direction 1) except the first, the letters in which

are all zero except those on the leading diagonal. Therefore

this term on the right hand of the equation remains alone, and

is not zero. Therefore the (^ — 1) directions are independent

of each other.

Now let us select any other direction in which the spread

extends, and which therefore satisfies equation (3). We thus

have p directions in all. If the q coefficients of this new

direction which appear in the equation (3) are equal or pro-

portional to the first q of any of the former {p — 2) directions,

then the determinant

^123
q

formed from these first q coefficients will have two rows equal

or proportional, and will therefore vanish. But if not we obtain

one more independent and consistent equation of form (3), that

is q equations in all, which suffice to eliminate the q quantities

D. 9
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XY none of which by hypothesis are zero, and so we are

left with the same condition as above, namely

^123 q
= ^'

Now if "^ be one of the remaining (p — q) direction coef-

ficients we have

, \/jiv TT, yjr

^123 q,(q + ^)

And we gave the value zero to all the ratios -^ except one. As
A,

•>|r is not among the first q direction coefficients, it was one of

those after the q^^ which was not zero, say the (g + 1)"\ Thus

all the terms on the right of the above equation after the first

vanish on account of the ^ coefficient, and the first vanishes

because, as we have seen, its determinant (/> vanishes. In the

same way it can be proved that we may form a determinant

with yet another of the remaining {p — q) coefficients, which

will vanish ; and by proceeding in this way to the end, we

find that

<i> \Z^
"
= 0.^ 123 p

That is the p directions are not independent, and therefore the

spread represented by equation (1) extends from every point in

it in (p — 1) and no more independent directions. We may call

such a spread one of the {p — Vf^ order.

In the same way it may be shown that two simultaneous

independent and consistent equations

F,{xyz ) = 01

F,{xyz ) = 0]
^^^'

in general represent a spread of the {p — 2)"^ order

For as above we may deduce the equations

XiX+ Y,fi + Z^v + =
X,\+Y,fjL-\-Z,v-h =0j

^^^'

And even if both these equations (5) contain all the p
coefficients (X/buv co) we may eliminate one of them and

so obtain an equation in (p — l) of them, from which we may
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show as above that the locus extends in (p — 2) independent

directions, for we may ascribe (p — 2) arbitrary vaUies to the

ratios of (p — 1) of the coefficients, determining the p^^^ coef-

ficient in each case from one of the equations (5). And if

equations (5) are independent we may show as above that

there cannot be more than (p — 2) independent directions

which satisfy them.

Thus two simultaneous independent and consistent equa-

tions in general represent a spread of the (p — 2)*^'^ order. Or

we may say that two spreads of the (p — ly^ order in general

intersect in a spread of the order (p — 2).

And so generally q equations represent in a space of p
independent directions a spread of the (p — q)^^^ order, or the

intersection of q spreads of the order (jy — l) is in general a

spread of the order (p — q).

Thus a line will in general be represented by (p — 1) equa-

tions, a surface by {p — 2), a form by {p — 3) and so on.

The condition that a spread shall be a regular one is that

the equation or equations determining the directions in which

it extends should be the same for every point in the spread.

dF dF
That is, the differentials -p , -^ and so on, must all be con-

stants. Hence all the equations representing regular spreads

must be equations of the first degree.

The equations to a straight line may be got at in another

way. Let (ahc ) be any point in a straight line and

(Imn ) the direction in which it extends, s the distance

of any other point in it from (abc ). Then we have

so = a + ls; y = b-{-ms', z=^c + ns and so on.

„ X — a y — h z -c .^.
Or —r-= =— = =5 (6).

(The last equation is of course not independent of the

others.)

If this straight line passes through a second known point

(a'6V ) at a distance s' from (abc ) then

, a' — a b' — b

and so on. Hence the equations to the straight line joining two

points are,

9—2



132 PART III.

X — a _y — h^z — G

_

a' — a h' — h c' — c

s
.(7).

Similarly if (ahc ) be a known point in a plane which ex-

tends in two known directions, 1 and 2, from it, then if it extend

in any third direction, we have

Imn . mnk
^123 = *

But 4 = —J— , mg = ^

123
= 0.

and so on. Hence substituting
s - s

in the above equations and expanding,

(a; - a) cl> -^ + (y -h) (f) ^ + (z - c) cl> j^^O
12 12 12

(y - ^) <l> T^ + (^ - c) <t> j^ + (w- d) (i> ^ = y (8),

12 12

and so on.

are the equations to the plane. There will altogether be

7) , 'jo 1 1) 2—

^

Q !^ ^^ these equations, but only (p — 2) of them

will be independent.

If we are given three points 1, 2, 3 in the plane which are

not in a straight line, then if sV be the distances from 1 to 2

and to 3 respectively the conditions that the direction to any

point cc from (abc.) shall be dependent on these directions may
be written

00 — a y — h z — c

s s s

«! — tto 6i — 62 Ci — C2

Oi - tta 61-63 Ci - C„

= and so on.

s" s" s"

This may be reduced to the series of equations

123

cd

123

123

db_

123

.. and so on

.(9).
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And so we may find the equations to any regular spread.

These equations all apply to oblique as well as to rectangular

axes.

If the equation, referred to rectangular axes,

Ax + By+Gz^- = K (10),

represent a spread of the order (^ — 1) in a space of p indepen-

dent directions, then the directions in which it extends from any

point are determined by the equation

A\ + Bfju+Gv-\- = 0.

Hence a du'ection whose coefficients are proportional to

{Ay B, C..)is at right angles to every direction in which

the spread extends, that is, it is perpendicular to the spread.

If therefore (Imn...) be this direction, equation 10 may be

written

Ix + my + nz + =
, ^ ^ ...(11).^ jA' + B' + O-i- ^ ^

Now a straight line through the origin in this direction,

perpendicular to the spread is represented by

i^ _y _z _ _Imn
Hence the intersection of this with (11) is at a distance 5 from

the origin, given by writing Is for x, ms for y and so on, in (11),

that is

K
Ps 4- w?s + n^ s+

jA-' + B'-\-G^+

But P + 'w?-\-n^+ =1.

Hence the equation to a spread the perpendicular from the

origin on which is in direction (lm7i...) and of length s is

Ix -^ my -h nz -{- =s (12).

Similarly we may show that if we have q equations of the

first degree representing a regular spread of the order (p — q),

that the directions whose coefficients are respectively propor-

tional to the coefficients of the variables in these equations, are

all perpendicular to the spread. And since we have q equations

which are independent and consistent, we shall get q directions

perpendicular to the spread, which may be shown to be inde-



134 PART III.

pendent directions, since the equations are independent equa-

tions. Thus we may have a spread of the (f^ order perpendicular

to one of the order {p — q).

Since the formulae we found in Chapter V. for the transfor-

mation of coordinates on moving the origin or rotating the axes

in any way, are all formulae of the first degree in the variables,

it follows that no movement of the axes can alter the degree of

an equation representing a given spread. Hence the degree of

an equation is an intrinsic property of the spread it represents.

The obvious way therefore of investigating the properties of

spreads represented by equations of a given degree is to investi-

gate whether the equation cannot be simplified by moving the

origin or axes. Thus in equations of the second degree we have

terms such as a^, and such as xy of the second degree. It will

be found that terms of the second class can always be got rid of

by rotating the axes, and that sometimes terms of the first can,

but that both classes can not be got rid of at once. Further,

by shifting the origin, it is always possible to get rid of terms

of the first degree if corresponding ones of the second degree

remain, and if this is not the case it is still possible to get rid

of all but one of the terms of the first degree, and of the constant

term. In this way spreads of the second degree may be divided

into those which can be reduced to terms of the second degree

and a constant term only, and those which can not. As in the

former class, if any point {abed...) is in the spread, the point

{— a—h— c — d.,.) is also in it, this class may be called central

spreads, and the others non-central.

As this book does not profess to be a treatise on geometry

of more than three independent directions, I will merely

conclude by enumerating the chief characteristics of forms

of the second degree, that is spreads represented by equations

of the second degree in a space of four independent directions.

The equation to a central form may be reduced to the form

±5±l^±c^±S=i (^^>-

If all the upper signs are taken it may be called the elliptic

form, li a = h = c = d the equation may be written

x'^-y'-\-z^^ + w'' = o? (14),

which, if the axes are rectangular, clearly represents a form
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every point in which is at a distance a from the origin, that is,

a circular form.

If one or more of the lower signs is taken in equation (13)

we get a hyperbolic form. There are three orders of these.

The first and third orders, that is the forms

are conjugate to each other. That is, they are asymptotic, both

to each other, and to the form

which I have called the ellipto-conical form.

The second order of hyperbolic forms are self conjugate, that

is each of the two forms

^2 y2 ^2 yj2

are hyperbolic forms of the second order, and are conjugate to

each other, and both asymptotic to the form

which I have called the hyperbolo-conical form.

It may be shown that there are a number of straight lines,

or generating lines as they may be called, wholly in the hyper-

bolic form of the first order, which do not however pass through

every point in the form. The form of the second order may be

completely generated by straight lines, as also may the ellipto-

conical form. The hyperbolo-conical form may be generated

similarly by planes, but there are neither generating planes nor

lines in the elliptic form, or in the hyperbolic form of the third

order.

The equation to a non-central form may be reduced to

If all the upper, or all the lower, signs are taken we have the

ellipto-parabolic form ; if the signs of the first three terms are

not all the same, the hyperbolo-parabolic form. As the sign of
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the last term is indeterminate, these are the only material

variations possible.

The hyperbolo-parabolic forms

^ + ^_!! + ^ = (20)

are conjugate, and asymptotic, both to each other, and to the

cylindro-conical form

|»+|-?=o (20).

There are no generating lines in the ellipto-parabolic form, but

the hyperbolo-parabolic may be completely generated by straight

lines, and the cylindro-conical by planes. Besides these forms

the equation may represent other cylindrical forms, when one or

more coordinate vanishes from it, or it may reduce to one or two

regular forms, to a single point, or to an impossible locus.
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We are now in a position to return to the main question

—

the objective truth or otherwise of my second axiom.

We have already granted that material space, the space in

which material bodies are free to move, does extend from every

position in it in a complete group of three independent direc-

tions. Consequently if it does not extend from all positions in

it in the same directions, there must be some number, p, of

independent directions, greater than three, on which all the

directions in which it extends are dependent. Hence material

space is a form of some kind, in a space of^ independent direc-

tions, and its shape is therefore represented by {p — 3) equations,

in p coordinates.

We may assume that the origin of the system of coordinates

is in material space; that the axes are rectangular; and that

the equations are all expressed in rational algebraical form.

Now there is one thing more that we know about material

space, namely that it is a self-congruent space. From this it

follows that from every position in material space its shape and

size must appear the same, and therefore that if we move the

origin to any point in material space it must always be possible,

by a suitable rotation of the axes, to reduce the equation to it

to the same form it had originally.

Now if we move the origin to any point {x'y'z'...), to

transform the equation we must write {x -\- x') for x, (y -\- y)
for y, and so on, in all the equations. Hence if x'^ ; x^ yn-m

j^g

terms of the highest degree, n, in the old equations, these will

become in the new equations,

{x'^ + nx^~^x' -f- . . .)

and (x'y-"^ + mx'^-Wy''-^ -\-(n- m) x'^xjy^-^-^ + . .
.

)
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and the only terms of the highest degree, n, will still be ^'",

^myu-m^ as before. But terms of any lower degree will in general

be altered. For each term of the degree n, produces terms of

all degrees below n, and these cannot be cancelled by others

arising from other terms for every possible movement of the

origin. These terms will therefore have to be got rid of by

rotating the axes, keeping them still rectangular, which may
be done by the formulae (11) or (13) of Chapter V.

For the sake of simplicity we will suppose the formulae (11)

for rotation of two axes at a time to be made use of repeatedly

;

that is, we write {lx-\-iny) for x, and (mx — ly) for y (where

^2 + m^ = 1).

But, as the highest terms, of the degree n, were not changed

by the translation of the origin, neither must they be changed

by the rotation of the axes. Hence these terms must be of the

form A {af + y^) or some power of such an expression ; that is

11

A (x^ +2/^)^ so that n must be an even number. But a similar

rotation in the axis plane (yz) shows that the terms of the

highest order must also be included in the form

A{x' + y' + zJ,

and so on for all the coordinates. Hence each of the (p — 3)

equations representing material space must be of the form
n

^ (^' + 2/' + ^^..)'+ lower terms = (1),

where A may in any one equation be zero, but if it is not, all

those coordinates appear within the bracket which are capable

of variation in material space. If more than one of the equa-

tions contain terms of the n^^ order, we may therefore eliminate

such terms from all but one of them, by dividing each of them

by their constant factor corresponding to A, and then subtract-

ing them two and two. We have then one equation of the above

form, and (p — 4) of lower degrees.

If we now move the origin to another point in material

space {pdy'z' ) the terms of the 7i*^'^ degree produce terms

in all the variables of every degree below the ti*^^, and any

other terms in the old equation also produce new terms of

lower degrees. Since the old origin was in material space, the

old equations contained no constant term, and the condition

that the new origin is also in material space eliminates the

constant term from the new equation. But there remain terms
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of all degrees up to the {iii— 1/^ to be eliminated by the ro-

tations of the axes. Now these rotations of two axes at a time

afford us
\ ^

equations, if q is the number of coordinates

which are capable of variation in material space. Hence the

Q (q 1^
rotation of the axes may be made to satisfy ^ conditions,

but not more. Now if n = 2 there are only terms of the first

degree to be eliminated from the equations. And since only q
coordinates vary in material space, it must be possible to find

constant values from the equations for the other (p — q) which

values must be zero since the origin is in material space.

Hence there can not be more than q terms of the first degree,

Q (q — 1)
and the ^ to conditions will be sufficient to bring them

back to what they were in the original equation. But if n is

greater than 2, even if it is 4, besides the q terms of the first

q (q — 1)
degree, there will be —

-^
of the second, and yet more of

the third degree. Hence it is impossible to bring them all

back to what they were originally. Therefore n cannot be

greater than 2, and equation (1) may be written

a? -\-
y"^ -\- z^ + w'^ -\- + terms of the first degree

= (2).

The remainder of the equations being of a degree below n

are of the first degree. As we have seen {p — q) of them may
be reduced to the form

u = Q, (3).

And now let us revolve the axes so that three of them, x, y,

and z, are tangent to material space at the origin. Hence

-^— , and , must vanish when all the coordinates are equated
ax ay dz ^

to zero. Therefore there can be no terms of the first degree in

X, y, z in the equations. Thus the equations are reduced to

the form

x'^ -^ y' -]-
z^

-\- m" + v" -\- ->raw+hv + = OWl equation)

a^w -\- hxV + = to
— 4) equations I (4).

it = {p ~~ ^ equations]

Now write {lw-\-mv) for w and {miu — lv) for v, rotating the



140 PART III.

axes of w, v, in their own plane, and determine ~ by equating

the coefficient of w in the second of the above equations to zero,

that is by writing — =—- . Similarly rotate the next pair of
772/ dj

axes so as to eliminate w from the second equation. And as

there are (q — 4) coordinates besides w in these (q — 4) equations

we may repeat this process (q — 4) times, and so eliminate w
from all the (q — 4) equations, and leave only (q — 4) variables

in them. They then suffice to determine constant values for

all these variables, which are obviously all zero, and so we have

finally left the equations to material space

x^ + y^ -h 2;- i-
w"^

-\- aw = (one equation)] .

V = 0, u = (p — 4) equations]

These (p — 4) equations represent a regular spread of four

independent directions, through the origin. Hence we have

nothing more to do with the (p — 4) independent directions in

which these coordinates are measured, but only with the spread

of four independent directions, and the first of the above equa-

tions.

Hence, let us move the origin to the point fO, 0, 0,—
-^ j, in

the spread of four independent directions, this equation becomes

x'-\-y^-{-z" + w^= (6),

and consequently :—If Material space is not a regular form, the

only alternative consistent with the objective facts we have

granted is that it should be a Circular Form, and this in how-

ever many independent directions points in it might be con-

ceived to vary.

Mr Chrystal, starting on the definition of a straight line

merely as a self-congruent line, came to rather a different

conclusion. He deduced a theory of hyperbolic space, which I

have now shown to be inconsistent with the assumption that

space is self-congruent, which he nevertheless assumes in his

demonstration. This might indeed have been indirectly in-

ferred from the proof given in Part I. of Euclid's 12th Axiom.

But I have now further shown that there cannot be more than

one kind of ' elliptic space,' of which Mr Chrystal discussed
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several, and that kind is that which he calls ' double elliptic

space/ but which is not elliptic, but circular.

But there are observed facts which prove that, if material

space is not a regular form, it is a circular one of such enormous

radius that the minute fraction of it of which we know anything

at all may without sensible error be considered a regular form,

for all practical purposes.

We have already seen that if material space is a circular

form of radius p, in any triangle

P

That is, the excess of a triangle varies as its area. Now the

largest triangle whose angles we could measure would be one

inscribed in the earth's orbit. And in such a triangle there

cannot be any great excess, or astronomers would ere now have

observed it. Therefore its area must be small compared with

that of a great sphere. Much more so therefore must the area

of those triangles be by which the distance of the sun from the

earth is determined. If therefore, as an approximation, we

treat these as plane triangles, we may assume that the distance

of the sun has been correctly calculated, at some 91 millions of

miles, say. To find the area of a triangle inscribed in the earth's

orbit, we may, as an approximation, consider it a plane triangle,

and the orbit as circular and of radius r. The area of an
o /q

equilateral triangle will then be —j— r^.

Hence the excess of the triangle is

Hence if e be the circular measure of the excess

p ^ (S V3 1

r [ 4 ' 6

and so even if so considerable an excess as 10'^ could have been

overlooked, the radius of material space must be at least 160

times that of the earth's orbit. As the largest mundane tri-

angle whose angles have been measured in a trigonometrical

survey has probably an area considerably less than that of an

equilateral triangle inscribed in a circle of 50 miles' radius, the

excess of such a triangle would only be
( oTT^aTTaT^a )

^^ ^^e
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excess of a triangle inscribed in the earth's orbit, a quite

imperceptible quantity.

But there is another consideration which may assure us

that the radius of material space must in all probability be

very many times gi'eater than this, if it is not infinite, that is

if material space is not a regular form.

For a long while the fixed stars were believed to have no

parallax, even with such a base as the diameter of the earth's

orbit. On the assumption that material space is a circular

form this might indeed be explained as being due to the excess

of the triangles used to measure their distances ; which would

mean that they must all lie upon or near the equatorial sphere

of which the solar system occupies one pole, and therefore be

separated from us by a distance of about a quadrant of a great

circle. Inexplicable as such a disposition of the stars in space

might seem, it is rendered still more so when we consider that

some stars have in recent years been found to have as much
parallax as 2", or even more. These stars must therefore be

separated by a distance less than a quadrant from us. But

in that case how is it that no stars have been found whose

distances are a little more than a quadrant ? For such stars

would have equal but negative parallaxes, a phenomenon which

has never been observed.

But if we reject this explanation of the smallness of the

parallax of the fixed stars, assuming, as seems so much more

probable, that they are more or less evenly distributed through-

out space, then the most distant of them which is visible to us

must be many times as distant from us as the nearest, and its

distance is not greater than a quadrant of a great circle. Hence

the triangles used to determine the parallax of the nearest

fixed stars must be approximately plane, and their calculated

distances therefore approximately correct. Now the distance

of a star with 2" parallax would be about 100,000 times the

diameter of the earth's orbit, and consequently a quadrant

of circular space must be many times this—that is, millions of

times the distance from us to the sun. Thus we cannot hope

to discover any excess, even in a triangle inscribed in the

earth's orbit

!

Now no objective knowledge can attain more decisive results

than this. The inductions on the strength of which we accepted
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my other two axioms as objectively true of material space, are

certainly no stronger, and before doubting the objective truth

of the remaining one it would therefore be necessary to re-

consider them. We have then come to the following

CONCLUSIONS.

I. There exists a subjective geometry, whose subjective

CONCLUSIONS ARE NECESSARY TRUTHS.

II. That the conclusions of this geometry are also

applicable to the objective geometry of material

Space, is proved by inductions as convincing as any
we know of, except perhaps that which convinces

us that there is an objective universe at all.

QUOD ERAT demonstrandum.

THE END.
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