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PREFACE

The title of this book is the best brief description of its content and purposes
that the author was able to think of. These purposes are rather different from those
of most books on “higher geometry ” or the foundations of geometry. The difference
that is involved here is somewhat like the difference between the two types of
advanced calculus courses now commonly taught. Some courses in advanced cal-
culus teach material which has not appeared in the preceding courses at all. There
are others which might more accurately be called courses in elementary calculus
from an advanced standpoint: their purpose is to clean up behind the introductory
courses, furnishing valid definitions and valid proofs for concepts and theorems
which were already known, at least in some sense and in some form. One of the
purposes of the present book is to reexamine elementary geometry in the same
spirit.

If we grant that elementary geometry deserves to be thoroughly understood,
then it is plain that such a job needs to be done; and nc such job is done in any
college course now widely taught. The usual senior-level courses in higher geometry
proceed on the very doubtful assumption that the foundations are well under-
stood. And courses in the foundations (when they are taught at all) are usually
based on such delicate postulate sets, and move so slowly, that they cover little
of the substance of the theory. The upshot of this is that mathematics students
commonly leave college with an understanding of elementary geometry which is
not much better than the understanding that they acquired in high school.

The purpose of this book is to elucidate, as thoroughly as possible, both this
elementary material and its surrounding folklore. My own experience, in teach-
ing the course to good classes, indicates that it is not safe to presuppose an exact
knowledge of anything. Moreover, the style and the language of traditional
geometry courses are rather incongruous with the style and the language of the rest
of mathematics today. This means that ideas which are, essentially, well under-
stood may need to be reformulated before we proceed. (See, for example, Chapter 6,
on Congruences Between Triangles.) In some cases, the reasons for reformuls-
tion are more compelling. For example, the theory of geometric inequalities is
used in the chapter on hyperbolic geometry; and this would hardly be reasonable
if the student had not seen these theorems proved without the use of the Euelid-
ean parallel postulate. '
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vi  PREFACE

For these reasons, the book begins at the beginning. Some of the chapters are
quite easy, for a strong class, and can simply be assigned a8 outside reading, Others,
such as Chapters 20 and 24, are more difficult. These differences are due to the
nature of the material: it is not always possible to get from one place to another
by walking along a path of constant slope.

This unevenness in level of difficulty makes the book rather flexible. A well-
prepared class may go rapidly through Chapters 1-7, and deyote most of its time
to the sort of material presented in Chapters 8, 10, 14, 19, and 20. A poorly pre-
pared class may go carefully through Chapters 17, omiit such chapters as 14
and 20, and still not get to Chapter 25.

The hook is virtually self-contained. The necessary fragments of algebra and
the theory of numbers are presented in Chapters 29 and 30, at the end. At many
points, ideas from algebra and analysis are needed in the discussion of the geometry.
These ideas are explained in full, on the ground that it is easier to skip explana-
tions of things that are known than to find convenient and readable references.
The only exception to this is in Chapter 25, where it seemed safe to assume that
epsilon-delta limits are understood.

In some chapters, especially Chapters 20 and 25, we give full expositions of
topics which are commonly dismissed rather briefly and almost casually. The
process by which the real numbers are introduced into an Archimedean geometry,
for purposes of measurement, is highly important and far from trivial. The same ,
is true of the consistency proof for the hyperbolic postulates. Here (as elsewhere)
the purpose of this book is to explain, with all possible lucidity and thoroughness,
ideas which are widely alluded to but not so widely understood.

Cambridge, Mass, E.E M
Oclober 1962
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THE ALGEBRA OF THE REAL NUMBERS

1.1 INTRODUCTION

In this book, we shall be concerned mainly with geometry. We shall begin at
the beginning and base all our work on postulates which will be carefully stated.
Our postulates for geometry will be somewhat different from the ones that you
are familiar with from elementary courses, but the general way in which we use
them will be the familiar way which has been used in geometry ever since Euclid.
The scheme (to put it briefly) is to state at the outset what we are assuming and
base our later conclusions on these explicitly stated assumptions.

In modern mathematics, however, geometry does not stand alone the way that
it did in the time of Euclid. In modern mathematics, the real number system plays
a central role, and geometry is far easicr to deal with and to understand if real
numbers are allowed to play their natural part. For this reason, the first step in
our program is to put the real number system on the same solid basis that we in-
tend to provide for geometry, by first stating our assumptions clearly and then
building on them.

1.2 ADDITION AND MULTIPLICATION OF REAL NUMBERS

We shall think of the real numbers as being arranged as points on a line like
this:

1
T
0
Figure 1.1

|- L
1 I
-3 -2

Nt
o
Nin -
w

The real numbers include, at least, all of the following:
(1) the positive integers 1, 2, 3, .. ., and so on;
(2) the integer 0;
(3) the negative integers —1, —2, —3, ..., and s0 on;

(4) the fractions with integers as numerators and integers different from 0 as
denominators. For example, 4, —# and 1,000,000/1 are numbers of this type.



2 ALGEBRA OF THE REAL NUMBERS

Note that this fourth kind of number includes the first three, because every
integer n is equal to n/1. What we have so far, then, are the numbers of the form
p/q, where p and g are integers and g is not 0. These are called the rational numbers.
This term is not meant to suggest that any other kind of number must be erazy.
It merely refers to the fact that a rational number is the ratio of two integers.
As you probably know, there are many real numbers that are not of this type.
For example, +/2 is not the ratio of any two integers. Such numbers are called
trrational.

We proceed to state the basic properties of the real number system in the form
of postulates. We have given a set R, whose elements are called real numbers
(or simply numbers, if the context makes it clear what is meant). We have given
two operations, addition and multiplication, denoted by + and :. Thus the alge-
braic structure that we are dealing with is a triplet

[R’ +l ']'
The properties of the system are as follows:

A-1. R is closed under addition. That is, if @ and b belong to R, then a 4 b
also belongs to R.

A-2. Addition in R is associative. That is, if @, b, and ¢ belong to R, then
a+ b+c¢)=(a+?d +ec
A-3. Therc is exactly one element of R, denoted by 0, such that

a+0=0+a=
for every a in R. + + N

A-4. For every a in R there is exactly one number —a in R, called the nregative
of a, such that
a+ (—a) = (—a)+a=0.
A-5. Addition in R is commutative. That is, if a and b belong to R, then
a+b=2>b+a.

These postulates are numbered A-1 through A-5 because they are the postulates
that deal with addition. We now move on to multiplication.

M-1. R is closed under multiplication. That is, if a and b belong to R, then ab
belongs to R.

(Here and hereafter, we denote the product a - b simply as ab. This is a matter
of convenience, and we shall not do it consistently. For example, when we write
26, we mean twenty-six, not twelve.)

M-2. Multiplication in R is associative. That is, if a, b, and ¢ belong to R,
then
a(bc) = (ab)ec.

1
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M-3. There is exactly one element of R, denoted by 1, such that

for every a in R.

M-4. For every a in R, other than 0, there is exactly one number a™?, called the
rectprocal of a, such that

aa”! = g7 lg = 1.

M-5. Muitiplication in R is commutative. That is, if a and b belong to R,
then
ab = ba.
M-6. 1 is different from 0.
This postulate may look peculiar, but it is necessary. Under the preceding
postulates, we have no guarantee that R contains any number at all except 0.

The postulates, so far, have dealt with addition and multiplication separately.
These two operations are connected by the following postulate.

AM-1. The Distributive Law. If a, b, and ¢ belong to R, then
ab + ¢) = ab + ac.

In addition to these postulates, you may feel the need for the following two
statements:

E-1. If
a=b and ¢=4d,
then
a+c=0b+d.
E-2. If
a=5»% and ¢ =d,
then

Here it should be understood that a, b, c and d belong to R. But these statements
are not really postulates for the real number system. They merely serve to remind
us of what addition and multiplication are all about. The first one says that the
sum of two numbers depends only on the numbers, and does not depend on the
letters that we happen to use to denote the numbers; similarly for the second
‘law” E-2.

Throughout this book, the symbol “=" will always mean “is the same as.”
As usual, the symbol “»” means “is different from.”

Subtraction is defined by means of the negatives given by A-4. That is,

a—b=a+ (-b),
by definition. Similarly, division is defined by means of the reciprocals given by
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M-4. Thus, if b 0, then
E=a-ﬁ-b= db—‘,

b
by definition. .
From the above postulates, all of the usual laws governing addition and multipli-
cation can be derived. We start the process as follows.

Theorem 1. a0 = 0 for every a.
Proof. By A-3, we have

1=140.
Therefore
a-1=a(l+0).
Hence
a = al + a0,
a = a + a0,
(—a) + a = (—a) + (a + a0),
0 = [(—a) + a] + a0,
0= 0+ a0,
and
0 = a0,

which was to be proved. (You should be able to give the reasons for each step by
citing the appropriate postulates.)

Theorem 2. If ab = 0, then eithera = Qord = 0.

Proof. Given ab = 0. We need to show that if a ¢ 0, then b = 0. If a # 0,
then a has a reciprocal a~!. Therefore

e (ab) = a~'0
= 0.

But
a"(ab) = (a"la)d

1b = b.

i

Thus b = 0, which was to be proved.
This, of course, is the theorem that you use when you solve equations by

factoring. It @— D —2) =0,

then either £ = 1 or z = 2, because the product of the numbersz — 1 andz — 2
cannot be 0 unless one of the factorsz — 1 andz — 2is 0. You need this prin-
ciple to be sure that nobody is going to find an extra root by investigating the
equation by some other method.

3. 0 has no reciprocal. That is, there is no number z such that 0z = 1.
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Proof. We know that 0z = 0 for every z. If we had Oz = 1 for some z, it would
follow that 0 = 1. This is impossible, because M-6 tells us that 0 » 1.

This theorem gives the reason why division by 0 is impossible. If division by
0 meant anything, it would mean multiplication by the “reciprocal of 0.” Since
there is no such reciprocal, there is no such operation as division by 0.

Theorem 4. The Cancellation Law of Addition. If a + b = a + ¢, then b = ¢.
Proof. If '

a+b=a+e
then
(—a)+ (@+b) = (—a) + (@a+e),
[(—a) + a]l + b = [(—a) + a] + ¢
0+b=0+c,
and
b=c.

Theorem 5. The Cancellation Law of Multiplication. If ab = ac, and a #= 0,
then b = c.

Proof. If ab = ac, and @ = 0, then a has a reciprocal a~!. Therefore
a~(ab) = a7 (ac),
(a7 'a)b = (a"la)c,

1b = le,

and
b=c

Theorem 6. —(—a) = a, for every a.

Proof. By definition of the negative, the number —(—a) is the number z such

that
(—a)+z=2z+ (—a)=0.

The number a has this property, because
(—a)+a=a+ (—a)=0.
But A-4 tells us that every number has ezactly one negative. Therefore a is the
negative of —a, which was to be proved.
Theorem 7. (—a)b = —(ab), for every a and b.
Proof. What we need to show is that
(—a)b + ab = ab + (—a)b = 0,
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because this is what it means to say that (—a)b is the negative of ab. By the com-
mutative law, it will be sufficient to show that
(—a)b + ab = 0.
By the distributive law,
(—a)b + b = [(—a) + a)b. w

Since (—ae) + @ = 0, and 0b = 0, we have

(—a)b + ab = 0,
which was to be proved. ’
This theorem gives the “rule of signs” under which (—2) - 4 = -8, (=7 -4 =
—28, and so on.

Theorem 8. (—a)(—b) = ab for every a and b.

Proof.

(—a)(=b) = —[a(-D)]
= —[(—b)a]
= —[—(ba)]
= ba
= ab.

(What is the reason for each step?)

This, of course, is the second “rule of signs, ” which tells us that (—3)( —4) = 12,
and s0 on.

TTI;:nm 9. The reciprocal of the product is the product pf the reciprocals.
t is,
(ab -1 _ a—lb--l
foreverya = 0,b = 0,
Proof. We need to show that
ab)(@a™b") = 1.
Now (ab)(a )
(ab)(@™'6™") = afb(a~"b"1))
= alb(b~'a™")]
= a[(bb")a™"]
= a[lg~ ]
= qg"
= 1.

Theorem 10. The Degative of the sum is the sum of the negatives. That is,
(a+b) = (—a) + (=b).
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Proof. We need to show that
(@+ ) + [(—a) + (=b)] = 0.

To avoid an excessive accumulation of parentheses, let us agree, in this proof only,
to denote —z by z’. We then have

(@ +b) + [(—a) + (—b)]

I

(@a+b) + @+
a+[b+ (¢ + b))
a+[b+ (b + a)]
=a+[(b+ V) + d]
=a+[0+4d]
a-+a

= 0.

I

A~

Note that this proof is precisely analogous to the proof of the preceding?heorem.

Obviously, we could go on proving theorems like this indefinitely. In fact, if
you stop to think, you will realize that nearly every time you have performed an
algebraic calculation, you have in effect proved a theorem of this sort. For example,
when you factor 2 — a?, and get (x — a)(xz + a), you are elaiming that the
following theorem holds.

Theorem 11. For every z, a, we have

(x — a)(z + a) = 2% — a%
Proof?

An equation which holds for all real numbers is called an algebraic identity.
Stated in this language, the two associative laws say that the equations

a+ (b+c¢)= (a+0d)+c
a(be) = (ab)c,

are algebraic identities; the distributive law says that the cquation
a(b+c¢) = ab+ ac

is an algebraic identity, and so on.

In the following exercises, it is permissible to use the two associative laws with-
out comment. In fact, since it doesn’t matter how the terms or factors are grouped,
we don’t need to indicate a grouping at all; we can write a + b + ¢ to denote
a4+ (b + ¢) or (a + b) + ¢, and similarly for multiplication. We can do the same
for n-fold products of the form a0z . .. an, although the justification for this is
more complicated than you might think.

As usual, a® means aa, a® means aaq, and so on.« Similarly, 2 means 1 + 1,
3means2+1=1+1+1, and so on.
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ProBLEM Skt 1.2

Show that the following equations are algebraic identities. All these statements are
to be regarded as theorems, and should be proved on the basis of t}.xe postulates and the
theorems that have previously been proved. A reason should be given for each step in

the proofs.

1. b(—a) = —(ab)

2. (—a)(—b) = ba

3. alb+¢c) = ca-+ ba

4, ab —¢) = ab — ac

5 -0=0

6.a—0=a

7. a3b = ba? (Try to get a very short proof.)
8.a'ta=2a

9. (—a) + (—a) = (—~2)a
10. a?(b% + ¢2) = a2b? + a2c?
11, a?(b? — ¢2?) = —a2c? + a2

@+ b)(c-+d) = ac+ be+ ad + bd
13. (¢ + b)2 = a? + 2ab + b2

—
[

The following are discussion questions.

14. Suppose that subtraction is regarded as an operation. Docs this operation obey
the associative law? That 13, is the equation (@ — b) — ¢ = a — (b — ¢) an algebraic
identity? If not, under what condition does the cquation hold? (It is not necessary to
answer this question on the hasis of the postulates; you are free to use all the algebra
that you know.)

15. Suppose that division is regarded as an operation. Does this operation obey the
associative law? That is, is the equation, (a/b)/c = a/(b/c), an algebraic identity ?
If not, under what conditions does the equation hold?

16. Docs subtraction obey the commutative law? How about division?

The answers to the preceding three questions indicate why we do not regard subtrac-
tion and division as basic operations when we are formulating the basic properties of the
real numbers.

17. Postulate M-6 (which says that 1 = 0) may seem superfluous. Is it? Can it be
proved, on the basis of the other postulates, that there is any number at all other than 0?

18. Suppose that the only elements of R were 0 and 1 with addition and multiplication
defined by the following tables.

[

1

0
01 0 0
1 01

Which of the postulates would hold true? Which, if any, would fail to hold?



1.3 FIELDS

An algebraic structure satisfying the postulates of the preceding section is
called a field. Since we have exp.ained that R denotes the set of real numbers,
it may be worth while to state the definition of a field over again from the beginning,
allowing the possibility that the field may not be the real number system.

Given a set F, of objects called numbers, with two operations 4 and ~, called
addition and multiplication. The structure

(F,+, ]
is called a field if the following conditions hold.
A-1. F is closed under addition.
A-2. Addition in F is associative.
A-3. F contains exactly one number 0 such that

a+0=0+a=a
for each a in F.

A-4. Every a in F has exactly one negative —a in F such that
a+ (—a) = (—a)+a=0.

A-5. Addition in F is commutative.

M-1. F is closed under multiplication.

M-2. Multiplication in F is associative.

M-3. F contains exactly one element 1, such that al = la = a for every a
inF.
| M4, Every a » 0 in F has exactly one reciprocal a~! such that

aa~ ! =a"la=1.

M-5. Multiplication in F is commutative.
M-6. 1 0.
AM-1. For every a, b, c in F, we have
a(b+ ¢) = ab + ac.

All the theorems of the preceding gection were proved merely on the basis of the
above postulates. It follows that all these theorems hold true not merely in the
real number system but in any field. For example, they all hold true in the algebraic
system described in Problem 18 of Problem Set 1.2. ‘
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ProBLEM SET 1.3

The purpose of this problem set is merely to clarify the meaning of the postulates for
a field. In answering the questions below, you may make free use of all the algebra which
in fact you know. In the following section of the text, we shall return to our “official”

mathematics, based on postulates.

1. Let F be the set of all numbers of the form p/2°, where p and ¢ are integers and
g = 0. These numbers are called dyadic rationals. Do the dyadic rationals form a field
under the usual definition of + and -? Which, if any, of the field postulates fail to hold?

2. Let F be the set of all complex numbers with absolute value = 1. Does F forff a
field, under the usual definitions of 4 and -? Which, if any, of the field postulates fail to
hold? (You may assume, of course, that the set of all complex numbers forms a field;
it does.)

3. Same question for the set of all positive real numbers.

4, Same question for the set of all real numbers of the form a + bv/2, where a and b
are rational.

5. An algebraic structure [F, 1, -] is called a commutative ring with unity if it satisfies
all of the field postulates except possibly for M-4. Obviously every field is & commutative
ring with unity, but not every commutative ring with unity is a field. Exactly one of the
algebraic structures described in the preceding problems forms a commutative ring with
unity but does not form a field. Which one is it?

6. In the algebra of the real numbers, the following theorem holds.

Theorem. If a1b2 — a2b) £ 0, then the system of equations
a1iz+biy = ¢1, a2z + bay = co,

is satisfied by exactly one pair of numbers (z, ).
Does this theorem hold true in any commutative ring with unity? Does it hold true in
any field?

7. Consider a coordinate plane, with points identified by pairs (z, y) of numbers. We
define the “sum” of two points (u, v) and (z, y) to be the point (u + z, v + y).

Does this system satisfy A-1 through A-5? Is it possible to define the “product” of
two points in such a way as to get a field? If so, how?

1.4 THE ORDERING OF THE REAL NUMBERS

We remember that the real numbers can be thought of, informally, as being ar-
ranged on a line like this:

_1
1 | vi | T L I 1 1
) T 1 T 1 1 ! 1
-3 -2 -1 0 1 2 3
Figure 1.2

When we write @ < b, this means, graphically speaking, that a lies to the left of b
on the number scale. Thus —2 < 1, and —1,000,000 < ¥, although the former
number may, in a way, seem "bngger
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The laws governing the relation < are as follows,

0-1. Every pair of real numbers (a, b) satisfies one, and only one, of the con-
ditionsa < b,a = b, b < a.

02 Ifa <bandd < ¢, thena < ec.

The expression ¢ < b is pronounced “a is less than b.” When we write b > a,
this means (by definition) that a < b. When we write

ash,

this means that either ¢ < b or a = b. The relation < is connected up with
addition and multiplication by the following conditions.

MO-1. Ifa > 0and b > O, then ab > 0.
AO-1, If a < b, thena + ¢ < b + cfor every c.

From these four conditions (together with our other postulates), all of the laws
governing inequalities can be derived. Let us take some examples.

v

Theorem 1, Any two inequalities can be added. That is, if

a<b
and
¢ < d,
then
a+c¢c<b+d.
Proof. By AO-1.
at+c<b+ec
by AO-1,
b+e¢ <b+d.

(From now on, we are going to use the commutative law and similar principles
without comment.) By O-2, this means that ‘

a+c<b+d
which was to be proved.

Theorem 2. a < bifand onlyif b — a > 0.

Proof. If a < b, then a — a < b — a, by AO-1. Therefore b —a > 0.
Conversely, if b —a > 0,thenb — e+ a > a,and b > a.

Theorem 3. An inequality is preserved if we multiply both sides by the same
positive number. That is, if
a<b,
and
c>0,
then
ac < be.
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Proof. Since a < b, we have

b—a>0.
Therefore
¢b —a) >0,
by MO-1. Hence
be — ac > 0,

by Theorem 2; this means that ac < be, which was to be proved.

Theorem 4, Ifa > 0, —a < 0.

Proof. If a > 0,thena — a > 0 — @, by AO-1. Thus0 > —a,and —a < 0,
which was to be proved.

Theorem 5. If a < 0, then —a > 0.

Proof. If a < 0, then 0 — @ > 0, by Theorem 2. Therefore —a > 0, which
was to be proved.

Theorem 6. An inequality is reversed if we multiply both sides by the same nega-
tive number. That is, if

a <b,
and
¢ <0,
then
ac > be.
Proof. If a < b, then
b—a>0,
by Theorem 2. If
c <0,
then
—c > 0,
by Theorem 5. Therefore
—bec + ac > 0,
by MO-1. Therefore
ac > be,

by Theorem 2.
Suppose that we have an inequality involving an unknown number z, such as

2r — 5 <7z +3.

Every number z either satisfies the inequality or doesn’t. For example, z = 1
satisfies the inequality, because —3 < 10; but z = —2 does not, because
~9 > —11. An expression of this sort, involving a letter for which we can
substitute anything we want, is called an open sentence. When we substitute
1 for z, we get the statement —3 < 10, which is true. When we substitute —2
for z, we get the statement —9 < —11, which is false. The set of all numbers



THE ORDERING OF THE REAL NUMBERS 13

which give true statements when substituted for z is called the solution set of the
open sentence. Here are a few examples.

Open sentence Solution set
z+2=7 {5}
z+0==zx R
22 —4=0 {2, —2}
z+2=2+r¢z R

In the column on the right, {5} denotes the set whose only element is 5, and
{2, —2} denotes the set whose elements are 2 and —2. The same notation is used
whenever we want to describe a finite set by giving a complete list of its elements,

For example, {1,3,5,7,9)
) ’ ’

is the set of all positive odd integers less than 10. The curly brackets are used in
describing sets, rather than sequences, and so the order in which the elements are
listed makes no difference. For example,

{1,3,5,7,9} = {7,8,9, 1, 5};

the sets described are exactly the same.

It sometimes happens, of course, that an open sentence never becomes a true
statement, no matter what you substitute for z. For example, the equation
(z + 1)2 = 22 4+ 2 - z has no roots at all. In this case, the solution set is the
empty set, that is, the set that has no elements at all. The empty set is denoted
by @, to avoid confusion with the number 0. Here are more examples:

Open sentence Solutivn set
22+ 20+ 2= (z+1)? )
2=0 0}
r<z 9
2 =z {0}

There is a short notation for the solution set of an open sentence. When we
write
{zlz* = 0},
this means the set of all real numbers z such that z? = 0. Thus
{zlz® = 0} = {0},
{zlz® — 5z + 6 = 0} = {2,3},
and so on.

To “solve” an equation or an inequality means to find the solution set of the
corresponding open sentence. For inequalities, the “answer” usually takes the form
of a second open sentence which is simpler and easier to interpret than the first.
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The simplification process might look like this: If

(1) 2zr — 5 <7x+3,
then by AO-1 we have

(2 —5z—5<3,
and

3) —5z < 8.
By Theorem 6, we have

4) x> —§

(We have multiplied by the negative number —3}.) Therefore every number z which
satisfies (1) also satisfies (4). Conversely if (4) holds, then so does (3); if (3) holds,
then so does (2), and if (2) holds, then so does (1). The inequalities (1) and (4)
are called equivalent; by this we mean that every number which satisfies one of
them also satisfies the other. Expression (4) is called the solution of (1). The
process that we have gone through can be written in an abbreviated form as

follows:
2t — 5 < 7x+ 3,

o —br — 5 < 3,
e —b5r < 8,
o> —§

The double-headed arrow on the left should be pronounced “is equivalent to”;

when we write
2t —5<7r+3e=z> —§,

we mean that the open sentences connected by the symbol < have exactly the
same solution set. The advantage of the abbreviation is that it makes it easy to
write at each stage exactly what we have on our minds. (When we write long strings
of formulas, it is not always easy to tell or to remember what the logical connec-
tion between them is supposed to be.) The result of our work on this little problem
can be written as follows:

{z|2z — 5 < 7z — 3} = {z]zr > —§}.

We use a single-headed arrow to indicate that one condition implies another.
For instance, when we write
z> 232> 4,

we mean that ¢f 2 > 2, then z® > 4. This is true, berause if z > 2, then z? > 2z,
by Theorem 3. Also by Theorem 3, if z > 2, then 2z > 4. By 0-2, z% > 4,
which was to be proved.

Note that it is not true that

z>2e12%> 4,

because any number less than —2 satisfies the second inequality but not the first.
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(As one step in the proof above, we showed that x > 2 = 22 > 22. Is it true
that 22 > 2z = z > 2? Why or why not?)
The absolute value of a number z is denoted by |z]. It is defined by the following

two conditions.
(1) Ifz 2 0, then |z] = x.

(2) Ifz <O, then |z| = —x.
For example, [2| = 2, because 2 2 0,and |—2| = —(—2) = 2, because —2 < 0.
In other words, the absolute value of a positive number is the same positive number,

and the absolute value of a negative number z is the corresponding positive number,
which is —z.

Theorem 7. For every z, |z| 2 0.
Proof. (1) If z 2 0, then |x| 2 0, because in this case |z| = z.
(2) If z < 0, then —z > 0. Therefore |x| > 0, because || = —=z.
Theorem 8. |—z| = [z] for every z.
Proof. (1) If x 2 0, then —z < 0. Thus
|z = «,

and
|—z| = —(—1) = .

Therefore, in this case, |—z| = |z|.
(2) If x < 0, then —x > 0. Therefore

II' = I,
and
|—z| = —=.

Hence, in this case also, |—z| = |z|.

Theorem 9. [z]| = =z for every z.

Proof. If z 2 0, this is true because z 2 . If z < 0, then z < ||, because
|z| 2 0.

Theorem 10. [zy| = |z| - |y| for every z and y.

Proof. When z is replaced by —uz, both sides of the equation are unchanged,
therefore we can assume that z = 0. For the same reason, we can assume that
y20 Ifz z Oand y = 0, the equation takes the form zy = zy.

When we write a “double inequality ”

a<b<e,

we mean that both of the inequalities a < band b < ¢ hold true.
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Theorem 11. Let a be > 0. Then
2| < a

if and only if
—a < r <a.

Graphically speaking, this theorem says that the numbers that satisfy the in-
equality |r| < a are the numbers between a and —a like this:
—-a 0 g

] ]
1 1

N —

x| < a

Ficure 1.3

Proof. (1) If x Z 0, then |z| < @ means that + < a. Therefore |z|] < a is

true when 0 < x < a.
(2) If £ < 0, then [x| < ¢ means that —x < @, or —a < z. Hence |z| < @

is true when —a < =z < 0.

Therefore |t| <-aholds whenever —a < x < a. It is easy to check, conversely,
that if |z] < a, then —a < z < a. (There are two cases to be considered, as
in Conditions (1) and (2) above.) Therefore

7l < a & —a < z < g,
which was to be proved.

Theorem 12. For every a, b,
la + b =< |a| + [b].
Proof. cask 1. Suppose that a + b = 0. In this case,

e + b = a+d.
By Theorem 9,
a £ lal, and b = (b
Therefore
a+b = |a| + b,

and since ¢ + b = |a + b| in Case 1, the theorem follows.
CASE 2. Suppose that @ + b < 0. Then (—a) + (—b) > 0. By our result

for Case 1, we have
(—a) + (—b)| S |—a| + |b.
But by Theorem &, we know that
[—a—b=la+d, |—a=]a, [|—b=|b].

Substituting, we get
la + b = |a| + [bl,
which was to be proved.
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ProBreM Ser 1.4
Solve the following inequalities. The answers should be in one of the forms
— o —  or  {z]r} = {zg]—}.

@) 5—3-2> 174z

b)s5:z—3<17-2+1

() z4+5>6—2z .
@ |z} <1

) lz—3 <2

M |le—5 <5

. Is it true that |22 = |z|2 for every 2? Why or why not?

. Is it true that [z3] = |z|3 for every 2? Why or why not?

. Show that 22 — 2z + 1 2 0 for every z.

. For what numbers z (if any) does each of the following conditions hold?

(8) |22 —5-2+ 6| = |z — 3| |z — 2|
(b) |22 —5-2+ 6| =22 —5-2+6
© |z —35 =|2-2— 3

@ |z41] =1 — 4

) ViZF¥ 1=z

V2 —1==¢

® [2-z— 1+ |z+38 23242
() [7-z+ 3+ (8 — 2| 2 6jz+ 1]

(a) 2] <2

() |z —2 <}

) [2-z2—-3 <4}

(d) |z — 1] < 2and (also) [z — 2| < 1
(@ [3—2-2[ <}

@ |r—2 <%andz > 2

. Show that if b # 0, then

|1| _1
b 1]

. Show that if b = 0, then

al . lal
b ]
Show that for every a and b, [a — b 2 [a] — [b].
Show that for every a and b, [a + b] 2 [a| — [b].

17

. Indicate graphically, on a number scale, the places where the following conditions

11. For what numbers g is the fraction a/|a| defined? What is this fraction equal to,
for various values of a?
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1.5 ORDER RELATIONS AND ORDERED FIELDS

So far, we have described the properties of the real number system relative to
addition, multiplication, and order. A system which satisfies all the postulates
that we have stated so far is called an ordered field. We repeat the definition of
an ordered field in its general form, as follows.

Given u set F. Let * be a relation defined on F, satisfying the following two
conditions.

O-1. Every pair a, b of elements of F satisfies one and only one of the conditions
a*ba=bandb*a.

O0-2. Ifa+bandb * ¢, thena * c.
Then » is called an order relation.

Order relations are usually denoted by the symbol <. But we need a more
general notation, such as *, because we may want to talk about two different rela-
tions defined on the same set.

Suppose now that we have a field

[F; +) ']~

Suppose that we also have given an order relation <, defined on F, satisfying the
following two conditions.

MO-1. Ifa > 0and b > O, then ab > 0.
AO-1. Ifa < b, thena + ¢ < b+ cfor every c. Then the structure

[F’s +r "y <]
is called an ordered field.

Thus what we have said, so far, about the real number system is that it
forms an ordered field.

It should be emphasized that an ordered field is not merely a field which is some-
how arranged in an order. To know that we have an ordered field, we need to
know that the order relation < is related to multiplication and addition by Con-
ditions MO-1 and AO-1.

In the preceding section, all the theorems were proved on the basis of Conditions
0O-1, 0-2, MO-1, and AO-1. Therefore these theorems hold true in any ordered
field whatever. You are free to use them in solving the following problems.

ProBLEM SET 1.5

1. Show that in any ordered field we have 0 < 1. [Hint: Show that each of the condi-
tions 0 = 1, and 0 > 1 is impossible. Note that in this problem you are not being asked
merely to show that the real number 0 is less than the real number 1.

2. In Problem 4 of Problem Set 1.3 you showed that the real numbers of the form
@+ b4/2, where a and b are rational, form a field. Is this an ordered field, under the usual
order relation? Why or why not?
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3. Consider the field F described in Problem 18 of Problem Bet 1.2. Here F = {0, 1},
and addition and multiplication are described by the following tables.

+|01 ] o1
0o | 01 ol 0o
1110 1] 0 1

Is it possible to define an order relation in such a way as to make this system an, ordered
field?

4. Show that an order relation can be defined for the set of points (z, y) of a coordinate
plane. (This is a somewhat difficult problem, although one solution is simple once you
think of it.)

5. Show that an order relation can be defined for the complex numbers.

6. Show that it is not possible to define an order relation for the complex numbers in
such a way as to get an ordered field. [Hint: Suppose that such an order has been defined.
Show that each of the conditions ¢+ > 0, and ¢ < 0 leads to a contradiction of one of the
postulates or one of the theorems for ordered fields.}

1.6 THE POSITIVE INTEGERS AND THE INDUCTION PRINCIPLE

We get the positive integers by starting with 1, and then adding 1 as often as
we like. Thus the first few positive integers are

l’

2=1+1,
3=241="+41+41,
4=34+1=14+141+41,

and so on. We let N be the set of all positi-e integers. {Here N stands for natural;
the positive integers are often referred to as the natural numbers.)

The above common-sense remarks, about the way we get positive integers by
adding 1 to other positive integers, suggest the pattern of our exact mathematical
definition of the set N. The set N is defined by the following three conditions.

(1) 1 belongs to N.

(2) N is closed under the operation of adding 1. That is, if » belongs to N, then
so0 also does n + 1.

(3) Of all sets of numbers satisfying (1) and (2), N is the smallest. That is, N
is the intersection, or common part, of all sets of numbers satisfying (1) and (2).

From Condition (3) we get the following result immediately.

Theorem 1. The Induction Principle. Let S be a set of numbers. If (1) 8
contains 1, and (2) S is closed under the operation of adding 1, then (3) S con-
tains all of the positive integers.

The reason is simple. Since N is the smallest set that satisfies (1) and (2), it
follows that every other such set contains N. But this trivial looking theorem is
of course very important.
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Let us see how the induction principle, in the form in which we have stated it,
can be put to work.

Theorem A. For every positive integer n, the sum of the squares of the first
n positive integers is {(n/8)(n + 1)(2n + 1). That is, for every n we huve

P42+ +n?=F @+ DE+ D).
The induction proof is as follows. Let S be the set of all positive integers n for

which it is true that

1’+2’+---+n’=§(n+ 1)@2n + 1).
Thus, if we say that 1 belongs to S, this means that

P=314+12-14+1).
To say that 2 belongs to S means that
12+22=3%2+1)2-2+1),

and so on.

We shall show that (1) S contains 1, and (2) S is closed under the operation of
adding 1.
(1) S contains 1 because the equation

: : P=31+1DE-14+1)
18 a true equation.

(2) To prove (2), we must show that if a given integer n belongs to S, then so
also does » + 1. Thus we must show that if

(a) l’+22+~--+n2=%(n+1)(2n+l),
then
(b) 1’+2“+---+n’+(n+1)'=Lsﬂ(n+2)(2n+3).

(The first equation tells us that n belongs to S, and the second tells us that n + 1
belongs to S.)
Given that (a) holds, it follows that

© 1"+2°+ -+’ + @+ D) =Z @+ DR+ D+ 0+ D’

="2‘1(.zn’+n+6n+6)

=#(2n’+7»+6)

nt1 i+ 2)@n+3).
Therefore (b) holds.
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This is the way a proof based on Theorem 1 always works. Always, you are prov-
ing that a certain open sentence gives true statements for every positive integer
n. Always, you start by letting S be the set of all positive integers in the solution
set. You then show that your set S satisfies (1) and (2) of Thebrem 1. Then you
conclude from Theorem 1 that your solution set S contains all of the positive
integers.

The following alternative form of the induction principle may be more familiar.

Theorem 2. Let
Py, P, ...

be a sequence of propositions (one proposition P, for each positive integer
n). If

(1) P, is true, and

(2) P, implies P, 4, for every n,
then

(3) all of the propositions Py, Py, . .. are true.

For example, we might consider the case where P, says that
1’+2’+---+n’=%(n+1)(2n+1).
Thus the first few propositions in the sequence would be the following:

Py 12=31+1D2-14+1),

Py: 12422=32+12-241),

Py: 12422 432=38+1)(2:-3+1),
and 80 on.

Theorem 2 is a consequence of Theorem 1. To prove this, we begin the same
way that we always begin when applying Theorem 1. We let S be the set of all
positive integers n for which P, is true. Statement (1) now tells us that S contains
1. Statement (2) tells us that S is closed under the operation of adding 1. By
Theorem 1, S contains all positive integers. Therefore all the propositions Py,
P, .. .are true, which was to be proved.

For future reference, we note yet a third form of the induction principle.

Theorem 3. The Well-Ordering Principle. Every nonempty set of positive in-
tegers has a smallest element.

Proof. Let K be a nonempty subset of N. If K contains 1, then K has a least
element, namely 1, and so there is nothing to prove.

Suppose then that K does not contain 1. Let S be the set of all positive integers
n for which it is true that K contains none of the integers 1, 2, . . . , n. (For example,
if K were the set {10, 20,30, ...}, S would be the set {1,2,3,...,9}. Fifteen
would not belong to S, because 10 < 15, and 10 belongs to K.)
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We know that (1) S contains 1, because K does not contain 1. If it were true
that (2) S is closed under the operation of adding 1, then S would contain all of
the positive integers, and K would be empty. Therefore S must not be closed under
the operation of adding 1. Hence there is an integer n such that n belongs to S
and n + 1 does not. This means that K contains none of the numbers 1, 2, ...,
n, but does contain n + 1. It follows that n 4 1 belongs to K and is the smallest
element of K.

(In the example given above, the smallest element of K is obviously 10. You
should check to see that 10 is the number that we get when we apply the general
proof to this particular set K.)

The choice between Theorems 1 and 2 is merely a matter of taste. Theorem 1
is generally considered more “modern,” and Theorem 2 more comfortable. But
there are times when our third theorem is vastly easier to apply than the preced-
ing two. (See, for example, the chapter on the theory of numbers.)

1.7 THE INTEGERS AND THE RATIONAL NUMBERS

If we add to the set N the number 0 and then all of the negatives of the numbers
in N, we get all of the integers. The set of integers is denoted by Z. Thus

Z=1{.,-3-2-10123,..}.

If a number z can be expressed in the form of p/g, where p and ¢ are integers
and ¢ # 0, then z is called a rational number. The set of all rational numbers
is denoted by Q. (Here Q stands for quotient; the rational numbers are those which
are quotients of integers.)

We would now like to prove the well-known fact that the rational numbers form
a field. Under the scheme that we have been using in this chapter, the proof in-
volves an unexpected difficulty. Following a procedure which is the reverse of
the usual one, we have defined the positive integers in terms of the real numbers;
and at the present stage we do not officially know that sums and products of
integers are always integers. This can be proved, but we postpone the proof until
the end of this chapter; in the meantime we regard the closure of the integers as
a postulate.

CL. The Closure Postulate. The integers are closed under addition and
multiplication.

The following theorem is now easy.

Theorem 1. The rational numbers form an ordered field.
Proof. We shall verify the field postulates one at a time.
A-\1. Closure Under Addition.

p,r_p-s, 1r_ps8 i_'_l'.._.L . . =p-s+q-r,
q+3 Q‘8+8 q'l+q-¢ q.s(p3+q r) 78
which is rational.
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A-2. Since multiplication is associative for real numbers in general, it follows
that multiplication is associative for rational numbers in particular.

(This is an instance of a general principle. If a postulate says that a certain
equation is an algebraic identity, then this postulate automatically holds in any
subsystem of the given system.)

A-3. Zero is rational, because 0 = 0/1.
A-4. Given a rational number p/g, we have —(p/q) = (—p)/q, which is rational.

A-5. Since addition is commutative for all real numbers, it is commutative for
all rational numbers.

M-1. p/q-r/s = pr/qs, which is rational.

M-2. See the verifications of A-2 and A-5.

M-3. 1 is rational, because 1 =1/1.

M-4. If p/g > 0, then p # 0. Therefore (p/q)~! = ¢/p, which is rational.
M-5. See the verifications of A-2, A-5, and M-2.

AM-1. The distributive law holds for rational numbers, because it holds for all
real numbers.

Thus Q forms a field. And the order relation <, given for all real numbers,
applies in particular to the rational numbers, and the order postulates auto-
matically hold.

Finally we remark, by way of preparation for some of the problems below,
that if a number is rational, =p/g, then it can be expressed as a fraction in lowest
terms. That is, p and g can be chosen in such a way that no positive integer other
than 1 is a factor of both of them. Thus, for example, if z = p/q, then z can be
expressed as a fraction r/s, where r and s are not both even, are not both divisible
by 3, and so on. Here we are really appealing to a theorem in the theory of numbers,
to be proved in Chapter 29 at the end of the book.

ProsLEM SET 1.7

1. A positive integer n is even if n = 2k, where k is an integer; nis odd if n = 2+ 1,
where j is an integer. Show that every positive integer is either even or odd. [Hint:
Let S be the set of all positive integers which are either even or odd. What you need to
show is that 8 = N. Verify that S satisfies Conditions (1) and (2) of Theorem 1 of Sec-
tion 1.6.]

2. Show that if n is odd, then n? is odd.

8. Show that if n? is even, then n is even.

4. Show that if v/Z = p/g, then p is even.

5. Show that if v/Z = p/g, then ¢ is also even.

6. Show that +/2 is not = p/q for any integers p and ¢.
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7. Show that every positive integer n has one of the three forms 3k, 35 +- 1, or 3m - 2.
8. Show that if n = 3j + 1, then 22 has the same form.
9. Show that if n = 3m -+ 2, then n? has the form 3k 4 1.

10. Show that if n2 is divisible by 3, then so also is n.

11. Show that /3 is irrational.

12. Now try to use the same pattern of proof to “prove” that +/4 is irrational. The
“proof” must break down at some point hecause the theorem is ridiculous. Where does
the proof break down?

13. Show that if q, b, ¢, and d are rational, and

a+ V2 = c+ dVv2,
then
a=c and b=d

*14. Let n and p be positive integers. Show that n can always be expressed in the form
) n=rpg+r,

where 0 £ 7 < p. (Two of the preceding exercises assert that this is true for p = 2
dnd p = 3.)

1.8 THE ARCHIMEDEAN POSTULATE; EUCLIDEAN COMPLETENESS

It may appear that the postulates for an ordered field are an adequate descrip-
tion of the real number system. But this is far from being the case; our postulates,
so far, allow some strange possibilities indeed. We shall not discuss these, but
merely state further postulates, enough to rule them out.

Throughout this section, F is an ordered field.

The easiest way to see the meaning of the following postulate is to think of it
geometrically. Suppose we have given two linear segments like this:

M

Fiaure 1.4

The case of interest is the one in which the first segment is “very long” and the
second is “very short.” It is reasonable to suppose that if you take enough copies
of the second segment, and lay them end to end, you ought to get a segment
longer than the first one. And this should be tru: no matter how long the first
may be, and no matter how short the second may be. If the length of the segments
are the real numbers M and e, as indicated in the figure, and n copies of the second
segment are enough, then we have

ne > M.
The algebraic form of this statement follows.
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A. The Archimedean Postulate. Let M and e be any two positive numbers,
Then there is a positive integer n such that

ne > M.

An ordered field which satisfies this condition is called Archimedean. Henceforth
we shall assume that the real number system forms an Archimedean ordered
field.

Note that if a certain integer n gives us ne > M, then any larger integer has the
same property. Therefore the postulate might equally well have gone on to say
that we have ne > M for every integer n greater than or equal to a certain n,.

Even our latest postulate, however, is still not enough for the purposes either of
algebra or of geometry. The easiest way to see this is to observe that the field
Q of rational numbers satisfies all our postulates so far, and in Q the number 2
has no square root. We need to know that our number field is complete in such
a sense as to permit the ordinary processes of algebra. For a long time to come,
it will be sufficient for us to know that every positive number has a square root.

If @ > 0, then z is a square root of a if 22 = a. Obviously, if z is a square root
of a, then so0 also is —z. Therefore, if a number has one square root, it must have
two. On the other hand, no number a has two different positive square roots
z;, and z3; if this were so, we would have

o =a=2}

;vf —z3 =0,
(x1 — za)(zy + z3) = 0.

Here r; — r3 = 0, because r; » 73, and z; + z2 > 0, because z; > 0 and
z2 > 0. Therefore the product (z; — 23)(z; + z2) cannot be = 0.
An ordered field is called Euclidean if it satisfies the fullowing condition.

C-1. The Euclidean Completeness Postulate. Every positive number has a
positive square root.

We call this the Euclidean postulate because of the part that it will play in
geometry. Eventually, this postulate will ensure that circles will intersect lines,
and intersect each other, in the ways that we would expect.

It follows, of course, that every @ > 0 has ezxactly one positive square root.
This is denoted by v/a. The other square root of a is —v/a. We agree that
V0 = 0.

This terminology is a little confusing. Consider the following statements:

(1) z is a square root of a.

2 z = Va.

The second of these statements is not merely a shorthand transcription of the
first. Statement (1) means merely that 22 = 4. Statement (2) means not only

that 22 = a but also that z 2 0. Strictly speaking, it is never correct to speak
of “the square root of a,” except when a = 0, because every a » 0 has either two
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square roots or none at all (in the real number system). One way to avoid this con-
fusion is to pronounce the symbol +/a as “root a,” thus warning people that you
are pronouncing a formula.

Much later, we shall need another completeness postulate, to guarantee, for
example, the existence of =. We shall postpone this discussion until such time

as we need it.
The following trivial looking observations turn out to be surprisingly useful.

Theorem 1. For every real number a there is an integer » > a and an integer
m < a.

Proof. In getting n, we can assume a > 0. In the Archimedean postulate,
take M = a, e = 1. This gives an n such that n-1 > a, as desired. To get
m < a, we merely take n > —a, and let m = —n.

Theorem 2. Between any two real numbers, there is at least one rational
number.

(Obviously there are more.)

Proof. Givenz < y. If there is a rational number 7, withz +n < r < y + n,
then there is a rational number 7’ = r — n between x and y. We may therefore
suppose that

1<z<uy.

0 1 x y
Fieure 1.5

Let
e=y—z.

By the Archimedean postulate, we have

pe > 1

for some intrger p. Thus

1ce
p
The rational numbers with denominator p now divide the whole number line
into segments of length 1/p, like this:

I 1 Il | ! 1 J 1 1 'r i

LD T | i 1 1 T 1 1 T 1
=2 =10 1 2 kL ko kL k42

P 14 4 14 4 P P P

Fioure 1.6
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If k/p is the first one of them that lies to the right of z, then &/p ought to be be-
tween z and y, because
1

~-<e=y—=z
4 v z
To be more precise, let
n
K = {n I; > .'L‘} .
By the well-ordering principle, K has a least element k. Thus
E >z,
p
but
k—1
P =2
Therefore
£$z+l<x+e
P p
Sz+ @y —2)
= y.
Therefore
k
< =<y,
x » y

which was to be proved.

In using the Archimedean postulate to prove this trivial looking theorem, we
are not making any sort of joke; the postulate is needed. There are ordered fields
in which the postulate fails. (See Chapter 28.) In such fields, Theorems 1 and 2
do not hold true either; in them, some numbers z and y are greater than every in-
teger and hence greater than every rational number. For many of the purposes
of geometry we need the Archimedean postulate to rule out such phenomena.

ProBLEM SET 1.8

1. Show that if 0 < z < y, then 22 < y2. Does this conclusion follow if we know
only that z < y? Why or why not?

2. Show thatif z, y > 0, and 22 < y2, thenz < y.
3. Show thatif 0 < a < b, then v/a < V/b.

4. Show that there is such a number as \/1_75
5. Same as Problem 4 for \/ZT\/—f

6. Same as Problem 4 for /(3 — v/2)/(7 — +/13).

. Show that 4/4/2 cannot be expressed in the form a + b+/Z, where a and b are ra-
tional. [Hint: You need a theorem from the preceding set of problems.]

-3
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1.9 THE LANGUAGE AND NOTATION OF SETS

So far, we have been using the language of sets rather sparingly and with a mini-
mum of special notation. There is a standard shorthand, however, which is worth
learning partly because it is widely used, and partly because it enables us to be
both brief and exact in notebooks and on blackboards.

Throughout this section, capital letlers denote sets. If a is an element of 4,
then we write acA.
The symbol € is usually pronounced “belongs to.” When we write a € A, this
means that a does not belong to 4. If every element of A is also an element of
B, then A is called a subset of B, and we write

A CB,
B> A.

Note that here we are allowing the possibility that A = B; that is, every set is
a subset of itself.

The intersection of A and B is the set of all objects that are clements of A and
also elements of B. The intersection is denoted by A N B. (This is pronounced
“A cap B,” because the symbol N looks vaguely like a cap.) Thus

ANB= {xflre A and z € B}.

A word of caution is in order about the use of the word tntersection. When we
speak of the intersection of A and B, and write A N B, this allows the possibility
that A N B is the empty set . But when we say that two sets A and B intersect,
we always mean that A and B have at least one element in common. This distine-
tion in usage, between the noun and the verb, is not very logical, but it turns out
to be convenient; besides, it is nearly universal, and there is not much to be done
about it.

The union of A and B is the set of all objects that are elements either of A or of
B, or of both. The union is denoted by A U B. (This is pronounced “A cup B,”
because the symbol looks vaguely like a cup.) Thus

AUB = {rlre A or reB).

(Here, and everywhere else in mathematics, when we say “either...or...,” we
allow the possibility that both of the stated conditions hold. If we really mean
“. .. but not both,” we have to say so.)

The difference between two sets A and B is the sot of all objects that belong to
A but not to B. The difference is denoted by A — B. (This is pronounced “A

minus B.”) Thus
A—B= {zlre6 A and =z & B}.

Some books have been written making very free use of this symbolism, but this
book is not one of them. Most of the time, we shall use words. We shall, of course,
make constant use of the concepts represented by the symbols €, &, C, D, N, U,
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g
and —. The following problem set is designed merely to give you a little practice
in writing and interpreting the symbols. These problems should be worked out on
the basis of your “common sense” knowledge of how sets behave; in this book,
we shall make no attempt to treat sets formally by means of postulates.
Finally, we mention two common and useful blackboard abbreviations:
(1) 3 means “there exists.”

(2) © means “such that.” ,
For example, the Euclidean completeness postulate C-1 might be stated as follows:
Ifac Randa > 0,then3z 3z > Oand 2% = a.

The symbol § means “there does not exist.”

ProBLEM SET 1.9

Which of the following statements hold true for all sets A, B, C,...?

.ACAUB

.ADANB

.ACANB

ANB—A) =9
.IfACB,thenze .1=2z€B

. If ACBand BCC,then A CC

. Either ACBor3ia3ac Aanda & B
.A—BCA

. JfA = ANB,then ACB
.IfACB,thenAd = ANB
.IfA=AUB,thenBC A

. (A—BN(A4A—-C)=4—(BUC)
.(A—-—BN(AUB)=ANB

© W N D G s W N =

et s
W N = O

1.10 »-FOLD SUMS AND PRODUCTS; THE GENERALIZED ASSOCIATIVE LAW

There is a certain trouble with the associative laws of addition and multiplica-
tion. As they stand, they are not adequate to justify the things that we talk
about, and the things we do, when we do algebra. At the end of Section 1.2, we
remarked that it was quite all right to write triple products abc, because (ab)c
is always the same number as a(bc); and similarly for addition. In practice, how-
ever, as soon as you get past Chapter 1 of anybody’s book, you are writing n-fold
sums

ay+az + - -+ an,
and n-fold products
[ PRERY ™
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for n > 3. We insert and delete parentheses in these sums and products, at will.
All this is fine, but it has not been connected up, so farg with the operations that
are supposed to be given for pairs of numbers (a, b) and with the associative laws
for triplets (a, b, ¢). 1t would be a pity if mathematics appeared to be split down
the middle, with the postulates and the careful definitions on one side, and the real
mathematical content on the other. Let us therefore bridge the gap between our
postulates and the things that we intend to do.

The key to our problem is the induction idea. What is given in a field is the
twofold product ab, for every a and b in the field. Caven ay, ap, a3, we define
the threefold product by the formula

aaza3 = (ajaz)as.
Similarly, we define
a10203a4 = (@10203)a4,
where the parenthesis on the right is defined by the preceding equation. In general,
10z ... G54y = (@103 . .. Qn)Anyy.

That is, 1o form an (n + 1)-fold product, we first form the n-fold product (of the
first n factors) and then multiply the result by the last factor.

This is our official definition of the n-fold product. But there is another scheme
that we might have used. We might have defined the triple product as

10303 = a;(azay).
We could then have said, in general, that
y g M
Az . .. Aply 4y = ay(aqzay . .. l'lnau+1)}

that is, to form an (n + 1)-fold produet, we could first form the product of the last
n factors and then multiply the result by the first factor. In fact, the first thing that
we need to prove is that the choice between these two schemes makes no difference.
We get the sume result in any case. In the following theorem, we change our nota-
tion slightly, to avoid getting very peculiar looking statementsforn = landn = 2.

Theorem 1. Ior every positive integer n,
abayas . ..a, = albaas...a,).

Proof. Let S be the set of all positive integers for which this formula holds.
We shall show, by induction, that § contaius all of the positive integers. Thus we
need to show two things:

(1) S contains 1,
(2) 8 is closed under the operation of adding 1.

Proof of (1). 8 contains 1 if

abay; = a(ba,).
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Now aba; = (ab)a,, by definition. And (ab)a, = a(ba,), by the ordinary associa-
tive law for triplets. Therefore S contains 1.

Proof of (2). Here we need to show that if S contains n, then S also contains
n -+ 1. This means that if

(i) aba,az...a, = a(baja;...a,),
then
(ii) absias...anany1 = a(bajaz. .. anlnyy).
This is shown as follows. We have
abaja; . . . andnyy = (abaiaz ... an)any4y,
by definition. By (i), the expression on the right is
= [a(ba,az . .. @s)]Gn 41
By the associative law, this is
= a[(ba1az . . . Gp)an 4]
By definition of the (n + 2)-fold product, the expression on the right is
= a(bajaz . . . Gn8n41).

Therefore (ii) holds. With the aid of this theorem, we shall prove the following
theorem.

Theorem 2. The General Associalive Law. In any n-fold product, the insertion
of one pair of parentheses leaves the value of the product unchanged.

Proof. Let S be the set of all positive integers n for which it is true that paren-
theses can be inserted in any n-fold product without changing its value. To
prove our theorem, we need to show that

(1) 8 contains 1, and
(2) 8 is closed under the operation of adding 1.

Proof of (1). Obviously a; = (a;) for every a. Therefore S contains 1.
Proof of (2). Given an (n + 1)-fold product

Q1832 ... qnlp4 1.
Suppose that we insert a pair of parentheses. There are three cases to be considered.

(i) The opening parenthesis comes somewhere after a,, as
;82 ... G.‘(dg‘.'.l [ a,,) oo o Ouils

(Here we allow the possibility that k = n + 1.)
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(ii) The closing parenthesis comes somewhere before an1.
(iii) The parentheses enclose the entire product.

Obviously, in Case (iii) there is nothing to prove. In Case (i),
aasz . .. a.(a.-+1 . a,,) e Byl = allag e a;(a.-.,.l [P d),) [P a,,+,],

by Theorem 1. This is
= a;[az . a,.+l],

because S contains n, and in turn, this becomes
= @182 ... 0y,

by Theorem 1. Thus, if S contains n, it follows that S contains n + 1.
In Case (ii), we have

aas. .. a;(a,.H e ak) o Quyy

where & < n + 1, but 2 may be = 1. By definition of an (n + 1)-fold product,
this becomes
= [a1az ... (@ip1...Q) ... CnlOn41;

which in turn becomes

= [a182 . . . @plangq,
because S contains n; this is

= @182 ...0,0p41,

by definition of an (n + 1)-fold product. This completes our induction proof.
The things that we ordinarily want to do with n-fold products can be justified
by repeated applications of this theorem. Ior example,

ablcla=ad
b ¢

Proof. The left-hand number is given by

(D

by two applications of Theorem 2. This is
= alld
= (al)(1d)
= ad.
We define n-fold sums in exactly the same way and conclude by the same proof

that n-fold sums satisfy the general associative law. That is, insertion of one pair
of parentheses in an n-fold sum,

a+a+ - +an
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leaves the value of the sum unchanged. Finally we observe that we always have
aby + by + -+« + by) = aby + aby + - - - + ab,.
The proof is by an easy induction. For n = 1, we have ab, = ab;. Given that
a(by + bz + -+ + ba) = aby + @bz + - - - + aby,
it follows that
a(by + b3 + - -+ + bn + basr) = a[(by + bz + -+ + ba) + bayal
= a(by + ba + - -+ + ba) + abuyty
= (aby + aba + -+ - + aby) +abn+l
= ab, + abg + -+ - + abn + abny.

1.11 THE CLOSURE OF THE INTEGERS UNDER ADDITION AND MULTIPLICATION

We found, in Section 1.7, that to prove that the set Q of rational numbers
forms a field, we needed to know that sums and products of integers are always
integers. Under our definition of integers, this requires proof; the proof is merely
a series of exercises in the use of induction.

We recall that the set N of positive integers was defined by the following three

conditions:

(1) N contains 1,
(2) N is closed under the operation of adding 1, and
(3) of all sets of numbers satisfying (1) and (2), N is the smallest.

To get the set Z of integers, we added to N the number 0, and also the negatives
of all of the positive integers.

Theorem 1. If a and n are positive integers, then so also is a + =n.

Proof. Let a be fixed. Let S be the set of all positive integers n for which
a+ n €N. Then (1) 1 € 8, because N is closed under the operation of adding 1,
and (2)ifn € S,thenn+ 1€ 8. Forif a 4+ n € N, we have

a+n+1)=(a+n)+1,
which belongs to N.

Theorem 2. If a and = are positive integers, then so also is an.
Proof. Let a be fixed, and let
S = {n|an € N}.
Then (1) 1 € S, because al = a. (2) If n € S,thenn 4+ 1 € 8. For
a(n + 1) = an + al = an + q,
which is the sum of two positive integers.
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Theorem 3. If z and. y are integers, so also is zy.
Proof. If z, y > 0, this follows from Theorem 2. If z > 0 and y < 0, then

zy = ~[z(—yp)),

which is the negative of the positive integer (—y). The case z < 0,y > 0 is the
same. If z, y < 0, then zy is the positive integer (—z)(—y). Finally, if z = 0
or y = 0, we have zy = 0, which is an integer. This takes care of closure under
multiplication. Rather oddly, addition is a little more troublesome.

Theorem 4. Every positive integer is either =1 or =k 4 1 for some positive
integer k.

Proof. Let S be the set of all positive integers satisfying the conditions of the
theorem. Then obviously 1 € 8. If n € 8, and n = 1, then n + 1 € S, with
k=1 Ifne S8 andn = 1, thenn = k + 1 for some positive integer k. There-
foren + 1 = (k + 1) + 1, which has the desired form.

Theorem 5. If n € Z, thenn — 1 € Z.

Proof. (1) If n > 0, then n = k + 1 for some k in Z. Therefore n — 1 =
keZ.

(2) If n=0,thenn — 1 = —1 € Z.

3) If n <0, then n = —k, where k¥ > 0. Therefore n — 1 = (—k) +
(—1) = —(k + 1), which is the negative of a positive integer.

Theorem 6. Ifa € Zand n € N, thena — n € Z.

Proof. 1let S = {nla — ne€Z}. Then (1) 1 € S, by Theorem 5, and (2) if
n€ S, thenn+1€8. Forifa — n €Z, then

a— (n+1)=(a—n)—1,
which belongs to Z by Theorem 5.
Finally, we have the following theorem.
Theorem 7. If z,y € Z, thenz + y € Z.

Proof. cask 1. If either x = 0 or y = 0, this holds trivially.
case 2. If z, y > 0, then z + y € N, and so belongs to Z.
case 3. If z, y < 0, then ’

z+y=—[(—2) + (—p),
which is the negative of the positive integer (—z) + (—y).

casE 4. If 1 < 0 < y,letn= —z. Thenn > 0,andz+y =y — n. We
know by Theorem 6 that y — n € Z.
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All this, it must be confessed, is rather tedious; but the tedium is unavoidable.
We need to know about the integers, the real numbers, and the relation between
them. One way to do this is first to set up the integers, and then to build the real
numbers from them. (For such a treatment see, for example, Landau’s Founda-
tions of Analysis.) In this chapter we have first set up the real numbers and then
“moved from the top downward” to get the integers. The latter scheme is by far
the simpler and easier. But we cannot expect to get something for absolutely
nothing. .



e 2

INCIDENCE GEOMETRY IN PLANES
AND SPACE

You will recall that when we started to discuss the real numbers from a postula-
tional point of view, we began with three things: a set R (whose elements were
called numbers) and two laws of combination (called addition and multiplication,
and denoted by + and -). Thus, in Section 1.2, the structure that we were working
with was a triplet [R, +, -], where R was a set and + and - were operations defined
in R. A little later, we assumed that we had an order relation <, defined in R
and subject to certain conditions. Thus, at the end of Chapter 1, the structure
that we were working with was a quadruplet [R, -, -, <]; and all of our postulates
were stated in terms of these four objects.

We shall follow the same scheme in our postulational treatment of the geometry
of planes and space. In the scheme that we shall be using, space will be regarded
as a sct S; the points of space will be the elements of this set. We will also have
given a collection of subsets of S, called lines, and another collection of subsets of
S, called planes. Thus the structure that we start with is a triplet

[S) £’ (P]?

where the elements of S, £, and @ are called points, lines and planes, respectively.
Later, we shall add to this structure, just as we added to our algebraic structure
in the latter part of Chapter 1. For the present, however, our postulates are going
to be stated in terms of the sets S, £, and @.

The above presentation is equivalent to one in which we say that the terms
point, line, and plane are tuken as undefined.

In our formal mathematics, we are going to use postulates; and the only things
that we shall claim to know about points, lines, and planes will be the things
stated in the postulates. Informally, however, it may be a good idea to remind
ourselves of the sort of things that lines and planes will turn out to be. A line
is going to stretch out infinitely far in both directions like this:

Fieure 2.1
36
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Here the afrowheads are supposed to indicate that the line doesn’t stop where
the picture of it stops. We shall have another term, segment, for a figure which
looks like this:

P -0

FIGURe 2.2

If the end points are P and Q, then this figure will be called the segmeni from
Pto@Q. Fora “liae” to stretch out infinitely far in only one direction is not enough:

Fraure 2.3

A figure like this will be called a ray. Similarly, a plane stretches out infinitely
far in every direction. Thus the floor of your room would not form a plane, even
if it were perfectly flat. It would form a part of a plane, and a rather small part,
at that.

Logically speaking, we are getting ahead of ourselves when we draw these
pictures. The postulates of this section are nowhere nearly enough to guarantee
that lines look like our pictures, as you will see in the next set of problems.

Our first postulate is merely a reminder.

1-0. All lines and planes are sets of points.

If a line L is a subset of a plane E, then we shall say that L lies in E. (The same
term is used in general, to mean that one set is a subset of another.) If a point
P belongs to a line L, then we may say that P lies on L or that L passes through P.
Similarly, if P belongs to a plane E, then we may say that P lies in E or that E
passes through P. (Here, of course, we are merely defining the familiar colloquial
language of geometry in terms of the set-theoretic apparatus that is used in our
postulates.) By a figure we mean a set of points.

Points lying on one line are called collinear, and points lying in one plane are
coplanar. .

I-1. Given any two different points, there is exactly one line containing them.

If the points are P and @, then the line containing them is denoted by ‘I?Q
The arrowheads are meant to remind us of the usual representation of lines in
figures.

I-2. Given any three different noncollinear points, there is exactly one plane

containing them.

If the three points are P, @, and R, then the plane containing them is denoted
by m

1-3. If two points lie in a plane, then the line containing them lies in the plane.

-

I-4. If two planes intersect, then their intersection is a line.
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If you check back carefully, you will see that postulates I-0 through I-4 are
satisfied by the poverty-stricken “geometry” in which there is exactly one point
P in 8, and this peint P is both a line and a plane. To rile out, at least, such
extreme trivialities, we state another postulate immediately.

5. Every line contains at least two points. Every plane contains at least three
noncollinear points. And S contains at least four noncoplanar points.

(Throughout this book, if we say that “P and Q are points,” we allow the pos-
sibility that P = Q. But if we speak of “two points,” we mean that there are
really two of them; that is, the points must be different; similarly for planes, and
so forth. Sometimes we may speak of “two different points,” as in I-1, but this is
merely for emphasis.)

Theorem 3. Two different lines intersect in at most one point.

Proof. Let L, and L, be two lines, and suppose that their intersection contains
two points P and Q. This is impossible by Postulate I-1, because I-1 says that
there is exactly one line, and hence only one line, containing P and Q.

. Theorem 2. If a line intersects a plane not containing it, then the intersection
is a single point. L

FiGURE 2.4

Proof. Let L be a line intersecting a plane E. We have given that L N £ con-
tains at least one point P; and we need to prove that L N E contains no other
point Q.

Suppose that there is a second point Q in L N E. Then L = Fé, by Theorem 1.
By I-3, m lies in E. Therefore L lies in E, which contradicts the hypothesis for L.

Theorem 3. Given a line and a point not on the line, there is exactly one plane
containing both of them.

ReSTATEMENT. Let L be a line, and let 7 be a peint not on L. Then there is
one and only one plane containing L U P.

(Here we introduce a device which will be convenient later. Whenever we can,
we shall state theorems in ordinary English, with little or no notation. This way,
the theorems are easier to read and to remember. The restatement furnishes us
with the notation that will be used in the proof, and in some cases it may remove
some vagueness or ambiguity.)
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Proof. (1) By I-5, L contains at least two poinis Q and R.

(2) P, Q, and R are not collinear. The reason is that by I-1, L is the only line that
contains Q and R;and L does not contain P, Therefore no line contains P, Q, and R.

(3) By (2) and I-2, there is a plane E = PQR, containing P, Q, and R. By
1-3, E also contains L.

Thus there is at least one plane cé'ntaining Ly P. If there were two such
planes, then both of them would contain P, Q, and R. This is impossible, by I-2,
because P, @, and R are noncollinear.

Theorem 4. If two lines intersect, then their union lies in exactly one plane,

Let L and L’ be two intersecting lines. The following statements are the main
steps in the proof; you should be able to supply the reasons for each of these
statements.

(1) L n L’ is a point P. (2) L’ contains a point @ » P.
(3) There is a plane E, containing L and Q. :
(4) E contains L U L'. (5) No other plane contains L U L’.

Theorems of the kind that we have just been proving are called incidence theorems;
such a theorem deals with the question whether two sets intersect (and if so, how?)
Jr the question whether one set lies in another. Incidence theorems are used con-
stantly, but the incidence posgulates on which they are based do not go very far in
describing space geometry, as Problem 1 below will indicate.

ProsLEM SET 2.1

1. Consider the system [S, £, @], where S contains exactly four points 4, B, C, and D,
the lines are the sets with exactly two points, and the planes are the sets with exactly
three points. This “space” is illustrated by the following figure:

A

C
FIGURE 2.5

Here it should be remembered that A, B, C, and D are the only points that count.
Verify that all the incidence postulates hold in this system.

2. Let Py, Py, ..., Ps be five points, no three of which are collinear., How many
lines contain two of these five pointa?

3. If no four of the five points are coplanar, how many planes contain three of the
five points?

4. Given Py, Py, ..., P,, all different such that no three of them are collinear and
no four of them are coplanar. How many lines contain two of them? How many planes
contain three of them?
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DISTANCE AND CONGRUENCE

3.1 THE IDEA OF A FUNCTION

The word function is most commonly used in connection with calculus and its
various elaborations, but the idea occurs, often without the word, in nearly all
mathematics. In fact, the first two chapters of this book have been full of functions,
as we shall now see.

(1) In a field F, to every element a there corresponds a unique negative, —a.

Here we have a function
F—-F

under which
a— —a
for every a.

(2) In an ordered ficld F, to every element & there corresponds a unique number
|z], called the absolute value of «. The rule of correspondence is that if z 2 0,
then the number corresponding to z is z itself, and if + < 0, then the number
corresponding to x is - x. Thus we have a function,

F - F,
under which

z — |
for every r.

(3) Suppose that F is a Euclidean ordered ficld. Let F* be the set of all elements
of F that are = 0. To cach clement a of F* there corresponds a unique element
va of F*. (Recall the Euclidean completencss postulate and the definition of
va.) Here we have a function,

Ft - F+,

a—a
for every a in F . ]

(4) The operation of addition in a field F can be considered as a function once
we have the idea of the product of two sets. LI'or any pair of sets 4, B, the product
A X B is the set of all ordered pairs (a, b), where ¢ € A and b € B. We allow
the possibility that A = B. Thus, when we identify a point P of a coordinate
plane by giving a pair of coordinates (v, y), we are associating with P an element
of the product R X R of the real numbers with themsclves.

40

under which
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"Consider now the operation of addition in a field F. Under this operation, to
every pair (@, b) of numbers in F there corresponds a number a -+ b, called their
sum. This can be regarded as a funection,

FXF—>F,
where
(a,b) > a—+b
for every (a,b) in F X F. .

Obviously multiplication can be regarded in the same way.

Note that in these situations there are always three objects involved: first, a
set A of objects o which things are going to correspond; second, a set B which
contains the objects that correspond to elements of A ; and third, the correspondence
itself, which associates with every element of A a unique element of B. The set
A is called the domain of definition, or simply the domain. The set B is called the
range. The correspondence itself is called the function. In the examples that we
have been discussing, these are as follows.

TapLe 3.1
Domain Range Law
F F a— —a
F F a— |af
F+ F+ a—Va
FXPF F (a,b) > a+d

In the third column, we have described the function by giving the law of corre-
spondence.

A less simple example would be the function which assigns to every positive
real number its common logarithm. Here the domain A is the set of all positive
real numbers, the range B is the set of all real numbers, and the law of correspond-
ence is x — log,oz. Here the cxpression log;oz is an example of functional
notation. If the function itself is denoted by f, then f(z) denotes the object cor-
responding to 2. Ior example, if [ is the absolute value function, then

and so on. Similarly, if g is the “positive square root function,” then
g(d) =2,  g(16) = 4, g(8) = 29(2) = 2-V2,

and so on. We can also use functional notation for addition, if we want to (which
we usually don’t). If sis the “sum function,” then

s(a,b) = a + b,

so that
8(2,3) = 5, 8(5, 4) 9,
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and #o on. Similarly, if p is the “product function,” then

p(e, b) = ab,

so that
p(5,4) = 20 and p(7,5) = 35.

To sum up, a function f is defined if we describe three things: (1) a set 4, called
the domain, (2) a set B called the range, and (3) a law of correspondence under
which to every element a of A there corresponds a unique element b of B. . If
a € A, then f(a) denotes the corresponding element of B. We indicate the func-
tion f, the domain A, and the range B by writing

f:A — B,

and we say that f is a function of A into B.
We define composition of functions in the way which is familiar from calculus.

Thus, given

f:A—->B
and
g:B —C,
we can write
¢ = g(f(a));

this means that ¢ corresponds to f(a) under the function g. For example, if we are
using the functions s and p to describe sums and products, then

s(p(a, b), p(a,c)
pla, s(b, )
a(b 4 ¢).

Finally, we define two special types of function which have special importance.
If every b in B is = f(a) for at least one a in A, then we say that f is a function
of A onto B. If every bin B is = f(a) for exactly one a in A, then we say that f
18 8 one-to-one correspondence between A and B, and we write

f:4 & B,

means ab + ac, and

means

For example, the function F:R — R, z — z* is a one-to-one correspondence.
The function g:R — R, z — z2 is not a one-to-one correspondence because, in
the range, every positive number appears twice, and no negative number appears
at all. The function under which + — —z is a one-to-one correspondence. (Proof?
You need to check that each number y is = —z for exactly one number z.) Simi-
larly, the function z — 1/z is a one-to-one correspondence; here

A =B = {z|z # 0).
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If f is & one-to-one correspondence, then there is a function,
fSTY:Be A,

called the ¢nverse of f, which reverses the action of f. That is, f~! (b)) = aif f(a) =
b. The symbol f™! is pronounced “f~inverse.” When we say that a function has
an inverse, this is merely another way of saying that the function is a one-to-one
correspondence.
Given a function

.

f:A— B.
The smage of A is the set of all elements of B that appear as values of the function.
Thus the image is
{bla € A and b = f(a)}.

In other words, the image is the smallest set that could be taken as the range of
the function. For example, if the function

f:R—>R

is defined by the condition f(x) = z* for every r, then the range is the set R of
all real numbers, and the image is the set of all nonnegative real numbers.

The question may arise why we define functions in such a way as to permit
the range to be a bigger set than the image. We might have stated the definition
in such a way that every function would be onto. But such a definition would be
quite unmanageable. For example, suppose that we define a function, in calculus,
by the equation

fz) = z* — 723 + 32 — 172 + 3.

This is a function of R #nto R. To find out what the image is, we would have to
find out where this function assumes its minimum; this is a problem in calculus,
leading to a rather difficult problem in algebra. If we required that the image be
known for the function to be properly defined, we could not state our calculus
prciam without first solving it; and this would be a very awkward proceeding.

ProsLEM SET 3.1

1. Using the functional notations s(a, b) and p(a, b) for sums and products, rewrite the
associative, commutative, and distributive laws for an ordered field. Now rewrite the
Postulates MO-1 and AO-1 which related the field structure to the order relation in an
ordered field.

2. We recall that Z is the set of all integers. For each ¢, j in Z, let f(§, ) be the larger
of the two integers 1 and j. Do these remarks define a function? If so, what are the domain
and the image?

3. Let /:R — R be defined by the condition f(z) = 22. Does f have an inverse?
Why or why not?

4. Let R+ be the set of all nonnegative real numbers. Let g: R+ — R+ be defined by
the condition g(z) = 3. Does g have an inverse? Why or why not?
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5. The same question is asked for f: R — R, f(z) = sinz.
6. Let A be the closed interval [—x/2, x/2]. That is,

A={z|zER and ‘—§§I§§
Let

B=[-11 = {zglzr€R and —1 Sz < 1}.

Let
g:4—B

be the function defined by the condition )

g(z) = sinz.

Does g have an inverse? Why or why not?

3.2 THE SET-THEORETIC INTERPRETATION OF FUNCTIONS AND RELATIONS

In the preceding section, we have explained, with numerous examples, what
people are talking about when they talk about functions. And in fact the idea of
a function, in the form in which we have explained it, is adequate for nearly all
the uses that you will need to make of it for a long time to come.

You will find, however, if you re-read the last section carefully, that at no point
have we given a straightforward definition of a function; we have explained the
conditions under which a function is defined, but we have not said what kind of
object, a function 7s. This we shall now do. But first we shall give some prelimi-
nary discussion, to indicate the idea behind the definition.

Consider first the case where the domain is a finite set, say,

A=1{0,1234,5).

For any function f with A as domain, we can write down a complete table, giving
the values of the function f.

a | fa)
0 0
1 1
2 4
3 :
4 4
5 1

There was a system used in making up the table; and you may be able to figure
out what this system was. But even if you can’t figure it out, the function is
perfectly well defined by the table. To define a function, you have to explain what
its value is, for each element of the domain A, but you don’t necessarily have to



INTERPRETATION OF FUNCTIONS AND RELATIONS 45

give this explanation tersely. In fact, if you remember the kind of functions that
were important in calculus, you will recall that it took quite a while to explain what
they were. The expression sin z was not a formula for the sine function, but merely
a name for the sine function; and the explanation of what sin z really meant was
given in words, at considerable length. For a function like the sine, you could
write down only a partial table of values, because the domain 4 was the set of
all real numbers, which is infinite. Under the definition, however, a correspondence
was defined under which to every = in R there corresponded a unique real number
y which was sin z. !

From a finite table, such as the one that we have written above, it is easy to
read off a set of ordered pairs which describe the function. Each line of the table
gives us an ordered pair (a, b), in which a s in A and b is the corresponding ele-
ment of B. From our table for f, we get the pairs

0,0, (1,1, 49, 33), &4, 6.

If the set A is infinite, then so is the table.
A partial table for the sine might look like this.

sin &
0 0
T 0
/2 1
/3 V3/2
/4 V2/2
—T 0
—w/2 —1

From this table we could read off a partial collection of ordered pairs

[(0,0), (m0), (7/2,1), (7/3,/3/2),]
(1‘-/4) \/§/2)) (—T) O)’ (”'1'-/2’ —l)

If we formed the set of all ordered pairs of the type (z, sin z), then this infinite
collection would describe the sine function completely. Similarly every function
can be described by a collection of ordered pairs. If the domain of the function is
finite, then so is the collection, and if A is infinite, then so is the collection. If
the collection describes a function, then every a in A must appear as the first
term of exactly one pair in the collection, because the function assigns a unique
value to a.

Thus, given a function f: A — B, we have a collection of ordered pairs (a, b),
where (1) a € A, (2) b € B, and (3) every element of A appears exactly once
as the first term of an ordered pair in the collection. And conversely, given a
collection of ordered pairs (a, b), satisfying (1), (2), and (3), we always have a
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function f: A — B. These observations are the basis of the following definition.
In this definition, we merely are saying that the function 18 the sort of collection

of ordered pairs that we have been discussing.

DeriniTioN. Let A and B be sets. A function with domain A and range B is a
collection f of ordered pairs (a, b), such that

(1) for each (a,b) in f,a € 4;
(2) each a in A is the first term of exactly one pair (g, b) in f; and
(3) for each (a,b) in f, b € B.

When we write b = f(a), we mean that (a, b) belongs to the collection f. From
here on, we proceed to handle functions exactly as before.

A somewhat similar device enables us to give an explicit definition of the idea
of a relation defined on a set A. We have been using this idea somewhat informally,
writing a < b to mean that a has the relation < to b, and, more generally, a * b
is written to mean that a has the relation * to b. Now, given a relation », defined
on the set A, we can form the collection

{(a, b)la * b}.

Conversely, given any collection of ordered pairs of clements of A, we can define
a relation #, by saying that a * b if the pair (a, b) belongs to the collection. In
the following definition, we are saying that the relation s the collection. Reecall,
of course, that A X A is the set of all ordered pairs of elements of 4.

DErINITION. A relation defined on a set A is a subset of A X A.

For example, let
4 = {1,2,3},
and let
« = (1,2),(1,3), (2 3)}.

Then = is a relation. (It is, in fact, the usual relation <.)
It is not necessary, of course, to denote relations by peculiar symbols. For
example, if A = {1, 2, 3}, as before, we may let

G={21.61,072);.

Thus 2G1, 3G1 and 3G2, because (2, 1), (3, 1), and (3, 2) belong to G. (In fact,
G is the relation >.)

ProBLEM SET 3.2
1. Let A = {1,2,3,4}. Let
G = {(40 2)1 (4) l); (41 3)1 (2: 1): (2: 3)» (l: 3)}°

Is G a relation? Is G an order relation?
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2. Let A be as before, and let G be the set of all ordered pairs (a, b) such that s snd b
belong to A and @ # b. Is G a relation? Is G an order relation?

3. Is the following collection a function? If so, what are its domain and image?
{(0,0), (1, 1), (2,9, (3, 2), (4,2), (5 4), (6, 1)}

Can you see a systematic way in which this collection might have been constructed?
4. Is the following collection a function? 4

{(0, 1), (1,0), (0,00}

5. Let f be the set of all ordered pairs (z, ) such that z and y belong to Rand y = 23,
Is this a function?

6. The same question is asked for the set of all ordered pairs (z, y) such that z and y
belong to R and z = 2.

7. Consider a rectangular coordinate system in the plane, in the usual sense of analytic
geometry. Every point has a pair of coordinates (z, y). For the purposes of this question,
let us regard points as indistinguishable from the ordered pairs (z, y) that describe them,
Thus every figure, that is, every set of points, becomes a collection of ordered pairs of
real numbers. Under what conditions, if any, do the following figures represent functions?

(a) atriangle

(b) a single point

(¢) aline

(d) a circle

(e) a semicircle, including the end points
(f) an ellipse

What, in general, is the geometric condition that a figure in the coordinate plane must
satisfy, to be a function?

3.3 THE DISTANCE FUNCTION
So far, the structure dealt with in our geometry has been the triplet
[S, &, @].

We shall now add to the structure by introducing the idea of distance. To each
pair of points there will correspond a real number called the distance between them.
Thus we want a distance function d, subject to the following postulates.

D-0. dis a function
d:SXS—R.

D-1. Forevery P,Q,d (P,Q) 2 0.
D-2. d(P,Q) = Oif and only if P = Q.
D-3. d(P,Q) = d(Q, P) for every P and Q in S.
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Here we have numbered our first postulate D-0 because it is never going to be
cited in proofs; it merely explains what sort of object d is. Of course d(P, Q) will
be called the distance between P and @, and, for the sake of brevity, we shall
write d(P, @) simply as PQ. (We shall be using distances so often that we ought
to reserve for them the simplest notation available, and “PQ” is absolute rock-

bottom.)

Surely any reasonable notion of distance ought to satisfy D-1 through D-3.
We might have required also that

PQ + QR 2 PR,

which would say, approximately, that “a straight line is the shortest distance
between two points.” But as it happens, we don’t need to make this statement
a postulate, because it can be proved on the basis of other geometric postulates,

to be stated later.
Henceforth, until further notice, the distance function d is going to be part of
our structure. Thus the structure, at the present stage, is

(S, £, @, d).

The distance function is connected up with the rest of the geometry by the ruler
postulate D-4, which we shall state presently.
We ordinarily think of the real numbers as being arranged on a line, like this:

-2 -1 0 1 2 3
Ficure 3.1

If the “lines” in our geometry, that is, the elements of £, really “behave like lines,”
then we ought to be able to apply the same process in reverse and label the points
of any line L with numbers in the way that we label the points of the z-axis in

analytic geometry:

X3 -1 0 1 x)

Ficure 3.2
If this is done in the usual way, then we have a one-to-one correspondence,
f:L &R,

between the points of L and the real numbers. This correspondence will turn
out to be a coordinate system, in a sense which we shall soon define. Meanwhile,
therefore, if + = f(P), we shall refer to x as the coordinate of P. In the figure,
the coordinates of P, @, R, and T are 0, z;, 1, and . If the coordinates are related
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to distance in the usual way, then
PQ = |z, and  PT = |z,|.
In fact, no matter where Q and T may lie on the line, we will always have
QT' = |tz — z4].

(You can check this for the cases z; < 2; < 0,72 < 0 < 21, and 0 < 73 < ;.
There is no harm in assuming that z, < z;, because when r, and z, are inter-
changed, both sides of our equation are unchanged.)

Obviously nothing can be proved by this discussion, because the postulates that
we have stated so far do not describe any connection at all between the distance
function and lines. All that we have been trying to do is to indicate why the
following definition, and the following postulate, are reasonable.

DeriNITION. Let
fiLoR

be a one-to-one correspondence between a line L and the real numbers. If for
all points P, Q of L, we have

PQ = |f(P) — J(Q, '

then f is a coordinate system for L. For each point I’ of L, the number z = f(P)
is called the coordinate of P.

D-4. The Ruler Postulate. Every line has a coordinate system.

The postulate D-4 is called the ruler postulate because, in effect, it furnishes
us with an infinite ruler which can be laid down on any line and used to measure
distances along the line. This Rind of ruler is not available in classical Euclidean
geometry. When we speak of “ruler-and-compass constructions” in classical geom-
etry, the first of these abstract drawing instruments is not really a ruler, because
it has no marks on it. It is, properly speaking, merely a straight-edge. You can
use it to draw the line containing two different points, but you can’t use it to
measure distances with numbers or even to tell whether two distances PQ, RT
are the same.

As it stands, D-4 says merely that every line has at least one coordinate system.
It is easy to show, however, that there are lots of others.

Theorem 1. If fis a coordinate system for L, and
g(P) = —J(P)
for each point P of L, then g is a coordinate system for L.

Proof. 1t is plain that the condition g(P) = —f(P) defines a function L — R.
And this function is one to one, because if z = g(P), it follows that —z = f(P),
and P = f~!(—z), so that P is uniquely determined by z.
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It remains to check the distance formula. Given that
z=9gP), y=19Q,
PQ = |z —
—z=f(P), —y=JQ.
Since f is a coordinate system, it follows that
PQ = |(—2) — (-l
PQ =y — 4

= |z —y|

we want to prove that

We know that

Therefore

which was to be proved.
Theorem 1 amounts to a statement that if we reverse the direction of the co-
ordinate system, then we get another coordinate system. We can also shift the

coordinates to left or right.

Theerem 2. Let f be a coordinate system for the line L. Let a be any real number;
and for each P € L, let
g(P) = f(P) + a.

Then g: L — R is a coordinate system for L.

The proof is very similar to that of the preceding theorem. Combining the
two, we get the following theorem.

Theorem 3. The Ruler Placement Theorem. Let L be a line, and let P and Q
be any two points of L. Then L has a coordinate system in which the coordinate
of P is 0 and the coordinate of @ is positive.

Proof. Let f be any coordinate system for L. Let @ = f(P); and for each point
Tof L, let g(T) = f(T) — a.

Then g is a coordinate system for L; and g(P) = 0. If g(Q) > O, then g is the
system that we were looking for. If g(Q) < O, let h(T) = —g(T) for every
T € L. Then h satisfies the conditions of the theorem.

ProBLEM SET 3.3

1. Show that D-1, D-2, and D-3 are consequences of the ruler postulate.

3.4 BETWEENNESS

One of the simplest ideas in geometry is that of betweenness for points on a line.
In fact, Euclid seems to have regarded it as too simple to analyze at all, and he
uses it, without comment, in proofs, but doesn’t mention it at all in his postulates.



BETWEENNISS 5}

Roughly speaking, B is between A and C on the line Z if the points are situated
like this:
— :

{
A B C
Figure 3.3

or like this:

Fieure 3.4

(Logically speaking, of course, the second figure is superfluous, because on a line,
there is no way to tell left from right or up from down.) What we need, to handle
betweenness mathematically, is an exact definition which conveys our common-
sense idea of what betweenness ought to mean. One such definition is as follows.

DerFiNiTION. Let A, B, and C be three collinear points. If
AB+ BC = AC,
then B 1s between A and C. In this case we write A-B-C.

As we shall see, this definition is workable. It enables us to prove that between-
ness has the properties that it ought to have.

Theorem B-1. If A-B-C, then C-B-A.

This is a triviality. If AB + BC = AC, thenCB + BA = CA.

The rest of the basic theorems on betweenness are going to depend essentially
on the ruler postulate.

Betweenness for real numbers is defined in the expected way; y is between z
and z if either 2 < y < zorz < y < z. In this case we write z-y-z. (Confusion
with subtraction is unlikely to occur, because “r minus y minus z” would be
ambiguous anyway.)

Lemma 1. Given & line L with a coordinate system f and three points 4, B,

C with coordinates z, y, 2, respectively. If z-y-z, then A-B-C.

Proof of lemma. (1) If z < y < z, then
« AB=ly—z=y—=z

because y — z > 0. Fdlr the same reasons,
BC=|gt—y=z2—y

and
AC=|t—z|=2—1z.
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Therefore
AB+BC=(y—z)+E—y
=z—=z
= |z — 1
= AC
so that A-B-C.

(2) If z < y < z, it follows by a precisely similar argument that C-B-A, which
means that A-B-C, as before.

Theorem B-2. Of any three points on a line exactly one is between the other
two.

Proof. (1) Let f be a coordinate system for the line; and let z, y, z be the co-
ordinates of the points A, B, C. One of the numbers z, y, z is between the other
two. By Lemma 1, this means that the corresponding point A, B, or C is between

the other two points.
(2) We now need to prove that if A-B-C, then neither of the conditions B-A-C,
A-C-B holds. If B-A-C, we have

BA + AC = BC.
But we have given that
AB + BC = AC.
By addition, we get
BA + AC + AB + BC = BC + AC,

or
24AB = 0.

Therefore AB = 0. This is impossible, because 4 = B.
The proof that both A-B-C and A-C-B cannot hold is precisely analogous.
Consider now four points A, B, C, D of a line L. In the list below, we indicate
the four possible triplets that can be formed from these; opposite each triplet we
have listed the three possible betweenness relations.

A,B,C: A-BC, A-C-B, B-A<,
A,B,D: AB°D, A-D-B, B-4-D,
A,C, D: AC-D, A-D-C, C-A-D,
B,C,D: B<C-D, B-D-C, C-B-D.

=

When we write
A-B-C-D,

we mean that all the overscored betweenness relations A-B-C, A-B-D, A-C-D and
B-C-D hold, but none of the other eight relations hold. (Thus A-B-C-D is a rather
efficient shorthand.) The scheme is, of course, easy to remeinber; the relations
that hold are the ones that you can get by leaving out one of the letters in the
expression A-B-C-D.
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Theorem B-3. Any four points of a line can be named in an order 4, B, C, D,
in such a way that A-B-C-D.

Proof. Let f be the line that contains our four points P, @, R, 8. The coordinates
of our points are four numbers; and these appear in some order

oW <z <y<z
Here w, z, y, and z are f(P), f(Q), f(R), (S), but not necessarily respectively. Let
A=7Tw), B=f'®), C=§'G), D=17@

From the double inequalitiess w < r < yyw < x <z, w <y <z z<y<e,
we get (by Lemma 1) the betweenness relations 4-B-C, A-B-D, A-C-D, B-C-D.
Thus, for each three of our four points, we have a betweenness relation; and
Theorem B-2 tells us that every three points stand in only one betweenness relation.
Therefore our list is complete, and A-B-C-D, which was to be proved.

Theorem B-4. If A and B are any two points, then (1) there is a point C such
that A-B-C, and (2) there is a point D such that A-D-B.

Proof. Take a coordinate system f for the line AB that contains A and B.

B C

A D
x+y y+1
2

Ficure 3.5

There is no loss of generality in supposing that ¢t < y. (See Theorem 1, Sec-
tion 3.3.) As in the figure, let

C=7"w+.

Then A-B-C because r < y < y -+ 1.
As in the figure again, let
SYERSAY
p ()

2r <z +y < 2y.

Since r < y, we have

(Why?) Therefore
r+vy
2

r < < v,

so that A-D-B.

In the next few chapters, we shall want to handle betweenness by referring only
to the theorems of this section, without going back to the definition. (The reasons
for this will be explained much later.) It turns out that the theorems above are
adequate, if we include the following trivial one.



54 DISTANCE AND CONGRUENCE

Theorem B-5. If A-B-C, then A, B, and C are three different points of the same
line.

This held, of course, under our original definition of the relation 4-B-C.

For convenience of reference, we list the basic properties of betweenness.

B-1. If A-B-C, then C-B-A.
B-2. Of any three points on a line, exactly one is between the other two.

B-3. Any four points of a line can be named in an order A, B, C, D, in such a
way that A-B-C-D.

B-4. If A and B are any two points, then (1) there is a point C such that A-C-B,
and (2) there is a point D such that A-B-D.

B-5. If A-B-C, the A, B, and C are three different points of the same line.

ProBLEM ST 3.4

1. Show that if A-B-C and B-C-D, then A-B-D and A-C-D.

2. Show that if A-B-C and A-D-C, then A-B-D-C, A-D-B-C,or B = D,

3. Given four spherical beads of different colors. In how many different ways is it
possible to arrange them in a trough, in order from left to right. (This is a problem in
order.)

4. Given four beads as in Problem 3. In how many essentially different ways is it
possible to arrange them on a rigid symmetrical rod. (This is & problem in betweenness.)

5. Given four beads as in the preceding problems. In how many essentially different
ways is it possible to arrange them on a string so as to make a four-bead necklace? (The
string is so thin that the knot can slip through the holes in the beads. This is a problem
in “betweenness on a circle,” and the answer indicates that the idea of “betweenness on
a circle” is much more peculiar than one might have supposed.) -

6. Prove the following converse of Lemma 1.

Lemma 2. Given a line L with a coordinate system f, and three points 4, B, and C

with coordinates z, y, and z, respectively. If A-B-C, then z-y-z.

7. In this section, we defined a betweenness relation for real numbers, by saying that
z-y-z if either 2 < y < z or 2z < y < z. Show that, for this betweenness relation,
Conditions B-1 through B-4 hold true.

3.5 SEGMENTS, RAYS, ANGLES, AND TRIANGLES

If A and B are two points, then the segment between A and B is the set whose
points are A and B, together with all points between A and B. By B-5, the seg-
ment lies on the line :4_5, and we have the figure below. As indicated, the segment
is denoted by AB.

-———

a3 a3

FiGure 3.6
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If A and B are two points, then the ray from A through B is the figure that

looks like this: —_—
AB
—_A

Figure 3.7

As indicated, the ray is denoted by AB. ’

More precisely, the ray AB is the set of all points C of the line AB such that
A is not between C and B. The point A is called the end point of the ray AB.

If this definition looks peculiar, you should check it against the figure to make
sure that it agrees with our rough notion of what points of the line ought to be
on the ray. It is fairly easy to see that AR is the union of (1) the segment AB,
and (2) the set of all points C such that A-B-C. If this latter description seems
more natural to you, you are welcome to regard it as the definition of a ray.

Roughly speaking, an angle is a figure that looks like this:

B

C

Figure 3.8

More precisely, an angle is a figure which is the union of two rays which have the
same end point, but do not lie on the same line. If the angle is the union of AB
and Xé, then these rays are called the sides of the angle; the point A is called the
vertex; and the angle itself is denoted by the symbol

LBAC.

Notice that we always have ZBAC = LCAB.
Finally, if A, B, and C are three noncollinear points, then the set

AB U BC U AC
is called a iriangle. B

ac
Figure 3.9

The three segments AB, BC, and AC are called its sides; and the points 4, B,
and C are called its vertices. (The English plural verteres is used by some authors
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but not others.) The triangle itself is denoted by the symbol
AABC.

The angles of AABC are ZBAC, ZACB, and LABC. Note that AABC con-
tains none of these three angles, because the sides of an angle are rays and the sides
of a triangle are segments (which are, to say the least, considerably shorter). If
we drew in all the angles, the figure would look like this:

B

C
7 D)
Figure 3.10
The following theorems look quite casy, but some of them aren’t.
Theorem 1. If 4 and B are any two points, then AB = BA.

Theorem 2. If (' is a point of AB, other than A, then AB = AC.

Theorem 3. If B, and C; are points of ABand A_C’, other than A, then ZBAC =
LB,AC,.

B

B,

4 .
c C

Ficure 3.11

Theorem 4. If 4B = (D, then the points A, B are the same as the points C,
D, in some order. (That is, the end points of a segment are uniquely determined
by the segment.)

Theorem 5. If AABC = ADEF, then the points A4, B, and C are the same as
the points D, E, and F, in some order. (That is, the vertices of a triangle are
uniquely determined by the triangle.)

If you review the definitions of 4B, 4B, ZBAC, and AABC, you will see
that all of these definitions are based on the idea of betweenness. The proofs of
Theorems 1 through 5 must, therefore, be based on Theorems B-1 through B-5.
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A word of caution: Here and hereafter, the symbol == is going to be used in one
and only one sense; it means “is exactly the same as.” Thus, when we write
AB = BA, we mean that the sets AB and BA have exactly the same elements.

Finally, a few remarks may be in order about the way in which we have defined
the idea of an angle. Under our definition, an angle is simply a set which is the
union of two noncollinear rays. Angles, in this simple sense, are quite adequate
for the purposes of Euclidean geometry.

Much Ilater, in analytic geometry and in trigonometry, we shall need to talk
about directed angles in which the initial side can be distinguished from the terminal
side, like this:

C, C

A \ A >
B B
(a) (b)
Ficure 3.12

An angle, in this sense, is not a set of points, but rather an ordered pair (1].73., }1—(:")
of rays; thus (/ﬁ;, AC) is different from (;175, AB). Tor directed angles, we allow
the possibility that the sides are collincar, and we also allow the possibility that
the sides are the same. We have not used this more complicated idea of an angle,
because at the present stage we have no use for it. Ifor example, the angles of
a triangle never consist of two collinear rays, and there is no natural way to
assign directions to them.

ProBLEM SET 3.5
1. Prove Theorem 1.
2. Show that, given a ray AB, there is a coordinate system f on the line 4B such that

AB = (P|f(P) Z 0},
. Prove Theorem 2.
4. Prove Theorem 3.

*5. Prove the following. Let A4 and B be two points, and let D, E, and F be three
noncollinear points. If AB contains only one of the points D, %, or I, then each of the lines
b_ﬁ, Bf, EF intersects AB in at most one point.

*6. Prove the following. 1f AABC = A DEF, then each of the lines AB. BC, AC con-
tains two of the points D, F, and F.

*7. Show that for any A ABC, we have

ABN AABC = TB.

(<)

That is, the only points of B that lie on the triangle are the points of the side AB.
*8. Prove the following. If AABC = /A DEF, then cach side of A ABC contains two
of the points D, E, and F.
*9. Prove Theorem 5.
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3.6 CONGRUENCE OF SEGMENTS

The intuitive idea of congruence, for any two figures at all, is always the same.
Two figures F and G are congruent if one can be moved so as to coincide with the
other. Thus two equilateral triangles of the same size are always congruent;
two circles of the same radius are always congruent; two squares of the same size
are always congruent, and so on.

AN OO

Figure 3.13

In the same way, two segments of the same length are always congruent.

B C D

Ficure 3.14

Here, by the length of a segment, we mean the distance between its end points.

Our problem, in our mathematical study of congruence, is to formulate the idea
in sufficiently exact form to be able to prove things about it. In the present sec-
tion, we shall do this for the case in which the figures are segments. (This is the
easiest case of all.) Later we shall do the same for the case in which the figures are
angles; and still later, we shall discuss triangles. IFinally, in the chapter on rigid
motion, we shall discuss congruence in a form sufficiently general to apply to any
two sets of points.

We start with our official definition.

Derixirion. Let 4B and CD be segments. If AB = CD, then the segments are
called congruent, and we write AB = CD.

On the basis of this definition, it is easy to prove the familiar and fairly trivial

facts about congruence of segments.
A relation ~, defined on a set A, is called an equivalence relation if the following

conditions hold.
(1) Reflexity. a ~ a, for every a.
(2) Symmetry. If a ~ b, then b ~ a.
(3) Transitivity. If a ~ band b ~ ¢, thena ~ =.°

Theorem C-1. l'or segments, congruence is an equivalence relation.
__That is, every segment is congruent to itself; if AB = CD, then CD = AB;if
AB == CD and CD = FF, then AB = EF.

Prooff There isn't much to it.
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Theorem C-2. The Segment-Conatruction Theorem. Given o segment AB and
a ray CD. There is exactly one point E of CD such that AB = CFE.

E
D
A B c
AB=CE
Fiaure 3.15

That is, starting at the end point of a ray, you can measure off a segment of
any desired length, and the resulting segment is unique.

Proof. By the ruler placement theorem, set up a coordinate system f for the line
CD, in such a way that f(C) = 0 and f(D) > 0.

CcD x= AB
Figure 3.16

In the figure, we have indicated that the number CD is the coordinate of the point
D, and this is correct, because f(D) > 0. If £ is a point of 5‘3, then CE =~ AB
if and only if f(E) = AB as in the figurc. Thus CE = AB if and only if E =
f~Y(AB). There is exactly one such point f~!(AB), and thercfore there is exactly

one such point E.
The following theorem says, in effect, that if congruent segments are laid end

to end, the resulting segments are congruent.

Ficure 3.17

Theorem C-3. The Segment-Addition Theorem. If
(1) A-B-C,

(2) A’-B-C',

3) ABx~ A'F,

and

(4) BC = BT,

then

(5) AC = 4C".

We also have a converse.
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Theorem C-4. The Segment-Subtraction Theorem. If (LA-B-C, (2) A'-B'-C’,

(3) AB = A'F, and (4) AC =~ A'C’, then (5) BC == B'C".

These theorems can most conveniently be proved by means of the definition of
betweenness. You should work out the proofs in full.

Note that we have called Theorem C-1 a converse of Theorem C-3, rather than
the converse of Theorem C-3. The reason is that most theorems have more than one
converse (each of which, of course, may or may not be true). Kor statements of
the form P’ = @, where P and @ are propositions, the situation is simple. The
converse of the implication P’ = @ is the implication @ = P. A theorem may,
however, be stated in the following form: “If (a), (b), and (c), then (d), (e), and
(f).” This says that

[(a) and (b) and (c)] = [(d) and (e) and (f)].
In this case, any statement that you get by interchanging part of the hypothesis
and part of the conclusion is called a converse. Thus, to get Theorem C-4 from
Theorem C-3, we moved (5) into the hypothesis, and moved (4) into the conclu-
sion. Theorem C-3 has three more converses. You should state them and find
out which of them are true.

If A-B-C, and AB = BC, then B is a midpoint of AC. The following theorem
justifies us in referring to B as the midpoint.

Theorem C-5. LEvery segment has exactly one midpoint.

Proof. Given AC. By the ruler placement theorem, take a coordinate system
f, for the line AC, such that f(4) = 0 and f(C) > 0.

o x AC

Figure 3.18

If B is between 4 and C, then

AB= |z — 0| =z
and
BC = |AC — z| = AC — «x.

Thus, for the case where 4-B-C, the condition AB = BC is equivalent to the
condition

r= AC — =z,
or
2r = AC,
or
= AC
T ="

There is exactly one such number x, and therefore there is exactly one such point B.



CHAPTER 4

SEPARATION IN PLANES AND SPACE

4.1 CONVEXITY AND SEPARATION

_Aset Ais called convex if for every two points P, @ of A, the entire segment
PQ lies in A. For example, the threc figures below are convex:

AP &

Ficure 4.1

Here each of the sets 4, B, and ( is a region in the plane; for example, A is the
union of a triangle and the set of all points that lie inside the triangle. We have
illustrated the convexity of the sets A4, B, and C by drawing in some of the seg-
ments P—Q

On the other hand, none of the sets D, £, and ¥ below are convex:

SIS

Ficure 4.2

To show that a set, say D, is not convex, you have to show that there are two

points P and Q, both belonging to D, such that P does not lie in D. This is what

we have indicated, for each of our last three figures. .

A convex set may be very “thin and small.” For example, every segment PQ

is a convex set. In fact, a set with only one point is convex. (Since such a set does
61
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not contain any two points, it follows that every two points of it have any property
we feel like mentioning.)

A convex set may also be very large. For example, the whole space S is a convex
set; and all lines and planes are convex. (Proof?) Given a line L in a plane E, the
parts of E that lic on the two sides of L are both convex.

|
|
|
]
1
U

Figure 4.3

In I'ig. 4.3, H, is the part of the plane lying above and to the left of the line L,
and H; is the part of the planc that lies below and to the right of L. The sets
Hy and H; are called half plancs. As before, we have illustrated their convexity
|by showing a few sample segments PQ. We notice, of course, that if T belongs to
\H, and U belongs to Hj, then the segment TU always intersects the line. The
situation described in this informal discussion is fundamental in plane geometry.
It is covered by the following postulate.

PS-1. The Plane-Separation Postulate. Given a line and a plane containing it,
the set of all points of the plane that do not lie on the line is the union of two
scts such that (1) each of the sets is convex, and (2) if £ belongs to one of the sets
and @ belongs to the other, then the segment PQ intersects the line.

We can now begin to state official definitions based on our postulates. If E and
L are a plane and a line, as in the postulates, and H, and H; are the two sets given
by the postulate, then each of the sets H, and H; is called a half plane, and L is
called the edge of each of them. ,

Obviously there is no natural way to decide whizh of the half planes should be
mentioned first, but except for this question of order, the two half planes are
uniquely determined by E and L. To see this, we observe that if P € H,, then
the points of H, are the point P and the points Q such that

PQNnL=0¢.
Similarly,
Hy={QQeE—L and PONL =9}
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ProBLEM SET 4.1

Prove the following theorems. In all these theorems, it should be understood that
E, L, Hy, and H3 are a plane, a line, and the two half spaces given by P8-1. The proofs
are of & sort that may not be at all familiar to you. Obviously, PS-1 uses the idea of a
segment, and segments were defined in terms of betweenness. Therefore the chances are
that you will have to appeal to a fair number of postulates (and theorems) other than
P8-1. Use of the ruler postulate or the ruler placement theorem is not allowed; the proofs
should use, instead, the theorems B-1 through B-5 which were based on them.* ,

1. Theorem A. The sets H; and H3 are not both empty.

2. Theorem B. Neither of the sets H; and H3 is empty.

3. Theorem C. H) contains at least two points.

4. Theorem D. H contains at least three noncollinear points.

5. Theorem E. E is uniquely determined by /7). That is, every half plane lies in
only one plane.

6. Theorem F. L is uniquely determined by Hi. That is, every half plane has only

one edge. N

7. Theorem G. Every ray is convex.
8. Theorem H. Hi U L is convex.
9. Theorem . If A and B are convex, then so also is .4 N B.

10. Theorem J. If G is any collection of convex sets g,, then the intersection of all of

the sets g, in the collection is convex.

The convez hull of a set A is the intersection of all cunvex sets that contain A.

11. Theorem K. If .4 is any set of points, then the convex hull of A is convex.

12. Let A be a set of points. Let B be the union of all segments of the form PgQ,
where P and Q belong to A. Does it follow that B is convex? Why or why not?

13. Theorem L. Given a triangle ABC, and 4 line L in the same plane. If L contains

no vertex of the triangle, then L cannot intersect all of the three sides.

B

L?

A
FiGuRre 4.4

14. Theorem M. The Postulate of Pasch. Given a triangle ABC, and a line L in the

same plane. If L contains a point between A and B, then L also intersects one of the

other two sides of the triangle.

(We call this a postulate because in the work of Pasch it was used as such, in place of
P8-1 above.)

* There is one exception. In proving Theorem @, you may use the result of Problem 2
of Problem Set 3.5.
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4.2 INCIDENCE THEOREMS BASED ON THE PLANE-SEPARATION POSTULATE
If E— L = H 1 U H 2,

as in the plane-separation postulate, then we say that the sets H, and H; are
half planes of L or sides of L. Notice that every line has two sides in every plane
that contains it, but if P and @ are on the same side of a line L, this automatically
means that L, P, and Q are coplanar. On the other hand, to say that P and @ are
on different sides of L, in space, may mean merely that no one plane contains L,
P,and Q. If ¥ — L = H, U H3, as in the planc-separation postulate, then H,
and H, are called opposite sides of L; and if P belongs to H, and @ belongs to
H,, we say that P and Q are on opposile sides of L.
The following two theorems are easy.

Theorem 1. If P and @ are on opposite sides of the line L, and Q and T are
on opposite sides of [, then P and T are on the same side of L.

Theorem 2. If P’ and () are on opposite sides of the line L, and @ and 7 are on

the same side of L, then I’ and 7' are on opposite sides of L.

We usc a similar terminology for the “sides of a point” on a line. That is, if
A-B-C, then the rays BA and BC are called opposile rays.

> -

BA BC

Ficure 4.5

Theorem 3. Given a line, and a ray which has its end point on the line but does
not lie on the line. Then all points of the ray, except for the end point, are on
the same side of the line.

Proof. Let L be the line, and let AB be the ray, with A € L.

B

-~ C?
Ficure 4.6

Suppose that AB contains a point C such that B and C are on opposite sides of L
(in the plane that contains L and AB). Then BC intersects L in some point, and this
point must be A, because BC lies in AB, and AB intersects L only in A. Therefore
C-A-B. But this is impossible. By definition, the ray AB is the set of all points
C of the line A B for which it is not true that C-A-B. Therefore all points of the ray,
other than A, are on the same side of L, namely, the side that contains B.
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Given £LBAC.

B~ Interior

*D

Exterior

C
Exterior

Ficure 4.7

Roughly speaking, the interior of the angle is the set of all points that lie inside it,
and the exterior is the set of all points that lie outside it. We can make this idea
precise in the following way.

The interior of ZBAC is the intersection of the side of AC that contains B,
and the side of AB that contains C. Thus a point D lies in the interior (1) xf D
and B are on the same side of 21-6 and (2) if D and C are on the same side of AB.

For this definition to be valid, it has to depend only on the angle that we started
with, and not on the points B and C that we happened to choose to describe the
angle. Thus, in the figure below, it would be sad indeed if our definition gave us
two different interiors for £B’AC’ and £LBAC:

B

C c
Figure 4.8

The preceding theorem shows, however, that our definition really does depend
only on the angle, because B and B’ are always on the same side of ;l_f' and C

and C’ are always on the same side of AB.
Given an angle £ ABC, there is exactly one plane E that contains it. The
exterior of the angle is the set of all points of E that lie neither on the angle nor in

its interior,

Theorem 4. Every side of a triangle lies, except for its end points, in the interior
of the opposite angle.
Here we are using the ordinary terminology; that is, in AABC, the angle Z4 =
ZBAC is opposite the side BC.

B,

Figure 4.9
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Proof. Let D be a point of BC, between Band C. Then C is not between Band D.
(Why?) Therefore BD does not contain C. Therefore E’l—) does not contain any
point at all of the line AC, because BD lies in BC, and BC and AC intersect only
at C. Therefore, (1) D and B are on the same side of E In a precisely similar
way, it follows that (2) D and C are on the same side of AB. These two conditions
tell us that D is in the interior of ZBAC, which was to be proved.

Theorem 5. If A-C-D, B-F-C, and A-F-G (all in the same plane), and A, B, and
C are not collinear, then @ is in the interior of ZBCD.

Ficure 4.10

Proof. (1) Since B-F-C, it follows that BF does not intersect AC. Therefore

B and F are on the same side of AC.

(2) Since A-F-G, it follows that FG does not interseet AC. Therefore F and G
are on the same side of AC.

(3) By (1) and (2), (7 is on the side of AC that contains B.

(4) Since AC = ?J_IS, it follows that G is on the side of CD that contains B.

Thus we have proved half of our theorem. -

(5) Since A-C-D, A and D are on opposite sides of BC'.

(6) Since A-F-G, A and G are on opposile sides of BC.

(7) Thercfore, by Theorem 1, G is on the side of BC that contains D.

Steps (4) and (7) tell us that @ is in the interior of £ BC D, which was to be proved.

Throughout this seetion, we have been using figures to help us keep track of
what is going on. (Here us, of course, includes the author. All authors use figures,
whether or not they decide to show these to the reader.) You should watch very
carefully, however, to be sure that the figures are playing merely their legitimate
part as memoranda. It is customary, in elementary texts, for the reader to be
assured that “the proofs do not depend on the figure,” but these promises are
almost never kept. (Whether such promises ought to be kept, in an elementary
course, is another question, and the answer should probably be “No.”) In a
mathematically thorough treatment, however, the hypothesis and conclusion ought
to be stated so fully and explicitly that no figure is actually necessary to make
them plain; and in the same way, the proofs ought to rest on the postulates and the
previous theorems. This point is especially relevant in the present context, because
in most informal treatments of geometry it is customary to convey betweenness
relations and separation properties only by figures, without ever mentioning them
in words at all.

You may be able to remember a situation, in elementary geometry, where
Theorem 5 is needed.
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The inierior of AABC is defined as the
intersection of the following three sefs:

(1) Theside of AB that contains C.
(2) The side of AC that contains B.
(3) The side of BC that contains A. Fiaure 4.11

Theorem 6. The interior of a triangle is always a convex set.
Proof?

Theorem 7. The interior of a triangle is the intersection of the interiors of its
angles.
Proof?

4.3 INCIDENCE THEOREMS CONTINUED
In the figure below, D is supposed to be in the interior of ZBAC.

FiGuRrE 4.12

It surely looks as if AD ought to intersect BC. We ought to be able to prove this, on
the basis of our postulates; and in fact, if we were unable to do this, after suitably
vigorous effects, this would give us reason to suspect that our postulates were not
a really adequate description of the aspects of geometry that they purport to cover.
In this section, we give a proof. But it is rather surprisingly long; and a number
of preliminary results had better come first.

In the figure below, it looks as if all of the ray AD except for A, lies in the interior
of ZBAC. And this is true:

(o)
FigUure 4.13

1. If D lies in the interior of ZBAC, then AD — A lies in the interior
of LBAC.
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Proof. (1) By hypothesis, D lies on the side of AC that contains B. By Theorem
3, Section 4.2, all poinis of AD — A lic on the side of AC that contama B.

(2) FFor the same reasons, all points of A ID — A lie on the side of AB that contains
C.

(1) and (2) tell us that AD — A lics in the interior of ZBAC, which was to be
proved.

Theorem 2. If D lies in the interior of ZBAC, and G-A-D, then AG — A lies
in the side of AC that does not contain B.

B,
D
4 /q/'
Figurr 4.14

Proof. Since G-4-D, G and D ure on opposite sides of 4c. By hypothesis,
B and D are on the same side of AC. By Theorem 2, Section 4.2, it follows that
G and B are on opposite sides of AC. But, by Theorem 3, Scction 4.2, all points
of AG — A arc on the same side of AC. Therefore all points of AG — A are on the
side of AC that does not contain B.

In the figure below, it looks as if F and B are on the same side of AD.

Fi1GURE 4.15

Theorem 3. If D is in the interior of £LBAC, and F-A-C, then F and B are on
the same side of AD.

Our conclusion means that FB does not intergxct the line AD. This is rather
surpnsmgly hard to prove. Infact, we have to break our problem up into two parts,
in the followmg way. Let G be a point such that G-A4-D, as indicated in the figure,
Then AD and AG are opposite rays, so that

4D = AD U 4G.
We shall prove that

(1) FB does not intersect @, and
(II) FB does not intersect AG.
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It will follow, of course, that FB does not intersect AD. In detail, the proof
goes like this:

(1) F and C are on opposite sides of AB (because F-A-C).

(2) All points of BF — B are on the side of AB that does not contain C (by
Theorem 3 of Section 4.2).

(3) FB contains no point of the interior of ZBAC. (Any such point would lie
in E_f, and BF contains no point of the interior. It lies on the “wrong side” of IE.)

(4) FB contains no point of AD. (FB does not contain A4 ; and all the rest of
AD lies in the interior of ZBAC.) Thus, (I) is true.

(5) FB — F lies on the side of AC that contains B (by Theorem 3, Section 4.2.)

(6) FB — F lies on the side of AC that contains B (because FB lies in ITE).

(7) AG — A lies on the side of AC that does not contain B (by Theorem 2).

(8) FB contains no point of AG. (FB does not contain A4, and AG does not con-
tain F, and by steps (6) and (8), FB — B and AG — Alieon opposite side of :‘l_lf.)
Thus (IT) is also true; and the theorem follows.

After all these preparations, we can prove the trivial-looking theorem that we
were working toward.

Theorem 4. The (rossbar Theorem. If D is in the interior of ZBAC, then AD
intersects B('.

Ficure 4.16

Proaf. Suppose that AD docs not intersect BC. Then (1) B and C are on the
same side of AD. Let F be a point such that F-A-C. By Theorem 3, we have
(2) F and B on the same side of AD. (3) Therefore, F and C are on the same side
of AD. But (3) is impossible, because F-A4-C.

You may remember that one of the first theorems in plane geometry that most
péople learn is the one dealing with the base angles of an isosceles triangle. These
are always “equal,” that is, congruent in the sense in which we shall define the
latter term later in this book. That is, if AB = AC, then £ZB = ZC.

A

1
1
1
1
Fe

i

1

D
Fiaure 4.17
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Although a good proof of the theorem was known in antiquity, it has become cus-
tomary in later centuries to prove it in needlessly complicated ways; and probably
the worst of these rambling detours is the proof that starts by t.ellmg you (1) to
bisect ZBAC, (2) to “let” D be the point where the bisecting ray AF mbersects
the base, and (3) to show that AADB and A A4 DC are congruertt.

Of course, a light-hearted use of the word let is no substitute for a proof that
AF intersects BC. This method of proof thus depends essentially on the crossbar
theorem. We shall see, however, that for the simple theorem that we have been
discussing, the whole issue of the crossbar theorem is easy to bypass; we don’t
need a tractor to pull n kiddie car.

ProOBLEM Skt 4.3

1. Theorem 5. Given a triangle, and a line lying in the same plane. If the line inter-
sects the interior of the triangle, then it intersects at least one of the sides.

4.4 CONVEX QUADRILATERALS

Given four points 4, B, C, and D such that they all lie in the same plane, but
no three are collinear. If the segments 4B, BC, CD, and DA intersect only at
their end points, then their union is called a quadrilateral, and is denoted by
[JABCD. This notation is not meant to suggest that every quadrilateral is a
square, any more than the analogous notation A A BC is meant to suggest that every

triangle is equilateral.
The angles A, B, C, D of [ JABCD are £LDAB, £ZABC, and so on.

4 A

C

Ficure 4.18

The sides of [JABCD are AB, BC, and so on. Two sides which have a common
end point are called adjacent; two sides which are not adjacent are opposite. Two
angles of a quadrilateral are adjacent if their intersection contains a side; and two
angles which are not adjacent are opposite.

The diagonals of [ J4 BC'D are the segments AC and BD.

A quadrilateral is called convezx if cach of its sides lies in one of the half planes
determined by the opposite side. Note that if A and B are on the same side of
UD, then all points of AB are on the*same side of CD. (The converse is trivial.)
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Thus [JABCD is a convex quadrilateral if and only if all four of the following
conditions hold.

(1) A and B are on the same side of CD.

(2) B and C are on the same side of DA.

(3) C and D are on the same side of AB.

(4) D and A are on the same side of BC.

Note that the use of the word convez in geometry is inconsistent ; no quadrilateral
can possibly form a conver set in the sense in which the latter term was defined
in Section 4.1. This usage is universal, however.

The following theorem is very widely known, but does not usually get proved.

Theorem 1. The diagonals of a convex quadrilateral always intersect each other.

Proof. Let [JABCD be a convex quadrilateral. We need to show that AC
intersects BD.

Fiaure 4.19

By conditions (1) and (2) above, we conclude that B is in the interior of ZADC.
Therefore, by the crossbar theorem, DB intersects AC at a point P.

Similarly, by Conditions (3) and (4) we conclude that A is in the interior of
ZBCD. Therefore, by the crossbar theorem, (A intersects BD at a point Q.

Since each of these rays and segments lies in the corresponding line, it follows that
DB intersects AC at P and also at Q. Therefore P = Q. Since P lies on AC and
Q lies on BD, it follows that AC and BD have a point in commeon, which was to
be proved.

If you review this chapter and observe how much of it is needed for the proof
of the above theorem, it will be obvious to you why the proof is commonly omitted
in elementary treatments.

4.5 SEPARATION OF SPACE BY PLANES

The behavior of planes in space, with regard to separation properties, is very
close.y analogous to the behavior of lines in a plane. We therefore merely state
the basic postulate, definitions, and theorems, and leave the verifications to the
reader.
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$$-1. The Space-Separation Postulate. Given a'plane in space. The set of all
points that do not lie in the plane is the union of two sets H,, Hj such that
(1) each of the sets is convex, and (2) if P belongs to one of the sets and Q be-
longs to the other, then the segment PQ intersects the plane.

The two sets H;, H; described in SS-1 are called half spaces, or sides of the plane
E, and E is called the face of each of them. As in the case of half planes, there is
no natural way to decide which of them should be mentioned first; but except for
order, the sets H; and H are uniquely determined by E. The reason is that if

P € H,, then _
Hi=Pu{QiQeS and PQNE =0},

and _
H, = {QQeS —E and PQNE = 0}.

The following theorems are merely the appropriate revisions of some of the
theorems in Section 4.1.

Theorem 1. The sets H; and H; are not both empty.
Theorem 2. Neither of the sets H,, H; is empty.
Theorem 3. Each of the sets H, and H; contains four noncoplanar points.

Theorem 4. E is uniquely determined by H,. That is, every half space has only
one face.

A dihedral angle is a figure that looks like this:

FiGuRre 4.20

More precisely, if two half planes H, and H; have the same edge L, but do not
lie in the same plane, then the set H, U Hy U L is called a dthedral angle. The
line L is called the edge of the dihedral angle, and the sets H, U L and H3 U L are
called its sides. (Note that just as the sides of an angle contain their common
end point, so the sides of a dihedral angle contain their common edge.)

The following theorem is analogous to Theorem 3, Section 4.2.

Theorem 5. Let H be a half plane with edge L, and let E be a plane which
contains L but not H. Then all points of H are on the same side of E.
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Given a dihedral angie
D=H,UH;UL.

Let E, and E; be the planes that contain H, and H, respectively. Then the
inderior of D is the intersection of (1) the side of E; that contains Hj and (2) the
side of E; that contains H,.

Theorem 6. The interior of a dihedral angle is always a convex set.

Theorem 7. If P and Q are in different sides of a dihedral angle, then every point
between P and Q is in the interior of the dihedral angle.

This section, of course, is hardly more than an introduction to the following
problems.

PropLEM SeT 4.5

1. Prove Theorems 1 through 7.



ourm O

ANGULAR MEASURE

5.1 DEGREE MEASURE FOR ANGLES

You will recall that when we started doing geometry, we began with the

structure
[S, £, ®].

Later we included in the structure the distance function

d:SX S—-R.
This gave us the structure
(S, £, @, d].

In terms of distances between points, we defined betweenness, and also congruence
for segments.

We now complete the structure by introducing measure for angles. This will
turn out to be the familiar degree measure. The situation here is closely analogous
to that for distance. We could equally well use radians, or any constant multiple
of degrees or of radians; but since all of these measures for angles behave in es-
sentially the same way, we may as well simplify the discussion by choosing one
of them, once for all, and using it consistently thereafter. (Not until we get to
calculus is there a good reason for preferring radian measure; and the transition to
it is trivial.)

Angular measure is going to be a function m, defined for angles, with real num-
bers as values of the function. For convenience let @ be the set of all angles.
Then we shall have the structure

[S’ 8’ 0, d’ m]’
where
m:@ — R

is a function of the angles into the real numbers. In the usual functional notation,
we would write ‘
m(£LABC)

to denote the measure of £ ABC, but since no confusion with multiplication could
possibly occur, we omit the parentheses and write merely

mZ ABC.
74
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Since we shall be talking about only one measure function for angles, we can
write merely
mLABC = 90, mJZDBC = 45. N

Figure 5.1

We do not write m£Z ABC = 90°, because the values of the function m are simply
real numbers; they stand alone and don’t need to carry little flags to indicate
where they came from. On the other hand, in labeling figures, it is convenient to
use the degree sign merely to indicate that certain letters or numbers are meant
to be the degree measures of angles.

y P,
30° r°
2 R
Ficure 5.2
The figures above tell us that
mZLABC = 30,
and

mLPQR = r.

The postulates governing the function m are merely abstract descriptions of the,
familiar behavior of protractors. With a protractor placed with its edge on the edge
of the half plane H, as in the figure below, we can read off the measures of a large
number of angles.

Figure 5.3
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For example,
mZLPAB = 10,
mLQAB = 40,
mLRAB = 75.

By subtraction, we also get

mZQAP = 40 — 10 = 30,
mLSAR = 90 — 75 = 15,
mZCAU = 180 — 130 = 50,

and so on. These and other uses of a protractor are reflected in the following
postulates.
M-1. m 15 a function @ — R, where @ is the set of all angles, and R is the set
of all real numbers.

M-2. For every angle A, mZ A is between 0 and 180.
M-3. The Angle-Construction Postulate. Let AB be a ray on the edge of the half

plane H. For every number r between 0 and 180, there is exactly one ray AP,
with P in H, such that m£ZPAB = r.

Figure 5.4

M-4. The Angle-Addition Postulate. 1f D is in the interior of £ZBAC, then
mLBAC = m£LBAD + m£LDAC.

Fiaure 5.5

(This, of course, is the property of m that we use when we compute the measure
of an angle by subtraction.)
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Two angles form a linear pair if they look like this:

D

C A B
Figure 5.6

That is, if AB and AC are opposite rays, and AD is any third ray, then ZDAB
and £ZDAC form a linear pair. If mZ ABC + m £ DEF = 180, then the two angles
are called supplementary. Notice that this definition says nothing at all about
where the angles are; it deals only with their measures.

M-5. The Supplement Postulate. If two angles form a linear pair, then they are
supplementary.

r+4+s=180
Ficure 5.7

Just as we defined congruence for segments in terms of distance, so we define
congruence for angles in terms of measure. That is, if

mLABC = m£LDEF,
then the angles are congruent, and we write
ZABC = ZDEF.

If the angles in a linear pair are congruent, then each of them is called a right
angle. If ZABC is a right angle, and m£ZABC = r, then, of course, we have
r = 90; the reason is that since the angles in a linear pair are always supplementary,
we must have r + r = 180. The converse is also true (and easy). Thus an angle
is a right angle if and only if its measure is 90.

The following theorems are closely analogous to our first few theorems on con-
gruence for segments. To see the analogy, we observe that a sort of “betweenness”
relation can be defined for rays with the same end point; we might say that AD
is “between” AB and AC if AD — A lies in the interior of ZBAC.

B

A c
FiGUrE 5.8
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The analogy is incomplete, because it is decidedly not true that given any three
rays with the same end point, one of them is between the other two. (Example?)
We do have, however, the following theorems.

Theorem 1. I'or angles, congruence is an equivalence relation.

Theorem 2. The Angle-Construction Theorem. Let £ ABC be an angle, let B'C’
be a ray, and let H be a half plane whose edge contains B'C". Then there is
exactly one ray B’A’ with A’ in H, such that

£LABC = LA'B'C'.

Theorem 3. The Angle-Addition Theorem. If (1) D is in the interior of ZBAC,
(2) D’ isin the interior of £B'A’C’, (3) LBAD = /B'A'D’,and (4) LDAC ==
ZLD'A'C’, then (5) LBAC = LB'A'C'.

Ficure 5.9

Theorem 4. If (1) D is in the interior of ZBAC, (2) D’ is in the interior of
ZB'A'C', (3) LBAD == ZB'A’D’, and (4) £BAC = LB'A’C’, then (5)
LDAC = LD'A'C".

If we translate these theorems into the language of angular measure, using our
definition of congruence for angles, they are seen to be trivial consequences of the
postulates for m.

Two rays are called perpendicular if their union is a right angle. If AB and AC
are perpendicular, then we write

AB L AC.

In this case we also say that the lines AB and AC are perpendicular, and write
AB 1 AC.

Two segments AB, BC are perpendicular if the lines containing them are per-
pendicular, We use the same term and the same notation for a segment and a
line, a line and a ray, and so on. Thus A8 L1 PQ means that AB L E this in
turn means that the union of the two lines contains a right angle.

An angle with measure less than 90 is called acute, and an angle with measure
greater than 90 is called obtuse. Two angles are called complementary if the sum of
their measures is 90
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If m£LBAC < m£LB'A'C’, then we say that ZBAC is smaller than £LB'A'C",
and we write

ZBAC < LB'AC.

Note that the relation “is smaller than” is not an order relation; it is quite possible
for two angles to be different, without either of them being smaller than the
other. In fact, this happens whenever the angles are congruent.

Two angles form a vertical pasr if their sides form pairs of opposite rays like this:

Ficure 5.10

Here £LBAC and £B’AC’ form a vertical pair. To be more precise, if B-A-C’,

C-A-B’, and the lines AB and AB’ are different, then ZBAC and £B’AC’ form
a vertical pair.

Theorem 5. The Vertical Angle Theorem. If two angles form a vertical pair,
then they are congruent.

RestaTEMENT. If B-A-(C', C-A-B’, and the lines ABand A'B are different, then
ZBAC = LB AC'.

s Fiaure 5.11

Proof. Let -
r = mLBAPB.

Since B-A-C’, it follows that AB and AC are opposite rays. Therefore ZBAB’

and £B’'AC’ form a linear pair. Therefore these angles are supplementary, and
we have

mLB'AC' = 180 — r.

Similarly, C-A-B’, £LBAC, and £ZBAB’ form a linear pair; these angles are
therefore supplementary; and we have

mLBAC = 180 — r.
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Thercfore mZBAC = mZB'AC’, and ZBAC = £B'AC', which was to be |

pl‘OVCd. I
If you suspect that the apparatus with which we stated the theorem and worked

out the proof was superfluous, try “proving” the theorem while gazing at the
following figure:

Fiaure 5.12

The point is that to prove anything at all about vertical angles, we have to have a
definition of a vertical pair that is sufficiently exact to give us a hand hold.

Theorem 6. If two intersecting lines form one right angle, then they form
four right angles.

Proof?
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CONGRUENCES BETWEEN TRIANGLES

6. THE IDEA OF A CONGRUENCE

As we explained in Chapter 3, the intuitive idea of congruence is the same for
all types of figures. It means in every case that the first figure can be moved
without changing its size or shape, so as to coincide with the second figure. There
are two possible approaches to the problem of treating the idea of congruence
mathematically. One way is to take it as undefined, state enough postulates to
describe its essential properties, and then go on to prove whatever theorems turn
out to be true. In later chapters, we shall show how such a postulational treatment
works. For the present, however, we shall use a different scheme: we shall define
congruence, in terms of distance and angular measure, and then proceed to prove
our theorems on the basis of only one additional postulate.

The first of these approaches to congruence is called the synthetic approach,
and the second, which we shall be using for some time to come, is called the metric
method. We have already applied the metric method to the simplest cases, where
the figures we are dealing with are segments or angles. Our basic definitions were
as follows.

(1) AB =2 CD mcans, by definition, that AB = CD.
(2) By definition, ZBAC = ZPQR means that m£BAC = mZPQR.

We now proceed to the case where the figures involved are triangles. It is obvious,
in the figures below, that all three of the triangles are congruent.

B F H

A cC D E G
Ficure 6.1

That is, any one of them can be moved onto any other one in such a way that it

fits exactly. Thus, to move the first onto the second, we should put 4 on D, B

on F, and C on E. These directions describe the motion by means of a one-to-one
81
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correspondence between the vertices of the first triangle and those of the second:

A e D,
B e F,
C+— E.

Similarly, the second triangle can be matched with the third by the correspondence,

De 1,
E & G,
F e H.

Notice that there is no particular point in giving names to these functions, or in
using functional notation to describe them; there are only three elements in each
of the two sets, and we can therefore describe the function quite conveniently,
simply by writing down all three of the matching pairs. There is a shorthand
which is even briefer. We can describe our first correspondence in one line, like
this:

ABC « DFE.

Here it should be understood that the first letter on the left is matched with the
first on the right, the second with the second, and the third with the third, like this:

D F E
']

Fi1GURE 6.2

A4 B C

Given a correspondence between the vertices of two triangles, there is a naturally
induced correspondence between the sides and the angles. Thus, given the cor-
respondence

ABC < DFE,

the induced correspondence between the sides is
AB < DF,
BC & FE,
AC — DE,
and the induced correspondence betwo:en the angles is
LA & LD,

LB « LF,
ZC « LE.

(Here, as usual, we are using the shorthand £ A for LBAC, 4B for £LABC,
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and 80 on.) When a correspondence between the vertices is given, then whenever
we speak of corresponding sides or corresponding angles, we shall always be referring
to the correspondence induced in the way shown above.

Of course, not every one-to-one correspondence between the vertices of two tri-
angles describes a workable scheme for moving the first triangle onto the second,
even if the triangles happen to be congruent. For example, the correspondence

ABC < FED

is unworkable; the triangles can’t be made to fit in this way. To test whether a
correspondence between the vertices is “workable,” we need to check whether the
matching sides and angles are congruent. In fact, this is our official definition of
a congruence.

DerinitioN. Given AABC, ADEF, and a one-to-one correspondence
ABC < DEF

between their vertices. If every pair of corresponding sides are congruent, and
every pair of corresponding angles are congruent, then the correspondence is &
congruence.
That is, the correspondence
ABC <~ DEF

is & congruence if all six of the following conditions hold:

AB =~ DE, LA=/D,
AC =~ DF, LB = LE,
BC =~ EF, LC = LF.

If ABC «» DEF is a congruence, then we write

AABC = ADEF.
B E

A cC D F

FIGURE 6.3

Two triangles are called congruent if there is some correspondence between their
vertices which satisfies the six conditions for a congruence. Note that the expres-
sion AABC = ADEF says not merely that AABC and ADEF are congruent,
but also that they are congruent in a particular way, that is, under the correspond-
ence ABC «+» DEF.

Therefore, if we want to say merely that two triangles are congruent, we have to
say this in words; we can’t use the shorthand. It turns out, however, that this is
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no handicap to us, because in the geometry of triangles, the idea of congruence in
the abstract hardly ever occurs. Nearly always, when we talk about congruent
triangles, we go on to draw conclusions about “corresponding sides” or “correspond-
ing angles”; and this means that what we really had in mind, all along, was a cor-
respondence, whether or not we chose to mention one. The basic idea here is not
the idea of congruence, but the idea of a congruence.

It is fairly obvious that if you want to check that a correspondence is a con-
gruence, you don’t have to check all six pairs of corresponding parts. For example,
suppose that two sides and the included angle of the first triangle are congruent
to the corresponding parts of the second, as the markings in the following figure

indicate. o E
A K C D i F

ABC < DEF; AB=DE, (A= D, AC=DF.
FiGURE 6.4

It ought to follow that ABC « DEF is a congruence. In fact, this is our basic
congruence postulate.

SAS. Given a correspondence between two triangles (or between a triangle
and itself). If two sides and the included angle of the first triangle are con-
gruent to the corresponding parts of the second triangle, then the correspondence
is a congruence.

Here SAS stands for Side Angle Side. We shall refer to this postulate, hereafter,
as the SAS postulate, or, for short, simply as SAS.

ProsLEM SET 6.1

These problems are not stated, and are not supposed to be solved, in terms of deductive
geometry. You may take for granted that correspondences that look like congruences
really are congruences.

1. Write down all of the congruences between an equilateral triangle and itself.

2. The figure to the right is a five-pointed star. Write

down all of the congruences between the star and itself. B
Let us agree that a congruence is simply a matching sohgme
that “works,” and that such a congruence is sufficiently

described if we explain, in the one-line short notation,
where the points A, B, C, D, and E of the star are supposed
to go. Thus one of the congruences that we are looking for
is ABCDE « CDEAB.

3. Given a triangle A ABC which is isosceles but not
equilateral. That is, AB = AC, but AB » BC. How
many congruences are there, between A ABC and itself? Fiaure 6.5

ae -~
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6.2 THE BASIC CONGRUENCE THEOREMS

An isosceles triangle is a triangle two of whose sides are congruent, A triangle
which is not isosceles is called scalene. If all three sides are congruent, then the
triangle is equilateral. The first and easiest consequence of the SAS postulate
follows.

Theorem 1. If two sides of a triangle are congruent, then the angles opposite
them are congruent.

FiatRE 6.6

That is, the base angles of an isosceles triangle are congruent. Here, by the base
angles we mean, of course, the angles opposite the two congruent sides.

The marking of the figure gives a complete picture of the theorem. The marks
on the sides AB and AC indicate that these sides are congruent by hypothesis.
The marks for £ZB and £C, with exclamation points, indicate the conclusion
that these angles arc congruent. Throughout this book, exclamation points will
be used in figures in this way, to indicate conclusions.

ResTaTEMENT. Given AABC. If AB = AC, then LB =~ /(.

Proof. Consider the correspondence
ABC  ACB.

Under this correspondence, AB «» AC, AC < AB, and ZA < £ZA. Thus two
sides and the included angle are congruent to the parts that correspond to them.
Therefore, by SAS, the correspondence is a congruence: AABC = AACB. By
definition of a congrucnce, this means that £B = Z(, which was to be proved.

This is the famous pons asinorum thecorem. The phrase pons asinorum means
asses’ bridge, and was suggested by the figure which accompanied Euclid’s proof.

Figure 6.7
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Euclid’s proof was rather long; it takes over a page in print. The proof given in
this book is due, essentially, to Pappus, although Pappus naturally did not use the
sort of formulation for the congruence postulates that we have been using here.
Not many years ago—or 80 the story goes—an electronic computing machine was
programmed to look for proofs of elementary geometric theorems. When the
pons asinorum theorem was fed into the machine, it promptly printed Pappus’s
proof on the tape. This is said to have been a surprise to the people who had coded
the problem; Pappus’ proof was new to them. What had happened, of course,
was that the SAS postulate had been coded in some such form as follows.

“If (1) A, B, and C are noncollinear, (2) D, E, and F are noncollinear; (3)
AB = DE; (4) BC = EF; and (5) LABC = LDEF, then (6) AC = DF;
(7) LACB = L DFE; and (8) £LBAC =~ LEDF.”

Ficure 6.8

This is the sort of austere language in which people commonly talk to vacuum tubes;
you can’t indoctrinate them with vague preconceptions and prejudices; and so,
if you want the vacuum tubes to get the idea that the triangles (Fig. 6.8) in the
SAS postulate are supposed to be different, you have to say so explicitly. It didn’t
occur to anybody to do this, and so the machine proceeded, in its simple-minded
way, to produce the simplest and most elegant proof.

Corollary 1-1. Every equilateral triangle is equiangular. That is, in an equi-
lateral triangle, all three angles are congruent. Proof?

Theorem 2. The ASA Theorem. Given a correspondence between two triangles
(or between a triangle and itself). If two angles and the included side of the
first triangle are congruent to the corresponding parts of the second, then the
correspondence is a congruence.

ResTaTEMENT. Given AABC, ADEF, and a correspondence ABC « DEF.

If LA 4D, £C = £LF, and AC = DF, then AABC = ADEF.

A C
Ficure 6.9
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Proof. (1) By Theorem C-2 of Section 3.6 there is a point B’ on the ray EE,
such that DB’ = 4B.

(2) By SAS, we have AABC =2 ADB'F.

(3) By definition of a congruence, we have £ DFB’ = L ACB.

(4) By Theorem 2, Section 5.1, it follows that FB' = FE.

(5) Therefore B’ = E, because the lines DE and FE intersect in only one point.

(8) Therefore, by (3), we have AABC = ADEF, which was to be proved.

From this we get a corollary which is a converse of Theorem 1. .

Corollary 2-1. If two angles of a triangle are congruent, then the sides opposite
them are congruent.

The following corollary is a converse of Corollary 1-1.

Corollary 2-2. Every equiangular triangle is equilateral.

Proof?
The third of the basic congruence theorems is somewhat harder to prove.

Theorem 3. The SSS Theorem. Given a correspondence between two triangles
(or between a triangle and itself). 1f all three pairs of corresponding sides are
congruent, then the correspondence is a congruence.

Restatement. Given AABC, ADEF, and a correspondence ABC < DEF.
If AB g DE, BC = EF, and AC = DF, then the correspondence is a con-
gruence.

B E
i 1y
|
|
|
1
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Fiaure 6.10

Proof. Before proceeding with details, let us explain what the idea of the proof
is going to be. First we are going to copy ADEF on the under side of AABC;
that is, we are going to set up A AB'C, with B’ on the opposite side of AC from B,
so that AAB'C = ADEF. Second, we shall show that AABC = AABC. It
will follow that AABC = ADEF, which was to be proved. In full, the proof is
as follows.
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(1) By the angle-construction theorem (Theorem 2, Section 5.1) there is a,rsy
AQ, with Q on the opposite side of AC from B, such that

£LCAQ == LEDF.

(2) By the segment-construction theorem (Theorem C-2 of Section 3.6), there
is a point B’ of AQ such that

AB =~ DE.
(3) Since we already know that AC = DF, it follows by SAS that
AAB'C = ADEF.

(Thus we have completed the first part of our program.)
,13(4) BB interscets AC in a point G. (Because B and B’ arc on opposite sides of
)

The proof now splits up into a number of cases. (i) A-G-C, as in the figure
(Fig. 6.10). (ii) A = G. (iii) G-A-C. Strictly speaking, there are two more cases
G = C and A-C-G, but these are essentially the same as (ii) and (iii).

We proceed with the proof for Case (i).

(5) LABG = L AB'G (by the isosceles triangle theorem).

(6) LOBG = LCB’'G (for the same reason).

(7) G is in the interior of ZABC. [Since A-G-C in Case (i), this follows from
Theorem 4, Section 4.2.]

(8) @G is in the interior of ZAB'C. (For the same reason.)

(9) By (5), (6), (7), and (8), together with Theorem 3, Section 5.1, it follows that

LABC = LAB'C.
(10) By SAS, it follows that

AABC = AABC.
(11) Therefore, by (10) and (3),

AABC = ADEF.

(Proof?)
For Cases (ii) and (iii), the figures look like this:
B B
|
|
i
{ .
4 Sec G- ¢
- | / -~
//’ | /I ///
/,// = // ‘///
i |
B* B,I’

Figure 6.11
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We leave these cases as problems.
Roughly speaking, a bisector of an angle is a ray in the interior which splits the
angle into two congruent parts like this.

Figure 6.12

That is, AD bisects LBAC if (1) D is in the interior of ZBAC, and (2)
£LBAD == £LDAC.

Theorem 4. Every angle has exactly one bisector.

Proof. Given ZBAC. We lose no generality by supposing that 4B == AC.
We can always pick two points on different sides of the angle, equidistant from the
vertex.

B

&

Fiaure 6.13

Let D be the midpoint of BC. Then D is in the interior of ZBAC. And by the
SSS theorem, AADC =2 AADB. Therefore ZBAD =2 ZCAD; and thus AD
bisects LBAC.

Thus we have shown that every angle has at least one bisector. This is half of
our theorem. We need next to show that ZBAC has at most one bisector. To
do this, it will be sufficient to show that every bisector of ZBAC passes through
the midpoint D of BC.

Suppose that AF bisects ZBAC. Then automatically E is in the interior of
ZLBAC. By Theorem 4, Section 4.3, it follows that AZ intersects BC in some
point D', between B and C. By the SAS postulate we have AAD'B 2 AAD'C,
Therefore D'B = D'C, and D' is the midpoint of BC. Since BC has only one mid-
point, it follows that ZBAC has only one bisector, which was to be proved.

FiGuRre 6.14
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ProBLEM SET 6.2

1. Complete the proof of the SSS theorem. 4

*2, Let the “special SAS postulate” be the statement that you get if you add to the SAS
postulate the condition that the triangles must be different. Show that the general form
of the SAS postulate can be proved as a theorem, on the basis of the special SAS postulate.

6.3 SOME REMARKS ON TERMINOLOGY

The language in which we have been discussing congruence in this book is
rather different from the usual language ; it may be worthwhile to discuss the reasons
for the changes.

We have already explained the reason for speaking about congruences between
triangles, in the sense of correspondences having certain properties, rather than
speaking of the relation of congruence in the abstract. The reason, briefly, is that
the former is what we really mean and what we really need.

Our use of the word congruent in connection with segments and angles is a
slightly different matter. Suppose that we have a pair of segments, a pair of angles,
and a pair of circles which “match up” in the sense suggested by the following

EEAPAS,

FI1GURE 6.15

The situation can then be described in two ways. (1) We can say (following
widespread usage) that the segments are equal, and similarly for the angles and the
circles. (2) We can say (following the usage of the present book) that in each of
the three cases, the figures are congruent.

The same people who call two segments equal if they have the same length also
say that two triangles are equal if they have the same area.

There are two difficulties with the loose use of the word equals to describe equality
of length, angular measure, and area. The first difficulty is that if the word equals
is used in this way, there is no word left in the language with which we can say
that A is—without ifs, buts, qualification, or fudging—the same as B. This latter
relation is called the logical identity. It may seen. a peculiar idea, at first, because
if two things are exactly the same, there can’t be two of them. But as soon as mathe-
matics had begun to make heavy use of symbolism, the logical identity became
important. I'or example, each of the expressions

1 2Vv3+1
23 —1' 11
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describes a number. The descriptions are obviously different, but it is rather easy
to check that both of the above expressions describe the same number; and this
is what we mean when we write

1 23 +1
23 -1~ 1

The relation denoted by the symbol =, in the above equation, is the logical identity.

The concept of the logical identity A = B isso important, and comes up so often,
that it is entitled to have a word to itself. For this good reason, in nearly all
modern mathematics, the word equals and the symbol = are used in only one sense:
they mean 18 exactly the same as.

The second difficulty with the loose use of the word equals is that it puts us in
the position of using two words to describe the same idea, when one word would
easily do. Congruence is the basic equivalence relation in geometry. We may
use different technical definitions for it, in connection with different types of
figure, but the underlying idea is always the same: two figures are congruent if
one can be placed on the other by a rigid motion. The basic equivalence relation
of geometry is entitled to have a word all to itself; and the word congruence appears
to be elected.

It was, no doubt, for these reasons that Hilbert adopted, in his Foundations of
Geometry, the terminology that we are using in the present book. The problem is
not logical but expository. A good terminology matches up the words with the
ideas in the simplest possible way, so that the basic words are in one-to-one cor-
respondence with the basic ideas.

It should be borne in mind that the strict mathematical interpretation of the
word equals, in the sense of “is exactly the same as,” is a technical usage. In
ordinary literary English, the word is used even more loosely than in Euclid. For
example, when Thomas Jefferson wrote, in the Declaration of Independence, that
all men are created equal, he obviously did not mean that there is only one man in
the world, or that all men are congruent replicas of one another. He meant merely
that all men have a certain property in common, namely, the property of being
endowed by their Creator with certain unalienable rights.

In fact, only mathematics and logic need a word and a symbol for the idea of
“is the same as,” and the need did not appear even in mathematics and logic until
the heavy use of symbolism developed. This development came along after Euclid;
and sheer force of habit preserved Euclid’s terminology long past the time when
it had become awkward in the context of modern mathematics.

6.4 THE INDEPENDENCE OF THE SAS POSTULATE

We have seen that the ASA theorem and the S8S theorem can be proved on the
basis of the SAS postulate. The question may arise whether the SAS postulate
can be turned into a theorem; that is, proved on the basis of the postulates that
precede it.
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Certain general considerations suggest the contrary. If you reconsider the ruler
postulate, you will see that it deals with lines one at a time. It does not seem to
claim that there is any connection between distances measured along one line and
distances measured along another. The first postulate that describes such a connec-
tion is SAS; SAS tells us, among other things, that if AB =~ DE, ZA =~ £D
and AC = DF, then BC = EF.

D F
Figure 6.16

Here, except in very special cases, the distances BC and EF are measured along
different lines.

We observe, moreover, that the postulates for the angular-measure function m
do not mention distance at all.

These considerations strongly suggest that SAS gives genuinely new information.

Given a set of postulates, say, P;, P, ..., Py, for a mathematical structure.
We say that P, is tndependent of the other postulates Py, P, ..., P,_, if there is
a mathematical system which satisfies Py, P2, ..., P’,_; but does not satisfy
P,. For example, the postulate which says that every a » 0 has a reciprocal
a~! is independent of the other field postulates. The casiest way to see this is to
observe that the integers satisfy all of the field postulates, with the sole exception
of this one.

We shall give an example of the same sort to show that SAS is independent of
the preceding postulates of metric geometry.

Consider a structure [S, ®, £, d, m] satisfying all of the postulates of metric
geometry. We may think of this system as coordinate three-dimensional space,
with the usual definitions of distance and angular measure. We shall define a new
distance function d’, by making a slight change in the “normal” distance function
d. We do this in the following way. We choose a particular line L at random. We
agree that d’'(P, @) is to be the old d(P, @), except when P and Q both lie on L,
in which case d’(P, Q) = 2d(P, Q). It is plain that d’ satisfies the ruler postulate

) S 4

- H—
?

P Q R

FiGcure 6.17
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on all lines except perhaps for L. And on L, the ruler postulate also holds. Given
a coordinate system f which works for the old d, we merely set f'(P) = 2f(P), and
the new coordinate system now works for d’.

The SAS postulate now fails for the old m and the new d’ (Fig. 6.17). We ought
to have APQR = AP'Q'R’, because d'(R, P) = d'(R', P’), LR = £ZR' and
d'(R,Q) = d'(R',Q"). But the congruence between the triangles does not hold,
because d'(P, Q) = 2d'(¥, Q).

It is possible also to show the independence of SAS by leaving d unchanged and
defining a peculiar angular measure m' for angles with a certain point P as vertex.
But examples of the latter sort are considerably harder to describe and to check.

6.5 EXISTENCE OF PERPENDICULARS

You may have noted that in the proof of the SSS theorem in Case (i), We had
GB L AC. The reason is as follows. By SAS, we have AAGB = AN AGB'. There-
fore LZAGB =~ LAGB’'. Since these two angles form a linear pair, they are sup-
plementary. Thus ZAGB is congruent to a supplement of itself, and hence is a
right angle. Therefore our proof of the SSS theorem included, implicitly, a proof
that “a perpendicular can always be drawn, to a given line, through a given ex-
ternal point.” We make this explicit in the following theorem.

Theorem 1. Given a line aid a point not on the line, then there is a line which
passes through the given point and is perpendicular to the given line.

Proof. Let L be the line, and let B be a point not on L. Let A and C be any two
points of L. By the angle-construction theorem, there is a point @ such that
(1) B and @ are on opposite sides of L, and (2) LBAC = £LQAC.

A
e d1 A&
)

a

B
Q

FiGure 6.18

By the segment-construction theorem, there is a point B’ of A_é such that AB =
AB’. Now there are two possibilities:

(1) G # A. In this case it follows by SAS that AAGB = AAGB’. Therefore
L AGB =~ L AGB'. Since these two angles form a linear pair, they are supple-
mentary. Therefore each of them is a right angle. Therefore BG L E, as desired.

(2) G = A. In this case LBGC == £BAC and £LB'GC = £QAC. Therefore
ZBGC = £B'GC; and it follows, as in Case (1), that BG 1 AC.
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Notice that Case (2) is “unlikely,” because 4 and C were chosen at random on
the line. But it is possible that we happened to pick the foot of the perpendicular.

Notice also that if you use the full force of the angle-construction postulate
(M-3), then you can prove easily that given a line L in a plane E, and a point 4
which is on the line, there is always a line in E which contains A and is perpendicular
to E. So far, however, we have been making it & point not to use the “protractor
postulates,” but to use instead the first few theorems based on them; and so we
do not yet state the above theorem officially.
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GEOMETRIC INEQUALITIES

Up to now, in our study of the geometry of the triangle, we have been dealing
only with congruence; our theorems have stated that under certain conditions we
can infer that two segments (or two angles) are congruent. We shall now investi-
gate conditions under which we can say that one segment is larger than another,
or that one angle is larger than another.

Initially, we defined inequalities between angles by means of measure. That
is, LABC < LDEF if m£ZABC < mZDEF. 1t is clear, of course, that the
same idea can be described simply in terms of congruence, without any regard to
the source of our concept of congruence. We can say that ZABC < ZDEF if
there is a point @, in the interior of £ DEF such that ZABC =~ ZGEF.

A D
G
B C E F

FiGure 7.1

Similarly, for segments, we may say that AB is shorter than €D (AB < CD)
if the distance AB is less than the distance CD. Or we may forget where the idea
of congruence came from, and say that if there is a point E, between C and D,
such that AB = CE, then AB < CD.

: -+
A B C
Fioure 7.2

We now proceed to investigate the geometric inequalities associated with a fixed
triangle.
In the figure below, the angle BCD is called an exterior angle of AABC. More
precisely, if A-C-D, then £ZBCD is an exterior angle of AABC.
B

{ c D

Fieure 7.3
95
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Every triangle has six exterior angles, as indicated in the following figure, and
these six angles form three vertical pairs.

FiGuRre 7.4

It follows, of course, that the two cxterior angles at a given vertex are always con-
gruent. The angles Z A and £B of AABC are called the remote interior angles
of the exterior angles with vertex at C; similarly, ZA and ZC are the remote
interior angles of the exterior angles with vertex at B; and so also for the third case.

Theorem 1. Any exterior angle of a triangle is greater than each of its remote
interior angles.

REesTATEMENT. Given AABC. If A-C-D, then LBCD > AB.

First we observe that the restatement really does convey the entire content of

the theorem.
B

ooy

N

Figure 7.5

If we prove that the restatement holds true, then we will also know that the
other exterior angle at C is greater than £ B, because the two exterior angles at C
are congruent. It will ulso follow, merely by a change of notation, that ZACD' >
£ A; and this means that the exterior angles at C are greater than each of their
remote interior angles.

We now proceed to the proof of the restatement.

Let E be the midpoint of BC.

B F

[}
Ficure 7.6
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By Theorem C-2, there is a point F such that A-E-F and E4 = EF.

Consider AAEB and AFEC. Now EB == EC, by hypothesis for E; EA = EF,
by hypothesis for F; and ZAEB = £FEC, because vertical angles are congruent.
By 8AS it follows that the correspondence

AEB < FEC

is & congruence; that is, AAEB = AFEC. Therefore, £B == /BCF.
By Theorem 5, Section 4.2, we know that F is in the interior of ZBCD.’ There-
fore, ZBCF < ZBCD; and therefore £B < £BCD, which was to be proved.

Corollary 1-1. The perpendicular to a given line, through a given external point,
is uniaue.

RESTATEMENT. Let L be a line, and let P be a point not on L. Then there is
only one line throuch P, perpendicular to L.

Proof. Suppose that there are two perpendiculars to L through P, intersecting
L in points Q and R. We shall show that this is impossible.

P

Figure 7.7

Let S be a point of L such that Q-R-S. Then ZFRS is an exterior angle of
APQR; and £PQR is one of its remote interior angles. This is impossible, because
both ZPQR and £ZPRS are right angles. (See Theorem 6 of Section 5.1.)

Theorem 2. If two sides of a triangle are not congruent, then the angles op-
posite them are not congruent, and the greater angle is opposite the longer side.

ResTaTEMENT. Given AABC. If AB > AC, then £C > 4B.

Proof. Let D be a point of AC, such that ZD = AB. Then A-C-D, as the
figure indicates, because AD = AB > AC. Since the base angles of an isosceles

FiGure 7.8
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triangle are congruent, we have
ZLABD == £D. 6))

Since A-C-D, it follows by Theorem 4, Section 4.2, that C is in the interior of ZABD.

Therefore
LABC < LABD; @)

therefore
ZABC < £D. 3)

Since £ ACB is an exterior angle of ABCD, we have

4D < LACB. @
By (3) and (4),
ZABC < LACB.

Thus, in AABC we have
4B < LC,

which was to be proved.

Theorem 3. If two angles of a triangle are not congruent, then the sides opposite
them are not congruent, and the larger side is opposite the larger angle.

ResratemenT. Given AABC. If LB < ZC, then AC < AB.

Proof. (1) If AC = AB, then by the isosceles triangle theorem it would follow
that £ZB = Z(; and this is false.

(2) If AC > AB, then by Theorem 2 it would follow that ZB > £C; and
this is false.

The only remaining possibility is AC < AB, which was to be proved.

Theorem 4. The shortest segment joining u point to a line is the perpendicular
segment.

ResTATEMENT. Let L be a line, let ” be a point not on L, let @ be the foot of the

perpendicular to L through P, and let R be any other point of L. Then PQ <
PR.

P
) kL .
Ficure 7.9

Proof. Let S be a point of L such that S-Q-B. Then ZPQS is an exterior angle
of APQR. Therefore £PQS > £PRQ. Since °Q L L, we know that ZPQS =
£PQR; therefore ZPQR > £PRQ. By the preceding theorem, it follows that
PR > PPQ, which was to be proved.
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Theorem 5. In any triangle, the sum of the lengths of any two sides is greater
than the length of the third side.

ResTATEMENT. If A, B, and C are noncollinear, then AB + BC > AC.
Proof. Let D be a point of CB such that C-B-D and BD = BA. Then

CD = AB + BC. ¢))
Now B is in the interior of ZDAC, by Theorem 4 in Section 4.2; therefore
ZDAB < £DAC. 2)

Since ABAD is isosceles, with BA = BD, it follows that £D ABAD;
therefore
4D < LDAC. » 3

By applying Theorem 3 to AADC, we get CD > AC; and this may be expressed
in terms of distance, as follows:

CD > AC. 0)) AR B
By (1) and (4), we have
2o C
AB + BC > AC,
Fiaure 7.10

which was to be proved.

Note that this theorem was stated and proved in terms of distance, rather than
in terms of the relation of congruence between segments. Here we have departed
from the style of the preceding few chapters. The reasons for this departure will
be explained in the following section. (The questions involved here are more com-
plicated than you might think.)

Theorem 6. If two sides of one triangle are congruent, respectively, to two sides
of a second triangle, and the included angle of the first triangle is larger than the
included angle of the second triangle, then the opposite side of the first tri-
angle is larger than the opposite side of the second triangle.

RestaTEMENT. Given AABC and ADEF. If AB = DE, AC = DF, and
ZA > £D,then BC > EF.
B
E

A C D F
Figure 7.11 .
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Proof. (1) We assert that there is a point K, in the interior of ZBAC, such that

AAKC = ADEF.

B
I(’
<’

K

Fioure 7.12

To show this, we first take a point Q, on the same side of AC as B, such that
ZQAC == LEDF. (This is by the angle-construction theorem.) Since £A4 >
4D, Q is in the interior of ZBAC; in fact, every point of Z@ — A isin the interior
of ZBAC. Let K be the point of AQ such that AK = DE. By SAS, we have
AAKC = ADEF, which is what we wanted.

(2) Next, let AR be the bisector of ZBAK.

Freure 7.13

(See Theorem 4 of Section 6.2, which asserts that every angle has exactly one
bisector.) By the cross-bar theorem, AK intersects BC in a point L; and by
another application of the cross-bar theorem, A R intersects BL in a point M.

(3) By SAS, we have
AABM =~ AAKM.

Therefore MB = MK. By Theorem 5, we know that

CK < CM + MK.

Therefore
CK < CM + MB,

because MB = MK. Now CM + MB = CB, berause C-M-B. And CK = EF,
because AAKC =2 ADEF. Therefore, we finally get

EF < CB,
which was what we wanted.
The above proof is correct and complete as it stands, but it works for reasons
that are a little trickier than one might suspect. The last of the figures given does



GEOMETRIC INEQUALITIES 101

B K
M B
M
K
A C A C
Ficure 7.14

not indicate all of the possibilities. The figures might look like either of those
above. The proof that we have given applies word for word, to the figure on the
"left, and for the figure on the right we merely need to give a different reason for
the inequality CK < CM + MK. ’
TFinally, we observe that the SAA theorem can be proved merely on the basis of
the exterior angle theorem, without the use of the parallel postulate or theorems
based on it.

Theorem 7. The SAA Theorem. Given a correspondence between two tri-
angles. If two angles and a side of the first triangle are congruent to the cor-
responding parts of the second, then the correspondence is a congruence.

RestaTEMENT. Given AABC, ADEF, and ABC « DEF. 1f AB =~ DE,
LA /D, and £LC = LF, then AABC = ADEF.

B

FIGURE 7.15

(Note that the case where the given side is included between the two angles
has already been taken care of _115: the ASA theorem.)
Proof. Let F’ be a point of DF, such that DF" = AC. By SAS we have

AABC = ADEF'.

Therefore £F' = £C =2 £F. But we must have (1) D-F-F', (2) D-F'-F or
(3) F = F'. If D-F-F', then LF is an exterior angle of AEFF’, so that LF >
ZF', which is false. If D-F'-F, then ZF' is an exterior angle of AEFF', and
ZF' > LF, which is also false. Therefore F' = F, and AABC = ADEF,
which was to be proved.



CHAPTER

THE EUCLIDEAN PROGRAM:
CONGRUENCE WITHOUT DISTANCE

8.1 THE SYNTHETIC POSTULATES

In our treatment of geometry 50 far in this book, the real numbers have played
a central role. You will recall that the basic structure is

[S9 £l 0' dl m]'

where d and m are real-valued functions, defined for point pairs and angles, re-
spectively. The fundamental ideas of congruence for segments, betweenness for
points on a line, and congruence for angles were defined in terms of distance and
angular measure in the following way.

(1) A-B-C means (by definition) that A, B, and C are different points of the

same line, and * -
AB + BC = AC

(where PQ is the distance d(P, Q) between P and Q).
(2) AB is defined as the union of 4, B, and all points between A and B.
(3) AB = (D means (by definition) that AB = CD.
(4) LA = £B means (by definition) that m£A = mZB.

Under this scheme, nearly all the basic properties of betweenness and con-
gruence for segments and angles could be proved as theorems; the only exception
was the SAS postulate.

This scheme of presentation for geometry is not the classical one. It was proposed
in the early 1930’s by G. D. Birkhoff, and has only recently become popular. The
classical scheme, as one finds it in Euclid or in David Hilbert’s Foundations of
Geometry, is quite different; the basic difference is that in Euclid the real numbers
do not appear at all at the beginning, and appear only in a disguised form even
at the end (see Chapter 20). Euclid’s treatment of geometry is called the synthetic
treatment. The Birkhoff scheme is called metric geomeétry, because it uses measure-
ment,

We now give a sketch of how the Euclid-Hilbert treatment works. At the
beginning, of course, we have the system

(8, £, @]
102
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(If we weren’t going to talk about points, lines, and planes, we could hardly be
said to be talking about geometry.) The treatment of incidence theorems is exactly
like the one given in Chapter 2. Immediately thereafter, however, a basic difference
appears. Instead of adding to our structure the real-valued functions d and m,
we add the following things.

(1) An undefined relation of betweenness, for triplets of points. This.is regarded
as given, in the same way that d and m were regarded as given, subject to certain
postulates to be stated soon.

Segments are defined, as before, in terms of betweenness. We then add to our
structure the following:

(2) An undefined relation of congruence for segments, and

(3) An undefined relation, also called congruence, for angles.

It does no harm to denote our two undefined congruence relations by the same
symbol, =<. If we represent our betweenness relation as ®, then the structure
becomes

(S, &, @ ® =

It is now out of the question to prove theorems about betweenness and con-
gruence until we have enough postulates to describe their basic properties. These
are in three groups, as follows.

Betweenness Postulates
B-1. If 4-B-C, then C-B-4.
B-2. Of any three points of a line, exactly one is between the other two.
B-3. Any four points of a line can be named in an order 4, B, C, D, in such a
way that A-B-C-D.
B-4. If A and B are any two points, then (1) there is a point C such that A-B-C,
and (2) there is a point D such that A-D-B.
B-5. If A-B-C, then A, B, and C are three different points of the same line.

These statements are, of course, the same as the theorems that were proved
on the basis of the ruler postulate in Section 3.4, where betweenness was defined
in terms of distahce.

Congruence Postulates for Segments
C-1. For segments, congruence is an equivalence relation.
C-2. The Segment-Construction Postulate. Given a segment AB and a ray CD.
There is exactly one point E of CD such that AB =< CE. ,
C-3. The Segment-Addition Postulate. 1f (1) A-B-C, (2) A-B'-C’, (3) AB =
A'F, and (4) BC = B'C’, then (5) AC =~ A'C".
C-4. If (1) A-B-C, (2) A’-B'-C’, (3) AB == A'P’, and (4) AC == A'C’, then *
(5) BC = BC". )
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C-5. Every segment has exactly one midpoint; that is, for every AB there is
exactly one point C such that 4-C-B and AC = CB. !

These statements are, of course, the theorems that were proved in Section 3.6, l
where congruence for segments was defined in terms of distance. |
The separation postulates and the treatment of sides of a line, interiors of angles,

and so on, are exactly as in Chapter 4.

Congruence Postulates for Angles

C-6. For angles, congruence is an equivalence relation.

C-7. Let ABC be an angle, let BC bea ray, and let H be a half plane whose

edge contains B'C’. Then there is exactly one ray W, with A’ in H, such

that LABC == L A'B'C’.

C-8. If (1) D is in the interior of ZBAC, (2) D’ is in the interior of ZB’A'C’,

(3) £LBAD = LB'A’D’, and (4) £LDAC = £LD'A'C’, then (5) £LBAC =~

ZB'A'C.

C-9. If (1) D is in the interior of ZBAC, (2) D’ is in the interior of ZB'A’C’,

(3) £LBAD = £B'A’'D)’, and (4) LBAC = LB’A'C’, then (5) £LDAC =

4D'A'C,

These statements are, of course, the statements that were proved in Section 5.1,
where congruence for angles was defined in terms of the angular-measure func-
tion m.

Finally, we state the SAS postulate exactly as before.

Let us now consider the question of how much of our work in the preceding
sections needs to be done over again if we decide, for some reason, that it would
be good to get along without using the real-valued functions d and m. The answer
is that practically none of it needs to be done over again, because until we got to the
preceding chapter, on geometric inequalities, we almost never cited the definitions of
betweenness and congruence except at the very beginning in each case, when we were
proving the basic theorems that we now propose to take as postulates. The next time
you look at these early chapters, you might try checking this statement, a line at
a time. The first place where you will get into trouble is at the end of Chapter 5,
where we used angular measure in the proof of the vertical angle theorem. Theorem
1 below can be used to replace angular measure in this proof. The second difficulty
is at the end of Chapter 6, where we pointed out that we were postponing half of
the theorem that one would naturally expect on the existence of perpendiculars
to a line L, through a point P, in a given plane. We showed (Theorem 1, Section
6.5) that when P is not on L, such a perpendieular always exists. We still need
to prove, on the basis of the postulates in this chapter, that when P lies on L,
the same conclusion follows; and we still need to prove, on the same postulational
basis, that all right angles are congruent.

In the following section, we complete the treatment of congruence by proving

*these two theorems. In the next section, we show how the theory of geometric
inequalities can be handled on the basis of purely synthetic postulates.
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8.2 RIGHT ANGLES, SYNTHETICALLY CONSIDERED

The first step in handling right angles is to prove the following theorem, which
is closely related to C-8.

Theorem 1. If (1) £LBAC and ZCAD form a linear pair, (2) £B'A'C’ and
ZC'A’D’ form a linear pair, and (3) LCAD = £LC’A’D’, then (4) LBAC =
LB'A'C.

Figure 8.1

Proof. Evidently there is no harm in assuming that
AB= A'B’, AC =~ AC', 4D = A'D’,

since all six of our rays are equally well described if the points B’, C’, D’ are chosen
in this way. By SAS, we have AADC =2 AA'D'C'. Therefore LADC ==
LA'D'C’; therefore £BDC =2 LB'D’C’. By SAS, this means that ABDC =
AB'D'C’. Therefore BC = B'C’. By the SSS theorem then, ABAC = AB'A'C".
Therefore £ZBAC = £B’A’C’, which was to be proved.

Thoorol;n 2. Any angle congruent to a right angle is also a right angle.

ResTATEMENT. Suppose that (1) £LBAC and £CA D form a linear pair, and
(2) LBAC = LCAD. Suppose that (3) £LB’A'C’ and £C’'A’D’ form a linear
pair, and (4) £LB'A’C’ =2 LBAC. Then (5) £LB'A'C' = LC'A'D'.

ﬁg
B A D B A D’
Figure 8.2

You should analyze this restatement carefully to see that it really is a restate-
ment of Theorem 2. Once we have formulated the theorem in this way, the proof
is trivial. By the preceding theorem, £C'A’D’' =% LCAD. By (2), £CAD =
£ BAC. Therefore

ZC'A'D = LBAC == LB'A'C', and ZC'A'D' = LB'A'C,

which was to be proved.
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Theorem 3. All right angles are congruent.

ResraTeMeENT. Suppose that ZBAC and ZCAD form a linear pair and are '
congruent. Suppose that £B'A'C" and £C'A’D’ form a linear pair and are
congruent. Then ZBAC = £B'A’C".

B D B A D’
Ficure 8.3

Proof. First we observe that the points B’, and D’ can be chosen so that

A'B' = A'D,
as indicated in the figure. It follows, by SAS, that AA'B'C’' = AA'D'C’, so that
we have also LB = 2D

Let A'E be a ray, with E on the same side of A'D as C’, such that
LB'A’E = £LBAC.

We need to prove that A'E = A'C’y it will then follow that ZBAC = £B'A'C".

If AE = I'c"’, then E lies in the interior of one of the angles, -ZB’'A'C’,
ZC'A’D'. Suppose that E is in the interior of £ZB’A’C’, as shown in Fig. 8.3.
Then A'E intersects B'C’ in a point F. Let G be a point between C’ and D, such
that D’G = B’F. By SAS we have

ABA'F = AD'A'G.
Therefore
LB'A'F = LD'A'G.

But by Theorem 1, we know that £ZD'A’E = ZCAD. Therefore £LD'A'E =%
ZLCAD == LBAC = LB'A'E = £LD'A'G.

We now have the following situation:

(1) G and E are both on that side of A’D’ which contains C".

(2) LD'A'E = LD'A'G.

@3) A'E and 4'G are different, because E and G are on opposite sides of AT
(the sides that contain B’ end D', respectively).

This is impossible, by C-7, because that postulate says that conditions (1) and
(2) determine a unique ray.

This proof is taken from Hilbert’s Foundations, with many details added. The
complications that arise in the proof are typical of what happens when one under-
takes to reduce postulates to a minimum. (Euclid postulated that all right angles
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are congruent, and Hilbert showed that the postulate was unnecessary.) Hilbert’s
postulates, in Foundations, were considerably weaker than those given in Section
8.1. In this book, our purpose is not to give the weakest postulates that can be
made to work, but merely to give a valid and workable scheme.

Theorem 4. Given a plane E, a line L, and a point P of E. There is exactly one
line in E which contains P’ and is perpendicular to L.

Proof. We already know that this is true for the case in which P is hot on L.
We also know, by Theorem 1, Section 6.5, that some angles are right angles. Let
Q be any point of L other than P. By C-7, there is a point R on one side of L in
E, such that ZQPR is congruent to a right angle. By Theorem 2, this means that
ZQPR 1is a right angle, therefore PR L L. If there were two such rays I-’-é,
PR’, then we would have ZQPR =~ ZQPR’, because all right angles are con-
gruent. This is impossible, by C-7.

P 0
Ficure 8.4

Note that in a metric treatment we see immediately that £ A4 is a right angle if
and only if m£A = 90. Thus, in a metric treatment all the theorems in this
section are almost too trivial to be worthy of explicit statement.

8.3 GEOMETRIC INEQUALITIES, SYNTHETICALLY CONSIDERED

At the start we have to explain, without mentioning distances, what it means to
say that one segment is shorter than another or that one angle is smaller than
another. The appropriate definitions have already been suggested in Chapter 7.

DerintTioN. AB < CD if there is a point B’, between C and D, such that
AB = (P

I I
T y

A B C B D
Figure 8.5

The basic properties of the relation < are

(I) For every pair of segments AB, (D, exactly one of the following conditions
holds: — — e J
AB <CD, AB=CD, CD < AB.
(I1) If AB < CD and CD < EF, then AB < EF.
(III) If AB = A'B’,CD = D’ and 4B < CD, then 4B’ < ("D’
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Note that (I) and (II) are very much like Conditions O-1 and O-2 for an order
relation, with = replaced by =, throughout.

DeriniTION. Given £ ABC and £ DEF. If there is a point @ in the interior of
ZDEF, such that ZABC =~ £ GEF, then LABC < /LDEF.

D

B c E F
FIGURE 8.6

The basic properties of this relation are precisely analogous to (I), (II), and
(III) above.
(IV) For every pair of angles £ A, £ B, exactly one of the following conditions

holds:
LA < LB, LA = /B, 4B < LA.

(V)If LA < LBand £ZB < £C, then LA < ZC.
(VDIf LA~ LA’ LB /B and LA < ZB, then LA’ < £B'.

All these statements look plausible enough, but the proofs are not trivial. In
the following section, we shall give the proofs of (I), (II), and (III), which will
be sufficient for our present purposes. In the meantime, let us consider how the
theory of geometric inequalities works, from the purely synthetic viewpoint.

Adopting the purely synthetic interpretation for inequalities between angles and
segments, we revisit Chapter 7, and find that everything goes through in essentially
the same way as before, until we get to Theorem 5, Section 7.1, which asserts that
in any triangle AABC, we have AB + BC > AC. Notice that our troubles do
not even postpone their arrival until the start of the proof. Our first problem is to
state the theorem without talking about distances. If we feel sufficiently desperate,
we might come up with the following rather clumsy and artificial formulation.

Theorem 1. Given AABC, there is a point A’ such that A’B =~ AB, A-B-C
and A'C > AC.

AI

Ficure 8.7
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This really does convey the idea, because it says, intuitively speaking, that if
AB and BC are laid end to end, they form a segment which is longer than AC
(Fig. 8.7).

Note that the difficulty in handling this theorem synthetically is that it deals
with the idea of addition. In metric geometry, the situation is quite simple, be-
cause the addition is performed with numbers, and addition of numbers is common-
place. In synthetic geometry, we need to do a lot more talking, if we want to make
sense, because the “sum” of two segments can be regarded as a segment only when
the segments are end to end, like this:

A B Z‘
Ficure 8.8

Here it is reasonable to call AC the “sum” of AB and BC. But if the segments
look like this: ~

N

A

Fiaure 8.9

it is not plain what segment their sum ought to be.

The easiest way around this is as follows. Given AB, let {AB] be the set of all
segments that are congruent to AB. Obviously, if AB = CD, then [AB| = [CD).
The sets [AB)] are called congruence classes. What we have just pointed out is that
a congruence class is equally well described by any of its members.

Suppose now that any two segments AB and CD are given. Then there are
always points X, Y, Z such that

X-YZ, XY=~A4B, YZ=CD.

The following observations are easy to check on the basis of the congruence
postulates.

(1) If X', Y’, Z' are any other three points satisfying the same conditions, then
it follows by the segment-addition postulate that X2’ =~ XZ. That is, the con-
gruence class [XZ) is independent of the choice of X, Y and Z.

(2) Suppose that AB = A'B’ and (D = C"D’. Let X, Y, Z be chosen for AB
and CD, as above; and let X', Y’, Z’ be chosen for A’B’ and ('D’. Then XZ =
X7Z7. That t is, the congruence class [XZ] depends only on the congruence classes
[AB] and [CD); it is independent of the choice of representative segments AB
and CD.

Addition can now be defined, not between segments, of course, but between
congruence classes. Given [4B] and [(D), we take X, Y, and Z such that

X-Y-2, XY =~A4B, YZ=C(CD.
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Then, by definition, _ . _
[AB] + [CD] = [XZ].

Our remarks [(1) and (2)] show that this definition makes sense. The con-
gruence class [XZ] really is independent of the choice of 4B, CD, X, Y, and Z;
it depends only on the congruence classes [AB] and [C'D]

Finally, we recall that (III) tells us that if AB < CD, then any segment in
[AB] is less than every segment in [(D]. We can therefore define

[4B] < [CD]

to mean that every segment congruent to AB is less than every segment congruent

to CD.
Having built up all of this apparatus, we can finally give a more natural looking
statement of our triangular inequality theorem.

Theorem 2. Tor any triangle A ABC, we have
[4B] + [BC] > [AC].

The metric form given in Chapter 7 seems preferable. Surely it lends itself
better to elementary exposition. One advantage of the metric scheme is that it
permits us to speak simply, logically, and intelligibly, all at the same time.

8.4 PROOFS OF THE LAWS OF INEQUALITY FOR SEGMENTS

Here we give the proofs of (I), (II), and (III) of the preceding section.

Theorem 1. If A-B-C and A-C-D, then A-B-C-D.

Proof. We know that 4, B, C, and D can be arranged in an order W, X, Y, Z,
8o that W-X-Y-Z. Here W cannot be B or C, because W is not between any two of
the other three points. For the same reason, Z cannot be B or C. Therefore W
and Z must be 4 and D in some order. Since W-X-Y-Z and Z-Y-X-W say the
same thing, we can assume W = A, and Z = B. This gives

A-X-Y-D,

where X and Y are B and C. We cannot have A-C-B-D, because A-B-C. There-
fore we have A-B-C-D, which was to be proved.

Theorem 2. If A-B-C and AC = A'C’, then there is a point B’ such that
A’-B’-C’ and AB = A'B’. ’

P

B? B
B C 4 Bl C
Figure 8.10
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Proof. By the segment-construction postulate, C-2, we know that there is
exactly one point B’ on the ray A'C" such that A’B’ = AB. There are now three
possibilities:

(1) B'=C, (2) A'-C'-B’, 3) 4’-B’-C".
We shall show that both (1) and (2) are impossible. It will follow that (3) holds
true.

(1) Suppose that B’ = C’. Then the ray AC contains {wo points X (namely,
X = B and X = C) such that AX =~ A’C". This contradicts the segment-
construction postulate, C-2.

(2) Suppose that A’-C’-B’. By the segment-construction postulate there is a
point D on the ray opposite to CA such that (D = C'B".

B
e ——r———p
A B C
Ficure 8.11

Thus A-C-D, A’-C"-B’, AC = A'C", and CD = ("B’. Therefore, by the segment~
addition postulate, we have AD =~ A'B’. Since A’B’ = AB, this gives AD =~
AB, which contradicts the uniqueness condition in the segment-construction
postulate.

Theorem 3. If AB < CD, and CD = C'D’, then AB < ("D.

Proof. We have a point B’ such that C-B’-D and CB’ =
there is a point B"’ such that C’-B"-D’ and ('B” =~ CB' But AB = CB’. There-

fore _ . _
AB=~(CB’, and AB < (D,

which was to be proved.

Theorem 4. If AB < CD, and A’B’ =~ AB, then 4’B’ < CD.

This is easy even without the preceding theorems. Proof? Fitting these together,
we get:

Theorem 5. If AB =~ A'B’,CD = C'DV’, and AB < CD, then 4B < C'D'.
This, of course, is (I1I) of Section 8.3.

Theorem 6. For every pair of segments AB, (D, exactly one of the following
conditions holds: ____ .
' AB < CD, AB~=(D CD < AB.

[This is Condition (I).]
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— —

Proof. There is a point B’, on CD, such that (B’ == 4B.

B? B'? B'?
C D
Figure 8.12

If C-B'-D, then (1) AB < CD. If B’ = D, then (2) AB = CD. If C-D-B',
then by Theorem 2 it follows that there is a point D’, between A and B, such that
AD' = CD. Therefore (3) CD < AB.

Conversely, if (1) holds, then C-B’-D, because there is only one point satisfying
the conditions for B’. For the same reason, if (2) holds, then B’ = D.

We shall show, finally, that if (3) holds, then C-D-B’. Given that (D < AB,
we know that there is a D’ such that A-D’-B and AD’ = CD.

+ # vli —_——ff O e

A D B C D B’

Figure 8.13

There is a point B/, on the ray opposite to lTC", such that DB” =~ D’B. Therefore

C-D-B". Thercfore CB” = AB. (Why?) Therefore B” = B’, and C-D-B'.
Since exactly one of the conditions C-B’-D, B’ = D, C-D-B’ holds, it follows

that exactly one of the equivalent conditions AB < CD, AB = CD,CD < AB

must hold.

Theorem 7. 1f AB < CD and CD < EF, then AB < EF.

A
C e —-D
E e - F
Bll DI
Ficure 8.14

Proof. Take D’ so that E-D'-F and EIY == CD (Fig. 8.14). Take B’ so that
C-B'-D and CB’ =~ AB. By Theorem 3, there is a point B” such that E-B"-D'.
Since E-B"”-D’ and E-D’-F, it follows by Theorem 1 that E-B"-D'-F, so that
E-B"-F. Therefore AB < EF, which was to be proved. Thisis (II) of Section 8.3.

8.5 A SUMMARY OF THE DIFFERENCES BETWEEN THE METRIC AND SYNTHETIC
APPROACHES

We have by now described two fundamentally different approaches to geometry.
It may be helpful, by way of outline and review, to give a table indicating how these
two approaches differ (Table 8.1). The basic ideas and statements appear in the
left-most column, and in the next two columns we indicate how they are treated.
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TaBLE 8-1

Metric approach

Synthetic approach

1. The given
structure

2. Distance

3. Measure for
angles

4. Congruence
for segments

5. Congruence
for angles

6. Properties of
congruence

7. Addition

8. Inequalities

(8, £, @ d m]

Given, in the
structure
Given, in the
structure

Defined in terms
of distance

Defined in terms of
degree measure

Stated in
theorems

Performed with
numbers AB

Defined between
numbers, AB < CD

S, & @ 6 =
Never mentioned

Never mentioned

Given, in the

structure

Given, in the

structure

Stated in

postulates

Performed with
congruence classes [AB]
Defined between

congruence classes,
[4B) < [CD)

Henceforth, except in Chapter 20, we shall use the metric structure

(S, £, ®, d, m].

As we have seen, it has great advantages of simplicity; and these advantages will

increase as we proceed.
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THREE GEOMETRIES

9.1 INTRODUCTION

This chapter is purely informal; it does not form a part of the deductive sequence
of the rest of the book. In fact, in this chapter we shall not prove anything at all;
but everything that we discuss will be taken up more fully later. It may be of some
help, however, to sketch in advance the kinds of geometry to which our theorems
are going to apply.

For the sake of simplicity, we shall limit ourselves to geometry in a plane.
The ideas that we shall discuss can be generalized to three dimensions, but only
at the cost of considerable labor.

Two lines are called parallel if they lie in the same plane but do not intersect.
In a Euclidean plane, the familiar parallel postulate holds.

The Euclidean Parallel Postulate. Given a line L and a point P not on L, there
is one and only one line L’ which contains P and is parallel to L.

This says that parallels always exist and are always unique.

For quite a while—for a couple of millennia, in fact—this proposition was
regarded as a law of nature. In the nineteenth century, however, it was discovered
by Lobachevski, Bolyai, and Gauss that you could get a perfectly consistent mathe-
matical theory by starting with a postulate which states that parallels always
exist, but denies that they are unique.

The Lobachevskian Parallel Postulate. Given a line L and a point P not on L,
there are at least two lines L’, L which contain P and are parallel to L.

LI
>f<
LI ’

L

Figure 9.1

The picture looks implausible, because we are accustomed to thinking of the
plane of the paper as Euclidean. But it is a fact, as we shall see, that a mathe-
matieal theory can be based on Lobachevski’s postulate. And such a theory actually
has applications in physics.

There is yet a third alternative. We can deny not the uniqueness of parallels
but their existence.
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The Riemannian Parallel Postulate. No two linés in the same plane are ever

parallel.

These postulates give us three kinds of “plane geometry,” the Euclidean, the
Lobachevskian, and the Riemannian. In each of the three theories, of course,
many other postulates are needed; we have merely been singling out their crucial
difference. In this book, we shall be concerned mainly with the first of these geom-
etries, incidentally with the second, and hardly at all with the third. In the follow-
ing sections, we give concrete examples, or models, of these kinds of geometry,
and indicate the most striking differences between them. In going through the
rest of this book, you should have one of these models in mind most of the time;
and at some points you should have in mind two of them.

9.2 THE POINCARE MODEL FOR LOBACHEVSKIAN GEOMETRY

In this section we shall assume that there is a mathematical system satisfying
the postulates of Euclidean plane geometry, and we shall use Euclidean geometry
to describe a mathematical system in which the Euclidean parallel postulate fails,
but in which the other postulates of Euclidean geometry hold.

Consider a fixed circle C in a Euclidean plane. We assume, merely for the sake
of convenience, that the radius of C is 1. Let E be the interior of C.

Ficure 9.2

By an L-circle (L for Lobachevski) we mean a circle ¢’ which is orthogonal to C.
When we say that two circles are orthogonal, we mean that their tangents at
each intersection point are perpendicular. If this happens at one intersection
point R, then it happens at the other intersection point S. But we shall not stop
to prove this, or, for that matter, to prove anything else; this chapter is purely
descriptive and proofs will come later.

The points of our L-plane will be the points of the interior E of C. By an L-line
we mean (1) the intersection of E and an L-circle, or (2) the intersection of £ and
a diameter of C.
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It is a fact that ’
I-1. Every two points of E lie on exactly one L-line.

We are going to define a kind of “plane geometry,” in which the “plane” is the
set E and the lines are the L-lines. In our new geometry we already know what is
meant by point and line. We need next to define distance and angular measure.

For each pair of points X, Y, either on C or in the interior of C, let XY be the
usual Euclidean distance. Notice that if R, S, T and U, are as in the figure, then
‘R and S are not points of our L-plane, but they are points of the Euclidean plane
that we started with. Therefore, all of the distances T'S, TR, US, UR are defined,
and (I) tells us that R and S are determined when T and U are named. There is
one and only one L-line through 7 and U, and this L-line cuts the circle C in the
points R and S. We shall use these four distances T'S, TR, US, UR to define a
new distance d(7T, U) in our “plane” E, by the following formula:

d(T, U) = logc L148/L ol

Evidently we have the following postulate.

D-0. d is a function
d:EX E—> R

Let us now look at the ruler postulate D-4. On any L-line L, take a point U
and regard this point as fixed. For every point T of L, let

AT) = log, —————gg;gg

That is, f(T') is what we get by omitting the absolute value signs in the formula for
d(T, U). We now have a function,

f:L— R
We shall show that f is a coordinate system for L.
If V is any other point of L, then
VR/VS
Let z = f(T) and y = f(V). Then

o — 4l = log, TE/IS _\  VR/VS TR/TS
V= T8 TR/US ~ °& UR/US & UR/US| ’

because the difference of the logarithms is the logarithm of the quotient. Therefore
I-’t - y' = d(TI V):

log

which means that our new distance function satisfies the ruler postulate.
Since D-4 holds, the other distance postulates automatically hold. (See Problem
1, Section 3.3.)
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We define betweenness, segments, rays, and so on, exactly as in Chapter 3. All
of the theorems of Chapter 3 hold in our new geometry, because the new geometry
satisfies the postulates on which the proofs of the theorems were based. The same
is true of Chapter 4; it is rather easy to convince yourself that the plane-separation
postulate holds in E.

To discuss congruence of angles, we need to define an angular-measure function.
Given an “L-angle” in our new geometry, we form an angle in the old geometry
by using the two tangent rays:

Figure 9.3

We then define the measure mZBAC of ZBAC to be the measure (in the old
sense) of the Euclidean angle ZB’'AC’.
It is a fact that the resulting structure

[E, L, d, m]

satisfies all the postulates of Chapters 2 through 6, including the SAS postulate.
The proof of this takes time, however, and it requires the use of more Euclidean
geometry that we know so far. Granted that the postulates hold, it follows that
the theorems also hold. Therefore, the whole theory of congruence, and of geo-
metric inequalities, applies to the Poincaré model of Lobachevskian geometry.

Fioure 9.4
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On the other hand, the Euclidean parallel postulate obviously does not hold
for the Poincaré model. Consider, for example, an L-line L which does not pass
through the center P of C (Fig. 9.4). Through P there are infinitely many L-lines
which are parallel to L.

Lobachevskian geometry (also called hyperbolic geometry) is the kind represented
by the Poincaré model. In such a geometry, when the familiar parallel postulate
fails, it pulls down a great many familiar theorems with it. A few samples of
theorems in hyperbolic geometry which are quite different from the analogous
theorems of Euclidean geometry follow.

(1) No quadrilateral is a rectangle. In fact, if a quadrilateral has three right
angles, the fourth angle is always acute.

(2) For any triangle, the sum of the measures of the angles is always strictly
less than 180.

(3) No two triangles are ever similar, except in the case where they are also
congruent.

The third of these theorems means that two figures cannot have exactly the same
shape, unless they also have exactly the same size. Thus, in hyperbolic geometry,
ezact scale models are tmpossible.

In fact, each of the above three theorems characterizes hyperbolic geometry.
If the angle-sum inequality,

mlA+ msdB+ mZC < 180,

holds, even for one triangle, then the geometry is hyperbolic; and if the angle-sum
equality holds, even for one triangle, then the geometry is Euclidean; similarly
for (1) and (3).

This has a rather curious consequence in connection with our knowledge of
physical space. If phy=ical space is hyperbolic, which it may be, it is theoretically
possible for the fact to be demonstrated by measurement. For example, suppose
that you measure the angles of a triangle, with an error less than 0.0001” for
each angle. Suppose that the sum of the measures turns out to be 179°59'59.999".
The difference between this and 180° is 0.001”’. This discrepancy could not be due
to errors in measurement, because the greatest possible cumulative error is only
0.0003"”. Our experiment would therefore prove that the space that we live in
is hyperbolic. (Granted, of course, that it satisfies the other postulates.)

On the other hand, no measurement however exact can prove that space is
Euclidean. The point is that every physical measurement involves some possible
error. Therefore we can never show by measurement that an equation,

r+ 8+t = 180,

holds exactly; and this is what we would have to do to prove that the space we
live in is Euclidean.

Thus there are two possibilities: (1) The Euclidean parallel postulate does not
hold in physical space, or (2) The truth about physical space will forever be
unknown.
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9.3 THE SPHERICAL MODEL FOR RIEMANNIAN GEOMETRY

Iet V be the surface of a sphere in space. We may as well assume that the radius
of Fis = 1. A great circle is a circle which is the intersection of V with a plane
through its center. If T and U are any points of V, then the shortest path on the
surfage joining 7' to U is an arc of a great circle.

|
Fiqgure 9.5

We might start to define a kind of “plane geometry” on V by taking the great
circles as our lines. In this scheme we would take the length of the shortest path
between each pair of points as the distance between the two points. The resulting
system has some of the properties that we expect in plane geometry. For example,
every “line” separates our “plane” into two “half planes,” each of which is convex.
But the Euclidean parallel postulate fails badly; i.e., every two lines intersect.
Our “geometry” has many other peculiar properties

(1) Two points do not necessarily determine a “line.” For example, the north
and south poles N and 8 lie on infinitely many great circles.

The same is true for the end points of any diameter of the sphere V. Such points
are called antipodal. (More precisely, two points A and B of V are antipodal if
the segment AB passes through the center of V.)

(2) While our “lines” never come to an end at any point, they are nevertheless
finite in extent. In fact, if the radius of V is = 1, then the maximum possible
distance between any two points is 7. Thus the ruler postulate cannot possibly
hold.

(3) Betweenness, in the form in which we are accustomed to it, collapses com-
pletely. In fact, given three points of a line it is not necessarily true that one of
them is between the other two. We may have AB = BC = AC.

(4) The perpendicular to a line, from an external point, always exists, but is not
necessarily unique. For example, any line joining the North Pole to a point of the
equator is perpendicular to the equator.

(5) Some triangles have two right angles. (In the Fig. 9.5 at the start of this
section, A ANC has right angles at both 4 and C.)

(6) The exterior angle theorem fails. (See the same example.)
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The only one of these peculiarities that we can avoid is the first. We do this by
altering the model in the following way. If two points 4, B are antipodal, then
we shall regard them as being the same. To be more precise, a point of our aew
geometry will be a pair of antipodal points of the sphere V. If 4 is a point of the
sphere V, then 4 denotes the pair {4, A'}, where A’ is the other end of the
diameter that contains A. The points of our Riemannian plane E will be the

pairs 4.

Figure 9.6

If L is a great circle on V, then L is the set of all points 4 for which 4 is on L.
The sets L will be the lines in E.

The distance d(A4, B) between two points 4 and B is the length of the shortest
arc from 4 (or A’) to B (or B’). Notice that this may easily be less than the length
of the shortest arc from 4 to B.

In our new geometry, two points 4, B always determine a unique “line.” The
reason is that if A and B were antipodal on the sphere, 4 and B would be the same.

The Euclidean parallel postulate still fails, of course; two of our new lines always
intersect in exactly one point. Lines are still of finite extent; the maximum possible
distance between two points is now 7/2. Betweenness still does not work. Per-
pendiculars still are not unique; we still have triangles with two right angles, and
the exterior angle theorem still fails.

In fact, in arranging for two points to determine a line, we have introduced a new
peculiarity : no line separates our Riemannian plane. In fact, if I is a line, and 4
and B are any two points not on I, then there is always a segment which goes
from 4 to B without intersecting L.

In this book, we shall be concerned mainly with Euclidean geometry, but we
shall devote considerable attention to hyperboliz geometry, mainly because it
throws light on Euclidean geometry. The point is that these two kinds of geometry
have 80 much in common that at the points where they do differ the differences are
instructive. On the other hand, the differences between Riemannian and Euclidean
geometry are so fundamental that it really forms a technical specialty, which is
remote from our main purpose. We shall not be concerned with it hereafter in this
book.
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9.4 SOME QUESTIONS FOR LATER INVESTIGATION

In this chapter, we have raised more questions than we have answered.

(1) We have said that the Poincaré model for hyperbolic geometry satisfies all
of the postulates of Euclidean geometry, with the sole exception of the Euclidean
paraliel postulate. This needs to be proved, and we surely haven’t proved it with
our conversational discussion in Section 9.2.

To check these postulates is a rather lengthy job. The reader is warned that this
sort of verification is discussed rather casually in much of the literature. If the
models for hyperbolic geometry had in common with Euclidean geometry merely
the trivial properties that are discussed in semipopular books, they would not
have the significance which is commonly and rightly attributed to them.

(2) When the postulates are checked, for the Poincaré model, we will know that
hyperbolic geometry is just as good, logically, as Euclidean geometry. We con-
structed the model on the basis of Euclidean geometry. Therefore, if there is a
mathematical system satisfying the Euclidean postulates, it follows that there is
a system satisfying the Lobachevskian postulates.

(8) There remains the if in (2). Is there a system satisfying the Euclidean
postulates? To prove this, we need to set up & model. We shall see that this can
be done, assuming that the real number system is given.
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ABSOLUTE PLANE GEOMETRY

10.1 SUFFICIENT CONDITIONS FOR PARALLELISM

Two lines are parallel if they lie in the same plane but do not intersect. We
shall use the abbreviation L, || Lz to mean that the lines L; and L, are parallel.
Later on, as a matter of convenience, we shall say that two segments are parallel
if the lines that contain them are parallel. We shall apply the same term to a line
and a segment, a segment and a ray, and so on, just as we did somewhat earlier
in one discussion of perpendicularity.

The Euclidean parallel postulate will be introduced in the next chapter, and
used thereafter, except in the chapter on non-Euclidean geometry. The postulate,
in the form in which it is usually stated, says that given a line and a point not
on the line, there is exactly one line which passes through the given point and is
parallel to the given line.

P
<+ ——— e ——— > 1
- —> L
Figure 10.1

We shall see, however, from Theorems 1 and 2, that half of this statement can
be proved on the basis of the postulates that we already have.

Theorem 1. If two lines lie in the same plane, and are perpendicular to the
same line, then they are parallel.

RestaTEMENT. Let Ly, Lz, and T be three lines, lying in a plane E, such that
L| 1 T and Lz 1 T. Then Ll " Lz.

T
y
P
>,
R1-=Z7 ey
_— Y .
X
]
Fieure 10.2
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Proof. Suppose that L, and L, intersect T at points Q and P, respectively.
Suppose that L, and Ly are not parallel, and let R be the point at which they
intersect. Then there are two perpendiculars to T through R; and this contradicts
Corollary 1-1 of Chapter 7.

Theorem 2. Given a line and a point not on the line, there is always at least
one line which passes through the given point and is parallel to the given line.

Proof. Let L be the line, let P be the point, and let E be the plane which con-
tains them. By Theorem 1 of Section 6.5, there is a line 7" in E which passés through
P and is perpendicular to L. By Theorem 4 of Section 8.2, there is a line L’ in E
which passes through P and is perpendicular to T'. By the preceding theorem it
follows that L || L’, which was to be proved.

There is an easy generalization of Theorem 1, which we shall get to presently.

In the figure below, T is a transversal to the lines L, and L.

T
P L,

- 7( . Lz
Ficure 10.3

More precisely, if L;, Ly, and T are three lines in the same plane, and T intersects
L, and L, in two (different) points P and @, respectively, then T is a transversal
to Ly and L,.

In the figure below £1 and £2 are alternate interior angles; and £3 and Z£4
are alternate interior angles.

Ficure 10.4

More precisely, (1) if T is a transversal to L, and L, intersecting L, and Ly in
P and Q, respectively, and (2) A and D are points of L; and Ly, respectively,
lying on opposite sides of T, then ZAPQ and £PQD are allernate interior angles.
(Under a change of notation, this definition says also that LCQP and ZQPB
are alternate interior angles.)
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Theorem 3. Given two lines and a transversal. If a pair of alternate interior
angles are congruent, then the lines are parallel. .

The proof is exactly like that of Theorem 1.
In the figure below, £1 and Z£1’ are corresponding angles, £2 and £2' are

corresponding angles, and 8o on.

3’

T

FiGcure 10.5

DerintTioN. If Zx and Zy are alternate interior angles, and Zy and Zz are
vertical angles, then Zx and Zz are corresponding angles.

Theorem 4. Given two lines and a transversal. If a pair of corresponding angles
are congruent, then a pair of alternate interior angles are congruent.

Theorem 5. Given two lines and a transversal. If a pair of corresponding angles
are congruent, then the lines are parallel.

10.2 THE POLYGONAL INEQUALITY
The triangular inequality states that for any triangle A BC we have
AB + BC > AC.

If A, B, and C are not required to be noncollinear or even different, we get a weaker
result.

Theorem 1. For any points A, B, C,
AB + BC =z AC.
Proof. If A, B, and C are noncollinear, this follows from the triangular in-
equality. If A, B, and C-are collinear, we take a coordinate system on the line

that contains them and let their coordinates be z, y, and z. Let

a=x —y, b=y —=2
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By Theorem 12, Section 1.4, we know that

la| + |b] 2 |a + b],
therefore
e —yl+ly — 2 2 |z — 2|
Hence
AB + BC =z AC,

which was to be proved. From this we get the following theorem.

Theorem 2. The Polygonal Inequality. If A,, A, ..., A, are any points
(n > 1), then
A1A2 + A2A3 + st + An—lAn .2_ AlAn-

The proof is by induction.

We shall need this result in the following section. For the first time, we are also
about to use the Archimedean postulate for the real number system, given in
Section 1.8. This says that if e > 0and M > 0, then ne > M for some positive
integer n.

10.3 SACCHER!I QUADRILATERALS

We recall, from Section 4.4, the definition of a quadrilateral. Given four points
A, B, C, and D, such that they all lie in the same plane, but no three of them are
collinear. If the segments AB, BC, CD, DA intersect only at their end points,
then their union is called a quadrilateral, and is denoted by [ JABCD. The segments
AB, BC, (D, DA are the sides of [JABCD, and the segments AC, BD are the
diagonals. The angles of [ JABCD are LABC, LBCD, LCDA, and £DAB;
they are often denoted briefly as £B, £C, £ D, £ A. If all four of the angles are
right angles, then the quadrilateral is a rectangle.

On the basis of the postulates that we have so far, without the use of the parallel
postulate, it is impossible to prove that any rectangles exist. If we try, in a plausible
fashion, to construct a rectangle, we get what is called a Saccheri quadrilateral.

A D
Figure 10.6

The definition is suggested by the markings on the figure above. To be precise,
[JABCD is a Saccheri quadrilateral if £ A and £ D are right angles and AB =
CD. The segment AD is called the lower base; and BC is called the upper base.
The lower base angles are £ A and £ZD; and £B and ZC are the upper base angles.
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Theorem 1. The diagonals of a Saccheri quadrilateral are always congruent.

Proof. By SAS, we have ABAD = ACDA. Therefore BD =~ AC.
B C

Figure 10.7

Roughly speaking, the following theorem states that a Saccheri quadrilateral ¢
is completely described, geometrically, by the distances AD and AB.

Theorem 2. Let [ |JABCD and [JA'B'C’D’ be Saccheri quadrilaterals,
with lower bases AD and A'D’. If A'D' = AD and A'B’' = 4B, then
BC = BC’, LB’ =~ £Band £(' = £C.

B C B c
/ V4
/ /
/ /
/ /
1 / I V4
/7 /
/ /
/ /
/ /
4 i D A v D
Ficure 10.8

Proof. The main steps in the proof are as follows.

(1) AACD = AA'C’'D’ (by SAS).

(2) LA =2 £ A’ (all right angles are congruent). "

(3) £LBAC = LB'AC. 1

(4) AC = AC".

(5) AABC = AA'B'C’.

(6) LB == LB

(7) BC= BC".

(B) £C == £LC('.

Applying this theorem to the Saccheri quadrilaterals [JABCD, [1DCBA, we
get LB = £C. Thus we have the following the¢rem.

Theorem 3. In any Saccheri quadrilateral, the upper base angles are congruent. «*

Theorem 4. In any Saccheri quadrilateral, the upper base is congruent to or
longer than the lower base.
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RestaTEMENT. Given a Saccheri quadrilateral []A4,B;B3A,, with lower base
Al.Ag. Then Ble 2 AiAz.

Proof. Let us set up a sequence of n Saccheri quadrilaterals, end to end, start-
ing with the given one, like this:

3;1 ’;2 B, Bny Bn Bn_+l
-+

Al Az A3 A‘ P An_l An An+l
Figure 10.9

That is, A3, Ay, ..., Any1 are points of the line Z,Az, appearing in the stated
order on Z,Ag; the angles £B3A4343, LB3A3A,, . ..and so0 on are right angles;

A1Ay = AgAg = A3A = -+ - = Ap_1An = Apdnyy,
and
AsBy = AgBg = -+ = AuB, = An+an+l~

By Theorem 2, we have
BBy = B3Bg = --- = B,_1B, = BuBy41.

We don’t happen to know anything about the question of collinearity for the
points By, By, . .., Bay1. But we know by the polygonal inequality that

B\B,4, = B1Bs + B3B3+ - -+ + Bu_yBa + BpBny.
Since all of the distances on the right are =B;B;, we have
BB, ;1 £ n:B)B,.
By the same principle, we get
AAnyy £ ABy + B\Buyy + Brny1Anyr £ ALB) + nB1By + 4B,
Since 414,41 = nA 4, we have
nA1A, £ nB;B; + 24,B,,

and this conclusion holds for every n.
Now suppose that our theorem is false. Then A;A; > BB, so that 4,4, —
B, B; is a positive number. Obviously, 24,B, is a positive number. ILet

e = A|A2 - Ble, and M = 2.4131.

Then ¢ > 0 and M > 0, but ne S M for every positive integer n. This con-
tradicts the Archimedean postulate, and so completes the proof.



128  ABSOLUTE PLANE GEOMEIRY

10.4 THE BASIC INEQUALITY FOR ANGLE-SUMS IN A TRIANGLE

A well-known theorem of Euclidean geometry asserts that, in any triangle, the
sum of the degree measures of the angles is exactly 180, Without the parallel
postulate, we shall show that this sum is always less than or equal to 180. We shall

need some preliminaries.
Theorem 1. In any Saccheri quadrilateral [JABCD (with lower base AD), we
have ZBDC 2 LABD. 5 c

Ficure 10.10

Proof. We know that BA = DC and BD = BD. If it were true that ZABD >
ZBDC, then it would follow by Theorem 6, Section 7.1, that AD > BC; and this
would contradict Theorem 4, Scction 10.3. Therefore ZABD £ ZBDC, which

was o be proved.
From this we get an immediate consequence for right triangles.

Theorem 2. If AABD has a right angle at 4, then
mLB --msD £ 90.

Proof. Let C be a point such that [JABCD is a Saccheri quadrilateral:
B

Fioure 10.11

Then mL3 + mL2 = 90,
o

because £ZADC is a right angle. By the preceding theorem, m4£2 2 mZl.

Therefore
90 — mL3 2 mLl], and msl +m4L3 S 90,
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| which was to be proved. Thus we have:

Theorem 3. Every right triangle has only one right angle; and its other two
angles are acute.

Of course we could have proved this long ago, merely by applying the exterior
angle theorem. But we shall need Theorem 2 for other purposes anyway.

We can now define the hypotenuse of a right triangle as the side opposite the
(unique) right angle. The other two sides are called the legs.

Theorem 4. The hypotenuse of a right triangle is longer than either of the legs.

Because the angle opposite the hypotenuse is larger. (See Theorem 3,
*Section 7.1.)

In a triangle, two sides can easily be congruent. Therefore we cannot always

speak of the longest side. We can, however, always speak of a longest side; this
means a side at least as long as any other side.

Theorem 5. In AABC, let D be the foot of the perpendicular from B to AC.
If AC is a longest side of A ABC, then A-D-C.

B

P —

Fiaure 10.12

(This theorem, if available, would have simplified the proof of the SSS theorem.)
Proof. Suppose that the theorem is false. Then we have D = A, D-A-C,

D = C or A-C-D. We need to show that all of these cases are impossible. Since

the latter two cases are essentially the same as the former two, it will suffice to
show that D = A and D-A-C are impossible.

Fieure 10.13

If A= D, then AABC is a right triangle with right angle at A therefore
BC > AC, and AC is not a longest side.
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If D-A-C, then AC < DC. Also DC < BC, because BC is the hypotenuse of
ABDC, and DC is one of the legs. Therefore AC < BC, and AC is not a longest'

side of AABC.
Finally, we can prove the theorem that we were working toward.

Theorem 6. In any triangle ABC, we have
mlA+mLB + mLC £ 180.

Proof. Suppose, without, loss of generality, that AC is a longest side of AABC;
and let BD be the perpendicular segment from B to the line AC. By the preced-
ing theorem we have A-D-C; this means that D is in the interior of ZABC.

B

A D C
Ficure 10.14

We now apply Theorem 2 to each of the right triangles AADB and ABDC. Thus

mLA+4 m~LABD £ 90
and
m4LDBC -+ m£C = 90.

Therefore
mLA + mZLABD -+ m£DBC + mZC < 180.

Since D is in the interior of Z ABC, we have

mLABD 4+ m£DBC = m4B.

Therefore
mLA +m4LB +mZC £ 180,

which was to be proved.

10.5 A HISTORICAL COMEDY

Saccheri quadrilaterals are named after the Italian geometer Gerolamo Saccheri
(1667-1733). Like most geometers of his time, Saccheri was dissatisfied with the
situation of the parallel postulate; he believed- that this statement ought to be
proved as a theorem. He wrote a rather long book, entitled Euclides ab omne naevo
vindicatus, in which he undertook to “vindicate Euclid of every blemish” by
showing that the parallel postulate was a consequence of the other postulates of
synthetic geometry. On certain rare occasions, the development of mathematics
involves high comedy. This was one of them.
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In the first place, Saccheri’s “proof” of the postulate was fallacious. However,
' the early stages of the proof were quite correct, and the preliminary theorems were
both new and important. If you omit the erroneous part of his book, what you get
is the first treatise on what is now called absolute geometry. That is, Saccheri
developed an extensive geometric theory which was independent of the whole
question of the parallel postulate. (The preceding portions of this chapter are a
sample of this sort of theory.) For this achievement, Saccheri is highly honored
and justly so. Prosaic accuracy is not an essential virtue in mathematics any
more than it is in any other sort of creative work; what really matters is the
quality of a man’s positive contribution.

The final irony is that if Saccheri’s enterprise had really succeeded in the way he
thought it had, no modern mathematician would have regarded his book as a
vindication of Euclid. From a modern viewpoint, a proof of the parallel postulate
would merely show that the postulate was redundant; and redundancy is not
thought of as a virtue in a set of postulates. There are two main things that a
modern mathematician wants to know about a postulate set: (1) The postulates
ought, by all means, to be consistent, in the sense that none of them contradicts
the others. If this condition does not hold, then any mathematical theory based
on the postulates is, quite literally, much ado about nothing, because, in this
case, there isn't any mathematical system that satisfies the postulates. The only
way to show that a set of postulates is consistent is to show that there is a system
in which all of the postulates are satisfied. Such a system is called a model for the
postulate set. (2) The postulates ought, if possible, to be independent, in the sense
that no one of them is deducible from the others as a theorem. Any postulate which
is so deducible is called redundant. To show that a particular postulate is redundant,
you have to prove it on the basis of the others; and this is what Saccheri tried to
do for the parallel postulate. To show that a particular postulate is independent,
of the others, you have to show that there is a mathematical system in which all
of the other postulates are satisfied, but in which this particular one is not. (See,
for example, Section 6.4, in which we showed that the SAS postulate is independent
of the postulates that precede it.)

In the nineteenth century, two fundamental questions were settled. Kirst, it
was shown that the postulates of synthetic geometry, including the parallel
postulate, were consistent—granted, of course, that the real number system is
consistent. It was shown further that the parallel postulate is independent of the
others. This was done, in the only way that it could be done, by the discovery of
“geometries” in which all the synthetic postulates except the parallel postulate
were satisficd. ,

These two later developments were the real vindication of Euclid from a modern

viewpoint.
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THE PARALLEL POSTULATE AND
PARALLEL PROJECTION

11.1 THE UNIQUENESS OF PARALLELS «

The Euclidean postulate is as follows.

P-1. Given a line and an external point, there is only one line which passes
through the given point and is parallel to the given line.

This gives us immediately a converse of Theorem 3, Section 10.1.

Theorem 1. Given two lines and a transversal. If the lines are parallel, then
each pair of alternate interior angles are eongruent.

~__¢/
P L

A
/ ~y
o 1
/° ;

Figure 11.1

Proof. There is exactly one line Lj, through P, for which the alternate interior
angles are congruent, and by Theorem 3, Section 9.1, we have L; || L;. Since
there is only one such parallel, we have L; = L;. Therefore £1 = £2, which

was to be proved.
The proof of the following theorem is entirely analogous.

"Theorem 2. Given two lines and a transversal. If the lines are parallel, then
each pair of corresponding angles is congruent.

The inequality mZ A + mZB + mZC < 180 now becomes an equation.

Theorem 3. In any triangle A ABC we have

mLA +msLB + msLC = 180.
132
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Proof. Let L be the parallel to AC through B. Let D and E be points of L,
r such that D-B-E, and such that D and C are on opposite sides of A5. Then

mZ2 + m/B = mZDBC, £

and s

m<DBC + mZ1 = 180.
Therefore
mZsl +msB + mZ2 = 180.
By Theorem 1,
mll = mLC and mL2 = mLA,
therefore Figure 11.2
mLA + msLB + mLC = 180,

which was to be proved. The following theorems arc an immediate consequence.
Theorem 4. The acute angles of a right triangle are complementary.

Theorem 5. Every Saccheri quadrilateral is a rectangle.

B C
3
4
2
1 []
A D

Ficure 11.3

Proof. By Theorem 1, £2 == Z4. Since AB = NC and AC = AC, it follows
that ABAC =~ ADCA. Therefore £1 == £3. Since mZ1 + m£2 = 90, it
follows that mZ4 + mZ3 = 90; that is, £LBCD is a right angle. The proof
that £B is a right angle is obtained merely by permuting the notation. Thus we
have finally shown that rectangles exist.

Note that in this proof we are relaxing a bit in the style of the exposition by
using a figure to explain the notation. If the reader (or the writer) sces no other
way to explain, say, the idea of alternate interior angles, then it is worthwhile to
fight our way through the problem as we did in the previous chapter. But once
we have done this, we have carned the right to speak in the abbreviated language
of pictures.

A quadrilateral is a trapezoid if at least one pair of opposite sides are parallel.
(It is sometimes required that the other pair of opposite sides be nonparallel, but
this is rather artificial, just as it would be artificial to require that an isosceles
triangle be nonequilateral.) If both pairs of opposite sides of a quadrilateral are
parallel, then the quadrilateral is a parallelogram. 1f two adjacent sides of a
parallelogram are congruent, then the quadrilateral is a rhombus. The proofs of
the following theorems are omitted. (They are not much harder to write than

to read.)
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Theorem 6. For any triangle, the measure of an exterior angle is the sum of the
measures of its two remote interior angles.

Theorem 7. In a plane, any two lines parallel to a third line are parallel to each
other.

Theorem 8. If a transversal is perpendicular to one of two parallel lines, it is
perpendicular to the other.

Theorem 9. Either diagonal divides a parallelogram into two congruent tri:;.ngles.
More precisely: If [JABCD is a parallelogram, then AABC = ACDA.

Theorem 10. In a parallelogram, each pair of opposite sides are congruent.

Theorem 11. The diagonals of a parallelogram bisect each other.

That is, they intersect at a point which is the bisector of each of them. Thus
the proof must begin with a proof that the diagonals intersect each othei (see
Theorem 1, Section 4.4).

11.2 PARALLEL PROJECTIONS

We know, by Theorem 4, Section 8.2, that the perpendicular from a point to a
line always exists and is unique.

/L
e ’

" P'=flP) Q'=IQ) R=AIR)
Figure 11.4

—————dx

[ P ~
t—————30

Thus, given two lines L, L’ in the same plane, we can define the vertical pr;;jection
of L into L’. This is the function

f:L—-L

a
under which to each point P of L there corresponds the foot P’ = f(P) of the
perpendicular from P to L’. In fact, the vertical projection can be defined equally
well for the case. where the lines are not necessurily coplanar; and the definition
is exactly the same. This degree of generality, however, will not concern us. Note
also that the existence and uniqueness of the vertical projection do not depend
on the parallel postulate. We do, however, need this postulate to define and in-
vestigate the more general notion of parallel projection. Under this more general
scheme, instead of following the perpendicular, to get from P to P’ = f(P), we
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proceed in any direction’ we want, providing, however, that we always go in the
same direction for every point P of L. More precisely, the definition of parailel
projections is as follows.

Given two lines L, L' and a transversal T. (By definition of a transversal, this
means that all three of our lines are coplanar.) Let T intersect L and L’ in points
Q and @', respectively.

gl=f(ggz Pl‘ﬂi)i/,
/ /
P
Tr
Ficure 11.5

> '

Let f®%) be @’. For every other point P of L, let T’ be the line through P, parallel
to T; let P’ be the point where Tp intersects L’; and let f(P) be P’. This defines

a function
f:L- L.

Of course, we should check that for each point P of L, the corresponding point
P’ exists and is unique; if either of these conditions failed, then the directions that
we have just given would not define a function. However, the verifications are
simple.

(1) If Tp were parallel to L’, then it would follow that T || L/, which is false,
because T is a transversal to L and L'. Therefore Tp intersects L’ in at least one
point P’.

(2) If Tp = I, it follows that L’ || T, which is false. Therefore Tp intersects
L’ in at most one point P’. .

Thus to each point P of L there corresponds exactly one point f(P), and we really
have a function. This function f is called the projection of L onto L’ in the direction
T. . 1
Theorem 1. Every parallel prﬁjection is a one-to-one correspondence.
Proof. Given

f:L - L,

the projection of L onto L’ in the direction T. (See Fig. 11.5.) Let g be the pro-
jection of L’ onto L in the direction T'. Obviously g reverses the action of f; that is,
if P = g(P"), then P’ = f(P). Therefore f has an inverse

fl=¢g:L' > L

»

Therefore f is a one-to-one correspondence L «+» L’, which was to be proved.
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(Another way of putting it is to say that every point P’ of L’ is = f(P) for ong
and only one point P of L. It may be worthwhile, at this stage, to review the ,
discussion of functions in Section 3.1.)

Theorem 2. Parallel projections preserve betweenness.
REsTATEMENT. Let f:L < L’ be a parallel projection. If P-Q-R on L, then
P-Q-R' on L'

P" ! 2'1 R’i —1'
v r / !
¢ P
Tp T Tr
Figure 11.6

Here, of course, P’ = f(P), Q' = f(Q), and R’ = f(R).
Proof. Let Tp, Tq, Tr be as in the definition of a parallel projection, so that

Te | Te || Tk

Then R and R’ are on the same side of Tg, because RE’ does not intersect T'q.
Similarly, P and P’ are on the same side of Tg. But £ and R are on opposite sides
of T'q, because P-Q-R. By two applications of Theorem 2, Section 4.2, P’ and R’
are on opposite sides of Tq. Therefore PR’ intersects Tq in a point X. Since
Tq # L', there is only one such point of intersection. Therefore X = @Q’. Therefore
Q' lies on P'R’, and P'-Q’-R’, which was to be proved.

Theorem 3. Parallel projections preserve congruence.
RESTATEMENT, Let f:L < L’ be a parallel projection. If AB = (D on L,
then 4B’ = C"D’ on L'.

Proof. (1) f L || L', then AB and A’B’ are opposite sides of a parallelogram.
By Theorem 10, Section 11.1, it follows that AB = A’B’. Similarly, CD = C'D'".
Therefore 4B’ = ("D, as desired.

(2) Suppose that L and L' are not parallel, as in Fig. 11.7. Let V be the line
through A, parallel to L', intersecting Ts at E. Let W be the line through C,
parallel to L', intersecting Tp at F.

Now V || W, and L is a transversal. For apgropriate choice of the notation for
Cand D, L1 = £LBAE and £1' = ZDCF are corresponding angles. (This is
true for the case shown in the figure; if it isn’t true, we interchange the letters C
and D.) By Theorem 2, Section 10.1, we have

PAN-—4 N
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Figure 11.7
For the same reasons,
L2 = L2,
Since AB = €D by hypothesis, it follows by ASA that
AABE = ACDF.
Therefore AE = CF. But AE = A’B’ and CF = C"D’, because these segments
are opposite sides of parallelograms. Therefore A’B’ =2 C'D’, which was to be

proved.
Consider now three parallel lines with two common transversals, like this:

Fieure 11.8

It ought to be true that
A'B'’ AB
BC ~ BC

In the style of our previous theorems, we could convey this by saying that parallel
projections preserve ratios. In fact, this is true, but the proof is rather hard, and will
be given in the following two sections. The theorem is well worth working for;
it is the foundation of the vhole theory of similarity for triangles. The proof
will depend on the Euclidean parallel postulate, as one might expect: if parallels
are not unique, then parallel projections are not even well defined.
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11.3 THE COMPARISON THEOREM

The algebraic method that we shall use to prove that parallel projections pre-
serve ratios is going to be rather peculiar. It will be based on the following theorem.

Theorem 1. The Comparison Theorem. Let z and y be real numbers. Suppose
(1) that every rational number less than z is also less than y, and (2) every
rational number less than y is also less than z. Then z = y.

The proof is easy on the basis of Theorem 2, Section 1.8. Suppose that z < y.
Then there is a rational number p/g, between z and y. Thus

:c<-qu<y,

and p/q is less than y, but not less than z. This contradicts (2). Similarly, if
y < z, we have

P
<_<z
y q

for some rational number p/g; this contradicts (1). Therefore z = y, which was
to be proved.

This seemingly trivial observation turns out to be surprisingly powerful, as we
shall see.

11.4 THE BASIC SIMILARITY THEOREM
The purpose of this section is to show that parallel projections preserve ratios.

Let us first consider the special case indicated by the following figure, and treated
in the following theorem.

4 e,
ol e,
VC] \gl*L,

' \

Ficure 11.9°

Here L,, Ly, and Lg are three parallel lines, with coramon transversals T and 7.
We want to prove that
: BC _ BC
4B~ A'F
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Theorem 1. Let L,, L3, and L3 be three parallel lines, with common transversals
f T and 7' intersecting them in points A, B, C and A’, B/, C'. If A-B-C (and
A’-B'-C"), then

BC _ BC
AB~ 4B’
Proaof. let
- BC - BC
4B’ YT A’

|Let p and ¢ be any two positive integers.
(1) First we divide AB into ¢ congruent segments, end to end, as in the figure:

T T
) B V.
0 2 g Y g A — L,
A p——————- Af
Ap—————— e A
A=B=B, A;=B'=B,
M L,
Bif————————e ¥
X SE— Xeg

Figure 11.10

That is, we take a sequence of points
A= A404,,...,A4;, =B

in the stated order on the ray AB, so that the length of each of the resulting seg-
ments is 4B/q.

(2) Next we lay off, on the ray BC, a sequence of p segments, of the same length
AB/q. The end points of these segments are
B = Bo,Bl,...,B,.
(3) Now we project each of the points A;, B; onto T”, in the direction L,, thus
getting the points A, B; on T".
Since all of the little segments on T are congruent, we have

=P.
AB q
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Bince parallel projections preserve congruences, all the little segments on 7" u"

congruent. Therefore BB, p 4
A'B ¢

We can now complete the proof easily, in two steps.
(4) Suppose that

2o, BC
q <z= 2B
Then
P ATB < BC
Therefore
BB, < BC.
Hence
B-B,-C,
as indicated in Fig. 11.10, and
’-Bp-C",
because parallel projections preserve betweenness.
Therefore A'B
B'B; < B'C', - e < B¢’
and
p . BC
q < A'B’
(Here we have merely reversed the steps that led from
p . BC
¢ < 4B

to B-By-C.) Thus we have proved that if p/g < z, then p/g < y.

(5) By exactly the same sort of reasoning, we conclude that if /g < y, then
p/e < =

It follows by the comparison theorem that z = y, which was to be proved.

We extend Theorem 1, by various tricks, to get the general case. Consider any
four points on T, and the corresponding points on 7", under a parallel projection:

T T

Fieure 11.11
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Here a, b, ¢ and 80 on are the lengths of the indicated segments. By two applica~
P tions of Theorem 1, we have

a_4d b_V
b=V ¢ ¢
Therefore we have
sa_b b _ ¢
al_bl’ b’_cl
80 that
e_c, [
d 7 and c

rStated in words our result is as follows.

Theorem 2. If two segments on the same line have no point in common, then
the ratio of their lengths is preserved under every parallel projection.

From this it is easy to prove our main theorem.

Theorem 3. Parallel projection preserves ratios.

ResTATEMENT. Let T and T be lines. Let A, B, C and D be any points of T,
and let A’, B’, ', and D’ be the corresponding points of 1", under a parallel
projection. Then

AB_AB . AB _ CD

¢D~CD’ A'B ~ D

Proof. Let XY be a segment which has no point in common with AB or CD,
and let X’Y’ be the corresponding segment on 7", under the parallel projection.
Then

AB XY _ CD
AB - XY CD’
by Theorem 2. Therefore

AB _ CD

4B~ D’
and

AB _ A'B

¢h D'

which was to be proved.
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SIMILARITIES BETWEEN TRIANGLES

12.1 PROPORTIONALITIES

Given two sequences
a,bec...; a,bcd,..

of positive numbers. If it is true that

then we say that the two sequences are proportional, and we write

a,be...~ab,c,....
The constant ratio,
k al bI
=T ==

is called the proportionality constant. Note that proportionality is a symmetric

relation. That is, if
abc...~dblc,...,

then
a,ve,... ~ab,¢c...,

and conversely. Note, however, that the proportionality constant depends on the
order in which the sequences are written. If we reverse the order, we get a new
constant which is the reciprocal of the old one.

To work with proportionzlities, #e merely express them in terms of equations
between fractions, and then use the ordinary rules of algebra.
A sample theorem follows.

y

Theorem. If a, b ~ ¢, d, then g, ¢ ~ b, d, and conversely.

Proof. The first proportionality means that

S E-W

Qla

and the second means that

QIlco
ol

Trivially, these equations are equivalent.
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This being the case, the question arises why the notation deserves to be in-
troduced at all. The reason is that the “~ " relation is often easy to read off from
a figure. Moving a little ahead of ourselves, for the sake of illustration, consider
a pair of similar triangles, like this:

=N

Fiaure 12.1
"Writing the lengths of the sides in the proper order, we get the proportionality
a,bec~uwuyz.

We have now made the transition from geometry to algebra, and can proceed to
work algebraically with fractions, starting with the equation

12.2 SIMILARITIES BETWEEN TRIANGLES

Given AABC, ADEF and a correspondence
ABC « DEF.

Figurg 12.2

We use the familiar convention, under which a is the length of the side opposite
ZA, and so on. If
a, b! c~ d! ?,f,

then we say that corresponding sides are proportional. If corresponding sides are
proportional, and every pair of corresponding angles are congruent, then we say
that the correspondence is a similarity, and we write

AABC ~ ADEF,
If there is a similarity between two triangles, then we say that the triangles

are similar. (As in the case of congruences and congruence, the occasions when
this is what we really mean are exceedingly rare.)
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We remember that, from the expression

ANABC = ADEF,

we could read off—without further reference to a figure—three angle-congruences
LA LD, LB LE, LC=/LF
and three segment-congruences
AB = DE, AC= DF, BC=FF.

In the same way, from the expression

AABC ~ ADEF,
we can read off the same three angle-congruences, and the proportionality

AB, AC,BC ~ DE, DF, EF.

To get the right-hand half of this expression, we simply replace each letter 4,
B, or C on the left by the corresponding letter D, E, or F.

Intuitively speaking, two triangles are similar if they have the same shape,
although not necessarily the same size. It looks as if the shape ought to be deter-
mined by the angles alone, and this is true.

Theorem 1. The AAA Similarity Theorem. Given a correspondence between
two triangles. If corresponding angles are congruent, then the correspondence
is a similarity.

ResraTemenT. Given AABC, A DEF and a correspondence
ABC < DEF.
If LA = 4D, LB = LE,and £LC = LF, then
AABC ~ ADEF.

Proof. Let I and F' be points of ABand Xé, such that AE' = fand AF' = ¢,
as shown in Fig. 12.3. By SAS, we have

AAE'F = ADEF.

Therefore ZAE'F' =~ £E. Since LE = £B; we have ZAE'F’ = £B; thus
E'F || I??, and A, F’, and C correspond to A, E’, and B under a parallel projec-
tion. Since parallel projections prescrve ratios, we have

e

J _
AB = AC



SIMILARITIES BETWEEN TRIANGLES 148

Ficure 12.3

In exactly the same way, merely changing the notation, we can show that

e d
AC BC
therefore
d,e,f ~ BC, AC, AB,
and

d,e,f ~ab,c

Hence corresponding sides are proportional, and the correspondence ABC - DEF
is a similarity, which was to be proved.

Of course it follows from our angle-sum theorem that if two pairs of correspond-
ing angles are congruent, so also is the third pair. Thus we have the following

theorem.

Theorem 2. The AA Similarity Theorem. Given a correspondence between two
triangles. If two pairs of corresponding angles are congruent, then the correspond-
ence is a similarity.

We also have a sort of converse of Theorem 1.

Theorem 3. The SSS Stmilarity Theorem. Given two triangles and a correspond-
ence between them. If corresponding sides are proportional, then corresponding
angles are congruent, and the correspondence is a similarity.

RestaTemeENT. Given AABC, ADEF, and a correspondence ABC <+ DEF. If

a, byc ~ d: erf)
then
AABC ~ ADEF.

w Proof. Let E’ be the point of AB for which AFE' = f (Fig. 12.4). Let L be the
line through E', parallel to BC. If L || AC, then BC || AC, which is false. There-
for L intersects AC at a point F”.
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Figure 12.4

Now LAE'F’' = /£ B, because these are corresponding angles;and £4 = £ A.

Therefore
AAE'F ~ AABC;
hence
J, AF',E'F' ~ ¢, b, a.
Therefore
b b
S=adp—ppr e ar =Y, E'F'=Ec’-'
But
J,e,d ~¢ba
Thus
}:=S=Sl and e—%f, d=ac—f

By SSS, we have
AAE'F' = ADEF.

Therefore
ADEF ~ AABC,

which was to be proved.
Next we bave an analogue of SAS.

Theorem 4. The SAS Similarity Theorem. Given a correspondence between two
triangles. If two pairs of corresponding sides are proportional, and the included

angles are congruent, then the correspondence is a similarity.

RestaTEMENT. Given AABC, ADEF, and the correspondence ABC «» DEF.

If LA 2 £D,andb,c ~ ¢, f, then AABC ~ ADEF.
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Fieure 12.5

Proof. Let E’ be the point of AB for which AE' = f. Let L be the line through
E’, parallel to BC. Then L intersects AC in a point F’. The main steps in the proof,
from here on, are as follows. You should be able to supply the reasons in each case.

(1) AAE'F' ~ AABC.

(2) bc ~ AF', .

B) AF' = e.

(4) AAE'F' = ADEF.

(5) AABC ~ ADEF.

Theorem 5. Given a similarity between two triangles. If a pair of corresponding
sides are congruent, then the correspondence is a congruence.

Proof? This was really a step in the proof of the preceding theorem.
An altitude of a triangle is a perpendicular segmert from a vertex to the line con-
taining the opposite side.

FicuRre 12.6

As the figure indicates, every triangle has three altitudes. We shall use the same
word alfitude for the length of such a perpendicular segment. In a right triangle,
the altitude to the hypotenuse is always an “interior altitude,” like this:

B

|
|
|
i
o

FiGure 12.7

That is, if £B is a right angle, and BD L AC, then A-D-C. (This follows from
Theorem 4, Section 10.4).
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12.3 THE PYTHAGOREAN THEOREM

To prove the Pythagorean Theorem, we need one preliminary result.

Theorem 1. The altitude to the hypotenuse of a right triangle divides it into two
triangles each of which is similar to it.

REesTATEMENT. Let AABC be a right triangle with its right angle at C and let

D be the foot of the perpendicular from C to AB. Then AACD ~ AABC ~
ACBD.

S r———-30

Fiaure 12.8

(To remember the way these similarities work, all you need to do is to observe
that there is only one way that they might work. In the first correspondence, we
must have 4 <« A, because Z A is common to AACD and AABC. Also we must
have D «» C because these points are where the right angles are. Finally, we must
have C « B, because at this stage C has nowhere else left to go. Therefore the
correspondence must be ACD < ABC; and similarly for the second similarity.)

Proof. Obviously £A = LA. And LADC =2 L ACB, because both of these
are right angles. By the AA similarity theorem, we have

AACD ~ AABC.
The proof of the other half of the theorem is exactly the same.

Theorem 2. The Pythagorean Theorem. In any right triangle, the square of the
length of the hypotenuse is the sum of the squares of the lengths of the other
two sides.

ResTaTEMENT. Let AABC be a right triangle with its right angle at C. Then
a? + b2 = ¢

Here we are using the usual notation for lengths of opposite sides.

1
|
!h
I h

Fieure 12.9
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y Proof. By the preceding theorem,
) AACD ~ AABC ~ ACBD.
Therefore

h:f»b"'avb)c"'g)hra-

We shall caleulate f and g in terms of g, b, and ¢, and then use the fact that f +
g = ¢. (Query: What theorem do we need to know, to conclude that f + g = ¢?)
Step 1. Since

f_0,
b c
we have
S
c
And since
g_2¢9,
a ¢
we have
o
c
Step 2. Therefore
j + g = a2 + b2
¢
Therefore
a? + b2 = ¢?

which was to be proved.

Legend has it that when Pythagoras discovered this theorem, he sacrificed an
ox as a thank offering. (The legend is doubtful; and it is not even known whether
the theorem was proved by Pythagoras personally.) The German poet, Heinrich
Heine, remarked that ever since this sacrifice, the oxen have trembled whenever
a great truth was discovered.

The proof given here is not the one given in Euclid. Euclid’s proof (to be dis-
cussed later) made heavy use of the theory of area. During the last two thousand
years or so, the literature of the Pythagorean theorem has become immense.
Literally hundreds of proofs have been given. The converse of the Pythagorean
theorem is also true, and its proof is easy.

Theorem 3. Given a triangle whose sides have lengths a, b, and c¢. If a? +

b2 = ¢?, then the triangle is a right triangle, with its right angle opposite the

side of length c.

Proof. Given AABC, with a® + b% = ¢2. Let ZF be a right angle, and let
D and E be the points on the sides of ZF such that FE = a and FD = b (Fig.
12.10). By the Pythagorean theorem,

DE? = a% + b2
DE = va? + b2 = ¢.

Therefore
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D3,
~,
N
N(Va+b
b N
N
~
~
N,
! \,
C a B F a E

Figure 12.10

By SSS, AABC = ADEF. Therefore AABC is a right triangle, with its right
angle at C.

For right triangles, we have a special congruence theorem and also a special
similarity theorem.

Theorem 4. The Hypolenuse-Leg Theorem. If the hypotenuse and a leg of one
right triangle are congruent to the hypotenuse and a leg of another, then the
triangles are congruent.

RestaTemMeNT. Given AABC, with a right angle at C, and A A’B’C”, with a right
angle at ¢’. If a = o’ and ¢ = ¢/, then AABC = AA’BC.
Proof. By the Pythagorean theorem,

b= Ve?
and
b =

Since a = o’ and ¢ = ¢/, we have b = b’. By 8SS, AABC = AA'B'C'.

We have already observed that every triangle has three altitudes, that is, one
for each side considered as a base. A well-known formula asserts that the area of
any triangle is equal to half the product of “the base” and “the altitude”; this
means, of course, that the arca is = 3bh, where b is the length of one of the three
sides, and h is the corresponding altitude. Granted that this is right, which of
course it is, it follows that the product bh must be independent of the choice of
the base. That is, in the figure below, we must have

b]hl = bzhz = bahs.

Fieure 12.11 -
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If the theory of plane area is set up by using postulates, then we can quite well

" use area to prove that these equations hold. Later on, however, we shall want to

prove that simple figures such as triangles have areas, and that areas have the proper-

ties that we might expect. And for this purpose we want to prove the following
theorem without appealing to the theory of area.

Theorem 5. In any triangle, the product of a base and the corresponding altitude
is independent of the choice of the base.

RestaTEMENT. Given AABC. Let D be the altitude from A to BC, and let
BE be the altitude from B to AC. Then

AD-BC = BE - AC.
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Frcure 12.12

Proof. Suppose that E # C and D # C, as shown in the figure. Then £C =
£C, and £LBEC = £ ADC, because both are right angles. Therefore ABEC ~
AADC. Hence

Thus

BE, BC ~ AD, AC.

AD _ Ac
BE ~ BC’
and
AD-BC = BE - AC,
which was to be proved.
If E = C, then AABC is a right triangle with its right angle at C and we also

have D = C. A

E=C a B

Figure 12.13

In this case, the theorem says trivially that ab = ba.

Theorem 6. For similar triangles, the ratio of any two corresponding altitudes
is equal to the ratio of any two corresponding sides.
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ResraTeMENT. Suppose that AABC ~ AA'B'C. Let h be the altitude from
A to BC, and let b’ be the altitude from A’ to B'C’. Then

b AB
K A'B
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Ficure 12.14

Proof. Let AD and A’D’ be the altitudes whose lengths are h and 4, If D = B,
then D’ = B’, and there is nothing to prove. If not, AABD ~ AA’B'DY, and the

theorem follows.
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POLYGONAL REGIONS AND
THEIR AREAS

I/l&l THE AREA POSTULATES

A triangular region is a figure which is the union of a trianglé and its interior
like this:

Fieure 13.1

The sides of the triangle are called edges of the region, and the vertices of the tri-
angle are called vertices of the region.
A polygonal region is a figure like one of these:

\
A
I
e
/

7 /’
//’

Fraure 13.2

To be exact, a polygonal region is a plane figure which can be expressed as the
union of a finite number of triangular regions, in such a way that if two of the
triangular regions intersect, their intersection is an edge or a vertex of each of them.
In each of the illustrations in Fig. 13.2, the dotted lines indicate how the regions
can be cut up into triangular regions in such a way that the conditions of the
definition are satisfied. Of course, there is nothing unique about the way in which
a polygonal region can be cut up into triangular regions. In fact, if such a process
can be carried out at all for a particular figure, it can be done in infinitely many
153
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ways. For example, a parallelogram plus its interior can be cut up in at least this

many ways:
N\ \ P e
AN \ 7 ad
\\ /‘\ //
\ // \\ //

Ficure 13.3

1

The theory of area is easiest to handle for the case where the figures that we are
dealing with are polygonal regions. And the easiest way to set up the theory is
to suppose that an area function is given, under which to each polygonal region
there corresponds a positive number called its area. Thus we let ® be the set of
all polygonal regions, and we add to our structure the function

a:® — R.

Thus the total structure in our geometry is now
[S! B’ 0’ dl m) a]’

and we need to state the postulates governing the area function «. (Here we are
using the Greek letter alpha because the natural English letters have by now been
used up for other purposes. We have used m for measure, and we want to go on
using 4 and a to say, for example, that a is the length of the side opposite 4 in
AABC.)

Our postulates are as follows.

A-1. aisa function ® — R, where ® is the set, of all polygonal regions and R is
the set of all real numbers.

A-2. For every polygonal region R, aR > 0.

A-3. The Congruence Postulate. If two triangular regions are congruent, then
they have the same area.

A-4. The Additivity Postulate. If two polygonal regions intersect only in edges
and vertices (or do not intersect at all), then the area of their union is the sum
of their areas.

FiGure 13.4
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For example, a(R; U Rg) = aR; + aR,. Of course, areas cannot be added in
this way if the intersection of the two regions contains a triangular region. Here
a(Ty U T,) is obviously less than a7, + aT';.

< =

Figure 13.5

Note that if we have an area function that satisfies Postulates A-1 through A-4,
and we then agree to multiply all areas by 2, then we get another area function that
also satisfies A-1 through A-4. Intuitively speaking, area measured in square
inches satisfies all our postulates so far, and so also does area measured in square
cubits. We therefore need a postulate which, in effect, chooses a unit of measure
for us by describing a connection between area and distance.

By a square region we mean the union of a square and its interior. Rectangular
regions are defined in the same way. One way to fix the unit of measure is to take
the following statement as a postulate: The area of a square with edge 1 is equal

tol. .

aR=a!

1
Figure 13.6

This would lead, however, to complications of a sort that we want to avoid in
the present chapter. The difficulty is that when we try to prove that the usual
area formula holds for rectangles, we get involved in a proof which has a good bit
in common with the proof of the basic similarity theorem. (See Section 13.5.)
For the moment, we avoid this by using the area formula for rectangles as a postu-
late.

A-5. The Unit Postulate. The area of a rectangular region is the product of its
base and its altitude.
b

aR=hh
Ficure 13.7

Later, we shall see that we can get along without any of the Postulates A-1
through A-5. It can be proved that there is an area function satisfying all of them.
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In the meantime, however, we shall take the area function as given, subject to
A-1 through A-5, and show how it can be put to work on various geometric problems.
The first step, of course, is to get formulas for the areas of the simplest figures.

Hereafter, for the sake of convenience, we shall speak of the areas of triangles,
areas of rectangles, and so on; this is an abbreviation. Triangles and quadrilaterals
are not polygonal regions, and obviously they are much too thin to have areas
greater than zero. Also we shall abbreviate aA ABC as ABC, o JABCD as ABCD,
and so on. This is consistent with our notation AB for the length of the segment
AB. In each case, when the letters appear without decoration, the resulting
expression denotes a number, and this number measures, in some way, the cor-
responding geometric figure. To repeat:

ABC = aAABC,

and
ABCD = o[ JABCD,

by definition.

13.2 AREA THEOREMS FOR TRIANGLES AND QUADRILATERALS

Theorem 1. The area of a right triangle is half the product of the lengths of
its legs. y

N S

C a
ABC=jab

Ficure 13.8

Proof. Given AABC, with a right angle at C. Let D be the point such that
[(JADBC is a rectangle. By the additivity postulate,

ADBC = ABC + ABD.

By the congruence postulate,

ABD = ABC.
Therefore
ADBC = 2ABC.
By the unit postulate,
ADBC = ab.
Therefore 24ABC = ab, and
ABC = #ab,

which was to be proved.
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Theorem 2. The area of a triangle is half the product of any base and the cor-
responding altitude.

B B
B
|
| i
| ]
h }h h|
! | ,
b b hb b by
A=D C A D C D A b C

Figure 13.9

Proof. Given AABC. Let D be the foot of the perpendicular from B to A0 ;
let AC = b, and let BD = h (as in each of the figures). There are, essentially,
three cases to consider.

(1) If A = D, then AABC is a right triangle and

ABC = %bh,
by Theorem 1.
(2) A-D-C. Let AD = by and DC = b,. By Theorem 1,

BDA=#bh  and  BDC = #bsh.

By the additivity postulate,
ABC = BDA + BDC.
Therefore
ABC = %bih + 3bsh = 4(b1 + ba)h
= b,
which was to be proved.
(3) D-A-C. Let b’ = AD. By Theorem 1,

BDC = (b’ + b)h.
Also by Theorem 1,
BDA = #b'h.
By the additivity postulate,
BDC = BDA + ABC.
Therefore
ABC = BDC — BDA

= ¥ + b)h — $b'h
= $bh,
which was to be proved.

Theorem 3. The area of a parallelogram is the product of any base and the
corresponding altitude.
ABCD = bh.
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Figure 13.10

Proof. Given a parallelogram ["JABCD, with base b = AD and corresponding
altitude h = BE. By the additivity postulate,

ABCD = ABD + BDC.
By two applications of Theorem 2,
ABD = }bh  and  BDC = %bh.
(Details? We nced to know that BC = b and DF = h.) Therefore

ABCD = }bh + bk = bh,

which was to be proved.

This is not the order of derivations that we most often see; usually we get the
area formula for parallelograms first, and derive Theorem 2 from it. The “proof”
of Theorem 3 then looks like this:

B

Ficure 13.11

(1) ABCD = ABE + BCDE.

(2) ABE = DCF, because AABE = ADCF.

(3) ABCD = BCDE + DCF.

(4) BCDE + DCF = BCFE, by the additivity postulate.

(6) BCFE = bh, by the unit postulate, because BCFE is a rectangle.

This “proof” works only in the cases described by the figures that are drawn to
illustrate it. Consider the following case. If the parallelogram looks like Fig.
13.12, then the above discussion becomes nonsense in the very first step, because
there is no such thing as “the quadrilateral [JBCDE,” and even if we allowed
quadrilaterals to cross themselves, the equation ABCD = ABE + BCDE would
not hold for the areas of the corresponding polygonal regions.
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Fieure 13.12

Theorem 4. The area of a trapezoid is half the product of the altitude and the
sum of the bases.

B b, c
l\
|
|
Ih
|
|
A by D

ABCD=)(b,+b)h
Ficure 13.13

Proof. The main steps are as follows:

(1) ABCD = ABD + BDC,
(2) ABD = $bh,

(3) BDC = $b;h,

(4) ABCD = %(by + ba)h.

Note that Theorem 4 includes Theorem 3 as s special case, because every
parallelogram is a trapezoid. Note also that the proof of Theorem 4 is exactly the
same as that of Theorem 3. The point is that, although the invalid proof of Theorem
3 uses and needs the fact that AB || CD, the valid proof does not.

Theorem 5. If two triangles have the same altitude, then the ratio of their areas
is equal to the ratio of their bases.

This theorem follows immediately from the area formula. If the triangles
AABC and ADEF have bases by, by, and the corresponding altitude for each
of them is h, then

ABC _ Wik _ b
DEF ~— ¥bah ~ by’

which was to be proved. In much the same way, we get the following theorem.

Theorem 6. If two triangles have the same base, then the ratio of their areas is
the ratio of their corresponding altitudes.
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The following theorem is a corollary of each of the preceding theorems.

Theorem 7. If two triangles have the same base and the same altitude, then
they have the same area.

b

Figure 13.14

Theorem 8. If two triangles are similar, then the ratio of their areas is the square
of the ratio of any two corresponding sides. That is, if

AABC ~ ADEF,

s =0

then,

-]

o
=

Ficure 13.15

Proof. If the altitudes to AC and DF are h and k', as in the figure above, then
we know by Theorem 6, Section 12.3, that

h

hoa c.
¥ood f
Now
ABC  %bh _ ( ) ( )
DEF  %ek’ —
fb\2
\e.

which was proved.

13.3 APPLICATIONS OF AREA THEORY: A SIMPLE PROOF OF THE BASIC
SIMILARITY THEOREM

The theory of plane area is not merely an adjunct to the geometry on which
it is based. If we use the area postulates A-1 through A-5 as part of our basic
apparatus, then we can simplify some of our proofs quite considerably. Probably
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the most striking simplification of this kind is in the proof of the basic similarity
theorem (Theorem 1, Section 11.4).

Consider first the case where the two transversals T and 7" intersect in a point
of L;. (It is quite easy, as we shall see, to pass from this to the general case.)
The picture then looks like this:

FiGgure 13.16

We have given BB’ || CC’, and we want to prove that

AB _ AB’
BC ~ BC

The steps in the area proof are as follows.
(1) ACBB’ and AC’BB’ have the same base b = BB’, and the same correspond-
ing altitude h. Therefore
CBB' = (C'BB'.

(2) Let us look at AABB’ and ACBB’ sidewise, taking AB and BC as their
bases. Then the corresponding altitudes are the  same. In each case, the altitude
is the length A’ of the perpendicular from B’ to AC. Therefore

ABB' _ AB
CBB’ =~ BC
by Theorem 5, Section 13.2.
(3) For exactly the same sort of reason,

ABB' _ AB'
CBE ~ BC

[To get this, merely replace B by B’, and C by C’, in step (2).]
(4) Therefore
AB ABB' _ ABB’ _ AB’

BC - CBB ~ CBF ~— BC'

which was to be proved.
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Consider now the general case. Let T"’ be the line through A4, parallel to 7",
intersecting L and Lg in B” and " Then

AB _ AB"
BC T BC"

by the preceding proof. But we have
AB"” = A'B,
B'C" = B'C’
s ’
because opposite sides of a parallelogram are congruent. Therefore

AB _ A'B
BC ~ BC’

Af \ 4 -1,

] 7A\ \\B =
C C C oy

AR

T T T

which was to be proved.

Ficure 13.17

This proof of the basic similarity theorem is, in a way, inelegant because it
creates the impression that the theorem depends on the theory of area. As we have
seen, this impression iy false. The area proof has, however, an important virtue;
that is, it makes the theorem o part of clementary geometry.

The area proof, incidentally, is the one given in Euelid. This fact, and the
proof itself, are not as widely known as they deserve to be.

13.4 FURTHER APPLICATIONS OF AREA THEORY: THE PYTHAGOREAN THEOREM

The Pythagorean theorem can be proved without using the concept of a simi-
larity. Such a proof goes like this. Given a right triangle A ABC, with legs of
length a, b, and hypotenuse, c.

Take a square [ JDEFG of edge a + b. In the square, construct four congruent
copies of AABC, as shown in the figure. (We construct them in the corners of
the big square, using SAS.) Then ZKHI is a right angle, because £ DHK and
ZEHI are complementary. Ior the same reason, all the angles of [ JHIJK are
right angles, and [JHIJK is a square.
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G a J b F
Figure 13.18

By the additivity postulate for area, the area is equal to the area of the little
square, plus the areas of the four right triangles. Since the right triangles are all

congruent, we have
DEFG = HIJK + 4- KDH

or
(@a+b2=c2+4-%ab
or
a2 + 2ab + b% = ¢ + 2ab.
Therefore

a2 + b2 —_ cz’
which was to be proved.
Euclid’s proof also used areas, but it was different from the one above and
considerably more complicated. Given a right triangle, he constructed squares

on each of the sides, like this:
1
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Ficure 13.19
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Here AABC is a right triangle, with its right angle at C. The outer figures are
squares, and (K is perpendicular to AB and FG, intersecting then at D and K.
The main steps in Euclid’s proof were as follows.

(1) ADKF = 2CAF. (The rectangle and the triangle have the same base AF,
and the same altitude 4D.)

(2) EHCA = 2EAB. (The square and the triangle have the same base EA,
and the same altitude AC.)

(3) LEAC =~ LFAD, because both are right angles, and ZCAD = ZCAD.
Therefore LEAB = LCAF. But EA = AC, because [ JEHCA is a square;
and AB = AF, because [ JABGF is a square. By SAS, we have

AEAB = ACAF.

Therefore
EAB = CAF.

(4) From (1), (2), and (3), we get
ADKF = EHCA.

That is, the square at the upper left has the same area as the rectangle at the lower left.
By exactly the same reasoning, we get the same conclusion for the square and

rectangle on the right:
KDBG = BCI1J.

That is, the square at the upper right has the same area as the rectangle at the lower right.

(5) Since the area of the lower square [ JABGF is the sum of the areas of the
two rectangles [ JADKF and [ JKDBG, it follows that the area of the square on
the hypotenuse is equal to the sum of the areas of the squares on the legs.

This proof is quite different in spirit, and in an important way, more elegant
than the two that we have seen already. One way of putting it is that while our
first two proofs depended on calculations, Euclid’s reasoning is more geometric
and more conceptual. The figure that goes with it is more than a reminder of the
hypothesis and the notation; it is, in a sense, a picture of the Pythagorean phe-
nomenon, so that if you understand the figure, you understand why the theorem
is true.

In a way, the above presentation of Euclid’s proof is misleading. It suggests
that the Pythagorean theorem meant the same thing to Euclid, in the Elements,
that it meant to us in Chapter 12 of this book; and this is far from being true.
Theorem 2, Section 12.3, stated that under certain conditions, the numbers a, b,
¢ must satisfy the equation a? 4+ b2 = ¢2; and the theorem appeared in a presenta~
tion of geometry in which the real numbers are given, independently of geometric
concepts, and are used in the geometry to measure > things. Thus we use the number
AB as the measure of the length of the segment AB we use the number ABC as
the measure of the area of the triangle A ABC; and so on.

In Euclid, there are no numbers independent of geometric concepts, except, of
course, for the positive integers, which are used to count things. To recast his
theory, in a form meeting modern standards of explicitness and exactitude, is a
rather formidable task. We have given a sample of this in Chapter 8. There we
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4 1
Ficure 13.20 Figure 13.21

showed that instead of using the concept of length for segments (this length being
a real number) you can use the concept of same-length: two segments have the same
length if they are congruent, and congruence between segments is an undefined
term, subject to certain postulates. Much the same thing can be done for the theory
#0f area, but it is technically very difficult. It is therefore customary, especially in
elementary courses, to use the far simpler apparatus of metric geometry. Often
this is done unobtrusively, and it is not easy to see what is going on. A moment’s
reflection, however, will convince us that any time you label a figure as shown in the
illustrations above, you are doing metric geometry, whether or not you choose to
say so.

13.5 A WEAKER FORM OF THE UNIT POSTULATE A-5

Our fifth postulate for area asserted that the area of a rectangle (that is, of a
rectangular region) was the product of the base and the altitude. We remarked that
the following postulate would have been sufficient.

A-5'. If a square has edges of length 1, then its area is 1.

This postulate gives us, in a minimal sense, a “unit of measure.” We shall
show that it implies A-5.

Theorem 1. If a square has edges of length 1/¢ (g an integer), then its area
is 1/¢2.
Proof. A unit square region can be decomposed into ¢2 square regions, all with
" the same edge 1/q and with the same area A (Fig. 13.22). Therefore 1 = ¢%4,
and A = 1/¢°

1
q

FiGure 13.22
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Theorem 2. If a square has edges of rational length p/q, then its area is p’/-q’.
Proof. Such a square can be decomposed into p? squares, each of edge 1/q. \l

i

Figure 13.23
If A is its area, then
2.1 7
A — p . qz — F .
Theorem 3. If a square has edges of length a, then its area is a2.

Proof. Given a square S, with edges of length a. Given any rational number
p/q, let Sy be a square of edge p/g, with an angle in common with S,, like
this:

Surg Sa

Fiaure 13.24

Each of the following statements is easily seen to be equivalent to the next.
M p/g<ea i

(2) Sp/q lies in S, (with two rectangular regions and a square region left over.)
(3) aS,,,,, < aSa.

(1) p*/¢* < aS..

(5) P/q < ‘V’ aSa-

Since (1) and (5) are equivalent, we have
a =’ vV aSo,

so that a? = aS,, which was to be proved.
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Fiaure 13.25

We can now prove A-5. Given a rectangle of base b and altitude h, we construct
a square of edge b + A, and decompose it into squares and rectangles as shown
in the figure above. Then

b+ h)? =24+ Ay + 4y,
b? + 20k + h% = 24 + B + b,
2bh = 24,

and A = bh, as desired.
The above treatment is due to Peter Lawes, a student of the author. It is much

simpler than the author’s first version of the proof.
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THE CONSTRUCTION OF AN
AREA FUNCTION

14.1 THE PROBLEM

In the preceding chapter we assumed that an area function was given, and that
it satisfied the Postulates A-1 through A-5. This was a quite reasonable proceed-
ing; in fact, in elementary geometry, it is the only approach that is simple enough
to be manageable.

It is natural, however, to ask whether this fairly complicated set of assumptions
was merely a matter of convenience or actually a logical necessity. The question
is whether on the basis of our other postulates, we can define an area function for
polygonal regions and prove that our function satisfies the conditions A-1 through
A-6. The answer is that we can.

In setting up such a function, it is clear that we shall have to begin by assign-
ing an area to some sort of figure. It seems pretty hopeless to try to do everything
at once, by assigning an area to every polygonal region at the very start. We ought
to begin by defining areas for certain simple figures, and try to handle the more
complicated figures in terms of the simple ones. For this purpose, rectangles are
not promising because they cannot be used as building blocks, except for very
special figures. IFor example, a triangular region cannot be expressed as the union
of a finite number of rectangular regions. It is true that we got the formula 4bh,
for the area of a right triangle, from the formula bh for the area of a rectangle.
But to do this, we had to suppose that there was such a thing as the area of a right
triangle; and in our present program, the latter question is the whole peint at
issue.

This suggests that our “point of entry” should be not rectangles, but triangles.
We begin building our arca function by stating, as a definition, that for any A ABC,

the area is ABC = bh,

where b is any base and h is the corresponding altitude. This makes sense, because
we have shown (Theorem 5, Section 12.3) that the product bk depends only on
the triangle, and does not depend on the choice of the base.

We now want to use triangles as building blocks. Given a polygonal region, we
cut it up into a finite number of triangular regions intersecting only in edges and °
vertices (Fig. 14.1). For cach of the triangles, the area is already defined, by the
formula &bh. If our theory is going to work, then we ought to be able to get the area

168
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Figure 14.1

of the whole region by adding up the formula areas of the triangles. This suggests
a tempting procedure: We might solve our problem at once by defining the area
of the region as the sum of the formula areas of the triangles.

There is, however, a difficulty. Any polygonal region can be cut up into triangular
regions in infinitely many ways:

Figure 14.2

Therefore, before we can define the area of a polygonal region as the sum of the
formula areas of the little triangular regions, we need to prove that this sum
depends only on the region that we started with, and is independent of the way in which
we cul it up.

At first glance, this problem may seem trivial, and after a little reflection it may
seem almost impossible. The truth is somewhere in between, as we shall see.

14.2 COMPLEXES AND THEIR FORMULA AREAS

Given a polygonal region R, expressed as the union of a finite number of tri-
angular regions, intersecting only in edges and vertices. The set K whose elements
are the triangular regions is called a complez, and is called a triangulatior. of R:

Ficure 14.3
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In the figure, the complex K is the set
{Tlv T2; Tav Tlr TS}'

Thus R and K are objects of quite different kinds. R is an infinite set of points,
and K is a finite set of triangular regions. The vertices and edges of the Ts are
also called vertices and edges of K.

We are going to define the area of a triangle by the formula 3bh. To avoid
confusion between the area function that we shall finally set up and the apparatus
that we are using in the process, we shall call this the formula area, and state our
first official definition as follows.

DerFiniTiON 1. The formula area of a triangle is half the product of any base
and the corresponding altitude.

DeriniTION 2. The formula area of a complex is the sum of the formula areas
of its clements.

A strip complex is a complex that looks like either of the figures below:

Ficure 144 Figure 14.5

More precisely, a complex K is a strip complex (1) if K is a triangulation of a trape-
zoid or a triangle, (2) for the trapezoidal case, all vertices of K are on the upper
or lower base, and (3) for the triangular case, all vertices of K are on the base or
the opposite vertex.

Note that these cases are being handled together, as if the triangle were a
“trapezoid with upper base = 0.” The following theorem should also be inter-
preted in this way.

Theorem 1. The formula area of a strip complex is #(b; + bz)h, where by
and b; are the bases and h is the altitude.

€ € €3

2 Ja 5 Js
Fiagure 14.6
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Proof. The sum of the formula areas of the triangles with two vertices on the

| .« upper base is
derh + degh + - - - + denh,

where ¢y, €3, . . ., e, are the lengths of the segments into which the upper base is
divided by the vertices. The sum of the formula areas of the other triangles is

ik + 3foh + < -+ + &fuh.

Therefore the formula area of the complex is

thiey + ez + - -+ en) + $h(f1 + f2+ - - + fm) = Bhb; + #hb,
= §(by + ba)h,
which was to be proved.
It will be convenient to generalize this result slightly. By a strip decomposition
of a triangle or trapezoid, we mean a decomposition into triangles and trapezoids,
like this:

Ficure 14.7

The formula area of a trapezoid is defined to be 4(b; + by)h, where A is the altitude
and b, and b, are the bases. The triangles and trapezoids in a strip decomposition
are called its parts.

Theorem 2. For any strip decomposition of a triangle or trapezoid, the formula
ares of the original figure is the sum of the formula areas of the parts.

Proof. If none of the parts are trapezoids, this follows immediately from Theorem
1. If some trapezoids appear, we split each of them into two triangles by putting

_in a diagonal:
4 / /
7/
d / i
/ /1
/ Al
/ [
/

Ficure 14.8

This does not change the sum of the formula areas of the parts. Therefore our
theorem follows from Theorem 1.

Theorem 3. If A-D-C, A-E-B, and DE || BC, then the formula area of AABC
is the sum of the formula areas of AADE and [_]DEBC.
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I
|
|
A
. b,

FiGUure 14.9

Proof. Let by = BC and by = DE; let k) and k; be the altitudes of [JDEBC
and AADE. Our theorem then says that

3bshy + $(by + ba)hy = 4by(hy + ha)
or
bghy -+ byhy + behy = bihy + bihg

or
ba(hy + h2) = bihs

hi+he b1
by

This is true, by Theorem 6, Section 12.3, because AADE ~ AACB.

By a parallel decomposition of a triangular region, we mean a decomposition
into one or two triangles and a finite number of trapezoids, like either of the
following figures. (Let us spare ourselves the formal definition.)

C
() (b)
Figure 14.10

Theorem 4. TFor any parallel decomposition of a triangle, the formula area of
the original triangle is the sum of the formula areas of the trapezoids and the
triangles in the decomposition.
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. Proof. For Case 1 (Fig. 14.10b) this follows by repeated applications of the
preceding theorem, working from the top downward. For Case 2, [Fig. 14.10(a)]
we observe, first, that by Theorem 1, the formula area of A ABC is the sum of the
formula areas of ABDC and AABD. (To apply Theorem 1, we must look at the
figure sidewise.) Now apply the result of Case 1 to each of these. We are now
ready to prove our main theorem.

Theorem 5. All triangulations of the same polygonal region have the same
formula area.

Proof. Given two triangulations K; and K, of a polygonal region R.

Ficure 14.11

1In the figure, the edges of K; are solid, and those of K, are dashed.

We take a family of parallel lines Ly, Ly, . .., L. passing through all vertices
of K, all vertices of K, and all points where edges of K, intersect edges of K.
(These are the horizontal lines, formed with long dashes, in the figure.) Now the
lines L, give parallel decompositions of each triangle of K;:

Figure 14.12

Let us call these triangles and trapezoids the primary parts of K,. By definition,
the formula area of K, is the sum of the formula areas of these triangles. We
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appl.y Theorem 4 to each triangle, and add the results. This gives:
(1) The formula area of K, is the sum of the formula areas of the primary parts

of K 1.
The edges of K give a strip decomposition of each primary part of K;:

Figure 14.13

Let us call these smaller triangles and trapezoids the secondary parts of K;. (In
Fig. 14.13, there are a total of eight secondary parts, in the triangle shown. In
Fig. 14.11 at the beginning of the proof of Theorem 5, there are a grand total of
31 secondary parts of K;.)

We know, by Theorem 2, that:

(2) The formula area of each primary part of K, is the sum of the formula areas
of the secondary parts that lie in it.

Combining (1) and (2), we get:

(3) The formula area of K, is the sum of the formula areas of the secondary
parts of K.

Applying the same reasoning to K, we get:

(4) The formula area of K, is the sum of the formula areas of the secondary

parts of K.
This tells us all that we need to know, because the secondary parts of K, are

exactly the same as the secondary parts of K;. Therefore, by (3) and (4), K,
and K have the same formula area, which was to be proved. Thus, we can state

the following definition.

DeriniTioN. The area aR of a polygonal region R is the numoc. ~hich is the
formula area of every triangulation of R.

14.3 VERIFICATION OF THE AREA POSTULATES FOR THE FUNCTION «

Trivially, we know that

A-1. aisa function ® — R.

A-2. aR > O for every R.

A-3. Any two congruent triangles have the same area.
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‘These follow immediately from the definition of a.
A-5. The area of a rectangle is the product of its base and its altitude,

The reason is that either diagonal divides a rectangle into two right triangles,
each of which has formula area = }bh. (This is exactly like the proof of Theorem 1,
Section 12.1, only now it works in reverse.)

We proceed to verify A-4. Given regions R, and R,, with triangulations K
and K. Suppose that By and Rj intersect only in edges and vertices. It may

Fieure 14.14

happen, as indicated in the figure, that some edges of K, (or K,) contain more
than one edge of K; (or Ky). If so, we split some triangles in K; (or K;) into
smaller triangles.

Ficure 14.15

In this way we get new triangulations K{, K whos union K is a triangulation of
R, U R;. Now a(R, U Ry) = aR; + aRy, because the formula area of K is
the sum of the formula areas of K; and K,. Thus A-4 is satisfied by a.
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PERPENDICULAR LINES AND PLANES
IN SPACE

15.1 THE BASIC THEOREMS
Given a line L and a plane E, intersecting in a point P.

If every line in E, passing through P, is perpendicular to L, then we say that L
and E are perpendicular, and we write L L E, or E L L. Inthe figure, L is supposed

>

1

E

Ficure 15.1

to be perpendicular to E. We have indicated two lines in E, passing through P.
These are both perpendicular to L, although, in a perspective drawing, they don’t
look as though they are. Note that when we say that L L E, we are making a
statement about an infinite collection of lines; that is, all of the lines that lie in
E and contain P must be perpendicular to E. If we required merely that E contain
one line perpendicular to L, this wouldn’t mean a thing. You can fairly easily
convince yourself that every plane that intersects L contains such a line. Suon
we shall prove that if E contains two lines perpendicular to L, then £ L L. The h
following two theorems are preliminaries.
A point A is equidistant from two points P and Q if AP = AQ (Tig. 15.2).
P

Theorem 1. If 4 and B are equidistant

from P and Q, then every point between \

A and B has the same property. X s
A

The main steps in the proof are as follows.

(1) APAB = AQAB. !

(2) LPAB = ZQAB.

(3) APAX = AQAX. 0

(4) PX = QX. Ficure 15.2
176
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Theorem 2, If a line L contains the midpoint of PQ, and contains anather point
which is equidistant from P and Q, then L L FQ.

Ficure 15.3

For APAD == AQAD by SSS. Therefore LZPAD =2 £QAD, and each is a
right angle.

Theorem 3. If a line is perpendicular to each of two intersecting lines at their
point of intersection, then it is perpendicular to the plane that contains them,

RESTATEMENT. Let L; and L, be two lines intersecting at 4, and let E be the
plane that contains them. Let L be a line which is perpendicular to L, and Ly
at A. Then every line in E through A is perpendicular to L.

Proof. Let P and Q be points of L such that P-A-Q and AP = AQ. Let Lg
be any third line in E through A. Now each of the lines L; and L; contains points
on each side of Lg in E. Let B and C be points of L, and L., lying on opposite
gides of Lg in E. Then BC intersects L3 in a point D = 4. Now

(1) APAB =2 AQAB, by SAS.
(2) PB = QB.

(8) Similarly, PC = QC.

(4) PD = @D, by Theorem 1.
(5) PG L Lj, by Theorem 2.

Fiaure 15.4
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The perpendicular bisector of a segment in a plane is the line which is per-
pendicular to the segment at its midpoint. The following theorems are easy to "
prove and serve as an introduction to the analogous theorems in space.

Theorem 4. If L is the perpendicular bisector of the segment 4B (in a plane E),
then all points of L are equidistant from A and B.

The converse is also true.

Theorem 5. Let A, B, and P be points of a plane E. If P is equidistant from
A and B, then P lies on the perpendicular bisector of AB.

Combining these two theorems, we get the following theorem.

Theorem 6. Thc perpendicular bisector of a segment in a plane is the set of
all points of the plane that are equidistant from the end points of the seg-
ment.

A theorem of this sort is called a characterization theorem. You have characterized
a figure—that is, a set of points—if you state a condition that is satisfied by the
points belonging to the given set, and by no other points. Usually the proof of a
characterization theorem is in two parts. For example, let L be the perpendicular
bisector of AB in the plane E and let

W = {P|Pliesin E, and PA = PB}.

Theorem 4 says that every point of L lies in W; that is, L C W. Theorem 5
says that every point of W lies in L; that is, W C L. Taken together, these state-
ments tell us that L = W; and this is precisely the content of Theorem 6.

Under a widespread usage, theorems like Theorem 6 are called locus theorems;
people sometimes say that “the perpendicular bisector of a segment is the locus
of all points of the plane that are equidistant from the end points.” The Latin
meaning of the word locus is no clue to this usage, because in Latin the word simply
means place, which doesn’t fit the context at all. The most straightforward way to
describe the usage is to say that a set of points is referred to as a locus if the
speaker is about to give a characterization of the set. For this reason, the word
locus can be thrown away without ever being missed; it has been superseded by
the universally applicable word set.

Pursuing the analogy of perpendicular bisectors in a plane, we may now be
tempted to say that the perpendicular bisector of a segment (in space) is the plane
which is perpendicular to the segment at its midpoint. This definition tacitly assumes
that through the midpoint of a segment there is one and only one perpendicular
plane; and therefore we—or rather you—should prove these statements, in order
to legitimize the definition. )

Theorem 7. Given a line L and a point P of L. There is at least one plane which
is perpendicular to L at P.
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Theorem 8. Given a line L and a point P of L. There is only one plane whu:h
is perpendicular to L at P.

[Hint: L is the intersection of two planes E, and E;.] We can now prove theorems
analogous to Theorems 4, 5, and 6.

Theorem 9. Every point of the perpendicular bisecting plane of a segment is
equidistant from the end points of the segment.

FicuRre 15.5

Proof. Let A be the midpoint of PQ, let E be perpendicular to PQ at 4, and let
X be any point of E. If X = A, then X is equidistant from Pand Q. If X » A,
then by SAS we have APAX =~ AQAX, so that PX = QX, which was to be
proved.

Theorem 10. Every point equidistant from the end points of a segment lies in
the perpendicular bisecting plane of the segment.

ResTATEMENT. Let M be the midpoint of PQ, let E be the plane perpendicular
to PQ at M, and let X be a point such that PX = QX. Then X lies in E.

Proof. By Theorem 2, MX L PQ at M. Let F be the.plane that contains
PQ and X. Then F intersects E in a line L, and L L PQ at M. Therefore L =
mx , because perpendicular lines in a plane are unique. Therefore X lies in E,
which was to be proved.

Fitting these theorems together, as in the planar discussion, we get a characteriza-

tion theorem.

Theorem 11. The perpendicular bisecting plane of a segment is the set of all
points that are equidistant from the end points of the segment.

We shall need the following theorem in discussing perpendiculars to planes
through external points.
Theorem 12. Any two lines perpendicular to the same plane are coplanar.

Proof. Let Ly and L be perpendicular to the plane E at points 4 and B, re-
spectively. Let M be the midpoint of AB, let L be the perpendicular bisector of
AB in E, and let P and @ be two points of L, equidistant from M.
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Figure 15.6

We shall show that every point C of L, is equidisiant from P and Q. Now AP =
AQ, because AB s the perpendicular bisector of PQ. Since L, 1 E, it follows that
ACAP == ACAQ. Therefore CP = CQ.

In the same way it follows that every point of L, is equidistant from P and Q.
Therefore L, and L, lie in the same plane, namely, the perpendicular bisecting
plane of the segment PQ. (See Theorem 11.)

The rest of the theorems in this section are stated without proof; you should
be able to furnish the proofs in each case. (But for Theorem 15 you will probably
need the hints at the end of the section.)

Theorem 13. Through a given point in a given plane there is at least one line
perpendicular to the given plane.

Theorem 14, Through a given point in a given plane there is at most one line
perpendicular to the given plane.

Theorem 15. Through a given point not in a given plane there is at least one line
perpendicular to the given plane.

Theorem 16. Through a given point not in a given plane there is at most one
line perpendicular to the given plane.

The preceding four theorems fit together to give the following theorems.

Theorem 17. Given a point and a plane, there is exactly one line which passes
through the given point and is perpendicular to the given plane.

Theorem 18. If a plane E and line L are perpendicular at a point P, then E
contains every line that passes through P and is perpendicular to L.

The main stages in the proof of Theorem 15 are the following. We have given
a plane E and an external point P.

(1) Let L, by any line in E.

(2) Let E| be the plane containing P and L,.
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(3) Let Ly be the perpendicular from P to L,, intersecting L, at Q.
(4) Let L3 be the perpendicular to L; at Q, in E.
(5) Let E3 be the plane containing P and L.
(6) Let L be the perpendicular from P to Lg, in Es,.
We then show that L L E.

ProBLEM Szt 15.1

1. Prove Theorems 7, 8, 13, 14, 15, 16, and 18, above.
2. Show that if & line L contains two points equidistant from P and @, then every point
of L is equidistant from P and Q.

3. Show that if a plane E contains three noncollinear points which are equidistant from
P and Q, then all points of E are equidistant from P and Q.

15.2 PARALLEL LINES AND PLANES IN SPACE

Two planes are called parallel if they have no point in common. If the planes
E, and E, are parallel, then we write E; | E;. Similarly, a line L and a plane E
are parallel if they have no point in common; we abbreviate this by writing L || E,
orE || L.

The theory of parallelism in space is closely analogous to that of parallelism in
a plane. No new postulates are needed, and the proofs are easy, as we shall see.

Theorem 1. If a plane intersects two parallel planes, then it intersects them in
two parallel lines.

Ficure 15.7

Proof. We have given a plane E, intersecting two parallel planes E, and E;
in the nonempty sets L, and L,. By Postulate I-4, the sets L, and L3 are lines.
They are coplanar, because E contains both of them, and they have no point in
common, because L, lies in E, and L; lies in E,. Therefore L; and L3 are parallel
lines, which was to be proved.

Theorem 2. Two lines perpendicular to the same plane are parallel.
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4L §L,

ol

Fioure 15.8

Proof. Given Ly and L,, perpendicular to a plane E at points P and Q. By
Theorem 12, Section 15.1, Ly and L, are coplanar. And each of them is perpendic-
ular to the line PQ, because PQ lies in E. Therefore L, || Ls. (Why?)

Theorem 3. If a line is perpendicular to one of two parallel planes, it is perpen-
dicular to the other.

Ficure 15.9

Proof. Let E, and E3 be the two parallel planes, and let L be a line perpendicular to
E, at P;. Thus we have given that every line in E, that contains P, is perpendic-
ular to L. We need to prove two things: o

(1) L intersects E; (in a point P5).
(2) Every line in E; that contains P; is perpendicular to L.

Proof of (1). Let Q2 be any point of E;, and let §;Q; be the perpendicular
segment from Q; to a point @, of E,. If Q; = P;, there is nothing to prove, be-
cause, in this case, b_@; = L, by Theorem 14, Section 15.1, and L therefore
intersects E,.

Suppose, then, that Q; = P;. By the preceding theorem, it follows that L ||
0:1Q:. If it were also true that L || Ly, then it would follow that Ly || 8;Qa, which
is false. Therefore L and Lj are not parallel; L and L intersect, at a point Ps.
Then P; lies in both L and E,, which was to be proved.
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Ficure 15.10

Proof of (2). We now have given that L intersects E; at P;. Let L be any line
in E,, passing through P;. We need to prove that L, L L.

Let B be the plane that contains L and L;. Then E intersects E, in a line L,.
By Theorem 1, L; || L2, and L; L L, because every line in E, through P, is per-
pendicular to L. Therefore L, L L, which was to be proved.

Theorem 4. Any two planes perpendicular to the same line are parallel.

Proof. Suppose that L is perpendicular to E; at P and perpendicular to Eg
at Q. If E, intersects E; at a point R, then A PQR has right angles at both P and
Q, which is impossible.

ProrLEM SET 15.2

The following theorems have rather short proofs. Prove them.

Theorem 5. A plane perpendicular to one of two parallel lines is perpendicular to the
other.

Remember that you must begin by showing that the given plane intersects the second
of the given lines.

Theorem 6. If two lines are each parallel to a third line, they are parallel to each
other.

Theorem 7. Two parallel planes are everywhere equidistant. That is, all perpendicular
segments from one of the two planes to the other are congruent.

Theorem 8. Let H be a half space with face E. Let ¢ be y I
& positive number. Let F be the set of all points Q of H /
whose perpendicular distance from E is =e. Then F ﬁ 14
is a plane. .
[Hint: For the proof, let P be a point of E, and let AP :
be a segment perpendicular to E, such that AP = e. E
Let E' be the plane through A, perpendicular to AP. P
Show that (1) FCE’, and (2) E'CF. It will follow
that F is a plane, namely, the plane E’.] Figure 15.11




184 PERPENDICULAR LINES AND PLANES IN SPACE /

/
15.3 THE MEASURE OF A DIHEDRAL ANGLE: PERPENDICULAR PLANES, /
{

We recall that a dihedral angle is the union of a line and two noncoplnna.fl half
planes having the line as their common edge. The line is called the edge ¢f the
dihedral angle, and the two half planes are called its sides or faces.

Figure 15.12

If E is the edge, and A and B are points on different sides, then the dihedral
angle is denoted by ZA-PQ-B. 1t is clear, of course, that the dihedral angle is
completely determined when P, @, A, and B are named.

It is not hard to see that if E is a plane which intersects the edge Pq in only
one point C, then E intersects £ A-PQ-B in an angle:

FiGure 15.13

In the figure, £ is the plane Fz')ﬁ, intersecting the dihedral angle ZA-PQ-B in “
ZDCF. The size of ZDCF depends, of course, on the position of the plane E.

In the figure, ZDCF is “fairly large”; but if ZPCD and ZPCF are both very
“small,” then ZDCF will also be “very small.”

If through a point C of the edge we pass a plane E, perpendicular to the edge,
then the intersection of E with the dihedral angle is called a plane angle of the
dihedral angle. We shall use the plane angles to define a degree-measure for dihedral
angles. To do this, we need the following theorrm.

Theorem 1. Any two plane angles of the same dihedral angle are congruent. |

Proof. Let £C and £ D be two plane angles of the given dihedral angle. Take
points P, Q, R, S on the sides of ZC and £ D, as in the figure, so that CP = DQ
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Fioure 15.14

and CR = DS. (When we say “as in the figure,” this means that P and @ are
on one side of the dihedral angle; R and S are on the other side of the dihedral
angle.)

The main steps in the proof are as follows.

(1) CP || DQ. (These segments are coplanar, and perpendicular to the same
line.)

(2) [JCPQD is a parallelogram. (A pair of opposite sides are congruent and
parallel.)

(3) PQ = CD. (Why?)

(4) PQ || CD. (Why?)

(1) CR | DS.

(2’) (JCRSD is a parallelogram.

(3) BS = CD.

(4') RS || CD.

(5) PQ = RS (by (3) and (3).

(6) PQ || RS (by (4) and (4)).

(7) PR = Q8. (Why?)

(8) APCR == AQDS (by SS8).

(9) £LPCR == £QDS, which was to be proved.

We can now define the measure of a dihedral angle. The measure mZ A-PQ-B
is the number which is the measure of all plane angles of £ A-PQ-B.

The same theorem enables us to define right dihedral angles. A dihedral angle is
a right angle if its plane angles are right angles. Two planes are perpendicular if
their union contains a right dihedral angle.

ProBrLEM ST 15.3

Prove the following theorems.
Theorem 2. If a line is perpendicular to a plane, then every plane that contains the
given line is perpendicular to the given plane.

Theorem 3. If two planes are perpendicular, then any line in one of them, perpendicular
to their line of intersection, is perpendicular to the other.
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CIRCLES AND SPHERES

16.1 BASIC DEFINITIONS

Let P be a point of a plane E, and let » be a positive number. The circle with
center P and radius r is the set of all points Q of F whose distance from P is equal
to r. Two or more circles with the same center are called concentric.

FiGure 16.1

If @ is any point of the circle, then the segment @ is a radius of the circle,
and @ is called its outer end. If @ and R are any two points of the circle, then
the segment QR is a chord of the circle. A chord that contains the center is called
a diamelcr of the circle. Evidently the length of every diameter is the number
2r. This number 2r is called the diameter of the circle. (Note that the word radius
is used in two senses. It may mean either a number r or a segment PQ. But it
will always be easy to tell which is meant. When we speak of the radius, we mean
the number 7, and when we speak of a radius, we mean a scgment. Similarly for
the two uses of the word diameter.) “

The interior of a circle is the set of all points of the plane whose distance from
the center is less than the radius. The exlerior of a circle is the set of all points of
the plane whose distance from the center is greater than the radius.

Exterior

Fiaure 16.2
186
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The corresponding definitions for spheres in space are precisely anslogous.
They are as follows.

Given a point P and a positive number ». The sphere with center P and radius r
is the set of all points @ whose distance from P is equal to 7. Two or more spheres
with the same center are called concentric.

N

Figure 16.3

If Q is any point of the sphere, then the segment PQ is a radius of the sphere,
and @ is called its ouler end. If Q and R are any two points of the sphere, then
the segment QR is called a chord of the sphere. A chord which contains the center
is called a diameter of the sphere. Evidently the length of every diameter is the
number 2r. The number 2r is called the diameter of the sphere.

The snterior of a sphere is the set of all points whose distance from the center is
less than the radius. The exterior of a sphere is the set of all points whose distance
from the center is greater than the radius.

ProBLEM SET 16.1 .

1. Show that every circle has only one center and only one radius. That is, if the circle
with center P’ and radius +’ is the same as the circle with center P and radius r, then

P = Pandr = r. [Hint: Suppose that P » P’, and consider the line BP)

16.2 SECANT AND TANGENT LINE. THE LINE-CIRCLE THEOREM

Given a circle C and a line L in the same plane. If the line and the circle have one
and only one point in common, then the line is called a tangent line, and the common
point is called the point of tangency, or point of contact. If the line intersects the
circle at more than one point, it is called a secant line. The following theorem is
familiar, and is easy to prove.

Theorem 1. If a line is perpendicular to a radius of a circle at its outer end,
then the line is a tangent.

Proof. Let C be a circle with center at P; let PQ be a radius, and let L be per-
pendicular to PQ at Q (Fig. 16.4). If R is any other point of L, then PR > PQ,
because the shortest segment joining a point to a line is the perpendicular segment.
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Ficure 16.4

Therefore R is in the exterior of C. Therefore L intersects C only at @ and hence is
a tangent line.

The converse is also true.

Theorem 2. Every tangent to a circle is perpendicular to the radius drawn to
the point of contact.

Ficure 16.5

Proof. Let C be a circle with center at P, and let L be tangent to C at Q. Sup-
pose that @ is not the foot of the perpendicular from P to L, and let R be the
point which ¢s the foot of the perpendicular. By the segment-construction postulate
(or the segment-construction theorem, according to the chapter in which you refer
to it), there is a point S of L such that Q-RB-S and RQ = RS. By the Pythagorean W
theorem, applied twice, we have :

PR® 4- RS? = PS%,  PR®+ RQ® = PQ>
Therefore PS = PQ, 8 lies on the circle, and L is not a tangent line.
The proofs of the following theorems are fairly straightforward.

Theorem 3. Any perpendicular from the center of C to a chord bisects the chord.

Theorem 4. The segment joining the center to the midpoint of a chord is per-
pendicular to the chord.

Theorem 5. In E, the perpendicular bisector of a chord passes through the center.
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Circles with the same radius r are called congrueni. By the distance between

. the center of a circle and a chord, we mean, of course, the perpendicular distance;

that is, the length of the perpendicular segment from the center to the chord.

'Itb‘:o chords are equidistant from the center if their distances from the center are
same.

Theorem 6. In the same circle or in congruent circles, chords equidistant from
the center are congruent.

Theorem 7. In the same circle or in congruent circles, any two congruent chords
are equidistant from the center.

The following innocent looking theorem is of special interest.

Theorem 8. The Line-circle Theorem. If a line intersects the interior of a circle,
then it intersects the circle in exactly two points.

AL

C
X=R?

X=5?

Fiaure 16.6

Proof. Let C be the circle with center at P and radius r, and let L be the line.
Let Q be the foot of the perpendicular from P to L. Since PZ < r for some point
Z of L, it follows that PQ < r; that is, @ lies in the interior.

Let PQ=3s<r,

as indicated in the figure. We want to prove that C intersects L in exactly two
points, E and S.
If X is a point where the line intersects the circle, then A PQX has a right angle
at Q. Therefore
8? + QX I= 72)

by the Pythagorean theorem. Hence
QX =
And conversely, if X lies on L, and QX = /2 — &2, it follows that
PX* &4 (VT =)’

s+ -4
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Now r2 — s% > 0, because 8 < r. By the Euclidean completeness postulate,
r? — §? has a positive square root v/r2 — s2. By the ruler. postulate, there are
exactly two points X of L such that QX = +/r2 — s2. Therefore exactly two
points lie both on the line and on the circle.

This theorem is noteworthy, because to prove it we had to use the Euclidean
completeness postulate, for the first time. This fact should not surprise us, be-
cause the theorem itself describes a completeness property of the plane. If the
plane “had holes in it,” and “some points that ought to be there were missing,”
then the theorem would fail. f

?

J?

Figure 16.7

In the present treatment, this sort of thing is ruled out by the Euclidean com-
pleteness of the real number system. In a purely synthetic treatment, Theorem 8
should be taken as a postulate.

16.3 SECANT AND TANGENT PLANES

The analogy between the following discussion and the preceding one is fairly
close. Given a sphere S and a plane E. If the plane and the sphere have one and
only one point @ in common, then the plane is called a tangent plane, and the com-
mon point @ is called the point of tangency, or point of contact. If the plane inter-
sects the sphere in more than one point, it is called a secant plane.

Theorem 1. Every plane perpendicular to a radius at its outer end is tangent to S.

Proof. If R is any point of the plane E, other than @, then PR > PQ, because
the perpendicular segment from P to E is the shortest.

FiGure 16.8
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¥ X Everytangenttoaspheremperpendmuhrtothemdmadmwnto
the point of contact.

Figure 16.9

Proof. Let E be tangent to S at Q. Suppose that Q is not the foot of the per-
pendicular from P to E, and let R be the point which 43 the foot of the perpendic-
ular., Let C be the circle with center at R, with radius RQ, in the plane E. If T
is any point of C, then RT L PR. Therefore, by the Pythagorean theorem, we have

PT? = PR? 4+ RT?
= PR? + RQ*.

But PR? + RQ? = PQ> Therefore T lies not only in E but also in S. Thus E
intersects S in an entire circle; and this contradicts the hypothesis for E.

Theorem 3. If a plane FE intersects the interior of S, then E intersects S in a
circle.

Proof. Let Q be the foot of the perpendicular from the center P of S to the plane
E,and let s = PQ. Then s < r. Therefore rZ — §2 > 0. Let

(By Euclidean completeness, again.) It is now straightforward to check that
the intersection of S and E is precisely the circle in E with center at @ and radius ¢.
The proofs of the following theorems are fairly straightforward, and are omitted.

Fioure 16.10
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Theorem 4. The perpendicular from the center of S to a secant plane E passes
through the center of the circle in which F intersects S.

Theorem 5. If the plane E intersects 8 in a circle C, then the segment between
the center of S and the center of C is perpendicular to E.

Theorem 6. If E, S, and C are as in the preceding theorem, and L is a line
perpendicular to E at the center of C, then L passes through the center of S.

16.4 ARCS OF CIRCLES

A central angle of a given circle is an angle whose vertex is the center of the circle.

A

Major Minor
arc arc

B
Fieure 16.11

Let A and B be the points in which the sides of the central angle intersect the circle,
so that the central angle is ZAPB. The minor arc AB is the set consisting of
A and B together with all points of the circle that are in the interior of ZAPB.
The major arc AB is the set consisting of A and B together with all points of the
circle that lie in the exterior of ZAPB. In either case, points A and B are called
the end points of the arc.

If A and B are the end points of a diameter, then there are two arcs with A
and B as end points. Each of these arcs AB consists of A and B together with all
points of the circle that lie on a given side of the line. These are called sem:-
circles.

Of course the notation AB for arcs is always ambiguous, because there are
always two different arcs with 4 and B as end points. In cases where misunder-
standing might oceur, we remove the ambiguity by taking some third point X
of the are, and then denoting the arc by AXB. In the figure, AXB is a minor
arc, AYB is the corresponding major arc, and CAB and (Y B are semicircles.

Figure 16.12
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The degree measure mAXB of an arc AXB is defined in the following way.

14 (1) If AXB is a minor arc, then mAXB is the measure mZ APB of the cor-
responding central angle.

2) If AXBisa semicircle, then mAXB = 180.
3) If AXBisa major are, then mAXB = 360 — mZAPB.

N .
f mAXB=r, mCXB=180,
—~
mACB=360—~r.
Ficure 16.13

The following theorem says that degree measure for arcs is additive in the way
that we might expect. !

Theorem 1. If AB and BC are arcs of the same circle, having only the point B
~~ N ~ ~
in common, and their union is an arc AC, then mAB + mBC = mAC.

To put it briefly, we always have
mABC = mAB + mBC.

The proof is a little tedious, because we need to discuss five cases, but each of
the five cases is easy. We describe them, give the figures, and leave the verifica-
tions to the reader.

case 1. ABC is a minor are.

case 2. ABC is a semicircle.

Fioure 16.14

In these first two cases, mAB and mBC are simply mZAPB and mZBPC,
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casE 3. ABC is a major arc, and A and C are on opposite sides of the diameter
that contains B. (What are the equations relating r, u, 8, and ¢?)

Ficure 16.15

case 4. ABC is a major arc, and A and C are on the same side of the diameter
that contains B. v

X
P B
Iy re
/) C

FiGgure 16.16

case 5. ABC is a major arc, and one of the arcs [l\?, I:E-_\Q’ is a sg_rlnicircle. (Here
mABY = 360 — ¢ = 180 + 180 — ¢ = 180 + s = mAB + mBC.)

Bm.«i;
2/ o

Figure 16.17

In the figures below, the angle £ZABC is inscribed in the dotted arc ABC.
To be exact, an angle is ¢nscribed tn an arc of a circle if (1) the two end points of
the arc lie on the two sides of the angle, and (2) the vertex of the angle is a point,
but not an end point, of the arc. (We can put this more briefly: £LABC is in-

scribed in ABC, by definition.)

Fieure 16.18
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Figure 16.19

In the figures above, the indicated angle intercepts the dotted arc. " In the third
of these cases, the angle intercepts not only the dotted arc but also the arc AXB.

We shall now give a mathematical definition of the idea conveyed by the figures
abave. An angle inlercepts an arc if (1) the end points of the arc lie on the angle,
(2) each side of the angle contains at least one end point of the are, and (3) except
for its end points, the arc lies in the interior of the angle.

Theorem 2. The measure of an inscribed angle is half the measure of its in-
tercepted arc.

ResTaTEMENT. Let Z A be inscribed in an arc BAC of a circle, intercepting the
arc BC. ThenmZA = imBC.

Proof. case 1. Consider first the case where Z A contains a diameter of the
circle. Let Lx = LABP, Ly = 4BPC, and £z = £LAPB, as in the figure.

AN,
N

Ficure 16.20
ThEI.l. we have
mLA +mlxr+ mlz = 180 and mlz + mly = 180.

Since 4 and B are on the circle, we have PA = PB. Therefore, by the isosceles
triangle theorem, we have m£ A = m4z, so that

2mL A = 180 — mLz
= m4ly
o~
= mBC.

Therefore .
msA = $mBC,

which was to be proved.
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casE 2. Suppose that B and C are on opposite sides of the diameter through 4.

Then ’
mLA = mlv +mlw.

B »
Also, by Case 1,
msv = 3mBD, ° ,
and A D

mlw = }mﬁa’
By Theorem 1, ~ -
mBD + mDC = mBC. ¢
Therefore
mZA = $mBC, Ficure 16.21

which was to be proved.
cAsE 3. Suppose that B and C are on the same side of the diameter through A.

Here
B

mlz + mly = mlz,
and - - ’ C

mBC + mCD = mBD. A‘
Therefore A D

mLA =mly = mlz — mlx
= #mBD — 3m(D,
by Case 1. Therefore PR
mLA = 3mBC, Ficure 16.22

which was to be proved.
This theorem has two immediate consequences.

Theorem 3. An angle inscribed in a semicircle is a right angle.

Theorem 4. All angles inscribed in the same arc are congruent.

ProsLEM ST 16.4

1. Given two circles with a common tangent at a point A such that the second circle
passes through the center of the first. Show that every chord of the first circle that passes
through A is bisected by the second circle.

2. Three or more points are called concyclic if there is a circle that contains all of them.
Show that every three noncollinear points (in a plane) are concyclie.

3. Show that three collinear points are never coneyclic.

4. An inscribed quadrilateral is one whose vertices are concyclic. Prove that in an
inscribed quadrilateral each pair of opposite angles are
supplementary.

5. Show, conversely, that if a pair of opposite angles of
a convex quadrilateral are supplementary, then the quadri-
lateral is inscribed. —_

6. A pair of parallel lines intercept the arc AB of a circle
if (1) the lines intersect the circle at A and B, and (2) every
other point of AB lies between the two lines. Figure 16.23
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Theorem 5. 1f two parallel lines intersect a circle, then they intercept congruent arcs.

(There are three cases to be considered: two secants, two tangents, one secant, and one
tangent.)

Theorem 6. In the same circle or in congruent circles, if two chords are congruent,

then so also are the corresponding minor arcs.

Theorem 7. In the same circle or in congruent circles, if two arcs are congruent, then

so are the corresponding chords.

Theorem 8. Given a circle, and an angle formed by a secant ray and.a tangent ray

with its vertex on the circle. Then the measure of the angle is half the measure of its

intercepted arc.

Theorem 9. No two different circles intersect in more than two points.

.

16.5 THE TWO-CIRCLE THEOREM

Let us now proceed to discuss tangent lines to a circle thrcugh an external
point. The fact is that given a circle C and a point Q of its exterior, there are always
exactly two lines which pass through @ and are tangent to C':

A

B
Fieure 16.24
The natural way to try to prove this is as follows. Let M be the midpoint of the

segment PQ, where P is the center of C. Let C’ be the circle with center M and
radius MP = MQ.

~

~———

Figure 16.25

If C’ intersects C in two points A and B, as the figure suggests, then 04 and 0B
are tangent to C at A and B, respectively. The reason is that the angles ZPAQ
and ZPBQ are inscribed in a semicircle and hence each is a right angle. We can
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now apply Theorem 1, Section 16.2, which says that a line perpendicular to a8
radius at its outer end is tangent to the circle. In this reasoning there is a dn.nglmg
if. To complete the above proof that there are two tangents through @, we need
to show that C and C’ intersect in two points. For this purpose we need the follow-
ing theorem.

Theorem 1. The Two-Circle Theorem. Let C and C' be circles of radius a and b,
and let ¢ be the distance between their centers. If each of the numbers g, b, ¢
is less than the sum of the other two, then C and C’ intersect in two points.
And the two points of intersection lie on opposite sides of the line of centers.

Before proceeding to prove the theorem, let us see how it applies to our problem
in connection with the external tangents through @. In Fig. 16.25, let fhe radius
of C be a, and let the radius of C' be b = PM. The distance between the centers
is¢ = MP = b. Since Q is an external point, we have

rQ > a,
so that
a < 2b.

Then (1) a < b+ ¢, because b+ ¢ = 2b, and a < 2b. Also (2) b < a-+e¢,
because b + ¢ = 2b. Finally, (3) ¢ < a + b, because ¢ = b. Therefore the
two-circle theorem applies, and so it follows that C' and C’ intersect in two points
A and B. Therefore there are at least two tangents to C through Q. Later (in the
next section) we shall show that there are exactly two tangents through Q. The
rest of this section will be devoted to the proof of the two-circle theorem.

If a, b, and c are the lengths of the sides of a triangle, then each of the numbers
a, b, c is less than the sum of the other two. (We know this by three apphoatlons of
the triangular inequality.) We shall prove the converse.

Theorem 2. The Triangle Theorem. Given three positive numbers a, b, ¢. If
each of these numbers is less than the sum of the other two, then there is a tri-
angle whose sides have length a, b, c.

Proof. Without loss of generality, let us suppose that
azbzec

Take a segment BC, of length a. We want to find a point 4 such that AB = ¢
and AC = b. We shall start by assuming that there is a triangle AABC, of the

A?

Fiaure 16.26
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sort that we are looking for, and then find out where the point 4 must be. Of

«course this procedure will not prove anything in itself, because we are starting by

[\

assuming the very thing that we are supposed to be proving. But once we have
found the exact location of the points that might work, it will be easy to check
that they really do work.

Suppose, then, that A ABC is given, with sides of the desired length, as indicated
in Fig. 16.26. Let D be the foot of the perpendicular from 4 to BC. Then B-D-C,
because BC is a longest side of AABC. Therefore, if BD = z, then DC = a — z.
Let AD = y. Then by two applications of the Pythagorean theorem, we have

y2 = 02 - 12: (l)
y? = b2 — (a — 2)2 2)
Therefore
e? — 22 = p? — (a — 1)3,
80 that
2 — 2% = b2 — a® + 2az — 23
and
2az = a? 4 ¢? — b2
Therefore
a2 + c2 _ b2
T= 3
and from (1), we get
y= VAT E. ®

What we have proved so far is that if x and y satisfy (1) and (2), then z and y
satisfy (3) and (4). We shall check, conversely, that if z and y satisfy (3) and (4),
then z and y satisfy (1) and (2). Half of this is trivial. If (4) holds, then so also does
(1). Suppose then, that (3) is satisfied. Reversing the steps in the derivation, we

get
2 —22 =012 — (a — 2)2

_Since (1) is known to hold, it follows that

4 =b _(a__z)Z,
which is Eq. (2).
We can summarize this by writing

(1) and (2) < (3) and (4).

Now that we know what triangle to look for, let us start all over again. We have
three positive numbers a, b, ¢, with

azbze
Let
2 2 _ 32
,___e+_;a_'z_,
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then z > 0, because a® = b% and ¢? 2 0. We want to set

but first we have to prove that ¢ > z, to make sure that the radicand is posltwe
Obviously it will be sufficient to show that ¢ — z > 0. Now

2 2
P e of el
2a
2ac — a? — ¢® + b?
2a
— (@® — 2ac + ¢Y
2a
bz—(a-c)z_
2a

We now know that a < b + ¢. Therefore @ — ¢ < b. Since both a — ¢ and b
are 20, it follows that (@ — ¢)? < b2; and this means that¢ — z > 0,0rc > 2.

[
E
A4
VA IN
, N
s \\
e y ~
7/ ~N
/ h
vl x ,J a-x S
B D C
F1a ae 16.27

We are now ready to construct our triangle. Let BC be a segment of length a.

Let D be a point of BC such that
2 2
BD=z=% T2
2a
Let DE be a ray starting at D, perpendicular to BC, and let A be a point of DE
such that

AD = y = Vc? — z2. )

Since z and y satisfy (3) and (4), it follows that z and y satisfy (1) and (2). Thus
Pyt = o )

(@ —2)? + ¢ =% )

But z2 + %> = AB? and (a — z)%2 + y® = AC% Therefore AB® = ¢® and
AC? = b% Since b and ¢ are positive, this means that AB = ¢ and AC = b.
Therefore A ABC is a triangle of the sort that we were looking for.

(3') L

1
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On the basis of the triangle theorem, it is easy to pi‘ove the two-circle theorem.
“We have given a circle C, with center P and radius o, and a circle (", with center
M and radius b:

Fioure 16.28

The distance PM between the centers is ¢, and each of the numbers g, b, ¢ is less
than the sum of the other two. Therefore there is a triangle A RST, with RS = q,
ST =band RT =¢:

Figure 16.29

Let A be a point in the plane of our two circles such that ZAPM = ZR and
AP = a = RS. By SAS, ARST = APAM, so that AM = ST = b. Thus
A is on both C and C". Let B be a point on the upposite side of PM from 4, such
that ZBPM = /R and BP = a = RS. By SAS, ARST = APBM, so that
B is on both € and C'. It is not hard to check that these points A and B are the
only points where the two circles intersect. (This was Theorem 9 in Problem
*PSet 16.4.)

The two-circle theorem should have been stated as a postulate in Euclid’s

Elements, but the necessity of this was overlooked.
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RIGID MOTION

17.1 THE MOST GENERAL CONCEPT OF CONGRUENCE

By now we have given five different definitions of the word congruent, for five dif-
ferent kinds of figures. Two segments are congruent if they have the same length.
Two angles are congruent if they have the same measure. Two triangles are con-
gruent if there is a one-to-one correspondence between their vertices, such that
every pair of corresponding sides are congruent (that is, have the same length)
and every pair of corresponding angles are congruent (that is, have the same meas-
ure). Two circles are congruent if they have the same radius. IFinally, two cir-
cular arcs are congruent if (1) the circles in which the ares lic are congruent, and
(2) the arcs have the same degree measure. All this is quite correct, logically speak-
ing, but in a number of ways it leaves things to be desired.

In the first place, it was promised at the outset that the intuitive meaning of
the word congruent was always going to be the same: two figures were going to
be called congruent if they had exactly the same size and shape, that is, if one could
be moved so as to coincide with the other. This promise has, in a sense, been kept.
It is not hard to convince yourself that all five of the technical definitions that we
have just reviewed have this intuitive meaning. On the other hand, it is rather
artificial to have five different definitions to convey the same idea in five different
cases. It would be much better to have one definition which applies in the same
way to segments, angles, triangles, and so on.

In the second place, as a matter of common sense, most of us would agree that
two squares with edges of the same length ought to be congruent:

a a
4 )
a a
ml I [l
a a

Figure 17.1

If the language of exact gcometry doesn’t allow us to say so, then the language
of exact geometry must, so far, be inadequate.
Finally, it would be good to make some sort of contact with the old Euclidean
idea of congruence. Euclid based all of his congruence proofs on a postulate that
202
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said that “things which coincide with one another are equal to one another.”

“(See the Common Notions, in Book I of the Elements.) This was not adequate to
account for the things that Euclid actually did. Strictly speaking, figures coincide
only with themselves. And it is plain that the idea of motion, or superposition,
is implicit in Euclid’s congruence proofs. Some authors have attempted to make
this idea explicit by stating a postulate to the effect that “geometric figures can
be moved without changing their size or shape.” But this still is not enough; it
clarifies the difficulty without removing it. The difficulty is that while the term
figure is plain enough (a figure is a set of points) the terms moved, size, and shape
have a very insecure status. They must be regarded as undefined terms, in the
light of the plain fact that no definitions have been given for them. But if they are
undefined, then postulates must be given, conveying their essential properties; and
this has not been done either. Of course, the general drift of the postulate is plain
enough. But you cannot base a mathematical proof on a general drift.

It is possible, however, to formulate Euclid’s idea, and everybody’s intuitive
idea, in an exact mathematical way. This we shall now proceed to do, by defining
the general idea of rigid motion, or 7sometry.

The simplest instance of this is as follows. Consider a rectangle [ JABB'A’.
(The sides of the rectangle are dotted in the figure
because we are really interested in the two bases

A P Q
only.) Let f be the vertical projection, :

|

I

|

|

i

f:AB & A'P,

p——————{

of the upper base onto the lower base. Thus, for | ‘

each point P of AB, f(P) is the foot of the perpen- 4 fP)=P fQ)=0

dicular from P to A’B’. We know, of course, that

f is a one-to-one correspondence between AB and Fieure 17.2

A'B’. That is, to every point P of AB there cor-

responds exactly one point P’ = f(P) of A’F’, and to each point P’ of A’B’

there corresponds exactly one point P = f~1(P’) of AB. And this correspondence
F has a special property: if P and @ are any two points of AB, and P' and @' are

B
]
|
|
|
I
|
|

B

he corresponding points of A’B’, as in the figure, then
P'Q = PQ,

because the segments PQ and P'Q’ are opposite sides of a rectangle. Thus, for any
two points P, Q of AB, the distance between f(P) and f(Q) is the same as the distance
between P and Q. More briefly, the correspondence f preserves distances between
points. _ .

The correspondence f: AB <+ A’B' is our first and simplest example of what is
called a rigid motion, or an isometry. The general definition of this concept is as
follows.

DerintrioN. Let M and N be sets of points, and let
M N
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be a one-to-one correspondence between them. Suppose that for every two
points P, @ of M we have
J(P)f(@ = PQ.

Then f is called a rigid motion, or an isometry, between M and N. [Here f(P)f(Q)
denotes, of course, the distance between the points f(P) and f(Q).] If there is
an isometry between M and N, then we say that M and N are tsomeiric, and

we write
M = N.

In this E._n_guage, we can sum up our discussion of the vertical projection
f: AB & A'B’ in the form of the following theorem.

Theorem 1. Opposite sides of a rectangle are isometric.

ProBLEM SET 17.1
1. Consider two triangles AABC and A A’B’C’, and suppose that
AABC =2 AA'B'C'.
Let
V = {4,B,C}
V' = {4, B, C"}.

(Thus V and V' are finite sets of three elements each.) Does it follow that V =~ V’?
That is, is there a rigid motion
[ Ve V?

2. Let V be the set of vertices of a square of edge 1, and let V' be the set of vertices of
another square of edge 1. Show that V = V’. (First you have to set up a one-to-one cor-
respondence f: V <> V’, and then you have to show that f is an isometry.)

3. Do the-same for the sets of vertices of the two parallelograms in the figure.

4. Show that if V is a set of three collinear points, and V” is a set of three noncollinear
points, then V and V' are not isometric.

5. Show that two segments of different lengths are never isometric.

6. Show that a line and an angle are never isometric.

7. Show that every two rays are isometric.

A B w z
2 2
45° 45°
n 3 c X 3 Y

Fiaure 17.3

8. Show that two circles of different radius are never isometric. o
9. Let L and L' be two lines in the same plane, and let f: L «» L’ be the vertical pro-
jection of L onto L’. Show that (1) if L || L’, then f is an isometry, and conversely (2)
if f is an isometry, then L || L'.
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10. Show that isometry is an equivalence relation. That is,
M = M for every set M (Reflexivity).
If M = N, then N = M (Symmetry).
If My = M3 and M2 = M3, then M; =~ M3 (Transitivity).

<

17.2 ISOMETRIES BETWEEN TRIANGLES

Theorem 1 of the preceding section was, of course, more special.than it needed
to be. More generally, we have the following Theorem.

Theorem 1. If AB = CD, then there is an isometry f: AB « CD, such that
#(4) = C and f(B) — D.

Proof. First we need to define a correspondence f between the two segments,
and then we need to show that f preserves distances.

On AB let us set up a coordinate system, in such a way that the coordinate of
A is 0 and the coordinate of B is positive. (It follows, of course, that the coordi-
nate of B is the number 4B.)

4 P 0o B ¢ P Q@ D
0 x y AB [ x y AB
Ficure 17.4 Fiqure 17.5

Similarly, we set up a coordinate system on CDinsucha way that the coordinate
of C is 0 and the coordinate of D is positive (and hence = CD = AB). The
figures suggest how the correspondence f ought to be defined. Given a point P
of AB, the corresponding point f(P) of CD is the point P’ which has the same co-
ordinate as P. Obviously this is a one-to-one correspondence between the two
segments. And distances are preserved. Proof: Suppose that P and @ are points
of AB, with coordinates z and y. Then P’ = f(P) and @' = f(Q) have the same
coordinates z and y, respectively. Since

and
PQ = |z — yl,
it follows that
PQ = PQ,
which was to be proved.
We can restate Theorem 1 in the following way.

Theorem. Given a correspondence
4 «C, B~ D

between the end points of two segments. 1f AB = CD, then there is an isometry
f: AB < CD which agrees with the given correspondence at the end points.
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Here f is called the isometry ¢nduced by the given correspondence. If we think
of the theorem in these terms, then the extension to triangles is immediate.

-

Theorem 2. Given a correspondence
ABC < DEF
between the vertices of two triangles. If

AABC = ADEF,

then there is an isometry
f:AABC & ADEF,

such that f(4) = D, f(B) = E, and f(C) = F.

Proof. Let .
f1:AB & DE

be the isometry induced by the correspondence A <+ D, B « E. Similarly, let
f2:BC & EF

be the isometry induced by the correspondence B «» E, C' > F; and let
f3: AC & DF

be the isometry induced by the correspondence A « D, C <> F. Let f be the cor-
respondence obtained by combining fi, f2, and f3. That is, if P is on AB, then
J(P) = f1(P); if P is on BC, then f(P) = fo(P), and so on.

Since each f; is an isometry, f preserves the distance between any two points
that lie on the same side of A ABC. Thus it remains only to show that f preserves

B E

J(P)

4 ec » £Q) F
Fieure 17.6

the distance between any two points P, Q on different siglis of AABC. Suppose,
without loss of generality, that P is on ABand Q is on AC, as in the figure (Fig.
17.6). Let P’ = f(P) and let @' = f(Q). Then

AP

IR

R
d X

because f; is an isometry; '
AQ

’
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,because f3 i8 an isometry; and
LPAQ = LP' DY,
because AABC = ZDEF. By 8AS, we have

APAQ = AP'DQ,
so that
PQ=P 'Q':
which was to be proved.

The isometry f that was defined in the proof of Theorem 2 is called the isometry
tnduced by the congruence AABC &~ ADEF.

You may wonder, at this point, why we didn’t define congruence by means of
isometry in the first place. The reason is that in the sort of geometry that we have
been discussing so far in this book, the elementary definitions based on distance,
angular measure and correspondences between the vertices of triangles are the defini-
tions that are convenient to work with. Thus, if we had defined Z4 = ZB to
mean that Z4 =~ ZB, the next thing that we should have done is to prove that
LA = £Bif and only if m£ A = mAB, so that we could work with the latter
statement instead of the former. Similarly, we would have shown that A4ABC =
ADEF if and only if the triangles are congruent in the elementary sense, and
this would enable us to talk about correspondences between triplets of points, in-
stead of talking about correspondences between infinite sets of points. In general,
basic definitions in mathematics should be stated in such a way that they can be
put to work quickly and easily.

ProBLEM SET 17.2

1. Suppose that the correspondence
ABC & A’B'C'

is an isometry. Show that if A-B-C, then A’-B’-C".

2. Given an isometry

fiMe N,

Let A and B be points of M. Show that if M contains the segment between A and B,
then N contains the segment between f(A4) and f(B).

3. Show that if M is convex, and M =~ N, then N is convex.

4. Given M =~ N. Show that if M is a segment, then so is N.

5. Given M = N. Show that if M is a ray, then so is N.

6. Suppose that M is & segment and N is a circular are. Then M and N are not iso-
metric.
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CARTESIAN COORDINATE SYSTEMS

18.1 COORDINATES, EQUATIONS, AND GRAPHS

Obviously, all readers of this book know about coordinate systems, from ele-
mentary analytic geometry. For the sake of completeness, however, we explain
them here from the beginning. To achieve speed and simplicity, and reduce
the amount of outright repetition, we have introduced various novelties in the
derivations.

In a plane E we set up a Cartesian coordinate system in the following way.
First we choose a line X, with a coordinate system as given by the ruler postulate.
The zero point of X will be called the origin. We now take a line ¥, perpendicular
to X at the origin, with a coordinate system in which the origin has coordinate = 0.

Y
N
Yp————2P
21 |
|
|
1+ E
M
—+ + —t- + ' + S+ X
-3 -2 -1 0 1*¥ 2 3
~14
24
Figure 18.1

Given a point P of E, we drop a perpendicular to a point M of X. The coordinate
z of M on X is called the z-coordinate, or the abscissa, of P. We drop a perpendicular
from P to a point N of Y. The coordinate of N on Y is called the y-coordinate, or
the ordinate, of P. Thus to every point P of E there corresponds an ordered pair
(z, y) of real numbers, that is, an element of the product set R X R. Clearly this

is a one-to-one correspondence .
E~RXR

For short, we shall speak of “the point (z, y),” meaning, of course, the point cor-
responding to (z, y) in the coordinate system under discussion.
208



COORDINATES, EQUATIONS, AND GRAPHS 209

1M, M,

Ficure 18.2

Theorem 1. The distance between the points P, = (x4, y;) and Py = (29, y3)
is given by the formula

PPy Vwe )+ (ya — )2

Proof. Let M,, Ny, My, N, be the projections of P, and P; onto the axes, as
in the definition of coordinates. If z; = x5, then

—

PiP3 || N\Ny, lrz — &) = 0,
and
PPy = lys — yif

Vyz — y1)?
= V(zz — 21)2 + (y2 — y1)2

(Here we are ignoring the trivial case where Py = N;and P; = N,.) If y; = y,,
the same conclusion follows in a similar way. Suppose, then, that z; » x; and
Y1 # Y2, a8 in the figure. Then the horizontal line through P, intersects the ver-
tical line through P, in a point @, and AP, P,Q tias a right angle at Q. (Here, and
hereafter, a horizontal line is X or a line parallel to X; and a vertical line is ¥ or
a line parallel to ¥.) Thus

PQ = M\M,,
and
P?Q = N2Nh

either because the point pairs are the same or because opposite sides of a rectangle
are congruent. By the Pythagorean theorem,

PP} = P,Q* + P:Q%.
Therefore
PP} = MM} + NNj

= |zg — 21|> + ly2 — nl?
= (2 — 2)* + W2 — 1)’
and from this the distance formula follows.
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By a linear equation in z and y we mean an equation of the form
Az + By+C =0,

where A, B, and C are real numbers, and 4 and B are not both = 0. By the graph
of an equation, we mean the set of all points that satisfy the equation. More gen-
erally, by the graph of a condition we mean the set of all points that satisfy the
given condition. Thus the interior of a circle with center Q and radius r is the
graph of the condition PQ < r; and one of our theorems tells us that the perpen-
dicular bisector of a segment AB is the graph of the condition PA = PB.

Theorem 2. Every line in E is the graph of a linear equation in z and y.

Proof. Let L be a line in E. Then L is the perpendicular bisector of some seg- '
ment PP;, where Py, = (z,,y:) and P2 = (z2,y2). Thus L is the graph of
the condition

PP, = PP,.
P,
3
_“; L
\
el )\;
Py
0 X

Ficure 18.3

With P = (2%4) this can be written algebraically in the form
Ve —z)?+ (Y — y)2 = V@ — 222+ (y — y2)3

-2+ ity 2yt oyl = 2® — 22+ 2f 4 y? — 2y0y + 3

or
2 — 22+ 202 — vy + @+ yi+ 2 +yh =0

This has the form
Az + By+C=0.

And A and B cannot both be = 0, because then we would have zs = z; and
Y2 = y); this is impossible, because P; = Pj.

Theorem 3. If L is not vertical, then L is the graph of an equation of the form

y=mz+ k.
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Proof. L is the graph of an equation

Az + By +C = 0.

Here B 0, because for B = 0 the equation takes the form z = —C/4; and
the graph is then vertical. Therefore we can divide by B, getting the equivalent
equation

This has the desired form, with
A ¢,

m= — — k——-——

B B

Theorem 4. If L is the graph of y = mzx + b, and (24, yy), (z2, y2) are any two
points of L, then

Y2 — ¥ _

Tg — X3 -

Proof. Since both points are on the line, we have

Yz = mry + k, y1 = mr; + k.
Therefore

Y2 — 1 = m(zz — 11),
and z; # z1, because L is not vertical. Therefore

Y2 — U1
Tg — X1

= m.

Thus the number m is uniquely determined by the line. It is called the slope of
the line.

Theorem 5. Let L and L’ be two nonvertical lines, with slopes m and m’. If L
and L’ are perpendicular, then
1
m = ——.
m
Proof. Let
Py = (z1,y1) and Pz = (22, y2)

be points of L/, such that L is the perpendicular bisector of P1P,. (See Fig. 18.3.)
As in the proof of Theorem 2, L is the graph of the equation
2(zg — z)z + 22 — vy + (@2 +y3i + 2+ y) = 0.

This has the form
Az +By+C =0,
where
A =2z —zy), B=2(ys— )
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Therefore
2z —21) _ _ZTza—
2(y2 — 1) Y2 — %N

- _4__
m=—5=

But, by Theorem 4, we have
m = Y2 — Y1,
T2 — I
Therefore m’ = —(1/m), which was to be proved.

Theorem 6. Every circle is the graph of an equation of the form
22+ y?*+ Az +By+C=0.

Proof. By the distance formula, the circle with center (e, b) and radius r is the
graph of the equation

Vi —a2+ @y —b*=r,
or
z2 — 2ax +a? +y% — 20y + 02 — r2 = 0.

This has the required form, with
A = —2a,
B = —2b,
C = a®+ 5% — r2
The converse of Theorem 6 is false, of course. The graph of

24y =0
is a point, and the graph of
22492 4+1=0
is the empty set.

ProBLEM SET 18.1

In proving the following theorems, try to use as little geometry as possible, putting
the main burden on the algebra and on the theorems of this section.

1. Show that the graph of an equation of the form

224+ y?+ Az+By+C =0

is always a circle, a point, or the empty set.

2. Show that if the graphs of the equations

y=mz+k, y=mx+ke

are two (different) intersecting lines, then m; = ma.

3. Show that if m) = mg, then the graphs are either parallel or identical.
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. 4. In the chapter on similarity, we defined
Al) Bly Cl ~ Az; Bz; C’
to mean that all the numbers in question were positive and that

A2 _By _Cp
4 B O
Let us generalize this in the following way. Given A;, By, C1, not all = 0. If there is a
k # 0 such that ’
A2 = kA, By = kB, Ce = kC,

then we say that the sequences A1, By, Cy and Ag, By, C3 are proportional, and we write
Ay, By, Cy ~ As, Bs, Ca.
With this understanding, show that if
CAw+By+Ci=0 ad  Ap+By+Co=0
have the same line L ag their graph, then
Ay, By, Cy ~ Ag, By, Co.
[Hint: Discuss first the case where L is vertical, and then the case where L is not vertical.]
5. Describe the graphs of the following equations.
(8) 2+ 2P+ 14+204+ 2+ 20y =0 () zy=0 (c)2+zy? —z=20
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CONSTRUCTIONS WITH RULER AND COMPASS

19.1 UNMARKED RULERS AND COLLAPSIBLE COMPASSES

In the introduction to the foundations of geometry, given in the first few chap-
ters of this book, we used postulates which fall into six groups: (1) the incidence
postulates, (2) the separation postulates, (3) the ruler postulate, (4) the “protractor
postulates,” (5) the SAS postulate, and finally (6) the parallel postulate. (Here, of
course, by the “protractor postulates” we mean the ones dealing with the measures
of angles.) Our treatment of incidence and separation has been quite standard;
and so also was one trecatment of parallelism. In fact, where these topics are con-
cerned, the differences between one book and another are mainly in the style of
exposition and the degree of explicitness. (Some elementary books consider separa-
tion properties to be unworthy of mention.)

The ruler and protractor postulates, however, are another matter. These were
invented rather recently (by G. D. Birkhoff) and the mathematical spirit reflected
by them is quite different from the mathematical spirit of the Greeks. The basic
difference, roughly speaking, is that rulers and protractors are used for measuring
things; we place them on geometric figures and we read off real numbers from the
scales that are marked on them. Birkhoff’s metric postulates tell us, in effect, that
we have an “ideal ruler” and an “ideal protractor,” with which we can measure
segments and angles exactly. The Greeks, on the other hand, considered that meas-
urement was merely one of the practical arts. It was not considered to deserve the
attention of mathematicians and philosophers. Just as we have described the
metric treatment in terms of two drawing instruments, the marked ruler and pro-
tractor, so we can describe Greek geometry in terms of two different drawing in-
struments—the unmarked ruler and the compass. The Greeks thought about
geometry in terms of these two instruments; and they investigated at length the
question of what figures could be constructed by means of them.

Before we proceed to consider problems of construction with ruler and compass,
several warnings are in order.

(1) When we speak of a ruler and a compass, we mean an “ideal ruler” and an

“ideal compass,” which draw straight lines and circles exactly, The thickness of
pencil marks and the approximations involved in draftsmanship will not concern
us.

214
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(2) The Euclidean ruler has no marks on it. We can use it to draw the line
through two given points, but that is all we can use it for. We cannot use it to
messure distances between points, or even to tell whether two segments are
congruent.

(3) The Euclidean compass can be used in the following way. Given a point P
and & point @ (in the plane), we can draw the circle that has center at P and con-
tains Q. This is all that we can use the Euclidean compass for. That is, given a
third point P’, we are not allowed to move the spike of the compass to P’ and then
draw the circle with center at P’ and radius PQ. For this reason, the Euclidean
compass is called collapsible; you can’t move the spike because “when you lift
the spike off the paper the compass collapses.” Another way of putting it is that
you can’t use the compass as a pair of dividers. Oddly enough, modern draftsmen
feel the same way that Euclid did on this rather delicate question.

(4) In studying ruler and compass constructions, we shall not attempt to build
the foundations of geometry all over again. In proving that our constructions
work, we shall make free use of the theorems of metric plane geometry. In particu-
lar, we shall make continual use of the two-circle theorem.

(5) In a construction problem, when we say that a line is “given,” we mean that
at least two points of the line are given.

Let us now try a few constructions.

Construction 1. To construct the perpendicular bisector of a given segment.
Given two points P, Q. First draw the circle €', with center at P, containing Q;
and then draw the circle with center at @, containing P:

Figure 19.1

Let PQ = a. Since a < 2a, it follows that each of the numbers @, g, a is less than
the sum of the other two. Therefore the hypothesis of the two-circle theorem is
satisfied. (Most of the time, our verifications of the hypothesis of the two-circle
theorem will be as trivial as this one.) Therefore C, _g,_nd C, interaggii in two points
R and 8, lying on opposite sides of T’-’Q Therefore RS intersects PQ in a point T

Since 7 lics on RS, and RS is a chord of both circles, it follows that 7 is in the
interior of hoth circles, and both TP and TQ are less than PQ. Therefore T-P-Q
and P-Q-T are impossible. Therefore P-T-Q.
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Now ASPR = ASQR, by SSS. Hence £1 = /2. By SAS we have

APRT = AQRT. Therefore £5 = 26, so that &8 L PQ, and PT =~ TQ.
Thus RS is the perpendicular bisector of PQ. This gives us a sort of “corollary
construction”:

Construction 2. To bisect a given segment.

First construct the perpendicular bisector, as above. The point T is the bisector

Construction 3. To construct the perpendicular to a given line, through a given
point on the line.

Given a line L, and a point X of L. Since L was given, at least one other point
P of L must be given. Draw the circle C which has center at X and contains P.

Then C will intersect L in exactly one other point Q. Now construct the perpendicu-
lar bisector of PQ; this will be perpendicular to L at X.

Figure 19.2

Construction 4. Given threc points P, Q, R. To construct a rectangle [ JPQST,
such that PT = PR.

R
Q
P \
\
\\ \
\ \
\ _t
|7 S
T
Fiaure 19.3

First construct the perpendicular L; to PQ at P. Then draw the circle C that
has center at P and contains B. The circle ' will intersect L, in points T and 7.

Now construct L, perpendicular to PQ at Q; and construct Ly perpendicular to
Lyat T. If L; and Ly were parallel, then P7 and PQ would be parallel, which is
false. Therefore L, intersects L in a point S. We know that each pair of opposite

pides of [JPQST are parallel; and three of its angles are right angles. Therefore
[JPQST is a rectangle.
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Ficure 19.4

Construction 5. Given a segment PQ and a ray AB. To construct a point C of
AB such that AC == PQ.

2 C B
/’/
P e
\ = T
P
\\ ///

\ ”~
P
\. -

U
Figure 19.5

First we construct a rectangle [JPATU, with PU = PQ. Then AT = PQ.
Draw the circle with center at A, containing 7. This will intersect ABina point
C; and we will have AC = PQ, as desired.

Note that once we have Construction 5, we are free to forget about the collapsi-
bility property of our Euclidean compass. The point is that the ruler and compass,
in combination, furnish us in effect with a pair of dividers.

ProsrLem SET 19,1

1. Find a simpler method of doing Construction 5, which works whenever PQ < PA.
[Hint: First construct an equilateral triangle APAU.)

2. Show that if Construction 5 can be done in the case where PQ < PA, then it can
be done in the general case.

3. Construction 6. Given AABC, and A’B’ = AB. To construct a point C’ on a given
side of AB, such that AABC 22 AA'B'C'.

4. Construction 7. Given L ABC, T’ﬁ, and a side H of 1’_6 To construct a ray Fﬁ,
with R in H, such that ZABC =~ ZRPQ.



218 CONSTRUCTIONS WITH RULER AND COMPASS

5. Construction 8. Given a line L and point P. To construct the line through P parallel
to L.

6. Construction 9. Given AB and a positive integer n. To divide AB into » congruent
segments.

7. Suppose that your Euclidean ruler is not a “theoretical ruler,” of infinite extent both
ways, but a ruler of finite length, say, one inch. Suppose also that the points of your
compass cannot be spread apart more than an inch. Show that given any two points—no
matter how far apart they may be—you can draw the segment between them.

8. In carrying out Construction 9, you probably found it convenient to draw, at ran-
dom, a ray AP which was not collinear with AB. Show that this process of random choice
can be avoided.

Strictly speaking, random choices of points are not allowed in doing construction prob-
lems. The reason is rather curious: if they were allowed, then the so-called “impossible
construction problems” to be discussed later in this chapter would be not quite impossible.
For example, an infinitely lucky person might manage to pick, at random, a point on a
trisector of any given angle.

19.2 HOW TO DO ALGEBRA WITH RULER AND COMPASS

Suppose that we have given a segment of length 1, and two segments of length

a and b:
._]_—. 2 /

Ficure 19.6

We shall show that all of the elementary operations of algebra for the numbers
a and b can be carried out with ruler and compass. That is, with ruler and compass
we can construct segments whose lengths are

1 b
a -+ b, z’ ab, a’ \/Zl-

(1) The first of these constructions is trivial. On any line L, we lay off a segment
PQ of length a, and then lay off a segment QR of length b, in such a way that
P-Q-R. The others require tricks.

(2) In Fig. 19.7, we have £1 =< £2, so that AABC ~ AADE. Therefore

AC _ AE
AB ~ AD
If AB = a, AC = 1, and AD = 1, this says that
1 AE
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Figure 19.7

This indicates a way to construct a segment of length 1/a. We start with any
angle ZQAR. On AQ we lay off AB with AB = a, and AD with AD = 1.
On AR we lay off AC, with AC = 1:

Y

B C

/D E\ -S
(4] R

Fiaure 19.8

We now construct a ray DS so that ZADS = /1. (Any angle can be copied
with ruler and compass.) You ought to be able to prove, with no trouble, that
DS intersects AR in a point E. The segment A% is the segment that we wanted.

(3) In the figure below, we have Z1 = £2 so that APXY ~ APZW.

Figure 19.9
Therefore
PZ _y
z 1

so that PZ = xy. The construction of the figure is exactly as in the preceding case.
(4) To construct a segment of length b/a, we first find 1/a, and then multiply
the result by b.
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(5) Finally, we want a segment of length +/a. First we construct segments PQ,

P1Q M a R
Frgure 19.10

QR, so that P-Q-R, PQ = 1 and QR = a. We bisect the segment. Let M be its
bisector. With center M and radius

Mp=Mr=11¢

we draw a circle. Next we construct a perpendicular to PR at Q. This line inter-
sects the circle in two points, one of which is the S shown in the figure. Let z = @S.
Since APQS ~ ASQR, we have

QS _ QR

PQ  SQ
or

z_¢

1 T
or

22 = a.

Therefore £ = +/a, and QS is the segment that we were looking for.

19.3 SOLVING EQUATIONS WITH RULER AND COMPASS

We have found that with ruler and compass we can add, multiply, divide and
extract square roots, starting with positive numbers. Let us now suppose that we
have a coordinate system in the plane: -

1

-+ X
12

N

Figure 19.11

!
w4

i
o4
—_
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» We want to know which points we can plot with ruler and compass, given the
points with coordinates 1, a, and b on the z-axis. Of course, negative numbers
have now entered the picture: a and b may easily be negative. But this causes no
trouble; if we can plot the point with coordinate z, then surely we can plot the
point with coordinate —z; given z and y, we can plot + — y, y — z, (—2)y,
z(—y), and so on.

This means that with ruler and compass we can perform all the operations described
in the postulates for a Euclidean ordered field. That is, we can add, subtract, multiply,
divide, and extract square roots, in all cases where these operations are algebrai-
cally possible. Hereafter, when we speak of “plotting a number,” we shall mean,
of course, plotting the corresponding point on the z-axis. Obviously, if we can

. plot both k and k, then we can plot the point (h, k) in the coordinate plane. We
merely construct perpendiculars, as in the figure, thus getting their intersection.
And conversely, if P = (h, k) is given, we can plot h and k by dropping perpen-
diculars to the axes.

Y

(h, k) _

Figure 19.12

For this reason, in many cases we can solve algebraic problems by going through
ruler-and-compass constructions. This process is not merely a stunt. We shall
use it to solve some construction problems which would otherwise be very difficult
indeed.

Problem 1. Given the points with coordinates a, b, ¢ on the z-axis, with b2 —
4ac > 0. We wish to plot, with ruler and compass, the roots of the equation

ax? 4+ br+c=0.
These roots are the numbers

-b + Vb2 — dac -b —
2a ’

N and z2 %

Each of them can be computed, starting from a, b, and ¢, by a finite number of
additions, subtractions, multiplications, divisions and root-extractions. Each of
these operations can be performed geometrically. Therefore the roots can be
plotted.

Problem 2. Given the points on the z-axis with coordinates 4, B, C, 4’, B', (.
We wish to plot the numbers z,, y; which are the solution of the system

Az + By + C = 0, )
A’z 4+ By + C'= 0. @)
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We are interested in the case where the graphs of the equations are nonparallel ;
lines intersecting in a single point (z,, y1). This occurs when

AB' — BA’ # 0.

FiGure 19.13

In this case, by the usual elementary methods, we get the solution in the form

BC' — B'C
= A= B4’
A'C — AC’

.= 4B — B4’

All the operations required here can be done with ruler and compass. Therefore z,
and y, can be plotted. In fact, if you are actually going to plot z; and y;, there is
8 much shorter method. We claim that if A, B, and C are plotted, then at least
two points of the line

Az 4+ By +C=0

can be plotted. If B # 0, we can set x = 0 and z = 1, getting the points
(0,— (C/B)),(1,(—C —A)/B). If B = 0, then the corresponding line is vertical,
and we can plot the points ((—C/A4), 0), ((—C/A), 1). Once we have plotted these
points, we can draw the line that contains them:

Fieure 19.14
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Thus, if the coefficients in the equation of a line can be plottéd, the line itself

* can be drawn by a rule-and-compass construction. The short way to construct
the solution of a pair of linear equations, therefore, is to draw the corresponding
lines and see where they intersect. The same idea leads to an even greater economy
in more difficult cases, as we shall see.

Problem 3. Suppose that a, b, r, 4, B, and C are plotted. We want to plot the
common solutions (zy, ¥1), (z2, ¥2) of the equations

(z —a)+ (y — b)? = 1
Az + By +C =0, 2

for the case in which such common solutions exist. We assume, as usual, that 4
and B are not both 0, so that the graph of (2) is a line.

This one is easy. First we draw the graph of (2) by the method used in the pre-
ceding problem. The graph of (1) is a circle with center at (a, b) and radius r.
Since a, b, and r are given as plotted, we can draw this circle. We have now plotted
whatever intersection points may happen to exist.

Y
i M @

(xzv .Vz)

(xhyl)

// X

Ficure 19.15

Problem 4. Suppose that 4, B, C, D, E, and F are given as plotted. Suppose
that the graphs of
224+ y?+ Az + By+ C =0, (1

Dz + Ey+ F =0, (2
are a line and a circle, respectively. We want to plot the common solutions (1, y1),
(z3, y2), in the cases where such solutions exist.

The first step, of course, is to draw the graph of (2). The remaining problem is

to show that the graph of (1) can also be drawn.
Completing the square in the usual way, we convert (1) to the form

2 2 AZ Bﬂ
x’+Az+%—+y’+By+§;=—C+‘T+T'

2 2 2 B2_4C
(+4) +(@+3) =+ :

or
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Thus the center of our circle is the point

and its radius is

r = 3/AZ ¥ B? — 4C.

All three numbers a, b, and r can be plotted, since 4, B, and C can be plotted.
Therefore the circle can be drawn exactly as in the preceding problem.

Problem 5. Given a system of equations
2?2+ y 4+ Az +By+C =0,
224+ y*+ D+ Ey+F=0,

where the coefficients are given as plotted. Again, we want to plot the common
solutions in the cases where there are any. To do this, we draw the two circles by
the method used in the preceding problems.

We Lave now gotten involved in a lengthy investigation of relations between
geometry and algebra. This may seem foreign to the spirit of geometry, but in
fact it is foreign merely to the spirit of Greek geometry. We shall see that once
algebra has been introduced, we can get easy solutions of problems that the Greeks
found difficult, and we can get difficult solutions of problems which the Greeks
found impossible.

19.4 THE PROBLEM OF APOLLONIUS
Given three circles Cy, Cg, and C3 in the plane. The problem of Apollonius is

to construct, with ruler and compass, all possible circles C' which are tangent to
all three of the circles C;, Cp, and C3. One such C is shown in the figure.

~———

Ficure 19.16

Using the methods of the preceding section, we shall find without much trouble
that all possible circles C are constructible with ruler and compass.
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C
G

)

G @

(©)]
Figure 19.17

Given C,, with center P; and radius r;, and C, with center P and radius r, it
is rather easy to find the conditions under which the two circles are tangent. If
the circles are tangent and mutually exterior, then

PPy =r+rg. 0))
If they are tangent, and C| lies inside C, then

PPy =71 — ry. 2)
Finally, if they are tangent, and C lies inside C;, then

PPy =17 —r 3)

Conversely, each of these equations implies that the corresponding geometric
condition holds. We can sum all this up by saying that C and C; are tangent if and
only if

PP} = (r £ )2

To connect this up with our algebra, we let the centers be the points (a, b),
(ay, by). Our equations then take the form

(@—a)?+ (b —b)= (r£m) @
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We can now restate the problem of Apollonius. C is tangent to all three of the
circles Cy, Cs, Cj if all three of the equations

(@—a)?+(®—b)?=(r+r)? (4)
(@ — a2)®> + (b — b)® = (r = 1p)? (5)
(@ — a3)> + (b — b3)? = (r £ ry)? (6)

hold for some choice of + or — in each equation.

Here, for each of the eight possible choices of signs, we have a system of three
equations in the three unknowns a, b, and r. Our problem is to solve these equa-
tions with ruler and compass, in the cases where solutions exist.

First we multiply out and collect terms, getting

a?+ b2+ — 2a10 — 2byb F 2ryr = 17 — af — b3
This has the form

a2+b2—r2+Ala+B,b+C1r+D1=0, (7)
where the coefficients are numbers that can be plotted. Similarly we get

a4+ b2 — r? + Asa + Bsb + Cor + Dy = 0, (8)

a2 4 b2 — 124 Aza+ B3b + Car + D3 = 0, 9)

where all of the cocfficients can be plotted. Subtracting (7), term by term, from
(8) and (9), we get two equations of the form

Ezd+F2b+GzT+H2=0, (8’)
E3a + Fab + GaT + 113 = 0, (9’)

where all of the coeflicients can be plotted, being differences of plottable numbers

We now propose to solve for a and b in terms of . That is, we are going to re- "
gard Gor + H, and G3r + Hj; as constant terms. By the methods referred to in
problem 2 of the preceding section, we get

_ Fy(Gsr + Hj3) — F3(Gor + Hz)

E;F3 — FaEy
b = F3(Ger + Hj) — F3(Gar + Ha) |
E.F3 — FoE3

Here a and b have the forms
a=J,r+K1, b=er+K3,
where all the coefficients can be plotted, because the previous coefficients were.
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We now substitute in (7) these expressions for a and b. Equation (7) now be-
% comes & quadratic equation in r alone, with coefficients all of which can be plotted:

Jir + If])2 + (Jor + Kz)’ —r? + Ay (Jyr + K;)
+ Bi(Jer + K3) + Cyr + Dy = 0.

We can solve such an equation with ruler and compass to plot the point r. We then
plot @ and b. This solves our problem.

Note that if any of these steps are algebraically impossible, this means that our
geometrical problem was impossible in the first place. This can easily happen. For
example, if our three given circles are concentric, then no circle is tangent to all
of them,

Various modifications of Apollonius’ problem can be solved by exactly the same
method. Suppose, for example, that we want to construct all circles C which pass
through a given point P, and are tangent to two given circles C, and Cs. To solve

C, c

Figure 19.18

the problem, we would simply set r;, = 0, and then proceed exactly as before;
similarly, if two points and a circle are given. You can even use the method to
pass a circle through three given points, if you want to, but you surely don’t want
to. (Why?)

It should be understood that the sort of analysis that we have been going through
does not lead to valid methods in mechanical drawing. In all really complicated
construction procedures, there are so many steps that the cumulative error is
likely to make the final result quite unrecognizable as a “right answer.” To keep
this cumulative error small, we need to do the algebra algebraically.

19.5 THE IMPOSSIBLE CONSTRUCTION PROBLEMS OF ANTIQUITY

The sort of methods that we have been using were of course quite unknown to
the Greeks. Some of the Greek mathematicians (notably Archimedes) were as
Kood a8 any mathematicians who have ever lived. But some easily stated prob-
lems defeated them completely; and many centuries later the reasons for this
became clear. It turned out that geometry, in the sense in which the Greeks
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understood it, is not a self-contained subject and that some of its elementary
problems require, for their solution, branches of mathematics that the Greeks did
not manage to discover.

Probably the most famous of these elementary problems are the trisection of
the angle and the duplication of the cube. Given an angle, we are asked to construct
its trisectors with ruler and compass.

Figure 19.19

Given a segment of length a, it is required to construct a segment of length b,

such that
b3 = 248,

Ifa = 1,thenb = /2. Thus our problem is to plot ¥/2 on the z-axis. The Greeks,
of course, did not put it this way. In purely synthetic terms, given a segment 4B,
we are to construct a segment CD, such that a cube with CD as an edge has twice
the volume of a cube with AB as an edge.

It turned out that both these problems are impossible: no such constructions
exist. The rest of this chapter will be devoted to the proofs of these statements.
In the following sections, it will seem that we are going rather far afield; we shall,
because we have to. It was the need for going far afield that made the impossi-
bility proofs so hard to discover.

19.6 THE SURD FIELD

A number z is called a surd if we can calculate z by a finite number of additions,
subtractions, multiplications, divisions, and extractions of square roots, starting®
with 0 and 1.

For example, 2 is a surd, because 2 = 1 + 1, and 1 is a surd ez officio. Given
that n is a surd, it follows by addition that n -+ 1 is a surd, because the sum of
two surds is a surd. By induction we conclude that every positive integer is a surd.
By subtraction, every negative integer is also a surd. By division, we have the
following.

Theorem 1. Every rational number is a surd.
And it is easy to show that: '

Theorem 2. The surds form a Euclidean ordered field.

To check this, we note first that the associative, commutative, and distributive
laws automatically hold for surds, since they hold for all real numbers. The same
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observation applies to the postulates for order. Since we are allowed to form
urds from other surds by addition, subtraction, multiplication, and division, it
follows that the set of surds contains sums, products, negatives, and reciprocals of
all its elements. (Except, of course, that 0 has no reciprocal.) Therefore, the surds
form an ordered field. Finally, since we are allowed to form surds by extracting
square roots of positive surds, it follows that the surd field satisfies the Euclidean
completeness postulate.

We denote the surd field by S.

Later we shall see that some numbers are not surds. Granted that there is one
nonsurd, it follows that there are lots of others. For example, if z is not a surd, and
p and g are nonzero integers, then y = (p/q)z is not a surd. The reason is that if

.y were a surd, then z would be the product of the surds y and ¢/p. Therefore z
would be a surd after all. In general, if a is a surd and z is not, then ax is not a
surd.

We return now to the coordinate plane. By an S-point (S for surd), we mean a
point both of whose coordinates are in S. By an S-line, we mean a line which con-
tains at least two S-points. By an S-circle, we mean a circle whose center is an
8-point and whose radius is in S. By an S-equation we mean an equation of the
form

Ar+ By+C=0
or
224+ y? 4+ Dz +Ey+F =0,

in which all of the coefficients are in S. These ideas are connected up by the follow-
ing theorems.

Theorem 3. Every S-line is the graph of an S-equation.

Proof. Let L be a line containing the S-points (zi, 1), (zg, y2). If L is vertical,
then L is the graph of the S-equation

zr—1x,=0.
= If L is not vertical, the slope of L is
m=Y2_" ¥,
T2 — 1

Here m is a surd, because the surds form a field; and L is the graph of the equation

y— 1y = m(x — zy),
or
mz — y — (—y1 + mz;) = 0,

which is an S-equation. The converse is also true.
Theorem 4. If a line L is the graph of an S-equation, then L is an S-line.

Proof. Suppose that L is the graph of the S-equation
Az + By +C = 0.
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If B » 0, then we can set z = 0 and z = 1, getting the S-pointa (0, —(C/B)),
(1, —(C + A)/B). If B = 0, then L contains the S-points (—(C/A4),0) and
(—(C/4),1).
Theorem 5. Every S-circle is thesgraph of an S-equation.
Proof. Let C be an S-circle with center (a, b) and radius r. Then C is the graph of
(z—a)?+ (y —b)?=r? .

or
2% + y? — 2az — 2by + a® + b — r? =0,

which is an S-equation.

Theorem 6. If a circle C is the graph of an S-equation, then C is an S-circle.

Proof. Given that
2*+y*+ Dz+Ey+F=0

is an S-equation, and that its graph is a circle. We can then convert the equation

to the form
D\? E\?= D*4 E? — 4F
(1: + -2—) + (y + —2-) 4 :
Therefore the center is the S-point (—(D/2), —(E/2)) and the radius is the surd

r = 4/D? + E? — 4F.

This sort of elementary algebra is easier to write than to read. We therefore
leave to you the verification of the following theorem.

Theorem 7. Let P be a point in the intersection of (1) two S-circles, (2) two S-
lines, or (3) an S-circle and an S-line. Then P is an S-point.

The reason is roughly as follows. The coordinates z;, y; of P are common solu-
tions of two S-equations, each of which has the form

Az 4+ By+C=0 o z2*+y* 4+ Dx+Ey+F=0.

When we solve such a system by the usual algebraic methods, we find ourselves
calculating z; and y; by starting with the coefficients and then performing the
operations +, -, —, +, v/. These operations keep us within the surd field at every
stage. Therefore the final results z; and y, must be surds.

4

19.7 THE SURD PLANE

Let E be a coordinate plane. Let E be the set of all syrd points in E. The set
will be called the surd plane. For each S-line L, let

L=EnL.
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The sets L are called surd lines. Similarly, if C is an S-circle, let

C=Enc.
The sets T are called surd circles. v
As we have rem.:rked before, it will turn out that not all real numbers are surds.
Therefore E is full of holes. In fact, E does not contain all of any line or any circle.

Y
4

34

|
|

1 X1

Fieure 19.20

In fact, if z; and y, are nonsurds, then the lines r = z; and y = y; contain no
points of E at all. These lines cut the plane (in a manner of speaking) into pieces
only one point wide.

On the other hand, if you were to investigate the surd plane by experimenting
with ruler and compass, you could never tell that any points were missing. The
only lines and circles you could draw would be S-lines and S-circles. If two S-
lines, Ly and L, intersect in a point, this point is in E. (See Theorem 7, Section
19.6.) Therefore L; intersects L. If an S-line L intersects an S-circle C the inter-
section points are in E (same theorem). Therefore

InC=LncC.

If two S-circles C;, C; intersect, then so glso do the surd circles Ty, T, in the
same points.
Thus, although surd lines and surd circles are “s8i1 of holes,” they “never pass
through each other where the holes are”; they intersect each other everywhere we
~expect them to. We sum this up in the following theorem.

Theorem 7-1. Every ruler-and-compass construction which is possible in the

plane is also possible in the surd plane.

In the light of this theorem, the questions of trisecting angles and duplicating
cubes become questions of fact, as follows.

(1) Is it true that, in the surd plane, every angle has a trisector?

(2) Is V2 a surd?

If the answer to (1) is “No,” then there is no general method of trisecting angles
with ruler and compass; the only points that we can construct are the surd points,
and therefore we cannot construct a line that contains fewer than two surd points.

Similarly, if /2 is not a surd, we cannot construct a segment whose length is
V2.

To answer questions (1) and (2), we need to do some algebra.
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19.8 QUADRATIC EXTENSIONS OF FIELDS. CONJUGATES IN A QUADMTIC
EXTENSION FIELD

Let F be a subfield of the real number system. Let k be a positive number be-
longing to F, and suppose that +/k does not belong to F. Let

F(k) = {z + yVklz,y € F}.

The set F(k) is called a quadratic extension of F.
For example, if F is the field Q of rational numbers, then 2 € F and /2 € F.
Therefore we can form the quadratic extension

Fk) = Q2) = {z + yv2lr,y € Q}.

We found, at the end of Problem Set 1.7, that these numbers form a field; and, in
fact, this is what always happens.

Theorem 1. Every quadratic extension of a field forms a field.

Proof. Let F be a subfield of the real numbers, and let F(k) be a quadratic ex-
tension of F. The associative, commutative, and distributive laws hold auto-
matically in F(k), because they hold for all real numbers. It is also easy to see
that the numbers of the form z + y+/k (z, y € F) are closed under addition and
multiplication, that 0 is among them (=0 + 0v/k), and that —(z + y/k) is
always a number of the same form. It remains only to verify that if

z+yvk # 0
then
" _eF®). -
z+ yvk
Of course we know that the reciprocal ezists, because the real numbers form a
field; the question is whether the reciprocal belongs to F(k).

Lemma. If z + y/k # 0, then z — yk = 0. ‘

Proof. 1f £ — yv/k = 0, then z = y+/k. Here z and y cannot both be 0, be-
cause r + yv/k would then be 0. Therefore neither z nor y is 0. Therefore V& =
z/y, which is impossible, because vk &€ F.

By the lemma, we can write

1 _ 1 z—yVk
z+ywk z4+ Wk z—yVk
_z—yVk
z2 — ky?

x

x2—ky2+x2 kya\/_

which belongs to F(k).
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If

» 2=z + yVk e F(b),

then the conjugate 2 of z is defined by the equation
z2=1z — k.

The operation of conjugation in a quadratic extension field is very closely analogous
to the corresponding operation for the complex numbers. It may be worthwhile
to review this, to bring out the analogy.

Given a complex number .

z =z + yi,
we define
’ .
Z=1r— .

The basic properties of the operation z — Z are given in the following theorems.
Theorem A. The conjugate of the sum is the sum of the conjugates. That is, if

2y =x+ Y%, 23 =12+ yar,
then
2y + 22 =% + 2,
This is trivial to check.

Theorem B. The conjugate of the product is the product of the conjugates.
That is,

z2122 = Z,22.
Verification.
2123 = (1 + Y1) (@2 + ¥2i) = 1172 — Yay2 + (01y2 + 2291)4,
2.2, = (z1 — Y1) (22 — y21) = 0132 — 1Yz — (N2 + Tap1)t.
Obviously z,z2; = 2,2,.
By induction we get the following theorem.

Theorem C. 2" = 2"

Theorem D. If ¢ is a real number, then @ = a.

By a polynomial of degree n > 0, we mean (as usual) a function f defined by an

equation
f(2) = an2" + an_y2" ' + -+ + a1z + ay,

where a, # 0. We allow also the “zero polynomial” which is 0 for every z.

Theorem E. If f is a polynomial with all coefficients real, then
1@ = 1@)

for every z.
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Proof. Let f(2) be as in the definition of a polynomial. Then
J@) = 62"+ aa_ 2" -+ 024 ao
=B+ B2+ WZ A+ A,
by Theorem D. This is
=02 + Uusz™ T+ o+ T2+ Ty,
by Theorem C. This is
= ap2® + ap 12" + -+ + 312 + 8y,
by Theorem B. And this is = f(z), by repeated applications of Theorem A.
Theorem F. Let f be a polynomial with all coefficients real. If
f(z0) = 0,

J(20) = 0.

That is, if the coefficients are real, then the roots of the equation occur in con-
jugate pairs zg, Zo.
The proof is trivial, because if f(zo) = 0 we have

f(20) = Fzo) =0 = 0.

For quadratic extension fields F(k), we have a precisely similar sequence of
theorems in which F acts like the field of real numbers, F(k) acts like the field
of complex numbers, and +/k acts like ;. We shall merely restate the theorems and
leave to the reader the easy task of verifying that the same proofs work in the same
way. (The equations in the proof that z;z; = 2,2, take a slightly different form.)
Throughout these theorems it should be understood that F(k) is a quadratic ex-
tension of F, and that conjugates are defined by

z+yvk =z — yVk
Theorem 2. In F(k), the conjugate of the sum is the sum of the conjugates.

then

Theorem 3. The conjugate of the product is the product of the conjugates.
Theorem 4. z" = 2", for every z € F(k).

Theorem 5. If a € F, then Z = a.

Theorem 6. If fis a polynomial with all coefficients in F, then

1@ = 5@
for every z in F(k).
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Theorem 7. Let f be a polynomial with all coefficients in F. If 2y € F(k), and
f (20) = 0;

J(2o) = 0.
Thus, for polynomial equations with coefficients in F, the roots in F(k) oceur
in conjugate pairs.
Theorems F and 7 describe a phenomenon which has long been familiar from
elementary work with quadratic equations. The roots of the equation

then

az®+bx+c=0
are given by the formula

r = —b + Vb? — dac
- 2a
If b> — 4ac = —d < 0, then the roots are the complex numbers
—=b  Vd,
% 2"

which are conjugate, as predicted by Theorem F.
Suppose now that a, b, and ¢ are rational, and 2 — 4ac = e¢ > 0. The roots
are then the real numbers
—b 1

These are conjugate elements of the quadratic extension field F(k) = Q(e), as
predicted by Theorem 7.

19.9 SURD FIELDS OF ORDER n; SURDS OF ORDER n

Suppose that we have an ascending sequence of fields, starting with the rationals
-and proceeding by a quadratic extension at every step. Thus our fields are

F05Fh-~-rFm
where
Fo=2Q
Fipr = Fulkigr).

Here, for each ¢, ki, is in F;, but v/k;4, is not. In this case we say that F, is a
surd field of order n.

and

Theorem 1. All elements of F,, are surds.

Because they are obtainable from rational numbers by a finite number of opera-
tion +, -, —, +, v/ . (For a formal proof, we would use induction: all elements of
F are surds; and if F; has this property, so does F;,,.) The converse is also true:
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Theorem 2. Every surd belongs to a surd field of some order.

Proof. Every surd z can be built from rational numbers by a finite number of
operations +, -, —, +, /. If nroot-extractions are needed in this process, we say
that z is & surd of order n. Thus every rational number is a surd of order 0; /2 is

a surd of order 1, and so on.
Given that z is a surd of order n, let

kyka, ..., kn

be the numbers whose roots we extracted in forming x, in the order in which these
roots were extracted. Let
Fo=Q, Fy= Fok),
and in general
F-‘+1 = Ft(k|+l)-

Between the sth root-extraction and the (Z 4+ 1)st, we may have used +, -, —,
and +, but these operations can all be performed in F,. Therefore all the numbers
formed in the intermediate stages are in the fields F, . . ., Fyy; and in particular,

z € F,, which was to be proved.

Note that all of the indicated quadratic extensions are genuine; we really have
Vkiy1 & F, because if \Vk;y1 € F;, we could reduce the number of root extrac-
tions used in forming x, and x would not be a surd of order n after all.

Note also what Theorem 2 does not say: it does not say that there is one particu-
lar F, which contains all surds of order n. In fact, the latter statement is not true;
in general, F, depends not merely on the order n of z, buf also on z. For example,
V2 and /3 are surds of order 1, but no one field F, contains both of them, be-
cause /2 + 4/3 is a surd of order 2.

ProsrLEM ST 19.9

1. Show that if nm is even and n is odd, then m is even.
2. Show that +/¥ is irrational.

3. Now prove the statement made in the last sentence of this section. That is, prove
that no quadratic extension Q(k) of the rational numbers contains both /2 and 4/3.

19.10 APPLICATIONS TO CUBIC EQUATIONS WITH RATIONAL COEFFICIENTS

Given a cubic equation
f(z) = za -+ agz’ + a1z + ag = 0,

where the coefficients are real numbers. We recall from the theory of equations
that the polynomial on the left always has a factorization of the form

9(2) = (2 — 21)(z — 22)(z — 23) = O,

where z,, z3, and z; are the roots. They may not all be different, and two of them
may be complex. Why is it impossible for exactly one of them to be complex?



APPLICATIONS TO CUBC EQUATIONS 237

(For a full review of the algebraic background of this section, including proofs
> of nll theorems cited here without proof, see Chapter 30 at the end of the book.)

9(2) = 2% — (21 + 23 + 23)2% + (2123 + 2125 + 2323)2 — 212025 = O.

Now f(2) = g(z) for every z. The only way this can happen, for polynomials, is
for the corresponding coefficients to be equal. Therefore, in particular, we have

—(21 + 22 + 23) = a,.

Suppose that a, b, and ¢ are in a subfield F of the real numbers and that the
, equation
2t+at+bzt+c=0

has a root 2, in a quadratic extension F(k) of F. Then 2, is also a root, by Theorem
7 of the preceding section. If the third root is z3, then we have

—(z21+ 21 + 23). =
or
23 = —(21+ 2 + a).

Now z; + 2, € F. (Why?) Therefore z3 is in F. Thus we have the following
theorem.

Theorem 1. Given an equation,
24+ af+bz+ec=

with coefficients in a field F. If the equation has a root lying in a quadratic ex-
tension of F, then the equation has a root lying in F.

If the coefficients are rational, we can draw a stronger conclusion.

'~ Theorem 2. Given a cubic equation,
2 +a+bz+c=0,

where the coefficients are rational. If the equation has a root in the surd field,
then it also has a rational root.

Proof. Suppose that a surd 2, of order n, is a root. Then we have a sequence,
F01F11F2;'-")Fm
of quadratic extensions, as in the preceding section, with

F0=Qx

Fipy = Fikita),
for every %, and z; € Fy.
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Now a, b, ¢ € Q, so that our coefficients are in Fn_;. By Theorem 1, our equa-

tion has a root in F,_;. Repeating the same reasoning another n — 1 times, we
conclude that our equation has a root in F. Since Fg = Q, this proves the theorem.

19.11 THE TRISECTION OF THE ANGLE

Some angles can be trisected with ruler and compass. For example, a right angle
can be trisected:

J
3]
a D
A C
Ficure 19.21

Given a right angle £A. Draw a circle with center at A, with any radius a,
intersecting the sides of £ A4 in points B and C. Draw the circle with center at B,
containing A. The two circles will intersect in two points, one of which will be
a point D in the interior of ZA. (Both points of intersection will lie on the same
side of AC as B ; and exactly one of them will lie on the same side of AB as C)
Now AABD is equilateral, and hence equiangular. Therefore m£BAD = 60.
Therefore m£ZDAC = 90 — 60 = 30 = 4-90, and £LDAC is a trisector of
LBAC. To get the other trisector, we draw the circle with center at C, contain-
ing A, and join A to the point where this circle intersects our first circle in the
interior of ZBAC.

For some angles—in particular, for angles of 60°—no such construction is pos-
sible. The proof is as follows.

The surd plane contains an angle of 60° because the surd plane contains an
equilateral triangle. Now any angle can be “copied” with ruler and compass. (See
Construction 7 of Section 17.1.) It follows that there is a 60° angle ZBAC, with
AC as the positive z-axis and B in the upper half plane, as in the figure below.

Y

b ¢

ni [
Figure 19.22



THE TRISECTION OFf THE ANGLE 239

We have proved that the surd plane is a ruler-and-compass geometry. Surd
* lines and surd circles always intersect each other in the same way as the corre-
sponding lines and circles in the complete plane. If there is a method of trisecting
every angle with ruler and compass, then this general method must apply to ZBAC
in particular; and the construction can be carried out in the surd plane. Thus we
arrive at the following conclusions,

(1) (?) The surd plane contains an angle £ DAC, with degree measure = 20. (?)

Ficure 19.23

We shall show that this is impossible. It will follow that there is no general
method for trisecting angles with ruler and compass. We have given that D is a
point of the surd plane. Let F be the foot of the perpendicular from D to the 2-
axis. Then F is a surd point; the y-coordinate of F is 0, and the z-coordinate is the
same as that of D. The distance between any two surd points is a surd. Therefore

the number
_ 4F
Y=11D

is a surd. But y = cos 20°. Thus we conclude that
(2) (?) cos 20° ¢s a surd. (?)
We now need to do a little trigonometry, as follows:
cos 36 = cos (20 + 6)
= 08 20 - cos § — sin 20 - sin @
= (cos? 9 — sin%6) cos § — 2sin f cos fsin §
= (2cos? 6 — 1) cos § — 2(1 — cos? §) cos §
= 4cos® 6 — 3cosd.
Setting § = 20, and recalling that cos 60° = 4, we get
"} = 4c0s®20° — 3cos20°, or 8cos®20° — 6cos20° — 1 =0.
Thus we have
(3) cos 20° is a root of the equation

—6y—1=0.
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Here we omit the question marks, because (3), unlike (1) and (2), is actually
correct; it is not merely a statement whose consequences we propose to in-
vestigate. .

Setting ¢ = 2y, we conclude that

(4) the number % cos 20° 18 a root of the equation

22 —3x—1=0.

We shall prove that no surd is a root of this cubic equation. This will mean
that 4 cos 20° is not a surd, so that cos 20° is not & surd. This will mean that
(2) is impossible, so that a ruler-and-compass trisection of a 60° angle is im-
possible.

1t is easy to see that our cubic has no rational root. If p/q is a rational root,
expressed in lowest terms, then each of the integers p and g is a divisor of 1 and
hence is =1 or = —1. Therefore 1 and —1 are the only possible rational roots,
and neither of them works. Therefore our cubic has no rational roots. By Theorem
2, Section 19.10, it follows that no root of the equation is a surd.

The impossibility of this classical problem is surprising to most people when they
first hear of it. In fact, the world is full of well-intentioned people who simply
refuse to believe it and go on trying to devise a method. It is easy to see why
people feel this way.

In the first place, the proof is much too hard to be capable of popularization.
For this reason, amateurs are in no position to understand why it is that their
enterprise is impossible. In the second place, an informal statement of the problem
is misleading. It sounds as if we are saying that something or other “cannot be
done”; and many times in the past, defeatist answers to questions like this have
turned out to be false. For example, people said that flying machines could not be
built and that matter could not be created or destroyed. People went on saying
this sort of thing, with complete confidence, until the supposedly impossible things
were done. If you think of the trisection problem in these terms, then you may
believe that you can do it, if only you are more ingenious and more persistent than
the people who have tried it and failed.

But once the problem is given an exact formulation, the negative answer seems”
much more natural. In the surd plane, all ruler-and-compass constructions are
possible. Therefore, if a figure can be constructed with ruler and compass, this
means that in the surd plane, the figure exists. Thus, if angle trisection were al-
ways possible, we would have the following theorem.

(?) Theorem. In the surd plane, every angle has a trisector.

If you think of the problem in these terms, then the negative answer is not sur-
prising in the least. The proposed theorem describes a completeness property of
the surd plane; it says that when you look for rays in certain places, you will find
them. But since the surd plane is “all full of holes,” no kind of completeness con-
dition has any plausibility until it is proved. Only the most incorrigible optimist
would be surprised if he looked for a ray, in such a “geometry” as this, and failed
to find one.

-
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19.12 THE DUPLICATION OF THE CUBE

Another of the impossible construction problems of antiquity is the duplication
of the cube. Given & segment AB, we want to construct a segment CD such that
a cube with CD as an edge has exactly twice the volume of a cube with AB as an
edge. .
As before, if this construction is possible, it is possible in the surd plane. Sup-
pose then that A and B are surd points. Granted that CD can be constructed,
C and D must be surd points. Thus the distances AB and CD are surds; and under
the conditions of the problem we must have ‘

CD? = 24B?,

¢D\?
(E) _2,
It follows that

(1) (?) The equation z® — 2 = 0 has at least one surd as a root. (7)

But this is impossible. The only possible rational roots of this cubic are 1, —1,
2,and —2. None of these work. Therefore no rational number is a root. There-
fore no surd is a root.

or
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FROM EUDOXUS TO DEDEKIND

20.1 PROPORTIONALITIES WITHOUT NUMBERS

In the early chapters of this book we have distinguished between two different
approaches to the concept of congruence for segments. In the metric approach, &

distance function
d:SXS8—-R

is given. Here the fundamental notion is that of distance: to each pair of points
A, B there corresponds the real number AB, which is the distance between them.
Congruence for segments is defined in terms of distance. The basic definition
states that AB = CD if AB = CD. The properties of congruence now become
theorems proved on the basis of the metric definition.

The alternative purely synthetic approach takes congruence for segments as a
basic idea, left undefined, and governed by certain postulates. In this treatment,
the idea of distance does not appear at all; in fact, the only numbers that appear
are the natural numbers 1, 2, . ... We may think of congruence for segments as
the idea of “same distance.”

The treatment of similarity, in this book, has been strictly metric. We recall
that a correspondence

ABC < DEF

is called a similarity if corresponding angles are congruent and the lengths of cor-
responding sides are proportional. '

B E
A b (o D e F
LA=tD, ¢(B=tE, (C=(F,
a, b, c~d,e.[.
Figure 20.1

It is very easy, of course, to treat angle congruence in a purely synthetic way;
we have discussed this in Chapter 8. But proportionality seems to be quite another
242
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, matter. We defined the expression q, b, ¢ ~ 4, ¢, f to mean that

_— - = .

Here the indicated divisions make sense, because a, b, ¢, d, ¢, and f are positive
real numbers. We say that the sides of AABC and ADEF are proportional if
the lengths of these sides are proportional in the sense that we have just defined.

This treatment of similarity is by now very nearly universal, even in books
which use a strictly Euclidean approach insofar as practicality permits. In nearly
every elementary book on “synthetic” geometry there is & page on which the idea
of distance is introduced, in order to permit a metric treatment of proportionality.

Indeed, if you are not allowed to measure distances and perform divisions, it
i8 not so easy to see how you could even explain what is meant by proportionality
for segments, let alone prove anything about how proportionalities work. Never-
theless, this can be done, using no numbers at all except the positive integers. The
method is used in Euclid’s Elements; and the mathematical ideas that make it
work are attributed to Eudoxus. This suggests two questions.

(1) What were the purely synthetic ideas that Eudoxus used as a substitute for
algebra?

(2) Given a purely synthetic geometry, how can we define a distance function
satisfying the ruler postulate?

The first of these questions may seem to be of purely historical interest. But
this is hardly true of the second: we need to answer it, to introduce coordinate
systems. Moreover, it turns out that the two questions are so closely related that
if you answer one of them, the other becomes easy.

And the ideas of Eudoxus took on a new importance in the nineteenth century,
when Richard Dedekind found, to everybody’s astonishment, that they were
exactly what was needed in setting up the foundations of the real number system.
For these reasons, the purposes of the present chapter are only incidentally ar-
chaeological.

"~
20.2 EUDOXUS' SYNTHETIC DEFINITION OF PROPORTIONALITY

We shall work our way gradually toward Eudoxus’ idea, starting with the metric
concept which we know, and gradually stripping it of its algebraic apparatus.
To start, we define the expression

AB:CD::EF :GH 1
to mean that
AB,CD ~ EF, GH,; )
that is,
EF GH @)

ABT D’
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The first of these expressions is pronounced “AB is to CD as EF is to GH.” We
propose to find a way to define this expression without mentioning any numbers ¢
except positive integers. Of course, it can easily happen that the segments AB and
EF are incommensurable. In this case, the proportionality constant

BF _GH
AB — CD

will be irrational. Our first step toward Euclid will be to express Condition (3) in
the form of a statement about rational numbers. In the light of the comparison
theorem, this can be done as follows.

(4) If p/q is rational and

T =

p . EF
s <dB’
P GH,
q <TD
Conversely, if the second of these inequalities holds, then so does the first. This in
turn can be expressed without mentioning division.
(5) If p and g are positive integers, and

p-AB < q-EF,
p-CD < q-GH.

then

then

And conversely, if the second of these inequalities holds, then so does the first.
We are now almost done, because (5) is very close to being a statement about
segments. We recall that addition can be defined for congruence classes of segments.
For each segment XY, we let. [X V] be the set of all segments that are congruent to
XY. Given any two segments AB and CD, we take points X, ¥, Z such that

X-Y-Z, AB=>=XY, C(D=YZ;
and we then define the sum [AB] + [CD) by the formula o
[4B) + [CD] = [XZ).

We showed, in Chapter 8, that the sum of the two congruence classes really de-
pends only on the congruence classes [AB] | and [CD], and is independent of the
choice of A, B,C, D, X, Y, and Z. When AB = CD, we write

[4B] + [AB] = 2-[4B].
And for any positive integer n, we use the shorthand
n[AB] = [AB] + [AB] + - -+ + |4AB] (to n terms).

Thus, if we write - _
n[AB] = [XZ)],
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th:smeansthatlfyoutakeneongrmntcopmofﬂ and lay them end to end, you
get a segment congruent to XZ.
In Chapter 7, we defined the expression

AB < CD

to mean that there is a point B’, between C ard D, such that AB = CH. This,
of course, is a purely synthetic way of conveying the idea that AB < CD.

We are now ready to give Eudoxus’ formulation of (5). It reads as follows.

(6) Let p and ¢ be any positive integers. If

pl4B)] < oEF),
then . _
pICD] < ¢(GH).

And conversely, if the second of these inequalities holds, then so does the first.
This was Eudoxus’ working definition of the statement
AB:CD::EF :GH.

Euclid used it, throughout the Elements, every time he had to deal with propor-
tionality (except in the commensurable case). This was a really extraordinary
tour de force, because even the simplest theorems under this scheme become rather
formidable. Every proportionality that we write down becomes a very complicated
statement about what happens when congruent segments are laid end to end.

For example, Proposition 4 of Book V of the Elements reads as follows.

Propositon 4. “If a first magnitude has to a second the same ratio as a third to
& fourth, any equimultiples whatever of the first and third will also have the
same ratio to any equimultiple whatever of the second and fourth respectively,
taken in corresponding order.”

We can rewrite this in the following form.

Proposition 4. If AB :CD : : EF : GH, and m and n are any positive integers,
then
mAB : mEF : :nCD : nGH.

Here mAB denotes any segment in the class m[AB], and so on.
The corresponding algebraic theorem is very simple. It says that if
AB,CD ~ EF,GH,
and m and n are any positive integers, then
mAB, mEF ~ nCD,nGH.

Writing these proportionalities as equations between fractions, we get the follow-
ing proposition.
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Proposition 4. If
EF _ GH
4B~ CD’
and m and n are positive integers, then
nCD _ nGH
mAB ~ mEF

The first of the equations means that
EF-CD = AB-GH;
and the second means that
mnEF -CD = mnAB - GH.

Thus the “proof” doesn’t amount to much. All the theorems in Book V of the
Elemenis evaporate in the same way, as soon as they are interpreted algebraically.
This, however, does not mean that Euclid was being silly. The point is that in
Euclid’s time the algebra of the real numbers had not yet been discovered. Getting
along without it in the study of geometry was a formidable achievement indeed.

We observed, when we were regarding congruence synthetically, that we could
not talk about distance; congruence involves only the idea of same distance. Much
the same thing happens if we use a purely synthetic treatment of proportionality.
We cannot speak of the ratio AB : CD. All we cansay isthat AB : CDand EF : GH
are the same ratio. The easiest way to see this is to observe that the ratio AB : CD
would have to be a real number; and in purely synthetic geometry the only num-
bers are the positive integers.

Finally, we should confess that in giving what are supposed to be Euclid’s for-
mulations of certain ideas, we have made no attempt to copy his literary style.
In the Heath translation, his definition of proportionality is as follows.

“Magnitudes are said to be in the same ratio, the first to the second and the third
to the fourth, when, if any equimultiples whatever be taken of the first and third,
and any equimultiples whatever of the second and fourth, the former equimultiples
alike exceed, are alike equal to, or alike fall short of, the latter equimultiples
respectively taken in corresponding order.”

This is the statement which we gave above, in a rewritten form, as Condition (6).

Our account of Book V has also been simplified in other ways. For one thing,
Euclid also gave a synthetic formulation of the statement that the ratio AB : CD
is less than the ratio EF : GH. For another thing, Euclid did not use, even tacitly,
the Archimedean postulate. He merely provided that segments had to behave in
an Archimedean fashion for one to be able to talk about proportionalities between
them. That is, to write _

AB :CD ::EF : GH,
you must first know that
(1) p[AB] > [CD) for some p,
(2) ¢[CD] > [AB] for some g,
(3) r[EF| > [GH] for some r, and
(4) s[GH] > [EF] for some s.
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At no point did Euclid commit himself on the question whether these conditions
held for any two given segments; he merely announced that he was not going to
talk about ratios except in the cases where they did hold. The resulting treatment
was subtle and delicate in the extreme. The fact that such a program was carried
out, with only occasional slips in matters of detail, reminds us that the Greeks
were no more primitive in mathematics than they were in the arts.

ProBLEM Ser 20.2

The following is a selection of propositions from Book V of the Elements. Interpret
each of these propositions algebraically, and prove the resulting theorem. This problem
set is designed to convince you that the language of mathematics has progressed in im-
portant ways.

Proposition 5. “If a magnitude be the same multiple of a magnitude that a part sub-

tracted is of a part subtracted, the remainder will also be the same multiple of the re-

mainder that the whole is of the whole.”

Proposition 6. “If two magnitudes be equimultiples of two magnitudes, and any mag-

nitudes subtracted from them be equimultiples of the same, the remainders also are

either equal to the same or equimultiples of them.”

Proposition 9. “Magnitudes which have the same ratio to the same are equal to one

another; and magnitudes to which the same has the same ratio are equal.”

Proposition 15. “Parts have the same ratio as the same multiples of them taken in

corresponding order.”

Proposition 19. “If, as a whole is to a whole, so is a part subtracted to a part sub-

tracted, the remainder will also be to the remainder as whole to whole.”

Proposition 24. “If a first magnitude has to a second the same ratio as a third has to

& fourth, and also a fifth has to the second the same ratio as a sixth to the fourth, the

first and fifth added together will have to the second the same ratio as the third and

sixth have to the fourth.”

Proposition 25. “If four magnitudes be proportional, the greatest and the least are

greater than the remaining two.”

(This last one is very ambiguous. You should try to find an interpretation that makes
it true.)

20.3 THE ALGEBRA OF SEGMENT ADDITION

We shall not give a full development of the Euclidean theory of proportion,
but we shall need to know some of the simplest facts about what happens when we
lay segments end to end.

Theorem 1. The Commultative Law.
[4B] + [CD] = [CD)] + |4AB).

This follows from the definition of segment addition. The order in which the
segments were named never even seemed to matter; the same is true of the next
theorem.
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Theorem 2. The Associative Law.
((AB) + [CD)) + [EF] = [4B] + ([CD) + [EF)).

Theorem 3. The Distributive Law. For every positive integer n,
n([4B] + [CD)) = n[4B)] + n[CD].

Proof. For each n, let P, be the proposition given by the formula. Then P, is
true. To prove the theorem by induction, we need to show that if P, is true, then
80 also is Pn4;. Now

(n + 1)(14B] + [CD)) = n(IAB] + [CD)) + ((4B] + [CD))
= (n[4B] + n[CD)) + ((4B] + [CD))

(n{AB] + n{CD)) + (ICD] + [4B)

n[AB] + ((n[CD) + [CD)) + [4B))

= n[AB] + ((n + 1) [CD| + [4B))

= n[4B] + ((4B] + (n + D[CD))

(n[AB] + [4B)) + (n + 1)[CD)

= (n+ 1[AB] + (n + 1)[CD].

I

It

What is the reason for each step?

Theorem 4. Preservation of Order. If

[4B] > [CD),
then
n[AB] > «[CD)
for every positive integer n.
Proof. If [AB] > [CD),
then

[4B] = [CD] + [EF]

for some segment EF. (Recall the definition of > for congruence classes.) By the
preceding theorem, _ _ _
n[AB] = n[CD] + n|EF),

which is > n{CD], as desired.

Theorem 5. If
n[AB] > n[CD),
for some n, then
[4B] > [CDI.
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(If not, we would have a contradiction of the preceding theorem.) It is also
* easy to see the following theorem.

Theorem 6. If A-B-C, then
n[AC] > n[4B)]
for every n.
The reason is that if A-B-C, it follows that [AC] > [AB].

20.4 HOW TO DEFINE RATIOS: THE SUPREMUM

‘We have observed that in the Euclidean theory of proportionality, we cannot
talk about ratios; we can only talk about the relation of same ratio. The relation

AB:CD::EF:GH

says that AB and CD are in the same ratio as EF and GH ; but the “ratios” AB : CD
and EF : GH have no meaning at all when they stand alone. If the real number
system is available, however, we can assign a meaning to AB : CD without using
metric geometry. As a guide in framing the definition, let us recall that the ratio
should turn out to be the number AB/CD. Thus, by the comparison theorem, we
can say

% < AB:C )

if and only if
AB
< b )]

This is equivalent to

pCD < gAB, ®
which in turn is equivalent to

pICD) < ¢l4B]. @

Thus p/q < AB :CD if and only if p copies of [E_D-_Llaid end to end, form a seg-
ment shorter than a segment formed by g copies of [C D], laid end to end.
Let

K pICD] < q[A‘El]-
Officially, this set of rational numbers has been defined synthetically, without

reference to distance. Unofficially, we observe that in the metric scheme it must be
true that
K= [‘—’
q
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The relation between the set K and the number AB/CD is simple; it can be eon- -
veyed by the two conditions that follow.

(1) AB/CD is an upper bound of K. That is, every element of K is £ AB/CD.

(In fact, every element of K is strictly less than AB/CD. But this stronger

- condition is not required in the general definition of an upper bound of a set of

numbers.)

(2) AB/CD is the least of all the upper bounds of K. That is, every other upper
bound of K is greater than AB/CD.

If a set K of numbers and a number s are related in this way, we write

s =sup K,

and we say that s is the supremum, or the least upper bound of K. To repeat:
& = sup K if (1) s is an upper bound of K, and (2) no number less than s has

this property.
More cxamples of this follow. Let
. 1 e .
Ky = el positive integer
Here
sup K; = 1;

and sup K belongs to K;. On the other hand, if

K, =12 — 1 l n a positive integer

1 o
then
sup Ky = 2;

and sup K does not belong to K,. If K; is the set N of all positive integers, then
there is no such thing as sup K3, because K3 has no upper bounds at all.

To define ratios of segments, in terms of Euclid’s scheme, we need the following
two basic postulates, onc dealing with geometry and the other dealing with the
real number system.

THE ARCHIMEDEAN PosTULATE. Given any two segments AB and CD, there is

a positive integer n such that

n[AB] > [CD).
(We recall that Euclid’s theory of proportionality was restricted to pairs of
segments that behaved in this way.)

TrE Depexinp PosturaTe. Given a noneinpty set K of real numbers. If K
has an upper bound, then K has a supremum sup K.

This is our final and crucial postulate for the real number system. To indicate
what it means, as a completeness condition, we shall explain why it fails to hold
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) in the rational number system. Consider, for example, the set
K= {2
q

This can be described purely in terms of rational numbers:

7,4 >0 and $<~/§]-

2
K=[§lp,q>0 and g;<2’-

In the real number system, K has a least upper bound sup K = /2. But K has
no sup in the rational number system. The reason is that if r/sis an upper bound
of K, and

1 r
\/E < - < : ’
then ¢/u is also an upper bound of K. Thus no rational upper bound of K is smaller
than all other rational upper bounds of K.
In the same way, if we delete from the real number system any one number z,

the resulting set R’ of numbers does not satisfy the Dedekind postulate. The
reason is that in the reduced system R’, the set

K= {yly < z}

has many upper bounds, but none of them is a least upper bound. (If z is an upper
bound, then any number between z and z is an upper bound.)
Given two segments AB, CD. Let

K =12 5CD| < d4B)|-
On the basis of the Archimedean postulate, we shall prove the following theorems.

Theorem 1. K contains at least one positive number p/q.

Theorem 2. K has an upper bound.
From these two theorems it will follow, by the Dedekind postulate, that:

Theorem 3. K has a least upper bound sup K, and sup K > 0.
These theorems will justify the following definition:

DEFINITION. o
AB:CD = supK;

And we shall then know by Theorem 3 that:

Theorem 4. For every two segments AB, CD,
AB:CD > 0.
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Let.us now prove Theorems 1 and 2.

Proof of Theorem 1. Given AB and CD. By the Archimedean postulate, there

is an n, such that _ _
n[AB] > [CD].

Let p = 1 and let ¢ = n. Then p/q is positive, and belongs to K.

Proof of Theorem 2. Given AB and CD. By the Archimedean postulate, there

is a number n, such that _ .
n[CD] > [AB]. (1)

We assert that n is an,upper bound of K. We shall prove this by showing that if
p/q > n, then p/q does not belong to K.
If p/q > n, then p > ng. Therefore

p[CD] > nglCDI.
It follows from (1), by Theorem 4, Section 20.3, that

nq[CD] > ¢[AB.
Therefore _ _
plCD] > ¢(AB],

so that p/g does not belong to K.
To see where the following theorem comes from, let us first state its metric form,

which is trivial.

Theorem. if A # B, and C-D-E, then

CE _CD  DE
AB~ AB ' AB
The reason is that CD + DE = CE.
The corresponding synthetic theorem is not trivial.

Theorem 5. The Addition i’heorem. If A = B, and C-D-E, then
CE:AB = CD:4AB + DE : AB.
The proof is both long and tricky. It will be given in the next section.
20.5 PROOF OF THE ADDITION THEOREM
Obviously under our definition of ratios, the addition theorem is a statement

about sup's. To prove the theorem, we must first interpret it in terms of the
definition.
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Given A # B and C-D-E. Let

K1 = {2 | 5141 < diD)

go that -
CD:AB = sup K, = k.
Let
K;= l: rlAB] < s[m1},
so that .
DE : AB = sup K, = k,.
Finally, let
K= ’% ' 1148 < m[ml
so that

CE:AB =supK = k.

The addition theorem states that
’Cl + k2 = k.

The proof is rather long. We have tried to make it as easy as possible by split-
ting it up into a series of subsidiary theorems, each of which has a rather short
proof. You are warned, however, that unless you have encountered this sort of
proof before, it is going to be confusing. On the other hand, the proof will repay a
great deal of study, because the ideas that come up in it are quite fundamental in
analysis. '

First we shall state a theorem.

Theorem 1. If p/q belongs to K, and r/s < p/q, then r/s belongs to K.

Proof. Given _ _
plAB] < ¢[CE]
and
gr < ps,
we need to show that _ .
r[AB] < s[CE].

By Theorem 4, Section 20.3, we have

prlAB] < grlCE],
and . _

grlCE] < ps[CE],
because gr < ps. Therefore _

prlAB] < pslCE]

Now if it were true that r[AB] = s[CE], then we would have pr[AB) = pelCE);
and if r[AB] > s|CE], then prlAB] > ps[CE]. In each case, the consequence is
false.
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Therefore _
7[AB] < §CE),

which was to be proved.

Thus the set K is of a very special type, called a cut in the rational numbers.
To be exact, a set Z is called a cut in the rational numbers if

(1) Z is a set of positive rational numbers,

(2) Z is not empty,

(3) Z has an upper bound, and

4) if

0<B<l;
g 8

and r/s belongs to Z, then p/q belongs to Z.
In this language, we can state Theorem 1 in the following form.

Theorem 2. If AB and CE are any two segments, and
K= if plAB] < q[CE]

then K is a cut in the rational numbers.

Theorem 1 tells us that K satisfies (4), and we know already that K satisfied
the other three conditions of the definition.
The following theorem is logically trivial, but very useful.

Theorem 3. If 2z = sup Z, and e is any positive number, then some element z

of Z is greater than z — e.

Proof. If there were no such r, then every element x of Z would be <z — e. There-
fore z — ¢ would be an upper bound of Z. This is impossible, because sup Z is the
smallest of all of the upper bounds of Z.

Combining Theorems 2 and 3, we get a simple description of the set K.

Theorem 4. Let AB and DE be segments. Let

K= l;—” Pl4B] < ¢(DE]
Let
k = sup K.
Then

1

i
o<§<k,cK.

That is, K contains all positive rational numbers that are less than k.
. Proof. Let r/s be a rational number between 0 and k. Let
r

e=k — -
8
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s Then ¢ > 0. By Theorem 3 there is an element p/q of X such that

§>k—c.

This means that
<Pk
q

@i

By Theorem 1, /s belongs to K, which was to be proved. Thus we can write
4 , 0<? l
{q <g<h
0< g < kg’ CcK,,

0<§<HCK
We now return to our geometry.

Theorem 5. If p/q belongs to Ky and r/s belongs to K then p/q + r/s belongs
to K.

Proof. We have given that

plAB] < ¢(CD]
and
r[AB) < s[DE).
Obviously
q 3 q8
Thus we need to prove that
(qr + p8)[AB] < gs[CE].
Now .
grlAB) < qs[DE)
and

ps[4B] < gslCD),
by Theorem 4, Section 20.3. Therefore
(gr + po)lAB] < ¢s(CD) + [DE)) = ¢s[CE),
which was to be proved.

Theorem 6. If p/g does not belong to K, and r/s does not belong to K,, then
p/q + r/s does not belong to K.
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Proof. Given

pl4B] 2 ¢ICD)
and o

r[4AB) 2z ¢[DE),
we need to show that

(qr + ps)[AB] 2 ¢s[CE).
The proof is very much like that of the preceding theorem. First,
qr[AB] 2 qs|DE)
ps[AB) 2 ¢s(CD),

and

by Theorem 4, Section 20.3. Therefore

(¢r + po)[AB] 2 ¢s((CD) + [DE))
= ¢s|CE],
which was to be proved.

We are now ready to finish the proof of the addition theorem. In the notation
of this section, the theorem says that

,G] + kz = k.
If this is false, then either

ky +ks >k (1
or

ky + ks < k. 2)

‘We shall show that both of these are impossible.
If (1) holds, then k; + k3 — k > 0. Let
e=ky+ ks —k
so that
k= kl + kz — €.
By Theorem 3, there is a p/q in K, such that
By g —£,
q

and there is an r/s in K, such that
r e
s> k-3
It follows that :
%+"-‘> k1+kz—e.

Therefore p/q + r/8 does not lie in K. But by Theorem 5, p/q + r/e must lie in
K. This gives a contradiction, showing that (1) is impossible.
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; If (2) holds, then k — k; — k2 > 0. Let
e=Fk — kl - kz,
so that
k=Fk +k +e

Let p/g and r/s be rational numbers such that
P ¢
ky < p < ky + 3

and , .
ks <;<ka+§-

Then p/q does not belong to K, and r/s does not belong to K;. By Theorem 6,
p/q + r/s does not belong to K. Since

t 4
2 0<;<k’CK,

it follows that
B ot

@i

But this is impossible. Adding our previous inequalities for p/q and r/s, we get
Lt <hmtgthti=hthte=k

This gives a contradiction, showing that (2) is impossible. Therefore the addition
theorem is true.

You should check back over the whole proof, with a view to finding out whether
any of the steps can be left out. (All the steps looked necessary to the author, at
the time when the above was written.)

20.6 THE METRIZATION THEOREM

In this book, we have considered Euclidean geometry from two viewpoints, the
metric and the purely synthetic. In the metric approach, the postulates tell us
a great deal about the relation between our geometry and the real number system:

the structure is
[S, £, @, d, m].

where d is the distance function
d:SXS—R.

The distance function obeys the ruler postulate; and congruence and betweenness
are defined in terms of distance.
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In the purely synthetic approach, which Euclid used, thie real number system is
nowhere mentioned. The structure is

[S, £, @, =, @]

Here = and ® are undefined relations of congruence and betweenness, subject to
the postulates stated in Chapter 8; and the only numbers that get used are-the
positive integers, which are used to count things.

The first really big step in geometry after the Greeks was the invention of co-
ordinate systems, by René Descartes. Obviously, to set up a coordinate system
in the plane (or in space), you must have a distance function. In fact, to label the
points of the z-axis with numbers, you must have gotten, from somewhere, a co-
ordinate system for the z-axis, satisfying the conditions of the ruler postulate.

We shall now show that in a purely synthetic geometric system we can define a
distance function satisfying the metric postulates. To be exact, we shall prove the
following theorem.

Theorem 1. Given a geometric structure
[Sl 87 0' EI a]’

satisfying the postulates of Chapter 8, and satisfying the Archimedean postu-
late. Let A and B be any two points. Then there is a function

d:SXS—>R,

such that

(1) d satisfies the ruler postulate,

(2) CD = EF if and only if the distances CD and EF are the same;

(3) C-D-E if and only if CD + DE = CE, and

(4) AB = 1.

That is, we can always define a distance function which gives us back the same
congruence relation for segments and the same betweenness relation for points
that we had before; and we can always set up our distance function in such a way
that any given segment AB is the “unit of length.”

When we say that d “satisfies the ruler postulate,” we mean that for any line L
there is a coordinate function

f:L—-R

of L info the real numbers, such that if z = f(P) and y = f(Q), then
PQ = |z —yl.

It is not claimed that every real number z is the coordinate f(P) of some point P;
that is, we do not claim that all of the real mumbers get used as coordinates. In
fact the latter statement cannot be proved on the basis of the synthetic postulates
that we have stated. (The easiest way to see this is to observe that the surd plane
satisfies the synthetic postulates; and in the surd plane, only the surds get used as
coordinates.) If the coordinate functions are one-to-one correspondences f: L « R,
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‘thenthegeometncatructurels &, @, =, ®)] is called complete in the sense of Dede-
kind.
We now proceed to the proof. Fortunately, the hard part of the proof, which is
to set up our distance function in such a way that any given segment AB is the
“unit of length,” is already over with. For any two points P, @, let

PQ = d(P,Q) = PQ: 4B,

where PQ: AB is the ratio defined and studied earlier in this chapter. Since the
ratio was defined, in the first place, in terms of congruence classes Wl, we know
immediately that (2) is satisfied.
N To prove (3), we first observe that if C-D-E, it follows by the addlhon theorem

that

CE:AB = CD:4B + DE: AB.
Therefore
CE =CD + DE,

by our definition of distance. (This is the first of the two things that the addition
theorem is good for.) Suppose, conversely, that

CE = CD + DE, @

where C, D, and E are all different. If it were true that D-E-C, then it would
follow that .

DC = DE + EC,
80 that

CE = CD — DE; )

and from (1) and (2), we get
CD + DE = CD — DE,

or 2DE = 0, or DE = 0. Therefore D = E, which is a contradiction. If we
Lsuppose that D-C-E, this leads to a contradiction in the same way. But one of
the three points must be between the other two. Since D-E-C and D-C-E are both
false, it follows that C-D-E must be true.
Also, (4) is satisfied. Obviously

pl4B] < ¢[4B)

precisely if p < g, which means that p/g < 1. Therefore

ﬁ:ﬁ=sup{g 0<2<i1}=1,

p andd(4,B) =
It remains only to check the ruler postulate. Given a line L, and three points
C, D, E of L such that C-D-E (Fig. 20.2).
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c P D P E

3 —

Ficure 20.2

We shall set up a function
. f:L >R,

and show that f is a coordinate system satisfying the ruler postulate.
If P belongs to the ray DE, let

f(P) = DP.
We shall check that if P and Q are points of DE, with coordinates z, y, then
PQ = Iz - ylr

as required in the ruler postulate. If either P or @ is =D, this is easy to see
For example, if Q = D, then

PQ=DP=fP)=z=o| = |z — 0.

If P=Q, it is also trivial, because then PQ = 0 = |t — z|. Suppose then,
finally, that P, Q, and D are all different. Then either D-P-Q or D-Q-P. 1f D-P-Q,
then

DQ:AB = DP:4B + PQ: 4B,

by the addition theorem. (This is the second of the two things for which the addi-
tion theorem is useful.) In terms of distance, this tells us that

DQ = DP + PQ,
PQ=DQ — DP =y — z.

or

Here y — z > 0, because y — z = PQ. Therefore

PQ = I.‘B - ylr
which was to be proved.
We now define the coordinate function f, for points P of the opposite ray ﬁ,
by the condition
f(P) = —DP.
We now have

PQ=I3_1/|)

if P and @ both belong to DC. (The proof is alnost exactly the same as for the ray
DE: the point is that |z — y| is unchanged when the signs of z and y are reversed.)
If P belongs to DC and Q belongs to DE, then

PQ=PD+DQ, =z=—PD, y=DQ.
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Therefore
d PQ=y—z

= |z —yl,
which was to be proved.

The reader will observe that the proof of the metrization theorem requires all
of the apparatus set up in the present chapter. It is plain that such proofs as this
do not form a part of elementary mathematics. Nevertheless it is quite usual, in
elementary geometry courses, to give some sort of “indication of proof” for what
amounts to a metrization theorem. Usually this is done just before-the treatment
of similarity, so as to permit an algebraic treatment of proportionality. Usually
the same discussion is repeated, when coordinate systems are introduced. The

\ reader should now be able to judge the extent to which these “indications of proof”
are masterpieces of expository terseness.

20.7 THE DEDEKIND CUT

If the ring Z of integers is given, it is not very hard to set up the ring Q of ra-
tional numbers. To pass from the rational numbers to the real numbers is another
matter. This, however, is what we need to do, to show that there really is & number
system which satisfies the field postulates of Chapter 1 and also the Dedekind
postulate.

One of the most elegant approaches to this problem was devised by Dedekind
himself, leaning heavily on the ideas of Eudoxus. For the sake of convenience, we
shall restrict ourselves to positive numbers. (Once we have them, it is not hard to
set up their negatives.)

We recall that in Section 20.4, we defined

AB:CD = sup K,
where

K= § plCD) < ¢lAB]

Wt appeared in Section 20.5 that K was always a cut in the rational numbers. That
is:
(1) K is a set of rational numbers.
(2) K is not empty.
(3) K has an upper bound.
(4) If0 < p/q < r/s,and r/s € K, then p/q € K.

If the real number system R is regarded as given, then to every cut K there cor-
responds a unique positive real number sup K. On the other hand, cuts are de-
fined purely in terms of the rational number system Q. We can use this fact to
define a set of objects which can be regarded as the positive reals.

DEerFINITION. A positive real number is a cut in the positive rationals.

Let R be the set of all cuts. In R we need to define addition, multiplication,
and order.
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(1) If K and L are cuts, then
K+4L={z+ylzeK,yelL}
2 K-L= {zjlzreK,yeL}

We need to show, of course, that the sum and product of any two cuts are also
cuts. It is then easy to check that R* satisfies the usual algebraic jdentities given
in the field postulates. For example,

K+L=L+K,
because
{r+yreK,yell = {y+alyeLzeK}.

(3) We define K < L to mean that K is a proper subset of L, that is, K C L
and K # L. ,

Under this definition, when we say that K is an upper'bound of Z, this means
simply that every cut belonging to Z is a subset of K. It is now refreshingly easy
to see that every bounded set of cuts has a supremum: sup Z is simply the union
of all of the sets belonging to Z. This forms a cut; it is an upper bound of Z; and
no smaller cut is an upper bound of Z.

The above discussion is, of course, merely a sketch. For a relentless pursuit of
all the details, see the latter portion of E. Landau’s Foundations of Analysis.

A rather good case can be made out for speaking not of the Dedekind cut but of
the Eudoxian cut. The crux of Dedekind’s procedure was to use cuts as a working
definition of real numbers; and at bottom this is precisely the procedure that
Eudoxus had used, over two thousand years before.
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LENGTH AND PLANE AREA

21.1 THE DEFINITION OF ARC LENGTH

Given an arc AB of a circle C:

Ficure 21.1

We take a sequence of points
A= Ao,Al,Az,...,A'),:B,

in the order from A to B on the arc; and for each pair of successive points 4;_;,
A; we draw the segment A, 4, as indicated in the figure. The union of these
segments is called an inscribed broken line; and the sum of their lengths is denoted
by pn. Thus

% Pn = A0A1+A1A2+"'+An—lAn

= ) Aii4.
te=1
There are now various ways that we might define the length of the arc AB. If
we merely want to state a definition, as a matter of form, without intending ever
to apply it, then.our problem is simple. We agree to use equally spaced points
Ao, Ay, ..., An. The length p, of our broken line is now completely determined
by n, and we can define the length to be

p = lim p,.
n-—0
To justify this, we wouiti need to explain what is meant by lim, .o, and we would

have to show that the ihdicated limit really exists, for every circular arc.
263
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The following definition, however is far more manageable. Let P be the set

of all numbers p, which are lengths of broken lines inscribed in AB. Thus K
P = {Pn Pn = Z As‘—lAw‘} :
Let
p = sup P.

To justify this, we need to prove the following theorem.

Theorem 1. P has an upper bound.
It will then follow, of course, that P has a least upper bound sup P. The proof
is easy on the basis of the following preliminary result. Let APQR be an mosoeles
triangle, with PQ = PR.

P

Figure 21.2

We assert that if P-Q-S and P-R-T, then
ST > QBR.

Suppose; that PS < PT, as in the figure, and take U between R and T so that
SU | QR. Then

SU _ PS8
Q R PQ > 1.
Therefore
SU > QR.

We shall now show that ST > SU. Evidently Z1 is acute, because Z1 is a
base angle of an isosceles triangle. Therefore £2 is obtuse. Therefore £3 is acute.
Therefore m£3 < mZ2. Therefore ST > SU. (Why?)

We now return to our circular arc. Draw any square that contains the whole
circle in its interior (Fig. 21.3). We project each point A; onto the square, as in-
dicated in the figure. That is, A/ is the point where DA; intersects the square.
Then A;_;A; < A{_.1A} Therefore p, is always less than 3" %.; A;_ A} There-
fore p, is always less than the perimeter of the square. Thus the perimeter of the
square is the upper bound thst we are looking for.
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B A Al

\\ 1 I’
N4 /
B Aiy

it
Ficure 21.3
This justifies our definition

p = supP.

Of course a circle is not an arc of itself, under our definition of an are. But we
can define the circumference of a circle in an entirely analogous way; by setting
up an inscribed polygon with vertices

Ag, Ay, ..., Ag_y, Ay = A,
We then let p, be the perimeter
i A4,
iml
let P be the set of all such perimeters p,, and define the circumference as
p = sup P.
21.2 THE EXISTENCE OF ~

We now want to prove the existence of the number 7. To do this, we need to

'show that the ratio of the circumference to the diameter is the same for all circles.

This is a theorem about sup’s, and to prove it, we need a preliminary result on
sup’s.

Let P be any bounded set of positive numbers, and let k be a positive number.
Then kP denotes the set of all numbers of the form kp, where p belongs to P. For
example, if

P=10,1]= {210 = =z s 1},
and k = 3, then
kP = 3P = [0, 3].

If P =[1,2] and k = %, then kP = [§, $]; and so on.
This “multiplication” is associative. That is,
J(kP) = (jk)P,

{jzlz € kP} = {j(kp)lp € P} = {(jk)plp € P}.

| because
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Thus, for example, we always have
1 (kP) = P.

Lemma 1. If b is an upper bound of P, then kb is an upper bound of kP.
Reason. If p £ b, then kp S kb.

Lemma 2. If ¢ is an upper bound of kP, then ¢/k is an upper bound of P.
Proof. Since P = (1/k)(kP), this follows from Lemma 1.

These lemmas give us the following theorem.

Theorem 1. sup(kP) = k sup P.

Proof. Let b = sup P. Then b is an upper bound of P. By Lemma 1, kb is an
upper bound of kP.

Suppose that kP has an upper bound
¢ < kb.
Then c/k is an upper bound of P, by Lemma 2. This is impossible, because ¢/k < b,
and b was the least upper bound of P.

We can now prove the theorem which establishes the existence of . What is
needed is the following theorem.

Theorem 2. Let C and C’ be circles with radii 7, 7’ and circumferences p, p’. Then
p_7

—— = Sem e

2r 2
That is, the ratio of the circumference to the diameter is the same for all circles.
This common ratio is denoted by .

Proof. Suppose that the circles have the same center. (This involves no loss of
generality.) In the figure, we indicate the ith side A;_,4; of a polygon inscribed

Fiourse 214
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in C. To each such polygon there corresponds a polygon incribed in C’, obtained
by projection outward (or perhaps inward) from the common center D. We then
have

ADA; ,A; ~ ADA;_, A%
Therefore

. If the perimeters of our polygons are p, and p,, then we have

_r
3 c;n p”.
Let
p = sup P, and p' = sup P,

where P = {p,} and P’ = {p,}, as usual. Then

p="C.p
r

Therefore, by the preceding theorem, using k = r’/r, we have

AN

supP’=%supP, or p’=§p, or

=2,
r
Dividing both sides by 2, we get the equation called for in the theorem.
An analogous theorem holds for circular arcs.

Theorem 3. Let AB and A'B’ be arcs of the same degree measure, in circles of
radius r and #/, respectively. Let the lengths of AR and A’B’ be p and p’. Then

2 7,
r r
p'
2 B
B
A A
Fieure 21.5

This ratio is called the radian measure of the arc AB. Ifﬁisaminorm,
then p/r is the radian measure of the angle £LBCA. The theorem tells us that the
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radian measure really depends only on the angle, or on the degree measure of the
arc, and is independent of the radius of the circle.
The proof is virtually identical with the proof of the preceding theorem.

21.3 LIMITS AS THE MESH APPROACHES ZERO

Given
p = sup P,
we know that we can find numbers p, in the set P as close to the sup as we please.
More precisely, if e is any positive number, there is a p, in P such that

Pn>p —e

This was Theorem 3, Section 20.5; and it is true because otherwise p — ¢ would
be an upper bound of P.

We ought, however, to be able to make a stronger statement than this about
the numbers p, and their sup. To get p, close to p, we should not have to choose
the inscribed broken line in any special or clever way. It ought to be true that p,
is close to p whenever the sides of the inscribed broken line are very short. We
shall make this idea precise in the next theorem.

Let

A= Ay Ay, ..., A, =B

be the vertices of a broken line B, inscribed in the arc AB. By the mesh of the
broken line B,, we mean the largest of the numbers 4;_,A4;. Thus the mesh of a
broken line B, is the length of its longest segment. In this language, the statement
that we want to prove can be stated roughly as follows.

Pn 15 as close to p as we please, if the mesh AB,, is small enough.

This suggests the idea, but it is not exact enough to form the basis of a proof,
because it involves highly nonmathematical terms, notably the terms please and
enough. Statements like this are like bowling balls without finger holes: they are
easy to look at, but awkward to handle. The corresponding mathematical state-
ment follows.

Theorem 1. Let AB be an arc of length
p = sup P,

where P is the set of lengths p, of inscribed broken lines B,. For every positive

number e there is a positive number d such that if the mesh of B, is less than d,

thenp, > p — e.

Since we always have p, = p, the inequality p, > p — ¢ means that
[Pa — | < e, that is, pa is within a distance ¢ from p. To see what the whole
theorem means, let us consider that the author of the theorem has made a promise.
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He has promised {o give helpful advice on how to make p, close to p. People
come to him and tell him how close they want ps to be to ». They do this by
naming the number e that they want p, — p to be less than. He then tells them
how small the mesh must be to give the result that they want; he does this by nam-
ing the number d that the mesh must be less than. In stating the theorem, the
author is promising that no matter what number e is named, he will not be at a
loss: he will always be able to produce a number d that suits the requirements.

The proof of this theorem is nowhere nearly as difficult as its statement. It
reads as follows. ’

(1) Let B, be an inscribed broken line, with length p;, such that

m>p—§

(We know that there is such a broken line, because p = sup P.)

(2) Now let B,, be any inscribed broken line, of length p,,. Let B}’ be the broken
line obtained by using all of the vertices of B, and ail of the vertices of B,. Let
P!’ be the length of B)’. Here the points marked with crosses are vertices of B},
The points marked with little circles are vertices of B,,. The end points 4 and B
are marked both ways because they must be vertices of both. And all the indicated
points are vertices of B;'.

B

l—x\‘\

x
x : By
O ! Bnm
x,0 ! By 4
Fieure 21.6
By repeated applications of the triangular inequality, we have
P’ Z ph

P2zp—3

Therefore

This merely says that when you insert new vertices, the length of a broken line
increases.

Of course we cannot claim that p,, 2 p!’. It can easily happen that B,, is
shorter than B, because B,, may take “shortcuts” past vertices of B,' (see Fig.
21.7). Here PR < PQ + QR. Thus the length of PR is less than the sum of the
lengths of the corresponding sides PQ, QF, of B.'.

The question is how many times you can gain by these shortcuts, and how much
you can gain each time. The number of times the shortcuts can appear is surely
no more than n — 1, because there are no more than n — 1 possibilities for Q.
The saving at each shortcut is

PQ + QR — PR.
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Fiaure 21.7

This is surely no bigger than PR, because PR is the longest side of APQR. If k ¢
is the mesh of B,,, then PR =< k. Thus there are at most n — 1 shortcuts, and the
distance saved at each of them is <k. Therefore the total saving is

P — pm S (n — k.
Now we know that

Therefore
p—pm§§+(n—1)k-

What we want to get is

P —Pm <e
This will hold if
(n — Dk < g
or
e
k<sm—1
Our problem is now solved: let .
=

If the mesh k of B, is less than d, then p — p,, is less than e, exactly as we wanted
it to be.

We state Theorem 1 briefly by saying that p, approaches p as the mesh of B, .
approaches zero. This is, of course, the same sort of limiting process that is in-
volved in the theory of definite integrals.

21.4 THE ADDITION THEOREM FOR ARC LENGTH

One of our postulates for angular measure was the addition postulate. This said
that if C lies in the interior of £ZDAB, then m£ZDAB = m£DAC + mZCAB.

Ficure 21.8
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The corresponding statement about degree measure of circular arcs was a theorem.

The theorem stated that mABC = mAB + mBC. A corresponding thebrem
holds for arc length.

Ficure 21.9

Theorem 1. Let AB and BC be arcs of the same cm-le, with only the point B
in common. Let s; and s, be the lengths of AB and BC and let s be the length

of ABC. Then
8) + 82 = 8.

The proof is a fairly easy exercise in the use of least upper bounds and limits
as the mesh approaches 0.
(1) Suppose that s; + s > s, so that s; + s — 8§ > 0. Let

e = 8 + 83 — &.
Let B, be a broken line inscribed in AB, with length p,, such that
Pn > 8y — ';"
Let B/, be a broken line inscribed in BC, with length p;,, such that
e
Pm > 82 — 3

Fitting these broken lines end to end, we get a broken line B, ;,, of length ph4,,
such that

Prtn = Pn+ Pm.
Since B, ., is inscribed in ABC it follows that pji+n < s. On the other hand, by
addition, we get
Prtn = DPn+ Dm > 81+ 8 —e = s

Thus pjris < & and pmis > 8, which is a contradiction.
(2) Suppose that 8; + 82 < s, s0that s — s, — 52 > 0. Let

e=28— 8 — 8,
8o that
8 =8, + 83 + e
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Let d be a positive number such that if B, is inscribed in ABC' and has length n
and mesh less than d, then
Pan > 8 — 6.

(By Theorem 1, Section 21.3, there is such a d. That is, p, is as close to s as we
please if only the mesh of B, is small enough.)

Now let B, be a broken line inscribed in A’E’ of mesh less than d, such that B
18 a vertex of Ba. Let p, be the length of B,. Then B, can be broken up into two
broken lines B}, B! (m + r = n), one inscribed in AB and the other inscribed
in BC. If the Iengths of these broken lines are p;, and p/’, then we have

pm + Pr = Pn,

p:u = 8y,

pY S s
Therefore

Pn S 81+ 82

But 8; + s = 8 — e. Therefore
Pn é 8 —ee,

which gives a contradiction.

If you review the proof of the addition theorem for ratios AB: CD, in Section
20.5, you will find that this proof is very similar to it. The technique involved
here is quite important enough to be worth going through twice, or more.

We remember that when we defined arc length by means of broken lines, we
allowed broken lines whose sides were not necessarily of the same length. This
possibility was important in the second part of the proof of the preceding theorem.

21.5 APPROACHING THE AREA OF A CIRCULAR SECTOR FROM BELOW

So far in this chapter, the mathematics has been exact and complete. We have
given a definition of the length of a circular are, and we have proved theorems
strictly on the basis of the definition. We shall approach the problem of plane
area, for the corresponding circular sectors, in a more backhanded fashion. First
we shall calculate the areas of such figures numerically, by a method which will
no doubt be familiar to the reader in one form or another. We shall then reexamine
the situation, and see just what we needed to assume to justify our calculation.
Then, in the following chapter, we shall develop & theory of plane area, sufficiently
general to apply to the familiar elementary figures, and show that in this theory,
the area formulas of this chapter become genuine theorems. This backhanded
approach will involve very little lost motion. And the theory given in the next
chapter will be much easier to understand if we first survey the situation in a par-
ticular case, and get a rough notion of how the theory ought to work.
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B
P
C r A
Fiaure 21.10

By a circular sector we mean a figure like the one above. To be exact, if A’E is
an arc of a circle with center at C and radius 7, and X is the union of all radii CP,
“where P is in AB then K is a sector; r is called its radius, and ABisits boundary

arc.

If we use all of the circle (instead of an arc @) then the union of the radii CP
is the circle plus its interior. Such a figure is called a disk. We shall begin our in-
vestigation by proving the following theorem.

Theorem 1. Let K be a circular sector with radius r and boundary arc of length
s. Then there is a sequence of polygonal regions
K, K,,...,
all contained in K, such that
lim oK, = ¥rs.

n—w

Here aK, denotes the area of K,.

Proof. We begin by inscribing in AB a broken line B, in which all the sides are
congruent, of length b,:

Fieure 21.11

In the figure, r is the radius of the circle. Obviously all the triangles AA;_;C4;
are congruent. Therefore they all have the same altitude (measured from C to
the opposite side A;_;4;). This common altitude is called the apothem, and is
denoted by a,. Thus the area of each of our triangles is 3anb,. Let K, be the
polygonal region which is their union. Then

. aK, = inab,.
Let & be the length of AB.
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We now want to see what happens to b,, @, and aKy, a8 n — oo.
(1) The number nb, is the length of our inscribed broken line. Therefore

nb, S 8.

Therefore
by <

Sl

Since

lim S =slimi=5.0=0,
n—w n—w M

it follows by the squeeze principle that
lim b, = 0.

(2) Since the mesh of the inscribed broken line is b,, and lim,_,» by = 0, it

follows that
lim nb, = s.
n—aw0

Here we are using the fact that the length of the inscribed broken line approaches
s as the mesh approaches 0.

(3) Examining a typical triangle AA;_,CA,, we see that
r < ap+ 1322-
Therefore
r— b2—” <a, <.

Since lim,_,» b, = 0} it follows that

. b
im (- — %) = .
"_r.x;(r 5 r

By the squeeze principle, this means that

lima, = .

(4) Fitting together (2) and (3), we get
lim (aK,) = m[i-%-nbn] = irs.

This peres our theorem.

21.6 APPROACHING THE AREA OF A CIRCULAR SECTOR FROM ABOVE

It would now seem natural to show that there is a sequence L, Lo, . . . of poly-
gonal regions, each of them containing the sector K, such that )

lim al, = #rs.
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The following theorem, however, is easier to prove, and will be sufficient for our
purposes.

Theorem 1. Let K be a circular sector with radius r and boundary arc of length
8, and let e be any positive number. Then there is a polygonal region L, con-
taining K, such that

aL < #rs +e.

To find such a polygonal region, we draw a circular sector K’ with the same
center, and radius * > r: .

CA=r, CA'=r
Figure 21.12

In the figure, the broken line inscribed in the smaller circle is the same as before;
and we have also indicated the corresponding broken line inscribed in the larger
circle. For the second broken line, the mesh is b, and the apothem is a,. Let L
be the polygonal region inscribed in the larger sector. Then

ol = ga:,b:,.

Let s’ be the length of AP, By Theorem 3, Section 21.2, we have

Therefore
g
p
Therefore
nb, < rs
Also, by similarity,
a
_ i }
an T
8o that
2
) G law’ r's 1178
O = and aL§2.r r§2r

So far, all of this holds true for every +* > r, and for every n. What we need is
to choose r’ so that al, < #rs -+ ¢, and then to choose 7 so that K C L.



276 LENGTH AND PLANE AREA

(1) We want
2
'er<rs+2e, or r'2<r’+2—:-r-

and this will be true whenever
r’ < \/r2 4 2er/s.

We take an ' > r, satisfying this condition.
(2) Since lim,_ an = 7/, it follows that a, > r for some n. Such an n gives
us an L that contains K.

21.7 THE AREA OF A SECTOR

We can now show that if area theory behaves in any reasonable fashion, then
the area of a circular sector must be given by the formula

aK = #rs.

Our conception of reasonableness is conveyed by the following assumptions.

Assumption 1. There is an area function a, defined for a class 91 of figures. The
class 91 contains, at least, all polygonal regions and all circular sectors and disks.

Assumption 2. If K is a polygonal region, then aK is the area of K in the ele-
mentary sense.

Assumption 3. (Monotonicity.) If K and L belong to 9 and K C L, then
aK < aL.

Under these three assumptions, we can prove that our formula holds. Let K,,
K., ... be asin Theorem 5, Section 21.5. Then aK, < oK for every n. Therefore

irs = lim oK, < oK.  (Why?)

n-—0

It cannot be true that 4rs < aK. If so, let
e = aK — #rs,
and let L be as in Theorem 1, Section 22.6. Then
aK £ aL < ¥rs + ¢ = oK.

Thus aK < aK, which is impossible. (You have a good deal of choice, in de-
ciding how to express the contradiction in proofs like this.)

Thus there is no reasonable area theory in which the formula ak = #rs fails to
hold. In the following chapter we shall replace this negative statement by a posi-
tive one: we shall show that there is an area function « for which our three assump-
tions are valid.
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JORDAN MEASURE IN THE PLANE

22.1 THE BASIC DEFINITION

It is fairly easy to define an area function for which the three assumptions that
we made in the preceding section are valid. The definition goes like this. First,
let @ be the usual area function for polygonal regions. Now given a set K of points
of the plane, let Py be the set of all polygonal regions P that lie in K, and let N
be the set of all numbers aP which are areas of elements of P;. Let

myK = sup N.

The number mK is called the inner measure of K. If it happens that K contains
no polygonal regions at all, then we agree that m;K = 0. Thus the inner measure
of a point or a segment is always = 0.

Suppose now that K is contained in at least one polygonal region. Let Pg be the
set of all polygonal regions P that contain K. Let N, be the set of all numbers
aP which are arcas of elements of Py. Let

moK = inf Ny.

Here inf N is the greatest lower bound of Ny. The number inf Ny is called the

outer measure of K.
If P € Py and P’ € Py, then

PCKcP.
Therefore
PcpP, and aP £ aP’.

Thus every element of Ny is less than or equal to every element of Ny. The two
sets of numbers must therefore look like the figures below. The figures suggest
that we must have

m;K £ moK.

N1 N1 No

mK moK miK=moK
Fieure 22.1
77
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And in fact this always holds. If it were true that
moK < mK,
then there would be a polygonal region P, lying in K, such that
moK < aP S m;K.
And oP is a lower bound of Ny, because
aP £ oP'

for every P’ in Py. Thercfore moK is not the greatest lower bound of Ng; and
this is impossible, because mK was defined to be inf N,.
Thus
miK < moK.

If the equality holds, then we say that K is measurable in the sense of Jordan, and
we define the measure of K to be

mK = m;K = myK.

Since we shall be talking about only one kind of measure theory in this book, we
shall say for short, that K is measurable if m;K = myK. We now have the follow-
ing theorems.

Theorem 1. Every polygonal region P is measurable; and mP = aP.

Proof. P belongsto Py, because P C P. Andif P’ C P, then aP’ £ aP. There-
fore m;P = aP.

Similarily, P belongs to Pg, because P O P. And if P’ D P, then aP’ Z oP.
Therefore myP = aP. Therefore

mP = myP = m)P = aP,
which was to be proved.

Theorem 2. Outcr measure is monotonic. That is, if A C B, then meA < myB.

Theorem 3. Measure is monotonic. That is, if A and B are measurable, and
A C B,thenmA < mB.

The proofs are left as exercises.

Theorem 4. Every circular sector K is measurable. If the radius is r, and the
boundary arc has length s, then

mK = #rs.
Proof. The results of the preceding section tell us that
mK 2 4rs, and moK S #rs.
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Since m;K < moK, it follows that

miK = moK = }rs,
which was to be proved.

If you make a mental review of our investigation of circular arcs in the preced-
ing chapter, you will see that the definition of Jordan measure is modeled on it.
One way of putting it is to say that in the preceding chapter we gave a proof, and
that in the present section our task has been to find the theorem that our proof
proves.

By a discussion exactly analogous to the discussion in Section 21.7, we can show
that if K is a disk of radius 7 and hence of circumference s = 27r, then

miK = 4rs = moK.
Thus we have the following theorem.

Theorem 5. Every disk K is measurable, and

mK = wr?,
where r is the radius.

It seems that we have worked rather hard to turn the familiar formula A = 772

into a theorem. But our work has been necessary. The easiest way to see this is
to try to think of a simpler approach.

ProBLEM SET 22.1

1. Show that every point P forms a measurable set, and that mP = 0.
2. Show that every segment AB is measurable, and that mAB = 0.

3. Prove Theorem 2.

4. Prove Theorem 3.

5. Consider a plane with a coordinate system. Let K be the unit square:

FiGure 22.2

Let L be the set of all rational points of K. That is, (z, y) belongs to L if z and y are
both rational, 0 £ z S 1and 0 £ y £ 1. Is L a measurable set? Why or why not?
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EYEY
3[R
a

Fiaure 22.3

6. In a coordinate plane, consider a right triangle in the figure above. We divide the
interval [0, a] into n congruent segments, each of length a/n, and construct an inscribed
polygonal region P, and a circumscribed polygonal region P,. (In the figure, the boundary
of P, is drawn solid, and that of P, is dashed.) Calculate aP,andaP’,. Verify algebrai-

cally that
sup{aP,} = inf{aP,) = }ab.

This problem throws some light on the theory. It means that if we know only about
areas of rectangles, we can calculate the Jordan measures of right triangles in the in-
dicated position.

22.2 THE CLASS OF MEASURABLE SETS

Let 9 be the class of all measurable sets in the plane. (Here, as usual, we use
the word class as a synonym for the word sct.) We shall show that this class has
the following simple properties.

Theorem 1. If M, and M, belong to M, then so also does M, U M.

It will follow by induction, that:

Theorem 2. Finite Additivity. If each of the sets M,, M,, ..., M, belongs to
I, then so also does their union
M = U M; .
=1

Theorem 3. If M, and M, belong to I, then so also does M, — M,
Theorem 4. If M; and M, belong to 9N, then so also does M; N M.

Theorem 5. If M, and M, belong to 9, and

Ml an = 0)
then
m(M; U M3) = mM, + mM,.
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Theorem 6. If M, and M, belong to 9, and M; C My, then
m(My — M,) = mMys — mM,.
Theorem 7. If M, and M belong to 9N, and

m(M, N M) =0,
then
m(Ml UM:) = mM, + mMg.

The proofs begin with the following lemma. ‘

Lemma 1. Let M be a measurable set in the plane. Then for every positive
number e there are polygonal regions P and P’ such that

PcMcP )
and
aP' — aP < e. 2)
Proof. Take P so that P C M and
al > miM

Take P’ so that M C P’ and
aP' < moM + %
Then
—aP < —miM + 3;
and by addition, we get
aP' — aP < e.

(We are using, of course, the fact that moM — m;M = 0.)

The converse is also true.

Lemma 2. Let M be a set of points in the plane. Suppose that for every positive
number e there are polygonal regions P, P’ such that

PCcMcCP (¢))]
and
aP’ — aP < e. 2)

Then M is measurable.
Proof. Given such regions P, P’, we have

moM S oP, aP £ miM.
Therefore
—miM £ —aP,
and so
moM — miM S aP’ — oP < e.
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Since moM — miM < e for every positive number e, al‘xd moM — miM 2 0,i
follows that meM — myM must be = 0. Therefore M is measurable’ which wyg

to be proved. )
We shall now prove Theorem 1. Consider two measurable sets My, M, I,

e be any positive number:

Figure 22.4

Take P,, Pi for My, as in Lemma 1, so that

PiCM,CP;
and
aP} — aP; < ;-
Take P,, P; for M, so that
P,C M, CP,
and
aP% — aPy; < §-
Let
P = P, UP,,
and let
P = Pi U Ph.
Then

aP’ — aP £ (aP] — aPy) + (aP3 — aPy).

To see how this works, consider a simpler figure:

Py P

1P,

Figure 22.5
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| S|

Fiaure 22.6

Here al”’ — aP is the area of the thin strip in the figure above. Thisis < the
sum of the differences
aP] — aPy, aly — aP,.

The same principle applies in the general case. If we form a suitable triangula-
tion of P{ U Pj, then each of the three differences

aP’  aP, aP} — aPy, aPh — aP,

is the sum of the arcas of a collection of triangular regions, and every triangle
that contributes to aP — aP’ must contribute at least once, and perhaps twice,
to (aP] — aP)) + (aP3 — aP,).
Therefore e e
alP’ — aP <§+§=e,

and so M; U M, is measurable, which was to be proved.

Theorem 2 follows, as we pointed out, from Theorem 1.

To prove Theorem 3, we use the same figures. To prove that M; — M, is
measurable, we form a triangulation of P{ U P} in which each of the regions P,,
P!, Py, P}is a union of triangular regions, interscsting only in edges and vertices.
Let P, this time, be the union of all the triangular regions that lie in Pj, but not
in Py. Let P be the union of all of the triangular regions that lie in Py, but not
in P3. Then P and P’ look like this:

FiGure 22.7

Here the boundaries of P and P’ are drawn solid, and the rest of the figure is dashed
merely to remind us of how P and P’ were defined. We recall that e was any
positive number, and aP{ — aP; < ¢/2; aPj — aP; < ¢/2.
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Evidently,
oP' — aP £ (aP} — aPi) + (aPy — aPy).
Therefore
oP' —aP < g4z =¢

and so M; — M, is measurable, which was to be proved.
To prove that M; N M, is measurable, we merely need to manipulate sets,
without using either geometry or algebra. A figure will make it easier to keep

track of what we are doing.
M,

M,
FIGuRe 22.8

Given M, € 9, M, € M. By Theorem 1,

M;UM,;em
By Theorem 3,
M; — M, em, M, — M, € 9.

Therefore, by Theorem 1,
M, — Mz)u (M; — M,) €.
Hence, by Theorem 3.
My UM;) — [(My — M3) U (My; — My)]em.

This proves Theorem 4, because the set we have described is precisely M; N M,
Now for Theorem 5, which says that if M, and M, do not intersect, then

m(M,; U Mjy) = mM,; + mM,.

First we observe that if P is a polygonal region lying in M; U M,, then P =
P, U P,, where P, C M, and P, C M,:

Ml Mz

Ficure 22.9
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Therefore

aP = aP) + aPy; £ miM, + miM,.
Therefore
m;(Ml U Mz) § m;M‘ + M.]Mg,

because mr(M,; U M) is the least of the upper bounds of the set of numbers aP,
On the other hand, given any ¢ > 0, we can find P, C M, and P, C My so
that .

aP1>m1M1—§; sz>1ﬂ1M2—%-

We then have
aP > miM; + miM, — e.
Therefore
mi(My; U M) 2 mM, + mM; — ¢

for every e > 0. Hence
my(My UMsy) = miMy, + miM,.

Since we already have the reverse inequality, it follows that the equality holds.
But all three of our sets are measurable. Therefore

m(Ml UMz) = li + ’mﬁ'.[z,

which was to be proved.
This is the last algebraic proof in this section; we get the rest of our theorems
from the earlier ones.

Proof of Theorem 6. Given M; C M, we have
My = (M; — M) UM,
and the two sets on the right do not intersect. Therefore

mMy = m(My — M) + mM,,
80 that

m(Mz bt Ml) = mﬂfz - li,
as desired.

Proof of Theorem 7. Given m(M; N M;) = 0, we want to show that
m(M, U M;) = mM, + mM,.
First we observe (Fig. 22.10) that

My —M;=M; — (M,n My
and
Mg — My =M; — (M, nM,).
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3=

M,
Ficure 22.10
Therefore
m(M, — M3) = mM, — 0, and m(M; — M,) = mM,; — 0.
Now
MyUM; = My — M3) U (M, N M) UMy — My);

therefore
mMy U M3) = mM; +mM; + 0,

which was to be proved.

ProBLEM ST 22.2

All of the following problems are to be solved on the basis of the theorems proved in
this chapter, plus, of course, our old theorems on areas of polygonal regions.

1. Let C be a circle of radius r, let L be the interior of C, and let K be the disk C U L.
What is m;L? What is moL? Why, in each case?

2. Show that every circle is measurable, and that its measure is = 0.

3. Show the same, for arcs or circles.

4. Show that if moM = 0, then every subset of M is measurable, and has measure = 0.

5. Show that the interior of a triangle is always measurable. What is the measure of
such a set?

6. A segment of a circle is a figure like this:

-

//

B

!
/ ) s
/ I

|

.’h
~~N4
.

/
7

c

Fioure 22,1}

Prove that a segment of a circle is always measurable, and find its measure. [Warning:
If K is the sector with boundary arc AB and L is the segment, then it is not true that
L = K — AABC, The first step in solving the problem is to get a correct expression
for L.}
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FiGure 22,12 s

7. Show that the region indicated in the figure above is measurable, and find its measure.

22.3 AREAS UNDER THE GRAPHS OF CONTINUOUS FUNCTIONS
Jordan measure is the theory that is needed to fill a certain gap in elementary

calculus. Suppose that we have a region R, bounded by the graphs of two con-
tinuous functions.

y=f{x)

N ————

Ficure 22.13

Here

flz) = glx), a=z30b,
and
R={x,plesz=b and f(x) Sy = g()}.

We compute the area of R by the formula
b
mR = ["lg(@) — f@)dz.

The-usual derivations of this area formula are not proofs in any strict sense because
they do not appeal to any valid definition of area. These derivations are extremely
persuasive. And now that we know about Jordan measure, it is easy to see that
they really show that the definite integral gives the Jordan measure of the region.
The situation here is much the same as for circles. The familiar elementary dis-
cussion becomes quite adequate, as soon as we supply the definition to which it

tacitly appeals.
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Y
y=fx)
M,
mq
Ax Ax; Axp
a=Xp X X2 b=;xu

Fiaure 22.14

To see this, consider first the case where R is the region under a single positive
continuous function f(z) as shown in the figure above. Here

f(x)goy aéxéb’
and
R={(z,9)asz<b and 0 =y = f(x)}.

As in the definition of the definite integral, we take an ascending sequence of

points,
a= 19 < I} <"'<1‘n=b,

on the interval [a, b]. Let Aur; be the length of the ith subinterval. Let m; be
the minimum value of f(x) on the sth subinterval, and let M; be the maximum
value of f(z) on the 7th subinterval. (In the figure, we have indicated m,; and M,.)

Then .
Z m,Ax.'

T=l
is the sum of the areas of the inscribed rectangles (with dashed upper bases in the
figure) ; and .

> Mz

=]

is the sum of the areas of the circumscribed rectangles (drawn solid in the figure).
There are various ways of setting up the definite integral; we shall not review the
theory here. But in any case it turns out that

Emibdz: S [ 1) dz S EMia,
a
And, for continuous functions f(z), we can make the difference,

Y M Az; — YmilAx;,

as small as we please, merely by taking all of the numbers Az; sufficiently small.
Thus, for any e > 0 there is a sequence,

a=129< 1 < < Zy=0b,
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for which
M Az; — TmiAz; < e.

Here the first sum is the area aP of a polygonal region lying in R, and the second
is the area of a polygonal region P’ containing . By Lemma 2 of the preceding
section, this means that R is measurable: m;R = moR. Since the integral is an
upper bound of the numbers P, we have

b
miR / f(z) dz.
a
Similarly, the integral is a lower bound of the numbers aP’, and so
b
L f(z) dz S moR.
Since mrR = moR = mR, it follows that

mR = /;bf(z) dz,

which was to be proved.

The extension to the case where R is bounded by the graphs of two continuous
functions is not very hard. We shall not go into it here,

Many calculus books, including some otherwise excellent ones, undertake to
define the area of such a region as the definite integral. This will not work. The
area of a region ought to depend merely on its size and shape, and not on the way
it is placed relative to the axes. That is, the area of a region ought to be unchanged
under rigid motions. This is not very clear if we use the definite integral to define
the area. The trouble is that the same region may be described in infinitely many
ways as the region between the graphs of two rontinuous functions. Here R,

y=gxx)
y=g(x)
|
|
<> 1
! : : y=Hx) |
y=/i(x) ] :
ey ! -x

Fieure 22.15
and R, are isometric. In this chapter of this book we can infer that
b d
[ @ — 1@ldz = [ 5:0) — fr@) dz.

The reason for this inference is that both of the integrals give the right answer to
the same problem, But if your definition of measure is stated in terms of a co-
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ordinate system, you are left with the problem of proving by calculus that the in-
tegrals have the same value; and this is not & very practical enterprise.

If you review the theorems given in this chapter so far, you will see that Jordan
measure theory has, at this point, been brought down to earth. Given & figure
whose measure you would normally expect to calculate, the chances are that you
can prove that the figure is measurable in the sense of Jordan, by using the theo-
rems of this section and the preceding one. (In fact, a certain amount of effort is
required to think of a figure which is nof measurable in the sense of Jordan.)
Moreover, the theory at this point is adequate to justify the elementary methods
of calculating plane areas. The theory of measure has been generalized, by Henri
Lebesgue, in such a way as to assign areas to an even larger class of figures. But
Jordan measure is quite adequate for the purposes of elementary mathematics.

ProBLEM SET 22.3
1. Given that f(z) is continuous and 2 Oforea S 7 S b. Let
R={zyeszsbd and 05y <jf@)

(Here y < f(z) is not a misprint; the graph itself is not in R’.) Show that R’ is measur-
able, and that mR’' = mR.

2. Bhow that if F is the graph of a continuous function, fora S z S b, then mF = 0.

3. Show that if R is a region of the sort described at the beginning of this section, then
mR is the integral of the difference of the two functions.
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SOLID MENSURATION:
THE ELEMENTARY THEORY

23.1 BASIC ASSUMPTIONS FOR THE THEORY OF VOLUME

The theory of volume, carried out in a spirit like that of the preceding chapter,
is technically very difficult. Moreover, the work required is not really worthwhile,
because anyone pursuing the theory at such length should study not the theory
of Jordan but that of Lebesgue, which has superseded it for the purposes of ad-
vanced mathematics. For this reason, we shall treat the theory of volume only
in a style analogous to that of Chapter 21, basing our derivations on postulates,
and not attempting to describe a volume function which satisfies our postulates.

Suppose, then, that we have given a class U of sets of points in space, called
measurable sets. Here U stands for volume. We suppose also that we have a function

v:U—>R

of U into the nonnegative real numhers. If M € U, then ¢M will be called the
volume of M.
Our first two postulates are designed to ensure that the clementary solids whose
‘volumes we propose to discuss really do have volumes.

V-1. Every convex sct is in 0.

V-2. If M and N belong to U, then M U N, M N N, and M — N also belong
to V.

The rest of our assumptions deal with the volume function ».
V-3. v is monotonic. That is, if M, N € U, and M C N, then oM = vN.
V4. f M, N € U, and o(M N N) = 0, then

v(M UN) = oM + ovN.

Obviously, if v is a volume function satisfying these conditions, then we can get
more such functions by multiplying » by any positive constant. To “determine
the unit of volume,” we state the following postulate.

291
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V.5. The volume of a parallelepiped is the product of
its altitude and the area of its base.

Here we are assuming that you know what a parallele-
piped is. If not, see Section 23.3 below. The figure and
the formula remind us that any face of a parallelepiped
can be regarded as the base.

We recall that triangular regions thh the same base
and altitude always have the same area. Our final assump-
tion for volume is analogous to this:

a
vK=g-b-c

Ficure 23.1

V-6. Cavalieri’s Principle. Let K and K’ be figures in space. Let E, be a plane.
If E || Eo, then K N E and K’ N E will be called corresponding horizontal cross
sections of K and K’, respectively. Suppose that

1) K e v;

2 K'ev;

(3) every horizontal cross section of K is measurable in its own plane;

(4) every horizontal cross section of K’ is measurable in its own plane, and

(5) corresponding horizontal cross sections D, D' of K and K’ have the same
measure in their plane. Then

= vK'.

mD=mD’, vK=vK'
Figure 23.2

This principle is the key to the study of volume; it deserves a very careful
reading. Obviously hypothesis (5) is crucial; without it, Cavalieri’s principle
couldn’t possibly be valid. But the other four hypotheses are necessary too. In
fact, if K € v, it does not follow that all horizontal cross sections of X are measur-
able in their own planes. Also, if all horizontal cross sections of K are measurable
in their own planes, it does not follow that K is measurable, and similarly, of course,
for XK',

Before we can proceed to calculate volumes, we need to do a little preliminary
geometry.
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23.25CROSS SECTIONS OF CONES AND PYRAMIDS

Let D be a (circular) disk in a plane E, and let V be a point not in E. The cone
with base D and vertez V is the union of all segments VP, where P belongs to D.
The altttude of the cone is the perpendicular distance from V to E.

Figure 23.3

Now let E; be a plane parallel to E, on the same side of E as V, lying at a per-
pendicular distance k < hfrom E. Let C be the center of D, and let r be the radius.
For each point B of D, let B’ be the point in which VB intersects Ey. Let Dy be
the set of all such points B’. We call Dy the cross section of the cone at altitude k.

FiGure 23.4

Theorem 1. Dy is a disk of radius
h—k
r= h
Proof. Let A, A’, C and C’ be as in the figure above. Let B be any point of D,
and let B’ be the corresponding point of 1. Since Ey || E, any plane that inter-
sects E), and E intersects them in a pair of parallel lines. Therefore

AB | AB ad BT | BC.

T,

N s;ﬁ"
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Hence AVA'B' ~ AVAB and AVBC' ~ AVBC.

Thus VA h—k AB CPB
VA AB CB
Then

cp =""%cp

If CB £ r, it follows that
C'B' 5

and conversely. Therefore Dy is a disk of radius
h—k -

T,

h

/

which was to be proved.
Using the formula mD = w72, we get the following theorem.

Theorem 2. Let K be a cone with base area a and altitude k. Let D be the cross
section of K at altitude k. Then

_\2
mD; = (h 7 k) a.
Proof. We know that

a=7mr? and mDy = wr'?

where 7 is the radius of the base, and 7’ is the radius of D;. Therefore

_(h=K\? 2 (h—k\?
ka-—1r(h)r——(h)a,
which was to be proved.

If we use a triangular region as base, instead of a disk, we have a very similar
discussion leading to a very similar theorem.

Fieure 23.5
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Let T.be a triangular region lying in a plane E, and let V be a point not in E.
The pyramid with base T and vertez V is the union of all segments VP, where P
_belongs to T. The altitude of the pyramid is the. perpendicular distance A& from

Vto E.

Let_E), be the plane parallel to E, on the side of E that contains V, such that the
perpendicular distance betfteen E and E; is k < h:

Figure 23.6

Let the boundary of T be AABC, and let A’, B’, and C’ be the points where E
intersects VA, VB, and VC. Let T be the triangular region corresponding to

AA'B'C'. We then have

-

AVAD ~ AVA'D,
AVAB ~ AVA'B,

AVBC ~ AVBC,
AVAC ~ AVAC.

The reason is that if a plane intersects each of two parallel planes, it intersects
'them in two parallel'lines. Therefore

DA | D4, AF| AB,
BC | BC, AT | AC.

From these parallelisms, our similarities follow. Therefore

Hence

VD h—k  BC h—k

VD h BC h
VA" h—k A'B h—k
Va4 AB

AA'BC' ~ AABC,
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by the SS§ similarity theorem (Theorem 3, Section 12.2). And the areas of the
corresponding regions T, T'; are related by the formula

Y
mTy = (-’i—h—lf) mT.

(This follows from Theorem 8, Section 13.2.) Thus we have the following
theorem.

Theorem 3. Let P be a pyramid with base area a and altitude h. Let T} be its
cross section at altitude k. Then ]

I\2
mTk=(hhk) a.

23.3 PRISMS AND CYLINDERS

Given a pair of parallel planes E;, E,, a set B; lying in E;, and a line L which
intersects E; in exactly one point:

/
o

Through each point P of B; we take a segment PP’, parallel to L, with P’ in Ej.
The union K of all such segments PP’ is called a cylinder; By is called its lower
base, and L is called its directriz. The intersection B; of the cylinder with E,
is called its upper base. (Thus B, is the set of all points P’.) The perpendicular
distance between E; and E; is called the altitude of the cylinder. And the seg-
ments PP’ are called elements of the cylinder.

If B, is a disk, then K is called a circular cylinder. If B, is a polygonal region,
then K is called a prism. If L is perpendicular to E,, then K is called a right
cylinder. If a cylinder has a parallelogram region as its base, then it is called a
parallelepiped. 1f P and @ are points of B;, and P’ and @’ are the corresponding
points of B,, then it is not hard to see that [ JPP'Q'Q is a parallelogram.

Ficure 23.7
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Proof. The lines 1"7’", @7 are parallel, because they are both parallel to L
Mess one of them is =L, in which case the same conclusion follows). Therefore
PP’ and w are automatically coplanar, lying in a plane E; E intersects each of
the planes £ /1, ] E3, and E therefore intersects them in a pair of parallel lines. There-
fore P'Q’ || PQ. Therefore [ JPP'Q'Q is a parallelogram. Thus we have the follow-
ing theorem.

Theorem 1. In any cylinder, the lower base and the upper base are isometric.

Proof. In defining the cylinder, we used a correspondence P < P”between the
upper base and the lower base. Since opposite sides of a parallelogram are con-
gruent, we always have

PQ = PQ'.

Therefore our correspondence is an isometry.

In particular, if the cylinder is circular, the two bases are always disks with the
same radius. If the cylinder is a prism with a triangular base, then the two bases
are always congruent. If the cylinder is a prism, with any polygonal region what-
ever as base, then the two bases, being isometric, always have the same area. All
of this is conveyed by Theorem 1; the basic idea here has nothing to do with the
shape of the base.

By a horizontal cross section of a cylinder, we mean the intersection of the cylinder
with a plane parallel to the base.

Ficure 23.8

Theorem 2. All horizontal cross sections of a eylinder are isometric.

This follows immediately from Theorem 1. To see this, we merely need to observe
that every horizontal cross section B is the upper base of a cylinder with base B;.

From Theorem 2 we get the same sort of special conclusions that we got from
Theorem 1, i.e., if the base is a disk then all the horizontal cross sections are disks
with the same radius; if the base is triangular, then all of the cross sections are
congruent; and if the base is a polygonal region, then all of the horizontal cross
sections are polygonal regions with the same area.
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23.4 VOLUMES OF PRISMS AND CYLINDERS
To make use of the additivity postulate V-4, we need the following theorem.

Theorem 1. If M € U, and M is a bounded set lying in a plane, then vM = 0. '

Proof. M, being bounded, lies in a rectangular region R in its own plane. Let
aR = ab. Then for every positive number A, M lies in a parallelepiped K, with

vK = abh.

Obviously vK is as small as we please if k is small enough. More precisely, given
any ¢ > 0, we have

vK = abh < e,
whenever e
h < E
Therefore
oM S vK S e

for every ¢ > 0. Therefore vM = 0.

Theorem 2. Let K be a right prism, of altitude A, with a right triangular region
T as base.

Ficure 23.9

Then vK = h-aT.

Proof. Construct another right prism K’ with base 77, in such a way that T U T"
is a rectangular region, and K U K’ is a parallelepiped. If a and b are as in Fig.

23.9, then .

v(K U K') = abh.
By Cavalieri’s principle

vK = vK'.
By Theorem 1,
(KNK)=0.
Therefore
v(K U K') = vK + vK’' = 2vK.

Hence

vK = v(K U K') = }abh = %h-aT,
which was to be proved.
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More generally, we have the following theorem.

Theorem 3. Let K be a right prism, with lower base B and altitude A.

Then
vK = h-aB.

T

T,

Fieure 23.10

Proof. B is the union of a finite collection of triangular regions 7;. Thus K is
the union of a finite collection of prisms K, with the T'’s as bases. We know by
Theorem 2 that

vK; = h - aT;
for each 7. And
vK = E vK,,
s=1

because each K; intersects the others in a set of volume = 0. Therefore

WK = 3 he o

Tl
n
=h- 2 aT;
T
= h- aB.
Theorem 4. Let K be any prism (right or not). Then vK is the product of the
altitude and the base area.
Proof. Let K’ be a right prism, with the same base area as K and the same
altitude.

Fiaure 23.11
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By Theorem 3,
vK' = h-aB' = h-aB.
By Cavalieri’s principle
vK’ = oK.
Therefore
vK = h - aB,
which was to be proved.
For cylinders with circular bases, the volume formula and its derivation are the
same.

Theorem 5. Let K be a cylinder whose altitude is A and whose base is a disk of
radius . Then

vK = wrh.
To prove this, we take a right prism L, with base area 7r? and altitude 4. Then
vL = wrh.

By Theorem 2, Section 23.3, all horizontal cross sections of K and L have the
same area. Therefore, by Cavalieri’s principle, we have

vK = oL = mrh,
which was to be proved.

23.5 VOLUMES OF PYRAMIDS AND CONES

Theorem 1. Given two pyramids with their bases in the same plane and their
vertices on the same side of this plane. If they have the same base area and the
same altitude, then they have the same volume.

x>
P

Fraure 23.12

Proof. Let the common base area be a, and let the common altitude be h. By
Theorem 3, Section 23.2, the horizontal cross sections at height k have the same

area, namely
ay = W a.

By Cavalieri’s principle, the two pyramids have the same volume.
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Fioure 23.13

We can now compute the volume of a pyramid, by the following ingenious
device. Consider first a right prism K with a triangular base in the figure above.
The figure below indicates how the prism can be expressed as the union of three
triangular pyramids:

F F
K, K, Ky
Ficure 23.14

Now ABCF = ABEF. If we regard K, and K as pyramids with A as “top
vertex,” then K; and K, have the same base area, and they have the same altitude,
because the altitude of each of them is the perpendicular distance from A to the
plane that contains B, C, E, and F. By the preceding theorem, we have

UK] = I)Kg.

Now let us regard K3 and K3 as pyramids with F as “top vertex.” Then K,
and K3 have the same base area, because AABE =~ AADE, and they have the
same altitude, because the altitude of each of them is the perpendicular distance
from F to the planc that contains A, B, D, and E. By the preceding thcorem, we

have
vKy, = vK3.

Since K;, K, and K intersect each other only in planar sets, which have

' volume = 0, we have
vK = vK; + vKy + vK3

= 30K2.
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Figure 23.15

Suppose now that we start with a pyramid L with a triangular base. Let Kg
be a pyramid with the same base and altitude, with a vertical edge AD, as in
Fig. 23.14. And let K be a right prism with the same base and the same altitude
as K3. Then

vK = K3
= 3vL.
Therefore
oL = K
= 4ah,

where a and h are the base area and altitude of L. Thus we have the following
theorem.

Theorem 2. The volume of a pyramid is one-third the product of its base area
and its altitude.

|
|
I
hi
|
|
|
.

1
vK= §ah

Ficure 23.16

If we use the full force of Cavalieri’s principle, then the corresponding formula
for the volume of a cone becomes almost trivial. Given a cone with base area
a = 7r? and altitude h (Fig. 23.17). Take any pyramid with its base in the same
plane, with the same base area a and the same altitude h. For the two figures il-
lustrated in Fig. 23.17, cross sections at the same height have the same area; by
the theorems of Section 23.2, the cross sections at height & have area

)
ay = i a.

By Cavalieri’s principle, the cone and the pyramid have the same volume. Since
we know that the volume of the pyramid is 4ah, we have the following theorem.
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Fieure 23.17

Theorem 3. The volume of a cone is one-third the product of its base area and

its altitude.

Your only “problem” for this section is the following project. Close the book;
draw a figure showing the decomposition of the right prism K into the three pyra-
mids K,, K, and K3; and then draw figures showing the three pyramids sepa-
rately. If you can do this, the chances are that you understand this whole section,
and conversely.

23.6 THE VOLUME OF A SPHERE

To find the volume of a sphere, we first circumscribe a cylinder around it:

Ficure 23.18

Let K be the sphere plus its interior; let C be the circumscribed cylinder, and let

L=C—K,
80 that
C=KUL.
We know how to find ¢C:
oC = mr?.2r
= 2mrd,

Therefore, if we can find vL, we ean calculate 1K by subtraction as
v vK = »C — rL.
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In calculating vL, we shall use Cavalieri’s principle in the same way as in the last
two sections, That is, we shall find a figure whose volume we know, which has
the same cross-sectional areas as L.

The areas of the cross sections of L are easy to calculate. Figure 23.18 shows
a vertical cross section of our sphere and its circumscribed cylinder. Thus the
cylinder appears as a rectangle and the sphere appears as a circle. The cross sec-
tion of L at height k is a figure like this:

Figure 23.19

The outer radius is 7, and the inner radius is
s = Vr? — k2,
by the Pythagorean theorem. Therefore the cross-sectional area of L at height k is

a = wr? — ws?

= w(r? — s?)
= x[r* — (r* — k%)
= 7k

Now consider the figure L’ shown below. On the right we show a vertical cross

Ficure 23.20

section. The cross section of L at height k is a disk of radius k. Therefore the
cross-sectional area at height k& is
ay = a'k’.

Thus
vL = oL'.
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But oL = 2-4mr?.r
= #rrd.
Therefore
oL = §wrd,
Hence
vK = o0 — oL
= 2mr® — }urd
= 4mrd, '

For reference, we write tilis as a theorem.
Theorem 1. The volume of a sphere of radius r is $mr®.

ProBLEM SET 23.6

1, If we pass a secant plane through a sphere, it cuts the sphere into two parts, one of
which is lens-shaped like this:

Freure 23.21

Such a figure is called a spherical segment. Find the volume in terms of 7 and s.
2. By a spherical sector we mean a figure like this:

Figure 23.22

On the right we show a vertical cross section, which forms a sector of a disk. Find the
volume in terms of r and s.
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HYPERBOLIC GEOMETRY

24.1 ABSOLUTE GEOMETRY, CONTINUED: THE CRITICAL FUNCTION

In this chapter, we shall make heavy use of the incidence and separation theo-
rems of Chapter 4. For convenience, we briefly restate two of them:

The Postulate of Pasch. Given AABC and a line L (in the same plane)._lf L
intersects AB at a point between A and B, then L also intersects either AC or

BC.
c

A

N/
L?X [L? -
Ficure 24.1

(This was Theorem 14, Section 4.1.)

The Crossbar Theorem. If D is in the interior of ZBAC, then AD intersects
BC. .

FiGURE 24.2

(This was Theorem 4, Section 4.3.)

Given a line L and an external point P. Let A be the foot of the perpendicular
from P to L, and let B be any other point _of) L (Fig. 24.3). For each number r
between 0 and 180 there is exactly one ray PD, with D on the same side of AP as
B, such that

mLAPD = r.
306
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P
E D
reyr
|
1
- h -
C A B
Fioure 24.3

Obviously, for some numge_.rs r, PD will intersgit 4B. (For example, take r =
mZAPB.) Forr = 90, PD will not intersect AB. Let

K = {r[Fﬁ intersects .:1-3}.
Then K is nonempty, and has an upper bound. Therefore K has a supremum. Let
ro = sup K.
The number r, is called the critical number for P and AB. The angle Z APD with
measure = rq is called the angle of parallelism of AB and P.
Theorem 1. If mZAPD = r(, then FE does not intersect 4B.
Proof. Suppose that PD intersects AB at Q:

FIGURE 24.4

If R is any point such that A-Q-R, then mZ APR > 7o, so that ro is not an upper
bound of K.

—_— —
Theorem 2. If mZ APD < r,, then PD intersects AB.

Fiaure 24.5
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Proof. Since ro = sup K, and m£LAPD < r, it follows that m<Z APD is not
an upper bound of K. Therefore some r i in K is >mZLAPD. I.et D’ be such that

mZAPD' = r. Then PD' intersects AB in a point F. But PD is in the interior
of LAPD', Therefore, by the crossbar theorem, PD mtersects AF. Therefore
PD intersects AB. Thus there is a certain “critical ray PD with mLAPD = ro;
PD does not intersect AB but if F is in the interior of ZAPD, then PP does
intersect ﬁ

[Hereafter, if F is in the interior of £ APD, we shall say for short that A—I.’" is an
interior ray of LAPD.)

P

| D

1

} F

| F

1

N s

AN
FiGURE 24.6

We note that ro was defined in terms of P, A, and B. It turns out, however, that
r¢ depends only on the distance AP.

Theorem 3. Let P, A, B and also P/, A’, B’ be as in the definition of the critical
number. If AP = A’P’, then the critical numbers rq, g are the same.

P PI
o T AN
Figure 24.7
Proof. Let
K = {rll_’3 intersects AB},
and let

—p ——
= {r|P'D’ intersects A'B},

as before. If 7 € K, let Q be the point where PD intersects AB, and let @’ be the
point of A'B’ for which A'Q = AQ. Then mLA'P'Q' = r. (Why?) Therefore
r € K'. Thus K C K’; and similarly K’ C K Therefore

K' =K and sup K’ = sup K.

We now have a function AP — r,. We shall denote this function by ¢, and call
it the critical function. Thus, for every a > 0, c(a) denotes the critical number
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correspondmg to AP = a. Thus PD intersects 'AB when mZAPD < c(a),
but PD does not intersect AB when mZLAPD Z c(a).

We shall now investigate the function c.

Theorem 4. c never increases as a increases. That is, if ' > a, then ¢(a") < c(a).

P’
i D
P ; o(a)
| c(a)n D
|
- h .
A B
" Ficure 24.9

Proof. Given P, P’, witha = AP,a’ = AP’, asin Fig. 24.9. Take I-’3 so that
——

mLAPD = c(a), and take P'D’ so that mZ AP'D’ = c¢(a). Then PD and D’
are parallel. There_fc:re all points of P’'D’ are on the side of PD that contains P’.
And all points _g_f) AB are on the side of PD that contains A. Therefore P’D’ does
not intersect AB.

Now let

K’ = {r|P’'D” intersects ZE},

a8 in the definition of the critical angle, so that
¢(a’) = sup K'.

Then ¢(a) is an upper bound of K’, because P'D’ does not intersect 4 4B. And
c(a’) is the least upper bound of K’. Therefore c(a’) = c(a), which was to be
proved.

In the Euclidean case, this theorem cannot be strengthened to give the strict
inequality ¢(a’) < c(a) for a’ > a. (The reason, obviously, is that in Euclidean
geometry we have c(a) = 90 for every a.) In hyperbolic geometry, however, not
only do we have the strict inequality but we actually have c¢(a) — 0 as ¢ — .
(It would be worthwhile to figure out how this works in the Poincaré model de-
scribed in Chapter 9.)
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Theorem 4 allows the possibility that c(a) < 90 when a is large, but c(a) = 90
when a is sufficiently small. But in fact this cannot happen, as the following two

theorems show.

Theorem 5. If c(a) < 90, then c(a/2)° < 90.

I4
a ! D a
31 c(a)’ 3
e-i{ = E - 2-
P’y > D P’
a7 ca) a
2 H - 2
A B A B
Ficure 24.10

Proof. Given P, P’ as in the figures, with AP = a, AP’ = a/2. Take PD so
that m£ APD = c(a) < 90, and take PE L 4P at P. 4 PD fails to inter-
sect P'E, as on the left, then there is an acute angle Z AP’ D’ such that P’ D’ fails to
intersect AB. (Proof?) Therefore c(a/2) S c(a) < 90.

Suppose, then, that PD does intersect P'E, at a point F. (It will turn out, later
in the theory, that this is what always happens.) Let G be any point such that
P-F-G. Th-ei’ L AP'G is acute.

Now (1) AB cannot intersect P’ except perhaps in a point of P'G; the reason
is that all other points of 176‘119; on the “wrong side” of PC. And (2) AB does not
contain P’ or G. Finally (3) AB does not contain a point between P’ and @G; if so,

it would follow from the postulate of Pasch that AB intersects P'F or FG, which
is false.
Therefore P'( does not intersect Zﬁ, and ¢(a/2) < 90, which was to be proved.

Theorem 6. If c(ag) < 90 for some ag, then ¢(a) < 90 for every a.
Proof. For each n, let
- %
=
By induction based on Theorem 5, we have
c(a,) < 90 for every n.
Suppose now that ¢(b) = 90 for some b. Since
lim a, = 0,

n—®

we have
ar < b for some k.

Thus a; < b but ¢(ax) < ¢(b), and this contradicts Theorem 4.
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This theorem clarifies the meaning of the parallel postulate; it tells us that the
gitiation described in the postulate holds either always or never.

Theorem 7. The All-or-None Theorem, If parallels are unique for one line and
ore externa! point, then parallels are unique for all lines and all external points.

Proof. Given P, L, P/, and L', with AP = a and A'P' = a’, as in the figure.

P P
1 ] L]
'. ; :
a'l' ,'a’
‘—___b____—-»[,
A

Ficure 24.11

It is now easy to see that each of the statements below is equivalent to the next.

(1) There is only one parallel to L through P.

(2) e(a) = 90.

(3) ¢(a’) = 90.

(4) There is only one parallel to L’ through 7.

Therefore (1) and (4) are equivalent, which was to be proved.

Thus we can state our two possible parallel postulates in seemingly weak but
actually quite adequate forms.

(I) Euclidean. For some line and some external point, parallels are unique.

(II) Lobachevskian. Tor some line and some external point, parallels are not
unique.

We have already remarked, in Chapter 9, thai the same all-or-none principle
applies in other connections. If the formulamZA4 +m4£B 4+ mZC = 180 holds
for even one triangle, then it holds for all triangles; if even one pair of triangles are
similar without being congruent, then the geometry is Euclidean; and so on.

24.2 ABSOLUTE GEOMETRY: OPEN TRIANGLES AND CRITICALLY PARALLEL
RAYS
Given rays AB PD and the segment AP, no two of these figures bemg col-
linear. Suppose that B and D are on the same side of AP and that AB Il PD.

Then PD UPA U 4B is called an open triangle, and is denoted by ADPAB.
P D

A B

Ficure 24.12
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Here, when we write 4B Il PD, we mean that the lines are parallel in the usval

sense of not intersecting one another.
Suppose now that A DPAB is an open triangle, and every interior ray of AAPD

intersects A_B

e ¢ I

Fiaure 24.13

We then say that PDis critically parallel to A_IS, and we write }?BIA_ﬁ Here the
single vertical stroke is supposed to suggest that PD is parallel to AD with no
room to spare.

1\ote that P_ﬁ and A8 do not appear symmetncally in this definition. Thus if
QIAB it does not immediately follow that ABIPD Note also that the relation
PD|AB (as we have defined it) depends not only on the “directions” of the two
rays, but also on the initial points:

Ficure 24.14
Thus, if ﬁ)’lﬁ, we cannot conclude immediately that ﬁ)lﬁ We shall see,
however, in the next few theorems, that the above conclusions follow, non-

immediately.

Theorem 1. If PD|4B, and C-P-D, then CD|AB.

FiGure 24.15

Proof. Let CE be an interior ray of £ZACD, and suppose that CE does not in-
tersect AB. By the exterior angle theorem (which was, fortunately, proved with-
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out the use of the parallel postulate), we know that ZAPD > ZACD. Therefore
there is an interior ray PF of ZAPD such that ZDPF = /DCE. Therefore
Br 1 CE. Therefore PF does not intersect E, because these rays lie on opposite
sides of CE. This contradicts the hypothesis ITI')’IE

Theorem 2. If l_’-ﬁlﬁ, and P-C-D, then EBIE

Fiaure 24.16

We give _tEe proof briefly. Suppge that there is an interior ray CE of LACD
—
such that CE does not intersect AB. Let F be any point of CE — C, and take
@ so that P-F-G. Then
(1) F is in the interior of A_ilPC ;
(2) PF does not intersect AB;
— . —
(3) F@ does not intersect AB;
) —
(4) PF does not intersect AB.
. . =
Statements (1) and (4) contradict the hypothesis PD|AB.
Two rays R and R’ are called equivalent if one of them contains the other. We
then write R ~ R’. Obviously the symbol ~ represents an equivalence relation.
Fitting together the preceding two theorems, we get:

— —
Theorem 3. If R|AB, and R and R’ are equivalent, then R’|AB.
Somewhat easier proofs show that the relation -I?Bl;l_é depends only on the
—
equivalence class of AB. We leave these proofs to you.
Theorem 4. If R,|R,, Ri ~ R, and R; ~ R,, then Rj|R2.

Given FD’IE, let C be the foot of the perpendicular from P to ﬁ, and let
PC = a.
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Then FB[EE (providing, of course, that B is chosen so that A-C-B, as in the
figure). Therefore m£CPD = c(a). Now on the side of PC that contais B
there is only one ray PD for which mZLCPD = c¢(a). Thus we have:

Theorem 5. The critical parallel to a given ray, through a given external point,

is unique.

Two open triangles are called equivalent if the rays that form their sides are
equivalent. Anopen triangle A DPAB is called isosceles if £ P /A

P
D

A B
Ficure 24.18

Theorem 6. If P—D'IE, then ADPAB is equivalent to an isosceles open tri-
angle which has P as a vertex.

FIGure 24.19

Proof. Since 7’7)1;4_3’, the bisecting ray of ZAPD intersects AB in a point Q.
By the crossbar theorem, the bisecting ray of ZPAB intersects PQ at a point R.
Let S, T, and U be the feet of the perpendiculars from R to P_l;, 4B and AP.
Then RU = RT and RU = RS. Therefore RS = RT, and £ZRST =~ ZRTS.
Hence (by addition or subtraction) ZDST =~ ZBTS; and ADSTB is isosceles.

To make P a vertex, we take V on the ray opposite to .T_B’, such that TV = SP.

P
S

|4 T
Ficure 24.20
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'I'lnonm 7 Critical parallelism is a symmetric relation. That is, if PDlAB
then ABIPD

Proof. By Theorems 4 and 6, we may suppose that A DPAB is an isosceles open
triangle:

P
D st
’//’

F! >~ - -~
E_-~"~<_
;// \\\\

B Q

A

FiGure 24.21

Let ﬁ be any interior ray of APAB Let PF be e an interior ray of ZAPD,
such that ZDPF == LBAE Then PF intersects AB at a point @. It follows

that AE intersects PD at the point S where PS = AQ. (Proof? The whole
figure is symmetric, from top to bottom.)

Theorem 8. If two nonequivalent rays are parallel to a third ray, then they are
parallel to each other.
—_— ) — — — P
ResTATEMENT. If AB|CD, CD|EF, and AB and EF are not equivalent, then
AB|EF.
Proof. (1) Suppose that }1_é and EF lie on opposite sides of CD. Then AE
intersects C'TIS, and by Theorem 4 we can assume thut the point of intersection is C.

FIGURE 24.22

Let AG be any interior ray of ZEAB. Then AG mtersects CD at a point H.
Take I so that C-H-I and take J so that A-H—J Then HI lEF by Theorem 4;
and HJ is an interior ray of ZHEF. Therefore HJ intersects EF at a point K.

Therefore AG intersects 1_7}7 which was to be proved.
2) If CD and EF are on opposite sides of A '_§ then the same conclusion follows.
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Froure 24.23

Here we may suppose that ABNEC = _‘i,_’ for the same reasons as in the first

case. Through E there is exactly one ray EF' critically parallel to AB. By the
— —> —_— —_—

result in Case (1), EF'|CD. Since critical parallels are unique, EF’ = EF and

—

EF|AB, which was to be proved.

There remains a sticky point which some authors have overlooked. How do
we know that some two of our three rays lie on opposite sides of the line contain-
ing the third? In the Euclidean case, this is easy to see, because any three parallel
lines have a common transversal; in fact, any line which crosses one of them must
cross the other two. But this is far from being the case in hyperbolic geometry, as
an examination of the Poincaré model will easily show. Given three noninter-
secting lines, it can easily happen that every two of them are on the same side of
the third. Therefore the conditions A5 i ¢D, D | EF are not enough for our
purpose; to get a valid proof, we need to use the full force of the hypothesis Zﬁla’ﬁ,
CD|E'75. We shall show, under these conditions, that (3) some line intersects all
three of the rays A—B’, C—’D, E_'F.' (Surely this will be adequate.)

D H

FIGURe 24.24

If A and E are on opposite sides of C‘Tf), then AF intersects CD and (3) follows.
Suppose, then, that (a) A and E are on the same side of CD. If A and D are on the
same side of E’Z‘, then C4 is an interior ray of ZC, so that CA intersects EF and
(3) follows. If A lies on CE, then (3) holds. 'We may therefore suppose that (b) A
and D are on opposite sides of CE. Therefore AD intersects CZ at a point G.

Take H so that C-D-H. Then DH|AB. By the exterior angle theorem,
ZLHDA > £C. Therefore there is an interior ray DI of ZHDI such that
ZHDI = £C. Then DI || CZ, but DI intersects 4B at a point J.
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Now CFE intersects AD at G. Therefore CE intersects another side of AADJ.
Since CE does not intersect DJ, OZ intersects A7 at a point K. Now (3) follows;
the line that we wanted is CE.

The oversight leading to the incomplete proof of this theorem is rather illus-
trious. It is due originally to Gauss, and has been faithfully reproduced by good
authors ever since.

ProBLEM Ser 24.2

1. By the ¢niertor of an open triangle A DP 4 B, we mean the intersection of the interiors
,of Z P and £A. If a line intersects the interior of an open triangle, does it follow that the
line intersects one of the sides? Why or why not?

2. Same question, for the case where P—ﬁlﬁ

24.3 HYPERBOLIC GEOMETRY: CLOSED TRIANGLES AND ANGLE SUMS

So far in this chapter, we have been doing absolute geometry. To mention the
hyperbolic parallel postulate in our proofs would have been misleading, because in
the Euclidean case, our theorems, so far, become not false but merely trivial, and
the difference between falsity and triviality is important.

In this section we deal specifically with the hyperbolic case. To avoid confusion,
throughout this chapter, we shall mention the hyperbolic parallel postulate in every
theorem whose proof requires it. We shall abbreviate the name of the postulate

as HPP.
P

D

A B
FiGUure 24.25

If Fﬁlﬁ, then ADPAB is called a closed triangle.

Note that every closed triangle is an open triangle, but the converse is false,
because through P there is more than one line parallel to AB. Closed triangles have
important properties in common with genuine triangles.

Theorem 1. The Exterior Angle Theorem. Under HPP, in every closed triangle,
each exterior angle is greater than its remote interior angle.

Restatement. If PD|AB and Q-A-B, then ZQAP > LP.
P
D

0 4 B
Fi1GURe 24.26
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FIGURE 24,27

Proof. If ADPAB is isosceles, this is obvious. Here, if HPP holds, then ZP
and LPAB are acute (because c(a) < 90 for every a), and therefore ZQAP is
obtuse.

Suppose then that ADPAB is not isosceles. By Theorem 6, Section 24.2,
A DPAB is equivalent to an isosceles open triangle A DPCB, and this open triangle
is also closed:

FiGURe 24.28

If C = A, there is nothing to prove. For the case A-C-B, let the degree measures
of the various angles be as in the figure. Then

p>r,
because ¢(a) < 90. And
p+ g+ s = 180,

by Theorem 6, Section 10.4. Therefore

t=180 —¢g=p+s>r-+s,
and
t>r+s,

which proves half of our theorem.
To prove the other half, we need to show that « > ¢. This follows from

t=180 —g> 180 —u=r+s
We found, in Theorem 3, Section 24.1, that the critical function ¢ was nonincreas-

ing. That is, if @’ > @, then ¢(a’) £ c(a). Using the exterior angle theorem, we
can sharpen this result.
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A B

Ficure 24.29

Theorem 2. Under HPD, the critical function is strictly decreasing. That is, if

a’ > a, then c(a’) < c(a).

Proof. In the figure, AP = a and AP’ = o, FBIIE and P’D'IA—I;, so that
— )
PD|P'D’. Therefore AD'P’'PD is a closed triangle. Therefore c(a) > c(a’), which
was to be proved.

Theorem 3. Under HPP, the upper base angles of a Saccheri quadrilateral are
always acute.

c(@r P L ¢

Ficure 24.30

(We already know, from Chapter 10, that they are congruent, and cannot be
obtuse.) J
— — —_—
In the figure, BQ and CP are the critical parallels to AD, through A and C.

Therefore
mLABQ = c(a) = mZLDCP,

as indicated. Applying the exterior angle theorem to the closed triangle APCBQ,

we see that
t> s

Therefore
t+ c(a) > s+ c(a).

Therefore
8+ ¢(a) < 90,

which proves our theorem.
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B D
174
L
A C
Figure 24.31

Theorem 4. Under HPP, in every right triangle A ABC, we have
mLA +mLB + mZC < 180.

Proof. Suppose not. Then, if £ A is the right angle, ZB and £ZC must be
complementary. Take D on the opposite side of BC from A, so that LBCD =
ZABC and CD = AB. Then AABC = ADCB, by SAS; and [JABDC is a
Saccheri quadrilateral. This is impossible, because Z D) is a right angle.

Theorem 5. Under HPP, for every triangle A ABC, we have
mLA + msLB + mLC < 180.

FiGure 24.32

Proof. Let AC be a longest side of AABC, and let BD be the altitude from B’
L o 4
to AC. Then
r+ s+ 90 < 180,
and
t+ v+ 90 < 180.
Therefore
r4 (s 1) + u < 180,

which proves the theorem.

Soon we shall see that under HPP this theorem has a true converse: for every
number £ < 180 there is a triangle for which the angle sum is 2. Thus 180 is not
merely an upper bound for the angle sums of triangles, but is precisely their su-
premum.
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24.4 HYPERBOLIC GEOMETRY: THE DEFECT OF A TRIANGLE AND THE COLLAPSE
OF SIMILARITY THEORY

The defect of AABC is defined to be
180 — mLA — mLB m/ZC.

The defect of A ABC is denoted by §A ABC. Under HPP we know that the defect
of any triangle is positive, and obviously it is less than 180. (Later we shall see
that the converse holds: every number between 0 and 180 is the defect of some
triangle.)

The following theorem is easy to check, regardless of HPP.

Theorem 1. Given A ABC, with B-D-C. Then
SAABC = AABD + 8ADC. :

Ficure 24.33
It has, however, an important consequence.

Theorem 2. Under HPP, cvery similarity is a congruence. That is, if AABC ~
ADEF, then AABC = ADEF.

Figure 24.34

First we take G on A_é so that AG = DE; and we take H on ;l-é so that AH =
DF. We then have AAGH = AEDF, by SAS; therefore

AAGH ~ ANABC.

If G = B, then H = C, and the theorem foliows. We shall show that the contrary
assumption G # B, H # C (as shown in the figure) leads to a contradiction.
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Let the defects of AAGH, AGHC, and AGBC be d,, dy, and d3, as indicated
in the figure; let d be the defect of AABC. By two applications of the preceding «
theorem, we have d = d; + d2 + d3. This is impossible, because the angle con-
gruences given by the similarity AABC ~ AAGH tell us that d = d,.

The additivity of the defect, described in Theorem 1, gives us more information
about the critical function c. What we know so far is that (1) 0 < ¢(a) < 90 for
every a > 0, and (2) ¢ decreases as a increases. There remains the question of how
small the numbers ¢(a) eventually become when a is very large. We might have
either of the following situations:

Y

90 y=c(x)

e=0

Ficure 24.35

In each case, ¢ = inf {c(a)], that is, the greatest lower bound of the numbers ¢(a).
In each case, it follows from (2) that lim,_,, c(a) = e. To prove the following
theorem, therefore, we need merely show that ¢ > 0 is impossible.

Theorem 3. lim,_,, c(a) = 0.

Proof. Suppose that ¢(a) > ¢ > 0 for every a.

\
TN R INR; TN R, I\

Ficure 24.36

The markings in the figure should be self-explanatory. For each n, P,Q, inter-
—p
sects PoR2y, because ¢ < ¢(n). The right triangles APy Py 41Qn+1 are all congruent,
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Payy

Py

Fioure 24.37

and therefore have the same defect dy. Consider now what happens to the defect,
d, of APyP,R, when n is increased by 1. The letters in the interiors of the tri-
angles denote their defects. We have

JAPOPuRn+l = dn + Y,
APy \PoRoyy = do + 2,
dny1 = (dn +9) + (do + 2),

by Theorem 1 in each case. Therefore

dny1 > dn + do.
Thus
dy > dy + dy, ds > dg + do > d; + 2do;

and by induction, we have
dn > dl + (n - l)dg\.

When n is sufficiently large, we have d, > 180, by the Archimedean postulate.
This is impossible, because the defect of a triangle is 180 minus the angle sum.
+* Therefore ¢c(@) > e > 0 is impossible, which was to be proved.
Consider now what happens to the measure r(a) of the base angles of an isosceles
right triangle, as the length a of the legs becomes large.

B
D
r(af
of ar
-]
A a Cc

Ficure 24.38
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FIGURE 24.39

Here ﬁ]fg’ Therefore we always have r(a) < c(a). Therefore lim,_,, 7(a) = 0.
Let us now make the figure symmetrical by copying A ABC on the other side of ‘
AB. Yor ADBC, the angle sum is 4r(a). Therefore the defect 180 — 4r(a) can
be made as close to 180 as we please; we merely need to take a sufficiently large.
Thus 180 is not merely an upper bound of the numbers which are the defects of
triangles; 180 is precisely their supremum.

Theorem 4. For every number z < 180 there is a triangle whose defect is greater
than z.

24.5 ABSOLUTE GEOMETRY: TRIANGULATIONS AND SUBDIVISIONS

Let R be a polygonal region. Asin Chapter 14, by a triangulation of R we mean

a finite collection,
K= {Tlr T21"'1Tn})

of triangular regions T, such that (1) the 7'’s intersect only at edges and vertices,
and (2) their union is B. A collection K which satisfies (1) is called a complez.
Evidently every complex K forms a triangulation of the union of its elements.
Given two complexes
K= {T,,Ts...,T.},
K' = {T},T% ..., Tn}.

If every T lies in some one of the sets T';, then K’ is called a subdivision of K. ]
Triangulations of certain types will be especially useful.
Given a polygon with vertices Py, Py, ..., P,. Suppose that for each pair of
successive vertices P;, P, all other vertices of the polygon lie on the same side
\\ N p,
Py

/;‘\\ 4

Ficure 24.40
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of F‘P‘“. Then the polygon is convez. From this it follows that if P;, Py,
P;42 are successive, then the other vertices (if any) all lie in the interior of
LPiP;1Pits. (To get this, we merely apply the definition of the interior of an
angle.) By the interior of a convex polygon, we mean the intersection of the interiors
of its angles. By a convex polygonal region, we mean the union of a convex polygon
and its interior. By a star triangulation of such a region, we mean & complex like
this: ’

F1GURE 24.41

(More precise definition?) Obviously every convex polygonal region has a star
triangulation; and any point P of the interior can be used as the central vertex.

Theorem 1. Let R be a convex polygonal region, and let L be any line which
intersects the interior of B. Then L decomposes R into two convex polygonal
regions.

Figure 24.42

Proof. Let H; and H be the half planes with L as edge; let H; = H,u L and
| let H, = Hy U L. Let

R1=Rn17;, Rz=RniI—2

Then R, and R, are convex sets because each of them is the intersection of two
convex sets; and it is easy to check that they are convex polygonal regions in the
sense that we have just defined.

We shall use this as a lemma in proving the following theorem.

|
’

Theorem 2. Every two triangulations of the same polygonal region have a com-
mon subdivision.
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That is, if K; and K, are triangulations of R, then there is a triangulation K
of R which is a subdivision both of K, and K.

-~
—_——
-~
-

¢

FIGURE 24.43
L

-
In the figure, the edges of K, are drawn solid, and the edges of K, are dashed. ¥
(As in Chapter 14, an adequate figure is not easy to draw or to look at.)

Proof. Let LyLs, ..., La

be the lines which contain either an edge of K; or an edge of K;. (For Fig. 24.43,

we would have n = 9.)
Now L; decomposes each T in K (and each T, in K) into two convex regions,

if L, intersects the interiors of these sets at all:

Az,

Ficure 24.44

(In the figure, we show a possibility for L;.) By induction it now follows that the
union of all of the L,’s decomposes R into a finite collection,

C= {CI)CZI‘ . ';Cn}1

of convex polygonal regions, like this:

Firgurr 24.45

Evidently every C; lies in some onc 7', € K; and in some one T € K,. I'or each
C; we take a star triangulation. These fit together to give our common sub-
division K. -
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Let R) and R; be polygonal regions. Suppose that they have triangulations
K, = {Th TB; ey Tn})
Ky = {T'lr T'm seey T:t}r
such that for each ¢ we have -
Ty T.
Then we say that R, and R, are equivalent by finite decomposition, and we write

G

Rl = Rz.

Here by T; 22 T we mean that the corresponding triangles are congruent in the
elementary sense. In fact, this is equivalent to saying that T'; and 7 are isometric

- in the sense of Chapter 17.

Equivalence by finite decomposition is a familiar idea in simple cases; it means,
intuitively, that you can cut R, into little triangular pieces, with scissors, and then
put the pieces back together again, usually in a different way, to get Rj.

\\
1N D
VLT, N T,
;I >\

FIGURE 24.46

For example, in the figure above, we have T =2 T4. Therefore
TyUTsUT3=T,UT,UTs

In fact, this is the observation that people usually make to infer that the parallelo-
gram and the rectangle have the same area.

Theorem 3. Equivalence by finite decomposition is an equivalence relation.

Proof. Trivially, = is reflexive and symmetric. We must now show that if
R1 = Rg and Rg = Ra, then Rl = Ra.
Let K, and K, be the triargulations used in exhibiting that By = R,. That is,

Kl = {Tx,«.sz cey Tu}l

A K2J= {Ti) T’B)"-:T!’l})
with
T T.

Let K5 and K 5 be the triangulations exhibiting that R, = Rj. Let K be a common
sybdivision of K; and K; (Fig. 24.47). Given any T; € K, we observe that the
corresponding T € K5 has been subdivided in a certain way. We copy this sub-
division scheme in T, following the congruence T; 22 T backwards. This gives a
subdivision K/ of K,, shown by the dotted lines in the figure. Similarly, we get
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3112
4~ .~72

Kl KI

FiGure 24.47

a subdivision K3 of K5. We can now match up the elements of Kj and K3 in such‘
a way as to show that B; = Rj;. (We omit the details, on the ground that a careful
inspection of the figures is likely to convey the idea adequately and more easily.)

24.6 EUCLIDEAN GEOMETRY: BOLYAI'S THEOREM

If two triangular regions are equivalent by finite decomposition, then surely they
have the same area. Thus if

Ri=T,UTsU...UT,,

R;=TiuUuTzu...UTy,
with ,
=T
for each ¢, then we have aT; = aTY}, from which we get aK; = aR; by addition.
It was discovered by Bolyai that the converse is also true; if aR; = aR,, it
follows that Ry, = R,. This section will be devoted to the proof of Bolyai’s theorem.
Given AABC, with BC considered to be the base:

P LN w
D G

Y E

FiGure 24.48

Let D and E be the midpoints of AB and A7;let L = DE; and let BF, 4G, and
CH be perpendicular to L. Then [JBFHC is a rectangle. (Remember the SAA
Theorem.) We shall call [JBFHC the rectangle assoctaled with A ABC. (Of course,
[CJJBFHC depends on the choice of the base, but it will always be clear which base
is meant.)
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Theorem 1. Every triangular region is equivalent by finite decomposition to ltB
associated rectangular region.

Proof. For the case shown in Fig. 24.48, this follows from two triangle congru-
ences. The proof in the general case is indicated by the figures below:

A

(@) RiUR;= R,UR;, R ) SjuS;m S5;uS; B [

D

Q H. G H X L

™

FiGURe 24.49
(©) T\uT,=T,uT,

In Fig. 24.49(a), R, = R3. Therefore AABC = [IBDGC. Thus we need to
show that (JBDGC = [JBFHC. If F lies on DG, as in Fig. 24.49(b), this follows
from the fact that ADFB =~ AGHC. If not, we can reduce the theorem to this
case by repeated applications of the theorem conveyed by Fig. 24.49(c).

Theorem 2. If two triangular regions have the same base and the same area,

then they are equivalent under finite decomposition.

Proof. Let the triangular regions be 7 and 7", and let the associated rectangular
regions be R and R’. Then R and R’ have the same base b. Since aR = aT =
oT’ = aR', we have aR = aR’, and R and R’ have the same altitude. Therefore
R = R'. (Proof?) Thus

T=R=R =T,
and T = T, which was to be proved.

Theorem 3. Bolyai’s Theorem. If two triangular regions have the same area,
they are equivalent under finite decomposition.
K A

=l
(X
3]

’:’»L

[
<
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Ficure 24.50
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Proof. Given T,, T, with a7y = aT';. Suppose that 7', is the union of AABC
and its interior. If a side of T, is congruent to a side of T'3, then Ty = T'; by
Theorem 2. Suppose, then, that T has a side of length a > AC. If we prove the
theorem for this case, it will follow in general merely by a change of notation.
As before, let L be the line through the bisectors D and E of AB and AC. Let J
be a point of L such that CJ = a/2. [Query: How do we know that there is such a
point?] Now take K so that C-J-K and JK = a/2. Let T be the union of AKBC
and its interior. By Theorem 2, we have

Ts=R and TgﬁTa,

Therefore T, = R. Since we know already that r# = T';, we have T; = T, which
was to be proved.

Note that the use of the transitivity of the relation = has spared us some almost
impossibly complicated figures, exhibiting the equivalence of T, and T,.

We shall see that Bolyai’s Theorem can readily be extended to polygonal regions
in general. To show this, we use the following theorem.

Theorem 4. In a Euclidean plane, every polygonal region is equivalent by finite
decomposition to a triangular region.

Proof. Given a polygonal region R, with a triangulation
K = {Tl, Tz, ey Tn}
For each i, let
a; = aT.-.
There is now a complex which looks like this:
A

Fi1aure 24.51

B, B, B, - B,
If T{ is the sth triangular region in this figure, then
aT% = aT;.
Therefore
T:= 1

for every ¢, by Theorem 3. Therefore R is equivalent by finite decomposition to the
union of the regions T%.

This is not a theorem of absolute geometry; it will turn out that under HPP the
triangular regions are—in a certain sense—of bounded size, and the polygonal
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regions in general are not. In the following section we shall elucidate this idea by
showing the form that area theory takes in hyperbolic geometry. Meanwhile we
generalize Bolyai’s theorem.

Theorem 5. Let R and R’ be polygonal regions in a Euclidean plane. If aR =
aR’, then R' = R.

Proof. Let T and T be triangular regions such that
T=R, T = R'.

Then aT = aR and a7’ = aR’. Therefore aT = «T” and T = T’. Therefore
R = R’, which was to be proved.

24.7 HYPERBOLIC AREA-THEORY: THE DEFECT OF A POLYGONAL REGION

We have already found, in Theorem 1, Section 24.4, that the defect of a triangle
is additive in the same way that area is:

FIGURE 24.52

That is, if B-D-C, then the defect of AABC is the sum of the defects of A4ABD
and AADC. This simple fact is the key to the development of an area theory in
hyperbolic geometry. We begin by defining the area of & triangular region T to
be the defect of the corresponding triangle. We denote the hyperbolic area by
8T, where & stands for defect, just as a stood for area. Under HPP, we know that
8T > 0 for every T. And we know that the additivity postulate holds, insofar
as it applies at all.

We would like to define our “area function” § more generally so as to make it
apply to all polygonal regions. We ghall do this in several stages.

First, given a complex

K= {Tl’ TZ; e T’l}l
we define
0K = 6Ty + 6T+ -+ -+ &T,.

We are now in the same situation as in Chapter 14. Every polygonal region B
has infinitely many triangulations K ; we would like to define R as K ; but to do
this we must first show that K depends only on R, and is independent of-the choice
of the triangulation K. This is easy to see for star triangulations of a convex poly-

gonal region.
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Theorem 1. If K, and K are star triangulations of the same polygonal region

R, then 3K, = 8K,.
P] Pl

P, P, P Py

Py, P,
Figure 24.53

The reason is that the total defect in each star triangulation is
(n -+ 1)180 — (mLPy + mLPy + -+ mZLP, + 360)
= (n — 1)180 — (MLPy + mLP; ++-++ mLP,).

Here we are merely adding the measures of the angles at each vertex, and subtract-
ing n(180). This theorem justifies the following definition.

DerinTioN. The defect SR of a convex polygonal region R is the number which
is the defect of every star triangulation of R.

A border triangulation of a convex polygonal region is one which looks like
this. (Exact definition?)
Py

P,
Py
Py
Py
Ficure 24.54
Theorem 2. The defect of a border triangulation is the same as the defect of the

region.
The reason is that the defect of the border triangulation is

n(180) — (mLPy + mLP, + -+ -+ mLP, + 180),
which gives the same answer as for star triangulations.

Theorem 3. If a convex polygonal region is decomposed by a line into two such
regions, then the defect of the union is the sum of the defects. .
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R

R,
Figure 24.55

Proof. Given R, U B3 = R, Ry N R; C L, as in the figure. Let P be any point
of L in the interior of R; let K; and K be the border triangulations in which P is
the extra vertex. Let K = K, U K. Then, trivially, we have

0K = 8K, + 8K,
Since 8K = 8R, 6K; = &R, and 8K, — &R, this proves the theorem.

Theorem 4. If K, and K, are triangulations of the same polygonal region R,
then 5K1 = 5K2

The proof is very similar indeed to the proof of Theorem 2, Section 24.5. Exactly
as in that proof, we let

Ly, Ly ...,Ln

be the lines that contain either an edge of K or an edge of K2. As before, we use
the lines L;, one at a time, to cut up the triangular regions in K and K into smaller
cunvex polygonal regions. At each stage, we know by Theorem 3 that the total
defect is unchanged. When all the lines have been used, we form a star triangulation
of each of the resulting convex polygonal regions; tius final step also leaves the total
defect unchanged. (In fact, the defect of a convex polygonal region C was defined
to be the total defect in any star triangulation.) We now have a common subdivi-
sion K of K, and K, with

K = aK 1
and

0K = GKz.

Therefore 8K, = 8K, which was to be proved.

DerFintrion. The area 3R of a polygonal region R is the number which is the
defect 8K of every triangulation K of R.

1t is not hard to see that our area function 8 satisfies the postulates A-1 through
A-5 of Section 13.1. (You may wonder, at first, about A-5, which says that the area
of a rectangular region is the product of its base and its altitude. But under HPP,
even this last postulate holds, for the rather odd reason that there are no rectangular
regions to which it can be applied.)
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24.8 BOLYAI'S THEOREM FOR TRIANGLES IN THE HYPERBOLIC CASE

We shall see that Bolyai’s theorem holds under HPP. That is, if Ry = §R,,
then it follows that R; = R,. Although a part of the proof follows the lines of
Section 24.6, the technique is more complicated, so we shall need some preliminaries.

Theorem 1. If two Saccheri quadrilaterals have the same upper base and the :
same defect, then their upper base angles arc congruent.

REstaTeEMENT. Let [JABCD and [(JA’B'C'D’ be Saccheri quadrilaterals (with
right angles at 4, D, A’, and D’). If BC = B’C’ and §[_JABCD = §JA'B'C'D’,
then £B = /B’ and £C = L('.

Figure 24.56
Proof. It is not hard to calculate that
[ JABCD = 180 — (m4LB + m£(C) = 180 — 2mZB.
Therefore mZB is determined by the defect; and from this the theorem follows.
Theorem 2. Under HPP, if [ JABCD and ["JA’B’C’'D’ are as in Theorem 1, then
JABCD = [JA'B'C'D'.

(Here the indicated congruence means that the correspondence ABCD «
A'B’C’ D’ preserves lengths of sides and measures of angles.)

—_— —
Proof. Let E and F be points of BA and CD such that
BE = CF = B'A’ = (C'D'.

By c
\
\,
\
\,
\
\
\\
P! 3D
\\
E F

Fioure 24.57
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By SAS, we have ABCF = AB'CD. Therefore BF = B'D’. By angle subtrac-
tion, we have LEBF =~ ZA'B'D’. By SAS, we have ABEF = AB'A'D'.
Therefore £E is a right angle. In the same way, we conclude that ZCFE is a right
angle. Thus we have

(JEBCF = [JA'B'C'D’.

If E = A and F = D, this proves the theorem. If not, [JEADF is a rectangle,
which is absurd; there is no such thing as a rectangle.

The reader is wa.med that, hereafter in this section, to draw our tnangles right
side up, we are going to draw our Saccheri quadrilaterals upside down.

Given AABC, with BC considered to be the base:

—

FIGURE 24.58

As before, let D and E be the bisectors of AB and AC; let F, G, and H be the
feet of the perpendiculars from B, 4, and C to L. Asin the Euclidean case, we have

AFBD = AGAD,

AGAE = AHCE,

FB = GA = HC
(The elementary theory of congruence is a part of absolute geometry.) Therefore
[JHCBF is a Saccheri quadrilateral. We shall call it the quadrilateral associated

with AABC. It depends on the choice of the base, but it will always be clear which
base we mean.

Theorem 3. Every triangular region is equivalent by finite decomposition to its
associated quadrilateral region.

The proof is exactly like the proof of Theorem 1, Section 24.6; this proof de-
pended only on congruences and the SAA theorem.

Theorem 4. Every triangular region has the same defect as its associated quad-
rilateral region. ‘

Because the two are equivalent by finite decomposition.

Theorem 5. If AABC and ADEF have the same defect and a pair of congruent
sides, then the two triangular regions are equivalent by finite decomposgition.
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A D

; /\ K u /\ X

4 4 - ;:'

! I

B c E F
Fi1GuRre 24.59

Proof. It does no harm to suppose that the congruent sides are the “bases” BC
and EF. If the associated Saccheri quadrilaterals are as indicated, then by
Theorem 4 they have the same defect. By Theorem 2, [JKCBJ = [ JNFEM.
Let Ty, T2, Ry, R, be the regions determined by our triangles and quadrilaterals,
then R, = R,. (This requires a proof based on our congruence, but the proof is
immediate.) Since T, = R; and R; = T3, by Theorem 3, we have T, = T,,
which was to be proved.

Theorem 6. Given AABC, D, E,and L = B_E, as in the definition of the asso-
ciated quadrilateral. Let A’ be a point on the same side of BC as A. If L contains

the bisector E’ of A'C, then L also contains the biscctor D’ of A’B, and AABC
and A A’BC have the same associated quadrilateral.

P2 S N\E "
WVD JPE 5

} .

| , ol .

FiGure 24.60

Proof. Let J and K be the bisectors of FH and BC. Then JK L BC and JK L
'D_L’, as indicated in the figure. Therefore
g

(¢))] DE is the perpendicular, through E, to the perpendicular bisector of BC.
Applying precisely the same reasoning to A A’BC, we get

2) DE is the perpendicular, through E’, to the perpendicular bisector of BC.

>
Since we know that E’ lies on DE, it follows that PE = B’E’, and D' lieson L.

Therefore AABC and A A’BC have the same associated quadrilateral [JHCBF,
which was to be proved.

Theorem 7. If T, and T, are triangular regions, and §T'; = 8T, then Ty = T'5.
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Proof. Let the associated triangles be AABC and AA’B'C". If a side of one is
congruent to a side of the other, then T, = T, by Theorem 5. If not, we may

suppose that
a= A'C" > AC.

(This proof is going to be very similar to that of Theorem 5, Section 24.6.)

K A

2
“AFJ\\B H
H /D J

a

2

Ficure 24.61

As indicated in the figure, let [JHCBF be the quadrilateral associated with
A ABC. Let J be a point of L such that CJ = a/2. Then take K so that C-J-K
and JK = a/2. By Theorem 6, [ JHCBF is the quadrilateral associated with
AKBC. Thus

SAKBC = §[JHCBF = 8AABC = 8AA'B'C'.

Now AKBC and AA’B'C’ have a pair of congruent sides and the same defect.
Therefore the corresponding regions T3, T'; are equivalent by finite decomposition.
Let R be the region corresponding to [ JHCBF. Then we have

T]ERETaﬁTz.

Therefore T, = T, which was to be proved.

24.9 DEFECTS OF SMALL TRIANGLES

We shall show, in this section, that the defect of a triangle is as small as we
please, if the triangle itself is sufficiently small. More precisely:

Theorem 1. Let ¢ be any positive number. Then there is a positive number d
such that if all the sides of AABC have length less than d, then 6AABC < e.

We proceed to the proof. We have given a positive number e. Consider a right
angle ZP,PQ,, with PP = PQ; = 1 (Fig. 24.62). For each n, take P, and Q,,
as indicated, so that PP, = PQ, = 1/n. Thus we get a sequence of convex
quadrilaterals [(JP,P3Q2Q1, [1P2P3Q3sQ2, . ... Let dn be the deféct of the nth
quadrilateral DP,.P,H.IQ".HQ", and let dy = GAPIPQI. Then

dy+dg+---+da < do
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Py

N

Po...0,0,0, (o)
Ficure 24.62

for every n. Therefore the infinite series,
di+degt+---+dat---,

is convergent. Therefore lim,_,, d, = 0. Therefore d, < e for some =.

The sole purpose of the above discussion was to demonstrate the following
statement.

There is a convex quadrilateral [ JPQRS, of defect less than e.

|
h
"
Th
P T s
SCIPQRS <e

Fiaure 24.63

Let T be any point between P and S. Let Ay, ks, hs be the perpendicular distances
from T to the other three sides of [ JPQRS, and let d be the smallest of the numbers
hy, ha, ha.

It isnow easy to check that d is a number of the sort that we wanted. Given any
triangle A ABC, with sides of length less than d:

P T=A'" C § A [
FIGURE 24.64

~

\
\
~

w/

By SAS, we can construct a congruent copy AA'B'C’ of AABC in the quadri-
lateral region, with T = A4’. The copy really will lie inside the quadrilateral,
because its sides are too short to reach the other three sides of the quadrilateral.
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But now we are done, because
SAABC = SAA'B'C' < §JPQRS < e.

This theorem tells us that it may be very hard to tell the difference between a
hyperbolic plane and a Euclidean plane, if you are allowed to inspect only a small
portion of it. One of the possibilities for physical space is that planes are hyper-
bolic, but that the portions of them that we can examine from the earth are “small,”
so that the deviation from the Euclidean angle-sum formula mZA + mZB +
mZ£C = 180 is too small to be detected, for every triangle small enbugh for us to
test. C. F. Gauss made a test of this sort, using the peaks of three neighboring
mountains as the vertices of his triangle. He was unable to observe a deviation
from the Euclidean formula, but obviously it is possible that his mountains were
too neighboring.

24.10 THE CONTINUITY OF THE DEFECT

Given AABC and ADEF, with sAABC > SADEF. (Note that in the light
of the results in the previous section, a plausible figure should make the second
triangle look smaller.)

Ficure 24.65

For 0 < r < m4B, let P, be a point of AC such that m£ZABP, = r. (By
the cross-bar theorem, for each such r there is a point I’,.) We know that

SAABP, + SAP.BC = SAABC.

For0 < r £ m4B, let
f(r) = 6AABP,.

As a definition of f(0), we provide further that
J(0) = 0.

(Of course, the definition is reasonable: in effect, we are defining the defect of a seg-

ment to be 0.)
It is easy to see that f is a strictly increasing function: if r < s, then we have

f(8) = f(r) + 8AP,BP,,
f(r) < (o).

80 that
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Fi1GURE 24.66

It is reasonable to suppose that f is continuous. If this is not merely reasonable
but also true, then we will have the following theorem.

Theorem 1. If SAABC > 8ADEF, then there is a point P between 4 and ¢
such that SAABP = SADEF.

The reason is this The graph of y = f(r) looks like this:

(o] m¢.B

Ficure 24.67

Being continuous, f takes on every value between its initial value 0 and its final
value s AABC. Therefore f(7) = 8ADEF for some7. Let P = P;.

We shall need this result to generalize Bolyai’s theorem to arbitrary polygonal
regions in the hyperbolic case. We therefore complete its proof.

Lemma. fis continuous.

Given 0 £ k < m4B, we need to show that
lim f(r) = f(k).
r—k

By definition, this means that the following condition holds.
(1) Given 0 £ k £ mZB. For every e > 0 there is a d > 0 such that if

Ir — K < d,
[f(r) — fk)| < e
Let us interpret this geometrically in terms of our definition of f.

then
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r
kb

A P P C
Fraure 24.68

We have ™
|r — k| = m£P,BP,.

(Note that if » < k, which it may be, we need the absolute value signs to make
this formula correct.) Also

|f(r) — f(k)| = |8AABP, — 5AABPy|
= 8AP:BP,.

(Here again the absolute value signs are needed to take care of the possibility

r < k.)
In these terms, Condition (1) takes the following form.
(2) Given 0 = k £ mZB. For every ¢ > 0 there is a d > 0 such that

mZLPBP, < d,
then
SAP.BP, < e.
We shall prove (2). First let us suppose that BC > BA, as the figures suggest.

B
d°

A P? C E F
Ficure 24.69

If A-C-E, then BP < BE for every point P of AC. (Proof?) We assert that there
are points E and F such that A-C-E, A-C-F and

SAEBF < e.

The reader should be able to produce a proof, following a scheme suggested by the
proof of an analogous result in the preceding section. Given such an E, F, we let

d = mLEBF.
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B

A P Py C E F
FiGuRre 24.70

This is a number d of the sort that we wanted. The point is that if mZP,BP, <
m£EBF, then AEBF contains a congruent copy AP,BP; of AP,BP,. Evidently,

SAPyBP, = 8APBP; < §AEBF.
Thus for mZPyBP, < d, we have 8 AP;BP, < e, which was to be proved.
24.11 BOLYAI'S THEOREM FOR POLYGONAL REGIONS IN THE HYPERBOLIC
CASE

Theorem 1. Under HPP, if two polygonal regions have the same area, then they
are equivalent by finite decomposition.

That is, if 8R; = 8R,, then R, = R,.
To prove this, we take any triangulations K;, K, of R, and R,:

S

Ficure 24.71

Some one triangular region in one of these complexes must have minimum defect.
That is, some T in either K; or K, must have the property that §T S 67" for
every T" in K; or K,. Suppose that thisis Ty € K;. Let T; € K,. If it happens
that 8T, = 8T, we delete T, from K, and delete T{ from K,. This gives new
complexes K, Kj, with fewer elements than K, and K,. Let Ri, R} be the cor-
responding regions. If R] = Rj, then R; = R,.

If 8T, < 8T}, then we know by Theorem 1, Section 24.10, that T} can be sub-
divided into two triangular regions U, V, such that

5V = GTI.

We now delete T, from K, and we replace T by U in K. If the resulting regions
are equivalent by finite decomposition, then so also are R; and R,.
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Thus, in either case we can reduce our theorem to & case in which the total
number of triangular regions is smaller than it was to start with. In a finite number
of such steps, we can reduce the theorem to the case of two triangular regions, for
which the theorem is known to be true.

24.12 THE IMPOSSIBILITY OF EUCLIDEAN AREA-THEORY IN HYPERBOLIC
GEOMETRY

To define the area of a polygonal region as the number which is the total defect
of each of its triangulations may seem to be a peculiar proceeding. We shall show,
however, that this peculiarity is inevitable. Under HPP, it is impossible to define
an area function which has even a minimal resemblance to the Euclidean area
function. In the following theorem, it should be understood as usual that @ is the
set of all polygonal regions and that R, R;, and so on, denote polygonal regions.

Theorem 1. Under HPP there does not exist a function

such that a:@®

(1) aR > 0 for every R;
(2) if R, and R; intersect only in edges and vertices, then
(R, U Ry) = aR; + aRy;
(3) if T, and T are triangular regions with the same base and altitude, then
aT; = aT,.
(Surely these are minimum requirements for an area function of the Euclidean

type.)
Suppose that there is such a function . Then bv (2) and (3), we have:

(4) if R, = R,, then aR; = aR,, because congruent triangles have the
same bases and altitudes.

Po 1 P, 1 P, 1 P, -

Ficure 24.72

Consider now a right angle ZAPyP;, with APg = PoP; = 1. For each n, let
— - . -
P, be the point of PoP; such that PoP, = n. This gives a sequence of triangles

AAPGP,, AAPP,, ...,
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and a corresponding sequence of triangular regions
T1, Ty, ..

By (3), all the regions T; have the same “area” aT; = A.
Now consider the corresponding defects

d,' = 5T,'.
For each n,

dy+dz+ -+ dn = SAAPGP, <180,

Since the finite sums d; + ds + - - - + d,, are bounded, it follows that the infinite
series,
dy+do+ - +dy+ -,

is convergent. Therefore
lim d, = 0.
n—o
Hence
d, < d; for some n.

FI1GURE 24.73

By Theorem 1, Section 24.10, there is a point B, between 4 and Py such that
6ABPOP1 = 6AAP,,_)P“ = dn.

Therefore, by Bolyai's theorem (Theorem 1, Section 24.8), the regions T, T, deter-
mined by these triangles are equivalent by finite decomposition. By (4), this means
that

oaT = aT,.
But
aT, = alT; = A
Therefore
aT = aT,.

But this is impossible, because aAABP; > 0 and
aT; = aT + aAABP,.
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14,13 THE UNIQUENESS OF HYPERBOLIC AREA THEORY

Any reasonable area function « should have the following properties:

(1) aR > O for every R;
(2) if R, and R; intersect only in edges and vertices, then

a(R; U R;) = aRy + aRs;
(3) if Ry = R;, then aR; = aR,.
We know of one such function, namely §, and it is plain that there are lots of
ithers. If k is any positive real number, and
aR = kéR

or every polygonal region R, then a satisfies (1), (2), and (3). On the other hand,
his trivial way of getting an area function different from & is in fact the only way.

Theorem 1. Let
a:R—> R

be an area function satisfying (1), (2), and (3). Then there isa k > 0 such that
aR = kéR
for every R.

In the proof, it will surely be sufficient to find a £ > 0 such that aR = kR
shenever R is a triangular region; the general formula will then follow by addition.
n fact, it will be sufficient to prove the following lemma:

Lemma. For every two triangles AABC and A DEF, we have
.

eADEF _ SADEF
«AABC ~ SAABC

If this holds, then we have

aAABC _ aADEF
3AABC ~— SADEF’

nd the desired k is the fraction on the left; for every ADEF, we have
aADEF = kSADEF.

Proof. For the case when AABC = S3ADEF, we have AABC = ADEF by
lolyai’s theorem; by (3) it follows that A ABC = SADEF. Therefore the lemma

olds.
We may therefore assume that

SAABC > SADEF,
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F1GUurRe 24.74

By Theorem 1, Section 24.10, there is a point P between A and C such that
SAABP = SADEF.
Since the defect is continuous, we can take a sequence
B= Py Py,...,P;...,Pg=C,
of points, in the stated order on BC (in the figure above) such that

SAAPP;y; = %GAABC

for every +. Thus the segments AP; cut AABC into ¢ triangles with the same
defect. If we remember Bolyai’s theorem, and Conditions (2) and (3), we can easily
see that each of the following conditions is equivalent to the next:

i _ aADEF
2 > alAABC’

i _ alAABP

g ~ aAABC’

(© %aAABC < aAABP,
(d) A-PP,

(e gsAABC < SAABP,

SAABP
3AABC'

< SADEF
¢ < 3AABC

By the comparison theorem, the lemma follows.

(a)

(b)

()

e, Qe

(8)

24.14 ALTERNATIVE FORMS OF THE PARALLEL POSTULATE

We observed in Section 24.1, as a consequence of the all-or-none theorem, that
the following statement could be used as a substitute for the Euclidean parallel
postulate, EPP.
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(1) For some line and some point, parallels are unique,

Many of the other theorems of this chapter give us such alternative forms of
EPP.

(2) The plane contains at least one rectangle.

See Theorem 3, Section 24.3, which tells us that under HPP the plane contains
no rectangles at all.

(3) The plane contains at least one triangle for which the angle sum 1s 180,

See Theorem 5, Section 24.3, which tells us that under HPP the angle-sum
equality never holds.

(4) The plane contains at least two triangles which are similar without being con-
gruent.

See Theorem 2, Section 24.2, which tells us that under HPP, similarity without
congruence cannot occur even once.

(5) There is gn area-function

a:®R — R,

such that aR is always positive, « is additive for regions intersecting only in edges
and vertices, and aA ABC depends only on the base and altitude of A ABC.

See Theorem 1, Section 24.12, which says that under HPP there is no such
function.

The persuasiveness of these statements may make it easier to understand the
state of mind of Saccheri and others.
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THE CONSISTENCY OF THE
HYPERBOLIC POSTULATES

25.1 INTRODUCTION .

In this chapter, we shall show that the Poincaré model, described in Chapter 9,
satisfies all the postulates of hyperbolic geometry. Our analysis of the model will
depend, of course, on Euclidean geometry, and so our consistency proof will be
conditional. At the end of the chapter we shall know not that the hyperbolic
postulates are consistent, but merely that they are as consisient as the Euclidean
postulates. In the following chapter, we shall investigate the consistency of the
Euclidean postulates. (See the discussion at the end of Chapter 9.)

25.2 INVERSIONS OF A PUNCTURED PLANE

Given a point A of a Euclidean plane E and a circle C with center at A and
radius @. The set E — A is called a punctured plane. The tnversion of E — A
about C is a function,

JiE— Ao E— 4,

defined ir:_t’he following way. For each point P of E — A, let P’ = f(P) be the
point of AP for which

Ficure 25.1

(Thus, for a = 1, we have AP’ = 1/AP.) Since a’/a = a, we have the following
theorems.
348
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Theorem 1. If P € C, then f(P) = P.

Theorem 2. If P is in the interior of C, then f(P) is in the exterior of C, and
conversely.

Theorem 3. For every P, f(f(P)) = P.

That is, when we apply an inversion twice, this gets us back to wherever we
started.

Proof. f(P) is the point of AP for which A f(P) = a%*/AP, and j"(j(P)) is the
point of the same ray for which

az

| AFUPY = o2 = S = 4P
Therefore f(f(P)) = P.

Theorem 4. If L is a line through A, then f(L — A) = L — A.

Here by f(L — A) we mean the set of all image points f(P), where P € L — A.
In general, if
KCE — 4,
then
f(K) = {P' = f(P)|P € K}.

It is also easy to sce that “if P is close to A, then P’ is far from A4,” and con-
versely; the reason is that “a?/AP is large when AP is small.” In studying less
obvious properties of inversions, it will be convenient to use both rectangular and
polar coordinates, taking the origin of each coordinate system at A. The advantage
of polar coordinates is that they allow us to describe the inversion in the simple

form
. fiE— Ao E- A,
i (r, 8) & (s, 0),
where
a’
8§ = —
r
and
a2
r=—
B

In rectangular coordinates, we have
P = (z,y) = (rcos b, rsin 6),
f(P) = (u,v) = (scos 6, gsin 6),
where r and s are related by the same equations as before. Evidently

82 = u? + o?
just as
r? =224 4%
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These equations will enable us to tell what happens to lines and circles under
inversions. We allow the cases in which the lines and circles contain the origin 4,
so that they appear in E — A as “punctured lines” and “punctured circles.” Thus
we shall be dealing with four types of figures, namely, lines and circles, punctured
and unpunctured. For short, we shall refer to such figures as k-ses. The rest of
this section will be devoted to the proof that if K is a k-set, then so also is f(X). Let
us look first, however, at a particular case.

Let K be the line z = a.
f P
7 ~
%
- X
\\\\_/ ‘

Fieure 25.2

Then K is the graph of the polar equation
rcos 6 = a.

Since r = a®/s, where f(r, 6) = (s, 8), it follows that f(K) is the graph of the
condition
~2
~ ¢os 8= a, 8 #0
or
s = acosé, s#0
or
s =ascosh, 0.

In rectangular form, this is
w4+ v =au, w?+0? 0.

Replacing » and » by z and y (to match the labels on the axes), we see that f(K)
is the graph of
' 2 —ax+yP=0 22+ y? =0,

and is hence the punctured circle with center at (a/2, 0) and radius a/2. Thus f
has pulled the upper half of the line K onto the upper semicircle, and the lower half
onto the lower semicircle. It is easy to see that points far from the z-axis (either
above or below) go onto points near the origin.



INVERSIONS OF A PUNCTURED PLANE 351
More generally, we have the following theorem.

Theorem 5. If K is a line in E — A, then f(K) is a punctured circle.

Proof. Since we can choose the axes any way we want, we are free to assume
that K is the graph of a rectangular equation

. z=0>b>0,
and hence of a polar equation
recosf = b > 0.

As before, setting r = a?/s, we conclude that f(K) is the graph of

a?
?coso=b, s # 0,

or
2 a’
s =—Escosﬂ, 8§ # 0,
or
2 a® 2 2 2
u—?u+v=0, u* +v° # 0,
or

2
x’—%x+y2=0, :cz—l-yz#o.

Therefore f(K) is a punctured circle, with center at (a2/2b, 0) and radius a?/2b.
It is easy to see that (1) every punctured circle is described by the above formula

for some choice of b and some choice of the axes. Therefore (2) every punctured

circle L is = f(K) for some line K. But Theorem 3 tells us that f(f(P)) = P for

every P. Therefore
L) = f(§(K)) = K.
Thus we have the following theorem.

Theorem 6. If L is a punctured circle, then f(L) isa linein E — A.

We now know, from Theorem 4, that under f, punctured lines go onto punctured
lines; and we know, by Theorems 5 and 6, that lines go onto punctured circles and
vice-versa. Now we must see what happens to circles.

Theorem 7. If M is a circle in E — A, then f(M) isa circlein E — A.

Proof. M is the graph of a rectangular equation
224+ y?+ Az +By+C =0,
where C = 0 because the circle is not punctured. In polar form, this is
r2+4 Arcos 6+ Breing+C = 0.
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Bince r = a?/s, this tells us that f(M) is the graph of the equation

%+A-%cosO+B-‘-';—sin9+C=0,

or
a* + Aa®scos 6 + Ba%ssin 6 4 Cs? = 0,
or
a* + Ad®u + Ba® + C(u? + v?) = 0.

Replacing u and v by z and y, to match the labels on the axes, we get an equation
for f(M) in the form

2 2 2
2,2 Aa”  Ba® . a”
z°+y* + C z+ C y+C—0.
The graph f(M) is a circle; this circle is not punctured, because a®/C = 0.

Theorem 8. If K is a k-set, then so also is f(K).

25.3 PRESERVATION OF THE CROSS RATIO UNDER INVERSIONS

We recall, from Section 9.2, the definition of distance in the Poincaré model.

Figure 25.3

If T and U are points of the L-line with end points R, S on the boundary circle C,
then the non-Euclidean distance is defined by the formula N

d(T, U) = loge =555

The fraction whose logarithm gets taken in this formula is called the cross ratio
of the quadruplet R, S, T, U, and is commonly denoted by (R, S, T, U). Thus

TR-US

(B, 8,T,U) = gp7g°

and changing the notation slightly, we have

P1P3 . P2P4

(Py, Py, P3, Py) = PP, PyP;
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‘We sha.ll slfow that inversions preserve the cross ratio. In the following theorem,
I is an inversion of a punctured plane E — A about a circle with center at 4 and
radius a, a8 in the preceding section.

Theorem 1. If P; = f(P,) (i = 1,2, 3, 4), then

(PI’PZ;P&PI.) = (P'lyP'mP'arP'!)'
Proof. For each ¢ from 1 to 4, let the polar coordinates of P, be (;, 8,). By the
usual polar distance formula, we have

PP} = r}+r} — 2rr;cos (8; — 6;).
Now

aﬂ
Pi= 8400 = (£.0).
Therefore !

(PI)PmPﬂlPi)z
_ [ri 43 — 2rirs cos (81 — 8a)llrd + rd — 2rary cos (62 — 69)]

trf + r§ — 2rirgcos (8, — 04)][r3 + 3 — 2rara cos (83 — 63))]

and
(P, P4, P, PY)*?
4 4 4 4 4 4
a a a at | a a
2 48 _o,°% 9, — o) || 4+2 — 9 % 0, — 0
[r? + v — cos (6, 3)] [r§ + - P cos (62 4)]
= et  at i 2t ad at :
40 o 9 6, — oN[E+%L o % 9, — 8
[rf + 1 o, 008 (01 4)][rg 2 7o 008 (62 a)]

To reduce the second of these fractions to the first, we multiply in both the numer-

ator and denominator by

rirdrars

a4

This theorem will tell us, in due course, that inversions applied to the Poincaré
model are isometries, relative to the non-Euclidean distance.

25.4 PRESERVATION OF ANGULAR MEASURE UNDER INVERSIONS

A reexamination of Section 25.2 will indicate that the image of an angle, under
an inversion, is never an angle. The point is that every angle in E — A has at
least one side lying on a nonpunctured line, and the image of a nonpunctured line
is always a punctured circle. Therefore the following theorem does not mean
what it might seem to mean.
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Ficure 25.4

Theorem 1. If A, P, and Q are noncollinear, P’ = f(P) and @' = f(Q), then
mLAPQ = mZLAQ'P'.

Proof. Consider APAQ and AQ'AP’. They have the angle £ZA in common.
Since

2 2
'’ ¥ Y
AP = ap’ AQ = }TQ'
we have
AP - AP' = AQ - AQ' = d?,
so that
AP _ AQ
AQ — AP

By the SAS similarity theorem,
APAQ ~ AQ'AP.

(Note the reversal of order of vertices here.) Since ZAPQ and £ AQ'P’ are cor-
responding angles, they have the same measure.

FIG.URE 25.5

In the figure above, P’ = f(P) and Q' = f(Q), as before. Here we have
u=180 —a —r
= (180 — 1) —
=38 — a.
Therefore

8§ —uUu=a.

The order of s and u depends on the order in which P and P’ appear on the ray.
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lIf P and P’ are interchanged, we should interchange s and u, getting
u—8s=a.

' Thus in general we have
|8 — u| = e

Consider next the situation illustrated in the figure below:

Fiaure 25.6

Here B is the center of. a circular arc; Fé is a line intersecting the arc at P; PSis
a tangent ray at P; and R,P = a. We assert that

lim mZ R,PQ = mASPQ.

a—0

(Proof? The first step is to show that limg_,o m£R,PS = 0.)
Consider now a circular arc QS with end point at a point Q. For small positive

Fiaure 25.7

rnumbel'a a, let R, be the point of the arc for which
QR, = a.
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Let @ be the image of QTS; that is
e =1@8);
let 6’-1?’ be the tangent ray at Q'.
rt that
We assert, tha ZAQR = LTQR.

To see this, we observe that mZTQR, and m£ AQ'R; are the s and u that we dis-
cussed just after Theorem 1. Therefore

|mZTQR, — mZAQ'R| =

Now
lix%.m/_TQR., = mZLTQR,
a—
and
lin(l) mLAQ R, = mZLAQ'R’.
Therefore
lh% [mLTQR, — mLAQ R, = mALTQR — mZAQ'R'.

But the absolute value of the quantity indicated in square brackets is =a; and
a — 0asa — 0. Therefore
mLTQR = mZLAQ'R'.

Given two intersecting circles or lines, the tangent rays give us “tangent angles,
like this:

Figure 25.8

By the preceding result, we have the follovring theorem.

Theorem 2. Under inversions, corresponding tangent angles are congruent.

That is, if AB and AC are arcs with a tangent angle of measure r, then their
images f(AB) and j(AC) have a tangent angle of measure r. Similarly for an arc
and a segment or a segment.and a segment.
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25.5 REFLECTIONS ACROSS L-LINES IN THE POINCARE MODEL

We recall that the points in the Poincaré model are the points of the interior E
of a cirele C' with center at P; the L-lines are (1) the intersection of E with lines
through P and (2) the intersection of E with circles C’ orthogonal to C.

Fieure 25.9

If L is an L-line of the first type, then the reflection of E across L is defined in
the familiar fashion as a one-to-one correspondence,

§
f:E < E,

such that for each point @ of E, Q and f(Q) are symmetric across L.

If L is an L-line of the second type, then the reflection of E across L is the inver-
sion of E about C’. To justify this definition, of course, we have to show that if f
is an inversion about a circle C’ g.thogonal to C, then f(E) = E. But this is not
hard to show. In the next few t:Seorems, it should be understood that f is an inver-
sion about C’; C” has center at A, and intersects C orthogonally at R and §; and
L=EncC.

FieuRrE 25.10

Theorem 1. f(C) = C.

Proof. f(C) is a circle. This circle contains R and 8, because f(R) = R and
f(8) = S. By Theorem 2 of the preceding section, f(C) and C’ are orthogonal. But
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there is oniy one circle C which crosses C” orthogonally at BRand 8. (Proof? Shaw
that P must be the center of any such circle.) Therefore f(C) = C, which was to

be proved.

Theorem 2. f(E) = E

Proof. Let X be any point of E. Then AX intersects C at points T and U,
Since f(C) = C, we have U = f(T) and T = __j;(U). _let inversions preservé
betweenness on rays starting at A. Therefore f(TU) = TU, and f(X) € E. Thus
f(E) CE.

We need to show, conversely, that E C f(E). Thisis trivial: given that f(E) C E,
we have f(f(E)) C f(E). Since f(f(E)) = E, this gives E C f(E).

Theorem 3. If M is an L-line, then so also is f(M).

Proof. M is the intersection E N D, where D is either a circle orthogonal to C or
a line orthogonal to C. Now f(D) is orthogonal to C, and is a line or circle (punc-
tured or unpunctured). Let D’ be the corresponding complete line or cirele. (Thus
D' = f(D)or D' = f(D) U A.) Then

fM) = fD)nE

= D' NE,
which is an L-line.
We recall that an L-angle is the angle formed by two “rays” in the Poincaré

model.

Ficure 25.11

The measure of an, L-angle is the measure of the angle formed by the tangent rays.
We can now sum up nearly all of the preceding discussion in the following
theorem.

Theorem 4. Let f be a reflection of E across an L-line. Then,

(1) fis a one-to-one correspondence E « E;
(2) f preserves the non-Euclidean distznces between points;
(3) f preserves L-lines;
(4) f preserves measures of L-angles. !
For L-lines of the first kind (passing through P) all this is trivial, because in this
case f is an isometry in the Euclidean sense. It therefore preserves distances of
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both kinds, lines, circles, orthogonality, and angular measure. For L-lines of the
second kind, Conditions (1) through (4) follow from_ the theorems of this section
and the preceding two sections.

25.6 UNIQUENESS OF THE L-LINE THROUGH TWO POINTS

Given the center P of C, and some other point @ of E. We know that P and Q
lie on only one (straight) line in the Euclidean plane. Therefore P and @ lie on
only one L-line of the first kind. But P does not lie on any L-line ‘of the second

kind. (The reason is that on the right triangle A A RP in the figure, the hypotenuse,
AP, is the longest side.) It follows that the L-line through two points of E is
unique, in the case where one of the points is P.

Ficure 25.12
To prove that unigueness always holds, we need the following theorem.

Theorem 1. For cach point Q of E there is a reflection f such that f(Q) =

Figure 25.13

Proof. We start by the method of wishful thinking. If the inversion f about ¢’
gives f(Q) = P, then

a

AQ )
We recall that the radius PR = 1. Let k = QP, and let z be the unknown distance

AP = -5
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AP (Fig. 25.13). Then the equation

AP - AQ = a?
takes the form
z(z — k) = 2% — 1
” kx =1 x—l-
T = or =%

Since @ is in E, we know that ¥ < 1. Therefore z > 1,and A is outside C. If ¢’
is the circle with center at A, orthogonal to C, then the reflection across £ N ¢’

.5 the one that we wanted.
We can now prove the following theorem.

Theorem 2. In the Poincaré model, every two points lic on exactly one L-line.

Proof. Let Q and R be points of E. Let f be a reflection across an L-line such that
f(@) = Pandf(R) = R’. We know that P and R’ lie on an L-line L. Therefore
@Q and R lie on the L-line f(L). If there were two L-lines L;, L, containing @ and
R, then f(L,) and f(L2) would be different L-lines containing P and R’, which is
impossible.

By Theorem 1, we can speak of the L-line containing @ and E. We shall denote
this by Zfé; and to avoid confusion, we shall agree not to use this notation, in the
rest of this chapter, to denote Euclidean lines.

25.7 THE RULER POSTULATE, BETWEENNESS AND PLANE SEPARATION

Our strategy in this chapter is to verify statements about L-lines, first for the
casy case of L-lines through P, and then to use inversions to show that the “curved”
L-lines behave in the same way as the “straight” ones. In this spirit, we first check
the ruler postulate for L-lines through P.

Theorem 1. LEvery L-line through P has a coordinate system.
X
St
R Qo P S

FiGUure 25.14

Proof. Suppose that L passes through P, and let its end points on C be R and S.
Tor each point Q of L, let

J(Q) = log. %

. QR
OEOQE.
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(Because PR = PS.) Let QS = z. Then
QR=2~QS=2—.’L‘,
and we have

1@ = log. 2= 2.

Obviously f is a function L — R 4nto the real numbers. We need to check whether
f is a one-to-one correspondence L <> R. Thus we need to show.that every real
number % is =f(Q) for exactly one point Q. Thus we want

2 —z
k = log. p
or
ek=2—x
z
or
(e + Dz = 2
or
-2
FEE T

For every k there is exactly one such z, and 0 < = < 2, as it should be. Therefore
every k is =£(Q) for exactly one point  of L.

We have already checked, in Chapter 9, that when the coordinate system f is
defined in this way, the distance formula

(T, U) = [{(T) — J(U)|
is always satisfied.
Before proceeding to generalize Theorem 1, we observe that the formulas above

give us some more information:

R 12 1% s

Figure 25.15

In the figure z, = Q;S for ¢ = 1, 2, 3. It is easy to check that (2 — z)/z is a
decreasing function. (Its derivative is —2/x% < 0.) And the logarithm is an in-
creasing function. Therefore, if x; < x2 < 23, as in the figure, it follows that

f(Q1) < J(@2) < f(Qa),

and conversely. We recall that betweenness is defined in terms of distance, and
that one point of a line is between two others if and only if its coordinate is between

their coordinates. Thus we have:

Theorem 2. Let Q;, @2, Q3 be points of an L-line through P. Thgn Q1-Q:-Q3
under the non-Euclidean distance if and only if @,-Q@2-Q3 in the Euclidean plane.
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Theorem 3. Every L-line has a coordinate system.

Proof. Given an L-line L. If L contains P, there is nothing to prove. If not,
let Q be any point of L; let g be a reflection such that g(Q) = P;let L’ = g(L),

and let
f:L' R

be a coordinate system for L’. For each point T of L, let
(1) = f(g(T)).

That is, the coordinate of T is the coordinate of the corresponding point g(T') of L'.
Since f and g are one-to-one correspondences, so also is their composition f(g).
Given points T, U of L, we know that

d(T, U) = d(g(T), (1)),
because inversions preserve the non-Euclidean distance. This in turn is

= |f(g(T)) — f(g(U))],

because f is.n. coordinate system for L’. Therefore

d(T, U) = [f(T) — J'(U)],
which was to be proved.

Theorem 4. Every L-linc through P scparates £ into two sets H; and Hj such
that (1) H, and H, are convex, and (2) if Q € H, and R € H,, then QR inter-
sects L.

Here QR means of course the non-Fuclidean segment.

Figure 25.16

Proof. We know that the Euclidean line containing L separates the Euclidean
plane into two half-planes H{, H;. Let H, snd Hy be the intersections H; N E and
H; N E, as indicated in the figure.

Suppose that Q, R € H,, and suppose that QR intersects L in a point 8. Let f
be an inversion E « E, about a circle with center A on the line containing L such
that f/(S) = P. Then f(éﬁ) is an L-line through P, and f(Q) and f(R) belong to H;.
Bince @-S8-R, we have f(Q)-P-f(R), in the non-Euclidean sense, because f preserves
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the non-Euclidean distance. . Therefore f(Q)-P-f(R) in the Euclidean sense, which
is impossible, because f(Q) and f(R) are in the same Euclidean half plane.

It follows, in the same way, that H., is convex. Thus we have verified half of the
plane separation postulate for the Poincaré model.

Suppose now that @ € H; and R € H,. Let C’ be the Euclidean circle that ¢on-
tains the L-line QR:

Ficure 25.17

Then L contains a point S of the Euclidean segment from Q to R, and S is in the
interior of C’'. It follows that the Euclidean line containing L intersects ¢’ in two
points, one of which is a point T of L. Now we must check whether Q-T-R in the
non-Euclidean sense. [Hint: Use an inversion f:E < E, H; & H,, Hy « H,,
T « P, and then apply Theorem 2.]

To extend this result to L-lines in general, we observe that:

Theorem 5. Reflections preserve betweenness.

Because they preserve lines and distance.

Theorem 6. Reflections preserve segments.

Because they preserve betweenness.

Theorem 7. Reflections preserve convexity.

Because they preserve segments.

Theorem 8. The plane separation postulate holds in the Poincaré model.

Proof. Let L be any L-line, and let @ be any point of L. Let f be a reflection such
that f(Q) = P;let L'  f(L); and let H{ and H; be the half-planes in E deter-

mined by L'. Let
Hy=f"HY) and H;=f"'(H).

Since f~! is also a reflection, and reflections preserve conve)fity, it follows that
H, and H, are convex. This proves half of the plane separation postulate for L.
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It remains to show that if R € Hyand S € Hy, then RS intersects L. If B’ = f(R)
and 8’ = f(S), then R’ € H; and §' € Hj, so that R’S intersects L’ at a point 7",
Therefore BS intersects L at T = f~'(T").

Theorem 9. Reflections preserve half planes.

That is, if H, and H are the half planes determined by L, then f(H;) and f(H )
are the half planes determined by f(L). Proof?
1

Theorem 10. Reflections preserve interiors of angles.

Proof. The interior of L ABC is the intersection of (1) the side of AB that
contains C, and (2) the side of BC that contains A. Since reflections preserve half
planes, they preserve intersections of half planes. \

25.8 ANGULAR MEASURE IN THE POINCARE MODEL

We have defined the measure of an (non-Euclidean) angle as the measure of the
(Euclidean) angle formed by the two tangent rays. We need to check whether this
measure function satisfies the postulates of Section 5.1. For angles with vertex
at P this is obvious. To verify it for angles with vertex at some other point Q, we
throw @ onto P by a reflection f. Now f preserves angles, angular measure, lines,
and interiors of angles. It is therefore quite trivial to check that if Postulates
M-1 through M-5 hold at P, then they hold at Q.

25.9 THE SAS POSTULATE

We have now verified, for the Poincaré model, all the postulates of absolute
plane geometry, with the sole exception of SAS. With heavy use of inversions, this
turns out not to be difficult.

A A

n m

B c B c

Figure 25.18

Given AABC, AA’B’'C’, and a correspondence

ABC « A'B'C’
such that L
AB =~ A'F, BC = B'C’, LB = LB

(Here the segments and congruences are non-Euclidean.) We want to show that
AABC = AA'B'C".
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P C
Fieure 25.19

First let f1 be an inversion such that f(B) = P, and let A4,PC, be f(AABC).
(Note that PA; and PC, look “straight,” as they should.) Since fy preserves both
distances and angular measure, we have

AA\PC, = AABC.
Next let f2 be an inversion such that fo(B’) = P, and let AB,PC; = f(AA'B'C").

Ficure 25.20

It is rather easy to see that there is a reflection f3, across an L-line through P, such
that f3(PC) = PCy. (f P, C,, and C} are not collinear, we reflect across the
bisector of ZC{PC,, as indicated in the figure. If C1-P-C,, we reflect across the
perpendicular to PC; at P. If we already have Py = PC1, we leave well enough

alone.)
Let AA3PC} = f(AA{PC}). Since f3 preserves distance and angular measure,

we have
AALPCYH = AALPCY.

And since BC = PC,, and B'C' = PCj = PCj, we have C; = C;.

A, =A3?

A3?
Fieure 25.21
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There are now only two possibilities:

(1) A}ison the same side of PC; as 4,. In this case, since ZA3PCy = £ A,PC,,
wehaveﬁ PA;; and since PA, = PAj, wehave A, = A} ThusP = P,
Ay = Azand C; = C3. Therefore

AAPC, = A4Y

this fits together with our other congruences to give AABC = AA'B'C".

(2) A4 and A, are on opposite sides of PCy. In this case we reflect across PE;
and then proceed as in case (1).

Rather curiously, this proof has a great deal in common, intuitively, with
Euclid’s “proof” of SAS, by superposition, in Book I of the Elements. You really
can prove things by superposition if you carry out the process using a family of
transformations (in this case, the reflections) which are known to preserve the
properties that you are concerned with.
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THE CONSISTENCY OF EUCLIDEAN
GEOMETRY

26.1 INTRODUCTION

Our proof of the consistency of hyperbolic geometry, in the preceding chapter,
was conditional. We showed that if there is a mathematical system satisfying the
postulates for Euclidean geometry, then there is a system satisfying the postulates
for hyperbolic geometry. We shall now investigate the if, by describing a model
for the Euclidean postulates. Here again our consistency proof will be conditional.
To set up our model, we shall need to assume that the real number system is given.

DermviTioN 1. E = R X R.

That is, a point is defined to be an ordered pair of real numbers.

DErFINITION 2. A line is a set of the form
L= {(z,y)|dz-+ By +C =0, A%*+ B%> 0}.
That is, a line is defined to be the graph of a linear equation in z and y.

DeriniTION 3. If P = (24, y;) and Q = (xg, ¥2), then
dP, Q) = Vi(zz — ) + (¥2 — y)*’

That is, distance is defined by the distance formula which appeared as a theorem
in Chapter 18.

We define betweenness in terms of distance. (As usual, we abbreviate d(P, Q)
as PQ.) Segments and rays are defined in terms of betweenness; and angles are
defined when rays are known.

It turns out that setting up an angular measure function is a rather formidable
technical chore. We hope, therefore, that the reader will agree to settle for a con-
gruence relation = for angles, satisfying the purely synthetic postulates C-6
through C-9 of Chapter 8. This relation is defined in the following way.

DEFINITION 4. An isomelry is a one-to-one correspondence
fE—E,

preserving distance.
367
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DeriniTioNn 5. Two angles Z ABC and ZDEF are congruent if there is an
isometry f : E < E such that f(ZABC) = ZDEF.

We have now given definitions, in the Cartesian model, for the terms used in
the Euclidean postulates. Each of these postulates thus becomes a statement about
a question of fact; and our task is to show that all of these statements are true.

26.2 THE RULER POSTULATE

By a vertical line we mean a line which is the graph of an equation z = a. It is
easy to check that every nonvertical line is the graph of an equation y = mz 4+ b.

Theorem 1. Every vertical line L has a coordinate system.
Proof. For each point P = (g, y) of L, let
f(P) =y.

Then f is a one-to-one correspondence L «» R. If P = (a, y;) and @ = (a, ¥3),
then

PQ = d(P,Q) = V(a — a)2 + (yz — y1)?
= vV (y2 — y1)?

= |yz — vl
= |f(@) — f(P)|,

as desired.

Theorem 2. Every nonvertical line has a coordinate system.

Y

(xny) oL

1T Guy)

Ficure 26.1
Proof. Let L be the graph of y = mx + b. If (zy, y;) and (zs, ¥2) € L, then it
is easy to check that

Y2 —

™ B un= m(ze — ),

and

PQ = /(23 — #1)3 4+ m3(z3 — 71)2 = V(1 + m?) |23 — z,].



INCIDENCE AND PARALLELISM 369

From this we see how to define a coordinate system for L. Let
f(xv y) = zV1 4+ m2.

Then for
P=(z1,%), Q= (z3¥2)
we have
PQ = V1 + m?|z; — x|
= |zav1 + m? — z;4/1 + m? | .
= |f(Q — f(P),
as it should be.

These two theorems give us:

Theorem 3. In the Cartesian model, the ruler postulate holds.

26.3 INCIDENCE AND PARALLELISM

Theorem 1. Every two points of the Cartesian model lie on a line.

Proof. Given P = (x1,¥;), @ = (z2,y2). If 1y = z5, then P and Q lie on the
vertical line z = @ = z,. If not, then P and @ lie on the graph of the equation

— Y2~
T2 — 231.

Yy—h (x — =),

which is easily seen to be a line.

Theorem 2. Two lines intersect in at most one point.

Proof. Given Ly and Lo, with L; # L. If bath are vertical, then they do not
intersect at all. If one is vertical and the other is not, then the graphs of

z=4a, y=mzx+b

intersect at the unique point (a, ma + b). Suppose finally, that L, and L, are the
graphs of
y=mz+b, y=mx+ by

If m; = mg, very elementary algebra gives us exactly one common solution and
hence exactly one intersection point. If m; = mg, then b; # b,, and the graphs
do not intersect at all.

We have already observed that if L is the graph of y = mx + b, then for every
two points (z1, ¥1), (z2, y2) of L, we have

Y2—"U0
Tg — T}

Thus m is determined by the nonvertical line L. As usual, we call m the slope of L.
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Theorem 3. Every vertical line intersects every nonvertical line. [At the point
(e, ma +b).]
By casier algebra we get:
Theorem 4. Two lines are parallel if and only if (1) both are vertical, or (2)
neither is vertical, and they have the same slope.

Proof. GivenL; # L. If both are vertical then L, || Ly. If neither is vertical,
and they have the same slope, then the equations,

y=mz+b, y=mrx+by (b = by),

have no common solution, and L, || L,.

Suppose, conversely, that L, || L. If both are vertical, then (1) holds. It '
remains only to show that if neither line is vertical, they have the same slope.
Suppose not. Then

Ly:y = mz + by, Ly:y = mgzx + bs (my # my).
We can now solve for z and y:

0 = (my — ma)x 4+ (by — ba),

x=_b1——b2
m; — Mmg
bl—bz
y= —m <—-———m] — m2)+b1-

We got this value of y by substituting in the equation of L;. But our z and y also
satisfy the equation of L. This contradicts the hypothesis L, || L.

Theorem 5. Given a point P = (x;, y1) and number m, there is exactly one line
which passes through P and has slope =m.

Proof. The lines L with slope m are the graphs of equations
y = mz + b.

If L contains (x4, y;), then b = y; — max;, and conversely. Therefore our line
exists and is unique.

Theorem 6. In the Cartesian model, the Euclidean parallel postulate holds.
Proof. Given a line L and a point P = (z,, ¥;) not on L.

(1) If L is the graph of z = a, then the line L’: x = z, is the only vertical line
through P, and, by Theorem 3, no nonvertical line is parallel to L. Thus the parallel
L through P is unique.

(2) If L is the graph of y = mz + b, then the only parallel to L through P is
the line through P with slope =m. This is unique.
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26.4 TRANSLATIONS AND ROTATIONS

By a translation of the Cartesian model, we mean a one-to-one correspondence
f:E < E,
Hz,y) o =+ a,y+b).

Merely by substituting in the distance formula, and observing that a and b cancel
out, we have: .

Theorem 1. Translations are isometries.

If L is the graph of the equation

Az + By + C = 0,

then the points (2, ¥) = (z + @, y + b) of f(L) satisfy the equation

Az’ —a)+ By — b +C=0,
or
Az’ + By + (—aA — bB+C) = 0.

This is linear.

Theorem 2. Translations preserve lines.

Since translations preserve lines and distance, they preserve everything defined
in terms of lines and distance.

Theorem 3. Translations preserve betweenness, segments, rays, angles, triangles,
and angle congruences.

Rotations are harder to describe, because at this stage we have no trigonometry
at our disposal. Let us first try using trigonometry, wishfully, to find out what we
ought to be doing, and then find a way to do something equivalent, using only the
primitive apparatus that we now have at our disposal in our study of the Cartesian

model.
Y

S(P)=(r cos (6+¢), rsin (9+4))

¢ N P=(rcosd, rsing)=(x,y)

r

[ -X

Fioure 26.2
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We want to rotate the Cartesian model through an angle of measure ¢ (Fig.
26.2). Trigonometrically, this can be done by a one-to-one correspondence,

J:E e E,
defined as the labels in the figure suggest.
Now
cos (0 -+ ¢) = cos 6 cos ¢ — sin @ sin ¢,
sin (8 + ¢) = sin 0 cos ¢ + cos 6 sin ¢.
Let
@ = cos ¢, b = sin ¢.
Now
= VET,
cos 0 = —z———___ )
N
smo=—L .
A\ /12 -+ yl

We can therefore rewrite our formulas in the form

Fi(xy) o (),

where
z' = rcos (6 + ¢)
Z—a-——L
—vErE (Ve T V)
= ar — by,
and

y T
w’=\/x2+y2(m“+\/m")
= ay + bz.

Any correspondence of this form, with a2 + b2 = 1, is called a rotation of the 1
Cartesian model.

Theorem 4. Rotations preserve distance.

Proof. We have
P = (Ilyyl)n

Q - (32; yZ)r
P’ = f(P) = (ax, — by, ayy + bzy),
Q = f(Q) = (ax2 — bys, ayz + bzy).
It is merely an exercise in patience to substitute in the distance formula, calculate
P'Q’, simplify with the aid of the equation a® + b? = 1, and observe that P'Q’ =
PQ. (The reader is warned that (P'Q’)? appears as a sum of twenty terms.)
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Solving for z and y in terms of z’ and ', we get

z = ar’ + by, y = ay — bz'.
Comparing the formulas,

' = ax — by, Yy = bz + ay,
for f and corresponding formulas for =1, we see that these have the same form

r=az —by, y=ay+be, ‘

where ¢’ = a and b’ = —b. Therefore, we have the following theorems.

Theorem 5. The inverse of a rotation is a rotation.

Theorem 6. Rotations preserve lines.
Proof. L is the graph of an equation

(1) z = k&,
2 y= k:

or
@B y=mz+k (m>=0).
In Case (1), f(L) is the graph of
ar’ + by’ =k,

where @ and b are not both =0, because a + b2 = 1. Therefore L is a line.
In Case (2), f(L) is the graph of

ay' — bz’ =k,
which is a line.
In Case (3), f(L) is the graph of

ay — bz’ = mazx’ + mby’ + K,

or
(ma + b)x’ + (mb — @)y’ + k = 0.
If we had both
ma+ b =0, mb —a =0,
then
ma?+ab=0 mb?— ab=0,
so that

m(a? + b%) = 0,

and m = 0, contradicting our hypothesis. ) ) .
As for translations, once we know that rotations preserve hne‘s and dmt.anee, it
follows that they preserve everything that is defined in terms of lines and distance.
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Therefore we have:
Theorem 7. Rotations preserve betweenness, segments, rays, angles, triangles,
and angle congruences.

We are going to use rotations in the Cartesian model in much the same way that
we used reflections in the Poincaré model, to show that postulates for angle congru-
ence hold. To do this, we shall need to know that every ray starting at the origin
(0, 0) can be rotated onto the positive end of the z-axis, and vice versa. By Theo-
rem 5, it will be sufficient to prove the following theorem.

Theorem 8. Let P = (z0,0) (x > 0), let @ = (1, y1), and suppose that
2§ = 21 + yi.

Then there is a rotation f such that f(P) = Q.

Y
J

¢ (x. 01)

¢ p
Yo,

Fi1Gure 26.3

The equation in the hypothesis says, of course, that P and @ are equidistant from
the origin.

As a guide in setting up such a rotation, we note unofficially that we want to
rotate £ through an angle of measure ¢, where

z

a=CcoB¢p=—"—)
Vai + i
b=sinf=—4L .
Vai + yi
Thus the rotation ought to be
f:Ee—FE
@y o @, Y),

where
= azx — by = 1 z — Y1 v,
Vai + 91 Vel + yi
Y1 z1
Yy ="bz+ ay= z+ ———y.
‘ Val+ul  Vald i
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é!\bviously a® 4+ b® = 1 in these equations, and so f is a rotation. And’
T

00 = (Vs

= (7, Y1),

which is the result that we wanted.

26.5 PLANE SEPARATION

We shall show first that the plane-separation postulate holds for the case in
which the given line is the z-axis. It will then be easy to get the general case.
Let Et be the “upper half plane.” That is,

EY = {(z,y)ly > 0}.

Theorem 1. E7 1s convex.

Proof. Lemma 1, Section 3.4, says that if A, B, and C are points of a line, with
coordinates z, y, and z, and z < y < z, then A-B-C. (This was proved merely
on the basis of the ruler postulate, and we can therefore apply it now.) Since only
one of the points A, B, C is between the other two, the lemma has a true converse:
if A-B-C,thenz < y < zorz <z <y.

Consider now two points, 4 = (z1,y1),C = (x3, y2) of E*:

X
A
B ='(x}yz)/‘| C
|
A
c ; |
| | |
| | I
Xy ‘ Xy X3
FIiGURE 26.4

We need to show that AC lies in E*. That is, if 4-B-C, with B = (z3, y3), then
y > 0. Obviously, for the case z, = z2 we may assume that z; < z, as in the
figure; and for the case r; = z2, we may assume that y; < y2.

In the first case, the line AC is the graph of an equation

y = mz+ b,
and has a coordinate system of the form
f@ 9 = V1 + miz
In the second case, the line is the graph of the equation

=2
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and has a coordinate system of the form
fz,y) = v
It is easy to check that in the first case
f(4) < f(B) < f(C),
so that
z; < 23 < 3.

Form > 0,
mzy + b < mrg+ b < mzy + b;

for m < 0, the inequalities run the other way; but in either case y, lies between .
two positive numbers. In the second case (x; = z3), the same result follows even

more easily.
Let E~ be the “lower half plane.” That is,

E™ = {(zply <0}
Since the function,
fi(z9) & (z, —y),
is obviously an isometry, it preserves segments. Therefore it preserves convexity.
Since f(E1) = E~, we have the following theorem.
Theorem 2. E~ is convex.
It is an easy exercise in algebra to show that if A = (z1,41) € Et,and B =
(x2, y2) € E~, then AB contains a point (z, 0) of the z-axis. Thus:

Theorem 3. E and the line z = 0 satisfy the conditions for E and L in the plane
separation postulate.

Now let L be any line in E, and let A = (r,, y;) be any point of E. By a trans-
lation f, we can move A to the origin. By a rotation g, we can move the resulting !
line onto the z-axis. Let

Hy =g 'f7"EY), Hy=g'f"YE).

Since all of the conditions of the plane separation postulate are preserved under
isometries, we have the following theorems.

Theorem 4. E satisfies the conditions of the plane separation postulate.

Theorem 5. Isometries preserve half planes.

Proof. Let Hy be a half plane with edge L, and let H; be the other side of L.
If f is an isometry, then f(L) is a line L/. Let

Hy = f(Hy), Hz = f(H,).
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Then H, and H, are convex, and every segment between two points f(A4) of H
and f(B) of Hj must intersect f(L). Therefore H} is a half plane with L’ as edge.
From Theorem 5 it follows that: '

’

Theorem 6. Isometries preserve interiors of angles.
That is, if I is the interior of £ ABC, then f(I) is the interior of f(Z ABC).

26.6 ANGLE CONGRUENCES ,

We want to verify that angle congruence, defined by means of isometries of E
onto itself, satisfies the postulates C-6 through C-9, Section 8.1, and also satisfies
SAS. Only one of these verifications is trivial.

€-6. I'or angles, congruence is an equivalence relation.

Proof. (1) LA =2 LA always, because the identity function £ « K is an
isometry. (2) If ZA = £ B, then £ZB =2 £ A, because the inverse of an isometry
is an isometry. (3) If LA = ZBand £B = £C, then LA = £C, because the
composition of the isometries for which LA < £B and 4B < AZC( is always
an isometry for which £Z4 « ZC.

The other verifications are more difficult. We begin with a lemma.

v

Lemma 1. Let f be an isometry of E onto itself. If f(E1) = E*, and f(P) = P
for every point P of the z-axis, then f is the identity.

Proof. Let A be the origin (0, 0), and let B = (1,0). Let Q@ = (a, b) be any
point, and let f(Q) = (c, d). Then

AQ = f(A)J(Q), BQ = JB)Q.
Taking the square of each of these distances, we get
a2+b2=62+d2’
(@ —12+b% = (c— 1)*+d

50 that @ = ¢. Therefore b2 = d2. Since f(EY) = E™, b and d are both positive,
both zero, or both negative. Therefore b = d. Thus f(Q) = @ for every @, which
was to be proved.

Lemma 2. Let A be the origin;let B = (a, 0), (@ > 0) be a point of the z-axis;
and let C = (b, c) and D = (d, ¢) be points of E* and £~ such that

AC = AD, BC = BD.

Then there is an isometry
f:E—E

such that f(4) = 4, f(B) = B, f(C) = D, and f(D) = C.
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Y
C=(b,0)

[B=(a,0)

D=(d,¢)
Ficure 26.5

Proof. We shall show that d = band e = —c. The desired isometry f will then
be the function (z, ) « (r, —y).

Given
b2+c2=d2+e2’
b—a?+c?=(@d—a)? e
we have —2ab = —2ad. Since a > 0, this gives b = d. Therefore ¢ = e
Sincec > 0and e < 0, we have e = —c.

I._o_’mmu 3. _(}’iven A_A) BC, there is an isometry f of E onto itself such that f(EX) =

BC and f(BC) = BA. That is, the sides of the angle can be interchanged by an

isometry.

In the proof, we may supposc that BA = BC, since A and C can always be
chosen so as to satisfy this condition.

4 >
T

B C
Figure 26.6

Let D be the midpoint of AC. Using a translation followed by a rotation, we get
an isometry g : E < E such that g(EB) is the positive end of the z-axis (Fig. 26.7).
(First we translate B to the origin, and then we rotate.) By the preceding lemma
there is an isometry h : E « E, interchanging A’ and (’, and leaving B’ and D’
fixed. Let

f=g""hg.

That is, f is the composition of g, k, and g~1. Then f is an isometry; f(B) = B, ]
f(A) = Cand f(C) = A.
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CI

Ficure 26.7

It is now easy to verify the rest of our congruence postulates. Oddly enough, the
easiest is SAS. We put this in the style of a restatement.

SAS. Given AABC, AA'B'C’, and a correspondence
ABC «~ A'B'C".

If (1) AB = A'B’, (2) LB =~ £B’,and (3) BC = B'C’,then (4) LA = ZLA’,
(6) £LC = £(’, and (6) AC = AC.

FicURrE 26.8

Proof. By hypothesis (2), there is an isometry /<> E, ZB & ZB’. By Lemma 3
it follows that there is an isometry
f:EoFE
:B < B
ZEZ A d W
:BC « BC.

(If the given isometry moves ZB onto ZB’ in “the wrong way,” then we follow
it by an isometry which interchanges the sides of £B’.) From (1) it follows that
A’ = f(A) and ¢’ = f(C). Therefore LA’ = f(£LA),and LA’ = LA; LC =
f(£C), and £C’ = £C. Also AC = A'C’, because f is an isometry.

This proof bears a certain resemblance to Euclid’s “proof” of SAS by super-
position.

C-7. Let ZABC be an angle, let B'C bea ray, and let H be a half plane whose

— . —
edge contains B'C’. Then there is exactly one ray B'A’, with A’ in H, such that
LABC = LA'BC.
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We give the proof merely in outline. It should be understood that all of the
functions mentioned are isometries of E onto E, and that the ray R is the positive
z-axis.

(1) Take f; so that f,(B'C") = R.

(2) Take f; so that f(R) = R and fofs(H) = E*. (Of course, if fy(H) is
already =E7, we let f, be the identity.)

(3) Take g, so that g;(BC) = R.

(4) Take g, so that go(R) = R and g,(A) isin Et.

(5) Let Zxr = j3'fi'g2g1(£L ABC). Tﬂé_ﬂt‘he Z A'B'C’ that we wanted.

(6) Suppose that there are two rays B’A’, B’A"” satisfying these conditions.

H* L

Ficure 26.9

Then f2f, moves the whole figure into the position shown in I'ig. 26.9, where we
— —
supposedly have KL = KM but LLKN =2 ZMKN. By Lemma 3, it follows
— —_— — —_—
that there is an isometry f such that f(KN) = KN and f(KL) = KM. 1t follows
that f(P) = P for each point P of the r-axis; since isometries preserve half planes,
we have f(5*) = E*. By Lemma 1, it follows that f is the identity. This contra-

— —
dicts our hypothesis KL = KM.
C-8. If (1) D is in the interior of ZBAC, (2) 1)’ is in the interior of LB'A'C’,
(3) £BAD = LB'A’D', and (4) LDAC = LD'A’C", then (5) £LBAC ==,
LB'A'C. ‘

C ‘A
Ficure 26.10

Proof. (1) By an isometry f, we move AD onto R and B into E*. [For this we
need a translation, followed by a rotation and perhaps a reflection (z, y) « (z, —y).]
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(2) By an isometry g, we move A'D’ onto R on B' into E*.

(3) By the uniqueness condition in the preceding postulate, we know that
J(AB) = o(4') and f(AC) = ¢(A'C)).

(4) Therefore f(£BAC) = g(£LB'A’C"). Therefore ZBAC = £B'A'C’; the
required isometry is g7f.

C-9. If (1) D is in the interior of ZBAC, (2) D' is in the interior of ZB'A'C",

(3) LBAD = LB'A'D’ and (4) LBAC = LB'A'C", then (3) ZDAC =

LD'AC. ’

c
FfGURn 26.11

* Proof. Let f be the isometry givcl by (4),_sgthat f(iB.i( ‘)__=_)LB’A'C’. By
Lemma (3) we may suppose that f(AB) = A'B’ and f(AC) = A'(". Then surely
f(£BAD) = ZBAD. The uniqueness condition in C-7 therefore tells us that
f(;l_D.) — A'D’.  Therefore f(LDAC) = LD'A'C", and LDAC = LD'A'C’,
which was to be proved.
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THE POSTULATIONAL METHOD

27.1 INTRODUCTION

In this chapter we give a general discussion of the ways in which sets of postulates
are used in mathematics, with illustrations from preceding chapters. The general
discussion has been postponed until now precisely so that the illustrations could
be cited. The postulational method is used in a number of quite different ways,
and the distinctions among these are rather difficult to explain in the abstract.

27.2 POSTULATES CONSIDERED AS SELF-EVIDENT TRUTHS

In the time of Euclid, and for over two thousand years thercafter, the postulates
of geometry were thought of as self-evident truths about physical space; and
geometry was thought of as a kind of purely deductive physics. Starting with the
truths that were self-evident, geometers considered that they were deducing other
and more obscure truths without the possibility of error. (Here, of course, we are
not counting the casual errors of individuals, which in mathematics are nearly
always corrected rather promptly.) This conception of the enterprise in which
geometers were engaged appeared to rest on firmer and firmer ground as the cen-
turies wore on. As the other sciences developed, it became plain that in their earlier
stages they had fallen into fundamental errors. Meanwhile the “self-evident
truths” of geometry continued to look like truths, and also continued to seem self-
evident.

With the development of hyperbolic geometry, however, this view became
untenable. We then had two different, and mutually incompatible, systems of
geometry. Each of them was mathematically self-consistent, and each of them was
compatible with our observations of the physical world. From this point on, the
whole discussion of the relation between geometry and physical space was carried
on in quite different terms. We now think not of a unique, physically “true”
geometry, but of a number of mathematical geometries, each of which may be a good
or bad approximation of physical space, and each of which may be useful in various
physical investigations. Thus we have lost our faith not only in the idea that simple
and fundamental truths can be relied upon to be self-evident, but also in the idea
that geometry is an aspect of physics.

This philosophical revolution is reflected, oddly enough, in the differences be-
tween the early passages of the Declaration of Independence and the Gettysburg

382
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Address. Thomas Jefferson wrote:

“...We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their creator with certain unalienable rights, that among
these are Life, Liberty and the pursuit of Happiness . . . .”

The spirit of these remarks is Euclidean. From his postulates, Jefferson went
on to deduce a nontrivial theorem, to the effect that the American colonies had the
right to establish their independence by force of arms.

Lincoln spoke in a quite different style:

“Fourscore and seven years ago our fathers brought forth on this continent a
new nation, conceived in liberty and dedicated to the proposition that all men are
created equal.”

Here Lincoln is referring to one of the propositions mentioned by Jefferson, but
he is not claiming, as Jefferson did, that this proposition is self-evidently true, or
even that it is true at all. He refers to it merely as a proposition to which a certain
nation was dedicated. Thus, to Lincoln, this proposition is a description of a
certain aspect of the United States (and, of course, an aspect of himself). (I am
indebted for this observation to Lipman Bers.)

This is not to say that Lincoln was a reader of Lobachevsky, Bolyai or Gauss,
or that he was influenced, even at several removes, by people who were. It seems
more likely that a shift in philosophy had been developing independently of the
mathematicians, and that this helped to give mathematicians the courage to under-
take non-Euclidean investigations and publish the results.

At any rate, modern mathematicians use postulates in the spirit of Lincoln.
The question whether the postulates are “true” does not cven arise. Sets of postu-
lates are regarded merely as descripiions of mathematical structures. Their value
consists in the fact that they are practical aids in the study of the mathematical
structures that they describe.

27.3 CATEGORIC POSTULATE SETS

It sometimes happens that a postulate set gives a complete description of a
mathematical structure, in the sense that any two structures that satisfy all of the
postulates are essentially the same. Rather than attempting to give a definition
of the phrase “essentially the same,” let us look at an example.

Let
[F: +v ']
[F,+', ]

be two algebraic structures satisfying the field postulates of Section 1.3, and satis-
fying the further postulate that each of the sets F and F' have exactly two elements.
Let 0 be the element of F given by A-3, and let 0’ be the clement of F given by
A-3. Similarly, let 1 and 1’ be the elements of F and F’ given by M-3. We can then
set up a one-to-one correspondence

f:0e0,

1 e 1

and
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it is easy to check that f preserves both sums and products, both ways. Thm ‘o{
what we mean when we say that [F, 4+, '] and [F’, 4/, -] are essentsally the spimeg

For algebraic structures, of course, this relation is called isomorphism. Thusa sét
of algebraie postulates is categoric if any two algebraic structures that satisfy the
postulates are isomorphic.

Obviously the postulates for a field are not categoric, and neither are the postu-
lates for an ordered field; they are satisfied by the rationals, by the surds, and by
the real numbers, not to mention the non-Archimedean ordered field described in
Chapter 28.

Similarly, the postulates for synthetic plane geometry are not categoric. They
are satisfied by a metric plane, in which the ruler postulate tells us that we have
one-to-one coordinate functions
f:LoR v
for every linc. The same postulates are also satisfied in the surd plane, in which
every line is everywhere full of holes. We can, however, get a categoric postulate
set by adding two more postulates.

We recall the metrization theorem of Section 20.6. Given a plane

(B, £, =, ®]

satisfying the synthetic postulates, and also satisfying the geometric form of the
Archimedean postulate, we can always introduce a distance function

d:ExE—R,

which gives back to us the congruence and betweenness relations that we started
with. (It would be worth the reader’s while to review Section 20.6, at this point,
because we are going to make heavy use of it.) Under the distance function given
by the metrization theorem, the ruler postulate is almost satisfied; we have “coor-
dinate functions”
f:L—>R

such that p

d(P,Q) = |f(P) — (@), '

but we have no guarantee that all real numbers get used as coordinates. That is,
the coordinate functions may be functions ¢nfo R, and may fail to be one-to-one
correspondences. If it happens that all coordinate systems on all lines are one-to-one
correspondences, then we say that the plane that we started with is complete in the
sense of Dedekind.

This suggests a way to get a categoric.set of postulates for synthetic plane
geometry : we should add, to the usual postulates, the conditions:

(I) E is Archimedean.
(IT) E is complete in the sense of Dedekind.

Any two structures
B e xa), [Fe 0]
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Pjhjch satisfy all of these conditions are essentially the same. Oddly enough, this
is not very difficult to prove, once we have come this far in this book.

By the methods of Chapter 18, we set up coordinate systems in E and E’. Thus
we have correspondences

EHRXR, P(—)(x,y)
and
E,HRXR) P’H(I,y). ‘

These really are one to one, because both of our planes are complete in the sense
of Dedekind. For each point P of E, we let P’ = f(P) be the point of E' which
has the same coordinates (z, y) as P. Then
Y (1) f preserves distance.
That is, d(P, Q) = d'(P’,Q’), for all points P, Q of E.

Proof. Let P and Q have coordinates (zq, ¥,) and (3, y2). Then P’ and @’ have
the same coordinates (z1, ;) and (zg, y2). Therefore

d(P,Q) = V(zz — z1)2 + (y2 — y1)? = &' (P, Q).

(2) f preserves lines. -
That is, L is a line in E if and only if f(L) is a line in E’.

Proof. If L is a line in E, then L is the graph of a linear equation

Az -+ By+4C = 0.

It then follows that f(L) is the graph of the same linear equation. Therefore f(L)
is & line in E’. The same proof works in reverse.

(3) f preserves betweenness.
That is, A-B-C in E if and only if A’-B’-C’ in E’.

Proof. Each of the following statements is equivalent to the next:

(a) A-B-Cin E.

(b) A, B, and C are collinear, and d(4, B) + d(B,C) = d(4,C).

(c) A’, B, and C’ are collinear, and d’(4’, B') + d'(B,C") = d'(4',(").
(d) A’-B'-C'in E'.

(4) f preserves segments, rays, and angles, because these are defined in terms of
betweenness.

(5) f preserves congruence between segments.

Proof. Each of the following statements is equivalent to the next:
(a) AB =~ CD.

(b) d(4, B) = d(C, D).

(c¢) d'(4A’,B") = d'(C", D).

(d) AF = D'
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(6) f preserves congruence between angles.
That is, ZABC = £DEF if and only if f(£LABC) = f(£ DEF).
Proof. First we observe that
f(LABC) = LA'B'C’
f(LDEF) = LD'E'F,

by (4). We are free to choose D and F on the sides of £ DEF, so that DE = AB
and EF = BC. By SAS it follows that AC = DF. Therefore

D'E' = A'B', E'F' = B'(', A'C' = D'F

and

<

because f preserves distance. (Here we are using the short notation for distance in
both of our planes.) By SS8S it follows that

AA'B'C" = AD'E'F,
and

LA'B'C’ = LD'E'F,
which was to be proved.

Thus f preserves all the structure mentioned in our postulates. This means that
our postulates for synthetic plane geometry became categoric once we had added
(1) the Archimedean postulate and (2) the Dedekind postulate.

A categoric postulate set is a sort of arch of triumph. When we are able to write
such a postulate set for a particular mathematical structure, this means that we
have a complete understanding of its essential properties. Note, for example, in the
case of synthetic plane geometry, that we did not know what conditions to add to
make our postulates categoric, until we had gone through the rather deep and
difficult discussion in Chapter 20.

27.4 THE USE OF POSTULATE SETS AS CODIFICATIONS

In fact, categoric postulate sets are rather rare. Most of the time, when we write‘
down a set of postulates, we do so not to get a complete description of a particular
mathematical system, but for precisely the opposite purpose. Most of the time,
the value of the postulates lies in their generality : they describe a common aspect
of various mathematical systems which may have little else in common.

One striking example of this is the idea of a group. (A group, of course, is a
pair [F, ] satisfying M-1 through M-4 of Section 1.3.) Once we have proved a
theorem about groups in general, on the basis of these four postulates, we are free
to apply the theorem in an immense variety of contexts. This process gives an
efficient codification of mathematics; it spares us the job of repeating essentially
the same proof over and over. (Often it leads us to simpler proofs, because it tends:
to protect us from being distracted by irrelevancies.)

To some extent, postulates have been used in this way in this book. For example,
the postulates of metric absolute plane geometry are not categoric; they allow the
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possibility that the plane is either Euclidean or hyperbolic. In Chapters 1 through

r7 and 10, we used neither of the two possible parallel postulates, We were then free
to use the resulting theorems both in Euclidean geometry (Chapters 11 through 23,
and 25) and in hyperbolic geometry (Chapter 24). The resulting economy was
considerable. If we had introduced the Euclidean parallel postulate earlier, it
would have become necessary to do some of our work all over again in Chapter
24. Suppose, for example, that we had postponed the study of geometric inequal-
ities until after Chapter 11, and had proved the exterior angle théorem in the
way suggested by the following figure:

D
r+s+1=180; t+u=180; u=r+s;
u>r, u>s.

Fieure 27.1

It would have become necessary to develop the theory of geometric inequalities
all over again in Chapter 24.

Similarly, we used the postulates for a Euclidean ordered field in Chapters 1, 3,
6, and Chapters 10 through 18. These postulates allow both the complete real
number system and the surd field, and therefore our results could be used in both
Chapters 19 and 20. In Chapter 20 we introduced the Dedekind postulate, at the
point where we really needed it. Thus, at most points in this book, the usefulness
of our postulate sets has been due to the fact that 1hey were not categoric.

27.5 THE USE OF POSTULATES AS A MATTER OF CONVENIENCE

Y Often we use postulates when they aren’t logically necessary at all. For example,
we showed in Chapter 14 that all the area postulates of Chapter 13 were superfluous
because we could prove that in any metric geometry there has to be an area func-
tion satisfying these area postulates. The postulates for volume, in Chapter 23,
are equally superfluous, for the same sort of reason, although we have not proved
the fact in this book.

In each of these cases, we introduced new postulates merely to avoid (or to post-
pone) difficult proofs.
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AN EXAMPLE OF AN ORDERED FIELD
WHICH IS NOT ARCHIMEDEAN

In Chapter 1 we postulated that the real number system had the Archimedeanq‘
property. In fact, this postulate was necessary; it is not true that every ordered
field satisfies the Archimedean postulate. Here we give an example of such a
peculiar field.

First let P be the set of all polynomials with real coefficients. Thus P includes
the “zero polynomial,” which is =0 for every z, the constant polynomials f(z) = ao,
and the polynomials of degree n > 0, of the form

@) = @z + @n_1z™ "V + - - + a1z + ao,

where a, # 0. In any case, a, is called the leading coefficient. Thus the leading
coefficient of f(x) = 222 — 3z + 4 is 2, and the leading coefficient of a constant
polynomial f(z) = ag is the same constant ao.

For the purposes of this chapter, a polynomial will be called positive if it takes
on only positive values, when z is sufficiently large. To be more precise, f is posi-
tive if there is a number %k such that

fix) >0 forevery z > k.
For example, f(r) = z? — 2 is positive, because
22— 2>0 forevery = > 2.

We are using k = /2. Similarly, f(z) = z* + 22 + 1 is positive; here any num-
ber at all can be used as k, because z* + z% + 1 > 0 for every z.
Theorem 1. f > 0 if and only if the leading coefficient in f is >0.

Proof. Tor constant polynomials, this is obvious. Suppose, then, that
f(x) = anxn + a,._l:c"_‘ R a1z + ag,
with a, > 0. Then

@) = aa"[1+ 22+ 2224+ 0]
388
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Here the first factor is always >0 when z > 0. And the expression in the brackets
b is >0 whenever

On—1 4 Gn—2 , ., Go
a,:c+a,,x’+ +a,.:c.,<1'

Surely this holds when z is greater than a certain k, because as z — oo, each of
the terms on the left —0. (For a complete proof of this, see a calculus book.)

On the other hand, if a, < 0, then a,z" < 0 when z > 0, and the bracket is
still >0 when z is greater than a certain k. .

Thus the positive polynomials are simply the ones that have positive numbers
as their leading coefficients.

A polynomial f is called negative if there is a number k such that

- ) fi) <0 forevery z > k.
From Theorem 1 it follows immediately that:

Theorem 2. Every polynomial (other than the zero polynomial) is either posi-
tive or negative. If f > 0, then —f < 0, and conversely.

The algebraic system formed by our set P of polynomials has nearly all the
properties that we are looking for. It has a 0, namely, the polynomial f = 0 which
is =0 for every z. It has a 1, namely, the polynomial g = 1. Addition and multi-
plication are associative, commutative, and distributive, because the real numbers
have these properties. We easily define an order relation, by defining

f<g
g—f>0.

Thus f < g if f(z) < g(x) for every x greater than a certain k. It can also be
checked that Conditions O-1, 0-2, AO-1, and MO-1 hold. Thus P forms an ordered
commutative ring with unity: it satisfies all of the postulates for an ordered field,
with the sole exception of the postulate which says that every f > 0 has a re-
ciprocal.
' (We omit the details.of these verifications, but will give the analogous details
presently, for the ordered field which we shall finally be interested in.)
On the other hand, P is surely not Archimedean. Take, for example

to mean that

e = f, flz)y =1 for every =,
and .
M =y, g(x) =z  forevery =x.
No matter what the integer n may be, we have

n<a when z > n
Therefore
, ne < M
for every n, and our ¢ and M do not satisfy the Archimedean postulate. We may
say that f(z) = z is “infinitely large compared with” g(z) = 1.
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In the mme way, 22 > nr when z is large enough. Therefore, if e(z) = g,
M(z) = z?%, then
ne < M for every m.

Thus there is an ordered ring which is not Archimedean. To get a non-Archimedean
ordered field, we use the simple device of forming quotients of polynomials.
By a rational function we mean a function r of the form

(=)

rz) = 9@’

where f and g are polynomials and ¢ # 0. A rational function r is called positive
if there is a number & such that

r(z) > 0 forevery z > k,

In this case we write » > 0. The function r is called negative if there is a number
k such that
r(z) <0 for every z > k.

Theorem 3. Every rational function (other than 0) is either >0 or <0.

Proof. Given

-l

where f is not the zero polynomial. We can surely choose f and g so that g > 0.
(If this does not already hold, we multiply in numerator and denominator by —1.)
Thus we have a k; such that

gix) >0 for every z > k.
Suppose now that f > 0. Then there is a k5 such that
fz) >0 for every z > ks.

Let k be the larger of the numbers k, and k;. If z > k, then we have z > k; and
z > kg. Therefore f(z) > 0 and g(z) > 0. Hence

r(z) = f(z) >0 for every z= > k.
Similarly, if f < 0 and g > 0 it turns oyt that r < 0.

Theorem 4. If 7 > Oand s > O, thenr 4 s > Oand rs > 0.

Proof. Given
r(z) > 0 forevery z > k;
s(x) > 0 forevery x > kj.
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Let k be the larger of the numbers k, and k;. For every z > k, we then have

r(z) + s(z) > 0,
and
r(z)s(z) > 0.

Therefore r + s > 0 and rs > 0, which was to be proved.
It is easy, of course, for two rational functions to be essentially the same. For
example, consider
i z(z — 2)
"= T e -9
_ z(z — 3) i
' n@) = T hE —3)

The first of these is defined except at z = 1 and x = 2; and the second is defined
except at z = 1 and z = 3. Wherever both functions are defined, they have the
same value. Two rational functions which are related in this way are called equiv-
alent. More precisely,
Ty ~ T2
if
ri(z) = ra(2),

except perhaps at a finite number of points. The following theorem is easy to see.

Theorem 5. If r, ~ r; and 8; ~ s, then 7173 ~ 88z and r; + 75 ~ 8, + 83.
If ry ~rgandr; > 0, thenr; > 0.

The set of all rational functions equivalent to r is denoted by 7. Thus
F= {s|]s ~ r}.

By the preceding t} .em, we can state the following definitions.

~ ) F>0ifr >0 -
@ r+3=r+s.
3 F-3=T7s.
The point is that positiveness, sums, and products depend only on the equiva-
lence ¢lasses 7, 3, and do not depend on their representatives r and s. From Theo-
rem 4 we now get:

Theorem 6. If # > 0and 3 > 0, then 74+ 8 > Oand 73 > 0.

Now let F be the set of all equivalence classes 7. We assert that F forms a field.
The associative, commutative, and distributive laws hold in F, because they

hold for real numbers. For example,
%
Ta)i = r(st),
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because for all but a finite number of real numbers r, we have
| [r@s@N(E) = r@ls(=iE).
(ra)t = r(st).
@) = 1Gsi),

by definition of multiplication for ¥, 5, I. Similarly for the other postulates which
merely state algebraic identities.
The set F contains a 0 and a 1, namely 0 and 1. Also —F = =7 and

1 _ ().
7T \r

Obviously F is closed under addition and multiplication, because sums and products
of rational functions are always rational functions.

We must now define an order relation in F, and show that F forms an ordered
field.

Given ¥, 3, F. If

Therefore

Hence

§—7>0,
then (by definition),
F<LE.

For every ¥ and 3, we have exactly one of the conditions
I—F>0, §—r=0 5—r<O0.
Therefore we have exactly one of the conditions
F<3§ F=3 E§<F
Thus our relation < satisfies O-1. If

r<® and 3<I
then
5—r>0 and {—3>0.

By Theorem 6, we have
E—"+(E—38 >0,
so that
I—r>0,
and
r<ti

Therefore the relation < satisfies 0-2.
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It remains to verify AO-1 and MO-1.
Given
r<y,
we want to conclude that
r+i<s+li
The first condition says that
3—F>0.

The second condition says that

@+ ~-C+D>o0.

Obviously these are equivalent. Therefore AO-1 holds; we already know from
Theorem 6 that MO-1 holds. Therefore F forms an ordered field.

But F is not Archimedean. To show this, we proceed in exactly the same way
that we did for P. Let e be the function which is =1 for every z, and let M be
the function which is =z for every z. For every positive integer n, ne(z) = n
for every z. Therefore, for every n we have

M(z) — ne(z) = rp(z) =z — n.

Now z — n > 0 when z > n. Therefore r, is & positive function for every =.
Therefore, for every n, we have
M —nz>0.
Therefore
n <M

for every n. Thus F is not an Archimedeen ordered field; 2 is so exceedingly small,
compared with M, that no integral multiple of 2z >M.
In the same way, if we let
Tm(z) = 2™,

it is rather easy to see that the equivalence classes 7y, 3, . . . are not related in an
Archimedean fashion in F. In fact, every integral multiple nf; of P, is <Fg; we
always have nP; < 73, and s0 on.

The above is the simplest example of the sort that the author knows of; but it
must be confessed that most simple does not mean very simple.



e 29

THE THEORY OF NUMBERS

We recall, from Chapter 1, that the set N of positive integers is defined by the
following three conditions.

(1) N contains 1.
(2) N is closed under the operation of adding 1.
(3) N is the intersection of all sets of numbers satisfying (1) and (2).

On the basis of this definition of N, we immediately got the following:

Induction Principle. Let S be a set of numbers, If (1) S contains 1, and (2) S is
closed under the operation of adding 1, then (3) S contains all of the positive
integers.

We then defined the set Z of integers as the set whose elements are the positive
integers, their negatives, and 0, and we showed that Z formed a commutative ring
with unity.

We shall now investigate the divisibility and factorization properties of the
integers. Our first step is to observe that we can always divide one positive integer
by another, getting a quotient ¢ and a remainder r. More precisely, without men-
tioning division, we can state the following theorem.

Theorem 1. Let n and a be positive integers. Then n can be expressed in the
form

n aq + r,

where
0=sr<a.

The easiest formal proof is by induction. Take a as fixed, and let S be the set of
all positive integers n which can be expressed in the desired form. Then S contains
1, because

p—

=a-0+4+1 (a > 1)
or
1=1-140 (a=1).

And S is closed under the operation of adding 1. Given

n=aq+r, 0=r<a,
we have
n+1=uag+ (r+1)
394
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which is what we wanted, unlessr = ¢ — 1. If r = @ — 1, then

n+l=uag+a
=a(g+ 1),
which has the desired form.
An integer d # 0 is a divisor of an integer a if a = dg for some integer g; that is,
d divides a if a/d is an integer. If d divides both a and b, then d is & common divisor

of @ and b. If it is also true that every common divisor of a and b is also a divisor
of d, then d is a greatest common divisor of a and b, and we write

d = ged (a, b).

Note that this definition does not say merely that (1) d divides both a and b,
and (2) d is the largest number that divides both ¢ and b. When we say that
d = ged (a, b), we mean that d is “largest” in the sense of divisibility; that is,
every common divisor of a and b must not only be <d but must also be a divisor
of d. Thus, while it is plain that no pair of numbers a, b can have more than one
ged, it is not plain that @ and b have any ged's at all; and so the following theorem
is not trivial.

Theorem 2. Any two positive integers have a greatest common divisor.
Proof. Let a and b be the two numbers. Consider the set D of all positive integers
that can be written in the form
Ma 4 Nb,

where M and N are any integers, positive, negative, or zero. Obviously D is not
empty, because the positive integer a can be written as

1-a+0-b.
By the well-ordering principle, D has a least element d. We shall prove that
d = ged (a, b).
(1) d divides b. Suppose that d does not divide b. Then

b=dg+r, 0=sr<d.
We know that
Ma + Nb = d,
for some integers M, N, and
r=>b — dg
Therefore
r=>b— (Ma+ Nb)g

= (—Mg)a + (1 — Ngb.
Therefore r € D. This is impossible, because 0 < r < d, and d was supposed to
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be the least positive element of D. Therefore d divides b. In exactly the same way
we get
(2) d divides a. ,
Therefore d is & common divisor of @ and b. If e is any other common divisor of

a and b, then
d = Mpe + Nge = (Mp + Ngle,

so that ¢ divides d.
Note that in the proof of Theorem 2, we had d € D. This gives us the following

theorem.

Theorem 3. Let a and b be any positive integers. Then there are integers M,
N such that
Ma + Nb = ged (a, ).

We can now verify a theorem that we all have been taking for granted for years.

Theorem 4. Every rational number can be expressed as a fraction in lowest
terms. That is, given a rational number p/g, there are always integers r and s
such that

P _ T
q 8
and
ged (7, 8) = 1.
To prove this, we let
= ged (p, 9),

so that
p=rd g=sd

for some positive integers r and s. Now r and s are the integers that we wanted.
Obviously

p_m_r,

g &
And since

Mp+ Ng=d
for some M, N, we have

Mrd + Nsd = d,

and

Mr+ Ns'=1,
so that

ged (r,8) = 1.

A prime number is a positive integer p > 1 whose only positive divisors are itself
and 1.
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Theorem 5. If n divides ab, and ged (n, a) = 1, then n divides b.
(Here n, a, and b are positive integers.)
Proof. There are integers M and N such that

Mn 4 Na = 1.
Therefore
Mnb + Nab = b.

Since n divides both Mnb and Nab, it divides their sum.

Theorem 6. Let a and b be positive integers, and let p be a prime. If p divides

ab, then either p divides a or p divides b.

Proof. We need to show that if p does not divide a, then p divides b. If p does not
divide a, then ged (p, @) = 1, because p is a prime. By the preceding theorem,
p divides b.

The above is all of the number theory that we shall really need for the purposes
of this book. Once we have gotten this far, however, we may as well prove the
unique factorization theorem.

Theorem 7. Every natural number greater than one can be expressed as a product
of primes. '

Here repeated factors are allowed. For example,
12=2-3-2
is a product of primes.

Proof. Suppose that the theorem is false. Then some number is not a product
of primes. Let n be the smallest such number. Then = is not a prime. Therefore n
has some divisor a, different from n and from 1. Thus

n = ab, 1<a<n, 1<b<mn

Since n was the smallest number for which the theorem fails, a and b are products
of primes. Therefore 7 is also a product of primes, and this contradicts our hy-

pothesis.
It follows that every natural number n can be expressed in the form

n = pi'p?® - - - P&,

where the p,’s are different primes, and the a;’s are natural numbers. Such a.fm.:-
torization is in standard form if the p;’s are written in order of magnitude, that is, if

P <p2 <+ < P

Theorem 8. The factorization of a natural number into primes is unique, except
for the order of the factors.
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Proof. Suppose that
n = pi'p3*- - Pi* = qi'g3’ - - qF,
where both of the indicated factorizations are in standard form. Suppose, as an
induction hypothesis, that every number less than n has only one prime factoriza-
tion in standard form. We shall show, on this basis, that k = j, p; = g; for each
1, and a; = b; for each <.

Every prime factor p of n divides one of the factors p{i. Therefore p divides
some p;. Therefore p s some p;. Therefore p; is the smallest prime factor of n.
For the same reason, ¢; is the smallest prime factor of n. Therefore p; = q;.
Therefore

By b’

pﬂ — p""‘lp;’ - pt ok _. qb,—lqg, qbi.

But n/p1 < n. Therefore n/p, has only one factorization in standard form.
Therefore k = j, p; = g¢; for each 7, and a; = b; for each 7. Therefore our “two”
factorizations of n were the same all along, which was to be proved.

ProBLEM SET

1. Given two natural numbers r, r2. Let g1 and r3 be such that
rn=rq1+r3 O0=r3<r2
(Thﬁt is, divide r3 into 71, to get a quotient and a remainder.) Let g2 and r4 be such that
. rg=ry2+re (0= r4<ra).
Proceed in this way until you get a last positive remainder r,:

T1 = roq1+ 73
T2 = 732+ T4

s = rip1gi + Tita

T2 = Tn_1¢n—21 Ta
a—1 = TpQn-—1.

Of course, the process must terminate, because the r;’s are all positive, and they form a

decreasing sequence.
Show that .o
Tp = gcd (rlp 7'2)-

2. Show that if n is a natural number, then 4/7 is either a natural number or an irra-

tional number.

3. Theorem 2 tells us that certain integers M and N must exist, but it gives us no help
in finding such a pair of numbers. Describe a scheme for finding them.
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4, Find integers M and N, so that
41M 4 3IN = 1,

5. In the proof of Theorem 8, we appealed tacitly to the following theorem.

Theorem. If a and b are positive integers, and ¢ > 1, then b < ab. Prove this,

6. Justify the following statement from Problem 1: “Of course, the process must termi-
nate, because the r's are all positive, and they form a decreasing sequence.” (Remember
the well-ordering principle.)
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THE THEORY OF EQUATIONS

For the minimum purposes of this book, it would suffice to discuss the theory
of equations only for cases where all of the roots of our equations are real. But
this would be hopelessly artificial and somewhat misleading. Throughout this
chapter, therefore, when we speak of numbers, we allow the possibility that the
numbers are complex, unless the contrary is explicitly stated. The set of all com-
plex numbers is denoted by C. We assume that C forms a field.

As usual, a polynomial of degree n is a function

j:€C-¢C
of the form
() = @nz® + @12 ' + -+ - + a1z + ao.

For n 2 1, we require that a, # 0. Thus the zero polynomial is allowed, as a
polynomial of degree 0, but we don’t call 0 - 22 + z + 1 a polynomial of degree 2.
Note that we are allowing the coefficients a; to be complex.

Theorem 1. Let f be a polynomial of degree n = 1, and let z, be any number.
Then f can be expressed in the form

f@) = q(@)(z — z0) + 1,
where ¢ is a polynomial of degree n — 1 and r € C.

For reasons which will soon be plain, it is imperative to avoid mentioning divi-
sion in stating this theorem. The proof is by induction. Let S be the set of all
positive integers n for which it is true that every polynomial of degree n has the
desired property. Then S contains 1, because

a;2 + ao = ai(z — 2o) + (a120 + @o).

Here ¢(z) = a, for every z, and r = a,2¢ + .ao-
Ifne S, thenn+1€8. ’
Proof. Given
Fa41(®) = @1+ an" + -+ ayz + g
Then
In41(2) = @ny12"(z — 20) + (@ap120 + @) + -+ a1z + @0

= @n412"(2 — 20) + fa(2).
400
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Here £, is a polynomial of degree <n. Therefore

fa(@) = q(&)(z — 2) + 7,
and

Ja+1(2) = [an412" + 9(2))(z — 2o) + 7,
which has the desired form. Therefore n + 1 € S, and S contains all the positive
integers. .

In this theorem, when » = 0, we have
f(2) = q(@)(z — 2o).
Here we say that z — 2, divides f(2). In the equation
f@) = a(&)(z — 20) + 1,

f(z0) = 1.

we set 2 = z,. This gives
Thus we have:
Theorem 2. The Remainder Theorem. If
1) = q(@)(z — 20) + 1,
f(zo) = 7.

then

Theorem 3. The Factor Theorem. If zq is a root of the equation,
f@) = ap" + auy2® '+ a1z + 00 =0,
then z — 2, divides f(z), and conversely.

Note that we could not have proved Theorems 2 and 3 by first writing

SO _ g+ L

’
2 — 2 z2— 2

and then multiplying by z — 2 to get the equation that we really want. The
division is valid only if z — 2y # 0, and z = 2, happens to be the very value that
we are interested in.

An algebraic equation of degree n (n 2 1) is an equation of the form

GnZ" + Gpyz" '+ o a2+ a0 = 0,

where all of the coefficients a; are integers, and where a,, # 0.

The fundamental theorem of algebra, due to C. F. Gauss, asserts that every
algebraic equation has at least one root in the field of complex numbers. Of course
there may not be any roots in the field of real numbers. Moreover, the only roots
that are easy to find, for n > 2, are the rational ones. The method of finding

these is based on the following theorem.
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Theorem 4. Let z = p/¢, in lowest terms, be a root of the equation
@z + @n12 '+ o+ a1z + a0 = 0.

Then p divides ao and ¢ divides a,.
Proof. We have
@p” " e
7 + q"—l + + q + Qo 0.
Therefore
ap" + an1p"Tlg + -+ apg" ! + aog” = 0.

We know that ged (p, g) = 1. Hence p and ¢ have no prime factor in common.
Thus ¢ and p™ have no prime factor in common. Therefore ged (p®, ¢) = 1.

Since ¢ divides every term in the equation after the first term a,p", it follows
that ¢ divides a,p". Since ged (p", ¢) = 1, it follows by Theorem B-6 that g
divides a,.

In exactly the same way, we see that p divides a,.

The applications of this theorem can be very tedious; we have only a finite
number of things to try, but finite numbers can be large. I‘or example, given the
equation
823 — 1% — 27 = 0,
the only possible rational roots are the numbers +p/q, where ¢ = 1, 2, 4, 8 and
p = 1,3,9, 27. This gives 32 possibilities. On the other hand the theorem some-
times enables us to conclude very quickly that an equation has no rational roots at
all. Consider

23 —2r4+2=0.
Here the only possible rational roots are 1, —1, 2, and —2. None of them works.

Therefore there are no rational roots.
Finally, let us recall one of the consequences of the factor theorem. Given a

polynomia! fa@) = 2"+ aagz” ' 4+ -+ + a1z + ao.
If z; is a root of f,(x) = 0, then we have
fa(r) = (& — a)faa(2).
If x5 is a root of f,_;(x) = 0, then (x — x3) is a divisor of f,—;(z). Thus
fal@) = (@ — 2@ — z2)fa—2(x).
In a finite number of such steps, we get a factorization,
fa@) = (@ —z)(@ — 22) -+ (& — Tw)-

Each of the numbers z; is a root of the equation f,(r) = 0. And no other number
is a root, because a product is =0 only if one of the factors is =0. (This principle
applies, of course, to complex roots as well as real roots.)
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It is important to remember, in all of the above discussions, that the numbers x;
are not necessarily different. If we collect the repeated factors of Ta(z), we get
a factorization of the form

fa(@) = (x — by)*1(x — bo)*3- - - (z — b)km.

We then say that each b; is a root of multiplicity k;; and we observe that the sum
of the multiplicities of the roots is the degree of the equation.

People often refer to this fact by saying that “every algebraic eqdation of degree
n has n roots.” But the latter statement, taken at face value, is silly. There are
simple examples to show that the number of roots may be any integer from 1 to n.
For example, the equation z!° = 0 is of degree ten, but it has only one root,
namely, zero.

The upper bound », for the number of roots, tells us that two polynomials can
never be alike unless they look alike.

Theorem 5. If

2" + Gn_12® N+ oo @17+ @p = baz™ + bu_g2® !+ - - 4 bz + by,
for every z, then a; = b, for every 7 from 0 to n.

Proof. Every number is a root of the equation

(@n — Ba)2" + (Gay — ba_p)2" ™' 4 -+ (ap — bi)x (@0 — bo) = 0.

Therefore this equation cannot have a positive degree, so that a; = b, for ¢ > 0.
The equation must therefore take the form ap = bo. Therefore a, = b, for every
1 from 0 to n.



conrrn S

LIMITS OF SEQUENCES

THE DEFINITION OF A LIMIT FOR SEQUENCES

Given a sequence,
aas...,
of real numbers. When we write
lim a, = a,
n—$0

this means, roughly speaking, that when = is very large, then a, is very close to a.
For example

. n+1\ _ .. _1_ _
32( n )_31_!.?.(1+n)—1’
and so on.

Let us now try to frame a definition of this idea, in a sufficiently exact form to
enable us to prove things about it.

In the first place, when we say that a, is close to a, this means that |a, — a] is
emall. The idea, then, is that we can make |a, — a| as small as we please, merely
by making » large enough.

To say how small we want |a, — a| to be, we should name a positive number,
say e, and then demand that

lan — a| < e.

To explain what integers n are large enough, we should name a positive integer
N, and require that » > N. In these terms, when we say that

lim a, = a,

n-—®

we are saying that no matter what number e > 0 is given, there is always an
integer N with the property that |a, — a| < e for every n > N. This suggests
the following definition.

DEFINITION. lim,_,. a, = a means that for every ¢ > 0 there is an integer N
such that if

then

n > N,

lan — a] < e.
404
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Let us try this out on some simple examples. First we shall show, using the above
definition, that

(1) li!n‘n-m l/ﬂ = 0.
By definition, this says that
(2) for every ¢ > 0, there is an integer N such that if

n > N,

then
1

n 0 <e.

The desired N is easy to find: 1/n < e means merely that n > 1/e. By the
Archimedean postulate, some integer N is greater than 1/e. For n > N, we have
1/n < e, as desired.

(The use of the Archimedean postulate was essential in this proof. In fact, the
statement that lim,_, 1/n = 0 is precisely equivalent to the Archimedean postu-
late. This accounts for the fact that people who are unacquainted with the founda-
tions of the real number system are likely to be embarrassed when asked to prove
this very simple limit theorem.)

Let us try the same thing for

Given e > 0, we want an integer N such that if

n > N,
then

|n+1_l <

The second inequality is equivalent to

l<e.
n

We can therefore let N be any integer greater than 1/, as before.

An upper bound of a sequence dy, az, . . . is simply an upper bound of the set {an}-
A sequence which has an upper bound is said to be bounded above. A lower bound
of a sequence a;, ag, . . . is a lower bound of the set {a.}. A sequence which bas
a lower bound is said to be bounded below. A sequence is bounded if it is both
bounded above and bounded below. This is equivalent to the statement that there
is & number b such that |aa| S b for every n. If

¢ Sa3 S-S0y S a1 S

then the sequence is called increasing. (If the strict inequali'ty_a,. < Gp4q always
holds, then the sequence is called strictly increasing. But this idea does not come

up very often.)
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The following theorem is a consequence of the Dedekind postulate.
Theorem 1. If a sequence is increasing, and has an upper bound, then it has a
limit.

Proof. Let the sequence be
ay, g, . .

Since {a} has an upper bound, it follows by the Dedekind postulate that {a,} has
a least upper bound. Let
a = sup {an}.

We shall show that
lim a, = a.

n—o

Let ¢ be any positive number. Then
ay > a—e

for some integer N, because a — e is not an upper bound of {a,}. If n > N, then
ap = ay, because the sequence is increasing. Thus, if

n > N,
then
an > a — e.

But @, < a + e for every n, because a is an upper bound of {a,}. If

a—e<a, <a-e,

then
—e<a,—a<e
and
|an — a] <.
Thus if
n>N
then

lan — a] < e.

That is, the number N that we found is of the sort we were looking for.
The other fundamental theorems on limits of sequences are as follows.

Theorem 2. If lim,_,, a, = a, and lim,_,, b, = b, then lim, ., (an + bp) =
a -+ b.

18, If lim,_,» ay = a and lim,_, by = b, then lim,_,, (as * by) = ab.

Theorem 4. If lim, .. e, = a,and a, S kfor every n, thena S k.
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Theorem 5. If lim,._..a,‘ = g, and ]hn”___mb,l - b' mda“ S b, for everyj,
thena £ b.

Theorem 6. The Squeeze Principle. If

aSby S an
for every n, and
lim @, = a, ‘
7 s
then
lim b, =

n—w
.

Of course the same conclusion follows if a, < b, < a for every n. We shall
refer to both of these theorems as the squeeze principle.

We shall not prove these theorems. Instead, we give in the following problem
set a sequence of theorems that should lead you to the proofs by fairly easy stages.

ProBLEM SET

1. Show that

lima, = a
n—ya0

if and only if
lim (a, — a) = 0.

n—00

2. Show that if lims_,e s = 0 and lim,_u b = 0, then lima_,n (@x + ba) = O,
[Hint: You want |a. + ba| < e. This will hold if the inequalities |aa| < ¢/2 and [b,]| < €/2
both hold.]

3. Prove Theorem 2.

4. Show that if lim,_» @ = a, then the sequence is bounded.

5. Show that if limn_, @n = 0 and {b,} is bounded, then lima— @ubs = 0. [Hint:
If |ba] < b, and |as| < e/b, then |aqba| < e.]

6. Show that if lim,_, @» = @ and limp_0 ba = b, then

lim [an(ba — )] = 0.

7. Show that if limp_ Gn = @ 8nd lima_o ba = b, then

lim [ba(as — @) + @(ba — b)] = 0.

8. Prove Theorem 3.
9. Prove Theorem 4. [Hini: Suppose that a > k, leta —k = ¢ > 0, and use e in
the definition of a limit.)
10. Prove Theorem 5.
11. Prove Theorem 6.
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COUNTABLE AND UNCOUNTABLE SETS

32.1 FINITE AND COUNTABLE SETS

By a segment of the integers we mean a set of the form
I, ={1,23,...,n}.

A finite sequence is a function whose domain.is a set I,,. Usually we write sequences
in the subscript notation
a8y, ..., 0a,;

here for each i, a; is the object which corresponds to ¢ under the action of the

function.
Let A be a set. If there is a one-to-one correspondence

fil, o A

between A and a set I,, then we say that A is finite and has n elements, and we
write

A~ I,
In general, when we write

A ~ B,

this means that there is a one-to-one correspondence between the set A and the
set B. In this case, we say that A and B are equivalent sels.

As usual, by an infinite sequence (or simply a sequence), we mean a function whose
domain is the entire set N of natural numbers. In the subscript notation, we
write sequences as

a, as .. .;

here a; is the object corresponding to the natural number 1.

A set A is called countable if there is a sequence in which every element of 4
appears at least once. Note that since repetitions are allowed, every finite set is
countable; we merely repeat one of its elements over and over. If

A ~N,

then we say that the set A is countably infinite. Thus the set N itself is countably
infinite, ex officio; we let each natural number n correspond to itself. And the
408
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set Z of integers is countably infinite; we can arrangs it in the saquence
0,1,—-1,2,-2,...,n,—n,...,
in which every integer appears exactly once.
Theorem 1. Every countable set is either finite or countably infinite.
That is, if the elements of the set A can be arranged in a sequence
81,83, ...,8ny..., ’

with repetitions allowed, then either A ~ I, for some nor 4 ~ N. To prove this,
we merely need to eliminate the repetitions from the sequence which is given
by hypothesis, thus getting a sequence

bllb2)"'vbn
by, b, ..., bn,...,

in which every a; appears exactly once. The method of doing this is fairly ob-
vious. Let

or

bl = 0aj.
bh bz, veey bi;

we look to see whether every one of the a,’s has already been listed. If so, we
have finished; » = ¢, and the set A is finite. If not, we let b;,, be the first term
of the a-sequence which has not been listed so far.

If this process terminates, then A is finite. If the process does not terminate,
we get an infinite sequence

Given

bl’bﬂv"'r

with no repetitions. The new sequence includes all the elements of A, because
for each n, a, is one of the objects by, b, . . ., ba. [Query: Under what conditions
will @, = b, for a particular n? Under what conditions will it be true that a, = bs
for every n?)

Theorem 2. The union of a countable collection of countable sets is countable.

Proof. Gi
roof. Given A= A UAgU--UAsU-

where each A; can be arranged in a sequence
A 81, 0i2,0i3, - - .-
Let us regard the objects a;; as forming a doubly infinite array, as follows:

ayy aGi13 @13 .-
a3y G2z G33---
Ggy G3z2 Ga33 .- -
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In this array, consider the diagonal sequences

a1,
ayz, @21,
as, G22, 231,

Qiny G2,n—1, @3yn—2 - - -, Gnl

Laying these finite sequence end to end, we get a single sequence which includes
all of the a;,’s.

Note that this theorem and its proof include the cases of (1) a finite collection
of countably infinite sets, (2) a countably infinite collection of finile sets, and
also the two other possibilities. The definition of a countable set was stated in
such a way as to permit us to take care of all these cases at once. It is better to
apply Theorem 1 at the times when we really need it than to worry about elimi-
nating repetitions at most stages of most proofs.

ProBLEM SeT 32.1

1. Show that the rational numbers between 0 and 1 form a countable set.

2. Show that the set Q of all rational numbers is a countable set.

3. Let Eq be the set of all points (z, y) in a coordinate plane for which z and y are both
rational. Show that Eg is countable.

32.2 THE COUNTABILITY OF THE SURD FIELD

We recall, from p. 228, the definition of a surd. A real number x is a surd if we
can calculate z by a finite number of additions, subtractions, multiplications,
divisions, and extractions of square roots, starting with 0 and 1. S is the set of
all surds.

We shall show, using Theorem 2 of the preceding section, that S is countable.

Let S, be the set of all surds that can be calculated by n operations of the sort
that are allowed. Then S, is finite for every n. The proof is by induction.

(1) S, is finite. (Because its only elements are 0 and 1.)
(2) If 8, is finite, then so also is Sp 4.

Proof. Let k, be the number of elements in 8,. The elements of S, 4, are the
numbers of the form z + y, = — y, =y, x/y, vz, where z and y belong to S,.
For each of the first four of these forms, there are surely no more than k2 pos-
sibilities, because there are at most k, choices for z and k, choices for y. And
there are at most k, possibilities for v/z. - Therefore the number of elements in
Sn41 is surely no greater than 4kZ + k, (and, in fact, it is easy to see that this
is a gross overestimate). Therefore S, is finite.

Since
S=8uUSu:---u8uU:--.

it follows by Theorem 2, Section 32.1, that S is countable.
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’

32.3 PROOF THAT THE REAL NUMBERS ARE UNCOUNTABLE

To show that the real numbers cannot be arranged in a sequence, we need a
preliminary result. '
By a closed interval (of the real numbers), we mean a set

lo,b] = {zla < z < b}.
By a nested sequence of closed intervals we mean a sequence

[ah bl]y [02: bﬂ]y . e
in which

[@it1, biga] C [as, b5
for every 1.

Theorem 1. The intersection of a nested sequence of closed intervals is not
empty.

That is, some number Z lies in every interval in the sequence. The proof is as
follows:

(1) Let A = {a;}, and let B = {b.}.

Then
a, < b,

for every i, by definition of an interval. And
o S g1 < bip1 b,
because the sequence is nested. If 7 < j, then

a, <b,,
because
g S a1 S-S5, <b;

Similarly, a, < b; if ¢ 2 j. Therefore every b; is an upper bound of A.
(2) Let T be the supremum of A, that is, the least upper bound of A. Then

a; £ foreveryi,
because Z is an upper bound of A. And
T <b; foreveryi,
because ¥ is the least upper bound of A. Therefore
z € [a, bi] for every 1,

which was to be proved.
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Theorem 2. The set R of all real numbers is uncountable.
Proof. Buppose that R can be arranged in a sequence
T 7 TRARET - YRR

We set up a nested sequence of closed intervals, in the following way.
(1) Let [ay, b;] be any interval not containing z;.
(2) Given a finite sequence

[alv bl]; [32’ bﬁ]p crey [am b’l]l

nested as far as it goes, such that [a,, bs] contains none of the numbers z,, z, . . . ,,
Za. Let [@ny1, bnya] be any interval which lies in [an, bs] and does not contain

Tn+1.
Now let I be the intersection of all the intervals in the sequence. Thus

I=la,bilnfagy bl n---Nianba]N--.

Then I is empty. The reason is that every real number z is supposed to be equal to
z,, for some n; and z, cannot belong to I, because z, does not belong to [a,, bs).

But I cannot be empty, by Theorem 1. Thus we have a contradiction, and |
Theorem 2 must be true.

We found in Chapter 19 that some real numbers (for example, cos 20° and V/2)
are not surds. The results of this section and the preceding one give an independent
proof of the same fact: it is impossible for S and R to be the same set, because S
is countable and R is not. In fact, since the nonsurds are more numerous, it is,
in & way, a remarkable accident for a real number chosen at random to be a surd,
The surds are, of course, more familiar, but this is not because they are more
common; it is merely because they are easier to describe.

ProBLEM SET 32.3

1. In the preceding paragraph, it is stated that the nonsurds are more numerous than
the surds. Justify this statement, by showing that R — S is uncountable.
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AAA similarity theorem, 144

AA similarity theorem, 145

Abscissa, 208

Absolute plane geometry, Chapter 10,
122 ff.

Absolute value, 15

Acute, 78

Addition, for congruence classes of
segments, 109

Addition theorem for arc length, 270

Addition theorem for ratios, 252

Additivity postulate, for area, 154

Algebraic identity, 7

Alternate interior angles, 123

Altitude, 147

Angle, 55

of a quadrilateral, 70

Angle-addition postulate, 76

Angle-addition theorem, 78

Angle-construction postulate, 76

Angle-construction theorem, 78

Angle of parallelism, 307

Angle-sums in a triangle, 130

Angular measure, Chapter 5, 74 ff.

Antipodal, 119

Apollonius, problem of, 224

Archimedean postulate, 25, 246, 250, 405

Arc length, 263

Arcs of circles, 192

Area function, construction of, Chapter 14,
168 ff.

Area postulates, 153-156

Area of a sector, 276

Ares theorems, for simple figures, 156-159

ASA theorem, 88 .

Associative law, generalized, 3

Associativity, 2

Basic similarity theorem, 138
proved using area theory, 162-163

INDEX

Bers, Lipman, 383
Betweenncss, defined in terms of distance,
50
postulates, 103
Bisector of an angle, 89
Bolyai, 383
Bolyai’s theorem, 328
for polygonal regions, in the hyperbolie
case, 342
for triangles, in the hyperbolic case,
334
Border triangulation, 332

Cancellation law, of addition, 5
of multiplication, 5

Cartesian coordinate systems, Chapter 18,
208 ff.

Cartesian model, for Euclidean geometry,
367

Categoric postulate sets, 383

Cavalicri’s principle, 292

Center, 186

Central angle, 192

Characterization theorem, 178

Chord, 186, 187

Circle, 186

Circles and spheres, Chapter 16, 186 fI.

Circular sector, 273

Closed triangle, 317

Collapsible compasses, 215

Collinear, 37

Commutativity, 2

Comparison theorem, 138

Complementary, 78

Complete in the sense’of Dedekind, 259

Completeness, Euclidean, 25

Complex, 169, 324

Computing machine, 86

Concentric, 186

Cone, 293
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Congruence(s), for angles, defined in terms
of distance, 77
for circles, 189
for segments, defined in terms of distance,
58
Congruence postulate(s), for angles, 104
for area, 154
for segments, 103
Congruences between triangles, Chapter 6,
81 ff.
Conjugates, in a quadratic extension field,
233
Consistency of the hyperbolic postulates,
Chapter 25, 348 ff.
Consistent, 131
Constructions with ruler and compass,
Chapter 19, 214 ff.
Continuity of the defect, 339
Continuous functions, 287
Convesy, 61, 325
Convex hull, 63
Convex polygonal region, 325
Convex quadrilaterals, 70
Coordinate system, 49, 208
Coplanar, 37
Corresponding angles, 124
Critical function, 308
Critical number, 307
Critically parallel, 312
Crossbar theorem, 69
Cross ratio, 352
Cross sections, of cones and pyramids,
293
Cubic equations, 236
Cylinder, 296

Declaration of Independence, 382
Dedekind cut, 261
Dedekind postulate, 250
Defect(s) of a polygonal region, 331
of small triangles, 337
of a triangle, 321
Degree measure for angles, 74
Descartes, 258
Diameter, 186, 187
Difference, of two sets, 28
Dihedral angle, 72
Directed angles, 57
Directrix, 286

Distance, formula, 209
in the Poincaré model, 118
postulates for, 4749
Distributive law, 3
Divisor, 395
Domain of a function, 41
Duplication of the cube, 228, 241

Edge, of a dihedral angle, 72
of a region, 153
of a triangular region, 153
Element, of a cylinder, 296
Empty set, 13
Equals, 90
Equals sign, meaning of, 3
Equiangular, 86
Equidistant, 176
Equilateral, 85
Equivalence, by finite decomposition, 327
for rays, 319
relation, 58
Euclidean completeness postulate, 25
Euclidean parallel postulate, 114
Eudoxus, 243
Exterior angle, 95
Exterior angle theorem, 96
for closed triangles, 317
Exterior of an angle, 65
Exterior of a circle, 186
Exterior of a sphere, 187

Face of a half space, 72
Factor theorem, 401
Fields, postulates for, 9
Figure, 37
Function, 40
definition of, 46
Fundamental theorem of algebra, 401

Gauss, 317, 383, 401

Generalized associative law, 29
Geometric inequalities, synthetically con-
. sidered, 107

Gettysburg Address, 382-383

Graph of a condition, 210

Great circle, 119

Greatest common divisor, 395

Half planes, 64



Half spaces, 72
BHeine, 149
Hilbert, 81, 106
Hyperbolic geometry, 118, Chapter 24,
306 fI.

Hypotenuse-leg theorem, 150

Image, 43
Impossible construction problems, 227
Incidence geometry, Chapter 2, 36 ff.
Incidence theorems, 64
Increasing, 406
Pindependence of the SAS postulate, 91
Independent, 131
Induced correspondence, 82
Induced isometries, 206-206
Induction principle, 19, 21
Inequalities, 11, 12
geometric, Chapter 7, 95 fi.
Inner measure, 277
Inscribed angle, 194
Inscribed broken line, 263
Integers, 22
Intercepted arc, 195
Interior, of an angle, 65
of a circle, 186
of a dihedral angle, 73
of a triangle, 67
Intersection, 28
Inverse of a function, 43
Inversions, 348
Isometry, 203

efferson, Thomas, 91, 383
Jordan measure in the plane, Chapter 22,
277 1.

Landay, E., 35, 262
Lebesgue, H., 290
Limits, as the mesh approaches zero, 268

of sequences, Chapter 31, 404 ff.
Lincoln, Abraham, 383
Line, 36
Linear equation in z and y, 210
Linear pair, 77

ine-circle theorem, 189

bachevsky, 383

Lobachevskian parallel postulate, 114
Locus, 178

INDEX 41
Logical identity, 90

Lower base, of a Saccheri qusadrilateral, 125
Lower bound of a sequence, 405

Lowest terms, 396

Major are, 192
Measure, 278
for angles, 74 .
of a dihedral angle, 184
in the sense of Jordan, 278
Measurable sets, 280
Metrisation theorem, 257
Midpoint, 60
Minor arc, 192
Model, 131
Models, 115
Monotonic, 278

Natural numbers, 19
Negative of a number, 2

Obtuse, 78

One-to-one correspondence, 42

Onto, definition of, for functions, 42

Open sentence, 12

Open triangle, 311

Opposite angle, 65

Opposite rays, 64

Opposite sides of a line, 64

Ordered field(s), 18
non-Archimedean, 388

Order relations, 18

Ordering of the real numbers, 11

Ordinate, 208

Origin, 208

Outer measure, 277

Pappus, 86
Parallel, 114
Parallelism, 122

for planes, 181
Parallelepiped, 206
Parallelogram, 133
Parallel projections, 134
Pasch, postulate of, 53
Perpendicular bisector, of a segment in a

plane, 178
of a segment in space, 178
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Perpendicular lines and planes in space,
Chapter 15, 176 ff.

Perpendicular rays and lines, 78

Perpendioularity, for planes, 185

Perpendiculars, 93

Pi, existence of, 265

Plane, 37

Plane-separation postulate, 62

Poincaré model, 115, 348 ff.

Point of tangency, 187

Polygonal inequality, 124

Polygonal region, 153

Polynomial of degree n, 400

Pons astnorum theorem, 85

Prime number, 396

Prisms, 206

Proportional, 142

Proportionality, constant, 142
synthetically defined, 243-246

Punctured plane, 348

Pyramid, 2956

Pythagorean theorem, 148
Euclid’s proof of, 163-164
proved using area theory, 162-163

Quadratic extensions, 232
Quadrilateral, 70

Radius, 186
Range of a function, 41
Rational numbers, 22
Ratios, synthetically defined, 249-250
Ray, 37, 55
Real numbers, Chapter 1, 1 ff., 411
Reciprocal, 3
Rectangle, 125
Redundant, 131
Reflections, 357
Relation, definition of, 46
Remainder theorem, 401
Rhombus, 133
Riemannian parallel postulate, 115
Right angle(s), 77

synthetically considered, 105
Right cylinder, 296
Right dihedral angle, 185
Rigid motion, Chapter 17, 202 ff.
Root of multiplicity k, 403
Rotation of the Cartesian model, 372

Ruler placement theorem, 50
Ruler postulate, 49
in the Poincaré model, 360

SAA theorem, 101
Saccheri, 130
Saccheri quadrilateral(s), 125, 319
SAS postulate, 84

in the Poincaré model, 364
SAS similarity theorem, 146
Scalene, 85
S-circle, 229
Secant line, 187
Secant plane, 190
Segment, 37, 54
Segment addition, 247
Segment-addition postulate, 103
Segment-addition theorem, 59
Segment-construction postulate, 103
Segment-construction theorem, 59
Segment-subtraction theorem, 60
Self-evident truths, 382
Semicircles, 192
S-cquation, 229
Sets, 28

countable, 408

finite, 408
Side(s), of an angle, 55

of a dihedral angle, 72

of a plane, 72

of a quadrilateral, 70

of a triangle, 55
Similar, 143
Similarities between triangles, Chapter 12,

142 fi.
S-line, 229
Smaller than, for angles, 79
Solid mensuration, Chapter 23, 291 fi.
Solution set, 13
Space-separation postulate, 72
Spherical model for Riemannian geometry,
119

Spherical sector, 305
Spherical segment, 305
S-point, 229
Square region, 165
Squeeze principle, 407
888 similarity theorem, 145
S8S theorem, 87



 Btar triangulation, 325
Strictly increasing, 405
Subdivisions, 324
Superposition, 366
Supplement postulate, 77
Supplementary angles, 77
Supremum, 250
Surd, circles, 231

field, 228, 410
field of order n, 235
lines, 231
of order n, 236
plane, 230
Synthetic postulates, 102

Tangent line, 187

Tangent plane, 190

Translation of the Cartesian model, 371
Transversal, 123

Trapezoid, 133

Triangle, 55

Triangle theorem, 198

Triangular region, 153

Triangulations, 169, 324
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Trisection of the angle, 228, 238
Two-circle theorem, 197

Union, 28

Unique factorization theorem, 397
Uniqueness of hyperbolic area theory, 345
Unit postulate, 155, 165

Unmarked rulers, 214 ,

Upper base, of a Saccheri quadrilateral, 125
Upper bound of a sequence, 405

Vertex, of an angle, 55

of a triangle, 55

of a triangular region, 153
Vertical angle theorem, 79
Vertical pair, 79
Vertical projection, 134
Volume(s), 291

of cylinders, 300

of prisms, 208

of pyramids and cones, 300

of a sphere, 303

Well-ordering principle, 21















