




Victor Gutenmacher 
N.B. Vasilyev 

Lines and Curves 
A Practical Geometry Handbook 

Based on an English translation of the original 
Russian edition by A. Kundu 

Foreword by Mark Saul 

Springer Science+Business Media, LLC 



Victor Gutenmacher N.B. Vasilyev (deceased) 
21 Westbourne Terrace, #4 
Brookline, MA 02446 
U.S.A. 

Original translation by 
AnjanKundu 
Saha Institute of Nuclear Physics 
Theory Group 
Calcutta 700 064 
India 

Cover illustrations by Michael Panov. 

AMS Subject Classifications: Primary: 51-XX, 51M05, 51Nxx; Secondary: OOA69, 65Dl8, 65Dl7, 
51-01 

Library of Congress Cataloging-in-Publication Data 
Gutenmakher, V. L. (Viktor L'vovich) 

[Priamye i krivye. English] 
Lines and curves: a practical geometry handbook 1 Victor Gutenmacher, N.B. Vasilyev. 

p.cm. 
"Based on an English translation of the Russian edition by A. Kundu." 
Vasilyev's name appears first on the earlier edition. 
Includes index. 

ISBN 978-0-8176-4161-0 ISBN 978-1-4757-3809-4 (eBook) 

DOI 10.1007/978-1-4757-3809-4 

I. Geometry-Problems, exercises, etc. I. Vasil'ev, N. B. (Nikolai Borisovich) II. 
Vasil'ev, N. B. (Nikolai Borisovich) Straight lines and curves. ill. Title. 

QA459.V3613 2004 
516' .0076--<1c22 

Printed on acid-free paper. 

© 2004 Springer Science+Business Media New York 

Originally published by Birkhauser Boston, Inc in 2004. 

2004051906 

Birkhiiuser 

Based on an English translation of the original Russian edition by A. Kundu, Straight Lines and 
Curves, Mir Publishers, Moscow, ©1980. 

All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Birkhliuser Boston, clo Springer Science+Business Media Inc., Rights 
and Permissions, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in con­
nection with reviews or scholarly analysis. Use in connection with any form of information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to property rights. 

(TXQIMP) 

987654321 SPIN 10746420 

www.birkhauser.com 



Foreword 

"Eh bien, mon Prince, so Genoa and Lucca are 
now just family estates of the Bonapartes ... " 

Tolstoy, War and Peace, Chapter 1 

Tolstoy begins his epic novel by cutting to the heart of the human experience. 
Starting with a picture of a fashionable Moscow soiree, he shows how the events 
of the day, which are about to overwhelm his characters, first begin to encroach on 
their consciousness. 

In just this way, the authors of Lines and Curves plunge their reader directly 
into the mathematical experience. The do not start with a set of axioms, or a list 
of definitions, or with an account of the concept of a locus. Rather, they present 
a simple, matter-of-fact discussion of a cat sitting on a moving ladder. This leads 
to various problems about the trajectories of moving points. The reader is led, 
almost imperceptibly, to classic results in synthetic geometry, looked at from a 
new perspective (p. 11), then on to new problems, whose traditional synthetic 
solutions are considerably more complicated than those offered here (p. 13), and 
finally through a variety of problems whose difficulty gradually increases as we 
work them. 

Things begin to look more traditional beginning with Chapter 2, as the authors 
provide a toolkit (an "Alphabet") for solving new problems, along with ways to 
combine these tools ("Logical Combinations"), and a new context ("Maximum 
and Minimum") in which to apply them. The structures of mathematics unfold 
naturally, and do not overwhelm the reader as they begin to encroach on his or her 
consciousness. 

This is not to say that the material is simple-only that it is rendered sim­
ple by the authors' art. There are difficult problems here. There are sometimes 
messy calculations and intractable formulas. But in every case, a careful analy­
sis, informed by the results of previous pages, will lead to further insight, to more 
general conclusions, and ultimately to the solution of more sophisticated problems. 

Slowly and naturally, the formality of mathematics emerges in a way which 
demonstrates its utility, not just its complexity or its efficiency. Indeed, the artful 
exposition makes the formalization seem the most intuitive way to express the 
result discussed, the informal analysis only a necessary step towards this deeper 
understanding. The discussion oflevel curves is an example of this: the "alphabet" 
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of the early chapters is revisited in the language of functions defined on the plane. 
The reader is caught thinking, "I knew that! But now I know how to say it." 

The authors' art reaches a wide range of readers. The novice will be gently 
charmed by the cat and the tiny rings, and led through material from a standard 
mathematics course-analytic definitions of conics, level curves and functions, 
advanced geometry of the triangle. The experienced reader will revisit old friends 
from new perspectives, as the authors reveal a new way of thinking about classic 
results. The expert will find new relationships among old friends, and new ways 
to think about classic results. 

And the same reader may enjoy each of these experiences. For this is a book 
to be read more than once, to be savored differently at different times in one's 
development. I hope you, dear reader, will enjoy your acquaintance with it as 
much as I have, whether this be your first reading or your nth. 

Mark Saul 
Bronxville High School (ret.) 

Gateway Institute 
City University of New York 
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Preface 

Definitions are very important. In all of mathematics, definitions tell us where to 
begin, and the right definitions make it easy for us to move forward from there. 
Careful definitions can often turn difficult concepts into clear and understandable 
ones, and they can make our intuition precise. The intuitive notion of a circle, for 
instance, is made precise when we define it as the set of points equidistant from a 
fixed point (the center); thus a definition can transform figures into mathematical 
language. For some people, a good definition is even a work of art. The great 
mathematician Alexander Grothendieck once wrote, "Around the age oftwelve ... 
I learned the definition of a circle. It impressed me by its simplicity and its evident 
truth, whereas previously, the property of 'perfect rotundity' of the circle had 
seemed to me a reality mysterious beyond words. It was at that moment. .. that I 
glimpsed for the first time the creative power of a' good' mathematical definition ... 
still, even today, it seems that the fascination this power exercises over me has lost 
nothing of its force." 

Grothendieck's reaction underscores how definitions can simplify "mysteri­
ous" mathematical ideas. As we will see, the same mathematical term may be 
defined in different ways. For example, a circle can also be described as an alge­
braic equation or as the trajectory of a moving point: Both these interpretations 
appear in our first problem in the Introduction, which is about the path of a cat that 
sits on a falling ladder. Throughout the book, different definitions for the same 
geometric object are extremely useful, and the choice of an appropriate definition is 
a key to solving many of the questions in this text, from the first section to the last. 

Lines and Curves is divided into chapters that contain sets of problems; each 
set is written like a short lecture, and the example problems are accompanied 
by complete solutions. We emphasize the geometric properties of paths traced 
by moving points, the loci of points that satisfy given geometric constraints, and 
problems of finding maxima and minima. Again and again, we will view geometric 
shapes not as static figures in space, but as points and lines in motion: we want to 
encourage the reader to look at geometry in this new light, to reformulate problems 
in the context of rotating lines, moving circles, and trajectories of points. The 
language of motion, infact, allows us to construct intuitive, straightforward proofs 
for concepts that can otherwise be very complicated. Overall, there are more than 
200 problems that lead the reader from geometry into important areas of modem 
mathematics. Some of these problems are elementary, others quite involved, but 
there is something for everyone. Hints and solutions to many of the exercises are 
also provided in an appendix. 
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The book can be used with an interactive educational software package, such 
as The Geometer's Sketchpad®, for exploring the loci of points and constructions. 
Not only can students work through the solutions, they can simultaneously draw 
diagrams using a pencil and paper or using various computer tools. Indeed, the 
book is meant to be read with pencil and paper in hand; readers must draw their 
own diagrams in addition to following the figures we have given. We hope that 
our readers will participate in each of our investigations by drawing diagrams, 
formulating hypotheses, and arriving at the answers-in short, by joining us in 
our experimental approach. For this edition, we have included various construc­
tions for the students to recreate alongside each section; these are repeated in the 
newly added final chapter on drawings and animation, and they demonstrate the 
importance of the experimental aspect in the study of geometry. 

We use a few special symbols throughout. Our main character, the Cat, reap­
pears in many of the chapters and is an emblem for the book as a whole. (Cats, 
naturally, are perfect geometers----consider Problem 4.10, which involves finding 
an optimal position: cats solve such real-life problems every day.) Vertical lines 
on the left indicate the statements of the problems. Depending on its position, the 
question mark (?) symbolizes the words "exercise," "verify," "think about why 
this is true," "is this clear to you," etc. Problems are flanked at beginning and end 
by a small white square, and an arrow (-J.,) after a problem statement indicates that 
the solution is provided in the Appendix "Answers, Hints, and Solutions" at end 
of the book. Particularly challenging problems are distinguished by an asterisk 
(*) next to the problem number. We assume that the reader is already well-versed 
in the fundamentals of Euclidean geometry, but for reference, we include a list of 
useful geometric facts and formulas in Appendices A and B. Finally, Appendix C, 
"A Dozen Assigments," features additional exercises which serve to clarify and 
extend the theorems and concepts presented in the main text. 

While Lines and Curves originated as a geometry textbook for high school 
students in the I. M. Gelfand Multidisciplinary Correspondence School, its pre­
requisites include basic plane and analytic geometry. Furthermore, its wide range 
of problems and unique kinematics-based approach make Lines and Curves espe­
cially valuable as a supplemental text for undergraduate courses in geometry and 
classical mechanics. 

This newly revised and expanded English edition is dedicated to my coauthor 
Nikolay Vasilyev, a great friend and longtime collaborator. Nikolay died in 1998. 
It was a joy to write this book with him. 

We are deeply grateful to Dr. I. M. Gelfand, whose advice influenced the first 
Russian edition. We would also like to thank I. M. Yaglom, V. G Boltyansky, and 
J. M. Rabbot, who read the initial manuscript; and T.1. Kuznetsova, M. V. Koley­
chuk, and V. B. Yankilevsky, who illustrated previous editions. 

Many remarkable people helped with this new edition: Joseph Rabbot, Wally 
Feurzeig, Paul Sontag, Garry Litvin, Margaret Litvin, Anjan Kundu, Yuriy Ionin, 
Tanya Ionin, Elizabeth Liebson, Victor Steinbok, Sergey Bratus, Ilya Baran, 
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Michael Panov, Eugenia Sobolev, Sanjeev Chauhan, Olga Itkin, Olga Moska, 
Lena Moskovich, Philip Lewis, Yuriy Dudko, and Pierre Lochak. It was Pierre 
Lochak who provided the English translation (from the original French) for the 
Grothendieck quote. Not only am I thankful to each of these individuals for their 
help, I am also happy to call them friends. 

Finally, I wish to thank the entire staff at Birkhauser and the anonymous re­
viewers whose input significantly improved the text. In particular, I am grateful to 
Avanti Athreya, who painstakingly edited the book and gave me wonderful sug­
gestions from beginning to end. I am also indebted to Elizabeth Loew and John 
Spiegelman for their exceptional efforts in production, and to Tom Grasso and 
Ann Kostant for their unflagging support and attention to detail. Without their 
collective assistance, this work would not have seen the light of day-at least in 
its current form. 

Victor Gutenmacher 
Boston, MA 

ix 



Contents 

Foreword v 

Preface vii 

Notation xv 

Introduction 1 
Introductory problems. 1 
Copernicus' Theorem 3 

1 Sets of Points 7 
A family of lines and motion 11 
Construction problems 12 
Additional problems . 15 

2 The Alphabet 19 
A circle and a pair of arcs 21 
Squares of distances . . . 23 
Distances from straight lines 29 
The entire "alphabet" . 33 

3 Logical Combinations 35 
Through a single point 35 
Intersections and unions. 39 
The "cheese problem". . 44 

4 Maximum and Minimum 47 
Where to put the point? 49 
The motorboat problem 51 

5 Level Curves 55 
The bus problem 55 
Functions on a plane 57 
Level curves . . . . . 57 
The graph of a function 58 
The map of a function . 62 
Boundary lines ... 62 
Extrema of functions 64 

xi 



6 Quadratic Curves 67 
Ellipses, hyperbolas, parabolas 67 
Foci and tangents . . . . . . . 70 
The focal property of a parabola 72 
Curves as the envelopes of straight lines 75 
Equations of curves . . . . . . . . . . . 78 
A note about the elimination of radicals 81 
The end of our "alphabet" . 82 
Algebraic curves. . . . . . . . . . . . . 87 

7 Rotations and Trajectories 89 
The cardioid . . . . . . . 89 
Addition of rotations .. 91 
A theorem on two circles 99 
Velocities and tangents 101 
Parametric equations 106 
Conclusion ...... 109 

8 Drawings, Animation, and the Magic Triangle 111 
The envelope of a family of lines 114 
The magic triangle ................ 115 
A tiny ring on a circle . . . . . . . . . . . . . . . 117 
Two pedestrians on a circle and the Steiner deltoid . 118 
How three points move around three symmetric circles 120 
The rotation of the Wallace-Simson line and the Feuerbach circle. 124 
Steiner's triangle and Morley's triangle. . . . . . . . . . . . . . . 125 

Answers, Hints, Solutions 127 

A Summary of Results from Analytic Geometry 135 

B Some Facts from School Geometry 137 
B.1 Proportional segments .. 137 
B.2 Distances, perpendiculars . 138 
B.3 The circle 139 
B.4 Triangles ......... 139 

C A Dozen Assignments 141 
C.1 Name the "letters" ........ 141 
C.2 Transformations and constructions 142 
C.3 Rotating straight lines. . . . . . . 142 
C.4 Straight lines and linear relations . 143 
C.5 The tangency principle (conditional extremum) 143 
C.6 Partitions .................... 144 

xii 



e. 7 Ellipses, hyperbolas, and parabolas 0 

e.8 Envelopes, infinite unions 0 

Co9 Tangents to cyc10ids 0 0 0 0 

ColO Equations of curves 0 0 0 0 

ColI Geometrical practical work 
e.12 Small investigations 0 

Index 

About Victor Gutenmacher 

About N. B. Vasilyev 

144 
145 
145 
146 
146 
148 

149 

153 

155 

xiii 



Notation 

lAB I = peA, B) 

peA, l) 

----ABC 

!::::.ABC 

{M: f(M) = c} 

the length of the segment AB 
(the distance between the points A and B)o 

the distance from the point A to 
the straight line to 

the value of the angle ABC 
(in degrees or radians) 

the arc of a circle with endpoints A and B 0 

triangle ABC 

the area of the triangle ABC 

the set of points M, which 
satisfies the condition f(M) = c 
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Introduction 

Introductory problems 

0.1. A ladder standing on a smooth floor against a 
wall slides down onto the floor. Along what curve does 
a cat sitting in the middle of the ladder move? 

Let us suppose our cat is calm and sits quietly. Then 
we can see that behind this picturesque formulation is 
the following mathematical problem. 

A right angle is given. Find the midpoints of all the 
possible segments of a given length d whose endpoints 
lie on the sides of the given angle. 

Let us try to guess what sort of set this is. Ob­
viously, as the line segment rotates with its endpoints 
sliding along the sides of the angle, its center describes 
a certain portion of a curve. (This is obvious from the 
first statement of the problem.) First, let us determine 
where the endpoints of this curve lie. They correspond 
to the extreme positions of the segment when it is verti­
calor horizontal. This means that the endpoints A and 
B of the line lie on the sides of the angle at a distance 
d /2 from its vertex. 

Let us plot a few intermediate points of this curve. 
If you do this accurately enough, you will see that all 
of them lie at the same distance from the vertex 0 of 
the given angle. Thus, we can say that: 

The unknown curve is an arc of a circle of radius 
d/2 with center at O. Now we must prove this. 

o We shall first prove that the midpoint M of the 
given segment K L (where IK LI = d) always lies at 
a distance d /2 from the point O. This follows from 
the fact that the length of the median 0 M of the right­
angled triangle K 0 L is equal to half the length of the 
hypotenuse K L. (One can easily be convinced of the 
validity of this fact by extending the triangle K 0 L to 
form the rectangle K 0 L T and by recalling that the 
diagonals K L and 0 T of the rectangle are equal in 
length and are bisected by the point of intersection M.) 
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Thus, we have proved that the midpoint of the seg­

ment K L always lies on the arc 'Air of a circle with 
center O. This arc is the set of points we were looking 
for. 

Strictly speaking, we have to prove also that an ar­

bitrary point M of the arc 'Air belongs to the unknown 
set. It is easy to do this. Through any point M of the 
~ 

arc AB we may draw a ray 0 M, mark off the segment 
IMTI = 10MI along it, drop perpendiculars TL and 
T K from the point T to the sides of the angle and the 
required segment K L with its midpoint at M is con­
structed. 0 

The second half of the proof might appear to be 
unnecessary: It is quite clear that the midpoint of the 
segment K L describes a "continuous line" with end­
points A and B; this means that the point M passes 

through all of the arc 'Air and not just through parts 
of it. This analysis is perfectly convincing, but it is not 
easy to put it into strict mathematical form. 

Let us now consider the motion of the ladder (from 
Problem 0.1) from another point of view. Suppose that 
the segment K L (the "ladder") is fixed and the straight 
lines K 0 and LO ("the wall" and "the floor") rotate 
correspondingly about the points K and L so that the 
angle between them is always a right angle. The fact 
that the distance from the center of the segment to the 
vertex 0 of the right angle always remains the same 
can, in fact, be reduced to a well-known theorem: If 
two points K and L are given in a plane, then the set 
of points 0 for which the angle KOl equals 90° is 
a circle with diameter K L. This theorem and its gen­
eralization, which will be given in Proposition E of 
Chapter 2, p. 22, will frequently help us in the solution 
of problems. Let us return to Problem 0.1 and ask a 
more general question. 

0.2. Along what curve does the cat move if it does 
not sit in the middle of the ladder? 

In the figure a few points on one such curve are 
plotted. It can be seen that it is neither a straight 
line nor a circle; i.e., it is a new curve for us. The 
method of coordinates-that is, the principles of ana-
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lytic geometry---can be used to help us detennine out 
what sort of curve this is. 

o We introduce a coordinate system by regarding 
the sides of the angle as the x and y-axes. Suppose 
the cat sits at some point M (x, y) at a distance a from 
the endpoint K of the ladder and at a distance b from 
L (where a + b = d). We shall find the equation 
connecting the x and y coordinates of the point M. 

If the segment K L is inclined to the axis Ox at an 
angle cp, then y / b = sin cp and x/a = cos cp; hence, for 
any arbitrary cp (0 :::: cp :::: ~) 

(1) 

The set of points whose coordinates satisfy this 
equation is an ellipse. Hence the cat will move along 
an ellipse. 0 

Note that when a = b = d /2, the cat sits in the mid­
dle of the ladder, and equation (1) becomes the equation 
of a circle x 2 + y2 = (d/2)2. We thus get one more 
solution-this time, an analytical solution-to Prob­
lem 0.1. 

The result of Problem 0.2 explains the construction 
of a mechanism for drawing ellipses. This mechanism, 
which is shown in the figure, is called Leonardo da 
Vinci s ellipsograph. 

Copernicus'Theorem 

0.3. Inside a stationary circle is another circle 
whose diameter is half the diameter of the first circle; 
this smaller circle touches the larger one from within, 
and it rolls along the larger circle without sliding. What 
line does the point K of the moving circle describe? 

The answer to the problem is astonishingly simple: 
the point K moves along a straight line-more cor­
rectly, along a diameter of the stationary circle. This 
result is called Copernicus' Theorem. 

Try to convince yourself of the validity of this the­
orem by experiment. (It is important here that tJ:te inner 
circle rolls without sliding, i.e., the lengths of the arcs 
rolling against each other are equal.) It is not difficult 
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to prove; we need only recall the theorem about the 
inscribed angle. 

D Suppose that the point of the moving circle, 
which occupies position A on the stationary circle at 
the initial instant, has come to the position K, and that 
T is the point of contact of the circle at the present 

moment of time. Since the lengths of the arcs fr 
and 'AT' are equal and the radius of the movable circle 
is half as large as that of the fixed circle, the angular 

size of the arc fr in degrees is double that of the arc 

'AT' . Therefore, if 0 is the center of the stationary 
circle, then according to the theorem on the inscribed 

angle (see p. 11), AoT = KaT. Hence, the point K 
lies on the radius A O. 

This argument holds until the moving circle has 
rolled around one quarter ofthe bigger circle (the circles 
then touch at the point B of the bigger circle, for which 
liOA = 90° and K coincides with 0). After this, the 
motion will be continued in exactly the same way-the 
whole picture will simply be reflected symmetrically 
about the straight line B 0 and then, after the point K 
reaches the opposite end A' of the diameter AA', the 
circle will roll along the lower half of the stationary 
circle and the point K will return to A. D 

Let us compare the results of problems 0.1 and 0.3. 
They are attractive for the following reason. Both prob­
lems deal with the motion of figures (the first with the 
motion of a segment, the second with the motion of 
a circle). The motion is quite complicated, but the 
paths of certain points appear to be unexpectedly sim­
ple. These two problems tum out to be not only related 
in appearance, but even the motions themselves, as dis­
cussed in in the problems, coincide with each other. 

Indeed, suppose a circle of radius d /2 rolls along 
the inside of another circle of radius d, and suppose K L 
is the diameter of the moving circle rigidly fixed to it. 
According to Copernicus' Theorem, the points K and 
L move along stationary straight lines (along the diam­
eters AA' and B B' of the bigger circle, respectively). 
Thus, the diameter K L slides with its endpoints along 
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two mutually perpendicular straight lines, i.e., it moves 
just like the segment in the Problem 0.1. 

We conclude with one more interesting problem 
connected with the motion of the segment K L: What 
set of points is covered by this segment-that is, what is 
the union of all possible positions of the segment K L 
during its motion? The curve bounding this set is called 
an astroid. It is possible to construct this curve in the 
following way: Let a circle of diameter d /2 roll inside 
another circle of diameter 2d, and draw the trajectory 
of any particular point of the rolling circle. This tra­
jectory will be an astroid. We shall discuss this curve 
and its close relatives in Chapter 7 of our book, where 
the reader will make a more detailed acquaintance with 
the interconnections among the problems we have dis­
cussed. 

However, before discussing such intricate prob­
lems and curves, let us pay careful attention to prob­
lems dealing specifically with straight lines and circles. 
Other types of curves will not appear in the first five 
chapters. 
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CHAPTER 1 

Sets of Points 

In this chapter we discuss the basic statements and prob­
lems in this book, and we illustrate them with a number 
of examples. We also provide an arsenal of concepts 
and methods for solving certain geometry problems. 
The chapter ends with a set of various geometric exer­
cises. 

We first discuss the most-frequently used term in 
the book. Indeed, it is in the title of this very chapter: 
a "seto/points." 

The concept of a "set o/points" is very general. A 
set of points could be any figure, one point or several, 
a line or a domain in a plane. 

In many of the problems here we have to find a 
set (or locus) of points that satisfies a certain condi­
tion. Answers to such problems are, as a rule, figures 
known from school geometry (straight lines, circles, 
sometimes pieces into which these lines divide a plane, 
etc.). The main task is to guess what sort of a figure 
the answer is. Thus, in Problem 0.1 about the cat, we 
guessed the answer-it was a circle, and in Problem 
0.3 the answer turned out to be a straight line. 

To completely solve these problems, however, we 
have to carry out a more thorough examination. We 
must establish the following: 

(a) All the points satisfying the given condition be­
long to the figure; 

(b) All the points 0/ the figure satisfy the given con­
dition. 
Sometimes both statements are obvious, the direct 
statement as well as its converse; sometimes only one 
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of them is obvious. Sometimes it is even difficult to 
guess the answer. 

Let us consider a few typical problems. 

1.1. A point 0 lies on a segment A C. Find the set 
of points M for which Moe = 2MAC. 

o Answer: The union of the circle with center 0 
and radius I A 0 I (omitting the point A) and the ray 0 C 
(omitting the point 0). 

Let us verify this claim. Suppose the point M of the 
unknown set does not belong to the straight line A 0 . 
We shall prove that the distance 1M 0 I from the point 
M to the point 0 is equal to IAOI. Let us construct 
the triangle 0 AM. According to the theorem on the 
exterior angle of a triangle, the angle MOe is equal 
in magnitude to the sum of the two interior angles not 
adjacent to it at A and M: 

GAM+AMO = Moe =2MAO. 

From the condition of the problem it follows immedi­
ately that GAM = AMO. Hence, AM 0 is an isosce­
les triangle, i.e., 10MI = IAOI. Therefore, M is on 
the circle we described. 

We shall now prove the validity of the converse 
statement: namely, that the condition is satisfied by 
any point M on the circle described in the answer. 

The triangle AM 0 is evidently isosceles; the val­
ues of its angles A and M are equal, and by the same the­

orem concerning the exterior angle, Moe = 2 MAC . 
Suppose now the point M belongs to the ray OC, 

M i= O. Then Moe = 2MAC = 0, and the condi­
tion is satisfied. 

The remaining points on the straight line A 0 do 
not belong to the unknown set. For such points M, the 
angles MOe and MAC are either both 180 degrees in 
measure, or one of the angles is 180 degrees and the 
other is zero (about the point 0, however, one can say 
nothing). 0 

1.2. Two wheels of radii rl and r2 (rl > r2) roll 
along a straight line l. Find the set of points of inter­
section M of their interior common tangents (see the 
figure). 
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o Answer: A straight line, parallel to i. 

Note that the point M lies on the axis of symmetry of 
the two circles, i.e., on the straight line 0102, where 
01 and 02 are the centers of the circles. Therefore, 
one can look for the set of points of intersection of the 
straight line 0102 with one of the tangents TI T2. 

Let us consider two such circles and let us draw 
their radii 01 TI and 02T2 to the points of tangency. 
We see that the point M divides the segment 0102 in 
the ratio rl / r2 (the right-angled triangles MOl TI and 
M 02T2 are similar). It is clear that the set of centers 
01 and the set of centers 02 are straight lines parallel 
to the straight line i. The set of points M which divide 
the segments 01 02, with endpoints on these straight 
lines, in the fixed proportion rl/r2, is itself a straight 
line parallel to i. 

Thus, the set of points of intersection of the tangents 
is a straight line parallel to the line i and placed at a 
distance 2rlr2/(rl + r2) from this line (?). Note that 
the conclusion is independent of 01 and 02. 0 

The next problem demands a more careful exami­
nation. We have to divide the plane into several parts 
and carry out a separate argument for each of those 
parts. 

1.3. Given a rectangle ABC D, find all points in 
the plane such that the sum of the distances from each 
point to two straight lines AB and CD is equal to the 
sum of the distances to the straight lines B C and AD. 

o Let us denote the lengths of the sides of the rect­
angle by a and b. First, consider a rectangle which is 
not a square: let a < b. 

The points lying inside the rectangle and also be­
tween the extensions of its larger sides do not satisfy 
the requirements of the problem, since one sum of the 
distances is equal to a and the other is not less than b. 

Let the point M now lie between the extensions of 
the smaller sides of the rectangle. Let y denote the 
distance from M to the nearest of the longer sides of 
the rectangle. Then its distance from the opposite side 
is equal to y +a. For the point to satisfy the requirement 
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of the problem, the equality y + (y + a) = b must hold, 
from which it follows that y = (b - a)/2. Therefore, 
among the points located between the extensions of 
the smaller sides of the rectangle, those and only those 
which lie at a distance (b - a)/2 from the closer and 
larger sides of the rectangle satisfy the condition. The 
set of points in this domain is the union of two segments 
EF and E' F'. 

Finally, we shall consider an arbitrary point M ly­
ing in the angle between the extensions of the two 
neighboring sides BC and DC of the rectangle. Let 
us denote by x and y the distances from the point M 
to the straight lines CD and BC, respectively. Then 
one can express the requirement of the problem as 
x + (x + b) = y + (y + a) or y = x + (b - a)/2. 

Note that the numbers x and y can be regarded as 
coordinates of the point M in the coordinate system 
with the axes Cx and Cy. In this coordinate system 
the equation y = x + (b - a)/2 defines a straight line 
parallel to the bisector of the angle xCy. Thus we have 
proved that among the points lying in the angle under 
consideration, those and only those which lie on the 
straight line y = x + (b - a)/2 satisfy the requirement 
of the problem. 

We can use the same argument for the remaining 
three angles. We have thus analyzed all the points of 
the plane. The set of all the points that satisfy the stated 
requirement is plotted in the figure. 

We also have to consider the case when the rectan­
gle is a square, i.e., when a = b, and to determine what 
set the required set of points reduces to. 

It can easily be seen that it will be the union of the 
square and the extensions of its diagonals (?). 0 

Note that since a rectangle has two axes of sym­
metry and the pairs of its symmetrical sides in the 
given conditions are totally identical, the unknown set 
of points must also have those two axes of symmetry. 
Therefore, in the solution it was sufficient to only con­
sider anyone of the quadrants into which the plane is 
divided by these axes, and not the whole plane. 
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In the case of a square, all four axes of symmetry 
of the square are also axes of symmetry of the set we 
are looking for. 

A family of lines and motion 

Together with sets of points we shall also consider 
sets of lines or, as they are frequently called, families 
of lines. 

In geometry problems that involve a family of cir­
cles or straight lines, it is often convenient to imagine 
the family as a moving circle or a straight line. We 
have already formulated and solved our first few prob­
lems in the language of motion, and we shall use this 
language repeatedly in what follows. Indeed, many 
problems and theorems can be explained more vividly 
if we reformulate them in the context of points and lines 
in motion. 

We don't have to look far for an example. Let us 
return to Problem 1.1. The result we found there can 
be given as follows: 

Suppose the straight line AM rotates about the point 
A with constant angular velocity w (i.e., it turns through 
an angle of magnitude w in unit time) and the straight 
line 0 M rotates abut the point 0 with angular velocity 
2w; at the initial point of time both lines coincide with 
the straight line A O. Then the point of intersection M 
of straight lines moves along a circle with center O. 

From this we can obtain a well-known theorem on 
the inscribed angle. If in time t the straight line AM 
rotates from the position AMI to the position AM2 
through an angle ¢, then the straight line OM rotates 
through an angle 2¢ or, in other words, the magnitude 
of the inscribed angle MIAM2 is half the magnitude of 
the corresponding central angle MI OM2. 

One can formulate this theorem more vividly as 
follows. 

A theorem about a tiny ring on a circle. A small 
ring is put on a wire circle. A rod which passes through 
this ring rotates around the point A of the circle. If the 
rod rotates uniformly with an angular velocity w, the 
ring in this case moves uniformly around the circle with 
an angular velocity 2w. 
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Let us give one more example of a theorem which 
may be formulated in the language of motion. 

Suppose the straight line I describes a uniform 
translation in a plane, i.e., it moves in such a way 
that its direction remains unchanged and its point of 
intersection M with a certain stationary straight line m 
moves uniformly along the line m. Then, the point of 
intersection N of the line I with any other stationary 
straight line n also moves uniformly. This is, in fact, 
a restatement of the theorem which states that paral­
lel straight lines cut off proportional segments on the 
sides of an angle. To make an analogy with the theo­
rem about the ring on a circle, we can express this in 
the following way. 

A theorem about a tiny ring on a straight line. A 
small ring is placed at the point of intersection of two 
straight lines. If one of the lines is fixed and the other 
describes a uniform translation (parallel to itself), the 
ring also moves uniformly. We shall encounter various 
families of straight lines later on. 

When one has to deal with a family of straight lines 
passing through a single point or parallel to a fixed 
direction, one or the other of these theorems about tiny 
rings may be useful. 

Construction problems 

In classical construction problems (how to "con­
struct a triangle," "mark off a segment," "draw a se­
cant," "find a point," etc.), it is usually meant that 
the construction should be done with only a ruler and 
compass. In other words, we can draw a straight line 
through any two points, draw a circle of a given ra­
dius and similarly find points of intersection of lines 
constructed. 

For the solution of such problems, it is convenient 
to consider circles and straight lines as sets of points 
satisfying a certain condition. 

1.4. A circle is given with a point A outside it. 
A Draw a straight line I which passes through the point A 

and is tangent to the circle. 
D If X is the point where the straight line I touches 

the circle, then the angle 0 X A is a right angle. The set 
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of points M for which the angle 0 M A is a right angle 
is, as we know, a circle with the diameter 0 A. 

Thus, one can carry out the construction of the 
straight line I as follows. Draw a circle with the seg­
ment 0 A as diameter. 

Find a point of intersection X of this circle with 
the given one (there are two such points symmetrical 
relative to the straight line 0 A). Finally, draw a straight 
line I through the points A and X. D 

1.5. A point A and a circle are given. Draw a 
straight line through the point A so that the chord cut off 
by the circle along this straight line has a given 
length d. 

D Let us look at the set of all straight lines on which 
the circle marks off a chord of given length d. These 
straight lines are tangents to a certain circle 0 whose 
center coincides with the center 0 of the given circle 
and whose radius is equal to J r2 - d 2 /4, where r is 
the radius of the given circle (?). The problem thus 
reduces to the previous one: draw through the point A 
a tangent to the circle 0 with center O. 

The problem has two solutions if the point A lies 
outside the circle 0: a unique solution if it lies on the 
circle 0, and no solution at all if it lies inside the circle 
O. D 

Often, it is possible to find the unknown set from 
the known one with the help of some simple transfor­
mations such as a rotation, asymmetry, a parallel dis­
placement (or translation), or a similarity transforma­
tion. (This method is especially useful in construction 
problems.) Let us recall how we construct the image 
of a straight line or a circle under a translation or a 
similarity transformation. 

For the straight line it is sufficient to plot two points 
A' and B', the images of two points A and B on the line, 
and to draw a straight line through the points A' and B'. 

For a circle of radius r, it is sufficient to plot the 
point 0', the image of its center 0, and to draw a circle 
with center 0' and the same radius (if the transforma­
tion is a translation) or of radius kr (if k is the ratio 
of magnification of a similarity transformation). We 
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shall give some typical examples of problems where 
transformations are used. 

1.6. A point A and a circle are given. Find the set 
of vertices M of the equilateral triangles AN M which 
have vertex N lying on the given circle. D 

Let N be an arbitrary point on the given circle. If 
we rotate the segment AN through 60° relative to the 
point A, then the point N falls on the vertex M of the 
equilateral triangle AN M. Hence, it is obvious that 
if we rotate the circle as a rigid figure about the point 
A through an angle of 60°, then each point N of the 
circle will fall on the corresponding third vertex M of 
the equilateral triangle AN M. 

Thus, all the points M lie on one of the two circles 
obtained from the given one by a clockwise or counter­
clockwise rotation about the point A through an angle 
of 60°. 

In exactly the same way we can show that each 
point M on either of the two circles we obtained is the 
vertex of some equilateral triangle AN M. D 

1.7a. An angle and a point D lying inside it are 
given. Construct a segment with its midpoint at the 
point D and its endpoints on the sides of the given 
angle. 

D Let us consider a set of segments which have 
one end lying on the side AC of the given angle (with 
vertex A) and their midpoint at the given point D. The 
other ends of these segments are obviously contained 
in the ray symmetric to the side AC of the angle with 
respect to the point D. 

The construction reduces to the following: con­
struct the point A' symmetric about the point A with 
respect to D, then draw through A' a straight line par­
allel to AC up to the point of intersection E with the 
straight line AB. Thus we obtain the required segment 
E F with its midpoint at D. The problem always has a 
unique solution. 

It is interesting to note that this very construction 
solves the following problem. 

1.7b. An angle and a point D lying inside it are 
given. Draw a straight line which passes through the 
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point D and which cuts off from the given angle a tri­
angle with minimum possible area. 

D We shall prove that the unknown straight line is 
the same straight line E F which we constructed in the 
previous problem, i.e., the segment between the sides 
of the angle that is bisected by the point D. 

Let us draw through the point D a straight line M N 
different from E F, and prove that 

(1) 

We can assume that the point M on the side AB lies at 
a greater distance from the vertex of the angle A than E 
(the case when M lies closer to A than to E is analyzed 
similarly, interchanging the roles of the sides AB and 
AC). It is sufficient to verify that 

(2) 

as inequality (1) follows readily from this. But inequal­
ity (2) is immediate since the triangle ED M completely 
contains the triangle ED N' symmetric to the triangle 
F D N relative to the point D. D 

Additional problems 

1.8. Two points A and B are given. Find the set 
of feet of the perpendiculars dropped from the point 
A onto all possible straight lines passing through the 
point B. 

1.9. Given a circle and a point A in a plane, find the 
set of midpoints of the chords cut off by the given circle 
on straight lines passing through the point A. (Consider 
all the possible cases: when the point A lies inside the 
circle, outside the circle, and on the circle.) 

1.10. Given two points A and B, find the set of 
points that are symmetric about the point A with respect 
to some straight line passing through the point B. 

1.11. Construct a circle touching two given parallel 
straight lines and passing through a given point which 
lies in between the straight lines. 

1.12. Construct a circle of a given radius r touching 
a given straight line and a given circle. 
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1.13. A circle and two points A, B lying inside it 
are given. Inscribe a right-angled triangle in the circle 
so that the two given points lie on the sides fonning the 
right angle. .J, 

1.14. Points A and B are given. The straight line 
AB touches two circles, one at the point A, the other 
at the point B, and the circles touch each other at the 
point M. Find the set of such points M. .J, 

1.15. Four points are given in a plane. Find the 
set of centers of the rectangles formed by four straight 
lines passing through each of the given points. .J, 

1.16. The sides 0 P and 0 Q of the rectangle 
o PM Q lie on the sides of a given right angle. Find 
the set of points M in the three following cases: 

(a) the length of the diagonal P Q is equal to a given 
value d; 

(b) the sum of the lengths of the sides 0 P and 0 Q 
is equal to a given value d; 

(c) the sum of squares of the lengths of the sides 
o P and 0 Q is equal to a given value d. 

1.17. Let the rectangle ABC D with diagonal length 
d be given; consider the sides of the rectangle as well 
as their extensions. Find the set of points P for which 
the sum of the squares of the distances from P to the 
four sides (or their extensions) of ABC D is equal to 
d2 • 

1.IS. Let A and B be two different cities. Find the 
set of points M having the following property: If one 
travels in a straight line from M to B, then the distance 
from M to A is always increasing. 

1.19. Suppose we know that in the triangle ABC 
the length of the median A 0 is: 

(a) equal to half the length of the side BC; 
(b) greater than half the length of the side B C; 
(c) less than half the length of the side B C . 
Prove that the angle A is, respectively, (a) a right 

angle; (b) an acute angle; (c) an obtuse angle. 

1.20. A circle and a point L are given in a plane. 
Find the set of midpoints of the segment LN, where N 
is an arbitrary point on the given circle. 
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1.21. Given a circle and a point lying outside it, 
draw through this point a secant such that the length of 
the segment of the secant outside the circle is equal to 
the length of the segment inside it. 

1.22. Through a point of intersection of two given 
circles, draw a straight line on which these circles cut 
off chords of equal length. 

1.23. Find the set of vertices C of the squares 
ABC D, where vertex A lies on a given straight line 
and vertex B is at a given point. 

1.24. (a) Where can the fourth vertex of a square 
be, if two of its vertices lie on one of the sides of a given 
acute angle and the third vertex lies on the other side? 

(b) Inscribe in a given acute triangle AB C a square, 
two vertices of which lie on the side A B . 

1.25*. What set of points does the midpoint of the 
segment between two pedestrians walking uniformly 
along straight roads describe? (Note: There are many 
different answers depending on how the pedestrians are 
walking. Try to find all of them.) -J, 

1.26*. Inside a given triangle ABC, all possible 
rectangles are inscribed, one side of which is on the 
straight line A B . Find the set of centers of all such 
rectangles. 

1.27. A wooden right-angled triangle moves on a 
plane so that the vertices of its acute angles move along 
the sides of a given right angle. How does the vertex 
at the right angle of this triangle move? 

1.28*. Two flat watches lie on a table. Both of them 
run accurately. Along what path does the midpoint M 
of the segment connecting the endpoints of their minute 
hands move? -J, 

1.29*. Through the point of intersection A of two 
given circles, a straight line is drawn which crosses 
these circles once more at the points K and L, respec­
tively. Find the set of midpoints of the segment K L. -J, 
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CHAPTER 2 

The Alphabet 

This chapter is a summary of theorems on sets or loci 
of points satisfying various geometric conditions. We 
shall gradually compile a whole list of such theorems 
and conditions which can be used in the solution of 
different types of problems. 

One can draw an analogy between the geometric 
problem of finding a set of points and the usual alge­
braic problem of solving an equation (or a system of 
equations or an inequality). Solving an equation or an 
inequality means finding the set of numbers satisfying a 
certain condition. Just as in an algebra course, different 
equations (for example, trigonometric, logarithmic) are 
usually reduced to linear or quadratic equations, often 
even complicated geometric conditions tum out to be 
merely new properties of a straight line or circle. 

The analogy between algebraic problems and prob­
lems about finding sets of points is not just a superficial 
one. Using analytic geometry, one type of problem 
can be converted into the other. Using this method, we 
shall see that geometric conditions, seemingly different 
at first glance, are covered by general theorems. 

We start our geometric alphabet with the most sim­
ple assertions. 

A. The set of points equidistant from the two given 
points A and B is a straight line perpendicular to the 
segment AB and passing through its midpoint. We 
shall call this straight line m the perpendicular bisector 
of the segment AB. It divides the plane into two half 
planes. The points in one of the half planes are closer 
to A than to B, and in the other closer to B than to A. 
The points A and B are symmetric relative to m. 

19 

................... . .......... A:...... B 

.......... m 



· ................................................. ;. 

<>o~» .... 
. ............ . 

\&J 
A B 

B. The set of points equidistantfrom two given inter­
secting straight lines II and 12 is two mutually perpen­
dicular straight lines which bisect the angles formed 
by the straight lines II and lz. 

These straight lines are the axes of symmetry of the 
figure formed by the straight lines II and 12. This set­
the cross bisector--divides the plane into four regions. 
In the figure two right angles-the set of points closer 
to the straight line II than to the line 12-are shown. 

C. Given a straight line I and a positive number 
h, the set of points at a distance h from I is a pair of 
straight lines 11,12, parallel to I and lying on opposite 
sides ofl. 

The belt between the straight lines II and 12 is the 
set of points which are at a distance less than h from 
the straight line I. 

D. Given a point 0 and a positive number r, the set 
of points at a distance r from 0 is a circle of radius r 
with center O. 

(This is the definition of a circle.) 
The circle divides the plane into two parts: the re­

gion inside and the region outside. For points inside 
the circle, the distance from the center is less than r 
and for points outside the circle it is greater than r. 

We give a few simple reformulations of the con­
ditions A, B, and C in the form of the following four 
problems. 

2.1. Find the set of centers of the circles passing 
through two given points. 

2.2. Find the set of centers of the circles touching 
two given intersecting straight lines. 

2.3. Find the set of centers of circles of radius r 

touching a given straight line. 

2.4. Given two points A and B, find the set of points 
M for which the area SAMB of the triangle AM B is 
equal to a given number c > O. 

We illustrate Proposition B with a less trivial 
example-we prove the theorem on the bisector of a 
triangle. 
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2.5. Let the cross bisector of the straight lines AC 
and B C intersect the straight line A B at the points E 
and F. Prove that 

IAEI 
IEBI 

= 
IAFI 
IFBI 

lAC! 
ICBI 

D Let M be one of the points E or F. Note that 

IAMI 
IMBI = 

(The triangles A C M and M C B have the same height 
CH.) 

The ratio of the areas can also be expressed in a 
different way; since the point M belongs to the cross 
bisector, it is equidistant from the straight lines A C and 
BC, hence, 

SACM = lAC!. D 
SMCB ICBI 

A circle and a pair of arcs 

The next step of our "alphabet" is one more variant 
of the theorem on the inscribed angle and the ring on a 
circle which we discussed in Chapter 1. 

EO. Two intersecting straight lines I A and I B rotate 
in the same plane about two of their points A and B 
with the same angular velocity w (here, the value of the 
angle between them obviously remains constant). The 
trajectory of the point of intersection of these straight 
lines is a circle. 

D Construct a circle 8 passing through three points: 
A, B and a particular position Mo of the point of inter­
section of the straight lines I A and lB. According to the 
theorem about the tiny ring on a circle given in Chapter 
1, the point of intersection of the straight line IA and 
the circle 8 moves uniformly along the circle 8 with an­
gular velocity 2w. The point of intersection of I B with 
the circle 8 moves in exactly the same way. As they are 
coincident at a particular instant (at the position Mo), 
they also coincide at any other instant of time. D 

We shall give an alternative variant of Theorem E 
without using the language of motion. 

21 

A 



, , , , , , 

,'~,/-

E. The set of points at which the given segment AB 
subtends an angle of given value cp (i.e., the set of points 
M for which Ifiijj = cp) is a pair of arcs with their 
endpoints at A and B which are symmetric about the 
straight line AB. 

The region bounded by these two arcs is a set of 
points M for which Ifiijj > cp. 

Note that if cp = 90°, then the set E will be a circle 
with diameter AB. We have already mentioned this 
following Problem 0.1. 

2.6. Chord AB of a given circle is fixed, and an­
other chord, CD, is moved along the circle without 
altering its length. Along what path does the point of 
intersection of the lines (a) AD and BC, (b) AC and 
BD move? 

2.7. Given two points A and B, find the set of 
vertices M and N of parallelograms AM B N with the 

given angle MAN = cpo 

N 2.Sa. A circle and two points A and B on it are 
given. Let M be an arbitrary point on this particular 
circle. A segment M N equal to the segment B M in 
length is marked off from the point M on the segment 
AM produced. Find the set of points N. 

D Let N be some point plotted as stated in the prob­

lem. Then IBMI = INMI and NliM = MNB. But 
since Ifiijj = MiiN + MNB, then AiiB = Ifiijj /2. 

N The value of the angle AM B for all points M lying on 
~ ---one of the arcs AmB is constant (see E): AM B = cpo 

Hence AiiB = cp /2, i.e., all these points lie on the arc 
~ 
AnB containing the angle cp/2. (The center of the arc 

~ 
lies at the midpoint of the arc Am B of the given circle 
(?).) 

~ 
Do all the points of the arc An B satisfy our require-

ments? No, not all of them. 
~ 

Note that when the point M runs along the arc AnB 
from the point B to the point A, the chord AM rotates 
about the point A from the straight line AB up to the 
tangent to the given circle at the point A. Hence, only 
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a part of the arc AnB and in particular the arc EnB 

~ 
(where E is the point of intersection of the arc AnB 
with the tangent at the point A) belongs to the set we 
are looking for. 

Note that we can take the point B as belonging to 
our set (when M coincides with B the "length" of the 
segment M B is equal to zero). Strictly speaking, the 
point E does not belong to our set; when the point M 
coincides with the point A, the direction of the straight 
line AM has no meaning. 

The points lying on the other side of the line AB 
are treated in a similar way. 

Thus, the unknown set of points consists of two arcs 
~ ~ 
EnB and E'n' B. 0 

We may solve Problem 2.Sa in a different way, if 
we notice that the points N and B are symmetric about 
the straight line eM, where C is the midpoint of the 
~ 

arc Am B. From this it follows that the set of points N 
reduces to the set of points found in Problem 1.10 for 
the points A and C. 

We present a problem similar to 2.Sa for the reader 
to examine in the same way. 

2.Sb. Solve Problem 2.Sa, but now assume that the 
segment M N is marked off in the opposite direction on 
the ray MA. 

Squares of distances 

Consider two points A and B in a plane and an 
arbitrary number c. 

F. The set of points M for which 

is a straight line perpendicular to the segment AB (in 
particular, when c = 0, we get the perpendicular bisec­
tor; see Proposition A). 

G Suppose lAB I = 2a. The set of points M for 
which 

is: 
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(a) a circle with its center at the midpoint 0 of the 
segment AB and of radius r = J(c - 2a2)/2, when 
c> 2a2 ; 

(b) a point 0, when c = 2a2 ; 

(c) the empty set, when c < 2a2• 

It is not difficult to prove Propositions F and 
G analytically, using (x, y)-coordinates, or with the 
Pythagorean Theorem (?). 

We shall not present a separate proof for each state­
ment, but deduce them both as corollaries of a more 
general theorem. But first we illustrate them with a 
few examples. 

2.9. Find the set of points for which the tangents 
drawn to two given circles are equal in length. 

D Let 01 and 02 be the centers of the given circles, 
r1 and r2 their radii (r2 2: r1), and let MT1 and MT2 be 
the tangents to them drawn from the point M. Using the 
Pythagorean Theorem, the condition IMT112 = IMT212 
may be written as 

or 
IM0212 -IM0 11 2 = rJ: - rf. 

According to Proposition F, the set of points M 
belongs to the straight line perpendicular to 0102. 

If the circles intersect, this straight line will pass 
through their points of intersection. For if A is one of 
these points, then 

and, consequently, the point A lies on this straight line. 
The required set of points in this case is shown in the 
figure; it is the union of two rays. 

If the circles are concentric (and r2 > rt>, the re­
quired set is empty. If the circles coincide, the set con­
sists of all the points outside the circle. If the circles 
are nonintersecting and nonconcentric, the answer will 
be a straight line. D 

The straight line discussed in Problem 2.9 is called 
the radical axis of the two circles. Suppose two 
nonintersecting circles are given. Then their radical 
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axis divides the complement of the two circles into two 
regions: thesetofpointsMforwhichJMTil > JMT2J 
and the set of points M for which JMTIJ < JMT2J. 

2.10. Find the set of centers of the circles which 
intersect each of two given circles at diametrically op­
posite points. 

2.11. (a) The sum of the squares of the lengths of 
the diagonals of a parallelogram is equal to the sum of 
squares of the lengths of its sides. Prove this. 

(b) If the diagonals of a convex quadrilateral 
AM BN are mutually perpendicular, then JAMJ2 + 
JBNJ2 = JANJ2 + JBMJ 2. Prove this . ..j.. 

o (a) Let the vertices A and B of the parallelogram 
AM B N be at a distance a from its center 0, let the 
vertices M and N at a distance r from 0, and let c = 
2(a2 + r2). Consider the figure opposite, where 0 is 
marked as the center of the parallelogram. In this figure, 

JOMJ = J(c - 2a2)/2,soaccordingtoPropositionG, 
the sum of the squares of the distances from the point 
M to the points A and B is equal to c. In the same way 
JANJ2 + JBNJ2 = c; hence 

JAMJ2 + JBMJ 2 + JANJ2 + JBNJ2 

= 2c = 4(a2 + r2) = JMNJ 2 + JABJ 2. 0 

We now present the general theorem which contains 
Propositions F, G, A, D of our alphabet. 

Theorem on the Squares of the Distances. The set 
of points M for which the condition 

is satisfied, where AI, A2, ... , An are given points, AI, 
A2, ... , An, /Laregivennumbers, isoneofthefollowing 
simple geometric figures: 

P./fAI + A2 + ... + An =1= 0, it will be a circle, a 
point, or the empty set. 

2°. /fAI + A2 + ... + An = 0, it will be a straight 
line, the entire plane, or the empty set. 

We shall give a proof of the theorem using analytic 
methods. 

o The square of the distances between the points 
M(x, y) and Adxk, Yk) is calculated according to the 
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fonnula 

1M AI2 = (x - Xk)2 + (y - Yk)2 

= x 2 + l- 2xkX - 2ykY + x; + y;. 

Consider the expression 

In order to write it in coordinates, it is necessary to sum 
together several expressions of the fonn 

As a result, condition (1) may be written in the fonn 
of the equation 

dx2 + dy2 + ax + by + c = 0, (2) 

whered = Al +A2 + ... +An. 
We shall now prove that equation (2) gives one of 

the figures enumerated above. 
10 • If d =F 0, we can transfonn (2) in the following 

manner: 

2 2 abc 
x + y + -x + -y + - = ° 

d d d 

or 

( .!!:..-)2 ( !!..-)2 _ b2 + a2 - 4dc (2') 
x+ 2d + Y+2d - 4d2 . 

We can see that this gives us: 
a circle with center at the point C( -a/2d,-b/2d), 

if the right-hand side of (2') is positive; 
a single point C( -a/2d,-b/2d), if the right-hand 

side equals zero; 
the empty set, if the right-hand side is negative. 
20 • If d = 0, equation (2) takes the fonn 

ax +by+c = 0. 

This will be: 
a straight line, if a2 + b2 =F 0, 
the entire plane, if a = b = c = 0, 
the empty set, if a = b = 0, c =F 0. D 
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As a rule, in a particular example, it is easy to de­
termine which of these cases is involved. Let us return 
again to Propositions F and G of our "alphabet" which 
have not been proved yet. 

Proof ofF. The condition IMAI2 -1M BI2 = c is a 
particular case of (1), where n = 2, Al = 1, A2 = -1, 
from which d = 0, and hence it determines either a 
straight line or a plane, or the empty set. 

Since the equation (x + a)2 - (x - a)2 = c always 
has a single solution, x = cj4a, one point of the set is 
on the straight line A B. Therefore, the required set is a 
straight line. It is clear from symmetry considerations 
that this straight line is perpendicular to the straight line 
AB.D 

Proof of G. The condition IMAI2 + IMBI2 = cis 
a particular case of (1). Here Al = 1, A2 = 1, d i= 0, 
and, therefore, the unknown set would be either the 
empty set, a point, or a circle. Since the points A and 
B appear in the condition symmetrically, the center of 
the circle lies at the midpoint of the segment A B . 

In order to find when the unknown set is a circle and 
to determine its radius, we find the points on the straight 
line AB which satisfy the condition IAMI2 + IBMI2 = 
c. To do this, note that the equation (x-a)2+(x+a)2 = 
c has a solution when c 2: 2a2, and 

2.12. Let a rectangle ABC D be given in the plane. 
Find the set of points M in the same plane for which 
IMAI2 + IMq2 = IMBI2 + IMDI2. 

o Answer: The entire plane. Let us prove this. Let 
ABC D be as shown in the figure. Then we seek the 
set of points M for which IMAI2 + IMq2 -IMBI2-
IMDI2 =0. 

In condition (1) (p. 25) put n = 4, Al = A2 = 1, 
A3 = A4 = -1 and Al +A2 +A3 +A4 = O. According 
to the theorem, the required set is either a straight line, 
or the empty set, or the entire plane. 

We note that the vertices A, B, C, D of the rectangle 
itself satisfy the condition. For example, the following 
equality IAAI2 + IAq2 - IABI2 - IADI2 = 0 (the 
Pythagorean Theorem) is valid for the point A. Thus, 
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the required set is neither the empty set nor a straight 
line. Hence, it follows that the required set is the entire 
plane. 0 

From the result of Problem 2.12, it follows that if 
ABC Dis a rectangle, then for any point M of the plane 
the following equality holds: 

Solve the following problem using this fact. 

2.13. A circle and a point A inside it are given. 
Find the set of the fourth vertices C of the rectangles 
ABC D, whose vertices Band D belong to the given 
circle. 

In the next problem, we introduce the notation 
p(M, m) to denote the distance between the point m 
and the line M. 

2.14. Prove that IMAI2 - IMBI2 = 2IABlp(M, 
m), where m is the perpendicular bisector of the seg­
ment AB, and IMAI > IMBI. 

We add to our alphabet one more proposition which 
is frequently used in geometry and is also a corollary 
from the theorem on the squares of the distances. 

H. The set of points M for which 

IMAI/IMBI = k, k > 0, k i= 1, 

is a circle whose diameter belongs to the straight line 
AB. 

Given any point M in the above set, the ratio of the 
distance from M to A to the distance from M to B is 
a constant. This set of points M is called the circle of 
Apollonius. 

o Let us rewrite condition H in the form 

This condition is a particular case of the condition 
(1) (p. 25) where n = 2,)" = 1, A2 = _k2 and hence 
if 1 - k 2 i= 0, the required set will be a circle, a point, 
or the empty set. Since the equation 
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always has two solutions when k 2 i- 1, there exist two 
points MI and M2 that lie in the intersection of this 
set and the straight line AB. Hence the unknown set 
is a circle. As the condition is symmetric relative to 
the straight line A B, the diameter of this circle is the 
segment MIM2. 0 

Incidentally, note that if M is a point of the circle of 
Apollonius, then the cross bisector of the straight lines 
AM and M B intersects the line AB at the points MI 
and M2. (This follows from the theorem on the cross bi­
sector in 2.5, since IAMII/IBMII = IAM21/IBM21 = 
IAMI/IBMI.) 

This argument is used in the next problem. 

2.15. Two billiard balls A and B are placed on the 
diameter of a circular billiard table. Ball B is hit in 
such a way that after one rebound from the side of the 
table, it strikes ball A. Find the trajectory of ball B if 
the stroke is not directed along the diameter. 

2.16. The points A, B, C, D are on a given straight 
line. Construct a point M in the plane from which the 
segments A B, Be and CD are seen at one and the same 
angle (i.e., subtend the same angle at M). 

Distances from straight lines 

So far in this chapter, we have mainly used various 
properties that define a circle. In the next two proposi­
tions of our alphabet, we will see only pairs of straight 
lines. 

We shall consider two intersecting straight lines II 
and 12 in a plane and a positive number c. 

I. The set of points M, the ratio of whose distances 
from the straight lines II and h is equal to a constant c 
(that is, p(M, 11)/ p(M, h) = c), is a pair of straight 
lines passing through the point of intersection of the 
straight lines II and 12. 

J. The set of points M, the sum of whose distances 
from the straight lines II 12 is equal to a constant c 
(that is, p(M, II) + p(M, h) = c), is the boundary of 
a rectangle with diagonals lying on the lines II and h. 

Before proving these theorems, let us illustrate their 
application in the following two examples. 
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2.17. Given a triangle ABC, find the set of all I 
points M for which SAMC = SBMC. 

o Let ha and hb be, respectively, the distances of 
the point M from the straight lines AC and BC. Then, 

IBCI· ha 
SBMC = 2 ' 

consequently hal hb = IACI/IBCI. 
Hence the required set of points M is the set given 

in Proposition I for the lines AC and BC and c = 
IACI/IBCI. Thus it represents a pair of straight lines 
passing through the point C. We shall show that one of 
the straight lines m contains the median of the triangle, 
and the other, I, is parallel to the straight line A B. For 
this, it is sufficient to take a single point on each of 
the straight lines and verify that the stated condition is 
fulfilled for them. 

Let us denote by h the altitude of the triangle drawn 
from the vertex C. Let N be a point on the straight line 
l. Then 

ICNI·h ICNI·h 
SACN = 2 and SBCN = 2 . 

Hence SACN = SBCN and the straight line I belongs to 
the required set. 

Let K be the midpoint of the side AB, i.e., IAK I = 
IK BI· Then SAKC = IAKI . h/2 = IBKI . h/2 = 
SBKC, and consequently, the whole line m belongs to 
the unknown set. 0 

In analogy with the cross bisector, one may call the 
pair of straight lines m and I "the cross median" of the 
vertex C of the triangle. 

Proposition J can, in essence, be reduced to the 
following problem. 

2.1S. Given an isosceles triangle A 0 B, prove that 
the sum of the distances from the point M on its base 
A B to the straight lines A 0 and BOis equal to the 
length of the altitude dropped from A onto the side 
BO. 

We shall not give geometrical proofs of Proposi­
tions I and J, although they are not at all difficult. But 
we shall give proofs using the language of motion. (As 
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was done above in Proposition EO "A circle and a pair 
of arcs.") Let us first formulate a lemma which gen­
eralizes the theorem on a tiny ring on a straight line 
(p. 11). 

Lemma. A tiny ring M is placed on two straight 
lines II and 12 at their point of intersection. If each 
straight line describes a uniform translatory motion, 
then the ring M moves uniformly along some straight 
line. 

D This straight line can be constructed by mark­
ing two different positions MI and M2 of the ring. 
The points of intersection of the moving straight lines 
with the stationary line MIM2 move uniformly. Since 
these points coincide with each other at two different 
instances in time (when the ring M passes through MI 
and M2), they must always coincide. D 

Proof of I. The set of points lying at a distance 
t from 12 and a distance ct from II for some positive 
number t consists of the four vertices of a parallelogram 
whose center is at the point 0 of intersection of II and 
12. For the set of points lying at a distance t from 12 is a 
pair of parallel lines (see C) and the set of points lying 
at a distance ct from II is also a pair of parallel lines; 
their points of intersection are the four vertices of the 
parallelogram. These four points satisfy the condition 
stated in I since 

ctft = c. 

By varying the number t from zero to infinity, we 
get all the points of the required set. 

By regarding t as "time," we see that the four 
straight lines constructed above move uniformly (re­
maining parallel to II and 12). By the lemma, their 
points of intersection, the rings, move along a straight 
line passing through the point O. D 

Proof of J. Draw two straight lines at a distance t 
from II and two at a distance c - t from 12 (0 ~ t ~ c). 
The four points of intersection of these straight lines be­
long to the required set. When the "time" t varies from 
zero to c, the straight lines move uniformly and each 
of the four points of intersection, by the lemma, moves 
through a segment. The endpoints of these segments, 
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which correspond to t = 0 and t = c, lie on the straight 
lines It and 12 and are the vertices of a rectangle. 0 

We shall now state a general theorem which in­
cludes Propositions B, C, I, J of the alphabet. Recall 
that p (M, m) represents the distance between the point 
m and the line M. Consider the set of points M for 
which 

)'-1p(M, 11) + A2P(M, 12) 

+ ... + Anp(M, In) = f.1.. (3) 

Here It, 12, ... , In are given straight lines, and )'-1, 

A2, ... , An, f.1. are given numbers. 
It is difficult to give an immediate description of 

this set in the entire plane. However, as we shall now 
see, in each of the pieces into which the straight lines 11, 
12, ... , In divide the plane, set (3) is, as a rule, simply 
a part of some straight line. Let us denote one of these 
pieces by Q. 

Theorem on the Distances from the Straight Lines. 
The set of points which satisfy condition (3), belonging 
to Q, is either (1) the intersection of Q with a straight 
line, i.e., a ray, a segment, or even a whole straight 
line, or (2) the whole of Q, or (3) the empty set. 

By finding the set on each of the pieces, we shall 
find the entire required set (as in 1.3). We shall give an 
analytic proof of the theorem. 

o Suppose we want to find the set of points on one 
of the pieces Q of the plane into which the lines 11, 
12, ... , In divide the plane. The piece Q of the plane 
can be imagined as the intersection of n half planes with 
boundary lines 11, h, ... , In. 

The equation akx + bkY + Ck = 0 of the straight 
line Ik can be selected such that inside the required half 
plane, akX + bkY + Ck ~ 0 and a~ + b~ = 1 (?); then 
for the point M(x, y) in this half plane, p(M,lk) 

ak X + bkY + Ck· 
In order to write the quantity A1P(M, II) + 

A2P(M,12) + ... + AnP(M, In) in coordinates, we 
have to add several linear expressions of the form 
Akakx + AkbkY + AkCk. As a result, condition (3) is 
expressed by a linear equation 

ax +by +c = O. 
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If a2 + b2 =1= 0, this equation represents a straight 
line. If a = b = 0, it represents either the entire plane 
or the empty set. 0 

One can obtain an alternative proof of this theorem 
by using Problem 2.14 to reduce the theorem to the 
previous theorem on the squares of the distances (given 
on p. 25). (?). 

2.19. (a) A right triangle ABC is given. Find the 
set of points for which the sum of the distances from 
the straight lines A B, B C and C A is equal to a given 
number f.L > O. i 

(b) Given a rectangle ABCD. Find the set of points 
for which the sum of the distances from the straight lines 
AB, BC, CD, DA is equal to a given number f.L. 

2.20.* (a) Three straight lines 10,/1,12 intersect at 
a single point. The value of the angle between any two 
of them is equal to 60°. Find the set of points M for 
which 

p(M, 10) = p(M, It> + p(M, 12). 

(b) An equilateral triangle ABC is given. Find the 
set of points M whose distance from one of the straight 
lines A B, B C, C A is half the sum of its distances from 
the remaining two lines. i 

The entire "alphabet" 

The set of points satisfying a certain condition is 
denoted as follows: Inside the braces a letter is first 
written to denote an arbitrary point of the set (in our 
case, it is, as a rule, the letter M, but it can be any 
letter); then there is a colon which is followed by the 
condition which specifies the required set of points. 

Let us now summarize the sets of our "alphabet": 

A. {M: IMAI = IMBI}. 

B. {M: p(M, 11) = p(M, h)}. 

c. {M: p(M, I) = h}. 

D. {M: IMOI = r}. 

E. {M: AMB = fP}. 

F. {M: IAMI2 -IMBI2 = c}. 
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G {M: IAMI2 + 1M BI2 = c}. 

H. {M: IAMI/IM BI = k}. 

I. {M: p(M, 11)/ p(M, 12) = k}. 

J. {M: p(M, II) + p(M, h) = c}. 

Recall that we have separated the propositions of 
our "alphabet" with the exception ofE into two groups: 

A, D, F, G, H and B, C, I, J. 

The sets in the first group are particular cases of the 
set 

{M: AdMAI2 + A21MA212 

+ ... + Ani MAnl2 = JL}, 

and the sets in the second group are particular cases of 
the set 

{M: AIP(M, It} + A2P(M, h) 

+ ... + AnP(M, In) = JL}. 

In Chapter 6 we shall add four more "letters" to our 
"alphabet" : 

K. {M: IMAI + IMBI = c}. 

L. {M: IIMAI-IMBII = c}. 

M. {M: IMAI = p(M, I)}. 

N. {M: IMAI/p(M, l) = c}. 

These sets are ellipses, hyperbolas, and parabolas. 
These curves also fall naturally into a single group 
known as the quadratic curves. 
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CHAPTER 3 

Logical Combinations 

In this chapter we have collected various problems 
which, as a rule, involve combinations of several geo­
metric conditions. In solving these problems, we will 
learn to classify points and to consider logical relations 
between conditions as operations on sets. 

Through a single point 

In the first few problems, we touch on the tradi­
tional subject matter of geometry. With the help of 
simple manipulations using the sets of our "alphabet," 
we will prove some theorems on various special points 
associated to a triangle. The central logic underlying 
much of our reasoning depends on the fact that equality 
is a transitive property: if a = b and b = c, then a = c. 

3.1. In a triangle ABC the rnidperpendiculars (per­
pendicular bisectors of the sides; see p. 19) intersect at 
a single point. This point is the center of the circum­
scribed circle of the triangle (the circumscribed circle 
is also known as the circumcircle). 

o The rnidperpendiculars me and ma of the sides 
A B and B C must intersect at some point O. Since the 
point 0 belongs to the rnidperpendicular me, then ac­
cording to A (Chapter 2), the equality lOA I = lOB I 
holds true. In exactly the same way, the fact that 
o belongs to the rnidperpendicular ma implies that 
lOBI = lOCI· Hence IOAI = lOCI and consequently 
the point 0 belongs to the rnidperpendicular mb of the 
side AC. 

We have thus proved that all three rnidperpendicu­
lars intersect at the point O. 0 
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3.2. Recall that an altitude of a triangle is the line 
that passes through a given vertex and is perpendicular 
to the opposite side. The three altitudes of a triangle 
ABC intersect at a single point, called the orthocenter 
of the triangle. 

o Through each of the vertices of the triangle, draw 
a straight line parallel to the side opposite the vertex. 
These straight lines fonn a new triangle A' B' C'. The 
points A, B, and C are the midpoints ofthe sides of the 
new triangle A' B' C'; the altitudes of the triangle ABC 
belong to the perpendicular bisectors of the sides A' B' , 
B' C', and C' A'. Hence by 3.1, they are concurrent. 0 

We shall give a second proof of 3.2, similar to that 
of 3.1. 

o Let us consider each of the altitudes as a set of 
points satisfying a certain condition. For this we shall 
use Proposition F of the "alphabet." 

We know that the set 

{M: IMAI2 -IMBI2 = d} 

is a straight line perpendicular to A B. Choose d such 
that this straight line contains the vertex C. To do this, 
we must take d = ICAI2 - IC B12. Thus, the straight 
line 

contains the altitude of the triangle dropped from the 
vertex C. 

One can consider the straight lines containing two 
other altitudes of the triangle in a similar way. 

ha = {M: IMBI2 -IMCl2 = IABI2 -IACl2 }, 

hb = {M: IMCl2 - IMAI2 = IBCl2 - IBAI2}. 

Suppose the first two straight lines he and ha inter­
sect at the point H. Then when M coincides with this 
point, both of the following equations hold: 
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IHAI2 -IHBI2 = ICAI2 -ICBI2, 

IH BI2 -IHCl2 = IABI2 -ICAI2 . 

Adding these two equalities, we obtain 

IHAI2 -IHCl2 = IABI2 -ICBI2 . 



Hence, the point H also belongs to the third straight 
line hb. 0 

3.3. Three bisectors of the angles of a triangle ABC 
intersect at a single point at the center of the inscribed 
circle of the triangle. (The inscribed circle of the trian­
gle is also known as the incircle of the triangle.) 

o Let a, b and c be the straight lines to which the 
sides of the triangle belong. The bisectors la and Ib 
of the angles A and B must intersect at some point 0 
(inside the triangle). For this point 0, the following 
equalities hold (note that these follow from Theorem B 
of our alphabet): 

p(O, b) = p(O, c) and 

p(O, a) = p(O, c). 

Hence, p ( 0, b) = p ( 0, a) and point 0 belongs to 
the bisector Ie of angle C of the triangle. 0 

Note. The set of points M in the plane for which 
p(M, c) = p(M, b) and p(M, a) = p(M, c) consists 
of four points: 0, 01, 02 and 03, the points of inter­
section of the two cross bisectors. Reasoning similarly 
as in the solution of 3.3, we find that the third cross 
bisector (the cross bisector of the straight lines a and 
b) also passes through these points. 

From here it follows that the six bisectors of the 
internal and external angles of the triangle intersect in 
threes at four points. One of these points is the center 
of the inscribed circle and the other three are the centers 
of the so-called escribed circles. 

Note that, if in an arbitrary acute-angled triangle 
010203 the points A, B, C are the feet of its altitudes, 
then 01, 02 and 03 are the centers of the escribed cir­
cles (sometimes called excircles) of the triangle ABC. 
The altitudes of the triangle 01 0203 are therefore the 
bisectors of the angles of the triangle ABC. 

3.4. The medians of a triangle intersect at a single 
point, called the centroid of the triangle (or the center 
of gravity of the triangle). 

This theorem can be proved by different methods. 
The first proof, which we give here, explains the 

term "the center of gravity" of the triangle. 
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o Let us place three weights W A, W B, W C ofthe 
same mass, say 1 g, at the vertices of the triangle ABC, 
and find the position of their center of gravity. The 
center of gravity of the two weights W A and W B lies 
at the midpoint of the segment AB; hence, the center 
of gravity Z lies on the corresponding median. We can 
show in the same way that Z belongs to the other two 
medians. Hence, all three medians intersect at the point 
Z.D 

We shall also give a proof along the same lines as 
the three previous proofs. 

o Suppose we are given a triangle ABC. The points 
of the medians of the triangle down from the vertices 
A, B, C satisfy the following conditions (respectively) 
(see 2.17): 

SAMB = SBMC, 

SBMC = SCMA· 

(1) 

(2) 

It is clear that the third condition follows from the 
first two, and so the medians intersect at a single point 
Z.D 

Note. The set of points that satisfy the conditions 
of equation (1) is, according to 2.17, a pair of straight 
lines which we call the "cross median." Thus, three 
such sets intersect at four points: Z, A', B', C'. Note 
that the triangle A' B' C' is just the triangle considered 
in the first proof of the theorem on the altitudes in 3.2. 

3.5. (a) Prove that for any three circles, the three 
radical axes of the pairs of circles either pass through a 
single point or are parallel (see 2.9). 

(b). Prove that if three circles intersect in pairs, 
then the three common chords of each pair of circles 
(or their extensions) pass through a single point or are 
parallel. ..j, 

3.6. (Torricelli's point). Prove that in an acute­
angled triangle ABC, there exists a point T (Torricelli' s 
point) at which all the sides subtend the same angle (i.e., 

such that ill = ifiC = eTA). 
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3.7. Consider all the possible triangles with a given 
base AB with the vertex angle equal to cp. Find the 
set of: 

(a) points of intersection of the medians, 
(b) points of intersection of the angle bisectors, ..j, 
(c) points of intersection of the altitudes. ..j, 

3.8. (a) Three straight lines a, b, c (intersecting 
in pairs) pass through three given points A, B, C, re­
spectively. The lines rotate with angular velocity w. 
Prove that at some point in time these straight lines 
pass through a single point. ..j, 

(b) Prove that three circles symmetric to the cir­
cumcircle of the triangle ABC relative to the straight 
lines A B, B C and C A pass through a single point, the 
orthocenter of the triangle ABC. ..j, 

3.9. (Ceva's Theorem). Points Cl, Ai, Bl are se­
lected on the sides A B, B C, C A of the triangle. Prove 
that the segments AA1, BBl and CCl are concurrent 
(intersecting at a single point) if and only if the condi-
tion 

IACll . IBAll . ICBll = I 
IC1BI lAiC! IB1AI 

is satisfied. ..j, 

3.10. Suppose we are given a triangle ABC with 
sides AB, BC, and CA. Let the points Cl, Ai, Bl lie 
on the sides AB, BC, CA, respectively, and suppose 
that at each of those points, we erect a perpendicular to 
that side. 

Prove that these three perpendiculars are concurrent 
if and only if the condition 

IAC1I2 + IBAll2 + ICBll2 

= IAB1I2 + IBCll2 + ICAll2 

is satisfied. ..j, 

Intersections and unions 

We now single out the basic operations that will we 
be using constantly. 

Suppose two or more sets of points are given. The 
set of all points belonging simultaneously to all the 
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given sets is called the intersection of the sets. The set 
of all points belonging to at least one of the given sets 
is called the union of these sets. 

When a problem requires us to find those points that 
simultaneously satisfy several conditions, we find the 
set of points satisfying each of the conditions separately 
and then take the intersection of these sets. We meet a 
similar situation in algebraic problems as well. The set 
of solutions of the system of equations 

{ /J(x) = 0 
h(x) = 0 

is in fact the intersection of the solution sets of the 
individual equations making up this system. 

When a problem requires us to find those points that 
satisfy at least one of several conditions, we find the 
set of points satisfying separately each of the conditions 
and then take the union of these sets. This is what we 
do, for example, when solving the equation f (x) = 0 
when the left-hand side may be factorized as 

f(x) = /J(x)h(x). 

We find the solution set for each of the equations 
/J (x) = 0, h (x) = 0 and then take their union. 

There is another concept which gives rise to an al­
gebraic association: namely, the partition (or subdi­
vision) of a domain. In order to solve the inequality 
f(x) > 0 or f(x) < 0, it is usually sufficient to solve 
the corresponding equation f (x) = O. The points ob­
tained divide the domain of definition of the function 
f (an interval or the whole line) into pieces, in each 
of which the function does not change sign. In exactly 
the same way, the sets of points of a plane for which 
various inequalities hold are usually domains that are 
themselves bounded by the lines on which the corre­
sponding equalities are satisfied. We have already seen 
many simple examples of this type in Chapter 2. 

We shall encounter more complicated partitions and 
combinations of sets in the next problem. 

3.11. Let two points A and B be given in a plane. 
Find the set of points for which the triangle AM B is: 

(a) a right-angled triangle, 
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(b) an acute-angled triangle, 
(c) an obtuse-angled triangle. 
D (a) The triangle AM B is a right-angled triangle 

if one of the following three conditions is met: (1) 

AMB = 90°, (2) JiAiJ = 90°, (3) ARM = 90°. 
The unknown set is, therefore, the union of the fol­

lowing three sets: (1) a circle with IABI as diameter, 
(2) a straight line IA passing through the point A and 
perpendicular to the segment AB, (3) a straight line IB 
passing through the point B and perpendicular to the 
segment AB. 

We must exclude from this union the points A and 
B on the line AB, as they give rise to a "degenerate" 
triangle AM B. D 

D (b) The triangle AM B is an acute-angled tri­
angle if the following three conditions are simultane­
ously satisfied: (1) AMB < 90°, (2) JiAiJ < 90°, (3) --ABM < 90°. 

The required set is therefore the intersection of the 
following three sets: (1) the exterior of a circle with 
the diameter AB (see Chapter 2, Proposition D); (2) 
the half plane bounded by IA containing the point B, 
with the boundary line IA removed; (3) the half plane 
bounded by I B containing the point A with the boundary 
line I B removed. 

The intersection is the strip between the lines I A 

and IB from which the circle with diameter AB is re­
moved. D 

D (c) Note that every point M of the plane (not lying 
on the straight line AB) satisfies one of the following 
three conditions: either (a) !:::.AM B is a right-angled 
triangle, or (b) !:::.AM B is an acute-angled triangle or (c) 
!:::.AM B is an obtuse-angled triangle. Note, moreover, 
that these conditions are, however, mutually exclusive. 
Hence, all the points of the plane that belong neither 
to (a) nor to (b) must belong to the set (c). This set is 
the union of a disc-that is, the region inside the circle 
but not including it-and two half planes (with the line 
AB removed). D 

3.12. In a plane, two points A and B are given. 
Find the set of points M such that: 

(a) the triangle AM B is an isosceles triangle, 
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(b) the side AB is the largest side of the triangle 
AMB, 

(c) the side AM is the largest side of the triangle 
AMB. 

3.13. A square with sides of unit length is given 
in a plane. Prove that if a point of the plane lies at a 
distance of not more than 1 from each of the vertices 
of this square, then it lies at a distance of not less than 
1/8 from each side of the square. 

D The set of points M at a distance of not more 
than 1 from each of the four vertices of the square is 
the intersection of four circles of unit radius, each with 
center at one of the vertices of the square. It is a region 
bounded by four arcs, and it lies in the interior of the 
square. This region has four "vertices"; each vertex 

lies at a distance of 1 - f from the nearest side. Let 
us check that this number is greater than 1/8: 

J3 1 7 J3 49 
1 - - > - {:=:=} - > - {:=:=} - > 3. 

2 8 8 2 16 

It is thus clear that all the points of our set are at a dis­
tance of more than 1/8 from the sides of the square. D 

3.14. Three straight lines passing through a point 0 
of the plane divide the plane into six congruent angles. 
Prove that if the distance of the point M from each of 
the straight lines is less than 1, then the distance 10M I 
is less than 7/6. 

3.15. Given a square ABC D, find the set of points 
that are closer to the straight line AB than to the lines 
BC, CD and DA. 

3.16. Given a triangle ABC, find the set of points 
M in the plane for which the area of each of the triangles 
AM B, B M C, and C M A is less than that of the triangle 
ABC. 

3.17. Circles are drawn with the sides of an arbi­
trary convex quadrilateral ABC D as diameters. Prove 
that they cover the whole quadrilateral. 

D Assume that inside the quadrilateral there exists 
a point M lying outside the circles. Then according to 
Chapter 2, Proposition E, all the angles AM B, B M C, 
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C M D and D M A are acute and their sum is less than 
3600 , which is impossible. D 

3.18*. A portion of a forest has the form of a convex 
polygon of area A and perimeter P. Prove that we can 
find a point in the forest that is at a distance greater than 
A / P from the edge of the forest. 

3.19*. A square ABCD is given in a plane. Find 

the set of points M such that AMii = CiiD. 
In the problems that follow, we have to deal with 

the union of an infinite number of sets. 

3.20. (a) A point 0 is given. Consider the family 
of circles of radius 3 whose centers are located at a 
distance of 5 units from the point 0, and the family 
of circles of radius 5 whose centers are located at a 
distance of 3 units from the point o. Prove that the 
union of the first family of circles coincides with the 
union of the second one. 

(b) Find the set of midpoints of the segments which 
have one end lying on one given circle and the other 
end on the other given circle. 

D (b) Denote the radii of the given circles by rl and 
r2 and their centers by 01 and 02, respectively. Let us 
first fix some point K of the first circle and find the set of 
midpoints of the segments that have one end at the point 
K. This set will obviously be a circle of radius r2/2 
with its center Q at the midpoint of the segment K 02. 
(This circle is the result of the similarity transformation 
of the circle (02, r2) with coefficient 112 and center K.) 
Note that the point Q lies at a distance rt/2 from the 
point P, the midpoint of the segment 01 02. 

If we move the point K around the circle (01, rt), 
then the point Q will move around the circle of radius 
rl/2, with center at the point P. Thus, the required set 
is the union of all circles of radius r2/2 that have their 
centers lying on a circle of radius rl/2 with its center 
at the point P. 

What this union of an infinite number of circles 
turns out to be can be seen in the figure. 

Consequently, the set of all points satisfying the 
condition given in the problem is a ring with external 
radius (rl + r2) /2 and internal radius Irl - r21/2. When 
rl = r2 this set becomes a circle. D 
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3.21. A point 0 is located on a straight line I, the 
boundary line of a half plane. In this half plane, n vec­
tors of unit length are drawn from the point o. Prove 
that if n is odd, the length of the sum of these vectors 
is not less than 1. ,j, 

3.22. A straight road passes through a village A 
surrounded by meadows on all sides. A man can walk 
at a speed of 5 km/h along the road and at 2 km/h 
through the meadows. If he starts from A and walks 
for one hour, what is the set of all possible points he 
can reach? 

The "cheese" problem 

3.23. Is it always possible to cut a square piece of 
cheese with cavities into convex pieces so that there is 
only a single cavity in each piece? 

Formulated mathematically, this problem is as fol­
lows. 

Several pairwise nonintersecting circles are located 
inside a square. Is it possible to divide this square into 
convex polygons such that in each of them there is 
exactly one circle? (Recall that a polygon in convex if, 
given any two points in the polygon, the line connecting 
them lies entirely within the polygon.) 

o The answer turns out to be affirmative. In any 
particular example in which the number of circles is 
not large, one can easily divide the square into convex 
polygons. But to give a general proof, we must give a 
method for partitioning the square which can be used 
for any number and any positioning of the circles. 

Let us first consider a simpler problem: the radii 
of all the circles will be taken to be equal. We propose 
the following method for partitioning the square. We 
shall first describe it briefly in a single sentence: 

Adjoin to each of the circles those points of the 
square that are nearer to this circle than to the other 
circles; these sets will be the required convex poly­
gons (?). 

We shall explain this in more detail. Denote the 
centers of the given circles by Cl, C2, ... , Cn. Let Cj 
be one of these centers. Let us find the set of points 
whose distance from Cj is not greater than the distance 
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from the other centers C}. The set of points of the 
plane that are nearer to Ci than to C} (for a fixed j) is a 
half plane bounded by the perpendicular bisector of the 
segment CiC} (see A). We are interested in the points 
that are nearer to Ci than to the other centers; i.e., the 
points belonging to all such half planes corresponding 
to the different C} (j i= i). This set of points, which 
is the intersection of all these (n - 1) half planes, will 
clearly be a convex polygon. (?) Since each half plane 
contains the point Ci and the entire circle with its center 
at C i (the circles with centers C i and C) do not intersect 
and have equal radii), the intersection also contains the 
circle with its center at Ci. There is such a polygon 

{M: IMCii S IMC} I for all j i= i} 

for every center Ci. It is clear that these polygons cover 
the entire square and have no interior points in common. 
In order to determine to which particular polygon the 
point M belongs, it is sufficient to answer the question, 
"Which of the centers Ci is closest to the point M?" 
If there are two or more such centers "closest to M," 
then M lies on one of the perpendicular bisectors­
that is, on a boundary line or line of partition between 
the polygons. Thus, the square is divided into convex 
polygons each of which contains exactly one circle. 

As a good example, let us consider the case when 
the centers of the circles are located at the nodes of a 
net formed by similar parallelograms. 

Our method of partition can be simply described in 
the following way. 

Draw the minor diagonals in all the parallelograms 
of the net. This will yield a net with the same nodes, 
made from similar acute-angled triangles. Inside each 
triangle, draw the midperpendiculars. The hexagons 
thus obtained form the required partition of the square. 
Thus, we have analyzed the case in Problem 3.23 when 
all the circles have equal radii. 

In the general case, when the radii of the circles 
are different, the square can be divided in the follow­
ing manner. From each point located outside the given 
circles, draw tangents to all the circles. The set cor­
responding to the circle y will consist of the points of 
the circle y and those points for which the lengths of 
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o 
the tangent to the circle y is less than the length of the 
tangents to the remaining circles. This set is the in­
tersection of several half planes containing the circle 
y. The boundary lines of these half planes will be the 
radical axes of the circle y and each of the other cir­
cles (see problems 2.9 and 3.5). In this way the whole 
square will be represented as the union of convex poly­
gons, with no interior points in common, such that each 
polygon contains its own circle. D 
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CHAPTER 4 

Maximum and Minimum 

This chapter starts with very simple exercises concer­
ing the greatest and the least possible values of a certain 
quantity. The chapter ends, however, with complicated 
research questions. Maxima and minima problems can 
usually be reduced to the examination of some func­
tion which is given analytically, but here we have a 
collection of problems in which geometric considera­
tions prove to be more effective. We will see how, in 
the solution of similar problems, different sets of points 
are used. 

4.1. At what angle to the bank of a river should 
one direct a boat so that, while crossing the river, it is 
carried as little as possible by the current, assuming that 
the speed of the current is 6 km/h and the speed of the 
boat in still water is 3 km/h? 

o Answer: at an angle of 60°. We have to direct the 
boat so that its absolute velocity (the velocity relative 
to the bank) makes the largest possible angle with the 

--:=-+. 
bank (?) (see the figure). Let the vector 0 A be the 
velocity of the river current and AM the velocity of the 
boat relative to the water. The sum oA + AM = 0 M 
represents the absolute velocity of the boat. The length 
of the vector AM is equal to 3 and we can direct this 
vector arbitrarily. The set of possible positions of the 
point M is a circle of radius 3, with center at the point A. 
It is clear that among all the vectors OM, only OMo, 
which is directed along the tangent to the circle, makes 
the largest angle with the bank. 
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We obtain a right -angled triangle, one leg of which 
is equal to half the hypotenuse. Such a triangle has one 
angle equal to 60°. 0 

4.2. From the triangles with given base BC and 
A = cp, select the one whose inscribed circle has the 
largest radius. 

o Let us consider the points A which lie on one 
side of the straight line BC and for which iiAC = cpo 
The set of centers of the inscribed circles of the triangle 
ABC is the arc of a circle with endpoints B and C (see 
3. 7b). It is obvious that the isosceles triangle will have 
the largest radius of the inscribed circle. 0 

4.3. From all the triangles with a given base and a 
given vertex angle, select the triangle with the largest 
area. 

4.4. Two pedestrians walk along two mutually 
perpendicular roads, one at a speed of u and the 
other at a speed of v. When the first pedestrian 
crosses the second pedestrian's road, the second pedes­
trian still has d kilometers to go to reach the cross­
ing. What will be the minimum distance between 
them? i 

4.5. A straight road passes through a village A sur­
rounded by meadows on all sides. A man can walk at a 
speed of 5 kmIh along the road and at 2 kmIh through 
the meadows (in any direction). 

Along what route should the man walk to go as 
quickly as possible from village A to cottage B, which 
is situated at a distance of 13 km from the village and 
at a distance of 5 km from the road? 

4.6. Two intersecting circles are given. Draw a 
straight line I through one of their points of intersection, 
A, such that the distance between I and the other points 
of intersection (that is, the points other than A where 
the circles intersect) is as large as possible. i 

4.7. A point 0 is given in a plane. One of the 
vertices of an equilateral triangle must lie at a distance 
a from the point 0 and a second vertex at a distance 
h. What is the maximum distance from 0 at which the 
third vertex can be situated? 
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o Answer: a + b. Let AM N be an equilateral 
triangle for which lOA I = a and ION I = b. In order 
to answer the question we may restrict ourselves to 
triangles having a vertex fixed at a definite point A; 
for, when the triangle is rotated as a rigid body about 
the point 0, none of the distances changes. Thus, we 
consider the point A fixed at a distance a from 0, while 
N runs around the circle of radius b with center O. 
What position may the point M occupy? The answer 
has already been obtained in Problem 1.9: M lies on 
the circle obtained from the given circle by rotating it 
through 60° about the point A.I The center 0' of the 
rotated circle obviously lies at a distance a from the 
point 0 (since Do 00' A is equilateral). The radius of 
the rotated circle, as for the given one, is equal to b. 
Therefore, the maximum distance from 0 to the third 
vertex M is equal to a + b. 0 

From this problem, we can deduce the following in­
teresting corollary: the distance from an arbitrary point 
in the plane to one of the vertices of an equilateral tri­
angle is not greater than the sum of the distances from 
the point to the other two vertices. 

4.8. What is the maximum distance at which the 
vertex M of a square A K M N may lie from the point 
0, it if is known that 

(a) 10AI = 10NI = 1; 

(b) 10AI = a, 10NI = b? 

4.9. From all the triangles with a given base and 
a given vertex angle, select the one having the largest 
perimeter . ..j.. 

Where to put the point? 

4.10. A cat knows the three exits A, E, C of a 
mouse's hole. Where should the cat sit in order to 
minimize its distance to the furthest hole? 

o Let us consider circles of equal radius r with their 
centers at the points A, B and C. The required point 

1 We may take any of the circles, obtained by clockwise or coun­
terclockwise rotation-they will lie at the same distance from O. 
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K -the position of our cat-is detennined as follows. 
We must find the minimum radius ro for which the 
three regions within the circles overlap---that is, the 
minimum radius for which the three regions within the 
circles share a common point. This is the required point 
K. For if M is any other point, then it lies outside one 
of the circles and hence its distance from one of the 
vertices is greater than roo 

In the case of an acute-angled triangle ABC, the 
point K is the center of the circumscribed circle, and in 
the case of a right-angled or an obtuse-angled triangle 
ABC, the point K is the midpoint of the largest side. D 

D The point K can also be found in the follow-
C ing way (?). Consider the circle of minimum radius 

which surrounds all three points. Then the point K is 
its center. D 

We shall give another approach to the solution of 
Problem 4.10. 

D Divide the plane into three sets of points: 

(a) {M: 1M AI ::: 1M BI and 1M AI ::: IMCI}, 

(b) {M: 1M BI ::: IMAI and 1M BI ::: IMCI}' 

(c) {M: IMCI ::: 1M BI and IMCI ::: 1M AI}. 

These three regions in the plane are bounded by 
the perpendicular bisectors of the sides of the triangle 
ABC. If the cat M sits in region (a), then the vertex 
farthest from it will be A; if it sits in region (b), then 
the vertex farthest from it is B; if the cat sits in region 
(c), then the vertex farthest from it is C. 

If ABC is an acute-angled triangle, then in each 
of the three cases the best thing for the cat to do is to 
sit at the "vertex" of the corresponding region «a), (b) 
or (c»: that is, the cat should sit at the center of the 
circumcircle. 

If ABC is a right-angled or an obtuse-angled trian­
gle, then obviously the best thing for the cat to do is to 
sit at the midpoint of the largest side of the triangle. D 

4.11. A bear lives in a part of a forest surrounded 
by three straight railway lines. At which point of the 
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forest should he build his den in order to maximize his 
distance from the nearest railway line? 

4.12*. (a) Three crocodiles live in a circular lake. 
Where should they lie so that the maximum distance 
from any point of the lake to the nearest crocodile is as 
small as possible? 

(b) Solve the same problem when there are four 
crocodiles. 

The motorboat problem 

4.13*. A searchlight is located on a small island. 
Its beam lights up the sea's surface along a distance 
a = 1 lan. The searchlight rotates uniformly about a 
vertical axis at a speed of one revolution in the time 
interval T = 1 min. A motorboat which moves at 
speed v must reach the island without being caught by 
the searchlight beam. What is the minimum value of v 
for which this is possible? 

D Let us call the circle of radius a which is illumi­
nated by the searchlight beam the "detection circle." It 
is clear that for the motorboat the best thing to do is to 
enter this circle at a point A through which the beam of 
the searchlight has just passed. 

If the motorboat heads straight for the island, it will 
reach the island in time a / v. In order to guarantee 
the beam of the searchlight not catch the motorboat in 
this time, it is essential that the beam not complete a 
full revolution within this time, i.e., that the inequality 
a/v < T hold, from which 

v> afT = 60 kmIh. 

Thus, we have shown that the motorboat may reach 
the island unnoticed when v > 60 kmIh. But, of course, 
it does not follow that 60 kmIh is the minimum value 
of the speed of the boat for which this is possible­
namely, that moving along the segment A 0 is the best 
possible course which the captain of the motorboat can 
select. Indeed, as we shall see, this is not the case at 
al1.2 

2Before reading the solution further, try to guess a route for the 
motorboat to reach the island with a smaller value of v. 
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Note that the linear velocity of the beam 0 P ofthe 
searchlight is different at different points: the nearer 
the point is to the center, the smaller its velocity. The 
angular velocity of the beam is equal to 27r / T. The 
motorboat can easily travel ahead of the beam, around 
a circle of radius r = vT /27r, since the velocity of 
the boat here is equal to the linear velocity of the corre­
sponding point of the beam. Outside the circle of radius 
r, with center 0, the speed of the beam is greater, and 
inside this circle (we shall call it the "safe circle") the 
speed of the beam is less than v. 

If the motorboat is able to reach some point of the 
safe circle without hindrance, then it can clearly reach 
the island unnoticed. 

For example, one of the possible courses inside the 
safe circle is to traverse a circle of radius r /2. If the 
motorboat K moves around this circle with a speed v, 
then the segment K 0 will rotate about 0 with the same 
angular velocity with which the boat would have moved 
around a circle of radius r, i.e., with the same angular 
velocity as the beam of the searchlight (see Problem 
0.3). Hence the boat will not be caught by the beam. 

Thus, the aim of the motorboat is simply to reach 
the safe circle! 

If the motorboat heads straight to the search light 
along the radius A 0, then it will be able to reach the 
safe circle without being detected by the beam of the 
searchlight if 

v> 1 ~ ~ O.862~ = 51.7 kmIh. 
1 + (1/27r) T T 

We have been able to improve our previous estimate 
of the minimum speed of the motorboat. But we shall 
see that even this is not the best possible value! 

Now let us find the minimum value of the speed v 
for which the motorboat can reach the island unnoticed. 

The set of points in the detection circle which the 
motorboat can reach in time t is the region bounded 
by an arc of radius vt with center at the point A. Of 
these points the motorboat may reach, unnoticed, those 
which are located to the left of the beam 0 P. 
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Denote the set of these "reachable' points by D. The 
diagrams show how this set changes with time until the 
moment when one of the following possibilities occurs: 

(1) If the speed v is not sufficiently high, then at 
some instant t, the set D will be totally exhausted with­
out the safe circle being reached: this means that in the 
time t, the boat will be spotted, i.e., for this speed value 
the motorboat will not be able to reach the island. Note 
that at the last moment t = to the beam a P will touch 
the arc of radius vto with center A at some point L. 
Clearly the point L is located outside the safe circle 
(otherwise the motorboat would be able to reach the 
island). Moreover, as the speed v increases, the detec­
tion time to also increases, and the distance from the 
point L to the island decreases. 

(2) If the speed v is greater than some value vo, 
then the set D extends to the safe circle at some point 
of time. This means that the motorboat can reach the 
island when v> Vo. 

The minimum value of the speed Vo corresponds to 
the case when the beam a P touches the arc of radius 
vto right on the circumference of the safe circle. To 
find the value vo, denote the value of the angle N a A 
by {3 and use the following inequalities: 

voT 
INOI = r = -, IANI = voto, 

2rr 
IANI 2rr + {3 2rr 
INOI =tan{3, -to- - T' 
INOI = acos{3. 

From the first and last equation we find that 

Vo = (2rracos{3)IT, 

and from the first four equations we obtain an equation 
for {3: 

2rr + {3 = tan {3. 

We can only solve this equation approximately­
for instance, with the help of a computer. The value of 
{3 turns out to be approximately O.92rr 12, and hence 

Vo ~ O.8aIT ~ 48 kmIh. 
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When the speed is greater than vo. the motorboat is 
able to reach the safe circle. D 

4.14*. (a) A boy is swimming in the middle of a 
circular swimming pool. His father. who is standing 
at the edge of the swimming pool. does not know how 
to swim. but can run four times faster than his son can 
swim. The boy can run faster than his father. The boy 
wants to run away. Is it possible for him to do so? 

(b) At what ratio between the speeds v and u (v is 
the speed at which the boy swims. u is the speed at 
which his father runs) will the boy be unable to run 
away? 
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CHAPTERS 

Level Curves 

In this chapter we discuss the problems and theorems 
of the previous chapter using some new terminology. 
The concepts we are going to examine here revolve 
around functions defined on a plane and their level 
curves. These are especially useful in the solutions 
to problems involving maxima and minima. 

The bus problem 

5.1. A tourist bus is travelling along a straight high­
way. A palace is situated by the side of the highway 
at some angle to the highway. At what point on the 
highway should the bus stop for the tourists to be able 
to see the fa~ade of the palace from the bus in the best 
possible way? 

Mathematically. the problem may be formulated as 
follows. 

A straight line I and a segment AB which does not 
intersect it are given. Find the point P on the line I for 
which the angle A P B assumes its maximum value. 

Let us first have a look at how the angle AM B 
changes when the point M moves along the straight 
line I. In other words. let us look at the behavior of the 
function f which relates each point M on the line to 
the size of the corresponding angle AMB. 

It is easy to draw a rough graph of this function. 
(Remember that we draw graphs in the following way: 
above each point M of our straight line. we plot a point 
at a distance of f(M) = AMB.) 

The problem can be solved analytically: introduce 
coordinates on the straight line I. express the value of 
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the angle AM B in terms of the x-coordinate of the 
point M, and find the value of x for which the resulting 
function assumes its maximum. However, the formula 
for f (x) is quite complicated. 

We shall give a more elementary and instructive 
solution. But to do this, we have to study how the 
value of the angle AM B depends on the position of the 
point M in the whole plane (and not only on the straight 
line I). 

o The set of points M in the plane for which the an­
gle AM B assumes a given value q; is a pair of symmet­
ric arcs with their endpoints at A and B (see Chapter 2, 
Proposition E). If these arcs are drawn for different val­
ues of q; (where 0 < q; < 7T), we get a family of arcs 
that cover the whole plane except for the straight line 
AB. Some of these arcs are drawn in the figure, and on 
each arc, the corresponding value of q; is marked. For 
example, a circle with diameter AB corresponds to the 
value q; = 7T /2. 

We now consider only the points M on the straight 
line l. From these, we have to select the specific point 
for which the angle AM B assumes its maximum value. 
Some arc from our family passes through each such 

point: if AiiB = q;, the point M lies on the arc corre­
sponding to the value q;. Thus, the problem is reduced 
to the following: from all the arcs crossing the line I, 
select the one that corresponds to the maximum value 

ofAiiB = q;. 

We will examine the part of the straight line I lo­
cated to one side of the point C, the point of intersection 
of the straight line AB with I. (We will not consider the 
case when the segment AB is parallel to the line [-we 
leave that to the reader). We draw the arc CI touching 
this part of the straight line and prove that the segment 
AB subtends the maximum angle at the point of tan­
gency Pl. Any point M of the straight line [, except 
PI, lies outside the segment cut off by the arc CI. As 
we know (see Proposition E, p. 22), from this it follows 

that AiiB < AP;B. 
It is obvious that on the other side of the point C 

everything will be exactly the same: the point P2, at 
which the angle subtended by the segment A B is a 
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maximum, is also the point of tangency of the straight 
line with one of the arcs of our family. 

We have thus proved that the required point P in 
our problem coincides with one of the points PI or P2 
at which the circles passing through the points A and 
B touch the straight line 1. 

We should select P as the point for which the angle 
peA is an acute angle. If the segment A B is perpen­
dicular to the line I, then from symmetry considera­
tions, it is immediately obvious that the points PI and 
P2 are completely equivalent; hence the number of so­
lutions to the problem, in this case, is two. (However, 
the tourists in any case must select that point PI or P2 
from which the fa~ade of the palace is visible.) 

Functions on a plane 

The main idea of the solution of Problem 5.1 is to 
consider over the whole plane the function f which re­
lates each point to the corresponding angle value AMii , 
i.e., f(M) = AMii. 

In the previous chapters we have already encoun­
tered various types of functions. Apart from the sim­
plest functions on a plane, such as f(M) = 10MI, 
f(M) = p(l, M), f(M) = AiiM (where 0, A, B are 
given points and I is a given straight line), we consid­
ered the sums, the differences, and the ratios of such 
functions, as well as other combinations of them. 

Level curves 

Most of the conditions by which our sets of points 
were defined can be represented in the following way. 
On a plane (or on some region of it) we are given a 
function f and we need to find the set of points M for 
which this function assumes a given value h, i.e., 

{M: f(M) = h}. 

As a rule, for every fixed number h, this set is some 
curve; thus the plane is covered by curves, called the 
level curves of the function f. In solving Problem 
5.1, we have drawn the level curves of the function 
f(M) = AMii. 
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The graph of a function 

Let us now explain where the term "level curves" 
comes from. For functions defined on a plane, we may 
draw graphs in exactly the same way as for functions of 
the form y = f (x) that are defined on a straight line­
except that now we have to draw the graph in space. 
Let us suppose that the plane on which our function f is 
defined is horizontal, and for each point M of this plane 
let us plot the point located at a distance If(M)1 above 
the point M if f(M) > 0, and at a distance If(M)1 
below the point M if f(M) < O. The points plotted 
in such a manner usually form some surface, which is 
called the graph of the function f. In other words, if we 
introduce a coordinate system Oxy on the horizontal 
plane and direct an axis 0 z vertically upwards, then 
the graph of the function will be the set of points with 
coordinates (x, y, z), where z = f(M) and (x, y) are 
the coordinates of the point M on the plane. (If the 
function is not defined for all the points in the plane, 
but only in some region, then the graph will be located 
only above the points in this domain of definition.) 

Hence, the level curve {M: f (M) = h} consists of 
those points M above which the points of the graph are 
located at the same level, namely, at the height h. On 
pp. 60-61 we have shown the graphs of the functions 
whose level curves represent the sets of our alphabet. 

The graph of the function f(M) = AMJj is a 
"mountain range" of height Jr above the segment A B, 
from which the graph gradually comes down to zero. 
(Remember that we constructed the graph of this func­
tion at the very beginning of the solution of Problem 
5.1, but only above a particular straight line I.) 

A function f of the form 

f(M) = AIP(M, Id 

+ A2P(M, 12) + ... + AnP(M, In), 

as mentioned in Chapter 2 (the theorem on the distances 
from straight lines) may be written as a linear expres­
sion 

f(x,y)=ax+by+c 

on each of the pieces Q into which the plane is divided 
by the straight lines II, /Z, ... ,In. 
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Its graph will thus consist of pieces of planes, either 
inclined or horizontal (if a = b = 0). This can be seen 
in the examples of sets given in Propositions C, I, J of 
the "alphabet." 

The level curves of such a function consist of pieces 
of straight lines; if the graph has a horizontal plane, then 
one of the level curves includes the whole piece Q of 
the plane. 

A function f of the fonn 

f(M) = AI1MAJl2 

+A21MA212 + ... +AnI MAnI2 

when Al + A2 + ... + An = 0, also reduces to a linear 
function on the whole plane (e.g., Proposition F) and 
in the general case, when Al + A2 + ... + An :j:. 0 to a 
function of the fonn 

where A is some point in the plane. Its level curves 
are circles (see the theorem on the squares of the dis­
tances in Chapter 2), and the graph is the surface of a 
paraboloid of rotation. 

The functions f(M) = AMii and f(M) = 
I AM I / IBM I have perhaps the most complicated graphs 
in our "alphabet." Note that there is an interesting re­
lation between the maps of the level curves of these 
functions: if they are drawn on a single diagram, then 
we get two different families of circles. However, ev­
ery circle in the first family intersects every circle in the 
second family at a right angle. (?) Hence these families 
are said to be orthogonal. 

We give one more example of a simple function, 
one whose level curves are rays issuing from a single 
point and whose graph is quite a complicated surface. 
The function is f(M) = MAs (where A and B are 
given points of a plane). Its graph above each of the 
half planes into which the straight line AB divides the 
plane is a spiral surface, like the surface of a screw, 
and it is called a helicoid. 
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Here the graphs of functions corresponding to the 
propositions of our "alphabet" are depicted and, under 
each one of them, there is a map of the appropriate level 
curves. 

C. f(M) = p(M, I). The graph is a two-sided 
angle; the level curves are pairs of parallel lines. 

D. f(M) = IMOI. The graph is a cone; the level 
curves are concentric circles. 

E. f(M) = AiiB. The graph is a mountain with 
its peak in the form of a horizontal segment, at the ends 
of which there are vertical drops. 

F.f(M) = IMAI2_IMBI2. The graph is a plane; 
the level curves are parallel straight lines. 

G. f(M) = IMAI2 + IMBI2. The graph is a 
paraboloid of rotation, and the level curves are con­
centric circles. 

H. f(M) = 1M AI/1M BI. The graph has a depres­
sion near the point A; near B, it rises to infinity. The 
level curves are nonintersecting circles whose centers 
lie on the straight line A B, each pair of which, however, 
has the same straight line, the perpendicular bisector of 
the segment AB, as its radical axis. 

I. f(M) = p(M, 11)/ p(M, 12)' The graph is ob­
tained in the following manner: consider a saddle­
shaped surface-the "hyperbolic paraboloid" passing 
through the straight line 11 and the vertical straight line 
passing through the point of intersection a of 11 and 12. 
The part of this surface lying below the given plane is 
reflected symmetrically relative to the plane. The level 
curves are pairs of straight lines passing through the 
point O. 

J. f(M) = p(M, 11) + p(M, lz). The graph is a 
four-sided angle. The level curves are rectangles with 
their diagonals belonging to 11 and 12. 

Fig. 1 
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The map of a function 

As we can see, for many functions, it is difficult 
to draw their graphs in three-dimensional space. It is 
easier, as a rule, to visualize the behavior of the function 
on a plane by drawing the map of its level curves. 

Geographers draw physical maps in the follow­
ing manner. Let f(M) be the height of the surface 
above sea-level at the point M. Then the level curves 
{M: 0 < f(M) < 200 m} are colored green, the re­
gion {M: f(M) > 200 m} is colored brown, and the 
region {M: f(M) < O} is colored various shades of 
blue. 

To make the map of a function, one must draw sev­
erallevel curves-as many as are needed to be able to 
judge from them where the other curves are. Then one 
must mark each of them with the value of the function 
to which it corresponds (i.e., the value of h). 

If we decide to depict the level curves at equal in­
tervals of the functional values 0, ±d, ±2d, ... , then 
we can estimate the inclination of the graph from the 
density of the level curves: where there are more lines 
the inclination of the graph to the horizontal plane is 
greater. 

Boundary lines 

In the solution of Problem 3.23 (on "the cheese") 
we considered a quite complicated function 

f(M) = min{IMCll, IMC21,··., IMCnl}' 

which gives, for every point M in the plane, its min­
imum distance from the given points Cl, C2, ... , Cn. 
Strictly speaking, in the solution of Problem 3.23, we 
did not need this particular function as much as we 
needed the boundary lines associated to it; those bound­
ary lines partitioned the plane into polygonal regions. 
Let us try to visualize the map of the level curves and 
the graph of this function. We start with the simplest 
cases: n = 2 and n = 3. 

5.2. (a) Two points Cl and C2 are given in a plane. 
Draw the map of the level curves of the function 

f(M) = min{IMCll, IMC21}. 
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(b) Three points CI, C2, C3 are given in a plane. 
Draw the map of the level curves of the function 
f(M) = min{jMCII, IMC21, IMC3!}. 

o (a) Consider the set of points M for which 
IMCII = IMC21. As we know, this set of points forms 
the perpendicular bisector of the segment CI C2. This 
perpendicular bisector divides the plane into two half 
planes. The points of one half plane are closer to C I, 
and the points of the other are closer to C2. 

Thus, in one half plane f(M) = IMCII, and in 
the other f(M) = IMC21. Hence, in the first half 
plane, we must draw the curves of the function f (M) = 
1M C II-these are circles-and then reflect this map 
symmetrically through the perpendicular bisector. 

(b) Consider the sets of points where IMCII = 
IMC21, where IMC21 = IMC31 and where IMCII = 
IMC31. We looked at them in Problem 3.1. They are the 
three midperpendiculars of the triangle CI C2C3, which 
intersect at a single point o. These three rays, formed 
by the midperpendiculars with their initial point at 0, 
partition the plane into three regions. Clearly in the 
region containing the point C I, f (M) = 1M C II; in the 
region containing the point C2, f(M) = IMC21; and 
in the region containing the point C3, f(M) = IMC31. 
Thus, the map of the function f(M) = min{jMCII, 
1M C21, 1M C 3!} is the union ofthree maps, joined along 
the lines of partition, i.e., along the three rays. 0 

The graph of the function 

f(M) = min{IMCII, IMC21,.··, IMCn !} 

may be visualized in the following manner. If a uniform 
layer of sand is placed in a box and holes are made in the 
bottom of the box at the points C I, C 2, ... , C n through 
which the sand comes out, then around each hole a 
"funnel" is formed. The surface of all these "funnels" 
forms the graph of the function f. (We must, of course, 
use sand such that the angle of its natural slope is equal 
to 45°; furthermore, we must use a sufficiently thick 
layer of it.) 

Let us now return to problems 3.11 and 3.12. We 
can find functions defined on a plane in these problems 
as well. 
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5.3. Let the points A and B be given in a plane. 
Draw the map of the level curves of the functions 

(a) f(M) = max{AMB, BAM, MBA}, 
(b) f(M) = min{IAMI, 1M BI, lAB!}, 

and describe their graphs. 

Extrema of functions 

Let f be a given function defined on a plane. Imag­
ine its graph as a hilly area. The maximum values of 
f(M) correspond to the heights of the "hill tops" of 
its graph, and the minimum values to the depths of the 
valleys or depressions. On the map of the level curves 
of a function, the hill tops and the depressions are, as a 
rule, circled by level curves. For instance, for the func­
tionf(M) = IMAI2+IMBI2, the minimum point Mo 
is the midpoint of the segment AB, and the level curves 
are concentric circles with their centers at the point Mo. 

We get a more complicated picture for the function 

f(M) = AMB. This function assumes its maximum 
value 1T at all the points of the segment A B, and its min­
imum value 0, at the remaining points of the straight 
line AB. The transition from the maximum to the min­
imum value at the points A and B is not gradual (f is 
not defined at these points): here the graph has vertical 
drops. 

At the beginning of the chapter we used a map of 
level curves for the solution of Problem 5.1. This is also 
a problem of finding a maximum, but of a different type. 
The problem may be stated generally in the following 
way: Find the maximum and minimum values assumed 
on some curve y by a function defined on a plane (in 
the problem we looked at, y was a straight line). The 
observation we made in Problem 5.1 also holds for these 
similar problems: the maximum (and minimum) values 
are usually assumed at the points where y touches the 
level curves of the function f.1 

Let us assume that the maximum value of the func­
tion f on the curve y is attained at the point P and 

lOr at the point where the function f itself reaches a maximum, 
if the curve y passes through such a point. 
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is equal to f(P) = c. Then the curve y cannot enter 
the region {M: f(M) > c}: it must belong entirely 
to the complementary region {M: f(M) ::: c}. The 
point P lies on the line separating these regions, i.e., 
on the level curve {M: f(M) = c}. Thus, the curve 
y cannot cross the level curve {M: f(M) = c}, i.e., it 
must touch this line at the point P. 

You have seen how this "tangency principle" for 
finding an extremum arose in the problems in Chapter 4. 

In these problems we looked for the maximum or 
minimum of the simple functions: 

f(M) = p(M, I), f(M) = MoA, 
f(M) = IMAI 

on a given curve y. The level curves corresponding to 
the extreme value were touched by the curve y. As a 
rule, this curve y was a circle. 

Some of the following problems also reduce to 
problems of finding the maximum (or minimum) of 
a function on a given circle or straight line. 

5.4. (a) On the hypotenuse of a given right-angled 
triangle, find the point for which the distance between 
its projections onto the legs is minimized. (Recall that 
the legs of a right triangle are the sides that define the 
right angle.) 

(b)* On a given straight line, find a point M such 
that the distance between its projections onto the sides 
of a given angle is minimized. ..!-

5.5. Given a circle with center 0 and a point A 
inside it, find a point M on the circle for which the 
value of the angle AM 0 is maximized. 

5.6. Suppose points A and B are given. On a given 
circle y, find: 

(a) a point M such that the sum of the squares of the 
distances from M to the points A and B is a minimum. 

(b) A point M such that the difference between the 
squares of the distances from M to the points A and B 
is a minimum. 

5.7. Given a straight line I and a segment A B paral­
lel to it, find the positions of the point M on the straight 
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line I for which the quantity IAMI/IM BI assumes its 
maximum or minimum value. ..J, 

5.S. A lake is situated between two straight roads. 
Where, on the edge of the lake, should a resort be built 
in order to minimize the sum of the distances from the 
resort to the two roads? Consider the cases when the 
lake is (a) circular, (b) rectangular. 

Note that in finding the maximum of a function 
of a single variable, y = f(x), we are guided by the 
"tangency principle." Suppose we draw the graph of 
the function f on a plane. This graph will be some kind 
of curve. To find the maximum value of the function 
f, we must find the highest point on the graph. It is 
clear that to do this, we must draw a straight line that is 
both parallel to the axis Ox and tangent to the graph. 
Moreover, this tangent line should be drawn in such a 
way that the entire graph lies below it. 
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CHAPTER 6 

Quadratic Curves 

Ellipses, hyperbolas, parabolas 

So far, we have limited ourselves to the lines which 
are thoroughly studied at school: namely, straight lines 
and circles. All the propositions of our "alphabet" from 
A to J involved only these. In this chapter we are going 
to learn about some other curves: ellipses, hyperbolas 
and parabolas. Taken together, these curves are called 
conic sections or simply conics, since they may all be 
obtained as the intersection of a plane with the surface 
of a cone, as is shown in the figure on pp. 76-77. 

We first define ellipses, hyperbolas, and parabolas 
geometrically, as a continuation of our "alphabet" from 
Chapter 2. They will appear later as envelopes of fam­
ilies of lines. Finally, using analytic geometry, we will 
find that these curves may be defined by second-order 
algebraic equations. The proof of the equivalence of 
these definitions is not simple. However, they are all 
useful, since each new definition allows us to solve a 
new class of problems with greater ease. 

Thus, let us continue our "alphabet" with the new 
propositions, K, L, M, and, a little later, N. 

K. The Ellipse. Let A and B be two given points. 
Let us consider the set of points M in the plane, the sum 
of whose distances from A and B is equal to a constant. 

Following standard convention, we denote this con­
stant by 2a, and we denote the distance IABI between 
the points A and B by 2c. Note that when a ::s c, this 
set is of little interest: if a < c, then the required set is 
empty, as there is not a single point M on the plane for 
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which IAMI + 1M BI < IABI; when a = c, the set is 
simply the segment AB. 

To see what happens when a > c, proceed as fol­
lows. Fix two nails at A and B, put a loop of thread 
oflength 2(a + c) around them, stretch the thread taut 
with a pencil, and draw a curve with the pencil, all the 
while continuing to keep the thread taut. You will get 
a closed curve. This curve is called an "ellipse." The 
points A and B are called the foei of the ellipse. From 
the definition of an ellipse, it is clear that it has two 
axes of symmetry: the straight line AB and its perpen­
dicular bisector, which passes through the midpoint 0 
of AB. The segments of these straight lines which lie 
inside the ellipse are called its axes, and the point 0 is 
called the center of the ellipse. 

By altering the length of the thread, we can draw 
a whole family of ellipses with the same foci; in other 
words, we can draw the map of the level curves of the 
function 

f(M) = 1M AI + 1M BI· 

L. The Hyperbola. Let A and B be two given points. 
Consider the set of points, the difference of whose dis­
tances from A and B is equal in absolute value to a 
constant 2a (a > 0). 

LetlABI =2casbefore. Ifa > c,thenthesetLis 
empty, as there is not a single point M in the plane for 
whichIAMI-IMBI> IABlorIMBI-IAMI > IABI· 
When a = c, the set L is a pair of rays of the straight 
line AB-we must exclude the line segment AB from 
the entire straight line AB. 

In the case when a < c, the set L consists of the 
two lines (branches) shown in the figure (one is the set 
{M: IMAI-IMBI = 2a}andtheother-{M: IMBI­
I MAl = 2a}). This set is called a hyperbola and the 
points A and B are called itsfoei. 

From the definition of the set L, it is clear that a 
hyperbola has two axes of symmetry. The midpoint of 
the segment AB is called the center of the hyperbola. 

In order to get the whole map of the level curves of 
the function 

f(M) = IIMAI-IMBII 
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we should also include the perpendicular bisector of the 
segment AB (it corresponds to the value f(M) = 0) 
in the family of hyperbolas with foci at A and B. 

M. The Parabola. A parabola is the set of points M 
equidistant from a given point F and a given straight 
line I. 

The point F is called the focus of the parabola, and 
the straight line I is called its directrix. The parabola 
has a single axis of symmetry, which passes through 
the focus F and is perpendicular to the directrix. 

Let us summarize our initial results. We have added 
the following sets to our "alphabet": 

K. {M: IMAI + IMBI = 2a}, 

L. {M: "IMAI-IMB"I = 2a}, 

M. {M: 1M FI = p(M, I)}. 

Now we know that if a problem reduces to one of 
the sets M, K, or L, then the answer will be a parabola, 
an ellipse or a hyperbola, respectively. Of course, in 
the answer, we should indicate not only the name of 
the curve but also its dimensions and its position, for 
instance, by giving the foci and the number a. 

6.1. The points A and B are given in a plane. Find 
the set of points M for which: 

(a) the perimeter of the triangle AM B is equal to a 
constant p, 

(b) the perimeter of the triangle AM B is not greater 
than p, 

(c) the difference 1M AI - 1M BI is not less than d. 

6.2. Suppose we are given a segment AB and a 
point T lying on it. Find the set of points M for which 
the circle inscribed in the triangle AM B is tangent to 
the side A B at the point T. 

6.3. Find the set of centers of the circles in the 
following cases. The circles are tangent to: 

(a) a given straight line and pass through a given 
point; 

(b) a given circle and pass through a given point 
inside the circle; 

(c) a given circle and pass through a given point 
outside the circle; 
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(d) a given circle and a given straight line; 
(e)* two given circles. -.I-

6.4. On a hinged closed polygon ABC D, for which 
IADI = IBCI = a and IABI = ICDI = b, the link 
AD is fixed. 

Find the set of points of intersection of the straight 
lines AB and CD, 

(a) if a < b; 
(b) if a > b. 

6.5. (a) Two points A and B are given in a plane. 
The distance between them is an integer n (in the figure 
n = 12). Suppose we draw all the circles with integer­
valued radii centered at either A or B. On the net of 
points thus obtained, a sequence of nodes (the points of 
intersection of the circles) is marked, in which any two 
neighboring nodes are opposite vertices of a curvilinear 
quadrilateral. Prove that all the points of the sequence 
lie either on an ellipse or on a hyperbola. 

(b) Suppose we are given a straight line I in the 
plane and a point F lying on I. Suppose we draw all 
the circles of integer-valued radii with center F, and 
all the straight lines which are parallel to I and which 
lie at some integer-valued distance from l. Prove that 
all the points of the sequence of nodes on the resulting 
net, constructed as in part (a), lie on a parabola with 
focus F. 

If we rotate a parabola, an ellipse, or a hyperbola in 
space about its axes of symmetry, we will obtain cer­
tain surfaces. These surfaces are called, respectively, 
a paraboloid of rotation, an ellipsoid of rotation, or a 
hyperboloid of rotation. 

Foci and tangents 

Many interesting problems concerning ellipses, hy­
perbolas and parabolas are connected with the proper­
ties of the tangents to these curves. We shall obtain 
the basic property of tangents to the ellipse by compar­
ing two solutions of the following simple construction 
problem. 

6.6. Suppose we are given a straight line I and two 
points A and B, one on each side of I. Given any point 
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X on I, consider the sum of the distances from X to the 
points A and B. At what point is this sum-namely, 
IAXI + IXBI-minimized? 

o Consider the point A' symmetric to the point A 
relative to the straight line l. For any point M on this 
straight line, IA'MI = IAMI. Hence the sum IAMI + 
1MB I = lA' M I + 1MB I assumes its minimum value 
I A' B I at the point of intersection X of the segment A' B 
with the line l. 0 

Note that the point X has the property that the seg­
ments AX and B X make equal angles with the straight 
line l. 

If we had solved Problem 6.6 by the general scheme 
described in Chapter 5 using level curves, we would 
have proceeded as follows. Construct the family of 
ellipses corresponding to the parameter c with foci at 
A and B, {M: IAMI + 1M BI = c}, and select from 
this family the particular ellipse that is tangent to the 
straight line l. 

Thus, the point X is a point of tangency of an ellipse 
(with foci at A and B) and the straight line l. All 
other points M on the straight line apart from X are 
located outside the ellipse, i.e., for these points the sum 
IAMI + 1M BI is greater than c. 

Comparing the first solution with the second, we get 
the so-calledfocal property of an ellipse: the segments 
connecting the point X on an ellipse with its foci make 
angles of equal value with the tangent drawn to the 
ellipse at the point X. 

This property has an immediate physical interpre­
tation. If the surface of a reflector (for example, a head­
light) has the form of a portion of an ellipsoid, and if 
the lamp, taken to be a point source oflight, is placed at 
one focus A, then after reflection the rays will converge 
at the other focus B (the word "focus" is the Latin word 
for "hearth."). 

The focal property of the hyperbola is completely 
analogous to that of the ellipse: the segments connect­
ing the point X of a hyperbola with its foci make angles 
of equal value with the tangent at the point X. One can 
prove this property by solving the following problem 
in two different ways. 
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6.7. Suppose we are given a straight line [ and two 
points A and B on opposite sides of it; the point A, 
however, is located at a greater distance from [ than the 
point B. Find the point X on the straight line for which 
the difference between the distances I AX I - I B X I is at 
a maximum. 

One solution leads to the following answer: let A' 
denote the point symmetric to the point A relative to 
the straight line [. Then the required point X will be the 
point of intersection of the straight line A' B with [ (?). 
It is clear that for this point X, the segments AX and 
X B make angles of equal size with the straight line [. 

The other solution (obtained by the general scheme 
given in Chapter 5) leads to the same answer as well: 
X is a point of tangency of the straight line [ with 
a hyperbola whose foci lie at A and B. Comparing 
these two answers, we arrive at the focal property of a 
hyperbola. 

From the focal properties we can deduce another 
interesting property related to the families of all ellipses 
and hyperbolas with foci at A and B. 

Consider an ellipse and a hyperbola passing through 
some point X. Through the point X, draw straight lines 
which make equal angles with the straight lines AX and 
B X. These straight lines are obviously perpendicular 
to each other. 

From the focal properties, it follows that one of 
the straight lines is a tangent to the ellipse; the other, 
a tangent to the hyperbola. Thus, the tangents to the 
ellipse and the hyperbola are perpendicular to one an­
other. Hence the families of ellipses and hyperbolas 
with foci A and B form two mutually orthogonal fam­
ilies; at every intersection point of a curve from one 
family and a curve from another family, the tangents to 
the two curves are perpendicular. 

These two families can be clearly seen in the fig­
ure corresponding to Problem 6.5a if the "squares" are 
colored, alternately, as on a chessboard. 

The focal property of a parabola 

Suppose a parabola has focus F and directrix [, 
and suppose X is some point on it. Then the straight 
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line X F and the perpendicular dropped from X onto I 
make equal angles with the tangent to the parabola at 
the point X. 

Let us prove this. Suppose H is the foot of the 
perpendicular dropped from X onto I. By the defini­
tion of a parabola, we have IX FI = IX HI. Therefore, 
the point X lies on the perpendicular bisector m of the 
segment FH. 

We will prove that the straight line m is a tangent to 
the parabola. To do this, we will show that it has only a 
single point in common with the parabola (namely the 
point X), and that the entire parabola is located on one 
side of m. The line m divides the plane into two half 
planes. One of them consists of the points M which 
are closer to F than to H. 

We shall show that the parabola is located in this 
particular half plane, i.e., for any point M of the 
parabola (except the point X) 1M FI < 1M HI. This is 
immediate, as 1M FI = p(M, I) and p(M, l) < 1M HI 
(the perpendicular is shorter than an oblique line). 

Note. For all the curves we have encountered so 
far, the tangent is defined as follows: the tangent to the 
curve y at the point Mo is the straight line I passing 
through Mo with the property that the curve y (or at 
least a part of the curve contained in some circle with 
its center at Mo) lies on one side of the straight line l. 

The focal property of a parabola may be used in the 
following manner. If a reflector is made in the form of 
a paraboloid and a light source is placed at the focus F, 
then we have a projector: all the reflected rays will be 
parallel to the axis of the paraboloid. 

6.8. Consider all the parabolas with a given fo­
cus and a given vertical axis. They naturally fall into 
two families: the parabolas of one family have their 
branches extending upward, and those of the other have 
their branches extending downward. Prove that any 
parabola of one family is orthogonal to any parabola of 
the other family; that is, prove that at the point of in­
tersection of a curve from one family and a curve from 
another family, the tangents to the curves are perpen­
dicular. 
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As before, these two families of parabolas can be 
seen clearly if the "squares" in the figure of Problem 
6.5b are colored, alternately, as on a chessboard. 

The solutions to the following problems depend 
only on the definitions of the curves we have discussed 
and their corresponding focal properties. 

6.9. (a) Suppose we are given an ellipse with foci 
at A and B. Prove that the set of points symmetric to 
the focus A relative to anyone of the tangents to the 
ellipse is a circle. 

(b) Prove that the set formed by the feet ofthe per­
pendiculars dropped from the focus A onto the tangents 
to the ellipse is a circle. 

D (a) Let 1 be a tangent to the ellipse at the point X 
and let N be a point symmetric to the focus A relative 
to l. Then, as we know (see Problem 6.6), the point X 
lies on a straight line N B and the distance 

INBI = IAXI + IXBI 

is constant. Denote this distance, as before, by 2a. 
Thus, the distance between N and B is constant and the 
required set is a circle with center at B and radius 2a. 

(b) Let M be the foot of the perpendicular dropped 
from the point A onto I. Clearly, 

IAMI = ! IANI· 

We know from Problem 6.9(a) that the set of points 
N is a circle, so the problem reduces to the following 
problem. Suppose we are given a circle of radius 2a 
with center at B, and a point A inside it. Find the set of 
midpoints of the segments AN, where N is an arbitrary 
point of the circle. This set is a circle of radius a with 
its center at the midpoint 0 of the segment A B. D 

6.10. (a), (b). Prove statements (a) and (b) ofProb­
lem 6.9 for a hyperbola. 

6.11. Given a parabola with focus F and directrix I: 
(a) Find the set of all points symmetric to the focus 

F with respect to the tangents of the parabola. 
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(b) Prove that the set formed by the feet of the per­
pendiculars dropped from the focus F onto the tangents 
to the parabola is a straight line parallel to t. 

6.12*. (a) Prove that the product of the distances 
from the foci of an ellipse to any tangent is a constant 
(i.e., is independent of the particular tangent). t 

(b) Find the set of points for which an ellipse sub­
tends a right angle (i.e., the set of points where the pairs 
of tangents to the ellipse meet at right angles). 

6.13*. Solve Problem 6.12 (a) for a hyperbola. 

6.14*. Solve Problem 6.12 (b) for a parabola. 

6.15*. Suppose the trajectory Po PI P2 P3 . .. of 
a ray of light inside an elliptic mirror does not pass 
through the foci A and B (where Po, PI, P2... are 
points on the ellipse). Prove that: 

(a) If the segment POPI does not intersect the seg­
mentAB, then all the segments PIP2, P2 P3, P3P4, ... , 
and so on, also do not intersect the segment AB, and 
these line segments are tangent to a single ellipse with 
foci at A and B. t 

(b) If the segment Po PI intersects A B, then all the 
segments PIP2, P2P3, P3P4 ... , and so on, intersect 
the segment AB, and the straight lines POPI, PIP2, 
P2 P3, and so on, are all tangent to a single hyperbola 
with foci at A and B. t 

Curves as the envelopes of straight 
lines 

So far, all the curves we have examined-circles, 
ellipses, hyperbolas, parabolas-arose as sets of points 
satisfying certain conditions. In the following prob­
lems, these curves are generated in a different way: as 
envelopes of families of straight lines. The word "en­
velope" simply means that each one of the straight lines 
of the family is tangent to the curve at some point. 
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The section of a cone by an arbitrary plane (called a 
secant plane) not passing through its vertex is an ellipse, 
a hyperbola or a parabola (Fig. 1). If a sphere touching 
the secant plane is inscribed in a cone, then the point of 
tangency will be the focus of the corresponding section, 
and the directrix will be the line of intersection of the 
secant plane with the plane of the circle along which 
the sphere touches the cone. 

Fig. 2 

Fig. 1 

The union of all straight lines that are at an equal 
distance from a given straight line I in space and which 
make a given acute angle with I is a surface known as 
a one-sheet hyperboloid o/rotation (Fig. 2). The same 
surface can be obtained by rotating a hyperbola around 
its axis of symmetry I. The tangent plane to the hyper­
boloid at an arbitrary point intersects the hyperboloid 
along two straight lines. The remaining plane sections 
of this surface, as of a cone, are ellipses, hyperbolas 
and parabolas. 

Fig. 3 Fig. 4 
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Fig. 6 
Fig. 5 

If the points P and N move unifonnly along two 
intersecting straight lines, then the lines P N are either 
parallel to each other or (in the general case) touch a 
single parabola (Fig. 3). If the points P and N move 
unifonnly along two skew lines in space, then the union 
of all the lines P N will be the surface of a hyperbolic 
paraboloid (saddle-shaped). The tangent plane to the 
saddle at any point on it intersects it along two straight 
lines; the remaining plane sections of the saddle are 
hyperbolas or parabolas. The saddle-shaped surface 
can also be obtained as the union of all straight lines 
intersecting two given skew lines 11 and 12 and parallel 
to a given plane (crossing the lines 11 and h). 

Figs. 4-6 illustrate problems 6.16 and 6.17. Note 
that on our diagrams, only the families of straight lines 
are drawn; however, the illusion is created that their 
envelopes-a hyperbola, an ellipse or a parabola, as 
the case may be-are also drawn on them. 

6.16. Suppose we are given a circle with center at 
o and a point A. Suppose we draw, through each point 
M on the circle, a straight line perpendicular to the 
segment M A. Prove that the envelope of this family 
will be: 

(a) A circle, if A coincides with the center 0; 

(b) An ellipse, if A is located inside the circle; 

(c) A hyperbola, if A is located outside the circle. ..j.. I 
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6.17. A straight line 1 and a point A are given. 
Through each point M of the given line 1, a straight 
line perpendicular to the segment M A is drawn. Prove 
that the envelope of this family of straight lines will be 
a parabola . ..j, 

These families of straight lines are depicted on 
pp. 76--77. It is not an accident that all of them form 
an envelope: indeed, it can be proved that any "suffi­
ciently nice" family of straight lines is either a set of 
parallel lines, or a set of straight lines passing through 
a single point, or in the general case, a set of tangents 
to some curve (the envelope of this family). 

Equations of curves 

At the beginning of this section we gave geometrical 
definitions of an ellipse, a hyperbola and a parabola. We 
can obtain much more information about these curves 
if we introduce coordinates. 

Let us start with the parabola. The analytical defi­
nition of a parabola as a graph of the function 

(1) 

is well known. 

We shall show how the geometric definition of a 
parabola given above results in this equation. 

Let the distance from the point F to the straight line 
1 be equal to 2h. Let us choose a coordinate system 0 x y 
such that the axis Ox is parallel to 1 and equidistant 
from F to 1, and the axis Oy passes through the point 
F (the axis 0 y will then be the axis of symmetry of the 
parabola). The equation obtained from the geometric 
definition of a parabola is easily transformed into (1): 
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JX2 + (y - h)2 = Iy + hi, 
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x 2 + y2 _ 2yh + h2 = y2 + 2yh + h2, 

~ 
Y = x 2 /(4h). 



To obtain the form of Equation (1), it suffices to put 
a = 1/(4h). 

The graph of any function of the form y = ax 2 + 
bx + c is also a parabola. It can be obtained from the 
parabola y = ax2 by a parallel displacement. 

In a similarity transformation (x, y) ---+ (ax, ay) 
with coefficient a, the parabola y = x 2 becomes the 
parabola y = ax2 . Thus all the parabolas are similar to 
one another. But parabolas with different values of the 
parameter a are of course not congruent: the larger the 
value of a, the "sharper the curvature" of the parabola. 
Note that one can obtain the parabola y = ax 2 from 
the parabola y = x 2 by a contraction (or extension) of 
one of the coordinate axes, i.e., by the transformation 
(x, y) ---+ (x JQ, y) or by the transformation (x, y) ---+ 
(x, yla). 

Let us now consider the case of an ellipse and a 
hyperbola with foci at A and B. If their axes of sym­
metry are taken as the axes Ox and 0 y of a rectangular 
coordinate system, then the points A and B will have 
coordinates A(-c, 0) and B(c, 0), and we will obtain 
the following equation for an ellipse: 

= 2a (where a > c). (2') 

By eliminating the radicals, we can express this 
equation in a more convenient form: 

Later on, we will briefly discuss how we can obtain 
equation (2) from (2'). 

It can be seen from equation (2) that an ellipse can 
also be obtained in the following way: take a circle of 
radius a 

x 2 + y2 = a2 

and contract it by the ratio alb towards the axis Ox. 
Under this contraction, the point (x, y) will be trans­
formed to the point (x, y'), where y' = ybla. Substi­
tuting y = y' alb in the equation of the circle, we get 
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2 (')2 
the equation of an ellipse: ~ + V = 1. Thus you 
can get an ellipse without using a thread and nails; for 
example, the shadow cast by a plate, held at some angle 
on the top of a table, is an ellipse. 

Two ellipses are similar to each other if they have 
the same ratio b/a. 

Taking the same coordinate system as in the case 
of the ellipse, we get the equation of a hyperbola 

= 2a where a < c, (3') 

or after simplification, 

x2 y2 ,-:--_~ 
- - - = 1 where b = Vc2 -a2. (3) 
a2 b2 

In order to study the behavior of a hyperbola in the 
first quadrant x ~ 0, y ~ 0, let us plot the graph of the 
function 

y = ~Jx2 - a2. 
a 

It is clear that this function is defined when x ~ a 
and increases monotonically. It is not quite so clear­
but, nonetheless, true-that as x increases, the hyper­
bola gets closer and closer to the straight line y = ~ x­
i.e., that it has this straight line as an asymptote. I 

In fact, the hyperbola has two asymptotes: y = 
bx/a and y = -bx/a. 

One often encounters another equation whose so­
lution set is referred to as a hyperbola: namely, the 
equation 

xy =d (4) 

(where d is some number d I- 0). 
We have to ask ourselves whether this is some other 

curve or the same curve. 

1 More exactly, this means that for any arbitrary sequence Xn tend­

ing to infinity, the difference I ~ J x~ - a 2 - ~ Xn I tends to zero. This 
can be readily proved by using the equality 

~ a2 
x - "l/x2 -a2 = . 

v'x2 - a2 +x 
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The curve is of course the same one. To be more 
precise, the equation xy = d describes a hyperbola 
with perpendicular asymptotes. The standard equation 
(3) for such a hyperbola has the form 

x2 y2 
---=1 
2d 2d ' 

but we get equations of different types if we use dif­
ferent coordinate systems. In one case we take the 
asymptotes of the hyperbola as the coordinate axes; in 
the other case, we take its axes of symmetry as the 
coordinate axes. (?). 

We have shown above how we can obtain an ellipse 
from the circle x 2 + y2 = a 2 by contraction. In exactly 

2 2 
the same way we can obtain the hyperbola ~2 - ~2 = I 
(with arbitrary a and b) from the hyperbola with per­
pendicular asymptotes x 2 - y2 = a 2 by a contraction 
towards the axis Ox with coefficient a/b. 

Two hyperbolas are similar if they have the same 
ratio b / a, or, equivalently, if they have the same angle 
2y between their asymptotes (tan y = b/a). 

A note about the elimination of radicals 

Suppose 

(
J(X + c)2 + y2 - J(x - c)2 + Y2)2 (3") 

Zl = 2 ' 

Z2 ~ (J(X + c)2 + y2; J(x - cl' + y2)' (2") 

Then, by direct computation, Zl + Z2 = x 2 + y2 + 
c2, ZlZ2 = c2x 2; i.e., Zl and Z2 are the roots of the 
following quadratic equation: 

The roots of this equation are always nonnegative 
(since they are both squares), and Zl :s c2 :s Z2 be­
cause the quadratic trinomial on the left side of (5) is 
nonnegative when Z = 0 and nonpositive when Z = c2• 
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Note that if z =I- 0, z =I- c2, equation (5) may be 
rewritten as follows: 

x2 y2 
-+--=1. 
z z - c2 

Let a2 < c2, a > 0 and (3') hold. Then z = a2 is 
the smaller root of (5), 0 < z < c2 , and therefore the 
equation 

(6) 

(provided that 0 < a < c) is equivalent to (3'). Setting 
b = ,J c2 - a2 , we see that (3) ¢::::=} (3'). 

Suppose a2 > c2, a > 0, and (2') hold. Then 
z = a2 is the larger root of (5), z > c2 . Hence equation 
(6) is equivalent to (2') provided that a > c. Setting 
b = J a2 - c2 , we obtain (2) ¢::::=} (2'). 

This proof illustrates a method frequently used for 
eliminating radicals: consider, together with a given 
expression, its conjugate expression, which differs 
from the original only in the sign before the radical. 

The end of our "alphabet" 

Finally, let us consider one more function on the 
plane whose map oflevel curves includes all three types 
of curves appearing in this section. This will give us 
the last proposition of our "alphabet." 

N. Suppose we are given a point F and a straight 
line I not containing the point F. Given any point p, 
consider the ratio of its distances from F and I. The 
set of points for which that ratio is equal to a constant 
k is an ellipse (when k < 1), a parabola (when k = 1) 
or a hyperbola (when k > 1). 

Let us prove this. Let us introduce a coordinate 
system as we did above in the section on the parabola. 
The equation of the required set is 

';X2 + (y - h)2 
-'-----,-----=--- = k. 

Iy+hl 

When k = 1, as we have already seen, this is equivalent 
to the equation of the parabola y = ax2, where a = 
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1/(4h). When 0 < k < l,itcanbereducedtotheform 

x2 (y - d)2 
a2 + b2 = 1 (an ellipse), (7) 

and when k > 1, to the form 

(y - d)2 (x)2 
b2 - ~ = 1 (a hyperbola), (8) 

where in both cases 

and 
d = h(k2 + 1)/(k2 - 1). 

Equations (7) and (8) are obtained from the standard 
equations (2), (3) by a parallel displacement and an 
interchange of x and y. Now, the foci of the curves lie 
on the axis 0 y, and the centers are displaced to the point 
(0, d). It may be verified that the point F is the focus 
not only of the parabola but also of all the ellipses and 
hyperbolas. The straight line I is called their directrix. 

Thus, we have seen that the set of level curves of 
the function 

f(M) = p(M, F)/ p(M, I) 

consists of ellipses, hyperbolas, and a single parabola. 
We might have guessed that these curves would 

be "conic sections" (see pp. 67 and 76---77) by rea­
soning as follows. Consider two functions on a plane: 
h (M) = p(M, F) and h(M) = kp(M, I). The graph 
of the first function is the surface of a cone; the graph of 
the second consists of two inclined half planes (k is the 
tangent of the angle of inclination of these half planes 
to the horizontal). The intersection of these two graphs 
is an ellipse, a parabola or a hyperbola. The projections 
onto the horizontal plane of these curves on an inclined 
plane give the required sets: 

{M: h(M) = h(M)} = {M: p(M, F) 

= kp(M, I)}. 

When projected, the form of the curve changes, as 
if contracted towards the straight line I (in the ratio 
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.Jk2+1). Hence, our required curves are also ellipses, 
hyperbolas and a parabola. 

As we have already repeatedly found, the curves 
discussed in this chapter-the ellipse, the hyperbola 
and the parabola-possess many common or very sim­
ilar properties. The relationship between these curves 
has a simple algebraic explanation: all of them are 
given by quadratic equations. Of course, the standard 
equations of these curves (1), (2), (3), (4), i.e., 

2 x 2 y2 
y=ax, 2+2=1, 

a b 
x2 y2 
2 - 2 = 1, xy = d, 
a b 

are obtained only in specially selected coordinate sys­
tems. If the coordinate system is chosen in some other 
way, the equations may be more complicated. How­
ever, it is not difficult to prove that in any arbitrary 
coordinate system, the equations of these curves have 
the form 

ax2 + bxy + cy2 + dx + ey + f = 0 (9) 

(where a, b, c, d, e, f are certain numbers and a2 + 
b2 + c2 =1= 0). 

Remarkably, the converse is also true: any equation 
of the second degree p(x, y) = 0, i.e., any equation of 
the form (9) determines one of these curves. Let us 
formulate the theorem more precisely. 

Equation (9) defines an ellipse, a hyperbola or a 
parabola only if the left-hand side does not decompose 
into factors (if it did, we would get a pair of straight 
lines) and assumes values of both signs (if not, we 
would get a single point, a straight line or the empty set). 
The origin of the general name "quadratic curves" for 
ellipses, hyperbolas and parabolas becomes clear from 
this. 

This important algebraic theorem for the second de­
gree equations is very helpful when looking for point­
sets satisfying a geometric condition: if we find that in 
some coordinate system this condition is expressed by 
a second-degree equation, then the required set is an 
ellipse, a hyperbola, or a parabola. (Of course, in the 
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case of degeneracy, we may get a pair of straight lines, 
a circle which is a particular case of an ellipse, a single 
point, etc.). One merely has to determine their dimen­
sions and position in the plane (the foci, the center, the 
asymptotes, etc.). 

6.18. Let 11 and 12 be two mutually perpendicular 
lines, and let p be their point of intersection. Find the 
set of points q such that the sum of the distances from 
q to 11 and 12 is e units greater than the distance from 
q to p. 

6.19. Given a straight line I and a point A in a plane, 
find the set of points: 

(a) the sum of whose distances from A and I is equal 
toe; 

(b) the difference of whose distances from A and I 
is equal (in absolute value) to e; 

(c) the ratio of whose distances from A and I is less 
than e, where e is a positive constant. 

6.20. Let 11 and h be two intersecting straight lines. 
Let d be a constant. Find the set of points M such that 

(a) d = p2(M, 11) + p2(M, h), 
(b) d = p2(M, 11) - p2(M, h). 
Draw the map of the level curves of the correspond­

ing functions: 
(a) f(M) = p2(M, 11) + p2(M, h), 
(b) f(M) = p2(M, 11) - p2(M, h). 

6.21. Given a point F and a straight line I in a plane, 
draw the map of the level curves of the functions: 

(a) f(M) = p2(M, F) + p2(M, I), 
(b) f(M) = p2(M, F) - p2(M, I). 

6.22. The vertex 0 of a hinged parallelogram 
o PM Q is fixed while the sides 0 P and 0 Q rotate 
with angular velocities which are equal in magnitude 
and opposite in direction. Along what line does the 
vertex M move? 

o Let 10PI = p, 10QI = q. Since OP and OQ 
rotate in opposite directions, they will coincide at some 
point in time. Take this point as the initial point in time 
t = 0, and the coincident lines as the axis Ox (We take 
the origin of the coordinate system to be the point 0). 
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Let the sides 0 P and 0 Q rotate with angular ve­
locityev. Then the coordinates of the points P, Q will, 
at time t, be equal to 

(p cos evt, p sin evt), 

(q cosevt, -q sinevt), respectively. 

Hence, the coordinates of the point M (x, y) will be 

x = (p + q) cos evt, 

y=(p-q)sincvt 

(since 0 M = oP + oQ). Therefore, the point M 
describes an ellipse 

x2 y2 
----=- + = 1. 0 
(p+q)2 (p_q)2 

In the solution to this problem, we obtained the 
ellipse as a set of points (x, y) of the form 

x = a cos evt, y = b sin evt (10) 

(where t is an arbitrary real number). Equations of this 
type, which express the coordinates (x, y) in terms of 
an auxiliary parameter t, are called parametric equa­
tions. In this particular case, the variable parameter t 
represents time. 

6.23*. In a plane, two straight lines passing through 
two fixed points A and B rotate about these points with 
equal angular velocities. What line does their point of 
intersection M describe if the lines rotate in opposite 
directions? t 

6.24*. Find the set of points M in a plane for which 
MBA = 2MAB, where AB is a given segment in the 
plane. t 

6.25*. (a) Consider all the segments that cut off 
a triangle of area S from a given angle. Prove that 
the midpoints of these segments lie on a hyperbola H 
whose asymptotes are the sides of the angle. t 

(b) Prove that all these segments touch the hyper­
bola H. t 
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(c) Prove that the segment of a tangent to the hyper­
bola cut off by the asymptotes is bisected at the point 
of tangency. ,j, 

6.26*. (a) Suppose we are given an isosceles trian­
gle ABC (lAC! = IBCI). 

Find the set of points M in a plane such that the 
distance from M to the straight line AB is equal to the 
geometric mean of the distances from M to the lines 
AC and BC. 

(b) Three straight lines intersecting each other form 
an equilateral triangle. Find the set of points M such 
that the distance from M to one of these straight lines 
is equal to the geometric mean of the distances from M 
to the other two. 

6.27*. A rectangle ABC Dis given in a plane. Find 
the set of points M such that AiiB = CMD. 

Algebraic curves 

Obviously, the sets of points which one may meet 
in geometrical problems are not limited to straight lines 
and quadratic curves. Let us give two examples. 

The set of points, the product of whose distances 
from two given points FJ and F2 is equal to a given 
positive number p, is called an oval ofCassini. A whole 
family of these curves-the family of level curves of 
the function 

f(M) = p(M, FJ)p(M, F2) 

is shown in the figure. 
Equations of these curves may be written as fol­

lows: 

An oval of Cassini has the particularly interesting 
form of a "figure eight," when p = c2. When p < c2, 

the curve consists of two separate parts surrounding the 
points FJ and F2. 

Here is the other example. Let a point F and a 
straight line I be given. Denote the distance of a point 
M from the point of intersection of the straight lines 
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F M and I by q (M). The set of points {M: q (M) = d} 
is called the conchoid ofNicomedes. Its equation in the 
coordinate system where F is the origin and I is given 
by the equation y + a = 0 is expressed as follows: 

In general, the curve given by the equation 
P(x, y) = 0, where P(x, y) is a polynomial in x and 
y, is called an algebraic curve. The degree of the poly­
nomial P (provided that it does not factor) is called the 
order of the curve. Thus, the oval of Cassini and the 
conchoid are curves of the fourth order. It is already 
clear from these two examples that algebraic curves (of 
order higher than 2) may look somewhat peculiar: they 
may possess singular points (cusps, as the conchoid has 
when a = d, or points of self-intersection) and the form 
of these curves may change significantly when the pa­
rameters are changed. We shall meet some new curves 
in the next chapter. 
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CHAPTER 7 

Rotations 
and 

Trajectories 

In this chapter we present some remarkable curves that 
are naturally generated as trajectories of points on a 
circle rolling along a straight line or along another cir­
cle. The most interesting properties of these curves are 
connected with tangents. We will start by investigating 
cycloids, which are the paths traced by a single point on 
a circle as the circle rotates along another curve. The 
reader may recall that, at the end of the Introduction, 
we revisited Problem 0.1 and encountered a curve real­
ized as the envelope of a family of lines. This envelope 
was a curve with four cusps, called an astroid. We will 
examine this fact in greater detail here, and we will also 
see why a spot of light in a cup formed by reflected rays 
has a characteristic singularity, a cusp. The devotee of 
classical geometry will find out about the connections 
between the nine-point circle of a triangle, its Wallace­
Simson lines and their envelope, the Steiner deltoid, 
which is a cycloid with three cusps. 

We shall first study one of the simplest cycloids. 

The cardioid 

Usually, this curve is defined as the path of a point 
moving in the following way: Given a stationary circle, 
suppose another circle of the same radius rolls without 
slipping around the stationary circle. Fix a point on the 
moving circle. The path traced by this particular point 
on the moving circle is called a cardioid. 

89 



A 

CfC) 

It is possible to give other geometrical definitions 
of a cardioid. We shall give two of them in the form of 
an exercise for the reader. 

7.1. Prove the following statements: 

(a) Let A be a particular point on a given circle. 
Consider the set of points symmetric to A relative to all 
the possible tangents to this circle. Prove that this set 
of points is a cardioid; 

(b) As before, let A be a particular point on a given 
circle. Consider the set consisting of the feet of the per­
pendiculars dropped from A onto all possible tangents 
to the circle. Prove that this set of points is a cardioid. 

o (a) Consider a circle y which touches a given 
circle 8 at the point A and has the same radius as 8. 
Suppose the circle y rolls around the circle 8; let M 
denote the point on the moving circle which, at the 
initial moment in time, coincides with the point A. Let 
us follow the path of the point M. 

We assume that the circle y rolls without slipping. 
This means that if T is the variable point of contact 
between the circles, then, at every instant, the lengths 
of arcs AT and MT are equal. Hence the point M is 
symmetric to the point A with respect to the tangent 
drawn through the point T. 

In a single revolution, the point T runs around the 
whole of the circumference of the circle 8, and M 
around the entire cardioid. 

(b) Clearly, we can obtain this set from the one 
mentioned in (a) by a similarity transformation with 
coefficient 112 and center A. Hence it is also a cardioid 
of half the size of the cardioid in (a). 0 

Using Problem 7.1, we can plot as many points of 
the cardioid as we please, and thereby draw it quite 
accurately. It is a closed curve which has a character­
istic singularity-a cusp-at the point A. The shape 
of this curve resembles the cross-section of an apple, 
somewhat in the shape of a heart, from which its name 
comes (Kardia means "heart" in Greek). 

The next beautiful definition of a cardioid, in which 
it is generated as an "envelope of circles," also follows 
from Problem 7.1. 

90 



7.2*. Suppose we are given a circle y and a point 
A lying on it. Prove that the union of all the circles that 
pass through the point A, and whose centers lie on the 
circle y, is a region bounded by a cardioid. ..j.. 

Addition of rotations 

We are now going to discuss ways of determin­
ing the geometric properties of curves with the help 
of kinematics. The cardioid will serve as an example. 
But before proceeding further, let us discuss the last 
sentence of the solution to Problem 7.1 (a). 

We said that the point T returns to the initial point 
A after one revolution. As we are dealing with sev­
eral different rotations, this phrase needs to be made 
more precise: what is a "revolution," i.e., exactly what 
rotation are we talking about? 

What we mean is that the center P of the moving 
circle y (and therefore the point of tangency T) makes 
one revolution. But the circumference of the circle 
y itself (we can visualize it better as a circular plate) 
rotates about its center P quite quickly. Let us study 
this motion in greater detail. 

7.3. Suppose the center P of the moving circle y, 
rolling along a stationary circle 8 of the same radius, 
makes one revolution around 8. How many revolutions 
will the circle y make about its center P during this 
time? 

o In order to follow the rotation of the circle y, let 
us draw a radius PM in the circle y. Let E be a fixed 
point in the plane, and let EN be a segment such that 
EN = pM. Our question is: How many revolutions 
will the segment EN make about its endpoint E while 
the segment 0 P rotates through 3600 ? In other words, 
what is the ratio of the angular velocities of these seg­
ments? 

To answer this question, it is sufficient to consider 
two different positions of the moving circle. One can 
see from the figure that when the radius 0 P turns 
through 900 , the segment EN turns through 1800 • Con­
tinuing further in the same way, we see that when the 
radius 0 P turns through 3600 , the segment EN will 
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turn through 7200 ; i.e., it will make two complete rev­
olutions (the ratio of angular velocities is equal to 2). 
This gives us the answer to Problem 7.3. 0 

If we take the center 0 of the stationary circle as 
the point E in the solution of Problem 7.3 and mark off 
from it the segment oQ = PM, then we obtain the 
parallelogram 0 PM Q. 

In the uniform rolling of the circle y around 8, the 
vertex 0 is motionless and the sides 0 P and 0 Q rotate 
with the angular velocities w and 2w, respectively (in 
the same direction). Thus, we obtain another definition 
of the cardioid using the convenient model of a hinged 
parallelogram: 

If the sides OP and OQ (where IOPI = 210QI) 
rotate about the point 0 with angular velocities w and 
2w, the locus of the fourth vertex M of the parallelo­
gram 0 PM Q is a cardioid. 

It is now easy to give one more method for the 
construction of a cardioid. We will also deduce a few 
more of its fascinating properties. 

7.4. Suppose we are given a circle 8 of radius r 
and a point A lying on it. If, on every straight line I 
passing through the point A, we mark off from the point 
of intersection Q of I and 8 (A i= Q) the segment QM 
of length 2r, then the set of all points M thus obtained 
will be a cardioid. 

o For every position of the straight line I, we may 
construct a parallelogram 0 PM Q, where Q and M 
are as stated in the problem. Then, if the straight line I 
rotates about the point A with an angular velocity w, the 
sides 0 P and 0 Q of the parallelogram will rotate with 
exactly the necessary velocities w and 2w (according 
to the theorem about a ring on a circle in Chapter 1), 
and so the point M will describe a cardioid. 0 

Try to construct a cardioid on a large sheet of paper 
using problems 7.1 and 7.4 and convince yourself that 
you obtain the same curve. Perhaps the second method 
is even more convenient. Note that in Problem 7.4 we 
may mark off the segment Q M of length 2r from the 
point Q in either direction. From this, we obtain two 
points Ml and M2 of the cardioid. They correspond 
to two opposite positions of the hinged parallelogram 
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(if the point Q makes one full revolution and returns 
to the initial point, then the side a M will turn through 
1800 and MI will coincide with the point M2). This 
circumstance leads to the following property. 

7.5. Suppose we are given a cardioid with its cusp 
at the point A. Prove that any chord MIM2 of the 
cardioid passing through A has length 4r, and that the 
midpoint of the chord lies on the stationary circle (of 
radius r) that generates the cardioid. 

Here are two more problems which use the second 
method of constructing a cardioid. 

7.6. A stick of length 2r moves in a vertical plane 
so that its lower end rests against the bottom of a hole in 
the ground whose vertical cross-section is a semicircle 
of radius r. The stick rests against the edge of the hole. 
Prove that the free upper end of the stick moves along 
a portion of a cardioid. 

7.7. A hoop of radius 2r rolls, without slipping, 
around the outside of a stationary circle of radius r. 
Prove that the locus of a fixed point on the hoop is 
cardioid. 

D One solution to this problem may be obtained 
if we compare the problem with Copernicus' Theorem 
0.3. Here, in fact, we are dealing with the same two 
circles, but the internal circle of radius r is fixed, and 
the external circle of radius 2r rolls around it. In this 
situation, Copernicus' Theorem shows that if we fix a 
stick to the hoop along the diameter MI M2, then, while 
rolling, the stick passes through a fixed point A of the 
stationary circle. At the same time, the midpoint Q 
of the stick MIM2 moves around the stationary circle 
8, and IMIQI = IQM21 = 2r. Hence we arrive at 
Problem 7.4, and we can see that the points MI and M2 
move on the same cardioid. 

One can reason in a somewhat different way, mak­
ing the problem analogous to that of the hinged paral­
lelogram. Let M be the point of the hoop we are follow­
ing and Q its (variable) center. We shall construct the 
parallelogram a PM Q. If the link a Q of the parallel­
ogram rotates with angular velocity 2w, then the hoop, 
and with it the link QM, rotate with angular velocity 
w. D 
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The curve we have just been considering, the car­
dioid, is included in a natural way in the family of 
curves called conchoids of a circle or the lima~on of 
Pascal. Consider the statement of Problem 7.4: sup­
pose that on the straight line I passing through the point 
A, we mark off a segment Q M of some constant length 
h (in either direction). Then we get one of these curves 
for every h > O. For h = 2r, the curve will be a 
cardioid. It turns out that we can give a kinematic defi­
nition of the lima<;on of Pascal for every h. We do this 
in the next problem. 

7.8. (a) Prove that the vertex M of a hinged par­
allelogram, whose vertex 0 is fixed and whose sides 
o P and 0 Q rotate with angular velocities 2w and w, 
respectively, describes a lima<;on of Pascal. 

(b) A circle of radius r is fixed in a plane. Around 
it rolls a circle of radius r with a moving plane rigidly 
fixed to it. Prove that every point of this plane describes 
a lima<;on of Pascal. 

(c) Repeat part (b), but suppose that instead of a 
moving circle of radius r, we have a loop of radius 2r 
encircling the stationary circle. 

Now let us investigate some problems which re­
quire us to look at the addition of rotations where there 
is a different ratio between the velocities than we had 
in the case of the cardioid. We will be reminded of 
some of the other cycloids shown in the figures on 
pp.95-96. 

7.9. A circle of radius (a) R/2, (b) R/3, (c) 2R/3 
is rolling around the outside of a stationary circle of 
radius R. In each case, how many revolutions will the 
circle make while its center describes one revolution 
about the center of the stationary circle? t 
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7.10. Solve the same problem, but with the circle 
rolling around the inside. 

7.11. Ball bearings with 2mm diameters are located 
between the axle of a bearing 6 mm in diameter and its 
stationary ball race of 10 mm in diameter. When the 
axis rotates, the ball bearings roll around the axle and 
the balls race without slipping. Find out with what an­
gular velocity (a) the ball bearings rotate, and (b) their 
centers run about the center of the bearing if the axle 
rotates with an angular velocity of 100 revolutions per 
second. 

7.12. Gears that propel a grindstone are arranged 
as is shown in the diagram. Find the ratio of the radii 
of the moving wheels for which the smaller wheel (the 
grindstone) will revolve 12 times faster than the handle 
o Q which sets it in motion. 

Consider two points on a circle as the circle rolls 
around another circle. It is clear that they must describe 
congruent paths. In particular, it is possible for these 
two paths to coincide: the two points can move along 
the same curve, one following the other. This was the 
case, for instance, in the solution of Problem 7.7, where 
we saw that diametrically opposite points of a hoop 
described the same cardioid. We could have convinced 
ourselves of this by simply noticing that the paths of 
these points have their cusps at the same point of the 
stationary circle. We can use similar observations in 
the following problems. 
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Fig. 1 Fig. 2 

Fig. 4 

Fig. 3 

A k-cycloid is the curve described by the vertex M of a 
hinged parallelogram 0 PM Q, whose vertex 0 is fixed and 
whose links 0 P and 0 Q rotate about 0, where the ratio 
woplwoQ of the angular velocities is equal to k and the 
ratio lOP I I I 0 Q I of the lengths of the links is equal to 1 I I k I 
(k :f. 0, +1, -1). 

If two points L and N move uniformly around a circle, so 
that the ratio wLlwN of their angular velocities is equal to k, 
then the envelope ofthe straight lines LN will be a k-cycloid 
(7.19). 

The shapes of a k-cycloid and a (11 k)-cycloid coincide 
(7.14). 

The k-cycloid may also be defined as the locus of a point 
of a circle of radius r which rolls around another circle of 
radius Ik - 11· r without slipping (externally when k > I and 
internally when k < 1). 
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Fig. 6 

Fig.S 

Fig. 7 

Usually k-cycloids are called epicycloids when k > 0, 
and hypocycloids when k < O. In diagrams 1--6, k-cycloids 
are depicted for k = 3/8, -117, -3, -2, 112, and 3. The 
last four have special names: the astroid, Steiner deltoid, 
cardioid, and nephroid. Several families of segments related 
to these curves are shown in diagrams 3--6. All the segments 
in each diagram have equal lengths (7.4; the theorem on two 
circles on p. 99; 7.21). 

In the last diagram 7, the locus of a point of a circle 
rolling along a straight line is shown. This curve is known 
as the cycloid. The envelope of the diameters of the rolling 
circle is a cycloid of half the size (the theorem on two circles). 
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7.13. (a) Suppose that y, a circle of radius 2R/3, 
rolls around the inside of a circle of radius R. If M I and 
M2 are two diametrically opposite points on y, prove 
that as y rolls, these two points trace out one and the 
same Steiner deltoid. "-

(b) Prove that three points MI, M2 and M3lying on 
a circle of radius 3 R /4 at the vertices of an equilateral 
triangle will describe the same curve, an astroid, if the 
circle is rolled around the inside of a circle of radius R. 

(c) Solve the same problem as in (b), but suppose 
the radius is 3R/2 instead of3R/4. In this case, instead 
of an astroid, we get a nephroid (and the movable circle 
encircles the stationary one like a hoop). 

The three curves we have just introduced-the 
Steiner curve (also called a deltoid), the astroid (from 
astra, meaning star), and the nephroid (from nephros, 
meaning kidney)-are obtained in these problems in a 
somewhat different way from the way they are defined 
on pp. 96--97. 

We have already seen, from the example of the car­
dioid, that a curve may be obtained as the paths of points 
on two different circles rolling around the one station­
ary circle (Compare the first definition of the cardioid 
and Problem 7.7. In the first case, the center of the 
moving circle is the vertex P of a hinged parallelo­
gram OPQM, and in the second case, the vertex Q). 
The following problem shows us what ratios between 
the radii of the circles we must take to obtain congruent 
paths. 

7.14*. (a) Prove that a point on a circle of radius 
r, rolling around the outside of a stationary circle of 
radius R, and a point on a circle (hoop) of radius R + r, 
surrounding the circle, describe congruent paths. 

(b) Prove that a point on a circle of radius r, rolling 
around the inside of a circle of radius R, and a point on 
a circle of radius R - r, rolling inside the same fixed 
circle, describe congruent paths. "-

To solve these problems, we have to learn how to 
calculate the ratios of the velocities of quite compli­
cated rotations. We shall discuss how to do this below, 
but now let us go on to the most interesting properties 
of cycloids: the properties of their tangents. 
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A theorem on two circles 

We will formulate a curious rule which allows us 
to describe the family of tangents to the trajectory of 
the point M on a circle of radius r which rolls without 
slipping along a curve y. Let us roll a circle of radius 
2r along the same curve y, and suppose that a diam­
eter K L of this circle (considered fixed relative to the 
circle), as shown, is positioned in such a way that at 
some instant its endpoint K and the point M coincide 
at the point A on the curve y. It so happens that in this 
case, at any point in time, the diameter K L is tangent 
to the path of the point M. In other words, the path is 
the envelope of all the positions of the diameter K L. 

We have called this very convenient rule the "theo­
rem on two circles." We shall discuss its proof later on, 
but first let us make things a little clearer. If we roll the 
two circles mentioned in the theorem simultaneously, 
so that their points of tangency with the curve y al­
ways coincide, then the smaller circle will roll around 
the bigger one without slipping. Then, from Coper­
nicus' Theorem, the point M will move along a fixed 
diameter K L of the bigger circle. Our theorem on two 
circles asserts that the straight line K L will be tangent 
at the point M to the locus of this point M. 

Let us move on to the examples. Let us begin with 
the family of curves which we spoke about in the in­
troduction to the book. Assume that a circle of radius 
r with the point M marked rolls around the inside of a 
circle of radius R = 4r. Together with it, let us roll a 
circle of radius 2r along with its diameter K L. (At the 
initial moment, the points K and M coincide with the 
point A on the stationary circle) According to Coperni­
cus' Theorem, the endpoints of the diameter K L slide 
along two mutually perpendicular diameters AA' and 
B B' of the stationary circle. At the same time, accord­
ing to the theorem on two circles, the diameter K L, as 
it moves, is tangent to the trajectory of the point M, 
i.e., the envelope of the straight lines K L is an astroid 
with cusps at the points A, B, A', B'. 

The next problem is about the cardioid. 
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7.15*. A point B is given on a circle. From B, a 
ray of light falls on any arbitrary point on the circle and 
is then reflected from the circle (the angle of incidence 
with the circle's tangent is equal to the angle ofreflec­
tion). Prove that the envelope of the reflected rays is a 
cardioid. 

o Let us denote the center of the "reflecting" circle 
by 0 and the point diametrically opposite the point B 
by C. Suppose the ray B P, after being reflected at the 
point P, arrives at the point N of the segment BC (we 

consider for the time being that PiiC :::: 45°). Then 

-pj:j(; = JiPN + PiiN = 3 PiiC. This means that if 
we rotate the ray B P with an angular velocity w, then 
the reflected ray will rotate with an angular velocity 
3w, and the point of reflection P will move around the 
reflecting circle with an angular velocity 2w (according 
to the "theorem about the tiny ring" from Chapter 1). 

Clearly, this will also be the ratio when PiiC > 45°. 

We can get the family of straight lines P N in the 
following way. Let us roll a circle of radius 2r, together 
with its diameter K L (which, at the initial moment, 
lies along the straight line BC) around a fixed circle 
of radius lOB I /3 with its center at O. If the center P 
of the moving circle rotates with angular velocity 2w 
around the circle of radius 3r with center 0, then the 
diameter K L will rotate with an angular velocity 3w 
(?) - just as the reflected ray did. 

By the theorem about two circles, the envelope of 
the family of straight lines K L will be the trajectory of 
the point M of the circle of radius r rolling around a 
circle of the same radius r with center 0; i.e., a cardioid. 
At the initial moment, the point M coincides with the 
point A, dividing the segment BC in the ratio 2: 1. This 
point will be the cusp of the cardioid. 0 

We often see this "cusp" in the form of a spot of 
light formed by reflected rays at the bottom of a cup 
or a saucepan inclined to incident rays from a lamp or 
the sun. However, in such cases it is more natural to 
consider the pencil of incident rays as being parallel 
and not coming from a single point on the circle. We 
do not then get a cardioid, but another known curve, 
with a similar cusp. 
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7.16*. Prove that if a collection of parallel rays falls 
on a semicircular mirror (as shown in the diagram), then 
the reflected rays are tangent to half a nephroid. 

If the mirror were parabolic, then, as we know from 
Chapter 6, the reflected rays would come together at a 
single point, the focus of the parabola. This comparison 
gives rise to the other name for the nephroid: thefocal 
line of a circle. 

7.17. Find the set of points determined by the en­
velope of diameters of a circle of radius r, as the circle 
rolls: 

(a) around the outside of a circle of radius r; 
(b) around the inside of a circle of radius 3r /2. 
A few more interesting problems about families of 

tangents appear below, but first we will discuss the kine­
matic concepts used in the solution of the last few prob­
lems and in the proof of the theorem on two circles. 

Velocities and tangents 

There are more convenient ways to determine the 
ratios of the angular velocities in these complicated 
rotations than the quite primitive method we used in 
solving Problem 7.4. First of all, there is the rule for 
adding angular velocities, which is similar to the rule 
for the addition of linear velocities when changing to a 
new frame of reference. 

Let us take angles (and angular velocities) corre­
sponding to counterclockwise rotations as being posi­
tive, and angles and rotations in a clockwise direction 
as being negative. 

Then if the straight line 12 is turned relative to the 
straight line 11 through angle cp' and 13 is turned relative 
to 12 through an angle cp, then 13 turns with respect to 11 
through the angle cp + cp'. 

Thus, if the figure Y2 rotates with respect to the 
"fixed" figure Y1 with an angular velocity Wi, and Y3 
with respect to Y2 with an angular velocity w, then Y3 
rotates with respect to Y1 with angular velocity w + Wi. 

We mostly deal with rotations of circles, so we shall 
assume that some radius is marked on each of them in 
order to follow their rotations more easily. 
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Let us show how we can apply this rule. First, con­
sider two circles of radius r whose centers are fixed at 
a distance 2r from each other. If the circles rotate with­
out slipping, then their angular velocities are equal in 
value and opposite in sign: the first has angular veloc­
ity -wand the second has angular velocity w. This is 
because the linear velocities of the points of tangency 
of the two circles are equal (the fact that the circles 
rotate without slipping is used here). Recall that if a 
point M is located at a distance r from the center of 
a circle that rotates with angular velocity w, then the 
linear velocity of M is given by v = wr. From the 
equality of the linear velocities we get the equality of 
the angular velocities of the circles (in absolute value). 

Now let us pass to a reference frame fixed to the 
first circle. We then have to add w to all the angular 
velocities: the angular velocity of the first circle will 
be 0 while the angular velocity of the second circle will 
be 2w. We have already seen this in Problem 7.4. 

Consider another example. Suppose that the r is the 
distance between the centers 0 and P of the mutually 
tangent circles of radii R = 2r and r, respectively (for 
the time being, let us take their centers as fixed). Their 
angular velocities will be w and 2w, respectively (the 
ratio of these values is inversely proportional to the ratio 
of the radii). In a reference frame fixed to the smaller 
circle, the angular velocity of the larger circle is (-w) 
and the angular velocity of the smaller circle is 0 (this 
was the motion which we spoke about in Copernicus' 
Theorem 0.3). In a reference frame fixed to the larger 
circle, the angular velocities of the larger and smaller 
circle are 0 and w, respectively (see Problem 7.7). 

When determining angular velocities, it is possi­
ble, however, to avoid the introduction of a rotating 
reference frame. To do so, we must clarify how to find 
the (linear) velocities of the points on a rolling circle 
(a wheel). This question is of great importance in the 
next section, which deals with tangents to cycloids. 

Thus, we return to the first example: let us consider 
some position of a circle of radius r, rolling around a 
circle of the same radius; denote by T the point on 
the moving circle coinciding at the moment considered 
with the point of tangency of the circles. Its velocity is 
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equal to 0 (since the rotation is without slipping). How 
do we find the velocities of the other points? 

For this, let us apply the following theorem of 
Mozzi: 

At any point in time, the velocities of the points of a 
solid plate which moves in a plane are either those of a 
body in translation (i.e., are all equal in value and have 
the same direction) or those of a rotating body, i.e., the 
linear velocity of some point T is equal to zero and 
the linear velocity of every other point M is equal in 
magnitude to 1M T I W (where W is the angular velocity of 
the plate) and is perpendicular to the segment M T. This 
last case, in particular, applies to a rolling circle, and 
the point of tangency plays the role of the point T ("the 
instantaneous center of rotation"). (This will be true 
even for an irregular wheel rolling on a bumpy road.) 
Making use of this, we can find the ratio between the 
angular velocity WI of the rolling wheel and the angular 
velocity W2 with which its center P rotates about the 
center 0 of the stationary circle. To do this, we express 
the linear velocity of the point P in two different ways: 
on the one hand, its value is equal to 2rW2. On the other 
hand, it is equal to rWI, since T is the instantaneous 
center of rotation. Hence,2rW2 = rWI, and so WI = 
2W2. 

Suppose that a circle of radius r rolls around the 
inside of a circle of radius 2r in such a way that its center 
moves (around a circle of radius r) with the angular 
velocity W2 > O. The same reasoning as above allows 
us to deduce the following: Denote the angular velocity 
of the circle by WI and note that WI < o. Expressing 
the velocity of the point P in two different ways, we 
get IWIrl = IW2rl, giving WI = -W2. 

Similar reasoning helps us when studying other 
complex rotations. 

But what is particularly important is that Mozzi's 
theorem allows us to find the direction of the velocity 
at every point of the figure: the velocity of the point M 
is directed orthogonally to the segment MT joining M 
with the instantaneous center of rotation T. 

We shall now give one more proof of Copernicus' 
Theorem. Let M be a point on a circle of radius r 
which rolls inside a circle of radius 2r with center o. 
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At any point of time, the velocity of the point M is 
perpendicular to the segment T M, where T is the point 
of contact of the circles (and the instantaneous center 
of rotation of the smaller circle). Thus, the velocity 
of the point is always directed along the straight line 
M 0 (since T and 0 are diametrically opposite points 
on the smaller circle). Therefore, the point M moves 
along a diameter of the larger circle, which is just what 
Copernicus' Theorem asserts. 

We now give a proof of the theorem on two circles. 
Let us simultaneously roll two circles of radii r and 2r 
along the curved (or straight) line y. Let M and K be 
points on them which coincide at the initial moment 
with the point A of y, and let T be the common in­
stantaneous center of rotation of the two circles (their 
point of contact with y). The velocity of the point M 
is directed perpendicularly to the segment MT. 

Hence, the velocity of the point M is directed along 
the diameter of the larger circle: that is, M lies on a 
certain diameter K L of this circle, and in its motion, 
the straight line K L touches the path of the point M. 
This is just the theorem on two circles. 

Note that here we have looked at the definition of 
the tangent to a curve in a new way. The tangent at the 
point M to the path of a moving point is the straight 
line passing through the point M on the path whose 
direction coincides with the direction of the velocity at 
the given point M. 

We shall not give a proof of Mozzi's theorem, but 
we shall point out its geometrical analogue: any dis­
placement of a plane which can be realized without 
turning the plane over onto the other side (that is, by 
a direct isometry), is either parallel displacement or 
rotation about some point T (Chasles' theorem). In 
connection with Mozzi's theorem, we stress one more 
idea. In the case of the most general movement of a 
plate in a plane, the instantaneous center T changes 
its position not only in the stationary plane, but also 
in the moving one (the plate) during the process of 
movement. In each case it describes some curve; one 
is called the fixed centrode and the other the moving 
centrode. For instance, during the rolling of a wheel 
along a road, the fixed centrode would be the road and 
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the moving centrode would be the rim of the wheel. 
A well-known kinematics theorem states that for every 
"smooth" enough motion of a plane, i.e., motion with­
out ''jerks,'' the moving centrode rolls along the fixed 
one without slipping, and at each moment, their point 
of contact is the instantaneous center of rotation. 

Thus the general motion of a plate in a plane re­
duces to the rolling of an irregular wheel on a bumpy 
road. From this point of view, the subject matter of 
our section could be summarized as the study of mo­
tions for which both centrodes are circles. With that, 
we come to the end of our digression into kinematics. 
We are now equipped to set about discovering some of 
the most remarkable properties of cycloids-namely, 
those connected with the families of tangents to these 
curves. 

7.18. Prove that the tangents to a cardioid at the 
endpoints of a chord passing through the cusp of the 
cardioid are mutually perpendicular, and that their point 
of intersection is located at a distance 3r from the center 
of the stationary circle, where r is the radius of this 
circle. -J, 

7.19*. Two pedestrians L and N walk at a constant 
speed around a circle. The ratio of their angular veloc­
ities is k (k is not 0, 1, or -1). Find the envelope of all 
the straight lines LN. -J, 

7.20*. Suppose we are given a circle and a straight 
line passing through its center. Prove that the union 
of all the circles whose centers lie on the given circle 
and which are tangent to the given straight line is a 
nephroid. 

7.21*. Consider a Steiner deltoid drawn about a 
circle of radius 2r (the inscribed circle). Prove that 
an arbitrary tangent to the deltoid (at some point M) 
intersects the deltoid at two points K and L such that the 
segment K L has a constant length 4r, and the midpoint 
of K L lies on the given inscribed circle. Prove also that 
the tangents to the deltoid at the points K and L are 
mutually perpendicular and intersect at a point N lying 
on the inscribed circle. Finally, show that the segments 
K Nand LN are bisected by the inscribed circle. -J, 
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7.22*. Consider an astroid drawn about a circle of 
radius 2r. Prove that from an arbitrary point of the 
inscribed circle P, it is possible to draw three straight 
lines PTI, PT2, PT3, each tangent to the astroid, such 
that: (a) they form equal angles (of 60°) with each other; 
and (b) the three points of tangency TI, T2, T3 are the 
vertices of a right-angled triangle inscribed in a circle 
of radius 3r, which is tangent to the circle described 
about the astroid. 

The next and last problem in this series, which also 
may be solved using the language of motion, reveals 
an unexpected connection between the deltoid and the 
elementary geometry of a triangle. This curve is named 
after the geometer who discovered this connection. 

7.23*. A triangle ABC is given. 
(a) Fix a point on the circumcircle of this triangle. 

Suppose we drop three perpendiculars from this point 
to each one of the triangle's sides. Prove that the feet of 
these three perpendiculars are collinear. (The line on 
which the three feet lie is called the Wallace-Simson 
line of the point on the circumcircle). 

(b) Prove that the midpoints of the sides of a tri­
angle, the feet of the altitudes and the midpoints of 
the segments of the altitudes joining the orthocenter to 
the vertices lie on a single circle (called the nine-point 
circle). 

(c) Prove that all the Wallace-Simson lines of the 
triangle ABC are tangent to a single Steiner deltoid, 
drawn around the nine-point circle. .J, 

Parametric equations 

All the properties of cycloids may also be proved 
analytically, using coordinates. It is most convenient 
to write their equations in parametric form, expressing 
the coordinates (x, y) of the point M through a param­
eter I (the time). We have already come across these 
equations in Problem 6.22. 

Consider the locus of the fourth vertex M of a 
hinged parallelogram 0 PM Q whose vertex 0 is at 
the origin in this coordinate system. (Note that 0 M = 
oF + (0). Suppose the point P moves with angUlar 
velocity WI around the circle of radius rl whose center 
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lies at the origin, 0, of our coordinate system. Suppose 
the point Q moves with angular velocity W2 around the 
circle of radius r2 whose center also lies at o. Then, at 
the moment t, the coordinates of P will be (rl cos WI t, 
rl sin WI t); the coordinates of Q will be (r2 cos W2t, 
r2 sin W2t); and the coordinates of the fourth vertex M 
of the parallelogram 0 PM Q will be 

x = rl cos WIt + r2 cos W2t 

y = rl sin WI t + r2 sin W2t. 

(At the initial point of time t = 0, the sides 0 P and 
o Q of the hinged parallelogram are both directed along 
the axis Ox.) 

In Problem 6.22 we saw that when W2 = -WI, the 
point M describes an ellipse. In the general case, when 
we have the following ratios: 

WI/W2 = k, r2/rl = Ikl 

the point M describes a k-cycloid. 
When we eliminate t in the parametric equations, 

we obtain, in some cases, simple equations connecting 
the coordinates x and y. Consider, for example, the 
astroid. For this curve, we have rl = 3r2, W2 = - 3WI. 

We may take WI = 1. Then W2 = -3, and the para­
metric equations of the astroid will be (putting r2 = r): 

x = 3r cos t + r cos 3t 

y = 3r sin t - r sin 3t 

or more simply (?): 

4 3 4 . 3 x = r cos t, Y = r sm t. 

Hence we get the following equation of the astroid: 

We can define the astroid and the other curves that 
we considered above by algebraic equations. Try to 
verify that the points (x, y) of these curves satisfy the 
following equations: 

(x2 + l- 4r2)3 + 108r2x 2y2 = 0 
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a 

(astroid) 

(x2 + y2 _ 2rx)2 _ 4r2(x2 + y2) = 0 

(cardioid) 

(nephroid) 

(x2 + y2 + 9r2)2 + 8rx(3y2 - x 2) - 108r4 = 0 

(Steiner deltoid). 
Thus, the astroid and the nephroid are curves of the 

sixth order, and the cardioid and Steiner deltoid are of 
the fourth order. 

It can be proved that when ~ = k is rational, cy­
cloids are algebraic. When k is irrational, they are not; 
such curves pass arbitrarily close to any point of the 
ring that is centered at 0 and bounded by circles of 
radii 'I + r2 and Irl - r21. These curves are said to be 
"everywhere dense" in this ring. 

Comparing the equations of the curves with their 
geometric properties yields new and interesting corol­
laries. Here is an example where a property of the 
astroid is used. 

7.24. (a) Suppose we are given a right angle and, 
inside it, a point K whose distances to the two sides are 
a and b. Is it possible to draw through the point K a 
segment of length d whose endpoints lie on the sides 
of the right angle? 

(b) A canal, whose banks are parallel straight lines, 
has a right angled tum in it. Before the tum, the width 
of the canal is a, and after the tum it is b. For what 
values of d can a thin log of length d pass around such 
a tum? 

o (a) Let us take the sides of the right angle as the 
coordinate axes. The segment oflength d must touch an 
astroid whose cusps are at a distance d from the center. 
The equation of such an astroid is x 2/ 3 + i/3 = d2/ 3 . If 
the point K lies inside the region bounded by the astroid 
and the sides of the angle, then the required segment 
exists (it is a segment of the tangent to the astroid pass­
ing through the point K). If the point K lies outside this 
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region, it does not. Therefore, the necessary segment 
exists if and only if a 2/ 3 + b2/ 3 :::: d2/ 3 . 0 

Note that though we have found how to "construct," 
using an astroid, the required segment when the condi­
tion a2/ 3 + b2/ 3 :::: d2/ 3 is satisfied, this problem cannot 
be solved using a ruler and compass. 

Conclusion 
The remarkable curves with which we have ac­

quainted ourselves in the last two chapters have been 
known for more than two thousand years. The basic 
properties of ellipses, hyperbolas, and parabolas were 
described in the work On Conics by the ancient Greek 
mathematician Apollonius of Perga, who lived at about 
the same time as Euclid (third century B.c.). Even in 
ancient times, astronomers studied complicated circu­
lar motions. This is not surprising. If, in a very rough 
approximation, the planets are considered to be rotat­
ing around the Sun in circular orbits in a single plane, 
then the positions of another planet, as observed from 
the Earth, will be follow some kind of complicated cir­
cular motion. Over the centuries, however, astronomi­
cal observations grew increasingly refined, and the de­
scription of planetary motion by means of complicated 
cycloid curves underwent further and further modifica­
tion. At long last, Johannes Kepler established that the 
planetary trajectories are ellipses with the sun located 
at one of the foci. 

A wide range of problems from physics, mechan­
ics, and mathematics were connected with particular 
curves. These provided a whetstone for sharpening 
the powerful analytical tools invented in the seven­
teenth century by Descartes, Leibniz, Newton, Fermat 
and others. These methods enabled the transition from 
particular problems connected with specific curves to 
general laws possessed by whole classes of curves. 
Needless to say, we cannot do without analytical meth­
ods when designing complicated mechanisms and con­
structions. However, the intuitive representations to 
which this book is devoted sometimes prove useful, 
even in problems not at all connected with geometry. 
It is not without reason that research or computational 
results are frequently represented in the form of graphs 
or families of lines. 
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CHAPTER 8 

Drawings, Animation, and 
the Magic Triangle 

What a pleasure it is to see or to draw nice geometric 
curves! Such curves can be drawn not only for fun, but 
also for very important practical or scientific reasons. 
Today one is not restricted to drawing with merely pen­
cil and paper: one can write computer programs to pro­
duce graphs or go online to find sophisticated graphing 
capabilities on the Internet. 

We will end this book by discussing how to obtain 
vivid images of geometric figures and then clarify the 
beautiful regularities that appeared in the last difficult 
problem (7.23 *) of the book. 

Certainly, drawings aid us in our understanding of 
the methods, ideas, and images that appear in our imag­
inations. But beware! They also can play tricks with 
our minds and may be the beginning of new illusions. 
For instance, the shape of an ellipse looks like an oval­
a convex closed curve. But not every oval is an ellipse. 
In fact, it is not easy to recognize a real ellipse from 
among other ovals in a drawing. It is amazing indeed 
that the great Johannes Kepler was able to choose, from 
among the many different possible oval and circular or­
bits, the ellipse as the planetary trajectory (see p. 109). 

The notion of a locus of points is also remarkably 
useful in defining geometric figures. Beautiful shapes 
such as circles, spheres, and ellipses can be expressed 
in simple statements. You may recall some of these 
definitions: 
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Circle/Sphere: In a plane (for a circle) or in space (for 
a sphere), the locus of points whose distances from a 
fixed point 0 (the center) are equal to a defined positive 
number r (the radius). 

Ellipse: In a plane, the locus of points p with the prop­
erty that the sum of the distances from p to two defined 
points A and B (the foci) is equal to a given positive 
number which is greater than the distance between the 
foci. 

Fig. 1 

Ellipses and other conics can be given as plane sec­
tions of a cone or cylinder. These figures can also be 
viewed as projections of a circle. The picture in Fig. 1 
has been drawn by hand to illustrate this representation 
of an ellipse and a hyperbola. Try to imagine the four 
spheres in this picture: two inscribed in the cylinder 
and two inscribed in the cone which touch the corre­
sponding sections at the foci of the ellipse and of the 
hyperbola. These spheres were invented by an engi­
neer, Germinal P. Dandelin, to show the connection 
between the definitions of conics as plane sections and 
their definitions in terms of foci. These spheres are 
called Dandelin spheres in his honor. The frantic man 
in the picture, however, is drawn to illustrate our feel­
ings about the process of creating three-dimensional 
drawings with computers. 

Software engineers expend great effort creating 
computer models of three-dimensional figures useful in 
the manufacturing process. The design of these mod­
els usually starts with the simplest figures, often called 
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"primitives." In the 3-D drawing above, we see several 
primitives: a cylinder, a cone, spheres, and conics. 

Drawing a family of curves is similar to drawing a 
picture in three dimensions. Recall that it can often be 
difficult to draw a real ellipse given its foci. We found 
(see Problem 6.S) a simple way to approximate, using 
a compass and straightedge, the family of ellipses with 
fixed foci A and B. 

Fig. 2 

a) Subdivide a segment AB into, say, 12 equal parts. 
b) Draw 12 circles, each one of which has its center 

at A and passes through one of the other 12 points on 
the segment. This picture looks like a wave. 

c) Analogously, draw 12 circles, each one of which 
has its center at B and passes through one of the other 12 
points. These two families of circles together generate a 
net with 4-sided curved cells. (This picture may remind 
you of the interference of 2 waves). 

d) Using small circles, mark the opposite vertices 
in a chain of the 4-sided curved cells. 

We simultaneously obtain both the families of el­
lipses and hyperbolas with fixed foci. Using more sub­
divisions of AB will increase the smoothness of the 
curves connecting these vertices. 

In the Introduction we found, using an equation, 
that a cat sitting on a ladder (away from the ladder's 
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midpoint) moves along an ellipse as the ladder slides 
toward the floor. 

This was our first example of the process of con­
verting geometric definitions into analytic formulas. In 
fact, the analytic formula for a curve describes the curve 
as a locus of points whose coordinates satisfy the for­
mula. Analytic formulas can be input into computer 
programs to create very accurate geometric shapes. 
Convenient analytic definitions can also quickly bring 
us to an understanding of the properties of curves. 

The envelope of a family of lines 

Sometimes, in a drawing of a family of straight 
lines, we can discern a familiar curve bounded by the 
straight lines. For example, see the ellipse in the draw­
ing in Fig. 3 (another ellipse appears on p. 76). 

Fig. 3 

This drawing was done by the following construc­
tion: 

a) Draw a circle with center 0 and choose a point 
A inside of the circle; 

b) Subdivide the circle in, say, 24 equal parts; 
c) Through each point M of this subdivision, draw 

the straight line that is perpendicular to the segment 
MA. 

In such constructions, the fixed point A is called the 
pedal. 

Thus, if the point M is moving along the circle, then 
the perpendiculars to the segments M A are tangents to 
the ellipse. In other words, the ellipse is the envelope 
of the one-parameter family of the constructed straight 
lines. 
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We also saw another appearance of a curve as an 
envelope of a family of lines in Problem 7.16; this was 
called a caustic curve. When light reflects off of a 
curve, the envelope of the reflected rays is a caustic by 
reflection. 

Let us consider a small piece of a smooth curve C 
that does not contain any straight line segments. We say 
that the curve C is the envelope of the one-parameter 
family of its tangent lines. Thus, if a point M moves 
along the curve, then the tangent line to M moves as 
well. The trajectory of a moving point M is the en­
velope of the family of straight lines generated by the 
velocity vector of the moving point M. 

For instance, recall the definition of a Steiner del­
toid as a (-2)-cycloid (see Problem 7.13): Suppose that 
inside a stationary circle with radius R, we have another 
circle whose radius is 2R /3 . Next, suppose this smaller 
circle is internally tangent to the larger circle and rolls 
along the larger circle without sliding. Steiner's del­
toid is given by the trajectory of a point on the smaller 
circle. 

It turns out that it also can be defined as an envelope 
of a family of straight lines-just in a slightly different 
way. The family of tangent lines to the Steiner del­
toid can also be represented as positions of the moving 
diameter of a moving circle. Imagine that inside the 
same stationary circle with radius R is a circle whose 
radius is 2R/3. Suppose this circle also touches the 
same larger circle from the interior and rolls around the 
larger circle without sliding. Let P Q be a fixed diam­
eter of this circle of radius 2R/3 (again, see Problem 
7.13). The envelope of all positions of this diameter 
P Q yields the Steiner deltoid. Such a curious repre­
sentation of the Steiner deltoid is a consequence of the 
theorem on two circles (see p. 99 in Chapter 7). Later 
on, we will see yet another realization of the Steiner 
deltoid as the envelope of a family of lines, defined in 
yet another way. 

The magic triangle 

We know a triangle can be "decorated" by its cir­
cumscribed circle, inscribed circle, their centers, the or-
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thocenter and the centroid. New constructions or dec­
orations we can add to a triangle include the Feuerbach 
Circle, the Steiner deltoid of Wallace-Simson lines, 
and Morley's triangle. An ordinary triangle with these 
wonderful decorations, particularly one in which these 
points and lines move around, is a figure we will call a 
Magic Triangle. 

An equilateral triangle is a beautiful, simple prim­
itive in a plane. Curiously enough, any triangle has 
certain equilateral triangles that are closely connected 
to it. First of all, we will discuss the Steiner deltoid 
(Property (c) below) which leads to Steiner's equilat­
eral triangle, and then, at the end of the chapter, we will 
discuss Morley's triangle. 

Remember that the circumcircle of a triangle is the 
circumscribed circle of the triangle, and the orthocen­
ter of a triangle is the point of intersection of its three 
altitudes. 

Any triangle ABC (Problem 7.23*) has the follow­
ing fascinating properties: 

a) The nine-point circle. The three midpoints of the 
sides of a triangle, the three feet of altitudes, and the 
three midpoints of segments of the altitudes joining the 
orthocenter to the vertices lie on a single circle. This 
circle is called the Nine-point Circle or the Feuerbach 
Circle. 

b) Let M be any point on the circumscribed circle 
of the triangle. The feet of the perpendiculars dropped 
from M to the sides AB, BC and AC (or their exten­
sions) all lie on a single line called the Wallace-Simson 
line. 

Fig. 4 
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c) When the point M moves around the circum­
scribed circle, the envelope of the resulting family of 
Wallace-Simson lines is a Steiner deltoid. This Steiner 
deltoid itself is tangent at three points to the Feuerbach 
circle of the triangle. 

Fig. 5 

We shall explain these connections by considering 
points and lines in motion. Recall the animated basic 
images from the beginning of this book. 

A tiny ring on a circle 

Notions of an angle and its measure can be repre­
sented by a clock and the rotations of its hands. Usually, 
counterclockwise rotation is called positive orientation 
and clockwise rotation is negative. We will use this 
convention throughout. 

Now, recall the familiar situation in Chapter 1: sup­
pose a small ring is put on a wire circle. A rod passing 
through this ring rotates around the point A of the circle. 
We discovered (see p. 11) that the angular velocities of 
the moving rod and the tiny ring are different: 

Fig. 6 
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If the rod rotates uniformly with an angular velocity 
w, the ring also moves around the circle uniformly 
but with angular velocity of 2w, that is, twice the 
velocity of the rod. This regularity is closely related to 
the theorem concerning the inscribed angle in a circle 
and Copernicus' Theorem (see the Introduction). 

------
Fig. 7 
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Two pedestrians on a circle and the 
Steiner deltoid 

Fig. 8 

We have already seen that many different defini­
tions can be used to describe the same curve. Naturally, 
we should try to choose the most convenient definition 
for our particular goal. In this case, for our definition of 
Steiner's deltoid, we will use the notion of an envelope 
of a family of lines as given in Problem 7.19. 

Two pedestrians Land N (see 7.19*) walk at con­
stant speeds around a circle in opposite directions: 
counterclockwise and clockwise, respectively. But the 
pedestrian L walks twice as fast as N. Suppose their 
angular velocities are equal to 2w and (-w), respec­
tively. Then the envelope of straight lines LN will be 
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a Steiner deltoid. We can see this from the following 
experiment: 

Consider the face of a round clock (a circle) divided 
into 12 equal parts, marked with the numbers from 1 to 
12. Suppose that at the initial moment the pedestrians 
Land N are on the number 12. Let us represent this by 
the ordered pair (12,12) and let us draw the horizontal 
tangent line to the circular clock at the point 12. When 
N takes one step to the number 1, L takes two steps in 
the opposite direction to the number 10. At this point, 
their positions are given by the pair (10,1). So let us 
draw a line passing through both 10 and 1. 

As the pedestrians continue their movement, we 
obtain the following sequence of ordered pairs for their 
positions: 
(12,12)---+ (1 0, 1)---+ (8,2)---+ (6,3)---+ (4,4) 
---+ (2,5)---+ (12,6) ---+ (10,7)---+ (8,8)---+ (6,9)---+ 
(4,10)---+(2,11)---+(12,12). 

For each ordered pair whose entries are distinct, such 
as (2,11) and (6,9), we draw a line connecting the cor­
responding positions of the pedestrians on the circu­
lar clock. The pedestrians will meet each other three 
times-at the points 12,4, and 8 on the clock-and at each 
such point where they meet, we draw tangent lines to 
the circle. These three meeting points are the vertices 
of an equilateral triangle. When we draw the lines that 
connect the sequential positions of pedestrians, we find 
that the envelope of these lines is a Steiner deltoid. 

Fig. 9 
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Fig.10(a) 

For pictorial clarity, it is better to subdivide the 
circle not into 12 but into 24 parts. The picture will 
be clearer still if, through each line LN connecting 
the pedestrians, we draw segments of lines with equal 
lengths and with their midpoints at the points N. Later 
on, we will need the value of the angular velocity of 
the line LN. 
From this experiment, we find that if the pedestrian N 
moves clockwise with angular velocity (-w), the line 
LN rotates counter counterclockwise twice as slowly, 
e.g., with angular velocity w/2. Indeed, take any point 
o on a plane and after every step of the pedestrian N, 
draw the line through the point 0 parallel to LN. 

How three points move around three 
symmetric circles 

Let us take a point M on the circumcircle of the 
triangle ABC, and let us suppose that it moves around 
the circle clockwise with angular velocity (-w). See 
Fig. 1O(a) below. 

Let the points Ml, M2 and M3 be symmetric to the 
point M relative to the lines BC, C A and AB. (By lines 
we mean the sides and the extensions of the sides AB, 
BC, and CA of the triangle ABC.) Since the point 
M is moving clockwise with angular velocity (-w), 
each of the points Ml, M2 and M3 moves around the 
circle which is symmetric to the circumcircle relative 
to the lines BC, CA and AB, respectively-that is, 
counterclockwise-with angular velocity w. (So, for 
instance, Ml moves around the circle which is sym­
metric to the circumcircle relative to the line BC; M2 
moves around the circle which is symmetric to the cir­
cumcircle relative to the line C A, and so on.) We have 
seen that these three circles meet at a one point H, 
the orthocenter of triangle ABC (see Problem 3.8 on 
p.39). 

Now, let us consider the three straight lines M 1 H, 
M2H and M3H. Since each of the points Ml, M2, 
and M3 moves around its respective circle with angular 
velocity (w), we can determine the angular velocity of 
the lines MlH, M2H and M3H about their common 
point H by using the theorem about a tiny ring on a 
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circle. Indeed, as a consequence of the theorem, these 
three straight lines all rotate with angular velocity w /2 
about their common point H. 

Let us note, though, that MIH, M2H and M3H 
are not three different straight lines: rather, they all 
coincide, giving us a single line. While this may seem 
intuitively clear from the diagram, keep in mind that 
Fig. lO( a) only displays one particular configuration of 
the points M, MI, M2, and M3. To prove that the lines 
MIH, M2H and M3H always coincide, however, we 
must show that these lines coincide for every position 
of M as M moves around the circle. 

The key step is to recall that the three lines all rotate 
with the same angular velocity about H, so if the three 
lines coincide at one moment in time, then they coincide 
everywhere. Now, consider the moment in time when 
the point M is at at the vertex C of the triangle. Then 
MI and M2 are the same point, so the lines MIH and 
M2H coincide at that instant, and hence these two lines 
coincide everywhere. Similarly, consider the moment 
in time when M is at the vertex B of the triangle. Here, 
the points MI and M3 are the same point, so the lines 
MIH andM3H coincide everywhere. Therefore, these 
three lines are identical, and at each moment of rotation, 
the three points MI, M2, M3 belong to a single straight 
line I passing through H. See Fig. lO(b). 

To get an indication of what happens as M moves, 
examine Fig. lO(c). Let's start again with the trian­
gle and its circumcircle, on which the point M rotates 
clockwise. This is indicated by the clockwise arrow on 
the circumcircle. Draw the three circles that are sym­
metric to the circumcircle relative to the three sides of 
the triangle. We know that all three circles intersect 
at the orthocenter H of the triangle. As M moves, 
the points MI, M2, and M3 rotate counterclockwise 
on their respective circles. Note, however, that unlike 
Figs. lO(a) and lO(b), Fig. lO(c) does not indicate a 
specific configuration of the points M, MI, M2, and 
M3-rather, it demonstrates the directions and the cir­
cles traversed by the points. We summarize our results 
as follows: 

There exists a straight line I which rotates counter­
clockwise about the point H with angular velocity w/2 
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and is connected to the moving point M in the following 
way: 

The three points Ml. M2, and M3 are actually the 
moving points of intersection between this rotating line 
and each of the three circles. Each of these points 
rotates about its circle with angular velocity equal to 
w, and each of these points lies on lies on the line I. 

Fig.10(c) 

Finally, we will describe a wonderful moving pic­
ture that illuminates the Wallace-Simson line. 

The Wallace-Simson line 

As above, let M be a point on the circumcircle of 
the triangle ABC. The feet of the three perpendiculars 
fromM to the lines AB, BC, and AC all lie on a single 
line. Indeed, if we extend each of these three perpen­
diculars to twice its original length, we will get three 
points MI, M2, and M3 which are symmetric to the 
point M relative to the three sides (or the extensions 
of the three sides) of the triangle. But we know that 
these three points lie on a single line I. In other words, 
let us fix a position of the point M; then the Wallace­
Simson line is the locus of midpoints of all segments 
M L, where L is any point of the line I. 

All of the Wallace-Simson lines of the triangle 
ABC touch a Steiner deltoid. That is, the envelope 
of Wallace-Simson lines is a Steiner deltoid. For an 
explanation of this relationship between the Wallace­
Simson lines and the Steiner deltoid, we will start by 
discussing the aforementioned nine-point or Feuerbach 
circle. 
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The Nine-Point Circle 

Suppose we are given a triangle ABC and its cir­
cumcircle. Let 0 denote the center of the circumcircle. 
Suppose, as before, that a point M on the circumcircle 
rotates clockwise with angular velocity -w. Let H be 
the orthocenter of the triangle, and let K be the mid­
point of the segment M H. As M moves around the 
circumcircle, the point K moves around a smaller cir­
cle. This smaller circle is similar to the circumcircle, 
with ratio of similitude 1/2 and center of similitude H 
(see Problem 3.20, p. 43). Its center is the midpoint 01 
of the segment connecting 0 and H. Indeed, you can 
easily verify that as K moves, the length of the segment 
01 K remains constant and is equal to half the radius 
of the circumcircle. 

The circle traversed by K passes through nine par­
ticular points of interest in the triangle ABC, and hence 
it is known as the nine-point circle. It is also called the 
Feuerbach or Euler circle. The nine points in the tri­
angle are the following (see Fig. 10(d»: 

a) The three midpoints of the segments joining the 
orthocenter H to the vertices A, B, and C; 

b) The three midpoints of the sides of the triangle; 
and 

c) The three feet of the altitudes of the triangle. 

Fig.l0(d) 

To prove this, we will show that for each of the nine 
points given above, we can exhibit M on the circum­
circle so that the given point is the midpoint of H M. 

First, as M moves around the circumcircle, it moves 
through the vertices A, B and C, so the point K on 
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the Feuerbach circle moves through the midpoints of 
segments H A, H B and H C. 

Next, consider the arc of the circumcircle that is 
cut off by the chord AB. We know that if we reflect 
this arc across the line A B, we will get a symmetric 
arc that passes through the orthocenter H. Let L be the 
midpoint of AB. Suppose we extend the segment H L 
to twice its length; by symmetry, this extended segment 
meets the circumcircle. By construction, this position 
of M on the circumcircle is such that L is the midpoint 
between Hand M. Hence L lies on the Feuerbach 
circle. Analogously, we can show that the midpoints 
of the other two sides, BC and C A, also lie on the 
Feuerbach circle. 

Finally, we will demonstrate that the feet of the 
three altitudes of the triangle lie on the Feuerbach circle 
as well. Again, suppose we construct the arc symmetric 
to the circumcircle relative to the segment AB. This 
arc passes through the orthocenter H. Consider the 
altitude whose foot lies on AB. Recall that the altitudes 
all pass through H as well. If we extend this altitude 
until it intersects the circumcircle, then, by symmetry, 
we obtain a position of M on the circumcircle for which 
the segment H M is bisected by the foot of the altitude. 
That is, the foot of the altitude is the midpoint of the 
segment H M, and hence the foot of the altitude lies 
on the Feuerbach circle. In the same manner, we can 
construct the corresponding positions of M for the feet 
of the other two altitudes-these positions are, once 
again, the intersections of the extended altitudes with 
the circumcircle. 

The rotation of the Wallace-Simson 
line and the Feuerbach circle 

Recall our previous scenario: suppose that the point 
M moves clockwise around the circumcircle of triangle 
ABC with angular velocity (-w). The midpoint Mmid 
of the segment H M, where H is the orthocenter of the 
ABC, moves with the same angular velocity (-w). 

The Wallace-Simson line rotates with angular ve­
locity w12, because it is always parallel to the line 
M 1 H, where M 1 is the point symmetric to M relative to 
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the side B C of the triangle ABC (as we have seen, the 
two other points M2 and M3 also lie on MIH). Also, 
the Wallace-Simson line goes through M mid . Thus, the 
other point of intersection of the Wallace-Simson line 
with the nine-point circle rotates with angular velocity 
2ev. 

These intersection points of the Wallace-Simson 
line move around a circle like the two pedestrians L 
and N we encountered before: the point Mmid moves 
like the pedestrian N, with angular velocity (-ev), and 
the other intersection point S moves like the pedes­
trian L, with angular velocity 2ev. Thus the envelope of 
lines joining their positions Mmid and S is a Steiner del­
toid. Therefore, the family of tangent lines to a Steiner 
deltoid has three representations: as the moving diam­
eter of a moving circle; as the moving line connecting 
two moving pedestrians; and as the family of Wallace­
Simson lines in a triangle. 

Steiner's triangle and Morley's triangle 

The three vertices (cusps) of the Steiner deltoid gen­
erate an equilateral triangle. Let us call this equilateral 
triangle Steiner's triangle. 

Surprisingly, there exists another equilateral trian­
gle that also can be derived from any triangle. 

Fig. 11 

Consider an arbitrary triangle ABC. Suppose we 
trisect each of its angles. Recall that to trisect an angle 
means to divide it evenly into three equal angles. In 
trisecting each angle, we construct two rays that parti­
tion the angle into three equal, smaller angles. Now, 
for each side of the triangle, consider the four rays we 
have constructed from the two angles adjacent to this 
side. Choose the two rays (one from each angle) that 
are closer to each side and consider their point of inter-
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section. We obtain three such intersection points, one 
for each side of the triangle. It turns out that these three 
points are always the vertices of an equilateral triangle. 
This triangle is called Morley's triangle. 

In our picture, it appears that Morley's triangle and 
Steiner's triangle have parallel sides. 

Fig. 12 

It might be worthwhile for to repeat our experiments 
to verify these regularities. Also, elegant demonstra­
tions of these facts can be found on the Internet: for 
instance, we located an interesting paper written by 
Miguel De Guzman with a nice proof that Morley's tri­
angle and Steiner's triangle have parallel sides. There 
are a number of web sites that feature unusual drawings 
and discussions of plane geometry, and the Internet is 
replete with different types of graphing software. In­
deed, fascinating animations and drawings of lines and 
curves are everywhere, vivid realizations of geometric 
beauty and simplicity. 
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Answers, Hints, Solutions 

1.13. Note that the vertices M of the right triangle AM B with hypotenuse AB lie on 
the circle with the diameter AB. 

1.14. Let us draw the cornmon tangent through the point of contact M of the circles. 
Let it cross A B at the point o. Then I A 0 I = lOB I = 10M I (the lengths of the tangents 
from the point 0 to the circles are equal). 

1.15. Answer: The union of three circles. Let A, B, C and D be the given points. Draw 
a straight line I through the point A, a line parallel to I through the point C, and straight 
lines perpendicular to I through the points B and D. The result is a rectangle. 

Let L be the midpoint of the segment A C and K the midpoint of the segment B D. Then 

it is easy to see that LiiK = 90°, where M is the center of the rectangle. Rotating I about 
the point A and rotating the other straight lines correspondingly, we find that the set of the 
centers M of the constructed rectangles is a circle with the diameter K L. 

Now the four points A, B, C, D may be divided into two pairs in three different ways: 
(A, C) and (B, D); (A, B) and (C, D); and (A, D) and (B, C). Therefore, the required set 
consists of three circles. 

1.25. Answer: Either the midpoint remains fixed or it moves along a straight line. If 
the pedestrians P and Q move along parallel straight lines with velocities that are equal 
in magnitude and opposite in direction, then, clearly, the midpoint of the segment P Q 
remains stationary; the path of the midpoint in this case is simply a single fixed point. If 
the pedestrians move along parallel straight and their velocities are not equal in magnitude 
and opposite in direction, then the midpoint of the segment P Q also moves along another 
parallel straight line. 

To see why, suppose the straight lines intersect at the point o. Regard 0 as the origin. 
Then the velocities vt and V2 of the pedestrians are vectors directed along straight lines, 
and their values are equal to the lengths of the paths walked by the pedestrians in unit time. 
Let the fir~edestrian be situated at th~oint P at time t, and the second one at the point 
Q. Then Of> = 7t + Nt and oQ = b + ~ (where the vectors 7t and It define the 
initial positions of the pedestrians when t = 0). 

The midpoint of the segment P Q is at the point M where 

So the point also moves along some straight line with a constant velocity yt t "Vi. In 
order to find this line, it is sufficient to mark the midpoint of the initial positions of the 
pedestrians and their positions after one unit of time. 

We may replace the vector calculations by the following geometric argument. 
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If Po PI and QOQI are any two nonparallel segments, then the segment MOMJ. where 
MO and MI are the midpoints of the segments PoQo and PI QI, is a median of the triangle 
LIMONI, where LI and NI are the fourth vertices of the parallelograms PI Po MoL I and 
Q I QoMoN I· (See Fig. 1. In the construction depicted, PI L I Q IN I is a parallelogram, 
and PI QI and NILI are its diagonals.) 

Fig. 1 

It is now clear that if, instead of PI and QJ. we take points on the lines QOQI and 
POPI such that PoP = t Po PI and Qo Q = t QoQ~, and the corresponding triangle LMoN 
(with the median MoM) is drawn, as before, then this triangle may be obtained simply by a 
similarity transformation with coefficient t and center Mo from the triangle N\ MoLl (with 
the median MoMI), i.e., the point M will lie on the straight line MOM I and MoM = t MoMI. 

1.28. Let us use Fig. I to Problem 1.25. If the segments POPI and QOQI rotate 
uniformly about the points Po and Qo with equal angular velocities (at one revolution per 
hour), then the triangle NI MoLl also rotates, along with its median Mo, as a rigid body 
about the point MO with the same angular velocity. 

1.29. Answer: A circle. Let us translate this problem into the language of motion. Draw 
the radii 01 K and 02L. Let the straight line K L rotate with a constant angular velocity w. 

Then according to the theorem about the tiny ring on a circle, the radii 0 I K and 02 L 
will rotate uniformly with the same angular velocity 2w, i.e., the size of the angle between 
the radii 01 K and 02L remains constant. Thus the problem reduces to the previous one. 

2.11. (b) Use Proposition F. 

2.19. Answer: If h is the height of triangle ABC, then the required set is empty when 
JL < h, the entire triangle (Fig. 2) when JL = h, the contour of a hexagon (Fig. 3) when 
JL > h. 

Fig. 2 Fig. 3 
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2.20. (b) See Fig. 4. 

Fig. 4 

3.5. (b) The problem reduces to 3.5 (a) and is simply solved by "embedding in space": 
If three spheres are constructed with their centers in the plane ex on the given circles (in the 
horizontal plane ex) and looked at from above, then we see three circles in which the spheres 
intersect (their projections on the horizontal plane are our three chords) and also their point 
of intersection (its projection is the required point of intersection of the chords). 

3.7. (b) Note that AiiB = 90° +~, where M is the centerofthe inscribed circle ofthe 
triangle. According to E the set of points M is a pair of arcs together with their endpoints 
A,B. 

3.7. (c) Answer: The required set is a pair of arcs (see Fig. 5 a, b, c, for each of the 
corresponding cases: (a) f{i < 90°, (b) f{i = 90°, (c) f{i > 90°). 

Let I A and I B be two intersecting straight lines passing through the points A and B, 
respectively, and let kA and kB be the straight lines passing also through A and B, such that 
k A ..l I B, k B ..l I A. If the lines I A and I B rotate about their points A and B, then k A and k B 
also rotate about their points A and B with the same constant angular velocity. According 
to Proposition EO, the point of intersection of k A and k B moves in a circle. 

a 
o 

b 

Fig. 5 

c 

Note that when the point of intersection of the straight lines I A and I B moves along an 
arc of the circle y, the point of intersection of the straight lines k A and k B also moves along 
an arc of a circle; it is symmetric to the circle y relative to the straight line A B. 
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3.8. (a) Let a, b, c be straight lines passing through the points A, B, C, respectively. 
Let K, L and M be the points of intersection of the straight lines a and b, b and c, a and c, 
respectively. According to Proposition EO of the "alphabet" the point K traces out a circle 
with chord AB, and the point L traces out a circle with chord BC. Let M be the point of 
intersection of these circles-we assume that M is distinct from B. 

When the straight line b (line K L), during its rotation, passes through the point H, the 
points K and L coincide with M. Hence the straight lines a and c also pass through H. (The 
particular case when these two circles are tangent to each other at the point B and the case 
when they coincide should be treated separately. In the first case, the point M coincides 
with B. In the second case, the points K, Land M always coincide: it is possible to put a 
single tiny ring around all three straight lines a, b and c. 

Incidentally, note that during this rotation the triangle K LM remains similar to itself. 
When all the straight lines intersect at a single point H, it degenerates to a point, and it 
attains its maximum size when a, b, and c are perpendicular to the straight lines A H, B H , 
and C H, respectively. At this instant its vertices assume positions diametrically opposite 
to the point H on their paths (the circles). 

3.8. (b) Suppose the straight lines A H, B H and C H start to rotate with the same 
angular velocity about the points A, B and C (where H is the orthocenter of the triangle 
ABC). Then the point of intersection of each pair of straight lines describes one of the 
circles mentioned in the statement of the problem. 

3.9. Consider three sets of points M lying inside the triangle: 

{ M: SAMB =kl}' 
SBMC 

{ M: SBMC = k2}' 
SAMC 

These three segments (see Proposition I) are concurrent when and only when kIk2k3 

=1. 

3.10. Consider three sets: 

{M: IMAI2 -IMBI2 = hd, 

{M: IMq2 - 1M AI2 = h3}. 

{M: 1M BI2 - IMq2 = h2}, 

These three straight lines (see Proposition F) are concurrent if and only if hI + h2 + 

h3 =0. 

3.18*. (a) We need to prove that we can find a point in the forest that is at a distance 
greater than AI P from the edge of the forest. Let us work by contradiction: suppose every 
point inside the polygon lies at a distance of A I P (or less) from the edge of the forest. 

From each side of the polygon, then let us construct rectangles such that each rectangle 
has width AI P and overlaps the polygon. (That is, one side of the rectangle coincides with 
one side of the polygon, and the rectangle has width AI P). If our assumption is true, then all 
of these rectangles will fully cover the polygon. Also, every pair of neighboring rectangles 
will overlap. Hence the sum of their areas must be strictly greater than the area A of the 
polygon. 

On the other hand, if aI, a2, a3, ... , an are the lengths of sides of the polygon, then 
the sum of the areas of the rectangles we constructed is equal to al (AI P) + a2 (AI P) + 

a3(AIP) + ... +an(AIP) = (al +a2 +a3 + ... +an)AIP = P(AIP) = A. 
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This leads us to the contradiction that A > A. Therefore, our initial assumption­
namely, that there was no point in the interior that was at a distance of more than AI P from 
the polygon's sides-must be false. 

Now, a convex polygon is the intersection of a set of half-planes, each bounded by the 
line on one of its sides. In the solution above, we implicitly used the following properties 
about convex polygons: First, in order for a point to lie inside the convex polygon, it has 
to lie in each half-plane. Because of this, we could construct rectangles on each side of the 
polygon which overlap with the polygon. 

Also, any interior angle of a convex polygon is always less than 180 degrees. As a 
result, every pair of adjacent rectangles must overlap with one another. 

3.21. Draw the set of endpoints M of all the possible vectors 

a 
Fig. 6 

(where oF. i are the unit vectors mentioned in the statement of the problem, first for n = I, 
then for n = 2, and so on (Fig. 6). 

4.4. Answer: The minimum distance between the pedestrians is equal to u I J u2 + v2 . 

Suppose the first pedestrian P walks with velocity It, the second, Q, with velocity 
It (the lengths of u and v of these vectors are known). Consider the relative motion of P 
in the reference frame of the pedestrian Q. This will be a uniform motion with a constant 
velocity It - It (see 1.3). 

in the "initial" position, when P lies at the point Po where the roads cross, Qo is a 
distance I QoPol = d from Po in the direction of the vector -v. Thus, in order to find the 
answer, it is sufficient to draw through the point Po a straight line I parallel to the vector 
It - It (it is the path of P in its relative motion in the reference frame of Q), and to 
determine the distance I QoHI of the point Qo from the straight line I (H is the projection 
of Qo on I). Since the triangle QOPOH is similar to the triangle formed by the vectors It, 
It and It - It «QoPO) .1 It, (QoH) .1 (It - It)), we have 

IQoHl/JQopol = Iltlillt -It I = uIJu2 + v2. 

4.6. From the center 0 I of one of the circles, drop a perpendicular 0 I N onto the secant I 
passing through the point A, and from the center 02 of the other circle, drop a perpendicular 
02M onto the straight line OIN. Then the length of 102MI is half the distance between 
the points of intersection of the secant I and the circles (other than A). 
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4.9. Answer: An isosceles triangle. Use 2.8 (a). 
4.12*. (a) Answer: The crocodiles should be at the midpoints of the sides of an equilat­

eral triangle inscribed in the circle of the lake. To see why, suppose the lake has radius R. 
Suppose crocodiles are placed so that the distance from each point of the lake to the closest 
crocodile is no greater than some fixed value, say r; in other words, the three circles--each 
centered at a particular crocodile, and each with radius r--cover the entire lake. Note that 
these three circles must contain the circumference of the lake. Therefore, each of the circles 
overlaps with an arc of the lake's circular boundary. Consequently, one of these arcs must 
subtend an angle of at least 120 degrees (and less than 180 degrees). Recall that this arc is 
an arc of the lake's circular boundary; the lake's circle has radius R. The maximum possible 
distance between two points of this arc is greater than the length of the chord of the 1200 

arc: that is, greater than a = R -/3. But also recall that this arc is covered by a circle of 
diameter 2r, and thus 2r must be greater than R-/3; this means that r must be greater than 
R,,[3 --z-. 

So, no matter where crocodiles are placed, the value of r is no less than the half of the 
side a of an equilateral triangle inscribed in the circle with radius R. Now, if the crocodiles 
are placed at the midpoints of the sides of an equilateral triangle inscribed in the circle of 
the lake, then the value of r is a /2 and the three circles of radius r centered at each crocodile 
cover the entire lake. Hence the arrangement is optimal. A similar argument works for four 
crocodiles. You may wish to explore further: What if there are five crocodiles? 

(b) Answer: The crocodiles should be at the midpoints of the sides of a square inscribed 
into the circle of the lake. The proof uses an argument similar to that for part (a). 

5.4. (b) Prove that if the segment K L of constant length slides at its endpoints along the 
sides of the given angle A, then the point M of intersection of the perpendiculars erected at 
the points K and L to the sides K A and LA of the angle moves around a circle with center 
A (recall the discussion of Copernicus' Theorem 0.3 in the Introduction). 

5.7. The following fact helps us construct these points: the level curves of the func­
tion f(M) = IAMI/IMBI are orthogonal to the circles passing through the points A and 
B (p. 97). 

6.3. (c) Answer: A hyperbola, if the given circles do not intersect one another (or are 
tangent); the union of a hyperbola and an ellipse, if they intersect; an ellipse, if one circle 
lies inside the other (or are tangent). The foci of the curves lie at the centers of the given 
circles. 

In order to reduce the number of different cases that must be considered, we can use the 
following general rule: circles of radii r and R with their centers a distance d apart, touch 
each other if r + R = d or I R - r I = d. 

6.12. (a) For a given tangent, construct the tangent symmetric to it with respect to the 
center of the ellipse. 

Use 6.9 (b) and the theorem which states that the product of the segments of a chord 
drawn through a given point inside a circle is independent of the direction of the chord. 

6.15. In case (a), construct an ellipse (and in the case (b), a hyperbola) with foci at A 
and B, touching the first link Po Pl, and prove that it also touches the second link Pl P2. 
To do this use the fact that Lo.A' Pl B ~ Lo.A Pl B', where A' is the point symmetric to A 
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relative to POPI and B' the point symmetric to B relative to PI P2. The tangents will be the 
perpendicular bisectors of the segments AA' and BB' (6.9 (a), 6.10 (a». 

6.16. (c) We construct the set of points N for which the midpoint of the segment AN 
lies on the given circle. This is another circle. Denote its center by B and its radius by 
R. The set of points which are located nearer to the point A than to any point N of the 
constructed circle is the intersection of the half planes containing A which are bounded by 
the perpendicular bisectors of the segment AN. This set may be written as follows: 

{M: IMAI-IMBI.:::: R}, 

Le., its boundary is a branch of a hyperbola. 

6.17. Compare the hint to 6.16 with the proof of the focal property of a parabola. 

6.23. Choose the origin at the midpoint of the segment AB, and the x-axis so that at 
some points of time both rotating straight lines are parallel to Ox. If we write the equations 
of the straight lines for time t, find the coordinates of their point of intersection and then 
eliminate t (as in the solution to 6.22), then we obtain the equation of a hyperbola in the 
form (4) (p. 80). 

6.24. Imagine two straight lines rotating about the points A and B in different directions 
so that the second one has twice the angular velocity of the first. It is not difficult to guess that 
their point of intersection moves along a curve that looks like a hyperbola whose asymptotes 
form angles of 60° with the straight line AB and for which the point of intersection C with 
the segment AB divides AB in the ratio IACI/IBCI = 2. 

The answer to this problem is, in fact, a branch of a hyperbola. The following simple 
geometrical proof reduces the problem to Proposition N of the "alphabet." 

Construct the point M' symmetric to M with respect to the midperpendicular / of 
the segment AB, and note that the ray BM' is the line bisector of the angle ABM, and 
1M M'I = 1M BI, so that 1M BII p(M, /) = 2. 

6.25. (a) If the coordinate system is selected in such a way that the sides of the angle 
are given by the equations y = kx and y = -kx, x ~ 0, then the area of the triangle 0 P Q, 
where P and Q lie on the sides of the angle is kx2 - y2 I k, where (x; y) are the coordinates 
of the midpoint of the segment P Q. 

(b) Use the result of Problem 1.7 (b). 
(c) Result follows from (a) and (b). 

7.2. This union may be considered as the set ofthose points M for each of which there 
can be found a point P on the circle such that IMP I .:::: I P A I or as the set of points M for 
which the perpendicular bisector of the segment M A has a point in common with the circle. 
Compare this problem with 6.16-6.17. 

7.9. Answer: (a) 3; (b) 4; (c) 2.5. The ratio ofthe angular velocity may be found in the 
same way as was done in the examples on pp. 101-103. 

7.13. (a) The arc of a circle of radius R between two cusps of a Steiner deltoid (120°) 
has the same length as the circumference of a semicircle of radius 2R 13. 

7.14. (b) Both curves may be obtained as the paths of the vertex M of a hinged 
parallelogram, with side lengths R - r and r. The ratio of the angular velocities WI I W2 is 
equal to -r I(R - r) (the angular velocities have opposite signs; see p. 101). 
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7.18. Use 7.7 and Mozzi's theorem. 

7.19. Answer: a k-cycloid (see p. 96). 

7.21. Use 7.13 (a), Mozzi's theorem and the theorem on two circles. 

7.23. Let M be a point on the circle described, moving around it with angular velocity 
w. Then: 

(1) the points Mb M2 and M3, symmetric to the point M relative to the straight lines 
BC, CA and AB move around the circle (with angular velocity -w); 

(2) these three circles intersect at a single point H, the orthocenter of the triangle ABC 
(3.8(b»; 

(3) each straight line MjM (j = 1, 2 or 3) rotates with angular velocity (-w/2) 
about H; 

(4) three points Mb M2, M3lie on a single straight line 1M passing through H (i.e., the 
three straight lines Mj M are in fact a single line 1M); 

(5) the midpoints of the segments MMj (j = 1,2,3) and the midpoint K of the segment 
M H lie on a single straight line, the Wallace-Simson line; 

(6) the point K moves around the circle y similar to the circle described with magnifi­
cation ratio 112 and center of similitude H; 

(7) the circle y passes through the nine points mentioned in part (b) of Problem 7.23; 

(8) the envelope of the straight lines 1M is a Steiner deltoid that is tangent to the circle y. 
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APPENDIX A 

Summary of Results 
from Analytic Geometry 

The choice of a coordinate system Oxy in the plane defines an ordered pair of numbers 
corresponding to each point in the plane; the ordered pair gives the coordinates of the point. 
The correspondence between the points of the plane and the pairs of numbers is one-to-one: 
to each point in the plane there corresponds a unique pair of numbers and vice-versa. 

1. The distance between the point A(Xl, Yl) and B(X2, Y2) is determined by the formula 

AB = J(Xl - X2)2 + (Yl - Y2)2. 

2. The set of points (x, Y) whose coordinates satisfy the equation (x-a)2+(y-b)2 = r2 
(where a, b, and r are given numbers and r > 0) is a circle of radius r with its center at 
the point (a, b). In particular, x 2 + y2 = r2 is the equation of a circle of radius r with its 
center at the origin. 

3. The midpoint of the segment between the points A(Xlo Yl) and B(X2, Y2) has the 
coordinates XI !X2, ~. In general, the point dividing the segment AB in the ratio p : q 

(where p and q are given positive numbers) has the coordinates qX~!~X2, qY~!?2. These 

formulas assume a particularly simple form if p and q are selected so that q + p = 1. 

4. The set of points whose coordinates satisfy the equation ax + by + c = 0 (where 
a, b, c are numbers, and where a and b do not vanish simultaneously, i.e., a2 + b2 =1= 0) 
is a straight line. Conversely, each straight line may be defined by an equation of the form 
ax + by + c = O. In this case the numbers a, b, and c are determined for the given straight 
line uniquely, apart from a constant of proportionality: if they are all multiplied by the same 
number k (k =1= 0), then the equation kax + kby + kc = 0 thus obtained also determines 
the same straight line. 

The straight line divides the plane into two half planes: the set of points (x, y) for which 
ax + by + c > 0, and the set of points (x, y) for which ax + by + c < O. 

5. The distance p(t, M) of the point M(xo, Yo) from the straight line t, given by the 
equation ax + by + c = 0, is given by the formula 

p(M, t) = laxo + byo + c 1 • 

Ja2 +b2 
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This fonnula assumes a particularly simple fonn if a2 + b2 = 1. 
Any equation ax + fJy + y = 0 (a2 + fJ2 ¥= 0) of a straight line may be reduced to 

this particular fonn, by multiplying it by either of the numbers 

or 
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APPENDIX B 

Some Facts from School Geometry 

B.1 Proportional segments 
1. A theorem on proportional segments. Let 1\ and 12 be two straight lines; suppose 

several segments are marked off on 1\ and parallel straight lines intersecting 12 are drawn 
through the endpoints of those segments. The parallel lines then cut off on 12 segments 
proportional to the segments marked off on 1\. 

2. A straight line parallel to one side of a triangle and intersecting its other two sides 
cuts off from the triangle a triangle similar to it. 

3. A theorem on the angle bisector in a triangle. In a triangle, the bisector of anyone 
angle divides the opposite side into segments which have the same ratio as the sides adjacent 
to the angle. 

4. A theorem on proportional segments in a circle. If two chords AB and CD of a 
circle intersect at the point E, then 

IAEI·IBEI = IDEI·ICEI· 

5. A theorem on a tangent and a secant. If through a point A outside a circle a tangent 
AT and a secant cutting the circle at the points B and C are drawn, then 

IATI2 = lAC!· IBCI. 

Notes 

1. The theorem on proportional segments is reformulated in the language of motion 
(pp. 11-12) as the "theorem about the ring on a straight line." A more general assertion, 
deduced from the theorem about the ring, is given in the lemma on p. 31. 

3. The theorem on the bisector of an angle in a triangle has been proved in Problem 2.5 
(p. 38) in a more general form for the "cross bisector" which is defined in Proposition B of 
our alphabet (p. 20). 

5. The theorem on a tangent and a secant is not referred to anywhere in the book directly 
but it is closely related to the problems on the radical axis (p. 24). 
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B.2 Distances, perpendiculars 
1. Given a straight line l and a point A not on l, consider perpendicular to l passing 

through A. The distance from A to the foot of the perpendicular is less than the distance 
from the point A to any other point on l. 

2. A tangent to a circle is perpendicular to the radius drawn to its point of contact. 

3. Of two line segments drawn from a given point to a given straight line l, the one 
which has the larger projection on the straight line l is the longer. 

4. (a) If a point lies on the perpendicular bisector of a segment, then it is equidistant 
from the endpoints of the segment. 

(b) If a point is equidistant from the endpoints of a segment, then it lies on the perpen­
dicular bisector of the segment. 

These two theorems may be combined in a single statement: the set of all points 
equidistant from the endpoints of a segment is the perpendicular bisector of the segment. 

5. (a) If a point lies on the bisector of an angle, then it is equidistant from the sides of 
the angle. 

(b) If a point included in an angle (smaller than a straight angle) is equidistant from the 
sides of the angle, then it lies on the bisector of the angle. 

From (a) and (b) it follows that: the set of all points contained in an angle (smaller than 
a straight angle) equidistant from the sides of the angle is the bisector of the angle. 

6. One and only one circle can be inscribed in a triangle. This circle is called the 
incircle. 

7. One and only one circle can be circumscribed about a triangle. This circle is called 
the circumcircle. 

Notes 

1-2. These statements may serve as simple illustrations of the tangency principle 
formulated in Chapter 5 (see the Section on the Extrema of Functions): Suppose straight 
line y and a point A is given. Construct the level curves of the function f(M) = IAMI; they 
will form a family of concentric circles. The point on y at which the function f attains its 
minimum value is the point of tangency of one of the circles of our family with the straight 
line y. 

3-4. The general statement of 4 is Proposition A (p. 19) of the "alphabet." The 
perpendicular bisector is often called the midperpendicular. Statement 3 is essentially 
contained in the statement of Proposition A on the division of the plane into half planes. 

5. A more general statement is formulated in Proposition B of the "alphabet," where 
the term "cross bisector" is introduced (p. 36). 

6. The center of an inscribed circle is determined in Problem 3.3 (p. 37). 

7. The center of a circumscribed circle is determined in Problem 3.1 (p. 35). 
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B.3 The circle 
1. Given a circle and a chord passing through two points on the circle, the radial line 

perpendicular to the chord bisects the chord. 

2. A theorem on tangents. Fix a point A and a circle y. Suppose that two tangents 
ATl and AT2 are drawn to the circle, where Tl and T2 are the points of contact. Then 

IATll = IAT21· 

3. A theorem on the circumscribed quadrilateral. A circle can be inscribed in a convex 
quadrilateral if and only if the sum of the lengths of two opposite sides of the quadrilateral 
is equal to the sum of the lengths of the other two opposite sides. 

4. The set of all the vertices of a right triangle with a given hypotenuse AB is a circle 
of diameter AB (with the points A and B excluded). 

5. A theorem on an inscribed angle. In degree measure, the magnitude of an inscribed 
angle is equal to half the magnitude of the intercepted arc. (In other words, the magnitude 
of an inscribed angle is half the measure of the central angle intercepting the same arc.) 

6. The degree measure of the angle formed by a tangent line and a chord through the 
point of tangency is half the degree measure of the arc intercepted by this angle. 

7. An angle with its vertex inside a circle determines two different arcs: one enclosed 
between the sides of the angle and the other between the extensions of each side. The degree 
measure of the angle is half that of the degree measure of the sum of those two arcs. 

The degree measure of the angle formed by two secants intersecting outside a circle 
is half the degree measure of the difference between the intercepted arcs contained by the 
angle. 

8. A theorem on the inscribed quadrilateral. A circle can be circumscribed about a 
quadrilateral if and only if the sum of two of its opposite angles (in degrees) is equal to 1800 • 

Notes 

4. This statement is discussed on p. 12 in connection with the problem about the cat. 

5. The theorem on the inscribed angle is reformulated in the language of motion as 
the "theorem about a tiny ring on a circle." A more general statement deduced from the 
theorem about the ring is given in Proposition EO of the "alphabet." 

6-7. Problem 2.6 touches on these theorems. 

B.4 Triangles 
1. A theorem on the exterior angle. An exterior angle of a triangle is equal to the sum 

of the nonadjacent interior angles. 

2. A theorem on the medians. The three medians of a triangle intersect at a point which 
divides each of them in the ratio 2 : 1 (measured from the vertex). Their point of intersection 
is often called the centroid or center of gravity of the triangle. 
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3. A theorem on the altitudes of a triangle. The three altitudes of a triangle are concur­
rent. 

4. Pythagorean Theorem. The square of the hypotenuse of a right triangle is equal to 
the sum of the squares of the legs. 

5. The legs of a triangle are proportional to the sines of the opposite angles. 

6. The area of a triangle is equal to one-half of the product of: 
(a) the base and the altitude intersecting that base; 
(b) two sides and the sine of the angle between them. 

Notes 

2-3. The proofs of these theorems are given on pp. 61-65 in the solutions of problems 
3.2 and 3.4 (the fact that anyone median divides another median in the ratio 2 : 1 may be 
obtained from the solution of 3.4). 
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APPENDIX C 

A Dozen Assignments 

This appendix is intended for readers who, after first going through the book and trying 
to solve the problems that appealed to them, found a number of the problems particularly 
challenging, and now, in order to understand some of those subtler ideas, are ready to work 
through the book systematically with pencil and paper in hand. 

The twelve assignments given below cover different facets of the book. More specifi­
cally, they stress the hidden relationships among the various problems given in each chapter. 

In their construction, the assigments follow the standard model of the mathematical cor­
respondence school of Moscow State University. First, the subject matter of an assignment 
is explained and pages of the text containing the relevant theorems or exercises are given. 
Then there is a series of exercises, in which the fundamental problems are differentiated 
from the supplementary ones by the sign II. Some of the problems are accompanied by 
hints or explanations. As for the solutions, we advise you to try to write them out concisely, 
without unnecessary details, clearly stating the basic steps involved and any references to 
theorems from your geometry course. Do not forget about particular cases: sometimes they 
have to be analyzed separately (as in Problem 1.1, when the point M lies on the straight line 
AC, or in Problem 1.3, in the case of a square). Although we are not suggesting that readers 
give superfluous details when investigating and rigorously analyzing all special cases, we 
do advise them to give a precise and complete formulation of the result, as is the custom 
among mathematicians. 

C.1 Name the "letters" 
The aim of this exercise is to make a first acquaintance with our "alphabet," i.e., with the 

theorems dealing with sets of points which are useful in the solution of the later problems. 
Go through Chapter 2 and make a list of the propositions from A to J of the "alphabet" 

on a separate sheet of paper. Against each letter write down the formula (see pp. 33-34) 
and draw the corresponding diagram. 

2.1,2.2,2.3,2.4,1.16 (a), (b), 5.4 (a), 1.11, 1.12 II 2.13, I 2.15,2.16,3.6. 

Remarks 

In the first five problems, we need only state the appropriate letter of the "alphabet" in 
our answer. 
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Problem 1.16 (a) helps one to solve Problem 5.4 (a) without any calculations. 
In construction problems, everything reduces to the construction of a certain point-the 

center of a circle, etc. The required point is obtained by intersecting two sets from the 
"alphabet" (see 1.4). It is essential to name these sets (propositions of the "alphabet") and 
indicate how many answers the given problem has. 

A short solution to 2.13 is based on the result of 2.12. 

C.2 Transformations and constructions 
The problems in this assignments involve the various geometric transformations of the 

circle and the straight line that are discussed on pp. 13-14; they also appear often throughout 
the book (6.9 (a), (b), 7.1 (a), (b». 

1.20,1.21,1.22,1.23, 1.24 (a), (b) II 3.7 (a), 4.8 (a). 

Remarks 

1.22. See the solution to Problem 1.7 (a). 

1.23. See the solution to Problem 1.6. 

1.24 (a). Give the answer only. 

3.7 (a). Use the fact that the centroid divides the median in the ratio 2: 1, as measured 
from the vertex. 

4.8. Read the solution to Problem 4.7. 
In all these exercises we suggest that you make sketches of all necessary construc­

tions. Write your solutions concisely, paying attention to the sets and transformations used. 
Indicate how many solutions each problem has. 

C.3 Rotating straight lines 
This assignment primarily concerns the different variants of the theorem on the inscribed 

angle and its corollaries. 
Go through the book in the following order: Problem 0.1 (about the cat), Problem 1.1, 

the theorem about the ring on a circle (pp. 11-12), Propositions EO and E of the "alphabet" 
(pp. 21-22). Note that the theorem about the ring (and the problem about the cat) should 
not be interpreted literally: the imagined "ring" is simply the point of intersection of the 
straight line and the circle; if we made a wire model, then after a single rotation (in either 
direction) the ring would get stuck and stop moving. 

1.8,1.9,1.10,1.13,1.18,2.6 (a), (b) 111.27,2.7,2.8 (b), 4.6, 7.5, 7.6. 

Remarks 

1.9. Draw diagrams for the different positions of the point A. 

1.10. Draw a straight line through the point B, plot the point A' symmetric to the point 
A with respect to this straight line, and then draw the segment BA'. 
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Show the sets of points in the answers to problems 1.8 and 1.10 in the same diagram. 
By what transformation can one get the set in 1.10 from the one in 1.8? 

1.13. State how many answers the problem has. 

1.27. Carry out an experiment using an ordinary T-square. Hint: circumscribe a circle 
about the wooden triangle, join the vertices of the right angles, and use the theorem on the 
inscribed angle. 

2.6. Imagine that the movable chord is moving uniformly around the circle. 

2.8. (b) The solution is analogous to 2.8 (a). Look at the second variant of the solution 
of this problem, given on p. 42. 

C.4 Straight lines and linear relations 
The problems in this assignment deal only with straight lines. 
Go through the book in the following order: problems 1.2 and 1.3 about the bicycle and 

the rectangle (pp. 8-11), the theorem about the ring on a straight line (pp. 11-12), and the 
important lemma (p. 31) which extends it, and also Propositions F, I, J of the "alphabet" 
and the general theorems on the distances to straight lines and the squares of distances 
(pp. 23-33). 

1.24 (a), (b), 2.18, 2.19 (b), 3.9, 3.14, 3.15, 3.16111.26, 1.27,2.14,2.20 (a), 3.18. 

Remarks 

2.18. See solutions to 2.5 and 2.17. 

2.19 (b). Find out how the answer depends on the dimensions of the rectangle a x b 
and the parameter IL (see the answer to Problem 2.19 (a)). 

3.14-3.16. See Proposition C of the "alphabet." 

1.27. Let a and b be the lengths of the legs of the wooden triangle. Find the ratio of the 
distances from its free vertex to the sides of the given right angle. 

2.20. It is sufficient to give the answer and a diagram. 

3.18. Read the solution to 3.17. 

C.S The tangency principle (conditional extremum) 
The assignment consists of problems on finding maxima and minima. Every problem 

may be reduced to that of finding the particular point on some line or curve (as a rule, one of 
the sets from the "alphabet") at which a given function reaches its maximum or minimum 
value. Read the solution to problems 4.1, 4.2 and 4.7 (pp. 47-49), the solution to Problem 
5.1, and the rest in Chapter 5, particularly pp. 64-65. Study (or redraw) the maps of the 
level curves on pp. 60--61. 

Remarks 

5.4 (a). See Problem 1.16 (a). 
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C.6 Partitions 
In this assignment we find various sets of points satisfying inequality constraints and 

we also specify the set operations (intersection or union) that correspond to the logical 
combinations of the different constraints. Many propositions of our "alphabet" in Chapter 2 
have conditions of the following type: the curve consisting of the points M for which 
f(M) = a divides the plane into two domains, one in which f(M) < a and the other in 
which f(M) > a (here f is some function on the plane; see p. 57). In exactly the same 
way, if f and g are two functions on a plane, then the set of points M, where f(M) = 
g (M) partitions the plane into regions. In some of these, f (M) > g (M), while in others, 
f(M) < geM). Go through the text in Chapter 3 (pp. 39-40), and the solutions to problems 
3.11,3.23 (about the cheese). 

1.19,3.12,3.14,5.3 (a), (b), 3.15, 3.16 II 3.18,3.19,4.11,4.12 (a), (b). 

Remarks 

1.19. Draw the segment BC and indicate the set of vertices A of the triangles ABC 
for which each of the conditions (a), (b), (c) is fulfilled. Use the second paragraphs of 
Propositions D and E of the "alphabet." 

3.14. Read the solution to 3.13. 

3.15-3.16. For each side of the polygon, construct the strip as in Proposition C corre­
sponding to h = S / p. Can these sets cover the entire polygon whose area is S? 

4.11-4.12. Read the solution to 4.10. 

C.7 Ellipses, hyperbolas, and parabolas 
The aim of this assignment is to acquaint ourselves with the first definitions of these 

curves, given in Propositions K, L, M of our "alphabet." Go through Chapter 6 and list 
the propositions of the "alphabet." For each letter, write down the formula and draw the 
corresponding diagram (problems 6.5 (a), (b) of this exercise will help you do this). 

6.1 (a), (b), (c), 6.2, 6.3 (a), (b), (c), (d), 6.4 (a), (b), 6.5 (a), (b), 6.10 (a), (b), 6.11 (a), 
(b) II 6.8,6.12 (a), (b), 6.13 (a), 6.14, 6.24. 

Remarks 

6.1 (a), (b), (c). Indicate how the answer depends on the parameter (put lAB I = 2c). 

6.2. Use the theorem on the segments of the tangents to a circle. 

6.4 (b). Consider positions of the quadrilateral ABC D for which the link BC crosses 
AD. 

The following problems deal with the focal properties of the curves. 

6.10 (a). The proof here is similar to the one in the solution of 6.9 (a), and is also based 
upon Problem 6.7. 

144 



6.11 (a). Compare the definition of a parabola (Proposition M of the "alphabet") and 
its focal property. 

6.S. The proof is similar to the proof of the orthogonality of equifocal ellipses and 
hyperbolas (pp. 71-72). 

C.S Envelopes, infinite unions 

The problems in this assigment are all fairly complicated. Each problem concerns an 
entire family of straight lines or circles. If we take the union of the lines or curves in such 
a family, we obtain an entire region of the plane. It often happens that the boundary of 
this region is the envelope of the corresponding family of lines- that is, a curve (or a 
straight line) which is tangent to all the lines in the family. (For example, in the solution to 
Problem 1.5 on p. 13, we used the fact that the envelope of the family of chords of equal 
length of the given circle is a circle concentric to the given circle.) We urge you to draw 
a diagram for each problem. It is not necessary, however, to draw the envelopes. If you 
draw a large enough number of lines of the family, then the envelopes appear more or less 
"automatically" (as in the diagrams on pp. 76-77). 

Read the text on pp. 121 and IS, the solutions to 3.20 (b), 6.6, 6.7 and the proof of the 
focal property of a parabola (pp. 72-73). 

1.30,3.20 (a), 3.22, 4.5, 6.16 (a), (b), 6.17 II 6.15 (a), 6.25 (a), (b), 7.2, 7.20. 

Remarks 

3.20. Imagine this union as the set of vertices M of a hinged parallelogram 0 PM Q 
with sides 3 cm and 5 cm; compare this method with Chapter 7 (pp. 92-93). 

3.22. If, in the first t minutes, the man walks along the road, and then for the next 60 - t 
minutes he walks through the meadow, where will he end up? Now take the union of the 
sets obtained for all t from 0 to 60. 

4.5. What kind of set appears the answer to Problem 3.22 if we replace one hour by T 
hours? Find for the value of T for which this set contains the point B. 

7.20. The family of tangents to the nephroid has been considered in Problem 7.16. Also 
recall problems 7.1 (a), 7.2 on the cardioid, and the theorem about two circles (pp. 99-101). 

C.9 Tangents to cycloids 

This assignment includes a series of problems in which one has to prove that the envelope 
of some family of straight lines is a cycloid. The solutions to most of these problems are 
based on the theorem about two circles. Read the statement, examples, and applications of 
this theorem on pp. 99-100. Also, carefully analyze its proof on pp. 104-105. 

7.17 (a), (b), 7.16, 7.1S, 7.19117.21, 7.22, 7.23. 
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Remarks 

7.17. Find the curve along which the endpoints of the diameters move and find the 
curve that is their envelope. (Compare the result with the last diagram on p. 97.) 

7.16. Using the theorem about two circles, describe the family of tangents to the 
nephroid. Find the solution to Problem 7.15. 

C.10 Equations of curves 
The method of coordinates allows us to make very natural generalizations of particular 

geometric observations (go through the general theorem in Chapter 2, pp. 25-26 and 31-32, 
Chapter 6, pp. 78-88). The representation of curves in equation form allows us to solve 
geometric problems with the language of algebra. In this assignment, there are exercises 
on the method of coordinates and problems in which it is used in a natural way. Most of the 
problems are related to second-order curves. In some problems it is necessary to change 
from parametric equations to algebraic ones (see the solution to 0.2, p. 3). 

1.16 (c), 6.18, 6.19 (a), (b), (c), 6.20 (a), (b), 7.24 (b) 116.21 (a), (b), 6.23, 6.25 (a), 6.26 
(a), (b), 6.27. 

Remarks 

In the problems about distances to points and straight lines, you must investigate care­
fully how the answer depends on the parameter. For each of these problems, you must 
draw the corresponding diagram-the family of curves. It is convenient to draw the el­
lipse according to the given equation, representing it as a compressed circle (p. 79) and the 
hyperbola by drawing its asymptotes and marking its vertices (the points of the hyperbola 
closest to its center). 

In Problem 6.26, if we limit ourselves to points M lying inside the triangle, then a 
beautiful geometric solution may be given using similar triangles, as well as the theorems 
on the inscribed angle and the angle between a tangent and a chord. 

C.11 Geometrical practical work 
In this assignment you have to construct diagrams which illustrate the most interesting 

definitions and properties of curves; hopefully, this will give you a vantage point for the 
whole book! 

It is said that "Geometry is the art of reasoning correctly given an incorrect diagram." 
Often, however, it is valuable to have the same approach to geometry as to physics: an exact 
diagram is a geometrical experiment. Such an empirical view helps us analyze difficult 
statements about families of lines or complicated configurations, and, in tum, to discover 
some new regularity. 

We advise you to redraw (sometimes with elaborations) those diagrams which depict 
interesting families of straight lines and circles. Technically speaking, such illustrations are 
relatively simple to create, but nevertheless, accuracy and a certain ingenuity are required 
to make them beautiful. On large sheets of paper, your drawings will look considerably 
more significant than our little diagrams in the margins. 
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1. The astroid (p. 5). Try to make sure the midpoints of the segments are uniformly 
distributed around the circle on which they lie. The larger the number of segments drawn, 
the more obvious their envelope, the astroid, will be. 

2. Orthogonal families of circles (p. 59). The first family is the family of all possible 
circles passing through the points A and B (see 2.1). The second family is the family of 
circles whose centers lie on the straight line A B. If M is the center of one such circle, then 
the circle's radius is the segment of the tangent drawn from the point M to the circle with 
diameter A B . 

3. Ellipses, hyperbolas and parabolas (p. 70). The method of construction is mentioned 
in problems 6.5 (a), (b). Color the "squares" alternately with two different colors, as on 
a chessboard (see p. 16 and the remarks on Problem 6.8). Make another copy of each of 
the diagrams to problems 6.5 (a), (b), and, using ink, mark on them the families of ellipses, 
hyperbolas and parabolas. 

4. Second-order curves as the envelopes of straight lines (pp. 76-77), Figs. 4-6). The 
method of construction follows from 6.16 and 6.17. 

5. Rotating straight lines. Make your own diagram, illustrating Proposition EO of the 
"alphabet" (the lower diagram on p. 21). Draw a circle and divide it into 12 equal parts. 
Draw straight lines through one of the points of division A and the other points of division 
and also the tangent to the circle at the point A. The result is a bundle of 12 straight lines 
dividing the plane into 24 angles of equal size). By moving a pencil around the circle, we 
can see that whenever we go from one point of division M to the next, the straight line AM 
rotates through the same angle. Choose another point of division B (say, the fourth point 
from A) and a corresponding bundle of 12 straight lines similar to the one for the point A. 
For each point of division M, mark out the acute angle between the straight lines AM and 
BM. (All these angles are equal!) 

From Theorem EO, it follows that if all 23 straight lines constructed are extended to 
their points of intersection, then all 110 points of intersection thus obtained (not counting 
the points A and B) lie on 11 circles, 10 on each circle (?). 

Using two different colors (white or black) alternately fill in, as on a chessboard, the 
"squares" of the net you obtain. You will then immediately see the family of circles passing 
through the points A and B and the family of hyperbolas (it is even transparent if you take 
a bundle of 24 straight lines). For, if straight lines passing through the points A and B 
rotate in opposite directions with equal angular velocities, then their point of intersection 
will move along a hyperbola (6.23). 

6. The conchoid of Nicomedes and the limat;on of Pascal (pp. 87-88 and 94). The 
conchoid of Nicomedes is obtained in the following manner. A straight line L and a point 
A are given. On every straight line I passing through A, mark off two segments, each of 
constant length d-that is, one segment of length d in each direction-from the point of 
intersection of I with L. For each different value of d, draw the family of such conchoids. 

The lima .. on of Pascal is obtained in a similar manner. Suppose we are given a circle y 
and a point A on it. On every straight line I passing through A, mark off two segments, each 
of constant length-again, one segment in each direction-from the point of intersection of 
I with y of constant length. 

7. The cardoiod and the nephroid as the envelopes of the circles (p. 91, 7.2 and p. 105, 
7.20). 
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8. The cardioid and the nephroid as the envelopes of reflected rays (the drawings on 
pp. 100 and 101). It is convenient to construct these drawings using the fact that the chord 
of the incident ray is equal in length to the chord of the reflected ray. 

C.12 Small investigations 
Almost any problem in geometry is a subject for independent research, demanding 

both inventiveness and originality of thought. In this assignment, we highlight four diffi­
cult problems whose solutions require the use of a wide range of different arguments and 
techniques. 

4.12 (a), (b), 4.14 (a), (b), 6.15 (a), (b), 7.23 (a), (b). 
The solution to Problem 4.14 (b) is very similar to the solution for the problem about 

the motorboat. 
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Adjacent, 8 
Algebraic curve, 87 
Altitude, 36, 37 
Angle 

acute, 16, 17,41,57 
external, 37 
exterior, 8 

theorem, 8 
internal,37 
interior, 8 
obtuse, 16, 41 
right, 1, 12, 13, 16, 17,20,41 
theorem on inscribed, 2, 139 

right, 2 
Apollonius' circle, 28, 29 
Area, 14, 15,20,21, 144 
Astroid,5,97-99,105,107,108,149 
Asymptote, 80, 81, 146 
Axis 

of symmetry, 9-11 
radical axis of the two circles, 

24,38,46 

Billiard, 29 
Bisector, 1,20,37, 133, 138 

cross,20,21,29,30,37,137 
perpendicular to the segment 

(midperpendicular), 19,35, 
50,63 

Cardioid, 89-100, 105, 108, 147-
148 

Cassini's oval, 87 
Center of gravity, see Centroid 

of similitude, 134 
Centrode 

fixed,104 
moving, 104 

Centroid,37,38, 116, 139, 142 

Ceva's theorem, 39 
Chasles'theorem, 104 
Chord,15 
Circle, 139 

of Apollonius, 28, 29 
circumscribed, 35, 50, 25, 116, 

117,122, 138 
escribed, 37 
exterior of, 41 
Euler, 123 
Feuerbach, 116, 117, 123, 124 
focal line of a, 10 1 
inscribed,37,48, 115, 138 
nine-point, 106, 116, 123 

Circumcircle, see Circle, circum­
scribed 

Cone, 60, 76, 112 
Conchoid 

of circles, 94 
of Nicomedes, 88,147 

Concurrent lines, 36, 39, 130 
Congruent angles, 42 
Conics, 67, 109, 112 

section, 67, 83 
Continuous line, 2 
Converse statement, 8 
Convex polygon, 43-46, 131 
Copernicus' theorem, 3, 4, 93, 99, 

103, 118, 132 
Cross 

bisector, 29, 30, 37 
median, 30, 38 

Curves, 146 
caustic, 115 
caustic by reflection, 115 
convex closed, see Oval 
level, 55-59, 62, 138, 143 
quadratic, 34, 67, 84, 87 

Cusp, 93,99, 100, 105 
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Cycloid,97, 106, 145 
epi- 97; see also k-Cycloid 
hypo-, 97; see also k-Cycloid 
k-,96-97, 107, 134 

Cylinder, 112 

Displacement 
parallel, 13, 83 

Ellipse, 3, 11,67-88, 107, 109, 112, 
113, 132, 144--147 

center of, 68 
foci of, 68, 74 
Leonardo da Vinci ellipsograph, 

3 
Ellipsoid of rotation, 70 
Elliptic mirror, 75 
Envelope, 99, 114, 117, 119, 145-

148 
of circles, 90, 147, 148 
of families of straight lines, 75, 

134,147 
Epicycloid, 97; see also k-Cycloid 
Equidistant, 19-21, 138 
Excircle, see Circle, escribed 

Family 
of circles, 11, 147 
oflines, 11, 114 
one-parameter, 114 
orthogonal, 58, 72, 147 

Foot of the perpendicular, 15, 74, 
116, 124, 138 

Focal line of a circle, see Nephroid 
Focus, Foci, 83, 113 
Function, graph of, 55, 58, 59, 63 

Geometric considerations, 47 
Graph of the function, 55, 58, 59, 63 

Helicoid, 59 
Hexagon, 45,128 
Hyperbola, 67-88, 112, 113, 132, 

133, 144--147 
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center of, 68 
foci of, 68 

Hyperboloid of rotation, 70 
Hypocycloid, 97; see also k-Cycloid 

Incircle, see Circle, inscribed 
Intersection, 39-40 

of the sets, 40 

k-Cycloid,96-97, 107, 134 

Ladder, 1, 113 
Lima~on of Pascal, 94,147 
Locus, 7, 96 

of points, 111 

Magnitude, 8, 139 
Maximum, 47-49, 51, 55, 56, 64-66, 

130, 132, 143 
Median, 1,30,38 

cross, 30, 38 
Method of coordinates, 2 
Midperpendicular, see Perpendicular 

bisector to the segment 
Minimum, 15,47,48,50,52,53,55, 

64-66,131,143 
Mirror, semi secular, 101 
Morley's theorem, 116, 125, 126 
Motion, 4, 11,21,30 

uniform, 12, 31, 131 
Mozzi's theorem, 103, 104, 134 

Nephroid,97,98, 101,108,147, 148 
Nicomedes conchoids, see Conchoid 

of Nichomedas 

Orientation 
negative, 117 
positive, 117 

Orthocenter, 36, 116, 121, 134 
Oval,l11 

of Cassini, 87 

Parabola, 67-87, 133, 144, 145, 147 



focus of, 69, 73 
directrix of, 69 

Paraboloid 
hyperboloic, see Surface, saddle­

shaped 
of rotation, 59,60, 70 

Parallelogram, 22, 25, 85, 92-94, 
128, 145 

Parametric equation, 86, 106 
Partition, 40, 44, 63, 125, 144 
Pascal's lima~on, 94, 147 
Pedal,114 
Perpendicular bisector to the seg­

ment (midperpendicular), 
19,35,50,63 

Polygon, 43, 130, 144 
convex,43-46,131 

Primitives, 113 
Pythagorean theorem, 24, 27,140 

Quadrilateral,42, 139, 144 

Radical axis of the two circles, see 
Axis, radical of the two cir­
cles 

Rectangle, 1,27,87 
Reference frame, 102 
Reflection, 71, 100 

symmetrical, 4 
Rigid body, 49 
Rolling, 3 
Rotation, 13, 14, 142 

uniform, 11, 51 

Semisecular mirror, see Mirror semisec-
ular 

Set of points, see Locus 
Similarity, 13,43, 128 
Sphere, 111, 112, 129 

Dandelin, 112 
Steiner's 

deltoid, 97, 98, 105, 108, 115-
120, 122, 125, 133-135 

equilateral triangle, 116, 126 

Surface 
saddle-shaped, 60 
spiral,59 

Symmetry,10,13,19,20,22,27,72, 
74, 130, 132, 134, 142 

considerations, 27 
with respect to a point, 14, 15 

Tangency principle, 65, 66,138, 143 
Tangent, 8, 22, 45-47, 72, 73, 98-

101, 104, 106, 117, 134, 
138, 139, 145, 146 

Theorem, 2 
on the altitudes of a triangle, 

140 
on an angle between a tangent 

and a chord, 139, 145 
on the angle bisector in a trian-

gle, 20, 21, 137 
Ceva's,39 
Chasles', 104 
Copernicus', 3, 4, 93, 99, 102, 

103,117,118 
on the circumscribed quadrilat­

eral,139 
on the distance from the straight 

lines, 32, 143 
on the exterior angle, 8, 139 
on an inscribed angle, 2, 21, 

118, 139, 143, 146 
on an inscribed right angle, 2, 

11,139 
on the inscribed quadrilateral, 

139 
on the medians, 139 
Mozzi's, 103, 104, 134 
on proportional segments, 137 
on proportional segments in a 

circle, 137 
Pythagorean, 24, 27,140 
on the squares of the distances, 

25,33,143 
on tangents, 139, 144 
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on a tangent and secant, 130, 
137 

on a tiny ring on a circle, 11, 12, 
21,31,100,117,118,121, 
139,142 

on a tiny ring on a straight line, 
12, 142 

on two circles, 97-99,101,104, 
145, 146 

Torricelli's point, 38 
Transformation, 14,43, 142, 143 

parallel displacement, 13 
similarity, 13, 43, 123 
symmetry, 13 
rotation, 13 

Translation, 12; see also Parallel dis­
placement 

Triangle, 35, 139 
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acute-angled, 41, 50 
center of gravity of, 37, 38 
"degenerate," 41 
equilateral, 14,33,49, 133 

Steiner's, 116, 125-126 
isosceles, 8, 30, 41, 48, 132 

Morley's, 116, 125-126 
obtuse-angled, 41, 50 
orthocenter of, 36, 39 
right-angled, 1, 9, 17, 20, 40, 

41, 48, 50, 65, 127, 139, 
140 

similar, 9, 137 

Uniform 
motion, 12 
translation, 12 

Unique solution, 13 

Velocity, 47, 101 
absolute, 47 
angular, 11, 21, 39, 52, 92, 93, 

96,97,100-102,107,117, 
118, 121, 122, 124, 129, 
130, 133, 134 

linear, 52, 101, 102 
relative, 47 

da Vinci, Leonardo, ellipsograph, 3 

Wallace-Simson line, 106, 116, 117, 
122, 124, 125, 134 



About Victor Gutenmacher 

Victor Gutenmacher is a distinguished mathematician and educator with extensive 
research and teaching experience in algebraic topology, geometry, and numerical 
methods. He received his Ph.D. in mathematics from Rostov and Moscow Uni­
versities in 1974, and he was a Senior Researcher and Professor of Mathematics 
at Moscow University from 1969 to 1988. 

Dr. Gutenmacher has expertise in applied mathematics, software engineering, 
and computer-aided design. He has conducted research in topology, geometric 
modeling, and mathematical economics. He has over twenty years of teach­
ing experience at all levels, from secondary school to graduate school. He has 
taught undergraduate and graduate courses at Moscow University in a wide range 
of subjects, such as abstract algebra, calculus, discrete mathematics, single- and 
several-variable complex analysis, mathematical programming, and mathemat­
ical methods in economics. In addition to Lines and Curves, Dr. Gutenmacher, 
N. B. Vasilyev, and their colleagues J. M. Rabbot and A. L. Toom wrote the Russian 
text Mathematical Olympiads by Correspondence. (In fact, many of Dr. Guten­
macher's papers with N. B. Vasilyev were written under their collective pen name 
"Vaguten," which blends both their last names.) Dr. Gutenmacher also coauthored 
Homotopic Topology with A. T. Fomenko and D. B. Fuchs. 

For the past 15 years, Dr. Gutenmacher has worked in the United States as a 
mathematician and senior software engineer at Computervision, Auto-Trol Corpo­
ration, Structural Dynamics Research Corporation, and, currently, at VISTAGY, 
Inc. He is presently involved in the development of a computer aided design (CAD) 
system-independent geometry engine; this geometry engine enables VISTAGY's 
world-class products to be tightly integrated with all of the major high-end CAD 
systems. Furthermore, for several years, he was also Senior Mathematics Consul­
tant at BBN Technologies in Cambridge, Massachusetts. 

Dr. Gutenmacher is the author of more than 80 publications in mathematics and 
mathematics education. He was a member of the Advisory Panel on the Committee 
for American Mathematics Competitions. In Russia, he served as a member of the 
Editorial Board of Quantum from 1981 to 1988; the chairman of the Methodology 
Committee for the Gelfand Correspondence School from 1969 to 1988; a member 
of the Methodology Committee for the USSR Mathematical Olympics from 1966 
to 1979; and the coach for the Soviet team in the International Mathematical 
Olympiad from 1973 to 1979. He is a member of the American Mathematical 
Society. 

153 



About N. B. Vasilyev 

On May 28th, 1998, N. B. Vasi1yev, one of the two authors of Lines and Curves, 
died at the age of 57 after a long and debilitating illness. He was an extraordinary 
intellectual: a talented mathematician, encyclopedically educated scientist, and 
renowned educator. 

He graduated with honors from the Moscow Conservatory School of Music. 
However, he chose to work in mathematics rather than music; in 1957 he enrolled as 
a freshman in the Mechanics and Mathematics Department of Moscow University, 
and he graduated in 1962. Until his untimely death nearly forty years later, he 
remained closely associated to the University. 

After completing his postgraduate studies, he began a successful career in 
the Department of Mathematical Methods in Biology at the A. N. Belozersky 
Institute of Physico-Chemical Biology, Moscow State University, where he joined 
a promising group of young scientists headed by I. M. Gelfand. Vasilyev started his 
record of mathematical publications at MSU, and continued to publish prolifically 
throughout his life. 

His other lifelong commitment-the mathematics education of schoolchildren­
began during his freshman year at Moscow University, when he became a member 
of the Organizational Committee for the Moscow Mathematical Olympics. As 
a committee member, he wrote and collaborated on the creation and grading of 
examinations and student submissions. 

At that time there was great interest in mathematics and physics in the Soviet 
Union, especially among schoolchildren. Faculty members at Moscow University 
played an active role in the mentoring of a new generation of future scientists, par­
ticularly through the National Mathematical Olympics and the Mathematical Club 
for Schoolchildren. Vasilyev became one of the leaders of and key contributors to 
both organizations; for over ten years, he was the vice president of the National 
Mathematical Olympics Committee, chaired by A. N. Kolmogorov. 

Vasil yev also served on the examination panel of the Moscow University Math­
ematics and Physics Preparatory School for many years. Along with I. M. Gelfand 
and I. G Petrovsky, he helped found the National Mathematical Correspondence 
School. He was one of the creators of Quantum, a national mathematics journal for 
young adults, and served as the publishing director of its most demanding depart­
ment, "Quantum Tests." It would not be an exaggeration to say that every major 
development in mathematical education in Russian between the 1960s and 1990s 
had N. B. Vasilyev's expert involvement and tireless participation. 
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Special notice should be given to Vasilyev's talent for, dedication to, and 
lengthy career in the popularizing of mathematics. He had an unsurpassed abil­
ity to define concepts and mathematical problems concisely and beautifully; both 
his writing and his lectures exemplified simplicity without oversimplification and 
depth without excess. His articles and presentations were models of clarity and 
artistry. 

The book Lines and Curves grew out of a collection of assignments written by 
Nikolay Vasilyev and Victor Gutenmacher for the National Mathematical Corre­
spondence School. Both authors were instrumental in the founding and growth of 
the mathematical division of the Correspondence School from its very inception 
in 1964. Lines and Curves was eventually published and subsequently edited for a 
second publication as part of the series "The Library of the School of Mathematics 
and Physics" under the direction of I. M. Gelfand. 

This book is the result of painstaking and inspired work by two friends and 
colleagues. It is a masterful accomplishment, the transformation of what was 
originally an assortment of geometry problems into a fascinating text to which 
many generations have paid tribute. I was a witness to the creative collaboration 
that brought about Lines and Curves--a book I very much enjoyed and which, I 
hope, future readers will as well. 

J. M. Rabbot 
Moscow, 2000 
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