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PREFACE

"It is a great defect in most school courses of geometry
" that they are entirely confined to two dimensions. Even
*'

if solid geometry in the usual sense is not attempted, every
''occasion should be taken to liberate boys' minds from
"what becomes the tyranny of paper But beyond this

"it should be possible, if the earlier stages of the plane

"geometry work are rapidly and effectively dealt with as

"here suggested, to find time for a short course of solid
"
geometry. Euclid's eleventh book is generally found dull

" and difficult, but all that is of real value in it can be dealt
" with much more rapidly, especially if full use is made of

"the idea of the motion of a line or of a plane. Similarly
"it should be found possible to include a study of the
" solid figures ;

this will be much facilitated if their general
"outimes have been made familiar at the very commence-
" ment as is usually the case."

Board of Education Circular on the teaching of

Geometry (No. 711, March 1909).

It may be argued that the course of plane geometry gives all

the practice necessary in the use of formal logic as applied to

mathematics, that the course in solid geometry should not aim

at giving further practice in formal logic, but rather at imparting
the power of 'thinking in space.' Whether this argument is

sound or not, it is generally found in actual practice that

the choice lies between informal solid geometry and no solid

geometry at all : there is no time for a course on the lines of

Euclid XI. This book is intended to provide an informal course :

a few theorems only are treated formally, mainly as illustrations of

918304



VI PREFACE

the method to be used in solving such exercises as lend themselves

to Euclidean treatment.

The arrangement of the book is as follows :

Chaps. I.—YI. An informal discussion of the main properties

of lines and planes.

Chaps. VII.—XIII. Properties of the principal solid figures,

including mensuration.

With an average class it may be better to take Chaps.
VII.—XIII. before Chaps. I.—VI., referring back to the

earlier chapters as occasion arises (e.g. when discussing the

inclinations of faces of prism or pyramid, refer back to the

section on the inclination of planes).

Chaps. XIV.—XVI. Some account of coordinates in

3 dimensions, plan and elevation, perspective.

The course of work in plan and elevation—sometimes

called descriptive geometry—does not profess to give such

technical skill as is needed by an architect or engineer. On
the other hand, it would be a good introduction to the

subject for this class of student. For the general mathe-

matical student, this, non-technical course is, we believe,

both sufficient and necessary. Under the influence of the

new Tripos regulations at Cambridge, simple descriptive

geometry must soon enter into the work of the higher

classes at schools. And, from an educational standpoint, it

is perhaps the best possible subject for developing the space-

imagination.

If the aim is educational rather than technical, very
accurate drawing is hardly necessary ;

whatever educational

benefit is to be gained from drawing accurately has pre-

sumably been gained during the earlier study of plane

geometry. But it must be remembered that in some cases

a fair degree of accuracy is needed to reveal the essentials,

e.g. there are often cases of concurrency or collinearity the

failure of which would wreck the figure.



PREFACE VU

The teacher is recommended to illustrate his lessons with

models made of paper, cardboard, string and needle-pointed

sticks'*; with the latter, especially, quite elaborate figures can

be built up in a few seconds. The number of figures in the

text has been kept down, on the assumption that 3-dimensioned

models will be constructed.

The authors have to acknowledge with thanks the courtesy
of Mr H. M. Taylor for permission to include some exercises

from his edition of Euclid
;

of the Controller of H.M. Stationery
Office for the use of exercises from Army papers, Science papers

(Board of Education), and from the annual reports of the

Secondary Education Department for Scotland
;
of the Director

of Naval Education for the use of questions from various Navy
papers.

Exercises that may be treated in a more or less formal and

Euclidean style have been marked with a dagger (f).

* Such sticks as those supplied for the purpose by Mr G. Cussons, The

Technical Works, Manchester.

C. G.

A. W. S.

October, 1910.





CONTENTS
CHAP. PAGE

I. Planes and Lines 1

II. Parallel positions of Planes and Lines ... 7

III. Perpendicular positions of Lines and Planes . . 11

IV. Oblique positions of Planes and Lines . . . 16

V. Skew Straight Lines 20

VI. Loci . . 25

VII. The Prism 27

VIII. The Cylinder 33

IX. The Pyramid 37

X. The Cone 44

XL The Sphere 48

XII. The Solid Angle 60

XIII. The Regular Solids, the Principle of Duality, Euler's

Theorem 65

XIV. Coordinates in Space 72

XV. Plan and Elevation 75

XVI. Perspective 89

Miscellaneous Exercises 93

Answers 105

Index 107



t indicates that an exercise is suitable for formal treatment,

on Euclidean lines.



CHAPTER I.

PLANES AND LINES.

The student will be familiar with the notion of a plane,
of which we shall not offer a definition. The ordinary test for

planeness is to apply a straight-edge to the surface in every

direction, and see if it always fits. This test depends on the

obvious fact that if two points lie in a plane, the straight
line joining them lies entirely in that plane.

Ex. 1. How would the above fact be of use in testing a surface that is

slightly convex ?

Determination of a plane. It will be remembered that

a straight line is fixed, or determined, by 2 suitable conditions.

Thus it may be required to pass through two points, or to pass

through a point and lie in a given direction.

We shall see that 3 suitable conditions are needed to

determine a plane.

First, fix one point A of a plane (e.g. by placing the plane
in contact with the corner of a table). The plane can now take

up any direction, or orientation, in space. Fix a second point
B : the plane can now turn about AB as a line of hinges. Fix
a third point C, and the plane is deprived of all freedom of

motion. The plane has thus been fixed by 3 conditions.

By experimenting with a sheet of cardboard, it will become
clear that the above is only one of many ways of fixing a plane
by suitable conditions, e.g. :

G. S. G. 1



- SOLID GEOMETRY

A plane is determined uniquely if it is required

(i)
to pass through three given points ;

(ii) to contain a given straight line and pass through
a given point not on the line ;

(iii)
to contain two intersecting straight lines (or lines

which intersect if produced)*;

(iv) to contain two parallel straight lines (i.e. two
straight lines intersecting at infinity).

Ex. 2. Try to make a plane contain two straight lines not intersecting
nor parallel.

Ex. 3. Why is a tea-table with three legs steadier than one with

four legs?

Ex. 4. If each of three straight lines meets the other two, the three

lines are either concurrent or coplanar.

Generation of a plane. A plane may be swept out, or
'

generated
'

(i) by a straight line passing through a fixed point and

sliding on a fixed straight line, not containing the point;

(ii) by a straight line sliding on two fixed intersecting

straight lines
;

(iii) by a straight line sliding on two fixed parallel straight

lines;

(iv) by a straight line sliding on a fixed straight line, and

remaining in a fixed direction (or, moving parallel to itself).

(This is really a particular case of
(i),

the fixed point being at

infinity.)

Two planes intersect, in general, in a straight line; in other

words, they determine a straight line.

Associate this with the fact that two points determine a straight line.

* In future it will be assumed that lines and planes are infinite, unless

it is stated that a finite portion is under consideration.
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If two planes have no finite point in common, they are

parallel. Mathematically, their line of intersection is a line

at infinity; a set of parallel planes determine one line at

infinity.

Straight line and plane. In general, a straight line inter-

sects a plane in a point (illustrate with a stick and the floor, etc.) ;

that is to say, a straight line and a plane determine a point.

Compare this with the fact that a straight line and a point, in general,
determine a plane.

If a straight line and a plane have no finite point in common,
they are parallel. Mathematically, they have in common the

point at infinity on the line.

Ex. 6. Hold a pencil parallel to a sloping desk, or book. Note that it

need not be horizontal. Can it be horizontal ? Can it be vertical ?

Ex. 6. How many lines can there be through a given point parallel to

a given plane ? What can be asserted about the whole set of such lines ?

Ex. 7. What is generated by a line passing through a given point, and

moving so as to remain parallel to a given plane ?

*Ex. 8. What is the locus of the intersection of a fixed plane, and a line

through a fixed point intersecting a fixed line ?

Ex. 9. What is the locus of the intersection of a fixed plane, and a line

constant in direction and intersecting a fixed line ?

Two straight lines. In general, two straight lines in space
are not in the same plane, and do not intersect

;
such lines are

said to be skew to one another.

If they happen to be in the same plane, they either intersect

or are parallel.

Note carefully the distinction between skew and parallel

lines. It has been pointed out in the course of plane geometry
that parallel lines must be in the same plane. Parallel lines

must also be in the same direction
;
skew lines cannot be so.

* In dealing with a mathematical problem, the student is strongly
recommended not to pass on till he has examined the particular cases that

may arise : e.g. in the present problem he should consider the case of the

line being parallel to the plane.

1—2



4 SOLID GEOMETRY

Ex. lO. Find examples of (i) a pair of skew lines, (ii) a pair of parallel

lines (not drawn on paper).

Ex. 11. How many lines are there in space through a given point and

parallel to a given line ?

Ex. 12. What can t>e asserted about the whole set of lines passing

through a given point and intersecting a given line ?

Ex. 13. Are any two horizontal lines necessarily parallel? Are any
two vertical lines necessarily parallel ?

Ex. 14. Find two horizontal lines skew to one another.

Ex. 15. Prove that, among the lines meeting two skew lines, it is

impossible to find a pair which intersect or are parallel.

Ex. 16. Determine a line intersecting two skew lines and parallel to a

third line.

Ex. 17. Given four straight lines of which two are parallel, one straight

line can be drawn to intersect the four.

fig. 1.

Three planes. In general, any two planes have a line

in common
;
this line intersects a third plane in a point. Three

planes therefore determine a point (e.g. two meeting walls of

a room, and the ceiling).
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Compare these two facts—in general 3 planes determine 1 point ;
3 points

determine 1 plane.

Particular case
(i).

It may happen that the line of inter-

section of two of the planes is parallel to the third plane. The

three planes will then have no point in common
;

see fig. 1.

(Compare the three side-faces of a triangular prism; the three

planes of a folding screen
;

the two slopes of a roof, and

the ground plane.)

Notice that in this case the line common to any two of the

planes is parallel to the third; the whole system will consist of

three planes, and three parallel lines.

This case is derived from the general case by making the

common point of the three planes retreat to infinity.

Particular case (ii). Two of the planes may be parallel.

The third plane will cut these in two parallel lines, and there

will be no point common to the three planes; see fig. 2.

(Compare two parallel walls and the floor.)

This is a particular case of (i).

I. 2.
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Particular case
(iii).

The common lines of each pair of planes

may coincide
;
we shall then have three planes passing through

the same line (like three leaves of a partly open book). Here the

three planes have an infinite number of common points, lying on

a line.

Just as 3 points may lie in a line, so 3 planes may pass through a line.

Particular case (iv). The three planes may be parallel (like

the various floors of a building).

This is a particular case of (ii) ;
also of

(iii),
for the three

planes have in common a line at infinity.

Ex. 18. How are the planes disposed that are drawn through a point

to contain a set
(i)

of concurrent coplanar lines ?
(ii)

of concurrent lines, not

coplanar ? (iii) of parallel coplanar lines ? (iv) of parallel lines, not co-

planar ?



CHAPTER II.

PAKALLEL POSITIONS OF PLANES AND LINES.

The reader should convince himself of the truth of the

following statements, by placing books, pencils, etc. to represent

planes and lines. The truth of a proposition is usually more

evident if one of the planes in question is taken to be horizontal ;

most of the planes that we are concerned with in experience are

horizontal or vertical.

(i)
Planes parallel to the same plane are parallel to

one another.

Ex. 19. What can be asserted about planes perpendicular to the game

plane ? about planes perpendicular to the same line ? about planes parallel

to the same line ?

(ii) Straight lines parallel to the same straight line

are parallel to one another.

Here note that the three lines need not be in the same

plane, e.g. three edges of a triangular file. This property will

be recognised as an extension of a property in plane geometr3\

Ex. 20. What can be asserted about lines parallel to the same plane ?

about lines perpendicular to the same plane ?

Ex. 21. Prove that the shadows of a number of vertical sticks, thrown

on the ceiling by a candle, are a set of concurrent lines.



8 SOLID GEOMETRY

(iii) A straight line parallel to a straight line lying in

a certain plane is parallel to the plane.

Ex. 22. How many straight lines can there be through a point parallel

to each of two intersecting planes ?

Ex. 23. In what case can there be one line parallel to each of three

planes ?

(iv) If a plane a pass through a line I which is parallel
to a plane ^, the line of intersection of a and p will be

parallel to I.

fig. 3.

Think of a as the sloping top of a desk, I the line of hinges

parallel to p the ground-plane.

fEx. 24. Prove this by reductio ad absurdum.

Ex. 25. In what case is a stick parallel to its shadow on the ground?

Ex. 26. If a plane a pass through a line I which is perpendicular to a

plane /8, what is the line of intersection of a and j3
?

Ex. 27. Let a line I meet a plane j8 obliquely, let a be a moving plane

passing through I, and let m be the line of intersection of a and ^. Prove

that the different positions of m form a set of lines passing through a fixed

point. Can any position of w be (i) parallel, (ii) perpendicular, to Z?

Ex. 28. A line moves parallel to a given line so as always to intersect

a given line ; what does it generate ?

Ex. 29. A set of planes are parallel to a given line. What is the

arrangement of the intersections of these planes ?
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Ex. 30. In a given plane, and through a given point in that plane,

determine a line (i)
to meet a given line (not in the plane), (ii) parallel to a

given plane.

Ex. 31. Through a given point determine a line parallel to a given

plane and meeting a given line.

Ex. 32. Through a moving point on a fixed line are constructed pairs

of planes parallel to two fixed planes. What is the locus of the intersection

of the planes so constructed ?

(v) Two parallel planes are cut by a third plane in

parallel lines.

(Geological strata generally lie in planes, over small areas.

In such cases, their sections are seen as parallel lines on the sides

of a railway cutting, the face of a cliff, etc.)

fEx. 33. Prove this by reductio ad absurdum.

Ex. 34. What would be the shape of the section exposed by a slanting

cut across a wooden plank ?

(vi) If intersecting lines l', m' are drawn respectively

parallel to intersecting lines I, m, the plane containing

l\ m' is parallel to the plane containing I, m.

(Draw 1, 7)1 on a sheet of paper; and hold pencils to represent

I', m'.)

(vii) If intersecting lines l\ m! are drawn respectively

parallel to intersecting lines I, m, the angles between

Z', m' are equal to the angles between I, m.

This will be recognised as an extension of a theorem in plane

geometry.

(viii) If straight lines are cut by parallel planes, they
are cut in the same ratio.

Data The straight lines AEB, CFD
(fig. 4) are cut by the parallel

planes a, /3, y (note that AEB, CFD are not necessarily in

the same plane).
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To prove that AE : EB = CF : FD.

Proof Let AD meet the plane /? in X.

Join AC, BD, EX, XF.

The plane ABD cuts
|| planes ^, y in

||
lines EX, BD.

.'. AE: EB = AX : XD.

Similarly, CF : FD == AX : XD.

.'. AE: EB = CF : FD.

A



CHAPTER III.

PERPENDICULAR POSITIONS OF LINES AND PLANES.

It is obvious that if a line is perpendicular to a plane, it

is perpendicular to any line that lies in that plane and
meets it.

It is sufficient, however, if the line is perpendicular to two

lines in the plane. This will be proved below
;
but the reader

should first convince himself that it is not sufficient if the line is

perpendicular to one line in the plane. Hold a pencil so as to

meet a plane obliquely at a point, and see that there is bound to

be one line in the plane and through the point which is perpen-

dicular to the pencil.

Now take a piece of paper with a straight edge; fold this

f. 5.
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edge upon itself so as to form two right angles AOB, COB
; open

out the paper into two planes, and stand it upon the table with

OA, 00 on the table (see fig. 5). Then OB is perpendicular

to OA, 00 in the plane of the table; and is seen to be per-

pendicular to the table.

Ex. 39. Use two set squares to erect a line perpendicular to a plane.

(i)
If a straight line is perpendicular to two straight

lines in a plane, at their point of intersection, it is

perpendicular to any straight line lying in the plane and

passing through the point of intersection.

fig. 6.

Data BA is J. to BO, BE in plane a.

To shew that BA is ± to any straight line BD in the plane
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Construction Produce AB to F so that BF = AB.

Draw a straight Hne to cut BC, BD, BE in C, D, E.

Join C, D, E to A and F.

Proof In As ABC, FBC, AB = FB, CB is common, L ABC = L FBC.

.*. AC=FC.

Similarly AE = FE.

In As ACE, FCE, AC= FC, AE = FE, CE is common.

.*. Z.ACD= L FCD.

In As ACD, FCD, AC = FC, CD is common, L ACD = /. FCD.

.'. AD= FD.

In As ABD, FBD, AD = FD, AB ^ FB, BD is common.

.'. Z.ABD= L FBD.

.*. AB is ± to BD.

(ii)
If a number of straight lines be drawn perpen-

dicular to a straight line from a point in it, they all lie in

a plane perpendicular to that line.

This may be stated as a converse of
(i)

and proved by reductio

ad absurdum
;

it may, however, be taken as self-evident.

Ex. 40. If a right angle be rotated about one leg, what does the other

leg generate ?

fEx. 41. Shew that there cannot be a set of more than three lines, such

that each is perpendicular to all the rest. (Assume that there may be four ;

and reduce ad absurdum.)

Ex. 42. Explain how to use the 3, 4, 5 right-angled triangle to set a

pole up vertically.

Ex. 43. What can be asserted
(i) about a set of straight lines perpen-

dicular to a plane? (ii) about a set of planes perpendicular to a straight

line?

Ex. 44. In what case are a set of straight lines drawn perpendicular

to a plane themselves coplanar (i.e. in one plane) ?

Ex. 45. How many planes are there through a given point (i) perpen-

dicular, (ii) parallel, to a given line ?

Ex. 46. What is the condition under which there can be lines parallel

to one given plane and perpendicular to another ?
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(iii) Straight lines perpendicular to the same plane
are parallel to one another.

tEx. 47. O is a point outside a plane a
;
AB is a line in the plane. In

plane OAB, ON is drawn perpendicular to AB
;
in plane a, NP is drawn

perpendicular to AB; in plane ONP, OP is drawn perpendicular to NP.

Prove that OP is perpendicular to plane a.

fEx. 48. OP is drawn perpendicular to a plane a from an external

point O. From P, PN is drawn perpendicular to a line AB in a ;
shew that

ON is perpendicular to AB.

Ex. 49. O is a fixed point outside a plane, and OA is a fixed line oblique

to the plane. OP, perpendicular to OA, meets the plane in P. What is the

locus of P ?

The distance of a point from a plane is the length of

the straight line drawn from the point perpendicular to the

plane.

It is obvious that parallel planes are equidistant, and that the

locus of points at a constant distance from a plane is a pair of

planes parallel to the original plane.

Ex. 50. What is the locus of points in space at a constant distance

from a straight line ?

Ex. 51. What is the locus of points in space equidistant from two

points? from two parallel lines? from two parallel planes? from two inter-

secting lines ? from two intersecting planes ?

Perpendicular planes. The meaning of the inclination of

one plane to another will be explained later
;
in the meantime,

it may be assumed that every one knows what is meant when

one plane is said to be perpendicular to another.

Ex. 52. Shew how to set one plane at right angles to another by means

of two set-squares.

Ex. 53. In what case does the section of two perpendicular planes by a

third plane consist of two perpendicular lines ?

Ex. 54. A plane revolves about a fixed line lying in itself (as the lid of

a chest revolves about the line of hinges). Find a plane to which the

revolving plane is always perpendicular.
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Ex. 55. What can be asserted about all the planes which pass through
a given point and are perpendicular to a given plane ?

Ex. 56. A straight line moves so as always to meet a given straight

line, and to be perpendicular to a given plane. What does it generate ?

Ex. 57. What can be asserted about a set of planes perpendicular to

each of two intersecting planes ?

Ex. 58. What condition must be fulfilled in order that there may be a

plane perpendicular both to a given plane and to a given line ?

Ex. 59. How many planes can there be through a given point, parallel

to a given line and perpendicular to a given plane?

Ex. 60. Planes perpendicular to a given plane ;
to what line are they

all parallel?

fEx. 61. In a given plane through a given point in that plane draw a

line such that the perpendiculars to it from two given points in space are

concurrent.

fEx. 62. Through a given point determine a line such that the perpen-

diculars to it from three given points in space are concurrent.



CHAPTER lY.

OBLIQUE POSITIONS OF PLANES AND LINES.

Orthogonal projection*. The orthogonal projection of

a point on a plane is the foot of the perpendicular from the point
to the plane.

The orthogonal projection of a line (straight or curved) on

a plane is the locus of the projections of the points of that line.

It is clear that the projection of a straight line is, in general,

a straight line
;
and that the projection of a finite straight line

AB is the straight line joining the projections of A and B.

Ex, 63. In what case is the orthogonal projection of a straight line not

a straight line?

Ex. 64. Shew that the orthogonal projection of a parallelogram is a

parallelogram ?

Ex. 65. In what case does a rectangle project into a rectangle ?

Ex. 66. What is the relation between the base of a right prism and the

figure disclosed by an oblique section of the prism ?

* The term is merely explained here: for a treatment of the subject,

see the authors' Modern Geometry.



OBLIQUE POSITIONS OF PLANES AND LINES 17

Inclination of a straight line to a plane. The inclination

of a straight line to a plane is defined to be the acute angle

between the line and its orthogonal projection on the plane (fig. 7).

fig. 7.

Ex. 67. Prove that the length of the projection of a line on a plane
= length of line x cos (inclination of line).

Ex. 68. A straight line AB meets a plane in A; and a straight line AC,

lying always in the plane, revolves round A. Between what limits does the

angle BAG vary?

tEx. 69. A straight line CA always passes through a fixed point C, and

moves so as to meet a fixed plane at a constant angle in A. Find the locus

of A, and give a proof. What does CA generate?

fEx. 70. Straight lines are drawn to meet two fixed parallel planes at a

constant angle ; prove that the part intercepted between the planes is of

constant length.

fEx. 71. A cylinder is cut obliquely by a plane. Prove that all the

generators meet the plane at the same angle.

Ex. 72. Find the inclinations of a diagonal of a cube to the various

faces.

fEx. 73. Straight lines in a plane equally inclined to its common section

with a second plane are equally inclined to the second plane.

Inclination of two planes. Take any point O on the

line of intersection of the planes; draw CA, OB in the two planes
at right angles to the line of intersection. The inclination of

the planes (or the angle between these planes) is measured

by the angle between these two lines. This angle is clearly

G. s. G. 2
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independent of the position of O
;

if another pair of perpendiculars

O'A', O'B' were drawn, these lines would be parallel respectively
to OA, OB; and z_ AOB = z. A'O'B'.

A cardboard model, such as that shewn in fig. 8, may be used to

illustrate the inclination of two planes.

fig. 8.

Ex. 74. Consider the inclinations of the side-faces of an oblique prism.

What plane figure has its angles equal to these inclinations ?

Ex. 75. Open a book to a right angle : try if you can fit the acute angle

of a set-square (or an acute angle formed by a pair of dividers) into the

opening, so that the legs, though they include an acute angle, lie one on

each of two planes at right angles. Given the position of the vertex of the

acute angle, is the position of the set-square determinate?

Ex. 76. Mark on the surface of a tetrahedron lines giving the inclina-

tion of a pair of faces. Devise a method of ascertaining the size of this angle,

without actually cutting the tetrahedron.

Ex. 77. Calculate the angle between two faces (i) of a regular tetra-

hedron, (ii) of a regular octahedron.

+ Ex. 78. Prove that the angle between the planes of two meridians of

the earth is equal to the angle between the tangents to the meridian circles

at the Pole.
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/



CHAPTER V.

SKEW STRAIGHT LINES.

If AB, CD be two non-intersecting, or skew, straight lines,

through any point on AB a line PQ can be drawn parallel to CD.

All such parallels lie in a plane parallel to CD
;
we thus see that

through any straight line a plane can be drawn parallel
to any skew straight line.

fig. 11.
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This may be seen equally well by considering a plane through

AB cutting CD in X, and then rotating this plane about AB till X

goes to infinity.

If through any point on CD we draw RS parallel to AB, the

plane determined by CD and SR is parallel to AB. And since

AB, PQ are respectively parallel to RS, CD, the planes we have

constructed through AB, CD are parallel to one another. Thus :

A pair of parallel planes can be constructed, each to

contain one of two skew straight lines.

This principle suggests the following way of considering skew

lines. Imagine the two lines and the two parallel planes to be

turned round as a whole, till the planes are horizontal. The

lines also will be horizontal, and in this position will be easier to

deal with.

Ex. 88. Can (i) a vertical, (ii)
a horizontal, plane be constructed to

contain any given line ?

Ex. 80. Shew that, through a given point, one line can be drawn to

intersect two given skew lines. In what case is one of these intersections at

infinity? Discuss also the particular case when the skew lines degenerate

into intersecting lines.

Ex. 90. Shew that, in general, one line can be drawn parallel to a

given line, to intersect two given lines. Discuss all special cases that arise.

Ex. 91. Determine a plane to cut two given planes in parallel lines, and

either (i)
to contain a given line or (ii) to pass through a given point and

lie parallel to a given line.

fEx. 02. Through a set of parallel lines are drawn a set of planes

parallel to a fixed line. Prove that the set of planes meets a fixed plane in a

set of parallel lines.

Angle between skew lines. The angles between two

skew lines are defined to be ,the angles between one of the lines

and a parallel to the second line intersecting the first line

(e.g.
Z. BOP and ^l BOQ in fig. 11).

Ex. 03. Why is this angle independent of the point through which the

parallel is drawn ?
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Ex. 94. Give an instance of two skew lines at right angles ;
of three

skew lines, each pair to be at right angles.

Ex. 95. What is the angle between skew diagonals of opposite faces of

a cube ?

Ex. 96. The edges of a cuboid are 2", 3", 4". Find the angle between

skew diagonals of the largest parallel faces.

Ex. 97. A line a turns about an axis &, skew to a and at right angles to

it. What does it generate ?

Common perpendicular to two skew lines AB, CD.

fig. 12.

To see that there must be a common perpendicular, imagine
the two skew lines to be turned bodily into a horizontal position :

no generality is lost by this process. They will then resemble a

road crossed obliquely by a railway overhead (or, say, the centre
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line of the road and the centre line of the railway). It is obvious

that one point of the railway is vertically above one point of the

road, that the two lines approach one another most closely at

these points, and that the vertical line joining these points is

a common perpendicular.

This suggests the following general construction :
—

If AB, CD are the skew lines, through CD construct the plane

CDE
II
to AB, and also the plane CDP ± to CDE. Let plane CDP

cut AB in P
;
and from P (in plane CDP) draw PQ ± to CD.

Then PQ is the common perpendicular to AB and CD. For it

is ± to CD by construction. To prove that it is j. to AB, draw

PR
II
to CD. Now PQ, lying in plane CDP and being j. to CD, is

J. to plane CDE. And plane CDE is 1| to plane BPR. Therefore

PQ is ± to plane BPR. Therefore PQ is ± to PB.

The common perpendicular to two skew lines is the

shortest line connecting them. For it is also perpendicular to

the two parallel planes containing the two lines, and is therefore

the shortest line connecting the planes. And any line connecting
the skew lines is also a line connecting the planes.

Ex. 98. What is the shortest distance between skew diagonals of

opposite faces of a cuboid ? of a parallelepiped ?

fEx. 99. Prove that the line joining the feet of the perpendiculars from

a point on two planes is at right angles to the intersection of the planes.

Ex. lOO. Given the orthogonal projections of two skew lines on a

plane perpendicular to one of them, find that of their common perpendicular.

Ex. lOl. Shew that the apparent crossing point of two skew lines

may be made to coincide with any two marked points on the lines, by

bringing the eye to a suitable position. What is the locus of the eye under

these conditions?

Ex. 102. What is the condition that a plane may be constructed to

contain one line and to be at right angles to another skew line ?
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A skew quadrilateral is the figure obtained by joining, in

a certain order, four points not in a plane.

Ex. 103. If the vertices of a skew quadrilateral are joined in all

possible ways, what figure is obtained ?

Ex. 104. What is the locus of points viewed from which a skew

quadrilateral looks like a plane angle?

Ex. 105. Explain how a skew quadrilateral may have four equal sides,

two opposite angles right angles, and the other two angles acute.

Ex. 106. Explain how a skew quadrilateral may have only three of its

angles right angles.

+Ex. 107. Shew that the figure obtained by joining the mid-points of

adjacent sides of a skew quadrilateral is a parallelogram. Deduce a

property of the two straight lines joining mid-points of opposite sides.

Hence deduce a property of the tetrahedron.

fEx. 108. Shew that if the opposite sides of a skew quadrilateral are

equal, the opposite angles are equal.

Ex. 109. Shew how to draw a straight line through a given point,

parallel to a given plane, and at right angles to a given line.

fEx. no. On two lines I, V (in general skew to one another) are taken

series of points P, Q, R, ... ; P', Q', R', ... such that

PQ:P'Q' = QR:Q'R'= etc.

Prove that PP', QlQl' , RR', ... are all parallel to a certain plane. Examine
the particular cases in which

(i) Z, V are parallel, (ii) I, V are concurrent.

fEx. 111. P, Q are variable points on two skew lines, and R divides PQ
in a fixed ratio. Find the locus of R, and give a proof.

+ Ex. 112. From a moving point P on a fixed line, PN is drawn perpen-
dicular to a certain skew line. Shew that the velocities of P and N are

proportional.

+ Ex. 113. If P is a point on the line through the orthocentre of a

triangle ABC and perpendicular to its plane, then PA is at right angles

to BC.
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LOCI.

The following propositions are self-evident :
—

(1) The locus of points at a given distance from a

given point is a spherical surface.

(2) The locus of points at a given distance from a

given plane is a pair of parallel planes.

The reader will have no difficulty in proving the following :
—

(3) The locus of points equidistant from two given

points is the plane bisecting at right angles the line joining the

points.

(4) The locus of points equidistant from two inter-

secting planes consists of the two planes containing the

common section of the two given planes, and equally inclined

to them.

It may be pointed out that, in general, the locus in space of

points determined by one condition is a surface.

The locus of points determined by two conditions is,

in general, the intersection of two surfaces, i.e. a line or lines,

curved or straight.

The points determined by three conditions are the inter-

sections of a line and a surface, i.e. are, in general, a finite

number of points.
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Ex. 114. What is the locus of points at a given distance from a given

straight line ?

Ex. 116. What is the locus of points equidistant (i) from two parallel

lines? (ii) from two parallel planes? (iii) from two intersecting lines?

(iv) from a plane and a line at right angles to it ?

Ex. 116. What is the locus of points equidistant (i)
from three points?

(ii) from three planes meeting in a point? (iii) from three planes which are

perpendicular to the same plane? (iv) from three lines intersecting in a point?

(v) from three lines in a plane?

Ex. 117. What is the locus of a point P such that OP makes equal

angles with fixed Hues OA, OB ?

Ex. 118. Investigate the properties of the tetrahedron that are analogous
to the circumcircle, in-circle and ex-circle properties of the triangle.

Ex. 119. Find the locus of points at given distances from a given point

and a given plane.

Ex. 120. What is the locus of the feet of perpendiculars from a fixed

point upon planes (i) parallel to a fixed line? (ii) through a fixed line?

(iii) through a fixed point ?

tEx. 121. A moving line through a fixed point O cuts two fixed planes
in P, Q ;

R is taken on OPQ, so that the ratios of the lengths OP, OQ, OR
are constant. Find the locus of R.



CHAPTEE VII.

THE PEISM.

Ex. 122. From the figures below, or from examination of

actual prisms, define

(i)
a right prism,

(ii)
an oblique prism.

Right Prisms

Oblique Prisms

fig. 13.

Ex. 128. Describe how the side-faces of (i) a right prism, (ii) an

obhque prism, may be generated by the motion of a finite straight line.

Such a straight line is called a generator.
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Ex. 124. Describe how (i) a right prism, (ii)
an oblique prism, may be

swept out by the motion of a plane area.

Ex. 125. What can be asserted as to the ends of a prism, namely the

base and the top ?

Prisms are commonly named according to the shape of the

base, e.g. triangular, square, hexagonal, etc.

Ex. 126. What can be asserted as to the side-faces of (i) a right prism?

(ii) an oblique prism ?

Fig. 14 represents a parallelepiped (see also fig. 19).

Ex. 127. In what other terms may this solid be named?

^^ A

fig. 15.

Fig. 15 represents a rectangular parallelepiped or

cuboid (see also fig. 19).

Ex. 128. What can be asserted about the number and nature of the

faces of a parallelepiped ?

Ex. 129. In the case of a prism whose ends are w-gons, what is the

number of
(i)

side-faces? (ii) faces? (iii) edges? (iv) corners or vertices?

Ex. 130. Of what classes of solids is a cube a particular case?

Ex. 131. What can be asserted about a section of a prism parallel to

the ends ?

A section of a prism perpendicular (normal) to the generators

is called a normal section.

Ex. 132. The ends of a wooden prism are triangular and perpendicular

to the sides, the lengths of the triangular edges being 13, 14, 15 cm. Calculate

(i) the area of a normal section, (ii) the area of a section whose plane is

parallel to the 15 cm. edge and at an angle of 30° to the axis.
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Surface of prism. •

Ex. 133. Prove that the surface* of a right prism= twice area of base

+ height X perimeter of base.

Ex. 134. Find the surface of the prism whose plan and elevation are

given in fig. 16. (For
'

plan and elevation ', see Chap, xv.)

fig. 16.

Volume of cuboid, (i) Let the length, breadth and

height of a cuboid be a, 6, c units of length, where a, 6, c are

The cuboid may be divided, by planes parallel to the base,

into c slices, each one unit thick. The base of this slice may be

divided into ah units of area
;
and the slice may be divided into

the same number of units of volume, each unit of volume standing
on a unit of area.

The cuboid has therefore been divided into ah ^ c units of

volume; its volume is ahc units of volume.

(ii) Let the edges of the cuboid be a, b, c units, and let

a, 6, c be not integers; e.g. let a =2-4, 6 = 3*55, c = 0-362. A
sub-unit on the decimal scale can now be chosen, expressed in

which the edges will have integral measure. Let the new unit

be
Yf^i

o^ ^^® ^^^ J
^^^ 1®^ *^® ^®^ integral measures be a, /?, y ;

so that a= 10"

cubic sub-units
10=*"

= 10" . 6, y = 10" . c. The volume is a)8y

cubic units = ahc cubic units.

* The whole surface is to be taken, including the two ends.
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(iii)
The case of incommensurable edges is not discussed here,

as presumably the student has not yet studied the meaning
of multiplication of incommensurables and (ii) proves the rule to

any degree of accuracy we please.

The volume of a cuboid is the product of the length,

breadth and height.

Note also that the volume of a cuboid is the product of

the base-area and the height.

Ex. 135. What is the ratio (1)
of the surfaces, (ii) of the volumes of

similar cuboids, the linear dimensions of the one being X times those of the

other ?

Ex. 136. If the air-space in a room is twice that in a room of similar

dimensions, compare the cost of papering the walls of the two rooms.

Ex. 137. By comparing two closed water-tanks, 6 ft. x9 ft. x4 ft. and

10 ft. X 8 ft. X 2 ft. respectively, shew that the tank which holds more water

uses up, in this case, less sheet iron.

Ex. 138. Express (i) the edge, (ii)
the diagonal, of a cube in terms of

(a) the surface, (6) the volume.

Ex. 139. Express the surface of a cube in terms of the volume.

Volume of right prism. Let the area of the base be S

square units—say square millimetres
;
and the height

h millimetres.

Suppose the base to be divided into square milli-

metres, e.g. by covering it with millimetre paper.

On each little square stands a square pillar, h

millimetres high. The volume of this square pillar

is h cubic millimetres; and as the base contains S

square millimetres, the prism contains S^ cubic

millimetres *. Hence the volume of a right prism fig. 17.

is the product of the base-area and the height.

The prisms in fig. 18 have the same base-area and volume.

*
It will be noticed that this proof is really incomplete, as there will be

broken squares at the edge of the base. This type of error can be made
smaller without limit by taking smaller squares instead of square milli-

metres ; and it can be shewn that the rule is strictly true. A strict proof
involves the methods of the infinitesimal calculus.



THE PRISM 31

The above reasoning applies to any right solid of uniform

cross-section (e.g. rails for rail-

ways, T-irons, H-irons, cylinders,

any metal goods made by rolling

or pulling through a die).

The volume of a right
solidofuniform cross-section
is the product of the sec-

tional-area and the height

(or length). gg 13

fig. 19.

Volume of oblique prism. A right prism can be built

up with a number of thin cards, congruent with the base. If

these cards are made to slide over one another as in fig. 19, an

oblique prism will be formed, of the same base, height* and

volume as the right prism. Hence the volume of an oblique

prism is the product of the base-area and the height.

* The height of an obUque prism is the perpendicular distance between

the ends.
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fEx. 140. Give an independent proof of the volume rule, in the case of

a prism whose base is a right-angled triangle. Shew that any prism can be

made up of prisms of this description, together with cuboids
;
hence give a

general proof of the rule.

Ex. 141. Find the volume of the prism whose plan and elevation are

given in fig. 16.

Ex. 142. A railway cutting 8 metres deep has to be made, with one side

vertical and the other inclined at 30° to the vertical
;
the bottom is to be

9-4 metres broad. How many cubic metres (to the nearest integer) of

material must be removed per kilometre ?

Ex. 143. Sand lies against a wall, covering a strip of ground 4 ft. wide.

If the sand will just rest with its surface inclined at 30° to the horizon, how
much sand may lie on this strip per foot length of wall ? Give the quantity
to the nearest tenth of a cubic foot.

Ex. 144. A canvas tent has a floor a ft. square. Its top consists of a

horizontal ridge h ft. high, the back and front are vertical, and the side walls

are vertical for a height of c ft. from the ground. Find an expression for

the area of the surface, and give a numerical result when a = 8, &= 7, and
c= 2. Also find the cubic content of a tent with these dimensions.

Ex. 145. Bain is falling steadily at the rate of 1 cm. per hour, and is

caught by a trough formed of two equally inclined sides and two vertical

ends. The depth of the trough is 20 cm. Draw a graph exhibiting the

growing depth of the water, taking the time as abscissa in the scale of

2*5 cm. to the hour.

Shew that the graph is the same for all troughs of the same depth,
whatever their lengths and angles, and find when the trough would be

filled.
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THE CYLINDER.

Ex. 146. From fig. 20, or from examination of actual

cylinders, define

(i) a right cylinder,

(ii) an oblique cylinder.

Oblique Cylinders

fig. 20.

Note. A cylinder is sometimes conceived as infinite, i.e. having no

plane ends but prolonged infinitely in each direction.

G. S. G. 3
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Ex. 147. Describe how the curved surface of

(i) a right cylinder,

(ii) an oblique cylinder,

may be generated by the motion of a finite straight line. Such a straight

line is called a generator.

Ex, 148. Describe how
(i)

a right cylinder, (ii) an oblique cylinder, may
be swept out by the motion of a plane area.

Ex. 149. What can be asserted as to the ends of a cylinder, namely the

base and the top?

Ex. ISO. If the curved surface of a right cylinder is slit down a

generator and opened out flat, what figure is produced?

Ex. 151. Make a rough sketch of the figure you would have obtained in

the last example if the cylinder had been oblique, with circular ends.

Ex. 152. What can be asserted about the sections of a cylinder parallel

to the ends ?

Just as a curve is the limiting form of a polygon with an

infinite number of infinitely short sides, so a cylinder is the

limiting form of a prism with an infinite number of infinitely

narrow side-faces.

A section of a cylinder perpendicular (normal) to the

generators is called a normal section.

A right cylinder is further described according to the form of

its base (or normal section), e.g. a right circular cylinder has

a circular base; a right elliptical cylinder has an elliptical

base, etc.

Ex. 153. Of what form is the section of a right circular cylinder by
a plane parallel to the axis ? Trace the change in this section as the plane

moves parallel to itself.

Ex. 154. What is the shape of the shadow cast on the ground by

(i)
a circular sun-shade held horizontally, (ii) a sphere, the sun not being

overhead ?
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The surface of a cylinder is usually taken to include the

two ends. If the ends are excluded, the term curved surface

is generally used.

Ex. 155. Prove that the surface of a right circular cylinder= 27rr(r + /i) ,

where r is the radius of the hase, h the height.

Ex. 156. Compare the side-surfaces of a right circular cylinder, and
a square cuboid of the same height and the same base-area.

Ex. 157. The breadth of a garden roller is h ft., and the radius r ft.

How many turns does it make in rolling an acre ?

Ex. 158. Different cylinders are generated by the rotation of a rectangle
about a side, according as it rotates about the long or the short side. Prove

that the curved surfaces are the same.

Volume of cylinder. By the method of proof used for

the prism, it may be shewn that the volume of a cylinder, right
or oblique, is the product of the base-area and the height.
The same result may be arrived at by regarding the cylinder as a

limiting form of the prism.

Ex. 159. Prove that the volume of a right circular cylinder is irrVi.

Ex. 160. Express the surface of a right circular cylinder in terms of V,

the volume, and h, the height.

Ex. 161. Compare the volumes of a right circular cyhnder and a right

square prism of equal height and equal girth.

Ex. 162. What percentage of wood must be lost in turning a rod of

square section down to a cylinder ?

Ex. 163. A rectangular sheet of zinc can be rolled into the curved
surface of a cylinder in two ways, without overlap ;

which way gives the

greater volume?

Ex. 164. A wrought iron plate f" thick, measuring 3' by 1^', has
20 rivet holes, each 1" in diameter. Find the weight of the plate (sp. gr. of

wrought iron= 7*8
;
1 cu. ft. of water weighs 62-4 lbs.).

3—2
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Ex. 165. The shaded rectangle in fig. 21 is ^
rotated about AB so as to generate a ring. Prove ^_c-^ -.-h ^
that this ring has the same surface and volume as a 1 Tf

right prism whose cross-section is the rectangle, and
j k

whose height is the length of path described by the L Li

centroid of the rectangle during a complete turn.

(This is a particular case of an important theorem Bl

due to Pappus, who taught at Alexandria towards "^'

the end of the 3rd century a.d.
;
the theorems were republished by Guldinus

(1577-1643).)

Ex. 166. "To afford some notion of the present magnitude of the

petroleum trade, it may be stated that a pipe 41 inches in diameter would

be needed for the conveyance of the petroleum which the world is at present

using, assuming a rate of flow of 3 feet a second; and that for the storage

of a year's supply a tank 929 ft. in length, breadth and height would be

required." {Encycl. Brit. art. Petroleum, New Volumes, 1902.)

Check the consistency of the above statements by deducing a value of tt.

Ex. 167. A hollow tube, open at both ends, 18" long, 3" external

diameter, is made of metal ^" thick. It is closed by two equal cylindrical

caps, also of metal ^" thick, which slip on at the two ends, like the lid of a

tin. The ends of the caps are flat.

Find the volume of either cap in terms of its length, x" (outside measure).

Find X if the weight of the two caps is half that of the tube.

Find also the total weight of tube and caps in the latter case, if the metal

used is brass weighing -3 lb. per cubic inch.
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THE PYRAMID.

Ex. 168. From fig. 22, or from examination of actual models,

define a pyramid.

Pyramids

fig. 22.

Ex. 169. What figures are the side-faces of a pyramid ?

A pyramid is called regular if its base is a regular polygon,

and the line joining its vertex to the centre of the regular base

is perpendicular to the base.

Pyramids are commonly named according to the shape of the

base, e.g. triangular, square, hexagonal, etc.

Ex. 170. What are the side-faces of a regular pyramid?

tEx. 171. Prove that a pyramid whose side-faces are isosceles triangles

is not necessarily regular ; but the base is a cyclic polygon.

Ex. 172. If the base of a pyramid is an n-gon, what is the number of

\j(i) side-faces, (ii) faces, (iii) edges, (iv) corners?

Ex. 173. Find the height of a regular square pyramid whose base edge
is 2" and whose slant edge is 5". Also find the slope of

(i)
a side-face,

(ii) a slant edge.
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Ex. 174. The base of a regular pyramid is a regular hexagon of side a,

and the slant edge is h
;
what is the height ? Find the slope of

(i)
a side-

face, (ii)
a slant edge.

A pyramid whose base is a triangle (^, triangular pyramid)
is also called a tetrahedron, as it has four faces. A tetrahedron

whose four faces are equilateral triangles is called a regular
tetrahedron : the four faces are obviously congruent.

Ex. 175. Find the ratio of the height of a regular tetrahedron to its

edge. Also find the angle between any two faces.

fEx. 176. The perpendicular from a vertex of a regular tetrahedron

upon the opposite face is three times the perpendicular drawn from its foot

upon one of the remaining faces.

Ex. 177. A regular pyramid, vertex V, stands on a triangular base ABC,
side 6". Its height is 10". Find the angle between

(i)
The face VAB and the base ABC,

(ii)
The faces VAB and VBC,

The edge VA and the base ABC,

The edge VA and the face VBC.

Ex. 178. A regular pyramid, whose vertex is V, stands on a square base

ABCD. Each side of base = 12 ft., and edge VA= 15 ft. P is a point in

VA such that PA= 10 ft. O is the middle point of the square base ABCD.
Find

(i)
distance OP, (ii) angle which OP makes with the face PAB.

(iii)

(iv)

If a pyramid is divided by a plane parallel to the base, the

two pieces are respectively a pyramid and a frustum of a

pyramid.

A section of a pyramid by
a plane parallel to the base

is similar to the base.

Proof It will be sufficiently

general if we consider a

pyramid OABCD, on a quad-
rilateral base.

A plane parallel to the

base cuts the pyramid m
the section A'B'C'D'. fig. 23.
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The plane OAC cuts parallel planes A'b'C'D', ABCD in

A'C', AC; which are therefore parallel lines. Similarly A'B',

AB are parallel. Therefore l B'A'C' = l BAG. Similarly

L B'C'A' = L BCA.

.*. A A'B'C' is similar to A ABC.

Similarly AA'D'C' is similar to A ADC.

Thus polygons A'B'C'D', ABCD may be cut up into corre-

sponding and similar triangles.

The section is therefore similar to the base.

The pyramid OA'B'C'D' is clearly similar to the pyramid
GABCD.

In accordance with the general principles of similarity :

(i) Any line associated with OA'B'C'D' is to the corresponding
line associated with OABCD in the ratio of the linear dimensions

of the pyramids (e.g. the heights of the pyramids are proportional
to corresponding side edges, or to corresponding base edges).

(ii) Corresponding areas in the two pyramids are in the

ratio of the squares of linear dimensions (e.g. the areas of A'B'C'D'

and ABCD are proportional to the squares of the heights of the

pyramids).

(iii) Corresponding volumes in the two pyramids are in the

ratio of the cubes of linear dimensions (e.g. the volumes of the

pyramids are proportional to the cubes of their heights).

The surface of a pyramid is usually taken to include the

base.

Ex. 170. If the side-faces of a regular pyramid slope at any angle B to

the base, the total area of the side-faces is to the area of the base as sec Q \\.

Ex. 180. Find the total surface of a regular pyramid of height /^, whose

base is a regular polygon of area S and inscribed radius r.
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Volume of pyramid*. Let the area of the base be S and

the height h.

Consider a thin slice of the pyramid cut off by two planes

parallel to the base, distant x and x + Ace

from the vertex O. The thickness of the

slice is Ace.

The upper section is a polygon! similar

to the base, its linear dimension being to

those of the base as cc : A.

The area of this face of the slice,

t) S^
fig. 24.

The volume of the slice is
(r) SAcc, to the first order of small

quantities.

The volume of the pyramid is / l^A Sdx

S rh

Jo
x'^dx

h'jo

Now the volume of a prism of the same base and height

is Sh. Hence the volume of a pyramiid is | of the

product of base and height, i.e. | of the volume of a prism
of the same base and height.

This samje result may be obtained without using the calculus,

by means of the following theorems :

* Eeaders who have not studied the calculus are referred to the proof

on page 41.

t In £g. 24 a triangular pyramid is shewn: but the proof applies to

any pyramid.
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(i) Pyramids of equal height and on bases of equal area have

the same volume.

(ii)
A triangular prism may be divided into three pyramids

of equal volume.

Pyramids of equal height and on bases of equal area

have the same volume.

Let the height of the pyramids be h.

Let the pyramids stand on the same plane; and let a parallel

plane distant x from either vertex cut the pyramids in PQRS,
P'Q'R'S'T'. These polygons are similar to the bases; and their

areas are to those of the bases in the ratio ar : hr.

As the bases are equal in area, so are the corresponding
sections.

If therefore the one pyramid be built up of a graduated set of

thin cards, cards of equal area can be used to build up the other

pyramid.

The two pyramids, therefore, have the same volume.
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A triangular prism may be divided into three pyramids
of equal volume.

The figure shews a triangular prism divided into three

triangular pyramids. Any two of these pyramids may be shewn

to have equal heights and equal bases, and therefore equal
volumes.

For pyramids marked I and III have congruent bases

PQR, ABC and the same height
—

namely the height of the

prism.

Pyramids marked II and III have congruent bases PQA, BAQ
and the same height

—namely the perpendicular from C upon
PQBA.

Hence the three pyramids are of equal volume, and each

volume is J that of the prism.

fig. 27. fig. 28.

We have thus proved, in the case of pyramid QABC, that the

volume of a triangular pyramid is J of that of a prism on the

same base, and of the same height.

This may be extended, at once, to any pyramid. Divide the

base of the pyramid into triangles ;
then the pyramid can be

divided into a number of triangular pyramids with a common

vertex. If Sj, Sg, S3, etc., be the areas of the triangles, the
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volumes of the triangular pyramids are ^S^h, JS-^/i, etc., and

the volume of the whole pyramid is JA (S^ + Sg + S3 + ...),
i.e. ^ of

the volume of the prism having the same base and height.

Ex. 181. In a rectangular block (fig. 29), M and N are the mid-points
of two edges. Suppose that we remove the wedges with shaded ends MDC,
MEF, leaving the wedge shown in fig. 30. S being the mid-point of MN,
suppose two pyramids removed from fig. 30, so as to leave the pyramid
shewn in fig. 31.

Taking the rectangular block to measure a by 6 by c as indicated in

fig. 29, give an expression for the volume of the two wedges removed.

Assuming that a pyramid has a volume of 1/m of the prism of the same base

and height, give expressions for the volume of the two pyramids removed

from fig. 30.

B l^ C

fig. 29.

Now get two expressions for the volume of fig. 31, one as 1/m of the

original block, and the other as the difference between the original block

and the pieces cut away. And find what value of m will make these

expressions equal.

Ex. 182. A vessel containing water is in the form of an inverted hollow

pyramid ; its base is a square of side 6 ft. ,
and altitude of pyramid is 10 ft.

If the depth of the water is x ft.
,
what is its volume ?

Ex. 183. Cleopatra's Needle consists approximately of a frustum of a

pyramid surmounted by a smaller pyramid. The lower base is 7^ ft. square,

and the upper base 4J ft. square ; the height of the frustum is 61 ft. and of

the upper pyramid 7i ft. Calculate the weight to the nearest ton, it being

estimated that 1 cubic foot weighs about 170 lbs.



CHAPTER X,

THE CONE.

Ex. 184. From fig. 32, or from examination of actual solids,

define a cone.

fig. 32. fig. 33.

Note. A cone is sometimes conceived as infinite, i.e. having no plane

base, but prolonged infinitely from the vertex. A still wider conception is

that of the infinite double cone, see fig. 33.

Ex. 185. Describe how an infinite cone can be generated by the

motion of a straight line. Such a straight line is called a generator.

Ex. 186. What can be asserted with regard to sections of a cone

parallel to the base ?

Cone as limiting form of pyramid. Just as a cylinder is

the limiting form of a prism, so a cone is the limiting form of a

pyramid.
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Right circTilar cone. If the base of a cone is circular, and

the axis, i.e. the line joining the vertex to

the centre of the base, is perpendicular to the

base, the cone is said to be a right circular

cone. The generators in this case are all

equal, and their length is called the slant

height of the cone.

Ex. 187. If the curved surface of a right

circular cone is slit down a generator, and opened g^ 34^

out flat, what figure is produced? How are the

various measurements of this figure related to measurements of the cone ?

Ex. 188. Describe how a right circular cone can be swept out by the

rotation of a plane figure.

Ex. 189. A ring, diameter 24 ins., is suspended by six equal strings

from a point 5 ins. above its centre, the strings being attached at equal

intervals round its circumference. Find the angle between consecutive strings.

Ex. 190. What is the inclination of the generators of a right circular

cone to the base, if the slant height is I, the diameter of the base d ?

The section of a right circular cone by a plane through the

axis is an isosceles triangle ;
the angle at the vertex of this triangle

is called the vertical angle of the cone.

Ex. 191. Express the vertical angle of a cone in terms of two

measurable dimensions of the cone.

Ex. 192. Describe in words the figures generated by the rotation of

(i) an obtuse-angled triangle about its longest side,

(ii) an obtuse-angled triangle about a shorter side,

(iii) a trapezium about the longer of the ,\
parallel sides, / \

(iv) a trapezium about the shorter of the ^ \

parallel sides. /^ \
If a cone is divided by a plane parallel / \

to the base, the two pieces are respectively / \
a cone and a frustum of A cone. The /-''' ~"\
conical piece is evidently similar to the \... ^^.^^
whole cone.

fig. 35.

Ex. 193. What is the section of a frustum of a cone by a plane

containing the axis ?
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The surface of a right circular cone is usually taken

to include the base. If the base is excluded, the term curved
surface is generally used.

Ex. 194. By slitting the curved surface of a right circular cone along

a generator, and developing it into a plane figure, shew that the area of this

surface is half the product of the slant height and the circumference of

the base.

Ex. 195. Find the whole surface of a cone of height h and base-

radius r.

Ex. 196. Find, in terms of the curved surface of the original cone, the

curved surface of a frustum of a cone whose height is - that of the original

cone. Use the principle of similarity.

Volume of cone. The volume of a pyramid is ^ that of

a prism of the same base and height. Proceeding to the limit, we
see that the volume of a cone (of any shape) is ^ that of a

cylinder of the same base and height, and is therefore one-third

of the product of the base-area and the height.

Ex. 197. Express the volume of a right circular cone in terms of the

base-radius and the height.

Ex. 198. Express the volume of a right circular cone in terms of

(i) height and semi-vertical angle, (ii) height and slant height.

Ex. 199. From the formulae obtained in Exs. 195, 197, verify the

application to the cone of the rules mentioned on page 39, as to the ratios

of surfaces and of volumes of similar solids.

Ex, 200. Find the surfaces and volumes of the three solids generated

by rotating a triangle of sides 3", 4", 5" about its sides,

Ex. 201. A solid is generated by rotating a parallelogram of given base

and height about its base. Shew that the volume is independent of the

angle of the parallelogram.

Ex. 202. What area of canvas will be required for a conical tent,

the diameter of the base being 20 feet and the vertical height 15 feet?

How many cubic feet of air will the tent hold ?
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Ex. 203. A conical funnel rests inside a cylindrical jar as in fig. 36 ;

the circumferences of the jar and the funnel-edge are 10" and 14" respectively,

and the vertex of the funnel is 5" below the rim of the jar. How much
water would the funnel hold ?

fig. 36.

Ex. 204. A right circular cone is inscribed in a regular tetrahedron

as in fig. 37 ;
find the ratio of the volumes of cone and tetrahedron.

Ex. 205. A cone (height h, slant height I)
is laid on its side on a plane,

and rolled round so that the vertex remains fixed and the axis describes a

second cone. Prove that the curved surface of this second cone is irh^jl.

Ex. 206. A funnel made of sheet tin consists of a cylindrical part
4" long attached to a frustum of a cone. If the total height is 8", the

radius of the cylindrical part |", and the radius of the broad end 2^", find the

area of tin required.

Ex. 207. Find the surface and volume of the frustum of a cone in

terms of the radii of the ends (a and b) and the height Vt.

Ex. 208. A piece of paper in the shape of a large sector of a circle is

rolled into a right circular cone; a series of cones may be so formed,

according to the amount of overlap allowed in rolling. Find which of these

cones has the greatest volume. (Take r as radius of sector
;
xr as height of

cone ;
form expression for volume, and find maximum graphically, or by

differentiating.)

Ex. 209. Verify the theorem of Pappus (see Ex. 165) in the case of the

solid generated by rotating an obtuse-angled triangle about its longest side.



CHAPTER XI.

THE SPHERE.

The reader should already know the meaning of the word

sphere. Before attempting to define it, he should be warned
that the word is commonly used in two different senses : some-

times as meaning a surface, sometimes the space enclosed by
a surface. This does not, as a rule, cause inconvenience. Am-
biguity may be avoided by speaking of spherical surface
if necessary.

Ex. 210. Define a spherical surface.

Ex. 211. How may a sphere be generated by the rotation of a plane

figure ?

Ex. 212. What "relation must hold between the radii of two spheres
and the distance between their centres, in order that one may lie entirely
within the other ?

A sphere is symmetrical about any plane

through the centre. Such a plane cuts the

surface in a circle, called a great circle,
whose radius is equal to that of the sphere.

Ex. 213. Give instances of great circles on the

surface of the earth.

Plane and sphere, (i) A plane cuts

a spherical surface, if the distance of the ^* ^^'

plane from the centre is less than the radius. The section is a

circle ;
a great circle if the plane passes through the centre of the
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sphere ; otherwise, a small circle, whose radius is less than that

of the sphere.

(ii)
A plane touches a spherical surface if the distance of

the plane from the centre is equal to the radius
;

it is said to be a

tangent plane. Touching may be regarded as a limiting case

of cutting, the small circle having shrunk to a point-circle.

Obviously the perpendicular from the centre to a tangent plane

meets the plane at the point of contact, and at radius distance.

(iii)
A plane does not meet a spherical surface if the

distance of the plane from the centre is greater than the radius.

Ex. 214. Give instances of small circles on the surface of the earth.

fEx. 215. Prove the above statement that if a plane cuts a sphere, the

section is a circle.

Ex. 216. Find the area of a small circle whose plane is distant h from

the centre of a sphere of radius r.

Straight line and sphere.

Ex. 217. Discuss the various positions that a straight line may have

with respect to a sphere.

If a straight line touches a sphere, it is called a tangent line.

Ex. 218. Find the length of a chord of a sphere distant d from

the centre.

Ex. 219. How many lines can be drawn to touch a sphere at a given

point ?

Ex. 220. TA, TB are tangents to a circle; the figure is rotated about

the di^'Iueter through T; what is generated by (i) TA, TB, (ii) A, B,

(iii) ^?
Ex.'jiai. The tangents to a sphere (radius r) from a point T, distant I

from the (i4ntre, form a right circular cone : it is required to find the curved

surface^ this cone, bounded by its circle of contact.

Ex. 222. What is the locus of the mid-point of a chord of length 11,

placed inside a sphere of radius r ?

Ex. 223. The four corners of a square of side a lie on the surface of a

sphere of radius r. What is the locus of the centre of the square ?

G. S. G. 4:
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Ex. 224. Find the radius of the horizon visible from the top of

Snowdon (3560 ft.). [Take radius of Earth 4000 miles. Begin by finding

the distance of horizon from point at height h, where h is small compared

with R : prove that it is approximately \'2hR.']

fEx. 225. A sphere viewed from a point at a finite distance appears
to be bounded by the circumference of a circle. Prove that this circle is a

small circle of the sphere.

Ex. 226. Three balls, 5 cm. in diameter, lie on a floor in contact,

and a fourth equal ball is placed on them. Calculate the height of the

centre of the fourth ball above the floor.

fEx. 227. Through a fixed point T is drawn a variable line, meeting the

surface of a fixed sphere in A, B. Prove that TA . TB is constant; and

discuss any particular cases that may arise.

Ex. 228. The altitude of the sun, seen from a ship at sea, is found to

be a; and, knowing the Greenwich time, the navigator can determine the

point on the earth which has the sun vertically overhead. What does he

now know as to the position of the ship ?

Two spheres that intersect may be shewn to intersect in

a circle.

fEx. 229. Prove the above statement by shewing that the curve of

intersection lies in a plane. (Draw a perpendicular from a common point
to the line of centres.)

Great circles. As the earth is approximately a sphere, the

geometry of lines on a sphere is of practical importance, especially

in navigation.

In general, two points A, B on a sphere determine
a great circle uniquely. For a plane is determined by A, B,

and the centre of the sphere; and this plane cuts the surface

in a great circle. The points A and B can be joined by two great-

circle arcs, the minor arc and the major arc of the great circle.

The shortest line on the surface of a sphere connecting two

given points is the minor arc of the great circle through the

points (this statement will be proved later) ; just as the shortest

line in a plane connecting two points is the straight line.
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Accordingly, in the geometry of the spherical surface—spherical

geometry as it is called—the great circle takes the place of the

straight line in plane geometry.

The spherical distance between two points on a sphere is

the minor arc of the great circle through the points. It is

generally measured in degrees of arc
;

i.e. the number of degrees

which the minor arc subtends at the centre of the sphere.

The shortest-distance property of the great circle is used by navigators
in great-circle sailing. Melbourne is approximately in the same latitude

as Cape Town
;
but to sail along the parallel would be a much longer voyage

than the great-circle route ; this would run far to the South, as may be

verified by stretching a piece of cotton on a globe between the two points.

It is, in fact, impossible to follow the great-circle route throughout this

voyage as it runs into the high latitudes, where navigation is unsafe.

Again, the great-circle route from the West coast of Mexico to Japan
runs up the coast of America past San Francisco.

fEx. 230. Prove that an infinite number of small circles can be drawn

through two given points on a sphere.

fEx. 231. Prove that any two great circles bisect each other at two

diametrically opposite points.

Ex. 232. Find an exception to the rule that two points on a sphere
determine one great circle.

Ex. 233. An arc of a great circle subtends an angle of d radians at the

centre of a sphere of radius r. What is its length ? What is the length of

an arc of x degrees ?

If two points A, B on a sphere are at opposite ends of

a diameter, it is no longer the case that only one great circle

can be drawn through them. It is possible to draw an infinite

number of planes containing the diameter, and each one of these

cuts the surface in a great circle. We see therefore that through

diametrically opposite points on a sphere an infinite number of

great circles can be drawn (e.g. the meridians of the earth, drawn

through N. and S. poles).

4—2
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Poles of a great or small circle

sphere perpendicular to the plane of

a great or small circle cuts the

spherical surface in two points, called

the poles of the circle; e.g. the

North and South poles of the earth

are the poles of the equator and

of the parallels of latitude.

The angles between two inter-

secting lines on a sphere are

defined to be the angles between the

tangents to these lines at their points
of intersection.

The diameter of the

/ J. \

: ! ~^

S

fig. 39.

tEx. 234. Prove that the angles between two great circles are

equal to the angles between their planes.

tEx. 235. Prove that a great or small circle is at right angles to all the

great circles through its poles.

tEx. 236. Prove that the acute angle between two great circles is equal
to the spherical distance between their poles.

tEx. 237. Prove that the great circle through the poles of two great

circles has for its poles the intersections of these circles.

Ex. 238. A small nail is driven into the highest point of a smooth

spherical globe of radius r. A hoop, radius a, of fine wire, hangs on the

nail and rests on the surface of the sphere. What angle does the plane of

the hoop make with the vertical ? What is the radius of the horizontal

circle on the sphere which just touches the lowest point of the hoop ?

Coordinates on a sphere. Latitude and longitude
are simply coordinates on the surface of a sphere.

The equator and the meridian of Greenwich, NAS (fig. 40), are

taken as rectangular great-circle axes; through the point P is drawn

a great circle NPM, at right angles to the equator and therefore

a meridian; AM and PM, measured in degrees, are the longitude
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and latitude. Longitude is measured

E. and W. of A through 180°
;
latitude

is measured N. and S.

Ex. 239. What is the latitude of the

Equator? of the Poles?

Ex, 240. Supposing it possible to travel

along a great circle from a point 70° N.

90° E. to a point 70° N. 90° W., find the

ratio of the length of the great-circle route

to that of the route travelling due east.

Ex. 241. Find the distance along a

parallel between points P and Q in the same
latitude 6 North, longitudes respectively a and ^ East. Also find the great-

circle distance as follows : let N be the centre of the small circle, O of the

sphere ; compare the triangles PQN, PQO ; hence prove that

L P0Q = 2sin-

'

. a-/3
sin -~- cos

')•

Hence find numerically the ratio of the small-circle distance to the

shortest distance when ^ = 60°, a-/3= 40°; also the distance saved by great-

circle sailing, taking r=r4000 miles.

Lune. The portion of a spherical

surface enclosed by two half great circles

joining diametrically opposite points on

the surface is called a lune.

Ex. 242. Find the ratio of the surface of

a lune of angle a to the whole surface of the

sphere.

Spherical triangle, polygon. If

three or more points on the surface of

a sphere are joined, in order, by minor arcs of great circles, the

figure so formed on the surface is called a spherical triangle or

spherical polygon. The sides of a spherical polygon are the

spherical distances between the points, and are usually measured

in degrees of arc; the angles of a splierical polygon are the

angles between the great circles.
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Ex, 243. Find the sides and angles of a spherical triangle whose vertices

are 90° N. ; 0° N. , 30° W. ;
0° N., 60° E. What fraction of the surface of the

sphere is enclosed in the triangle ?

Ex. 244. O is the vertex of a pyramid on a square base ABCD. Each
side of the base is 8" long, and the height of the pyramid is 12". A sphere
is described with O as centre, and A, B, C, D are points on the surface.

Calculate the radius of the sphere. A, B, C are joined by great circles.

Calculate the sides «, b, c (in degrees), and the angle B of the spherical triangle.

Let the diameter NS (fig. 42) be at right angles to the

parallel chords AB, A'B'; and let the figure

rotate about NS.

The circle generates a sphere ; A, B a

small circle; AB, A'B' parallel planes; the

arcs ANB, ASB caps of the spherical surface,

or spherical caps; the arcs AA', BB' a

spherical belt; the segments ANB, ASB

spherical segments; the sectors AOBN,
AOBS spherical sectors.

Mensuration of Sphere.

A spherical belt cut off by two parallel planes has the

same surface as a belt cut by the same planes from
a cylinder circumscribing the sphere and having its

generators perpendicular to the planes. (See fig. 43.)

Proof* To find the surface of the spherical belt bounded by the

parallel small circles AB, A'B'
(fig. 44), let the belt be divided

by a large number of parallel planes into narrow belts such

as that bounded by small circles PQ, P'Q'. Let N, S be the

poles of the small circles; O the centre of the sphere. Each

small circle subtends a cone at the centre of the sphere,

whose semi-vertical angle will serve to determine the circle
;

e.g. small circle PQ is determined by z. NOP = ^; the neigh-

bouring circle P'Q' hy 6 + dO
; AB, A'B' by a, a respectively.

* For proof without calculus see p. 57,
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The surface of the narrow belt bounded by PQ, P'Q'

may, to the first order of small quantities, be found by multi-

plying the circumference of the circle PQ by the arc PP'.

.'. surface of narrow belt

= 27r.PM.PP'

= 'Ittt sin 6 . rdO

= 2Trr''^in6de.

.'. surface of finite belt

= r^TrrHinOdO
I

=
27rr^[-cosO]

a

= 27rr2 (cos a
- COS a')

= 27rr(OR-OR')
= circumference of , normal section of

cylinder x height of belt of cylinder
cut off

= surface of corresponding belt of cylinder.

A spherical cap is a particular case of a spherical belt.

The surface of the sphere is 27rr x NS = 4:7r7^.

Volume of sphere. Let a be the surface of any small

region on the surface of the sphere; S the whole surface. A
radius whose extremity travels round the boundary of this region
will sweep out a cone whose vertex is at the centre. To the first

order of small quantities, we may regard this as a cone of height
h standing on a plane base of area <r

;
its volume is ^rar.

Then the volume of the sphere = '^.^q-(t
=

^r.'X(T
= ^rS = ^ttt^.

Volume of sector of sphere. By the method of reasoning

applied to the whole sphere we see that the volume of a sector of

a sphere is J x radius of sphere x surface of spherical cap.

Volum.e of segment of sphere. A segment is the

difference of a sector and a cone.
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The surface of a sphere may be found without the use

of the calculus by the following steps, the proof of which is

left to the reader.

(1) The curved surface of a frustum of a cone is the product
of the slant height and the mean of the circumference of the two

ends. (This is another case of Pappus' theorem, see Ex. 165.)

(2) The surface generated by the rotation of a finite straight

line about a coplanar axis is 27r x projection of line on axis x per-

pendicular to line at mid-point terminated by axis.

(3) A circle may be regarded as the limit of a polygon.

Rotating the circle about a diameter, we see that a sphere may
be regarded as the limit of a figure composed of shallow truncated

cones. A finite belt of a sphere may, in fact, be divided by
a large number of parallel planes into narrow belts which may be

treated as shallow truncated cones. Applying (2), we see that in

the limit the surface of a finite belt of a sphere is 2ir x intercept

on axis of sphere by planes bounding the belt x radius of sphere.

Hence the relation between surface of sphere and of circum-

scribing cylinder.

Ex. 245. Prove that half the earth's surface is included between

parallels 30° N. and 30° S.

Ex. 246. Find the ratio of
(i) the surfaces, (ii) the volumes, of a sphere

and the circumscribed cube.

Ex. 247. A cube and a sphere have the same volume; find the ratio of

their surfaces.

Ex. 248. To double the gas-capacity of a spherical balloon, in what
ratio must the area of material be increased ?

Ex. 249. A boiler has the form of a right circular cylinder with two

convex liemispherical ends. Shew that the area of its external surface is

equal to the product of its greatest length and the circumference of the

circular section of the cylinder.

Ex. 250. Find the volume of a lens in the shape of a spherical segment,
from the following measurements : thickness =0*22", diameter =1*65".
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Ex. 251. Prove that the volume of a segment of a sphere of height

h (i.e. cut off by a plane distant V'^h from the centre) is irh^
(

**
~
u )

•

Ex. 252. Find an expression for the volume of metal in a hollow

metal shell, spherical inside and out. If the thickness t is small compared
with the external diameter 2r, deduce that the volume of metal is approxi-

mately 4irrH.

Ex. 253. A piece of lead piping 3 ft. long, having an external diameter

of 1 inch and an internal diameter of '75 of an inch, is melted down and
formed into 100 spherical shot of equal size. Find the diameter of one of

the shot.

Ex. 254. In considering the volume of an oblique pyramid, we have

assumed that two solids have the same volume if, being placed in the correct

relative position, they are cut by any plane parallel to a certain plane in two

sections of equal area. Apply this principle to find the volume of a hemi-

sphere, by comparing it with a solid obtained by subtracting a cone from a

cylinder. (See fig. 45.)

fig. 45.

Ex. 255. A golf ball is found to float immersed to the depth of y\ of

its diameter. What is its specific gravity ?

Ex. 256. Segments are taken of two spheres, diameter 14 ins. and 7 ins.

respectively, the heights being inversely as the diameters; if the volumes of

the segments be equal,, shew that the area of the spherical surface of each

segment is very nearly 132 sq. ins.

Ex. 257. What proportion of the surface of a sphere (radius r) is

visible from a point distant I from the centre ?
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Ex. 258. AB is a diameter of a given circle, and AC is a chord inclined

30° to AB. The area bounded by AC, AB and the arc BC revolves about

AB. State the volume swept out by this area, and the area of the surface

generated in terms of the radius of the circle.

Ex. 259. A cylindrical hole of diameter 2c is drilled through a solid

sphere, diameter 2a, the axis of the cylinder passing through the centre of

the sphere. Shew that the volume of the remaining portion of the sphere is

Ex. 260. A spherical segment is 1 metre high, and the radius of its

base is 2 metres. This segment is cut into two pieces by a plane parallel to

'its base and 50 cm. from it. Find the radius of the sphere and the

area of the section.

Ex. 261. The internal diameter of the rim of a spherical basin is

6 inches, and the depth of the basin is 4 inches. Three equal balls float

in the basin, which is full of water, the balls being just immersed. Deter-

mine the greatest diameter which the balls can have when they are placed

symmetrically in the basin.

Draw a diagram shewing the basin and the balls in plan and elevation.

Ex. 262. A circle can be drawn to pass through any three points,

not coUinear. What is the corresponding theorem for a sphere ?

t Ex. 263. Prove that a sphere may be described through any two circles

which intersect in two points. Discuss the particular case of coplanar
circles.

What are the conditions that a sphere can be described through two

non-intersecting circles in space ?

Ex. 264. The radius of a spherical surface (e.g. a lens) is measured by
means of a spherometer, the theory of which is as follows : The spherometer
has four legs, and, when it is resting on a plane, the four feet are arranged as

the vertices of an equilateral triangle (of side a) and its centroid. To apply
the four feet to a sphere, the middle foot is raised above the plane of the other

three, the distance it rises being measured by a screw. If it rises h, where

h is small compared with a, calculate the radius of the sphere.

fEx. 265. If a frustum of a cone be such that a sphere can be inscribed

in it touching both the plane ends and the curved surface, find the height
in terms of the radii of the ends ; and show that the circle of contact of

the sphere and the curved surface of the frustum divides the spherical surface

into two parts whose areas are in the ratio of the radii.
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THE SOLID ANGLE.

At the vertex of a pyramid there is a solid angle. A solid

angle may be defined as follows : Let O be a point outside the

plane of a polygon; a straight line terminated at O and extending
to infinity, when it slides round the perimeter of the polygon,
encloses a region of space called a solid angle.

The solid angle is important in electricity: and here the term is widened

by allowing the guide-line to be a curve instead of a polygon. A curve may,
of course, be regarded as the limit of a polygon of an infinite number of

infinitely short sides. There is a solid angle at the vertex of a cone.

It must be noted that 'solid angle' has nothing to do with
*

angle
'

;
a solid angle is not a kind of angle.

A solid angle has a vertex, edges, and faces ;
the faces are

plane angles.

Ex. 266. What is the relation between the number of edges and of

faces in a solid angle ?

Ex. 267. Three planes, infinite in all directions, meet at a point.

How many solid angles are formed ?

Ex. 268. In what case is a solid angle fixed by its plane angles ?

Solid angle and spherical polygon. Let a solid angle be

cut by a sphere of unit radius and centre at the vertex of the

solid angle. The faces of the solid angle are cut by the sphere in

great circles, and determine a spherical polygon. The magnitude
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of the solid angle is measured by the area of the corresponding

spherical polygon, a suitable unit being chosen.

The plane angles of the solid angle are equal to the sides

of the spherical polygon (measured as angles) ;
the inclinations of

adjacent faces of the solid angle are equal to the angles of the

spherical polygon.

3-faced solid angle. If a 3-faced solid angle be constructed

of paper, slit along one of the edges, and developed, i.e.

opened flat, into a plane, we shall obtain a figure such as

In fig. 46, OA, OA' were originally coincident.

Let us now begin with a figure such as that of fig. 46, and

investigate whether it can be folded into a 3-faced solid angle.

We shall have to fold the planes OAB, OA'C about OB, OC

respectively; and trj^ to make OA coincide with OA'.

Now if a > ;8 + y, it will be impossible to fold OA and OA'

into coincidence ; even if the wings are folded over flat on to

080, there will be a gap left between OA and OA'. If a = y8 + y,

OA and OA' will just meet when the wings are folded flat on to

OBC. In order that a solid angle may be formed, it is necessary
that a< f^ + y.

From this we conclude that any two plane angles of a

3-faced solid angle are together greater than the third.

The Euclidean proof is given below.

It is interesting to notice what this leads to when applied to

the associated spherical triangle. It shews that any two sides

of a spherical triangle are together greater than the third.
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This is analogous to the theorem in plane geometry ;
and we may

deduce that the shortest path on a spherical surface

between two points is the minor arc of the great circle

joining them.

t Ex. 269. Deduce from the above property of the spherical triangle the

property that any side of a spherical polygon is less than the sum of the

remaining sides. By passing to the limit, prove the above statement that

the spherical distance is shorter than any other line on the surface of the

sphere connecting two points.

The following is the Euclidean proof of the preceding theorem.

Any two plane angles of a 3-faced solid angle are

together greater than the third.

fig. 47.

Data A solid angle is bounded by three plane angles AOB,

BOC, COA.

To prove that any two of these angles are together greater than

the third.

Proof If all three angles are equal, any two are together greater
than the third.

If they are not all equal, let l AOB be that which is not

less than either of the other two.

Then z. AOB + l BOC > L COA,
and L AOB + l COA > l BOC.
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It remains to prove that l BOC + l COA > /. AOB,

In plane AOB, make ^ AOD == z. AOC, and OD = OC. Let

AD cut OB in B and join OB.

Then in As AOC, AOD,
OA is common, OC = OD, l AOC = ^ AOD.

.*. OC = OD and AC = AD.

Since AC + CB > AD + DB,

.-. CB > DB.

In As BOC, BOD, OB is common, OC = CD, and CB > DB.

.*. ^COB>Z.DOB.
.*. L COB + L COA > L AOB. Q. E. D.

If the guide polygon associated with a solid angle (p. 60)
is convex, the solid angle may be termed convex.

If a convex solid angle is slit along one edge, and developed
into a plane, it is obvious that the plane angles will not com-

pletely fill up the four right angles ;
there will be an angular gap.

Hence the sum of the plane angles of a convex solid angle
is less than four right angles. The following is a Euclidean

proof.

Let the solid angle be cut by a plane, the section being the

polygon ABODE. Take any point

S inside this polygon and in its

plane ; join S to the vertices of the

polygon.

At A there is a 3-faced solid

angle; and

L OAE + L OAB > L SAE + L SAB.

Similar relations hold for the solid

angles at B, C, D, E.

Adding, we have sum of ^ s at

bases of side-faces of pyramid > sum of z. s at bases of As with

vertex S.
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But sum of all the ^ s of side-faces = sum of all the z. s of

the S As (the number of triangles being the same).

Hence sum of z. s at O < sum of z_ s at S

< 4 right L s.

Ex. 270. What property of a spherical polygon follows from the above

theorem ?

Ex. 271. How many regular solid angles are there that can be made

up of angles of
(i)

an equilateral triangle, (ii) a square, (iii) a regular

pentagon, (iv) a regular hexagon?

fEx, 272. If two plane angles of a 3-faced solid angle are equal, these

two faces are equally inclined to the third face.

fEx. 273. The opposite edges of a certain tetrahedron are equal. The

surface is slit along three concurrent edges, and opened out flat : prove that

it forms an acute-angled triangle : and also that the faces are acute-angled.

fEx. 274. If the sum of the angles at each of three vertices of a tetra-

hedron is two right angles, the same is true of the angles at the fourth

vertex ;
and opposite edges of the tetrahedron are equal.

+Ex. 275. The sum of the angles subtended by the sides of a triangle

ABC at any point D not in its plane is less than the sum of the angles

subtended by these sides at a point P inside the tetrahedron ABCD.



CHAPTER XIII.

THE REGULAR SOLIDS. THE PRINCIPLE OF DUALITY.
EULER'S THEOREM.

Ex. 276. Make a table showing in which of the following cases it is

possible to make solid angles bounded by three, four, five or six plane angles
when each plane angle is equal to the angle of a regular (i) 3-gon, (ii) 4-gon,

(iii) 5-gon, (iv) 6-gon.

Which of these solid angles would be fixed and which could be varied

in shape?

The table made in Ex. 276 shows that it is impossible to

have more than five solid angles bounded by plane angles each

equal to the angle of a regular polygon. Therefore it is impossible

to have more than five solids all the faces of which are congruent

regular polygons and all the solid angles of which are bounded by
the same number of plane angles. Such solids are called regular
solids.

Of course this does not prove that there are any regular solids ;
it merely

shows that there is a limit to the number of them.

The figures below show the five regular solids.

Tetrahedron (i.e. 4-faced).

fig. 49. fig. 50.

G. S. G.
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Cube.

n
fig. 51. fig. 52.

Octahedron (i.e. 8- faced).

^^^^
fig. 53. fig. 54.

Dodecaliedron (i.e. 12-faced).

fig. 55. fig. 56.
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Icosahedroii (i.e. 20-faced).

67

fig. 57. fig. 58.

It is interesting to note that many substances crystallise

in the form of some of the regular solids, e.g.

Form. Substance.

Tetrahedron Blende, Tetrahedrite (gray copper ore).

Cube Fluor-spar, Galena (lead sulphide).

Octahedron Alum, Diamond*, Gold, Magnetite.

One great law of crystallography is that in different crystals of the same

substance the angles between corresponding faces are always the same

although the faces need not be of the same size. As a consequence of this

a substance which crystallises in the form of, say. a regular octahedron will

fig. 59.
fig. 60.

probably be found in the form of the figures that can be made by planing

down one or more of the faces of a regular octahedron, see fig. 59. Again
some substances which crystallise in the form of cubes or octahedra show

combinations of these forms, e.g. fig. 60 shows a common form for crystals

* The natural faces are not to be confused with the artificial faces seen

in cut stones. As a rule the crystals of diamond and gold are waterworn

and not very well defined in shape.

5—2
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of fluor-spar and galena; the triangular faces are parallel to the faces of

a regular octahedron ; with these two sets of faces a great variety of forms

are possible according as the corner faces are well or ill developed*.

Ex. 277. Make sketches of a cube showing how to cut it so as to get
sections of 3, 4, 5, or 6 sides. Is it possible to have a section of more than

6 sides?

fEx. 278. If AB is a diagonal of a cube, prove that the mid-points of

the edges which do not pass through A or B are the vertices of a regular

hexagon.

Ex. 279. What numbers of sides are possible for sections of a tetra-

hedron ? Make sketches.

Ex. 280. Calculate the length of the diagonal of a regular octahedron

in terms of the length of the edges.

Ex. 281. Prove that a regular octahedron can be divided into two

square pyramids in three different ways.

Ex. 282. If each corner of a cube were planed off symmetrically (see

fig. 60), and the process continued till the faces of the cube disappeared, what
solid figure would be constructed ?

fEx. 283. Prove that the mid-points of the faces of a cube are the

vertices of a regular octahedron.

fEx. 284. Prove that the mid-points of the edges of a regular tetra-

hedron are the vertices of a regular octahedron.

Ex. 285. Make sketches showing what number of sides are possible for

plane sections of a regular octahedron.

t Ex. 286. Prove that the section of a regular octahedron parallel to

and midway between a pair of opposite faces is a regular hexagon.
What would be the shape of any other parallel section?

The Principle of Duality.

In plane geometry there is a certain duality by which many
properties of points have, as their counterpart, corresponding

properties of lines.

* For further information on this subject see Crystallography by
W. J. Lewis, Cambridge University Press.
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For instance :

2 points define 1 line. 2 lines define 1 point.

3 points define 3 lines, 3 lines define 3 points.

In solid geometry there is a similar duality in which points

correspond to planes and lines occupy an intermediate position.

For instance :

Two points determine a line. Two planes determine a line.

Three points determine a Three planes determine a

plane, unless they are all point, unless they all con-

on the same line. tain the same line.

Two lines, in the same Two lines, through the same

plane, determine a point. point, determine a plane.

Ex. 287. Make a table showing the number of corners, edges and faces

of the following regular solids (i) tetrahedron, (ii) cube and octahedron,

(iii)
dodecahedron and icosahedron.

What dual relations do you notice between the numbers of corners and

faces of the solids in the above groups ?

Euler's Theorem*.

Ex. 288. Make a table showing the number F of faces, the number V
of corners, and the number E of edges for various solids (not necessarily

regular) bounded by plane faces :

Name of Solid F V
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Ex. 289. Consider a hollow box in the shape of a solid bounded by

plane faces.

If we cut out one face of the solid, we do not abolish any edge or any
vertex, but we are left with a number of raw edges, edges that now belong
to one face only instead of being common to two faces.

Now let the box be further dismembered face by face, subject to two

conditions
(i)

that no face is to be removed that has not at least one raw

edge, (ii) that no face is to be removed whose raw edges are not consecutive.

Make a table, as below :

Number of

face removed
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Fig. 61 will make this clear. The thin lines represent raw edges,

so that the removal of this face will wipe out 4 edges

but only 3 corners.

Let e^, Vj. denote the number of edges and

vertices wiped out by the removal of the rth face.

Then e^
-

-y^
= 1 except for the first and the fig- 61.

last face.

Now the removal of the first face destroys no edges or

vertices.

.'. gj
-

Vj = 0.

And the removal of the last face destroys the same

number of e^ges as vertices.

.". if E, V, F are the total number of eds^es, corners and faces,

E-V=F-2, E''^

or F + V - E + 2.

This result applies, in general, to any solid bounded by

plane faces, but no account has been taken here of a solid

any face of which has more than a boundary, for example
a solid such as that formed by placing a cuboid on a larger

cuboid.

Ex. 292. What is the value of F + V - E for the solid mentioned above?

Ex. 293. Verify Euler's Theorem for each of the regular solids.



CHAPTER XIV.

COORDINATES IN SPACE.

Ex. 294. Suppose the walls of a room run due N. and S. and due

E. and W. Do the following directions send you to a definite point ?

From the N.W. corner of the floor go 3 feet due E., then 4 feet due S., then

5 feet vertically upwards.

Ex. 295. Explain what measurements you would have to make to give

directions to go from the N.W. corner of the floor to some point in the

room, e.g. the bottom of an electric light bulb, the corner of a desk.

In a plane you have seen that if two fixed perpendicular axes

are chosen the position of any point in the plane is determined by
two coordinates. In space we have to take three perpendicular

axes and the position of any point is determined by giving the

distances we must travel from the origin parallel to each of these

three axes. (These distances are of course the same as the

distances of the point from the three planes containing the axes

in pairs.)

It is usual to place these axes as in fig. 62, OX, OY, OZ being

their positive directions.

Note that the three planes correspond to the floor and walls

of the room in Ex. 294, O corresponding to the N.W. corner of the

floor.
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Ex. 296. Find the length of OP, P being the point (4, 2, 4); see

fig. 62.

Ex. 297. Make a sketch like fig. 62, showing the points (5,
-

2, 3),

(
-

6, 4,
-

1). What are their distances from O ?

Ex. 298. Find the distances between the points (i) (1, 2, 3) and

(3, 5, 7), (ii) (a, 6, c) and {p, q, r).

Ex. 299. If P is the point (4, 2, 4), find the angles OP makes with the

planes XOY, XOZ, YOZ
; also find the angles OP makes with the axes.

Ex. 300. What is the length of the projection (i) upon the x axis,

(ii) upon the
7j, z plane of the line joining {a, b, c) to (x, y, z)

?

fig. 62.

In plane geometry, if you are confined to points whose co-

ordinates satisfy one equation in x and y, your locus is a line

(straight or curved).

In geometry of three dimensions, if you are confined to points
whose coordinates satisfy one equation in x, ?/, z; e.g.

z = bar + Socy + 2y - 5,

you may choose any values j^ou please for x and y and there is a

corresponding value for z. You see that the restriction imposed

by one equation compels you to move on a surface of some sort
;

the equation is called the equation of the surface.

Ex. 301. What restriction is imposed by two equations (i) in plane

geometry, (ii) in solid geometry ?

Ex. 302. What restriction is imposed by three equations in solid

geometry ?



74 SOLID GEOMETRY

Ex. 303. If you are told to go 2 units in the direction OX and then

given absolute freedom to move any distances parallel to OY, OZ, i.e. if the

only condition imposed on you is a;= 2, what is your locus ?

Ex. 304. "What is the locus a;= 2 in plane geometry ?

Ex. 305. What is the locus y= -3 in solid geometry? What is the

locus 2= in solid geometry ?

Ex. 306. What are the loci x = y, x=z in solid geometry

Ex. 307. What is the locus x^ + y^= a^ (i) in plane geometry, (ii) in

solid geometry?

Ex. 308. What is the locus ax + by+c = 0, (i)
in plane geometry,

(ii)
in solid geometry ?

It can be shown that the locus corresponding to an equation
of the first degree in x, y, z is a. plane surface.

Ex. 309. What are the equations of the planes XOY, YOZ, ZOX ?

Ex. 310. Find the equation of a plane which cuts off lengths a, b, c

from the axes.

Ex. 311. What locus is determined by two equations of the first

degree ?

Ex. 312. What are the equations of OX, OY, OZ ?

Ex. 313. What is the distance of the point {x, y, z) from the origin ?

Hence find the equation of a sphere of radius r whosfe centre is at the

origin.

Ex. 314. What is the equation of a sphere of radius r whose centre is

at the point (a, b, c) ?

Ex. 315. A cord is stretched in a room between two points in space,

and the three planes of reference are (i)
the north wall of the room,

(ii) the east wall, and (iii) the floor. If the coordinates of the two points

between which the cord is stretched tightly are (5, 2, 4^) and (4, 5^, 1|),

unit 1 foot, calculate the length in feet of this string, and the points on the

floor and east wall where the cord, if prolonged, would intersect them.

What angle does the string make with the floor ?



CHAPTER XV.

PLAN AND ELEVATION.

Ex. 316. If the projection of a point P on a given plane is fixed, what

is the locus of P ?

It is obvious that, if the projection of a point on a given

plane is given, and also the distance of the point from the plane,

the position of the point is fixed.

A plane figure showing the projections

on the plane of a series of points and

the distances of the points from the

plane is called an indexed plan : e.g.

fig. 63 is the indexed plan of a

tetrahedron vv^ith its base parallel

to the plane of projection.

It will be noticed that a contour

map is an indexed plan.

The position of a point may also be fixed by giving its

projections on two planes. It is usual to take one plane horizontal

and the other vertical
;
the projection on the horizontal plane is

called the plan and the projection on the vertical plane the

elevation. The horizontal plane of projection is spoken of as

the H.p. and the vertical plane as the v. p.

The line of intersection of the h.p. and v. p. is called the

ground line and is denoted by XY.
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Fig. 64 shows a cube; its plan is the square on which it stands,

its elevation is shown on the vertical plane. Note that a, a' are

the plan and elevation of A, and that when any point in, say the

plan, is the plan of two points it is lettered as a fraction, thus -
,

A being the point nearer to the spectator, and P the point nearer

to the plane of projection.

fig. 64.

If the vertical plane is rotated about XY through an angle of

90° we have the plan and elevation in the same plane. For con-

venience the plan and elevation are generally drawn on the same

paper ;
thus fig. 65 represents the plan and elevation of the cube

in fig.
64

; broken lines are drawn connecting the plan and

elevation of each point.

Ex. 317. What is the angle between XY and the line joining the plan
and elevation of any point ?

Ex. 318. Sketch* the plan and elevation of
(i)

a vertical line, (ii) a

horizontal line, (iii)
a sloping line with one end in the v.p.

* In sketching plans and elevations it is useful to fold a sheet of paper at

right angles to represent the h.p. and v.p. and to place the model in

position.
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fig. 65.

Note that the elevation of a point G below the h.p. is a point g' below

the XY line
; g' must not be confused with a point in the plan. In the same

way the plan of a point H behind the v.p. is a point h above the XY line
;

h must not be confused with a point in the elevation. In general we shall

only consider points above the h.p, and in front of the v.p,; it is obvious

that in most cases this does not cause any loss of generality, for the h.p.

and v.p. can be chosen to be respectively below and behind all the parts of

the solid we wish to represent.

Ex. 319. Draw a figure showing the plan and elevation of
(i)

a point P
which is on the h.p. and behind the v.p., (ii) a point Q above the h.p. and
behind the v.p., (iii) a point R below the h.p. and in front of the v.p.,

(iv) a point S below the h.p. and behind the v.p.

Ex. 320. Draw the plan and elevation of a square pyramid with its

base on the h.p., the corner of the base nearest the v.p. being 1 in. from the

ground line, the nearest edge of the base making an angle of 30° with the

ground line, length of edge of the base 2 in.
, height of pyramid 2 inches.
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Ex. 321. Sketch the plan and elevation of several solids in various

positions, e.g. a triangular prism, a pentagonal prism, a tetrahedron.

Ex. 322. Given the plan and elevation

of a solid, show how to draw an elevation

on another vertical plane.

Ex. 323. You are given the projections

of a piece of wire AB fixed in the h.p. at B.

From the plan project a new elevation of the

wire on the vertical plane through X'Y', and

measure this elevation. Dimensions are given

in centimetres.

Ex. 324. A regular square pyramid rests

with a triangular face on the h.p. The plan fig- ^6.

ahv of this face is a triangle having ah = 2-2 in.,

va= vh= d in. Draw the plan and elevation of the pyramid on a v.p. per-

pendicular to ab.

[First draw a abv, then the elevation of a section by a plane through

V parallel to the v.p.]

Also find the shape of the section of the pyramid by a vertical plane

cutting va, vb at points q, r such that vq = 0-9 in., vr=l-3 in.

Ex. 325. ABC and DEF are thin 60° and 45° set-squares; angles A
and D are the right angles and z.C=60°, AB=EF=:.3 in. Imagine ABC,
DEF placed fiat on the h.p. so that B is at the mid-point of EF and EF

parallel to CA. Now suppose ABC rotated about AB till its plane is

vertical, and DEF rotated about EF so as to rest against the edge of the

other set-square. Draw the plan of the set-squares and elevations of

them on the vertical planes parallel to AB and EF.

Fig. 67 shows a perspective sketch of a cottage, its plan, and

its elevations on two vertical planes at right angles to one

another. These figures are reduced from an architect's actual

drawings ;
details of measurements, etc. are omitted for the sake

of clearness*.

* In an architect's drawings the side elevation would be placed upright

by the front elevation.
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fig. 67.

Note that the line joining any point on the plan to the

corresponding point on the elevation cuts the ground line at

right angles. Also note that the distance of any point from the

ground line in the front elevation is equal to the distance of the

corresponding point from the ground line in the side elevation.

Ex. 326. Fig. 68 shows the plan and end elevation of the roof of

a house ; make a sketch of the side elevation.
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fig. 68.

Lengths of lines determined from plan and elevation.

Of course if a line is parallel to either plane of projection its

length is equal to its projection on that plane.

Ex. 327. What lines in fig. 68 are the same lengths as the lines of

which they are the projections ?

If a line is not parallel- to either plane of projection its length
can generally be calculated by measuring lines in the plan and
elevation figure and using the theorem of Pythagoras.

Ex. 328. Determine the length of FB from fig. 68.

The lengths of lines not parallel to either plane of projection

can also be determined by geometrical constructions.

fig. 69.
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Fig. 69 shows a line AB in space and fig. 70 its plan and

elevation. If the triangle ABa is rotated about Aa to the position

ADa parallel to the vertical plane, ad', the elevation of AD, will

be of the same length as AD or AB
;
this suggests a construction

for determining the length of the line of which Ba, b'a (fig. 70)
are the plan and elevation. What path will B in fig. 69 describe

as ABa swings round Aal

*Ex. 329. Determine the length of the line PQ using the dimensions

given in fig. 71.

*Ex. 330. Determine geometrically the length of FB in fig. 68.

Ex. 331. A stick rests with one end on a floor, a metre from the north

wall of the room and a metre from the west wall. The other end rests on

the west wall at a height of 1-4 metres and 0*8 metres from the north wall.

Show the projections of the stick on the floor and west wall, and find the

length of the stick.

The upper end of the stick slips, the lower end keeping still. Show the

path of the upper end.

fig. 71. fig. 72.

*Ex. 332. Fig. 72 represents the plan and elevation of a line AB. If

the line is produced to cut the h.p. at h, then h', the elevation of h, must lie

on h'a' produced. What other line is there in the figure on which h' must
lie ? Hence find the plan of h. Measure the distance of h from XY.

* Numerical values are given in these Exs., so that au accurate drawing

may be made if desired
;
in cases in which the technical skill is unimportant,

rough sketches will be sufficient.

G. S. G.
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*Ex. 333. Explain how to find the plan and elevation of the point v' at

which AB (see fig. 72) cuts the v.p. Measure the distance of v' from XY.

The points at which a Hne cuts the h.p. and v.p. are called the

horizontal trace (h.t.) and the vertical trace (v.t.) of the

line.

Ex. 334. Suppose h, and v', the h.t. and v.t. of a line are given, show
how to draw the plan and elevation of the line.

Ex. 335. Having given the traces of a line and the projections of a

point, what conditions must obtain if the point is on the line?

Ex. 336. Explain how to use the theorem of Pythagoras to find the

length of a line whose ends are in the v.p. and h.p., when its traces are

given .

*Ex. 337. Find the h.t. and v.t. of the

lines whose plan and elevation are given in

(i) fig. 71, (ii) fig. 73.

Ex. 338. Draw the plan and elevation of a

line. If p, p' are the plan and elevation of a

point P on the line, what geometrical conditions

must obtain ?

Ex. 339. Given the plans and elevations

of 3 points, what are the conditions that the

three points are coUinear ?

Ex. 340. Mark on a plane points h, (0,
-

a) ;

v', {b, c) ; p, {d,
-

e) ; p\ [d, f). Suppose the x

axis to be the ground line, p, p' the plan and

elevation of a point P; what relations must

exist between a, &, c, d, e,f if P is on the line

of which h, v' are the h.t. and v.t. ?
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Ex. 342. Given the traces of two straight lines, explain how to deter-

mine whether the lines intersect.

Inclination of a straight line to the H.P. and V.P.

On p. 17 the inclination of a straight line to a plane has been

explained to be the angle between the line and its projection on

the plane.

*Ex. 343. Find the inclination to the h.p. of the following lines in

fig. 68, AE, FB.

Ex, 344. Show how to determine the angle made with (i) the h.p,,

(ii) the v,p, by a line whose ends are in the planes of projection and whose

plan and elevation are given. [See figs. 69, 70.]

Note that if the ends of a line are not in the planes of

projection, the line can be moved parallel to

itself till its ends come into those planes, y,/

so that the general problem of the inclination

of a line to the h.p. and v. p. can easily be

reduced to the special case of Ex. 344 (see

fig. 74. PG, RS are parallel and equal). g^

The method suggested by fig. 69 of

rotating a plane about its line of intersection

with the V.P, (or about a line parallel to the

line of intersection) until the plane coincides gg 74
with (or is parallel to) the v. P. is much used

for determining the true shape of a plane figure; the figure

obtained is called the vertical rabattement. If a figure is

rotated into a horizontal position, the figure obtained is called the

horizontal rabattement.

* Ex. 343 can be easily done by Trigonometry, but the geometrical con-

structions are interesting and in practical use.

6—2
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*Ex. 345. A thin 45° set-square, hypotenuse AB = 4 in., has the edge
AC in the v.p. at right angles to XY, and the edge CB in the h.p. and
inclined at 50° to XY.

(i) Draw the plan and elevation of the set-square.

(ii) Draw the horizontal rabattement of aAB&', and hence find the

angles which AB makes with the v.p.

(iii) Find the angle between AB and XY.

*Ex. 346. A straight line 3 in. long has its ends in the h.p. and v.p.

respectively and makes an angle of 35° with the h.p. and lies in a vertical

plane which makes an angle of 72° with the v.p. Draw the projections of

the line and measure their lengths.

*Ex. 347. Draw the projections of a line 7 cm. long which has its ends

in the h.p. and v.p. respectively and which makes angles 20°, 57° with

those planes. Measure its projections.

*Ex. 348. Show how to draw the projections of a line which has its

ends in the v.p. and h.p. respectively, the length of the line being 3-5 in.,

and the lengths of its plan and elevation 2-8 in., 2*3 in. Measure the angles
the line makes with the v.p. and h.p.

[Make a sketch of the solid figure; suppose the ends of the line to be

v', h, draw the triangle obtained by swinging a v'hv about vv\ draw the locus

of h as the triangle swings round.]

In the same way the lines in which a plane cuts the h.p. and

v.p. are called the horizontal and vertical traces of the

plane.

Ex. 349. Sketch the traces of any plane; where do they intersect?

Ex. 350. Sketch the traces of (i) a vertical plane perpendicular to the

V.P., (ii)
a vertical plane inclined to the v.p., (iii) a vertical plane parallel to

the v.p., (iv) a horizontal plane.

Ex. 351. Given the traces of a plane and of a line on it, what

conditions obtain ?

Ex. 352. Given the traces of a plane and the plan and elevation of a

line, show how to determine whether the line is in the plane.

[Find the traces of the line.]

* Numerical values are given in these Exs. ,
so that an accurate drawing

may be made if desired
;
in cases in which the technical skill is unimportant,

rough sketches will be sufficient.
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Ex. 353. Given the traces of a plane and the plan and elevation

of a point, show how to determine whether the point is in the plane.

[Consider the line joining the point to a point on one of the traces.]

Ex. 354. Having given the traces of a plane, determine the inclination

of the plane to the h.p.

[Draw X'Y' perpendicular to the h.t.
;
on X'Y' as ground line draw an

elevation.]

Given the plan and elevation of a plane figure, to find

its true shape.

The method used is (1) to find the line of intersection of the

plane of the figure with the h.p. (i.e. the h.t. of the plane), (2) to

imagine the figure rotated about this line into the h.p. or a vertical

plane, i.e. to find the horizontal or a vertical rabattement of the

figure.

Before considering the problem we will take an example of the

converse problem.

Ex. 355. A circle of radius 2 in. lies in a vertical plane which makes
an angle of 60° with the v.p. its centre being in the h.p., draw its elevation.

See fig. 75. aPb represents the circle rotated about the horizontal

diameter into the h.p. Pp is of course equal to the height of p' above XY.

10

,1-2

2-2'

2-5

2-8

fig. 76.
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Ex. 356. Find by the following construction the true shape of the

triangle whose plan and elevation are given in fig. 76.

(i)
Draw fig. 76 accurately and find the horizontal traces of the sides

of A ABC. The horizontal traces should lie on a straight line (X'V) ; give

a reason for this.

(ii)
Draw an elevation of a ABC on the vertical plane at right angles

to X'Y'. Explain the figure you obtain.

(iii) Now suppose the plane of the triangle rotated about X'Y' until

it coincides with the h.p. ; draw the new plan.

[The figure you obtained in
(ii)

will give you the distances of A, B, C
from X'Y'.]

Ex. 357. Draw the plan and elevation of a circle of radius 2 inches

whose horizontal diameter makes an angle of 50° with the v.p. and whose

plane is inclined at 35° to the h.p.

MISCELLANEOUS EXAMPLES ON PLAN AND ELEVATION.

Ex. 358. A thin 30°—60° set square ABC, whose long edge AB
measures 4 inches, is laid on the horizontal plane and is then turned about

AB through an angle of 58°;

(i) Draw the plan of the set square ;•

(ii) Determine the inclinations to the horizontal of the edges AC
and BC;

(iii) Draw an elevation of the set square on a vertical plane which

makes 45° with AB.

Ex. 359. The plan of a roof of a house is rectangular in outline,

and two adjacent surfaces are each inclined at 50° to the horizontal. Find

the inclination of the hip rafter (see fig. 68) to the horizontal and to the

bottom edges of the roof.

What is the length of the hip rafter, if 20 feet is the length of the bottom

edge of one of the slopes which is triangular in shape ?

Ex. 360. The plan of a roof of a house is rectangular in outline

(see fig. 68) ;
the side slopes are inclined to the horizontal at 30°, the end

slope at 40° and the span is 24 feet. Find the length of the hip rafter and
its inclination to the horizontal.
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Ex. 361. Fig. 77 is the dimensioned roof plan of a bouse. The roof

planes A and B are inclined to the horizontal at 33°. Determine

(i)
The length and inclination of the valley rafter CD ;

(ii)
The bevel for cutting the edges of the slates which lie along the

valley, that is, the true angle between the lines whose plans are cd, de ;

(iii)
The correct angle of the valley tiles, that is, the dihedral angle

between the planes A and B.

Ex. 362. If the roof in fig. 77 were hipped back at E to the same slope

as that of the planes A and B, would the area to be slated be increased,

decreased or unaltered ?

-«- 20 ft.-->
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Ex. 367. A triangular prism, 2 in. long, with equilateral ends of

2-5 in. side, rests with a long edge on the ground, the end faces being

inclined at 50° to the horizontal. Draw its plan. Determine the section

made by a horizontal plane 1 -5 in. high.

Ex. 368. The tripod that supports a photographer's camera has three

legs 130 cm. long meeting at a point. Show that when the tripod stands on

level ground, no matter how it may be placed, the legs are equally inclined

to the ground. When the feet form an equilateral triangle 70 cm. in the

side, calculate the height of the tripod.

With rectangular axes, z-&x\s vertical, unit 1 cm., the feet of the tripod

are at (33, 42, 0), (97, 20, 0) and (68, 114, 0). On a scale of tV show the

tripod in elevation on the plane x= 0, and in plan.

Ex. 369. Through a point 8 inches above the h.p. pass two lines

including an angle of 40° ; they are inclined at 50° and 65° respectively to

the H.p. Find, by drawing plan and elevations, the inclination to the

horizontal of the plane containing these lines.

Ex. 370. Determine the h.t. and v.t. of a plane which bisects the line

PGl of fig. 71 at right angles. Also find the true angle between the traces of

this plane.

Ex. 371. The h.t. and v.t. of a plane make 60° and 45° with the

ground line. A point p, distant 1" from the h.t. and 1^" from XY, is the

plan of a point P contained by the plane ;
draw the elevation of P.

Also draw the projections of a line PM which is perpendicular to the

plane and has its foot M in the h. p.

Ex. 372. Three balls, 5 cm. in diameter, lie on a floor in contact, and

a fourth equal ball is placed on them. Draw them in plan and in elevation.

State how you determine the height of the centre of the fourth ball above

the plane of the other three centres.



CHAPTER XVL

PERSPECTIVE.

It is not part of the plan of this book to deal with the

practice of perspective drawing ;
the principles, however, are

a simple and interesting application of solid geometry and, as

such, are worthy of the reader's attention. Here we shall limit

ourselves to an explanation of the simplest points of the theory.

The first problem met with in drawing a picture is to repre-

sent on a plane two-dimensional surface objects that are in three

dimensions. The third dimension^—depth—cannot exist on the

plane surface of the picture and must be suggested to the

spectator by various devices. One of these devices is to give the

idea of distance by representing distant objects as more or less

hazy, an intervening atmosphere being suggested by this means.

The necessary illusion, however, is obtained mainly by the use of

geometrical perspective, by which distant objects are depicted
as smaller than near objects, on a systematic plan which shall

now be explained.

Suppose that it is required to depict a three-dimensional object

(say a cube) on a pane of glass placed between the eye and the

cube. Suppose that the eye is fixed by compelling it to look

through a fixed eye-piece (e.g. a small hole in a fixed piece of

paper or cardboard).
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If the glass is within arm's length, it will be possible to trace

upon it an ink outline exactly covering the outlines of the

cube. A picture is obtained by these means which will be

found, if looked at from any point of view, to suggest the form

and position of the cube : though the illusion is not complete

except when the eye returns to its original position relative

to the picture.

fig. 78.

It will be noticed that the relative dimensions on the picture

do not correspond to the relative dimensions in the object; e.g.

the pictures of equal edges are not equal, if the edges are at

different distances from the eye. Again, parallel lines of the

cube will probably be depicted by lines that are not parallel.

Let us now express in geometrical language the process that

has taken place in drawing this picture. Let O be the point at

which the eye was placed. The pane of glass we will call the

picture plane, and we will suppose it to be vertical. A horizontal

plane through O will cut the picture plane in a horizontal line LR,

which we will call the horizon line. The line through O per-
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pendicular to the picture plane will be called the line of sight ;

the point, E, where the line of sight cuts the picture plane is the

centre of the picture ;
this point lies on the horizon line.

Let the line joining O to any point, P, of the object cut the

picture plane in a point P'; P' is the picture of P, or, in mathe-

matical language, the projection* of P. OP we will call the

projecting line of P. The picture is, in fact, the projection

of the object, from O, upon the picture plane.

Projection in this wider sense is a generalisation of the

orthogonal projection already familiar to the reader. Orthogonal

projection is a particular case of projection ;
for if the centre of

projection (the eye) is removed to infinity, the projecting lines all

become parallel, and if the picture plane is now taken at right

angles to the projecting lines, we have orthogonal projection.

If we consider the points of a line in the object, the projecting

lines of these points form a plane, which may be called the

projecting plane of the line. This cuts the picture plane in a

straight line, the projection of the straight line depicted.

A set of parallel lines in the object (not necessarily coplanar)
will determine a set of projecting planes through O

;
and the line

through O parallel to the set will lie in each of these planes. The

planes will, in fact, be arranged like the leaves of a partly

opened book.

Such a set of planes will be cut by the picture plane in a set

of lines, either parallel or concurrent. The section will consist of

parallel lines if the picture plane is parallel to the back of the

book ;
this will happen if the parallel lines depicted are parallel

to the picture plane. Hence parallel lines are depicted as

parallel if they are also parallel to the picture plane.

* Sometimes called conical projection (the projecting lines forming

cones) to distinguish it from orthogonal projection.
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A set of vertical lines is always parallel to a vertical picture

plane ; they will be depicted as parallel ;
in fact their projections

will be perpendicular to the horizon line.

A set of horizontal parallel lines is not necessarily parallel

to the picture plane ;
and will not necessarily appear as a parallel

set in the picture.

If the set of parallels is not parallel to the picture plane, the

latter will cut the 'book' of planes in a set of concurrent lines.

Their point of concurrence is the point where the picture plane

9uts the back of the book
;
in other words, where the line through

the eye parallel to the set cuts the picture plane. This is called

the vanishing point of the set
;
the parallel lines will appear as

a set of lines converging on this vanishing point. This point is

the projection of the point at infinity on the set of parallels.

The depiction of a set of parallels by means of converging
lines corresponds to our every-day experience of the appearance of

such lines. If a straight length of railway is viewed from a bridge,

the parallel rails appear to converge. Again, clouds will often be

seen to converge upon two opposite points of the horizon; say
S.W. and N.E. This is a perspective effect; in reality such

clouds are arranged in parallel bands stretching from S.W. to N.E.

As already stated, the vanishing point for a set of parallels is

the point where the parallel through the eye meets the picture

plane. If the parallels are also horizontal (as in the roof-lines

and ground-lines of a building), the vanishing point will clearly

lie on the horizon line. If the parallels are not horizontal, a little

consideration will shew whether the vanishing point is above or

below the horizon line. If the parallels are parallel to the picture

plane, the parallel through the eye cuts the picture plane at

infinity ;
and the parallels will be depicted by parallels, as already

shewn.

These considerations will enable the reader to draw a rough

perspective sketch of a simple object.
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MISCELLANEOUS EXERCISES.

Ex. 373. AB, AC are two straight lines which meet at an angle of 45°,

AB is 10 cms. in length; at B, BD is drawn perpendicular to the plane BAG
and 2*5 cms. in length. Calculate the length of the perpendicular from
D to AC.

Ex. 374. ABCD is a rectangle whose diagonals meet in E, the length of

each diagonal being 1-5". Through E a straight line EF, 1-8" in length, is

drawn perpendicular to the plane of the rectangle. Find the centre of the

sphere passing through ABCDF, and calculate the length of its radius to

two decimal places.

fEx. 375. ABCD is a tetrahedron, such that the bisectors of the angles

BAC, BDC meet at a point in BC
;
find the relation between the edges

AB, AC, BD, CD.
Prove that the bisectors of the angles ABD, ACD meet at a point in AD.

fEx. 376. A, B, C, D are any four points in space; prove that the

straight line which joins the mid-point of AB to the mid-point of CD
intersects the straight line which joins the mid-point of AC to the mid-point
of BD, and that both lines are bisected at their point of intersection.

Shew that the straight line joining the mid-points of BC and AD is also

bisected at that point.

fEx. 377. ABCD is a regular tetrahedron, and, from the vertex A, a

perpendicular is drawn to the base BCD, meeting it in O
;
shew that three

times the square on AG is equal to twice the square on AB.

fEx. 378. Prove that in a tetrahedron ABCD, the sum of the angles

ABC, ADC, BAD, BCD is less than four right angles.

Ex. 379. A sphere is inscribed in a cube, and a plane passing through
the other extremities of the three edges which meet in one angle of the cube

cuts the sphere in a circle, about which a square is described. Prove that

the area of this square is two-thirds of the area of any face of the cube.

fEx. 380. From a point E draw EC, ED perpendicular to two planes

CAB, DAB, which intersect in AB, and from D draw DP perpendicular to

the plane CAB, meeting it in F; shew that the line joining the points
C and F is perpendicular to AB.
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fEx. 381. If BCD be the common base of two pyramids, whose vertices

A and A' lie in a plane passing through BC, and if the two lines AB, AC be

respectively perpendicular to the faces BA'D, CA'D, prove that one of the

angles at A, together with the angles at A', make up four right angles.

fEx. 382. Within the area of a given triangle is described a triangle, the

sides of which are parallel to those of the given one
; prove that the sum of

the angles, subtended by the sides of the interior triangle at any point not

in the plane of the triangles, is less than the sura of the angles subtended

at the same point by the sides of the exterior triangle.

fEx. 383. If O be a point within a tetrahedron ABCD, prove that the

three angles of the solid angle, subtended by BCD at O, are together

greater than the three angles of the solid angle at A.

fEx. 384. From the extremities of the two parallel straight lines

AB, CD parallel lines Aa, B6, Cc, Dd are drawn, meeting a plane in

a, b, c, d; prove that AB is to CD as ab is to cd, taking the case in which

A, B, C, D are on the same side of the plane.

+Ex. 385. Shew that the perpendicular dropped from the vertex of a

regular tetrahedron upon the opposite base is treble of that dropped from its

own foot upon any of the other bases.

fEx. 386. A triangular pyramid stands on an equilateral base, and the

angles at the vertex are right angles ;
shew that the sum of the perpendicu-

lars on the faces, from any point of the base, is constant.

fEx. 387. Two planes intersect
;
shew that the loci of the points, from

which perpendiculars on the planes are equal to a given straight line,

are straight lines
;
and that four planes may be drawn, each passing through

two of these lines, such that the perpendiculars from any point in the line

of intersection of the given planes, upon any one of the four planes, shall

be equal to the given line.

fEx. 388. Three straight lines, not in the same plane, intersect in a

point, and through their point of intersection another straight line is drawn

within the solid angle formed by them; prove that the angles which this

straight line makes with the first three are together less than the sum, but

greater than half the sum of the angles which the first three make with

each other.

fEx. 389. If three straight lines which do not all lie in one plane be

cut in the same ratio by three planes, two of which are parallel, shew that

the third will be parallel to the other two, if its intersections with the three

straight lines are not all in one straight line.
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fEx. 390. Two regular pyramids are described, the one standing on a

square as a base, the other on a regular octagon ; if the slant-edges of the

two pyramids be equal, and the perimeters of the bases be equal, prove that

the plane angles at the vertex of the former are together greater than the

plane angles at the vertex of the latter.

fEx. 391. Prove that there are two points equidistant from the plane

of an acute-angled triangle at which each of the sides subtends a right angle.

fEx. 392. If a cube and an octahedron have a common circumscribed

sphere, shew that their surfaces are in the same ratio as their volumes.

fEx. 393. Upon a diameter AOB of a circle whose centre is O two

points C and D are taken such that OC.OD = OA2; and upon CD as

diameter a second circle is described, its plane being perpendicular to that

of the first circle. Prove that, if P and Q are any two points on the first

circle, and E and F any two points on the second, PE : PF = QE : QF.

fEx. 394. Find in a given line the point P which is such that AP+ PB
is least, where A and B are two fixed points not in one plane with the

line.

fEx. 395. At the ends A, B of a chord of a sphere are drawn the

tangent planes, and through any point P of the sphere are drawn the

line LPM parallel to AB to meet the planes in L and M, and the line PN

parallel to either plane to meet AB in N. Prove that LP . PM = PN-^.

fEx. 396. A perpendicular ON is drawn from a given point O to a given

plane, and a variable line OP meets the plane in P. The shortest distance

between the line OP and a given line parallel to ON is QR. Shew that if

the product N P . QR is constant the locus of P consists of two parallel

straight lines.

Ex. 397. AB, BC, CD are edges of a cube, of which AD is a diagonal.

Prove that the angle between the planes ABD, ACD is equal to two-thirds

of a right angle.

fEx. 398. Four equilateral triangles are arranged so that their vertices

coincide and their bases form a square. Shew that the opposite edges of

the solid angle at the vertex are at right angles.

fEx. 399. A straight line of constant length moves in space so that it

subtends a right angle at each of two fixed points; find the locus of its

middle point.

fEx. 400. Prove that one line and only one drawn through any point
in space meets at finite distances two given straight lines which are not

coplanar, except when the point lies in one of two planes.
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fEx. 401. Two circles are drawn in different planes ;
shew that there

is in general one point on the line of intersection of the planes the tangents
from which to the circles are equal in length ;

and that, if there be more than

one, the circles are sections of the same sphere.

fEx. 402. The common perpendicular of two straight lines APP' and

BQQ' is AB, also M and M' are the middle points of PQ and P'Q' re-

spectively. Prove that either the common perpendicular of MM' and AB
bisects AB or MM' bisects AB.

Ex. 403. Shew that the diagonal of a pentagonal face of a regular

dodecahedron inscribed in a sphere is equal to the side of the cube inscribed

in the same sphere.

fEx. 404. ABCO is a tetrahedron such that AO is perpendicular to the

plane BOC. HG is the shortest distance between OB and AC, and CD is

the perpendicular from C upon OB. Prove that CG :GA = CD'-^ : AO^.

fEx. 405. If ABC, A'B'C be two straight lines in space which do not

meet, such that O, O', O", the middle points of AA', BB', CC are collinear,

then the middle points of OA, O'B, 0"C are also collinear.

fEx. 406. AB, AC, AD are three edges of a cube, and they are produced
to E, F, G, so that the lines ABE, ACF, ADG are equal ;

shew that, within

certain limits, the plane ERG cuts the cube so as to form a hexagon, whose

alternate sides are equal, and each angle four-thirds of a right angle.

Ex. 407. A seam of coal has its line of greatest slope running down
due north and sloping downwards at 20° with the horizontal. Long ago
the earth cracked along a line running N.W. and S.E., and the part N.E. of

this crack rose 80 feet. Then natural forces planed the earth away till the

surface was level. Draw a plan on a scale of 1 inch to 100 feet, shewing
where the crack and the two parts of the seam appear at the surface.

fEx. 408. Points A', B', C are taken on the edges VA, VB, VC of

a tetrahedron VABC. If AB meets A'B' in C", and BC meets B'C in A",

and CA meets C'A' in B", prove that A", B", C" lie on a straight line.

fEx. 409. If the three angles at the vertex of a tetrahedron are right

angles, shew that the line joining the vertex to the orthocentre of the base

is perpendicular to the base.

fEx. 410. The square of the distance between two points is equal to the

sum of the squares of its projections on three straight lines at right angles

to one another.

fEx. 411. Shew how to construct a parallelepiped having two given

finite skew lines as two edges.
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fEx. 412. Given two similar polygons, in different planes, with corre-

sponding sides parallel, prove that the polygons are sections of a certain

pyramid.

fEx. 413. Shew how to determine a line to be cut by three given skew

lines in a fixed ratio.

fEx. 414. Prove that the cross-ratio of the range in which four fixed

planes through a line cut a variable line is constant.

fEx. 416. The orthogonal projection of the edges of a cube on a plane

perpendicular to a diagonal consists of a regular hexagon with three of its

diagonals.

fEx. 416. The sum of the squares of the edges of a parallelepiped is

equal to the sum of the square of the diagonals.

Ex. 417. Find the angle between two diagonals of a cube.

fEx. 418. Shew that the three diagonals of a regular octahedron

are mutually at right angles.

fEx. 419. Prove the following construction for the projection, N, of

a point P on a plane a. Take any three points A, B, C on a
;
draw circles

on this plane with centres A, B, C and radii AP, BP, CP. Then N is the

radical centre of these circles.

Ex. 420. In a plane making an angle 6 with the horizontal is drawn

an angle <p one of whose arms is a line of greatest slope ;
this angle projects

into an angle 0' in the horizontal plane. Prove that tan 0'= tan sec e.

fEx. 421. Find the centroid of two points whose plans and elevations

are given.

fEx. 422. Repeat Ex. 421 for the three vertices of a triangle ; for the

four vertices of a tetrahedron.

Ex. 423. How must a square prism be cut to give a rhombus of

angle 60°?

fEx. 424. The sides AB, BC, CD, DA of a skew quadrilateral are cut

by a plane in the points P, Q, R, S respectively. Prove that

AP BQ CR pS_
BP' CQ* DR

'

AS""*"
'

sense being taken into account.

G. S. G. 7
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Ex. 425. A solid is made up of a hemisphere and a right circular cone

with their bases coinciding. Diameter of hemisphere = diameter of base of

cone = 3", Length of axis of cone = 3|".

Draw the plan of the solid when a generator of the cone is in contact

with the horizontal plane, and on this plane shew the shape of the section

made by a horizontal plane which passes through the centre of the common
base of the cone and hemisphere.

fEx. 426. In a tetrahedron ABCD the straight lines AE, BF, CG, DH
pass through a common point P, and meet the faces of the tetrahedron in

E, F, G ,
H respectively ;

shew that

AP
AE

BR CP DP
BF'^CG"*' DH~ •

What is the corresponding property of the triangle ?

Ex. 427. A man stands on a low roof, with his eye 17 ft. above the

ground, opposite a rectangular wall ABDC (fig. 79), of which AB and CD
are the vertical ends. He estimates that the angles of elevation of the

points A and C are 45° and 20° respectively, that the plane containing his

eye and AB makes an angle 45° with a vertical plane perpendicular to the

wall, and that the wall is 70 ft. distant from him. Take as axes of x, y, z

respectively, the lines through his eye which are (1) perpendicular to the wall,

(2) horizontal and parallel to it, and (3) vertical; and find the coordinates

of the points A, B, C, D. Find also the area of ABDC in square feet.

A

fig. 79. fig. 80.

Ex. 428. Fig. 80 shews the plan of three walls, BO, OA, AC, having
the angle at O a right angle, and the angle at A 120°. OA is 12 feet long,

OB is 9 feet long, and BC is perpendicular to OB. The space OACB is to

be covered by a plane roof resting on the walls, at a height of 10 ft. from

the ground at A and B, and of 8 ft. at O. Find the height of the roof at C.

Taking OA as ar-axis, OB as i/-axis, and a vertical at O as z-axis, write

down the coordinates of the four corners of the roof.



MISCELLANEOUS EXERCISES 99

Ex. 429. A ring, radius r, is suspended by a number of equal strings

of length 21 from an equal ring, fixed vertically above it, the strings being

generators of a cylinder. The lower ring is now twisted through an angle d

about a vertical axis and held in the new position, the strings remaining

taut, the lower ring still vertically below the upper. Find
(i) through what

height the lower ring has risen, (ii)
the inclination of the strings to the

vertical, (iii) their distance from the line joining the centres of the rings.

Ex. 430. If a roof, consisting of two equal rectangles, is 20 feet across

horizontally, 30 feet long, and the common (upper) edge of the rectangles is

at a vertical height of 12 feet above the parallel (lower) edges, what is the

actual area of the two rectangles ?

Ex. 431. A square, whose diagonal is 10 inches long, is placed inside a

hollow sphere of radius 13 inches, the four corners of the square resting on

the inner surface of the sphere.

Draw (i) a section containing a diagonal of the square and passing through
the centre of the sphere ; (ii) a section containing a side of the square, and

perpendicular to the plane of the square. [Scale J full size.]

Find the perpendicular distance of the plane of the square from the

centre of the sphere.

Ex. 432. A church spire is in the form of a cone 30 feet high and
10 feet in diameter at the base. Supposing the sun's altitude to be 55°,

draw a plan shewing the base of the spire and the shadow which it would

throw on a horizontal plane through its base. Find what proportion of the

slant surface of the spire is in shadow.

Ex. 433. The two faces of a burning glass are parts of spheres of

radii a and 6, and the diameter of the glass is c. Find an expression for

the thickness of the glass at the centre.

SOME PROPERTIES OF THE TETRAHEDRON.

tEx. 434. If opposite edges of a tetrahedron are equal, its faces are

congruent.

fEx. 435. If the opposite edges of a tetrahedron be equal two and two,

prove that the faces are acute-angled triangles. Prove also that a tetra-

hedron can be formed of any four congruent acute-angled triangles.

fEx. 436. A sphere can be circumscribed to a tetrahedron. The line

joining its centre to the mid-point of an edge is perpendicular to that edge ;

the line joining its centre to the circumcentre of a face is perpendicular to

that face.

7—2
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fEx. 437. Eight spheres (in general) exist, each of which touches the

four planes forming the faces of a tetrahedron.

fEx. 438. Eight spheres (in general) exist, each of which touches the

four sides of a skew quadrilateral (produced if necessary). If one of these

spheres touches all four sides within their unproduced portion, the sums of

opposite sides are equal.

fEx. 439. If a sphere exists which touches all the edges of a tetrahedron

within their unproduced portion, the three sums of opposite edges are equal.

What is the intersection of this sphere with a face ?

fEx. 440. Prove that G, the centroid of the four vertices of a tetrahedron,

lies f of the way from each vertex to the centroid of the opposite face.

Shew that the lines joining mid-points of opposite edges cointersect and are

bisected at G.

fEx. 441. Prove that any plane parallel to two opposite edges of a

tetrahedron cuts the faces in a parallelogram, whose angles are constant

for different planes. Also that if the two edges are at right angles, the

section may be a square.

Ex. 442. In the case of a regular tetrahedron, compare the radii of the

circumscribed sphere, the inscribed sphere, and the sphere touching the

six edges at their mid-points.

fEx. 443. If from the orthocentre of a face of a tetrahedron a line

be drawn perpendicular to that face it will intersect the perpendiculars to

the other three faces drawn from the opposite corners.

TETRAHEDKON AND ASSOCIATED PARALLELEPIPED.

Through each pair of opposite edges of a tetrahedron construct a pair oj

parallel planes ; this gives a parallelepiped circumscribed to the tetrahedron,

the edges of the latter being diagonals of the faces of the former.

-•' /

fig. 81.

Ex. 444. What is the parallelepiped associated with a regular tetra-

hedron ?

fEx. 445. Use the associated parallelepiped to prove that joins of

mid-points of opposite edges cointersect and bisect one another.
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fEx. 446. ABCD is a tetrahedron, AA' is a diagonal of the associated

parallelepiped. Prove that AA' passes through the centroid of BCD. In

what ratio is AA' cut ?

fEx. 447. If four points be so situated that the distance between each

pair is equal to the distance between the other pair, prove that the angles

subtended at any one of these points by each pair of the others are together

equal to two right angles.

fEx. 448. If each edge of a tetrahedron be equal to the opposite edge,

the straight line, joining the middle points of any two opposite edges, is

at right angles to each of those edges.

Ex. 449. Prove that the volume of the parallelepiped is three times

that of the tetrahedron
;
and hence that the volume of a tetrahedron is

^ X product of opposite edges x distance between them x sin (their inclination).

fEx. 450. If six planes be constructed, each of which contains one edge
and bisects the opposite edge of a tetrahedron, these planes have a common

point.

fEx. 451. Shew that, in any tetrahedron, the line joining the mid-points
of one pair of opposite edges is perpendicular to the shortest line between

either of the other pairs of opposite edges.

fEx. 452. If two of the joins of mid-points of opposite edges of a

tetrahedron are at right angles, the remaining edges are equal.

fEx. 453. Shew that if the sum of the squares of two opposite edges
of a tetrahedron is equal to the sum of the squares on another pair of

opposite edges, the two remaining opposite edges are at right angles to one

another.

fEx. 454. Shew that the shortest distance between two opposite edges
of a regular tetrahedron is equal to half the diagonal of the square described

on an edge.

fEx. 455. In a tetrahedron, of which the opposite edges are equal, shew

that (i)
the centroid, the centre of the inscribed sphere, and the centre of

the circumscribing sphere all coincide, (ii) the shortest distance between

opposite edges bisects these edges, (iii) the three shortest distances are

all mutually at right angles and are bisected in the centroid, (iv) the sum of

the squares on the sides of a face is double the square on the diameter of the

circumscribing sphere.
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ORTHOCENTRIC TETRAHEDRON.

fEx. 456. Prove that the perpendiculars from A upon BCD and from

D upon ABC do not intersect unless the edges AD and BC are at right

angles.

fEx. 457. If two pairs of opposite edges of a tetrahedron are at right

angles, the third pair also are at right angles.

fEx. 458. Prove that, if the opposite edges of a tetrahedron are at

right angles, the four altitudes will meet in a point.

Such a tetrahedron has an orthocentre, and is called an orthocentric

tetrahedron.

Ex. 459. What is the parallelepiped associated with an orthocentric

tetrahedron ?

fEx. 460. Prove that a vertex of an orthocentric tetrahedron projected

orthogonally on to the opposite face gives the orthocentre of that face.

fEx. 461. Shew that the three common perpendiculars of opposite

edges of an orthocentric tetrahedron meet at the orthocentre.

fEx. 462. Prove that if a, a ; &, /3 ; c, 7 be pairs of opposite edges of an

orthocentric tetrahedron, then a^ + a^=b^ + p^= c^ + y^.

fEx. 463. In a tetrahedron each edge is perpendicular to the direction

of the opposite edge; prove that the straight line joining the centre of the

sphere, circumscribing the tetrahedron, to the middle point of any edge,

is equal and parallel to the straight line joining the centre of perpendiculars

to the middle point of the opposite edge.

fEx. 464. Prove
(i)

that the joins of mid-points of opposite edges of an

orthocentric tetrahedron are equal ; (ii)
hence that the mid-points of the six

edges lie on a sphere whose centre is the centroid; (iii) that the sphere passes

through the feet of the perpendiculars from vertices upon edges ; (iv) that

its centre is midway between the orthocentre and the circumcentre of the

tetrahedron, and projects orthogonally into the nine-point centre of each

face.

fEx. 465. If the line joining a vertex A of an orthocentric tetrahedron

to the orthocentre O cuts the opposite face in S and the circumscribing

sphere in S, then S2 = 20S.

fEx. 466. If E is the orthocentre of an orthocentric tetrahedron ABCD,
shew that any one of the five points A, B, C, D, E is the orthocentre of the

tetrahedron determined by the other four.
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INVERSION.

tEx. 467. A plane through the centre of inversion inverts into a plane.

fEx. 468. A plane not through the centre of inversion inverts into a

sphere through the centre of inversion
;
the perpendicular from the centre

of inversion upon the plane passes through the centre of the sphere.

t Ex. 469. A sphere through the centre of inversion inverts into a plane.

tEx. 470. A sphere not through the centre of inversion inverts into

a sphere.

fEx. 471. If the tangents from the centre of inversion to two given

spheres are equal, the spheres can be inverted into themselves. The locus

of such centres is a plane.

fEx. 472. A circle is inverted with respect to a sphere whose centre O
does not lie in the plane of the circle

; prove that the inverse is a circle, and

shew that the point P which inverts into the centre of the inverse circle

is obtained thus: Describe a sphere through O and the circumference of

the given circle
; join O to the pole of the plane of the circle with respect

to this sphere ; this line cuts the sphere at P.

fEx. 473. Two intersecting curves in space cut at the same angle as

their inverses.

fEx. 474. A sphere is inverted from a point on its surface; shew

that to a system of parallels and meridians on the surface will correspond

two systems of coaxal circles in the inverse figure.

fEx. 475. Prove that, if P, Q be the ends of a diameter of a small

circle of a sphere, O a point of the great circle PQ, and R any point on the

small circle, then the arcs of the small circles PRO, RQO are perpen-
dicular to each other at R.

fEx. 476. Circles are drawn to cut a given circle orthogonally at two

points of intersection, and to pass through a given point not in the plane of

the circle. Shew that they intersect in another common point ;
and hence

shew how a circle and a point not in its plane may be inverted respectively

into circle and centre.

fEx. 477. Shew that the locus of points with respect to which an
anchor ring can be inverted into another anchor ring consists of a straight
line and a circle.
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POLE AND POLAR.

fEx. 478. Prove that the tangent lines from a point to a sphere form a

right circular cone, which touches the sphere along a small circle.

Such a cone is called an enveloping cone of the sphere.

fEx. 470. If the plane of the small circle in which the enveloping cone

from a point T touches a sphere (centre C) cut CT in N ; then CT is perpen-
dicular to the plane, and CT . CN = (radius of sphere)^.

If a point T and a plane are so related that the perpendicular CN from
the centre C of a sphere to the plane passes through the point, and

CN . CT= {radius)"^, then the point and plane are called pole and polar

plane loith respect to the sphere.

fEx. 480. If a straight line pass through a point, the tangent planes at

the points where the line cuts a sphere intersect on the polar plane of

the point.

fEx. 481. If a plane be drawn through a point to cut a sphere in a

circle, the enveloping cone which touches the sphere along the circle has its

vertex on the polar plane of the point.

fEx. 482. If the polar plane of P passes through Q, the polar plane

of Q passes through P.

fEx. 483. If a variable point lies on a fixed line, the polar plane of the

point contains another fixed line.

Shew that the relation between these lines is reversible.

Ttoo lines so related are said to be polar lines.

fEx. 484. Polar lines are at right angles, their common perpendicular

passes through the centre, and the product of their distances from the centre

is equal to the square of the radius.

fEx. 485. "What is the polar line of a line touching a sphere ?

fEx. 486. A plane through any point cuts a sphere and the polar plane
of the point in a' circle and the polar line of the point with respect to the

circle.

fEx. 487. An orthocentric tetrahedron has a real or imaginary polar

spbere whose centre is at the orthocentre; i.e. a sphere with respect to

which each vertex is the pole of the opposite face, and each edge is the

polar line of the opposite edge. This sphere cuts each face in the real or

imaginary polar circle of the triangle.

fEx. 488. It is assumed that the student is familiar with the properties

of the radical axis of two circles, and the radical centre of three circles.

Investigate analogous properties for spheres.

fEx. 489. Investigate the properties of the centres of similitude of

two spheres.



ANSWERS TO NUMERICAL EXAMPLES.

Ansivers are usually given to 4 significant figures; as 4figure tables have

been used, the ith figure is liable to error.

72. 35° 16'. 77. (i) 70° 32', (ii) 109° 29'. 79. 59° 12'.

80. 13° 48'. 81. 18° 45', 33° 49'. 82. 95° 52'.

83. 51° 59', 42° 7'. 85. (i)
14° 29', (ii) 7° 58', (iii) 12-77", (iv) 12-41".

86. 45°, 35° 16', 1". 87. AF = 3", BF = 2-236", tan = |.

96. 73° 44'. 132. (i)84 8q.in., (ii) 168 sq. in. 134. 31-31 sq. in.

138. (a) (i) ^/iS, (ii)v/fS; (b) (i) V^, (ii) 3^V^. 139. 6V*.

141. 8 cu. in. 142. 93677 cu. m. 143. 4-6 cu. ft.

144. 206-5 sq. ft., 288 cu. ft. 145. After 10 hours.

156. V7r:2 = -886:1. 157. 1^12^. IgQ. 2y + 2s/^\rh.
2irrh h

16L 4:7r. 162. 21-5%. 164. 668 lbs. 166. 7r = 2-9.

167. a;= 3-42, weight = 9-145 lbs. 173. 4-796", (i) 78° 13', (ii) 73°34'.

174. V6^^^2 (i)
cos-i ---.--^

, (ii) cos-i".
\/462 ..a'i ^

175. N^irl = -8165:1, 70° 32'.

177. (i)
80° 10', (ii) 62° 52', (iii) 70° 54', (iv) 28° 56'.

180.
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216. T{r^-h^). 218. 'isJW^H^. 221.
tt'^^^j'^.

X

180
'224. 73| miles. 226. 6-582 cm. 233. rd, r

^

238. cos-i -
,

^^ "^^

. 240. -6497:1. 241. 1*016 : 1, 20-94 miles.
r r

242. a:2ir. 243. Each angle and side= 90°, area= 1 area of sphere.

244. 13-27 in., a= c = 35° 6', 6 = 50=28', B = 95°44'. 246. (i) t:6, (ii) 7r:6.

247. 1-241:1. 248. 1-588:1. 250. -241CU. in. 253. -6181".

255. -972. 257. -^. 258. Volume ^^^^Trr^ area=|7rr2.

260. 2-5 m., 7-069 sq. m. 261. 2-82 in. 264. ^^+2'

265. 2'Jab, where a and b are the radii of the ends.

271. (i) 3, (ii) 1, (iii) 1, (iv) 0. 276. (i) 3, (ii) 1, (iii) 1^ (iv)^.

279. 3 or 4. 280. Edgex\/2. 292. 3. 296. 6. 297. \^38; v^SS.

298. (i) V29, (ii) \f{a-p)'' + {b-qf + {c-r)^.

299. 8in-i| = 41°49', sin-H= 19°28', sin-i|=41°49' ;
cos-i 1 = 48° 11',

cos-^ i = 70° 32', cos-' I = 48° 11'.

315. 4-717ft.; (31, 7^, 0); (5f, 0, e^V); 39°30'. 323. 4-653 cm.

328. 17 12 ft. 329. 3-421". 330. 17-12 ft. 331. 1-732 m.

332. 3-833 in. 333. 2-3 in. 340. 7=^
=^-

343. 50° 12', 44° 30'. 345. (ii)
32° 48', (iii) 62° 58'.

346. Horizontal projection = 2-458", vertical = 1-881".

347. Horizontal projection = 6-578 cm., vertical= 3-812 cm.

348. 36° 52', 48° 56'. 358. 47° 16', 25° 5'. 359. 40° 7', 57° 15', 18-49 ft.

360. 15-79 ft., 26° 2'. 361. (i) 15-57 ft., 24° 40'; (ii)
50° 2'; (iii)

134° 42'.

363. (i) 3 -075. in., (ii) 40°5'. 364. N. 53° 8' E.; 39° 48'.

365. 4-717 ft.; (3i, 7i, 0); (5^, 0, 6^^) ; 39° 30'. 368. 123-6 em.

369. 65° 56'. 370. 72° 21'. 372. 4082 cm.

373. 7-5 cm. 374. 1-06 in. 417. 70° 32'.

427. A, (70,-70,99); 8,(70,-70,-17); C, (70, 263,99); D, (70, 263,
-

17);

area = 38, 600 sq. ft.

428. 12-9 ft. (0, 0, 8) (12, 0, 10) (17-2, 9, 12-9) (0, 9, 10).

429. (i) 2Z - 2
^Z2

_ ^2 sin2
^^

(ii) sin-i r sin -
j

, (iii) r cos
^

.

430. 937 sq. ft. 431. 12 in. 432. '423 of the whole surface.

433. « +
^-^«''-i-^^'-I-

442. 3:l:\/3. 446. 2:1,
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Angle between line and plane 17

between lines on sphere 52

between two planes 17

between two skew lines 21

solid 60

Architect's drawing 79

Centre of picture 91

of similitude 104

Circle, great 48, 50

small 49

Cone 44

enveloping 104

frustum of 45

right circular 45

surface of 46

volume of 46

Coordinates in space 72

on sphere 52

Cross-section 31

Crystallography 67

Cube 66

Cuboid 28

volume of 29

Cylinder 33

surface of 35

volume of 35

Distance of point from plane 14

between skew lines 23

Dodecahedron 66

Duality, principle of 68

Elevation 75

Enveloping cone 104

Euler's Theorem 69

Frustum of cone 45

of pyramid 38

Generator 27, 34, 44

Geometrical perspective 89

Great circle 48, 50

circle sailing 51

Ground line 75

Guldin 36

Horizon line 91

Horizontal rabattement 83

trace 82, 84

Icosahedron 67

Inclination of line and plane 17

of line to the h.p. and v.p. 83

of two planes 17

Indexed plan 75

Infinity, line at 3

Inversion 103

Latitude 52

Lengths of lines from plan and

elevation 80

Line and plane, incUnation of 17

parallel 3, 8, 9
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Line of sight 91

perpendicular to plane 11

Lines, parallel 7

skew 3, 20

Loci 25

Longitude 52

Lune 53

Mensuration of sphere 54

Normal section 28

Octahedron 66

Orientation 1

Orthocentric tetrahedron 102

Orthogonal projection 16

Pappus 36, 57

Parallel planes and lines 7

Parallelepiped 28

Perpendicular lines and planes 11

Perspective 89

Picture plane 90

Plan and elevation 75

inclination of lines from 83

lengths of line from 80

true shape from 85

indexed 75

Plane 1

and line, inclination of 17

parallel 3, 8, 9

and sphere 48

tangent 49

Planes, inclination of two 17

intersection of three 4

parallel 3, 7, 9

perpendicular 14

Polar lines 104

sphere 104

Pole and polar 104

Poles 52

Principle of duality 68

Prism 27

surface of 29

triangular, divided into three

tetrahedra 42

volume of right 30

volume of oblique 31

Projecting line 91

plane 91

Projection, conical 91

orthogonal 16

Pyramid 37

frustum of 38

section parallel to base 38

surface of 39

volume of 40

Quadrilateral, skew 24

Eabattement 83

Eectangular parallelepiped 28

Regular pyramid 37

solids 65

Eight circular cone 45

Section, cross- 31

normal 28

Shortest line connecting skew lines

23

on sphere 50

Sight, line of 91

Similitude, centre of 104

Skew lines 20

angle between 21

common perpendicular to 22

shortest line connecting 23

quadrilateral 24

Small circle 49

Solid angle 60
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Solids, regular 65

Sphere 48

mensuration of 54

polar 104

surface of 56, 57

volume of 56, Ex. 254

sector of 56

segment of 56

Spherical belt, caps, sectors,

ments 54

distance 51

geometry 51

polygon 53

surface 48

triangle 53

Surface of cone 46

cylinder 35

prism 29

pyramid 39

sphere 56, 57

Tangent line, plane 49

Tetrahedron 38

regular 38, 65

and parallelepiped 100

orthocentric 102

Traces 82, 84

Vanishing point 92

Vertical rabattement 83

trace 82, 84

Volume of cone 46

cuboid 29

cylinder 35

oblique prism 31

pyramid 40

right prism 30

right solid of uniform cross-

section 31

sphere 56, Ex. 254
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