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PREFACE.

THE use of infinitely small quantities, which
was first introduced into the higher departments
of Mathematics, has been gradually creeping
downwards, and elementary writers are rapidly
becoming reconciled to it. But at the same .
time, the unéomprom’ising advocates of the an-
cient rigor of demonstration have, by their at-
tacks, induced some mathematicians to waste
much time in disguising the principles ef the
Differential Calculus under a form of words, in
which the term “infinitely small” does not occur.
The value of this labor may be duly estimated
from the inconsistency of one, who has ostensi-
bly discarded the infinitesimal doctrine from his
theory of the Calculus, and introduced it into
his treatise of Geometry. With all its boasted
rigor, the ancient Geometry can indeed lead to
no result more accurate, none more to be de-
pended upon, than those of the infinitesimal the-
ory ; and I doubt if any well constituted mind,
well constituted at least for mathematical inves-
tigations, ever reposes with any more confidence
upon the one than upon the other. If there were
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any error involved in the latter theory, it must
not only be infinitely small, but must remain in-
finitely small after all the magnifying processes to
which jt could possibly be subjected. But there
is no error ; for, if we suppose that there be an
error which we may represent by ./, since the
aggregate of all the quantities neglected in ar-
riving at the result is infinitely small, that is, as
small as we choose, we may choose it to be
smaller than .4; and, therefore, the error .4 is
greater than the greatest possible error which
could be obtained, a manifest absurdity, but one
which cannot be avoided as long as J/ is any
thing. :

The term direction is introduced into this trea-
tise without being defined ; but it is regarded as
a simple idea, and to be as incapable of definition
as length, breadth, and thickness ; and this inno-
vation will probably be pardoned, when it is seen
how much it contributes to the brevity and sim-
plicity of demonstration, which I have every-
where studied.

BENJAMIN PEIRCE
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EXPLANATION OF SIGNS, -
AND
OF SOME USEFUL PROPOSITIONS IN THE DOCTRINE OF
PROPORTIONS.

THE sign -} is plus, or added to. Thus 4+ Bis 4
added to B.

The sign — is minus, or less. Thus, 2 — B is A less B.

The sign X is multiplied by. Thus, 4 X B is A multi-
plied by B ; and the period (. ) is also the sign of multi-
plication.

The sign =+ or : is divided by. Thus, 4+ BorA: B
is / divided by B. The quotient of 4 divided by B may

A
also be written —.
B

The sign =is equal to. Thus, 4= B is 4 equal to B;
and the expression in which this sign occurs is called an
equation. :

The sign > is greater than. Thus, 4> B is A greater
than B.

The sign < is less than. Thus, 4 << B is A less than B,

A2 indicates the second power of A, A3 the third power,
&e.

A ratio or fraction is the quotient of one quantity divid-
ed by another, and is usually written with the sign ( :).
Thus the ratio of 4 to Bis A: B, or it may just as well

be written in the form of a fraction, as g

The first term of a ratio is called the anlecedent, and
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the second the consequent. Thus, A is the antecedent of
the preceding ratio, and B its consequent.

The value of a ratio is not altered by multiplying or
dividing both its terms by the same number. Thus, 4: B
is equaltom X A : m X B.

A proportion is the equation formed by two equal ratios
Thus, if the two ratios A : B and C : D are equal, the

equation A:B=C:D

is a proportion, and it may also be wiitten
4_C
B D

The first and last terms of a proportion are called its
exiremes ; and the second and third its means. Thus, A4
and D are the extremes of this proportion, and B and C
its means.

Theorem I The product of the means of a proportion ie
equal to the product of its exiremes.

Proof. If the fractions of a proportion
A:B=C:D
are reduced to a common denominator, they give

A4XD_BxC
. BXD BxD
or, omitting the common denominator,
AxX D=B X C.
Thhis proposition is called the fest of proportions.

Theorem 1I. If four quantilies are such that the product
of the first and last of them is equal lo the product of the
second and third, these four quantities form a proportion

Proof. Let A, B, C, D, be such that

AXxX D=B X C.
Dividing by B- X D we have

AXD_BXC

B XD BxD’
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which, reduced to lower terms, and written in the form

of ratios, is
A4:B=C:D.

Corollary. The terms of a proportion may be transposed
in any way, provided the product of the means is retained
equal to that of the extremes, and the proportion will not be
destroyed.

Thus, the preceding proportion gives, by transposition,

A4:C=B:D,
B:A4=D:C, e
B:D=4: C, &c.

If both the means of the proportion are of the same
magnitude, this mean is called the mean proportional be-
tween the extremes. Thus, if

A:B=B:D,
B is a mean proportional between 4 and D.

Theorem I1I.  The mean proportional between two quan-
lilies 43 the square root of their product.

Proof. The application of the test®to the preceding
proportion gives

B2=4 X D,
the square root of which is
B=/(4X D). .

A succession of several equal ratios is called a continued

proportion. Thus,
4. B=C:D=E:F=k&ec.

is a continued proportion.

Theorem 1V. The sum of a)‘ty number of antecedents of
a conlinued proportion is to the sum of the corresponding con-
sequents as one antecedent is to ifs consequent.

Proof. Denote the common value of the ratios in the
above continued proportion by M, we have
b*
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M=A:B=C:D=k&ec ;
whence
A=B X M,
C=DX M,
E=F X M, &c.
and the sum of these equations is
A+ C+ E+&c.=(B+ D+ F+ &e) X M;

whence

4+ C+ E + &e. a4 ¢
BfFFFy&e M=B3=p= %

Corollary. The sum of the antecedents of a proportion
is to the sum of ils consequents as either anlecedent is lo ils
consequent ; and the difference of the antecedents is lo the
difference of the consequents in the same ratio.

Theorem V. The sum of the antecedents of a proporlion
18 {o their difference, as the sum q/' the consequents is o thew
difference.

Proof. 'The proportion

# A:B=C:D
gives, by the preceding proposition, )
4+C:B4+D=A—C:B—D
whence, by transposing the means,
4 —|— C:4A—C=B+D:B—D.

Theorem VI. The sum of the first two terms of a pro
portion is lo the sum of the last two as the first term is to the
third, or as the second is lo the fourth ; and the dt:ﬁrence of
the first two terms is lo the difference of the last two in the

same ratio ; also the sum of the ﬁrst two terms i3 to their
difference as the sum of the last two is to their difference.

Proof. 'The proportion
A4:B=C:D
gives, by transposing the means,
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A:C=B:D;
from which we obtain, by the preceding propositions,
44+B:C4+D=A4A—B:C—D=4:C=B:D
A4+B:A—B=C+D:C—D.
Two proportions, as
A:B=C:D
and
E:F=G:H,
may evidently be multiplied .together term by term, and the
result
AXE:BXF=CXG@G=DXH
is a new proportion.

Likewise, a proportion may be multiplied by itself any
number of times in succession, and the squares, cubes,
fourth powers, &c. of the terms form a new proporion.
Thus, the proportion

4:B=C:D
gives .
43 : B3=C2: D?
A3:B3=C3: D3
44: Bt= C*: D4 &c. &e.






GEOMETRY.

CHAPTER I
GENERAL REMARKS AND DEFINITIONS.

1. Definition. Geometry is the Science of Position
and Exzxtension.

2. Definition. A Point has merely position, with-
out any extension.

8. Definition.  Extension has three dimensions :
Length, Breadth, and Thickness.

4. Definition. A Line has only one dimension,
namely, length.

5. Definition. A Surface has two dimensions ;
length and breadth.

6. Definition. A Solid has the three dimensions of
extension ; length, breadth, and thickness.

7. Scholium. The boundaries of solids are surfaces,
the limits of surfaces are lines, and the extremities of
lines are points.

The Point, then, on account of its simplicity, deserves
our first consideration.



4 PLANE GEOMETRY. [CH. 1. § 10

The Position of a Point ; its Direction and Distance.

CHAPTER IL

THE POINT.

8. The Position of a Point is determined by its Di-
rection and Distance from any known point ; in other
words, the Elements of its Position are Direction and
Distance.

Remarks. The Direction of a Point is readily ascer-
tained without any change in the position of the observer,
whereas the determination of its distance is often more
difficult, as it requires some change of place proportion-
‘ate to the distance to be measured ; thus, the direction
of a star is seen at a glance, while the most profound
science and the most accurate observations have not en-
abled the astonomer to ascertain its distance.

9. The Direction of a Point from the observer may
be determined by a reference to some known direc-
tion, such as that of the zenith, the pole-star, &c.

The method by which one direction may thus be re-
ferred to another will be more definitely treated of in a
succeeding article.

10. The Distance of a Point from the observer is
the length of the shortest line drawn to the point; and
it may be determined by a reference to some kno'vn
length, such as an inch, a yard, a metre, a mile, &c.
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The Direction of a line ; the Straight and Curved Lines ; the Plane.

CHAPTER IIL

" THE STRAIGHT LINE.

11. Definition. The Direction of a Line in any
part is the direction of a point at that part from the
next preceding point.of the line.

a. Thus the direction of the line A B (fig 1) at P is the
same as the direction of P from O.

b. In the same way, the direction of the line at P is the
same as that of O from P, or the opposite direction to the
preceding ; and, consequently, a line has two different di-
rections exactly opposed to each other, either of which
may be assumed as the direction of the line.

12. Definition. A Straight line is one, the direc-
tion of which is the same throughout, as AB (fig. 2).

13. Definitions. A Broken or Polygonal Line is
one, which is composed of straight lines, as ABCD
(fig. 3)- .

A Curved Line is one, the direction of which is con-
stantly changing, as AB (fig. 1).

14. Definition. A Plane is a surface in which any
two points being taken, the straight line joining those
points lies wholly in that plane.

15. Aziom. The direction of any point of a straight
line from any preceding point, is the same as the di-
rection of the line itself.

Thus the direction of P or B (fig. 2) from Mor 4 is
the same as that of the line 4B
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Shortest way between two Points. The Angle.

16. Theorem. The position of a straight line is de-
termined by means of two points. '

For, by the preceding axiom, these two points deter-
mine its direction.

17. Theorem. All the points which lie in the same
direction from a given point are in the same straight
line.

Proof. Thus, if P and M (fig. 2) are in the same di-
rection from J, the two straight lines 2P and AM must
likewise, by § 15, have the same direction, and must con-
sequently coincide in the same straight line.

18. Azriom. A straight line is the shortest way from
one point to another.

CHAPTER 1V.

THE ANGLE.

19. Definitions. An JAngle is formed by two lines
meeting or crossing each other. _

The Pertex of the angle is the point where its sides
meet.

The magnitude of the angle depends solely upon the
difference of direction of its sides at the vertex.

a. The magnitude of the angle does not depend upon
the length of its sides. Thus the angle formed by the

two lines 4B and AC (fig. 4) is not changed by short-
ening or lengthening either or both of these lines.
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Right and Acute Angles; Complement and Supplemenf of an Angle.

b. The method of denoting the angle is by the three
letters- BAC, the letter 4 which is at the vertex being
placed in the middle ; or the letter 4 may be used by it-
self, when this can be done without confusion.

20. Definition. When one straight line meets or
crosses another, so as to make the two adjacent angles
equal, each of these angles is called a Right angle, and
the lines are said to be perpendicular to each other.

Thus the angles ABC and ABD (fig. 5), being equal,
are right angles.

21. Definitions. An JAcute angle is one less than a
" right angle, as 4 (fig. 4).

An Obtuse angle is one greater than a right angle, as
4 (fig. 6).

22. Definitions. The Complement of an angle is the
remainder, after subtracting it from a right angle.

The Supplement of an angle is the remainder, after
subtracting it from two right angles.

23. Theorem. When one straight line meets or
crosses another, the two adjacent angles are supple-
ments of each other, and the vertical angles are equal
to each other.

Proof. Let AB and CD (fig. 7) be the two lines. The
adjacent angles APC and APD are supplements, for,
if the perpendicular PM be erected, we have, by inspec-
tion, .
) 4PC + APD =MPC 4 MPD
' == two right angles.

b., In the same way, APC and BPC may be proved to
ke supplements of each other ; and therefore the vertical
1
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Adjacent and Vertical Angles. Sum of all the Angles about a Point.

angles APD and BPC must be equal, since they have
the same supplement APC.

In the same way, it may be shown that the vertical
angles APC and BPD are equal.

¢. Corollary. If either of the angles APC, APD, BPC,
or BPD is a right angle, the other three must also be
right angles.

d. Scholium. As a straight line has two different direc-
tions exactly opposed to each other, it is not unfrequently
considered as making an angle with itself equal to two
right angles.

24. Corollary. If the two adjacent .angles APC

and APD (fig. 8) are supplements of each other, their
exterior sides PC and PD must be in the same straight
line. '

25. Theorem. The sum of all the successive angles

4APB, BPC, CPD, DPE (fig. 9), formed in a plane
on the same side of a straight line A E, is equal to two
vight angles.

Proof. For it is equal to the sum of the two right
angles APM, MPE, formed by the perpendicular PM.

26. Theorem. The sum of all the successive an-
gles APB, BPC, CPD, DPE, and EPA (fig. 10),
formed in a plane about a point, is equal to four right
angles.

Proof. For it is equal to the sum of the four right
angles MPN, NPM', M'PN', N'PM, formed by the two
. perpendiculars MM and NV,
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Parallel Lines cannot meet. Angles are equal whose Sides are Parallel.

X
CHAPTER V.

PARALLEL LINES.

27. Definition.  Parallel Lines are straight lines
which have the same Direction, as 4B, CD (fig. 11).

28. Theorem. Parallel lines cannot meet, however
far they are produced.

Proof Thus the two lines B and CD (fig. 11) cannot
meet at P ; for, if two straight lines are drawn through
P, in the same direction, they must coincide and form
one and the same straight line.

29. Theorem. Two angles, as A and B (fig. 12),
are equal, when they have their sides parallel and di-
rected the same way from the vertex.

Proof. For, as the directions of BD and BF are respec-
tively the same as those of /IC and 4E, the difference of
direction of BD and BF must be the same as that of AE
and AC ; that is, by § 19 the angle A is equal to the an~
gle B.

30. Theorem. If two parallel lines 4B, CD (fig.
13) are cut by a third straight line EF, the external-
internal angles, as EMB and EN'D, or BMF and
DNF, are equal, and the alternate-internal angles, as
AMN and MND, or BMN and MN'C, are also
equal.

Proof. a. The external-internal angles are equal, be-
rause their sides have the same direction
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Angles made by a Line cutting Parallel Lines.

b. The alternate-internal angles are equal, as AMN and
MND because AMN is, by § 23, equal to its vertical
angle EMB, which has just been proved equal to MND,

81. Theorem. If two straight lines, lying in the
same plane, as 4B, CD (fig. 13), are cut by a third,
EF, so that the angles EMB and END are equal, or
AMN and MND are equal, &c. ; the lines AB, CD
must be parallel.

Proof. For the line, drawn through the point M parallel

‘tc CD, must make these angles equal, and must therefore
coincide with 4B,

32. Theorem. If two parallel lines 4B, CD (fig.
13) are cut by a third straight line EF, the two interior
angles on the same side, as BJMWN and MN'D, are sup-
plements of each other.

Proof. For BMX is, by § 23, the supplement of its
adjacent angle EMB, which is equal to MVD.

33. Theorem. If two straight lines, lying in the
same plane, as AB and CD (fig. 13), are cut by a
third, EF, so that the angles BMN and JMUND are
supplements of each other, the lines 4B, CD must be
parallel. .

Proof. For the line, drawn through the point M paral-
lel to CD, must make these angles supplements to each
other, and must therefore coincide with A4 B.

34. Theorem. If a straight line is perpendicular to
one of two parallels, it must also be perpendicular to
the other. '

Proof. Thus, if EMB (fig. 14), is 'a right angle, its
equal EN'D must also be a right angle
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Equal Oblique Lines. |

35. Theorem. Reciprocally, if two straight lines
lying in the same plane, are perpendicular to a third
they are parallel.

Proof. For the line, drawn through the point M paral-

lel to CD, must be perpendicular to EF, and must there-
fore coincide with AB.

86. Theorem. If two straight lines, as 4B, CD
(fig. 15), are parallel to a third, EF, they are parallel
to each other.

Proof. For, by the definition of parallel lines, they
have the same direction with this third, and are therefore
parallel

CHAPTER VI
PERPENDICULAR AND OBLIQUE LINES.

87. Theorem. Ouoly one perpendicular can be drawr
from a point to a straight line.

Proof. For, if two perpendiculars are erected in the
same plane, at two different points, M and P (fig. 16) of
the line AB, they are parallel, by § 35, and cannot meet
at any point, as C.

38. Theorem. Two oblique lines, as CE and CF
(fig. 17), drawn from the point C to the line AB, at
equal distances DE and DF from the perpendicular
CD. are equal.

1%
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Shortest Distance from a Line.

Proof. For, if CDB be folded over upon CDA, DB
will fall upon D4, because the right angles CDB and
CDA are equal ; the point F' will fall upon E, because
DF and DE are equal ; and the straight lines CF and
CE will coincide.

89. Theorem. A perpendicular measures the short-
est distance of a point from a straight line.

Proof. Let the perpendicular C'D (fig. 18) and the
oblique line CF be drawn from the point C to the line
AB. Produce CD to DE, making DE equal to DC, and
join FE, we shall, by § 18, have ’

CE < FC+ FE.

But

CE =2CD,
and

FC + FE=2 FC,
for FC and FE are equal, because they are oblique lnes
drawn from the point F to the line CE at equal distances
DC and DE from the perpendicular.
Therefore
2 CD < 2 FC,

or

cD < FC.

40. Lemma. The sum of two lines, as C4 and
CB (fig. 19), drawn to the extremities of the line 4B,
is greater than that of two other lines D/ and DB,
similarly drawn, but included by them.

Proof. Produce DA to E.

Wo have, by § 18,
4C + CE > AD 4 DE,
and

DE + BE ~> DB
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Oblique Lines unequally Distant from the Perpendicular.

I'he sum of these inequalities is
AC 4 CE 4 DE 4 BE > 4D + DE + DB,
or, striking out the common term DE, and substituting
for CE + BE, its equal BC,
AC 4 BC > 4D 4 DB.

41. Theorem. Of two oblique lines, CF and CG
(fig. 18), drawn unequally distant from the perpendicu-
lar, the more remote is the greater.

Proof. For, the figure being constructed as in § 39,
and GE being joined, we have, by the preceding prop-
osition,

GC+4 GE > FCH4-FE;
or, as in § 39,
2 GC>2 FC,
and

GC> FC.

42. Theorem. If from the point C the middle of
the straight line 4B (fig. 20), a perpendicular EC be
drawn : — '

1. Any point in the perpendicular EC is equally dis-
tant from the two extremities of the line AB.

2. Any point without the perpendicular, as F, is at
unequal distances from the same extremities  and B.

Proof. 1. The distances EA and EB are equal,
since they are oblique lines drawn at equal distances C'4
and CB from the perpendicular AB.

2. The distance F4 is greater than FB; for
FA=FE 4+ EA
=FE 4+ EB
while = °  FE--EB> FB.
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Polygon, Triangle, Square

CHAPTER VIIL

SIDES AND ANGLES OF POLYGONS.

43. Definitions. A plane figure is a plane termi-
nated on all sides by lines. '

If the lines are straight, the space which they con-
tain is called a rectilineal figure, or polygon (fig. 21),
and the sum of the bounding lines is the perimeter of the

polygon.

44. Definitions. The polygon of three sides is the
most simple of these figures, and is called a triangle ;
that of four sides is called a quadrilateral; that of five
sides, a pentagon ; that of six, a hexagon, &c.

45. Definitions. A triangle is denominated equilat-
eral (fig. 22), when the three sides are equal, isosceles
(fig. 23), when two only of its sides are equal, and sca-
lene (fig. 24), when no two of its sides are equal.

46. Definitions. A right-triangle is that which has
a right angle. The side opposite to the right angle
is called the hypothenuse. Thus ABC (fig. 25) is a
triangle right-angled at 4, and the side BC is the hy-
pothenuse.

47. Definitions. Among quadrilateral figures, we dis-
tinguish '

The ‘square (fig. 26), which bas its sides equal, and
its angles right angles. (See § 73).
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Rectangle, Parallelogram, Rhombus, Trapezoid, Diagonal.

The rectangle (fig. 27), which has its angles right
angles, without having its sides equal.

The parallelogram (fig. 28), which has its opposite
sides parallel.

The rhombus or lozenge (fig. 29), which has its
sides equal without having its angles right angles.

The trapezoid (fig. 30), which has two only of its
sides parallel.

48. Definition. A diagonal is a line which joins the
vertices of two angles not adjacent, as AC (fig. 30.)

49. Definitions. An equilateral polygon is one which
has all its sides equal ; an equiangular polygon is one
which has all its angles equal.

50. Definition. Two polygons are equilateral with
respect to each other, when they have their sides equal,
each to each, and placed in the same order; that is,
when, by proceeding round in the same direction, the
first in the one is equal to the first in the other, the sec-
ond in the one to the second in the other, and so on.

In a similar sense are to be understood two polygons
equiangular with respect to each other.

The equal sides in the first case, and the equal angles
mn the second, are called homologous.

51. Theorem. Two triangles are equal, when two
sides and the included angle of the one are respective-
ly equal to two sides and the included angle of the
other.

Proof. 1In the two triangles ABC, DEF, (fig. 31), let
the angle A be equal to the angle .D, and the sides B,
AC, respectively equal to DE, DF
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First and Second Cases of Equal Triangles.

Place the side DE upon its equal 4B. DF will take
the direction AC, because the angle D is equal to the an-
gle /; the point F will fall upon C, because DF'is equal
to AC; and the lines FE and BC will coincide, since
their extremities are the same points. The triangles will
therefore coincide, and must be equal.

52. Corollary. Hence, when two sides and the
included angle of one triangle are respectively equal to
those of another, the other side and angles are also
equal in the two triangles.

53. Theorem. Two triangles are equal, when a side
and the two adjacent angles of one triangle are respec-
tively equal to those of the other.

Proof. In the two triangles ABC, DEF (fig. 31), let
the side 4B be equal to the side DE, and the angles A
and B respectively equal to D and E.

Place the side DE upon the side AB. The side DF
will take the direction AC, because the angle D is equal
to 4; the side EF will take the direction BC, because
the angle E is equal to B; and the point F, falling at
once in each of the lines AC and BC, must fall upon
their point of intersection C. The triangles will there-
fore coincide, and must be equal

54. Corollary. Hence, when a side and the two
adjacent angles of one triangle are respectively equal to
those of another, the other sides and a.ngle are also
equal in the two triangles.

55. Theorem. In an isosceles triangle the angles
opposite the equal sides are equal.

Proof. In the isosceles triangle ABC (fig. 32), let the
equal sides be B and BC.
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Equal Angles of the Isosceles Triangle.

Let the line BD be drawn so as to bisect the angle
4BC

Then the two triangles ADB and DBC will be equal,
since they have two sides 4B, BD, and the included
angle ABD, respectively equal to the two sides BC, BD,
and the included angle DBC; and the angle 4 will be
equal to C.

56. Corollary An equnlateral triangie is also equi-
angular.

57. Theorem. The line BD (fig. 32), which bi-.
sects the angle B, at the vertex of an isosceles trian-
gle, is perpendicular to the base, and bisects the base.

Proof. a. For, on account of the equality of the trian-
gles ABD and BCD, AD must be equal to DC.

b. Moreover, the angles BD.A4 and BDC are equal, and
are therefore right.angles by the very definition of the
right angle in § 20.

58. Theorem. If, in a triangle, two angles are equal,
the opposite sides are also equal, and the triangle is
isosceles.

Proof. In the triangle 4ABC (fig. 32), let the angle
4 be equal to the angle C.

Invert the triangle, and place it in the position BCA ;
and, as the two triangles ABC and CB.A have the slde
AC and the adjacent angles 4 and C of the one respec-
tively equal to CA4 and the adjacent angles C and A of
the other, their other sides must be equal, or BC must be
equal to BA.

59. Corollary. An equlangular mangle is also equi
lateral
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Third Case of Equal Triangles.

60. Lemma. Two different triangles cannot be
formed on a given line AB (fig. 33), of which the
sides, 4D and DB, are respectively equal to C/ and
CB, and terminate at the same extremities of /B.

Proof. For, first, the vertex D of one triangle can-
not fall within the other triangle ACB, as in fig. 19, be-
cause, by § 40, AD +- DB must in this case be less than
A4C+4- CB.

Secondly. If D falls without ACB, as in fig. 33, the
triangles ACD and BCD are isosceles, since AC is equal
to 4D and BC'is equal to BD.

Hence ACD=ADC,
and BCD=BDC;
but this is impossible ; for of the first members of these
equations ACD> BCD
while of the second members .
ADC BDC.

61. Theorem. When two triangles are equilateral
with respect to each other, they must be equal, and
must also be equiangular with respect to each other.

Proof. Let ABC and DEF (fig. 31) be the triangles,
whose sides 4B, BC, and AC are respectively equal to
DE, EF, and DF. ' :

If DE is placed upon 4B, the point F must by the
preceding proposition fall upon C, and the triangles must
coincide.

62. Theorem. Of two sides of a triangle, that is
the greater which is opposite the greater angle; and ‘
" conversely, of two angles of a triangle, that is the great- ‘
er which is opposite the greater side.

. B —
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The greatest Side of a Triangle opposite the greater Angle.

Proof. 1. Suppose the angle C> B (fig. 34). Draw
CD so as to make the angle BCD=B.

Then will BD=CD

and AB —=AD+ DB=4D 4 DC
But 4D 4 DC> 4C
Hence 4B > AC.

2. Conversely. Suppose AB™> AC, the angle C must
be greater than B, for if C were equal to or less than
B, 4B would by § 61 and the preceding demonstration,
be equal to or less than JAC. X

63. Theorem. If two triangles have two sides of the
one respectively equal to two sides of the other, and if
the included angle of the first triangle is greater than the
included angle of the second triangle, the third side of
the first triangle, is also greater than the third side of the

_second triangle.

Proof. Let the first triangle be ABC' (figs. 19 and 33),
and the second B D, which have the sides AB and AD,
respectively equal to /B and AC, and the included an-
gles BAD < BAC.

1. If the point D falls within the first triangle as in
fig. 19, we have by § 40

4AC+4 BC>AD 4 DB
whence, 'substracting the equals AC and 4D,
BC> BD.

2. If the point ) falls upon the third side as at E, we

nave at once

BC> BE.

3. If the point D falls without the first triangle, as in
fig. 33, we have 1n the isosceles triangle ACD,
ACD =ADC.
2
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Sum of the Angles of a Triangle.

But BDC > ADC, while ACD> BCD ;

whence BDC> BCD,
so that in the triangle BCD, by § 62, we have
' BC> BD.

64. Theorem. Two right triangles are equal, when
the hypothenuse and a side of the one are respectively
equal to the hypothenuse and a side of the other.

Proof. Let ABC and DEF (fig. 35) be the right tri-
angles, of which the hypothenuse AC is equal to DF, and
4B equal to DE.

Place DE upon 4B, EF will fall upon €B produced,
since the right angles ABG and DEF are equal. An
isosceles triangle CAG is thus formed, and AB being per-
pendicular to its base, divides it, by § 57, into the two
equal triangles ABC and ABG.

65. Theorem. The sum of the three angles of any
triangle is equal to two right angles.

Proof. Let ABC (fig. 36) be the given triangle. Pro-
duce AC to D, and draw CE parallel to AB.

The angles ABC and BCE, being alternate-internal
angles, are equal, and BAC and ECD, being external-
internal angles, are equal. Hence the sum of the three
angles of the triangle is equal to ACB + BCE 4 ECD,
or, by § 25, to two right angles.

66. Corollary. Two angles of a triangle being given,/
or only their sum, the third will be known by subtract-
g the sum of these angles from two right-angles.

67. Corollary. If two angles of one triangle are re- -

spectively equal to two angles of another triangle, the
third of the one is also equal to the third of the other,

]
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Sum of the Angles of a Polygon.

and the two triangles are equiangular with respect to
each other.

68. Corollary. 1In a triangle, there can only be one
right angle, or one obtuse angle.

69. Corollary. In a right triangle, the sum of the
acute angles is equal to a right angle.

70. Corollary. An equilateral triangle, being also
equiangular, has each of its angles equal to a third of
two right angles, or 3 of one right angle.

71. Corollary. In any triangle ABC, if we produce
the side AC toward D, the exterior aiigle BCD 'is
equal to the sum of the two opposite interior angles 2
and B. '

72. Theorem. The sum of all the interior angles
of a polygon is equal to as many times two right angles
as it has sides minus two. '

Proof. Let ABCDE, &ec. (fig. 37), be the given poly-
gon.

Draw from either of the vertices, as J, the diagonals
AC, 4D, AE, &c.

The polygon will obviously be divided into as many tri-
angles ag it has sides minus two, and the sum of the an-
gles of these triangles is the same as that of the angles
of the polygon. But the sum of the angles of each tri-
angle is, by § 65, equal to two right angles; and, con-
sequently, the sum of all their angles is equal to as many
times two right angles as there are triangles, that is, as
there are sides to the polygon minus two.

73. Corollary. The sum of the augles of a quadri-
lateral is equal to two right angles multiplied by 4 —2;
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The Diagonal of a Parallelogram bisects it.

which makes four right angles; therefore, if all the
angles of a quadrilateral are equal, each of them will be
a right angle, which justifies the definition of a square
and rectangle of § 47.

74. Corollary. The sum of the angles of a penta-
gon is equal to two right angles multiplied by 5 — 2,
which makes 6 right angles ; therefore, when a penta-
gon is equiangular, each angle is the fifth of six right
angles, or § of one right angle.

75. Corollary. The sum of the angles of a hexagon
is equal to 2 X (6 —2), or 8 right angles ; therefore,
in an equiangular hexagon, each angle is the sixth of
eight right angles, or $ of one right angle. The pro-
cess may be easily extended to other polygons.

76. Scholium. If we would apply this proposition
to polygons, which have any angles whose vertices are
directed inward, as CDE (fig. 38), each of these angles
is to be considered as greater than two right angles.
But, in order to avoid confusion, we shall confine our-
selves in future to those polygons, which have angles
directed outwards, and which may be called convez
polygons. Every convez polygon is such, that a straight
line, however drawn, cannot meet the penmeter in more
than two points.

77. Theorem. The diagonal of a parallelogram di-
vides it into two equal triangles.

Proof. Let ABCD (fig. 39) be the parallelogram and
AC its diagonal.

The two triangles #BC and ADC are equal, since they
have the side AC common, the angle BAC = ACD, by
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Parallel Lines at Equal Distances throughout.

§ 30, on account of the parallels AB and CD, and BCA
== C4D, on account of the parallels BC and 4D.

78. Theorem. The opposite sides of a parallelo-
gram are equal, and the opposite angles are equal.

Proof. For the triangles ACB and ACD (fig. 39)
being equal, their sides CB and AB are respectively equal
to AD and DC ; and the angle ABC=ADC. In the
sume way it might be proved that BAD = BCD.

79. Coro.lary Two parallel lines comprehended
between two other parallel lines are equal.

80. Theorem. If, in a quadrilateral ABCD (fig. 39), .
the opposite sides are equal, namely, 4B = CD, and
4D = BC, the equal sides are parallel, and the figure
1s a parallelogram.

Proof. For the triangles ABC and ACD are equal,
having their three sides respectively equal ; and therefore
ACB = CAD, whence BC is parallel to 4D, by § 31;
and BAC = ACD, whence 4B is parallel to CD.

81. Theorem. If two opposite sides BC, AD (fig.
89) of a quadrilateral are equal and parallel, the two-
other sides are also equal and parallel, and the figure
ABCD is a parallelogram.

Proof. For the triangles ABC and ACD are equal,
since they have the side AC common, the side BC = AD,
and the included angle BCA = CAD, on account of the
parallelism of BC and 4D ; and therefore dB and CD
must be equal and parallel.

82. Theorem. Two parallel lines are throughout at

the same dxstance from each other.
2#
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The Circle, Radius.

Proof. The two parallels 4B and CD (fig. 40), being
given, if through two points taken at pleasure we erect,
upon 4B, the two perpendiculars EG and FH, the
straight lines EG, FH will, by § 34, be perpendicular to
CD; and they are also parallel and equal to each other,
by arts. 35 and 79.

83. Theorem. The two diagonals of a parallelogram
mutually bisect each other. .

Proof. For the triangles (fig. 41) 2DO and BOC are
equal, since the side BC—=D, and the angles O0CB=
OAD, and OBC= ODA, on account of the parallelism
of BC and AD ; therefore 40— OC and BO= OD.

84. Corollary. In the case of the rhombus (fig. 42),
the triangles AOB and 40D are equal, for the sides
AB=AD, BO=DO, and A0 is common ; therefore
the angles AOB and 40D are equal, and, as they are

adjacent, each of them must, by definition, § 20, be a.

right angle, so that the two diagonals of a rhombus bisect
each other at right angles.

CHAPTER VIIIL
THE CIRCLE AND THE MEASURE OF ANGLES.

85. Definitions. The circumference of a circle 18
a curved line, all the points of which are equally dis-
tant from a point within, called the centre.

The circle is the space terminated by this curved line.

86. Definitions. The radius of a circle is the straight
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Diameter, Inscribed Lines.

line, as AB, AC, AD (fig. 43), drawn from the centre
to the circumference.

The diameter of a circle is the straight line, as BD,
drawn through the centre, and terminated each way by
the circumference.

87. Corollary. Hence, all the radii of a circle are
equal, and all its diameters are also equal, and double of
the radius. -

88. Theorem. Every diameter, as BD (fig. 43), bi-

sects the circle and its circumference.

Proof. For if the figure BCD be folded over upon
the part BED, they must coincide ; otherwise there
would be points in the one or the other unequally distant
from the centre.

89. Definition. A semicircumference is one half of
the circumference, and a semicircle is one half of the
circle itself.

90. Definition. An arc of a circle is any portion of
its circumference, as BFE.

The chord of an arc is the straight line, as BE,
which joins its extremities.

The segment of a circle, is a part of a circle com-
prehended between an arc and its chord, as EFB.

91. Theorem. Every chord is less than the diameter.
Proof. Thus BE (fig. 43) is legg than DB For,

joining AE, we have BD = BA -4 4E, but BE < B4

~+ AE, therefore BE < BD.

92. Definition. A straight line is said to be inscribed
in a circle, when 1ts extremities are i the circunfer
ence of the circle 2

A,
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Angles proportional to their Arcs.

93. Corollary. Hence the greatest straight line
_wnich can be inscribed in a circle is equal to its di-
ameter.

94. Theorem. A straight line cannot meet the cir-
cumference of a circle in more than two points.

Proof. For, by §§ 38 and 41, only two equal straight
lines can be drawn from the same point to the same
straight line ; whereas, if ‘a straight line could meet the
circumference ABD (fig. 45) in the three points, ABD,
three equal straight lines C4, 'CB, CD, would be drawn
from the point C to this line.

95. Theorem. In the same circle, or in equal cir-
cles, equal angles ACB, DCE (fig. 44), which bave
their vertices at the centre, intercept upon the cir-
cumference equal arcs A B, DE. '

Proof. Since the angles DCE and ACB are equai,
one of them may be placed upon the other; and since
their sides are equal, the point D will fall upon 4, and
the point E upon B. The arcs AB and DE must there-
fore coincide, or else there would be points in one or the
other unequally distant from the centre.

96. Theorem. Reciprocally if the arcs 4B, DE
(fig. 44) are equal, the angles ACB and DCE must
be equal.

©
Proof. For if the line CE be drawn, so as to make an
angle DCE equal to ACB, it must pass through the ex-
tremity E of the arc DE, which is equal to AB.

97. Theorem. Two angles, as ACB, ACD (fig.
45), are to each other as the arcs B, 4D intercepted
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Infinitely Small Quantities.

between their sides, and described from their vertices as
centres, with equal radii.

Proof. Suppose the less angle placed in the great-
er, and suppose the angles to be to each other, for ex-
ample, as 7 to 4; or, which amounts to the same, sup-
pose the angle AC a, which is their common measure, to
be contained 7 times in ACD, and 4 times in ACB ; so
that the angle AC.J may be divided into the 7 equal an-
gles ACa, a Cb, b Cc, &c., while the angle ACB is di
vided into the 4 equal angles AC @, &c.

The arcs AB and AD are, at the same time, dmded
into the equal parts A a, ab, bc, &ec., of which 4D con-
tains 7 and AB 4 ; and therefore these arcs must be to
each other as 7 to 4, that is, as the angles ACD and
ACB.

98. Scholium. The preceding demonstration does not
strictly include the case in which the two angles are in-
commensurable, that is, in which they have no common
divisor. The divisor AC a, instead of being contained
. an exact number of times in the given angles ACB, ACD,
is, in.this case, contained in one or each of them a cer-
tain number of times plus a remainder less than the
divisor. So that if these remainders be neglected, the
angle AC a will be a common divisor of the given angles.

Now the angle ACa may be taken as small as we
please ; and therefore the remainders, which are neglected,
may be as small as we please ; less, then, than any as-
signable quantity, less than any conceivable quantity, that
is, less than any possible quantity within the limits of hu-
man knowledge. Such quantities can, undoubtedly, be
neglected, without any error ; and the above demonstra-
tion is thus extended to the case of incommensurable
angles
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Measure of Angles. Degree, Minute, Second, &c.; Quadrant.

99. The principle, involved in the reasoning just given,
is general in its application ; and may be stated as fol-
lows, using the term infinitely small quanlity to denote a
quantity which may be taken at pleasure, as small as we
please, so that it may be supposed equal to nothing when-
ever we please.

JAziom. Infinitely small quantities may be neglected.

100. Corollary. Since the .angle at the centre of a
circle is proportional to the arc included between its sides,
either of these quantities may be assumed as the measure
of the other; and we shall, accordingly, adopt, as the
measure of the angle, the arc described from its vertexr as a
cenlre and included belween ils sides.

But when different angles are compared with each oth-
er, the arcs, which measure them, must be described with
equal radii.

101. Definitions. In order to compare together dif-
ferent arcs and angles, every circumference of a circle
may be supposed to be divided into 360 equal arcs
called degrees, and marked thus (°). For instance,
60° is read 60 degrees.

Each degree may be divided into 60 equal parts called
minutes, and marked thus (').

Each minute may be divided into 60 equal parts called
seconds, and marked thus (/).

When extreme minuteness is required, the division
is sometimes extended to thirds and fourths, &c., marked
thus (///)’ (//u), &ec.

A quadrant is a fourth part of a circumference, and
contains 90°. This is called the sezagesimal division
of the circle ; another which is called the centesimal di-
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Inscribed Angle and Triangle.

vision has been introduced by the French geometers.
Theydivide the quadrant into 100 degrees, the degree
mto 100 minutes, &c; so that by this method of di-
vision, the whole notation is decimal.

102. Scholium. As all circumferences, whether great
or small, are divided into the same number of parts, it
foilows that & degree which is thus made the unit of arcs,
18 not a fixed value, but varies for every different circle.
It merely expresses the ratio of an arc, namely, i to
the whole circumference of which it is a part, and not to
any other.

103. Corollary. The angle may be des?gnated by the
degrees and minutes of the arc which measures it ; thus
the angle which is measured by the arc of 17° 28’ may
be called the angle of 17° 28'.

104. Corollary. The right angle is tnen an angle of
90°, and is measured by the quadrant.

105. Corollary. The angle which is measured by the
arc of one degree, that is, the angle of-1° is then g; of
a right angle, and has a fixed value, altogether indepen-
dent, in its magnitude, of the radius of the arc by which
it is measured.

The same is the case with an angle of any other value,
so that the arcs AP, 4 D', A"D", &ec. (fig. 46), of the
same number of degrees, all measure the same angle C,
the vertex of which is at their common centre.

106. Definitions. An inscribed angle is one, whose
vertex is in the circumference of a circle, and which is
formed by twq chords, as BAC (fig. 47).

An inscribed triangle is a triangle whose three angles
bave their vertices in the circumference of the circle.

U
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Inscribed Angle.

And, in general, an inscribed figure is one, all whose
angles have their vertices in the circumference “of the
circle. In this case the circle is said to be circum-
scribed about the figure.

107. - The inscribed angle BAC (figs. 47, 48, 49)
has for its measure the half of the arc BC comprehend-
ed between its sides.

Proof. 1. If one of the sides is a diameter, as AC
(fig. 47), O being the centre of the circle,

Join BO. Then the triangle AOB is isosceles, for the
radii 40, BO are equal. Therefore the angles O.4B
and OB are equal_and the exterior angle BOC being
equal to their sum, by § 71, is equal to the double of
either of them, as BAC. BAC is, therefore, half of
BOC and has half its measure, or half of BC.

2. If the centre O falls within the angle, as in (fig.
48,)
" Draw the diameter A0D ; and, by the above, BAD
has for its measure half of BD, and DAC half of DC;

so that BAD + DAC or BAC has for its measure half

of BD -4 DC, or half of BC.

3. If the centre O falls without the angle, as in (fig.
49,)

Draw the diameter 40D ; and BAD — DAC, or BAC
has for its measure half of BD — DC, or half of BC. -

108. Corollary. All the angles BAC, BDC (fig.
50), &c., inscribed in the same segment are equal.

Proof. For they have each for their measure the half
of the same arc BEC.

109. Corollary Every angle BAD (fig. 51) -
scribed in a semicircle is a right angle.
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Arcs and Chords.

Proof. For it has for its measure the half of the semi-
circumference BED, or a quadrant.

110. Corollary. Every angle BAC (fig. 50) inscribed
in a segment greater than a semicircle is an acute angle,
for it has for its measure the half of an arc BEC less
than a semicircumférence.

111, Corollary. Every angle BEC inscribed in a seg-
ment less than a semicircle is an obtuse angle ; for it has
for its measure the half of an arc greater than a semi-
circumference.

112. Theorem. In the same circle, or in equal cir-
cles, equal arcs are subtended by equal chords.

Proof. Let the arc AB (fig. 52) be equal to the are -
BC.

Join AC ; and, in the triangle ABC, the angles A and
C are equal, for they are measured by the halves of the
equal arcs BC and AB. The triangle ABC is therefore
isosceles, by § 58, and the chords AB and BC are equal.

113. Theorem. Conversely, in the same circle, or
‘m equal circles, equal chords subtend equal arcs.

Proof. Let the chord AB (fig. 52) be equal to the
chord BC.

Join AC ; and in the isosceles triangle ABC the angles
4 and C must be equal, by § 55, and also the arcs 4B
and BC, which are double their measures.

114. Theorem. In the same circle, or in equal cir-
cles, if the sum of two arcs be less than a circumfer-
ence, the greater arc is subtended by the greater chord ;
and, conversely, the greater chord is subtended by the

greater arc.
' 3
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Perpendicular at the Middle of a Chord.

Proof. a. Let the arc BC (fig. 53) be greater than
the arc 4B.

Join AC ; and the angle BAC, being measured by
salf the arc BC, is greater than BCA, which is measured
+y half of 4B ; and therefore, by § 62, the chord BC
s greater than AB.

b. Conversely. Suppose the chord BC > AB.

Join AC ; and, by § 62, BAC> BC4, and, therefore,
the arc BC double the measure of BAC is greater than
the arc /B double the measure of BCA.

115. Corollary. If the sum of the two arcs is
greater than a circumference, the greater arc is sub-
tended by the less chord, and the less arc by the great-
er chord.

Proof. Suppose the arc BCNA > BANC (fig. 53).

Take ANC from each, and we have the arc BC > B4,
and consequently, by the preceding proposition, the chord
BC of the less arc BANC is greater than the chord B4
of the greater arc BCJVA.

116. Theorem. The radius CG (fig. 54), perpen-
dicular to a chord 4B, bisects this chord and the are
. subtended by it.

- Proof. a. The radii CA and CB are equal oblique
lines drawn to the chord AB. They are, therefore, by
§ 88, at equal distances from the perpendicular, or 4D
:—:DB-

b. Since the line GC is a perpendicular erected at the
middle of the straight line /B, any point of it, as G, is,
by § 42, at equal distances from its extremities, that is,
the chords 4G and GB are equal ; and therefore, by
§ 118, the arcs AG and GB are equal. '
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. 'Tangent to a Circle.

117. Corollary. The perpendicular erected upon
the middle of a chord passes through the centre, and
also through the middle of the arc.subtended by the
chord. :

118. Definitions. A secant is a line which meets
the circumference of a circle in two points, as ADB
(fig. 55). ‘

A tangent is a line, which has only one point in com-
mon with the circumference, as CD.

The common point JM is called the point of contact.

Also two circumferences are tangents to each other
(figs. 56 and 57), when they have only one point com-
mon. :

A polygon is said to be circumscribed about a circle,
when all its sides are tangents to the circumference ;
and in this case the circle is said to be inscribed in
the polygon.

119. Theorem. The direction of the tangent is the
same as that of the circumference at the point of con-
tact.

Proof. Draw through the point M (fig. 55) the secant
ME and the tangent MD.

If the secant ME is turned around the point M so as
to diminish the angle EMD, the secant ME will approach
the tangent MD, and the point E will approach the point
M. When ME is turned so far as to pass through the
point P next to M, the angle DME will be infinitely
small, since P is at an infinitely small distance from M ;
and the line ME will approach infinitely near the tangent
MD, that is, it will, by § 99, coincide with this tangent,
which has therefore, by § 11, the same direction with the

¢ circumference at JM
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Angles formed by Secants and Tangents.

120. Theorem. The tangent to a circle is perpen-
dicular to the radius drawn to the point of contact.

Proof. The radius OM = ON (fig. 58) is shorter than
any other line, as OP, which can be drawn from the point
O to the tangent MP; it is therefore, by § 39, perpendic-
ular to this tangent. _

121. The angle BAC (fig. 59), formed by a tan-

gent and a chord, has for its measure half the arc BMd4
comprehended between its sides.

Proof a. Draw the diameter 4D, and we have
BAC = DAC— DAB.

But DAC, being a right angle, has for its measure halt
of a semicircumference, as ABD; also BAD has, by
§ 107, for its measure half of the arc BD. The measure
of BAC is therefore )

} (ABD— BD) =} AMB.

b. In the same way, it may be shown that BAE has for
its measure half the arc BDA.

122. Theorem. The angle BAC, formed by two
secants (fig. 60), two tangents (fig. 62), or a tangent
and a secant (fig. 61), and which has its vertex without
the circumference of the circle, has for its measure half
the concave arc BJMC intercepted between its sides,
minus half the convex arc DNE.

Proof. Join BE ; and as BEC is an exterior angle of
the triangle ABE, we have, by § 71

BEC=ABE 4 BAC,
whence
BAC —=BEC — ABE. .
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Angles formed by Chords. Arcs intercepted by Parallels.

But the measure of BEC is half of BMC, and that of
ABE is half of DNE ; therefore the measure of BAC is

3 BMC—} DNE.

Scholium. In applying the preceding demonstration to
(figs. 61 and 62), the letters B and D must denote the
same point ; and in (fig. 62) the letters C and E must also
denote the same point. 7

123. Theorem. The angle BAC (fig. 63), formed
by two chords, and which bas its vertex between the
centre and the circumference, has for its measure half
the arc BC contained between its sides plus half the
arc DE contained between its sides produced.

Proof. Join BE ; and, as BAC is an exterior angle
of the triangle ABE, we have, by § 71,

BAC = BEA + 4BE.
But the measure of BEA is, by § 107, half of BC;
and that of ABE is half of DE ; therefore the measure of
BAC is
4 BC 4 } DE.

124. Theorem. Two parallels 4B and DC (figs. 64,
65, 66), intercept upon the circumference equal arcs
4D, BC.

Proof. Join BD. The alternate-internal angles 4BD
and BDC are equal, by § 30; and therefore, the arcs
4D and BC, the double of their measures, are equal.

Scholium. In applying this demonstration to figs. (65
and 66), the letters « and B must denote the same point ;
and in (fig. 66) the letters D and C must also denote the
same point.

125. Corollary. The arcs AD and BC (fig. 66) being
equal must be semicircumferences, and the chord BC
must be a diameter g
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. Tangent Circumferences.

126. Theorem. When the circumferences of two
circles cut each other, the line AB (fig. 67), which

joins their centres, is perpendicular to the middle of the

line CI), which joins their points of intersection.

Proof. For if a perpendicular be erected upon the
middle of the chord CD, it must, by § 117, pass through
the centres 4 and B of both the circles of which CD is
a chord.

127. Theorem. When two circumferences are tan-
gents .to each other, their centres and point of contact
are in the same straight line perpendicular to their com-
mon tangent at the point of contact.

Proof. a. If the centres of two circumferences which
cut each other (fig. 67) are removed from each other,
until the points C and D of intersection approach infi-
nitely near to each other, the circles will become tangent,
as in (fig. 56), the chord CD of (fig. 67) will become the
tangent CD of (fig. 56) ; and as both the radii AM and
MB are perpendicular to their common tangent, these
radii must be in the same straight line.

b. In the same way, the centres of the circles (fig. 67)
may be brought near to each other until the circles are
tangents, as in (fig. 57), and the same reasoning may be
here applied to prove that the line ABM, perpendicular
to the common tangent at M, passes through both the
centres 4 and B.
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Position of a Point in a plane.

CHAPTER IX.

PROBLEMS RELATING TO THE FIRST EIGHT CHAPTERS.

128. Problem. To find the position of a point in a
plane, having given its distances from two known points
in that plane.

Solution. Let the known points be A and B (fig. 68).
From the point'4 as a centre, with a radius equal to the
distance of the required point from .4, describe an arc.
Also, from the point B as a centre, with a radius equalto
the distance of the required point from B, describe an arc
cutting the former arc ; and the point of intersection C is
the required point. ‘

Scholium. By the same process, another point D may
also be found which is at the given distances from 4 and
B, and either of these points therefore satisfies the con-
ditions of the problem.

129. Corollary. If both the radii were taken of equal
magnitudes, the points C and D thus found wauld be at
equal distances from 4 and B.

130. Scholium. The problem is impossible, when the
distance between the known points is greater than the
sum of the given distances or less than their difference.

131. Scholium. If the required point is to be at equal
distances from the known point, its distance from either

" of them must be greater than half the distance between
_the known points.
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To Bisect a Line ; to Erect a Perpendicular.

132. Problem. To divide a given straight line A8
(fig. 69) into two equal parts ; that is, to bisect it.

Solution. Find by § 129, a point C at equal dis-
tances from the extremities 4 and B of the given line.
Find also another point D, either above or below the line,
at equal distances from A and B. Through C and I}
draw the line CD, which bisects 4B at the point E.

Proof. For the perpendicular, erected at E to the line
AB, must, by § 42, pass through the points C and D, and
must therefore, by § 16, coincide with the line CD.

133. Problem. At a given point 4 (fig. 70), in the
line BC, to erect a perpendicular to this line.

Solution. Take the points B and C at equal distances
from A ; and find a point D equally distant from B and
C. Join AD, and it is the perpendicular required.

Proof. For the point D must, by § 42 be a point of
the, perpendicular erected at ..

134. Problem. From a given point A (fig. 71),
without a straight line BC, to let fall a perpendicular
upon this line.

Solution. From A as a centre, with a radius suffi-
ciently great, describe an arc cutting the line BC in two
points B and C ; find a point D equally distant from B and
C, and the line ADE is the perpendicular required.

Proof. For the points 4 and D, being equally distant
from B and C, must, by § 42, be in this perpendicular.

135. Problem. To make an arc equal to a given
arc AB (fig. 72), the centre of which is at the given
point C.

Solution. Draw the chord 4B. From any point D as
a centre, with a radius equal to the given radius C4,

\

e m—
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To make and to bisect a given Arc, or Angle.

describe the indefinite arc FH. From F as a centre,
with a radius equal to the chord AB, describe an arc
cutting the arc FH in H, and we have the arc FH =
4B. .

Proof. For as the chord AB =the chord FH, it follows,
from § 112, that the arc AB =the arc FH.

136. Problem.. At a ¢iven point A (fig. 73),.in the
line 4B, to make an angle equal to a given angle K.

Solution. From the vertex K, as a centre, with any
radius describe an arc IL meeting the sides of the angle ;
and from the point 4 as a centre, by the preceding prob-
lem, make an arc BC equal to IL. Draw .AC, and we
have 4= K.

Proof. For the angles A and K being, by §100, meas-
ured by the equal arcs BC and IL, are equal.

137. Problem. To bisect a given arc AB (fig. 74).

Solution. Find a point D at equal distances from 4
and B. Through the point J) and the centre C draw the
line CD, which bisects the arc 4B at E.

Proof. Draw the chord AB. Since the points D and
C are at equal distances from A and B, the line DC is, -
by § 132, perpendicular to the middle of the chord. 4B,

" and therefore by § 117, it passes through the middle E

of the arc AB. .

138. Problem. To bisect a given angle A (fig. 75).

Solution. From 4 as a centre, with any radius, de-
scribe an arc BC, and, by the preceding problem, draw
the line AE to bisect the arc BC, and it also bisects the
angle A. )

Proof. The angles BAE and EAC are equal, for they
we measured by the equal arcs BE and EC
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To construct a Triangle.

139. Problem. Through a given point « (fig. 76),
to draw a straight line parallel to a given straight line
BC. .

Solution. Join EA, and, by the preceding problem,
draw 4D, making the angle E4AD==J4EF, and 4D is
parallel to BC, by § 31.

140. Problem. Two angles of a triangle being given,
to find the third.

Solution. Draw the line ABC (fig. 77). At any point
B draw the line BD, to make the angle DBC equal to
one of the given angles, and draw BE, to make EBD
equal to the other given angle, and ABE is the required
angle.

Proof.. For these three angles are, by § 25, together
equal two right angles.

141. Problem. Two sides of a triangle and their
included angle being given, to construct the triangle.

Solution. Make the angle . (fig. 78) equal to the given
angle, take 4B and AC equal to the given sides, join
BC, and ABC is the triangle required.

142. Problem. One side and two angles of a tri-
angle being given, to construct the triangle.

Solution. If both the angles adjacent to the given side
are not given, the third dngle can be found by § 140.

Then draw /B (fig. 78) equal to the given side, and
draw AC and BC, making the angles A and B equal to
the angles adjacent to the given side, and ABC is the tri-
angle required.

143. Problem. The three sides of a triangle being

given, to construct the triangle.
Solution. Draw 4B (fig. 78) equal to one of the given
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To construct a Parallelogram. To find the Centre of a Circle.

sides, and, by § 128, find the point C at the given dis-
tances AC and BC from the point C, join AC and BC,
and ABC is the triangle required.

144. Scholium. The problem is impossible, when one
of the given sides is greater then the sum of the other
two.

145. Problem. To construct a right triangle, when
a leg and the hypothenuse are given.

Solution. Draw JAB (fig. 79) equal to the given leg.
At A erect the perpendicular AC, from B as a centre,
with a radius equal to the given hypothenuse, describe an
arc cutting 4AC at C. Join BC, and ABC is the triangle
required.

146. Problem. The adjacent sides of a parallelo-
gram and their included angle being given, to construct
the parallelogram.

Solution. Make the angle A (fig. 80) equal to the given
angle, take B and AC equal to the given sides, find the
point D, by § 128, at a distance from B equal to AC, and
at a distance from C ‘equal to AB. Join BD and DC,
and ABCD is, by § 80, the parallelogram required.

147, Corollary. If the given angle is a right angle, the
figure is a rectangle ; and, if the adjacent sides are also
equal, the figure is a square.

148. Problem. 'To find the centre of a given circle
or of a given arc.

Solution. Take at pleasure three points A, B, C (fig.
81) en the given circumference or arc ; join the chords
4B and BC, and bisect them by the perpendiculars DE
and FG ; the point O in which these perpendiculars meet
is the centre required
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‘To draw a Tangent to a Circle.

Proof. For, by § 117, the perpendicular DE and FG
must both pass through the centre, which must therefore
be at their point of meeting.

149. Scholium. By the same construction a circle
nay be found, the circumference of which passes through
three given points not in the same straight line, or in
which a given triangle is inscribed.

150. Problem. Through a given point, to draw a
tangent to a given circle.

Solution. a. If the given roint A (fig. 82) is in the cir-
cumference, draw the radius Cu4, and through A draw
AD perpendicular to CA4, and AD is, by § 120, the tan-
gent required.

b. If the given point A (fig. 83) is without the circle,
join it to the centre by the line AC ; upon AC as a diam-
eter describe the circumference- AMCJ, cutting the given
circumference in M and JV'; join AM and AN, and they
are the tangents required.

Proof. For the angles AMC and ANC are right an-
gles, because they are inscribed in semicircles, and there-
~ fore AM and AN are perpendicular to the radii MC and

JNC at their extremities, and are, consequently, tangents,
by § 120.

151. Corollary. The two tangents AM and AN are
equal ; for the right triangles AMC and ANC are equal,
by § 64, since they have the hypothenuse AC common,
and the leg MC equal to the leg JV'C, and, therefore, the
cther legs AM and AN are equal.

152. Problem. 'To inscribe a circle in a given tri-
angle ABC (fig. 84). A
Solution. Bisect the angles A and B by the lines 40
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To inscribe a Circle in a Triangle.

and BO, and their point of intersection O is the centre of
the required circle, and the perpendicular OD let fall
from O upon the side AC is its radius.

Proof. The perpendiculars OD, OE, and OF let fall
from O upon the sides of the triangle are equal to each
other. For in the right triangles 04D and OAE the
hypothenuse 04 is common ; the angle 04D = OAE
by construction ; and the third angle A0D = AOE, by
§ 67 ; the triangles are, therefore, equal, by § 53 ; and 0D
is equal to OE. In the same way it may be proved that

OF = 0D=OLE.

Hence the circumference DFE passes through the
points D, F, E, and the sides are tangents to it, by
§ 120.

153, Corollary. The three lines 40, BO, and CO,
which bisect the three angles of a triangle, meet at the
same point. .

154. Problem. Upon a given straight line 4B (figs.
85 and 86), to describe a segment capable of containing
a given angle, that is, a segment such that each of the
angles inscribed in it is equal to a given angle.

Solution. Draw BF, making the angle ABF equal to
the given angle. Draw BO perpendicular to BF, and
OC perpendicular to the middle of AB. From O, the
point of intersection of OB and OC, with a radius OB
= 04, describe the circumference BMAN, and BMA is
the segment required.

Proof. Since BF is perpendicularto BO, it is a tan-
gent to the circle, and therefore the angles AMB and
ABF are equal, since they are each, by § 107 and 121,
measured by half the arc ANVB.

155. Scholium. If the given angle were a right angle,

4 .
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To find the Ratio of two Lines.

the segment sought would be a semicircle described upon
the diameter AB.

156. Problem. To find a common measure of two
given straight lines, 4B, CD (fig. 87), in order to ex-
press their ratio in numbers.

*Solution. a. The method of finding the common di-
visor is the same as that given in arithmetic for two num-
bers. Apply the smaller CD to the greater 4B, as many
times as it will admit of ; for example, twice with a re-
mainder BE.

Apply the remainder BE to the line CD, as many times
as it will admit of ; twice, for example, with a remainder
DF.

Apply the second remainder DF to the first BE, as
many times as it will admit of ; once, for example, with a
remainder BG. ‘

Apply the third remainder BG to the second DF, as
many times as it will admit of.

Proceed thus till a remainder arises, which is exactly
contained a certain number of times in the preceding.

This last remainder is a common measure of the two
proposed lines ; and, by regarding it as unity, the values
of the preceding remainders are easily found, and, at
length, those of the proposed lines from which their ratio
in numbers is deduced.

If, for example, we find that GB is contained exactly
three times in FD, GB'is a common measure of the twc
proposed lines.

b. Let GB=1;
and we have

FD=3 GB =3,
EB=1.FD+ GB= 34 1= 4,
CD=2.EB+ FD= 8+43=11,
AB=2 CD+ EB=22-44=26;

{
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To divide a Line into equal Parts.

consequently, the ratio of the lines B, CD is as 26 to
11 ; that is, 4B is §f of CD, and CD is } of AB.

157. Corollary. By a like process, may be found
the ratio of any two quantities, which can be succes-
sively applied to each other, like straight lines, as, for
mstance, two arcs or two angles.

CHAPTER X.

PROPORTIONAL LINES.

158. Theorem., If linesaa', b ¥, ¢ ¢/, &c. (fig. 88),
are drawn through two sides 4B, AC of a triangle
ABC, parallel to the third side BC, so as to divide
one of these sides 4B into equal parts Aa, abd, &ec.,
the other side #C is also divided into equal parts A a',
ab', &ec.

Proof. Through the points a’, b, ¢, &c. draw the
lines a' m, b' n, c'o, &c. parallel to AB.

The triangles 2 aa', a’m b/, b’ o' ¢, &e. are equal, by
§ 53 ; for the sides a'm, b’ 0, ¢’ 0, &c. are, by § 79, re-
spectively equal to ab, bc, c¢d, &c., and are therefore
equal to each other and to Aa; moreover, the angles
Aaa',ma' b, nbc', &e. are equal, by § 29, and likewise
the angles Aaa’, a' mb', b'nc', &c. Consequently, the
sides Aa', a' b, b ¢/, &e. are equal.

159. Problem. To divide a given straight line 4B
(fig. 89) into any number of equal parts.
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A line drawn Parallel to a Side of a Triangle.

Solution. Suppose the number of parts is, for example,
six. Draw the indefinite line A0 ; take AC of any con-
venient length, apply it six times to A0. Join B and the
last point of division D by the line BD, draw CE parallel
to DB, and AE, being applied six times to AB, dmdez
it into six equal parts.

Proof. For if, through points of division of AD, liner
are drawn parallel to DB, they must, by the preceding
theorem, divide /B into six equal parts, of which AE is
one.

160. Theorem. If a line DE (fig. 90) is drawn through
two sides AB, AC of a triangle 4BC, parallel to the
third side BC, it divides those two sides propomonally.
so that we have

4D : AB = AE: 4C.

Proof. a. Suppose, for example, the ratio of 4D : AB
to be as 4 to 7. /B may then be divided into 7 equal
parts Aa, ab, bc, &c., of which 4D contains 4; and if
lines aa’, b¥’, cc’, &c. are drawn parallel to BC, AC is
divided into 7 equal parts A o/, a'b', b’ ¢/, &c., of which
AE contains 4. The ratio of AE to AC is, therefore, 4
to 7, the same as that of AD : AB.

161. Scholium. b. The case in which 4D and AB are
incommensurable, is included in this demonstration by
the reasoning of § 98.

. 162. Corollary. In the same way
AD: BD = AE : EC.
and
D: AB= EC: AC.

163. Theorem. Conversely, if a line DE (fig. 90) o
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Division of a Line into Parts proportional to given Lines.

is drawn so as to divide two sides AB, AC of a tri-
angle proportionally, this line is paralle]l to the third side
BC.

Proof For the line, which is drawn through the point
D parallel to BC must, by the preceding proposition,
pass through the point E, so as to divide the side AC pro-
portionally to 4B, and must therefore coincide with the
proposed line DE.

164. Problem. To divide a given straight line 4B
(fig. 91) into two parts, which shall be in a given ratio,
as in that of the two lines m to n. )

Solution. Draw the indefinite line #0. Take .2C
=m and CD =n. Join DB, through C draw CE paral-
lel to DB ; and E is the point of division required.

Proof. For, by § 161,

AE: EB=AC: CD=m:n.

165. Problem. To divide a given line AB (fig. 92)
into parts proportional to any given lines, as m, n, o,
&e. :

Solution. Draw the indefinite line £0. Take

AC=m, CD=na, DE =o, &ec.

Join B to the last point E, and draw CC’, DD, &c.
parallel to BE, (', IV, &c. are the required points of
division.

Proof. For, if 4E is divided into parts equal each of
them to the greatest common divisor of m, n, o, &c., and
if, through the points of division, lines are drawn parallel
to BE ; it appears, from inspection, as in § 160, that

AC CD'=AC; CD=m:n,

ana that
. 4%
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To find a Fourth proportional to three given Lines.

CD :DB=CD: DE=mn:o0;
or, as they may be written for brevity,
AC': CD' : DB=m:n:o.

" 165. Problem. To find a line, to which a given
line AB (fig. 93) has a given ratio, as’ that of the lines
m to n; in other words, to find the fourth prqportional
to the three lines m, n, and AB. 40

Solution. Draw the indefinite line M take
AC =m, AD =n.
*
Join CB, draw DE parallel to BC, and 4E is the re-
quired line.
Proof. For, by § 160,
AB: AE=AC: AD =m: n,
166. Corollary. By making n equal to 4B in the pre-
- ceding solution, we find a third proportional to the two
lines m and 4B.
" 167. Problem. To divide one side BC (fig. 94),
of a triangle BC into two parts proportional to the
other two sides.

Solution. Draw the line 4D to bisect the angle BAC,
and D is the required point of division, that is,

BD: DC=AB: AC.

Proof. Produce BA to E, making AE equal to AC.
Join CE.

Then the angles ACE and AEC are equal, by § 55;
and the exterior angle CAB of the triangle ACE is equal
to ACE + AEC, or to 2 CEA, and, as DAB is half of

BAC, we have
DAB=1} (2 CE4A)= CE4A,

{
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To divide one Side of a 'T'riangle into parts proportional to other Sides.

and, therefore, by § 31, 4D is parallel to CE, and, by
§ 161,
BD: DC=BA: AE,
or, since 4E = AC,
BD: DC=BA: 4C.
168. Problem. Through a given point P (fig. 95)
.in a given angle A, to draw a line so that the parts in-
tercepted between the point and the sides of the angle
may be in a given ratio.

Solution. Draw PD parallel to .ﬂB Take DC in the
same ratio to D as the parts of the required line.
Through C and P draw CPE, and this is the required
line.

Proof. For, by § 161,

CP:PE=CD: DA

169. Corollary. When DC is taken equal to 4D, PC

is equal to PE.

S

S CHAPTER XI.

SIMILAR POLYGONS.

170. Definitions. Two polygons are similar, which
are equiangular with respect to each other, and have
their homologous sides proportional.

In different circles, similar arcs are such as corre-
spond to equal angles at the centre Thus the arcs AP,
A0, &c. (fig. 46) are similar
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" Similar Polygons and Arcs. Equiangular triangles are similar.

171. Definitions. The altitude of a parallelogram
is the perpendicular, which measures the distance be-
tween its opposite sides considered as bases.

The altitude of a triangle is the perpendicular, as
AD (fig. 96), which measures the distance of any one
of its vertices, as J, from the opposite side BC taker
as a base.

The altitude of a trapezoid is the perpendicular, as
EF (fig. 97), drawn between its two parallel sides.

172. Theorem. Two triangles ABC, DEF (fig.
98), which are equiangular with respect to each other,
are similar.

Proof. Place the angle D upon its equal 4 ; E must
fall upon E', and F upon F'; and F'E' is parallel to BC,
because the angles AE'F' and ACB are equal. Hence,
by § 160, .
AE'": AC=AF': AB,
that is,

DE: AC=DF: AB.
In the same way, it may be proved that
DE: AC=EF: BC=DF: 4B.

173. Corollary. Hence, and from § 67, it follows
that two triangles are similar, when they have two an-
gles of the one respectively equal to two angles of the
other.

174. Corollary. Two right triangles are similar,
when they have an acute angle of the one equal to an
acute angle of the other.

175. Theorem. Two triangles are similar, when
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Cases of similar Triangles.

they have the sides of the one respectively parallel to
those of the other.

Proof. For, in this case, the angles are equal by § 29.

176. Corollary. The parallel sides are homologous.

177. Theorem. Two triangles are similar, when
the sides of the one are equally inclined to those of the
other, each to each, as ABC, DEF (fig. 99).

Proof. For if one of the triangles is turned around,
by a quantity equal to the angle made by the sides of the
one with those of the other, the sides of the two triangles
become respectively parallel, and they are, therefore, by
§ 175, equiangular and similar.

178. Corollary. Two triangles are similar, when
the sides of the one are respectively perpendicular to
those of the other, and the perpendicular sides are
homologous. ,

179. Theorem. Two triangles ABC, DEF (fig.
98) are similar, if they have an angle A of the one
equal to an angle D of the other, and the sides including
these angles proportional, that is,

AB: DF=AC: DE.

Proof. Place the angle D upon 4 ; E falls upon E/,
and F upon F ; and E'F is parallel to BC, by § 162, be-
cause

4B : AF' = A4C : 4AE'.
Hence, by § 30, the angle C=AE'F'=E,
and =AFPE' —F;
that is, the triangles ABC and DEF are equiangular,
and, by § 172, similar,

180. Theorem. Two triangles ABC, DEF (fig. 98)
are similar, if they have their homologous sides pro-
portional, that is,
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Cases of similar Triangles.

AB: DF=JAC: DE= BC: EF. )
Proof. Take AE'= DE, and draw E‘F' parallel to )
BC. The triangles AE'F and ABC are similar, by
§ 175, and we are to prove that AE‘F" is equal to DEF. '
Now, by § 160, |
AE': AC=A4F : 4B,
ard, by hypothess,
DE or A4E': AC=DF": 4B.
Hence, on account of the common ratio AE': 4C,
AF': AB=DF: AB ;

that is, AF' and DF are in the same ratio to /B, and are
consequently equal.

In the same way it may be proved that E'F' and EF,
being in the same ratio to BC, are equal ; and as the tri-
angle DFE has its sides equal to those of AE'F, it is
equal to AE'F, and is, therefore, similar to 4BC.

181. Theorem. Lines AF, AG, &c. (fig. 100),
drawn at pleasure through the vertex of a triangle, di-
vide proportionally the base BC and its parallel DE,
so that

DI: BF=1IK: FG=KL: GH, &c.
Proof. Since DI is parallel to BF, the triangles ADI,
ABF are equiangular, and give the proportion,
DI1: BF=AI: AF;
also, since IK is parallel to FG,
Al: AF«=1IK: FG;
and, therefore, on account of the common ratio 41 : 4K
Dl: BF=IK: FG
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Right Triangle divided into two similar Right Triangles.

It may be shown in like way, that
IK: FG=KL: GH, &ec.
182. Corollary. When BC is divided into equal parts,
the parallel DE is likewise divided into equal parts.

183. Theorem. The perpendicular 4D (fig. 101)
upon the hypothenuse BC of the right triangle BAC
from the vertex 1 of the right angle, divides the tri-
angle into two triangles BAD, CAD, which are similar
to each other and to the whole triangle BAC.

Proof. a. The right triangles BAC and BAD are
similar, by § 174, for the acute angle B is common to
them both. :

b. In the same way it may be shown, that DAC is
similar to BAC, and, therefore, to BAD. -

184. Corollary. From the similar triangles B.AD,
BAC, we have
’ BD: BA= BA: BC,
that is, the leg B4 is a mean proportional between the
hypothenuse BC and the adjacent segment BD.

6. In the same way AC is a mean proportional be-
tween BC and DC.

185. Corollary. From the similar triangles BAD,
CAD, we have

BD: DA=DA: DC,

or, the perpendicular D4 is a mean proportional bo-
tween the segments BD, DC of the hypothenuse.

186. Theorem. If from a point A (fig. 102), in
the circumference of a circle, a perpendicular 4D is
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To find a Mean proportional.

drawn to the diameter BC, itis a mean proportional
between the segments BD, DC of the diameter.

Proof. For, if the chords AB, AC are drawn, the tri-
angle BAC is, by § 109, right-angled at A.

187. Corollary. The chord B4 is a mean proportional
botween the diameter BC and the adjacent segment BD.

Likewise, C is a mean proportional between BC and
DcC.

188. Problem. To find a mean proportional between
two given lines.

Solution. Draw the indefinte line AB (fig. 103). Take
AC equal to one of the given lines, and BC equal to the
other. Upon /4B as a diameter describe the semicircle
ADB. At C erect the perpendicular CD, and CD is, by
§ 186, the required mean proportional.

> 189. Theorem. The parts of two chords which cut

-7

* each other in a circle are reciprocally proportional, that
is (fig. 104), A40: DO==CO: BO. )

Proof. Join AD and CB. In the triangles 20D and

COB, the angles 4OD and COB are equal, by § 23

also the angles ADO and CBO are equal, by § 108, be-
cause they are each measured by half the arc AC, and,

therefore, the triangles AOD and COB are similar by -

§ 173, and give the proportion
40: DO=CO: BO. _
190. Theorem. If, from a point O (fig. 105), taken
without a circle, secants O4, OD be drawn, the en-

tire secants M0 and DO are reciprocally proportion-
al to the parts BO and CO without the circle, that is,

A40: D0O=CO: BO.
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To divide a line in extreme and mean ratio.

Proof. Join AC and BD. In the triangles 2OC and
BOD, the angle O is common, and the angles BAC and
BDC are equal, by § 108 ; these triangles are, there-
fore, similar, by § 173, and give the proportion

40: DO=CO: BO.

' 191, Theorem. If, from a point O (fig. 106), taken

without a circle, a tangent OC and a secant O4 be

drawn, the tangent.is a mean proportional between the

entire secant and the part without the circle, that is,
40: CO=CO0: BO.

Proof. When, in (fig. 105), the secant OC is turned
about the point O until it becomes a tangent, as in (fig.
106), the points C and D must coincide, CO must be
equal to DO, and the proportion (fig. 105)

A40: DO=CO0: BO,
becomes (fig. 106) 40: CO=CO: BO.
192. Problem. To divide a given line AB (fig. 107)

at the point C in extreme and mean ratio, that is, so that
we may have the proportion

AB: AC=A4C: CB.

Solution. At B erect the perpendicular BD equal to
half of AB. Join 4D, take DE equal to BD, and 4C
equal to AE, and C is the required point of division.

Proof. Describe the semicircumference EBF with the
radius DB to meet 4D produced in F'; and, by the pre-
ceding proposition,

AF: AB=AB: AE;
and, by the'theory of proportions,

4B : AF—AB=AE : AB—JAE.
5
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Similar Polygons composed of similar Triangles.

But 4AB=2. BD=EF,

and AE=A4C;

hence 4F — AB=AF — EF= AE = AC,
and 4B — AE—= 4AB— AC=BC;

and the preceding proportion becomes
AB: AC=4C: BC.

193. Theorem. If two polygons ABCD, &c.,
A4 B' C' D', &c. (fig. 108) are composed of the same
number of triangles ABC, ACD, &c., 4'B'C', ACD,
&c. which are similar each to each and similarly dis-
posed, the polygons are similar.

Proof. Since the triangles ABC, &c. are similar to
A'B'C', &c., their angles must be equal each to each.
Hence the angle 4 of the first polygon, which is the sum
of the angles BAC, CAD, &c. is equal to the angle ' of
the second polygon, which is the sum of B'A'C', CA'D,
&c. Also B=1§H,

C=BCA+ ACD= B’C’.d'-}-.ﬂ'C’D’ C, &c.;

the polygons are therefore equiangular with respect to
each other.

Their homologous sides are, moreover, proportional,
for the similar iriangles give

4B: AB'=BC: BC,
and BC:BC=4C:4C
= CD: CD, &c. ’
Hence, by § 170, the polygons are similar
194. Problem. To construct a polygon similar to a

given polygon ABCD, &ec. (fig. 108) upon a given lne
4'B', homologous to the side JAB.
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Equilateral similar Polygons are equal.

Solution. Join AC, AD, &c. Draw A4'C', 4D, &e.,
making the angles B'A'C=B.AC, C4'D= CAD, &c.

Draw B'C', making the angle A4'B'C'=ABC, and
meeting 4'C’ at C'. Draw C'D', making the angle 4'C'D’
= ACD, and meeting 4D’ at D' ; and so on.

The polygon 4'B'C'IV &ec. thus constructed, is the re-
quired polygon.

Proof. For, by § 173, the successive triangles A'B'C’,
4'C'D, &c. are similar to ABC, 4CD, &c. each to each,
and therefore, by the preceding theorem, the polygons
are similar. ‘

195. Theorem. If the similar polygons ABCD &c.
AB'C'D &c. (fig. 109) have a side B of the one
equal to the homologous side 2B’ of the other, the
polygons are equal.

Proof. The polygons are, by § 170, equiangular;
they are also equilateral, for, by § 170, the ratio of BC
to B'C' is the same as that of AB to A'B', or the ratio of
equality ; that is, BC=B'C’, and, in the same way
CD = CD, &ec.

If, then, A'B’ is placed upon AB, B'C' will take the di-
rection of BC, because the angle B'=C'; and C' will
fall upon C, because B'C'=BC ; and in the same way
it may be shown, that D’ falls upon D, E' upon E, &ec ;
90 that the polygons coincide, and are equal

196. Theorem. Two similar polygons ABCD &ec.,
AB'GD &c. (fig. 108), are composed of the same
number of triangles #BC, ACD, &c., AB'C, 4CD,
&c., which are similar each to each and similarly dis-
posed.
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Ratio of the Perimeters of similar Polygons.

Proof. Construct upon A'B' homologous to 4B, by
§ 194, a polygon similar to ABCD &c., and it must also
he similar to 4'B'C'D' &c., and must therefore, by the
preceding proposition, coincide with it ; so that 4'B'C'DY

&c. must, from § 194, be composed of triangles similar

and similarly disposed to those of ABCD &c.

197. Theorem. The perimeters of similar polygons
are as their homologous sides. -

Proof. From the definition of § 170, the similar poly-
gons ABCD &ec. (ﬁg 108), 4'B'C' D &c. give the pro
portion

4B: AB=BC: BC'=CD: CD, &c.
Now the sum of the antecedents of this continued propor-
tion is AB -4 BC 4 CD + &c., or the perimeter of
ABCD &ec., which we may denote by the letter P ; and
the sum of the consequents is 4'B’' - B'C' 4 C'D' 4 &e.,
or the perimeter of A'B'C'DV &c., which we may denote
by P'.
Hence, from the theory of. proportions,

P:P=uAB: 4B'=BC: B'C, &ec.

198. Theorem. If two homologous sides' 4B, 4B,
/figs. 109, 110, 111) of two similar triangles, parallelo-
grams, or trapezoids, are assumed as their bases, the
altitudes CE, C'E' are to each other as the homologous
sides.

Proof. Since the acute angles CAB, C'4’B' are, by

§ 170, equal, the right triangles AEC, 4'E'C' are, by
§ 174, similar, and give the proportion

C:4C—=—CE: CE




CH. X1I. § 203.] REGULAR POLYGONS. 69

An inscribed Equilateral Polygon is regular.

199. Corollary. The homologous altitudes of two
similar triangles, &c. are to each other as their homolo-
gous bases. '

200. Corollary. The perimeters of two similar tri-
angles, parallelograms, or trapezoids are to each other
as their homologous altitudes.

CHAPTER XII.

REGULAR POLYGONS.

201. Definition. A regular polygon is one which
» at the same time equiangular and equilateral.

Hence the equilateral triangle is the regular polygon
ot three sides, and the square the one of four.

202. Theorem. Every equilateral polygon, as 4BCD
&c. (fig. 112), which is inscribed in a circle, is regular.

Proof. As the polygon 4BCD &ec. is supposed to be
equilateral, we have only to prove that it is also equi-
angular.

Now the arcs 4B, BC, CD, &o. are equal, for they are
subtended by the equal chords 4B, BC, CD, &c. ; and,
therefore, twice these arcs, or the arcs ABC, BCD,
CDE, &c. are equal.

Hence the angles ABC, BCD, CDE, &c. are equal,
since they are inscribed in equal segments.

203. Theorem. An infinitely small arc AB (fig. 118)
comncides with its chord AB. 3
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The Circle is a regular Polygon of an infinite number of Sides.

Proof. Through C the middle of the chord AB draw
the radius DO. Complete the rectangle DEAC, by § 147 ;
and, as the side DE is perpendicular to OD, it is a tan-
gent to the circle.

The arc AD is, then, less than the sum of the including
lines 4E 4+ DE=4C -+ DC; and

24D < 24C 42 DC,
or '
the arc 4B < the chord 4B 4 2 DC;

or
the arc 4B —the chord 4B < 2 DC,

that is, the difference between the arc AB and its chord is
less than 2 DC.
But, by § 186,
CF-AC=A4C: CD=2 AC:2 CD
=the chord AB: 2 CD;

that is, 2 CD has the same ratio to the chord 4B, which
the infinitely small line AC has to CF; so that 2 CD is
infinitely small in comparison with the chord 4B. And,
as the difference between the chord and the arc is smaller
than 2 CD, it must likewise be infinitely small in com-
parison with either the chord or the arc, and may, by
§ 99, be neglected. The arc 4B is, therefore, equal to
the chord /B, and must, by § 18 and 16, coincide with it.

204. Theorem. The circle is a regular polygon-of
an infinite number of sides.’

Proof. Suppose the circumference ABCD &c. (fig.
114) divided into the infinitely small and equal arcs 4B,
BC, CD, &c. The polygon formed by the chords of
these arcs is, by § 202, a regular polygon of an infinite
number of sides ; but since, by the preceding theorem,
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Limitation of axiom of Art. 99.

the arcs coincide with the chords, this polygon is the cir~
cle itself.

205. Scholium. The two preceding demonstrations con-
tain the following obvious and necessary limitation of the
axiom of § 99.

The infinitely small quantities, which are neglected
by the axiom of § 99, must be infinitely small in com-
parison with those which are retained.

In the present case, indeed, the difference between the
infinitely small arc and its chord is infinitely small, and
yet it could not be neglected if it were not infinitely small
in comparison with the arc. For, as the sum of all these
differences corresponding to all the arcs of the circle has
the same ratio to the sum of all the arcs, that is, to the
entire circumference, which each difference has to its arc ;
the sum of the differences, that is, the difference between
the circumference of the circle and the perimeter of the
polygon of an infinite number of sides, would not be in-
finitely small, and, therefore, capable of being neglected,
unless each difference were infinitely small in comparison
with its arc.

206. Theorem. Two regular polygons ABCD, &c.
A'B'C'D, &c. (fig. 115), of the same number of sides,
are similar. .

Proof. For, they are equiangular with respect to each
other, sice the sum of their angles is the same, by § 72,
and each angle of each polygon is found by dividing this
common sum by the number of sides.

Their homologous sides are, moreover, propomot al
for since

AB=BC = CD, &ec.
4B =B C =C1, &c.

(
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To inscribe a Regular Polygon of twice the number of Sides, &c.

we have
4AB: 4B'=BC: B C'=CD: C'D, &ec.
207. Corollary. Hence, and by § 197, the perim-

eters of regular polygons are to each other as their
homologous sides.

208. Theorem. Two circles are similar regular poly-
gons. . ) '
Proof. The number of sides of each circle is any
infinite number whatever, and, if we choose, the same
infinite number for all circles.

209. Theorem. A regular polygon of any number
of sides may be inscribed in a given circle.

Proof. Suppose the circumference ABCD &c. (fig.
116) to be divided into any number of equal arcs 4B,
BC, CD, &c. Their chords 4B, BC, CD, &c. are also
equal, by § 112 ; and the polygon ABCD, &c. formed by
these chords is, by § 202, a regular polygon of a num-
ber of sides equal to that of the arcs 4B, BC, CD, &c.

210. Problem. To inscribe in a given circle a regu-
lar polygon, which has double the number of sides of
a given inscribed regular polygon ABCD &c. (fig.
116).

Solution. Bisect the arcs 4B, BC CD, &c. at the
points M, IV, O, P, &c. Join 4M, MB, BJY, NC, &c
and AMBN'CO, &c. is the required polygon.

Proof. For the sides AM, MB, BYN, NC, &c. being
the sides of equal arcs, are equal, and, by § 202, the
polygon is regular.

211. Corollary. By bisecting the arc= AM, MB,
BX, &c., a regular inscribed polygon 15 obtuined of

Y A
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To inscribe a Square and a Hexagon.

4 times the number of sides of the given polygon; and,
by continuing the process, regular inscribed polygons
are obtained of 8, 16, 32, &c. times the number of sides
of the given polygon.

212. Problem. To inscribe a square in a given
circle.

Solution. Draw the two diameters AB and CD (fig.
117) perpendicular to each other; join 2D, DB, BC,
CA; and ADBC is the required square.

Proof. The arcs AD, BD, BC, and AC are equal,
being quadrants ; and therefore their chords D, DB,
.BC, and C4 are equal, and, by §§ 201 and 202, 4DBC

is a square.

213. Corollary. Hence, by §§ 210 and 211, a poly-
gon may be inscribed in a circle of 8, 16, 32, 64, &c.
sides.

214. Problem. 'To inscribe in a given circle a regu-
lar hexagon.

Solution. Take the side BC (fig. 118) of the hexagon
equal to the radius AC of the circle, and, by applying it
six times round the circumference, the required hexagon
BCDEFG is obtained.

Proof. Join AC, and we are to prove that the arc BC
is one sixth of the circumference, or that the angle BAC
is } of four right angles, or } of two right angles.

Now, in the equilateral triangle ABC, each angle, as
BAC, is, by § 70, equal to } of two right angles.

215. Corollary. Hence regular polygons of 12, 24,
48, &c. sides may, by §§ 210 and 211, be mscribed
a given circle.
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To inscribe a Decagon.

216. Corollary. An equilateral triangle BDF is in-
scribed by joining the alternate vertices, B, D, F.

' 217. Problem. To inscribe in a given circle a reg-
ular decagon.

Solution. Divide the radius AB (fig. 119) in extreme
and mean ratio at the point C. Take BD for the side of
the decagon equal to the larger part AC, and, by apply-
ing it ten times round the circumference, the required
decagon BDEF &c. is obtained.

Proof. Join 4D, and we are to prove that the arc BD
is 4 of the circumference, or that the angle BAD is & of
four right angles, or } of two right angles. .

Join DC. The triangles BCD and ABD have the
angle B common ; and the sides BC and BD, which in-
clude this angle in the one triangle, are proportional to
the sides BD and B, which include the same angle in
the other triangle. For, by § 192,

BC: AC=AC: 4B;
but, by construction, BD is equal to AC, and, being sub-
stituted for it in this proportion, gives

BC: BD=BD: 4B.
. 'The triangles BCD and ABD are therefore similar, by

179.

k Now the triangle ABD is isosceles, and therefore BCD
must also be isosceles ; and the side DC is equal to BD,
which is equal to .ﬂC; so that the triangle ACD is also
isosceles.

We have, therefore,

: the angle A ==the angle 4ADC;
and by § 71,
the angle BCD = the angle 4 4 the angle 4DC
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To inscribe a Pentagon.

=twice the angle 4..
But, in the isosceles triangles BCD and ACD,
the angle BCD =the angle CBD
==the angle ADB
. ==twice the angle 4,
and the sum of the three angles ABD, ADB, and 4 of
the triangle ABD, or by § 65, two right angles, is equal

to five times the angle A. Hence, 4 is § of two right
angles.

218. Corollary. Hence, regular polygons of 20, 40,
80, &c. sides may, §§ 210 and 211, be inscribed in a
given circle.

219. Corollary. A regular pentagon BEGIL is
inscribed by joining the alternate vertices B, E, G,
I, L.

220. Problem. To inscribe in a given circle a regu-
lar polygon of 15 sides.

Solution. Find, by § 217, the arc AB (fig. 120) equal
to & of the circumference, and, by § 214, the arc 4C
equal to } of the circumference, and the chord BC, being
applied 15 times round the circumference, gives the re-
quired polygon.

Proof. For the arc BC is }—& =4 of the circum
ference.

21. Corollary. Hence, regular polygons of 30,
60, 120, &c. sides may, by §§ 210 and 211, be in-
scnibed in a given circle.

222. Problem. To circumscribe a circle about a
given regular polygon ABCD &ec. (fig. 121).



66 '"PLANE GEOMETRY. [CH. xII. § 227.

To circumscribe a Circle about 2 Regular Polygon.

Solution Find, by § 149, the circumflerence of a circle
which passes through the three vertices 4, B, C; apd
this circle is circumscribed about the given polygon.

Proof. Suppose the circumference divided into the
same number of equal arcs AB', BC', &c. as that of the
sides of the given polygon. The chords AB', B'C’, &ec.
form, by § 202, a regular polygon, which, by § 20¢€, is
similar to ABCD &c.

Hence,

the angle 4B C = the angle 4B'C’ ;
and, consequently, by § 108, the arc ABC, which is twice

the arc 4B, is equal to the arc AB'C’, which is twice the
arc AB'. We have then, "

the arc B =the arc AB',
‘and the chord /B is equal to the chord AB’, and coincides
with it. The polygons AB'C'D' &c., ABCD &c., must,
therefore, by § 195, coincide ; and the circle is circum-
scribed about the given polygon.

223. Corollary. There is a point O in every regular
polygon equally distant from all its vertices, and which
is called the centre of the polygen.

224. Corollary. If we join A0, BO, CO, &c., the
angles 40B, BOC, COD, &c. are all equal, and each
has the same ratio to four right angles, which the arc AB
has to the circumference.

225. Corollary. The isosceles triangles 4OB, BOC,
COD, &c. are all equal.

226. Corollary. The angles OB, 0B.A, OBC, OCB,
&ec. are all equal, and each is half of the angle ABC.

227. Problem. To inscribe in a given circle a regu
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To inscribe in a Circle any Regular Polygon.

lar polygon, similar to a given regular polygon 4ABCD
&ec. (fig. 123)

Solution. From the centre O of the given polygon
draw the lines A0, BO ; at the centre O’ of the given
circle make the angle 4'0'B’ equal to AOB, and the
chord 4'B', being applied round the circumference as
many times as ABCD &c. has sides, gives the required
polygon AB'C'D' &c., as is evident from § 224,

228. Theorem. The sides of a regular polygon are
all equally distant from its centre.

Proof. Let fall the perpendiculars OM, OX, OP, &c.
(fig. 122), from the centre O, upon the sides B, BC,
&c. In the right triangles OAM, OBM, OBYN, OCWN,
OCP, &c., the hypothenuses 04, OB, OC, &c. are all
equal, by § 223, and the legs AM, MB, BN, NC, CP,
&ec. are equal, since each is, by § 116, half of 4B, or of
its equal BC, &c. The triangles OAM, OBM, OBWN,
&c. are, consequently, equal, by § 64 ; and the perpen-
diculars OM, O, OP, &c. are equal.

229. Problem. . To inscribe a circle in a given regu-
lar polygon ABCD &ec. (fig. 124).

Solution. From the centre O of the polygon, with a
radius equal to OM, the distance of AB from O, describe
a circle, and it is the required circle.

Proof. The distances OM, ON, OP, &c. are all equal,
by § 228, and therefore the circumference passes through
the points M, JV, P, &c. ; and the sides AB, BC, CD,
&c. are all, by § 120, tangents to the circle ; and the
circle is, by § 118, inscribed in the polygon.

230. Problem. To circumscribe about a given cir-
cle a polygon similar to a given inscribed polygon
ABCD &ec. (fig. 125). 6



68 PLANE GEOMETRY. [cH. x11. § 232.

Homologous Sides of Regular Polygons.

Solution. Through the points 4, B, C, D, &c. draw
the tangents A'B', B'C', CIV, &c. and A'B'C'DV is the
required polygon.

Proof. The triangles AB'B, BC'C, &c. are by § 151,
isosceles ; they are also equal, for the sides 4B, BC,
&c. are equal, and the angles BAB', ABB', CBC', BCC',
"&c. are equal because they are measured by the halves
of the equal arcs 4B, BC, &c. Hence the angles &, B,
&c. are equal, and the sides A'B/, B'C', &c. are equal,
and A'B’C' &ec. is'a regular polygon of the same number
of sides with BC &c.

231. Corollary. A regular polygon of 4, 8, 16,
&c.; 3, 6, 12, &ec. ; 5, 10, 20, &c. ; 15, 30, 60, &c.
sides ; or, one similar to any given regular polygon may,
therefore, be circumscribed about a circle by means of
§§ 212-221, and 228.

232. Theorem. - The homologous sides of regular
polygons of the same number of sides are to each other
as the radii of their circumscribed circles, and also as
the radii of their inscribed circles.

Proof. Let ABCD, &c., AB'C'D, &ec. (fig. 126) be
regular polygons of the same number of sides, and let .0,
O be their centres ; 0OA, O'A agre the radii of their cir-
cumscribed circles, and the perpendiculars OP, O’P’ are
the radii of their inscribed circles.

Join OB, O'B’. The triangles 0A4B, O'/4'B’ are simi-
lar, by § 173, for the angle O4B — OBA= O'B'4'=

O'4 B for each is half the angle ABC—=A'B'C’. Hence,
by § 198,

OP: OP'=AB: AB'=04: 0'4.
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The Ratio of a Circumference to its Diameter.

233. Corollary. Hence, the perimeters of regular
polygons of the same number of sides are, by § 207,
to each other as the radii of their inscribed circles, and
also as the radii of their circumscribed circles.

234." Theorem. The circumferences of circles are
to each other as their radii.
- Proof. For circles are similar regular polygons, by
§ 208, and the radii of their inscribed and circumscribed
circles are their own radii.

235. Corollary. The circumferences of circles are
to each other as twice their radii, or as their diameters.

236. Corollary. If we denote the circumference of a
circle by C, its radius by R, and its diameter by D ; alsc
the circumference of another circle by C', its radius by R/,
and its diameter by I, we have
. C:C=R:R=D:D.

Hence '
C:R=C':R;
and
C:D=C:D
Hence, the circumference of every circle has the same
ratio to its radius ; and also to its diameter.

237. Corollary. If we denote the ratio of the cir-
cumference, C, of a circle to its diameter, D, by =,
we have
’ C:D=m,
also

C=aXD=2x X R,
and '

D= C - m,

R=C:2n
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Unit of Surface.

238. Corollary. = is the circumference of a circle
whose diameter is unity, and the semicircumference of
a circle whose radius is unity.

CHAPTER XIIL

AREAS.

239. Definitions. Equivalent figures are those which
bave the same surface.
The area of a figure is the measure of its surface.

240. Definition. The unit of surface is the square
whose side is a linear unit ; so that the area of a figure
denotes its ratio to the unit of surface.

241. Theorem. Two rectangles, as ABCD, AEFG
(fig. 127) are to each other as the products of their
bases by their altitudes, that is,

ABCD : AEFG=AB X AC : AE X AF.

Proof. a. Suppose the ratio of the bases AB to AE to
be, for example, as 4 to 7, and that of the altitudes AC :
AF to be, for example, as 5 to 3.

AE may be divided into 7 equal parts Aa, ab, be, &e.,
of which AB contains 4; and, if perpendiculars aa’, b¥’,
&ec. to AE are drawn through a, b, ¢, &c., the rectangle
ABCD is divided into 4 equal rectangles Jaa'C, abb'a’,
&c., and the rectangle AEFG is divided into 7 equal
rectangles Aaa’'F, abb'a", &ec.

Again, AC may be divided into 5 equal parts Am, mn,
&e., of which AF contains 3; and, if perpendiculars mm/,
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Area of the Rectangle and Square.

nn', &c. to AC are drawn through m, n, &c., each of the
partial rectangles of ABCD is divided into 5 equal rectan-
gles ; and each of the partial rectangles of AEFG is di-
vided into 8 equal rectangles ; and all these small rect-
angles are, evidently, equal.

Hence ABCD contains 4 X 5 of them, and AEFG
contains 3 X 7 of them ; that is, '

ABCD : AEFG =4 X 6:71 X 8,

which is equal tothe product of the ratio4: 7 by 5: 8,
or of AB : AE by AC : AF, so that

ABCD: AEFG=AB x AC: AE X AF.

b. This demonstration is readily extended to the case
where the sides are incommensurate by dividing the
rectangles into infinitely small rectangles.

'242. Corollary. The rectangle ABCD is, consequently,
by § 240, to the unit of surface, as AB X AC to unity,
or as the product of its base multiplied by its altitude to
unity.

Hence the area of-a rectangle ABCD is the product
of its base by its altitude.

243. Corollary. 'The area of a square is the square
of one of its sides.

244. Corollary. Rectangles of the same altitude
are to each other as their bases, and rectangles of the
same base are to each other as their altitudes.

245. Theorem. Any two parallelograms ABCD,
ABEF (fig. 128) of the same base and altitude are
equivalent.

Proof. The triangles ACF and BDE are equal, by
§ 51 ; for the sides AC and BD are equal, by § 78, being

6*
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Area of the Parallelogram and Triangle.

the opposite sides of ABCD ; also AF and BE are equal,
" being the opposite side of ABFE ; and the angles CAF
and DBE are equal, by § 29, since they have their sides
parallel.

If, now, the triangle ICF is subtracted from the whole
figure ABCE, the remainder is ABFE ; and if BDE is
‘subtracted from the whole figure, the remainder is 2B CD.
Hence, as ABCD and ABFE are the remainders, after
taking equal triangles from the same figure, they must
be equivalent.

246. Corollary. A parallelogram is equivalent to a
rectangle of the same base and altitude.

247. Corollary. The area of a parallelogram is the
product of its base by its altitude.

248. Corollary. Parallelograms of the same base
are to each other as their altitudes ; and those of the
same altitude are to each other as their bases.

249. Problem. Every triangle is half of a parallelo-
gram of the same base and altitude.

Proof. For the triangle ABC (fig. 39) is, by § 77,
half of the parallelogram ABCD of the same base and -
altitude, and it is, therefore, by § 245, half of any paral-
lelogram of the same base and altitude. '

250. Corollary. All triangles of the same base and
altitude are equivalent.

251. Corollary. The area of a triangle is balf the
product of its base by its altitude.

252. Corollary. 'Triangles of the same base are to
each other as their altitudes, and triangles of the same
altitude are to each other as their bases.
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Area of the Trapezoid,

. 253. Theorem. The area of a trapezoid is half the
product of its altitude by the sum of its parallel sides.
e Proof. Draw the diagonal AD (fig. 129); the trape-
zoid ABCD is divided into two triangles ACD and ABD,
the bases of which are B and CD, and the altitude of
each is, by-§ 82, EF.
The area of ABD is, by § 251,

=4} EF x 4B,

and the area of ACD .
=} EF x CD;
the sum of which is
the trapezoid ABCD = § EF X (AB 4 CD).

254. Lemma. The line, which joins the middle
points of the two sides of a trapezoid which are not
parallel, is parallel to the two parallel sides, and is equal
to half their sum. '

Proof. a. Through the middle points H and I (fig. 129)

of the sides MC and BD, draw HI, and through I draw
OT parallel to CA.

The triangles D10 and ITB have the side DI equal to
1B, the angle DIO equal to the vertical angle BIT, and
the angle IDO equal, by § 30, to IBT'; and, therefore,
the triangles DIO and ITB are equal, by § 53 ; and

OI=IT=1} OT.
But, in the parallelogram OCAT, we have, by § 78,
CA=0T;
whence
OI=} CA=CH;
so that CHIO is, by § 81, a parallelogram ; and HI is
parallel to CD, and also to AB. .
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Theorem of Pythagoras.
b. Again, in the equal triangles DIO, TIB, we have
DO=TB;
whence

HI= C0=CD 4 DO,
and also ) .
HI=AT=A4B—BT=A4B—DO;
tne sum of which is
2 HI—=4B 4 CD,
or
HI—=} (4B + CD).
255. Corollary. The area of a trapezoid is the pro-
duct of its altitude by the line joining the middle points
of the sides which are not parallel.

256. Theorem. The square described upon the hy-
pothenuse of a right triangle is equivalent to the sum of
the squares described upon the other two sides.

Proof. Let squares be constructed upon the three sides
of the right triangle ABC (fig. 130), right-angled at B.
From B let fall upon AC the perpendicular BDE, and
the square ACSR is divided into the two rectangles
ADER and DCES.

Now the area of ADER is, by § 242, 4D X 4R
=JAD x AC ; and the area of the square ABNM is, by
§ 243, 4B2.

But, by § 184,

AD: AB—4B: AC;
or multiplying extremes and means,

4B =AD X AC;

that is, the square ABNM is equivalent to the rectangle
ADER.




cH. xrr. § 260.] AREAS. 75

Ratio of the Squares of the Sides of a Right Triangle.

It may be shown in the same way, that the square
BCPO is equivalent to the rectangle DCSE ; and, there-
fore, the square ACSR is equivalent to the sum of the
squares ABNM and BCPO, or ;o

AC*=A4B® + BC?, CoT e,
257. Corollary. The square of one of the legs of
a right triangle is equivalent to the difference between
the square of the hypothenuse and the square of the
other leg ; or
AB* =AC*—BC3.
258. Corollary. In the square (fig. 117),
AB3=AIP + DB* =2 AD*=2 X ADBC;
or the square described upon the diagonal of a square
1 twice as great as the square itself.
Hence
AB?: AD3=2:1;
and, extracting the square root,
4B: AD= /2: 1.
259. Corollary. Since (fig. 130),
A4B'=4D X 4C,
we have
AC3: AB*=4C X AC: 4D X AC=4C: 4D;
and, in the same way,
' AC*: BC*=4C: DC;
or the square of the hypothenuse of a right triangle is to
_the square of one of its legs, as the hypothenuse is to
the segment of the hypothenuse adjacent to this leg, made
by the perpendicular from the vertex of the right angle,
260. Corollary Since '
4B*=4D x 4C,
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To make a Square equal to the Sum or Diffe of given Sq

and
BC*=DC x 4C

we have

4B%: BC®*=uAD x 4C: DC X AC=AD: DC; -
or the squares described upon the two legs of a right
triangle are to each other, as the adjacent segments of
the hypothenuse made by the perpendicular from the
vertex of the right angle.

261. Problem. To make a square equivalent to the
- sum of two given squares. .

Solution. Construct a right angle C (fig. 131) ; take
C4 equal to a side of one of the given squares ; take CB

equal to a side of the other ; join 4B, and 4B is a side

of the square sought.
Proof. For, by § 256,
4B =4C? 4 BC*.

262. Problem. .To make a square equal to the dif-
ference of two given squares.

Solution. Construct, by § 145, a right triangle, of
which the hypothenuse BC (fig. 79) is equal to the side
of the greater square, and the leg AB is equal to the side
of the less square ; and AC is the side of the required
square.

Proof. For, by § 267,

~ 4C*=BC*— 4B '

263. Problem. To make a square equivalent to the
sum of any number of given squares.

Solution. Take 4B (fig. 132) equal to the side of one
of the given squares. Draw BC, perpendicular to 4B,
and equal to the side of the second given square.

Join AC, and draw CD, perpendicular to AC, and
equal to the side of the third given square

: y L gy 45 . e
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To make a Square in a givea Ratie %o a given Squwe.

Jon 4D, and draw DE, perpendicular to 4D, and
oqual to the side of the fourth givem square ; and so ocm.

The line which joins 4 to the extremity of the last side is
the side of the required square.

Proof. For, by § 256,

- A4C=4B* 4 BC?,
ADPR=A4C 4 CD2P=A4B* | BC 4 CD*,
dB=A4DR 4 DE?—A4B*{ BC*{ CD*4 DE*; &e.

264. Scholium. If either of the squares BC®, CD®,
&c. were to have been subtracted instead of being added,
the problem might still have been solved by means of
§ 262.

265. Problem. To make a square which is to a
given square in a given ratio.

Solution. Divide any line, as EG (fig. 133), by § 163,
into two parts, at the point F, which are to each other in
the given ratio of the given square to the required square.

Upon EG describe the semicircle EMG ; draw FM

perpendicular to EG.

Join ME and MG ; take, on ME produced if neces-
sary, MH — AB the side of the given square.

Draw HI parallel to EG, meeting MG in I, and M1 is
the side of the required square.

Proof. Produce MF to P ; and, as the triangle HMI
18, by § 109, right-angled at M, we have, by § 260,

MH?: MP—=HP: PL

Bat by § 181,
HP: PI—EF: FG;

whence, on account of the common ratio HP : Pl,
MH3: MBR=EF: FG.
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Ratio of Similar and Regular Polygons.

266. Theorem. Similar triangles are to each other
as the squares of their homologous sides.
Proof. In the similar taiangles -ﬂBC 4B C (fig. 109),
we have, by § 199,
CE: CE'=AB: 4B,
which, multiplied by the proportion
jAB: 4B =AB: 4B,
gives
jAB X CE: } 4B X CE'=4B2: 4B?*,
and, by § 251,
the area of ABC : the area of 4'B'C'=A4B*: 4'B".

267. Corollary. Hence, by § 197 & 198, similar
triangles are to each other as the squares of their homo-
logous altitudes, and as the squares of their perimeters.

" 268. Theorem. - Similar polygons are to each other
as the squares of their homologous sides.

Proof. Inthe similar polygons ABCD &ec., A'B'C'DY
&e. (fig. 108), the triangles ABC, 4'B'C', which are sim-
ilar, by § 196, give, by § 266, the proportion

4ABC: ABC' =JAC?*: 4C*;
also the similar triangles ACD, #C'D, give the propor-
tion

ACD: ACD=AC?*: £C'2;
hence, on account of the common ratio AC?: A C?,

4ABC: AB'C=ACD: ACD'.
In the same way may be obtained the continued propor-
tion

ABC: AB'C'=A4CD: #C'D =ADE: ADE, &e.

Now the sum of the antecedents ABC, ACD, ADE, &c.
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Ratio of Circles.

is the polygon ABCD &c., and the sum of the consequents -
4B C, ACD, ADE, &.c is the polygon AB'CD &e.;
go that, by § 266,

4BCD &c.: #B'C'D &c.—=4BC: 4'B'C = AB*: AB3.

269. Corollary. Similar polygons are, therefore, to
each other, by § 197, as the squares of their. perim-
eters.

270. Corollary. As regular polygons of the same
number of sides are, by § 206, similar polygons, they
are to each other as the squares of their homologous
sides, and, by § 232, as the squares of the radii of
their inscribed circles, and also as the squares of the
radii of their circumscribed circles.

271. Theorem. Circles are to each other as the
squares of their radii.

Proof. For, by § 208, they are regular polygons of
the same number of sides, and, as in § 234, the radii of
their inscribed and circumscribed circles are their own
radii.

272. Problem. Two similar polygons being given,
to construct a similar polygon equivalent to their sum or
to their difference.

Solution. Let A and B be the homologous sides of the
gwen polygons. Find, by § 261, or by § 262, the line X
such that the square constructed upon X is equal to the
sum or the difference of the squares constructed upon A4
and B. The polygon similar to the given polygons, con-
structed, by § 194, upon the side X homologous to . or
B, 18 the required polygon.

Proof. For, by § 268, the similar polygons construct-
7
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To make a Polygon-in a given Ratio to similar Polygons.

* ed upon 4, B, and X, have the same ratio to each other
as the squares upon 4, B, and X,

273. Corollary. If A and B were the radii of two
given c'rcles, X would, by § 271, be the radius of a
circle equivalent to their sum or to their difference.

274. Corollary. By the process of § 263, a poly-
gon might be constructed equivalent to the sum of any
number of given similar polygons, and similar to them,
or a circle equivalent to the sum of any number of given
circles ; or, if either of the given polygons or circles is
to be added instead of being substracted, the resulting
polygon or circle may be obtained, as in § 264.

275. Problem. To construct a polygon similar to a
given polygon, and having a given ratio to it.
Solution. Let A be a side of the given polygon. Find,

by § 265, the side X of a square which is to the square,

constructed upon J, in the given ratio of the polygons.
The polygon, constructed upon X, similar to the given
polygon, is the required polygon.

Proof. For, by § 268, the similar polygons construct-
ed upon 4 and X, have the same ratio to each other as
" the squares upon A and X

276. Corollary. In the same way, a circle may be
constructed having a given ratio to a given circle, by
taking for 4 and X the radii of the given and of the re-
fuired circles.

277. Theorem. The area of any circumscribed poly-
gon is half the product of its penmeter by the radius
of the inscribed circle.

Proof. From the centre O (fig. 134) of the circle draw
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Area of a Circle.

.O.d, OB, OC, %c. to the vertices of the circumscribed

polygon ABCD, &c. Draw the radii OM, ON, OP, &c.
to the points of contact of the sides

If, now, the sides AB BC, CD, &c. are taken for the
bases of the triangles 0.1B, OBC, OCD, &ec. ; their al-
titudes, being the radii OM, OX, OP, &c., are all equal.
The area of each of these triangles is, then, by § 251,
half the product of its base /B, BC, CD, &c. by the
common altitude OM.

The sum of the areas of the triangles, or the area of
the polygon is, consequently, half the product of the sum
of the sides, 4B, BC, &c. by the common altitude OM ;
that is, half the product of the perimeter ABCD &c. of
the polygon by the radius OM.

278. Corollary. Since a circle can, by § 229, be
inscribed in any regular polygon, the area of the regular
polygon is half the product of its perimeter by the ra-
dius of its inscribed circle.

279. Theorem. The area of a circle is half the
product of its circumference by its radius.

Proof. For a circle is, by § 204, a regular polygon,
and the radius of its inscribed circle is its own radius.

280, Corollary. If we use C, D, R, and =, as in
§ 237, and denote by A the area of a circle, we have

A=} CX R=} 22 XRXR
=g X R2=1a X D?

281. Corollairy. When R=1,
we have A==n
282. Definition. A sector is a pait of a circle come
C:R=T A=C: 7 -
T=C:R  R=(': "o
C=7TRR
=727xR
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An infinitely small Sector is a Triangle.

prehended between an arc and the two radii drawn to
its extremities, as AOB (fig. 135).

283. Theorem. The area of a sector is half the
product of its arc by its radius.

Proof. Suppose the arc AB (fig. 135) of the sector
A0B divided into the infinitely small arcs AM, MN, NP,
&c. Draw the radii OM, ON, OP, &c.

The sector AOB is divided into the infinitely small sec-
tors AOM, MOXN, NOP, &c.; which may, by § 203, be
considered as triangles, having for their bases AM, MWV,
NP, &c., and for their altitudes the radii 0.4, OM, OX,
&e. ’

The sum of the areas of these triangles, or the area
of the sector is, then, half the product of the sum of the
bases AM, M, NP, &c. by the common altitude 04 ;
that is, half the product of the arc AB by the radius 0.

284. Corollary. The area of the segment ADB is
found by subtracting the area of the triangle AOB from
that of the sector JOB.

285. Scholium. In order that no doubt may exist with
regard to the accuracy of the demonstrations of § 283,
279, and 271, it is important to show that the infinitely
small quantities, which are neglected in considering an
infinitely small sector as a triangle with a base equal to
its arc and an altitude equal to its radius, come within
the limitation of § 205.

Now, the difference between the infinitely small sector
JA0B (fig. 113), and the triangle AO0B, is the segment
ADB. But the segment ADB is less than the rectangle
AEE B ; and, by § 242 and 251, the rectangle
AEE'B : the triangle A0B=4B X CD: } AB X 0C
" =CD:}0C
—=2CD: 0C;
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Ratio of Similar Sectors and Segments.

-

and, therefore, as 2 CD is infinitely small in comparison
with OC, the rectangle AEE'B and the segment ADB
must be infinitely small in comparison with the triangle
A0B, and may be neglected by § 204 ; so that the sec-
tor OB is equivalent to the triangle A0B.

The base of the triangle 2OB is the chord AB, or, by
§ 203, the arc 48 ; and its altitude OC differs from the
radius OD by the infinitely small quantity CD, which
may be neglected.

The error arising from the neglect of these infinitely
small quantities is altogether insensible, and cannot be
rendered sensible by any magnifying process to which the
mind can submit it ; it is, then, no error at all. Indeed,
if there be an error, suppose it to be represented by A.
Since the aggregate of the quanties neglected is infinitely
small, that is, as small as we choose ; we can choose it to
be less than the error A ; a manifest absurdity, for the
error cannot be greater than the aggregate of the quan-
ties neglected, and yet we cannot escape this absurdity
so long as we suppose the error A to be of any magnitude
whatever.

286. Definition. Similar sectors and similar seg-
ments are such as correspond to similar arcs.

287. Theorem. Similar sectors are to each other as
the squares of their radii.

Proof. The similar sectors A0B, A'O'B' (fig. 136)
are, by the same reasoning as in § 97, the same parts of
their respective circles, which the angle 0= 0 is of four
right angles; and, therefore, they are to each other ae

these circles, or, by § 271, as the squares of the radii
40, 40.

288. Theorem. Similar segments are to each other
as the squares of ;hfir radii.
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To find a Triangle equivalent to a given Polygon.

Proof. Let ADB, A/ D'B’ (fig. 136) be the similar seg-
ments. The triangles AOB and 4'O'B’ are similar, by
§ 179; for O=0'; and, since #0=B0 and 40
== B'Q, we have

40: 40'=B0: B'O.
Hence, by § 266,

the triangle 20B : the triangle 4 O'B'=.40%: 4 0%
also, by the preceding article,

the sector AO0B : the sector £ 0'B'=40%: 407,
Hence, by the theory of proportions,
the sector 4OB —the triangle 0B : the sector A‘'0'B'

—the triangle 4'O'B' = 40?: 403;
that is,
the segment ADB : the segment 4'D'B'=A0%: 403,

289. Problem. To find a triangle equivalent to a
given polygon.

Solution. Let ABCD &%ec. (fig. 137) be the given poly-
gon. Join BD; through C, draw CM parallel to BB.
Join DM, and AMDE &ec. is a polygon equivalent to the
given polygon, and having the number of its sides less
by one.

In the same way, a polygon may be found equivaleat
to AMDE, and having the number of its sides less by
one ; and by continuing the process, the number of sides
may be at last reduced to three, and a triangle is obtained
equivalent to the given polygon.

Proof. a. The number of-sides of AMDE &ec. is less
by one than that of ABCD &ec. ; for the two sides AM,
M) are substituted for the three sxdes 4B, B C' CD, the
other sides remaining unchanged.

b The polygon AMDE &t. is equivaleat to ABCD
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Quadrature of Polygon and Circle.

&ec. ; for the part ABDE &c. is common to both, and the -
triangles DBC, DBM are equivalent because they have
the same base BD and the same altitude, by § 82, their
vertices C and M being in the line CM parallel to this
base. .

290. Problem. To find a square equivalent to a
given parallelogram.

Solution. Let B be the base and 4 the altitude of the
given parallelogram. ‘Find, by § 188, a mean propor-
tional X between 4 and B, X is the side of the square
sought.

Proof. For we have

4: X=X:B,
and, therefore, '

X2=A4A X% B;
or, by §§ 242 and 243, the square constructed upon X is
equivalent to the given parallelogram. A

291. Corollary. A square may be found equivalent
to a given triangle, by taking for its side a mean pro-
portional between the base and half the altitude of the
triangle.

292. Corollary. A square may be found equivalent
to a given circumscribed polygon, by taking for its side
a mean proportional between the perimeter of the poly-
gon and half the radius of the inscribed circle.

293. Corollary. A square may be found equivalent
to a given circle, by taking for its side a mean pro-
portional between the radius and half the circumference
of the circle.

294. Corollary. In general the quadrature of any
given polygon may be found, that is, a square may be
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To construct a Polygon of a given Area and similar to a given Polygon.

found equivalent to any given polygon, by finding, by
§ 289, the triangle which is equivalent to the polygon,
and, by § 291, the square which is equivalent to this
triangle.

295. Problem. To construct a polygon equivalent
to a given circle or polygon, P, and similar to a given
polygon, Q.

Solution. Find, by §§ 293 or 294, M the side of a
square equivalent to P, and JV the side of a square
equivalent to Q. Let 4 be one of the sides of Q. Find,
by § 165, a fourth proportional X, to N, M, 4. The
polygon- constructed by § 194, similar to @ upon X
homologous to 4, is the required polygon.

Proof. Let ¥ be the polygon constructed upon X, we
have only to prove that it is equivalent to P.

Now we have N M=4: X,
whence N M=% X3,

Also, by § 268,

Q: Y=u: X3,
and leaving out the common ratio 4 : X3,
N:M2=Q: Y.

But Ne=Q and M2=P,
whence Q:P=Q:Y%,
or Y=P.

296. Problem. To construct a circle equivalent to a
given polygon.

Solution. Find, by § 294, M the side of a'square equiv-
alent to the given polygon. Find, by § 265, R the side
of a square which is to the given square in the ratio of
the diameter of a circle to its circumference. R is the
radius of the required circle.
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To construct a Parallelogram equivalent to a given Square.

Proof. Using = as in § 237, we have, by construction,
M:R*=n
whence - n R? = M2 = the given polygon.

That is, by § 280, the circle of which R is the radius is
equal to the given polygon.

297. Problem. To coustruct a parallelogram, equiv-
alent to a given square, and having the sum of its base
and altitude equal to a given line.

Solution. Upon the given line AB (fig. 138) as a di-
ameter describe a semicircle. At A, erect the perpen-
dicular AC equal to the side of the given square. Draw
CD parallel to AB, to meet the circumference at D).
Draw DE perpendicular to 4B ; AE and EB are the
required base and altitude.

Proof. For AE + EB=AB, and by § 290,

4AE X EB=DE*=AC3,

298. Probiem. To construct a parallelogram, equiv-
alent to a given square, and having the difference of its
base and altitude equal to a given line.

Solution. Upon the given line AB (fig. 139) as a di-
ameter describe a circle. At 4 draw the tangent AC
equal to the side of the given square. Through the centre
O of the circle, draw the secant COE. CD and CE are
the required base and altitude.

Proof. For we have

CE—CD = DE=@B,
and, by § 191,
CE: AC=4C: CD,
whence
4C*=CE x CD
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Ratio of a Circumference to its Diameter.

299. Lemma. If in a circle, whose radius is R, C
is the chord of an arc and C' the chord of half the aic ;
C, C' and R will always satisfy the equation

C'=2R'—R+/(4 RR—C).
. Proof. Let 4B (fig. 140) be the chord C and let 4.4
be C'; OM4A is, by § 117, perpendicular to 4B, and the
triangle OMA gives
OM3 =0, —AM=R*— (} C)®=R2—} C®
Hence, by § 187,
AM=40—O0M=R— /(R —} C3)

Ch=A443—=A'M X 4D

=2 R?—2R (R"—}

=2R'—R /(4 R"— ?)

300. Corollary. When R=1,
this equation becomes

C=2—y(1—O0)

301. Problem. To find the ratio of the circumfer-
ence of a circle to its diameter.

Solution. 'This ratio has been denoted, in § 231, by = 3
it does not admit of being expressed in numbers, and can
only be obtained approximately. The principle of ap-
proximation consists in supposing the circumference to be
equal to the perimeter of some one of its inscribed poly-
gons: and the error of this hypothesis is the less, the
greater the number of sides of the polygon ‘

First Approzimation. Let the radius 40 (fig. 140) of
the circle be unity, and its circumference is, by § 238,
2 z. If, now, the hexagon ABCD &ec. is inscribed in the
circle, we have, by § 214, for its side,

4B==1,
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and for its perimeter
6 X 4B=6;
so that, by supposing this perimeter to be equal to the cir-
cumference, we have for a first approximation
2 n=6, or n=3. '

Second Approzimation. Bisect the arcs AB, BC &c'
by the radii O, OB’ &c. Join 44, 4A'B &c., and we
have an inscribed polygon of 12 sides, and, by § 300,

a3 =2— 21— AB%;
A8 = y(2— JI—AB)
But =1, .
whence A = /2 —J8 =0'517 nearly.
Hence the perimeter
AABB'C &c. =12 X AA' = 6204 nearly.

And, if this is assumed for the circumference, we have,
for the second approximation,

n = 3102 nearly.

Third Approzimation. If now we consider AB as the
side of the inscribed polygon of 12 sides, A/ is the side
of the polygon of 24 sides, and we have for 4B,

4B = /2 — /3 =0511,
4B —2— /3 =0-267,
A2 =2 — /1T —ABT =2— /2 } +/3=0068.
A2 =0-261. .
The perimeter AA4'B &c.—=24 X AL =626
and, by assuming this perimeter for the circumference, we
have « =313 nearly.

Further approximations might be obtained by supposing
4B successively to be the side of an inscribed polygon of
24, 48, &c. sides, and by carrying the calculation to a
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Value of 7.

greater number of decimals. But it is useless to extend
this process any further, as much more expeditious meth-
ods of calculating the value of = are obtained from the
higher branches of mathematics, by means of which it
has been calculated to 140 places of decimals.
For almost all practical purposes, the value of
n=23'1416,= O
is sufficiently accurate.

CHAPTER XIV.

ISOPERIMETRICAL FIGURES.

802. Definitions. Those figures which have equﬂ
perimeters are called isoperimetrical-figures.

Among ‘quantities of the same kind, that which is
greatest is called a mazimum ; and that which is small-
est a minimum.

Thus the diameter of a circle is a mazimuin among all
wnscribed straight- lines ; and a perpendicular is a mini-
mum among all the straight lines drawn ﬁ'om a given
point to a given straight line.

303. Theorem. The maximum of isoperimetricai
triangles of the same base is that triangle in which the
two undetermined sides are equal.

Proof. Let the two triangles 2CB and 4DB (fig. 141)
bave the same base /B, and the same perimeter, that is,

4B +4C 4 BC—= 4B + 4D - BD,
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Mazimum of Isoperimetrical Triangles of the same Base.

or, taking away AB,
AC+ BC=AD - BD,
and suppose ACB isosceles, or 4C= CB.
We are to prove that
the triangle 2CB ™> the triangle ADB.
But, since these triangles have the same base 4B, they
are to each other as their altitudes CE and DF ; so that
we need only prove
CE > DF.

Produce AC to H, makmg CH=CB=A4C. Join
BH ; and if a semicircle is described upon AH as a di-
ameter with the radius AC=CH, it will pass through
the point B ; and ABH, being inscribed in it, must be a
right angle.

Produce BH towards L, and take DL=DB. Join
4L, and we have
.£D+DL=.dD+DB=.£C+CB=.HC+CH=-£H.

But 4D + DL> 4L,
or 4H > AL.
Hence, by § 41,

4 BH>BL,
and 3 BH>} BL.

Now, letting fall the perpendiculars CI and DM upon
BH and BL, we have

} BH=BI=CE,
3 BL=BM=DF;
whence CE > DF.
304. Theorem. The maximum of isoperimetrical
_ polygons of the same number of sides is equilateral.
Proof. TLet ABCD &ec. (fig. 142) be the maximum of
isoperimetrical polygons of any given number of sides
8 .
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Mazimum of Polygons formed of sides all given but one.

Join AC. The triangle ABC must be the maximum
of all the triangles which are formed upon AC, and with
a perimeter equal to that of ABC. Otherwise a greater
triangle AFC could be substituted for ABC, without
changing the perimeter of the polygon, which would be
inconsistent with the hypothesis that ABCD &ec. is the
maximum polygon.

Therefore, by the preceding article, )

4B=BC. '
In the same way it may be proved, that
BC=CD=DE, &c.

805. Theorem. Of all triangles, formed with two
given sides making any angle at pleasure with each oth-
er, the maximum is that in which the two given sides
make a right angle. ’

Proof. Let ABC, ADC (fig. 143) be triangles, formed
with the side AC common and the side AB==A4D, and-
suppose BAC to be a right angle.

As these triangles have the same base C, they are to
each other as their altitudes 4B and DE. But

AB = 4D,
and, by § 39, 4D> DE;
whence 4B > DE,

and the triangle 4B C > the triangle ADC.

306. Theorem. The maximum of polygons formed
of sides, all given but one, can be inscribed in a semi-
circle having the undetermined side for its diameter.

Proof. Let ABCD &c. (fig. 144) be the maximum

polygon formed of the given sides B, BC, CD &ec.
Draw from either vertex, as I), to the extremities 4
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Maximum of Polygons formed of given Sides.

and 8§ of the side not given, the lines DA, DS. The
triangle ADS must be the maximum of all triangles
formed with the sides A and S ; otherwise, either by in-
creasing or else by diminishing the angle 4DS, the tri-
angle ADS would be enlarged, while the rest of the poly-
gon ABCD, DEF &c. would be unchanged ; so that the
polygon would be enlarged, which is inconsistent with the
hypothesis that it is the maximum polygon. The angle
ADS is, therefore, a right angle by the preceding article,
and is inscribed in the semicircle which has A8 for its
diameter.

307. Theorem. The maximum of all polygons
formed of given sides can be inscribed in a circle.

Proof. Let ABCD &c. (fig. 145) be a polygon which
can be inscribed in a circle, and A'B’'C'I) &c. one which
cannot be inscribed in a circle, but equilateral with re-
spect to ABCD &ec. .

Draw the diameter AM. Join EM, MF. Upon E'F,
equal to EF, construct the triangle E'MF', equal to
EMF, and join AM.

The polygon .ABCDEM, which is inscribed in the
gemicircle having AM for its diameter is, by the pre-
ceding article, greater than A'B'C'IVE'M formed of the
same sides but one, and which cannot be so inscribed.
In the same way

the polygon AMFG &c. > AM PG &c.
Hence, the entire polygon ABCDEMF &c. > A'B!C'D
EM'F &c.,and, subtracting the triangle EMF=<=E'M P

the polygon ABCD &c. > 4'B'C'D' &e.

308. Theorem. 'The maximum of isoperimetrica)
polygons of the same number of sides is regular.
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Greatest of Isoperimetrical Regular Polygons.

Proof. For, by § 304, it is equilateral ; and, by the
preceding article, it can be inscribed in a circle ; so that,
by § 202, it is regular.

809. Theorem. Of isoperimetrical regular polygons
that is the greatest which has the greatest number of
sides.

Proof. Let ABCD &c., A'B'C'D &c. (fig. 146) be
two isoperimetrical regular polygons, of which ABCD
&ec. has the greater number of sides.

Denote the area of ABCD &c. by S, and the radius
OH of its inscribed circle by R ; and denote the area of
AB'C'D &c. by &, and the radius O'H of its inscribed
circle by R’; also the common perimeter of the two poly-
gons by P.

Then we have, by § 277,

§:8=}PXR:}PXR,

or, striking out the common factor } P,

S:8=R:R;
so that, in order to prove
$> 49,
we have only to prove .
R >R.

Upon A'B', as a side, describe a polygon 4'B'C"D” &ec.
sinilar to ABCD &c. ; denote its perimeter by P”, and
the radius Q"M of its inscribed circle by R".

- Join A'0’ and A'0" ; describe the arc MJN with the
radius R’, and the arc M')V’' with the radius R, .
The half side 4'M is, evidently, the same part of the

perimeter P, which the arc M')V'is of its circumference,

which circumference is, by § 237, equal to 2 = X R';

that is,

AM: P=MN:2z X R,
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and in the same way,
P :AM=2zX R :MN,
the product of these two proportions is, by striking out the
factors common to the terms of each ratio,
P':P=R'X MN: R x MN',
But, by § 233, :
P':P=R":R
and, on account of the common ratio P : P,
R':R=R'X MN: R X MN,
which, multiplied by the identical proportion
) R:R'=R': R’
gives, by striking out the common factors,
R:R=MN: MN,
so that we need only prove
MN > MN,
in order to prove
R>R.
~ Now, the angle 4'O'M' is obtained by dividing 360° by
twice the number of sides of the polygon 4'B'C'D/, &ec.,
and the angle 4’0"/ is obtained by dividing 360° by
twice the number of sides of the polygon A'B'C"D" &e.,
but the second number of sides was supposed to be great-
er than the first, and, therefore,
the angle 4’ 0"M' < the angle 40/ ;
and, therefore, as the angle O"A'M is, by § 69, the re-
mainder after subtracting the angle 4'O"M' from 90°, it
is greater than the angle O'2'M which remains after sub-
tracting 4’ O/ from 90° ; and 0"A'M includes O'AM' ;
8o that the radius M 0" is greater than M' 0, and the cir-
cle described with M'O" as a radius includes the circle

described with M'O' as a radius.
. 8 *
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Maximum of Isoperimetrical Figures.

Join )YV ; and upon the middle of N¥* erect a perpen-
dicular meeting the tangent T to the arc NW at T,
which it will do, for the angle TV, being less than the
right angle TWL, is acute.

Join W T, and, by § 42,

) NT=NT.
But since the concave broken line TWM is incluaed
by TN, we have
TN +~ NM > TN 4 NW,
whence, omitting TN equal to TW,

NM > NM,
and, therefore, R >R,
and S$> 8.

310. Corollary. As the circle is a polygon of an
nfinite number of sides, that is, of a greater number
of sides than any other regular polygon, it is greater
than any polygon of a finite number of sides which
. has a perimeter equal to the circumference of the circle
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CHAPTER XV.

PLANES AND SOLID ANGLES.

811. Theorem. Three points not in the same straight
line determine the position of the plane in which they
are situated.

Proof. For if any plane, passing through two of the
points, is swung around the line joining these two points,
until it comes to a position in which it passes through the
third point, it must remain in this position. For swinging
it any further must remove it from this third point.

312. Corollary. Only one plane can be drawn
through three points not in the same straight line.

313. Theorem. The common intersection of two
planes, which cut each other, is a straight line.

Proof. For, if any two of the points common to the
two planes be joined by a straight line, this straight line
must, by § 14, be in both of the planes; and no point out
of this straight line can, by § 312, be in the two different
planes at the same time.

814. When two planes cut each other, they form
an angle, the magpitude of which does not depend
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Intersection and Angle of two Planes.

upon the exteﬁt, but merely upon the position of the
planes.

315. Theorem. The angle of two planes, which cut
each other, is measured by the angle of two lines drawn
perpendicular to the common intersection of the two
planes, at the same point, one in one of the planes, and
one in the other.

Proof. In order to show the legitimacy of this measure
we have only to prove that the angle of the two lines is
proportional to the angle of the two planes.

Let 4B (fig. 147) be the common intersection of the
two planes ; and let AC and AD be the two lines drawn
in these planes perpendicular to the common intersection

3
: B ‘ Let a third plane be drawn having also the common in-
\\ “ tersection 4B with the two given planes, and let AE be
A drawn in this plane perpendicular to AB. We are to
/  prove that the angle of the planes DAB and C4B is to
\) ! that of the two planes EAB and CAB as DAC is to EAC.
i For this purpose, suppose the angles of the planes to
i  be to each other as any two whole numbers, and let the
5’ angle of the two planes CAB and a AB be their common
! divisor, 4 a being perpendicular to 4B. The angle CAa
/' must be a common divisor of the two angles CAE and
! CAD; and it is shown by precisely the reasoning so
\  often adopted, that the angles of the planes are to each

other as CAD to CAE.
\90316. Corollary. When the angle CAD is a right
gle, the planes are perpendicular to each other.

' 817. Definitions. A straight line is perpendicular
> to a plane, when it is perpendicular to every straight
line drawn through its foot in the plane.

-
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Line Perpendicular to a Plane.

Reciprocally, the plane, in .this case, is perpendicu-
lar to the line.

The foot of the perpendicular is the point in which
it meets the plane.

318. Theorem. When a straight line is perpen-
dicular to two straight lines drawn through its foot in
a plane, it is perpendicular to every other straight line
drawn through its foot in the plane, and, consequently,
is perpendicular to the plane.

Proof. Let CAC!, DAD' (fig. 148) be the two lines
to which 4B is perpendicular, and let EAE’ be any other
line drawn in the plane, we are to prove that B4 is per-
pendicular to EAE'.

Take AC equal to AC’, and AD equal to AD', join DC
DcC.

Turn D'AC'E' around upon the point A, keeping AD/
and AC' perpendicular to 4B until 4D falls upon 4D, and
then AC' will fall upon 4C, because the angle D'A'C' is
equal to DAC', D' C will fall upon DC, E' upon E, and
JAE' upon AE. Therefore, the angle BAE' is equal to
the angle BAE, and each is, by § 20, a right angle.

319. Corollary. The perpendicular B4 is less than
any oblique line BE, and measures the distance of the
point B, from the plane.

320. Theorem. Oblique lines drawn from a point
to a plane at equal distances from the perpendicular are
equal ; and of two obhque lines unequally distant the
more remote is the greater.

Proof. a. The oblique lines BC, BD, BE %c. (fig

149) at the equal distances AC, 4D, 4E &c. from the
perpendicular BA are equal; for the triangles B.AC,
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Oblique Lines drawn to a Plane.

BAD, BAE, &c. are equal, by § 51, since the angles
BAC, BAD, BAE, &c. are equal, being right angles, the
sides AC, 4D, AE &%c. are equal, and the side B4 is
common. .

b. Since the oblique line BC' is drawn to the line AC’
at a distance AC' greater than AC from the perpendicular
B4, it is, by § 41, greater than BC or its equal BD or
BE.

321. Corollary. All the equal oblique lines BC, BD,
BE &c. terminate in the circumference CDE, drawn with
4 as a centre, and a radius equal to AC.

322. Theorem. If a line is perpendicular to a plane,
every line which is parallel to this perpendicular, is like-
wise perpendicular to the plane.

Proof. Let AB (fig. 150) be the perpendicular to the
plane, and let CD be parallel to 4B, CD is likewise per-
pendicular to the plane, that is, to every straight line, as
DE, drawn through its foot in that plane. For, if BH
be drawn through the foot of AB, parallel to DE, the an-
gle ABH is, by § 317, a right angle ; but, by § 29, the
angle CDE is equal to ABH, and is, also, a right angle.

323. Corollary. Hence straight lines, which "are
perpendicular to the same plane are parallel.

324. Theorem. If two planes are perpendicular to
each other, the line, which is drawn in one of the planes
perpendicular to their common intersection, must be
perpendicular to the other plane.

Proof. Let the plane M (fig. 151) be perpendicular
to the plane PQ; and let 4B be perpendicular to the
common intersection AP, we are to prove that AB is per-
pendicular to MN.

Draw, in the plane MW, AC perpendicular to 4P, BAC
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Perpendiculars to a Plane.

must, by § 316, be a right angle. As 4B is, there‘ore,
perpendicular to both AC and AP, it is, by § 318, per-
pendicular to the plane MN.

325. Corollary. If two planes are perpendicular to
each other, the straight line, drawn through any point
of the common intersection perpendicular to one of the
planes, must be in the other plane.

326. Theorem. If two planes are perpendicular to
a third plane, their common intersection is also perpen~
dicular to this third plane.

Proof. For, by the preceding article, the straight line
4B (fig. 152) drawn through the common point A of the
three planes, perpendicular to the third plane MW, must
be in both of the planes AP and AQ, and must, therefore,
be their common intersection.

327. Theorem. Two parallel lmes are always in the
same plane.

Proof. Draw a plane MV (fig. 153) perpendicular to
one of the parallels AB, it must also, by § 322, be per-
pendicular to the other parallel CD; and.if a plane is
drawn through the two points A and C, perpendicular to
MUY, AB and CD must both, by § 325, be in this plane.

328. Definitions. A straight line and a plane are
parallel when all the points of the straight line are
equally distant from the plane.

Two planes are parallel, when all the points of one
of the planes are equally distant from the other plane.

329. Theorem. A straight line and a plane are par-

allel, when they are perpendlcular to the same stralght
line.
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Paraliel Planes and Lines.

Proof. Let the straight line BC (fig. 154) and the
plane MUV be perpendicular to the same straight line 4B ;
we are, by § 319, and 328, to prove that the perpendicu-
lar DC let fall from any point C of the line BC upon MN*
is equal to AB.

Join 4D ; AB end CD are parallel, by § 323, also 4D
is, by § 317, perpendicular to 4B, and being in the plane
of the parallels 4B, CD, must, by § 35, be parallel to
BC ; so that ABCD is a parallelogram, and its opposite
sides B and CD are equal, by § 78.

330. Theorem. If two planes are perpendicular to
- the same straight line, they are parallel.

Proof. Let the planes MV, PQ (fig. 155) be perpen-
dicular to the line 4B ; we are, by § 328, to prove that
the line CD, drawn from any point of P@Q perpendicu-
larly to MW, is equal to AB.

Join BC, and, as BC is, by § 317, perpendicular to
4B, it is, by § 329, parallel to MJ/V; and, therefore, CD
is equal to 4B. '

331. Theorem. If a straight line is perpendicular
to one of two parallel planes, it must also be perpen-
dicular to the other. A

Proof. Thus, if AB (fig. 155) is perpendicular to the
plane MU, it must also be perpendicular to the plane PQ,
which is parallel to M.V,

For the plane drawn through B, perpendicular to /B,
must be parallel to AV, and must therefore coincide with
the plane PQ.

332. Theorem. If two planes are parallel to a third,
they are parallel to each other.

Proof. For any line perpendicular to the third plane
must, by the preceding article, be perpendicular to both
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Parallel Planes and Lines.

the other planes ; so that these other planes, being per-_
pendicular to the same straight line, are parallel, by
§ 330.

333. Theorem. Two parallel lines, comprehended
between two parallel planes, are equal.

Proof. Let the two parallel lines AB, CD (fig. 156)
be included between the two parallel planes MW, PQ.

If the parallel lines are perpendicular to the parallel
panes, they are equal, by § 328.

Otherwise, draw from the points A and C the lines 4E,
CF, perpendicular to MJV'; and join BE, DF.

The triangles ABE, CDF are equal, by § 63 ; for the
sides AE and CF are equal, by § 328 ; the right angles
4EB and CFD are equal; and the angles BAK and
DCF are equal, by § 29, because they have their sides
parallel ; hence 4B is equal to CD.

334. Theorem. The intersections of two parallel
planes by a third plane are parallel lines.

Proof. Let the intersections of the plane AD (fig
156) with the parallel planes MV, PQ be AC and BD.
Through A and C, in the plane 4D, draw the parallel
lines 4B, CD ; these parallels are-equal by the preceding
article, and, therefore, by § 81, ABCD is a parallelo—
gram, and AC is parallel to BD.

335. Theorem. If a straight line is parallel to another
_ straight line drawn in a plane, it is parallel to the plane.

Proof. Let AC (fig. 156) be parallel to the line BD
n the plane MN.

Through any point 4 of the line AC, let a plane PQ
e drawn parallel to M. 'The intersection of P @Q with
t\e plane ABCD is, by the preceding article, parallel to
- BD; and, as it also passes through the point J/, it must
voincide with AC.
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Lines comprehended between three Parallel Planes.

. Now, since AC is in the plane PQ parallel to MY, all
its points must, by § 328, be equally distant from JMN,
and it is therefore parallel to MV.

836. Theorem. Two straight lines, comprehended
between three parallel planes, are divided into parts that
are proportional to each other.

Proof. Let the line AC (fig. 157) meet the three paral-
lel planes MY, PQ, RS at the points 4, B, C; and let
the line DF meet the same planes at D, E,. F.

Join AF cutting the plane PQ at H; join 4D, BH
HE, CF. The intersections BH and CF of the parallel
planes PQ and RS with the plane ACF, are parallel, and
give, by § 160, the proportion

4B: BC=JAH: HF.

In like manner, the intersections HE and AD of the
parallel planes PQ and MWV with the plane F.AD are
parallel, and give the proportion

AH: HF = DE: EF.
Hence, on account of the common ratio AH : HF,

4AB: BC=DE: EF.
that is, the lines /2B and DF are divided proportxonally at
Band E.

337. Definitions. When three or a greater number
of planes meet at a point, a solid angle is formed ; as
8 (fig. 158) formed by the planes 4SB, BSC, CSD,
D3sA.

The point of meeting, 8, of the planes, is called the
vertez of the angle.

838. Theorem. If a solid angle is formed by three

plane angles, the sum of either two of these angles 1s
greater than the third.
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Sum of the Plane Angles which form a Solid Angle.

Proof. Let S (fig. 159) be a solid angle formed by the
three plane angles ASB, BSC, and ASC, and let 4SC,
be the greatest of these plane angles. We need only
prove that ASC < ASB - BSC.

Draw 8D, making the angle CSD equal to CSB.
Draw any line AC. Take SB equal to $D ; join BC and
BA. The triangles SCB and SCD are equal by § 31,
and CD= CB. But, by § 18,

A4C < 4B -} BC.
and, subtracting DC=BC,
we have AD < AB.

Now in the two triangles ASD and #SB, the side SD
18 equal to SB, and A8 is common ; but the third side 4D
<" 4B, and therefore, by § 63,
ASD < ASB,
-and, adding CSD=CSB
A8C < ASB -} CSB.

339. Theorem. The sum of the plane angles, which

form a solid angle, is always less than four right angles.
. Proof. Draw a plane (fig. 160) cutting the solid angle
S in ABCDE &c. From any point O within ABCD &e.
draw 40, BO, CO, DO, &c.

The number of the triangles OB, BOC, COD, &ec. is
the same as that of the triangles ASB, BSC, CSD, &ec. ;
and therefore the sum of the angles of A0B, BOC, &c.
is the same as that of ASB, BSC &ec.

But, of the solid angle B, the sum of the angles ABS,
SBC is, by the preceding article, grea er than the angle
ABC, which is the sum of ABO, OBC, that is,

. ABS + SBC > ABO + OBC;
and, in the same way,
BCS -}- SCD™ BCO -}- OCD,
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Equal Solid-Angles.

CDS + SDE > CDO + ODE, &c.
Hence ABS -} SBC 4 BCS8 - SCD - &c., or the sum
of the angle at the bases of the triangles, which have their
vertices at S, is greater than 4BO 4 OBC |- BCO 4-
OCD +- &c., or the sum of the angles at the bases of the
triangles which have their vertices at O.

If, then, these two sums of the angles at the bases of
the triangles are subtracted from the common sum of all
the angles of each set of triangles, the remaining sum of
the angles which have their vertices at S must be less
than the sum of the angles which have their vertices at o,
or, by § 26, than four right angles.

340. Theorem. If two solid angles are respectively
contained by three plane angles which are equal, each
to each, the planes of any two of these angles in the
one have the same inclination to each other as the planes
of the homologous angles in the other.

Proof. Let the solid angles 8, & (fig. 161) be included
by the plane angles ASB=4'S'B', 4SC=4'8C,
BSC=PB'SC.

Take SA =S4’ of any length at pleasure. Draw /B,
AC, perpendicular to S4, in the planes ASB and ASC;
and draw A'B’, 4'C’, perpendicular to §'/4' in the planes
A'S'B and £8'C'.

In the triangles ASB, 4'S'B, the side A4S =4'S, the
angle ASB=u'S'B’ ; and the right angle S4B = S'4'B’;
hence, by § 54, 4B — A'B’ and SB= §'B'.

In the same way, it may be shown that AC=4'C),
SC=§80C. »

Join BC, B'C', and, in the triangles SBC, $'B'C), the
angle BSC = B'S'C/, the side SB— S'B’, and the side
8C = 8'C'; hence, by § 52, BC=DB'C..

In the triangles ABC, A'B’C' the three sides are respec-
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Solids of equal Heights and equivalent Sections are Equ;i.

tively equal, and, therefore, by § 61, the angle BAC,
which, by § 315, measures that of the planes A4SB, 4SC
is equal to B'4'C’, which measures the angle of the planes
AS'B, 48C.

In the same way, it may be shown that the angles of the
other planes are equal ; some changes, easily made, are,
however, required in the demonstration when either of
the angles 4SB, AS8C is obtuse.

CHAPTER XVI
SURFACE AND SOLIDITY OF SOLIDS.

341. Definitions. Equivalent solids are those which L
have the same bulk or magnitude.

A lamina or slice is a thin portion of a solid included
between two parallel planes.

342. Theorem. If two solids have equal bases and
heights, and if their sections, made by any plane paral-
lel to the common plane of their bases, are equal, they
are equivalent.

Proof. Let ABCDEF, AB CI'EP (fig. 162) be the
two solids. Let MNO, MN'Q' be two equal sections made
by a plane parallel to the base, and let PQR, P' @R’ be
two other equal sections made by a plane infinitely near
the former plane, and parallel to it.

The infinitely thin lamine MNOPQR, M'N op QR
are equal ; for if MN'O' be applied to its equal MNO,
P'Q'R' must be infinitely near coincidence with its equal
PQR ; and the laminse themseives can differ from coinci-
dence only by a quantity infinitely smaller than either of
them. and whiclg may, by § 99 and 205, be neglected

*
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Polyedron, Prism.

But by drawing a series of parallel planes, infinitely
near each other, the given solids are divided into laminze,
which are respectively equal to each other ; and, there-
fore, their sums or the entire solids must be equivalent.

343. Definitions. Every solid bounded by planes is
called ‘a polyedron.

The bounding planes are called the faces ; whereas
the sides or edges are the lines of intersection of the
faces.

344. Definitions. A polyedron of four faces is a
etraedron, one of six is a hezaedron, one of eight is an
octaedron, one of twelve a dodecaedron, one of twenty
an icosaedron, &c.

The tetraedron is the most simple of polyedrons ;
for it requires at least three planes to form a solid angle,
and these three planes leave an opening, which is to be
closed by a fourth plane.

345. Definitions. A prism is a solid comprehended
under several parallelograms, terminated by two equal
and parallel polygons, as ABC &c. FGH &ec. (fig.
163).

The bases of the prism are the equal and oarallel
polygons, as ABC &c., and FGH &ec.

The convex surface of the prism is the sum of its
parallelograms, as ABFG -+ BCGH + &ec.

The altitude of a prism is the distance between its
bases, as PQ.

346. Definitions. A right prism is one whose lat-
eral faces or parallelograms are perpendicular to the
bases, as ABC &c. FGH &c. (fig. 164).

In this case each of the sides AF, BG &c. is equal
to the altitude.

-~
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Cylinder, Parallelopiped, Cube, Unit of Solidity, Volume.

347. Definitions. A prism is triangular, quadran-

gular, pentagonal, hexagonal, &c., according as its Z\,
base is a triangle, a quadrilateral, a pentagon, a hexa-
gon, &c.

348. Definitions. 'The prism, whose bases are regu- - A
lar polygons of an infinite number of sides, that is, cir-
cles, is called a cylinder (fig. 165).

The line OP, which joins the centres of its bases, is
called the azis of the cylinder.

In the right cylinder (fig. 166) the axis is perpen-
dicular to the bases, and equal to the altitude.

349. Corollary. The right cylinder (fig. 166) may be
considered as generated by the revolution of the right
parallelogram OABP about the axis OP.

The sides OA and PB generate, in this case, the bases
of the cylinder, and the side AB generates its convex sur-
face.

850. Definitions. A prism whose base is a parallel- A
ogram (fig. 167) has all its faces parallelograms, and is

called a parallelopiped.
When all the faces of a parallelopiped are rectangles,
it is called a right parallelopiped.

351. Definitions. The cube is a right parallelopiped,
comprehended under six equal squares.

The cube, each of whose faces is the unit of surface,
is assumed as the unit of solidity.

352. Definition. The volume, solidity, or solid con- 7
tents of a solid, is the measure of its bulk, or is its ratioc “~__
to the unit of solidity.

353. Theorem. The area of the convex surface of
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Convex Surface of right Prisma or Cylinder.

a right prism or cylinder is the perimeter or circum-
. ference of jts base multiplied by its altitude.

Proof. a. The area of each of the parallelograms
4ABFG, BCGH, &c., which compose the convex surface
of the right prism (fig. 164) is, by § 247, the product of
its base 4B, BC &c., by the common altitude 4F ; and
the sum of their areas, or the convex surface of the prism,
is the sum of these bases, or the perimeter ABCD &c.,
by the altitude AF.

b. This demonstration is extended to the right cylinder
by increasing the number of sides to infinity.

354. Theorem. The section of a prism or cylinder
made by a plane parallel to the bases is equal to either
base.

Proof. a. Let LMNO, &ec. (fig. 163) be a section of
the prism made by a plane parallel to the bases. It fol-
lows, from § 834, that LM is parallel to 4B, MN'to BC,
&ec. ; and, consequently, the angle LMN is equal to ABC,
by § 29, the angle NMO to BCD, &c. Moreover, in
the parallelograms ABLM, BCMN, &c., 4B is equal to
LM, BC to MN, &c., and the polygons ABCD &c., LM
JNO, &c. are equiangular and equilateral with respect to
each other, and are, therefore equal, by § 195.

b. The demonstration is extended to the cylinder by in-
creasing the number of sides to infinity.

855. Corollary. Hence, from § 349, two prisms
or cylinders of equal bases and altitudes are equiva-
lent.

856. Corollary. Any prism or cylinder is equivalent
to a right prism or cylinder of the same base and alti-
tude.
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Ratio of right Parallelopipeds.

357. Theorem. Two right parallelopipeds are to
each other as the products of their bases by their al-
titudes.

Proof. Let the two right parallelopipeds be 4BCD
EFGH, AKLM NOPQ (fig. 168), which we will denote
by AG and AP.

Then, if the sides of the rectangles ABC D and AKLM
are commensurable, the rectangles can, by § 241, be di-
vided into equal rectangles ; and, if, through' each of the
vertices of these small rectangles, perpendiculars are
erected to the plane AL, the parallelopipeds AG and AP
are divided into smaller right parallelopipeds. All the
parallelopipeds of A G are equivalent, by § 355, as well
as all those of AP ; and the number of parallelopipeds in
AG is equal to the number of rectangles in ABCD ; and
the number of parallelopipeds in AP is equal to the aum-
ber of rectangles in AKLM.

If now the altitudes AE and 4N are commensurate,
AN can be divided into equal parts, of which AE contains
a certain number ; and, if, through the points of division
of AN, planes are drawn parallel to the base AL, each
of the partial parallelopipeds of 2G and AP are divided
into smaller equal parallelopipeds, and all these smallest
parallelopipeds are equal to each other.

Now, the whole number of the smallest parallelopipeds
contained in 4G is the product of the number of rectan-
gles in its base ABCD by the number of divisions of its
altitude AE, and the number contained in AP is the pro-
duct of the number of rectangles in its base AKLM by
the xumber of divisions in its altitude 4N, Hence

AG: AP =ABCD x AE: AKLM X AN.

This demonstration is readily extended to the case
where the sides are incommensurate, by dividing the
solids into infinitely small parallelopipeds
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Solidity of the Parallelopipeds.

358. Corollary. The solidity of any right parallelo-
piped or its ratio to the unit of solidity is, by § 352, the
product of its base by its altitude, that is,

AG=ABCD X AE.

859. Corollary. Since, by § 242,
ABCD=AB X 4D,

we have
AG=4B x 4D X AE;

or the solidity of a right paralleloplded is the product of
1ts three dimensions.

360. Corollary. The solidity of a cube is the cube
of one of its sides.

961. Corollary. Since, by § 356, any parallelo-
piped of a rectangular base is equivalent to a right
parallelopiped of the same base and altitude, the solidity
of any parallelopiped of a rectangular base is the pro-
duct of its base by its altitude.

862. Theorem. The solidity of any parallelopiped
is the product of its base by its altitude.

Proof. Any parallelopiped which has ABCD (fig. 169)
for its base is, by § 356, equivalent to the parallelopiped
AG, which has the same base, and its sides 4H, BE, LG,
DF, perpendicular to the base ABCD.

But any other face may as well be assumed for the base
of AG as ABCD ; taking, then, the rectangle ABEH for
the base, the parallelopiped 4G is, by § 361, equal to
the right parallelopiped of the same base and altitude,
that is, by drawing DK perpendicular to 4B,

AG=DK x ABEH= DK x AB X 4H.
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Solidity of the Prism and Cylinder.

But, ABCD— DK X 4B ;
hence AG=ABCD X AH.

363. Corollary. Any two parallelopipeds of equiva-
lent bases and the same altitude are equivalent.

364. Corollary. Parallelopipeds of the same base
are to each other as their altitudes, and parallelopipeds
of the same altitude are to each other as their bases.

365. Theorem. The solidity of a triangular pnsm
is the product of its base by its altitude.

Proof Let ABC DEF (fig. 170) be a triangular
prism.

Draw BG parallel to 4C, CG parallel to AB, GH par-
allel to AD, meeting the plane EDF in H. Join EH,
FH ; AH is, evidently, a parallelopiped ; and BCG EFH
is a triangular prism.

The triangular prisms ABC DEF and BCG EFH
are equivalent, by § 355 ; since their altitude is the same
and their bases ABC and BCG are equal, by § 77.
Hence each of the prisms is half of the parallelopiped
AH, and has half its measure, or the product of } ABCG

“by the altitude, that is, the product of its own base by its
altitude.

366. Theoreyy, The solidity of any prism or cylin-
der whatever is the product of its base by its altitude.

Proof. a. The prism ABC &c. FGH &c. (fig. 163)
may be divided into the triangular prisms ABC FGH,
ACD FHI &ec. by the planes ACFH, ADFI &c., and, by
the preceding section, the solidity of each of these trian«
gular prisms is the product of its base ABC, ACD, &ec.
by the altitude PQ. Hence, the sum of these prisms or
the entire prism is the product of the sum of the bases
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Pyramid.

by PQ, or of the entire base 4BCD &c. by the altitude
PQ.

b. This demonstration is extended to cylinders by in-
creasing the number of sides to infinity.

367. Cerollary. Prisms or cylinders of equivalent
bases and equal altitudes are equivalent.

368. Corollary. Prisms or cylinders of equivalent
bases are to each other as their altitudes ; and those of
the same altitude are to each other as their bases.

369. Corollary. Denoting by R the radius, and by 4
the area of the base of a cylinder ; and using n as in
§ 237, we have, by § 280,
A=a X R
. Denoting, also, by H the altitude, ¥ the solidity of the
.o cylinder, we have, by § 366,
V=4 X H=x X R* X H.

870. Definitions. A pyramid is a solid formed by
several triangular planes proceeding from the same point,
and terminating in the sides of a polygon, as S4BCD
&e. (fig. 171).

The point 8 is the vertez of the pyramid.

The polygon ABCD &c. is the base of the pyra-
mid. e

The convez surface of the pyramid is the sum of the
triangles S4B 4 84C, &c.

The altitude of the pyramid is the distance of its ver-
tex from its base.

. 371. Definitions. A pyramid is triangular, quad-
_~— rangular, &c., when the base is a triangle, a quad-
rilateral, &ec.
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Cone. Convex Surface of the regular Pyramid.

372. Definitions. A pyramid is regular, when the
base is a.regular polygon, and the perpendicular let fall
from the vertex upon the base, passes through the centre
of the base (fig. 172).

This perpendicular from the vertex is called the azis
of the pyramid.

878. Definitions. When the base of a pyramid is a
regular polygon of an infinite number of sides, that is,
a circle, it is called a cone (fig. 173).

The azis of the cone is the line drawn from the
vertex to the centre of the base.

A right cone is one the axis of which is perpendicu-
lar to the base (fig. 174).

874. Corollary. The right cone (fig. 174) may be con-
sidered as generated by the revolution of the right triangle
8§04 about the axis SO.

The leg O, in this case, generates the base, and the
hypothenuse 8., which is called the side of the cone,
generates the convex surface.

375. Theorem. The area of the convex surface of
the regular pyramid is half the product of the perimeter
of the base by the altitude of one of the triangles.

Proof. The triangles S.AB, SBC, &c. (fig. 172) are all
equal, for, by § 201,

- AB=BC=CD, &c.;
and, since the oblique lines 4S8, 8B, SC, &c., are all at
equal distances 04, OB, OC, &c., from the perpendicu-
lar SO, they are equal by § 320. Hence the altitudes
SH, SI, SK, &c. of these triangles are equal ; and the
sum of the areas of the triangles is half the product of

the sum of their bases 4B, BC, CD, &c. by the common
10

/
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altitude SH ; that is, the convex surface of the pyramid
is half the product of the perimeter of its base by the al-
titude of ome of its triangles.

876. Corollary. When the base of the regular pyra-
mid is a polygon of an infinite number of sides, the pyra-
mid is a right cone, and the altitude of each triangle
becomes the side 8.4 (fig. 174) of the cone.

Hence the area of the convex surface of the right
cone is half the product of the circumference of the base
by the side.

. 377. Theorem. The section of a pyramid made by
7 a plane parallel to the base is a polygon sxmnlar to the
.~ base.

Proof. Let MNOP &ec. (fig. 171) be the section of a
pyramid made by a plane parallel to its base ABCD &ec.
Since MJV is, by § 334, parallel to 4B, we have

SB: SN= 4B : MN,
. and since VO is parallel to BC, we have
B SB: SN—=BC: NO;
" and, on account of the common ratio, SB : SN,
i 4B : MN=BC: NO.
. In the same way we might prove:
AB: MN=BC: NO=CD: OP, &c.
whence the sides of the polygons ABCD &c., MNOP
&c. are proportional.

The angles of the polygons are also equal ; lndeed on
account of the parallel sides, we have

MNO=ABC, NOP = BCD, &c.
The polygons are therefore similar, by § 170,

878. Corollary. The section of a cone made by a
plane parallel to the base is a circle.
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Equivalent Pyramids and Cones.

319. Corollary. If the perpendicular ST is let fall
from S upon the base, meeting the section at R, we have,
by §§ 268 and 336, "

ABCD &c.: MNOP &c. = ABY: MN?= S.ﬂ SM3

=8T2: SR?,
or, the base of a pyramid or cone is, to the section made
by a plane paflel to the base, as the square of the alti-
tude of the pyramid is to the square of the distance of

! the section from the vertex.

380. Corollary. If two pyramids or cones iave the
same altitude and their bases in the same plane, their
sections made by a plane parallel to the plane of their
bases are to each other as their bases. '

If the bases are equivalent, the sections are equiva-
lent. :

If the bases are equal, the sections are equal.

/ fces 881. Theorem. Two pyramids or two cones which

have equal bases and altitudes are equivalent.

Proof. For, if their bases are placed in the same plane,
their sections made by a plane parallel to the plane of
their bases are equal ; and, therefore, by § 342, the pyr-
amids are equivalent.

382. Theorem. A triangular pyramid is a third part
of a triangular prism of the same base and altitude.

Proof. From the vertices B, C (fig. 175) of the tri-
angular pyramid 8 ABC, draw BD, CE parallel to
SA4. Draw SD, SE parallel to 4B, AC, and join CE;
ABC SDE is a triangular prism.

The quadrangular pyramid § BCED is divided by
the plane SBE into two triangular pyramids S BED.
S BEC, which are equivalent ; for their bases BED
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L3

Solidity of the Pyramid and Cone.

BEC are equal, by § 77 ; and their common altitude is
the distance of their common vertex S from the plane of
their bases.

Again, if the plane SED is taken for the base of
8 BED and the point B for its vertex, the pyramid
B SDE is equivalent to 8 ABC; for their bases SED,
4ABC are equal, and their common altitude is the altitude
of the prism. g

But the sum of the three equal pyramids S 4BC,
8 BED, S BEC is the prism ABC SDE, and, therefore,
either pyramid, as S ABC, is a third part of the prism.

383. Corollary. The solidity of a triangular pyra-
mid is a third of the product of its base by its altitude.

384. Theorem. The solidity of any pyramid is one
third of the product of its base by its altitude.

Proof. "The planes SAC, SAD, &ec. (fig. 171) divide
the pyramid § ABCD &ec. into triangular pyramids,
the common altitude of which is the altitude of the entire
pyramid. Hence the solidity of the entire pyramid is one
third of the product of the sum of their bases ABC, ACD,
&c., by the common altitude, that is, one third of the en-
tire base by the altitude of the pyramid.

385. Corollary. The solidity of a cone is one third
of the product of its base by its altitude.

386. Corollary. Pyramids or cones are to each
other as the products of their bases by their altitudes.

387. Corollary. Pyramids or cones of the same al-
titude are to each other as their bases; and those of
equivalent bases are to each other as their altitudes.

838. Corollary. ~Pyramids or cones of equivalent
bases and equal altitudes are equivalent.
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Truncated Prism.

389. Corollary. Any pyramid or cone is a third
part of a prism or cylinder of the same base and alti-
tude. BN

390. Corollary. Denoting by R the radius of the base
of a cone, by H its altitude, by V its solidity, and using =,
as in § 237, we have, by §§ 369 and 389,

V=3=x X R?x H.

391. Definitions. A iruncated prism is the portion
of a prism cut off by a plane inclined to its base, as
4BC DEF (fig. 176).

The base of the truncated prism is the same as the
base of the prism from which it is cut.

/ 892. Theorem. A truncated triangular prism is equiv-

——

alent to the sum of three pyramids, which have for their
common base the base of the prism, and for their ver-
tices the three vertices of the inclined section.

Proof. Draw the plane FAC (fig. 176), cutting off
from the truncated triangular prism ABC DEF the pyra-
mid FABC, which has ABC for its base, and F for its
vertex.

There remains the quadrangular pyramid FACDE,
which the plane FEC divides into the two trmngular pyra-
mids FAEC and FCDE.,

Now FAEC is equivalent to the pyramid BAEC, which
has the same base AEC, and the same altitude, because
the vertices F, B are in the line FB parallel to this base.
But ABC may be taken for the base of EABC, and E
for its vertex.

Lastly,

the pyramid FECD = the pyramid BECD,

for they have the same base ECD, and the same altitude,
10*



120 SOLID GEOMETRY. [CH. Xvl. § 395.

Frustum of a Pyramid or Cone.

because their vertices F, B are in the line F'B parallel to
this base. Also, taking E as the vertex of BECD

the pyramid EBCD =the pyramid ABCD,

for, they have the common base BDC, and their vertices
4, E are in the line AE parallel to this base. But 4BC
may be taken for the base of ABCD, and D for its ver-
| tex.
\‘, Hence the truncated prism is equivalent to the sum of
| three pyramids, which have the common base ABC, and
@ their vertices E, F, and D.

393. Definitions. If a pyramid or cone is cut by a

>plane parallel to its base, the portion which remains

after taking away the smaller pyramid or cone, is called

the frustum of a pyramid or cone, as ABCD &c.
MNOP &ec. (fig. 171.)

The conver surface of the frustum of a pyramid is
the sum of the trapezoids which compose its lateral
faces.

The polygons ABCD &c., MN'OP &c. are the
bases of the frustum, and the distance betweeu its bases

« is its altitude.

394. Corollary. The frustum of the right cone (fig.
174) may be considered as generated by the revolution of
the trapezoid 00'42'4 about the side 00'.

The side A4, which is called the sife of the frustum, in
this case, generates the convez suiface.

.

-

395. Theorem. The area of the convex surface of
the frustum of a regular pyramid is half the product
of the sum of the perimeters of its bases by the altitude
of either of its trapezoids.

Proof. The trapezoids ABMN, BCNO, &e. (fig. 172)
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Convex Surface of a Frustum of a Pyramid or Cone.

are all equal ; and the area of each is half the product of
the sum of its parallel sides by their common altitude
HH'. The sum of their areas, or the area of the convex
surface of the frustum is, therefore, half the product of
this common altitude, by the sum of all the parallel sides,
that is, by the sum of the perimeters of the bases of the
frustum.

396. Corollary. If a section MN'Q'P’ &c. is made by
a plane parallel to the bases, and passing through the
middle point R’ of the altitude, 1t must, by § 336, bisect
the lines 4M, BJN, &c.; and the area of each trape-
zoid is, by § 256, the product of its altitude by the line
MN, NO, &e. '

The area of the convex surface of the frustum is,
therefore, the product of the altitude by the sum of these

lines, that is, by the perimeter of the section made by
the plane which bisects the lateral sides of the frustum.

397. Corollary. The area of the convex surface of
the frustum of a right cone is half the product of its
side by the sum of the circumferences of the bases ;
or it is the product of the side by the circumference
of the section parallel to the bases which bisects the
side.

398. Theorem. The area of the surface, described
by a line revolving about another line in the same
plane with it as an axis, is the product of the revolv-
ing line by the circumference described by its middle
point.

Proof. a. If the revolving line is parallel to the axis,
as in (fig. 166), it describes the convex surface of a right
eylinder, the area of which is, by § 353, the product of
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Surface described by a revolving Line.

the circummn rence of the base by the altitude. But the
altitude is equal to the revolving line, and the circum-
ference of the base is, by § 354, equal to the circum-
ference described by the middle point ; and, therefore, in
this case, the area of the surface described is the product
of the revolving line by the circumference described by
its middle point. '

b. If the revolving line is inclined to the axis without
meeting it, the surface described is the convex surface of
the frustum of a right cone ; and its area is as, in § 397,
the product of the revolving line by the circumference de-
scribed by its middle point.

¢. When the revolving line meets the axis without cut-
ting, the surface described is the convex surface of a right .
cone, and is included in the preceding case by considering
it as a frustum whose upper base is the vertex of the
cone.

899. Scholium. The case, where the revolving line cuts
the axis, is not included in the preceding theorem.

400. Theorem. The frustum of a pyramid or cone
is equivalent to the sum of three pyramids or cones,
which have for their common altitude the altitude of the
frustum, and whose bases are the lower base of the
frustum, its upper base, and a mean proportional between
them.

Proof. Let ABCD &c. MNOP &c. (fig. 171) be the
given frustum. Denote the area of the lower base 4BCD
&c. by ¥, and that of the upper base MNOP &c. by ¥V ;
and denote the altitude ST of the greater pyramid by H,
the altitude SR of the less pyramid by H’, and the alti-
tude RT of the frustum by H".

Since the frustum is the difference between the pyra

" mids, we have for its solidity, by § 384,
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Solids of a Frustum of a Pyramid or Cone.

] 4 X H —1 V'x I ’
and, for the sum of three pyramids, which have H" for

their altitude and for their bases ¥, ¥’ and the mean pro-

portional /¥ ¥ between ¥V and P,
VH X (VAP -+ /PP)
={H' X V+iH' X V' 41 H' X JVP,
and we are to prove that these solidities are equal, or that
VXH—V' xH=VxH +Vx H + JVV' X H",
Now H'—=H—H,
and, by § 379,
V:V=H: HS?,
whence vV:vVi=H: H,
and, multiplying extremes and means
VX H=yV X H.
If we multiply this equation successively by /¥ and /P

we obtain, by transposing the members of the first pro~
duct,

VYV x H=V x H',
VIVX H=V X H; -
the difference between which is :
VVV X (H—H)=V X H—V’' X H, or
VVVIX H'=FV x I —V' x H.
And if we add to this last equation the equations
VX H'=V X H—V X I
VX H =V x H-V' X H,
we get, by cancelling the terms which destroy each other,
VIV XH' VX H VX H'=V X H—V X H,
which is the equation to be proved, and the solidity of the
Grustum is therefore equal to .

VEP X (V4 V' TP,
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Solidity of the Frustum of a Cone.

[ 401. Corollary. If Ris the radius of the lower base
| of the frustum of a cone, and R’ the radius of the upper
i base, we have, by § 280,
=gz X R?
Vi=x X R'S,
fhence
VVV =33 X R* X R3=a X R X R,
snd the solidity of the frustum is
inX H' X (R*4 R'?4} R X R).
402. Scholium. The solidity of any polyedron may
& found by dividing it into pyramids.

CHAPTER XVII

SIMILAR SOLIDS.

403. Definition. Similar polyedrons are those in
waich the homologous solid angles are equal, and the
homologous faces are similar polygons.

404. Corollary. Hence, from § 170, the sides of
i siailar polyedrons are proportional to each other.

, 405. Corollary. From § 268, the faces of similar

. polyedrons are to each other as the square of their

. homologous sides; and, from the theory of propor-
tions, the sums of the faces, or the entire surfaces of
the polyedrons are also to each other as the squares of
the homologous sides.
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Ratios of Similar Prisms, &c.

406. Corollary. The bases of similar prisms or
pyramids are to each other as the squares of their alti-
tudes ; and the perimeters of their bases are to each
other as their altitudes.

407. Corollary. The bases of similar cylinders or
cones are to each other as the squares of their altitudes ;
and their altitudes are to each other as the circumfer-
ences of the bases, or as the radii of the bases.

408. Corollary. The convex surfaces of similar
prisms, pyramids, cylinders, or cones are to each other
as their bases, or as the squares of their altitudes.

409. Corollary. The convex surfaces of similar
prisms or pyramids are to each other as the squares of
their homologous sides.

410. Corollary. The convex surfaces of similar
cylinders or cones are to each other as the squares of
the radii of their bases.

411. Theorem. Similar prisms, pyramids, cylinders,
or cones are to each other as the cubes of their alti-
tudes. :

Proof. Prisms, pyramids, cylinders, or cones are to
cach other, by § 366 and 386, as the products of their
bases by their altitudes. But where these solids are

_similar, their bases are to each other, by § 406 and 407, -
as the squares of their altitudes ; and the products of the
bases by their altitudes, or their solidities are to each
other, as the products of the squares of their altitudes by
their altitudes, or as the cubes of their altitudes.’

412. Corollary. Similar prisms or pyramids are te
each other as the cubes of their homologous sides.
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Ratio of Similar Solids.

413. Corollary. Similar cylinders or cones are to
each other as the cubes of the radii of their bases.

+414. Theorem. Similar polyedrons are to each other
as the cubes of their homologous sides.

Proof. Let a polyedron be divided into pyramids by
drawing lines from one of its vertices to all its other ver-
tices ; any similar polyedron may be divided into similar
pyramids by lines similarly drawn from the homologous
vertex.

Now these similar pyramids are to each other, by
§ 412, as the cubes of their homologous sides, or as the
cubes of any two homologous sides of the polyedrons ;
and, from the theory of proportions, their sums, that is,
the polyedrons themselves, are to each other in the same
ratio, or as the cubes of their homologous sides.

N
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CHAPTER XVIIL

THE SPHERE.

415. Definition. A sphere is a solid terminated by
a curved surface, all the points of which are equally dis-
tant from a point within called the centre.

416. Corollary. The sphere may be conceived to be

generated by the revolution of a semicircle, DAE (fig.

177) about its diameter DE.
417. Definitions. 'The radius of a sphere is a

straight line drawn from the centre to a point in the
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Great and Small Circles. Poles.

surface ; the diameter or axis is a line passing through the
centre, and terminated each way by the surface.

418. Corollary. All the radii of a sphere are equal ;
and all its diameters are also equal, and double of the
radius.

419. Theorem. Every section of a sphere made by
a plane is a circle.

Proof. From the centre C (fig. 178) of the sphere
draw the perpendicular CO to the section AMB and the
radii CA4, CM, CB, &c. Since these radii are equal,
they must, by § 321, terminate in a circumference AMB,
of which O is the centre

420. Definitions. The section made by a plane
which passes through the centre of the sphere is called
a great circle. Any other section is called a small
circle.

421. Corollary. The radius of a great circle is the
same as that of the sphere, and therefore all the great
circles of a sphere are equal to each other.

422. Corollary. The centre of a small circle and
that of the sphere are in the same straight line perpen-
dicular to the plane of the small circle.

423. Definition. The points, in which a radius of
the sphere, perpendicular to the plane of a circle, meets <
the surface of the sphere, are called the poles of the cir-
¢le ; thus P, P are the poles of AMB.

424. Corollary. Since the oblique lines PA, PM,
&c. are equally distant from the perpendicular P O, they

are equal ; and also the arcs of great circles P4, PJM,
11
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Arcs traced upon a Sphere.

&c. are, by § 113, equal ; that 1s, the pole of a circle is
equaliy distant from all the points in the circumference
of the circle.

425. Corollary. Since the distance DM (fig. 177)
of a point, in the circumference of a great circle from
the pole, is measured by the rlght angle DCM, it is a
quadrant.

426. Scholium. By means of poles, arcs may be
traced upon the surface of a sphere as easily as upon
a plane surface.

We see, for example, that by turning the arc DF (fig
177) about the point D, the extremity F describes the
small circle FNG ; and by turning the quadrant DFA
about the point D, the extremity 4 describes the arc of a
great circle AM.

427. Theorem. A point upon the surface of a sphere
which is at the distance of a quadrant ﬁ'om each of

" two other points, is one of the poles of 1ho great circle

which passes through these two points.

Proof. Thus, if the distances DA, DM (fig. 177) are
quadrants, the angles DCA and DCM are right angles,
and, therefore, by § 318, DC is perpendicular to the cir-
cle AMB, and its extremity D is, by § 423, a pole of the
circle ABM.

428. Corollary. Since the common intersection of
two great circles is, by § 420, a diameter, they bisec
each other

429. Theorem Every great circle bisects the sphere

Proof. For if, having separated the two hemispheres fi »ng
mach other, we apply the base of one to that of the other,
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Spherical Triangle, Polygon, Wedge, Pyramid.

turning the  convexities the same way, the two surfaces
must coincide ; otherwise, there would be points in these
surfaces unequally distant from the centre.

430. Definitions. A spherical triangle is a part of
the surface of a sphere comprehended by three arcs of
great circles.

These arcs, which are called the sides of the tri-
angle, are always supposed to be smaller each than a
semicircumference. The angles, which their planes
make with each other, are the angles of the triangle.

Since the sides are arcs, they may be expressed in
degrees and minutes, as well as the angles.

431. Definitions. A spherical triangle takes the name
of right, isosceles, and equilateral, like a plane triangle,
and under the same circumstances.

432. Definition. A spherical polygon is a part of
the surface of a sphere terminated by several arcs of
great circles.

433. Definitions. The portion of a sphere compre-
hended between the halves of two great circles is called
a spherical wedge, and the portion of the surface of the
sphere comprehended between them is called a lunary
surface, and is the base of the wedge.

434. Definitions. A spherical pyramid is the part
of a sphere comprehended between the planes of a solid
angle whose vertex is at the centre.

The base of the pyramid is the spherical  lygon in-
tercepted by these planes.

435. Definition. A plane is tangent to a sphere,
when it has only one point in common with the surface
of the sphere.

7/
PARE
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Spherical Segment, Sector.

436. Definitions. 'When two parallel planes cut a

N E sphere, the portion of the sphere comprehended between

them is called a spherical segment, and the portion of
the surface of the sphere comprehended between them
13 called a zone.

x The bases of the segment are the sections of the
sphere, and the bases of the zone are the circumferences
of the sections.

The altitude of the segment or zone is the distance
2\ between the sections. ‘
One of the cutting planes may be tangent to the
sphere, in which case the zone or segment has but one
base.

437. Definition. While the semicircle DAE (fig.

177) turning about the diameter DE describes a sphere,
Xevery circular sector, as DCF or FCH, describes a
solid, which is called a spherical secto. “The base of
the sector is the zone generated by the arc DF, or FH.

438. Theorem. Either side of a spherical triangle
18 less than the sum of the other two. .

Proof. From the centre O (fig. 179) of the sphere
draw the radii 04, OB, OC to the vertices 4, B, C of
the spherical triangle ABC. The three plane angles
AO0B, A0C, BOC form a solid angle at O ; and each of
these angles is, by § 338, less than the sum of the other
two. But they are measured by the arcs 4B, 4C, BC ;
and, therefore, each of these arcs is less than the sum of
the other two.

439. Theorem. The sum of the sides of a spheri-
cal polygon is less than the circumference of a great
circle.




cH. xvitl. § 443.] THE SPHERE. ' 131

Sum of the Sides of a Spherical Polygon.

Progf. From the centre O (fig. 180) of the sphere

" draw the radii 04, OB, OC, &c. to the vertices A, B, C,

&c. of the spherical polygon ABC &c. The plane an-
gles A0B, BOC, &c. form a solid angle at O ; and the
sum of these angles is, by § 339, less than four right
angles. The sum of the arcs AB, BC, CD, &ec. is, con-
sequently, less than a circumference of a great circle.

440. Corollary. If then, we denote the sides of a
spherical triangle by a, b, ¢, we have

a4 b4 ¢ < 360°, _

441. Theorem. The angle formed by two arcs of
great circles is measured by the arc described from its
vertex as a pole, and included between its sides.

Proof. The arc AM (fig. 177) measures the angle
ACM, which, by § 315, measures the angle of the planes
DCA and DCM ; and therefore, by § 430, it measures
the angle .ﬂD.M

442. Corcllw The value of the arc AM expressed
in degrees, minutes, &c., is the same as that of ADM.

443. Theorem. If from the vertices of a given
spherical triangle as poles, arcs of great circles are
described, another triangle is formed, the vertices of
which are the poles of the sides of the given triangle.

Proof. Ret ABC (fig. 181) be the given triangle ; let
EF, DF, and DE be described, respectively, with 4, B, C
as poles,

Then, since E is in the arc EF, the distance from E to
A is, by § 425, a quadrant ; and since E is in the arc
DE, the distance from E to C is also a quadrant; and,
therefore, by § 427, E is a pole of AC.

In the same way it may be shown, that D is a pole of

BC, and F a pole of 4B
T 11
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Sides and Angles of polar Triangle.

444. Definition. The triangle DEF is called the
polar triangle of ABC, and in the same way ABC is
the polar triangle of DEF.

.'s several different triangles might be formed by pro-
ducing the sides DE, EF, and DF, we shall limit our-
selves to the one DEF, such that the pole D of BC is on
the same side of BC with the vertex A ; E is on the same
side of AC with the vertex B ; and F'is on the same side
of AB with the vertex C.

445. Theorem. If the sides and angles of a spheri-
cal triangle and of its polar triangle are expressed in
degrees, minutes, &c., the sides of either triangle thus
expressed are respectively supplements of the angles of
the other triangle.

Proof. Produce the sides 4B, AC (fig. 181), if neces-
sary, to G and H.

Since F'is the pole of 4B, and E the pole of AC, we
have, by § 425,

EH= FG =900,

Hence

EF=EH 4+ HF=90° 4 HF

GH= GF— HF =90° — HF,
and, therefore, )

EF 4 GH=1800°,
- But, by § 441 and 442,
G H = the angle BAC,
whence
EF - the angle BAC =180°;

that is, the side EF and the angle BAC are supplements

of each other.
In the same way it may be shown, that DF and the an-
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Sum of the Angles of a Spherical Triangle.

gle ABC, DE and the angle CB, 4B and the angle F,
BC and the angle D, AC and the angle E, are respec-~
tively supplements of each other.

446. Corollary. If therefore we denote the angles of a
spherical triangle by A, B, C ; and the sides respect’ «\)ly
opposite by a, b, ¢ ; the angles of the polar triangle must
be 180° —a, 180° —b, 180° —c; and the sides of the
polar triangle 180° — 4, 180° — B, 180° — C.

447. Theorem. The sum of the angles of a spher-
cal triangle is greater than two right angles.

Proof. Let 4, B, C.be the angles of the spherical
triangle. The sides of its polar triangle are 180°—.4,
180° — B, and 180° — C. Now the sum of these sides,
is, by § 440, less than 360°, that is,

360° > (180° —.4) -}- (180° —B) +- (180°—C)

or,

360° > 540°—A—B—C,
or, by transposition,

44 B 4 € > 540° —360°,
or,

A4 B4 €C> 180°;

that is, the sum of the angles A, B, C is greater than
180°.

448. Theorem. Each angle of a spherical triangle
is greater than the difference between two right angles
and the sum of the other two angles.

Proof. Let A, B, C be the angles of a spherical tri-
angle ; we are to prove that either of these angles, as 4,
is greater than the diflerence between 180° and B -} C.

a. That is, if B - C is less than 180°, we are to prove

4> 180°— (B + C)
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Equilateral Spherical Triangles are equiangular.

‘We have, from the preceding proposition,
44 B+ C > 180°,
whence, by transposition,
4> 180°—(B 4 C).
" b. Butif B 4 C is greater than 180°, we are to prove
4> (B 4+ C)—180°.

Now, of the three sides 180° — A, 180° — B, 180° — C
of the polar triangle, each is, by § 438, less than the sum
of the other two ; that is,

(180° — B) + (180°—C) > 180° — A

or

360°—B— C > 180°— 4,
and, by transposition,

4> 4 B C—360° 4 180°,
or

- > (B + C)—180°,

as we wished to prove.

449. Theorem. If two spherical triangles on the
same sphere, or on equal spheres, are equilateral with
respect to each other, they are also equiangular with
respect to each other.

Proof. Let ABC, DEF (fig. 182) be the spherical
triangles, of which the sides 4B= DE, AC = DF, and
BC=EF.

Draw the radii 04, OB, OC, O'D, O'E O'F The
angles JOB and DO'E are equal, because they are meas-
ured by the equal arcs AB and DE ; in the same way,
A0C = DOF, BOC = EO'F, and therefore, by § 340,
the angle of the planes A0B, A0C is equal to that of the
planes DO'E, DO'F, that is, BAC = EDF.

In like manner, ABC = DEF, and ACB—= DFE.

——
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Equal Spherical Triangles.

450. Definition. Two spherical triangles are - sym-
melrical, when they are equilateral and equiangular with
respect to each other, but cannot be applied to each
other, as ABC, ABC' (fig. 183).

451. Theorem. If two triangles on the same sphere,
or on equal spheres, have a side, and the two adjacent
angles of the one respectively equal to a side and /Iehe
two adjacent angles of the other, they are equal, or /lse
they are symmetrical.

Proof. If the two triangles ABC, DEF (fig. 183) have
the side 4B = DE, the angle B C= EDF, and the an-
gle ABC = DEF; the side DE can be placed upon
AB, and the sides DF, FE will fall upon AC, BC, or
upon the sides AC', BC' of the triangle ABC', symmet-
rical to 4BC.

452. Theorem. If two triangles on the same sphere,
or on equal spheres, have two sides, and the included
angle of the one respectively equal to the two sides and
the mcluded angle of the other, they are equal, or else
they are symmetrical.

Proof. For one of the triangles may be applied to the
other, or to its symmetrical triangle.

453. Theorem. In every isosceles spherical triangle
the angles opposite the equal sides are equal.

Proof. Let AB (fig. 184) be equalto 4C. From 4
draw /D to the middle of BC.

In the triangles BD, ACD, the side AD is common,
the side BD = DC, and the side AB = AC ; hence, by
§ 449, the angle ABC =the angle ACB.

454. Corollary. Also the angle ADB=ADC, and,

[
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therefore, each is a right angle ; and also DAB = DJAC,
that is,

The arc, drawn from the vertex of an isosceles
spherical triangle to the middle of the base, is perpen-
dicular to the base, and bisects the angle at the vertex.

455. Corollary. An equilateral spherical triangle is
also equiangular.
‘- 456. Theorem. If two angles of a spherical triangle
are equal, the opposite sides are also equal, and the tri-"
angle is isosceles. .

Proof. Let the angle ABC (fig. 184) be equal to the
angle ACB. Then let A’BC be the symmetrical triangle,

of which A4'B = AB, and = AcC.
In the triangles ABC, A'HC, the side BC is common ;

[
L
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the angle 4'BC = A€, for\each is equal to ABC ; and
the angle 4'CB = ABQ, for epch is equal to ACB ; hence,
by § 450 and 451, the jside AC=A'B; and, therefore,
AC=u4B.

457. Cojtt}lary. An equiangular spherical triangle
is also equilateral.

458. Theorem. If two spherical triangles on the
same, or on equal spheres, are equiangular with respect
to each other, they are also equilateral with respect to
each other. '

Proof. Denote by A, B two spherical triangles which
are equiangular with respect to each other ; and by P, Q
their polar triangles.

Since the sides of P, @ are, by § 445, the supplements
of the angles of 4, B ; P, Q must be equilateral with re-

- spect to each other; and, also, by § 449, equiangular
with respect to each other But the sides of 4, B are, by

n

-
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Sides compared with opposite Angles.

§ 445, the supplements of the angles of P, @, and there-
fore A, B are equilateral with respect to each other.

459. Theorem. Of two sides of a spherical triangle,
that is the greater which is opposite the greater angle ;
and, conversely, of two angles, that is the greater which
‘s opposite the greater side.

Proof. 1. Suppose the angle C > B (fig. 185). Draw
CD so as to make the angle BCD=B.

Then, by § 455,

BD=DC,
and 4B=4D 4 DB=4D -+ DC.
But, by §438, 4D+ DC> 4C,
hence 4B > 4C.

2. Conversely. Suppose 4B > AC, the angle C must
be greater than B ; for if C were equal to or less than
B, AB would, by § 456 and the preceding demonstration,
be equal to or less than AC.

460. Theorem. If, of two sides of a spherical tri- "
angle, that which differs most from 90° is acute the

opposite angle is acute, and if it is obtuse the opposite
angle is obtuse.

Proof. Of the two sides 4B, AC (fig. 186) of the
spherical triangle 4ABC, let AC be the one which differs
the most from 90°. Produce /B, BC to B'.

Since AB, AB' are, by § 428, supplements of each
other, one of them is acute and the other obtuse. Sup-
pose either of them, as AB' to be acute. Take BH
= B H=90° and take HC = the difference between
AC and 90°, H4A is the difference between AB and 90° ;

therefore
HC' > HA.
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a. If, then, AC is acute, we have
B'C'=4A4C, that is 4C < B'4.
Hence, by § 459, in the triangle AB'C,
the angle B' < the angle ACB'.
But sinco B’ and B are each equal to the angle of the
planes BAB', BCB', they are equal ; and, therefore,
the angle B < the angle ACB’,
Again, since AC is acute and 4B obtuse,
_ 4C < 4B;
and, in the triangle ABC, by § 459,
the angle B < the angle ACB.
That is, the angle B is less than either the angle ACB or
its supplement ACB'; but one of these angles must be
acute, and therefore the angle B is acute.
b. If AC is obtuse, we have
BC'=4C,
that is, A4AC > B4 ;
and, therefore, by § 459,
the angle B > the angle BCA.
Also, as B'A is acute,
4C > B'A4,
and, therefore, by § 459,
the angle B’ > the angle B'C4 ;
that is, the angle B is greater than either the angle ACB
or its supplement ACB' ; but one of these angles must be
obtuse, and therefore the angle B is obtuse.

461. Corollary. Of two sides of a spherical tri-
angle, the one which differs most from 90° is opposite
the angle which differs most from 90° ; and, conversely,
of two angles of a spherical triangle, the one which dif-
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Degrees of Surface, Area of lunary Surface.

fers most from 90° is opposite the side which differs
most from 90°.

462. Corollary. 1If, of two angles of a spherical
triangle, that which differs most from 90° is acute, the
opposite side is acute ; and if it is obtuse, the opposite
side is obtuse.

463. Definition. If we suppose the surface of the
hemisphere to be divided into 360 equal parts, each of
these may be called a degree of spherical surface ; and
the degree may be subdivided into 60 minutes, and the
minute into 60 seconds.

464. Corollary. Any spherical surface may, then,
he expressed by that number of degrees, minutes, &c.
which has the same ratio to 360°, that the given surface
has to the hemisphere ; it is also measured by an angle
of the same number of degrees, minutes, &c.

._465. Theorem. A lunary surface is measured by
double the angle of its bounding circles.

Proof. Let double the angle MAN (fig. 187), ex-
pressed in degrees and minutes, be to 360°, in any ratio
as 5 to 48, that is,

2 4:360°=.: 180° =5 48.

Suppose the arcs of great circles Aa &', b A, &e
to be drawn, so that the angles M4 a, a A b, &c. may be
all equal to each other, and each J part of 180°.

The hemisphere MAPA' is divided into 48 equal lunary
surfaces AMad, A ab A, &ec., of which the lunary sur-
face AMNA' contains 5. Hence,

the lunary surface AMNA : the hemisphere =5 : 48

=2 MAN: 360°,
12
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Symmetrical Triangles are equivalent.

or 2 MAN is, by § 463, the measure of the lunary sur-
face AMNA'. .

The demonstration is extended to the case in which the
angle MAN is incommensurate with 180°, by the princi-
ples of § 98.

466. Theorem. Two symmetrical spherical triangles
are equivalent.

Proof. Let ABC, DEF (fig. 188) be two symmetrical
. triangles, of which AB= DE, AC = DF, and BC=
" EF.

Let P be the pole of a small circle passing through the
three points 4, B, C; then the distances PA, PB, PC
must be equal.

Draw D@Q making the angle QDE equal to PAB, and
draw QE making the angle DEQ equal to ABP. Join
QF. In the triangles ABP and QDE the side DE =
4B, the angle QDE = PAB, and QED = PBJA; and,
therefore, by § 451, the side @ D= PA and QE=PB;
and since these triangles are isosceles, they can be applied
to each other, and are equal.

In the triangles PAC, QDF, the side P4 = QD, the”
side JC = DF, and the angle PAC, being the sum of
PAB and BAC, is equal to @DF, which is the sum of
QDE and EDF ; and, therefore, by § 452, the side QF
= PC; and since these triangles are isoceles, they are
equal.

- In the -same way, it may be proved that the isosceles
triangle PBC is equal to QEF.

But  the triangle ABC = PAC 4 PBC — PAB,
and the trianglé DEF-= QDF 4+ QEF— QDE -
whence the triangle ABC =the triangle DEF.

467. Corollary. Hence all spherical triangles, which
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Area of a Spherical Triangle.

are equilateral or equiangular with respect to each other,
are equivalent.

468. Lemma. If two spherical triangles have an
angle of the one equal to an angle of the other ; and the
sides which include the angle in one triangle are sup-
plements of those which include it in the other triang e ;
the sum of the surfaces of the two triangles is measured
by double the included angle. '

Proof. Let the triangles be ABC and DEF (fig.
189), in which 4 and D are equal ; and AB and AC are
respectively supplements of DE and DF. .

Produce 4B and AC till they meet in 4. AB#A and
ACA' are, by § 428, semicircumferences. In the tri-
ungles A'BC and DEF, the angles /' and D are equal,
being both equal to A; A'B and DE are equal, being
supplements of 2B ; and A'C and DF are equal, being
supplements of AC. It follows, therefore, from § 467,
that they are equal in surface.

But 4'BC and ABC compose the lunary surface ABCA'
which is measured by 2 4. Therefore the sum of ABC
and DEF is also measured by 2 A.

469. Theorem. The surface of a spherical triangle
is measured by the excess of the sum of its three an-
gles over two right angles, or 180°. .

Proof. Let ABC (fig. 190) be the given triangle.
. Produce AC to form the circumference ACA'C/, also pro-
duce 4B and BC to form the semicircumferences AB4
and CBC'.

Then, by § 465,

the lunary surface CABC' =2 C,
the lunary surface ABCA' =2 A4,
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or
the surface 4BC + the surface ABC' =2 C,
the surface ABC -} the surface 2/ BC=2 4;
and, by § 468,
the surface ABC - the surface #BC'=2 B,
for the sides BC and AB are supplements of BC' and
4 B ; and the angle ABC is equal to the angle A/'BC’
The sum of these-three equations is
3 X the surface ABC - the surface 4'BC
= the surface ABC' +- the surface 4'BC'
=24+2B-+}2C.
But the surface of the hemisphere is, by*§ 463,
the surface ABC +- the surface 4’BC
- the surface ABC’ - the surface #/BC' —360° ;
which, subtracted from the previous one, gives
2 X surface ABC =2 .4+ 2 B 4 2 C—360%,
or
the surface ABC=uA 4 B 4 C — 180°.

470. Theorem. The surface of a spherical polygou
is equal to the excess of the sum of its angles over as
many times two right angles, as it has sides minus two.

Proof. Let ABCDEK (fig. 191) be the given polygon. .
Draw from the vertex A the arcs AC, 4D, &c., which di-
vide it into as many triangles as it has sides minus two.
By the preceding theorem, the sum of the surfaces of all
these triangles, or the surface of the polygon, is equal to
the sum of all their angles diminished by as many times
two right angles as there are triangles ; that is, the sur-
face of the polygon is equal to the sum of all its angles
diminished by as many times two right angles, as it has
sides minus two.
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Surface described by the revolution of a regular portion of a Polygon.

471. Theorem. If a portion ABCD (fig. 192) of a
regular polygon, situated entirely upon the same side
of a line FG drawn through the centre O of the poly-
gon, revolve about F'G as an axis, the surface gener-
ated by ABCD has for its measure the product of the
circumference inscribed in the polygon by JMQ, which
is the altitude of this surface, or the part of the axis
comprehended between the extreme perpendiculars M,
DQ. .

Proof. Let I be the middle of 4B, Ol is the radius of
the inscribed circle. Draw IK, BN, CP, perpendicular
to FG, and AX perpendicular to BX.

The measure of the surface described by 4B is, by
§ 398, AB X circumference of which KI is radius, which
circumference we will denote by circumf. KI.

The triangles OIK, ABX are similar, since their sides
are perpendicular to each other ; whence, by § 178 and 234,

AB : AX = OI: IK = circumf. OI: circumf. IK,
or, since AX = M,
* 4B : MN = circumf. OI: circumf. IK ;
and, multiplying extremes and means,

AB X circumf., IK=—MJN X circumf. OIL

Whence the area of the surface described by /B is the
product of the circumference of the inscribed circle by
the altitude M.

In like manner the area of the surface described by BC
is the product of the circumference of the inscribed circle
by the altitude VP ; and that described by CD is the pro-
duct of this circumference by PQ. :

Hence the area of the entire surface described by
ABCD is the product of the circumference of the in-

12%
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scribed circle by the sum of the altitudes MW, NP, PQ ;
that is, by the entire altitude MQ. "

472. Corollary. 1If the axis F'G passes through the
vpposite vertices F, G, the area of the surface described
by the semipolygon FACG is the product of the cir-
cumference of the inscribed circle by the axis FG.

473. Corollary. If the sides of the polygon are infi
nitely small, the polygon becomes a circle, the entire
surface generated is that of ‘a sphere, of which the gen-
erating circle is a great circle ; and the surface generated
by the circular segment ABCD is a zone.

Hence the area of the surface of a sphere is the
product of its diameter by the circumference of a great
circle.

And, the area of a zone is the product of its altitude
by the circumference of a great circle.

474, Corollary. Since the area of the great circle is,
by § 279, half the product of its radius by its circum-
“ ference ; or one fourth of the product of its diameter by
its circumference, it is one fourth of the surface of the
sphere ; that is

The surface of a sphere is equivalent to four great
circles.

415. Corollary. If we denote by R the radius of the
sphere, by C the circumference of a great circle, by S the
surface of the sphere, and by = the ratio of the circumfer-
ence to the diameter, as in § 237 ; we have

C=2ax R
§=2nx X RX2R=4z X R

476 Corollary. If we denote in the same way, by R

and §' the radius and surface of a second sphere, we have
S'=4n1 X R3,
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Solidity of the Sphere.

whence.
S8: =42 X R2:4a X R?=R?: R?,

that is, the surfaces of spheres are to each other as the
37uares of their radii.

477. Corollary. Zones upon the same sphere are
to each other as their altitudes; and a zone is to the
surface of its sphere as its altitude is to the diameter of
the sphere.

478. Theorem. The solidity of a sphere is one
third of the product of its surface by its radius.

Proof. For the surface of the sphere may .be con-
sidered as composed of infinitely small planes ; and each
of these planes may be considered to be the base of a
pyramid, which has its vertex at the centre of the sphere,
and, consequently, an altitude equal to the radius of the
sphere. The sum of the solidities of these pyramids is,
then, one third of the product of the sum of their bases
by their common altitude, that is, the solidity of the
sphere is one third of the product of its surface by its
radius.

479. Corollary. In the same way, the base of a
spherical pyramid or sector may be considered as com-
posed of planes, and, therefore, the solidity of a spheri-
cal pyramid or sector is one third of the product of the
polygon or zone, which serves as its base, by 1ts radius.

480. Corollary. Spherical pyramids or sectors of
the same sphere are to each other as their bases ; and

a spherical pyramid or sector is to the sphere of which
1t is a part, as its base to the surface of the sphere.

481. Corollary. Hence, by § 477, spherical sec-
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b. If the faces are squares, their angles may be ar-
ranged by threes. But four angles of a square are equal
~ to four right angles, and cannot form a solid angle.

c. If the faces are regular pentagons, their angles
may likewise be arranged by threes.

d. We can proceed no further; for three angles of
a regular hexagon are equal to four nght angles ; three
of a heptagon are greater.

488. Corollary. There can be only five regular
polyedrons ; three formed with equilateral triangles, one
with squares, and one with peutagons; and in three of
these polyedrons each solid angle is formed by three
plane angles, and in one of them by four, and in one by
five plane angles.

489. Problem. To find the number of faces of the
regular polyedrons.

Solution. Denote the number of plane angles by which
each solid angle is formed by m, and the number of sides
of each face by n.

Now it is evident from the symmetrical character of the
regular polyedron, that a sphere can be circumscribed
about it ; and, if the adjacent vertices of the polyedron
are joined by arcs of great circles, the surface of the
sphere is divided into as many equal regular spherical
polygons as the polyedron has faces, and the number of
sides of each spherical polygon is n, or the same as that
of the face of the polyedron.

Moreover, the number of spherical angles which are
formed at each vertex is m ; but their sum is equal to that
of four right angles, and, since they are equal to each
other, each must be represented by 360° divided by m;
that is, denoting each spherical angle by A4,
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Number of Faces of the Regular Polyedrous.
; A =2360° <+ m.

Again, the sum of the angles of each spherical polygon
is n X 4; and therefore the surface of the polygon,
which we shall denote by §, is, by § 470,

S=nX 4—(n—2) X 180°,
or S=n X 360° - m—(s—2) X 180°.

Hence the number of faces is easily found, and is equal
to the number ofstimes which S is contained m the sup
face of the sphere, or, by § 464 in 720°.

490. Corollary. When the polyedron is composed of equi-
" lateral triangles, we have n—3, whence

8§ =1080° + m— 180°,
a. If, then, the number of plane angles at each vertex is
3, we have m =23, whence
§=2360° — 180° =180°,
which is contained 4 times in 720°, and therefore this
polyedron is a tetraedron.
b. If the number of plane angles at each vertex is 4, we
"have m =4, whence
S = 270° — 180° = 90°,
which is contained 8 times in 720°, and, therefore, this
polyedron is an octaedron.
c. If the number of plane angles at each verlex is 5, we
have m =25, whence
8 =216° — 180° = 36°,
which is contained 20 times in 720°, and therefore this
polyedron is an icosaedron.
491. Corollary. When the polyedron is composed of
squares, we have n=4, and, by § 486, m =3, whence
§ = 480° — 360° = 120°,
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v

which is contained 6 times in 720°, and therefore this
polyedron is a hezaedron or cube.

492. Corollary. When the polyedron is composed of

regular pentagons, we have n— 52and, by § 486, m =38,
whence

8 = 600° — 540° =60°,
which is contained 12 times in 720°, and therefore this
polyedron is a dodecaedron. -

THE END.
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