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TRACT 1.

ON THE BASES OF GEOMETRY WITH THE
GEOMETRICAL TREATMENT OF ./ —1.

CONTENTS.

(1) On the Treatment of Ratio between Quantities Incommensurable.
(2) Primary Ideas of the Sphere and Circle. Poles of a Sphere.

(3) Definition and Properties of the Straight Line.

(4) Definition and Properties of the Plane.

(5) - Parallel Straight Lines based on the Infinite Area of a Plane Angle.
(6) On the Volume of the Pyramid and Cone.

I. TuE RATIO OF INCOMMENSURABLES.

1. IN arithmetic the first ideas of ratio and proportion, and
the laws of passage from one set of 4 proportionals to another, ought
to be learned, as preliminary to geometry; but in geometry the
doctrine of incommensurables requires a special treatment, unless
the learner be well grounded in the argument of infinite converging
series. Repeating decimals may perhaps suffice. Another, possibly
better way, is open -by the introduction of VARIABLE quantities,
which will here be proposed.

2. Nothing is simpler than toimagine some geometrical quantity
to vary in shape or size according to some prescribed law. This
must imply at least two quantities varying together. Thus, if an
equilateral triangle change the length of its side, its area also
changes. If the radius of a circle increase or diminish, so does the
length of the circumference. In general two magnitudes X and ¥
may vary together: they may be either the same in kind,—as the
radius and circumference of a circle is each a length; or the two may
be different in kind, say, a length and an area. In general it is a

N, 1



2 VARIABLES WHICH INCREASE UNIFORMLY.

convenient notation to suppose that when X changes to X', ¥ changes

to Y.

8. Again, if X receive successive additions z,x,...,, the cor-
responding additions (if additions they be) to ¥ are well denoted by
Y. YyYs--Ya An obvious and simple case, if it occur, will deserve
notice; namely, if the two variables are so regulated, that equality
in the first set of additions (i.e. #,=a,= z,= ... =2,) induces equality
in the second set; (i.e. y,=y,=vy,=...=v,). The variables X and ¥
are then said to increase uniformly. As an obvious illustration, sup-
pose X to be the arc of a circle, and ¥ the area o X
of the sector which it bounds, evidently then if S
the arcs ,, #, are equal increments of the arc X, Y
the sectors y,y, which are bounded by z, will
be equal increments of ¥. Then the arc X and

the sector ¥ increase together uniformly. o

4. We may now establish a theorem highly convenient for ap-
plication in geometry, alike whether quantities are commensurable
or incommensurable.

TuroreM. “If X and Y are any two connected variables, which
begin from zero together, and increase umiformly; then X varies
proportionably to Y. In other words, if ¥ become ¥ when X be-
comes X', then X is to X' as Yis to ¥Y'.”

Proof. First, suppose X and X’ commensurable, and £ a common
measure, or X=m . £ (m times £) and X' =nE. We may then sup-
pose X and X’ made up by repeated additions of £. Every time
that X has the increment & Y will receive a uniform increment
which we may call v; then ¥ is always the same multiple of v that
X is of & thus the equation X =m§ implies ¥ =mv, and X' =n§
implies Y'=nv. Hence X : X'=m:n=Y:7".

Next, when X' is not commensurate with X, yet £ is some sub-
multiple of X, such that nf=X, and X’ contains £ more than m
times, but less than (m + 1) times; evidently we cannot have

X:X'=Y:Y

(when the four magnitudes are presented to us) unless, as a first
condition, on assuming nv=Y, we find ¥’ to contain v more than
m times and less than (m+ 1) times: and unless this condition were
fulfilled, X and Y would not increase uniformly. We may therefore



DISTANCE OR SHORTEST PATH. 3

assume X, X, on opposite sides of X’, with values
X,=m§ X,=(m+1)§;

likewise Y,Y, on opposite sides of ¥’, with values
Y,=mv, Y;=(m+1)v.

Then by the first case we have X : X,=Y:Y,and X : X, =7V : V.
But X,—X,=¢, and V,—Y,=v. Let n perpetually increase, then &
and.v perpetually lessen. X, and X, run together in X’, ¥, and Y,
run together in ¥”. Thus each of the ratios X : X, and X : X falls
into X : X', and each of the ratios Y :Y, Y : 7, falls into ¥ : Y.
Inevitably then, X : X'=Y : Y’, even when these last are incom-
mensurate. Q.E.D.

IT. PRIMARY IDEAS OF THE SPHERE AND CIRCLE.

For the convenience of beginners, POSTULATES may be advanced
concerning the straight line and the plane, as well as concerning
parallel straight lines. But in the second stage of study the whole
topic ought to be treated anew from the beginning: a task which is
here assumed.

On Length and Distance.

THEOREM. “ All lengths are numerically comparable.” To make
this clear, it is simplest to imagine a thread indefinitely thin, flexible
and inextensible. This, if applied upon any given line, will become an
exact measure of its length; and if any two lines be then measured
by two threads, the threads are directly comparable, shewing either
that they are equal, or that one is longer than the other and how
much longer. Hereby we safely assert the same fact concerning
any two given lengths.

Obviously, length is contvnuous magnitude: which means, that if
a point P run along from 4 to B, the length AP passes through all
magnitude from zero to AB.

THEOREM. Any two given points in space may be joined either
by one path which is shorter than any other possible, or by several
equal paths than which none other is so short. For of all possible
paths joining them some must be needlessly long; yet unless there
is some limit to the shortening, the distance would be nil; the points
would not be two, but would coincide and become one.

1—2



4 THE SPHERE.

DEr. A shortest path that joins two points in space gives a
measure of their DISTANCE. The same argument applies, if the two
given points and the line that joins them must lie on a given surface;
or again, if two surfaces that do not touch be given, and we speak of
the shortest distance of the two surfaces.

Assume a fixed point 4 and a second point S so movable as
always to be at the same distance from it. It will be able to play all
round A : therefore its locus will be a surface enclosing A. The
solid mass enclosed.is called a SPHERE (Globe or Ball) and A its
CENTRE.

THEOREM. “ Every point outside the sphere is jfurther from the
centre and every point within the sphere is nearer to the centre, than
are the points on the surface.” For if T' be an exterior point, every
path joining 7' to A must pierce the surface in some point S; there-
fore the path 7'S4 is longer than SA by the interval 7'S. Again, if
R be within the sphere, we may imagine an interior sphere whose
surface is at the common distance AR from A. Then S being
exterior to the new sphere, S4 is longer than R4 ; that is, R within
the sphere of S is nearer to 4 than is the locus of S. Q. E.D.

DEeF. Two such concentric spheres enclose within their surfaces
a solid called a spherical shell.

THEOREM. “The two surfaces are equidistant, each from the
other.” TFor if the shortest distance from a point S to the inner sur-
face is the path SR, symmetry all round shews at once that if from a
second point S’ the shortest path will be S'R’, the two distances SR,
S'R’ will be equal. Indeed it is not amiss to remark, that if any
spherical surface be rigidly attached to its centre, the entire surface
may glide on its own ground without disturbing its centre, because
the distances S4, 8’4 nowhere change. Hence also we may justly
imagine the spherical shell to glide on its own ground, while the
centre suffers no displacement, and any shortest path S'R’ joining
the opposite sides of the shell may assume the place which was
previously held by SE. Actual superposition thus attests equality of
distance.

TaeorEM. “If a spherical surface be given, its centre is deter-
mined.” For if an inner point R be assumed at a given distance D
from the surface, its locus is an tntertor continuous surface. Within
this, at distance D', imagine a point R’ to generate a second con-
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tinuous surface, and it will bé interior to the preceding and so con-
tinually. The series of surfaces must then necessarily converge
towards a single point, which will be the centre of the given surface,
because the sum of the distances is the same, from whichever point
we calculate. The same argument proves that all the surfaces are
concentric spheres.

Poles of a Sphere.

THEOREM. “To every point on a sphere one opposite point lies
at the longest distance along the surface.” For if the point P be
given, and we take a point S at any distance from P along the surface,
and suppose S to vary under the sole condition that its distance
from P (along the surface) shall not change, the locus of S is a self-
rejoining line enclosing P. (We call this a circle.) Next, beyond
8, along the surface, take a new point 7, which moves without
changing its distance from S and from P. This generates an outer
circle, cutting off a part of the surface which was beyond the circle
of 8. Beyond this we may similarly form a third circle, and this
series of circles ever lessening the finite area beyond it, will neces-
sarily converge towards a point ¢ on the sphere. P will then be
farther from @ (along the sphere) than any of these parallel circles.
We call P and Q opposite poles of the sphere. The distance between
them is evidently the half girth of the sphere.

Every point on the sphere has not only its own opposite pole;
but also its system of equidistant (or parallel) circles. The middle
one of these (that is, the one equidistant from the two poles), is
called their equator.

If in an equator whose poles are P and @, you fix any point
C, and then proceeding half round the equator fix a second point
D, C and D are evidently opposite poles.

If you imagine a sphere to glide on its own ground, with centre
unmoved, you may suppose P to pass over to the site held pre-
viously by Q. This carries @ to the place previously held by P.
Thus the poles are exchangeable, while the sphere as a whole is
unchanged and the same equator is attained.

THEOREM. “If P and R be any two points on a sphere that are

not opposite poles, one equator, and one only, passes through them
both.”
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Proof. Through P and its opposite pole @ (just as above through
the poles ' and D) an equator may pass. If this half equator PQ
become rigid and be rigidly attached to the fixed centre 4, it still
may sweep over the spherical surface (without change of P or @)
until it passes through R; but after passing once through Z, it does
not come back to it, except in a second revolution. Q. E.D.

III. PoINTS LYING EVENLY.

In Simson’s Euclid, the line whose potnts lie evenly is called
STRAIGHT ; but the phrase “lying evenly” is not explained. We can
now explain it.

When the two poles P and @), and the centre 4, all remain
unchanged, nevertheless each of the parallel circles associated with
P and Q can glide on their own ground. Evidently then, if P and
A be fixed, this suffices to fix Q. In fact while each circle spins
round its own line,  can only spin round vtself. Also, tofix P and @
fixes A.—These parallel circles excellently define to us the idea of
rotation, which is a constrained motion, still possible, even when P,
A, Q are all fixed. Now suppose that a line PMQ internal to the
sphere rigidly connects P with . Then if the system revolve round
P, A, Q, PMQ may generate a self-rejoining surface within the sphere.
Again within this new surface a rigid line PNQ may connect I’ with
Q, and the line PNQ by rotation round P, 4, ¢ may generate a
third surface interior to the preceding ; and so on continually. Since
there is no limit to the constant thinning of the innermost solid, we
see that a mere line without thickness connects P with @ and passes
through A4, which line is interior to all the solids and during rotation
remains immovable. It is called an axis, and can only turn about
itself. Hence every point in this axis lies evenly between P and Q.

And since P and @ may represent any two points in space, we
now discover that between any two there is a unique line lying evenly.
This continuous line, while we talk of rotation round it, is entitled an
aais; but ordinarily we call it simply STRAIGHT.

On the Straight Line and its « Direction.”

We now infer that
1. Any two points in space can be joined by a straight line.
2. Every part of a straight line is straight.
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3. A unique straight line is defermined, when its two end-points
are given.

4. Any part of a straight line, if removed, may take the place of
any equal part of the same. Hence it easily follows that a straight
line, gliding along itself, will prolong itself indefinitely far, either way,
along a determinate course.

We are now able to sharpen our idea of direction.  Hitherto we
might say vaguely, “ Imagine a path to proceed ¢n any direction,” that
is, without particular guidance. But now we see, that if ever so short
a straight line be drawn, it points to a definite prolongation beyond
itself, of indefinite extent. This we entitle its direction. If this
direction be changed, a deviation there occurs, and a sharp corner is
recognized at the point of deviation. The amount of deviation
suggests a new kind of magnitude, which will presently need
attention. Now it suffices to remark on the case in which a new line
AZ deviates equally from a previous line PA and from AQ) the pro-
longation of PA. The equality is tested by imagining AZ to become
an axis of a sphere. Then if P and @ revolve in the same circle, ZA
is equally inclined to AP and to 4Q. It is called perpendicular to
PAQ. Evidently Z (on the sphere) is at the distance of a quarter
girth from every point of the equator traced by P and Q.

IV. TaE PLANE.

We return to the sphere. When any two poles P, ( are joined
by a straight line, it has been seen that this passes through the
centre A. The line PAQ is called a diameter of the sphere, and
its half (4P or AQ) is called a radius.

Evidently all the radii of the same sphere are equal; and of
different spheres the greater the radius, the greater the sphere.

If an equator CDEC is midway between the poles P, ¢, and D
is the pole opposite to C, then as the diameter P@, so too the dia-
meter CD, passes through centre 4. This is true, whatever point in
the equator is assumed for C. Therefore CAD is a varying diameter,
whose extremities trace out the equator, while the diameter traces
out a surface in which the equator lies. This surface is called a
PLANE, and in particular is the plane of the equatorial circle.

It was seen that P and @ might exchange places, while the
centre A4, and the sphere’s surface as a whole, remain unchanged.
Necessarily also the plane of the equator remains unchanged. It is
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then symmetrical on its opposite sides, or in popular language, the
plane turns the same face towards P as towards Q.

The axis PAQ is called perpendicular to the plane of the equator,
being perpendicular to every radius of the equatorial circle.

THEOREM. “No other line but 4P can be perpendicular to the
plane of the equator.”

Proof. For if AR be some other radius of the sphere, some one
of the parallel circles, whose pole is P, passes through R, and every
point of this circle is nearer to the equatorial circle than is the pole P.
Therefore the distance of B from the equator is less than a quarter
of the sphere’s girth, a fact which shews R4 not to be perpen-
dicular.

THEOREM. “Through any two radii AP, AR of a sphere, that are
not in the same straight line, one plane and one only may pass.”

It has been seen that through P and R only one equator can
pass. The plane of this equator is the plane that passes through
the two radii.

Cardinal Property of the Plane.

THEOREM. “If M and N are any two points in a plane, no point
in the straight line which joins M and IV can lie off the plane on
either side.”

Symmetry suffices to establish this truth. Our hypothesis supplies
data to fix what line is meant by MN, but gives no reason why any
point of it should lie off the plane on one side rather than on the
other; for the whole line is determined by merely the extreme
points M, N, of which neither can guide any point towards P rather
than towards @. Thus there is no adequate reason for deviation
towards either side.

Symmetry of data is in other mathematical topics accepted as
an adequate argument for symmetry of results. Otherwise, “the
want of sufficient reason for diversity” passes as refutation of alleged
diversity. Therefore the argument here presented has nothing really
novel.

We have now a new method of generating a plane that shall
pass through two intersecting straight lines LM, MN. Along ML
let a point Z run, and along MN similarly a point F. Join EF
while the motion of & and of F continues. Then KF (by the last
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Theorem) always continues to rest on the plane LMN. This mode of
generating the plane supersedes the idea of rotation. For simplicity

we might suppose ME : MF to retain a fixed ratio.

THEOREM. “A plane has no unique point or centre.”

For if we start from given spherical radii AP, AR through
which passes an (equatorial) plane, in AP take M arbitrarily, and
in AR take N arbitrarily. Then we have seen that the locus of the
moving line MN is our given plane. But again, in this plane take
a fixed point O, and join O to fived points M and N. Then from the
lines OM, ON we can (as in the last) generate the very same plane,
which can glide on its own ground as the sphere did; thus the point
A can pass to O without changing the ground or surface as a whole.
The plane is infinite, the sphere is finite; but as with the sphere,
so with the plane, no point of the surface is unique.

After this, no impediment from logic forbids our passing to the
received routine of Plane Geometry, until we are arrested by the
difficulty of parallel straight lines, to which I proceed, after one
remark on the definition of an angle.

Above, a sharp corner or turn was identified with deviation, or
change of direction. In geometry it has the name of an angle, and
we measure its magnitude by aid of the circular arc which it sub-
tends at the centre or by the sector of that arc. But no insuperable
logic forbids our estimating the magnitude of an angle by the portion
of the infinite area which it intercepts from a plane; which indeed
is suggested by a perpetual elongation of the radius of the circle
whose sector was assumed as measure of the angle.

Monsieur Vincent in Paris (1837) adopted this definition as
adequate to demonstrate the equivalent of Euclid’s Twelfth Axiom
without any new axiom at all. Has this method received due
attention in England ?

Monsieur Vincent was not the first to suggest accepting the
wnfinite plane area cut off by two intersecting straight lines, as the
measure of the angle which they enclose: but perhaps he was the
first to introduce the method into a treatise on Elementary Geometry,
that obtained acceptance in so high an institution as the University
of France.

Two lemmas alone are wanted, and these every beginner will find
natural.
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Lemma I. “Every angle is a finite fraction of a right angle;”
that is, some finite multiple of it exceeds 90°. For the circular arc
which subtends it, is always some finite fraction of the quarter of
the circumference.

Der. When two straight lines AM, BN in the same plane are
both perpendicular to a third straight line 4B, we call that portion of
the plane area which is enclosed between M A, AB and BN a BAND.

LemmA II. Then, I say, whatever the breadth (4B) of the band,
the area of the band is less than any finite fraction of a right angle.

Proof. Prolong AB indefinitely to X, and along it take any
number of equal lengths AB= BC=CD = DE, &c., and through
C, D, E... draw perpendicular to ABCDE... straight lines CO, DP,
EQ,&c. Evidently then the successive bands are equal, by superposi-
tion. Thus, whatever multiple of the first band be deducted from
the plane area marked off by the right angle MAX, the loss is
insensible ; for, as remainder, we find the area marked off still by a
right angle (such as QEX, if only four bands were deducted). Any
two right angles embrace areas which can be identified by super-
position, and have no appreciable difference. The matter may be
concisely summed up by remarking, that every band is infinite in
one direction only,—say, horizontally—but the area embraced by any
right angle is infinite in both directions, horizontally and also verti-
cally. Thus it is no paradox to say, that no finite multiple of the
band can, by its deduction from the area of the right angle, lessen
that infinite area in our estimate. Q.E.D.

Euclid’s Twelfth Axiom is now an immediate corollary; viz. If
MABN be any band ; and, within the right g N
angle NBA, any straight line BT be drawn, T 7
it can be prolonged so far as to meet the
prolongation of AM. For the angle NBT
is a finite fraction of a right angle, while
the band MBAN is less than any finite fraction of the same ; hence
the angle NBT is greater than the band MABN, but unless BT
crossed AM this would be false. Thus of necessity the two lines
do cross, as we asserted.

M

I cannot see any mew axiom involved in this proof: therefore
I am forced to abandon several other specious methods and give it
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preference. Surely we may bow to the authority of the University
of France in such a matter.

On the Volume of Pyramids and Cones.

The treatment of this topic in Euclid is very clumsy. It demands
and it admits much improvement.

1. For parallelepipeda prove first, that if fwo such solids differ
solely in the length of one edge, which we may call « in the one
and ¢ in the other, then their volumes are in the proportion of
z: a

2. Next, if they have a solid angle in common, but the edges
round it are in one #, ¥, 2, and in the other a, b, ¢, then the two
volumes are in the proportion of xyz : abe.

3. After this it is easily shewn that parallelepipeda on the same
base and equal height have equal volumes.

4. Therefore finally, that the volume of a parallelepipedon is
measured by its base X its height. Cor. The same is true of any
prism.

From this we proceed to approximate to the volume of a pyramid.

5. Divide the height (%) into (n) equal parts by (n—1) planes
all parallel to the base (B). Establish, on these (n—1) bases,
upright walls, and you will find you have constituted a double
system of prisms, one interior to the pyramid, one exterior; the
latter has the lowest prism in excess of the other system. Every
base is similar to every other, by the nature of a pyramid. The

volume here of every prism is i—; x its base, the number n and % being
the same for all, but the base varying.
6. The base whose distance from the vertex is %.h, is to the

2
original (B) as r* : n’; hence its area is ,'—‘;.B, which gives for the
n

2
volume of the prism standing on it (%,B) . % Hence the sum of

. L P22 3+ n?
the volumes of the external prisms is + +22+ +n . % B, and

by omitting #* from the numerator of the larger fraction we obtain '




12 VOLUME OF PYRAMID.

n*.h.B

the sum of volumes for the wnfernal prisms. Now since p

vanishes when A, B are finite and # infinite, the difference of the
two systems of prisms vanishes when # is infinite. But the volume
of the pyramid is less than the exterior system and greater than the
interior ; hence each system has the volume of the pyramid for 4ts
ltmat, when n increases indefinitely.

7. Let u be the unknown numerical limit to which the fraction
2 2 2 2
I'+2 -;33 RaR approximates when 7 thus increases. Then the
volume of the pyramid =u.h.B. Since u is the limit of a numerical
fraction, which remains the same, whatever the form of the pyramid’s
base, we shall know the value of w for all pyramids, if we can find
it in one. Meanwhile the result V=u.h.B at once shews that
pyramids with equal base and equal height have equal volume, since
u is the same for all.

8. When this theorem has been attained, we have only to divide
a triangular prism into three pyramids, and instantly infer that the
3 are equal among themselves; therefore that each has a volume
just & of the prism, i.e. equal 3% . B.

This, being proved of a pyramid whose base is a triangle, shews
that the unknown u is there exactly %.

Hence universally u=1, and volume of every pyramid =1h. B, or
is equal to } of the prism which has the same base and height.

Cor. Every cone also is one third of the cylinder which has the
same base and height.



TRACT II

GEOMETRICAL TREATMENT OF -1

1. In pure algebra, concerned with number only, the symbols +
and —, denoting addition and subtraction, in an early stage needed
elucidation when the mark of minus was doubled. It is found natural
that —(+ @) and +(— @) should both mean — a, but that —(—a) should
mean + a, and (—a). (—b) should be + (ab) surprises a beginner, and
is illustrated by urging that to subtract a debt increases the debtor’s
property, and to subtract cold is to add heat. But as soon as we
apply algebra to geometry, the symbols + and — are still better
interpreted of reverse direction; also time past and time coming
afford equally good illustration. Distinguishing positive and negative
direction along a line, we find no mystery in the fact that to reverse
negative direction is to make it positive, so that —(—a) gives +a,
as reasonably as — (+ a) gives —a. If we know beforehand whether
‘a given distance is to be counted positively or negatively along a
given axis, no ambiguity is incurred, and the sign + or — generally
gives the needful information. For this reason some are apt to think
of +a and —a as different numbers, instead of the same number
differently directed. Out of this rises the learner’s natural complaint
when he meets 4/— 1 or 4/=5. “There is no such number: you confess
it is smaginary: o proposition tnvolving it has no sense” So murmurs
every scrupulous and wary beginner: and the teacher’s reply, “Some-
how we work out useful results by 4/—1,” sounds like saying: “ Out
of this nonsense useful truth is elicited.”

2. The first reply to be made is: No one ought to desire any
number for 4/—1 except the unit itself; the 4/— which precedes,
though a double symbol, has the force of a symbol only. The next
reply is decisive,—the double symbol 4/— points to a new direction
in geometry; namely, the direction perpendicular to +1 and —1.
But to explain this fully, it is better to make a new beginning.
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Suppose that radii issue in many directions from a fixed point in
a plane, and that distances are counted along them. So long as we
know along which radius we are to count, nothing new is involved,
and of course no difficulty. Suppose one of these radii to be our
ordinary positive axis, another to be called the m radius, and for
distinction write the index m under every number to be counted
along it, so that 1, is its unit, in length =1 as estimated absolutely.
Then we deal with a,b,¢,,... along the m line, and combine a,, £ b,,,
and interpret 5a,,, 5b,, + 6¢,,, without difficulty or fear, since all are
lengths to be counted along the same radius. But such a product
as a,, . b, would need careful interpretation. In ab, no obscurity is
found, whether the o be linear or numerical. If linear, we proceed
as in interpreting ab’, though space has only three dimensions. If
we put A for the value of ab’, we attain it by the proportion
1:a=0b:4, so that 4 is the same in kind as b°. Similarly if
A’=ab,, we are able to count 4’ along the n radius, whether o be
simply numerical, or when it is linear, by aid of the ratios 1:a=0,: 4",
But if we proceed thus with a,,. b,, using the proportion

1,.:a,=b,:4,

we confound a,,b, with ab_; for 1,, : @ is the same ratio as 1 : a.

3. Mr Warren in 1826 laid a logical basis for this matter by his
treatise on s/— 1, which I here substantially follow, and wonder that
it is not found in all elementary works. He virtually distinguishes
between proportionate lengths and proportionate lines. In the former,
DIRECTION is not regarded; with the latter, it is essential. Thus if
A, B, C, D are proportionate lengths, but are drawn along our radii,
—viz. A along the positive axis, B along the m radius, ¢ on the n
radius and D on the p radius, we do not pronounce these lines pro-
portional, unless also their directions justify it; that is, the p radius
must be disposed towards the n radius, as is the m radius to the
positive axis. This amounts to saying that the p line must lie on
the same side of the n line, and at the same

angular distance from it, as the m line com- P N
pared with the positive axis. Then, if OL, Q "
OM,ON, OP be the 4 radii, and LMNP acir- R

cular arc, we need that the arc PN shall

=arc ML before we admit that the wumnits ) L

0L, OM,i ON, OP are proportionate lines.
After this condition of the directions is fulfilled, we. concede that
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the proportionate lengths counted along them are also proportionate
lines.

If the arc NP =arc LM, add M N to both, then arc PM = arc NL.
This enables us to exchange the second and third terms in the pro-
portion, agreeably to the process called Alternando. Also the arc
PL=PN+NL=ML+ NL. Hence if we count from L, and call
arc LM = m, arc LN =n, arc LP = p, the test of necessary direction
isp=m+n.

The simplest case is, when the four proportionals become three
by the second and third coalescing, as if M and N run together in Q.
Then if arc LQ=arc QP, we have OL : 0Q = 0Q : OP. If further
arc PR =arc PQ, then 0Q : OP=0P : OR; and so on.

4. Apply now this to the case in which the arcs PQ and QL are
both quadrants. Then OQ) is the mean pro-
portional between OL (= 1) and OP=(—1). Q
The received symbol for a mean proportion
is 4/, as in 0Q=40P.0L. Here then
0Q=+(—1.1)=4/—1. This is only a fol-
lowing out of analogy with the symbol; p o) L
though, previously, 4/ expressed the mean
proportion between numbers, or perhaps lengths, without cognizance
of direction.

Now, our first care must be, to inquire whether 4/— as a symbol
of direction, has the same properties as when it operates on a pure
nurber. ,

Tirst, in combining factors, the order is indifferent, as ab = ba, and
a.(1)=a=1.a. We ask, does »/— fulfil this condition? Evidently,
a.y—1=4—1.a, each measuring the length a, directed along the
perpendicular 0Q. Similarly

a.A=b=n—-b.a=by—1.a=bay —1.

Next, repeat 4/—. We had 0Q=0L+y~1 or 4/—1.0L. Also
OP=4y—1.0Q, because QOP =90°, ..OP=4—-1.(#—-1.0L)
But OP=— 0L or —1.0L. Evidently then »/— 1.4/ —1 is equi-
;\/_—l—i to —a/—1.

5. But a new difficulty arises in adding unlike quantities, i.e. in
connecting them by +. If along radii m and n we have two lengths
a,, and b, what meaning can we attach to a,+b,? This urgently
needs explanation, It may seem that the symbol + (plus) receives

valent to — 1. This further justifies the change of
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a new sense.—Now in fact when (a + b) = zero, the + does not strictly
mean addition; it really expresses a difference, not a sum; but not
to embarrass generalization, we call it a sum, and say that either a or
b is negative. They may mean the very same line OL estimated in
opposite directions, as OL and LO. If OL mean the line as travelled
from O to L, and LO the same as travelled from L to O, the state-
ment OL + LO = zero, clearly means that the total result of such
travel is nothing; since the travel neutralizes ttself. Thus if, instead
of saying that the sum is zero, which gives only a numerical idea, I
call total result zero, you will gain a geometrical idea. At this we
must aim, when we deal with lines differing in direction. Evidently,
if, starting from any point in the outline of a limited surface, a point
travel round the circuit, until it regain its original place, we may
justly say, the total result of such change is zero; and no one will
suppose it to mean that the length of the circuit is zero. So if there
be a triangle ABC, we may say, the total result of the travel
AB+ BC + CA =0, if it be understood that each line is to be esti-
mated in a different direction. Indeed, suppose the lengths of the
three sides are ¢, @, b, then in the equation ¢, +a,+b,=0, the
symbol + cannot mislead us, though its sense is evidently enlarged
from sum to total result.

Again, since AB+ B0+ (CA =0 and CA = — AC, when direction
is considered, we have AB+ BC — AC =0, which further justifies
AB + BC = AC. The last is interpretable,—“Motion along two
successive sides of a triangle yields the same total result as motion
along the third side.”

The word resultant characterizes mechanics, but there seems no
objection to adopting it in geometry also for the total result, as
distinguished from the sum.

6. In fact we have unawares made a great step forward; for the
symbol 4/ — now enables us to express distance in every direction. If
our parallelogram become a rectangle, and A B is the ordinary positive
axis, and (as before), the lengths of AB, BC, CA are c, a, b, we have
BC=a4 —1 when direction is estimated, and 4C =total result of ¢
and @y/—1, or AC (an oblique line) =c+a /—1. Since ¢ and a are
independent lengths, AC' may have any direction whatever.

But again, we must inquire whether the symbol +, thus extended,
can be worked in the received method. First, does it fulfil the
fundamental condition expressed by A + B=B+ A? Assuming (as
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we must) the doctrine of parallel straight lines, and considering any
rectangle whose sides are @ and ¢, we find
that ¢+as/—1=the diagonal =ay/—1+¢
from the opposite sides. Next, does it
fulfil the condition A(a+ B) =hA + hB? p

The doctrine of similar triangles at once

affirms it. Let OM =, MP=y, per-

pendicular to it; join OP, then if OM is

the positive axis, and y expresses mere v o)
length, we write

r

OP or OM + MP =z + y+—1.

Next, along OM take Om =hw; that is 1 : h=a : Om (whether A is
linear or numerical). Erect mp perpendicular to Om and meeting OP
in p. Then by similar triangles, mp =h.y (in length) and Op = h. OP.
In this &.OP = Op we have supposed h to be numerical.

Also OP is equivalent to z ++/— 1.y,
and Op to Om +mpy/—1 or ha+ v/ —1.hy,
that is, h(z+vV—=1y)=hz++-1.hy,

just as if 4/—1 were numerical.

If further we change % from a mere number to a positive length,
it affects every term of the last in the same ratio, and leaves equi-
valence as before.

If we have proved generally that with any factor & (provided
it be counted along the positive axis) the product & (z+4+/—1.7%) is
equivalent to ha +4/— 1. hy, the same is virtually proved, if & be
changed into A, that is, if the numerical -~ be computed along an
m~axis. For we may transform our hypothesis, by choosing the m-axis
as positive. If hereby #, y change to &', ¥, we obtain a result the
same in _form as the previous result, and «/, ¥’ remain quite as general
as were the 2, y. Thus we may write

hm' (x + \/— ly) = hmx + ’\/'— 1 "hmy'

After this, we can change the oblique h,, into @ +4/—1.b, where a, &

are along the positive axis, Now if the m-axis be perpendicular to

the positive, we may write simply A, =%k+/—1, where % is along the

positive axis. Then 4/ —1.h,y=4+/—1.4/-1.ky, and since each 4/~1
N. 2
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denotes revolution of the &y through 90° the 4/—1.,/—1 shews
revolution through 180°, or is equivalent to the symbol —. Thus

byl +y=1y) =V =1.k(z+ y~ 1y)
—y=1.kr+y=1.k.y=1.y

exactly as ¢f /=1 were numerical. Evidently then the same holds
good in multiplying out (kb +/—1k) into (z + /— 1y).

THEOREM. If A + B4/—1=C+ D /- 1,this implies two equali-
ties, viz. A =(C and B=D. The geometrical proof appeals at once to
the eye. If OA be the positive axis, and
the binomials are denoted by OP and 0@, Q
viz. A+4/—=1B=0P and C++/—1D=0Q,
we do not account OP = 0@ until they
have the same direction, as well as the
same length. This requires  to coincide A N
with P. Of course then, if PM, QN are
dropt perpendicular to 04 we have OM =A4, PM =B/~1, ON=C,
QN =D /-1, and as soon as OP = 0@ in our hypothesis, P coincides
with @, therefore also M with N. That is 4 = C and B= D.

The reader will now see the geometrical meaning of the “imaginary
roots” (so called) of a quadratic equation. As a very simple case,
take first ‘

«* — 16z + 63 =0, which yields #=8 £ 1.
Here both roots lie along the positive axis. But change 63 to 65,
then a* — 16x 4+ 65 =0, whence £ =8 +4/— 1.

In the latter the two roots are equal radii drawn from the origin
at equal angles on opposite sides, radii which terminate where the
coordinate along the axis is 8, and the transverse coordinate is + 1.



TRACT IIL
ON FACTORTALS.

SuppPLEMENT II.

Extension of the Binomial Theorem.

1. THE following appeared in Cauchy’s elementary treatise, as
early, I think, as 1825, but without the new Factorial Notation, which
adds much to its simplicity. Boole writes #® for z (z—1), 2® for
z(z—1)(x—2), and 2® for 2(x~-1) (x—2) ... (z—n+ 1), whence
2" =™ (z—mn). Better still it is, to place the exponent in a
half-oval, since a parenthesis ought to be ad libitum. I propose

n-1

z, 2= which are quite distinctive. Then the Binomial Theorem is

n __ @ 2 ﬁ 3 ws . n
QI+a)"=1+n. THnl gt g gttt
In this notation 1.2.3.4...n0rn(n—1)...2.1is nZ. Guder-
mann for this has #’; but (n —1) is less striking to the eye than
|, [n—1 introduced by the late Professor Jarrett. This exhibits in
the Binomial Theorem its general term, by

(1+m)"=1+n.'31”+...+n’v.ai;+...+w";

of course #-_ is equivalent to simple .

The Ezponent (of a power) is already distinguished from an
Index. In a Factorial &2 for & (2 — 1) (z — 2)...(z — 7 — 1) one may
call » (which must be integer) the Numero, as stating the number of
factors.

2—2
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2. If m, n, p be all positive integers, and p=m 4+ n, then
A+2)".A+a)y=>0+=),

or, in condensed expansion,

{1+2mf/%+w’"} .{1+2n:/. %+m"}={l +3pr .T?+x”}.

This equation being of the (m + n) or p** degree of #, and being
true for values of # indefinite in number (therefore in more than
p values), must be equal term by term for every power of . Now
when we multiply any two such series,

(1+ Mz + Ma*+ Ma® + ete.) by (14 Nz + N’ + ete),
we have a product of the same form
1+Px+ P+ Pa’+ ...
by the routine of multiplication, in which
P=M,+N; P,=M,+MN,+N,; P=M,+MN +MN,+N,;
and the law of the indices is so visible, that we get generally
P=M+M,_N~+M_N,+.... +MN, ,+ N,

This being true for all series of this form may be applied to the
three series (1 + )™, (1 + )", (1 +)?, and at once it yields to us the
result

pL_mi, mD n ME ab, m al, nf

an equation true for more values of m and n than are counted by the
integer r, therefore it is true also when m and n are arbitrary and
fractional. Write « for m, & for n, and + A for p, and you have an
ewtension of the ordinary (z+h). For, this latter may be written

(x+h)r— m_r wr—l le x‘r—2 h2 w‘r—S E hr.
T e o o e

with exponents replacing the numeros of the preceding.

Nore. The reader must carefully observe in that which follows, that the upper
index of P, Q, 4, B, C, is not an exponent.
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Powers in Series of Factorials.

3. Since 2l =g(x—1)=2"—u,
of which the general law is

al (x—1r)=aL,

conversely d=al t+a
Again el =z(@—1)(r—2)=a"- 32"+ 2,
L at=ad + 34— 2.
‘But 32* =322 + 3z,

L r=ad 4 322 + 3z,

Evidently we can thus in succession obtain #*, 4°... and generally
&" in series of o, 22, 22,... al,

Since only @2 contains &, its coefficient must be 1. In general,
with unknown coefficients P, dependent on =, but not involving 2,
we may write

=P.al + P+ PPl + .+ P al + Pz .(a)

Here the lower index denotes the place of the term in the series;
the sum of upper and lower index =n, the exponent of #”; and the
upper index is the same as the numero of its term. We have also
seen that P;=1, whatever n may be. It remains to calculate P*™".
Multiply the left member of (a) by @, and on the right multiply the
successive terms by the equivalents of , viz.

(@—n)y+n, (@—n+1)+(n-1), (z—n+2)+(n—2), ete,,
and apply to each term the formula 2 . (z —r)=2"E. Then
=Py a8l + Py gl 4+ PPl + PR el + Pl
+n. Pr.al 4+ (n—1) Py o’Z +(n—2) Py " 4 .. 3(D).
+2P 2l +1P:  «x
But if in (a) we write (n+ 1) for n, we have
g =Py + Pral + Py el + ...+ P a2 4+ Pla...(c),
and we cannot be wrong in identifying (b) and (c); that is, in equat-
ing the coefficients belonging to every particular numero (r). At the

right hand end Pi=1P!_,, coefficients of «; ie. since when n =2,
2=l +2 50 that Pi=1,

s Pi=1, Pl=1;
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and universally P.=1, just as I’{=1. Also in general we find

P:L+1—r = TP;;—':- + P:;-_I—:;—r)
otherwise, Py=rP,  + P,
if p=n+l-—r

This enables us to fill in the vacancies of a table, beginning from

11111
LR R =l
1| P PP
1| P | PP
1 || PP

one horizontal row and one vertical, each consisting of units. Each
P is computed from the P above it, multiplied by its upper index
(which is the number of its column) + its companion fo the left in
the same row. Thus to form the second row from

1 1 \ 1|1 l 1
2. ()41 | 8.(1)+3 | 4.(1)+6 |5.(1)+10

Evidently this second row is
15;142; 142+3; 14+243+4;...

of which the general term is Pr=4n.(n+1). Similarly from the
second row we form the third, working from left to right, and the law
is manifest,

1 3 6 10 15 91 ’

~

2.3)+1 | 8.(6)+7 |[4.(10)+25|5.(15)+65|6.(21)+140
1 =7 =95 =65 =140 = 266

Hence a table to any extent required can be made,such as is here
presented.
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Pl P2 P3 P4 P5 P6

0 1 1 1 1 1 1
1 1 3 6 10 15 21
2 1 7 25 65 140 266
3 1 15 90 350 1050 2646
4 1 31 301 1701 6951

5 1 63 966 7770 42,525

6 1 127 3025 34,105 246,730

7 1 255 9330

When this table is used solely to evaluate the coefficients of (a),
the indices of Pz, Py, Py™*... warn us that the numbers will be taken
out diagonally. Thus for 2° we take out (beginning from P} at the
top on right hand) 1, 15, 65, 90, 31, 1.

Tt will be observed that the second column is 2'—1, 2°—1, 2° -1
and in general Pi=2"—1.

Such is the Table of Direct Factorials.

The letter P being almost appropriated for the Legendrian

%l Neces-

sarily n» and r are both integers, n index of the column,  + 1 index of
the row.

Collect the results for P
Py=1; Pi=1; Pi={n(n+1); Po=2""—1;
and in general P,=rP, + P,

functions, I see an advantage in superseding P by

which yield identically
/)\ /%
w"=|%l.w\’b+l%|w@ +MI 22 + ete.

Factorials wn Series of Powers.

4. This is a mere problem of common multiplication,
2 =g(x—1)(z—2)...(x—n+1),
/

yet the factors being special and their combinations often recurring,
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the work of one computer may avail for many after him. We may
assume
2l =Qra" — Q"+ Q%" —ete. ... £ Q2. (a);

where, as before, obviously @;=1. Also dividing by «, and then
making #= 0, you have

=11.2.3...(n—1) =4 |n-1

Since (& —n) a2 =,

multiply (a) by z—n,
Ll = Qe - Qe 4+ QP —ete. ... 2 Q) 2

n

—n@Qp " + nQp e — ete. ... + 0@ 27 F Q) x } ®).
Also in (a) write n+ 1 for n ;
L =@ttt — Qe + Qe —ete. ... F Q... (c).
But (b) and (c) ought to be identical. We have anticipated the
remarks that @ = Qr=1, and Q:=n@._,, inasmuch as
Q.=1.2.3..n; =|n.
But generally, Qir = n Q" + Qi
or, if n —r=m, Qr,=(m+7r)Qr+Qr
As before, this enables us to continue the table, when the first row

and first column are known. To compare our formula with that of
the first table, we may write it

G=0+p-1)¢. . +Q"
In fact, the first row is unity as before. The first column is
1,1,1.2,1.2.3,1.2.3.4,
when r=0, Q=mQy+ Q"
also in the former table, when
n=r, Pi=rP;+ P;*.
Hence the second row is the same in the new table as in the old.

To compute the third row from the second:

1'3}6 10’,15.21

o &G=0+p-1)@Q;.,
, O

4.3)+1.2
=11

4.(6)+11]5.(10)+35
=35 | =85

6.(15)+85
=175

1.2
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The multiplier 7 + (p — 1) combining upper and lower index of
its @ distinguishes the  table from the P table: thus

11 ‘35 85
1.2.8 | 4.(11)+1.2.3 | 5.(35)+50 | 6.(35)+225
=50 =225 =735
1.2.3.4 | 5.(50)+2.3.4 | 6.(225)+ 274 etc.
=274 =1624
or indeed Qr=r+p)QL+Q;.

Inverse Factorials.

Q' @ Q@ Q & Q | &
0 1 1 1 1 1 1 1
1 1 3 6 10 15 21
2 1.2 11 35 85 | 175
3 |1.2.3 50 225 735
4 |4 274 1624 6769
5 |5 1764 | 13,132
6 [6

These too are used diagonally for #.2. Thus
2l =" — 21a’ + 1754° — 7852 + 16242® — 17644° + |E .
Again it seems better to supersede

2 n 2 " ;2\ n=1 ;2\ n-2
Q by | NE| then ol =] ST 2" —| XNJZ|2"7 +| |« +ete.

5. Even in Arithmetic we are driven upon “recurring decimals,”
and learn that an infinite series may tend to a unique finite limit.
Nor can Elementary Algebra fail to recognize, from

1 — n
l1—-x

=14z+a+ ... +a"";
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that when 2 is numerically less than 1, with » indefinitely increasing,

the series 1 + 2 + 2*+ ... + 2" tends to the limit 1%.

After this it quickly follows (by Cauchy’s process now perhaps
universal), from Binomial Theorem with n positive integer, that

<1 + %) with 7 infinite, has for limit

1 1 1
1 +i+m+m+etc.—27182818...

which we call ¢, and that (1 + %) has for limit

a a a®

I+ —— +éte. ...

T+i+13+t133

which also =¢® On this we need not here dwell: but it will
presently be assumed. Now let us propound

Factorials with Negative Numero.

6. Analogy suggests to define . as meaning;(f;—_i_l) : of course

22 will be identical with ™. Then 22 will stand for
[z(z+1)(z+2)]7,

and & for [+ 1) (@+2)... (x+n-1)]"
Hence s =(x+n)". 2.
Now el=(@+1)zl,

and when « is > 1, we have, in descending powers
el =a" -2 +a - +ete.
Also a2l =(x+3)".

of the two factors here on the right, each can take the form of
a series descending in powers of . So then their product, the
equivalent of #Z. By like reasoning we claim a right to assume

with coefficients independent of «,
e =Apx " = Ale P+ Ajem —ete. i (@)

b

and our task is to discover the coefficients when n is given.



THE TABLE OF P SUFFICES. 27

First make n=1,
coal=Ala?— Alxt 4 Al — AL a7 + ete.
But from the series already obtained for #Z we see that every
coefficient of the last is 1; or in general AL=1. This gives the first

column of our table. Also universally A7 obviously =1; which fixes
the first row of the table.

Next, multiply equation (a) by (.70 +n), and you get

=gt — AT Al —ete. ... + ATV F L )
+nx "t —n. Ay ete. .. FrA 2T F L) YT

But in (¢) we may write » for n+ 1, which gives
e =g — AT L AT (©).
Now (b) and (¢) must be identical, hence
Al=n+ A7 =nd}+ A7,

and generally Ar=nd?r + A}
But this is exactly the law of P in Art. 3, only there we had », p for
what are here n, . Now as the first row and first column are here,
as there, unity, and the law of continuation the same, the whole table

will be the same, and we may write P of Art. 3 in place of this 4.
Thus we get

B = g — Prligly Prig i Prtlgtv et ...
with the same values of P as before. But in the last equation we no
longer take the P’s diagonally, but vertically, down the column, as
the same upper index (n — 1) above every P denotes; thus

el =3+ 707" - 152"+ 31la™ —ete. ...

To verify, multiply by «+ 2. But for convergence x ought to
exceed 2. So . 7
el =z — 627"+ 2527 — 902" + ete. ...

and for convergence, # ought to exceed 3. Evidently in the series for
x, & ought to exceed (n—1).

7. Assume now the Inwverse Problem, to develop 2™ in series of
Factorials..
With unknown coefficients B independent of x, we start from

2"l =gl 4 Biall + Brall 4 vl (a).
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Multiply the lefthand by «, and the successive terms on the right
by the equivalents of @, viz.

(z+n)—mn, @+n+1)—n+1), (x+n+2)—(n+2), et

Observe that (z+p) 2>V =g,
St =24 B a8+ L+ B } ®
__nx“"\_‘}’_(n_;.l)anzz—/__ —(n+1~) Bn Nas N .

But in (a) we may write n for n+ 1, which gives
g =2l + B e + B e+ L+ B T (¢).
Identify (b) with (c),
s Bi=n+ B
and generally . Bl=(m+r—-1)B,+ B,
the same formula as for @ in Art. 4, only n and » here standing for

what there was » and p. Also since By=1, the top row is unity,
here as there.

We may further prove that the first column of our B’s is the
same as the first column of the @’s. For

=22+ Blal + Byal +... &e.
Multiply by « on the left, also by (z+1)—1, (z+ 2) -2,
(#+3) — 8, for the successive terms on the right ; then
=2l + Bl + Blald +...
-lxv—QBlwv—-SB;wC;‘/—... )
Obviously 2™ =22 ; and the other terms must annihilate them-
selves, making Bi—1=0; B,—2B;=0; B;—3B;=0; etc.,
or B=1, Bi=2B=1.2;
B;=3B;=1.2.3, and B.=1.2.3...(n—1)n.

Thus By=Q;, B;=0Q;, etc. exact. Therefore the B table is the
same as the @ table throughout.

Here also we take the @’s vertically, to obtain #™ in series of
factorials as a7 =2 + 622 + 350 + 22540 + ete.

In general 27" =22 + Qa4+ Qi e+ .+ QN T tete;
but special inquiry is needed concerning convergence. Apparently
it converges more rapidly than

o2+ (+ 1)+ (o + 2)7 +ete.
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ws d

8. To develope (¢*—1)" or {m |2+ + l 4 +etc} in powers

n

of 2", We may assume for this the form

M o"+ M, " +...+ M +ete,

where M, manifestly =1, and if » is less than n, M, =0. Now by
the Binomial Theorem where n is a positive integer
T __ 1\ — "% ﬁ (n=1)z nv -2z __ —
(-1 =¢ 1€ +g e etc. +1 ”F1,

out of which we have to pick up the partial coefﬁments of &" which
make up M, observing that

3 9
o +p“'”+p|§ +55 +ete.
in which we have to make p successwely n,n—1,n—-2,... When
we make p =n, the only term that here concerns us is ‘f When
1 —
p=n—1,we get—i gn_?A)*_aﬁ . When p=n— 2, we have
nl (n—2).a"
O
and so on. All have |r in the denominator. Hence
M, .|r=n"— (n -1y + = . (n—2) —ete. ... to n terms,

L

of which the last is + ’I“ 1

Let NV be to (n+1) what M is to n; then, with » the same for both,

N, |r=@+1y =" @y
+(l’&_:t1)_\/ (n_l)r_(n+1)\3/ (=2 +...to(n+1) terms.

2 3
Add this to the preceding, coupling every palr that with the
same value of p has (n — p)" as factor;

. [f.(M,+N,)=(n+l)'—[n_;1 ]( nY + [ﬁl—lJ " (n—1)

n+1 n.n—1 .
_[T‘I]Tz_(n"z)

+[n+1 —l]n'n,'—l'n—2(71—3)"—etc.
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n+l o a+l o n—=1 a2+l . n-—2
Observe that —i——-l-—n, ~2«fw—l— 3 3 —1_73” ,
' and so on ;

Sl (M4 N)=(n+ 1)’;— % (n)" + n-——-4‘1n-2— 1 (n—1)" —ete.,

or, in shorter notation,

nE

=(n+1y-7. () + %.(n—ll)'— 3 .(n— 2)" + ete. to (n -+ 1) terms.

But in N, change r to 741 and you have

f’l‘+ 1. J\'T% - (’Il + l)r-i-l _ &‘*‘_1 (n)rﬂ + " +~1 . n (7’L _ l)rﬂ
e 1 1.2
- 'r_bi-%gig—'l .(n=2)y"+etc....to (n+1) terms

n.n-l

=(n+1) {(”J“ 1)";1[ i N e e

(n-2)'“+etc....}

n.n—

—(n+1) {(n 1y =2y + S =y

n.n—1.n—

2
- *—1‘*2—3—— (’Il - 2/’ + etc.}

=(n+1).[r(M,+N,), from above. Divide by (n+1).|r+1;
N, M+N,

r+1

e+l r+1

Our r always exceeds n. We simplify the notation somewhat by
assuming as coefficients after dividing by 2",
€ —1\" Cra Cra? Ci o
( z > —1+n+1 n+1.n+2+n+l .n+-2n+3+

n P
Crz

+n+1.'n+2...n+p

+ ete.

Multiply by 2", The general term becomes

Cn. o™ )
+1)(n+2)...(n+p-1)(n+p)’
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Put n + p =1, to identify this term with our previous 2/, . @

Cn
M —_ r-n .
" nt+l.n+2.04+3..(r=1).7’
0n.+1
so that V_= T with one less factor in denomina-

n+2.n+3...r—1.r
tor: but when both n and 7 in M, are increased by 1, » — n undergoes

ot
no change; andN’“=n+2 n+3...r=1.r.r+1°

Introduce these values into () and multiply by
(r+1)(n+2)...r.(r+1), ... C*2=0" , +(n+1). 0 ...... (D).

Change r—n to pand n+1 ton, .. C2=Cs"4+n0;_,; the same
law as for the P’s in Art. 3.

Also when n=1,

€ —1\! x @ a
( p )’"1+’f.—z+1.2.3+'“+1.2...(r+1)+et°'
But we assumed as equivalent
1+C’§x+0§w”+ Cia® T Cra" +
2 T2.372.3.4 T 3.+

which identifies O with 1, for all values of . Just so Pi=1 in its
first column. Also evidently O7=1; just as P;=1, in the whole
first row. Thus, with first column and first row identical with those
of P and the same law of continuation, the whole table is the same.
Finally then we obtain

(e”-—l)"=1 +P{'.x Pr. st Pra?
. =

n+1+n+1.n+2+ﬂ+l.n+2.n+3+etc""(c)

in which the increasing numerators are pulled down by increasing
denominators.

The general term may be written nZ . Py . 27, or equally

P a?
(n+pr2”

[The course of analysis here pursued forestalls that of A", 0" to
the learner.)

Thus

& L\ 2 Q
-1 |/|x |Ax Mws
( x—)ﬂ=1+ + + ete.

n+1 n+1l.n+2 n+tl.n+2.n+3
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9. To investigate log (1+#) in series, with no aid from (1 +2)"
except in the elementary case of n being a positive integer, and no
aid from the Higher Calculus.

Let y=¢€"—1, then 2 =1og (1 +y). Also

@ x‘l 3

e
YEITI 2 T2 e T
by elementary algebra.

From the last we see that for minute values of x, as a first
approximation, y =z, and =4 As a second, y=2+42° =2+,
s x=y— %14y Whatever the series in powers of #, # can be thus
reverted into powers of vy, at least within certain limits. Hence we
may assume with unknown coefficients called 4,

zorlog(l+y)=y—A,"+ 4,9’ —A,y* +etc....... (@),

which (with the appropriate numerical values of 4,4.4,...) will be
an tdentical equation.

Consequently, writing y + 2 for ,
log(L+y+2)=@w+2)—A4,@y+2°+4,(y+2)°+etc.... (b).
Subtract (a) from () developing the powers
(y+2)° y+2)°, G+2)...
then log(1+y+2)—log(l+y)=2—A4,2yz+2")
+ 4, (8yz+ 3y2’ + 2°) — A, (49’2 + 62" + 4y2* + 2*) + etc.... ().

_ l1+y+2 z ) . o
But the left hand =log . Ty log (1 1y y which again,
by (a), if we write 1 j—y for y, has for equivalent

(%) —4,. <1—j_-y)z A, (1—%/)3 — et ..,

of which the first term alone contains the simple power of 2, and there

1 y). This then must be the sum of the

its whole coefficient is (1

partial coefficients of z found in (c).

That! is ]‘:-_—y = 1 - 2A2y + 3Asy2 bt 4A4y8 + ete.

But r:_?/ =1—y+ 1y’ =9’ +etc. when y is numerically less than 1.
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Hence 24,=1, 34,=1, 4A4 =1,...nd,=1, or in general 4, =%
Finally then, log (1 +9)=y—}4*+ 3y’ — }y*+etc. ... while y* < 1.

N.B. This furnishes the means of computing logarithms in
Elementary Algebra, before knowing the Binomial Theorem with
negative or fractional exponent. If Differentiation or “ Derivation,”
as far as ¢ (z) =a", ¢'(x) =na"", be admitted, this equation at once

proves that when ¢ (2) means log (2), ¢’ (2) =%: a process which

eases the next Article.

10. ProBLEM. To develop [log. T+ " in a series of powers of .

That this is possible, when #* is < 1, the preceding Article shows.
We may then assume, with unknown coefficients A7, A7, A}... depend-
ing on n alone, where the upper index is not an exponent,

—(og. T Ay mar - ME MET
z=(log.1+a)"=a 1 Tnil.nie ete. ...
ArL v
+ - Fete....... .
_n_—i—l.n+2...n+r+etc (@)

If log 1 +x= u, z= un, d,Z = nu"’ldu, and du = %. [It iS

hardly worth while to disguise Diffetentials by a more elaborate and
tedious Algebra.]

Differentiate both sides of (@), then drop the common factor dz :

+r=1
3 Ky _ )":L—l . wn 7

+x“—)~”% +ete. F

+ ete.

’n(logl—*_m)ﬂ-l_ n-l__ n ,n .A'; xnﬂ _
hereby, e N & ot ete. ...
hn xn-h’—l
+ ok T
Ta¥lnt+2.. mir—1)7 ot
Multiply by 1 + «, and divide by =,
. 1 L =1 el "I/_.” xg”m?ﬁ'l _ :
so(logl+ ) = L o S | ete. I
A xn+r-l
" Fete. p s b).
in.n+1...(n+7~—1)+et0 k @)

n.n+l...(n+r—2)
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But writing (n — 1) for » in equation (a) we get
M—l . xn x;t—l . x1l+l
n n.n+1

-1 =
x:‘z ) mn-l'r 1

i—n.n+1 e (n+r—1)

(log 1+ @) =a"" — ete. ...

Fete...... (c).

Identifying (b) with (c), we obtain A?=n+N}"; and generally
M=m+r—1)N +A7" or A7, = (n+7) A+ A%, the same law as of
Q in Art. 4. Also evidently \'=1 whatever n may be, as Q; =1.
Thus the top row is 1. Again by («) making n =1,

_ N + net o nat

2 2.3 2.3.4

log(l+a)==2 + ete.

But this is known to be # — {2* + L «® — }«* 4 etc., whence
MN=LN=2%5=2.31=2.3.4,..]just as ¢, = |n.
Thus the first column also of A agrees with that of @ In short
then, the two tables are the same. Finally:
Q. o™ Q. o B Q. o
n+l " n4+l.e+2 n+l.n4+2.043
with coefficients already known.

(log1+a)=a"~ + ete,,

The analogy to the series of Art. 8 deserves notice.

w41 ntl.n+2 n+l.n+2.n+3

n 2

x 3

@& x

&

(log.1+w) =1_|1 +ete.



TRACT 1IV.
ON SUPERLINEARS.

SoME Apology may seem needful from me, since Dr Todhunter
in his volume on Higher Algebraic Equations has treated the same
subject under the name of “Determinants.” Of course I do not
pretend to add to him, nor indeed he to Mr Spottiswoode, who
carries off all merit on this subject. I read the details with much
admiration as treated by the latter, but found his notation by accents
very dazzling to the eye, in so much as to make it hard to know
by sweeping over half a page, what was the meaning of the formula
presented to one. Also I found the chief strain in argument and
chief liability to error, to turn upon the question, whether this or
that resulting term would require a plus or a minus. By reasoning
from linear functions in my own way, though less direct, I was able
to avoid this danger and lessen fatigue to my brain. When I ex-
changed words with my then colleague 'in University College,
London, the late Professor De Morgan, on the question, why this
topic was not admitted into common Algebra, he replied, that it
was too difficult for beginners. I have since thought that he might
not have so judged, if some of the arguments were otherwise treated;
and in fact I have found, that some whom I supposed to speak with
authority thought my slight change of method easier to learners.
At the same time I must add, that on the very rare occasions in
which T have tried to teach an elementary class of mathematics,
a mode of reasoning which to one pupil was easier, to another
seemed less satisfactory. Perhaps every teacher ought to have “two
strings to his bow.”

3—2
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M N
Pol
1. Equations of the first degree are called simple, but when

three or more letters (, ¥, 2...) are involved, complexity arises with
much danger of error, even when there is no difficulty of principle.
To solve two equations of the form ez+by=c, az+by=c, is
always the same process. If we could always certainly remember the
solutions

— cxbe - csz = G4~ 04,

B a1b2 - a2bl Y= a’lzz‘—‘a’agx ’
and never confound the indices, nor mistake between + and —, this
alone might have much value. The modern method, due eminently
to the genius of William Spottiswoode, is quite adapted to Elemen-
tary Algebra; but its vast range of utility cannot there be guessed.

First study the denominator D=ab,—ab,. It arises from the

left-hand of the equation {alm+bly=cl, in which the four letters
a7+ by =c,
stand in square, as | @, b, |. Here D is the difference of the two
a, b,

products formed diagonally, and the diagonal which slopes downward
Jrom left to right is accepted as the positive diagonal. This is a
cardinal point. Remember it, and you will not go wrong on + and —.
Understand then, that in square with vertical sides

M N | means MQ— PN.
P Q
Of course then, so does | M P |, which exchanges rows into columns.
e

But if you change the order of the rows, or the order of the columns,

into | P @ | or | N M | you change the result to PN —N@Q, i.e. you
M N Q P

‘change D to — D.

After this is fixed in the mind, it is easy to remember the
common denominator above, viz. a,b, — a,b,, in the form | a, b,|. Call
a, b,
it C. Then the numerator of z is obtained from C' by changing the
column a,q, into the column ¢,c,, making 4 =|c, b,

¢, b,

So B for the numerator of y is found by cfla,liging the column

b, into c,c,, yielding B = i a, ¢,
a, c

1722

Finally, 2= % , Y= %, without mistake.
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Observe, if the equations be presented in the form
ax+by+ec,=0; ax+by+c,=0;

this is equivalent to changing the signs of ¢, and ¢,, which does not

affect C, but exactly reverses the signs of 4 and B. Previously

we had
(@:4)=Q1:C)=(y: B), »
a, b

a, b

2 72

@y 6
@y Gy

1 1

or (z:y:1)=(4:B:0)=

¢, b
02 b2

But from the two new equations ¢,z + by +c2= 0} you get
ax+by+cz=0

b
b

Q.

a,

bl C
bz Cy

c1 al
Cy

171

z:yz=

2
in circular order.

We may also present the solution as follows:

x oy oz
b, c, ¢, & a, b,
b, c, c, @, a, b,

2. Simple equations are often called Linear, by a geometrical
metaphor. If a quantity w is so.dependent on @, y, z... that how-
ever the values of these may vary, yet always w=ax+by+cz+...
(where @, b, c... are numerical), then w is called a linear function of
@, Y, 2... its constituents. [One might have expected w to be called
a dependent or a resultant : but for mysterious reasons of their own,
the French have adopted the strange word function; and it cannot
now be altered.] It is convenient now to set forth a few properties
of linear functions. We here suppose the function to have no abso-
lute (constant) term.

I To multiply every constituent by any number (m), multiplies
the function by that number. '

[For, if u=ax+ by +cz +..., then

mu = amaz + bmy + cmz +....]

II. If two linear functions have the same number of consti-
tuents and these have the same coefficients [as U= az+by+cz,
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U,=ax, + by, +cz]; you will add the functions if you join the
constituents in pairs [for here

Ut U=a@+a)+b(y+y)+c(e+2);
whatever the number of constituents].

a M
b N
of N and M, we see that to multiply a column MN by m multiplies
the functior. by m. Or|a, mM |=m|a M |.
A b, mN b N 1

The same is true if we multiply a row ; for we may regard o and
M as the variables and b and NV as constant; then

ma, mM aM
b, N b N

This leads to the remark, that our function ought to be called
superlinear rather than linear; for it is open to us to suppose con-
stituents alternately constant or variable.

3. Observing now that or aN —bM is a linear function

=m

4. Next, by making a column or row binomial, we can some-
times blend two superlinear tablets into one. Thus

Az|l+|10C «
By Dy

having the second column the same, yield,

(Ay-Bx)+(Cy—Dx)y=(A+C)y—(B+D)ya=| A +C, «

B+D,y

Here the column which was in both, remainas as before, but the

other columns are added and make a binomial. Evidently the same
process holds, if a row, instead of a column, is the same in both.

Conversely, when a given column is binomial, we can resolve the

tablet into two tablets; and when each column is binomial, we can

resolve the tablets into four.

Thus A4z, C+2
B+y, D+v

>

=4, C+2z |+

B, D+v

z, C+2z
y, D+v

by a first process. By a second, each of these tablets becomes two,
giving as result,
lA Cl+]4 ¢
B D B

az C
y D

+ +lz ez

Ly v




VANISHING BILINEAR. 39

5. THEOREM. If one column (or row) is identical with the other,
the tablet = zero. For obviously | 4 4 |, by definition, is AB—BA
or zero. B B

Cor. Equally the tablet = zero, if one column (or row) be pro-
portional to the other. Thus if 4 : B=C : D, this proportion
yields 4D =B(C; hence

A4 C A B |, meaning 4D — BC, vanishes.
B D ¢ D

or

6. This sometimes usefully simplifies a tablet. Thus

‘AimC’, C
B +mD, D

is resolvable by Art. 4 into | 4 C | +|mC, C|.
: B D mD, D
tablet is zero, because its two columns are proportional. Hence the
given tablet simply =| 4 C

B D

But the second

Cor. Hence an important inference. The value of a tablet is
not changed if to one column (or row) you make addition propor-
tional to the other column (or row); nor again if you subtract instead
of adding.

Further, if in the original equations of Art. 1, the absolute
terms c,, ¢, become zero, the solution for # and y is simply #=0 and
"y=0. This is indeed the only general solution, unless also the

denominator vanish; which makes « =g, y=%; deciding nothing

as to the value of # or y. In that case we can equate the two

values of 3Z; vig. =Y % Conversely, this shows ab,=a,b,,
@ b x b - . 172 T2
1 2
equivalent to | @, b, | =0. The last is the condition which provides
a, b,

that the two equations shall be mutually consistent, though x and y
do not vanish. It results from eliminating x and y, leaving their
value arbitrary.
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7. Begin from the problem of three simple equations,

ez +by+cz=0
lagw+by+cz=0;p.
{asw +by+cz=0
These present three equations to be fulfilled by only two disposable
quantities, viz. 2 and Y, if they are all divided by z The three

equations are not certainly self-consistent. If =, y, z be eliminated,
an equation of condition will remain. Our first business is to in-
vestigate it.

From the two first equations treated as at the end of Art. 1, but
abandoning circular order, we have '

. . e bl 61 al cl al bl ‘
@iyia=y - bl
2 02 a2 C‘l v a2 2
in which —| @, ¢, | now replaces + | ¢, a, | of Axt. 1.
a’2 02 02 a2

In the third given equation, substitute for zyz the three quantities
now proved proportional to them, and you get

1) a, -0, a, b, |=0.
a, b,

b1 0
bz Cq

a, ¢,
a'2 02

+c,

Call it V,=0. Then V, is linear in ap,c,. This is the condition
that the three equations shall be compatible. It is seen to result
from eliminating @, y, 2. Professor De Morgan wished to call these
tablets Eliminants. Why Gauss entitled them Determinants, no one

explains. Spottiswoode apparently introduced the excellent notation

a, b, o Then V, is linear in g, b,, c,, that is,
2) V,=|a,b,c, in its third row. Hence also in any row.
a, b, ¢, V, is superlinear of the third order.

for the value written above. The coefficient of a, is obtained in (1) by
obliterating the constituents as last written that are in the same
column or row as ag, thus reducing V,to|... b, ¢, |:

. b,

Gy e oee

then we see the tablet by which ¢, must be multiplied.
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The same process is used with b, and ¢,, producing

a, ... C a, b ..
@ ... ¢, | and | @, b, ...|.
b ol Cq

Finally the signs of the terms of V are alternate
+ =+
just as in the bilinear V,=ab,—ab,.

Evidently V, is formed of six terms, three positive and three
negative; each term having three factors, but in no term is any

factor combined with another of its own row or its own column.

In ¢, | @, b, | the term abyc, (the diagonal sloping down from

a, b, !

left to right) is positive as before. Thus when V, is given in con-
tracted form, we can expand it into three apparent binomials.

8. In the three given equations you may exchange the position
of # and y; then by eliminating y, #, z you obtain

bl al Cl
b2 a2 62
b, a, c,

U =

8

but you cannot infer that U,=V,. In fact, to exchange the @ column

with the b column reverses the sign of | @, b, |. Thus it changes V into
a2 b2
bl a, ¢, |—a,| b, c,|+¢l|b al.
a/2 02 b2 02 bZ a2

That is, to exchange the first and second columns just reverses the
sign of V,. The same effect follows from exchanging any two con-
tiguous columns or rows. Thus generally

A D@ DA G DGA
BEH|=-|EHB|=+|E HB|.
¢ FJ FCJ FJcC
A D@ BEH BEH
Again, BEH|=-|ADG|=+|CF J|.
¢ FJ CF J AD @G|
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Observe, that if three binomials of V, are expressed by
ma, + na, -+ pa,
the multipliers m, n, p contain nothing of the column a,, a,, a,,
therefore V, is linear in these three constituents. Evidently it is
linear in regard to any column ; as we before saw, as to any row.

9. THEOREM. Further, I say, To exchange rows and columns
does not alter the value of V. In proof, multiply the three equations
gien in Art. 7, by disposable numbers m, n, p, and so assume m, n, p
that when the three products are added together the cocfficients of y
and z may vanish. There will remain (ma, + ne, + pa,) =0, and as
we do not admit =0, we have three equations connecting m,n, p; viz.

am+an+a,p=0
bm+bn+bp=0;%,
em+emn+cp=0
and that these may be compatible, we need
a, a, o,
S,=|b,0,0,|=0,
C! 02 cﬁ
by eliminating m, n, p.

Here S, is nothing but V, with rows changed to columns and
columns to rows, retaining the same positive diagonal a,b,c,. Every
learner will easily find by developing V, and S, that they are identical:
but there is an advantage here in general argument applicable to
higher orders. S,=0 and V,=0, being each a condition of compati-
bility of the previous equations, must contain the same relation of the
constituents. S, is a linear function of its column ab,c ; so is V, a

3

linear function of its row ab.c,. But S,=0, V,=0 being derivable

one from the other, there is no possible relation but S,=uV, in
which u must be free from a,bc,. But the same arguments will prove
that w is free from apb.c,, also from ab,c,. Therefore p is wholly
numerical. Make b, =0, ¢, =0 and this will not affect w. But this
makes :

V3 = a/l b‘) 02

ba Cy

and S;=a, |, b,

Cy Cy

But that the two minor tablets are identical was implied in their
definition. Hence, on this assumption for b, and ¢ , we find V, =S,
or w=1. This then is the wuniwversal value of u, or V,=S; in all
cases. Q.E.D.
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10. In the developed value of V, (Art. 7) if b,=0 and ¢, =0,
you get simply V,=a, | b, ¢, | which does not contain a, or @,. These
b, ¢,
two constituents are made wholly inefficient by the vanishing of b,
and ¢,, and may be changed to zero. Thus

a, |b e 0|bel|. Soja,|bec al‘OO
a, | byc,|=|0|b,c, —_

M Ao B S 0|b,c,|=]|010,c,
a4, |00 | |a 00 0 |be| |0]|be,

When a major square is divided into two minor squares and two
complemental rectangles, the vanishing of one rectangle obliterates
the other, and the greatest tablet has only the two squares for its
factors,

11. Since V, is a linear function of every row and of every
column, we can argue as in the Second Order or Bilinears, that to
multiply any column, or any row, by m, multiplies V, by m; and if
a column or row consist of Binomials, we resolve the tablet into two.
Conversely two V,s which differ only in a single row or single column

can be joined into one universally,

A+m A" A |=| 4 A A, |+|m A" 4,].
B+n, B B, B B' B, n B' B,
C+p, ¢ C, ccocel |pCQc

12. Further, if two contiguous columns (or rows) be identical,
the V,=zero. For to exchange them changes V, to —V,. Yet the

exchange leaves V, exactly what it was before. Hence V,=—-V,.

This can only be when V', =0.

Tt follows that if a column (or row) be proportional to a contiguous

column (or row), the tablet is zero. For instance, if a,, b, ¢, are pro-

portional to a,,b, c,, We may assume @, =ma,, b, =mb,, ¢, =mec,, then

ma, mb, me,
.V;i = a2 b2 02
2 bs Cq
This gives a, b, c,
Vi=m|a,b,c,|,
b
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and the last tablet is zero, because its first and second row are
identical.

What has been said in this Article of two contiguous rows or
columns is evidently true of any two rows or any two columns, since
exchange of contiguous rows (or columns) does but multiply the
tablet by — 1.

13. The same argument as before in the Second Order now
proves that a tablet V, is not changed in value, if any row (or
column) receives increase or decrease proportional to some other
row (or column). Thus we have shown in V, the same properties as

those enunciated in V.

14. NEw PROBLEM: to solve for @, y, z in the three equations
ax+dby+cz+d =0,
ax+by+cz+d,=0,
ax+ by +cz+d;=0.

Assume d,= Az, d,= Az, d,=Ax. Then
(¢, +A)z+by+cz=0

(a,+4,)z+by+cez=0;.
(e,+ A)z+by+cz=0

Eliminate the «, y, z here visible; then

a+ A4, b, ¢
a,+4, b, c,[=0.
a,+4, b, c,
The last tablet may be resolved into two, namely:
Al bl C1
4,0, ¢,
'A8 bS 03

a b c
a, b, ¢,
aﬁ bB cS

+ =0.

Multiply the former of these by «, and, as an equivalence, multiply
each constituent of the first column of the latter by =,

a, b c Azbd, c
a,b,¢,|z+| Az b, c,|=0.
a, b, ¢, Az b, c,
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In the first column of the last restore for Az, Az, Aw their
values d,, d,, d;. Then if

a, b c d, b, e
D=|a,b,c,| you have Dz +|d, b, c, | =0,
as b8 c3 d3 b3 03

which solves for . By perfectly similar steps

aldlcl albldl
Dy+|a,d,c,|=0; Dz+|a,b,d,|=0.
a, d, ¢, a, b, d,

These are easy to remember: each suggests the other, by entire
symmetry. The method succeeds in Higher Orders.

b

Cor. If we make w=§~, g/=ﬂ, z=£
U U U
af+bdbn+cl+du=0,
a,E+bn+ct+du=0,
a,E+bn+cl+du=0.

Then from
—Dz=|b,c,d,|; Dy=|a,c,d |; —Dz=]a,bd, |,
b, c, d, a, ¢, d, a,b,d,
b, ¢, d a, ¢, d, a, b, d,
you obtain the proportion
& ¢ U
b, c, d, a,c d a, b, d a, b, c
=\bc,d,|:—|a,c,d, a,b,d, |1 —|a,b,c,
b3 CB dB 0/8 03 dS (1/3 b3 dS a3 b3 03

15. ProBLEM. To eliminate # from the two equations
PP+ Qz+R=0
pat +qx +r =0 ’

where P, @, R, p, g, » may involve y or other quantities. First, put
=X, then we have

PX+Qx+R=O}
pX +qz +r =0J"
Eliminate X; i.e. solve for z;

PQ
)

PR
p’l"

z +

S S .
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Again, writing in the original

{(Px+Q)x+R=O]
(pz+q)a +r =0]

eliminate z, as if Pz + @ and px + g were ordinary coefficients. Then

Pz+Q, R|=0,
pr +q, T
which expanded, gives
Pz R|+|QR|=0, or |[PR|z+|QR|=0......(2).
pxr q r p T qr
Eliminate # between (1) and (2), which gives
vallor
paglilpr —0;
QR
prilgr
that is, }PQI. QR|-|PR|*=0,
pyq qr pr

the result required.

16. ProBLEM. To eliminate # from the two equations,

ax® + 3ba* + Bcx +d =0,
ax’ 4 2bx + ¢ =0.

First, multiply the last by « and subtract;
S b+ 2c+d =0,
Compare the two last with the two equations of Art. 15,
oo P=a, Q=2b, R=c¢c, p=b, ¢q=2¢, r=d.
Hence the elimination of « yields

a 2b 2b ¢ ac ab ac
b 2c 2c d bd bec bd

This is the condition of two equal roots in the given cubic.

be
cd

2 __ — 2
. - =0, or =1 .

17. By conducting elimination from three given simple equations
by a second process, we attain relations which were mnot easy to
anticipate. Assume the three equations of Art. 7. Eliminate y
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twice, (1) from the two first; (2) from the second and third. Hence
we get

b ¢

17
b2 02

2 bl
@y bz

z= a, b,

a, b,

z=|b,c,|;

)
bS 03

)

from which, by eliminating #, we obtain U =0, if we define U by the
equation

U= Ja, b

2 72 |°

a, b

8 78

a, b,
a, b

2 72

.| b, ¢,
by ¢

bl ¢
bz C,

But, otherwise eliminated, we find, as the condition of compatibility,
V,=0.

Therefore U=0 contains the same relation of the constituents as
V,=0. By inspection, we see that U, equally with V, is linear in
a,, b,, ¢, Since then U and V vanish together, we have necessarily
U=p.V,, in which u does not involve a,, b, nor ¢,. To determine w,
suppose @, =1, b, =0, ¢,=0,

S U=]a,01.]b,¢|=0,]0,c,
aZ bB bs b3 b3 68
and V,=1100|=[100][=1.]b,¢,];
a, b, c, 00b,c, b, c,
ag b, ¢, 0 b,¢,
so that in this particular case U=0,V,, or u=>5,. This then is the

value of w for all values of @, b,, ¢,, or universally U="0,.V,, while
all the nine constituents are arbitrary. Q.E.D.

18. To remember this important equation, write the square
trilinear larger and mark out its minor square. The factor b, is in
the centre.

a, | b, | ¢, |for U=b,.7V,

By interchanging rows or columns without altering the value of
V,, fresh relations are obtained. Indeed no one constituent can
claim the central place for itself.
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Fourth Order.

19. To eliminate 2, ¥, 2, » from four given equations each of the
form ax+by+cz+du=0, we have now much facility from the
Cor. to Art. 14.  First, eliminate from the three first equations
and get the proportions of z, y, z, w. Next, insert these propor-
tionate values in the fourth equation whereby you entirely eliminate
all the four, and obtain an equation V,=0; if V, stand for

4

a,|b, ¢, d;|=ba, c d|+e,]|a b d|-d]|a b c|.
b2 02 d2 a2 62 d2 a2 b2 dZ a’? b2 02
b3 63 d3 a’S 03 ds a’s bs d3 a8 b3 03

This developed form of V, can always be recovered (by attention
to the simple rule given for developing V,) from the conciser or
undeveloped form

o
S

-

171 1

S o
)

2 72 "2

R [ R
(=)
Y

3 78 3

)
i
Sy

S
)

4 T4 T4 4

Evidently in the definition V, is a linear function of a, b, ¢, d,.

So then it must be of any other row, the order of the given
equations being arbitrary. Also the first term of V, as defined is
free from' a,a,0,; each of the others is linear in aa,a,. Therefore
V, in square is linear as to its first column; so then must it be
as to every column.

Being thus linear, if one column (or row) of such quadrilinear
tablet is binomial, it may be split into two tablets by the same
process as in the third order. Likewise to multiply any column
(or row) by m multiplies the whole tablet by m.

To exchange first and second column, exchanges the first and
second term of V,, but reverses their signs. It reverses the sign
of the third term, also of the fourth. Thus to exchange the first and
second column reverses the sign of V,. Evidently then the same
must happen by exchanging any two contiguous columns. The
same argument applies concerning any two contiguous rows.

The reasoning of Art. 12 concerning V, now applies to V,,

showing that the tablet vanishes, if one column (or row) be pro-
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portional to another column (or row). From this it further follows
(as concerning V, in Art. 13, and concerning V, in Art. 6), that
V, is not changed in value, if any row (or column) receive increase

or decrease in proportion to some other row (or column).

20. That V, is not altered by exchanging rows and columns,
is generally proved by elaborate inspection of the separate terms
when V, is resolved into 24 elements each of the form abcd,, no
two factors of the same row or column, and showing that the + or —
of the term is never altered. It is,no doubt, a perfect demonstration,
and more elementary than mine; but I find the less obvious ar-
gument of Art. 9 the easier for all the higher orders. Multiply
the given equations by m, n,p,q, and assign to these multipliers
the condition that from the sum of the equations thus multiplied

y, z and u shall disappear.

There will remain (ma, + na,+ pa, + ga,) =0. But our hypo-
thesis forbids # =0, hence we have four equations to determine
mnpg, viz.

am+an+a,p+ag=0,
bm +bmn+b,p+bg=0,
eym +e,n+c.p+cg=0,
dm+dn+d,p+dg=0.

When we eliminate mnpq the result, which we may call S,=0,
shows S, differing from ¥, only in the exchange of rows with
columns. Each of them is linear in abcd,. Each involves the
same relations between the constituents. The equation S,=0 must
be deducible from V,;=0. The only possible relation, making S,
and V, vanish together, has the form S,=uV,, in which u is inde-
pendent of aa,a,0,. But symmetry proves u equally independent
of every other column ; therefore w is numerical. To find it, we
may make the constituents on the positive diagonal all =1, and
all the other constituents vanish. Then both S, and V,=a,bcd, = 1°.
Universally then, p=1, or S,=7V,. Therefore V, is not altered
by exchanging rows with columns.

Evidently this argument holds, however high the order of the
Tablet, if the successive definitions follow the same law.
N. 4
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21. We can now solve when four given simple equations con-
necting @yzu have on the left side absolute terms e,ee.e,, with zero
(as before) on the right. We proceed as in Art. 14, Let

€, = 'A'lw’ €= A, € = Az, e=Ag.
Then our equation becomes

(o, +A)z+dy+cz+du=0

.......................................

(@, +A4)2+by+cz+du=0

Eliminate #, y, 2, u, then

a1+A1 bl 0y d:
a’2+A2 bz Cq dz =0
a3+As bs Gy ds
a,+4, b, ¢, d,

The first column being binomial, we can resolve this tablet into
two. Then multiply the left tablet by #, and the first column of
the second also by «; whence

............

In the second tablet we now replace its column by its value
e,6,6¢.

Thus we have solved for «. By perfectly similar steps we
solve for v, for z, and for w.

Finally, if
b, c, d, e, a, ¢, d, e a, b d, e
7 I No=| eeerernnnn P ceeeerenen
b, ¢, d, e, a, ¢, d, e, a;, b, d, e,
a, b, c e e, b e d,
Q=] errereees SR = ceeeeeeeeen ,
a, b, c, e a, b, ¢, d,
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22. Take our four equations as in Art. 19. From the three first
and also from the three last eliminate both y and z; whence

al bl 01 bl Gl dl ’ 0/2 b2 C2 b2 62 d2
@, bzcz z=— bzczdz ; and a’sbscs b= bacads .
a3 bS 08 b3 03 dS a4 b4 c4 b4 04 d4
To eliminate # from these two, we have
al bl Gl ‘ ,b2 02 d2 aZ b2 02 bl cl dl
Zf4=0= v sesvens . ee e vss e — . . . IEEEEEERTY )
a.“} b3 03 b4 04 d4 a4 b4 c4 b3 03 ds
which we may remember by
a, bn G dz.
a, [)2 c, dz
a, 68 c, d,
d
a, b4 Cs 4

Thus U,=0 and V,=0 express the same condition of the con-
stituents for reconciling the four equations.

Inspection shows that U,, like V,, is linear in abced,. Puot
U,=nV,, and p will be free from these four. Assume then a, =1,

b,=c,=d,=0, and it will not affect u. But it makes

bz Cy dz b2 C, bz 02 d2
V4=]_. veeeenees | and U;:], bhol e |
b4 04 d4 88 b4 04 d4
. b, ¢
that is, p= b: CZ ,
whence U, generally = b, ¢, . V,. This could not have been fore-

8 738
seen. By varying the order of the elements, we have other results.

4—2
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b2 02
b.c

3 73
linears in U are squares cut from the four corners of V; those of the

first term in U, being from the positive diagonal.

Observe that is the square in the centre of V,. The tri-

23. By aid of Art. 21 we readily proceed to the Fifth Order,
with the same law of continuous formation; whence in every Order
we have these same properties.

(1) To exchange rows and columns does not affect the value

of V..

n

(2) V, is a linear function of any one row, or any one column.

(3) If a row or column be binomial, the V, may be split into
V. +V,.

(4) To multiply a row or column by m, multiplies V, by m.

(5) To exchange any row (or column) with a contiguous row (or
column) changes V_ to —V,.

(6) If one row (or column) is identical with or proportional to
another row (or column), the V, = zero.

(7) V, is not altered in value when a row (or column) receives
increase or decrease proportioned to another row or column.

(8) If ¥, be divided along the diagonal, so as to fall into four
parts, two squares and two rectangular complements, the vanishing
of one complement makes the other wholly ineffective.

24. To prove the last universally, it suffices to prove it for the
fifth order.

Call the two squares P, S and the complements @, B. Then if
one of the complements, as @, have all its constituents zero, I say,
R is ineffective, and V'=2P. 8§, just as if R also had all its constituents
zero. For every term of V, when fully expanded, has the form
a,0,0,d.8,, where mnpqr are taken from 1, 2, 3, 4, 5 and no two are
the same. Hence abc, and ab.c, (the constituents of R) are neces-

sarily multiplied by one or other of the zeros (dedede) in @, and

17172"2"3"3
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all the products vanish. Consequently, if P is of the third order and
S of the second, the V in question is equivalent to
@ b oc,:00
a, b,c,:0 0
Vi=|a, b,¢c,: 00
0 00:d,e
00 0:de

and might arise from two equations separately, yielding P =0, and
S=0. Infact V=P.8S.

If Spottiswoode did not plant the first germ of this very valuable
theory, he first investigated the laws and exhibited its vast power.



TRACT V.

InTrRODUCTION TO TABLES I. AND IL

To these four Elementary Tracts I have added two Numerical
Tables, solely because their compilation and verification is elemen-
tary.

Table I. gives values of A™ to 20 decimal places. Here 4 means
the series 2, 3, 4,... up to 60, and the odd numbers from 61 to 77;
and » means 1, 2, 3, ... continued until A™ is about td vanish. To
verify, use the formula
-1 -2 -3 —m 4™ 1

The reader may convince himself how searching is this test, by
applying it, for instance, to A™ when A =37 or when 4 =71. Only
in the case of 2™ and 3™, where the Tablets give only odd values of
n, we must apply the formula

A7+ A4+ 47 Ay A =47 A=
A7+ 47+ 47+ .+ )=

Table I has values of 2" with 12 decimal places, where # means
‘02, 03, ‘04 up to *50 and = is continued from 1, 2, 3,... until 2" is
insignificant. The formula of verification is (with m any integer less
than 7)

(" + 2" +a"™+ ...+ 2).1—a) =a" -2

I compiled this table while working at Spence’s integral

f log (1 + ) do »
0 X
but it has much wider use.

One who is sagely incredulous of printed tables can verify
Jor himself any tablet which he is disposed to use with much greater
ease than he could compose the tablet. Thus, too, he would detect

any error from miscopying or misprinting, against which I can least
give a guarantee.



TABLE I. TWENTY DECIMALS. 55
n 27" (n odd). » 37" (n odd).
175 I | 33333 33333 33333 33333
3| 125 3 | '03703 70370 37037 03703
5 | 03125 5 411 52263 37448 55967
7 | 00781 25 7 45 72473 70827 61774
9 | 'oo195 3125 9 5 08052 63425 29086
11 48 82812 3 IT | ... 56450 29269 47676
13 12 20703 125 I3 | ... 6272 25474 38630
15 3 o5175 78125 15 ] . 696 91719 37625
171 e 76293 94531 25 7 77 43524 37514
19 | ...l 19073 48632 8125 19| ... 8 60391 59724
21 | el 4768 37158 20312 || 2I | ...... ...l 95599 06636
23 | ... 1192 09289 55078 || 23 | ...... ... 10622 11848
25 | e 298 02322 38769 || 25 | ...... ... 1180 23539
27 | .l 74 50580 59692 || 27 | ...... ... 131 13726
29 | ... 18 62645 14923 || 29 | ...oe. e 14 57081
7 47" n 47"
I| 25 17 | ‘00000 00000 58207 66091
2 | "0625 18| . 14551 QI523
3 | "o1562 5 19 | e e 3637 97880
4 | '00390 625 20 | eeveen el 909 49470
5 97 65625 21 | el 227 37367
6 24 41406 25 -7 2 56 84342
7 6 10351 5625 23 | ... 14 21085
8 1 52587 89062 5 24 | e el 3 55271
9 38146 97265 625 25 | v e e 88818
10 | ... 9536 74316 40625 || 26 | ... . .l 22204
IT | ... 2384 18579 10156 || 27 | ..o e el 5551
12 | ... 596 04644 77539 (| 28 | ... el ol 1388
13| eens 149 01161 10385 || 29 | ..oeen aeeen en. 347
4 | el 37 25290 29846 || 30 | ... o ol 87
I5 | ... 9 31322 57401 || 3T | .eer i aeeens 22
16 | ... 2 32830 64365 || 32 | oo e el 5
33 .................. I




TABLE I. TWENTY DECIMALS.

57 ” 6"
1|2 I | 16666 66666 66666 66666
2| o4 2| 02777 77777 17777 17177
3| 0.8 3 462 96296 29629 62962
4 | "oo160 4 77 16049 38271 60494
5 | ‘00032 5 12 86008 23045 26749
6 | ‘00006 4 6 2 14334 70507 54458
7 | roooor 28 71 e 35722 45084 59076
8| ... 256 81 ... 5933 74180 76513

...... 05120 9 e 092 29030 12752
...... oroz4 10| ... 165 38171 68792
...... oozo4 8 11 e 27 53661 97499
...... 40 96 12 ceeens 4 59393 65799
...... 8 192 I3 | .eeer were.. 76565 60966
...... 1 63840 14 veeereeeewe. 12960 93404
............ 32768 15 vievereeen. 2126 82249
............ 6553 6 16 | o 354 4704I
............ 1310 72 17 e e 59 07840
............ 262 144 18 e e 9 84640
............ 52 42880 || 19 e e 1 64100
............ 10 48576 || 20 vevver wevir eeeees 27351
............ 2 09715 || 21 veeeer eeener e 4558
.................. 41943 || 22 R e 759
.................. 8388 || 23 e e 126
.................. 1677 || 24 R T 21
.................. 335 || 25 ceerer e e 3
.................. 67
.................. 13
.................. 2
7" 7 7"
1 | ‘14285 71428 57142 85714 || 12 | ‘00000 00OOO 72247 61531
2 | ‘02040 81632 65306 12245 || I3 | ...eo eeennn 10321 08797
3 29I 54518 95043 73178 || 14 | .eeeen oenl. 1474 44114
4 41 64931 27863 39025 || I5 | ..o .eeend 210 63445
5 5 94990 18266 19861 || 16 | ...... ...... 30 09063
61 ... 84998 59752 31409 || I7 | .eeeen el 4 29866
/2 12142 65678 9o20I || I8 | ...e. el il 61409
8| .. 1734 66525 55743 || 19 | cooeer eein il 8774
9| eeene 247 80932 22249 || 20 | eever il 1253
10 | .eeees 35 40133 17464 || 21 | oo o 179
II | .oeaes 5 05733 31066 || 22 | ...... ... 25
23 | e e 4




TABLE I. TWENTY DECIMALS. 57
7 8- 7 9™
1| 125 I | ITIITI ITIII ITIIT IIIII
2 | 01562 5 2 | r01234 56790 12345 67901
3 | roo195 37125 3 137 17421 12482 85322
4 24 41406 25 4 15 24157 90275 87258
5 3 05175 78125 5 1 69350 87808 43029
61 ... 38146 97265 625 6| ...l 18816 76423 15892
/2 I 4768 37158 20312 710 . 2090 75158 12877
81 596 04644 77539 81 ...t 232 30573 12542
9| ... 74 50580 59692 9| eeies 25 81174 79171
0| ... 9 31322 57461 || 10 | ...... 2 86797 19908
£ S IR 1 16415 32182 || 11 | ... ... 31866 35545
I2Z | e el 14551 91523 || 12 | oo el 3540 70616
I3 | e e 1818 98940 || I3 | ..oeeo ell 393 41179
T4 | 227 37367 || 14 | ...... 43 71242
I5 | eeeier e 28 42171 || 15 | ..o 4 85693
16| L 355271 || 16 | .oeen ceen el 53966
I7 | 44409 || I7 | oo oo L 5996
8| L 5551 || I8 | ... e 666
19 | eeer e e 694 || 19 | ..o o 74
20 | e .. 871 20| ... 8
22 S 11 22 S Y 0,9
22 | e e 1
”n I il 7 1=
T | '09090 90909 09090 90909 I | 08333 33333 33333 33333
2 826 44628 09917 35537 | 2 694. 44444 44444 44444
3 75 13148 oogor 57776 | 3 57 87037 03703 70370
4 6 83013 45536 50707 || 4 4 82253 08641 97531
B eeenen 62092 13230 59I53 5 40187 475720 16461
6 ... 5644 73930 05377 6| ... 3348 97976 68038
7 e 513 15811 82307 7 e 279 08164 72336
8| ... 46 65073 80209 81 ... 23 25680 39361
91 eens 4 24097 61837 91 e 1 93806 69946
I0 | ceien el 38554 32894 || 10 | ...... ..., 16150 55829
I | ceen e 3504 93899 || I | ... ...l 1345 87985
12 | . 318 63082 || 12 | ... ... 112 15665
I3 | eeen el 28 96644 || 13 | ...ooo .. 34639
I4 | oo . 2 63331 || I4 | ooirr e el 77886
I5 | ceein i e 23939 || I5 | ..o sl 6490
16 | o 2176 || 16 | ..o . 541
I7 | ceiier e e 108 || I7 | ceier eiiee el 45
18] i . 18| 18| ... L 4
19 G e e 1




TABLE I.

TWENTY DECIMALS.

137"

147"

1 | ‘07692 30769 23076 92307 1 | 'o7142 85714 28571 42857
2 591 71597 63313 60947 2 510 20408 16326 53061
3 45 51661 35639 50842 | 3 36 44314 86880 46647
4 3 50127 79664 57757 || 4 2 60308 20491 46189
51 eene 26932 90743 42904 51 eeens 18593 44320 81870
61 ... 2071 76211 03300 6| ... 1328 10308 62991
B 159 36631 61792 7ol 94 86450 61642
8| ... 12 25894 73984 81 ... 6 77603 61546
............ 94299 59537 ceiver eenes 48400 25825
............ 7253 81503 veveer eeenee 3457016130
............ 557 98577 e e 246 94009
............ 42 92198 e 17 63858
............ 3 30169 e 1 25989
.................. 25397 P - {o Yo}
.................. 1594 e e e 643
.................. 150 e e e 46
.................. 1I e 3
157" 7"
1 | 06666 66666 66666 66666 I | 05882 35294 11764 70588
2 444 44444 44444 44444 2 346 02076 12456 74740
3 29 62962 96296 29629 3 20 35416 24262 16161
4 I 97530 86419 75308 || 4 I 19730 36721 30362
3 13168 72427 938360 S 7042 96277 72375
6| ... 877 91495 19891 6| ... 414 29192 80728
B IO 58 52766 34659 7 e 24 37011 34160
8|1 ... 3 90184 42311 8| ... I 43353 60833
............ 26012 29487 vivens e 8432 56519
............ 1734 15299 e 496 03324
............ 115 61020 e 29 17842
............ 7 70734 e 1 71638
.................. 51382 vivisr eieee e I0096
.................. 3425 e e e 594
.................. 228 e e e 35
.................. 15 e 2
............ 1

For 167" look to 47"




TABLE I. TWENTY DECIMALS. 59

n 187" n 197"

I | "05555 55555 55555 55555 | I | 05263 15789 47368 42105
2 308 64197 53086 41975 || 2 277 00831 02493 07479
3 17 14677 64060 35665 || 3 14 57938 47499 63551
4| o 95259 86892 24204 41 .. 76733 60394 71766
L 5202 21494 01345 5 ... 4038 61073 40619
6 2094 01194 11186 6| ... 212 55845 96874
7 16 33399 67288 70 11 18728 73519
81 i 90744 42627 81 o 58880 45975
9 | eer el 5041 35701 9| e 3098 97156
I0 | ceeven el 280 07539 || 1o | ...... 163 10376
IT | e ol I5 55074 || 11| ... ... 8 58441
I2 | ceeien e el 86443 || T2 | ...... .. 45181
I3 4802 || 13 | ... . L 2378
7 207 || 14 | .o 125
I5 | e 15 | I5 | oo s 6
”n 217" ”n 227"

I | 04761 90476 19047 61904 || I | ‘04545 45454 54545 45454
2 226 75736 96145 12471 2 206 61157 02479 33884
3 10 79796 99816 43451 || 3 9 39143 50112 69722
4 veeenn 51418 90467 44926 41 e 42688 34096 03169
50 eeens 2448 51927 02139 L T 1940 37913 45599
6 ... 116 50615 57245 6| ... 88 19905 15709
71 5 55219 78916 || 7 | ...... 4 00904 77987
8 oen il 26439 03758 8 en . 18222 94454
9 ceeier 1259 00I%9 9| e il 828 31566
IO | oen 59 95246 || 10 | ... ..l 37 65071
£ S 2 85488 || 11| ...... ...l I 71139
2 “I3504 || T2 | . 7779
5 J 647 || 13 | ooioi e e 353
7 3T || 14 | oo i 16
I5 | eeen I




60 TABLE I. TWENTY DECIMALS.
”n 23"'" 7 24—n
I | ‘04347 82608 69565 21739 I | '04166 66666 66666 66666
2 189 03591 68241 96597 2 173 6IIII IIIIT IIIII
3 8 21895 29053 99852 || 3 7 23379 62962 96296
4 35734 57784 95646 || 4| ... 30140 81790 12345
50 e 1553 67729 780%1 51 ceeenn 1255 86741 25514
6| ... 67 55118 68612 6 ... 52 32780 88563
/A 2 93700 81244 B 2 18032 53690
8 oir 12769 60054 8| e il 9084 68903
(o 555 20002 O e e 378 52871
I0 | cien el 24 13913 || To | .o Ll 15 77203
I | cn e I 04953 || IT | «oover ool 65716
L 4563 || T2 | ooeee e el 2738
L S 198 || 13 | oot ol 114
0 81l 14 | .ooier nn 4
For 257" look to 57%"
7 267" ” 297"
1| 03846 15384 61538 46153 1 | '03703 70370 37037 03703
2 147 92899 40828 40236 2 137 17421 12482 85322
3 5 68957 66954 93855 || 3 5 08052 63425 29086
41 e 21882 98729 03609 4 e 18816 76423 15892
50 eeeens 841 65335 73216 51 e 696 91719 37625
6| ... 32 37128 29739 6| ... 25 81174 79171
/B 1 24504 93451 71 e 95599 06636
8 ln 44788 65133 < I 3540 70616
O everen e 184 17890 9 | eeer e 131 13726
IO | eveier el 7 08380 || 10| ... Ll 4 85693
5 S 27245 || IT | cooven i 17982
- 1048 || 12 | ... 666
I3 | eeeeee e 40 Il I3 | e 25
0 I




TABLE 1. TWENTY DECIMALS. 61

”n 287" 7 297"

1 | 03571 42857 14285 71428 1 | 03448 27586 20689 65517
2 124 55102 04081 63265 2 118 go6o6 42092 74673
3 4 55539 35860 05831 3 4 10020 91106 64644
40 eeeens 16269 26280 71637 40 s 14138 65210 57401
51 e 581 04510 02558 51 s 487 53972 77841
6| ... 20 75161 07234 6 ... 16 81171 47512
2 IO 74112 89544 Tl e 57971 43011
8| i i 2646 88912 81 .. 1999 01483
O ceeen 94 53175 0| wteer e 68 93154
10| e 3 37613 || 10 1 ... L.l 2 37695
5 S 12057 || TT | oeen i e 8196
2 430 || T2 | o Ll 283
0 T I5 || I3 | ceveer i e 9
»n 31" n 327"

1 | ‘03225 80645 16129 03226 1 | *03125

2 104 05827 26326 7429% 2 97 65625

3 3 35671 84720 21751 || 3 3 05175 78125

4| ceens 10828 12410 32960 4| eeeenn 9536 74316 40625
5 349 29432 59127 5 eeens 298 02322 38769
6| ... 11 26755 89004 6 | .inl 9 31322 57461
0 TR 36346 96419 7l e 29103 83045
8 iin e 1172 48271 81 n 909 49470
9| ceeer el 37 82202 9 | eeeeer il 28 42171
I0 | eveer aeennn I 22007 || IO |  weeerr eiiin el 88818
3 S 3936 || IT | ..on e el 2775
T2 | veeer e e I27 || I2 | coveer eeen aaeas 86
% T P T T N 2




62 TABLE I. TWENTY DECIMALS.
”n 33—" n 34—n
I | '03030 30303 03030 30303 I | '02941 17647 05882 35294
2 91 82736 45546 37282 2 86 po5Ig 03114 18685
3 2 78264 747107 46584 | 3 2 54427 03032 77020
4| eeens 8432 26488 10502 4 7483 14795 03147
S 255 52317 82136 L 220 09258 67888
6 ... 74312 66125 6| ... 6 47331 13761
7 e e 23464 02004 7ol e 19039 I5IIO
8| i Ll 711 0309I 8| o 559 97503
9 | e i 21 54639 O | e 16 46985
I0 | oier e e s, 65292 || TO | ... L 48441
IT | cin i e 1978 || 1| ... .l 1425
12 | 59 || 12 | ... Lo Ll 42
13| e 2 | I3 o 1
n 357" n 377"
I | ‘02857 14285 71428 57142 I | "02702 70270 27027 02702
2 81 63265 30612 24489 2 73 04601 89919 64938
3 2 33236 15160 34985 3 I 97421 67295 12566
4| eeens 6663 89004 58142 41 e 5335 72089 05745
5] oo 190 39685 84518 5 eeens 144 20867 27182
6| ...... 5 43991 02415 6| ... 3 89753 16951
71 e 15542 60069 7| ceeeer e 10533 86945
8| weiiir il 444 07430 < T 284 69917
9| ceerer el 12 68783 9| ceeeer e 7 69457
o T P 36251 I0 | vviin i e 20796
5 S 1036 3 . 562
- 29 I2 | e e e 15
I3 | e e 0,8

For 367" look to 6™*.




TABLE I. TWENTY DECIMALS. 63

n 387" n 397"

I | '02631 57894 73684 21052 I | '02564 10256 41025 64102
2 69 25207 75623 26870 2 65 74621 05923 73438
3 1 82242 30937 45444 || 3 1 68580 05023 68549
4| e 4795 85024 66985 4 el 4322 56539 06886
51 ceeenn 126 20658 54394 51 ooeee 110 83501 00176
6 3 32122 59326 6 ... 2 84192 33338
7o 8740 06824 71 7286 98290
8| el 230 00179 81 .o 186 84571
9| e 6 05268 9| eeen e 4 79091
IO | vl e e 15928 || 10 | ..o e el 12284
3 S N 419 || IT | ioiih e e 315
& IT || T2 | e 8
n 417" 7 427"

I | '02439 02439 02439 02439 || I || 02380 95238 09523 80952
2 59 48839 97620 46401 2 56 68934 24036 28118
3 I 45093 65795 62107 || 3 I 34974 62477 05431
41 et 3538 86970 62490 40 - 3213 68154 21558
51 eeens 86 31389 52744 L3 76 51622 71942
61 ... 2 10521 69579 61 ... 1 82181 49332
2 U 5134 67550 A | 433765460
8 il 125 23599 | 103 27749
[ OO 3 05453 9 |l eeeee el 2 45899
10 | eevier e e 7450 || To || ..o Ll 5854
5 S PPN 182 || 1T || el ol 139
I2 | eennn e 4| x2 || oo 3




G4 TABLE I. TWENTY DECIMALS.

” 437" n 447"

1 | '02325 58139 53488 37209 I | 02272 y2727 27292 72727
2 54 08328 82639 26447 2 51 65289 25619 83471
3 1 25775 08898 58754 | 3 I 17392 93764 08715
41 e 2925 00206 94389 4 e 2668 02131 00198
5 68 02330 39404 51 60 63684 79549
6 ... 1 58193 73009 61 ... 1 37811 01808
/2N OIS 3678 92395 /2 T 3132 06859
81 e 85 55637 8| .o 71 18337
9| eeeer i 1 98968 o T 1 61780
o T 4627 | 10| o o 3677
0 S 107 || IT | veer aiiien il 84
IZ | een e 2 | 12| L 2
7 457" 7 467"

I | ‘02222 22222 22222 22222 1| '02173 91304 34782 60869
2 49 38271 60493 82716 2 47 25897 92060 49149
3 1 09739 36899 86282 3 1 02736 91131 74981
4| e 2438 65264 44139 4| eeienn 2233 41111 55977
51 e 54 19228 09869 5 eeeens 48 55241 55565
61 ... 1 20427 29108 61 ... 1 05548 72947
7 e 2676 16202 /2 ISP 2294 53759
< 59 47026 < 49 88125
9| v e 1 32156 Lo 1 08438
10 | veeere i e 2037 || TO | cein e eeees 2357
8 S 65 || IT | ceeiin e el 51
I2 | e e e I 12 o ooi e e 1




TABLE I.

TWENTY DECIMALS.

—-n

47

487"

02083 33333 33333

1 | "o2127 65957 44680 1 33333
2 45 26935 26482 2 43 40277 17717 171777
3| e 96317 77159 3 e 00422 45370 37037
4 eeens 2049 31428 4| eeens 1883 8or1rr 88271
51 e 43 60243 5 eeeens 39 24585 66422
6| e eenne 92771 6 | i s 81762 20136
2 DT 1973 2 IO 1703 37919
8 i 4% 8 o 35 48706
O | e e o T 73931
IO | cererr i e I0 | ceeiin e e 1540
b & S TN IT | cen i e 32
For 497" look to 77
51" 527"
1 | 'org6o 78431 37254 1 | ‘01923 07692 30769 23076
2 38 44675 12495 2 36 98224 85207 10059
L 75385 78646 3 e 71119 70869 36732
4 eeeen 1478 15268 P I 1367 68670 56475
51 eeeens 28 98338 50 e 26 30166 74163
6| ooiin il 56830 6 | iiir e 50580 12965
2 O 1114 71 ceeer i 972 69480
81 ih 21 8| it i 18 Y0567
O | st v e 9 e il .. 35972
IO | veiiee ieenn. 1 692
5 S 8 S N 13




TABLE I.

TWENTY DECIMALS.

53

54

I | 01886 79245 28301 88679 1 | 01851 85185 18518 51852
2 35 59985 76005 69598 || 2 34 29355 28120 71331
3| e 67169 54264 25841 3| el 63506 57928 16136
4 veeen 1267 34986 11808 4] eeeene 1176 04776 44743
5 eeeren 23 91226 15317 5 ... 21 77866 23051
N 2 PP 45117 47459 ¢ 40330 85612
7 P 851 2%310 25 OO 746 86769
8 i il 16 06176 8 i - 13 83088
9 eir e e 30305 O e i e 25613
o 572 || 10 | el il el 474
O S S ID || IX | s 9
557" 567"
1| 01818 18181 81818 18181 1 | ‘01785 71428 57142 85714
2 33 05785 12396 69421 2 31 88775 51020 40816
3| e 6o1o5 18407 21262 3 e 56942 41982 50729
4| eeeen 1092 82152 85841 4| e 1016 82892 54477
5 19 86948 23379 {1 5| ... 18 15765 93829
6] ooier enens 36126 33152 6| oiin el 32424 39175
7l 656 84239 7l 579 00699
81 ... IT 94259 8| i i 10 33941
O oeer e 21714 L+ T PN 18463
IO | eeeer eein 386 || 10| ... Ll 330
b S 1T 3 S O 6
597" 587"
1| "o1754 38596 49122 80701 | T | ‘01724 13793 10344 82758
2 30 77870 11388 11942 2 29 72651 60523 18668
3 e 53997 72129 61613 31 e 51252 61388 33082
I IO 947 32844 37923 4] eeenns 883 66575 66087
51 aeeeen 16 61979 72595 5 e 15 23561 64932
6 e 29157 539905 6| .. el 26268 30429
/2 U 511 53577 2 T 452 9ory9
- 97431 81 il 7 80865
9| e e e 15744 O | ceerer e eaens 13463
I0 | ceiien i e 276 || IO | ..o el el 232
IT | ceerer v i S IT | s 4




TABLE 1.

TWENTY DECIMALS.

67

-n

59

617"

1 | 01694 91525 42372 88136 I | ‘01639 34426 22950 81967
2 28 72737 71904 62511 2 26 87449 61031 93065
3| e 48690 46981 43432 || 3| ...... 44056 55098 88493
4] ceees 825 26220 02431 /N 722 23854 08008
51 e 13 98749 49194 L T 11 83997 60787
6 s 23707 61851 6 ier el 19409 79685
T e 401 82404 || 7| ceeerir i 318 19339
8 6 81058 {| 8| .on i 5 21628
Q | eerer e s 11543 9 v 8551
IO | vievr ien eeens 196 || IO | oo el 140
£ 5 O 3l T e 2
. 63—71 A65-ﬂ
1 | 01587 30158 73015 87301 1 | 01538 46153 84615 38461
2 25 19526 32905 01385 2 23 66863 90532 54438
3| s 39992 48141 34942 3| e 36413 29085 11607
4 ceenn 634 80129 22777 /N 560 20447 46333
5 eeeees 10 07621 09885 50 vooeen 8 61853 03789
6| oeeer il 15993 98569 6| .o 13259 27751
7 253 87279 /2 IO 203 98888
8 en 4 02973 8 o 3 13829
O oiver e e 6396 O | ceeie e e 4828
10 | cevier e e IOT || IO | tooier eieen aenns 75
67‘—13 69—I
1| o149z 53731 34328 35821 || 1| ‘01449 27536 23183 40579
2 22 27667 63198 93072 | 2 ' 21 00399 07582 44066
3| oo 33248 77062 67061 3] .. 30040 56631 62957
4] . 496 25030 78613 41 0 441 16762 77724
51 coens 7 40672 10128 3 6 39373 37358
6 ooer 11054 80748 6 e e 9266 28077
/2 I 164 99712 2 I 134 29392
8| e e 2 46264 L 1 94629
O | i e 3675 O | i e e 2821
I0 | ciever e e 55 || To | o 40




TABLE I.

TWENTY DECIMALS.

7"

73

I | ‘01408 45070 42253 52213 1 | 01369 86301 36986 30137
2 19 83733 38623 28903 | 2 18 76524 67629 94933
30 e 27939 90684 83506 3 e 25705 81748 35547
40 el 393 51981 47655 4| eeeenn 352 13448 60761
51 eeeen. 5 54253 26023 51 e 4 823476 00832
6| o s 7806 38395 6| oon 6607 89052
2 T 109 94907 /2 90 51905
8 woever Ll 1 54858 8| ceeerr el 1 23999
[« T N 2181 9 | eeeier e 1699
IO | ceien e e K3 S| I 2= T PN 23
757" 777"
I | '01333 33333 33333 33333 || 1 | ‘01298 70129 87012 98701
2 L7001 71777 77777 2 16 86625 06324 84384
3| eeenen 23703 70370 37037 3| eeenns 21904 22160 06291
4 eeens 316 04938 27160 4 eeennn 284 47041 03977
L 4 21399 17695 5 eeenen 3 69442 09142
6] s 5618 65569 6| weeren el 4797 94924
2 T 74 91541 B T 62 31103
2 99887 81 it e e 80923
[+ T I . 1339 9| ceerer e e 1051
o T A 18| 10| eieer i 14




TABLE IL

TWELVE DECIMALS.

69

TaBLE II.  Powers of '02, ‘03, ‘04, ... up to 50, useful to compute
Ax+ Aa? + Ag® + &c., when 2 does not exceed 3.

(Twelve Decimals.)

n (o2)" (03)" (-04) n
2 0004 0009 0016 2
3 o:00 08 | ... 27 v 64 3
4 | e oo16 | ... 0081 .... 0256 4
5 | e e 32 | eeeens 243 | .o 10 24 5
6 | e o 0004 | verrr veenns 0729 | eiver cennnn 4096 | 6
/20 T (<3 S 0022 | .oiev cieees 164 | 71
e s 6| 8
n (ro5)" (06)" (ro7)" #
2 | -oozjg 0036 0049 2
3 1 25 2 16 343 3
40 eeens obz2s | ... 1296 | ... 2401 4
50 e 31 25 | ... 77 76 | .. 168 oy 5
6| ... 1 5625 | ... 4 6656 | ...... 11 7649 | 6 |
28 DT /23 T 2790 | ceieen aeeenn 8235 7
8 30 | ceeeer eeeene 168 | .l ol 576 | 8
[T O 2| s e I0 | eeeiin aenns 40| 9
o ] e e 3| 10
” (ro8)" (o9)" (11 ”
2 | o064 0081 o121 2
3 5 I2 7 29 13 31 3
4| eeenen 4096 | ... 6561 I 4641 4
51 eeeens 327 05 | .eeens 500 49 | ...ee. 1610 51 5
6 ... 26 2144 | ...... 53 T441 | ...... 177 1561 6
7 2 0971 | ...l 4 7830 | ...... 19 4871 i
8| evr il 1678 | ... .l 4305 | .eonen 2 1436 | 8
Lo I 134 | ceeenr vennns 387 | e 2358 | o9
I0 | eveeir eenns I | ceeenr cens 35 1 e e 259 | 10
181 brreer ennes I e e, 3 e e 28 | 11
- I R 31|12




70

TABLE II. TWELVE DECIMALS.
" (12’ (13)" (1ay’ n
2 0T44 0169 0196 2
3 17 28 21 97 27 44 3
4 2 0736 2 8561 3 8416 4
L 2488 32 | ... 317293 | ..eeen 5378 24 5
6| ... ' 298 5984 | ...... 482 6809 | ...... 752 9536 | 6
| e 35 8318 | ...... 62 7485 | ...... 105 4135 Vi
- 42988 | ... 8 IBTZ | eeeens 14 7579 | 8
[ I IR 5160 | ...... 1 0604 | ...... 2 0661 9
10 619 | .oiver vennns 1378 | e il 2892 | 10
11 74 | ceee i I79 | eeevin aennnn 408 | 11
I2 | ceeenn e 8 il 23 | veeeee eeeenn 57 | 12
I3 | ceeeen e I e e 3| e e 8 |13
7 O I 14
n (15)" ('16)" (r7)” n
2 | o225 0256 0289 2
3 38 75 40 96 49 13 3
4 5 0625 6 5538 8 3521 4|
5 oo 7593 75 1 0485 76 T 4198 57 5
6 ...ont 1139 o625 | ...... 1677 7216 2413 7569 | 6
Vi 170 8594 | ...... 268 4354 | ..oee 410 3387 | 7 |
81 .t 25 6289 | ...... 42 9497 | +eeee 69 7576 | 8
9| .oeen 38443 | ... 6. 8719 | ...... 11 8588 | o
0| e 5766 | ... I 0995 | ..ove 2 o16o | 10
& S I 864 | .iivi ceenen 1759 | ceeeen eeennn 3427 | 11
2 O 130 | ceviin eeeenn 281 | ceeeer e 583 | 12
& 3 IO 19 | veven e 45 | ceeeer aeiens 99 | 13
370 3 e e 71 e 17 | 14
4 Il e e 3|15




TABLE

II. TWELVE DECIMALS.

71

” (18)" (19)" (-20)" "
2| 0324 ‘0361 ‘04 2
3 58 32 68 59 008 3
4 10 4976 13 0321 0016 4
5 1 8895 68 2 4760 99 0003 2 5
61 ... 3401 2224 | ... 4704 5881 | ..... . 64 6
7l e 612 2200 | ...... 893 8717 | ...ue 128 i
8| ... 110 1996 | ...... 169 8356 | ...... 0256 8
9| eeenn 19 8359 | ...... 32 2688 ,. OO5I 2 9
10 | ... 3 5705 cerens 6 1311 csiers OOIO 24 10
b 3 S N 6427 | ...... 1 1649 creees 0002 048 1I
12 | copee e TIS7 | ceeier eeeens 22I3 | creere eennnn 4096 | 12
b & 30 I 208 | e el 421 e evene 819 | 13
S 7 371 e e 8o et e 164 | 14
I5 | ceveer eeenes /2 I I5 | e e 33| 15
16 | ceeren cenens I e e 3] e e 1| 16
n (1) (22)" (-23)" n
2 | ‘0441 ‘0484 0529 2
3 92 61 ‘0108 48 o121 67 3
4 19 4481 23 4236 27 9841 4
5 4 0841 o1 5 1536 32 6 4363 43 5
61 ... 8576 6121 I 1337 9904 1 4803 5889 | 6
71 e 1801 6885 | ...... 2494 3579 cerese 3404 8254 | 7
8 ... 378 2286 | ...... 548 7587 | ... 783 1098 | 8
9] el 79 4280 | ...... 79 4280 | ...... 180 1153 | 9
1I0 | ... 16 6799 | ...... 26 5599 41 4265 | 10
L & S I 3 5028 | ...... 5 8432 | ...... 9 5281 | 11
12 | e e 7356 1 2855 | ...... 2 1914 | 12
130 1545 | coeeer enenns 2828 e eeaes 5040 | 13
I4 | coiiin eeens 324 | coier eennn 622 | ... ... 1159 | 14
I5 | eeeee e 68 | ...... ...... 137 | ceeeer eeennn 267 | 15
16 | I4 | ceeere vennnn 30 | el 61 | 16
I7 | e [ 2 I 6,6 ceiiir veinn. 14| 17
18 L 3 OO 3|18




72 TABLE II. TWELVE DECIMALS.

7 (-24)" (25)" (-26) "
2.|'05%76 ‘0625 0676 2
3 | 0138 24 ‘0156 25 o175 76 3
4 33 1776 ‘0039 0625 ‘0045 6976 4
5 7 9626 24 9 7656 25 ‘oorr 8813 76 5
6 1 9110 2976 2 4414 o625 3 0891 5776 | 6
7] e 4586 4714 6103 5156 | ...... 8031 8102 7
81 .. 1100 7531 | ... 1525 8789 | ...... 2088 2706 | 8
9 | ceunen 264 1804 | .. ... 381 4697 | ...... 542 9504 | 9

10 | .. 63 4034 | ...... 95 3674 | ...... 141 1671 | IO
II | ... 15 2168 | ... 23 8418 | ...... 36 7034 | 11
12 | ...l 3 6520 | ...... 5 9604 | ...... 9 5429 | I2
) 5 S U 8765 | ...... I 4901 | ...... 2 4811 | 13
/1 2103 L3725 | e e 6451 | 14
S 505 | e el 93T | ciien aiens 1677 | 15
16 | cveeen el 12T | e e 233 | eeeee eeenin 436 | 16
I7 | eeener denns 29 | e 58 1 . il 113 | 17
18 | o 7ol e I4 | e e 29 | 18
I1Q | ceveer eeines L7 4 7119
20| | S I 2 | 20
n (27) (28)" (29)" n
2 | o729 0784 0841 2
3 | o196 83 ‘0219 52 ‘0243 89 3
4 | ‘0053 1441 *0061 4656 ‘o070 7281 4
5 | o014 3489 o7 ‘oo1y 2103 68 ‘0020 5ITI 49 5
6 3 8742 0489 4 8189 0304 5 9482 3321 | 6
i I 0460 3532 I 3492 9285 I 7249 8763 | 7
8| ... 2824 2954 | ...... 3778 o200 { ...... 5002 4641 | 8
I 762°5597 | ...... 1057 8456 | ...... 1450 7146 | 9
10| el 205 8911 | ...... 296 1968 1 ...... 420 7072 | 10
b 5 S I 55 5906 | ...... 82 9351 122 0O5I | II
12 | .. 15 0095 | ...... 23 2218 | ... - 35 3817 | 12
i3 ... 4 0525 | ... 6 5o21 | ...... 10 2607 | 13
14| .o 10942 | ...... 1 8026 | ...... 2 9756 | 14
I5 | s el 2054 | eeeee eell. 5098 .. 8629 | 15
16 | 797 | eevenn viien TI427 | eeven eeeens 2502 | 16
I7 | e il 2I5 | ceieee aennns 400 | aeein inn. 726 | 17
18 58 | o s II2Z | cevven vnenn 210 | 18
19 | veeeen viens 16 | 3T | eerenn eeens 61 | 19
20 | aeeeen il Bl e 9| e e 18 | 20
-3 S U | O T 2| e 5 | 21
2z | L 1| 22




TABLE

II. TWELVE DECIMALS.

73

n (30)" (31) (32)" n
2| o9 ‘0961 ‘1024 2
3| -o27 ‘1207 9I ‘0327 68 3
4 | o081 ‘0092 3521 ‘0104 3576 4
5| o024 3 ‘0028 6291 51 33 5544 32 5
6 7 29 8 8750 3681 10 7374 1824 | 6
7 2 1870 2 7512 6141 34359 7384 | 7
8| ... 656t | ... 8528 9104 1 o995 1163 | 8
9 1968 3 | ... 2643 9622 | ...... 3518 4372 | 9
10| ... 0590 49 | ... 819 6283 ....is 11258999 | 10
T | ... oryy 147 | ... 254 0848 | ...... 360 2880 | 11
12| ... 53 T44I | ...... 78 7663 | ...... 115 2921 | 12
13| .eeees 15 9432 | +oeeee 24 4175 | ... 36 8935 | 13
4| e 4 7830 | ... 75604 | ...... 11 8059 | 14
5] ... 14349 | «..-et 2 3465 | ... 3 7779 | 15 |
16 | .. .l 4304 | ceieer ennns 7274 | ... 1 2089 | 16 |
I7 | e el 1291 | cooven cenns 2255 | .. 3868 | 17
18] . 387 | 699 | ..ot ol 1238 | 18
b 3 T 116 | coovnr ennns 3 & 2 RN 396 | 19
20 35 | ceer eeenn 67 | i e 127 | 20
-3 O IO | coieer eeenns 2T | e e 40 | 21
22 | 3 e 6 13 | 22
23 [ N E- 2 ETOUO N 4| 23
24| T ‘1| 24




TABLE II1,

TWELVE DECIMALS,

(33) (34) (35)°
‘1089 ‘1156 1225
0359 37 0393 04 0428 75
‘o118 592% ‘0133 6336 0150 0625

39 1353 93 45 4334 52 5218
12 9146 7969 15 4480 18 3826
4 2618 4430 5 2523 6 4339

1 4064 0862 1 7857 2 2518
...... 4641 1484 | ...... 6071 ceevee 7881
...... 15315790 | ...... 2064 ceeee. 27588
...... 505 ‘4210 | ...... fjoI veeeee 905
...... 166 7889 ceeene 238 ceeves 337
...... 55 0403 | ...... 81 veeee. 118
...... 18 1633 v 27 ceeee 41
...... 5 0939 | .eeen- 9 N ¥t
...... 1 9780 oo 3 5

6527 | .eeen. 1 0843 | ...enn 1

............ 2154 cereee eseaas ceee seeees

IO | veevi evenen 1283 | ceeeen eeen

............ 234 | ceeeer eeeens e e

............ 77 e e e
............ 25 | eeeen e

............ 8 ot il e e

............ 3 e e




75,

TABLE II. TWELVE DECIMALS.
7 (.36)7» (,37)n ('38)" P
2 1296 1369 ‘1444 2
3 0466 56 0506 53 ‘0548 72 3
4 | o167 9616 0187 4161 ‘0208 5136 4
5 60 4661 76 69 3439 57 79 2351 68 5
6 21 7678 2336 25 6572 6409 30 1093 6384 6
7 7 8364 1641 9 4931 8771 11 4415 5826 7
8 2 8211 0991 3 5124 7945 4 3477 9314 | 8
9 I 0I55 9957 1 2996 1740 1 6521. 6101 9
10| .eee.. 3656 1584 | ...... 4808 5844 | ...... 6278 2118 | 10
I | ... 1316 3170 | ...... 1779 1762 | ...... 2385 7205 | 11
12 [ ... 473 8381 | ... 658 2952 | ...... 906 5738 | 12
13 eenen 170 5817 | ... 243 5692 | ...... 344 4980 | 13
14| .. 61 4094 | ....n. 9o 1206 | ...... 130 9092 | I4
15 | ... 22 1074 | .euen. 33 3446 | ...... 49 7455 | 15
16 | ... 7 9587 | ...l 12 3375 | -evnnn 18 9033 | 16
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