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PREFACE.

THis book has been written for a very practical purpose,
namely, to present in simple and intelligible form a body of
geometric doctrine, acquaintance with which may fairly be de-
manded of candidates for the Freshman class, and is in fact
demanded at this University of the State of Missouri. This
purpose has regulated both the amount and the character of the
matter introduced. The former might have been made larger, the
latter more uniform and scientific, but only — so at least it seemed
to the author —at a sacrifice of usefulness under existing con-
ditions.

Much more than one year's study can hardly be given to
Plane Geometry in the majority of High Schools and Academies
—a fact that sets rather narrow limits to practicable treatment
of the subject. In such a course the Apollonian problem would
seem to present itself as a natural and rightful goal. Besides, in
its solution the logical play, while direct and simple, is yet highly
instructive and even artistic,—all the concepts of the foregoing
sections are summoned up and marshalled and brought to bear
upon a single point. But if any such goal is to be attained in
such a time, the path pursued must not be tortuous, and there
will be little leisure for lateral excursions. In the Exercises,
however, the view of the student is considerably widened so as

to embrace most of the more familiar theorems omitted from the
v
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vi PREFACE.

text. These Exercises have, in fact, been chosen with especial
reference not so much to their merely disciplinary as to their
didactic value, the author being persuaded that quite as good
exercise may be found in going somewhither as in walking round
the square. The problems proposed for solution will not merely
drill the student in what he already knows, but will greatly extend
his knowledge, in particular, of projection and perspective, guid-
ing him nearly as far as he can conveniently go without the help
of the Cross Ratio — a notion which the narrow scope of the work
as a mere introduction seemed to exclude from employment. It
is believed that advocates of the heuristic method may find in
these problems ample playroom for the ingenuity of their pupils.
As regards both the matter and the arrangement of this part of
the book, the author would lay little claim to originality, but
would rather acknowledge indebtedness to his predecessors in
the attempt to modernize geometrical teaching, particularly to
the valuable and indeed admirable works of Dupuis, Halsted,
Henrici, Newcomb, Frischauf, Henrici and Treutlein, and
MueHer.

Up to the Taction-Problem the notion of Form has dominated
the whole discussion, but in the following sections certain metric
relations of great importance receive due consideration.

With respect to the methods employed and the point of view
assumed, a preface is no place for apology. With such as
approve the resolution of the 31st Assembly of German edu-
cators:

“Im Unterricht der Elementargeometrie an Realschulen und Gymnasien
bleibt die Euclidische Geometrie dem System nach bestehen, wird aber im
Geiste der neueren Geometrie reformiert,”
argument would be needless; with others it might be useless.
The case stands in a measure as with the Gospel saying, made
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for those who could receive it. The work asks to be judged, at
least in its name, according to this spirit of Modern Geometry,
and not according to the letter.

In the treatment of fundamental notions, of Parallels, of Pro-
portion, and in fact throughout the book, the reader may find
enough that is novel, if nothing that is new. The author can-
not hope to escape criticism, and is himself aware of certain
defects; but he may at least trust that his book may provoke
some abler pen to more successful endeavor.

The way of Mathematics, it has been said, is broad and
smooth ; but it is exceeding long and exceeding steep. If the
work in hand shall make the first upward steps of the climber
not indeed less difficult, but quicker, longer, and less tedious,
and so conserve him time, energy, and disposition for much
higher ascent, there will be recompense for the labor and even
for the renunciation that its preparation has entailed.

AUTHOR.
COLUMBIA, MISSOURI,
1st October, 1892,

Articles marked with an asterisk, *, may be omitted on first
reading. The early attention of the teacher is called to the Con-
cluding Note, Arts. 353, sqq.
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GEOMETRY.

INTRODUCTION.

1. Geometry is the Doctrine of Space.

What is Space? On opening our eyes we see objects
around us in endless number and variety : the book here,
the table there, the tree yonder. This vision of a world
outside of us is quite involuntary — we cannot prevent it,
nor modify it in any way ; it is called the /zszition (or Per-
ception or Envisagement) of Space. Two objects precisely
alike, as two copies of this book, so as to be indistinguishable
in every other respect, yet are not the same, because they
differ in place, in their positions in Space : the one is here,
the other is not here, but there. In between and all about
these objects that thus differ in place, there lies before us
an apparently unoccupied region, where it seems that noth-
ing #s, but where anything might be. We may imagine or
suppose all these objects to vanish or to fade away, but we
cannot imagine this region, either where they were or where
they were not, to vanish or to change in any way. This
region, whether occupied or unoccupied, where all these
objects are and where countless others might be, is called
Space.

2. There are certain elementary facts, that is, facts that
cannot be resolved into any simpler facts, about this Space,

and these deserve special notice. .
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A. Space is fixed, permanent, unchangeable. The objects
in Space, called bodies, change place, or may be imagined
to change place, in all sorts of ways, without in the least
affecting Space itself. Animals move, that is, change their
places, hither and thither ; clouds form and transform them-
selves, drifting before the wind, or dissolve, disappearing
altogether ; the stars circle eternally about the pole of the
heavens ; sun, moon, and planets wander round among the
stars ; but the blue dome of the sky,* the immeasurable
expanse in which all these motions go on, remains unmoved
and immovable, as a whole and in all its parts, absolutely
the same yesterday, to-day, and forever.

B. Space is homeoidal ; 7. it is precisely alike through-
out its whole extent. Any body may just as well be here,
there, or yonder, so far as Space is concerned. A mere
change of place in nowise affects the Space in which the
change, or motion, occurs.

C. Space is boundless. It has no beginning and no end.
We may imagine a piece of Space cut out and colored (to
distinguish it from the rest of Space) ; the piece will be
bounded, but Space itself will remain unbounded.

N.B. When we say that Space is unbounded, we do 7o#
mean that it is 7nfinife. Suppose an earthquake to sink all
the land beneath the level of the sea, and suppose this latter
at rest ; then its outside would be unbounded, without begin-
ning and without end, —a fish might swim about on it in
any way forever, without stop or stay of any kind. But it
would 7oz be infinite ; there would be exactly so many
square feet of it, a finite number, neither more nor less.
Likewise, the fact that bodies may and do move about in
space every way without let or hindrance of any kind implies

* Appearing blue because of the refraction of light in the air.




INTRODUCTION. 3

that Space is boundless, but by no means that it is infinite,
For all we know there may be just so many cubic feet of
Space ; it may be just so many times as large as the sun,
neither more nor less. This distinction between unbounded
and infinite, first clearly drawn by Riemann, is fandamental.

D. Space is continuous. There are no gaps mor holes in
it, where it would be impossible for a body to be. A body
may move about in Space anywhere and everywhere, ever
so much or ever so little. Space is itself simply where a
body may be, and a body may be anywhere.

E. Space is triply extended, or has three dimensions.
This important fact needs careful explication.

In telling the size of a box or a beam we find it necessary
and sufficient to tell three things about it: its length, its
breadth, and its thickness. These are called its dimensions ;
knowing them, we know the size completely. But to tell the
size of a ball it is enough to tell one thing about it, namely,
its diameter; while to tell the size of a chair we should
have to tell many things about it, and we should be puzzled
to say what was its length, or breadth, or thickness. Never-
theless, it remains true that Space and all bodies in Space
have just three dimensions, but in the sense now to be made
clear. '

We learn in Geography that, in order to tell accurately
where a place is on the outside of the earth, which may
conveniently be thought as a level sheet of water, it is
necessary and sufficient to tell zwo things about it ; namely,
its latitude and its longitude. Many places have the same
latitude, and many the same longitude ; but no two have
the same latitude @nd the same longitude. It is not suffi-
cient, however, if we wish to tell exactly where a thing is in
Space, to tell two things about it. Thus, at this moment
the bright star Jupiter is shining exactly in the south; we
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also know its altitude, how high it is above the horizon (this
altitude is measured angw/arly —a term to be explained
hereafter, but with which we have no present concern). But
the knowledge of these two facts merely enables us to poins
towards Jupiter ; they do not fix his place definitely, they
do not say how far away he is: we should point towards
him the same way whether he were a mile or a million of
miles distant. Accordingly, a third thing must be known
about him, in order to know precisely where he is; namely,
his distance from us. But when this third thing is known,
no further knowledge about his place is either necessary or
possible. Once more, here is the point of a pin. Where
is it in this room? It is five feet above the floor. This is
not enough, however, for there are many places five feet
above the floor. It is also ten feet from the south wall, but
there are yet many positions five feet from the floor and ten
feet from the south wall, as we may see by slipping a cane
five feet long sharpened to a point, upright on the floor,
keeping the point always ten feet from the south wall. But
as it is thus slipped along, the point of the cane will come
to the point of the pin and then will be exactly twelve feet
from the west wall. If it now move ever so little either way
east or west, it will no longer be at the pin-point and no
longer twelve feet from the west wall. So there is one, and
only one, point that is five feet from the floor, ten feet from
the south wall, and twelve feet from the west wall. Hence
it is seen that these three facts fix the position of the pin-
point exactly. A fourth statement, as that the point is nine
from the ceiling, will either be superfluous, if the ceiling is
fourteen feet high, being implied in what is already said, or
else incorrect, if the ceiling is not fourteen feet high, contra-
dicting what is already said. In general, with respect to any
position in Space it is zecessary to know three independent
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facts (or data), and it is émpossible to know any more. All
other knowledge about the position is involved in this knowl-
edge, which is necessary and sufficient to enable us to an-
swer any rational question that can be put with respect to
the position. Accordingly, since any position in Space is
known completely when, and only when, #7¢¢ independent
data are known about it, we say that Space is #74ply or three-
Jold extended, or has three dimensions. 'The dimensions are
any three independent things that it is necessary and suffi-
cient to know about any position in Space, as of the pin-
point or of Jupiter, in order to know exactly where it is.

3- But with respect to the outside of the earth, viewed
as a level sheet of water, we have seen that only two data,
as of latitude and longitude, are necessary and sufficient
to fix any position on it; neither are more than two inde-
pendent data possible ; all other knowledge about the posi-
tion is involved in the knowledge of these two data about
it. Accordingly we say of such outside of the earth that it
is doubly or two-fold extended, is bi-dimensional, or has two
dimensions ; and we name every such outside, every such
bi-dimensional region, a surface. Such is the top of the
table : to know where a spot is on it we need know two, and
only two, independent facts about it, as how far it is from
the one edge and how far from the other. (Which other?
and why?)

We see at once that a surface is no part of Space, but is
only a border (doubly extended) between two parts of Space.
Thus, the whole earth-surface is no part either of the earth-
space or of the air-space around the earth, but is the boun-
dary between them. A soap-bubble floating in the air is
not a surface ; though exceedingly thin, it has some thick-
ness and occupies a part of space ; the outside of the film
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is a surface, and so is the inside, and these are kept apart
by the film itself. If the film had no thickness, the outside
and the inside would fall together, and the film would be a
surface ; namely, the outside of the Space within and the
inside of the Space without.

4. Consider now once more this earth-surface, still viewed
as a smooth level sheet of water. From Geography we
learn that there are two extreme positions on this surface
that are called poles and that do not move at all as the
earth spins round on her axis. We also learn that there is
a certain region of positions just midway between these
poles and called the Equator. This Equator is no part of
the surface; it is only a border or boundary between two
parts of the globe-surface, which are called kemispheres.
To know where any position is on this border, it is neces-
sary and sufficient to know oze thing about it, namely, its
longitude ; neither is any other independent knowledge
about the position possible ; all other knowledge is involved
in this one knowledge. Accordingly we say of this border,
the Equator, that it is simply extended, or has one dimension
only. Every such one-dimensional border is called a line,
and its one dimension is named /ngth. A line, then, has
length, but neither breadth nor thickness.

5. Lastly, consider a part of a line, as of the Equator,
say between longitudes 40° and 50°. The ends of this part
bound it off from the rest of the equator, but they them-
selves form no part of the Equator. They are called points ;
they have position merely, but no extent of any kind, neither
length nor breadth nor thickness, — they are wholly 7on-
dimensional.
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*6. It is noteworthy that extents, or regions, are bounded
by extents of fewer dimensions, and themselves bound
extents ‘of more dimensions. Thus, lines are bounded by
points, and themselves bound surfaces ; surfaces are bounded
by lines, and themselves bound spaces ; spaces are bounded
by surfaces, and themselves bound — what? If anything
at all, it must be some extent of still higher order, of four
dimensions. But here it is that our intuition fails us; our
vision of the world knows nothing of any fourth dimension,
but is confined to three dimensions. If there be any such
fourth dimension, we can know nothing of it by intuition ;
we cannot imagine it. In music, however, we do recognize
four dimensions: in order to know a note completely, to
distinguish it from every other note, we must know four
things about it : its pitch, its intensity, its length, its timbre,
—how high it is, how loud it is, how long it is, how rich
it is. While, then, extents of higher dimensions may be
unimaginable, they are not at all unreasonable.

This doctrine of dimensions is of prime importance, but
rather subtile ; let not the student be disheartened, if at first
he fail to master it.

6. We may see and handle bodies, which occupy portions
of Space; but not so surfaces, lines, points, which occupy
no Space, but are merely regions in Space. Here we must
invoke the help of the logical process called abstraction,
i.e. withdrawing attention from certain matters, disregard-
ing them, while regarding others. A sheet of paper is not
a surface, but a body occupying Space. However thin, it
yet has some thickness. But in thinking about it we may
leave its thickness out of our thoughts, disregard its thick-
ness altogether ; so it becomes for our thought, though not
for our senses or imagination, a suzface. The like may be
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said of the film of the soap-bubble. Again, consider the
pointer. It is a body or solid, not only long, but wide and
thick ; it occupies Space. It is neither line nor surface.
But we may, and do often, disregard wholly two of its
dimensions, and attend solely to the fact that it is Jong.
Thus it becomes for our thought a Zne, though not for our
senses or imagination. So the mark made with chalk or
ink or pencil is a body, triply extended ; but we disregard
all but its length, and it becomes for our reason a /Jze.
Lastly, we make a dot with pen or chalk or pencil; itis a
body, tri-dimensional, occupying Space. But we may dis-
regard all its dimensions, and attend solely to the fact that
it has position, that it is here, and not there. So it becomes
in our thought a poinz. By such abstraction the earth, the
sun, the stars, the planets, may all be treated as points.

A B

Flé. I.

7. Inasmuch as Space is continuous, there may also be
continuous surfaces and lines; and the only surfaces and
lines treated in this book are continuous, without holes, gaps,
rents, breaks, or interruptions of any kind in their extent.

It is important to note that in passing from any position 4
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to another B on a continuous line, a moving point 2 must
pass through a complete series of intermediate positions ;
i.e. there is no position on the line between 4 and B that
the point 2 would not assume in going from 4 to B.

(Fig. 1.)

*8. Starting from the notion of Space, we have attained
the notions of surface, line, and point, in two ways : by treat-
ing them as borders, and by the process of abstraction. But
we may reverse this order and attain the notions of line,
surface, and solid or space from the notion of point, with
the help of the notion of motion, thus: Let a point be
defined as having position without parts or magnitude of any
kind. Let it move continuously through Space from the
position A to the position B. To know where it is at any
stage of its motion along any definite path, it is necessary

FIG. 2.

and sufficient to know one thing; namely, how far it is
from 4. Hence its path is a one-dimensional extent, or
what we call a J7e.
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Now let a line move in'any definite way from any position
@ to any other position £. To know the position of any
point of its path, it is necessary and sufficient to know two
things ; namely, the position of the point on the moving line
and the position of the moving line itself: hence the path
of the line is a #wo-dimensional extent, which we have
already named a surface. (Fig. 2.)

Now let a surface move in any definite way from any
position U to any other position . To know the position
of any point on its path it is necessary and sufficient to
know three things about it; namely, its position on the
moving surface (which, we know, counts as two things) and
the position of the moving surface itself. Hence the path
of the surface is a #iree-dimensional extent, which we have
already named a so/id or a part of space.

Now, if we let a solid move, what will its path be?
Naturally we should expect it to be a four-dimensional
extent, but no such extent is yielded in our experience by
any motion of a solid — the path of a solid is nothing but
a solid. The explanation of the apparent inconsistency is
very simple, to-wit: A piece of a line traces out a surface
only when it moves out from the line itself, — if one part
were to slip round on another part of the same line, it would
trace out no surface at all as its path; likewise, a piece of
a surface traces out a solid as its path only by moving out
from the surface itself, — if one part were to slip round on
another part of the surface, it would trace out no solid at
all as its path. So, if a piece of our space could move out
from space itself, it would trace out a four-fold extent as its
path ; in fact, however, no part of space can move out from
space ; on the contrary, it can only slip along i» space, from
one part of space to another, and hence does not trace out
any four-fold extended path.
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9. Space, we have seen, is homeeoidal, everywhere alike.
We naturally inquire : Is there any homceeoidal surface? In
general, surfaces are certainly #0# homeeoidal. Consider an
egg-shell, and by abstraction treat it as a surface. It is not
alike throughout; the ends are not like each other, and
‘neither is like the middle region. Suppose a piece cut out
anywhere ; if slipped about over the rest of the shell, this
piece will no# fit.  But now consider a smooth round ball
covered with a thin rigid film, and treat this film as a sur-
face, by disregarding its thickness. Suppose a piece of the
film cut out and slipped round over the rest of the film : the
piece will fit everywhere perfectly, the surface is homceoidal ;
it is called a sphere-surface.

N.B. The precise definition of this surface is that aZ
its points are equidistant from a point within, called the
centre. Suppose a rigid bar of any shape, pointed at both
ends, and movable about one end fixed at a point; then
the other end will move always on a sphere-surface, which
is the whole region where the moving end may be. Since
Space is homceoidal around the fixed point, the surface
everywhere equidistant from the point is also homceoidal.

Now turn over the piece cut out of this spherical film
and slip it about the film : it no longer fits anywhere at all
— the surface is h.omaaoidal, but not reversible.

10. But now consider a fine mirror covered with a deli-
cate film, which by abstraction we treat as a surface. Sup-
pose a piece cut out of the film and slipped about over it:
the piece fits everywhere ; turn it over, re-apply it, and slip
it about : it still fits everywhere — the surface is both Aome-
oidal and reversible ; it is called a plane-surface.

* N.B. A precise definition of this surface is the following :
Take two points 4 and B and suppose two equal spherical
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bubbles formed about 4 and B as centres. Let them ex-
pand, always equal to each other, until they meet, and still
. . keep on expanding. The line where
A B the equal (Fig. 3) spherical bubbles,

FiG. 3. regarded as surfaces, meet, has all
its points just as far from 4 as from B. As the bubbles
still expand, this line, with all its points equidistant from 4
and B, itself expands and traces out a plane as its path
through Space.

Hence we may define the plane as the region (or surface)
where a point may be that is' equidistant from two fixed
points. Instead of region it is common to say locus, 7.e.
place. Briefly, then, a plane is the locus of a point equidis-
tant from two fixed points. It is evident that the plane, as
thus defined, is reversible ; for since the bubbles about 4
and B are all the time precisely equal, to exchange 4 and
B, or to exchange the sides of the plane, will make no dif-
ference whatever. Thus the plane cuts the Space evenly
half in two ; and since Space itself is homceoidal, so also is
this section or surface that halves it exactly. The superiority
of this definition consists in its not only telling what surface
the plane is, but also making clear that there actually /s such
a surface.

11. The mirror is the nearest approach that we can make
to a perfect plane surface ; the blackboard is not plane, it
is rough and warped ; but we shall disregard all its uneven-
ness and treat it as a plane extended through Space without
end. Any surface may be dealt with as a plane by abstrac-
tion, being thought as komaoidal and reversible.

12. On this board, regarded as a plane, we draw a chalk-
mark, abstract from all its dimensions but its length, and
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treat it as a line. This line is plainly not alike throughout ;
a piece cut out and slipped along it will not fit (Fig. 4).

FIG. 4.

But here is a line homceoidal, alike in all its parts; it is
drawn with a pair of compasses and is called a circle
(Fig. 5). One point of the compasses is held fast at the
centre O, while the other traces out the circle as its path in

8

At

(1'%
FIG. s. FIG. 6.

the plane. The circle is #he locus of a point in the plane
equidistan? from a fixed point. Since the plane is homee-
oidal, so too is this circle (see Art. 10) ; a piece, called an
arc, cut out and slipped round will everywhere fit on the
circle. But turn it over and slip it round, — it fits nowhere ;
the circle is #o# reversible. It divides the plane into two
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parts, not halves, that are not alike along the dividing line.
But now suppose a perfectly flexible string fastened at.S and
stretched by a weight I#. Its length only being regarded,
it is a line homceoidal, alike throughout, and also reversible ;
any part 48 will not only fit perfectly anywhere on it, but
will also fit when reversed, turned end for end. Such a
line is called 77ghkt, or straight, or direct, or aray. Extended
indefinitely, it cuts the whole plane into two halves pre-
cisely alike along the ray itself.

*N.B. The common line where the two spherical bub-
bles of Art. 10 meet is a circle, for it is plainly precisely
alike all around ; it is homeeoidal, being the intersection of
two homceoidal surfaces, namely, the two equal sphere-
surfaces ; it is also in a plane, and in fact traces out the
plane by its expansion as the bubbles expand.

To get accurately the notion of the ray or straight line,
we need another point C, and a third expanding bubble
always equal to those about 4 and B. The circular inter-
section of the bubbles about 4 and B will trace out one
plane ; of those about B and C will trace out another plane ;
of those about C and 4 will trace a third plane. All the
points where the first two planes intersect will be equidistant
from 4 and B and C, and no other points will be; the
same may be said of all points where the second and third
planes meet, and of all points where the third and first meet ;
hence all three of the planes meet together, and they meet
only together. Also, the line where they meet has every
one of its points equidistant from all the three points, 4, B,
C; hence it is the locus of a point equidistant from three
JSixed points. Moreover, it is Aomaoidal and reversible,
since it is the intersection of two planes, which are homce-
oidal and reversible; hence it is what we call a straight
line, or right line, or ray.
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13. We may now define :

A sphere-surface is the locus of a point at a fixed
distance from a fixed point. It is homceoidal, but not
reversible.

A plane is the locus of a point equidistant from two fixed
points. It is both homceoidal and reversible.

A ray is the locus of a point equidistant from three fixed
points. It is both homceoidal and reversible ; it is also the
intersection of two planes.

A circle is the locus (or path) of a point in a plane at a
fixed distance from a fixed point. It is homceoidal, but not
reversible. It is also the locus (or path) of a point in space
at a fixed distance from two points ; it is also the intersec-
tion of two equal sphere-surfaces.*

14. It is only with the foregoing figures and combinations
of them that we have to deal in this book. Circles and rays
may be drawn with exceeding accuracy, but any lines, how-
ever roughly drawn, may answer our logical purposes as
well as the most accurately drawn; we have only, by
abstraction, to treat them as having the character of the
lines in question.

Circles and sphere-surfaces are unbounded, without be-
ginning or end, but both are finite : we shall learn how to
measure them.

* In the foregoing free use has been made of the notion of eguidistance without
formal definition, because of its familiarity. We may, however, say precisely: If 4
and B be two points, the ends of a rigid bar of any shape, and if 4 be held fast, then
all the points on which B can fall are equidistant from 4, and no other points are
equidistant with them. They all lic cn a closed surface, called a sphere-surface.
All points within this surface are said to be /Jess distant, and all points without are
said to be smore distant, from 4 than Bis. Herewith, then, we tell exactly what
we mean by equidi: , less di: , and more di: but we make no attempt to
define distance in general, which is difficult and unnecessary to our purpose.
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15. Any geometric element or combination of geometric
elements, as points, lines, surfaces, is called a geometric
figure. Itis a fundamental assumption, justified by experi-
ence, that space is homceoidal, that figures or bodies are not
affected in size or shape by change of place. Two figures
that may be fitted exactly on each other, or may be thought
so fitted, are called congruent. Any two points, lines, or
parts of the two figures, that fall upon each other in this
superposition are said to correspond. It is manifest that all
planes are congruent and all rays are congruent. Rays and
planes are unbounded, but whether or not they are finite is
a question that we are unable to answer.

16. Any part of a circle or ray, as 45, is bounded by
two end-points, 4 and B, and is finite ; the one is named
an arc (Fig. 5), the other a tract, sect, or line-segment.
Each is denoted by the two letters denoting the ends, as
the tract 4B, the arc 4B. Sometimes it is important to
distinguish these end-points as beginning and end proper ;
we do this by writing the letter at the beginning first.

A B
Y B’
A B C D E F
7 c' ‘D !
A B E 4 F/
FiG. 7.

17. Two tracts, 4B and A'B', are called equal when the
end-points of the one may be (Fig. 7) simultaneously fitted
on the end-points of the other.

If we have a number of tracts, 48, CD, EF, etc., and
we lay off successively on a ray tracts 4'B', C'D', E'F, etc,,
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respectively equal to 4B, CD, EF, etc., the end of the first
being the beginning of the second, and so on, while no part
of one falls on any part of another, we are said to add or
sum the tracts 4B, etc. Each is called an addend or sum-
mand, and the whole tract from first beginning to last end
is called the sum.

Equality is denoted by the bars (=) between the equals,
as AB= CD.

18. If, when the beginning A is placed on the beginning
C, the end B does not fall on the end D, the tracts are
unequal, and we write 4B+ CD. If B falls between C
and D, then 4B is called less than CD, AB < CD; butif
D falls between 4 and B, then 4B is called greater than
CD, AB> CD. In either case, the tract BD or DB,
between the two ends of the tracts, whose beginnings coin-
cide, is called the difference of the two tracts, and we are
said to subtract the one from the other. Ordinarily we
mention the greater tract first in speaking of difference.

“19. The symbols of addition and subtraction are 4 and
— (plus and minus), thus:

AB+ CD=AD and 4B — CD = BD.

It is important to note here the order of the letters. In
summing a number of tracts, as AB, CD, EF, etc., to KL,

B ¢ ) K
FIG. 8.

we have AB+ CD+- EF-.-+ KL= AL (Fig. 8). The
order of the summands is zdifferent, and this important
fact is called the Commutative Law of Addition. Thus

AB+ CD+EF=AB+ EF+ CD=FEF+AB-+ CD, etc.
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20. When beginning and end of a tract or of any mag-
nitude are exchanged, the tract or magnitude is said to be
reversed, and the reverse is denoted by the sign —. Thus
the reverse of AB is BA, or AB=—BA. If we add a
magnitude and its reverse, the sum is o, or

AB 4 (— AB)=AB+BA=o. -

The same result o is obtained by subtracting, from a magni-
tude, itself or an equal magnitude; and, in general, it is
plain that to subtract CD yields the same result as to add
(Fig. 9) the reverse DC. The reverse of a magnitude is

B C D
(9]
B

FIG. 9.

»>{0 >
O

often called its mega#ive, the magnitude itself being called
its positive.

Similar rules hold for adding and subtracting arcs of a
circle or of equal circles.

ANGLES.

21. The indefinite extent of a ray on one side of a point
0, as OA, is called a half-ray : it has a beginning O, but no
end. Two half-rays, O4 and OA4', which together make up
a whole ray, are called ogpposite or counter (Fig. 10).

Now let two half-rays, O4 and OB, have the same be-
ginning O ; the opening or spread between them is a mag-
nitude : it may be greater or less. Suppose O4 and OB to
be two very fine needles pivoted at O; then OB may fall
exactly on O4, or it may be turned round from O4; and
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the amount of turning from OA to OB, or the spread
between the half-rays, is called the angle between them.
We may denote it by a Greek letter, as «, written in it; or
by a large Roman letter, as O, at its vertex (where the half-
rays meet) ; or by three such letters, as 4 OB, the middle

(o)

A
o]
A ¥ A
B
o <
A
FIG. 10.

one being at the vertex, the other two anywhere on the half-
rays. The symbol for angle is X.

22. The angle is perfectly definite in size, it has two
ends or boundaries ; namely, the two half-rays, sometimes
called arms. When we would distinguish these arms as
beginning and end, we mention the letter on the beginning-
arm first, and the letter on the end-arm last; thus, 40B;
here OA is the beginning and OB the end of the angle.

Exchanging beginning and end reverses the angle ; thus,
BOA=— A40B.

23. Two angles whose ends or arms may be made to fit
on each other simultaneously are named equal ; they are also
congruent. 'Two angles whose arms will not fit on each other
simultaneously are #zequal,; and that is the less angle whose
end-arm falls w:zhin the other angle when their beginnings

'
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coincide ; the other is the greater; thus, 408> A40C
(Fig. 11).
24. We sum angles precisely as we sum tracts; we lay

off &, B, etc., around O, making the end of each the begin-
ning of the next: the angle from first beginning to last end

(o]
(o)

FIG. 11,

is the sum. So, too, in order to subtract 8 from «, lay off
B from the beginning towards the end of « ; the angle from
the end of B to the end of @ is the difference, « — 8. Or
we may add to « the reverse (or negative) of B: the sum
will be « 4+ (— B) or « — B (Fig. 12).

1 It is important to note the close correspondence of tract and angle: the former is
related to points as the latter is to rays (or half-rays). The tract is the simplest
magnitude that lies between points, that distinguishes them and keeps them apart;
likewise the angle is the simpl itude that lies b rays (in a plane), that
distinguishes them and keeps them apart. So, too, we define equality and inequality
among tracts and among angles, quite similarly, and without being compelled before-
hand to form the notion of the size cither of a tract or of an angle. We may now
define the drstance between two points to be the #ract between them, and the d’ss-
tance between two (half-)rays to be the angle between them, leaving for future
decision which tract and which angle if there should prove to be several.
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A
FIG. 12,

AXIOMS.

25. At this stage we must recognize and use certain dic-
tates or irresoluble facts of experience, called axioms.
(CAéiopa means something worthy, like the Latin dignitas; in

21

fact, older writers use Jignity in the sense of axiom. But

Euclid’s phrase is xowat évvowar = common notions.) Some

have no special reference to Geometry, but pervade all of

our thinking about magnitudes ; such are

(1) Things equal to the same thing are equal to each

other.

(2) If equals be added to, subtracted from, multiplied by,

or divided by, equals, the results will be equal.
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(3) If equals be added to or subtracted from unequals,
the latter will remain unequal as before.

(4) The whole equals, or is the sum of, all its distinct
parts, and is greater than any of its parts.

(5) If a necessary consequence of any supposition is
false, the supposition itself is false.

Others concern Geometry especially, as :

(6) All planes are congruent.
(7) Two rays can meet in only one point.

The extremely important axiom (7) may be stated in
other equivalent ways, thus: Two rays cannot meet in two
or more points; or, Two rays cannot have two or more
points in common ; or, Only one ray can go through two
fixed points; or, A ray is fixed by two points.

26. A statement or declaration in words is called a prop-
osition. 'The propositions with which we have to deal state
geometric facts and are also called Theorems (fewpnyua, from
Oewpew, 2o look at, means the product of mental contempla-
fion). Propositions are often incorrect ; theorems, never.
Subordinate facts, special cases of general facts, and facts
immediately evidenced from some preceding facts, are
called Corollaries or Porisms (wopiopa = deduction).

We may now proceed to investigate lines and angles, and
find out what we can about them. The first and simplest
things we can learn concern
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CONGRUENCE.

27. Theorem I.— A/ rays are congruent.

Proof. Let Z and L' be any two rays (Fig. 13). On
L take any two points, 4 and B; on L' take any two
~ points, 4' and B', so that the tract 4B shall equal the

tract A'B'. Think of L and L' as extremely fine rigid
spider-threads, and in thought place the ends of the tract
AB on the ends of the tract 4'B', A on A', and B on B'.

A B

r

K B
FIG. 13.

Then A4 and A4' become one and the same point, and B and
B' become one and the same point; through these two
points only one ray can pass (by Axiom 7) : hence Z and
L', which go through these two points, now become one
and the same ray; that is, they fit precisely, they are con-
gruent. Quod eral demonstrandum = which was to be
proved = éwep e defar, — the solemn Greek formula;
whereas the Hindu, appealing directly to intuition, merely
said Pagya — Behold !

28. In the foregoing proof we assumed that on any ray
we could lay off a tract equal to a given tract, or that on
any ray we could find two points, 4 and B, as far apart as
two other points, 4' and B'. This assumption that something
can be done, is called a Postulate (airypa), 7.c. a demand,
which must be granted before we can proceed further.
Actually to carry out the construction, we need a pair of
compasses.
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29. Theorem II. — Jf fwo points of a ray lie in a certain
plane, all points of the ray lie in that plane.

Proof. Regard the surface 'of paper or of the blackboard
as a plane, and suppose it covered with a fine rigid film,
itself a plane. Let Z be any ray having two points, 4 and
B, in this plane. Through these two points suppose a
second plane drawn or passed; by definition (Art. 13) it
will intersect our first plane, or film, along a ray /; this ray
I goes through the two points, 4 and B, and lies wholly
(with all its points) in the first plane ; also the ray Z goes
through 4 and B, and only one ray can go through the same
two points, 4 and B, by Axiom 7; hence L and [ are
the same ray; but 7 has all its points in the first plane;
hence Z has all its points in the first plane. Q.E.D.

Query: What postulate is assumed in this proof ?

Corollary. If a ray turn about a fixed point 7, and glide
along a fixed ray Z, it will trace out a plane (Fig. 14).

A / B/ L/

[

FIG. 14.

For it will always have two points — namely, the fixed
point and a point on the fixed ray —in the plane drawn
through the fixed point and the fixed ray.
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Query: What postulate is here implied ?— Henceforth it
is understood that all our points, lines, etc., are complanar,
i.e. lie in one and the same plane.

30. In the foregoing Theorem and Corollary we observe
clauses introduced by the word if. Such a clause is called
an Hypothesis, 7.c. a supposition. The result reached by
reasoning from the hypothesis and stated immediately after
the hypothesis, is called the Conclusion.

31. All logical processes consist in one or both of two
things: the formation of concepts, as of lines, surfaces,
angles, etc., and the combination of these concepts into
propositions. Geometric concepts are remarkable for their
perfect clearness and precision — we know exactly what we
mean by them ; this cannot be said of many other concepts,
about which diverse opinions prevail, as in Political Economy.
Hence it is that Geometry offers an unequalled gymnasium
for the reason or logical faculty. We shall now generate
some new concepts. Let the student note their definiteness
as well as the mode of their formation.

32. Let O4 and OB be any two co-initial half-rays,
forming the angle 4OB. Think of OA as held fast and of
OB as turning about the pivot O, starting from the position
OA. As it turns (counter-clockwise), the (Fig. 15) angle

A
A (o] Iy

FIG. 15.

o

AOB increases. Finally, let it return to its original posi-
tion, O4 ; then the whole amount of turning from the upper
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side of OA back to the under side of 04, or the full spread
around the point O, is called a f«// angle (or round angle,
or ctrcum-angle, or perigon). Think of a fan opened until
the first rib falls on the last. — Note that the upper and
under sides of OA4 are exactly the same in position, and are
distinguished only in thought. (Think of a circular piece
of paper slit straight through from the edge to the centre.)
The like may be said of the two sides of any line or surface.
We can now prove

33. Theorem III. — AN round angles are congruent.

Proof. Let 4OB and A'O'B' (Fig. 16) be any two
round angles. Slip the half-ray O4 down, and turn it till
OA falls on O'4'; they will fit perfectly (why?); the

FIG. 16.

whole round angle about O will fit perfectly on the whole
round angle about O' (why?); hence the two full angles
are congruent. Q. E.D. :

N.B. In this slipping of figures about in the plane, it is
well to imagine the plane to consist of two very thin, per-
fectly rigid, smooth and transparent films ; also, to imagine
one figure drawn in the lower film and one in the upper;
and to imagine the upper slipped about at will over the lower.

Query: On what cardinal property of -the plane do these
considerations hinge ?
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34. From O draw any half-ray O4; then any second
half-ray from O, as OB, will (Fig. 17) cut the round angle
AOA into two angles, AOB and BOA. The end OB of
the first falls on the beginning, OB, of the second; while
A

B (o} B

>i>

o E
FIG. 17.

the end, 04, of the second falls on the beginning, O4, of
the first. Hence the round angle 404 is their sum, by
Art. 24.

If we draw any number of half-rays, OB, OC, etc.,---OL,
the round angle will still be the sum of the consecutive
angles 40B, BOC, etc.,--- LOA ; hence we discover and
enounce this

Theorem IV, — 7he sum of the consecutive angles about a
point in a plane is a round angle.

N.B. We cannot apply Axiom 1 immediately, because
we do not know, except by Art. 24, what is meant by a sum
of angles.

35. In the foregoing article we have exemplified the
erotetic, Questioning, investigative method, in which the result
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is not announced until it is actually discovered and estab-
lished. In Theorems I., II., III., on the other hand, the
dogmatic procedure was illustrated, the fact or proposition
being announced beforehand, while the demonstration fol-
lowed after. Each method has its merits, and we shall
employ both.

36. As OB turns round from the upper to the under
side of 04, the angle 4 OB begins by being less than BO4
and ends by (Fig. 19) being greater than 504. The plane

Fi1G. 19.

is continuous, the turning is continuous, the change in size
is continuous; hence, in passing from the stage of being
less to the stage of being greafer, the angle has passed
through the intermediate stage of being egual/; let OA' be
the position of the rotating half-ray at this stage of equality,
then 40A4' = A'OA. Two equal parts making up a whole
are called halves; hence 40A4' and A4'OA are halves of
the full angle 404 ; they are named straight (or flat)
angles.

37. Now, — Halves of equals are equal ;
All straight angles are halves of equals
(namely, equal round angles) ; '
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Hence
Theorem V.— A/ straight angles are equal.

This argument here given ¢z extenso is a specimen of a
syllogism (ovAAoywopos = computation = thinking together).
The first two propositions are called premisses, the third
and last, in which the other two are thought together, is
called conclusion. All reasoning may be syllogized, but
this is rarely done, as being too formal and tedious.

38. Theorem VI.— Two counter half-rays bound a
straight angle.

A/
La)

>

(o]
FIG, 20.

For, let O4 and OA' be two such counter half-rays (Fig.
20) forming the whole ray 44'. Turn the upper half of
the plane film round O as pivot until the upper OA4' falls on
the lower OA; then, since the ray is reversible, the ray
AA" will fit exactly on the ray A'4; ie. the two angles
AOA' and A'0OA are congruent and equal; and the two
compose the round angle 404 ; hence each is half of
AOA; ie. each is a straight angle. Q.E.D.

39. Theorem VII.—Conversely, Tke half-rays bounding
a straight angle are counter.

Iy ° A
B’ P B
FiG, 21.

Let OA and OA' bound a straight angle (Fig. 21) 404';
also let PB and PB' be two counter halfrays; then they
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bound a straight angle BPA', by Theorem VI. Since all
straight angles are congruent, we may fit these two on each
other ; 7.e. we may fit O4 and O4' on PB and PB'; but
BB' is a ray; so then is 44'; ie. O4 and OA' are
counter. Q.E.D.

40. We may define a straight angle as an angle bounded by
counter half-rays. Then we may prove Theorem V. thus:

The ends of all straight angles are pairs of counter half-
rays (or form whole rays) ;

But all such pairs (or whole rays) are congruent (by
Theorem 1.) ;

Therefore, all ends of straight angles are simultaneously
congruent.

But when the ends of angles are (simultaneously) congru-
ent, so are the angles themselves. .

Hence all straight angles are congruent. Q.E.D.

Here the first conclusion, introduced by ¢ therefore,” is
deduced from two premisses ; but the second, introduced by
‘“hence,” is apparently deduced from only one. Only
apparently, however; for one premiss was understood but
not expressed ; namely, aZl straight angles are angles whose
ends are congruent. Without some such implied additional
premiss, it would be impossible to draw the conclusion.
Such a maimed syllogism, with only one expressed premiss,
is called an enthymeme. The great body of our reasoning
is enthymematic. We shall frequently call for the suppressed
premiss or reason by a parenthetic question (Why?).

41. Now draw two rays, ZZ' and MM', meeting at O.
Each divides the round angle about O into two equal
stralght angles, and together they (Fig. 22) form four angles
o, B, ', B'. Two angles, as @ and S, that have a common
arm, are called adjacent. Accordingly we see at once : )
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Theorem VIII.— Where two rays inlersect, the sum of two
adjacent angles is a straight angle.

FiG. 22,

Two angles whose sum is a straight angle are called
supplemental ; two angles whose sum is a round angle we
may call explemental. Two angles as « and «', the arms of
the one being counter to the arms of the other, are called
opposite, or vertical, or counter.

Theorem IX.—When two rays meel, the opposite angles
Jormed are equal. '

For ¢ + B =S (a straight angle) (why?); and «'+8=S
(why?).

Hence ¢+ B=«'+ B (why?); therefore @ =«'. Simi-
larly let the student show that 3 =pf'. Q.E.D.

An important special case is when the adjacents, ¢ and B,
are equal. Each then is 4a/f of a straight angle, and there-
fore one fourth of a round angle ; and each is called a right
angle. Now let the student show that if « = B, then ¢' =
and a = f', or

Corollary. When two intersecting rays make two equal
adjacent angles, they make all four of the angles equal (Fig.
23). _

Def. Rays that make right angles with one another are
called normal (or perpendicular) to each other. N.B.
The normal relation is mufual. How?
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32 GEOMETRY.
Def. Two angles whose sum is a right angle are called
complemental,
Bla
eIy
FIG. 23.

42. Are we sure that through any point on a ray we can
draw a normal to the ray? Let O be any point on the
ray LL' (Fig 24). Let any half-ray, pivoted at O, start
R| /8 ‘

]
[
]
'
]
[
[
]
'
[
'
0

-

0~

FIG. 24.

from the position OZ and turn counter-clockwise into the

position OZ'. At first the angle on the right is Zess than the

angle on the left, at last it is greaZer; the plane, the turning,
and the angle are all continuous ; hence in passing from the

stage of being less to the stage of being greater, it passes
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through the stage of equality. Let OR be its position in
this stage; thenX LOR= X ROL'; i.. OR is normal to
LL'. Moreover, in no other position, as OS, is the ray
normal to LZ'; for LOS is not = LOR unless OS falls on
OR, but is less than ZOR when OS falls within the angle
LOR, while SOL' is greater than LOR; hence LOS and
SOL' are not equal ; f.e. OS is not normal to ZZ' when OS
falls not on OR. Similarly, when ZOS is greater than LOR.
Hence

Theorem X.—7%rough a point on a ray one, and only one,
ray can be drawn normal to the ray.

43. De¢f. A ray through the vertex of an angle, and
forming equal angles with the arms of the angle, is called
the 7nner Bisector or mid-ray of the angle. The inner
bisector of an adjacent supplemental angle is called the owzer
bisector of the angle itself. Thus O7 bisects innerdy and
OE bisects outerly the angle 4OB (Fig. 25).

Exercise. Prove that there is one and only one such inner
mid-ray.
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44. Theorem XI. — The inner Bisector of an angle
bisects also its explement innerly.

Proof. Let O/ bisect X AO0B innerly; then X A0/=
X IOB; call each «; then e+B0/'=a+A40I' (why?) ;
take away a; then BO/'=AO0I" (why?); i.e.the ray /7'
bisects innerly the angle BOA, the explement of 405.
Show that the angles marked «' are equal.

45. Theorem XII. — 7%e inner and outer Bisectors of
an angle are normal to each other.

Proof. Let O/ and OF bisect (Fig. 25) innerly and
outerly the angle 4OB. Then, by definition, the angles
marked « are equal, and the angles marked B are equal;
alsothesumof + ¢+ a+ B8+ B=.S; hencea+ B=14S;
or, /OE = a right angle. Q.E.D.

TRIANGLES.

46. Thus far we have treated only of rays intersecting in
a single point. But, in general, three rays Z, M, NV (Fig.

FIG. 26.

26) will meet in three points, since each pair will meet in
one point, and there are three pairs: (MN), (NL), (LM).
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Denote these points by 4, B, C. Then the figure formed
by these three rays is called a triangle, trigon, or three-side.
A, B, C are its vertices; «, B, v its inner angles; BC, CA,
AB, its inner sides, or simply its sides. Its angles and sides
are called its parss. It is the simplest closed rectilinear
figure, and most important. If instead of taking three
rays we take three points 4, B, C, then we may join them
in pairs by rays ; and since there are three pairs, BC, C4,
AB, then there are three rays, which we may name Z, M, V.
Thus we see that three points determine three rays, just as
three rays determine three points. This equivalent deter-
mination of the figure by the same number of points as of
rays makes the figure unique and especially important. We
denote it by the symbol A. We now ask, When are two
triangles congruent?

47. Theorem XIII. — Zwo A having two sides and the
included angle of the one equal respectively to two sides and
the included angle of the other are congruent.

The data are: Two A, ABC and A'B'C, haviné the
three equalities, 4B =A'B', AC=A'C', « = &' (Fig. 27).

FIG. 27.

Proof. Fit the angle @ on the angle a'; this is possible,
because the angles are equal and congruent. Then 4 falls
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on A'; also the point B falls on B' (why? Because 4B
= A'B'"), and C falls on C' (why?). Hence the three ver-
tices of the two A coincide in pairs; therefore the three
sides of the two A coincide in pairs (why? Because through
two points, as 4 (4') and B (B'), only one ray can pass).
Q.E.D.

Corollary 1. The other parts of the two A are equal
or congruent in pairs of correspondents: B8=pg', y=4v,
BC=B'C'

Corollary 2. Pairs of equal parts lie opposite to pairs of
equal parts.

48. Theorem XIV. — Zwo A having two angles and the
included side of the one equal respectively to two angles and
the included side of the other are congruent (Fig. 28).

/A B\ /K B’\

Data: Two A ABC, A'B'C', having e=d«!, B=f,
AB=A'B.

Proof. Fit 4B on A'B'; this is possible (why?). Then
e will fit on «' (why?), and B on B' (why?); i.e. the ray
AC will fit on 4'C', and the ray BC on B'C'. Then the
point C will fall on C' (why? Because two rays meet in only
one point) ; .. the two A fit exactly. Q.E.D.
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49. We may now use the conditions of congruence thus
far established to generate new notions that may be used in
establishing other Theorems.

Def. The ray normal to a tract at its mid-point is called
the mid-normal of the tract.

Theorem XV.— Any point on the mid-normal of a tract is
equidistant from its ends (Fig. 29).

P,C

L
FiG. 29.

Data: AB a tract, M its mid-point, Z the mid-normal,
P any point on it.

Proof. Compare the A APM and BPM. We have
AM = BM (why?). PM=PM, X AMP=X BMP
(why?); hence the A are congruent (why?); and P4 =
PB. Q.E.D.

Def. A A with two equal sides, like 428, is called
isosceles; the third side is called the dase, and its opposite
angle the ver#ical angle.

50. Theorem XVI.— Z%e angles at the base of an isosceles
A are equal; and conversely.
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Data: ABC an isosceles A, AB its base, AC and BC its
equal sides (Fig. 30).

FIG. 30.

Proof. Take up the A ABC, turn it over, and replace it
in the position BCA. Then the two A 4CB and BCA
have the equal vertical angles, C and C, also the side 4C =
BC (why?) and BC=AC (why?); hence they are con-
gruent (why?), and the X A =X B. Q.E.D.

Conversely, A A whose basal angles are equal is isosceles.
Let the student conduct a proof quite similar to the fore-
going.

Def. The ray through a vertex and the mid-point of the
opposite side is called the medial of that side.

Corollary 1. In an isosceles A the medial of the base is
normal to it, and is the mid-ray of the vertical angle.

Corollary 2. When the medial of a side of a A is normal
to the side, the A is isosceles. Prove it.

Corollary 3. When the medial of a side bisects the
opposite angle, the A is isosceles. Can you prove it ?




TH. XVL] LOGICAL DIGRESSION. 39

LOGICAL DIGRESSION.

51. When the subject and predicate of a proposition are
merely exchanged, the proposition is said to be converted,
and the new proposition is called the converse. Thus X is
Yy conversely, Vis X. In general, converses of true prop-
ositions are not true, but false. Thus, Zke horse is an
animal is always correct, but Zhe animal is a horse is
generally false. A proposition remains true after simple
conversion only when subject and predicate are properly
quantified, thus: AX horses are some animals ; conversely,
Some animals are all horses. Both propositions are correct
and mean the same thing. But they are awkward in ex-
pression, and such forms are rarely or never used. When
the quantifying word is @/ or its equivalent, the term is
said to be taken wniversally ; when it is some or its equiva-
lent, the term is said to be taken par#icularly. Thus in the
foregoing example horse is taken universally, but animal
particularly. The only useful conversions are of proposi-
tions in which bo#t subject and predicate are universal. In
the great body of propositions only the subject is quantified
universally, the quantifier is omitted from the predicate, but
a particular one is understood. To show that a universal
quantifier is admissible requires in general a distinct proof.

52. In order to convert an hypothetic proposition, we
exchange hypothesis and conclusion. Thus,if Xis ¥, Uis V;
" the converse is, if U is ¥, X is ¥. All such hypothetic
propositions may be stated categorically, thus : All cases of
X being Y are cases of U being V' ; conversely, All cases of
U being V are cases of X being ¥. This converse is plainly
false except when the quantifier ¢/ is admissible in the first
predicate,
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53. But while the converse of a true hypothetic propo-
sition is generally false, the contrapositive is always true.
This latter is formed by exckianging hypothesis and conclu-
sion and denying both. Thus: If X is ¥, then U is V;
contrapositive, If U is not V, then X is not ¥. Or, if a
point is on the mid-normal of a tract, then it is equidistant
from the ends of the tract; contrapositive, If a point is not
equidistant from the ends of a tract, then it is not on the
mid-normal of the tract.

54. Theorem XVII. — An outer angle of a A is greater
than either inner non-adjacent angle.

Data: Let 4BC be any A, o' an outer angle, 8 a non-
adjacent inner one (Fig. 371).

(4]

B/ M A

FIG. 31.

Proof. Draw the medial CM and lay off D= MC;
also draw 40D. Then in the A AMD and BMC we have
AM = BM (why?), MD= MC (why?), and X AMD =
X BMC (why?) ; hence the A are congruent (why?), and
X MBC =X MAD (why?). But X MAD is only part of
the X «' ; hence a'> X MAD (why?) ; ie. «'>B'. QE.D.

Similarly, prove that ' > y.
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55. Theorem XVIII. — If fwo sides of a A are unequal,
then the opposite angles are unequal in the same sense (i.e.
the greater angle opposite the greater side) (Fig. 32).

FIG. 32.

Data: ABC a A, AC > AB, AR the mid-ray of the
angle at 4, AB' laid off= 4B.

Proof. ABR and AB'R are congruent (why?); hence
X ABR=X AB'R (why?); but XAB'R>C (why?);
te. XABC>X ACB. Q.E.D.

Conversely, If two angles of a A are unequal, the opposite
sides are unequal in the same sense. ’

Proof. The opposite sides are not equal ; for when the
sides are equal, the opposite angles are equal (Theorem
XVL.), and contrapositively, when the angles are unequal,
the opposite sides are unequal. Then, by the preceding
Theorem, the greater angle lies opposite the greater side.

56. Join BB'; then AR is the mid-normal of BB' (why?),
and hence angle CBB'= angle BB'R (why?). Hence angle
BB'C> B'BC (why?); hence BC>B'C (why?). But
B'C=A4AC—AB; hence BC>AC— AB; i..
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Theorem XIX.— Any side of a A is greater than the
difference of the other two.

Add 4B to both sides of this inequality and there results
AB+ BC > AC; ie.

Theorem XX.— Any side of a A is less than the sum of
the other two.

This fundamental Theorem is here proved on the sup-
position that 4B < AC ; if AB were =AC or > AC, it would
need no formal proof.

57. Theorem XXI. — A point not on the mid-normal of
a tract is not equidistant from the ends of the tract.

Data: AB the tract, MV the mid-normal, Q any point
not on MW (Fig. 33).

d

A

FIG. 33.

Proof. Draw QA4 and QB; one of them, as QA4, must
cut MV at some point, as. Then QB< QP+ PB (why?),
and PB=PA (why?); hence QB< QP+ PA; i.e.
QB < QA. Q.E.D.

Of what Theorem is this the converse?

If now we seek for a point equidistant from 4 and B, we
can find it on the mid-normal of 48 and only there ; hence
the locus of a point equidistant from the ends of a tract is .
the mid-normal of the tract.
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58. Theorem XXII.— 7wo A with the three sides of the one
equal respectively to the three sides of the other are congruent.

Data: ABC and A'B'C' the two A, and 4B = A'B,
BC=RB'C'", CA= CA4' (Fig. 34).

/K B\

FIG. 34.

Proof. Turn the A A'B'C' over and fit 4'B' on AB so
that C' shall fall (say) at D. Draw CD. Then 4 and B
are on the mid-normal of CD (why?); hence the ray 458
is the mid-normal of CD (why?) ; hence the angle CAB =
angle DAB, and angle CBA = angle DBA (why?). Hence
the A are congruent (why?). Q.E.D.

N.B. As to when the A must be turned round and when
turned over, see Art. 94.

59. Theorem XXIII. —A. From any point outside of a
ray one normal may be drawn to the ray.

Data: P the point, LZ' the ray (Fig. 35).

Proof. From 2 draw a ray far to the left, as 24, making
the angle PAL > angle PAL'. Now let the ray turn about
P as a pivot into some position far to the right, making
angle PA'L < PA'L'. The plane, the angle, the motion, all
being continuous, in passing from the stage of being unequal
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in one sense to the stage of being unequal in the opposite
sense, the angles made by the moving ray with the fixed ray
must have passed through the stage of equality. Let 2V be

P

Vv
A 76 N AN O Ny
FI1G. 35.

the ray in this position so that angle PVZ= angle PNL';
then each is a right angle by Definition, and £/ is normal to
LL'. Q.E.D.

B. There is only one ray through a fixed point and normal
20 a fixed ray.

Proof. Any other ray than 2V, as PD, is not normal to
LL'; for the outer angle PDL is > the right angle PND
(why?). Q.E.D. ,

C. The normal tract PN is shorter than any other tract
Sfrom P to the ray LL'.

Proof. For the right angle at Vis > angle PD/N (why?) ;
hence PNV < PD (why?). Q.E.D. '

D, E. Equal tracts from point to ray meet the ray at
equal distances from the foot of the normal; and conversely.

Proof. For, if DPD' be isosceles, then the normal PV is
the medial of the base (why?).

F. Two, and only two, tracts of given length can be drawn
Jrom a point to a ray.
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Proof. For two, and only two, points are on the ray at a
given distance from the foot of the normal.

G. Of tracts drawn to points unequally distant from the
Joot of the normal, the one drawn to the remotest is the
longest.

Proof. In the A PDA, angle PDA > PAD (why?);
hence P4 > PD (why?). Q.E.D.

Similarly, P4' > PD.

H. Equal tracts from the point to the ray make equal
angles with the normal from the point to the ray and also
equal angles with the ray itself; and conversely.

L. Of unequal tracts from the point to the ray, the longest
makes the greatest angle with the normal and the least with
the ray.

Let the student conduct the proof of Z and /.

60. Theorem XXIV.— 7wo A having two angles and an
opposite side of one equal respectively to two angles and an
opposite side of the other are congruent.

Data: ABC and 4'B'C' two A having AB = A'B', angle
o = angle &', angle y = angle y' (Fig. 36).
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Proof. Fit ' on ¢; then B’ falls on B (why?),and 4'C
falls along 4C. Draw the normal BV. Then BC and BC'
make the same angle, y = v/, with the ray 4V ; hence they
are = and meet the ray in the same point (why?); se C'
falls on C; i.c. the A are congruent. Q.E.D.

61. We now come to the so-called ambiguous case, of
two A with two sides and an opposite angle in one equal to
the two sides and the corresponding opposite angle in the

K

FIG. 37.

other. Let ABC and A'B'C' (Fig. 37) be the two A, with
AB = A'B', BC= B'(C', and angle « = angle «'. Fit a'on
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«; then A'B' falls on AB, B' on B ; but since from a point
B (B'") we may draw two equal tracts to the ray A4Z, the
side B'C' may be either of these equals and may or may not
fall on BC. In general, then, we cannot prove congruence
in this case. But if BC be > 45, then angle ¢ > angle y
(why?), and there is ony one tract on the right of 48 drawn
from B to the ray AC and equal to BC; the otker tract
equal to BC must be drawn outside of 4.8 and to the left.
Hence in this case, when the angle lies opposite the greater
side, the A are congruent. Hence

Theorem XXV.— 7wo A having two sides and an angle
opposite the greater tn one equal lo two sides and an angle
opposite the greater side in the other are congruent.

Corollary. Two right A having a side and any other
part of one equal to a side and the corresponding part of
the other are congruent.

FIG. 38.

62. We have seen (Art. 47) that when two A have two
sides and included angle in one equal to two sides and
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included angle in the other, they are congruent. But what
if the included angles are not equal? Let 48C and 4'B'C
be the two A, having 4B=A4'B', BC=B'C, but 8 > f'.
Slip the upper film of the plane along until 4'B' fits on 4B
and let C' fall on D. Draw the mid-ray BM of the angle
CBD, let it cut AC at M, and draw DM. Then the A
CBM and DBM are congruent (why?) ; hence AM + MD
= AC (why?), and AC>AD,or AC> A'C'. Hence

Theorem XXVI.— 7wo A having two sides of one equal
Zo two sides of the other, but the included angles unequal,
have also the third sides unequal, the greater side lying
opposite the grealer angle.

Conversely, Zwo A having two sides in one equal to two
sides in the other, but the third sides unequal, have the
included angles also unequal, the greater angle being opposite
the greater side.

Proof. The included angles are nof equal; for if they
were equal, the A would be congruent (why?) and the
three sides would be equal. Hence the included angles are
unequal, and the relation just established holds ; namely, the
greater angle lies opposite a greater side. Q. E. D.

63. Theorem XXVII.— Euvery point on a mid-ray of an
angle is equidistant from its sides.

Data: O the angle, MM' the mid-ray, P any point on it.

Proof. From 2 draw the normals PC and PD; they are
(Fig. 39) the distances of P from the ends of the angle.
Then the A POC and POD are congruent (why ?); hence
PD = PC. Q.E.D.
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Conversely, 4 point equidistant from the ends of an angle
is on @ mid-ray of the angle (Fig. 39).

FIG. 39.

Proof. If PC = PD, then the A POC and POD are
congruent (why?) ; hence angle POD = angle POC. Q.E.D.

Accordingly we say that the mid-rays of an angle are the
locus of a point equidistant from its ends.

*64. It is just at this stage in the development of the
doctrine of the Triangle that we are compelled to halt and
introduce a new concept before we can proceed any further.
The necessity of this step will appear from what follows
(which may, however, be omitted on first reading, at the
option of teacher or student).

Def. Two A not congruent are called equivalent when
they may be cut up into parts that are congruent in pairs.

Theorem XXVIII. — Any A is equivalent to another O
having the sum of two of its angles equal to the smallest
angle of the given A.

Data: ABC the A, « the least angle (Fig. 40).
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Proof. Through A, the mid-point of BC, draw 4/ and
make MD = MA. Then the A ACM and DBM are con-
gruent (why?), the part 4B is common to 4BC and
ABD, and the sum of the angles 4DB and BAD = angle
BAC. Q.E.D.

C

Ao B
FIG. 40.

Corollary. The sum of the angles in the new A is equal
to the sum of the angles in the old A.

*65. We may now repeat this process, applying it to the
smallest angle, as 4, of the A ABD. In the new A ABE
the smallest angle, as 4, cannot be greater than } of the
original angle « in 4B C; after  repetitions of this process
we obtain a A, as 4L B, in which the sum of the angles 4

and Z cannot be > -I—n of the original angle & in the A
2

ABC. By making n as large as we please, we make -5;

2

as small as we please, and so we make ::: of angle «

smaller than any assigned magnitude no matter how small.
Meantime the other angle B has indeed grown larger and
larger, but has remained < a straight angle. Hence the
sum of the angles in the A 4ZB cannot exceed a straight
angle by any amount however small; but the sum of the
angles in 4ZB = sum of the angles in 48C ; hence

Theorem XXIX. — The sum of the angles in any A can-
not exceed a straight angle by any finite amount,
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Corollary 1. The outer angle of a A is not less than the
sum of the inner non-adjacent angles.

Corollary 2. From any point outside of a ray there may
be drawn a ray making with the given ray an angle small at
will.

Proof. From P draw any ray P4, and lay off 4B = PA
(Fig. 41). Then the angle PBA is not greater than

N A ' B
FIG. 41.
4 PAN (why?); now lay off BC=/FPB (why?); then
angle PCB is not > } angle PBA (why?); proceeding
this way, we obtain after # constructions an angle PLN
not > ;I;‘ of the angle P4/, and by making # large enough

we may make this = as small as we please. Q.E.D.
2"
*66. Theorem XXX.— JIf the sum of the angles in any A

equals a straight angle, then it equals a strazg/zt angle in
every A (Fig. 42).
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Hypothesis: A4BC a A with the sum of its angles
A+ B4+ C=S.

Proof. (1) Draw any ray through C, as CD. Then if
the sum of the angles in the A 4CD and BCD be S—x
and S —y, x and y being any definite magnitudes however
small, then on adding these sums we get 25— (x+);
and on subtracting the sum, S, of the supplemental angles
at D we get S—(x+y) for the sum of the angles of the
A ABC. Now if this sum be S, then x and y must each
be O; i.e. the sum of the angles in each of the A 4CD
and BCDisS. Nowdraw DE and DF; in each of the four
small A the sum of the angles is still =S. (2) We may
now make a A as large as we please and of any shape what-
ever, but the sum of the angles will remain =.S. For, take
the same A 4BC, and draw CD normal to 4B. Then the
sum of the (Fig. 43) angles in the A ACD is S, as has

D, S

A D
FIG. 43.

been shown above; also angle D is a right angle; hence
the angles 4 and 4CD are complementary. Now along
AC fit another A ACD' congruent with 4CD; then all
the angles of the quadrilateral 4DCD' are right, and the
figure is called a rectangle. Now we can place horizontally
side by side as many of these rectangles, all congruent, as we
please, say p of them ; we can also place as many of them
vertically, one upon another, as we please, say ¢ of them ;
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and we can then fill up the whole figure into a new rectan-
gle, as large as we please. About each inner junction-point
of the sides of the rectangles there will be four right angles
plainly. Now connect the two opposite vertices, as A4 and Z,
of this rectangle. So we get two congruent right A, in each
of which the sum of the angles is S. Then any A that we
cut off from this right A will, by the foregoing, have the
sum of its angles equal to S. Since p and ¢ are entirely in
our power, we may make in this way any desired right A
and from it cut off any desired oblique A, with the sum of
its angles=.5. Q.E.D.

Hence either no A has the sum of its angles=S, or
every A has the sum of its angles = .S.

67. A logical choice between these alternatives is impos-
- sible, but the matter may be cleared up by the following
considerations :

Across any ray LM draw a transversal 7, cutting ZM at
O, and making the angles e, B8, y, 8. Through any point,
as O, of 7" draw a ray (Fig. 44) L'M' making angle o' = a.

~

FIG. 4.

This is evidently possible (why?). Then plainly g'=g,
Y =4, 8 =38, «'=«; they are called corresponding angles ;
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also @ and y', B and &' are equal, — they are called alternate
angles ; also @ and &', as well as B and ', are supplemental,
— they are called interadjacent angles.

68. Now let 2 be the mid-point of OO'; on it as a pivot
turn the whole right side of the plane round through a
straight angle until O falls on O',and O' falls on O. Then,
since the angles about O and O' are equal as above stated,
the half-ray OZ will fall and fit on the half-ray O'M", and
the half-ray O'ZL' on the halt-ray OM. Accordingly, ff the
rays LM and L'M' meet on one side of the transversal T,
they also meet on the other side of T.

69. Three possibilities here lie open :

(1) The rays ZM and Z'M' may meet on the left and
also on the right of 7, in diferent points.

(2) They may meet on the left and also on the right of
7, in the same point.

(3) They may not meet at all.

No logical choice among these three is possible. But
in all regions accessible to our experience the rays neither
converge nor show any tendency to converge. Hence we
assume as an

Axiom A. 7wo rays that make with any third ray a pair
of corrvesponding angles equal, or a pair of alternate angles
equal, or a pair of interadjacent angles supplemental, are
non-intersectors.

7o. But another query now arises. Is it possible to draw
another ray through O’ so close to Z' that it will not meet
OL however far both may bz produced? Here again it is
impossible to answer from pure logic. An appeal to experi-
ence is all that is left us. This latter testifies that no ray
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can be drawn through O'so close to O'Z' as not to approach
and finally meet the ray OL. Hence we assume as another

Axiom B. Zhrough any point in a plane only one non-
intersector can be drawn jfor a given straight line.

This single non-intersector is commonly called the parallel,
through the point, to the straight line.

71. It cannot be too firmly insisted, for too distinctly
understood, that the existence of any non-intersector at all,
and the existence of only one for any given point and given
ray, are both assumptions, which cannot be proved to be
facts. The best that can be said of them, and that is quite
"good enough, is that they and all their logical consequences
accord . completely and perfectly with all our experience as
far as our experience has hitherto gone. Even then, if
there be any error in our assumptions, we have thus far been
utterly unable to find it out.

A geometry that should reject either or both of these
assumptions would have just as much logical right to be as
the geometry that accepts them, and such geometries lack
neither interest nor importance. They may be called Hyper-
Euclidean in contradistinction from this of ours, which from
this point on is Euclidean (so-called from the Greek master,
Euclides, who distinctly enunciated the eguivalent of our
- Axioms in a Definition and a Postulate).

NoOTE. — Observe the relation of Axioms A and B: #e one is the
converse of the other.

Observe also that the necessity of assuming the first lies in our igno-

rance of the indefinitely great, and the occasion of assuming the other
lies in our ignorance of the indefinitely small. See Note, Art. 301.

72. Accepting our Axioms as at least exacter than any
experiment we can make, we may now easily settle the ques-
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tion as to the sum of the anglesin a A. Let 4BC be any
A; through the vertex C draw the one parallel to the base
AB. Then a=a', B=p' (why?); also «'+y+8'=S;
hence e+ y + B= S, ie. (Fig. 45)

Theorem XXXI, — The sum of the angles in a A is a
straight angle.

FIG. 45.

Corollary 1. The outer angle £ equals the sum of the
inner non-adjacent angles & and y (why?).

Corollary 2. If two angles of a A be known, the third is
also known.

Corollary 3. If two A have two angles, or the sum of two
angles of the one equal to two angles, or the sum of two
angles of the other, then the third angles are equal.

Corollary 4. To know the three angles of a A is not to
know the A completely, for many A may have the same
three angles. Such A are similar, as we shall see, but are
not congruent; they are alike in shape, but not in size.

73. Next to normality, parallelism is the most important
relation in which rays can stand to each other, and we must
now use the new relation in the generation of new concepts.

L ———————
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Theorem XXXII. — Parallel Intercepts between parallels
are equal.

Data: Land Z', M and M , two pairs of parallels (Fig. 46).

D/ ¢/ ¢
Afa . /B L
/M 7M’ .

FIG. 46.

Proof. Draw BD. Then the A 4BD and CDB are
congruent (why?), and 48 = CD, BC=DA. Q.E.D.

Def. The figure ABCD formed by two pairs of parallel
sides is called a parallelogram, and may be denoted by the
symbol 7.

A join of opposite vertices, as BD, is called a diagonal.

74. Theorem XXXIII. — Properties of the parallelogram.

A. The opposite sides of a parallelogram are equal.

This has just beeri proved.

B. The opposite angles of a parallelogram are equal.

Proof. o= (why?); B=«' (why?); hence a=4d!
Q.E.D.

Corollary. Adjacent angles of a parallelogram are sup-
plementary.

C. Eack diagonal of a parallelogram cuts it into two con-
gruent A. Prove it.
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D. The diagonals of a parallelogram bisect eack other
(Fig. 47).

FIG. 47.

Proof. The A AMB and CMD are congruent (why?) ;
hence AM = CM, BM = DM. Q.E.D.

75. We may now convert all the foregoing propositions
and obtain as many criteria of the parallelogram.

Theorem XXXIV. —A'. A4 g-side with its opposite sides
equal is a parallelogram.

Data: AB= CD, AD= CB (Fig 48).

o/ c/

S<.
d Se
~

B
/ /®
FIG. 48.
Proof. Draw BD. Then AB.D and CDB are congruent
(why?); hence B=8; and 4D and CB are parallel;

similarly, 48 and CD are parallel ; hence ABCD is a par-
allelogram. Q.E.D.
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B'. A g4-side with opposite angles equal is a parallelogram.
Data: e=d', B+ f'=y+ 7' (Fig. 49).

FIG. 49.

Proof. Since a=4a'/, B+ y=p"4++" (why?). Hence
B=4y', p'=1y; iec. opposite sides are parallel, the 4-side
is a parallelogram. q.E.D.

C'. A 4-side that is cut by eack diagonal into two congru-
ent A is a parallelogram.

For the opposite angles must be equal (why?) ; hence,
etc. Q.E.D.

D'. A4 g4-side whose diagonals bisect eack other is a
parallelogram.

For the opposite sides are equal, being opposite equal
angles in congruent A ; hence, etc. Q.E.D.

El. A g-side with one pair of sides equal and parallel is
a parallelogram. .

For the other two sides are equal and parallel (why?) ;
hence, etc. Q.E.D.

76. The foregoing properties and criteria of the parallel-
ogram illustrate excellently the nature of a dgfinition. This
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latter defines or dounds off by stating something that is true
of the thing defined, but of nothing else. Accordingly, the
characteristic of every definition or definitive property is
that the proposition that states it may be converted simply.
Thus :

Every parallelogram is a 4-side with opposite angles
equal; and conversely, every 4-side with opposite angles
equal is a parallelogram.

Not every property is definitive, and hence not every
property may be used as test or criterion.

77. Special Parallelograms.

Def. An equilateral parallelogram is called a rhombus.

Theorem XXXV. — Zhe diagonals of a rhombus are nor-
mal to each other.

Let the student conduct the proof suggested by the figure
(Fig. 50).

F1G. so.

Conversely, A parallelogram whose diagonals are normal
2o each other is equilateral, or a rhombus. Let the student
supply the proof.

. %78. Def. An equiangular parallelogram is called a rect-
angle (for all the angles are 4gh# angles).
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Theorem XXXVI. — 7Ve diagonals of a rectangle are equal
(Fig. 51).

FIG. sI1.

For the A 4BC and BAD are congruent (why?) ; hence
AC=BD. Q.E.D.

Conversely, A parallelogram with equal diagonals is equi-
angular, or @ rectangle.

For the A ABC and BAD are again congruent, though
for another reason. What reason ?

79. Def. A parallelogram both equilateral and equi-
angular is called a square.

Theorem XXXVII. — Z%e diagonals of a square are equal
and normal to each other.

FIG. 52.
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For the square, being both rhombus and rectangle, has
all the definitive properties of both. Or the student may
prove the proposition directly from the figure (Fig. 52), as
well as its converse :

A parallelogram with diagonals equal and normal to each
other is a square.

80. Can we convert Theorem XXXII. and prove that
equal intercepts between parallels are parallel? Manifestly
no (Fig. 53), for from the point C we may draw two equal

o/ \/

/* /8 &
FIG. 53.

tracts to the other parallel, the one CB parallel to 4D, the
other CB' sloped at the same angle to the parallels but in
opposite ways. We may call CB' anti-paralle!/ to AD, and
the figure AB'CD an anti-parallelogram. Since from any
point C only two equal tracts, or tracts of given length, may
be drawn to the other parallel through 4, we have the

Theorem XXXVIII. — Egual intercepts between parallels
are either parallel or anti-parallel.

Corollary 1. Adjacent angles of an anti-parallelogram
are alternately equal or supplemental.

Corollary 2. Anti-parallels prolonged meet at the vertex
of an isosceles A.
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THE GENERAL QUADRILATERAL OR 4-SIDE.

81. A Quadrilateral is determined by four intersecting
rays. These determine six points, the four fmner vertices,
C, D, E, F, and the two outer ones, A, B. The cross-rays,
CE, DF, AB, are the diagonals, CE and DF inner, AB
outer. Commonly the outer diagonal is little used, and the
inner ones are called sk diagonals. When none of the
angles C, D, E, F, of the 4-side is greater than a straight
angle, the 4-side is called the normal, as CDEF. 1t is the
only form ordinarily considered. The other two forms are
(2) the crossed, ACBE, and (3) the inverse, ADBF
(Fig. 54). For all forms let the student prove

Theorem XXXIX,— Zhe sum of the inner angles of a
4-side is a round angle.

Corollary. When two angles of a 4-side are supple-
mental, so are the other two.

82. Theorem XL. — Zhe angles between two rays equal
the angles between two normals to the rays.
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Data: OL and OM any two rays, P4 and PB any two
normals to them (Fig. 55).

FIG. s5.

Proof. The angles at 4 and B are right angles and
therefore supplemental (why?); hence e =«/, and 8= 8"
Q.E.D.

N.B. The 4-side with its opposite angles supplemental is
very important and has received the name encyclic 4-side,
for reasons to be seen later on (Arts. 126-7).

THREE OR MORE PARALLELS.

83. Theorem XLI. — Three parallels that make equal
intercepls on one transversal, make equal intercepts on any
transversal.

Data: L, M, N, three parallels, and 4B=2B8C,and DEF
any transversal (Fig. 56).

Proof. Draw D'EF parallel to ABC. Then AB=BC
(why?), AB=D'E (why?), and BC=EF (why?);
hence D'E = EF' (why?), hence the A DED' and FEF
are congruent (why?); hence DE = EF (why?). Q.E.D.



Tu. XLIL] THREE OR MORE PARALLELS. 65

84. Def. A 4-side formed by two parallels and two
transversals is called a trapezoid. Thus 4CFD is a trape-
zoid. The parallel sides are called the bases (major and
minor) ; the parallel through the mid-points of the trans-
verse sides is the mid-parallel.

/c L /F

/A /D /D’

FIG. 56.

Theorem XLII. — 7%e mid-parallel of a trapesoid equals
the half-sum of its bases.

Let the student elicit the proof from the foregoing figure.

Corollary 1. A parallel-to a base of a A bisecting one
side bisects also the other. (Hinz. Let D fall on 4.)

Corollary 2. A ray bisecting two sides of a A is parallel
to the third.

For only one ray can bisect two sides (why?), and we
have just seen (Cor. 1) that a ray parallel to the base does
this; hence, Q.E.D.

Corollary 3. The mid-parallel to the base of a A equals
half the base.

85. Def. Three or more rays that pass through a point
are said to concur or be concurrent.
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Theorem XLIII. — 7%e medials of a A\ concur.
Data: ABC a A, APand BQ two medials (Fig. 57).

~ -
’
<

~

P
N
~7HL

FI1G. 57.

Proof. Draw a ray from C through O, the intersection
of the two medials, and lay of O = CO. Draw AH and
BH; they are parallel to BQ and AP (why?); hence
AOBH is a parallelogram (why?); hence AR = BR
(why?). Hence COR is the third medial; 7.e. the three
medials pass through O. q.E.D.

Corollary. Each medial cuts off a third from each of
the other two. For CO = 20R (why?).

Def. The point of concurrence of the medials is called
the centroid of the A. It is two-thirds the length of each
medial from the corresponding vertex.

86. Theorem XLIV.— The mid-normals of the sides of
a A concur.

Data: ABC a A, L and M mid-normals to the sides BC
and CA, meeting at S.
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Proof. S is equidistant from B and C (why?), and from
C and 4 (why?); hence S is equidistant from 4 and B
(why?), or is on the mid-normal of 48 (why?); hence
the mid-normals concur (Fig. 58). Q.E.D.

FIG. 58.

Corollary. S is equidistant from 4, B, and C, and no
other point in the plane is (why?).

Def. The point of concurrence of the mid-normals is
called the eircumcentre of the A.

87. Def. A tract from a vertex of a A normal to the
opposite side is called an altitude of the A. Sometimes,
when length is not considered, the whole ray is called the
altitude.

Theorem XLV.— 7%e altitudes of a A concur.

Proof. Using the preceding figure, draw the A 4'B'C'.
Its sides are parallel to the sides of ABC (why?); hence
its altitudes are the mid-nonmals Z, M, V; and these have
just been found to concur. Also, since 48C may be any
A, A'B'C' may be any A ; hence the altitudes of any A
concur. Q.E.D.
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Def. The point of concurrence of altitudes is called the
.orthocentre (or alticentre) of the A.

Def. In a right A the side opposite the right angle is
called the hypotenuse (= subtense = under-stretch).

Queries: Where do circumcentre and orthocentre lie:
(1) in an acute-angled A? (2) in an obtuse-angled A ?
(3) inaright A?

88. Theorem XLVI.—7%e inner mid-rays of the angles
of a A concur.

Data: ABC a A, AL, BM, CN the inner mid-rays of its
angles (Fig. 59). '

N

Proof. Let AL and BAM intersect at /. Then 7 is equi-
distant from 4B and 4C, and from AB and BC (why?) ;
hence 7 is equidistant from 4C and BC; hence 7/ is on
the inner mid-ray of the angle C; i.e. the three inner mid-
rays concur in /. Q.E.D.

Def. The point of concurrence of the inner mid-rays is
called the in-centre of the A.
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89. Theorem XLVII.— 7%e outer mid-rays of two angles
and the inner mid-ray of the other angle of a A concur.

Let the student conduct the proof (Fig. 60).

Def. The points of concurrence are called ex-centres of
the A : there are #iree.

EXERCISES I.

Little by little the student has been left to rely more and
more upon his own resources of knowledge and ratiocination
in the conduct of the foregoing investigations. He has now
possessed himself of a large fund of concepts, and he must
test his ability to wield, combine, and manipulate them in
forging original proofs of theorems. Let him bear always
in mind the fundamental logical principle that every example
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of a general concept has all the marks of that general concept.
Let him begin his proof by stating precisely the dazs, the
given or known facts, let him draw a corresponding diagram
in order to have a clearer view of the spatial relations in-
volved, let him note carefully what concepts are present in
the proposition, let him draw auxiliary lines and introduce
auxiliary concepts at pleasure. But let him exhaust simple
means before trying more complicated, let him distinguish,
by manner of drawing, the principal from the auxiliary rays,
and especially let him be systematic and consistent in the
literation of his figures.

1. How many degrees in a straight angle? In a right
angle?

HisTorICAL NOTE. — For purposes of computation the round angle
is divided into 360 equal parts called degrees, each degree into 60
equal minutes (partes minutz primae.), each minute into 60 equal
seconds (partes minute secundz), denoted by ©, !, !' respectively.
This sexagesimal division is cumbrous and unscientific, but is apparently
permanently established. It seems to have originated with the Baby-
lonians, who fixed approximately the length of the year at 360 days, in
which time the sun completed his circuit of the heavens. A degree,
then, as is indicated by the name, which means s#p in Latin, Greek,
Hebrew (gradus, Babuos (or Tunua), ma’alak), was primarily the daily
step of the sun eastward among the stars. The Chinese, on the other
hand, determined the year much more exactly at 365} days, and
accordingly, in defiance of all arithmetic sense, divided the circle into
365} degrees.

2. The angles of a A are equal; how many degrees in
each?

REMARK. — Such a A is called eguiangular, more commonly egui-
lateral, but better still regular.

3. Show that this regular A is equilateral.

4. One angle of a A is a right-angle; the others are
equal ; how many degrees in each?
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5. One angle of a A is twice and the other thrice the
third ; what are the angles?

6. Two angles of a A are measured and found to be
46° 37' 24" and 52°48' 39" ; what is the third?

7. One angle of a A is measured to be 61°22' 40" ; the
others are computed to be 49° 34' 28" and 69° 2! 43" ; what
do you infer?

8. A half-ray turns through two round angles counter-
clockwise, then through half a right-angle clockwise, then
through a straight angle counter-clockwise, then through }
of a round angle counter-clockwise, then through % of a
straight angle clockwise ; what angle does it make in its
final position with its original position?

9. Ois a fixed point (called o077gin) on a ray, 4 and B
are any pair of points, // their mid-point. Show and state
in words that 20M = 0OA + OB.

10. A, B, C are three points on a ray, 4', B!, C' are
mid-points of the tracts BC, C4, AB, and O is any point
on the ray ; show that 04+ OB+ OC=0A'+ OB'+ OC!'.

11. A, B, C, D, O are points on a ray; 4', B', C' are
mid-points of 4B, BC, CD; A", B", are mid-points of
A'B', B'C'; M is the mid-point of 4"B"; prove 80M =
OA+ 30B+ 30C+ OD.

12. What are the conditions of congruence in isosceles
A? Inright A?

13. In what A does one angle equal the sum of the
other two?

Def. A number of tracts joining consecutively any number
of points (first with second, second with third, etc.) is called
a broken line, ox train of tracts, or polygon. Where the last
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point falls on the first the polygon is elosed; otherwise it is
open. Unless otherwise stated, the polygon is supposed to
be closed. The points are the vertices, the tracts are the
sides of the polygon. The closed polygon has the same
number of vertices and sides, and we may call it an n-angle
or n-side. The angles between the pairs of consecutive
sides are the angles of the polygon, either inner or outer;
unless otherwise stated, 7zner angles are referred to. Inner
and outer angles at any vertex are supplemental. When
each inner angle is less than a straight angle, the polygon
is called convex ; otherwise, re-entrant. Unless otherwise
stated, convex polygons are meant. Sides and angles of a
polygon may be reckoned either clockwise or couanter-clock-
wise.

14. Prove that the sum of the inner angles of an z-side
is (7 — 2) straight angles. What is the sum of the outer
angles?

15. Find the angle in a regular (i.e. equiangular and
equilateral) 3-side, 4-side, 5-side, 8-side, 12-side. (For -
proof that there is a regular #-side, see Art. 137.)

16. Show that a (convex) polygon cannot have more
than three obtuse outer angles, nor more than three acute
inner angles.

17. Two angles of a A are « and B; find the angles at
the intersection of their mid-rays.

18. If two A have their sides parallel or perpendicular in
pairs, then the A are mutually equiangular.

19. The medial to the hypotenuse of a right A cuts the
A into two isosceles A.

20. An angle in a A is obtuse, right, or acute, according
as the medial to the opposite side is less than, equal to, or
greater than, half the opposite side.
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21. A medial will be greater than, equal to, or less than,
half the side it bisects, according as the opposite angle is
acute, right, or obtuse.

22. If P and Q be on the mid-normal of 4B, then
AAPQ=ABPQ (= indicates congruence).

23. AB is the base, C the opposite vertex of an isosce-
les A; show that ABN= BAM (1) when AM and BN
are altitudes, (2) when they are medials, (3) when they are
mid-rays of angles 4 and B, (4) when MV is normal to the
mid-normal of 45.

24. P is any point within the A 4BC; show that
AP+ BP<AC+ CB, AP+ PB+ CP> 4 (AB+BC+CA).

25. ABC..-L and AB'C'--. L are two convex polygons,
not crossing each other, between the same pairs of points,
A and L ; which is the longer? Give proof.

26. P is a point within A 4BC; show that angle 4APB
> ACB and sum of angles at P=2(A4+ B+ C).

27. Pis equidistant from 4, B, and C; show that angle
APB = 2(angle ACB).

28. Conversely, if angle 4PB = 2 (angle ACB), angle
BPC = 2 (angle BAC), and angle CPA = 2 (angle CB4),
then 2 is equidistant from 4, B, C.

29. The mid-rays of the angles at the ends of the trans-
verse axis of a kite cut the sides in the vertices of an
anti-parallelogram (Art. 99).

30. The four joins of the consecutive mid-points of the
sides of a 4-side form a parallelogram.

31. The joins of the mid-points of the pairs of opposite
sides and of the pairs of diagonals of a 4-side concur, bisect-
ing each other.
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32. The mid-parallels to the sides of a A cut it into 4
congruent A.

33. What figures are formed by the mid-parallels when
the A is right? isosceles? regular?

34. A parallelogram is a rhombus if a diagonal bisects
one of its angles.

35. A parallelogram is a square if its diagonals are equal
and one bisects an angle of the parallelogram.

36. From any point in the base of an isosceles A parallels
are drawn to the sides; the parallelogram so formed has a
constant perimeter (= measure round = sum of sides).

37. The sum of the distances of any point on the base of
an isosceles A from the sides is constant.

38. The sum of the distances of any point within a regular
A from the sides is constant. — What if the point be without
the A?

39. P is on a mid-ray of the angle 4 in the A ABC;
compare the difference of PB and PC: when P is within
the A, and when 2is without.

40. The inner mid-ray of one angle of a A and the outer
mid-ray of another form an angle that is half the third angle
of the A. :

41. O is the orthocentre of the AABC; express the
angles 40B, BOC, COA, through the angles 4, B, C.

42. Do the like for the circum-centre .S and the in-centre /.

43. The medial to the hypotenuse of a right A equals
one-half of that hypotenuse.

44. The mid-rays of two adjacent angles of a parallelogram
are normal to each other.
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45. In a s-pointed star the sum of the angles at the
points is a straight angle. What is the sum in a 7-pointed
star?

46. Parallels are drawn to the sides of a regular A, tri-
secting the sides ; what figures result?

47. A side of a A is cut into 8 equal parts, through each
section point parallels are drawn to the other sides ; how are
the other sides cut and what figures result?

48. Two A are congruent when they have two mid-tracts
of two corresponding angles equal, and Jesides have equal

(1) these angles and a pair of the including sides ; or

(2) two pairs of corresponding angles ; or

(3) one pair of corresponding angles and the correspond-
ing angles of the mid-tract with the opposite side ; or

(4) one pair of including sides and the adjacent segment
of the opposite side.

49. Two A are congruent when they have two corre-
sponding sides and their medials equal, and besides have
equal

(1) another pair of sides ; or

(2) the angles of the medial with its side (in pairs) ; or

(3) a pair of angles of the bisected side with another

side, the angles of the medial with this side being both
acute or both obtuse ; or

(4) a pair of angles of the medial with an including side,
the corresponding angles of the medial with its side being
both acute or both obtuse.

50. Two A are congruent when they have a pair of cor-
responding altitudes equal, and desides have equal
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(1) the pair of bases and a pair of adjacent angles; or

(2) the pair of bases and another pair of sides ; or

(3) the pairs of angles of the altitude with the sides ; or

(4) two pairs of corresponding angles ; or

(5) the two pairs of sides, when the altitudes lie both
between or both not between the sides of the A.

SYMMETRY.

90. We have seen that congruent figures are alike in size
and shape, different only in place, and may be made to fit
point for point, line for line, angle for angle. The parts
that fit one on the other are said to correspond or be corre-
spondent. Plainly only like can correspond to like, as point
to point, etc.

De¢f. The ray through two points we may call the join of
those points, and the point on two rays the join of the rays.

91. It is now plain that if 4 corresponds to 4' and B to
B', then the join of 4 and B must correspond to the join
of 4" and B'; for in fitting 4 on A' and B on B' the ray
AB must fit on the ray 4'B' (why?). Also if the ray Z
corresponds to Z', and M to M, then the join of L and &/
must correspond to the join of Z' and /' (why?). These
facts are very simple but very important.

We shall think of the plane as a thin double film, the one
figure drawn in the upper layer, the other in the lower.

92. Two congruent figures may be placed anywhere and
any way in the plane, but there are #wo positions especially
important: (1) the one in which the one figure may be
superimposed on the other by turning the one half of the
plane through a straight angle about a ray called an axis;
(2) the one in which the one figure may be fitted on the
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other by turning the one half of the plane through a straight
angle about a point called a centre.

Congruent figures in either of these two positions are
called symmetric : in the first case axally, as to the axis of
symmetry ; in the second case centrally, as to the centre
of symmetry.

93. In two symmetrics, corresponding angles, like all
other correspondents, are of course congruent; but they
are reckoned oppositely if the symmetry be axal, similarly if
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it be central. To parallels correspond parallels ; to normals,
normals ; to mid-points, mid-points ; to mid-rays, mid-rays ;
to the axis corresponds the axis, each point to itself ; to the
centre corresponds the centre itself (Fig. 61).

Elements, whether points or lines, that correspond to
themselves may be called se/f-correspondent or double.

It is also manifest that centre and axis are the only self-
correspondents ; hence if a point be self-correspondent, it
must lie on the axis in axal symmetry, o» be the centre in
central symmetry; and if two counter half-rays be corre-
spondent, they (or the ray) must be normal to the axis in
axal symmetry, o go through the centre in central sym-
metry.

94. These facts are all perfectly obvious, but a more
vivid exemplification of the nature of these two kinds of
symmetry may perhaps be found in the following :

Suppose the axis of symmetry to be a perfect plane
mirror ; then either half of the plane may be treated as the
reflection or exact image of the other, and will be the sym-
metric of the other as to the mirror-axis. For the image of
any point A is the point 4' such that the axis is the mid-
normal of 44', as we know from Physics ; also, on folding
over the one half of the plane about the axis upon the other
half, the point 4 falls on 4' (why?) ; hence 4'is the sym-
metric of A4 as to the axis.

Suppose the centre of symmetry .S to be also a reflector;
then the reflection or image of any point 4 will be a point
A' such that .S is the mid-point of the tract 44', and on
rotation through a straight angle about .S the point 4 falls
on A4', and the half-ray S4 fits on the half-ray S4'. Hence
either of two centrally symmetric figures is the exact image
of the other reflected from the centre of symmetry .S.
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Note carefully that these two species of symmetry depend
upon the two fundamental definitive properties of the plane :
central symmetry upon the komaoidality of the plane, axal
symmetry upon the reversibility of the plane. Moreover,
axally symmetric figures can nzof be fitted on each other
without reversion, folding over ; by movement s7 the plane
their corresponding parts can at best be ggposed, but never
superposed ; while on the other hand central symmetrics
may be superposed, but cannot be opposed, along any ray,
by motion in the plane. In central symmetrics the corre-
sponding parts follow one another in the same order, but in
axal symmetrics they follow in opposite orders.

95. We must now discuss these two symmetries more
minutely, and to exhibit a certain remarkable relation hold-
ing between them we arrange their properties in parallel

columns.

IN AXAL SYMMETRY.
1. The axis corresponds to it-
self.

2. Every point of the axis cor-
responds to itself.

3. Every self-correspondent
point lies on the axis.

4. The join of two correspond-
ent rays is on the axis.

(For it is self-correspondent.)

5. Correspondent points are
equidistant from every point on
the axis.

IN CENTRAL SYMMETRY.

1. The centre corresponds to
itself.

2. Every ray through the cen-
tre corresponds to itself (each half
to the other).

3. Every self-correspondent ray
goes through the centre.

4. The join of two correspond-
ent points goes through the cen-
tre.

(For it is self-correspondent.)

5. Correspondent rays are
equally inclined (isoclinal) to
every ray through the centre;
hence they are parallel, as is
otherwise manifest.
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6. The axis is a mid-ray of
every angle between correspond-
ent rays, and in fact the inner
mid-ray.

. N.B. The outer mid-ray is a
normal to the axis.

7. The join of two correspond-
ent points is a normal to the axis.

8. Correspondent tracts are
anti-parallel.

9. Correspondent points are
equidistant from the axis.

10. The join of two rays and
the join of their correspondents
themselves correspond.

6. The centre is a mid-point of
every tract between correspond-
ent points, and in fact the inner
mid-point.

N.B. The outer mid-point is a -
point at infinity.

7. The join of two correspond-
ent rays is at infinity.

(For they are parallel.)

8. Correspondent angles are
contra-posed (Z.e. have their arms
extended oppositely).

9. Correspondent rays are
equidistant from the centre.

10. The join of two points and
the join of their correspondents
themselves correspond.

96. On regarding closely these correlated propositions, it

becomes clear that the one set differs from the other only
in the interchange of certain notions, as point and ray, tract
and angle, etc. Every property of axal symmetry has its
obverse tn central symmetry, and vice versa. This most
profound, important, and interesting fact has received the
name of the Principle of Reciprocity. We make this notion
more precise by the following

Def. Two figures such that to every point of each corre-
sponds a ray of the other, and fto every ray of each a point
of the other, are called reciprocal. For example :

Suppose rays drawn through a point O to any number of
points, 4, B, C, D, E, . . . on a ray L. Then the point
O with its ray through it, and the ray Z with its point on
it, are two reciprocal figures (Fig. 62). The first is called
a (flat) pencil of rays, O being the centre; the second is
called a row (or range) of points, Z being the axis. Sup-
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pose we have now a second pencil through O' and a second
row on Z'. These two figures are again reciprocal, and the
two pairs of reciprocals together make up another more
complex pair of reciprocals. In this latter pair we find our
definition fully exemplified. To O and O' correspond Z and
L' ; to the rays through O and O' correspond the points on Z
and Z'; also, to the join (ray) of O and O' corresponds the

FIG. 62.

join (point) of Z and Z'; to any point as 2, the join of two
rays (OA, O'A'), corresponds a ray AA', the join of two
points (4, 4'). So Q, R, S, T are points corresponding to
the rays BB', CC', DD', EE'. We may notice further
that angle and tract correspond in the reciprocal figures ;
thus the angle 4 OB corresponds to the tract 458, and the
angle BOC to the tract BC; while the angle OPO' corre-
sponds to the tract 44' and the tract RS to the angle
between the rays corresponding to £ and .S ; namely, between
CC' and DD'. Let the student trace out as many corre-
spondences as possible.
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97. To three points fixing a triangle in either of two
reciprocals must correspond also three rays fixing a triangle
in the other reciprocal; hence, in general, triangle corre-
sponds to triangle in reciprocals. But notice: the sides of
one correspond to the wzerfices of the other; hence if the
sides of one all go through the same point, the vertices of
the other all lie on the same ray ; that is, three concurrent
rays in either reciprocal correspond to three collinear points
in the other.

It now appears that axal and central symmetry are recip-
rocal to each other; the reciprocal of an axal symmetric is
a central symmetric, and the reciprocal of a central sym-
metric is an axal symmetric; the reciprocal properties of
axal symmetry are the properties of central symmetry, and
the reciprocal properties of central symmetry are the proper-
ties of axal symmetry.

Very often the two symmetric figures may be regarded
as the two halves of one figure ; this one figure is then said
to be symmetric as to the axis of symmetry or as to the
centre of symmetry, as the case may be.

98. If our figure be two points, 4 and 4', then the mid-
normal X of the tract 44'is the axis of symmetry, mani-
festly. If, now, any double point D on the axis be joined
with 4 and A4', there results the isosceles A 4DA', whence
it appears that (Fig. 63)

The isosceles A is a symmetric .

It is plain that any two points on the ray 44' equidistant
from /V are symmetric as to X, that all points on the ray,
and indeed in the whole plane, may be arranged in sym-
metric pairs, the members of each pair equidistant from the
axis X.
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99. Now take two points on the axis, as 2 and 2, or
D and D", and consider the 4-side DA4D'4'. It is com-
posed of two A, ADD' and A'DD', symmetric with each
other as to the axis X, and opposed along that axis. Hence
the 4-side is itself symmetrical as to X.

Def. Such a 4-side, with an axis of symmetry, is called a
kite.

If we hold D fast, and let D' glide along X, the 4-side
ADA'D' remains a kite. We see that there are two kinds

,

D
FIG. 63.

of Kkites, the convex kite, as 4DA'D', and the re-entrant, as
ADA'D". As the gliding point passes through AV the kite
changes from one kind to the other, passing through the
intermediate form of the symmetrical A.

When the gliding point reaches a position 2’ such that
ND = ND', then the four sides of the kite are all equal
(why?), and the kite becomes a rhombus (why?). In this
case D and D' are symmetric as to 44' as an axis of sym-
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metry. Hence the rkhombus has two axes of symmetry;
namely, its fwo diagonals.

In all cases the diagonals, 44' and DD, of the kite are
normal to each other (why?).

100. Now consider a pair of points, B and B', symmetric
as to the axis X (Fig. 64). Then X is mid-normal of BA'.

FIG. 64.

If C and C' be any other pair of symmetric points, then X
is also mid-normal of C'C'; hence BB' and C (' are parallel
(why?). Also the tracts BC and B'C' are symmetric as
to X (why?), and the 4-side BB'C'C is itself symmetric as
to the axis X. Hence the angles at C and (' are equal,
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also the angles at B and B’ are equal (why?) ; hence the
angles at B and C and at B' and (' are supplemental
(why?), and the 4-side BB'C'C is an anti-parallelogram
(why?). Hence we see that another symmetric 4-side is an
anti-parallelogram.

It is plain that every anti-parallelogram is symmetric, for
we know that the oblique sides prolonged yield an isosceles A.
Let the student complete the proof.

101. There is only one kind of symmetric A, the isosceles.
For, let ABA' (Fig. 65) be symmetric and A4' correspondent
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FIG. 65.

to 4. Then B must correspond to itself (why?) ; hence
B must lie on the axis (why?) ; hence B4 = BA' (why?).
Now let the student prove that
(1) In a symmetric A the axis of symmetry is a medial;
(2) itis also a mid-ray; (3) it is also a mid-normal.
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Conversely, let him show that
A medial that is a mid-ray, or a mid-normal, is an axis
of symmetry.

102. There are only fwo axally symmetric 4-sides ; namely,
the kite and the anti-parallelogram. For, in a symmetric
4-side a vertex must correspond to a vertex (why?). Also,
not all vertices can be on the axis (why?). Also, a vertex
on the axis is a double point (why?). Also, the vertices
not on the axis must appear in pairs (why?) ; hence there
must be either two or four of them. If there be two only,
then the other two are on the axis and the 4-side is a kite ;
if there be four of them, we have just seen that the 4-side is
an anti-parallelogram.

103. Now let us turn to the reciprocals. The reciprocals
of the two points A and A' symmetric as to the axss X will
be two rays L, L', symmetric as to the centre S. But rays
symmetric as to a centre are parallel (why?) ; hence we have
two parallels symmetric as to .S, which is midway between
them. The rays are symmetric as to any other point .§' mid-
way between them (why?). The piece of plane between
these parallels is called a parallel strip, or band (Fig. 66).

\
\
~

FIG, 66,
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But what corresponds to the point D on the axis X? The
answer is: a ray & through S (why?). Hence to the sym-
metric A of the three points A4, 4', D, there corresponds
the figure formed by two parallels Z, Z', and a transverse &
through S, —a so-called %alfs#rip. This is truly a shree-
side, but not apparently. a A (3-angle), for the parallels do
not meet in finity, in regions accessible to our experience.
Hence, instead of saying that the reciprocal of a A in axal
symmetry is a A (3-angle or 3-point) in central sym-
metry, we should have said, accurately, that the recipro-
cal of a A in axal symmetry is a 3-side (or trilateral) in
central symmetry, which will always be a A except when
sides are parallel or all concur. In higher Geometry it is
very convenient to remove this apparent exception by using
this form of expression : the parallels meet #zof in finity, but
in infinity.

104. It is indeed plain that

A A can have no centre of symmeltry.

For, since vertex corresponds to vertex, and since corre-
spondents appear in pairs, one vertex must be a double point ;
hence it would have to be the centre S (why?). But the
other two vertices would have to lie on a ray through S, being
correspondents ; hence the three vertices would be collinear,
and the A would be flattened out to a #iply-laid ray.

105. But there is a centrally symmetrical 4-side ; namely,
the parallelogram. For, consider once more the kite
AXA'X' and let us reciprocate it into a centrally symmetric
figure (Fig. 67). To the axis XX will correspond the cen-
tre S; to the symmetric pair of rays 4X and 4'X will corre-
spond a symmetric pair of points Zand 7' ; to the join of
those on the axis X will correspond the join of these through
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the centre (PP'). Similarly, to the symmetric rays 4X' and
A'X'" will correspond the symmetric points Q and @', and
to the join X' will correspond the join QQ'. Also, 4X
and 4X' have a join 4 while 4'X and 4'X"' have a join 4,
and these joins are symmetric as to the axis XX'; recipro-

FIG. 6.

cally, Pand Q have a join 2Q, and 2’ and Q' have a join
P' @', and these joins are symmetric as to .S; that is, they are
parallel (why?). Similarly, £Q' and P'Q correspond to B
(AX, A'X") and B' (4'X, AX') ; but B and B' are sym-
metric as to XX' (why?) ; hence PQ' and P' Q are symmetric
as to S, z.e. are parallel. Hence PQ P'Q'is symmetric as
to S, and is a parallelogram. Q.E.D.

106. We may indeed see at once that since any two par-
allels are centrally symmetrical as to any mid-point, a pair
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of parallels or a parallelogram is symmetric as to the common
mid-way point, the intersection of the diagonals. But the
foregoing reciprocation is instructive, as illustrating in detail
the method to be pursued, and as showing the intimate rela-
tion of the different symmetric quadrilaterals ; namely, ze
parallelogram is the common reciprocal of both kite and anti-
parallelogram, which are thus seen to be really oze.

107. Central symmetry does not in general imply any-
thing at all with respect to axal symmetry in a figure. We
may draw through any point .S any number of rays and lay
off on each from S a pair of counter tracts SP and SP,
SQ and SQ', etc. No matter how PQ, etc., be chosen, the
figure so obtained will be centrally symmetric as to .S'; but
it may have no axal symmetry whatever. Neither does axal .
symmetry in general imply any central symmetry, but we
may establish the following important

Theorem. — Any figure with two rectangular axes of
symmelry has also a centre of symmetry; namely, the inter-
section of those axes.

v\
%

T
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Data: XX' and YY' two rectangular axes, P any point
of a figure symmetric as to these axes (Fig. 68).

Proof. The point 2’ symmetric with 2 as to XX’ is a
point of the figure (why?) ; also 2" symmetric with 7' as
to YY' is a point of the figure (why?); so too is A"
(why?) ; the figure PP'P"P" is a rectangle (why?), its
diagonals halve each other, and SP= SP"=SP' = SP".
Hence S is a centre of symmetry. Q.E.D.

THE CIRCLE.

108. We have already discovered the existence of a
homeaoidal plane curve not reversible and have named it
circle.

Defs. A ray cutting a curve is called a secant, as L ; the
part of the secant intercepted by the curve, or the tract
between two points of the curve, is called a chord, as 45.
A finite part of a curve is called an arc. A chord and an
arc with the same two ends are said to subtend each other.
Also, the intercept of any line between the ends of an angle
is said to subtend the angle. Thus BC and DE subtend the

angle O (Fig. 69).
}\
L —
A /
E
Cc

FI1G, 69.
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109. Theorem XLVIIL. — Congruent arcs subiend con-
gruent chords.

Proof. Let the arcs 48 and CD be congruent ; then we
may fit 4 on C and at the same time B on D; then the
chords 48 and CB fit throughout (why?). Q.E.D.

N.B. We can not convert this proposition at once (why?)
(Fig. 70).

P
A B
D
FIG. 70.

110. Theorem XLIX.— A closed curve is cut by a ray in
an even number of points (Fig. 71).

FIG. 71.

Proof. Let Z be a ray, C any closed curve. Suppose a
point 2P to trace out the ray Z. At first 2 is without the
curve, at last it is also without the curve; hence 2 has
crossed the curve going out as often as it has crossed the
curve going in, for every entrance there is an exit; hence
the points of intersection appear in pairs, their number is
even,as o0, 2,4,6, . . . 27. Q.E.D.
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These preliminary or auxiliary theorems, which prepare
the way for a theorem to follow, are sometimes called
lemmas (Anppa = assumption, premise, support, prop).

*111. Theorem L.— A circle has an axis of symmetry
through every one of its points (Fig. 72).

R

FiG. 72.

Proof. Let D be any point of a circle. Take any arc
DP, and slip it round till 2 falls on D and D on P'; this
is possible (why?). Then PDP'is a symmetrical A (why?) ;
and its axis of symmetry DR halves normally the chord
PP', and also halves the angle PDP' (why?). Now take
any other arc DQ and slip it round till Q falls on D and D
on @', so that DQ and Q'D are congruent. Then the
chords DQ and DQ' are congruent (why?). Also, on
taking away the congruents D2 and DP' we have left PQ
and P'Q' as congruent remainders. Hence the chords PQ
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and P Q' are congruent (why?). Hence the A PDQ and
P'DQ' are congruent (why?); hence the angles PDQ and
P'D(Q' are equal (why?) ; hence DR halves also the angle
QDQ' (why?). But the A QDQ' is symmetric (why?) ;
hence DR is also its axis of symmetry, and Q and Q' are
symmetric points of the circle; hence any point of the
circle has its symmetric point as to DR; ie. DR is an
axis of symmetry of the circle. Moreover, D was any point
of the circle ; hence through any point of the circle passes
an axis of symmetry. Q.E.D.

Def. A ray halving a system of parallel chords is called a
diameter ; the chords and diameter are called conjugate to
each other.

Corollary 1. In a circle a diameter is normal to its con-
jugate chords.

Corollary 2. Every mid-normal to a chord in a circle is
a diameter and halves the subtended arcs.

*112. Theorem LI. — A circle has a centre of symmetry
(Fig. 72).

For the ray through D must cut the circle in some second
point, as R (why?), and as the ray.turns round from the
position DR to the reversed position 2D, through a straight
angle, it must pass through some position, QQ’, normal to
its original position (why?). Hence for any axis of symmetry
there is another normal thereto and their intersection is a
centre of symmetry (why?). Q.E.D.

N.B. There is only one centre of symmetry (why?).
Def. This centre of symmetry is named centre of the
circle. It is often convenient to call the whole ray through

the centre a centre ray or line, and to restrict the term
diameter to the centre chord.
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Corollary 1. All diameters go through the centre, and
halve each other there; conversely, chords halving each
other are diameters.

Def. Two diameters each halving all the chords parallel
to the other are called conjugate.

Corollary 2. In the circle two diameters normal to each
other are conjugate ; and conversely, two conjugate diameters
are normal to each other.

N.B. Other curves, as Ellipse and Hyperbola, have
conjugate diameters nof in general/ normal to each other

(Fig. 73). '
*113. Theorem LII. — AX diameters of a circle are equal
(Fig. 74).

FIG. 73. FIG. 74.

. Proof. Let DR and D'R' be two diameters. The figure
DD'RR' is a parallelogram (why?), and DD’ is parallel to
RR'; hence the mid-normal of these parallels is a diameter
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through the centre .S; hence SD and SO’ are symmetric
and equal ; hence DR = D'R'. Q.E.D.

Def. A half-diameter, from centre to circle, is called a
radius.

Corollary 1. All radii of a circle are equal ; or, all points
of a circle are equidistant from the centre.

Corollary 2. Every parallelogram inscribed in a circle is
a rectangle.

N.B. By help of this important property the circle is
commonly defined as @ plane curve all points of which are
equidistant from a point within called the centre. The com-
mon distance of all points of the circle from the centre is
often called the radius. We have deduced this property
from the homceoidality ; comversely, we may deduce the
homceoidality from this property taken as definition. But
if there were no such surface as the plane, at least for our
intuition, the circle might still exist on the sphere-surface,
without centre, but with the body of its properties unimpaired.
Hence it seems better to define the circle by its intrinsic
homeeoidality than by its extrinsic centrality.

Corollary 1. All points within the circle are less, and all
points without are more, than the radius distant from the
centre.

Defs. The two symmetric halves into which a diameter
cuts a circle are called semicircles. The part of the plane
bounded by an arc and its chord is called a segment ; the
part bounded by an arc and the two radii to its ends is
called a sector. If the sum of two arcs be a circle, we may
call them explemental, the one minor, the other major,;
every chord belongs equally to each of two explemental arcs,
but in general, unless otherwise stated, it is the minos that
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is referred to. Two arcs whose sum is a half-circle are
called supplemental ; two whose sum is a quarter-circle or
quadrant are called complemental.

Corollary 2. All circles of the same radius are congruent ;
also, all semicircles of the same radius are congruent, and
all quadrants of the same radius are congruent.

Corollary 3. Any circle may be slipped round at will
upon itself about its centre as a pivot, like a wheel about its
axle, without changing in the least the position of the whole
circle.

114. From the foregoing it is clear that if we hold one
point of a ray fixed, and turn the ray in the plane about the
fixed point, every other point of it will trace out a circle
about the fixed point as a centre. An instrument, one point
of which may be fixed while the other is movable about in a
plane, is called a compass or pair of compasses, and is both
the simplest and the most important of all instruments for
drawing.

115. Theorem LIII. — Z%rough a'ny three points not col-
linear one, and only one, circle may be drawn.

Proof. Let A4, B, C be the three points not collinear
(Fig. 75). We have already seen that the mid-normals to
the tracts 4B, BC, CA concur in a point S equidistant from
A, B, and C; hence a circle about .S with radius & passes
through 4, B, C. Also there is only one point thus equi-
distant from 4, B, C (why?); hence there is only one
circle through 4, B, C. Q.E.D.

De¢f. The circle through the vertices 4, B, C, of a A is
called the circum-circle of the A,

Corollary 1. A A, or a triplet of points, or a triplet of
rays, determines one, and only one, circle.
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Corollary 2. Through two points, 4 and B, any number
of circles may be drawn. Their centres all lie on the mid-
normal of 45.

Corollary 3. As BC turns clockwise about B as a pivot,
the intersection .S, the centre of the circle through 4, B, C,
retires upward ever faster and faster along the mid-normal &
of AB ; when C becomes collinear with 4 and B, the inter-

N

R —

FIG. 75.

section of the mid-normals of 48 and BC vanishes from
finity, or retires to infinity, as the phrase is. As BC keeps
on turning, .S reappears in finity below and moves slower and
slower upward along the mid-normal. Moreover, a circle
passes through 4, B, and C, no matter how close C may lie
to the ray 4B, nor on which side of it : only as C falls upon
the ray does the centre of the circle vanish into infinity ; that
is, we may draw a circle that shall fit as close o the ray AB
as we please, though not upon it, by retiring the centre far
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enough. Hence a ray may be conceived as a circle with
centre retired to infinity ; it is strictly the limit of a circle
whose centre has retired, along a normal to it, wizhout limit.

116. Theorem LIV. — A4 circle can cut a ray in only two
points. ' '

For there are only two points on a ray at a given distance
from a fixed point (why?). Q.E.D.

117. Theorem LV. — Secants that make equal angles with
the centre ray (Or axis) through their infersection intercept
equal arcs on the circle.

Proof. For both the two semicircles and the two secants
are symmetric as to the axis ZS (why?) ; hence, on folding
over the one-half-plane upon the other, 4 falls on 4', B on
B', arc a fits on arc &', and chord ¢ on chord ¢' (Fig. 76).
Q.E.D.

FIG, 76,



TH. LVL] THE CIRCLE. )

Conversely, Secants that inlercept equal arcs make equal
angles with the axis through their intersection.

Proof. Let Z and Z' intersect equal arcs 48 and 4'B'.
Draw the mid-normal of 44'; it is an axis of symmetry
(why?). On folding over the left half-plane upon the right
half-plane, 4 falls on 4’ and B on B' (why?) ; hence AB
and A'B' are symmetric; hence they meet on the axis and
make equal angles with it (why?). Q.E.D.

Corollary 1. 'Equal chords are equidistant from the cen-
tre ; and conversely, Chords equidistant from the centre are
equal. ‘ ‘

Corollary 2. The greater of two unequal chords is less
distant from the centre.

Corollary 3. A diameter is the greatest chord.

Corollary 4. Arcs intercepted by two parallel chords are
equal. '

Corollary 5. Equal chords or arcs subtend equal central/
angles (angles at the centre), and conversely.

Corollary 6. Of two unequal chords or arcs, the greater
subtends the greater central angle.

What figure is determined by two parallel chords and the
chords of the intercepted arcs ? By two secants that inter-
cept equal arcs and the central normals thereto ?

118. Theorem LVI. — A central angle subtended by a cer-
tain arc (or chord) is double the peripheral angle subtended
by the same (or an equal) arc (or chord) (Fig. 77).

Proof. Let ASB be a central angle, and 4PB be a
peripheral angle (periphery = circumference, the circle
itself), subtended by the same arc or chord 48. Draw the
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diameter 2D. Then the A ASP and BSP are isosceles
(why?) ; hence the angle 45D = 2 angle APD, and angle
BSD = 2 angle BPD (why?) ; hence angle 4S8 = 2 angle
APB. Q.E.D.

P

FIG. 77.

Corollary 1. All peripheral angles subtended by (or stand-
ing on) the same or equal chords or arcs are equal. Hence,
as P moves round from 4 to B, the angle 4PB remains
unchanged in size.

Def. An angle with its vertex on a certain arc, and its
arms passing through the ends of that arc, is said to be
inscribed in that arc. Hence for an angle to be inscribed
in a certain arc, and for it to sfand on the explemental arc,
are equivalent.

Corollary 2. All angles inscribed in the same or equal
arcs of the same or equal circles are equal.

Corollary 3. As the vertex P of a peripheral angle sub-
tended by an arc (or chord) 4B, in passing round a circle
goes through either end of the arc (or chord), the angle
itself leaps in value, changes to its supplement.
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119. Theorem LVIL. — Z%e locus of the vertex of a given
angle standing on a given tract is two symmelric circular
arcs through the ends of the tract (Fig. 78).

\
o

\
/o

FIG. 78.

Proof. Let P be the vertex of the given angle, in any
position, standing on the tract 48. Through 4, 72, and B
draw a circular arc subtended by 4B. We have just seen

~ that as long as 2 stays-on this arc, the angle 2 remains the
same in size. Moreover, the point 2 cannot be without the
arc, as at O, because the angle 40B is less than 4PB
(why?) ; neither can it come within the arc, as to Z, because
the angle A/B is greater than 478 (why?) ; hence so long
as the angle is constant in size the vertex must remain on
the arc APB or on its symmetric arc 42P'B, of which plainly
the same may be said. Q.E.D.

120. Theorem LVIIL. — 7%e angle inscribed in a semi-
cirele (or standing on a semicircle or diameter) #s @ right-

angle (Fig. 79).
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Proof. Let 4BC be any angle in a semicircle. Then it
is half of the central angle 4SC (why?), which is a straight
angle (why?). Q.E.D.

L
B T

FIG. 79.

Now let the vertex B, the intersection of the rays Z and
&V, move round the circle toward C; the angle ABC re-
mains a right angle, #o matter how close B approaches to C;
moreover, when B passes C, into the lower semicircle, the
angle remains a right angle (why?). . That is, the angle at B
remains a right angle, no matter from which side nor how
close B approaches to C. Hence it is a right angle even
when B falls on C. But then the ray Z falls on the diame-
ter AC, hence the ray /V takes the position 7 normal to the
diameter (or radius) at its end. Such a normal to a radius
at its end is called a tangent to the circle at the point of
tangence (or touch or contfact) C. ’

Def. A ray normal to a tangent to a curve at the point
of touch is called normal to the curve itself. Hence

Corollary. All radii of a circle are normal to the circle ;
and conversely, all normals to a circle are radii of the circle.
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121. Theorem LIX.— A/ points on a tangent, except the
point of contact, lie outside of the circle.

Proof. For the point of touch is distant radius from the
centre (why?), and all other points, as D, of the tangent
are further from the centre (why?) ; hence all other points
of the tangent are without the circle (why?). Q.E.D.

122. Theorem LX.— 7%e point of tangence is a double
point.

Proof. For it is on a diameter, or axis of symmetry, of
the circle, and every such point is a double point with
respect to that axis.

Independently of this consideration, it is seen that the
chord CB becomes the tangent C7" when, and only when,
the points B and C fall together in C.

o)
D
A\”\y B
FIG. 8o.

Still otherwise, let 4B be any chord of a circle about
(Fig. 80) O. Draw the mid-normal OD. Now let the
circle shrink about the centre O: the points 4 and B move
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towards each other, and as D is always mid-way between
them they finally fall together in D, and their join is tan-
gent at D to the circle of radius OD.

Def. Two points thus falling together in a double point
are called consecutive points. Accordingly we may define
a tangent to a circle (or to any curve) as a ray through two
consecutive points of the circle (or curve). Adopting this
definition, let the student prove

123. Theorem LXI. Euvery langent fo a circle is normal
¥ a radius at its end; conversely, Every normal to a radius
at its end is tangent to the circle.

: .

124. Theorem LXII. Thke angle between a tangent and
a chord equals the peripheral angle on the same chord, or
equals half the angle of the chord (Fig. 81).

T A
F1G. 81.

Proof. For if D7 be a diameter, then the angles BDT
and BT are equal, being complements of the same angle
BTD (why?). Or thus: 7B is a chord, and 74 is also a
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chord, through the double point 7°; hence the angle B74
is a peripheral angle standing on- the arc 7B. Q.E.D.

125. Theorem LXIII. — 7%e angle between two secants
is half the sum or half the difference of the angles of the
intercepled arcs, according as the secants intersect within or
without the circle. ‘

Proof. For on drawing 45' the angle 7 is seen (Fig.
82) to be the sum, and the angle O the difference, of the

angles at 4 and B’ standing on the arcs 44’ and BB
Q.E.D. -

126. Theorem LXIV.— An encyclic quadrangle has its
opposite angles supplemental. '

Proof. For the angles B and D are halves of the ‘two
central angles 4SC and CS4, whose sum is a round angle.
Hence the sum of B and D is a straight angle. Q.E.D.
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127. Theorem LXV.— Conversely, 4 guadrangle with
its opposite-angles supplemental is encyclic (Fig. 83).

FIG. 83.

Proof. Let ABCD be the quadrangle with the angles
4 and C, B and D, supplemental. About the A 4BC draw
acircle. If 2 be any point on the arc of this circle exple-
mental to ABC, then the angle 4PC is the supplement of
ABC ; but if P be not on this arc, then the angle 42C is
either greater or less than that supplement (why?). Now
the angle D is that supplement; hence D is on the arc.
Q.E.D.

128. Relations of circles to each other.

Suppose two circles X and X' of radii » and 7' to be
concentric, i.e. to have the same centre O. Then, plainly,
the distance between them measured on any half-axis OR
is » — 7/, the difference of the radii. Draw tangents 47,
A'T", where OO’ cuts the circles. They are parallel (why?).
Now let the centre of X" move out on 00" a distance » — #/;
then A4 falls on 4' and 4'7" on AT ; the circles have a
common tangent at A and are said to fouch each ot/zer
innerly at 4 (Fig. 84).
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Now let O' move still further along OO'; then the circles
will lie partly within, partly without, each other; they will
intersect at two points, and only two (why?), symmetric as
to OO' (why?), namely 2 and 7'; hence

. K a K
g [*] , [¢) \O [+ A o’ \y
o o’ 4 7
FIG. 84.

Theorem LXVI. — Zhe common axis of two circles is the
mid-normal of their common chord.

When O’ is distant 7+ #' from O, the circles lie without
each other, but still have a common tangent (why?) and are
said to Zouck outerly.

As O' moves still further away from O, the circles cease to
touch and henceforth lie entirely without each other.

Thus we find that there are hree critical positions depend-
ing on the distance & between the centres O and O':

d =0, when the circles are concentric.
d=r— 7, when the circles touch innerly.
d=r+ 7, when the circles fouch outerly.

There are also zhree intermediate positions :
For 0 < d < » — 7 the one circle is within the other.
For r — # < d< r + r the circles intersect.
For » + » < d < o the circles lie without each other.

129. Theorem LXVII.— From any point without a circle
two, and only two, tangents may be drawn to the circle (Fig.

8s).
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Proof. Let O be the centre of the circle X, and 2 be
the point without. On OP as a diameter draw a circle X ;
only one such circle is possible (why?), and it cuts X in two,
and only two, points, 77 and 7"'. Draw P7 and P7": they
are tangent to X at 77and 7" (why?). Moreover, no other
ray through 2, as PU, is tangent to X, because OUP is not
a right angle (why?). Q.E.D.

'

D Bt |

FIG. 83.

Def. The chord 7’7" through the points of contact of the
tangents is called the chord of contact for the point 2 or
the polar of the pole P (see Art. ).

The angle between the tangents to two curves at the
intersection of the curves is called the angle between the
curves themselves. When this is a right angle, the curves
are said to intersect orthogonally.

The distance P7 or P7" is called the tangent-leng‘th
from Pto the circle.

Corollary 1. Two circles, one having as radius the tangent-
length from its centre to the other, intersect orthogonally.

Corollary 2. Two tangents are symmetric as to the axis
through their intersection ; hence, also, the tangent-lengths
are equal.
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130. Theorem LXVIIL. — A/ tangent-lengths to a circle
Jrom points on a concentric circle are equal, and intercept
equal arcs of the circle (Fig. 86).

FIG. 86.

Proof. For if 2 be apy point without the circle X', we
may turn 2 round about the centre O on a concentric circle
K' without affecting any of the relations obtaining (why?).

Or thus : the right A Z7OP and 7"OP' ar¢ plainly con-
gruent (why?); hence P7'= P'T" (why?). Q.E.D.

*131. Theorem LXIX.— Z%e intercept between two fixed
tangents on a thivd tangent subtends a constant central angle
(Fig. 87). ' .

“Proof. Let PT" and P77 be the fixed tangents, V'V’ the
intercept on the variable ray tangent at U Then 7/P7" is
a constant angle, and OV is half of 707" (why?), and
hence is constant. Q.E.D.

v
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-worem LXX. —1If the central (or peripheral) angles
of the common chord of two intersecting circles be equal, the
ctrcles are equal. v

Let the student conduct the proof suggested by the figure
(Fig. 88), and let him prove the converse.

FIG. 88.

*133. Theorem LXXI.— 7The circumcircle of a A equals
the circumcircle of the orthocentre and any two vertices of
the A (Fig. 89).

Proof. Let X be the circumcircle of the A ABC, X' the
circumcircle of 4, B, and O the orthocentre. The angles
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C and B'0OA' are supplemental (why?) ; also the angles D
and BOA are supplemental (why?) ; and the angles 04
and B'0OA' are equal (why?); hence the angles D and C
are equal ; hence X' = X' (why?) Q.E.D.

FIG. 89.

*134. Theorem LXXII. —Z%e mid-points of the sides of a
A, the feet of its altitudes, and the mid-points between its
orthocentre and vertices, are nine encyclic points.

Proof. Let a circle through X, ¥, Z, the mid-points of the
sides,. cut the sides in three other points, U, V, W. Then
the angle ZXY = angle 4 (why?), and also = angle ZV¥
(why?) ; therefore the A 4ZV is symmetrical. Hence the
A ZVB is also symmetrical, Z is equidistant from 4, ¥, and
B, and the angle A VB is a right angle (why?) ; so also the
angles at Uand W; i.e. the circle through the mid-points of
the sides goes through the feet of the altitudes (Fig. 9o).

Again, if the circle cuts the altitudes at 72, Q, R, then the
angle VPW = angle VZW (why?) = 2 angle VAW (why?).
Moreover, 4, V, O, W, are encyclic (why?) ; hence 40 is
a diameter of the circle through them (why?) ; and VAW
is a peripheral angle standing on the arc /I ; hence the



112 GEOMETRY. [Ta. LXXIIL

double angle VP must be the central angle of the same
arc; i.e. Pis the mid-point between a vertex and orthocen-
tre : so, also, are Q and &, similarly. Q.E.D.

FI1G. 0.

Def. This remarkable circle is called the g-point circle,
or circle of Feuerbach, of the A ABC.

Corollary. The radius of the g-point circle is half the
radius of the circumcircle.

135. Def. A Polygon all of whose sides touch a circle is
said to be circumscribed about it, and the circle is said to be
inscribed in the polygon.

Theorem LXXIII. — A circle may be inscribed in any A.

Proof. Let ABC be any A (see Fig. 59). Draw the
inner mid-rays of the angles at 4, B, C; they concur in the
in-centre 7 of the A, equidistant from the three sides (why?).
About this point as centre with this common distance as
radius draw a circle ; it will touch the three sides of the A
(why and where?). Q.E.D.

N.B. We have seen that the outer mid-rays of the angles
concur in pairs with the inner mid-rays of the angles in the
three ex-centres £,, £,, £, also equidistant from the sides
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(Fig. 60). The circles about these touch only two sides
innerly, but the third side outerly, and hence are called
escribed, or ex-circles.

Corollary. Four, and only four, circles touch, each, all the
sides of a A.

135a. Theorem LXXIV. —/n a ¢-side circumscribed
about a circle the sums of the two pairs of opposite sides are
equal (Fig. or1). ’

FIG. o1.

Proof. The sum >of the four sides is plainly 2#+4 2% 4 29
+ 2w, and the sum of either pair of opposites is /4% +v+w.
Q.E.D. : .

Conversely, If the sums of two pairs of opposite sides of a
g-side be equal, the ¢-side is circumscribed about a circle.

Proof. Let two counter sides, 48 and DC meet in 7/,
and inscribe a circle X in the triangle AD/. Through B
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draw a tangent (Fig. 92) to K at U, and let it cut D7 at C'.
Then since ABC'D is circumscribed about X, we have

FI1G. 92

AB + C'D=B(C' + DA.

Also AB + CD = BC+ DA (why?).
Whence CD—-CD=BC—-BC,
or CC'=BC—-BC.

Hence C and C fall together (why? Art. 56). Q.E.D.

136. Theorem LXXV.~— The fangent-length from a ver-
tex of @ A to the in-circle equals half the perimeter of the A
less the opposite side (Fig. 93).
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Proof. For the sum of CE 4 CD + BD + BF is plainly
2a (why?) ; subtract this from the whole perimeter, ¢ + 4 + ¢,
and there remains A4+ AF=a+bé+c—2a, or AE=

é—'%‘—“:AF. Q.E.D.

FIG. 93.

It is common and convenient to denote the perimeter
(Fig. 93) (= measure round = sum of sides) by 2s; then
we see that the tangent-lengths from 4, B, C, are s — a,
s—b,s—c.

Corollary. The tangent-length from any vertex, 4, of a
A to the opposite ex-circle and the two adjacent ex-circles
are s, s—b, s—c¢. Hence s—a, s, s—b, s—c, are the
four tangent-lengths from any vertex, 4, of a A to the in-
circle and the three ex-circles.

These relations are useful and important.

137. Theorem LXXVI. — 7here is a regular n-side.

Proof. For the angle is a continuous magnitude (why?) ;
hence there are angles of all sizes from zero to a round
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angle; hence there is an angle, the ;‘ part of a round angle,

such that, taken # times in addition, the sum will be a round
angle. Suppose such an angle drawn, whether or not we
can actually draw it, and suppose 7 such angles placed con-
secutively around any point O, so as to make a round angle.
In other words, suppose #z half-rays drawn cutting the
round angle about O into 7 equal .angles. Draw a circle
about O, with (Fig. 94) any radius, and draw the 7 chords

FIG. o4.

subtending the 7 equal central angles. These chords are
all equal (why?), and subtend equal arcs, and they form an
n-side. Moreover, the angle between two consecutive sides
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n—2

is constant in size, because it stands on the part of

the circle. Hence the z-side is both equilateral and equian-
gular ; that is, it is regular. Q. E.D.

Corollary. The inner angle of a regular z-side is the

(" — 2) part of a straight angle.
n

Find the value in degrees of the inner angles of the first
ten regular z-sides.

N.B. The foregoing demonstration merely settles the
question of the existence or logical possibility of the regular
n-side. The problem of actually drawing such a figure is
one of the most intricate in all mathematics, and has been
solved only for certain very special classes of values of .
But in order to discover the properties of the figure, it is by
no means necessary to be able to draw it accurately. It is
only since 1864 that we have known how to draw a straight
line or ray exactly.

137 a. Theorem LXXVII. — Z%e vertices of a regular
n-side are encyclic (Fig. 94).

Proof. Through any three vertices, as 4, B, C, of a regular
n-side, draw a circle X; about C with radius CB draw
another circle. The fourth vertex D must lie on this circle
(why?). If it lie on the circle X, then the angle BCD =
angle ABC, as is the case in the regular n-side. Neither
can it lie off of X, as at D' or D", because then the angle
BCD' or BCD" would not equal angle BCD (why?), and
hence would not equal angle 4BC. Hence the next vertex
must lie on the same circle K, and so on all around. Q.E.D.

138. Theorem LXXVIII.— 7%e sides of a regular n-side
are pericyclic (that is, they all touch a circle). '
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Proof. For, on drawing the radii of the circumcircle X
(Fig. 95) to the vertices, we get #» congruent symmetric &

o FIG. 95.

(why?). The altitudes of all are the same (why?) ; with
this common altitude as radius draw another circle, X,
about the same centre. It will touch each of the sides
(why?). Q.E.D.

Corollary. The points of touch of the sides of the regular
circumscribed #-side are mid-points of the sides.

139. Theorem LXXIX.— Z%e points of touck of a regular
circumscribed n-side are the vertices of a regular inscribed
n-side.

Proof. Connect the points of touch consecutively. Then
the A so formed are all congruent (why?); hence the
joining chords are equal; hence the arcs are equal;
hence the Theorem. Q.E.D.
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THE CIRCLE AS ENVELOPE.

*140a. Thus far we have regarded the circle from various
points of view ; from the most familiar it was seen to be the
locus of a point in" a plane at a fixed distance from a fixed
point. An almost equally important conception of the curve
treats it not as the Jocus of a point, but as the envelope of @
ray. If the point 2 moves in the plane always equidistant
from O, then its locus is the circle, on which it may always
be found ; also, if the ray &£ moves about in the plane always
equidistant from O, then its envelope is the circle, on which
it may always be found, on which it lies, which it continually
touches. The point traces the circle, the ray envelops the
circle, which is accordingly called the enwvelope (i.e. the
enveloped curve — French enwveloppée) of the ray. In higher
mathematics the notion of the ray, instead of the point, as
the determining element in the nature of a curve, attains
more and more significance. In this text we are confined
to the circle —the envelope of a ray in a plane, at a fixed
distance from a fixed point.

*140b. It is not only rays, however, that may envelop a
curve ; but circles, and in fact any other curves. Thus, let
the student draw a system of equal circles, having their
centres on another circle ; the envelope will at once be seen
to be a pair of concentric circles. Let him also find the
envelope of a system of circles equal and with centres on a
given ray. In general, let him find the envelope of a circle
whose centre moves on any given curve. Lastly, let him
draw a large number of circles all of which pass through a
fixed point, while their centres all lie on a fixed circle, and
let him observe what curve they shadow forth as envelope.

Show that as the pole of a chord (or ray) traces a circle,
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the chord itself envelops a concentric circle, and con-
versely.

Show that tangents from two points on a centre ray form
a kite, and conversely. Also the chords of contact are
parallel, and conversely.

O is the centre of a circle, 2 any point without it. Show
how to find the point of touch of the tangents from 7, by
drawing a circle about O through 2 and a tangent where
OP cuts the given circle.

CONSTRUCTIONS.

140. Hitherto, in our reasoning about concepts, figures
have not been at all necessary, though exceedingly useful in
making sharp and precise our imagination of the relations
under consideration, in furnishing sensible examples of the
highly general notions that we dealt with. The conclusions
reached thus far all lie wrapt up in axioms and in our defi-
nitions of point, ray, and circle, and our work has been one
of explication only ; we have merely brought them forth to
light. Our demonstrations have not presumed ability to draw
accurately, and would remain unshaken if we could not draw
at all. Nevertheless, for many practical purposes, it is ex-
tremely important and even indispensable that we actually
make the constructions and draw the figures that thus far we
have merely supposed made and drawn.

141. What is meant by drawing a ray, circle, or any line ?
Any mark, whether of ink or chalk, though a solid, may be
treated as a line by abstraction. Only its length, not its
width nor thickness, concerns us. How to make not just
any mark, but some particular mark called for, is our prob-
lem (mwpofAnpa = anything thrown forward as a task), and
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its solution consists accordingly of two parts, the logical and
the mechanical. The first is accomplished by fixing exactly
in thought the position of all the geometric elements (points,
rays, circles) in question ; the second, by making marks that
by abstraction may be treated as these elements. Now, a
point is fixed as the join of two rays, a ray as the join of two
points (by what axiom?) ; a circle is fixed or determined by
its centre and radius (why?), or by three points on it (why?).
Accordingly, when we know two rays through a point, or two
points on a ray, or centre and radius, or three points of a
circle, we know the point, or ray, or circle completely. The
logical part of our work is finished, then, when we determine
every point as the join of two known rays, every ray as the
join of two known points, every circle as drawn through three
known points or about a known centre with a known radius.
The mechanical part of the solution requires us to put and
keep a point in motion along a circle or a ray. Circular
motion is brought about by the compasses already described
(Art. 114), of which the shape is arbitrary, the necessary
parts being merely a fixed point rigidly connected in any way
with a movable point. But in the ruler one edge is supposed
made straight to begin with, so that a pencil point gliding
along it may trace a straight mark. Hence the use of the
ruler is really illogical, since it assumes the problem of draw-
ing a ray or straight line as already solved in constructing
the straight edge. To say that, in order to draw a s#raight
line, we must take a s#raight edge and pass a pencil point
along it, is no better logically than to say that, in order to
draw a circular line, we must take a circular edge and pass
a pencil point along it. The question at once arises, How
make the edge straight or circular in the first place? It was
not until 1864 that Peaucellier won, though he did not at
once receive, the Montyon prize from the French Academy
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by solving the thousand-year-old problem of imparting rec-
tilinear motion to a point without guiding edge of any kind
(Page 000). But, though the ruler is logically valueless, it is
practically invaluable, even after the great discovery of Peau-
cellier. Its edge being assumed as straight and of any
desired length, and a pair of compasses of adjustable size
being given, we now make the following Postulates :

1. About any point may be drawn a circle of ahy radius.

II. Zhrough any two points may be drawn a ray (more
strictly, a tract of any required length).

Corollary. On any ray from any point on it we may lay
off a tract of any required length.

These are the only instruments used or postulates assumed
in the constructions of Elementary Geometry.

142. The fundamental relations of rays to each other are
two : Normality and Parallelism. Hence

Problem 1. — 70 draw a ray normal to a given ray. Since
there are many rays normal to a given ray, to make the
problem definite we insert the limiting condition, through a
given point. Two cases then arise :

A. When the given point is on the given ray. All we can
do is to draw a circle about the point 2. : It cuts the ray at
two points, 4 and A4', symmetric as to 2. Hence the mid-
normal of 44' is the normal sought. Hence any point on
this normal lies on two circles of equal radius about 4 and
A'. Hence (Fig. 96) .

Solution. From the given point 2 lay off on the given
ray two equal tracts P4, PA'. About 4 and A' draw two
equal circles. Through their points of intersection draw
their common chord. It is the normal sought.
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Proof. For it is the mid-normal of 44, since it has two
of its points equidistant from 4 and 4', and 2P is the mid-

point of 44",
K

X

FIG. ¢6.

Query: What radius shall we take for the circles about
A and 4'?

B. When the given point is not on the given ray. All we
“can do is to draw a circle about the given point 2. Let it
cut the ray at 4 and 4'. Then the mid-normal to 44' is
the normal required (why?). Hence (Fig. 97)

Solution. Determine the points 4, 4' on the ray by
a circle about the given point P; then proceed as in the
first case (A).
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Proof. For the mid-normal of 4A4' goes through 2
(why?).

L/
>N

>/
FIG. 97.

Query: What radius shall we take for the circle about P?

143. Problem II.— 7% draw a parallel to a given ray.
Since there are many parallels to every ray, to make the
problem definite we must insert the limiting condition,
through a given point; then it becomes perfectly definite
(why?). Manifestly the point must be not on the ray
(why?). We now reflect that a transversal makes equal
corresponding angles with parallels, and we have just learned
to draw a normal transversal. Hence (Fig. 98)

Solution. Through the point draw a normal to the ray;
through the same point draw a normal to this normal. It
will be the parallel required.

Proof. For it goes through the point and is parallel to the
_ray (why?). '

These two problems have been discussed at such length
as being the hinges on which nearly all others turn. At
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the end of a problem is sometimes written Q. E. F. = ¢gwod
erat faciendum = which twas o be done, and translates the
Euclidean é7ep é8et mpafuas.

N*
P A
7\
\ N
A A
P

FIG. ¢8.

144. Problem III.— 70 bisect a given tract, or to dratw
the mid-normal to a given tract, AB.

Proceed as in Problem 1.

145. Problem IV.— 70 bisect a given angle.

Solution. About the vertex draw any circle cutting the
arms at 4 and A', and draw the mid-normal of 44'. It is
the mid-ray sought (why?).

Corollary. Show how to bisect any circular arc 4B.

146. Problem V.— 70 bisect the angle between two rays
whose join is not given (Fig. 99).
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We reflect that the join 44' of two corresponding points
on the rays makes equal angles with the two rays that form
the angle. Hence

Solution. From any point P of L draw the normal to it,
cutting M at Q. From Q draw the normal to M. Bisect

FIG. 99.

the angle at Q between these two normals by the mid-tract
QR. Draw the mid-normal of QR. It is the mid-ray
sought (why?).

147. Problem VI.— 70 multisect a given tract AB (Fig.
100).
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Solution. Through either end of the tract, as 4, draw any
ray, and lay off on it from A successively » equal tracts, Z
being the end of the last. Draw BZL. Through the ends
of the equal tracts draw parallels to BZ. They cut 458
into 7 equal parts (why?).

148. Problem VII.— 70 draw an angle of given size, i.e.
equal to a given angle (Fig. 101).

FIG. 101.

Solution. At any point 4 of either arm of the given angle
O erect a normal to OA cutting the other arm at B. From
any point O on any other ray lay off 0'4' = 04, and normal
to the ray erect 4'B' = 4B and draw O'B'. Then angle O'
= angle O (why?).

When does this construction fail? How proceed then?

149. Problem VIII.— 70 drew a tract of given length
sublending a given angle and parallel to a given ray. :

Data: O the given angle, Z the ray, a the length (Fig.
102).

Solution. Through any point 2 of either arm of the angle
draw a parallel to the ray, and lay off on it towards the other
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arm a tract P4 of the given length . Through A4 draw a
parallel to OF, cutting the other angle arm at Q; through Q
draw a parallel to 24 meeting OPat R. QR is the subtense
sought (why?).

FIG. 102.

150. Problem IX.—To construct a A:

A. When alternate parts (three sides or three angles) are
given.

Solution. About the ends of one side 4.5, with the other
sides for radii, draw circles meeting in C. Then 4BC is
the A sought (why?) (Fig. 103).

X %

FIG. 103.

How many such A may be drawn on the same base A5?
How are they related? When is the solution impossible?
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When the angles are given, apply the construction of Problem
VII. How many solutions are possible? What kind of A?

B. When three consecutive parts (two sides and included
angle or two angles and included side) are grven.

Solution. Apply the construction in Problem VII.

C. When opposite parts (two angles and an opposite side
or two sides and an opposite angle) are given.

Solution. Apply the construction in Problem VII. When
is the construction ambiguous?

D. When two sides and the altitude to the third side are
given.

Solution. Through one end of the altitude draw a normal
to it for the base ; about the other end C as centre, with the

sides as radii, draw circles cutting the base at 4 and 4,
B and B'; then ACB or A'CB'is the A required. Why?

E. When two sides and the medial of the third side are
given.

)
~

FIG. 104.
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If SA4 be the medial of BC, and S4' be symmetric with
(Fig. 104) SA4 as to S, then 4BA'C is a parallelogram
(why?) ; hence

Solution. Take a tract the double of the medial.. About
its ends as centres with the sides as radii draw circles and
then complete the construction. How many A fulfilling the
conditions are possible? How are they related ?

F. When the three medials are given (Fig. 105).

A

B M
FIG. 105.

Solution. Remember that the medials trisect each other;
construct the A OBC according to (E), and draw 04
counter to O and twice as long.

151. Problem X.— 70 construct ‘an angle of given size
and sublended by a given tract.
Data: O the given angle, AB the given tract (Fig. 106).

Solution. Construct the angle BA.D of given size (how?),
draw the mid-normal of 4B, meeting 4D at P; also the
normal to 4D at 4, meeting the mid-normal at S. About
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S as a centre with radius S4 draw a circle ; it touches 4D
at 4 (why?). The vertex V of the required angle may be
anywhere on the arc 4 VB or on its symmetric 4 V'8 (why?).

FIG. 106,

152. Problem XI. — 70 draw a circle tangent fo a given
ray.

Solution. About any point .§ with a radius equal to the
distance of .S from the ray, Z, draw a circle; it will be a
circle required (why?). If the circle must touch the ray Z
at a given point 7, then S must be taken on the normal to
L through 2 (why?). If, besides, the circle must go through
a given point Q, then S must also be on the mid-normal of
PQ (why?). Hence the construction.
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153. Problem XII. — 70 draw a circle touching two given
rays.

The centre may be anywhere on either mid-ray (why?).
If now the circle is to touch a third given ray, the centre
must be also on another mid-ray ; that is, it must be the
intersection of two mid-rays of the three angles of the three
rays. There are four such intersections — what are they?
Complete the construction. See Fig. 6o.

154. Problem XIII.— 70 draw a circle through two
posnts.

The centre .S may be anywhere on the mid-normal of the
tract 4B between the points (why?), the radius is — what ?
If now the circle is to pass through a third point C, then .S
must also be on the mid-normal of BC and C4 (why?).
There is one, and only one, such point (why?) ; complete
the construction. When is the construction impossible ?

155. Problem XIV. — 70 draw a circle through two given
points and tangent fo a given ray; or, langent Yo two given
rays and through a given point.

This double problem is mentioned here because it must
naturally present itself to the mind of the student; but the
solution involves deeper relations than we have yet explored.
See Art. ooo.

Several of the foregoing problems were indefinite, admit-
ting any number of solutions : these latter taken all together
form a system or family. Problems concerning parallelo-
grams and other 4-sides may often be solved on cutting the
4-side into two A.

156. Problem XV.— 70 inscribe a regular ¢-side (square)
in a circle (Fig. 107).
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Solution. Join consecutively the ends of two conjugate
diameters. The 4-side formed is inscribed (why?) and is
a square (why?).

FIG. 107.

157. Problem XVI.— 70 inscribe a regular 6-side in a
circle.

Solution. Apply the radius six times consecutively as a
chord to the circle (Fig. 108). The figure formed will
be the regular 6-side (why?).

FIG. 108.

N.B. This seems to have been one of the first geometric
problems ever solved. ‘The Babylonians discovered that
six radii thus applied would compass the circle, and having
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already divided the circle into 360 steps, they accordingly
divided this number by 6 and thus obtained 60 as the
basis of the famous sexagesima/ notation, which long domi-
nated mathematics and still maintains its authority un-
diminished in astronomy and chronometry.

In more difficult problems it is often advisable, or in fact
necessary, to suppose the problem solved, the construction
made, and investigate the relations thus brought to light.
Then the facts thus discovered may be used regressively
in making the construction required. This method is illus-
trated in the following :

158. Problem XVII.— 7% draw a square with each of
its sides through a given point.

Let 4, B, C, D, be the four given points, and suppose
(Fig. 109) PQRS to be the square properly drawn. Draw

Ne
Pe‘o/

\_ @
N
=)

FIG. 109.

AB, cutting a side of the square, and through B draw BE
parallel to the side cut. Through a third point C draw a
normal to 4B, meeting Q& in 7. Also draw #G parallel
to PQ. Then the A ABE and CFG are congruent (why?).
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Hence we discover that CF= AB. This fact is the key to
the

Solution. Join two points 4 and B ; from a third, C, lay
off CF equal and normal to 4B. The join of D, the fourth
point, and #'is one side of the square in position (why?).
Let the student complete the construction and show that
four squares are possible.

159. Problem XVIII. — 70 #risect a given angle.

Suppose the problem solved and the ray OZ7' to make
X TOB =4T0A4 (Fig. 110).

FIG. 110,

From any point 4 of the one end of the angle draw a
parallel and a normal to the other end ; also draw to the
trisector a tract 4S=0A4. Then the following relations are
evident :

XAOS=XASO=X SAT+ X ST4;
but XAOS=2 X TOB=12 8T4;

hence X S7TA=2X SAT, and S7T= SA.
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Again, X SAR =X SRA, being complements of equal
angles ; hence S4=SR, TR=20A. Hence

Solution. From any point 4 of either arm of the given
angle draw a parallel and a normal to the other arm ; then,
with one point of a straight-edge fixed at the vertex O, furn
the edge until the infercept between the normal and the
parallel equals 20A. But to do this we need a graduated
edge, or a sliding length 2 OA4 on the edge itself. Accord-
ingly, this construction, while simple, useful, and interesting,
is not elementary geometric in the sense already defined.
To discover such a solution for this famous problem, has up
to this time baffled the utmost efforts of mathematicians.

EXERCISES II

1. State and prove the reciprocals of Exercises 9, 10,
11, page 71I.

2. Find a point on a given ray, the sum of whose dis-
tances from two fixed points is a minimum.

3. The same as the foregoing, difference supplacing
sum.

4. A and 4', B and B', C and (', are symmetric as to
MN. Show that AABC=AA'B'C.

5. The inner and outer mid-rays of the basal angles of
a symmetric A form a kite.

6. The inner mid-rays of the angles of a trapezium form
a kite with two right angles.

7. The joins, of the mid-points of the parallel sides of an
anti-parallelogram, with the opposite vertices, form a kite.

8. The mid-rays of the angles at the ends of the trans-
verse axis of a kite cut the sides in the vertices of an anti-
parallelogram.
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9. How must a billiard ball be struck so as to rebound
from the four sides of a table and return through its original
place?

10. Trace a ray of light from a focus 27, to another given
point Q, reflected from a convex polygonal mirror.

11. A ray of light falls on a mirror /7, is reflected along
S to a second mirror M, is thence reflected along 7. Re-
membering that the angle of incidence equals the angle of
reflection, show that the angle between the original ray £
and its last reflection 7" is twice the angle between the
mirrors (angle R7 = 2 angle MA'). On this theorem is
grounded the use of the sextant.

12. Two mirrors stand on a plane and form an inner
angle of 60°; a luminous point 2is on the mid-ray of this
angle (or anywhere within it) ; how many images of P are
formed? How are they placed? What if the angle of the
mirrors be 1/7 of a round angle?

This theorem is beautifully illustrated in the kaleidoscope.

13. A regular 7-side has 7 axes of symmetry concurring
in the centre of the z-side, which centre is equidistant from
the sides of the #-side.

14. How do these axes lie when # is even? when 7 is
odd? Show thgt if » be even, the centre is a centre of
symmetry.

15. The half-rays from centre to vertices of a regular z-side
form.a regular pencil of 7 half-rays, and those from the cen-
tre normal to the sides, another regular pencil ; also the half-
rays of each pencil bisect the angles of the other.

16. In a figure with two rectangular axes of symmetry
each point, with three others, determines a rectangle, and
each ray, with three others, a rhombus.
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17. Find the axes of symmetry of two given tracts.

18. A regular A, along with the figure symmetric with it
as to its centre, determines a regular 6-angle (6-pointed
star).

19. Two congruent squares, the diagonals of one lying on
the mid-parallels of the other, form a regular 8-angle ; also
find the lengths of the intercepts at the corners.

20. The outer angle of a regular z-side is m times the
outer angle of a regular mn-side.

EXERCISES IIL

1. A circle with its centre on the mid-ray of an angle
makes equal intercepts on its arms.

2. Tangents parallel to a chord bisect the subtended
arcs, and conversely.

3. Tangents at the end of a diameter are parallel.

4. A and B are ends of a diameter, C and D any other
two points of a circle; £ is on the diameter, and angle
AED = 2 angle CAD ; find the possible positions of £.

5. From 2 points are drawn 2 7 equal tangent-lengths to
a circle ; where do the points lie?

6. In a circumscribed hexagon, or any circumscribed
2 n-side, the sums of the alternate sides are equal.

7. If the vertices of a circumscribed quadrangle, hexagon,
or any 2 n-side, be joined with the centre of the circle, the
sums of the alternate central angles will be equal.

8. The sums of the alternate angles of an encyclic 2z-
side are equal, namely, each sum is (» — 1) straight angles.

9. The joins of the ends of two parallel chords are sym-
metric as to the conjugaté diameter of the chords.

. o
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10. A centre ray is cut by two parallel tangents. Show
that the intercepts between tangent and circle are equal.

11. Normals to a chord from the ends of a diameter
make, with the circle, equal intercepts on the chord.

12. The joins of the ends of two diameters are parallel in
pairs, and form a rectangle, and meet any two parallel tan-
gents in points symmetric in pairs as to the centre.

13. The joins of the ends of two parallel chords meet the
tangents normal to the chords in points whose other joins
are parallel to the chords.

14. A chord 4B is prolonged to C, making BC = radius,
and the centre ray CD is drawn ; show that one intercepted
arc is thrice the other.

15. The intercepts, on a secant, of two concentric circles
are equal.

16. A chord through the point of touch of two tangent
circles subtends equal central angles in the circles.

17. Two rays through the point of touch of two tangent
circles intercept arcs in the circles whose chords are parallel.

18. The transverse joins of the ends of parallel diameters
in two tangent circles go through the point of tangence.

19. Four circles touch each other outerly in pairs: 1st
and 2d, 2d and 3d, 3d and 4th, 4th and 1st; show that the
points of touch are encyclic.

20. Show that three circles drawn on three diameters 04,
OB, OC intersect on the sides of the A 4BC.

21. Find the shortest and the longest chord through a
point within a circle.

22, In a convex 4-side the sum of the diagonals is greater
than the sum of two opposite sides, less than the sum of all
the sides, and greater than half the sum of the sides.
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23. Three half-rays trisect the round angle O; on each
is taken any point, as 4, B, C. Find a point A/ such that
the sum M4 4+ MB + M C is the least possible (a minimum).

24. Two tangents to a circle meet at a point distant twice
the radius, from the centre ; what angles do they form?

25. The intercept of two circles on a ray through one of
their common points subtends a constant angle at the other.

26. What is the envelope of equal chords of a circle?

27. Two movable tangents to a circle intersect under con-
stant angles; find the envelope of the mid-rays of these
angles.

28. The vertex V of a revolving right angle is fixed mid-
way between two parallels, and its arms cut the parallels at
A and B; find the envelope of 4B.

29. From a fixed point 2 a normal P/ is drawn to a
movable tangent 7 of a circle, and through the mid-point 47
of PNV there is drawn a parallel to 7°; find its envelope. -

30. The vertices of a A are V), V,, V;; the mid-points of
its sides are M,, M, M,; the feet of its altitudes are
A,, A,, Ay ; the inner bisectors of its angles meet the oppo-
site sides at B, B, B;; and the outer bisectors at
B'\, B'y, B's; its centroid is C, its in-centre is 7, its circum-
centre is .S ; its angles are o, &, 3, and their complements
are a';, o'y &', Express through these six angles the
angles between: (1) Vidiand Vi V,; (2) AA;and VoVs;
(3) 414 and Vi4,; (4) A4, and 4,4y ; (5) M4, and
ViVi; (6) Mdyand V,Vy; (7) Mid;and Mo Ay ; (8) AM,
and 4,M;; (9) AM, and A4,4,; (10) SV; and SV;;
(11) SV, and \V,; (12) SV, and VoA4:; (13) ZV; and
IVy; (14) IVy and V,4,; (15) VAB' and V,B';.
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31. Find the locus of the mid-points of chords through a
fixed point upon, within, or without a fixed circle.

32. Find the locus of the mid-points of the intercepts of
a secant between a fixed point and a fixed circle.

33. As the ends of a ruler slide along two grooves normal
to each other, how does its mid-point move ?

34. Two equal hoops move along grooves normal to each
other and touch each other; how does the point of touch
move ?

35. Orthocentre O, centroid C, circum-centre S, and cen-
tre / of Feuerbach’s (g9-point) circle, of a A are collinear,
and OC =2 CS (Euler), OF = FS.

36. Two parallel tangents meet two diameters of a cnrcle
at the vertices of a parallelogram concentric with the circle.

37. The inner mid-rays of the angles of a 4-side form an
encyclic 4-side.

38. The outer mid-rays of the angles of a 4-side form an
encyclic 4-side. How are the 4-sides of 37 and 38 related?

39. The circum-centres of the four A into which a 4-side
is cut by its diagonals are the vertices of a parallelogram.

40. The circum-centres of the two pairs of A, into which
a 4-side is cut by its diagonals in turn, are how related to
each other and to the centres in 39°?

EXERCISES IV.

1. Construct a square, knowing
(@) Its side; or (b) its diagonal.
2. Construct a rectangle, knowing
(@) Two sides; or (4) a side and a diagonal; or (¢)
either a side or a diagonal and the angle of either with the

other; or (4) a diagonal and its angles with the other
diagonal,
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3. Construct a parallelogram, knowing

(@) Two sides and one angle ; or (&) aside, a diagonal,
and the included angle; or (¢) two sides and the opposite
diagonal ; or (&) two sides and the included diagonal; or
(¢) two diagonals and a side; or (f) two diagonals and
their angles with each other.

4. Construct an anti-parallelogram, knowing

(@) Its parallel sides and the distance between them ;
(6) two adjacent sides and their included angle; (¢) two
adjacent sides and the angle between the non-parallel sides ;
(@) a diagonal and two adjacent sides; (¢) a diagonal, a
side, and the included angle.

5. Construct a kite, knowing

(@) Two sides and an axis; (4) two sides and the in-
cluded angle ; (¢) a side and the axes.

6. Construct the rays equidistant from three given
points.

7. Draw a ray through a given point equally sloped to
two given rays. )

8. A square has one vertex at a given point, and two
others on two given parallel rays; draw it.

9. Hypotenuse and sum of sides of a right A are given;
draw it.

10. Construct a regular 2"-side, and a regular 3.2"-side.

11. Find the centre of a given circular arc. .

12. Trisect a right angle.

13. Two points, 4 and B, of a ray are given; find any
number of points of the ray without drawing it, and without
opening the compasses more than 45.

14. Find a point on a given ray or given circle that has
a given tangent-length with respect to a given circle.

15. Through a given point draw a secant on which a
given circle shall make a given intercept.



EXERCISES IV. 143

16. Draw four common tangents to two given circles.

17. Draw a ray touching a given circle and equidistant
from two given points.

18. Draw a ray on which two given circles shall make
two given intercepts.

19. With three given radii draw three circles, each touch-
ing the other two.

20. Draw a circle touching the radii and the arc of a
given sector.

21. Draw a circle touching two given equal intersecting
circles and their centre ray.

22. On the central intercept of two equal intersecting
circles as diameter draw a circle ; then draw a circle touch-
ing the three circles.

23. Three equal circles touch each other outerly ; draw
a circle touching the three. :

24. Find a point from which two given apposed tracts
appear to be equal.

25. Through two given points of a given circle draw a
circle that shall cut a third circle orthogonally.

26. Construct a A, knowing :

(@) The feet of the altitua.s; (&) the foot of one altitude
and the mid-points of the other two sides; (¢) the three
ex-centres ; (@) two ex-centres and the in-centre.

27. Draw through a given point a ray that shall form with
the sides of a given angle a A of given perimeter. Hint:
Use the properties of ex-circles.

28. Draw a 5-side, knowing the mid-points of the sides.

29. On a tract 4B there is drawn a regular 3-side ; draw
on it a regular 6-side. Generalize the problem, changing
3 into 7z, 6 into 27, and solve it.

30. Given a regular #-side ; draw a regular 2z-side having
the original 7 vertices for alternate vertices. Do not use
the circumcircle.

I
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AREAL RELATIONS.

Geometrica geometrice.

160. Hitherto our attention has been fastened exclusively
on points and lines as composing figures. We have regarded
no higher extents than those of one dimension. The surface,
or extent of two dimensions, bounded by a circle or the sides
of a triangle, we have not considered at all, but only the
circle or triangle itself. Moreover, our comparisons as to
size have referred exclusively to magnitudes directly super-
posable and homceoidal both in themselves and between
themselves, such as tracts, angles, arcs of the same circle.
Such comparisons are not suited to set forth the sharp dis-
tinction between congruence and equality, inasmuch as con-
gruent tracts, angles, arcs are equal, and equal tracts, angles,
arcs are congruent. But, as we now advance to the discus-
sion of two-dimensional extents, the distinction in question
becomes essential and regulative. Accordingly we premise
the following :

Def. A surface or two-dimensional extent considered
solely as to its size, or the amount of a two-dimensional
extent, is called an Area.

N.B. Where no confusion will result, we shall designate
the area bounded by a border by the name of the border
itself : thus, circle for the area bounded by a circle, etc.

161. As we shall have frequent occasion to compound
two areas into one and to divide one area into two, in order
to treat these processes logically we must first define them
precisely.

Def. If any two points of the border of a surface bounded
by a single continuous line be joined, the surface is said to
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be cut or divided into two parts, and the section-line counts
as part-border both of the one part and of the other. Thus
SLZ is such a section-line (Fig. 111).

S

FIG. 111.

N.B. It is essential that the border be single and con-
tinuous ; that is, that the surface be simply compendent. 1f
the surface be doubly compendent, as a ring, then the
section-line may or may not cut it into two parts. This
doctrine of the compendency of surfaces is a creation of
Riemann’s, with which we have at present no further con-
cern (Fig. 112).

FIG. 112,

Any part of the border of a surface may be treated as the
beginning or the end of the surface, and all the rest of the
border as the end or the beginning.
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162. When two areas, or surfaces, are apposed, the
beginning of the second fitting on the end of the first, the
two congruent part-borders herewith ceasing to be any part
of the border of either, the whole area bounded by the
remaining part-borders of the two, namely, the beginning of
the first and the end of the second, is called the sum of the
two areas thus apposed ; ¢.g. we may appose two equal semi-
circles and get a circle as the sum ; or two congruent A and

A

: v A
A
P

FIG. 113,

get a parallelogram as the sum ; or two congruent right A
and get a symmetric A as sum; or two symmetric A and
get a kite as sum ; or a parallelogram and a symmetric A
and get an anti-parallelogram as sum (Fig. 113).

Def. The areas apposed are called par# or summands of
the sum.
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CRITERIA OF EQUALITY.

163. 1. Two surfaces not congruent but divisible into the
same number of parts so that for each part of either there is
a congruent part of the other, are said to be egual in area,
to agree in area, to have equal areas, or simply to be equal.
These four phrases may be used indifferently, according to
convenience.

2. Two surfaces not congruent, but which may be made
congruent by addition, subtraction, or both, in case of each,
of the same surfaces, or surfaces congruent in pairs, are said
to be equal in area.

3. Two surfaces, each equal by either of the foregoing
tests, to the same third surface, or to one of two equal sur-
faces, are themselves said to be egual. .

These three criteria will serve our present purposes. A
most important fourth criterion will be introduced at the
proper place.

It thus appears that while congruence implies sameness
as to both size and skape, equality implies sameness as to size
only.

164. When the borders of two plane surfaces (the only
ones that we deal with) are congruent, the surfaces are
themselves congruent and their areas are equal. This fol-
lows from the homceoidality of the plane. For let 4 and 4,
B and B, be two pairs of corresponding points in the
borders ; then the ray 42 will fit on the ray 4B, point for
point throughout ; and so for any other pair of correspond-
ing rays. Thus the one surface fits point for point, line for
line, on the other.
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165. The conditions of congruence among A are known.
The most important condition of congruence between two
parallelograms is this :

Theorem LXXX.— Two parallelograms with the sides of
the one equal respectively fo the sides of the other, and the
angles of the one either equal or supplemental respectively to
the angles of the other, are congruent (Fig. 114).

/e

FIG. 114.

For,if a=4a', 6 =4', and @ = «, then plainly we may
fit the one parallelogram perfectly on the other. But if e =
supplement of «', then « = B', and we may again fit the
parallelograms. Q.E.D.

Corollary. Two rectangles having a pair of adjacent sides
of one equal to a pair of adjacent sides of the other are
congruent.

166. Def. Any tract forming part of the border of a
closed figure and treated as its lowest part may be called its
base.

Def. The greatest normal distance from a point of the
figure to this base ray is called the altitude or height of the
figure (Fig. 115).

In the diagrams @ denotes altitude and 4 base—a con-
venient notation, which will be generally employed.

The notions of base and altitude are correlate, implying
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each other, but they are 7o# in general interchangeable ; the
relation between them is not a mutual or reciprocal relation.

Def. The base and altitude of an areal figure may be
called its &wo dimensions.

b
Fi1G. 115.

167. In only one figure are these dimensions interchange-
able, namely, in the recfangle, and it is this fact that recom-
mends the rectangle as the standard figure in comparison of
areas.

A rectangle whose two adjacent sides, or whose altitude
and base, or whose two dimensions, are a and 4, will be
denoted by the symbol rect ab, or (] ab, or simply a,
rectangle being always understood.

If a = 4B and 4 = BC, we may write AB-BC and read
rectangle of AB and BC, the dot (-) being used no# to
denote multiplication but merely to separate and distinguish
base and altitude.

168. Theorem LXXXI.— 7he sum of two rectangles that
agree in one dimension is a third rectangle agreeing with each
in that dimension and having for its second dimension the
sum of the second dimensions of the summands.

Data: ABCD and EFGH two rectangles agreeing in
one dimension, BC = EA.

Proof. Appose BC and EH ; then AF becomes a single
tract (why?), namely, the sum of the tracts 48 and EF.
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Also DG becomes similarly a single tract equal to AF.
Hence AFGD is a rectangle (why?), and by definition it
is the sum of the two component rectangles; moreover, it

H
G
o c
a a
b b
A BE F
FIG. 116.

agrees with each in one dimension, while its second dimen-
sion, AF, is the sum of the two second dimensions, 45 and
EF. Q.E.D.
Corollary. Symbolically
ab+ ab'=a(é+4"),
ab+a'b= (a+ a')s,
ad'+abd'+ba'+b6'=a(a'+4')+b(a'+8")=(a+5)(a'+58'").
Draw a figure exhibiting this last relation.
169. Theorem LXXXII.— 7wo rectangles that agree in
both dimensions are equal.
For plainly they are congruent. Q.E.D.
170. Theorem LXXXIII. — 7wo rectangles agreeing in one
dimension but not in the other are unequal.

Data: ABCD and EFGH two rectangles agreeing in
one dimension, 48 = EF, but not in the other, BC + EH.

Proof. Fit 4B on EF; then DC will fall above or
below HG according as BC>EH or BC< EH; the
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whole of one rectangle fits on part of the other, f.e. they
are unequal. Q.E.D.

Corollary. The rectangle with the greater dimension is
the greater.

H G

o o D

E - A B
F1G. 117.

“~
171. Theorem LXXXIV.—7wo rectangles agreeing in
area and in one dimension agree in the other also.

Proof. For if unequal in the second dimension they would
be unequal in area (why?) ; but they are equal in area;
hence, etc. Q.E.D.

N.B. In symbols,

if ad=cd and a=¢, then 6=4d.

172. Theorem LXXXV.— A4 rectangle and a parallelo-
gram that agree in both dimensions agree in area also.

A B E H F G
FIG. 118.

Data: A rectangle 48CD and a pafallelogram EFGH,
having AB = EF and AD= HH'.
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Proof. Draw ZH' and GG’ normal to £F. Then the
right A EH'H and FG'G are congruent (why?); take
away the first from the trapezoid ZG'GH, and there is
left the rectangle /'G'GH; take away the second, and
there is left the parallelogram £FG/H; hence the paral-
lelogram equals the rectangle. Moreover, this latter is
congruent with the rectangle ABCD (why?); hence the
parallelogram £/ GH equals the rectangle ABCD. Q.E.D.

Corollary 1. Parallelograms agreeing in both dimensions
are equal.

Corollary 2. Parallelograms agreeing in area and in one
dimension agree in the other.

Corollary 3. Parallelograms agreeing in one but not in
the other dimension are unequal.

Corollary 4. Parallelograms agreeing in one dimension
but not in area do not agree in the other dimension.

Corollary 5. Parallelograms agreeing in area but not in
one dimension do not agree in the other.

Corollary 6. Equal parallelograms with equal bases along
the same ray, and lying on the same side of that ray, have
the sides opposite the bases in the same ray.

173. Theorem LXXXVI.— A4 A kas half the area of a
rectangle with the same dimensions.

Proof. Complete the A ABC into the parallelogram
ABCD ; then ABC and DCB are two congruent A whose
sum is the parallelogram 4BCD of the same dimensions ;
i.e. each is half the parallelogram; and this latter has the
same area as the rectangle of the same dimensions; hence
the A has half the area of the rectangle of the same dimen-
sions. Q.E.D. :
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Scholium. We may express this fact by saying that the
A equals half the rectangle (or parallelogram) of its base
and altitude.

Corollary 1. A A is determined in area by its two dimen-
sions, base and altitude.

Corollary 2. A agreeing in dimensions agree in area.

Corollary 3. A agreeing in area and in one dimension
agree in the other also.

Corollary 4. A with equal bases along the same ray and
with vertices in either of two parallels equidistant from the
base are equal.

Corollary 5. Equal A with equal bases along the same
ray have their vertices in two parallels equidistant from the
base.

Corollary 6. A medial bisects the area of the A.

Corollary 7. In general, when any two of the three re-
lated magnitudes, base, altitude, and area of rectangle, par-
allelogram or A are known, the third is also known univo-
cally.

Corollary 8. So far as size is concerned, the dimensions
in rectangle, parallelogram, and A may be exchanged.

174. Since a A is half the rectangle of the same dimen-
sions, and since we can add rectangles agreeing in one
dimension, we may also add A agreeing in one dimension,
preserving the same. Thus by apposing the bases 4 and &'
of two (Fig. 119) A agreeing in altitude a, we get half of a
rectangle @ (& + 4'), equal to a A with same altitude and
base 4 + 4/, the sum of the bases. By apposing two A
along the common base 4 we get half of the rectangle
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(@+a') & equal to a triangle with the common base 4 and
with altitude the sum of the altitudes. Hence,

Theorem LXXXVII.— The sum of two & agreeing in one
dimension equals a third N with the same dimension, its
second dimension being the sum of the second dimensions of
the summands.

Scholium. In symbols
ab+ab'=a(b+4'),ab+a'b=(a+a')b.

a

b

b b

FIG. 119.

MISCELLANEOUS APPLICATIONS.

*175. Theorem LXXXVIII. — When two A lie apposed
on the same base: 1. That base bisects the join of the two
vertices, if the A are equal.

Data: ABC and ABC' the equal apposed A (Fig. 120).

Proof. The altitudes CD and C'D' are equal when the
A are equal (why?); hence A CD/ and C'D'/ are con-
gruent; hence C/= C'/. Q.E.D.

Conversely,

I1. The A are equal, if that base bisects the join of the
vertices.
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Proof. The A CDJ and C'D'J are again congruent
(why?) ; hence CD =C(C'D', hence ABC and AB(' are
equal. Q.E.D.

FIG. 120.

Def. Two parallels to the sides of a parallelogram through
any point within it divide it into four parallelograms, and
each pair of opposites we may call complemental.

*176. Theorem LXXXIX.— When the common vertex
of the complementals is on the diagonal, the pair on opposite
sides of the diagonal are equal.

Data: 4BCD the parallelogram, 2 the point on the
diagonal 4 C, PD and PB the complementals (Fig. 121).

FIG. 121.
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Proof. From the equal A ADC and 4BC take away the
pairs of equal A APH and APE, CPG and CPF; there
remain the equal complementals 2D and PB. Q.E.D.

Conversely, When the complementals are equal, the com-
mon verlex is on the diagonal.

Proof. If P moves off from the diagonal, as towards £,
then PG will be lengthened and PE shortened without
affecting either PH or PF; i.. one of the equal comple-
mentals will be increased and the other decreased ; hence,
for 2 not on the diagonal the complementals are unequal ;
hence the theorem, by contraposition. Q.E.D.

Corollary. Parallelogram CH = parallelogram CE, and
parallelogram 4% = parallelogram 4G.

177. Theorem XC.— A trapezoid equals half the rectangle
of its altitude and the sum of its bases, or equals the rectangle
of its altitude and the mid-parallel to its bases.

Data: 4ABCD a trapezoid, M P the mid-parallel (Fig.
122).

Proof. Draw B'C' parallel to 4D ; hence, etc. Q.E.D.

FIG. 122. FIG. 123.
178. Theorem XCI.— A kite equals half the rectangle of
its diagonals (Fig. 123).
Let the student deduce the proof from the figure.




TH. XCIL] SQUARES. 157

SQUARES.

179. We have seen that the recfangle is distinguished
among parallelograms by the interchangeability of its dimen-
sions ; among rectangles the square is distinguished by the
equality of its dimensions. Hence it is determined com-
pletely by one dimension; hence we may reason about
squares and compare them through their dimensions more
readily than is possible with rectangles.

180. Theorem XCII. — Z%e square on the sum of two
tracts equals the sum of the squares on the tracts and twice
the reclangle of the tracts.

Data: a and 4 two tracts, 4B their sum, ABCD the
square on that sum (Fig. 124).

D G C
b b
a
H P F
a
a b
A E B
FI1G. 124.

Proof. Draw £ G parallel to BC and HF parallel to CD ;
they cut the whole square into four parts, namely, the square
on a, the square on 4, and the two congruent rectangles aé
and @b. Q.E.D.

Corollary. The square on a tract equals four times the
square on half the tract.
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181. Theorem XCIII. — 7%e square on the difference of
two tracts equals the sum of the squares on the tracts, less
twice the rectangle of the tracts.

Proof. In the preceding figure treat 4B or @ + 4 as the
one tract and ZB or 4 as the other; then AZ or a is the
difference. The square 4 C is the square on the tract @ + 4 ;
increase it by the square PC on 4, so that this square is to be
counted #wice and thought as doubdly laid in the figure ; now
strip off the rectangle ZC or (a + ) 4, and its congruent
BG; there remains the square 42 on the difference a.
Q.E.D.

182. Theorem XCIV.— Zhe rectangle of the sum and dif
Jerence of two tracts equals the difference of the squares on
those tracts.

Proof. In the same figure treat @+ & as the one tract
and « as the other, so that 2 ¢ 4 4 is the sum and 4 the dif-
ference of the tracts. Then the two rectangles £C and G
agree in one dimension 4 and the sum of their other dimen-
sions is 2 @ + & ; hence their sum is the rectangle (z @ + 4)4;
i.e. the rectangle of the sum and difference of the tracts
@+ & and a. Moreover, this area is plainly what is left on
taking away the square on @ from the square on (24 4) ;
hence, etc. Q.E.D.

Scholium. Calling the tracts # and », we may express
these theorems in symbols thus: (¥ +2) =4+ *+ 2uv;
(#—v)=w*+*—z2uv; (u+v)(u—v)=4"—1~

But let the student carefully beware of importing any
algebraic meaning into these symbols at this stage of the
discussion ; #?, for example, does 7of mean the product of »
multiplied by #, but merely the sguare whose side is ».
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183. Theorem XCV.— 7%e square on the hypotenuse of
a right A\ equals the sum of the squares on its other sides
(Fig. 125).
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FIG. 125.

Proof. Let AC and A'C' be two congruent squares on
the tract @ + 4 ; take away from each the four congruent
right A, 1, 2, 3, 4; there is left of the one the square on
the hypotenuse of the right A, and of the other the sum of
the squares on the legs, @ and 4. Q.E.D.

Scholium. This most famous theorem was discovered by
Pythagoras (circa B.c. 550), it is said, while pursuing cer-
tain arithmetical researches. He was, in fact, seeking out
pairs of numbers, the sum of whose squares was itself the
square of a number, when he made the astonishing observa-
tion that all such pairs, when measured off in terms of a unit
length, formed the two legs of a right A of which the third
number, similarly laid off, formed the hypotenuse. Proofs
of the proposition abound. In the classic one of Euclid, it
is shown that the square on A4 C = rectangle 4D (Fig. 126),
the media of comparison being the congruent A BAZ and
FAC. Similarly the square on BC =rectangle BD. The
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demonstration in the text seems to be the most simple and

direct that is possible, while its presuppositions are the least

possible.
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FIG. 126,

184. Naturally we now inquire into the relations'among
the squares on the sides of oblique A.

Def. The foot of the normal, from a point to a ray, is
called the (orthogonal) projection of the point on the ray;
and the tract between the projections of the ends of a tract
is called the projection of the tract itself (Fig. 127).

!

Qv
D I

FIG. 127.

Thus 2' and Q' are the projections of Zand Q on Z, and
P'Q' is the projection of PQ on L.
proj ,
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185. Theorem XCVI. — 7%e square on any side of a tri-
angle equals the sum of the squares on the other sides, in-
creased or decreased by twice the rectangle of either and the
projection of the other upon it, according as the first side
lies opposite an obtuse or an acute angle.

Data: ABC the A, BD the projection of BC on AB
(Fig. 128).

>
++]
U beeccemcccenmaicnan
[+ ]

FIG. 128.

Proof. AC*=AD*+ CDA,
and CD*= BC?— BD* (why?) ;
hence AC*= AD* — BD* 4 BC?

But AD? — BD? =A4B (AB + 2 BD) (why?);
hence AC*=AB*+ BC*+ 2A4B-BD.

Thus far 8 has been considered obtuse ; if it be acute,
then 4AD= AB + BD; but BD is to be reckoned leftward,
oppositely to BD in the former case ; that is, BD is reversed
in sense, a fact which we may express in symbols by writing

AD = AB — DB.
Hence results, as before,

AC?=AB*+ BC?*—2A4B .- DB. Q.E.D.
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Scholium. We observe that when B is a right angle, then,
and then only, D falls on B, the projection on B.D vanishes,
and there results the Pythagorean Theorem,

AC*=AB*+ BC*

As B changes from obtuse to acute, the point B passes
from the left to the right of D, and the tract BD changes
its sense,— from being reckoned rightward it comes to be
reckoned Zftward. It is this change of sense in BD that
changes the addition into the subtraction of the rectangle.
It is often absolutely necessary to take account of the sezse
of a magnitude, the way it is reckoned, in order to perceive
the generality, the internal coherence and continuity, of our
results.

Corollary. When the square on one side of a A equals
the sum of the squares on the others, the A is right-angled
opposite that side. Converse of the Pythagorean Theorem.

186. Theorem XCVII. ZThe sum of the squares on two
sides of @ A equals twice the sum of the squares on half
the third side and ils medial.

Data: ABC the A, CM medial, and CN normal to
AB (Fig. 129).
(o

A M N B
FIG. 129.

Proof. AC =AM+ CM'+ 24M- MN,
BC'=BM'+CM’ — 2 BM- MN.
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Adding and remembering that AM = BM, we get
AC* + BC’=2(AM’ + CM*). Q.E.D.

Corollary 1. If a, b, ¢ be the sides of the A, and m the

medial of ¢, then
gmP=2a’+4 28—

Corollary 2. If the A be regular, then  is the altitude,

and if s be a side, :
4m’ = 3§

*187. Theorem XCVIIL. —7%e sum of the squares on the
sides of @ quadrangle equals the sum of the squares on the
diagonals and four times the square on the join of the mid-
points of the diagonals.

Data: ABCD the 4-side, £F the join of the mid-point
of the diagonals (Fig. 130).

FI1G. 130.

Proof. @2+14_1)2=2:4~ﬁ_‘2+23_ﬁ‘3,
BC'+CD'=2BF’ + :CF’ (why?) ;
whence AB' + BC'+CD'+ DA
=4B-—1?2+ 2zﬁ7'2+2ﬁ'2 :
=4 BF* + 4 AE" + 4 EF? (why?) |
=BD'+ AC’+ 4 EF" (why?). Q.E.D. i
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Corollary. The sum of the squares on the sides of a [J
equals the sum of the squares on the diagonals. (Why?)

188. Theorem XCIX. —Ze difference between the squares
on a side of a symmetric I\ and on the join of the vertex to
any point of the base equals the rectangle of the segments into
which that point divides the base.

Data: ABC the symmetric A, 2 any point of the base

(Fig. 131).
B

l
|
P A.PPM C
F1G. 131.

Proof. Let A/ be the mid-point of the base, then
BP'=BA4"+ 4P+ 2 AP- AM (why?).
oo BP — BA*= AP{AP+ 2 AM}{= AP-PC. Q.E.D.

Now let 2 move towards A ; as it reaches A, the tract
AP vanishes, and so do both sides of the equation. As P
moves on to P' towards C, the tract AP changes sense, it is
no longer reckoned leftward, but rightward ; at the same
time the left-hand side of the equation ckanges sign, BP
becoming less than BA; but the equation still holds, for
the sign of 42 must also change with the change of sense.
We are yet at liberty to choose the difference of squares as
either BP'— BA' or BA'— BP". The first is perhaps
preferable, and we see that when 2 is without the tract 4C,
then P4 and PC have the same sense and sign, being
reckoned the same way, and the difference is positive ; but
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when Pis within 4C, then P4 and PB have opposite sense
and sign, being reckoned oppositely ; hence we may say
their rectangle is negative, and accordingly B2 is less than
BA. Itis extremely important to note that an area is a
sign-magnitude, positive or negative ; it has sense.

189. When Pis at 4, the difference BP° — BA’ is o; as
P moves towards C, the tract B4 remains unchanged, but
BP shortens until 2 reaches 4/ ; thence BP lengthens until
it again becomes equal to BA or BC, as P falls on C.
Hence the difference BA" — BP’, or its equal P4 .PC
increases while 2 moves from A4 to A/ and decreases as P
moves from M to C; hence it is greafest when P is at M.
A value of a variable magnitude that is thus the greatest
within a series of successive values, or that is greater than
the values just before it and just after it, is called a maxi-
mum; while a value that is less than the values next before
and next after it, is called a minimum. Hence the rectangle
AP- PC is a maximum for P at M ; or the rectangle on the
two parts into which a given tract may be divided is a maxi-
mum when the parts are equal, or of a/l rectangles with a
grven perimeter, the square is the maximum. Once more,

AC'=AP+ PC'= AP +PC’ + 2 AP.PC.
Now A4C is constant while 2 moves from 4 to C, and
AP- PC is greatest when 2 is at M ; hence AP + PC’ is
least when P is at M ; that is, #he sum of the squares on the

two parts of a given tract is a minimum when the parts are
equal.

* 19g0. Theorem C.— The rectangle of the distances on a
secant from a fixed point lo a fixed circle is constant for all
secanls.,

Data: P the fixed point, S the fixed circle (Fig. 132).
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Proof. Through £ draw any two secants cutting the circle
at 4 and B and at C and 0. Then in the symmetric
AAOB, OP'— 04’ =PA-PB and in A COD,

OP' —0C’= PC- PD (why?).

Hence P4 . PB = PC . PD (why?), no matter how the

secant be drawn through 2. Q.E.D.

FIG. 132.

Def. This constant, namely, the area of the rectangle of
the distances from the fixed point to the fixed circle along
any secant, is called the power of the point as to the circle.

Corollary 1. For a point within the circle the power is
the square on half the shortest chord through the point, or
on half the chord through the point normal to the radius
through the point (why?) ; for a point without the circle
the power is the square on the tangent-length from the
circle to the point (why?) ; for a point on the circle the
power is zero (why?).

Corollary 2. The power of a- point without the circle is
positive ; of a point within, it is negative (why?).

Corollary 3. 1f PT" = power of P as to S, and 7" be
on S, then P7 is tangent to .S (why?).
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Corollary 4. If m be the minimum distance from the
point 2 to the circle .S of diameter &, then the power of the
point is m(d + m) according as 2P is without or within S.
This notion of the power of a point as to a circle is so ex-
ceedingly important that it may be well to exemplify its use,
in passing, though not necessary for our present purposes.

191. Theorem CI. — A/ points having equal powers as
Yo two circles lie on a ray.

Data: Sand S the two circles (Fig. 133).

FIG. 133.

Proof. Draw a normal to the centre-tract OO' (at V),
cutting it into two parts & and @', and from any point 2 on
this normal draw tangents 7, P7'. Then » and » being
the radii,

PN’ + d*=PT '+ 7, and PN+ d"=PT"+ +? (why?).
Hence @?—d%=PT —PT 42— "
Hence P7"=PT" when and only when d*—d'" = r?—#".

If then we find &V on OO0, dividing it so that &% — @” =
72— 7", and this can always be done, then the powers of all
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points on the normal through A will be equal, and the
powers of all points not on this normal will be unequal
Q.E.D.

192. D¢f. This most important ray was discovered in
1813 by Gaultier and named by him radica/ axis of the two
circles ; a better name would seem to be power-axis. This
discovery marked and in a measure determined the renas-
cence of Geometry.

Corollary 1. The common secant of two circles is their
power-axis.

Corollary 2. The common tangent of two circles is their
power-axis.

Corollary 3. The power-axes of three circles taken in
pairs concur. '

Def. The point of concurrence is named radical centre
or power-centre of the three circles.

Corollary 4. A circle about the power-centre with the
common Zangent-length as radius intersects the three circles
orthogonally.

The importance of the following discussions can scarcely
be overestimated. They are meant to ground firmly and
in strict geometric fashion the doctrine of

PROPORTION.

193. If 2 be any point not on a circle S, P7 a
tangent, and PAB a secant of S, then we have seen that
PA.PB=PT for all directions of P4B. If a circle 7
be drawn about 2 with radius P7, it will cut .S orthogonally
(why?) ; then 4 and B are called inverse points as to /2
which is called the centre of inversion, while / is called the
circle of inversion.
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194. Theorem CII (converse of CI).— If the rectangle
of distances from a point to two points on a ray equal (in sense
as well as sign) the rectangle of the distances from the point to
two points on another ray, both rays going through the point,
then the two pairs of points are encyclic.

Data: 2 the point, 4 and B, C and D, the two pairs of
points, and P4 - PB = PC - PD (Fig. 134).

FIG. 134.

Proof. The circle through 4, B, and C will meet PD
somewhere, as at D'. Then P4 .PB = PC.PD' (why?);
hence PD = PD' (why?), or D' is D.

Query. Where and why is it necessary to regard the sense
of the rectangles in this proof ?

195. Now let us consider this encyclic quadrangle. We
know that the opposite inner Xs, as 4 and D, are supple-
mental (Fig. 135). Think of the plane as a doubly laid
film with 4C drawn in the lower and BD drawn in the
upper layer, and imagine PBD taken up, turned over, and
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replaced so that B will fall on B' and D on 2'. Then will
B'D' be || to0 AC. For the inner angle at D' equals inner
angle at D; hence the inner Xs at 4 and D' are supple-

mental (why?) ; hence B'D' and AC are I.

’
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FIG. 135.

This operation of turning over B.D into the position B'D'

we may call inverting BD.
Hence

Theorem CIII. — If one side of an encyclic quadrangle be

inverted, the resulting figure is a trapezoid.
Conversely,

196. Theorem CIV.— If one paralle! side of a trapesoid
be inverted, the figure resulting is an encyclic quadrangle.
The ready proof is left for the student.

We note that the proofs hold as well for the crossed quad-
rangle and trapezoid as for the convex or normal.

197. Now let P4AC and PB'D' be any two A with com-
mon vertical angle 2 and |l bases 4C and B'D'; then

PA . PB'=PC - PD' (Fig. 135).
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Proof. For on inverting B'D' into BD the quadrangle
ABCD is encyclic. Hence P4.PB=PC-PD, and PB
= PB', PD= PD'. Hence Q.E.D.

198. Conversely, Let PAC and PB'D' be any two A
with common vertical X and let

PA . PB'=PC. PD'.
Then AC and B'D' are |l

Proof. Draw through 4 a Il 4C"' to B'D', cutting PB' at
C'; then :
PA.PB = PC . PD'.

Hence PC = PC' (why?). Q.E.D.

199. These relations are very simple and easy of com-
prehension, but their statement in words is very awkward and
cumbrous. To relieve the difficulty of verbal expression we
introduce a new arbitrary definition and a new arbitrary
symbolism.

Def. If the rectangle of two tracts equals the rectangle
of two other tracts, the four tracts are said to be in propor-
tion, or to form a proportion, or to be proportional.

Symbolism. If # and » be the one pair, x and y the other
pair of tracts, then we write #:x::y:v and read u s %
X asyis too.

200. In order to speak readily about this proportion we
define further:

Definition 1. The tracts are called terms of the propor-
tion. :

Definition 2. The first and last are called extremes; the
second and third are called means.
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Definition 3. The first and second are called the first
couplet ; the third and fourth, the second couplet.

Definition 4. The first and third terms are called antece-
dents; the second and fourth are called consequents.

Definition 5. When the two means are equal, each is called
the mean proportional or geometric mean of the extremes.

Definition 6. The fourth term is called the fourth propor-
tional to the other three taken in order ; or, if the means be
equal, it is called a third proportional to the other two taken
in order.

Definition 7. When the means are exchanged, or the
extremes are exchanged, the proportion is said to be alter-
nated.

Definition 8. When the terms of each couplet are ex:
changed, the proportion is said to be inverted.

Definition 9. When in place of the first or second term
of each couplet is put the sum (or difference) of the terms
of that couplet, the proportion is said to be compounded (or
divided).

201. Since by a proportion we mean nothing more and
nothing less than that tke rectangle of the means equals the
rectangle of the extremes, it is plain that the same proportion
may be written in several different ways, thus:

U X1V, UIVIIXLY, YIXIIVIU, YIVIIX U,
XKUYV, XY IUIY, VIUIYIX, ViIYIIUK,
all mean precisely the same ; namely, rectangle of # and y
= rectangle of z and «.

202. All of these forms, and no others, may be derived
from any one of them by alternation and inversion ; hence
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Theorem CV. — When four tracts are in proportion they
are in proportion by alternation and by inversion (alternando
et invertendo).

The simplification of expression will now soon become
evident. We must still further premise, however,

Definition 10. When the angles of one A are respectively
equal to those of another, the A are said to be mutually
equiangular, and the sides opposite equal angles are said to
correspond, as do also the equal angles themselves.

203. Theorem CVI. — Corresponding sides in two mutu-
ally equiangular A are proportional in pairs.

Data: ABC, A'B'C'the A, A=A",B=B,C=C
Proof. Fit XX 4 on X A'; then BCis |l to B'C' (why?).
Hence AB-A'C'=A'B'- AC (why?),

or AB:A'B':: AC: A'C'.

c

FIG. 136.
Similarly, by putting B on B', C on (',
BC:B'C'::BA:B'A,
CA:CA"::CB:CB' Q.E.D.

204. These three proportions may be conveniently written
as a continued proportion, thus :
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AB:BC:CA::A'B': B'C': C'4', read
ABisto BCisto CAas A'B'is to B'C'is to C'4';
or perhaps still better thus:
AB:A'B'::BC:B'C':: CA: C'A4, read
AB isto A'B'as BCis to B'C' as CAis to C'A4';
they are exactly equivalent to the three equations
AB-B'C'=A'B'-BC, BC-C'A'=B8'C'"-CA,
CA-A'B'=C'4"- AB.
205. Theorem CVII. — Conversely, 7wo A with sides pro-
portional are mutually equiangular.
Data: ABC, A'B'C' the two A, and
AB:A'B'::BC:B'C':: CA: C'4' (Fig. 137).
c

A B
Fi1G. 137.

Proof. From C lay off C4 equal to C'4' and draw
A,B, Il to AB. Then
CA4,- CB= CA - CB, (why?).

But C'4'- CB= CA-C'B' (why?).
Hence CA.-CB,= CA- C'B' (why?).
Hence CB,= C'B.

Similarly, A,B,=A'B'.
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Hence A4'B'C' and A4,B,C are congruent (why?).

Hence 4'B'C' and 4B C are mutually equiangular (why?).
Q.E.D.

Thus it appears that mutual equiangularity and propor-
tionality of sides coexist and imply eack other. Two such
A mutually equal in their angles and proportional in their
sides are called similar.

206. Theorem CVIIL. — 7o A having an X of one equal
to an X of the other and the including sides proportional are
similar.

Data: ABC, A'B'C' the two A,
XC=XC, and C4:C'4"':: CB: C'B' (Fig. 138).

c B B c’ B’
c
A A
A
FIG. 138.

Proof. Fit C' on C; then by the proportion 4'B' is Il to
AB. Hence, etc. Q.E.D.

207. Theorem CIX. — Zwo A having two pairs of sides
proportional, and a pair of angles opposite the larger sides in
eack equal, are similar.

Data: ABC, A'B'C the two A,
AB > BC, A'B'> B'C.
AB:A'B':: BC:B'C', and XC= X" (Fig. 139).



176 GEOMETRY. [TH. CX.

Proof. Fit X C on C'; then since
A'B'> B'C' and AB > BC, both AB and A'B'

must be drawn making the inner Xs at 4 and A4' acute.
From the proportion, 48 and A'B’' are now !l (prove it) ;
hence the A are mutually equiangular and hence similar.
Q.E.D.

B

FIG. 139.

N.B. If AB were < BC and A'B'< B'C', then AB and
A'B' might make the Xs at 4 and 4' supplemental instead
of equal, and hence 48 and A'B' anti-lI instead of I, in
which case the A would not be similar. Draw a figure
illustrating this case.

Compare the conditions of similarity with the conditions
of congruence between two A.

208. Theorem CX.— If two proportions agree in the first
three terms of each, they agree in the fourth also.

Data: #:x::v: y,and #:x::9:).
Proof. uy=ox, and »y' =vx; hence xy=wy'.
Hence y=jy' (why?). Q.E.D.

209. Theorem CXI.— Jf fwo proportions agree in one
couplet, the other couplets form a proportion.
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Data: #:x::v:y, w:x::w:z (Fig. 140).

Proof. Suppose @ < v and on two half-rays through 2
lay off PU, PX, PV, and PY=u, x, v, . Open the angle
at 2 until UV=w. This is possible, since w < v. Draw
XY and call it 2. . Then since #:x::v:y, w and 2' are | ;
hence #:x::w:2'. Hencez' =2z (why?),and hencev:y::
w:2' or z (why?). Q.E.D.

nSxgee

FiG. 140.

Corollary. We may write the three proportions as a con-
tinued proportion, thus :

U XUy iwz.

210. Theorem CXII. — Jf four tracts are in proportion,
they are in proportion by composition, and by division, and
by composition and division (Componendo, dividendo, com-
ponendo et dividendo).

Datum : u:x::v:y.

Proof. On any pair of half-rays through any point 2 lay
off PU=wu, PV=7v; from Ulay off on P a tract UX=x,
and on a li to PV a tract UY=y. Then the A PUV and
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UXY are similar (why?); hence UV and XY are |

(why?), and VR is y (why?). Also A PUV and PXR are

similar (why?). Hence#:u + x::v: v+ y (Componendo).

Again, from P lay off as before PU= u, PV =1v, PX=x,
PY=y;then XY and UV are | (why?) (Fig. 141).
w

P Y V
FIG. 141.

Draw XR || to PV; then A PUV and XUR are similar
(why?). And XR=v—y (why?), XU=u—ux.

Hence #: u—x::v:v—y (Dividendo).
Hence #+x:u—x::v+4+y:v—y (why?) (Componendo
et dividendo).

*211. Theorem CXIII. — When four tracts are in propor-
Hon, equimultiples of either or both couplets are in proportion.

Datum : uix::iv:y.

Proof. By Def. rect. uy = rect. vx. Hence m (rect. uy)
= m (rect. vx).

But m (rect. uy)=rect. mu-y and m (rect. vx) = rect.
v-mx ; hence mu-y =v-mx, Ot mu:mx::v:}.

Similarly, nviny::v:y.

Hence mu:mx ;. ny:ny. Q.E.D.
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Corollary. The multipliers m and z may be disposed any
way in the proportion provided only that each appears in a
mean and in an extreme.

212. De¢f. Two tracts are said to be divided similarly
when all the parts of the one and all the parts of the other
taken in the same order form a continued proportion ; thus,
if @, &, ¢, 4 be the parts of one and a', &', ¢/, @' the parts of
the other,and a:4:c:d::a':4':c': d', then the divison is
stmilar. Two parts forming a couplet, as @ and 4, are said
to correspond.

213. Theorem CXIV. — Zwo transversals of a system of
parallels are divided similarly by the parallels.

Data: AA', BB, etc., the lls, PT and PT' the trans-
versals (Fig. 142).

FIG. 142.

Proof. From similar A,
PA:PA'::PB:PB':: PC: PC':: PD:PD'
Hence, alternando and dividendo,
PA:PA":: AB: A'B':: BC: B'C'::CD: C'D'. Q.E.D.
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Corollary 1. The intercepts of the lls are proportional to
their distances from the vertex 2.

Corollary 2. A system of ||s divides the rays of a pencil
similarly (Fig. 143).

VIRRN

FIG. 143.

Corollary 3. The intercepts of the rays on any two lls are
proportional.

*214. Theorem CXV (Ptolemy’s).— /n an encyclic quad-
rangle the rectangle of the diagonals equals the sum of the
rectangles of the opposite sides.

Datum: ABCD an encyclic quadrangle.

FIG. 144.
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Proof. Draw the diagonals and also 4V, making X AND
=X ABC. Then A ADN and ACB are similar (why?);

hence "BC-AD=AC-DN (Fig. 144).
Also BNA and CDA are similar (why?) ;
hence AB.CD=AC-.BN.
On addition there results
AB-CD+ BC-DA4= AC-BD. Q.E.D.

*215. Theorem CXVI1.— The rectangle of two sides of a
A equals the rectangle of the altitude to the third side and
the circum-diameter.

Data: ABC the A, S the circumcircle (Fig. 145).

Proof. A ABD and EBC are similar (why?).
Hence AB:.EB::BD: BC,
or AB-BC= EB-BD. Q.E.D.

216. De¢f. When a tract is divided into two parts propor-
tional to two other tracts, it is said to be divided in the ratio
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of those tracts, or the ratio of the parts is said to equal the
ratio of the tracts.

N.B. This is a definition of equality of ratios, but not of
ratio itself; this latter we now neither need nor attempt to
define, but we write it thus, /7 : », and read ra#io of / to0 m.

Def. The division may be inner, when the dividing point
P falls within the tract, or owufr, when it falls without the
tract.

217. Theorem CXVII.—dA Zract may be divided innerly and
outerly in any given ratio, but in each case at only one point.

Data: APB the tract to be divided, / and m the other
tracts.
Proof. 1. From A4 draw any half-ray ; lay off on it 4L =/
and LM = m ; join BM, and draw PL |l to it (Fig. 146).
l—

m r—m——t

FIG. 146.

Then AP : PB::/:m (why?); hence P divides 4B
innerly in the given ratio.

Again supposing m < /, lay off LM backwards towards A ;
join BAM and draw LR | to it.

Then AQ: QB::/: m (why?); hence Q divides 4 B
outerly in the given ratio.
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Proof. 2. If P' be any point of division of 4B in the
ratio /: m, then ZP'is || to MB (why?); but there is only
one |l to AB through Z; hence P’ falls on 2, i.c. there is
only one point of inner division in the ratio 7: 7. Similarly,
show that there is only one point Q of outer division in the
ratio /: m. Q.E.D.

218. N.B. 1. In case of inner division the parts A2,
PB are reckoned the same way, both rightward ; in case of
outer division the parts 4Q, QB are reckoned oppositely,
one rightward, the other leftward.

2. In speaking of the ratio of the tracts / and » the
order of mention is essential ; the ratio of / and = (what-
ever it may be) is not the same as the ratio of m and . So,
too, the order of mention of the ends of the tract 4B is
essential : we mean that the first part is to be reckoned from
A and the second part # B ; to divide 45 in a given ratio
is not the same as to divide B4 in that ratio.

Def. When a tract 4B is divided innerly and outerly at
P and Q in the same ratio, it is said to be divided harmoni-
cally, 4 and B are said to be harmonically conjugate with
Pand Q, 4 and B, Pand Q are said to form two harmonic
pairs, and the four points 4, 7, B, Q, taken in order, are said

_to be four harmonic points or to form an harmonic range.

219. Theorem CXVIII. —Jf P and Q divide AB har-
monically, then A and B divide PQ harmonically.

Data: AR a tract, P and Q the points of inner and outer
division in any ratio, as /: 7.

Proof. AP:PB :: l:m,and AQ: QB ::/:m;
hence AP:BP :: AQ: QB (why?),
or PA:AQ:: PB: BQ (why?). Q.E.D.
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3220. N.B. 1. To the inner and outer division of 45 by
P and Q corresponds the outer and inner division of PQ
by 4 and B.

2. The term karmonic is borrowed from the theory of
musical intervals ; four tracts @, 3, ¢, 4 are said to be har-
monically or musically proportional when the first is to the
last as the difference of the first two is to the difference of
the last two ; 7.e. when a:d::a—b:c—d.

Now let the student prove that if 4P: PB:: AQ: QB,

then AP: QB:: AP—PB: AQ— QB,

and so justify the use of the term Aarmonic.

221. Theorem CXIX.— 7he inner and outer mid-rays of
an angle of a A divide the opposite side harmonically in
the ratio of the adjacent sides.

Data: CPand CQ, the inner and outer mid-rays of the
angle C of the A ABC, meeting the side 48 at Pand Q

(Fig. 147).

FI1G. 147.

Proof. Draw BD |l to CP; then x DBC=3xX BCP
(why?)= X PCA (why?)= X CDB (why?) ; hence CD
=CB.
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Also AP:PB:: AC: CD (why?) or AP: PB:: AC: CB.
Similarly, A4Q:QB:: AC: CB.
Hence AP: PB::AQ: QB:: AC: CB. Q.E.D.

Corollary. Conversely, if two fays divide a side of a A
innerly and outerly in the ratio of the adjacent sides, they
are the inner and outer mid-rays of the opposite angle (why?).

222. Theorem CXX.— If a normal be drawn from the
vertex of the right angle in a right A fo the hypotenuse, then

I. The & will be cut into two right A similar to ecach
other and fo the original /.

I1. Zhe normal tract will be a mean proportional between
the segments of the hypotenuse.

III. Eack side of the right angle will be a mean pro-
portional between the whole hypotenuse and the adjacent
segment.

Data: ABC the right A, C/V the normal to the hypote-
nuse (Fig. 148).

FIG. 148.

Proof. 1. The A ABC, ACN, and BCN are plainly
mutually equiangular (why?) and hence similar. Q.E.D.

II. Hence AN: CN:: CN: NB. Q.E.D.
III. Also AB: AC:: AC: AN,
and AB:BC:: BC: BN. Q.E.D.
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Corollary. Conversely, if a tract C/V from the right angle
divides the A into similar A, or is a mean proportional
between the segments of the hypotenuse, or divides the
hypotenuse so that either side is a mean proportional
between the whole hypotenuse and the adjacent segment,
then it is normal to the hypotenuse.

223. Theorem CXXI. — JIf four concurrent rays (or rays
of a pencil) cut one transversal harmonically, they cut every
transversal harmonically.

Data: Any transversal cut harmonically at 4, B, C, D
by four rays concurrent in O and PQAS any other trans-
versal (Fig. 149).

FIG. 149.

Proof. Draw through two conjugate points as B and D
any two transversals || to PQRS; then

AB: BC:: AD:DC,
or AB: AD:: BC:.DC (why?).
Also AB: AD:: A'B: A"D,
and BC: DC:: BC': DC" (why?);
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hence AB:A"D:: BC':D(C",

or A'B: BC':: A"D: D(C".

But A"D:DC":: AD :D'C' (why?);

hence A'B: BC':: A'D' . D'C;

hence PQ: QR:: PS :SR (why?). Q.E.D.

Corollary. The proportion 4B:BC:: AD: DC is not
affected by any movement of O, while 4, B, C, D remain
fixed ; neither, then, is the proportion PQ: QR :: PS: SQ.

224. Theorem CXXII. — 4 chord of a circle and the
langents at its ends cut the conjugate diameter harmonically

(Fig. 150).

Data: S the circle, 77" the chord, P7, PT"' tangents at
its ends, P4 the conjugate diameter.

FIG. 150.

Proof. 7B bisects X P7'D innerly (why?) ; |
hence 74 bisects it outerly (why?) ; |

hence A4, D, B, P are four harmonic points (why?).
Q.E.D.
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SIMILAR FIGURES.

225. We have already found that mutually equiangular
A have their corresponding sides proportional, and con-
versely, and we have named such A similar. A more gen-
eral notion of similarity may be obtained thus :

Let two points, 2 and /7, move at will in the plane, but
under these restrictions :

1. The ray PP shall pass always through a fixed point O.

2. The proportion shall always hold OP: OP':: ¢: /,
where #and 7 are any two fixed tracts; then the paths of
P and P' are called similar figures similarly placed (or
homothetic).

The point O is called the centre of similitude; owter, if
O divides PP outerly ; inner, if innerly.

226. If an eye were placed at the outer centre, it would
manifestly see the one figure through the other, point for
point ; hence the two figures are said to be in @7rect per-
spective ; if O be the inner centre, they may be said to be in
indirect perspective, or in contra-perspective.

If on any ray through O there be taken two points, C and
(', such that OC: OC':: ¢: 7, then C and C' are said to
correspond to each other with respect to the centre of simili-
tude O in the ratio of similitude #: 7 ; any tract between
two points in the one figure is said to correspond to the
tract between the corresponding points in the other figure.

227. Theorem CXXIII. — Correspondent tracts in two
perspective figures are parallel and in the ratio of similitude
o each other.

Data: O the centre, 4 and 4', B and B' two pairs of
corresponding points (Fig. 151).
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Proof. The A AOB and A'OB' are similar (why?) ;
hence 458 and A4'B' are I, and 4B: A'B'::¢: ¢ (why?).
Q.E.D.

FI1G. 151.

228. Theorem CXXIV. — Conversely, If from two points,
A and A', correspondent as to O, there be laid off two A
tracts AB, A'B' in the ratio OA: OA', then B and B' cor-
respond. Let the student give the proof.

229. Theorem CXXV.— Any two circles are in perspec-
tive and contra-perspective.
Data: S and S any two circles (Fig. 152).

Proof. Divide the centre tract CC" innerly and outerly in
the ratio of the radii »:#' at points 7 and O. Draw any
secant 04, and on it lay off O4' so that

OC:0C:: 04:04'.

The A OCA and OC'A' are similar (why?). Hence
C'4' = 7 (why?) ; hence 4'is on §'; hence any point of
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S has its correspondent on . in the same fixed ratio of the
radii ; hence Sand ' are similar, and are plainly in perspec-
tive. For 7 the reasoning is the same, but the tracts being
laid off oppositely, the figures are in contra-perspective,
Q.E.D.

Corollary. Common tangents to the two circles go each .

through a centre of similitude.

FIG. 152,

230. Theorem CXXVI. — Conversely, Any figure simi-
lar to a circle is itself a circle.

Data: S a circle, S’ similar to it with respect to the cen-
tre of similitude O, in the ratio »: 7.

Proof. Find the corresponding point C' of the centre C
of S, and draw through O any secant meeting .S and §' in
the corresponding points 4 and 4'. Then triangles CO4
and C'OA' are similar (why?) ; hence

OC:0C"::CA: C4,
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and since OC, OC', and CA are constant in length, so, too,
is C'4'. Hence S'is a circle about C' as centre. The like
proof holds for the inner centre /. Q.E.D.

231. Theorem CXXVIL. — 7%e angle between two tracts
in one figure equals the angle between the corresponding tracts
in any similar figure.

Data: Fand /' (Fig. 151), two similar figures similarly
placed. 4B and BC,two tracts in /. A'B' and B'C', the
corresponding tracts in #".

Proof. Draw OA, OB, OA', OB'; then the theorem fol-
lows at once from similar A. But if the figures be not
similarly placed, and #" be one of them congruent with /",
suppose &' brought to coincidence with #'; then what has
just been proved for F' holds for #"". Q.E.D.

Corollary. F'" may be brought to coincide with /' by
being merely pushed,—all rays remaining parallel to them-
selves in their original position, until one point of 7" falls
on the corresponding point #',—and then being merely
turned until another point of /" falls on its correspondent in
F'. If the figures still do not coincide throughout, but only
on the common ray through three points, it will be necessary
and sufficient to revolve 7' about that common ray through
a straight angle, which revolution will change opposition into
superposition of the figures. In this revolution all rays in
the figure are turned through the same angle ; hence

232. Theorem CXXVIIL. — /n two similar figures all
lines are inclined to their correspondents under the same
angle. Perhaps we might name this angle the anomaly of
the one figure as to the other.

In two similar figures point corresponds to point, angle to
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equal angle, tract to tract, in the same ratio; hence it is
plain that

233. Theorem CXXIX.— Any two similar figures may be
cut up into pairs of similar figures in the same ratio of simili-
tude and order of arrangement.

INSTRUMENTS.

334. There are four important instruments used in prac-
tice in the construction of similar figures: proportional
compasses, sector, diagonal scale, and Pantagraph or Eido-
graph. Of these the last is the most interesting and il-
lustrates in its working very accurately the definition given
above of similar figures in contra-perspective. Every well
appointed academy should be furnished with these instru-
ments, which may easily be explained and operated.

CONSTRUCTIONS.

235. The doctrine of proportion is extensively employed,
not only in mechanical drawing with the instruments men-
tioned, but also in the strict logical solution of problems of
construction.

236. Problem I.— 7v divide a tract (innerly and outerly)
in a given ratio, as of /: m. (See p. 182.)

237. Problem I1.— 7% divide a tract (innerly and outerly)
into any number of parts proportional to l, m, n, p « « .

Solution. From the beginning of the tract 48 draw any
half-ray, as AR; on it lay off in order consecutively the
tracts /, m, n, p, - - -. Join the end of the last with the end of
AB, and through the ends of the others draw parallels ; to
this join B ; they divide 4B as required (why?).

Let the student solve the problem of outer division.
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238. Problem III.— 70 construct the geometric mean of
two tracts.

Solution. On the sum of the two tracts, /and » (Fig. 153),
as diameter, draw a circle, and through their common point
draw a half-chord conjugate to the diameter ; it is the mean
proportional required (why?).

FIG. 153.

239. Problem IV.— 70 construct a square equal to a
given rectangle. Proceed as in Problem III.

240. Problem V. — Knowing one dimension of a rectangle
equal to a given rectangle, to find the other; or, given three
tracts, lo find a fourth proportional to them in order.

R
D C
A B Q
FIG. 154.

Solution. Prolong one side of the given rectangle by the
given side of the other, as 48 to Q, and draw QC meeting
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AD at R; then DR is the other dimension sought (why?)
(Fig. 154). Or,

On any two half-rays meeting at 4 lay off 48 and 4D
equal to the given sides or the second and third of the three
tracts, and on either, as 4D, lay off AQ equal to the one
given dimension or the first tract. Draw BQ and DR |l to
BQ; then AR is the fourth proportional sought (why?).

These constructions require us either to know the angle at
A or else to draw a parallel. But we may proceed thus, avoid-
ing all use of parallels and angles: draw a large circle and
lay off as a chord of it the difference of the second and third
proportionals ; from the ends 4 and B of this chord lay off
APand BP equal to the second and third proportionals ;
about 2 describe a circle with the first proportional as radius
intersecting the circle at 7; draw 2/, meeting the circle
also at /; then A/ is the fourth proportional sought (why?)

(Fig. 155).

FIG. 155.

N.B. The first circle must be drawn sufficiently large, so
that the second circle may meet it.

241. Problem VI.— 70 construct a A equal fo a given
4-side.
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Solution. Drawn either diagonal, as 4C, of the 4-side
ABCD, and then from D draw a |l to the diagonal, cutting
AB at A'. Then A'CB is the A sought (why?) (Fig. 156).

C

FIG. 156.

242. Problem VII. — 70 construct a A equal to a given
n-side.

Proceed as in Problem VI, and reduce one by one the
number of sides drawn to three.

243. Problem VIII. — 70 divide a parallelogram into n
equal parts by parallels to a side.

Solution. Divide an adjacent side into # equal parts and
draw parallels ; the 7 resulting parallelograms are congruent
(why?).

244. Problem IX. — 70 divide a A info n equal parts by
tracts drawn from a vertex.

245. Problem X.— 7 divide a trapezoid into n equal
parts by tracts between and parallel to the parallels.

246. Problem XI.— 70 divide a A into n equal parts by
tracts drawn from a point on a side.

Solution. Divide the side containing the point into 7 equal
parts ; from the points of division draw parallels to the join
of the point with the opposite vertex ; draw tracts from the
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point to the intersections of these parallels with the other
sides ; they are the dividing lines required (why?).

247. Problem XII.— From apoint within a A to bisect the
A by tracts drawn to a given vertex and to a side (Fig. 157).

FIG. 157.

Solution. If 2 be the given point, C the given vertex,
and PQ the required tract, then on drawing the medial
CM it becomes plain that A CPQ=A CMQ; hence CQ
is | to PM. Hence the construction: draw the medial
CM, then PM, then CQ Il to PM, then PQ.

248. Problem XIII. — From a point within a A to bisect
the A by two tracts, one of whick is drawn to a given point
on one side, and the other as may be (Fig. 158).
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Solution. If P be the given point within the A, Q the
given point on the side, suppose PR to be the required
tract. Then on drawing CM and PM and a Il to PM
through Q cutting CM at /, we have

A PQM = A PIM (why?).
Also on drawing CP and /R we must have
A PIC= A PRC (why?).

Hence /R is || to PC (why?).
Hence we construct PR (how?).

249. Problem XIV. — 70 bisect an n-side by a tract
drawn from a given vertex.

Solution. Let 4 be the given vertex; join the adjacent
vertices B and Z, and through each of the others draw a
tract across the z-side |l to BZL. Bisect these parallels by
a train of tracts from 4. This broken line will-bisect the
n-side (why?), and by Problem VII the student may con-
vert it into a single tract from 4 (how?).

250. Problem XV.— 7 construct a square equal to the
sum of two given squares.

Use the Pythagorean Theorem.

251. Problem XVI. — 70 construct a square equal to the
sum of two given rectangles.

Combine the methods of Problems IV and XV.

252. Problem XVII. — 70 construct a square equal to 2,
3, 4+ + - n limes a given square (Fig. 159).

Hint. The diagonal of the given square will be the side
of the double square (why?) ; normal to this diagonal, OB,
lay off BC equal to the side of the square; draw OC, and



198 GEOMETRY. [TH. CXXX®.

again normal to it lay off C.D equal to the side of the origi-
nal square; draw OD, and so on. In this way we may
duplicate, triplicate, z-plicate the original square. The
broken line ABCD . - . and the varying hypotenuse wind
round O forever.

-
-
E ..--

B

-

o
FIG. 159.

253. Problem XVIII. — 70 construct a square equal to
one half, one third, one fourth, - - - one nth of a given square.

Hint. Half the diagonal of the given square is the first
side sought ; the altitude of a regular triangle whose side is
the given side is the second ; one half of the given side is
the third ; . - - in general, the geometric mean between the
side and the nth part of the side of the given square will be
the side of the square sought (why?).

254. Problem XIX.— 70 construct a square the nth-fold
or the nth part of a given rectangle, parallelogram, or A.

Combine the methods of the foregoing problems.

255. Theorem CXXXa, (Lemma).— Jf a rectangle equal
a square, and the dimensions of the two be changed propor-
tionally (i.e. so that the new and the old dimensions taken
in pairs of correspondents form a continued proportion),
then the new rectangle will equal the new square.
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Data: R and R, two rectangles with dimensions @ and
4, a' and &', s and ', two squares with dimensions #and 7 ;
R=S,and a:a'::6:4"::¢: ¢ (Fig. 160).
-

T

B’ B (o} A A P P’
FIG. 160.

Proof. On the same half-ray from the same point P lay
off tracts P4 and PB equal to ¢ and 4 ; on their difference
(AB = 2 r) as diameter describe a circle and draw the tan-
gent P7: it will equal # (why?). With a radius #' such that
a:a'::r:7 describe a concentric circle, prolong OT to
meet this circle at 7, and at 7" draw a tangent meeting
the diametral ray at /7.

Then PA'=a',PB =4, Pf="¢(why?),
and a's' =£¢ (why?). Q.E.D.
Corollary. 1f two rectangles (or parallelograms or A)
be equal, and their dimensions be changed proportionally,
they will remain equal.

Prove this corollary in detail, and state it along with the
foregoing theorem in symbols.

256. Problem XX.— 70 construct a rectangle similar to
a given rectangle but of double the area.

Solution. Construct a square equal to the given rectangle ;
then either dimension of the double rectangle will be a
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fourth proportional to the side and diagonal of the square
and the corresponding dimension of the given rectangle ;
that is,

s:d::a:a' (why?).

Now, however, all squares are similar (why?) ; hence,
denoting by &' the diagonal of the square on the side «, we
have s: d::a:d'; whence a:d'::a:a',ora' =d'.

Similarly, 4' is the diagonal of the square on the other
dimension 4. Or we may find &' by drawing a diagonal of
the double rectangle through the end of &' parallel to the
diagonal through the end of a.

257. Problem XXI.— 70 construct a rectangle similar to
a given rectangle but of n-fold the area.

Solution. If we construct a square, of side s, equal to the
given rectangle and also a square, of side s', equal to the re-
quired rectangle, then if @ and a' be corresponding dimen-
sions in the two rectangles, we have

sta::s':a" (why?).

Now, however, if we construct, according to Problem XI,
two broken lines, one on s as a basis, the other on a as basis,
the two will be similar figures (why?) ; so that if s, and @, be
corresponding hypotenuses in the two figures, we have

S:1aiiS,: Ay

!

Hence s':a'

a::s,:a,;

hence, if s,=s', then @, =a'.
Accordingly, we find a' by constructing (Problem XI) the

side of a square the #-fold of the square on @. The con-
struction is then completed (how?).
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258. Problem XXII. -— Le# the student extend the same
methods to the construction of parallelograms and A similar
to given ones but of n-fold area.

259. Problem XXIII. — 70 construct a reclangle ( paral-
lelogram or D) similar to a given one but of one half, one
third « - - one nth the area.

260. Problem XXIV.— 70 construct a figure similar to a
given figure but of double, triple, - - - n-fold area.

Solution. On any tract in the figure construct a square,
then construct another square, of double, triple, - - - z-fold
area ; its side will be the tract in the new figure corresponding
to the assumed tract in the original figure (why?). All other
points and lines in the required figure may now be found by
drawing parallels. Let the student carry out the construction.

261. Problem XXV.— 70 construct a figure similar to a
given figure but of one half, one third, - - - one nth the area.

The solution is like that of Problem XVIII, mutatis mu-
tandis.

262. We have learned to inscribe in a circle a regular
3-side, 6-side, 12-side, - « - 3-2"side, also a regular 2"-side,
and it is natural to inquire how to inscribe a regular g-side,
ro-side, - - -, 5-2"side. As it was easiest to begin with the
6-side, so it is easiest to begin with the ro-side ; to inscribe
the 5-side directly presents difficulties.

263. Problem XXVI.— 70 inscribe a regular 10-side in a
circle, suppose the problem solved and 45 the side sought.
Then in the symmetric A 4OB the vertical X is half of
either basal angle (why?) (Fig. 161).

Hence, if we draw A4C Dbisecting angle 4 the A 408
and BA4C will be similar (why?).
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Hence OB: AB:: AB:BC,or OB: OC:: OC: BC.

Hence, in order to find 48 or OC, it is necessary to
divide the radius into two parts of which one is the geometric
mean of the whole and the other. This celebrated section is

A B
FIG. 161.

called the median or golden section, and the radius (or any
tract so divided) is said to be divided in extreme and mean
ratio.

The problem of inscribing the ro-side is reduced then to
the following :

264. Problem XXVII. — 70 divide a tract in extreme
and mean ratio.

Solution. Let @ be the tract, and & the greater part ;
then a:b::5:a— 4 (Fig. 162),
or a:a+b::6:a (why make this change?).
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Hence we may conceive of a? as the power of a point
whose distances from the circle (along a diameter) are @ + 4
and 4 (why?), so that @ is the diameter of the circle. Hence,
on a as diameter draw a circle ; at any point 7 of the circle
draw a tangent and on it take 7P =a; draw the diameter
PBA4; then PB=4 (why?),and the arc about 2P with
radius 4 divides 7" or @ at / in extreme and mean ratio.
Q.E.F.

N.B. To the point 7 corresponds the harmonic conjugate
O, the point of oxfer median section, such that

Pl IT:: PO: OT.
Let the student show that

PT-TO= PO, just as PT. TT= PI’.
How shall we now construct a regular s5-side, zo-side, . . -
5-2"-side?

By combining the constructions for a 3-side and a 5-side
we may now construct a regular 15-side. For the difference
of the arcs subtended by a side of a regular 3-side and a
side of a regular 5-side, is (3 —}) of a circle, or % of a
circle ; half of it is %, or (3 — 1) of a circle, that is, the
arc subtended by one side of a regular 15-side. Hence
solve

Problem XXVIII. — 70 construct a regular 15-2™side.

265. At this point the query seems to arise naturally: if
we can find the arc of a side of a 15-side by combining those
of a 3-side and a 5-side, may we not find arcs of sides
of other regular #-sides by other combinations? To take
the most general case, let us form the difference of p arcs
of a 23-side and ¢ arcs of a 2°.5-side; it will be the

(3:;5__2.';3>th of a full angle; 7e. it will be (2:5—2:3) "
2%.3-2%5
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times the arc of one side of a 15-2"+*-side; but this latter
polygon may be constructed by the preceding problem.
Hence nothing new is obtained by the new combination.
Herewith, then, the round of elementary construction of
regular polygons is practically completed in the four series :
2"-sides, 3-2"-sides, 5-2"-sides, 15-2"-sides. The profound
analysis of Gauss has indeed shown that ruler and compasses
will suffice to construct a (2”4 1)-side whenever (2"41) is
a prime number ; and accordingly we can construct regu-
lar 17-sides (z = 4) and 2 5 7-sides (#=8) ; but the con-
struction of the former is exceedingly tedious, and that of
the latter is excessively so, while for still higher values of 7
the tedium and difficulty surpass all limit. However, in
figures 94, 95 a regular 7-side and a regular g-side are con-
structed once for all, empirically, but to practical perfection.

266. Problem XXIX.— 70 draw a circle through two
given points, ltangent lo a given ray.

Hint. Consider the power of the intersection of the given
ray and the ray through the points with respect to the
required circle, and use Problem III.

267. Problem XXX.— 70 draw a circle through a given
point and tangent to two given rays.

Hint. Find a second point on the circle and apply Prob-
lem XXIX.

268. The doctrine of perspective similarity may often be
used in constructions.

A, When one datum is a tract, the other data being
angular and proportional relations. We then construct in
accordance with these latter, disregarding the first one; in
the constructed figure a tract will correspond to the given
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tract, and on this latter we then construct. the required figure
similar to the one first constructed.

269. Problem XXXI.— Given the angles and an altitude
of a A, to construct it (Fig. 163).

Solution. Draw any A with the given angles ; then from
the proper vertex, C, lay off the given altitude as C.D normal
to the opposite side 458. Draw through D a |l to AB cut-
ting the other side at 4'B'. Then 4'B'C is the required A
(why?). The two A ABC and A'B'C are perspectively
similar, C being the centre of similitude.

270. B. When one figure is lo be inscribed in another so
that certain poinls of the one fall on certain lines of the
other, we may draw a figure in perspective, with the required
figure, as to the intersection of two rays on which are to lie
two points, and then from this centre of similitude construct
the required figure according to the remaining conditions.

271. Problem XXXII. — 70 inscribe a square in a A with
the vertices of the square on the sides of the A (Fig. 164).

Solution. Inscribe any square AP in the A, and draw
AP meeting BC at P'; then /' is a point of the required
square. Complete the construction.
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FI1G. 164.

272, C. It is often required # inscribe in a given figure
a tract that shall be cut by a given point proportionally in a
given ratio. We may then assume the given point as centre
of similitude, construct a figure similar to the given figure
with the given ratio of similitude ; then the required tract
will go through a point of intersection of the two figures.

. 273. Problem XXXIII. — 70 draw through a point I in
a circle S (of radius r) a chord that shall be divided by I in
the ratio a : b (Fig. 165).

Solution. From 7 lay off opposite to 7C the tract 7C' so
that @:4::7C:/C'. About C' as centre with radius 7/,
such that @:4::7: 7', draw a circle .S' meeting .S at 4/ and
P. Then MN or PQ is the chord sought (why?).
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How will you proceed in case of outer division? The
two divisions, inner and outer, may be conveniently distin-
guished by prefixing the sign — to the smaller term of the
ratio ; 7.e. to the tract corresponding to the tract that will be
wholly without the given tract after division.

*274. The following discussions might have been intro-
duced much earlier, at Miscellaneous Applications, but for
interrupting the course of thought.

We may conceive the area of a parallelogram as generated
by slipping one of its sides along the other two parallel sides.
Plainly, the side slipped is merely slipped or pushed, not
turned at all, being kept parallel to itself (as the phrase is)
throughout. Thus, suppose the tract 45 slipped along the
Il and equal tracts 4D and BC; it will generate the paral-
lelogram area 48 CD.

Clearly, the tract may be slipped along the same parallels
in either of two opposite senses, as from 4 to .D or from D
to A. The sense of the motion of the tract will be the same

FIG. 166.
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as the sense of the motion of any point of its ray, as of 7,
the intersection of the ray with any other ray, as with the
normal ray Z (Fig. 166). 'The two senses of /’s motion
may be distinguished as positive and negative ; then the cor-
responding areas generated by the moving tract may also
be distinguished as positive and negative. In summing such
areas we always regard the sense and remember that to add
resp. subtract a magnitude is the same as to subtract resp.
add the counter magnitude, i.e. the magnitude equal in size
but opposite in sense. Bearing this in mind we may now
enounce :

*275. Theorem CXXX. — Z%e sum of the areas generated
in simply slipping a tract round a A is o.

Data: ABC the A, A4' the tract in its initial position

(Fig. 167).

FI1G. 167.

\

Proof. Suppose the tract to compass the A counter-
clockwise ; then if the area 4B’ be considered positive, the
areas BC' and CA' must be considered negative (why?).
But on taking away the A 4'B'C' from the whole figure 48
B'C'4' there is left AB'; and on taking away ABC there
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is left the sum of BC' and CA'; hence the areas 4B' and
BC'+ CA' are equal in size but opposite in sense ; hence
their sum is o, or AB' + BC' + CA' =0. Q.E.D.

Corollary. 1f the A ABC be curvilinear instead of recti-
linear, the theorem still holds.

*276. Theorem CXXXI.— Jf a tract be simply pushed
round any closed figure, the sum of the areas generated will
be o (Fig. 168).

o
O"
-
-
-
-

F1G. 168.

Proof. The figure may be cut up into a number of A
rectilinear and curvilinear. The sum of areas generated in
compassing each A is, by the foregoing theorem, o ; hence
the total sum of areas generated is o; but each dividing
tract, as AC, is compassed twice, in opposite senses, from
Cto A and from 4 to C; hence the sum of areas gener-
ated along these divisions is o ; subtracting which we have
left the sum of areas generated along the outer border equal
to 0. Q.E.D.

*277. Theorem CXXXII (of Pappus, A.D. 300).— 4 par-
allelogram on one side of a A whose counter-vertex lies
between two parallel sides of the parallelogram, equals the
sum of two parallelograms, on the other sides, whose parallel
sides go through the vertices of the first parallelogram.
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Proof. Let the student show from the figure, by help of
Theorem CXXX that 48'= B(C'+ CA' (Fig. 169).

-

)
N,
)
SN c;
b
5

\,
N

i
SN
1
1}

FIG. 169.

Corollary. As a special case, let the student prove the
Pythagorean Theorem.

278, Def. The tract from a fixed point to a variable
(or moving) point is called the radius vector of the moving
point with respect to the fixed point. Thus OP is the
radius vector as to O of the point 2 as it traces the curve C
(Fig. 170).

FI1G. 170.

Def.  The area bounded by the path of the moving point
and two positions of its radius vector is said to be generated,
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described, or swept out by the radius vector in passing from
the initial to the final position. Thus the area POQ is
swept out by 7 in passing from OZP to position OQ.

Clearly, the same area may be described in either of two
opposite senses, according as the rotation of the radius
vector is clockwise or counter-clockwisé, and the area must
be distinguished accordingly.

We shall call areas generated clockwise negative, and
areas generated counter-clockwise positive. Remembering
the laws for adding and subtracting magnitudes opposite in
sense, we now enounce :

279. Theorem CXXXIII. — 7he fofal area generated by a

radius vector whose end compasses a A completely is the A
itself. '

Proof. If the point O be within or on the A, the validity
of the theorem is immediately evident. If the point O be
(Fig. 171) without the A, then the area inside is generated

o
=

c
FIG. 171

but once, while the area outside, as 4 OC, is generated twice,
in opposite senses ; once, as 4 OC, clockwise, once, as COA4,
counter-clockwise : such will always be the case, since the
final and initial positions of the radius vector are the same.
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Hence the outside areas annul each other, and there is left
only the inside area, the A. Q.E.D.

Corollary. If the A be curvilinear, the theorem still holds.

280. Theorem CXXXIV.— 7%e area described by a radius
vector whose end compasses any closed figure is the area of
the figure itself.

Proof. Employ the method and reasoning of Theorem
CXXXI. Conduct the proof carefully in the case of a ring
and of a loop. Why do the arrows point as they do? What
effect will reversing one have on the other? Imagine the
ring slit through from outer to inner border (Fig. 172).

FI1G. 172.

The foregoing theorems play an important rdle in Higher
Mathematics.

THE TACTION PROBLEM.

281. In the following discussions certain higher concepts
of Geometry, which have thus far been lightly passed over
or not formed at all, become regulative and must receive
graver consideration. We begin by re-defining some of
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them and recalling some of their already demonstrated
properties. .

1. The rectangle of the distances of a point from a circle
along any ray through the point is called the power of #%e
point as to the circle. The power is equal to the sguare on
the ftangent-length from the point to the circle when the
point is without, and equal to the square on half the shortest
chord through the point when the point is within the circle.

2. All points that have equal powers as to two circles
lie on a ray called thé power-axis of the two circles. The
ray is normal to the centre-tract of the circles, of radii
7 and 7, and divides it into segments & and &' such that
(r+7)(r—7r")=(@+d")(d—d"). The three power-
axes of three circles, taken in pairs, concur in a point
called the power-centre of the three circles.

3. Any two points 2 and P' on the same ray through a
fixed point O are said to be in perspective or perspectively
similar as to the centre of similitude O in the ratio of
similitude OP: OP'.

4. Two figures are said to be i perspective or perspectively
similar when every point of one is perspectively similar to
the corresponding point of the other as to the same centre
and in ‘the same ratio of similitude.

5. When OP and OP' have the same sense, the perspec-
tive is direct, and the centre outer ; when they are opposite
in sense, the perspective is counter, and the centre inner.

6. Any two circles are perspectively similar in the ratio of
their radii as to both an inner and an outer centre ; namely,
the points dividing the centre tract harmonically in the ratio
of the radii, which are also the points of intersection of
common tangents to the two circles, when such tangents
there are.
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282. Theorem CXXXV.— Lemma.— If fwo figures are
similar to a third, they are similar to eack other.

The easy proof is left to the student.

283. Theorem CXXXVI.— [f one figure is in perspective
with eack of two, these latter are in perspective with each
other, and the three centres of similitude are collinear.

Proof. Let 7, Q, R be any three points in the first figure,
P!, Q' R and P", Q", R" the corresponding points in the
other figures. Then PQR and P"Q"R" (Fig. 173) are
similar (why?), and PP", QQ", RR" meet in a point, O'

FiG. 173.
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(why?), as to which they are in perspective (why?). Like-
wise PQR and P'Q'R' are similar, and PP', QQ', RR'
meet in a point O'".

Now let PQ, P'Q, P"'Q" cut 0'0" at S, .5, S", and
draw SR, SR', SR". Then QRS, Q'R'S', Q'R"S" are
all similar (why?), S and §' are in perspective as to 0",
S and S" are in perspective as to O, and hence ' and .S"
aro in perspective as to 0. Hence O is on the ray O'0O"
(why?). Q.E.D.

Corollary. Show that the three centres of similitude are
either a/l outer or else one outer and two inner.

Def. If a point bisect every chord of a figure drawn
through the point, it is called the centre of the figure, and
the figure itself is said to be centric.

A central ray, and often a central chord, of the figure is
called a diameter.

284. Theorem CXXXVII. — Jf two similar centric figures
be in perspective as to one point, they are also in perspective
as to a second point (Fig. 174).
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Proof. Draw two diameters of the one figure and the
two corresponding chords of the other; these latter will
also be diameters (why?), and the centres will correspond.
Join the ends of these diameters crosswise, that is, the end
of one with the non-corresponding end of the other. The
intersection of these two cross-joins, /, is a second centre of
similitude (why?). QED. '

Corollary 1. Of these two centres of similitude, the dne
is outer, the other inner; and they divide the centre tract
CC' harmonically.

Corollary 2. If three similar centric figures be in per-
spective they have six centres of similitude, and of these
the three outer are collinear, as are also any one outer and
the two other inner.

Def. A ray on which lie three centres of similitude is
called an axis of similitude.

Corollary. There are four such axes, one outer and three
inner.

The central figure with which we have especially to do is
the circle.

285. Def. When the rectangle of the distances from a
fixed point O of two points, 2 and #, on the same ray
through O, is constant, the two points are said to be inverse,
or in inversion, with respect to O as centre of inversion.

Def. A circle about the centre of inversion, with the side
of the square equal to the rectangle of the distances for
radius, is called the circle of inversion, and its radius the
radius of inversion.

Def. 1f while one of the inverse points as 2 describes a
curve C the other describes a curve C', then C and C' are
said to be inverse or in inversion with respect to O.
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Def. Let a ray through a centre of similitude of two cir-
cles cut each in a pair of correspondent points 2 and Q, 7
and Q'; then each point of each pair has a correspondent or
homologous point in the other pair, as Zand 7, Q and Q';
also each point of each pair has a non-correspondent, or
contra-correspondent, or anti-homologous point in the other
pair, as Pand Q', Q and 2.

286. Theorem CXXXVIIL. — Ant-homologous points of
two circles are inverse with respect to the centre of similitude
of the circles (Fig. 175).

FIG. 175.

Proof. Let O be the centre of similitude of the circles,
CC' the centre ray.

Then X OAP= 2% O'A'P (why?) and X OAP=X BQP
(why?) ; hence X BQP=2X BA'P; hence X BA'P and
X BQP are supplemental ; hence B4'P'Q is an encyclic
quadrangle ; hence OQ - OP' = OB - 0A4'. Now the points
O, B, A' are fixed ; hence the rectangle OB - O4' is con-
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stant ; hence Q and 2 are inverse as to 0. Similarly prove
that Pand Q' are inverse. Q.E.D.

Corollary. OA-. OB'= OT. OT'; hence the radius of
inversion about Ois the geometric mean of O7 and OT',

the tangent-lengths from the centre of similitude to the
circles.

28y7. Theorem CXXXIV°. — The inverse of a circle is itself
a circle.

Data: In the figure let O be the centre of inversion, .S
the circle, 7 the circle of inversion with radius 7.

Proof. Draw OZ7 tangent to .S and construct O7" so that
OT:r::7: O7'. Draw a normal to OT at 7" meeting OC

FIG. 176,
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at "; with radius C'7" draw a circle. It is the inverse
sought. For it is the circle ' of the preceding theorem
(why?), in which Pand Q', Q and 7' were inverse as to O.

288. Theorem CXXXV®. — The transverse joins (chords)
of two pairs of anti-homologous poinits of two circles meet on
the power-axts of the circles.

Data: Pand Q', Vand U', two pairs of anti-homologous
points in S and §'; PVand Q'U', their transverse joins
(chords) (Fig. 176).

Proof. The quadrangle PVU'Q' is encyclic (why?). Let
the student complete the proof.

Def. If a circle touch two other circles, the ray through
the points of touch is called the ckord (or, better, the ray)
of Contact.

289. Theorem CXXXVI®, — The ray of contact of two
circles with a third goes through a centre of similitude of the
two circles (Fig. 177).

Proof. For a point of contact of two circles is a centre
of similitude of the two (why?) ; hence the ray of contact
goes through two centres of similitudes ; hence it is an axis
of similitude and goes through a third centre of similitude ;
namely, of the two circles (why?). Q.E.D.

Corollary. When the two circles are touched similarly,
both innerly or both outerly, the ray of contact goes through
the owufer centre of similitude of the two; when they are
touched drssimilarly, one innerly the other outerly, the ray
of contact goes through the imner centre of similitude of
the two (why?).

290. Def. The ray through one of two inverse points
normal to their junction-ray is called the polar of the other
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point, and this latter point is called the pole of the polar,
with respect to the circle of inversion. This circle we may
call the circle of reference, or the referee-circle, or simply the
referee. Note carefully that pole and polar have no mean-
ing except with respect to some referee.

c

FIG. 177.

291. Theorem CXXXVII“. — If of two points the first is
on the polar of the second, then the second is on the polar of
the first.

Data: S the circle, 2 the first point on the polar, Z, of
the second point Q (Fig. 178).

Proof. Draw the centre-ray OQ cutting L at @', then Q'
is the inverse of Q (why?) ; also, let 7' be the inverse of 2.
Then the -quadrangle PP'QQ' is encyclic (why?); also
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the X Q'is a right angle (why?); hence so is the X P'
(why?) ; hence P'Q is the polar of 2 (why?), 7.e. the polar
of P goes through Q. Q.E.D.

N\

FI1G. 178,

Corollary 1. The poles of all rays through 2 lie on the
polar of 2; in other words, as a polar turns about a point,
its pole glides along the polar of that point.

Corollary 2. The polars of all points on a ray pass through
the pole of that ray ; in other words, as a pole glides along
a ray, its polar turns about the pole at that ray.

Scholium. By definition the rectangle OP-OP' is con-
stant in area; hence as 2 moves in towards O, 2' moves
out, and with it the polar of 2; as 2 falls on O, 7 and the
polar of 2 through it move out and vanish in infinity ; as P
moves out from O leftward, 7' and the polar reappear in
infinity on the left, approaching .S; as P reaches .S, so does
P, and the polar becomes a tangent. Hence we may define
the tangent as @ polar whose pole is on it (the polar).
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292. Theorem CXXXVIII'.— Zangents at the end of a
chord meet on the polar of the chord (Fig. 179).

af-- o

\\ ~

FiG. 179.

Proof. For the chord goes through the poles of the tan-
gents (where?) ; hence the tangents go through the pole of
the chord (why?).

Corollary. Tangents at the end of a chord through a
point meet on the polar of the point.

Hence we may define the polar of a point as ke locus of
the intersection of the pair of tangents at the ends of any chord
through the points.

Exercise. Show how to construct the polar of a point
without, within, or upon the circle of reference.

Def. Two points, each on the polar of the other, and two
polars, each through the pole of the other, are called con-
jugate.
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We are now prepared to attack
THE TACTION PROBLEM.
To draw a circle tangent to three given circles.

293. Lemma A. — The power-centre of three circles is a
centre of similitude of two circles each tangent to eack of the
three.

FI1G. 180.

Data: S, S, S;, the three circles, O and O' two circles
touching them, O outerly, O' innerly ; 7}, 75, 73, 7, 7'y, T"s
the points of touch.

Proof. Draw the rays of contact, 7\7",, 7,7, T,T",.

The first goes through two points of dissimilar contact of
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Swith O and O'; hence it goes through the inner centre
of similitude of O and O'; the like may be said of 7,7", and
T:T's ; hence these rays concur in 7, the inner centre of
similitude of O and O'.

Hence 7; and 7"}, 7; and 7";, 7; and 7; are three pairs
of anti-homologous points on O and O' with respect to 2;
hence PT,. PT'" = PT,. PT"y= PT,. PT';
that is,  Pis the Power-centre of S,, S;, S;. Q.E.D.

294. Lemma B. — An axis of similitude of three circlesis
a power-axis of two circles tangent each to each of the three.

Data: The same as before.

Proof. The transverse joins 7,7; and 7",7"; meet on the
power-axis of O and O' (why?); so too the transversals
7,7y and 7,7, 73,7, and 7°,7".. But 7,7, and 7"\7",
are rays of contact of O with .S, and of O' with S,S,;
hence they meet in the (outer) centre of similitude of S
- and S;; similarly for the pairs 7,7; and 7",7",, 737, and
7'sT'.. Hence the outer axis of similitude of .S, .S,, S; is
the power-axis of O and O'. Q.E.D.

295. Lemma C. — Z%e ray of contact of eack circle with
the two circles goes through the pole as to the circle of an axis
of similitude of the three circles.

Data: The same as before.

Proof. The tangents M,7;, and M,7", are equal; hence
the point Af; is on the power-axis of O and O, i.e. on the
(outer) axis of similitude of S;, S, S;.  So, too, for A, and
M, which latter in the figure lies at infinity. But A/; is the
pole as to .S; of the contact-ray 7,7", (why?) ; hence the
pole of the contact-ray lies on the axis of similitude ; hence
the pole of the axis of similitude lies on the contact-ray, or
the contact-ray goes through the pole of the axis of simili-
tude. Q.E.D.
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296. Accordingly, we know two points of each contact-ray,
namely, the power-centre of the three circles and the pole of
an axis of similitude as to each circle. We have then this
rule of construction :

Solution. (1) Find the power-centre and an .axis of
similitude of the three circles; (2) find the pole of this
axis as to each of the circles; from the power-centre draw
three rays through the three poles: they cut the three cir-
cles in three pairs of points, namely, the points of tangency
of two required circles.

Thus it appears that each axis of similitude yields in
general two tangent circles; and there are four such axes;
hence there are in general ¢igh# tangent circles.

The kind of tangency is determined by the axis of simili-
tude : if this be outer, then each of the two circles touches
all three similarly, one outerly, the other innerly ; if the axis
- be inner, but drawn through the outer centre (say) of S
and .S,, then one of the circles will touch .S, and .S, outerly,
but S; innerly, while the other will touch .S, and S, innerly,
but S outerly. ’

297. This classic problem, in which the elementary
geometry of the circle seems to culminate, was proposed
and solved by Apollonius of Perge, A.p. 200. His solution
was indirect, reducing the problem to ever simpler and
simpler problems. Itwas lost for centuries, but was restored
by Vieta. The direct solution similar to the foregoing was
first given by Gergonne (1813). The analogous problem
for space, namely, to construct a sphere tangent to four
given spheres, was first solved by Fermat (1601-1665).

The foregoing construction is immediately applicable to
this problem, on changing 3 into 4 and ray into plane.

It is important that the student actually carry out the
preceding solution.
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METRIC GEOMETRY.

298. Thus far our treatment of the subject of Geometry
has been strictly geometrical ; we have at no point invoked
the aid of number, Arithmetic, or Algebra in demonstration,
so that if these sciences should suddenly vanish from cogni-
tion the structure of our geometric knowledge would remain
wholly unimpaired. Nevertheless, in the Art of Geometry,
in the practical application of the science to quantitative
problems, it becomes highly important to express linear,
angular, and areal magnitudes through numbers or at least
numerically, and to apply to such expressions the laws of
numerical calculus. Such is the subject of the following
sections. '

299. D¢f. A geometric magnitude (tract, angle, area) that
may be regarded as the sum, or that equals the sum, of m
equal geometric magnitudes (of the same kind) is called a

FIG. 181.

multiple (more precisely, the m-fold) of one of those equal
magnitudes. Thus B is the double of 4, .D the triple of C,
F the four-fold of £ (Figs. 181, 182).
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De¢f. Any one of m equal geometrical magnitudes is called
an mth part, or simply an mth, of the sum or of the equal
of the sum of these 7 magnitudes.

Thus 4 is a half of B, Cis a third of D, £ is a fourth
(part) of F. _

The symbol for the m-fold of a magnitude is formed by
prefixing 7 to the symbol for the magnitude. Thus, 2 4,
3C, 40, mM. The symbol for an mth part of a magnitude
is commonly formed by writing 7 below the magnitude and
separating the two by a horizontal or oblique bar: thus,

B D
> 2 0/a 0/m

300. Theorem CXXXIX.— 7he p-fold of the mth part of
@ magnitude equals the mth part of the p-fold of the magni-
tude.

Proof. Let Q be any magnitude (tract, angle, area). By
definition there are m mth parts of it. In its p-fold each
such part will be present p times; hence there will be pm
mth parts in the p-fold of Q.

Also by definition the mth part of this p-fold taken m
times in summation must yield the whole. Now, however,
if we take p of the mth parts of Q and take them m times
in summation, we shall get a whole consisting of mpmth parts.
But it is a fundamental law of counting, called the Commu-
tative Law of Multiplication, that to count = g times yields
the same number as to count g 7 times. Hence this whole
is equal to the p-fold of Q; and its mth part consists of p
mth parts of Q, or is the p-fold of the mth part of Q; i.e.
the p-fold of the mth part of Q equals the mth part of the
p-fold of Q. Q.E.D.
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Scholium. The p-fold of the mth part, or the mth part of
the p-fold, of Q is commonly written

2Q 2 Q

Ty

The expression é, or p/m is called a fraction, # and m

its terms, p the numerator, m the denominator. We have
just learned what it means.

301. If now we conceive any whole, 7, as the sum of »
equal parts, each equal to #, we may call # the unit magni-
tude or magnitudinal unit. Thus one yard is a linear, one
degree an angular, one acre an areal, unit. There may be
several other magnitudes, the p-fold, ¢-fold, x-fold of this
same unit . Then m, p, ¢, x are called the metric numbers
of these magnitudes.

302. It may happen that a magnitude may not be com-
posable out of equal units #; it may not be a multiple of
the unit-magnitude #, but may be greater than the g-fold of
# and less than the (p+ 1)-fold of «. Thus a circle is
more than triple, yet less than quadruple, its diameter. In
such cases it may be possible to find some smaller unit of
which the unit # is the m-fold, and the other magnitude
(say) the g¢-fold. Thus the table may be more than 3 feet
and less than 4 feet long ; but on changing the linear unit
from the foot to the inch, the twelfth of a foot, we may find
that the length in question is precisely the g4o-fold of the
new unit — the table is precisely 4o inches long. Then
40 is the metric number of the table-length in inches and
the fraction 4§ is the metric number of the same length in
feet, which means that the sum of 40 12th parts of a foot is
the length of the table.
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303. Often, however, in fact generally, it will be impossi-
ble to find any unit-magnitude so small that its m-fold shall
be the one magnitude and its p-fold the other ; and this im-
possibility may be objective, not subjective — it may inhere
in the nature of the case and not arise from some defect of
our own powers of measurement or calculation. Thus, there
is no unit-length, however small, out of which may be com-
posed both the side and the diagonal of a square ; there is
no length so small that the side shall be its m-fold and the
diagonal its ¢-fold. This important fact may be established
thus :

304. Lemma. — Jf cach of two tracts is @ multiple of the
same tract, the difference of the two is @ multiple of the same
tract.

Proof. Let G be the greater and Z the less of the two
tracts. Then we have G = prand L = ¢- ¢; the difference of

* these two is (» — ¢)#4 and this is a multiple of # since the

difference of two integers, p and ¢, is itself an integer, p—g.

305. Theorem CXL. — 7%e side and diagonal of a square
are incommensurable (Fig. 182).

Proof. Let 4,B,=ys, be the side, and 4,4, =4, be the
diagonal of a square. On 4,4, lay off 4,8, = s, ; then 4,5,
is the difference of the side and diagonal and is therefore a
multiple of any tract of which s, and &) are multiples ; call it
S;.  Draw B,A4; normal to 4,4, ; then B,A4; = B,4; (why?)
= A,B, (why?). Hence 4,4, is the diagonal, 4, of a square
whose side is 4,58, or 5;. Also 4, is a multiple of any tract
of which s, and s, are multiples. Hence we have a new
square with side s, and diagonal 4, both multiples of any
tract of which s, and @, are multiples. Also the new side
and diagonal are respectively less than half of the old side
and diagonal. By repeating this process we obtain a third



230 GEOMETRY. [Tu. CXL.

square with side and diagonal less than half the side and
diagonal of the second, less than one fourth those of

AI
\ /
. , S/
N, '
Bs ds \\‘ ad
\\ \\ ”
RN 8, X E
\\ I’ \\
\\ ,/ \\
4
dl \\\ Vd \\
Ag 4 ™
F
8!
8
A, B,
FIG. 182.

the first. By such constructions we shall obtain a square
with side and diagonal less than <§1;)th of the side and

diagonal of the original square ; i.c.
‘rﬂ < fl.’ dﬂ < 11.
2“ 2"

By making # large enough we may make s, and &, as small
as we please, small at will,—we may in fact sink them
below any assigned degree of parvitude. Meanwhile they
must remain multiples of any tract of which s, and 4, are
multiples ; but they can be multiples only of a tract smaller
than themselves, manifestly ; hence any tract of which both
sy and @) are multiples must be smaller than a tract as small
as we please. But there is no such tract, self-evidently.
Hence there is no tract of which both diagonal and side of
a square are multiples. Q.E. D.
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Magnitudes that are thus not multiples of the same mag-
nitude are said to have no common measure, or to be in-
commensurable.

306. Now suppose the side s cut up into some very large
number of equal parts, as ¢ ; then the diagonal & will not be
the sum of any number of these parts but will be more than
the sum of p parts and less than the sum of (p + 1) parts;

V4 2+
£, d
7 s<ad< 7

Here we may make ¢ as large as we please ; hence, if we
take s for our linear unit, we may shut in the metric number

of @ between two fractio'ns,e and?t I, that differ by L,
q q q

that is, by a fraction small at will, while the metric number

that is;

. 5.

of 4 differs from each by less than I In this last sentence
7

we have subreptively assumed that @ Zas some metric number
when referred to s as unit-length. But we shall not build
anything on this assumption at present. See Art. 256.

307. We now pass to the metric numbers of area. We
agree once for all that the square on a linear unit shall be
an areal unit.. The metric number of an area will then be
the number of areal units of which it is composed, or its
equal is composed.

308. Theorem CXLI.— The metric number of @ rectan-
gle is the product of the metric numbers of its dimensions.
Two cases arise :

1. When the dimensions are commensurable (Fig. 183).

Let @ and 4 be the dimensions of a rectangle. Choose
any unit of which @ and 4 are both multiples, as #, so that
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a=p-u,b=g-u Then we may cutup e into  parts, and
4 into ¢ parts equal to . Through the points of division
draw lis to the sides. Then the whole rectangle will be cut

b
FIG. 183.

up into p¢ squares each on the side # (why?) ; hence the
rectangle will be the sum of these areal units; hence the
metric number is the product pg. Q.E.D.

Now suppose we choose some larger areal unit, as the
square not on # but on rz. In this square there are, by the
foregoing, 77 units ; that is, it is the r7-fold of the small unit

#*; or the small unit is the <—: ’-,>th part of the large areal

unit ; hence the rectangle, which is the pg-fold of the small

unit, is the (f—i)th of the large areal unit. But the sides

were respectively the <1—;>th and the (g,)th of .the small linear
unit #; and the product of these two fractions is, 4y tke

laws for multiplying fractions, ]:_—i Hence, if we call frac-
tions numbers, we must have the metric number of the area is

Irz?_, or is the product of the metric numbers of the dimen-

sions. Q.E.D.
2. Now suppose the two dimensions incommensurable with
the linear unit . Then @ will be > pz and < (p+ 1) %;
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while 4 will be > ¢ # and <(¢+ 1)%. Then plainly there
are pg squares on # in the rectangle, with some remainder,
but not (pg + 2+ ¢ + 1) squares; or

P9 <ab<(pg+p+g+1)id

Hence, if the rectangle ab has any metric number at all, the
same must lie between the values pg and (p+ 1)-(¢+ 1) ;
7.e. it must lie between the product of the metric numbers
too small and the metric numbers too great for the dimen-
sions. Now # was very small, and hence p and ¢ very large.
Take a new unit U*=r7 . #*, whose side is the rth multiple
of the side of the same square. Then the metric numbers

? P+I

of the dimensions ¢ and & will be > —and = but < —

and i, and the metric number of the area, if it }zave a

24 (2+71)(g+1)

s but < ———————; et
will lie between these two fractlons and differ from each by

metric number, will be > =
prg+1
rr

less than Now with any fixed unit length, as 1,

we may find two fractions, ‘; ~a.nd g, that differ from the

metric numbers of ¢ and & (if they have any) by less than ;,
and by taking » even greater and greater we may approach

our fractions é and g close at will to the metric numbers of

2

a and 4. Each of these fractions 7 and % meanwhile remains

less than some assignable whole number ; so, too, does their

p-:q’ and so does M Now the difference of

the fractions H M

pt+aq+1
r

sum

and s the »th part of

, and by making » large at will we may make this
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rth part smallatwi/l. Hence the two fractions may be brought
as close together in value as we please, while between them
lies always the metric number of the area, and also between
them lies always the product of the metric numbers of the
dimensions. These two numerics, then, the metric number
of the area and the product of the metric numbers of the
dimensions, cannot differ by any assignable value however
small, since they both lie between two values which may be
made to differ by less than any assigned value however
small. Hence we conclude (1st) that these two numerics
are Definites, since the bounds between which each lies,
and which close down together upon each other, are at
every stage perfectly definite, and (2d) that they are abso-
lutely the same in value.

309. It is a matter not of logical compulsion but of con-
venient choice to call this Definite a nzmber or at least a
numeric. Since it is not expressible as a fraction, still less
an integer, it is commonly called an Irrational. The laws
of operation on the algebraic symbols of such Irrationals as
well as Fractions are not matters of logical proof, but of
allowable assumption. It is convenient to assume for them,
arbitrarily to impose upon them, the same laws of operation
that are found empirically to hold for positive integers, or
numbers obtained by counting. This fact is sometimes
called the Principle of the Permanence of the Formal Laws
of Operation (Hankel). Further discussion of the subject
belongs to Algebra and would be out of place here.

310. Knowing that the metric number of a rectangle is
the product of the metric numbers of its dimensions, we
now declare at once that

Theorem CXLIL. — 7%e metric number of a parallelogram
is the product of the metric numbers of its dimensions.
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Theorem CXLIII. — Z%e metric number of a A\ is half the
product of the metric numbers of its dimensions.

Theorem CXLIV.— 7%e metric number of a trapezoid is
half the product of the metric numbers of its altitude and the
sum of its | bases.

In a word, all the theorems that declare relations among
areas may now be translated into theorems that declare like
relations among the metric numbers of areas. This easy
exercise is left for the student.

311. We have thus far treated proportion strictly geo-
metrically. We have written off the symbolism
a:b::c:d,
when e, 4, ¢, &, were signs for tracts, but when asked what we
meant by it our only reply was, we mean that the rectangle
ad equals the rectangle éc. This reply was perfect and
complete. Now, however, if instead of the tracts we put
2, ¢, 7, S, as the metric numbers of the tracts, we may still
write as before ’
pig:ir:s,
and answer the question what this means, by saying it means
that the product ps equals the product gr, for we have just
proved this equality. This answer is also perfect and com-
plete. However, it is not the on/y possible answer. For we

might say we mean that the fraction 2 equals the fraction 7
q s

-this would also be correct. For if ps = g7, then on divid-

ing both sides by ¢s we get 2_7 , and conversely, if ? =7
79 s q s

then on multiplying both sides by ¢gs we get ps=gr. Ac-
cordingly these two answers are equally adequate and involve
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each other. But we could not make any such second answer
to the question, what do we mean by the proportion

a:b::c:d?
For we cannot attach any meaning to the symbolism %when

e and & are tracts, nor can we tell, at least at present,
what we mean by dividing one tract by another. We may

. . @ ¢ . .
indeed write 3=7 and answer the inquiry as to our mean-

ing by saying we mean the rectangle < equals the rectangle
bc ; but we cannot deduce the relation rectangle ad = rec-

Zangle bc from the symbolism ;—l = g by multiplying through

by the rectangle 44, for we do not attach any meaning to the
phrase “ multiplying by a rectangle.”

312. The state of the case then is this:

All the proportions among tracts in Geometry may be
supplaced by corresponding proportions among the metric
numbers of those tracts ; in these latter proportions we may
supplace the colon by the division —, or quotient —, or
fraction-mark, and the double colon by the equality-mark.
The ratio of two tracts we did not attempt, and did not
need, to define geometrically ; but we now define the corre-
sponding ratio of the metric numbers of those tracts as the
quotient of the one metric number divided by the other;
and a proportion among these metric numbers of tracts we
may define as an equality of ratios.

313. We may now boldly apply the ordinary laws of
algebraic equations to any geometric proportion, understand-
ing by its terms nof the tracts themselves, but the metric
numbers of the tracts. The result will be some relation
among the metric numbers of tracts. If desirable, we may
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at once translate this relation back into pure Geometry by
substituting for the metric numbers of the tracts the tracts
themselves. But it will not always be possible to interpret
geometrically the result of this substitution. An illustration
will make this clear.

314. Let p, 7, s, 4, # be the metric numbers of the tracts
on which they are written in the A 4BC, right-angled at B
with BD normal to 4C (Fig. 184). Then s*= s« (why?),

and  s'=fl= (=) (P =) =Fr— s+ 5 — s

Whence =+ 2
whence _ %: ’%’ + i .

This beautiful and important relation may be stated thus :

B
H
H
8
H
|
!
i

t
A D €
FIG. 184.

Theorem CXLIII®. — 7%e reciprocal of the squared metric
number of the altitude to the hypotenuse of a right triangle
equals the sum of the reciprocals of the squared metric num-
bers of the sides.

So stated the meaning is intelligible and unmistakable.

But if now we write for s, 7, p the tracts themselves, namely,

R SN SIS

BD' 4B BC’
then we may indeed understand this relation algebraically
precisely as before, meaning by the signs BD', 4B, BC'
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the squared metric numbers of the tracts BD, AB, BC;
but we cannot attach any geome#ric meaning to the equation,
for we cannot tell what we mean by the reciprocal of a geo-
metric square.

315. The next illustration is still more interesting and
important (Fig. 185).

FIG. 18s.

Let ABC be any A, L any ray cutting the sides at 4/,
B', C'; from A4, B, C drop normals on Z meeting it at
P Q, R.

Then by similar A we have

AC'":BC'::AP: BQ,
BA':CA':: BQ:CR,
CB':AB':: CR: AP.

If now we understand by these biliterals not the tracts
themselves, but the metric numbers of the tracts, the fore-
going proportions will still hold and may be read as equa-
tions and written thus :

AC' AP BA' _BQ CB _CR

BC' BQ CA'~ CR 4B 4P



Tu. CXLIVs.] METRIC GEOMETRY. 239

where the sides of the equations are ordinary fractions. On
multiplying them together there results

AC'-BA'-CB' = unity

BC'-CA'-AB' ’
Inasmuch as 4C' and BC' are reckoned oppositely as
are also BA' and CA', BC' and AB', it is common and

convenient to write — 1 instead of 1, thus:

AC'-BA'-CB' _ _
BC'-CA'-AB'

This is the celebrated proposition of Menelaos :

Theorem CXLIV®. — 7V continued product of the ratios
in which a ray cut the sides of a A is — 1.

It states the condition necessary and sufficient that three
points on the sides of a A shall be collinear, and its mean-
ing is perfectly clear so long as we mean by 4C', etc., not
the tracts but the metric numbers of the tracts. But in
order to interpret it geometrically, 4C’, etc., standing for
the tracts themselves, it would be necessary to define pre-
cisely a higher notion, namely, that of the wolume of the
cuboid of three tracts, and this would require us to pass out
of our plane into tri-dimensional space.

316. Still another illustration is found in a proposition
the logical complement of the preceding (Fig. 186).

Let any three rays through the vertices of a A concur in
O, and let normals from O meet the sides of the A 4BC at
the points 4', B', C'.

Draw 04, OB, OC, and form the pairs of ratios O4': OB ;
OA': 0C; OB': 0C; OB':04; OC':04; 0OC': OB.
Regarding them as ratios not of tracts but of the metric
numbers of tracts, we may treat them as fractions and form
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the product of the first in each of the three couplets, and
also of the second in each couplet; these products are
!

evidently equal. Now the fraction % depends for its

value solely on the angle & ; hence it is called a function of

FIG. 186.

the angle &, namely, the sine of the angle «, and so for
the others. Hence
sine of @« sine of 8 sine of y
sine of ' sine of ' sine of Y

=1; or,

Theorem CXLV. — 7he continued product of the ratios of
the sines of the angles info which three concurrent rays
through the vertices of a A divide the angles of a A is 1.

The converse of this theorem is easily established, which
accordingly supplies a test of the concurrence of three rays
through the three vertices of a A. Its meaning is perfectly
precise and unmistakable so long as not the tracts but the
metric numbers of the tracts are signified by 04, etc.;
otherwise we are not in position to prove it nor to mterpret
the symbolism expressing it.
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317. The notion of sine of an angle, introduced for sim-
plicity in the foregoing article, is of the highest importance
for all following geometrical study. But perhaps a more
fundamental notion is that of cosine, which we may define
thus :

Def. The ratio of the projection of a tract on a ray to the
tract itself is called the cosine of the angle between the ray
and the tract (Fig. 187).

-

Yy
FIG. 187.

Thus the ratio of the projection p of the tract # to the
tract itself is the cosine of the angle & between them; or
2:t=a, as we may write cosine of «, which is commonly
abbreviated into cos .

318. It is plain that the projections of # on parallel rays
are all equal ; hence we may suppose the ray of projection
drawn through the beginning of ¢ as in Fig. 188. Then as
¢ turns about o and « changes its value, the projection g of ¢
will also change. Thus: for

@ =0, 60° 90° 120°% 180° 270° 360° 420° :--

a=1, %} o, ‘_%y —1I, o, I, '}, oo
319. In the 2d and 3d quadrants the projection p is
reckoned leftward ; it is opposite in sense to the projection
when « is in the 1st or 4th quadrants, and accordingly the

cosine is marked —. When « increases by 360° (or 2,
see Art. 336) from any value, the revolving tract resumes its
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original position, the projection resumes its original value,
and so too does the cosine ; hence

cos (360° + a)=cos (27 + a¢)=cos e« ;

that is, #ke cosine is not changed by increasing (or decreas-
ing) the angle by a round angle.

Hence, plainly, cos(e + 2 #7)=cosea.

Hence the cosine is called a periodic function* of the
angle, the period being 2 =, that is, a round angle (see Art.

336).

320. If 7be turned through any angle ¢ from the posi-
tion O4, its projection p is the same whether the turning be
clockwise or counter-clockwise ; that is, the projection is
the same whether the angle be negative or positive ; hence,
too, the cosine is the same.

That is, cos(—a)=cose;

that is, zhe cosine of the angle is unchanged by changing the
sense (or sign) of the angle. Now we learn in Algebra that
only the even powers, not the odd powers, of a symbol are
unchanged by changing the sign of the symbol ; thus:

(—a)l=a% (—a)'=a!, but (— a)’= —a’.
Hence the cosine is called an even function of the angle.

Its periodicity and its evenness are the two cardinal prop-
erties of the cosine, on which all others hinge.

321. We may now arbitrarily define the sine of an angle
to be the cosine of the complemental angle ; 7.e. g0° —a=«|,
as we may write sine of &, which is commonly abbreviated
into sin .

* Two magnitudes such that the values of the one correspond to values of
the other are called functions of each other.
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Now write 90° — B for « ;
we obtain .

cos{90° — (90° — B) § = (90° — B)|, or B =(90° — B)|;
i.e. the cosine of an angle is the sine of the complemental
angle.

Hence the sine (or cosine) of either of two complemen-
tal angles, as « and B, is the cosine (or sine) of the other;
ie. if 4 B=90°then ¢« =p|, and «|= . When either
changes by 2 =, so does the other oppositely ; hence the
sine as well as the cosine returns into its original value ; i.e.
the sine is also periodic with the period 2.

322. If the tract # be reversed, that is, turned through a
straight angle, its projection will also be reversed, but other-
wise unchanged ; hence the cosine will be reversed ; that is,
cos(e+m)=—cose; also cos(a—m)=cos(a+=) (why?) ;
hence cos(a —7) = — cosa,

or, fo change the angle by the half-period, w, changes the sign
of the cosine.

323. Since the cosine is an even function,
cos (e —w)=cos(r— ) ;
hence cos (r — @) =— cos .

That is, since « and = — ¢ are supplemental, #ke cosines of
supplemental angles are counter — equal in size, but opposite
in sense (or sign).

324. Again, if « + 8 = 90°, then a| = B8 (why?).
Then (e+7)|=B—m (why?)=— B=—a|.

That is, # change the angle by the half-period, =, changes the
sense of the sine as well as of the cosine.
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FIG. 188,

o
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FIG. 189.

1G. 190.

F
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We now ask, how is the sine affected by changing the
sense of the angle? We have

(—@)| =90’ +a (why?) = — (90° — &) (why?) = —(a)|;
that is, ke sense of the sine changes when the sense of the
angle changes. But this is the property only of 0dd powers,
not of even powers, of a symbol ; '
thus (—a)’=—a (—a)’= —a’ etc.

Hence the sine is called odd function of the angle.
Its periodicity and its oddness are the cardinal properties
of the sine, on which all others hinge.

325. If g be the projector of the tract # then g is plainly

the sine of the angle « for every position of # We may
indeed define the sine of « as equal to this ratio, and from
this definition readily deduce all the foregoing properties
(Figs. 188, 189, 190).
Exercises. 1. Prove that (¢|)?+ (a)’=1.
2. Find the value of «| for &« = o, 30° 45°, 60° 90°, 120°,
150°, 180° 210°, 225°, 240°, 270° 300° 330°, 360°, 390°.
3. If @, 4, ¢, be the sides of a A, &, B, y the opposite
angles, 7 the circumradius, prove that
a_?t
_ a] =B
Such is the Law of Sines (Fig. 191).
4. Prove that @®= 4* + & — 2 bce,—Law of Cosines.

5. If @ and 4 are adjacent sides of a (7, and 23 denote
the angle between them, prove that [7 = a4 éZ] .

c
=-—=27.
v/

N.B. We may define the sine from this important theorem
thus: Z%e sine of the angle between two sides of a [J is that
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number which taken as a multiplier turns the area of the
rectangle of the sides into the area of the (.

FIG. 191.

326. If we project successively the sides of a closed poly-
gon on any ray, the sum of the projections will be o ; for the
end of the projection of the last side falls on the beginning
of the projection of the first. This fact is very important
in surveying, where in compassing a field the sum of the
northings must equal the sum of the southings, and these
two sums, having opposite senses, together make the whole
sum o.

So for the eastings and westings.

We may express this fact in symbols thus :

5104 + Sa0t + S50+ o+ + S, = 0 =3sa.
Here the s’s are the sides, the a’s are the angles of the sides

with a fixed ray, as the east and west line, se is the pro-
jection of a side, and 3 is the symbol of summation.

Exercise. Show by projecting on a ray normal to the first
ray that 3se|=o.

327. If we project consecutively all the sides of a polygon
but one on that one, the sum of the projections will be that
one itself. For the beginning of that side is the projection

-
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of the beginning of the first, and its end is the projection of
the end of the last, of the projected sides (Fig. 192).

P P
FIG. 192.

Thus, in a A, the sum of the projections of two sides on
the third is the third.

328. We make a most important application of this simple
fact in finding the cosine of the difference of two angles

(Fig. 193).

FIG. 193.
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Let OP and OQ make angles « and 8 with any fixed ray
OX. Then angle QOP =a— B. Now project any tract
OQ on OP; there OP= 0Q-a—fB. But instead of pro-
jecting OQ directly we shall obtain the same result by pro-
jecting consecutively OF and #Q. The projection of OF
is OF . e, and of FQ is FQ-e|. But OF = 0Q-B, and
FQ=00Q-B|.

Hence OP=0Q-a—B=0Q-¢-B+ 0Q-a|-B].

Or, e—B=a-B+e|-B].

By changing the sense of B and by putting go — « instead
of &, let the student show that ¢ + B=e-B—al|-B],
(e+ B =c|-B+a-Bl, («—B)|=a]-B—a-Bl.

These four formule express the Addition-Theorem of Sine
and Cosine.

The doctrine of Functions of Angles constitutes Trigo-
nometry — an extremely important subject, which cannot
be pursued any further here. See Smith's Clew %0 Trigo-
nometry.

MEASUREMENT OF THE CIRCLE.

329. Thus far our linear measurements, or comparisons
of length, have been wholly of tracts. The peculiar sim-
plicity of such operations is due to the fact that any tract
may be superposed (at least in thought) on any other, and
thus their equality or inequality infallibly tested. We may
similarly compare arcs of equal circles, but not arcs of
unequal circles, nor arcs and tracts; for these cannot be
made to fit on each other to even the smallest extent. We
feel sure indeed that a circle or arc has a perfectly definite
length, that it is longer than some tracts, shorter than others,
and equal to some others. For if we suppose an inextensi-
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ble cord wrapped around a circular disk, on unwinding and
straightening the cord we should obtain a tract equal to the
circle in length. -But it remains difficult or impossible to
fix the notion of the length or to determine the length itself
without some preliminary definitions and assumptions.

We assume then that a circle has a definite length, neither
more nor les$; also, that it bounds a definite area, neither
more nor less.

330. We now inscribe in the circle of radius 7 a regular
n-side, and parallel to this latter we circumscribe a regular
n-side ; then bisecting each arc subtended by a side of the
inscribed #z-side we inscribe a regular 2 z-side and also cir-
cumscribe parallel to it a regular 2 z-side.

Then the following facts are at once evident :

1. The area of any inscribed polygon is less, and the area
of every circumscribed polygon is greater, than the area of
the circle ; or if Z,, S, and C, designate these areas, then

I, < S< C, (why?).

2. The area of the inscribed 2 z-side is greater than that
of the inscribed 7-side, while the area of the circumscribed
2 n-side is less than that of the circumscribed #-side ; or,

Iy > I, Co < C, (why?).

3. The area of each regular z-side is half that of the rect-
angle of the perimeter and the central normal on a side, and
in case of the circumscribed polygons this normal is the
radius 7, but in case of the inscribed polygons this normal,
or apothem, a,, is less than 7.

4. The perimeters of inscribed and circumscribed 7-sides
are to each other as @, and 7 ; for they are similar polygons,
and @, corresponds to 7.
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5. Since the area of the circumscribed 7-side decreases
as n increases, and since one dimension, the radius, remains
constant, it follows that the other dimension, the (half)
perimeter, must decrease with increasing n. For n = 4 the
polygon is a circumsquare, and the perimeter is 8 7.

6. Since the sum of two sides of a A is greater than the
third side, it follows that the perimeter of the inscribed
n-side increases with increasing n. For z» = 6 the perime-
teris 6. Hence for all higher values of 7 the perimeters
of both inscribed and circumscribed polygons lie between
67 and 87

7. Since then the sum of the z-sides is certainly less than
87, by making ~ large enough we can make each side,
whether of inscribed or circumscribed polygon, as small as
we please, smaller than one millionth, smaller than one bil-
lionth, smaller than any assigned magnitude however small.

8. But the half-side of the regular inscribed #-side is a
geometric mean between the segments of the normal diame-
ter; f.e. ’

SPI

n
r+a,:—::—:r—a,
tai5 i n

. S, . .
As S, is small at will, so is ?", and still more is » — a,,

which we may call 4, the distance between the parallel sides
of the inscribed and circumscribed polygons.

N.B. A magnitude small at will is often called an infini-
tesimal. Since » — @, or 4, is infinitesimal with respect to

Seo L. . . . e
7 which is itself infinitesimal, it (&,) is called an infinites-

imal of 24 order. But we are not now concerned with this
fact.
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9. The difference in area between the circumscribed and
the inscribed #-sides is a trapezoid the half-sum of whose
parallel sides is less than 87, the altitude being Z,. Since
87 is finite and definite while &, is small at will, it follows
that the difference in area of the circumscribed and inscribed
regular polygons is small at will.

FIG. 194.

10. Again, we have from similar homothetic figures,
Perimeter of C, : Perimeter of 7,::7: 7 —d,.
Hence, dividendo, V
Perimeter C, : Perimeter C, — Perimeter /,::7:d,.

But 2, is small at will ; so too then is D, = Perimeter C,
— Perimeter of /,; i.. the difference in perimeter of the
circumscribed and inscribed regular polygons is smal/ at
will.

11. The circle lying always wholly between the two poly-
gons inscribed and circumscribed both in position and in
areal value, it follows that the difference between its area
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and the area of either polygon is small at will; and since
the circle is fixed both in area and in position, it follows
that the circle is the Limit of both polygons, and that the
polygons close down upon it close at will as # grows ever
larger and larger.

331. Think of the polygonal strip between the inscribed
and circumscribed #-sides as growing ever narrower and
narrower ; the circle is a fixed doundary toward which the
circumscribed 7-side shrinks down as 7 increases, and ip
such a way that there is no assignable point outside of the
circle, no matter how close to it, that will not also fall out-
side of the circumscribed 7z-side as 7 increases. Likewise
the circle is the fixed doundary toward which the inscribed
n-side swells out as the » increases, and in such fashion that
there is no assignable point inside of the circle (no matter
how close to it) that will not fall inside of the inscribed
n-side as 7 increases. Thus the inscribed and circum-
scribed #-sides close down upon each other so as to leave
no point between except the points of the circle itself. As n
increases, the polygons #nd to absolute coincidence with
each other and with the circle. This fact is expressed fully
and accurately by saying that the circle is the common
Limit in length, in area, in position, of the inscribed and cir-
cumscribed regular z-sides for increasing # ; it is expressed
elliptically and inaccurately, but conveniently and frequently,
by saying that the circle is or may be regarded as a regular
polygon of an infinite number of sides.

332. The area of a circumscribed 7-side is half the area
of the rectangle of the radius of the circle and the perimeter
of the polygon, for all values of #. Hence the area of the
circle is half the rectangle of radius and the perimeter ; that
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is, the circle. The numeric expressing the ratio of the circle
to its diameter is called the perimetric ratio, and is desig-
nated by the Greek initial of perimeter, =. It is an irra-
tional and hence not expressible exactly as a fraction,
whether common or decimal, but its value has been calcu-
lated in various ages to various degrees of exactitude, and
may be calculated to any degree of exactitude. Of late
years it has been calculated (by Shanks) to the 707th decimal
place, and verified to the sooth — a degree of accuracy
immensely higher than can be attained in any measurement.
For most practical purposes the value = = 3.14159 or even
3.1416 is close enough.

If then » be the radius, 2 =r is the length of the circle,
and 77 . 7, or =, is its area.

333. Because the ratio = is irrational it by no means fol-
lows that it cannot be constructed geometrically; that is,
that we cannot with ruler and compasses draw a tract that
shall be exactly equal to the circle of radius ». The ratio
V2 is irrational, yet we can easily construct Vz-7, by
drawing the diagonal of a square of side ». If we could
draw a tract =7, equal to a half-circle, then, by Problem III,
P- 193, we could construct the geometric mean of » and =7,
which would be the side of a square precisely equal to the
circle in area. This famous problem of squaring the circle
is therefore not an irrational one; it is unsolved, but possi-
bly not in itself unsolvable. But see Math. Ann., xx., p. 213.

MEASUREMENT OF ANGLES.

334. We have denoted by = the so-called perimetric
ratio, namely, of the circle to its diameter, 27, so that, if »
be the radius, then 2=r is the (length of the) circle, and
wr? is its area. But there is another important use of .
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335. We have learned the ordinary sexagesimal division
of the round angle into 360 equal parts called degrees. This
artificial unit, degree, does not recommend itself for purposes
of mathematical investigation, but a ze/4ra/ unit is suggested
by the measurement of the circle itself. For it is plain that
whatever part an arc is of the whole circle, that same part
the central angle of the arc is of the round angle. Thus, if
m times the arc make out the circle, then m times the
central angle will make out the round angle; for, in add-
ing the arcs about the centre O, we at the same time add
the angles at O subtended by the arcs. If, however, arc
and circle be incommensurable, cut the arc and 'also the
angle into ¢ very small equal parts. Then p of these arc-
parts will be less and p+ 1 will be greater than the circle,
while, similarly, # of the angle-parts will be less and g + 1 will
be greater than the round angle; and this will always hold,
no matter how great ¢ and p may be. Hence, using the
arc as unit-arc and the angle as unit-angle, we see that the
metric numbers of circle and round angle lie always between

?,4211

the same fractions, 7 and ; and for increasing p and ¢

these fractions close down upon each other, so that the metric
numbers of circle and round angle cannot differ by ever so
little, but must be precisely the same. If instead of circle
and round angle we take any other arc and its corresponding
central angle, the reasoning remains unchanged, so that we
have

Theorem CXLVI. — If any arc and ifs corresponding
central angle be taken as wunits, the metric numbers of any
other arc (of the same or equal circle) and its corresponding
central angle are the same.

In other words,
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Central angles and their subtending arcs (in the same or
equal circle) are proportional (see Art. 337).
The latter statement is conciser ; the former is preciser.

336. Now a natural unit for arc-measurement is plainly
radius; hence a natural unit for angle~measuremeht is the
angle whose arc is radius (in length) ; accordingly we adopt
it as unit-angle and name it Radian. The metric number
of the circle, radius being unit, is 27 ; hence the metric
number of the round angle, radian being unit, is 2. The
radian equals about 57° 17’ 33".

Corollary. If n be the metric number of any angle, and
therefore of its corresponding arc, radian and radius being
units, then of any other arc, subtending the same or equal
angle, but described with a radius whose metric number is
7, the metric number will be »r; for all circles are similar.
That is,

The metric number of an arc equals the product of the
metric numbers of its central angle and its radius.

Exercise. What are the natural metric numbers of a
straight angle? A right angle? An angle of 60°? Of 45°?
Of 30°? Of 120°? 150°? 225°? 240°? 270°? 420°? 600°?
720°? 1080°?

THE EUCLIDIAN DOCTRINE OF PROPORTION.

337. According to Euclid, four magnitudes, a, b, ¢, d, are
in proportion, laken in order, when any m-fold of the first is
less than, equal to, or greater than, any n-fold of the second,
according as the same m-fold of the third is less than, equal
o, or greater than, the same n-fold of the fourth.
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In symbols
a:b::c:d(read ais to b as ¢ is to )
when, and only when,

ma < nb, ma = nb, or ma > nb,
according as
me < nd, mec = nd, or mec > nd.

We may also say equivalently that @ kas the same ratio t0 &
that ¢ has to d when, and only when, etc.

338. Hereby is defined, then, precisely, not indeed ra#o,
but at least equality of ratios. However, it still remains to
be proved that the axiom of equal magnitudes, namely, mag-
nitudes equal to the same or equal magnitudes, are equal to
eath other, can be applied to equal raZos ; for it has not yet
been shown that ratios are magnitudes or may be treated
as magnitudes. The all-important fact that, whatever these
ratios may be, they obey the axiom of magnitudes, is
expressed in the

Theorem CXI°. —Ifa:b::c:danda:b::¢:f,
then ¢:d::e:f (see Theorem CXL.).

For herein is declared that when two ratios, ¢: 4 and ¢: f,
are equal to the same ratio, @: 4, they are equal to each
other. Af7er establishing this fundamental proposition, but
not before, we may drop the double colon, :: and write
a:b=c:d.

339. We may illustrate both the idea and the method of
Euclid, in demonstrating the following extremely useful

Theorem CXLVII. — Areas of similar figures are fo eack
other as the squares on homologous tracts (in the figures).
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Data: Fand F'two similar figures, # and # two homol-
ogous tracts, #2 and £ the squares upon them.

Proof. If the figures be curvilinear, and in general even
if they be rectilinear, it will not be possible to cut them up
into corresponding squares, however small, as is manifest.
Nevertheless, we may cut each one up into congruent squares
so small that the remainder shall be less than any assigned
area, however small ; that is, shall be small at will. For
(Fig. 195) draw two corresponding series of equidistant
horizontals and verticals, & apart in #, and &' apart in #".

|

FIG. 195.

Let the extreme verticals in # be g apart, and let there be
v + 1 of them, so that g=v.4. Then the excess of the area
of F over the sum of the squares will be the sum of the
pairs of pieces at the end of each vertical strip ; hence it will
be less than 2 v little squares, or less than a rectangle of base
2g and altitude 4, 7.e. < 2gd. But this rectangle is small
at will, since its base 2 g is constant and finite while its alti-
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tude 4 is small at will. Similarly, in ", 2 ¢'" is small as we
please. .

Now suppose there are p little squares cut out in # and
also in /", where p is some very large but perfectly definite
integer. Then the areas 4 and A' of F and F' will differ
from the sums of the squares, pa* and pZ", by s and s, two
magnitudes small at will ; z.e.

A=pd’+s and A'=pd"+ '

Now suppose md? = m'd"™; i.e. the sum of m squares in

F equals the sum of m' squares in #'. Plainly then
2 (md?) =p (m'd?); or m-pd*=m'.-pd" (why?).

Now .

mA=m-pd*+ms and m'A'=m'-pd" + m's';
hence mA—m'A' = ms — m's'.
But s and s’ are small as we please, while 7 and ' are
finite ; hence ms and m's' are small at will; hence their
difference, ms — m's', is less than a magnitude small at will ;
hence ##is 0. (Why? Because there is only one definite
magnitude, namely, zero, that is less than a magnitude small
at will.)

Hence, if md*=m'd", then mA=m'A4'.

Now suppose md*>m'd". Then, as before, mpd?>m'pd"”,
and mA = mpd®+ ms while m'A' = m'pd"™ + m's'.

Hence mA—m'A'= (m-pd*—m'-pd™) + ms— m's'.

Here again ms—m's' is small at will, while m - pd* — m'-pad"
is some finite magnitude ; hence m.4 — m'4' is also some
finite magnitude of the same sense ; i.e.

if md®>m'd"? then mA>m'A
Precisely in like fashion we prove that
if md?<m'd? then mA<m'A'
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That is,
mA< mA', mA=m'Ad", or mA<m'A4',
according as
md*< m'd?, md =m'd? md*>m'd'?

Hence, by definition, the areas are proportional to the

squares on the corresponding tracts, # and @'; or
A:A::d*:d"

Now compare the squares on #and #', @ and #'. Since
all squares are similar, and since & and &' are corresponding
tracts or the equals of corresponding tracts in the squares
on #and #', we have from the foregoing,

21" d% 4%
Hence, by the Axiom of Magnitudes, applicable to ratios,
A:A:: 22 Q.E.D.

340. Care has been taken to conduct the foregoing
demonstration so that it shall apply quite as well to circles,
to regular triangles, in fact to any similar figures drawn on
homologous tracts as to squares ; so that we may affirm

Theorem CXLVII®. — Areas of similar figures are pro-
portional to areas of any similar figures on homologous tracts
(in the original similar figures).

341. The peculiar propriety and advantage of using the
square are seen on stating the analogous arithmetical

Theorem CXLVII’. — 7%he metric numbers of similar
JSigures are proportional fto the metric numbers of any other
similar figures in the same ratio of similitude.

Now the figure (or area) whose metric number is easiest
to find is the sguare, whose metric number is the second
power of the metric number of its side. Instead of second
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power it is usual, almost universal, to say sgxare and thus
employ this latter term in two entirely different senses, — the
proper geometrical sense and the tropical arithmetical sense.
This double use of the term “square ” is very regrettable as
being especially confusing to beginners.

342. We may now restate our proposition thus:

The metric numbers of two similar figures are propor-
tional to the metric numbers of squares on homologous
tracts ;

Or, are proportional to the second powers of the metric
numbers of homologous tracts ;

Or, are in the duplicate ratio of similitude of the figures
themselves. )

Thus, if the ratio of similitude be 2: 5 or a: 4, the ratio of

the areas will be 4: 25 or a?: 8%

343. Observe carefully that the Euclidian doctrine of
proportion is not a geometrical doctrine, but an arithmetical
doctrine applied to Geometry. The same may be said of
the accepted doctrine in modern texts: it is Arithmetic
applied to Geometry. Nevertheless, the difference between
the two is very great. Euclid’s is based wholly on the oper-
ation of multiplication and employs only positive integers,
not fractions nor irrationals, which indeed the Greek did not
recognize as numbers ; the modern, on the other hand, is
based on the operation of d7vision, and necessarily involves
some general theory of fractions and irrationals. Moreover,
Euclid’s, while regarded as cumbrous and very difficult for
the beginner, is yet a model of logical elegance and rigor :
the like can hardly be said of the modern treatment.*

* The usual algebraical treatment of proportion is not really sound.
O. HENRICI, ENC. BRIT,, VOL. X., Geometry, § 47.
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The doctrine developed in this text is purely geometri-
cal/, implying no numerical knowledge or calculus. It is
grounded in the notions of parallelism and similarity, to
stand or fall with them. Hence it will be found to have no
place in bi-dimensional spherics, the doctrine of the sphere-
surface, which is in many particulars quite analogous to
Planimetry, the doctrine of the plane, but in which there are
no similar figures.

MAXIMA AND MINIMA.

344. Already, in Art. 135, the notions of maximum and
minimum have been defined, but it is well to add here that
not absolute but merely relative size is referred to, inasmuch
as a varying magnitude may pass through a number of
maxima and minima, and of these some maximum may be
less than some minimum. Thus, a boy may inflate his

/N
\/

FIG. 196.

elastic balloon till the diameter becomes g inches, then let
it shrink to a diameter of 7 inches, again inflate it to a
diameter of 12 inches, let it shrink to one of 10 inches,
again inflate it, and so on. Here g and 12 are maxima,
while 7 and 10 are minima of the diameter. Plainly, maxima
and minima alternate with each other, and the course of the
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variable may be depicted by a waving line, the values of the
variable being the vertical distances of the points of the line
from a fixed base-line. OV is the axis of the variable
(Fig. 196) ; OT is the time-axis. What are the maxima
and minima? How do the tangents lie at these points of
the curve?

345. The general doctrine of maxima and minima calls
for a method that shall seize upon the magnitude in the
process of change, and subject its momentary variations to
investigation. Such a method is supplied in the Infinitesimal
Calculus. But there are many interesting and important
geometric problems that yield even more readily and com-
pletely to elementary than to more refined methods, and
some of these we shall now consider.

346. What is the maximum parallelogram with given sides?
The student may easily show it to be a reczangte.

Corollary. The maximum triangle with two given sides is
right-angled between those sides.

347. What is the maximum triangle with given base and
given vertical angle 7 From the figure it is at once seen to

N

FIG. 197.
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be symmetric (Fig. 197). Trace the variation in both area
and perimeter of the A.

348. What is the maximum triangle with given dase and
éz’mn pervimeler 7

We are sure that the symmetric A is either maximum or
minimum ; for as the vertex slips either rightward or leftward
from the symmetric position by the same infinitesimal amount
(Fig. 198), the two resulting A are congruent. Hence the

g
w.
\/ U
\'A
A B

FIG. 198.

symmetric A, which lies between the two, is either greater
or less than either. That it is greater, and hence is the maxi-
munm, is readily proved thus:

Through the vertex » draw a parallel to the base. Then
no other position of the vertex can be on this parallel, as at
U; for AU+ UB > AV + VB, as is seen at once on taking
the point B' symmetric with 5 as to the axis VU. Still less
can the vertex take a position above the parallel, as at 7.
Hence it must in every other position be below the parallel,
asat V'; and AVB > AV'B (why?).
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349. Theorem A (Lemma).— If the base and perimeter
of a rectilinear figure be given, the area may be continually
increased by increasing the number of sides (besides the base),
and keeping them mutually equal.

Data: /4 the given base, s the sum of the other sides.

Proof. On 4 complete with s a symmetric A, a maximum.
On either side take a point D distant one-third of the side
AC from the vertex C. Now holding the new base BD
fixed, convert BCD into a maximum (symmetric) A, keep-
ing it isoperimetyic, that is, of equal perimeter. The result-
ing quadrangle ADERB is greater than the A 4ACB (Fig.
199), and has its three sides 4D, DE, EB equal. Now

8

¢ E
D
A b B
FIG. 199.

drawing AE, we may proceed similarly with the A ADE ;
the resulting 5-side will be greater than the 4-side, but its
sides will be unequal, and we can still further enlarge the
figure, keeping it isoperimetric, by equalizing the four sides.
Thus we may proceed continually, and at every step enlarge
the bounded area, first increasing the number of sides, and
then equalizing them. As long as any two consecutive
sides are unequal, we can join their ends and enlarge their
A by making them equal. Q.E.D.

350. Theorem B (Lemma). — Any n-side, the base being
Jixed and the other sides mutually equal, has maximum area
only when the equal sides enclose equal angles.
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Data: We consider first a 4-side, 4B its base, AC, CD,
DB its three equal sides, and the angles C and D equal
(Fig. 200).

A B
FIG. 200,

Proof. Suppose the sides to be rigid rods hinged at the
angles, forming a Znkage. Precisely, as in Art. 349, we
know that the area is either ¢ maximum or ¢ minimum, and
we easily prove it to be #¢ maximum thus:

Deform the linkage by thrusting the hinge C down to C';
then 7f AB> AC, as C descends to C' on the arc of a
circle, D will rise to D' on the arc of an equal circle.

1. Then the arc CC'>arc DD'. For CD= C'D', and
C'D' being oblique, its horizontal projection is < CD;
hence the lateral or horizontal thrust of C is > the lateral
thrust of D ; that is, the horizontal projection of the arc or
chord CC'is > the horizontal projection of the arc or chord
DD'. But even if DD' were only equal to CC, its hori-
zontal projection would be greazer than that of CC' (why?) ;
hence DD' must be Zess than CC'.

Corollary. Hence A ACC' > BDD'.
2. The AICC' > IDD'. For if the fixed length CD had
slipped with its ends along the tangents at C and D into the
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position C''D", then we should have had A7'CC" > I'DD"
(why?) ; much more, when the ends slip along the arcs (or
chords), the end C falls lower (to C'), the end D rises not
so high (to D'), and the intersection slips further rightward
(to 7), the large subtractive A is increased to /CC’, the
small additive A is decreased to /DD'.

3. Hence the two decrements 4 CC' and /CC' produced
by this deformation being respectively greater than the two
increments BDD' and /DL, it follows that the resultant
area AC'D'B is less than the original area 4CDB. The
reasoning is not changed if we thrust in D instead of C, and
it applies whatever the amount of the thrust. Hence the
anti-parallelogram 4 CDZ is the maximum.

If, however, AB < AC, then the argument about the arcs
CC' and DD' is no longer valid (why?). But in this case
it suffices to use CD instead of 4B as the fixed base, and
then proceed precisely as before.

If AB = AC,then theanti-parallelogram becomes a square,
and is plainly larger than the rhombus resulting from any
deformation (why?).

Hence in all cases the symmetric 4-side is greater in
area than any asymmetric one.

If, now, in any #-side with (# — 1) equal sides, any two
consecutive angles between equal sides be unequal, as PQR
and QRS, then we may apply the preceding reasoning to
the 4-side PQRS, and increase its area by making it an
anti-parallelogram ; and so we may proceed continually,
enlarging the area as long as the angles between the equal
sides are not all equal. Moreover, if these angles be all
equal, then any change in the size of any one must change
the size of one adjacent, and hence decrease the area of a
4-side, and therewith of the whole n-side. Hence the sym-
metric z-side, with (2 —1) equal sides, (# —2) equal
angles, and two other equal angles, is #k¢ maximum. Q.E.D.
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351. Such an 7-side, however, is afways encyclic (why?),
and we have-seen that its area may be continually increased
by increasing 7 ; hence for no finite value of 7 can the area
be an absolute maximum. As 7 increases, the perimeter
tends accordingly towards a circular arc as its /imit, and the
area always increasing tends towards the absolute maximum
as its smit. Moreover, the polygonal area may be made to
differ from the circular by /ss than o small at will, while
any change from the circular shape will produce some
definite decrease in area at least equal to o (for any such
change may be brought about by a definite change however
small in the polygonal area followed by other changes small
at will). Hence in the circular form the area attains its
absolute maximum.

352. The foregoing reasoning preserves its cogency how-
ever small the base 4 may be, and even when it vanishes, as
is manifest, so that we have as special cases :

1. Of all isoperimetric #-sides the regular has maximum
area.

2. A regular n-side has greater area than the isoperimet-
ric regular (7 — 1)-side.

3. Of all isoperimetric figures the circle has maximum
area.

353. The conclusions reached with respect to maximal
areas of isoperimetric figures may now be readily converted
into another set of conclusions with respect to minimal
perimeters of equiareal figures ; thus:

1. Of all equiareal 7-sides the regular has minimum
perimeter.

2. A regular n-side has less perimeter than the equiareal
regular (7 —1)-side.

3. Of all equiareal figures the circle has minimal perimeter.
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The details are left to the student, who must remember
that under fixed conditions increase of perimeter brings
increase of area (why?).

The doctrine of Maxima and Minima is one of the most
beautiful and fascinating in the whole range of mathematics,
and especially in its applications in Mechanics it is of the
highest practical as well as theoretical interest.

CONCLUDING NOTE.

354. Before closing our discussion it may be well to
recall attention to certain matters of vital significance for
geometric theory, but which could not be adequately treated
earlier without perplexing and even revolting the student.
The following sections make no pretension to thoroughness,
but may yet enable the reader to orient himself properly
in the subject.

355. Some diversity of judgment prevails as to what is
the simplest form that can be given to the fundamental
assumptions of Geometry. Euclid’s so-called Axioms, com-
prised in his ¢ common notions,” Postulates, and Definitions,
assume :

Continuity and the possibility of Rigid Motion (that is,
of moving a body or figure without changing its size
or shape) ;

The Existence of Surfaces, Lines, and Points ;

The Existence of Planes, Straight Lines, and Circles ;

The Existence of one, and only one, Non-intersector of a
straight line for every point in its plane ;

The Equality of all Right Angles.

This last may be proved, and hence is unnecessary. To

the others must be added :
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The Infinity of the Straight Line, —not mentioned by
Euclid, but yet implied in his demonstrations, and
inserted by his editors.

Perhaps most moderns would prefer to assume openly
the Existence of Plane, Straight Line, and Circle. The
deduction of these notions from that of the sphere, given
in this text in the main after Bolyai and Frischauf, even
though it may “lay no claim to absolute rigor,” nevertheless
seems to the writer to be the most natural and easy to
intuit.

356. The term ray has been preferred to straight line,
or ‘straight’ (Halsted), because it seems important to have
a single word for such a fundamental concept, and still more
because the adjective ¢straight’ involves an unfortunate and
unnecessary assumption. Rays may not be absolutely
straight, but may curve with space itself, and return upon
themselves like the Equator. They are not necessarily
straight, but as straight as can be, the straightest that can
be, in our actual space. Think of one end of a short string
fastened on an egg-shell, and the string stretched over the
shell by a weight at the other end. The string would then
mark a straightest (geodetic) line on the shell, which would
not, however, be straight.

357. The infinity of the ray, though not openly affirmed
in the text, is yet implicit in certain demonstrations. Thus,
in Theorems XVII. and XXVIII,, it is assumed that we
can lay off on the medial ray a tract equal to the medial
tract without returning through the vertex. But we can-
not certainly do this unless the ray be infinite. A merid-
ian, familiar from Geography, is the straightest line that
we can draw on a sphere, and corresponds to the ray
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in a plane ; but if we go more than half a meridian from
the North pole, and then go on as far again on the same
meridian, we shall always return through the same North pole.
Hence the demonstrations in the text fail in generality, if
the ray be of finite length. Hence, too, the familiar and
plausible Theorem XXIII., B, that from a point without a ray
only one normal can be drawn to the ray, also fails unless the
ray be infinite ; for the proof of it rests on Theorem XVII.
In fact, on a sphere all meridians from a certain point,
the pole (North or South), are normal to the Equator, the
straightest line on the sphere. In like manner the reasoning
of Arts. *65 and *66, after Bolyai and Frischauf, is seen to
assume the infinity of the ray and the plane,—let the stu-
dent show at what points.

358. Butin the more general discussion of Arts. 67—71
all such assumptions — as well as Axiom 7, that two rays
can meet in only one point, which is Zzown to hold only
for the comparatively small region of our experience — are
dropped, and the student must note with the utmost care
that four possible space-forms result from our refusal to
make these assumptions :

A. If the rays ZM and L'M’, isoclinal to the third ray or
transversal 7, meet in two points, on the right and on
the left, then we have so-called double Elliptic space.

B. If they meet in one point only, then we have simple
Elliptic space.

C. If they do not meet at all, but if there be also other
non-intersectors through the point O' (that is, if we
grant Axiom A but reject Axiom B), then we have
Hyperbolic space.

D. Lastly, if we grant both Axiom A and Axiom B, then
we have ordinary Parabolic space.
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359. The names Elliptic, Hyperbolic, Parabolic have
been given by K/ein. They mean lacking, exceeding, equal-
/ing, and refer to a certain characteristic magnitude called
the Riemannian ‘measure of curvature’ (Riemann’sche
Kruemmungsmaass), which in the three cases is respec-
tively negative, positive, o, or less than o, greater than o,
equal to o. Instead of Klein’s terms we sometimes meet
with Riemannian, Lobatschevskian (or Gaussian), and
Euclidian, from Riemann, Lobatschevsky and Gauss, and
Euclid, — mathematicians that first set forth clearly the
properties of the space-forms.

360. Some of the distinguishing features of these four
spaces are the following :

A. 1. The ray is closed and finite.
2. The sum of the angles in a plane A is > a straight
angle.
3. Two rays that meet in one point meet also in a sec-
ond point.

B. 1. The ray is closed and finite.
2. The sum of the angles in a plane A is > a straight
angle.
3. Two rays meet at most in one point only.

C. 1. The ray is not closed, but infinite.
2. The sum of the angles in a plane A is < a straight
angle.
3. Two rays meet at most in one point only.

D. 1. The ray is not closed, but infinite.
2. The sum of the angles in a plane A is = a straight
angle.
3. Two rays meet at most in one point.
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361. It is curious and noteworthy that the ray in a sim-
ple Riemannian plane cuts the plane through, but noz 2
two. For, take any ray & and two points close together, 2P
on the left and Q on the right of &; through 2 and Q
draw a ray meeting &R at /. Then we may pass from 2 to
Q rightward through 47; or, since the rays are closed and
meet only in A/, we may pass from 2 to Q leftward and
not through Af; i.e. we may pass from one side of the ray
R to the other without crossing it. This may be hard for
us to imagine, but perhaps not harder than for the ancients
to imagine antipodes. Think of a hollow ring —a circle
running all round it or across it would cut it through, but
not in two. The Riemannian plane is not such a ring, but
is ring-like in being thus doubdly compendent (Art. 162).

362. It will be well for the student to observe carefully
just where the proof of Theorem XXXI. breaks down on
rejecting Axiom B. We may then still draw through C a
non-intersector of 4B, making the alternates « and &' equal ;
and we may also draw through C a non-intersector of 4B,
making the alternates B and B' equal. But in the adsence
of Axiom B, we cannot know that these two non-inter-
sectors are the same,; hence we cannot know that the sum
o' 4y + B'= a straight angle; hence we cannot affirm
that the sum a4+ y + 8= a straight angle. In fact, if the
two non-intersectors are not the same, then manifestly
a+vy+ B=a' 4+ v+ B'< a straight angle.

363. Actual measurement, direct and indirect, of the
angles of a A yields a sum always very near to a straight
angle. But even the largest A we can construct and com-
pute in the heavens are yet exfremely small relatively to the
whole of space, whether space be finite or infinite ; and since
the defect under a straight angle, or the excess over a straight
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angle, if there be any such defect or excess, must vary with
the size of the A, in observed A it would be extremely small
and so might elude our observation. In fact, for extremely
small A, the only A of experience, the four spaces are so
nearly alike in properties as to be indistinguishable ; just as
if the earth’s radius were a decillion times as great as it is,
and our experience extended over no more than its present
surface, we should be unable to say whether it was flat, or
sphere-shaped, or egg-shaped, or ring-shaped, or saddle-
shaped.

364. It appears then that the natural question, Which of
the four possible homceoidal spaces is our actual space ? is
at present unanswerable. Our experience is still too narrow
to enable us to decide or even to conjecture. Why, then,
do we seem to prefer parabolic space, and build up our
geometries on Euclid’s foundations ?  Because it is easier,
more convenient. The superior simplicity of the Euclidian
geometry is conspicuous in its doctrine of the parallel, the
unique intersector, and of the sum of the angles in the plane
A, which is a constant, the straight angle. The ground of
our preference, then, is not a logical, but an economical one.

365. Lastly, let the student never forget that the question
as to the fundamental properties of our space is at bottom a
question as to the constitution of our own minds. It is they
that at every instant project images of their own states and
of all beings as related to them, and build up these pro-
jections into the world of phenomena about us, which we
call space and its contents. Space, then, is made the way
our spirits make it, and to know its fundamental properties
is to know fundamentally the mode in which the spirit
objectifies to itself, makes an object of its own contempla-
tion, the world of Not-self about it. Whence it appears that
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not only all physical problems, but also all geometrical
problems, root finally in Metaphysics.

366. In the writer's judgment the doctrine of non-
euclidian spaces and of hyper-spaces in general possesses
the highest intellectual interest, and it requires a far-sighted
man to foretell thatit can never have any practical importance.

The student who would pursue the subject should read
Halsted’s excellent translations of Lobatschevsky and Bolyai,
the Lectures and Addresses of Clifford and Helmbholtz,
Ball’s article on Measurement in the Encyclopzdia Britan-
nica, and afterwards the monographs of Riemann, Klein,
Newcomb, Beltrami, Killing, and should also consult the
bibliography of the subject as given by Halsted in the
American Journal of Mathematics, Vols. 1. and II.

EXERCISES V.

1. Central rays of a parallelogram bisect it, and conversely.

2. Central rays of any closed centrally symmetric figure
bisect it, and conversely.

3. Tracts bisecting the mid-parallel of a trapezoid and
ending in its parallel sides bisect it, and conversely.

4. The sums of the opposite A, into which tracts from a
point within a parallelogram to its vertices divide it, are
equal.

5. The sums of the opposite A formed by tracts from
any point of the mid-parallel to the vertices of a trapezoid
are equal.

6. Tracts from a vertex of a regular 6-side to the other
vertices and the mid-points of the remotest sides divide it
into six equal A.

7. The A whose vertices are the ends of one oblique
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side of a trapezoid and the mid-point of the other is half
the trapezoid.

8. The A of the medials of a A has § of the area of the A.

9. Pis a point, ABCD a parallelogram ; then A APC =
A APD + A APB.

10. The joins of the mid-points of the opposite sides of a
4-side concur with the join of the mid-points of the diagonals.

11. *Divide a A or parallelogram into two parts in the
ratio /: m.

12. Divide a parallelogram by tracts from a vertex into
n equal parts.

13. Divide a A into 7 equal parts by tracts from a point
on a side.

14. Transform a A or parallelogram into another of same
base with a given angle at the base.

15. Transform a A or parallelogram into another with
given base.

16. Transform a A or parallelogram into another with
given base and given adjacent angle.

17. Transform a trapezoid into an anti-parallelogram of
the same altitude.

18. The common border of two areas lying between two
rays is a broken line ; rectify this border without affecting
the areas.

19. Inscribe in a given circle a rectangle of given area.

20. If tracts between the parallel sides of a trapezoid, not
intersecting within it, divide the mid-parallel into 7z equal
parts, they also divide the area into 7 equal parts.

21. In a trapezoid, the join of the mid-points of the
diagonals equals the difference of the parallel sides.

22. Construct two tracts, knowing their ratio and their
sum or difference.

23. Investigate the proportionalities between the seg-
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ments of the altitudes of a A made by the orthocentre and
the segments of the sides made by the altitudes.

24. To the base of a A draw a parallel cutting off a A of
given perimeter.

25. *The sum of two similar figures on the sides of a right
A equals a third similar figure on the hypotenuse.

26. If intersecting semicircles be drawn on all the sides
of a right A, the sum of the two small crescents will equal
the larger (Hippocrates, 450 B. C.).

27. Bisect a A by a parallel to its base, and generalize
the problem.

28. The rectangle of the segments into which one alti-
tude of a A is cut by the others is the same for all the
altitudes.

29. Construct a A, knowing its altitudes.

30. The medials of a A cut it into six equal A.

31. A’smid-rays cut sides into i7/slt ; Sij=ij +7l+4li=3rs.

32. The altitudes of a A cut it into six A, so that the
sums of the alternate A are equal.

33. Through the perimeters of an inscribed and a circum-
scribed regular 7z-side express those of the 2 z-side.

34. The area of a ring between two concentric circles
equals that of a circle having as diameter the chord of the
outer circle tangent to the inner circle.

35. The radius of the earth being 6370 kilometers, how
far might one descry a ship from the summit of Chimborazo
(21,424 feet) ?

36. How many hills of corn one yard apart may be
planted in a rectilinear field of one acre ?

37. Chords from any point of a circle to the ends of a
diameter divide its conjugate chords harmonically.

38. Chords from any point of a circle to the ends of a
chord divide its conjugate diameter harmonically.
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39. Transform a A into another A’ similar to a given A",

40. Find the locus of a point whose distances from two
given rays are in a fixed ratio.

41. All rays whose distances from two fixed points are in
a fixed ratio envelop two fixed points ; find them.

42. On a given ray find a point whose distances from
two fixed points (or rays) are in a fixed ratio.

43. Through a given point draw a ray whose distances
from two fixed points shall be in a fixed ratio.

44. Find a point (or points) whose distances from three
fixed non-concurrent rays Z, M, /V shall be as Z: m : .

45. Find a ray (or rays) whose distances from three non-
collinear points 4, B, Cshallbeasa:4:c.

46. Find a point whose distances from three fixed points
shall be as Z: m : n.

47. In every trapezoid the mid-points of the bases along
with the intersections of the non-parallel sides and of the
diagonals form an harmonic range.

48. The locus of a point whose distances from 4 and B
are in the ratio @:4 is a circle on 48 as central ray and
dividing 48 harmonically in the ratio @ : 4.

49. The locus of a point whence the collinear tracts 43
and BC appear equal is a circle dividing 4 C harmonically.

50. Find the point whence three collinear tracts 425,
BC, and CD appear equal.

51. Pis a given point in a given angle BAC; draw BC
so that PB: BC::/:m,or BP:PC::/:m, or BA:AC::
lim.

52. From the continued ratio of the sides determine the
continued ratio of the altitudes of a A.

53. A marble rests in a conical glass; another rests on it
and touches the glass all around ; and another, and so on.
How are the radii of the marbles related in size?
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54. Find the area bounded by three equal tangent circles.

55. Compare the A of the centres with the A of the com-
mon tangents of three tangent circles.

56. In a regular A is inscribed a circle; tangent to it
and two sides of the A, another circle ; and so on. How do
the radii decrease?

57. M is the mid-point and 2P any other point of the
tract AB ; semicircles are drawn on AM, MP, AP, and PB,
all on the same side of 48 ; show that the sum of the first
and second equals the fourth plus the area bounded by the
first three.

58. Inscribe a circle in a given sector of a circle.

59. Find a point on a circle whose distances from two
chords are proportional to the chords.

60. The distance of any point of a circle from the chord
of contact of two tangents is a mean proportional between
its distances from the tangents.

61. When does the altitude to the hypotenuse of a right
A divide the hypotenuse in extreme and mean ratio ?

62. In aregular 5-side each diagonal is divided in extreme
and mean ratio by two others and all form a regular 5-side.
Compare the areas of the two 5-sides.

63. The rectangle of the distances of any point of a circle
from two opposite sides of an encyclic 4-side equals the
rectangle of the distances from the diagonals.

64. RA and RB are two equal rigid rods pivoted at R ;
OQ is a rigid rod pivoted at O and OQ= OR; AQBP is
a thombus formed of equal rigid rods movable about their
junction-points. Show that, as Q traces a circle about O,
P traces a ray normal to the ray OR, and that 2 and Q are
inverse as to R.

N.B. Such is the mechanical invertor called Peaucellier’s
cell.
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65. In any range of four points, as 4BCP, show that
AB.CP+ BC-AP+ CA-BP=o.

66. In any pencil of four tracts, as O4, OB, OC, OD,
show that
AAOB-ACOD+ABOC-AAOD+ACOA-ABOD=o.

67. The diagonals of a parallelogram concur with the
diagonals of its complemental parallelograms.

68." The mid-points of the diagonals of a 4-side are
collinear, .

69. Rays through the vertices of a A and the points of
touch of the ex-circles concur.

70. Normals to the sides of a A, at the points of touch of
the ex-circles, concur.

71. When normals from the vertices of one A to the
sides of another A’ concur, so do normals from the vertices
of A’ to the sides of A.

72. Normals to the three sides of a A through the points
of touch of two ex-circles and the in-circle concur.

73. The feet of normals from any point of a circle to the
sides of an inscribed A are collinear (on Simson’s Line).

74. Rays through the vertices of a A and the points of
touch of the in-circle concur.

75. Mid-rays of the angles of a A (three outer, or two
inner and one outer) intersect the opposite sides collinearly.

76. Tangents to the circumcircle of a A at its vertices
intersect the opposite sides collinearly.

77. If the joins of the vertices of a A with three inter-
sections of the opposite sides by a circle concur, so do the
joins of the vertices with the other three intersections of
the opposite sides.

78. Find a circle as to which two pairs of collinear points
are inverse. (Aint. Draw a circle through each pair, and
also their power-axis.) When is the circle sought rea/?
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79. Find the inverse of a given point as to a given circle.

80. Given two points, find a circle of inversion having
given radius or given centre.

81. A circle through a pair of inverse points cuts the
circle of inversion orthogonally, and conversely.

82. The squared distances of a point on the circle of
inversion from two inverse points are in the ratio of the
central distances of the points. :

83. The power-axis of a fixed circle and a variable circle
through two inverse points as to the fixed circle envelops
a fixed point.

84. Find the inverse of a circle when it passes through
and also when it does not pass through the centre of
inversion.

85. When does a circle invert into itself ?

86. A circle, its inverse, and the circle of inversion have
a common power-axis.

87. Inversion does not change the size of the angle under
which two lines intersect.

88. The g-point circle of a A touches the in- and ex-circles
of the A.

89. The joins of the intersections of two circles with their
common diameter and a common orthogonal circle concur
on that orthogonal.

go. The join of the polars of two points is the pole of the
join of the points.

91. If a pole trace the sides of an #-side, 2, the polar
will envelop the vertices of an #-angle, Q; and if the
pole trace the sides of Q, the polar will envelop the vertices
of P.

92. If the pole trace any line Z, the polar will envelop
a corresponding line Z'; and if the pole trace Z', the polar
will envelop Z.
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Defs. Two lines, either of which is enveloped by the
polar, as the other is traced by the pole, are called reciprocal.

When the reciprocals coincide, the figure is called self-
reciprocal or self-conjugate, while the centre and the circle
of reference are called the polar centre and the polar circle
of the figure.

93. If a A has a polar centre, it is the orthocentre.

94. If the polar circle is real, the A is obtuse-angled.

95. The polar circle of a A is orthogonal to the circles
on the sides as diameters.

96. Invert the sides of a A as to its polar circle.

97. The ends of a diameter of a circle are conjugate as
to every orthogonal circle.

98. As the orthogonal circle (of 97) varies, the polar of
either diameter-end envelops the other.

99. The distances of any two points from a polar centre
vary as the distances of each from the polar of the other as
to that centre (Salmon).

100. Polar reciprocal A are in perspective.

Def. Circles, every pair of which have the same power-
axis, are called co-axal.

101. If two circles intersect in 4 and B, all co-axals go
through 4 and B.

102. The contrapositive of ror.

Hence there are two kinds of co-axals: common point
co-axals (101) and non-intersectors, so-called Zmiting point
co-axals (102). -

103. The centre line of common point co-axals is a ray,
namely, the common power-axis of co-axals orthogonal to
the common point co-axals.

104. One and only one of these orthogonals goes through
every point of the plane excep? the common points, which are
therefore called (Poncelet) limiting points of the orthogonal
co-axals.
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105. Draw a double system of mutually orthogonal co-
axals.

106. The polars of a point as to co-axals concur, and
conversely.

107. The difference of the powers of a point as to two
circles is proportional to the distance of the point from the
power-axis.

108. The locus of a point whose tangent lengths from two
circles are in fixed ratio is a co-axal circle.

109. When does the power-centre of three circles become
indefinite, and when does the radius become imaginary?

110. The polar centre of a A is the-power-centre of three
circles on any tracts from the three vertices to the sides as
diameters.

111. Three collinear points on the sides of a A being
joined with the vertices, the circles on these joins as diameters
are co-axal.

112. The four polar centres of the four A, formed by the
sides of a 4-side taken in threes, are collinear on the power-
axis of circles on the diagonals of the 4-side as diameters.

113. Invert a double orthogonal system of co-axals; as
special case take a common or limiting point as centre.

114. Show that any two circles may be inverted into equal
circles, and find the locus of the centre of inversion.

115. Invert three non-co-axal circles into three equal
circles.

116. Draw a circle touching these three equal circles, and
re-invert the four circles. What problem is hereby solved ?

117. Discuss the various possible positions of the centres
of similitude of two circles.

Def. The circle of similitude of two circles has the tract
between the centres of similitude as diameter.

118. The circle of similitude is co-axal with the two circles.
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119. From any point on the circle of similitude the two
circles appear to be of the same size.

120. Find a circle as to which the power-axis and the
circle of similitude invert into each other.

Defs. A tract with its ends on a figure is called a chord
of the figure. A ray bisecting a system of parallel chords is
called a diameter of the figure. Two diameters, each halv-
ing all chords parallel to the other, are called conjugate.

121. Every two-ray (Zweistrakl), or angle considered not
as a magnitude but as a figure, has an infinity of diameters,
namely, every ray through its vertex.

122. A A has three diameters, namely, its medials.

123. A parallelogram has two pairs of conjugate diameters.

124. A two-ray has an infinity of conjugate diameters.

125. If L' and M’ be conjugate diameters of (the two-
ray) LM, then L and M are conjugate diameters of (the
two-ray) L'M'.

Def. Four such rays are called harmonic, because :

126. They cut every transversal in four harmonic points.

127. Conversely, four concurrent rays through four col-
linear harmonic points are harmonic.

128. The join of an outer vertex with the intersection of
the inner diagonals of a 4-side cuts two opposite sides, each
in a fourth harmonic to the three vertices on the side.

Hint. In Fig. 54, let 7 be the intersection of the inner
diagonals C£, DF; let a 4th harmonic through 4 cut BC
and BD at H and K. Then ID, IE, IB, IX are four har-
monic rays, and so are /%, IC, IB, IH ; also ID, IE, IB,
are the same rays as /¥, /C, /B ; hence /H and /K are the
same ray ; hence the 4th harmonic through 4 goes through /7.

129. Enumerate the harmonic ranges and pencils in 128.

130. A system of co-axals determines the points of every
ray in pairs of conjugates, 2 and 2', Q and Q', so that
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IP-IP'=1Q - IQ', where / is the intersection of the ray
with the power-axis.

Defs. Points so determined are said to form an Involution.
The fixed point 7 is called the centre of the Involution, the
constant product or rectangle of the central distance of the
conjugates is called the power of the Involution, and is posi-
tive or negative according as the distances are like-sensed
or unlike-sensed.

131. An Involution is determined by its centre and a
pair of conjugates, or by two pairs of conjugates.

132. When the power is positive there are two self-conju-
gate points (called doudle points or foci), and the focal tract
is divided harmonically by every pair of conjugates.

133. Conversely, all pairs of points dividing a tract FF'
harmonically form an Involution with # and #' as foci and
the mid-point 7 of #F' as centre.

134. When the power is negative there are no (real) foci
but there are two conjugate points, £ and £', equidistant
from the centre.

Def. Rays of a pencil passing through an Involution of
points form an Involution of Rays. '

135. Develop and express the reciprocal properties cor-
responding to 131—4.

136. In general, the points of a row and the intersections
of their polars with the axis of the row form an Involution.

Hint. P the point, L the axis, O the centre of the
referee circle S, which cuts Z at Fand #', Q the intersection
of Z with the polar of 72, O/= d= distance of L from O,
OA = r =radius of .S on OP. Draw a circle X on PQ as
diameter about C cutting OP at R. Then, difference of
powers of O and 7as to K is

0C'—IC'=0I'=r—1Q-IP.

Hence »°— @d?=7Q-/P=a constant. Q.E.D.
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137. What exception does 136 suffer? What are the
relations of the three possible cases?

138. Two polar conjugate points (or rays) and the pole
(or polar) of their join determine a polar reciprocal A.

139. Conjugate points on a ray (or rays through a point)
form an Involution. When positive? When negative ?

140. Two conjugate points in a secant divide the chord,
and two conjugate rays through a point divide the angle of
tangents from the point, harmonically.

141. The outer vertices and the intersection of inner
diagonals of an encyclic 4-side form a polar A.

142. The diagonals of a pericyclic 4-side form a polar A.

143. Employ 141 and 142 to find the polar of a given
pole and the pole of a given polar by use of ruler alone.

144. Given a centre of similitude of two circles, find its
polars as to the circles and the power-axis by use of ruler
alone.

145. Given the power-axis of two circles, find its poles
as to the circles and the centres of similitude by use of ruler
alone.

Defs. Two figures are said to be in perspective where
the joins of corresponding points all go through a point called
the centre of projection. —The rays are called rays of pro-
jection. Parallel rays are thought concurrent at 0. — Two
pencils are said to be in perspective when the joins of cor-
responding rays all lie on a ray, called the axis of projection.
— The centre of projection and the axis of projection are
plainly self-correspondent. — Each system of points is also
said to be 7 perspective with the pencil of rays through them.
—In elementary work we impose the condition that col-
linear points in the one figure shall correspond to collinear
points in the other.
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146. Two tracts are always in perspective as to two cen-
tres.

147. Express and prove the reciprocal theorem as to
angles (two-rays).

148. Three collinear points and three concurrent rays are
always projective, 7.e., may always be drought into perspective.

149. Two triplets of collinear points are always in pro-
jection. (For it is enough to slip the triplets each along its
ray till a pair of correspondents coincide.) '

150. State and prove the reciprocal theorem for pencils
of three.

Def. The ratio of the distances of any third ray V of a
pencil from two base-rays Z and A of the pencil is called
the distance-ratio of the third ray as to the other two; it

may be written ZLV_jjl\; and is reckoned 4+ or — according

as the angles Z/V and VM are reckoned in the same or in
opposite wise.

151. Trace the course of the distance-ratio as the third
ray completes a rotation about the centre of the pencil.

152. The distance-ratio equals the sine-ratio of the angles
formed by the third ray with the base-rays.

153. When two distance- or sine-ratios are counter, the
four rays are harmonic, and the ratio of their ratios is — 1.

154. Compare distance-ratios of corresponding angles
and tracts in a pencil.

Def. The ratio of two distance-ratios in the same pencil,
whether of tracts or of angles, is called the cross-ratio, or
ratio of double section (Doppelschnittsverhaeltniss), or an-
harmonic ratio, of the bounding points or rays, and is written
(ABCD) or (LMNP). Its value is

AB-CD _sin ZM:-sin NP
BC-D4 sin ANV - sin PL
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155. The joins of the vertices of a A with three collinear
points on the opposite sides divide the angles so that the
triple sine-ratio = — 1.

156. Three concurrent rays through the vertices of a A
divide the opposite sides so that the triple distance-ratio
=+ 1 (Ceva, 1678).

157. Convert these two theorems and those of Arts.
315, 316.

158. Apply these converses in establishing the concur-
rences of altitudes, mid-normals, mid-rays, medials, etc.

159. The sides of a A cut by a circle in six points are
divided so that the continued product of the distance-ratios
is + 1 (Carnot, 1753-1823).

160. Express and prove the corresponding proposition
concerning six tangents, drawn from three points, to a circle
( Chasles, 1850).

Hint. r the radius; 4, B, C the points; A7, A7; two
tangents-lengths = 4, 4 ; a,, a, the distances of 73, 7; from
BC; 1, I the intersections of two tangents, parallel to BC,
with the rays A7), AT;; 4, ¢, / the distances of BC, CA,
AB from the centre O ; Pthe projection of o on BC. Then

a:h=d—r:Al,a: =d+r: AL,
@y bly=d?— 1 AL - Al

But from similar A 04/, OAL, we have A7. A],:A_O’ H
oo aay: bly=d?—7%: AC'. Similarly, 6,6, : tt,=—12: 40'.
@18y bby=d*— r*: & — 7% Find two analogous equa-
tions, combine the three by multiplication, and the propo-
sition in question results.

161. The three joins of the opposite sides of an encyclic
6-side are collinear (Pascal, 1640).

Hint. Let'1 2 3 4 5 6 be the 6-side; 7, /, X the joins
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of the opposite pairs, 12 and 45, 23 and 56, 34 and 61.
The alternate sides 61, 23, 45 form a A ABC, and are cut
collinearly by the other alternate sides 12, 34, 56; apply
thrice the theorem of Menelaos; multiply, cancel, and apply
the converse of the theorem of Menelaos.

162. Express and prove the corresponding theorem of
Brianchon (1806), using Ceva’s theorem and converse.

163. Every different order of sides respecting vertices
gives a different hexagram of Pascal respectively hexagon of
Brianchon ; how many of each are possible ?

164. These so-called Pascal rays are concurrent, and the
Brianckon points are collinear, in sets of three (S#einer, 1832).

165. Apply the theorems of Pascal and Brianchon to find
with ruler alone a tangent to a given circle at a given point
and the point of touch of a given tangent (Steiner, 1833).

Def. In projecting one ray L on another Z', there will be
one ray of projection paralle/to L' and meeting L at V. To
this point 7, and to it only, there corresponds 7o finite point
of L'; to points close at will to 7 there correspond points
far at will on Z'. Hence Vis called the vanishing point of
L with respect to Z'. Similarly, U' is the vanishing point
of L' as to L.

166. Pand P correspond on Z and Z'; show and state
in words that PV .- PU'= OV - OU".

Def. This constant rectangle (product) is called the
constant of projection.

167. Two A are always projective. (For we can always
place a pair of vertices on a point, or a pair of sides on a
ray, and — what then?)

168. Three pairs of points taken at random on three con-
current rays, each pair on a ray, determine two perspective
A whose corresponding sides meet collinearly. (Use the
propositions of Menelaos and Ceva.)
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169. Express and prove the reciprocal of 168.

170. The Locus of the vanishing points of all rays of one
of two (rectilinearly) perspective figures is a ray (called
vanishing ray) parallel to the Axis of projection.

171. The distance of the one vanishing ray from the Axis
equals the distance of the other from the Centre.

172. Parallel rays of one of two perspective figures corre-
spond to rays concurrent in a vanishing point of the other.

173. A circle is in perspective with itself, any pole and
corresponding polar being Centre and Axis.

174. The vanishing ray halves the distance between the
Centre and the Axis and is the Power-axis of the circle and
the Centre of projection (regarded as a point-circle).

175. Two circles are in perspective as to a centre of
similitude, and the mid-parallel of the polars of this centre
is the Axis.

176. A figure F is pushed and turned about in a plane
into any other position #'; show that the same change of
position may be effected by simply turning about a point in
the plane called the Centre of Rotation.

Hint. A, B, C three points of #, and 4', B', C' their
positions in #'; draw the mid-normals of 44', BB', CC';
etc.

177. If the joins of the corresponding vertices of two A
be concurrent, the joins of the corresponding sides are
collinear ; and conversely (Desargues).

178. If a quadrilateral be inscribed in a circle C, while
two of its opposite sides touch a circle C, and the other two
touch a circle Cj, then the three circles C, C,, C; are co-
axal,—a theorem very important in the theory of Elliptic
Functions.
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179. The area of a pericyclic polygon equals half the
rectangle of the in-radius and the perimeter.

180. If s be the half-sum of the sides «, 4, ¢ of a A, and
7, n, 3, 75 the in- and ex-radii, then A=rs=7r(s—a)=
r(s—8)=ry(s—¢).

181. Hence, show that = ; + - 5 + — and A’=rr7p75.

1 2

182. If a, 3, ¢ be the 51des ofa A, and }1 the altitude CC,

show from @®* =46+ 2 — 2¢. AC' that

= {48 — (B+ 2—a®)®} /4= F:(s —a)(s—8)(s—c),
whence Al=s(s —a)(s —b)(s —¢) (Hero, 250 B.C.).

183. If a, 4, ¢ be the sides of a A, and 7 the tract from
C to ¢ halving X C and cutting ¢ into parts # and v, show

ab
@ty -s(s—o).
184. If two such tracts in a A be equal, the A is sym-
metric.

that ab—uy=

185. Show that the circum-radius of a A = %

186. Express through 7 the radius of a circle, the sides
and areas of the regular inscribed and circumscribed 6-sides,
4-sides, 3-sides, 10-sides, 5-sides ; also the apothegms of the
in-polygons.

187. Given the centre of similitude and two correspond-
ing rays of two similar figures in perspective, find 2’ corre-
sponding to a given A~.

188. Corresponding angles of similar figures in perspec-
tive have always the same sense.

189. If the A ABC, ABD, etc.,, of F are similar to
A'B'C', A'B'D', etc., of F', then F and F' are similar.

190. Two similar figures are in perspective when two
corresponding rays are parallel.
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191. Through any point 2 (or parallel to any ray V),
draw a ray towards the inaccessible intersection of the rays
L and M. A

192. The sides of a quadrangle are given in position;
draw the diagonals when two opposite vertices are inacces-
sible, and when all the vertices are inaccessible.

193. Draw a circle S' in perspective with .S as to the

. centre O, so that two given points Zand 2 shall correspond ;

so that two given parallels Z and Z' shall correspond ; so
that .5" shall have a given radius #' ; or, so that the centre of
S’ shall lie on a given ray.

194. Draw ' tangent to S so that two given points P
and 2, or two given rays Z and Z', may correspond.

195. Draw a circle to touch a given circle and also touch
a given ray at a given point. ’

196. Draw a circle tangent to two given rays and a given
circle.

197. In any pencil of four rays, as 04, OB, OC, OP
—written O(ABCP)—AOB|-COP|+ BOC|-AOP|+
COA|-BOP|=o.

Hint. Note that AB.-p= OA-OB-AOB|, etc, and
use 66.

198. The concurrent rays L, M, NV are distant /, m, n
from P; prove /- MN| + m+ NL| + n-ﬁ[l =o.

199. If 2s=a+ &6+ ¢+ 4= perimeter of an encyclic
quadrangle, show that A’=(s—a)(s—&)(s —¢)(s —a)
and express this result symmetrically through q, 4, ¢, 4.

200. If r and 7' be the circum-radius and in-radius and
2s=a+ 6+ ¢ the sum of the sides of a A, prove that
2 77's = abe.

201. Draw a fourth harmonic to three rays of a pencil.
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202. The sum of the distances of the sides of a A from a
point, each side multiplied by the sine of its opposite angle,
is constant for that A.

203. A ray cuts the sides @, 4, ¢ of a A under angles «',
B',v'; show that «|-a'| + B[-B'| + y[-¥'[=o0.

204. Concurrent rays through the vertices of a A divide
the sides so that the continued product of the ratios of
division is — 1.

205. Concurrent rays through the vertices 4, B, C of a
A cut the sides at 2, Q, R; show that the intersections
1, J, K of AB and PQ, BC and QR, CA and RP are
collinear ; also that if B/ and CX, CK and AZ, A7 and
BJ meet in S, 7, U, then 4S, B7, CU concur.
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" Alternation, 172.

Alticentre, 68.

Altitude, 67, 148.
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Angle, 19, 72.
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—— complemental, 32.
—— corresponding, 53.
—— explemental, 31.
—— interadjacent, 54.
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—— supplemental, 31.
—— vertical, 37.
Anomaly, 191.
Antecedents, 172.
Anti-homologous, 217.
Anti-parallelogram, 62, 65.
Apollonius, 225.
Apothem, 249.

Arc, 13, go.

Area, 144.

Areal unit, 231.

Arms, 19.

Axal symmetry, 79.

Axally symmetric, 77.
Axis, power or radical, 213.
—— of projection, 285,
—— of similitude, 216.
—— of symmetry, 77.

Babylonian, 70, 133.
Band, 86.

Base, 37, 148.
Bases, major and minor, 65.
Beltrami, 272,
Bi-dimensional, s.
Bisect, 125,
Bisector, 33.

Bolyai, 269, 270.
Border, 5.
Boundary, 252.
Boundless, 2.
Brianchon, 288,

Carnot, 287.

Cell, Peaucellier’s, 278.
Central symmetry, 77.
Centre, 18.

— of circle, 11, 93.
—— of inversion, 168.
—— of involution, 284.
—— of pencil, 8o.
—— power-, 168, 213.
—— of projection, 28s.
—— of symmetry, 77.

293



294

Centric figure, 215.

Centroid, 66.

Ceva, 287, etc,

Chasles, 287.

Chord, go, 283.

—— of contact, 108.

Circle, 13, 90.

—— of inversion, 168.

—— of similitude, 282.

Circum-circle and centre, 67, g6.

Clifford, 274.

Clockwise, counter-clockwise, 25,
71, 72

Closed, 72.

Co-axal, 281.

Collinear, 82,

Common point, 281.

Commutative, 17.

Compasses, 96, 192.

Compendent, 145.

Complanar, 25.

Complement, -al, 32, 96, 155.

Compounded, 172.

Conclusion, 25.

Concur, concurrent, 65.

Congruent, 16, passim.

Conjugate, 93, 94, 222, 283.

Consequence, 172.

Continuous, 3.

Contra-perspective, 188.

Contra positive, 40.

Convex, 72.

Corollary, 22.

Correspond, -ent, 16, 76, 145, 173.

Cosine, 241.

Cosines, law of, 245.

Couplet, 172.

Criteria, 147.

Critical, 107.

Crossed, 63.

Cross-wise, 216.

Cross-ratio, 286.

Cuboid, 239.
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Dase, 253.

Definites, 234.
Definition, 59.

Degrees, 70.
Denominator, 228.
Diagonal, 57, 63.
Diameter, 93, 215, 283.
Difference, 17, 172.
Dimensions, 3, 149.
Direct perspective, 188.
Dissimilarly, 219.
Distance, 15, 20.

—— -ratio, 286.
Divided, 172.

——, similarly, 179.
Division, harmonic, 184.
——, inner and outer, 182.
Double, 78.

Eidograph, 192.

Ellipse, 94.

Elliptic, 270, 271.

Encyclic, 64, passim.
Enthymeme, 30.

Envelope, 119.

Equal, -ity, 19, 147.

Equator, 6.

Equiangular, 70.

——, mutually, 173.
Equiareal, 267.

Equidistant, 11.

Equilateral, 70.

Equivalent, 49.

Erotetic, 27.

Euclid, -ian, 55, 159, 255, 271.
Euler, 141.

Even, 242.

Ex-centre and circle, 69, 173.
Explemental, 30, 95.
Extreme and mean ratio, 202.
Extremes, 171.

Family, 132.
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Flat angle, 26.
Foci, 284.
Four-side, 63.
Fraction, 228.
Frischauf, 370, 274.
Function, 240, 243.

Gaultier, 168.

Gauss, 204, 271.
Generated, a10.
Geodetic, 269,
Geometric mean, 172.
Gergonne, 225.
Golden section, 202,

Half-strip, 87.

Halsted, 269.

Hankel, 234.

Harmonic, 183, 283, gassim.
Helmbhkoltz, 274.

Henrici, 260.

Heptagon, 116.

Hero, 290.

Hexagon, hexagram, 288.
Hippocrates, 276.
Homceoidal, -ity, 2, passim.
Homothetic, 188.
Hyperbola, g4.

Hyperbolic, 270, 271.
Hyper-euclidean, ss.
Hyper-spaces, 274.
Hypotenuse, 68.

In-centre and circle, 68.
Incommensurable, 231.
Infinite, 2, 252.
Infinitesimal, 250.
Inner, innerly, 33, 63.
Inscribed, 100.
Instruments, 192.
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Inverse, 63, 216.
Inverse points, 168.
Inversion, 216.
Inverted, 172,
Invertor, 278.
Involution, 284.
Irrational, 234.
Isoclinal, 79.
Isoperimetric, 264, 267.
Isosceles, 37.

Joins, 76.

Kaleidoscope, 137.
Killing, 274.

Kite, 83.

Klein, 271.
Kriilmmungsmaass, 271.

Lemma, 92.

Length, tangent-, 108, 213.
Limit, ¢8, 252, 267.
Limiting points, 231.
Line, 6.

Linkage, 265.
Lobatsckevsky, -an, a71.
Locus, 12,

Magnitudinal unit, 228,
Maximum and minimum, 165, 261.
Means, 171.

Measure of curvature, 271.
Medial, 38.

Median section, 202.
Menelaos, 239, 288.

Metric number, 228.
M-fold, 226.

Mid-normal, 37.
Mid-parallel, 65.

Mid-ray, 33.

Minutes, 70.

Montyon, 121,

Multiple, 226,
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N-angle, 72.
Newcomd, 274
Nine-point circle, 112,
Non-intersectors, 54.
Normal, 31, 63, 102
Not-self, 273.

N-side, 72.
Numerator, 228.
Numerics, 234.

Oddn 245‘

Open, 732.

Operation, laws of, 234.
Origin, 71.
Orthocentre, 68.
Orthogonal, 108.
Outer, outerly, 33, 63.

Pantagraph, 192.
Pappus, 209.

Parabolic, 270, 271.
Parallel, 55.
Parallelogram, 57.
Pascal, 287.

Peaucellier, 121, 278.
Pencil, 8o.

Pergze, 225.

Pericyclic, 117.
Perimeter, 74, 1185.
Perimetric ratio, 253.
Period, -ic, -icity, 242.
Peripheral, periphery, 99.
Permanence, 234.
Perspective, 188, 28s.
Plane, 11.

Polar, pole, 108, 219, etc.
Polar centre and circle, 281.
Polygon, 71.

Point, 6.

Poncelet, 281.

Porism, 22.

Postulate, 23, 122.
Power, 166, 213.

GEOMETRY.

Power-axis and centre, 168, 213.
Premisses, 29.

Principle, 234.

Problem, 120.

Product, 235.

Projection, 160, 286.

——, constant of, 288.
Proportion, etc., 168, gassim,
Ptolemy, 180.

Pythagoras, 159.

Quadrilateral, 63.

Radian, 255.

Radical axis and centre, 168.
Radius, 95.

—— vector, 210.

Ratio, 181.

—— of double section, 286.
—— cross, distance, sine, 286,
—— of similitude, 213.

Ray, 14.

—— of projection, 285.
Reciprocity, reciprocal, 8o, 281.
Rectangle, 52, 149.

Reéntrant, 72.

Referee, 220.

Regular, 70.

Reversible, reversibility, 11, 79.
Rhombus, 6o.

Rotation, centre of, 289.
Riemann, -ian, 11, 145, 271.
Row, 8o.

Salmon, 281.

Secant, go.

Seconds, 70.

Sect, 16.

Section, ratio, 286.
Sector, 95, 192.

Segment, 95.
Self-conjugate, 281.

— -correspondent, 285.
—— -reciprocal, 281.
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Semi-circle, g5.

Seven-side, 116.

Sexagesimal, 134.

Sextant, 137.

Shape, 56.

Similar, -ity, 77, 175, 188, 213.

Similitude, axis and centre of, 213,
316.

Simson's line, 279.

Sine, 240.

Sines, law of, 245.

Sine-ratio, 286.

Size, 56.

Small at will, 230.

Solid, 8.

Space, 1.

Spaces, four forms of, 270.

Sphere, 11.

Spherics, 261.

Square, 61, 157.

Squaring circle, 253.

Steiner, 288,

Strip, 86.

Subtend, go.

Subtraction, 17.

Sum, 17, 146, 172.

Summand, 17, 146.

Supplemental, 31, g6.

Surface, 5.

Surveying, 246.

Symmetric, 77, 82.

Symmetry, axal and central, 76, 77.
——, axis and centre of, 77.
System, 132.

‘Taction-problem, ara.
Tangent, 102.

—— -length, 108, 213,
Terms, 171.
‘Theorem, 22.
Three-side, 87.
Time-axis, 262.
Tract, 16.

Trapezoid, 65.
Triangle, 35.
Triangles, similar, 56.
Triply laid, 87.
Two-ray, 283.

Unit-magnitude, 228.

Vanishing point and ray, 288, 289.
Vertices, 35, 72.

Vieta, 2135.

Westings, 246.

Year, 70.

Zweistrahl, 283.
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keep up with the progress made of late years, particularly in the higher
parts of this branch of mathematics; and we regard the entire series
as a most valuable addition to the text-books on the subject.”” — Engi-
neering.
Elementary and Higher Trigonometry, the Two Parts in One

Volume. $1.90.

Dynamics for Beginners. $1.00.

‘“ This is beyond all doubt the most satisfactory treatise on Elemen-
tary Dynamics that has yet appeared.’’ — Engineering.

Elementary Statics. $1.10.

“This volume on statics . . . is admirable for its careful gradations
and sensible arrangement and variety of problems to test one’s knowl-
edge of that subject.”” — The Schoolmaster.

Mechanics for Beginners. Part I. 90 cents.
Euclid for Beginners. Book I. 60 cents.

MACMILLAN & CO.,

112 FOURTH AVENUE, NEW YORK.
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WORKS ON TRIGONOMETRY

PUBLISHED BY

MACMILLAN & CO.

BOTTOMLEY. — Four F Mathematical Tables. Com-
prising Logarithmic and Trigonowetrical Tables, and Tables
of Squares, Square Root, and Reciprocals. By J. T. Bort-
TOMLEY, M.A., F.R.G.S,, F.C.S. 8vo. 70 cents.

DYER and WHITCOMBE. — The Elements of Trigonometry.
By J. gi. DyYER, M.A,, and the Rev. R. H. WHITCOMBE,

LA, $1.25.

HOBSON. — A Treatise on Plane Trigonometry. By E. W.
HoBson, Sc.DD. 8vo. $3.00.

HOBSON and JESSOP.— An Elemen Treatise on Plane
'{Ingonometry. By E. W. HoBson, Sc.D., and C. M. Jessop,

LA, 81.25.

JOHNSON. — Treatise on Trigonometry. By W. E. Jounson,
M.A., formerly Scholar of King’s College, Cambridge. 12mo.
$2.25.

LEVETT and DAVISON. — The Elements of Trigonometry.
By Rawpox LEVETT and A. F. Davison, Masters at King
Edward’s School, Birmingham. Crown 8vo. $1.60.

This book is intended to be a very easy one for beginners, all diffi-
culties connected with the application of algebraic signs to geometry,
and with the circular measure of an?es being excluded from Part I.
Part II. deals with the real algebraical quantity, and gives a fairly com-
plete treatment and theory of the circular and hyperbolic functions
considered geometrically. In Part ITL complex numbers are dealt with
geometrically, and the writers have tried to present much of De Mor-
gan’s teaching in as simple a form as possible.

WORKS BY THE REV. J. B. LOCK.

LOCK. — Trigonometry for Beginners. As far as the Solution
of Triangles. 16mo. 75 cents. Key, $1.75.

‘“ A very concise and complete little treatise on this somewhat diffi-
cult subject for boys; not too childishly simple in its exi)lanations; an
incentive to thinking, not a substitute for it. The schoolboy is encour-
aged, not insulted. The illustrations are clear. Abundant examples
are given at every stage, with answers at the end of the book, the gen-
eral correctness of which we have taken pains to prove. The definitions
are good, the arrangement of the work clear and easy, the book itself
well printed. The introduction of logarithmic tables from one hundred
to one thousand, with explanations and illustrations of their use, esdpe—
cially in their application to the measurement of heights and dis-
tances, is a very great advantage, and affords opportunity for much
useful exercise.”” — Journal of Education.

Trigonometr{ of One Angle. Intended for those students who
require a knowledge of the propetties of “sines and cosines ”
for use in the study of elementary mechanics. 65 cents.
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Elementary Trigonometry. 6th edition. (In this edition the
chapter on Logarithins has been carefully revised.) 16mo.
81.10. Key, $2.25.

““ The work contains a very large collection of good (and not too hard)
examples. Mr. Lock is to be congratulated, when so many Trigonome-
tries are in the field, on having produced so good a book; for he has
not merely availed himself of the labors of his predecessors, but by the
treatment of a well-worn subject has invested the study of it with in-
terest.”” — Nature.

Engineering says: ‘““Mr. Lock has contrived to invest his subject
with freshness. His treatment of circular measure is very clear, and
calculated to give a beginner clear ideas respecting it. Throughout the
book we notice neat geometrical proofs of the various theorems, and the
ambiguous case is made very clear by the aid of both geometry and
analysis. The examples are numerous and interesting, and the methods
used in working out those which are given as illustrations are terse and
instructive.”

Higher Trigonometry. 5th edition. 16mo. $1.00.

ELEMENTARY and HieueEr TRIGONOMETRY in one vol. $1.90.

McCLELLAND and PRESTON. — A Treatise on Spherical
Trigonometry. With applications to Spherical Geometry,
and numerous examples. By WiLLiaM J. McCLELLAND,
M.A,, and THomAas PresTON, B.A. 12mo. ParT 1. $1.10.
Part II. $1.25. Two PArTs in one volume, $2.25.

Ought to fill an important gap in our mathematical libraries, es-
pecially as there are many sets of selected examples, with hints for
solution. — Saturday Review.

NIXON. — Elemen Plane Trigonometry. By R. C. J.
Nixon, M.A. mo. $1.90. g ety y

PALMER. — Practical Logarithms and Trigonometry, Text-
Book of. By J. H. PALMER. 16mo. $1.10.

TODHUNTER. — Trigonometry for inners. By Isaac
TopHUNTER, F.R.S. 18mo. 60 cts. KEey, $2.25.

Plane Trigonometry. 12mo. $1.30. KEev, $2.60.

A Treatise on Spherical Trigonometry. For the use of Col-
leges and Schools. 12mo. $1.10.

TODHUNTER and HOGG. — Plane Trifonometry. By Isaac
TopHUNTER. New edition. Revised by R. W. Hoece, M.A.,
Fellow of St. John’s College, Cambridge. 12mo. $1.10.

VYVYAN. — Introduction to Plane Tﬁfonometry. By the Rev.
T.G. Vyvyan, M.A. 3ded., revised and corrected. 90 cts.

WARD. — Trigonometry Examination Papers. 60 cents.

WOLSTENHOLME. — Examples for Practice in the Use of
Seven-Figure Logarithms. By JoserH WOLSTENHOLME,
D.Se. 8vo. $1.25.

»*s KEY8 are sold only upon a teacher’s written order.

MACMILLAN & CO., 112 Fourth Avenue, New York.
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ELEMENTARY SYNTHETIC GEOMETRY

OF THE
POINT, LINE, AND CIRCLE IN THE PLANE.

By NatuAN F. Duruis, M.A., F.R.C.S., Professor of Mathematics in
Queen’s College, Kingston, Canada. 16mo. $1.10.

FROM THE AUTHOR’S PREFACE.

‘‘ The present work is a result of the author’s experience in teaching
geometry to junior classes in the University for a series of years. It
is not an edition of ‘ Euclid’s Elements,’ and has in fact little relation
to that celebrated ancient work except in the subject-matter.

‘“An endeavor is made to connect geometry with algebraic forms
and symbols : (1) by an elementary study of the modes of representative
geometric ideas in the symbols of algebra; and (2) by determining the
consequent geometric interpretation which is to be given to each inter-
pretable algebraic form.... In the earlier parts of the work Con-
structive Geometry is separated from Descriptive Geometry, and short
descriptions are given of the more important geometric drawing instru-
ments, having special reference to the geometric principle of their
actions.... Throughout the whole work modern terminology and
modern processes have been used with the greatest freedom, regard
being had in all cases to perspicuity. . . .

‘“The whole intention in preparing the work has been to furnish the
student with the kind of geometric knowledge which may enable him
to take up most successfully the modern works on analytical geom-

etry.”

““To this valuable work we previously directed special attention. The
whole intention of the work is to prepare the student to take up suc-
cessfully the modern works on analytical geometry. It is safe to say
that a student will learn more of the science from this book in one
year than he can learn from the old-fashioned translations of a certain
ancient Greek treatise in two years. Every mathematical master
should study this book in order to learn the logical method of present-
ing the subject to beginners.” — Canada Educational Journal.

MACMILLAN & CO.,

112 FOURTH AVENUE, NEW YORK.
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