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Aims, Scope and Purpose
of the Library

THE CoMMONWEALTH and International Library of Science,
Technology and Engineering is designed to provide readers,
wherever the English language is used or can be used as a medium
of instruction, with a series of low-priced, high quality soft-cover
textbooks and monographs (each of approximately 128 pages).
These will be up to date and written to the highest possible peda-
gogical and scientific standards, as well as being rapidly and at-
tractively produced and disseminated—with the use of colour
printing where appropriate—by employing the most modern
printing, binding and mass distribution techniques.

The books and other teaching aids to be issued by this Library
will cover the needs of instructors and pupils in all types of schools
and educational establishments (including industry) teaching
students on a full and/or part-time basis from the elementary to
the most advanced levels.

The books will be published in two styles—a soft cover edition
within the price range of 7s. 6d. to 17s. 6d. ($1.25 to $2.75) and a
more expensive edition bound in a hard cover for library use. The
student, the teacher and the instructor will thus be able to acquire,
at a moderate price, a personal library in whatever course of
study he or she is following.
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Books for industrial training schemes to increase skills, produc-
tivity and earnings.

To meet the ever-growing and urgent need of manufacturing
and business organizations for more skilled workers, technicians,
supervisors and managers in the factory, the office and on the
land, the Library will publish, with the help of trade associations,
industrial training officers and technical colleges, specially com-
missioned books suitable for the various training schemes
organized by or for industry, commerce and government de-
partments. These books will help readers to increase their skill,
efficiency, productivity and earnings.

New concept in educational publishing; one thousand volumes to be
published by 1967; speedy translation and simuitaneous publica-
tion of suitable books into foreign languages.

The Library is a new conception in educational publishing. It
will publish original books specially commissioned in a carefully
planned series for each subject, giving continuity of study from
the introductory stage to the final honours degree standard.
Monographs for the post-graduate student and research workers
will also be issued, as well as the occasional reprint of an outstand-
ing book, in order to make it available at a low price to the largest
possible number of people through our special marketing arrange-
ments. _

We shall employ the latest techniques in printing and mass
distribution in order to achieve maximum dissemination, sales and
income from the books published, including where suitable, their
rapid translation and simultaneous publication in French,
German, Spanish and Russian through our own or associated
publishing houses.

The first. 50 volumes of the Library will be issued by the end
of 1962; during 1963 a further 150 titles will appear; we expect
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that by December 1967 the complete Library of over 1000 volumes
will have been published. Such a carefully planned, large-scale
project in aid of education is unique in the history of the book
publishing industry.

New, modern, low-priced textbooks for students in Great Britain;
international co-operation in textbook writing, publishing and dis-
tribution.

In those sciences such as Mathematics, Physics, Chemistry and
Biology, which are started at an early age, there will be books
suitable for students in Secondary, Grammar and Public Schools
in Great Britain covering the work for the new Certificate of
Secondary Education and the Ordinary and Advanced Levels of
the General Certificate of Education. In all sciences there will be
books to meet the examination requirements of the Ordinary
National Certificate, Higher National Certificate, City and Guilds
and the various other craft and vocational courses, as well as a
full range of textbooks required for Diploma and Degree work at
Colleges of Technology and Universities.

Similarly books and other teaching aids will also be provided
to meet examination requirements in English speaking countries
overseas. Wherever appropriate, the textbooks written for British
students and courses will be made available to English speaking
students abroad and in particular in countries in the Common-
wealth and in the United States. The help of competent editorial
consultants resident in each country will be available to authors
at the earliest stages of the drafting of their books to advise them
on how their volumes can be made suitable for students in different
countries. If, because of differences in curricula and educational
practice, substantial changes are needed to make a British text-
book suitable in, for example, Australia, or a textbook written by
an Indian or an American author suitable for use in the United
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Kingdom then the Press will arrange for authors from: both
countries to. collaborate to achieve this.

National co-publishers and printing in various countries, to ensure
speedy production and distribution at low prices.

Negotiations are in hand to appoint co-publishers in each of
the major Commonwealth countries and-in the U.S.A. as well as
in Europe, Africa, Asia, Central and South America to market
all books published in the Library exclusively-in their own country
or territory. The co-publishers will assist authors and the-editors
of the Library in the following ways:

(a) By. making available to them their editorial contacts, re-
sources and know-how to make the books commissioned for

‘ publication in the Library suitable for sale in their country.

- (b) By purchasing a substantial quantity of copies of each
book for exclusive distribution and sale.

(c) Where useful (in the interest of maximum dissemination),
to arrange for or assist with the printing of a special edition,
or the entire edition, of a particular textbook.

(d) To use their best endeavours to ensure that the books
published in the Library are widely reviewed, publicized,
distributed and sold at moderate prices throughout their
marketing territory.

International boards of eminent advisory, consulting and specialist
editors and sponsoring committee of corporate members.

" An Honorary Editorial Advisory Board and a Board of Consult-
ing and Specialist Editors and a Sponsoring Committee under the
éhairmanship of Sir Robert Robinson, O.M., F.R.S., has been
appointed. Some' 500 eminent men and women drawn from all
walks of life—Universities, Research Institutions, Colleges of
Advanced Technology, Industry, Trade Associations, Government
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Departments, Technical Colleges, Public, Grammar and Secondary
Schools, Libraries, and Trades Unions and parliamentarians
interested in education—not only from this country but also from
abroad—are available to advise by correspondence, the editors,
the authors, the Press and the national co-publishers to help
achieve the high aims and purpose of the Library.

The launching of a library of this magnitude is a bold and
exciting adventure. It comes at a time when the thirst for education
in all parts of the world is greater than ever. Through education
man can get an understanding of his environment and problems
and a stimulation of interest which can enrich his life. And, too,
if he learns how to apply the results of scientific research, material
standard of life can be raised, even in a world of rapidly increasing
population embroiled in a great arms race. Some of us hope and
believe that through education lies the road to lasting world peace
and happiness for all nations and communities, regardless of race,
colour or ideology. In the history of education examples can be
cited of how one or other famous textbook or author profoundly
influenced the education of the period. When at some future time
the history of education in the second half of the twentieth century
is written, it may well be that the Commonwealth and Interna-
tional Library of Science, Technology and Engineering, published
by Pergamon Press as a private venture with the co-operation of
eminent scientists, educators, industrialists, parliamentarians and
others interested in education, will stand out as one of the land-
marks.

ROBERT MAXWELL
Publisher at Pergamon Press
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Preface

THE AM of this book is to give, in concise form, the whole of the
geometry of the straight line, circle, plane and sphere, with their
associated configurations such as triangle or cylinder, in so far
as it is likely to be required for courses in mathematics in the
United Kingdom for the G.C.E. at Advanced and Scholarship
levels, or for corresponding courses throughout the Common-
wealth as required by the appropriate examining boards. The
book will be of value also to university undergraduates.

This is a subject which, at the moment of writing, is less popular
than it deserves, but I hope that the treatment may help to
stimulate interest as well as to satisfy an existing need.

The plan of the book is straightforward; recapitulation of .
known work, advanced plane geometry, solid geometry with some
reference to the geometry of the sphere, a chapter on the nature
of space with reference to such properties as congruence, similarity
and symmetry, and, finally, a very brief account of the elementary
transformations of projection and inversion.

The book is interspersed with a number of examples. Bearing
in mind the need for brevity, a number of these are actually
standard results which the reader is invited to prove for himself.
Such examples are headed Theorems.

I would express my thanks to Dr. H. M. Cundy for many
valuable suggestions, and also to the staff of Pergamon Press for
all their trouble and skill.

E.A. M.



ONE

Introduction and
Notation

THE READER who comes to this book is expected to be familiar
with the normal concepts of elementary geometry as commonly
taught at school: length and angle; similarity and congruence;
point, line and circle; area and the theorem of Pythagoras.
Such knowledge will, presumably, rest on an empirical basis,
leading to an appreciation of the standard theorems and of the
general structure of geometrical argument, but without that
detailed investigation which was prevalent until the start of this
century or even later.

It has recently been realized that the present lack of training in
geometrical argument must, for the young student of mathematics,
be corrected in some way unless his ability to handle formal
mathematical work is to be endangered. A strong candidate for
the purpose is formal algebra, which is to be welcomed whole-
heartedly. This book seeks to achieve a similar end, but using as
alternative subject-matter some topics in geometry which are
usually studied in the upper school.

The book will, however, have a somewhat strange look, even
to those who are completely familiar with the material, for it is
presented in the notation that is in regular use in more modern
work in mathematics. It is emphasized that the number of new
symbols is small and that they are introduced not only to serve the

1



2 . Deductive Geometry

purposes of this book but also to help pupils to become familiar
with their use elsewhere. Experience seems to indicate that, at
about the upper school stage, pupils develop a positive enthusiasm
for new symbolism, especially when it helps to reduce the burden
of writing, and it is hoped that they will readily respond. to this
approach.

One other procedural innovation should be mentioned. By
long tradition, geometrical arguments have been set out under the
formal headings, Given, Required, Construction, Proof. The
discipline has much to commend it, but it is harder to sustain as
work progresses; on the other hand, a recognizable structure is
helpful both to writer and to reader. In so.far as it is possible,
therefore, the treatment of each property will begin with a state-
ment: The Problem; and this will be followed by a proof under
the heading: The Discussion.

1. Standard Notation
The following standard notation of elementary geometry will
be used regularly:
/ABCor /B the angle ABC
AABC : the triangle ABC
" AABC = APQR  the triangles. are congruent, with the
implication BC = QR, CA = RP,
AB = PQ '
AABC ~ APQR  the triangles are similar, with the implica-
tion  LA.= /P, [(B= /0,

} £ZC = /R
AB = PQ the lengths 4B, PQ are equal
ABLPQO AB is perpendicular to PQ?

T When the context makes it clear, we assume without explicit statement
that “4B | PQ” means that B is the foot of the perpendicular from 4 to PQ.
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AB|PQ . ABis parallel to PQ
OABC the circle 4ABC

2. Fresh Notation

. The notation explained in this paragraph, though now in
common usage, will almost certamly be new to pupils in upper
schools.

(i) THE SymBOL OF-INCLUSION €, The symbol € is used in the
sense that “P €/” means, “P is included among those elements
which constitute the set of elements /.

In a geometrical context, the statement might mean, “P is a
point of the line I”.

In practice, a line is often named in terms of two of its points
A and B. We then write “P € AB”.

. (i) THE SymBoL OF UNION U. The symbol U is used in the
sense that “4B U CD” means, “all the points which belong to
AB, to CD, or to both”. It thus unites into the single entity
AB U CD those points which belong to 4B or CD severally.
(This symbol will, in fact, not be used in this book, but it is
introduced here because the symbol “\U” for “union” is natural
whereas the next symbol, used more often, is less self-explanatory.
Care must be taken not to confuse the two, and the mnemomc
“U for union” is helpful for this.)

(iii) THE SYMBOL OF INTERSECTION M. The symbol N is used in
the sense that “AB N CD” means, “all the points which belong
both to 4B and to CD”.

For example, it is.an immediate consequence of the definitions
that
ABNCD e AB
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That is, the intersection of 4B and CD belongs to AB.
(The symbols “4B U CD” and “AB N CD” are sometimes, for
obvious reasons, read as “AB cup CD” and “4Bcap CD”.)

(iv) THE SymMBOL OF CONSEQUENCE =>. The symbol = is used
in the sense that a chain of argument like

x4+ 5="Tx+4 14
> Sx=—9
= x=—27
means,
“the equation 2x + 5 =Tx + 4
leads to S5x=—9
and this leads to xX=—23

The important thing about this symbol is the way the arrow
points. The first statement leads to the second. Care should be
taken not to reverse the argument without ensuring that such
reversal is legitimate. For example:

ABCD is a rectangle
= AB = DC and AD = BC;

but it is not true that

AB = DC and AD = BC
= ABCD is a rectangle.

On the other hand, both of the statements

AB = AC = / ACB = / ABC
and
/ACB = / ABC = AB = AC
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are true. The notation
AB = AC <+ L ACB = / ABC.

is often used to denote this fact.

It may be useful to digress for a moment to emphasize one or two
points which are probably familiar. Consider, for example, the theorem: .
“In AABC, APQOR,
BC = QR,CA = RP, AB = PQ
=/ BAC = / QPR, / CBA = / RQP, / ACB = /- PRQ.”

The facts sides equal and angles equal do indeed “go together” in a
sense, but the argument

sides equal = angles equal
cannot be reversed: it is NOT true that
angles equal = sides equal.

In other words, it is not legitimate to interchange the rdles of data and
conclusion in an argument without careful examination.

Definition. A result obtained from a given theorem by interchanging
roles of data and conclusion is called a converse of that theorem.

The point we have been making is that a converse of a true theorem
is not necessarily true.

The symbol <> to which we have just referred may be used only when
theorem and converse are both true. For example:

ABCD is a cyclic quadrilateral
<> the sum of opposite angles is 180°.

Analogous ideas in common use depend on the use of the word “if.
The reader is strongly urged to be careful to use this very simple
word completely unambiguously. A convenient way to be quite sure is
to use the verbal formula “if . . . then . . .”. For example:

If ABCD is a cyclic quadrilateral, ther the sum of opposite angleés is
180°. .

In this example, the converse is also true:

If the sum of the opposite angles of the quadrilateral ABCD is 180°,
then the quadrilateral is cyclic.
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Note how the formula “if . . . then . . .” follows the sense of the
arrow =.

When both theorem and converse are true, the phrase “if and only if”
is often used: ; ‘

The quadrilateral ABCD is cyclic if and only if the sum of the opposite
angles is 180°.

Thus the formula “if and only if” follows the two senses of the double
arrow <. ‘The statement so enunciated implies two distinct problems,
which often need separate solution. )

In many of the arguments which follow, there are steps where the
double symbol <> might be applied legitimately but where only the
sense = is relevant. In such cases, the single symbol = is usually
adopted. : : - ,

When two or more conditions must be taken together to lead to-a
result, they will often be linked by a bracket. Thus:

AP = PQ, AC = PR
/ BAC = / QPR

| = A4BC = APQR = BC = OR.
(v) THE SymBoL OF ExisTENCE 3. The symbol 3 is used in the
sense that ' : o

3 O such that 04 = OB = 0C”

means, “there exists a point O—the circumcentre of the triangle
ABC—such that 04 = OB = 0C”’. o

“Remark. The notation just introduced is, at this stage, merely
a notation, with which the reader is expected to become familiar
quickly. It use carries no implications of set theory or symbolic
logic, though knowledge of it may help when these subjects come
forward for study later. - , :

3. Results Assumed Known o -

The following summary indicates the results on.which argu-
ments will be founded and also gives an introduction to some of
the notation just explained. For brevity, plentiful use is made of
diagrams. :
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(i) ANGLE PROPERTIES AND PARALLEL;LINES. -
AUB straight line < / AUP + £/ PUB = 180°.
AUB straight line <~ / AUP = ABUV
CD||AB~< / AUP = / CVP,
CD||AB < / AUV = 4 UVD,
CD||AB <= L AUV + L UVC = 180°,

c .0
L
v
P
Fig. 1
» A
(ii) ANGLE PROPERTIES
FOR A TRIANGLE.
LA+ /B+ /C=
180°,
/ACD = / A+ /B. 8 c o
Fig. 2

Extension. The sum of the angles of a polygon of n sides is
2n — 4 right angles; in particular, the sum of the angles of a
quadrilateral is 360°.:
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(iii)) CONGRUENCE OF TRIANGLES.
A

g t c Q

Fig. 3

AABC = APQR
< AB=PQ,AC=PR, /A= /P,
< BC = QR, CA = RP, AB = PQ,
<BC=QR, /B=/Q,/C= /R

Note the double sense < of the arrows.

Note, too, that /4 = /P, /B = /0, /C = /R
AABC = APQR; three equal angles are not enough for
congruence.

(iv) SIMILARITY OF TRIANGLES.

~ P

Fig. 4

 AABC ~ APQOR
/A= /P, /B= /0, /C= /R,
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BC CA AB

=O0R~RP~PQ’ :
B4 CA

Note. As a particular
case,

Uv|BC
AU AV
< m— ==
AB AC
AU AV
B e ——J—
UB VvC

Fig. 5

Still more particularly,
U middle point of AB

¥ middle point of BC} = UV||BC and UV = } BC.

(V) AREA.

P Q A 1% 4

Fig. 6

PQAUV|BC
<>area BCQP = area BCVU
= 2ANAABC.
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(vi) THE THEOREM OF PYTHAGORAS.
. A

Fig. 7

L ABC = 90°
< AC?* = AB*+ BC.

(vii) THE TRIANGLE INEQUALITY. ;
The sum of two sides of a triangle is greater than the third side.
In symbols, ’ '

AB + AC >BC, BC+ BA>CA, CA+ CB>AB.

Note. AB + AC = BC = A, B, C are collinear.

(viii) SYMMETRY PROPERTY OF A
CIRCLE. ‘

AU = UB

= OU | AB.
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(ix) ANGLE PROPERTIES OF
A CIRCLE.
LAOB =2/ AUB. ,
ABVU cyclic e
< /AUB= /AVB.
AWBU cyclic
< LAUB + / AWB —
180°.

AC diameter
< / ABC = 90°.

Note. If ABCD is a quadrilateral
in which /B = /D = 90°, then
LA+ /C=180° and the quadri-
lateral is cyclic with 4C as a dia-
meter. This result is often
important. (

(x) TANGENCY.
AT is tangent, AO
is radius
< Q04 1 AT
<> /TAP =
- L AUP.

Fig. 11
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(xi) SECANT THEOREM.

7
v
pw,a
— T

Fig. 12

P, 0, U, V concyclic
< AP+ AQ = AU - AV.
AT is tangent at T to OQTPQ
< AT?* = AP - AQ.

(xii) ANGLE BISECTOR THEOREMS. |

BP _BA _BQ \
< AP, AQ are the internal and external bisectors of / A. ‘
Note that P4 | AQ.
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(xiii) SOoME Locr.

\

Jf--
Q

Fig. 14

(@) The locus of a point P equidistant from A4, B is the
perpendicular bisector of AB.

(b) The locus of a point P equidistant from two lines AB, AC is
a bisector of / BAC.



TWO
The Geometry of the Triangle

1. The Centroid

THE  PROBLEM.
ABC is a given
triangle and 4', B,
C’ are the middle
points of the sides
BC, CA, AB.t 1t is
required to prove
that AA’', BB', CC’
meet at a point
G where each is
trisected.

Fig. 15

Definitions. The lines AA’, BB’, CC’ are called the medians
of the triangle ABC.
The point G is called the centroid of the triangle ABC.

THE DiscussioN. Let G = AA’ N BB, and let V be the middle
point of CB'. Then

+ In such contexts we omit the word *“respectively”’, which remains under-
stood.

14
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CA' = A'B
’ A ’
v — VB} => A'V|BB' = A'V||GB’.
Also
;o AG AP
GB'|A'V > T =BV

(AB' = B'C = 2B'V).

— N

Thus BB’ N AA' is a point of trisection of AA4'.

Similarly CC’ N AA’ is the same point of trisection of 44’

Hence A4’, BB', CC’ have a common point G which is a point
of trisection of A4’ and, by similar argument, of BB’ and CC.’

Theorems

[Examples with which the reader should attempt to become familiar
will be called Theorems.]
1. G is the centroid of A A’B'C".
2.1f P€ AB, Q € AC such that PQ|BC, and if R = BQ N CP
then R € AA4".

Problems

1. A’B’AC" is a parallelogram. ‘
2.1f AA’ is produced to Uso that GU = AG, then UBGC is a parallelo-
gram.
3. B'C" N AG is a point of quadrisection of AG.
4. If ABCD is a parallelogram, the centroids of ABAD and of ABCD
are the points of trisection of AC.

Also the centroids of AABC, ABCD, NCDA, ADAB are at the
vertices of a parallelogram.
5.If G, H are the centroids of two triangles ABC, ABD with a common
side 4B, then GH||CD and GH = 1CD.
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2. The Circumcentre

Fig. 16

Tue PrOBLEM. ABC is a given triangle. It is required to establish
the existence of a point O such that OA = OB = OC; that is,
30 such that OA = OB = OC.

Definitions. The point O is called the circumcentre of AABC.
The circle of centre O and radius OA4 passes through 4, B, C and
is called the circumecircle of AABC.

Tre DiscussioN. Let the perpendicular bisectors of 4B, AC
meet in O. Then

O € perpendicular bisector of {jlé' respectively

. o A and B
o distant fi ivel
= 0 1s equidistant from { dand C respectively

= 0 is equidistant from 4, B and C
= 04 = 0B = OC.
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‘COROLLARIES. (i) OA’ L BC, OB'] CA, OC'1 AB. (i) The
perpendicular bisectors of the sides of a triangle are concurrent,
in the circumcentre.

3. The Orthocentre

A
)
I
|
|
|
:
£ i
\
N '
N\ 1
~ I
AN
G N _-RE
0 -
//’ |\\
N 3l | N
- : S
prag \
/”’ : \\
- \
-~ O h N
Z
2] 2 D c
Fig. 17

THE PROBLEM. ABC is a given triangle, and AD | BC, BE | CA,
CF | AB. 1t is required to prove that AD, BE, CF have a common
point H.

Definitions. The lines AD, BE, CF are called the altitudes of
AABC. The point H is called the orthocentre of AABC.

THE DiscuUssiON. Let 4’ be the middle point of BC, so that the
centroid G is the point on A4’ such that 4'G/GA = 1/2. Also let
O be the circumcentre, so that 04" ] BC.

Produce OG to H so that OG/GH = 1/2.

Then
OG/GH = 1/2 = A'G/|GA
= OA'|AH.
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But 4

04’ 1 BC, .
so that

AH ) BC.

Thus, the fixed point H on OG produced such that OG/GH = 1/2
has the property that AH | BC; hence AH is an altitude. Identical
reasoning shows that BH, CH are altitudes. Hence the altitudes
intersect in H.

CoroLLARY. The points O, G, H are collinear and such that
OG/GH = 1/2.

Definition. The line OGH is called the Euler line of AABC.

Theorems

1. O is the orthocentre of AA'B’C’.

2. The four points 4, B, C, H are so related that each is the orthocentre
of the triangle whose vertices are the other three.

3. H is outside A4BC < one of the angles of the triangle is obtuse.
4, OHBC = QHCA = ©QHAB = O ABC (That is, the radii are equal).
5. AH-HD = BH-HE = CH- HF.

6. DA, BC bisect the angles between DE, DF.

Problems

1. The circles on AB, AC as diameters meet on BC.

2. The middle point of OH is equidistant from A’ and D.

3. The triangle UVW is drawn so that AcVW, BeWU, CeUV and
WV | BC, UW| CA, VU|| AB. Prove that H is the circumcentre of
AUVW. ‘

4. ABCD is a parallelogram; O is the circumcentre of AABC and
Q is the circumcentre of AADC. Prove that AOCQ is a rhombus.
5. ABCD is a parallelogram and H is the orthocentre of /A4 BC. Prove
that D € OQAHC.

6. The tangent at A4 to QAEF is parallel to BC (Fig. 17).

7. The tangent at A to QABC is parallel to EF (Fig. 17).

8. (Alternative proof of the orthocentre property). In AABC, let
BE, CF be altitudes meeting in H, and let AH meet BC in K. Establish
the argument :

/ KAE = / HFE = / KBE = AK 1 BC.
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4. The Incentre and the Escrlbed Centres .-
(i) The incentre

Fig. 18’

THE PROBLEM. ABC is a given triangle. It is required to establish
the existence of a point I which lies inside the triangle and which
is equidistant from BC, CA and AB; that is, 3I such that, if
IP) BC,IQ 1 CA, IR 1 AB, then IP = IQ = IR.

Definitions. The point I is called the incentre of AABC. The
circle of centre I and radius IP is called the incircle of AABC;
the lines BC, CA, AB are the tangents.at P, O, R

" THE DiscussioN. Let the internal bisectors of /B, /.C meet
in I. Then ,
I< bisector of { ig respectively

i di P the 1i BA and BC tivel
= [ is equidistant from the lines CA and CB respec ively

= I is equidistant from BC, C4, AB
C
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CoroLLARY. The internal bisectors of the angles of a triangle
are concurrent, in the incentre.

(ii) The escribed centres

Fig. 19

THE PROBLEM. There are three circles to be described, one
opposite each of the vertices 4, B, C of the given triangle; the
circle opposite A is taken as typical.

It is required to establish the existence of a point I,, lying out-
side the triangle but within the angle formed by AB and AC, such
that I, is equidistant from BC, CA, AB; that is, 3I, such that, if
LP, 1 BC, IO, 1 CA, LR, | AB, then I.P, = I,Q, = L,R,.

Definitions. The point I, is called the escribed centre opposite A
of AABC.
The circle of centre I, and radius [P, is called the escribed
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circle opposite A of ANABC; thelines BC, CA, AB are the tangents
at P p le RI

The escribed centres opposite B and C, and the escnbed cxrcles
opposite B and C, are defined sumlarly.

THE DiscussioN. Let the external bisectors of LB LC meet
in I,. Then

/B
I1 € a bisector of { /C

d BC
= I, is equidistant from the lines {BA an

respectively

CA and CB
= I is equidistant from BC, CA, AB.

(iii) The configuration of these four centres

respectively
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The diagram shows how the four points I, I, I,, I, are related
to the vertices A, B, C of the given triangle. The properties which
follow are important, but the proofs are left to the reader.

Theorems
1. The points A, I, I, are collinear.
2. The points I,, A, I, are collinear.
3.IA L LI; IBL 1L, ; IC 1 L,
4. I is the orthocentre of ALLI,.
5.f BC=a,CA=b,AB=c,s = }a+ b+ ¢),then AQ = AR =
S—a,AQ1=ARx=S,BP1=BR1=S""C.
6. If A is the area of the triangle ABC, and if the radii of the inscribed
and escribed circles are r, 7y, r,, 13, then

r= Als,rp = N(s — a).

Problems

1. I, e OBIC.
2. AI-II, = BI-II, = CI-II,
3.BC = CA = AB< LI, = LI, = LI,.

5. The Nine-Points Circle
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THE PROBLEM. Let ABC be a given triangle, 4’, B’, C’ the
middle points of BC, CA, AB; AD )\ BC, BE) CA, CF | AB;
U, V, W the middle points of HA, HB, HC.

(Only A’, D, U are shown in the diagram.)

It is required to prove that the nine points A', B, C', D, E, F,
U, V, W lie on a circle whose centre is N, the middle point of OH,
and whose radius is one-half of that of O ABC.

Definition. The circle is called the nine-points circle and N the
nine-points centre of AABC.

THE DISCUSSION.

A'O|\H.
A’G"=I;GA} = 0A' = $ HA = HU = UA.
'0|\UA
A’g =" U A} = A'0 AU is a parallelogram
= A'U = OA = radius of OABC.
'O||HU
A’g Z” HU} = A'OUH is a parallelogram
= A'U is bisected at N, the middle point of OH
= NU = NA' = } radius of ©ABC.
Also . o
OA’' 1 BC, HD } BC = N is on the perpendicular
N is the middle point of OH bisector of 4'D
= ND = NA' = } radius of
OABC.

Hence _
NA = NU = ND = } radius of OABC.

Similar argument obtains the same values for NB, NV, NE;
NC, NW, NF.

Hence the nine points lie on a circle of centre N and radius
equal to % radius of ©A4BC. :
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6. The Nine-Points Circle; Alternative Treatment
: L . A

8

Fig. 22

THE PROBLEM. Let ABC be a given triangle, with circumcentre O
and orthocentre H. Let A’, B’, C’ be the middle points of BC,
CA, AB; and AD | BC, BE) CA, CF) AB, so that AD, BE, CF
meet in the orthocentre H; finally, let U, ¥, W be the middle
points of HA, HB, HC and N the middle point of OH.

It is required to prove that the points A', B’,C’, D, E,F, U, V, W
all lie on a circle of centre N.

THE DISCUSSION.

BA'=A'C ,
Y VH}»A'V”CH
Py WH} = A'W|BH

But
/VHW = / EHF
= 180° — L EAF (HF1 AF and HE ) AE)
= 180° — / BAC S
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Also
ZZ, _ Zﬁ} => VU|BA
HW = WC }=> /VUW = / BAC.
HU — UA} = WU|CA

Thus

LVA'W + L VUW = 180°.
Hence VUWA' is cyclic; that is,
A" e QUVW.

Similarly B’, C' € QUVW.
Again

/ BDH = 90°
¥ is middle point of BH} = VH=VD
‘ > /VDH = /VHD.
Similarly,
/WDH = / WHD.
Hence
/VDW = VDH + /WDH

= /VHD + /WHD

= /VHW

= /VA'W as before.

Thus VA'DW is cyclic; that is,

D e QVA'W,
so that, as above,
D e QUVWA'B'C'.

Similarly E, F € that circle. Hence

Uuv,w, A,B,C', DEF
lie on a circle.

25
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Finally,
HN = } HO
HU=4}HA
NU = } (radius of O ABC).

} = NU = } OA; that is,

Similar NV, NW = } (radius of ©A4BC).
Hence NU = NV = NW, so that N is the centre of the circle
UvVw.

Theorems
1. 0, G, N, H are collinear, and OG/GN = OH[HN = 2/1.
Definition. The line OGNH is called the Euler line of NABC.
2. A, B, C, H are the inscribed and escribed centres of ADEF.
3. The triangles ABC, HBC, HCA, HAB all have the same nine-points
circle.

Problems

1. A’U, B'V, C’'W bisect each other at N.
2. AUVW = NA'B'C'.
3. B'C’'VW is a rectangle.
4. UE = UF; AU L EF.
5. OU bisects AA’; OU N AA’ € B'C".
6. UE, UF are the tangents from U to OBCEF.
7. If HD is produced to D’ and HA’ produced to A so that HD = DD’,
HA’ = A’A”, then D', A” both lie on OABC.
8. If ©ABC meets OAFHE again in K, then the line OU is the per-
pendicular bisector of AK.
If L = AK N BC, then L € QEKC.
By applying the theorem that the common chords of three circles
taken in pairs are concurrent, or otherwise, prove that L = EF N BC.
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Some Circle Theorems

1. The Theorem of Ptolemy |

Fig. 23

(i) A quadrilateral inequality

THE PROBLEM. ABC is a given triangle and D an arbitrary
point. (The diagram shows a typical position of D; other cases
are possible, but the differences are slight.) A triangle ABU is
constructed as in the diagram so that

NABU ~ NADC.
27
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We are to prove that
AACU ~ AADB
and hence that
AB*CD + AC-BD > BC - AD.

THE DISCUSSION.

AABU ~ NADC = /BAU = / DAC
=> /BAU + fUAD = fUAD + / DAC
= /BAD = s UAC.

Also
AB AU
AABU ~ NADC = G5 = 2=
4B _ 4D
T AU~ AC

Hence, in AACU, NADB,
LUAC = /BAD

and
AU AC
AB ™ 4D
so that
ANACU ~ ADB.

Moreover, from the similar triangles,

AB BU
AABU ~ AADC=>AD DC

= AB-CD = AD-BU
and

AC CU
AACU~AADB:AD BD

= AC'BD = AD-CU



Some Circle Theorems 29
Hence
AB-CD + AC-BD = AD (BU + CU) > AD-BC :
(triangle inequality)

(ii) The cyclic case; Ptolemy’s theorem."
The final step of the preceding work,

BU + CU > BC,

presupposed that U was not on BC, a condition that would
certainly hold in general. The case of exception must now receive
attention.

THE PROBLEM. Suppose that, in the preceding work, U € BC.
Then
BU 4 UC = BC
so that
AB-CD + AC-BD = AD-BC.
It is required o prove that
AB-CD + AC-BD = AD-BC
< A, B, C, D are concyclic.
[Note the double arrow <>.]

Suppose, first, that equality holds, so that U € BC. Then

LADC = / ABU
= / ABC (BUC is a straight line)

Hence A4, B, C, D are concyclic.
Suppose, next, that 4, B, C, D are concyclic. Then

/ ABU = / ADC (given, since AABU ~ AADC)
= / ABC (same segment)

so that BU, BC are the same lines.
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Hence U € BC, so that the equality holds.

Note. The four points 4, B, C, D can be split in two pairs in
three ways,
AB, CD; AC, BD; BC, AD.

Ptolemy’s theorem asserts that, when the four points are con-
cyclic, the sum of products from two of these pairs is equal to
the third. The pair which comes “third” is_that defined by the
diagonals of the cyclic quadrilateral.

[For a more detailed discussion of implications, see E. A.
Maxwell, Fallacies in Mathematics, Cambridge University
Press (1959) p. 28.]

Problems
1. If D is a point on the arc opposite A4 of the circumcircle of an equi-
lateral triangle ABC, then AD = BD -+ CD.
2. AB, PQ are parallel chords of a circle. Prove that

AB-PQ = AQ* — AP

3. Identify the well-known result which is a special case of the theorem
of Ptolemy when ABCD is a rectangle.
4. In ANABC, draw BE 1 AC, CF 1 AB. Prove that BF = BC cos B,
CF = BC sin B, and write down similar expressions for CE, BE.

By applying the theorem of Ptolemy to (OBCEF, prove that
EF = BC cos A.
5. ABis a diameter of a circle; P, Q are points on the circle, one in each
half, so that / PAB = 0, / QAB = ¢. Use the theorem of Ptolemy
to prove that sin 8 cos ¢ -+ sin ¢ cos 6 = sin (8 + ¢).

2. The Simson Line

(Author’s note. It is possible to argue that the Simson line
theorem as we know it is slightly unfortunate. Associated with
a point P on the circumcircle of a triangle ABC are several
parallel lines, of which the most significant is surely the one through
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the orthocentre H. For the benefit of pupils taking examinations,
the traditional proof is given first. A more general discussion then
follows, based on the line to which reference has just been made.)

A

Fig. 24

THE PrOBLEM. Take an arbitrary point P on the circumcircle
of a triangle ABC. Draw PU | BC, PV | CA, PW | AB. 1t is
required to prove that U, V, W are collinear.

Definition. UVW is known as the Simson line of P with respect
to the triangle ABC.

THE DISCUSSION.

PU L BC
PVi CA} = PUCYV cyclic = /CUV = /CPV.
B
ﬁ;ﬁ Ag} — PUWB cyclic = /BUW — / BPW.
Also
PV
PWi i‘;} ~ PVAW cyclic > / VPW = 180° — 4
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and
ABPC cyclic = /BPC = 180° — A.
Hence
/VPW = /BPC,
so that, subtracting / WPC from each,

LCPV = / BPW.
Hence
LCUV = /BUW,
so that
"UVW is a straight line,
Note. The converse theorem is also true:
Given a point P in the plane of a triangle ABC, and PU } BC,
PV | CA, PW | AB, then, if U, V, W, are collinear, P € OABC.
The proof is very nearly a reversal of the steps just given.

3. The Simson Property; Alternative Treatment

£l A
F
E/
z " 2
- Y
) - c
I D’

Fig. 25
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(i) Lemma
Consider first a theorem which is important in its own right:

THE ProBLEM. The altitudes AHD, BHE, CHF of a triangle
ABC meet OABC in D', E', F'. 1t is required to prove that D',
E', F' are the mirror images of H in BC, CA, AB. Compare
Problem 7 on p. 26.

[By saying that D’ is the mirror image of H in BC we mean that,
if D = HD' N BC, then HD' | BC and HD = D’'D.]

THE DISCUSSION.

ggi‘ gj} ‘= HDCE cyclic = /BHD = / ACB.
But
/ ACB = / AD’B (same segment),
so that

/BHD = / BD’'D (re-naming the latter angle).
Hence, in ABHD, BD'D,
BD = BD; /BDH = /BDD', / BHD = /BD'D,

so that
ABHD = ABD'D.
In particular,
HD = D'D,
so that D’ is the mirror image of H in BC.
Similarly for E’, F'.

(ii) The main theorem
THE PROBLEM. Let P be an arbitrary point on ©ABC. With the
notation of the Lemma, let

X=PD NBC,Y=PE NCA,Z=PF N AB.
[The point X is not shown in the diagram.]
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It is required to prove that X, Y, Z lie on a straight line which
passes through H.

- THE DiscuUsSION. It is an immediate consequence of the preceding
work that
LYHE' = [YE'H ‘
= /PE'B (re-naming)
= /PAB (same segment)

and that
/ZHF' = /ZF'H
= /PF'C (re-naming)
= /PAC (same segment)
Also

L EHF = 180° — / BAC (HE | CA, HF | AB).
Adding corresponding sides of these three equations,

/ YHE' + /EHF + /ZHF' = 180° + /PAB + /PAC —
— / BAC = 180°.

Hence YHZ is a straight line.

That, is, Y € line ZH; and similar argument shows that X € line

ZH. Hence X, Y, Z, H are collinear.

Remark: The pith of this proof is the simple observation,
“angle on arc BP + angle on arc PC = angle on arc BC.”

(iii) Some consequences
The diagram is now drawn with special reference to the vertex
A.

THE PROBLEM. With notation as before, let PU | BC, and let
the line PU meet ©ABC again in U’. We prove first that the line
AU’ is parallel to XYZH; next that, if Q is the middle point of
PH, then UQ is parallel to XYZH; and finally, as an immediate
consequence, that if V, W are defined similarly to U, then U, V,
W all line on the line through Q parallel to XYZH.
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A

UI
//v
X ‘ / -b/ C.

0

Fig. 26

THE DiscussioN. By the preceeding work,

/XHD = /XD'D
= /PD'A (re-naming)
= 180° — LPU'A (OAD'PU’)
= JUAH (PU'||D'A).
But these are corresponding angles, and so
HX|AU".
Next, let PU meet XYZH in L. Thus, immediately, since
D'D = DH, we have
PU = UL.

Then

PU = UL
PO — QH} = UQ||LH,

so that UQ is parallel to XYZH.
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Finally, if PV | CA, PW 1 AB, then, similarly,
VQI|XYZH, WQ| XYZH.

Thus U, V, W all lic on a straight line (the Simson line of P
with respect to the triangle 4BC) which is the line through the
middle point of PH and parallel to XYZH.

CoOROLLARY. The Simson line of P bisects HP.

Problems
1. BHCP is a parallelogram <> AP is a diameter of O ABC.
2. PR is a diameter of ©Q ABC <> Simson line of P | Simson line of R.
3. If K is the middle point of the arc BC remote from A4, then the Simson
line of K is the line through the middle point of BC perpendicular to
AK.
4. If PR is a chord of ©ABC perpendicular to BC, then the (supple-
mentary) angles between the Simson lines of P and R are equal to the
angles subtended at the circumference by PR.
5. If the altitude AD of AABC meets OABC again in P, then the
Simson line of P is parallel to the tangent at A4.
6. A straight line cuts the sides BC, C4, AB of a triangle ABC in points
L, M, N; the circles ABC, AMN meet in a further point P. Prove that
the feet of the perpendiculars from P to BC, CA, AB, LMN are colli-
near, and deduce that P € OBNL, P € OCLM.

4. Centres of Similitude
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THE PROBLEM. Let two given circles have centres 4, B and
radii a, b, and suppose that their centres are distant d apart. We
are to demonstrate precisely, what is, indeed, obvious intuitively,
that the circles have two direct common tangents PU, QV:
that is, lines which are tangents to both circles simultaneously;
and (when, as in the diagram, the two circles lie entirely outside
each other) two transverse common tangents LX, MY. It is
also “obvious” that PU, Q¥ meeet at a point S on 4B and that
LX, MY meet at a point T on 4B; further, that 4B bisects each
of the angles / PSQ, /LTM.

THE DISCUSSION.

(i) To construct PU, QV. Draw the circle of centre A and radius
a — b (supposing that a is greater than b); construct the tangents
BC, BD from B to this circle by the standard method of drawing
the circle on 4B as diameter to meet it in C, D; let AC, AD meet
the circle of centre 4 in P, Q; let lines through B parallel to
AP, AQ meet the circle of centre B in U, V. Then PU, QV are
the direct common tangents.

To prove this:
jgfz—b}»CP=b=BU
gi J;lf U} = CPUB is a parallelogram

C on circle of diameter 4B = / ACB = 90° = / PCB = 90°
= CPUB is a rectangle
=> PU ]| AP and BU
PU is tangent at P
{UP is tangent at U.
Similarly QV is tangent at Q and at V.
The construction for LX, MY is very similar, save that the first
step is to draw the circle of centre 4 and radius a@ + b.
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(i) To locate S and T. Let PU meet AB in S. Then
BU||AP = ASBU ~ ASAP :
SB BU b
TSAT AP 4
Thus
SA SB_SA—SB _ d
@ b a—b a—b

so that ,
ad bd
Sd=:"p SB=a"v
Identical argument shows that Q¥ meets AB in precisely the
same point.
In the same way, LX, MY meet AB in the point T where
BX||AL = ATBX ~ ATAL
TB BX b
STA- AL @
so that
TA TB TA+TB  d
@ b a+b a+b

giving
bd
TA=m, TB=a+b.

Note, incidentally, the ratios
SB TB b

SA~TA™ a
(iii) The lengths of PU, LX. Using the theorem of Pythagoras,

we have
PU?2 = CB? = AB? — AC? = d% — (a — b)?
=(d+a—b(d—a+ b)

and, similarly,
LX2=d?—(a+b)=(d+ a+b(d— a—b).
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(iv) Similitude

Fig. 28

Definition. The points S, T are called the centres of similitude
of the two given circles.

The name similitude is justified as follows:

Let AZ, BW be parallel radii (in the same sense) of the two
circles. We prove that the line ZW passes through S. For AZ|BW
=> /SAZ = /SBW
and

AZ a SA SA SB
BW™ b~ SB_ AZ~ BW’
so that
ASAZ ~ ASBW.
In particular,
L ASZ = / BSW,
so that SWZ is a straight line.

To follow the configuration further, let the line SWZ cut the

circles again in N, R. Then we prove that AN||BR:
AN = AZ = /ANZ = / AZN,

AZ|\BW = / AZN = /BWR,

BW = BR = /BWR = / BRW,
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so that
L/ ANZ = / BRW,
giving
AN|BR.
The two circles are thus, in an obvious sense of the phrase,
similarly placed with respect to S and (by the same kind of argu-
ment) with respect to T.

Theorems

1. More generally two circles, however placed, have associated with them

two points S, T on their line of centres such that the lines joining ends

of parallel radii, one of each circle, pass through one or other of S, T.
The points, S, T are centres of similitude for the circles.

2. The orthocentre H and the centroid G are the centres of similitude

for the nine-points circle and the circumcircle of a triangle ABC.

Problems

1. The centres of similitude for the incircle and the escribed circle
opposite 4 of AABC are the vertex A4 and the point where the internal

bisector of / BAC meets BC.
2. Two equal circles have only one centre of similitude.

5. Radical Axes

THE PrROBLEM. Let two non-intersecting circles be given, of
centres 4, B and radii a, b. It is required to prove that the locus
of a point P such that the tangents from P to the two circles are
equal is a straight line perpendicular to AB. '

Definition. The line is called the radical axis of the two circles.

THE DiscussioN. Let P be such a point, and draw the tangents
PT, PU to the circles. Then PT = PU.
But
PT is a tangent = £ ATP = 90°
= PT? = PA? — AT? = PA? — a2,
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Fig. 29
and, similarly,
PU% = PB? — b3,

Hence

PA* — o* = PB® — P2,
or

PA? — PB? = g% — D2,

Draw PN | AB.

Then

PA® — PB* = g* — b2
= (PN® + AN?) — (PN? 4+ BN?®) = @® — b?
= AN® — BN® = q*® — b?
= (AN + BN)(AN — BN) = q® — b2
Thus, if AB = d,

a®— b
AN — BN = —75—.
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Also
AN + BN = d,
so that
, a2+ a2 — b2
AN = ——=5
d2 _— aﬁ + b2
BN = ——g —

Hence N is a fixed point, and so the point P lies on the fixed
line through N perpendicular to AB.

Further immediate properties.

Let the circle of centre P and radius PT cut the line AB in
points L,, L,. We prove that L,, L, are the same for all positions
of P on the radical axis.

Definition. L,, L, are called the limiting points of the two circles.
By the theorem of Pythagoras,
NL.® = PL® — PN?
= PT? — (PA* — AN?)
= AN? — (PA? — PT?
= AN? — AT?

d2+a2_b22
=(—2d—) -
_ [(d*+a® — b a4 a® — b
=\—""=g —l—a) B —a).

[+ a — B [(d — a) — b
-
_Wdta+tb@d+a—bd—a+b(d—a—1b

442 ~ :
Similar argument obtains the same value for NL,?. Also, the
expression on the right-hand side depends only on g, b, d, and
so is independent of the position of P on the radical axis.
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Hence L,, L, are fixed points, and also NL, = NL,.

Remark: The step “NL,2 = AN? — AT?®” suffices to prove that
the position of L, is independent of P. The algebraic formulation
is added for interest.

Theorems, (i) For intersecting circles
1. If two circles intersect in X, Y, then all points P, such that the tangents
from P to the two circles are equal, lie on XY.
2. In Question 1, the circle of centre P and radius 1/(PX-PY) does
not meet the line of centres of the two given circles.
3. The common chords of three circles taken in pairs are concurrent.

Theorems, (ii) For non-intersecting circles

1. The radical axes of three non-intersecting circles taken in pairs (with
non-collinear centres) are concurrent.

2. If a circle cuts the circle of centre 4 in R, S and the circle of centre B
in R’, §’, then RS N RS’ is on the radical axis of the two given circles.

Theorems (Generalization)
Let P be a point in the plane of a given circle, and let an arbitrary

line through P meet the circle in 4, B. Then the product 1;3 1-"_1)3
(having regard to sign; compare p. 51) is called the power of P with
respect to the circle. It is independent of the chord selected.

1. The power of P is positive, negative or zero according as P is outside,
inside or on the circle.

2. The locus of a point P such that the powers of P with respect to the
two circles are equal is a straight line, the radical axis of the circles.

Problems

1.In AABC, AD | BC, BE ) CA, CF 1 AB. Verify that the common
chords of ©4BC, OQBCEF is BC, that the common chord of QO AEF,
(OBCEF is EF, and deduce that, if X = BC N EF and if AX meets
(DABC again in Y, then Y € QAEF.

2. The radical axis of the inscribed circle and the escribed circle oppo-
site 4 of AABC bisects BC.

3. In AABC,; AD J BC, BE 1 CA, CF 1 AB; P = BC N EF,
Q = CA N FD, R = AB N DE. Prove that PE-PF = PB-PC, and
deduce that P, O, R lie on a straight line perpendicular to the Euler
line OGNH of NAABC.
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4. Prove that the locus of a point P, which moves so that the length of
the tangent from P to a given circle is equal to the distance from P to
a given point 4 outside that circle, is a straight line.

5. In a copy of Fig. 29, everything was obliterated except the three
points L,, L,, U. Starting from these three points as sole data, show
how to construct the circle through U.

6. Orthogonal Circles
Preliminary definition: When
two circles pass through a point
L, the angle between the circles
is defined to be the angle be-
tween the two tangents at L.
The two circles have a second
common point M. It is clear
from the symmetry of the
figure, or easy to prove directly
(in the diagram, TL = TM,
UL=UM= ALTU= AMTU),
that the angle between the
tangents at L is equal to the Fig. 30
angle between the tangents
at M; that is, the angle between the circles is the same at each
of their common points.
In particular,

Definition: Two circles are said to be orthogonal when they
cut at right angles.

THE PROBLEM. Suppose that two orthogonal circles, of centres
A, B, cut at L, M. We establish two tests for orthogonality:

(i) the circles are orthogonal at L(M) if the tangent at L(M) to
either passes through the centre of the other;
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Fig. 31

(ii) the circles are orthogonal if the square on the distance
between their centres is equal to the sum of the squares on their
radii.

THE DiscussioN (i) Taking the intersection at L as typical,
draw the tangent there to the circle of centre 4 (B). If the circles
are orthogonal, the tangent at L to the other circle is perpen-
dicular to it and so passes through the centre of A(B).

(ii) By the theorem of Pythagoras,

AL 1 LB = AB® = AL? 4 LB2,
Notation: We sometimes write
041 OB

(or equivalent) to denote that the circles of centres 4 and B are
orthogonal.

The two tests just established are reversible, for it may be
proved directly that

O4 1L OB < tangent to either passes through
centre of other
<> AB* = q¢* + b2
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7. Inverse Points

Fig. 32

Definition. Given a circle of centre A and radius a, two points
P, P’ are said to be inverse with respect to it if the points P,P’
lie on a line through 4, both on the same side of A, and if they
are such that.

AP . AP' = a?.

P’ is called the inverse of P with respect to the circle; then P
is also the inverse of P’.

Properties of circles through points inverse with respect to a
given circle.

THE PROBLEM. Let P, P’ be two points inverse with respect to a
given circle of centre 4. For convenience of reference, denote
this circle by the symbol 2 (Greek omega).

We prove that (i) every circle through P, P' cuts the circle 2
orthogonally; also that (i) any line through A cuts every such
circle in two points which are inverse with respect to £2.
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Fig. 33

THE DiscussioN. (i) Let an arbitrary circle through P, P’ cut
Q in points U, V. Then
P,P' inverse with respect to 2
= AU2 = AP AP’
= AU is a tangent to the circle UPP’
= the circles are orthogonal (since AU is a radius of 0).

(i) If an arbitrary line through A cuts the circle UPP’ (which
was drawn arbitrarily through P, P’) in points L, M, not shown
in the diagram, then

AU is a tangent to the circle UPP’
> AL - AM = AU?
= L, M are inverse with respect to Q.

8. Further Properties of Radical Axes and Limiting
Points
Given two circles of centres 4, B and radii a, b, let RN be their
radical axis, meeting 4B in N, and let L,, L, be the limiting
points,
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R

Fig. 34

THE ProOBLEM. It is required fo prove that L,, L, are inverse
points with respect to each of the given circles.

Tue DiscussioN. Take any point P on the radical axis and let
the circle of centre P and radius PL, (= PL,) cut the given circles
in points S, T and U, V. Then, since (§5) PL, is the length of a
tangent from P to either circle, PS, PT, PU, PV are tangents;
so that

OP1L0O4; OPLOB.
But
OPLOA = L,, L, are inverse
AL, Lycuts OPin L,, L} with respect to O A.

Similarly L,, L, are inverse with respect to OB.

COROLLARY. Every circle through the limiting points cuts both
the given circles orthogonally.
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Theorem
1.In AABC, AD | BC, BE | CA, CF 1 AB. Then 3 a circle with
respect to which B, F; C, E; H, D are three inverse pairs. This circle
cuts orthogonally each of the circles BCEF, BDHF, CDHE.

Problems
1.In AABC, BE 1 CA, CF 1 AB. Prove that OAEF 1 OBCEF.
2. P is a point on the circle of diameter AB; prove that the circle with
centre A and radius 4P is orthogonal to the circle of centre B and
radius BP.
Prove also that the circle of centre 4 and radius BP is orthogonal
to the circle of centre B and radius AP,

9. Coaxal Circles

Fig. 35

Definition. L,, L, are the extremities of a diameter of a given
circle 2 of centre N. A number of pairs of points 4, A’; B, B';

. . . inverse with respect to 2 are taken on L,L,. The system of

circles on A4’, BB', . . . as diameters is called a coaxal system,
and L,, L, are called the limiting points of the system.

THE PROBLEM. Let / be the perpendicular bisector of L,L,.
The point of the name “coaxal system” is that / is the radical
axis of any two circles of the system.
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THe DiscussioN. Take, for example, the circles on A4’, BB’ as
diameters. Then

A, A" and B, B’ are inverse with respect to 2
= NA+-NA' = NB: NB'
= the tangents from N to the circles are equal
= N is on the radical axis of the circles
= the radical axis is the line through N perpendicular to AB
= the radical axis is .

Theorems

1. The locus of a point P, which moves so that the ratio PA/PB of its

distances from two fixed points 4, B has constant value r, is a circle.
Definition. The circle is called the circle of Apollonius for the points

A, B and the ratio r.

2. If, in Question 1, r is allowed to vary, then the circles for different

values of r form a coaxal system with 4, B as limiting points.

3. One and only one circle of a given coaxal system can be drawn

through an arbitrary point U. Its centre is on the perpendicular bisector

of UU’, where U’ is the inverse of U with respect to . .

4. Every circle through L,, L, cuts orthogonally every circle of the

coaxal system.

5. If two circles intersect at A, B, then (p. 43) their radical axis is the

line AB. All pairs of circles through 4, B have this same radical axis.

Conversely, any circle whose radical axis when taken with the first

circle is AB and whose radical axis when taken with the second circle

is also AB passes through 4 and B.

6. (Compare Example 4 of this set). The circles through L,, L, of Fig. 35

form a second coaxal system, of intersecting circles, and each circle of

this system cuts each circle of the given system orthogonally.



FOUR
The Theorems of Ceva and Menelaus

1. The Idea of ‘“Sense’’ on a Line

Y 5 ¢ D

Fig. 36 -

There are many problems in which it is convenient to superpose
on a line a sense of description, by which we mean that a symbol
such as

.9
AB
denotes not only the length 4B but also that it is to be regarded

as traced by a point starting at 4 and moving so as to finish at B.
It is then natural to adopt the algebraic symbolism

—> -
BA = — AB

for the line described in the opposite sense.
With this convention, the equation

> > =
AB = AC 4+ CB
is true for all collinear points A, B, C, whatever the order in which
they occur. In partlcular :

AB+BC+CD-I—DA 0.
51
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2. The Theorem of Menelaus

Fig. 37

THE PROBLEM. Let ABC be a given triangle, and suppose that
any straight line (a transversal) is drawn to cut the sides BC, CA,
ABin L, M, N. 1t is required to prove that

BL CM AN
S 5> > =L

THE DiscussioN. Let the line through A parallel to LMN cut
BC in U. Then, in whatever order the points occur along the lines,

cL

LM||UA > 914: 5
MA Ly

AN UL

LN|UA =55 = Ii,
NB LB

Hence
> 5> 5> > > —
IE CM AN BL CL UL
= =
LC MA NB LC LU LB
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3. The Theorem of Ceva

8 ——% —¢
Fig. 38

TrHe PrOBLEM. Let ABC be a given triangle, and O any point
in its plane. Suppose that 40, BO, CO meet BC, CA, AB in
P, Q, R. 1t is required to prove that

THE DiscussioN. Apply the theorem of Menelaus to the
tnangles APB, APC in turn.

COR is transversal of AAPB

- > -
PC BR A0

> e = 1
and
BOQ is transversal of AAPC
PB CQ AO

> -==—1
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Hence
- = —>
PB CQ OP PC BR
SIS T TS T = ’
BC QA4 AO CB RA
so that ~
- - —>
BP CQ AR
= ' = =+1
PC QA RB

4. Converse of the Theorems of Ceva and Menelaus
TeE PrOBLEM. The converses of the theorems of Ceva and
Menelaus are also true.

Fig. 39

(i) Given points L, M, N on the sides BC, CA, AB of a triangle
ABC such that
BL CM AN

—_— —— __—-_.1’

LC MA NB

to prove that L, M, N are collinear.
Let L' = MN N BC. Then, by the theorem of Menelaus,
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so that
— —
BL BL'
> T =0
LC LC
Hence the points L, L coincide, and so L lies on the line MN.

(ii) Given points P, Q, R on
the sides BC, CA, AB of a : A

triangle ABC such that
- > —>
BP CQ AR
S>> -t g
PC QA RB
to prove that AP, BQ, CR o N
are concurrent.
Let0=BQnCR,andB c
P’ = A0 N BC. Then, by PP
the theorem of Ceva, Fig. 40
BP CQ AR
S5 =+ 1,
P'C Q4 RB
so that
- >
BP BP’
S = S
PC PC

Hence the points P, P’ coincide so that AP also passes through
0.

Problems
1. Use the theorem of Ceva to establish for a given triangle the con-
currence of (i) the medians, (ii) the altitudes, (iii) the internal bisectors
of the angles. (But the proofs given earlier in this book are more
revealing.)
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2. Points D, E, F are taken on BC, CA, AB so that AD, BE, CF are
concurrent, and U = EF N BC. Prove that

— —> - >
BD|DC = —BU/[UC.

3. A point X is taken on the median 44’ of AABC; V = BK N AC,
W = CK N AB. Prove that VW||BC.

4. The incircle of AABC touches BC, CA, AB at P, Q, R. Prove that
AP, BQ, CR are concurrent.

5. A point O is taken inside a triangle ABC; OA, OB, OC are produced
to points P, @, R; L = BCN QR, M = CA N RP, N = AB N PQ.
Prove that

-> -
BL CR
==
LC RO
and deduce that L, M, N are collinear. (The theorem of Desargues.)



FIVE
Harmonic Properties

1. The Definition

A P 8 0

Fig. 41

Let AB be a given line on which there are also two points P, Q.
—> —>
The division of AB at the points P, Q defines two ratios 4P/PB

- —>
and AQ/QB. There is a very large field of geometrical study in
which the ratio of these two ratios is of vital importance:

Definition. The expression
- >
AP [AQ
==
PBl QOB
is called the cross-ratio of the four collinear points.

In this book, however, we are not concerned with general
values of the cross-ratio, but only with the particular case which
arises when 4B is divided in the same (numerical) ratio by P and
by Q, internally and externally respectively, so that

- —

AP AQ

== -

PB 0B
57
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In this case, then, the value of the cross-ratio is — 1.
Because of its great importance, a special name is required for
this cross-ratio:

Definitions. A system of points on a straight line is called a
range; a system of lines passing through a point is called a pencil.
The line is called the base of the range and the point the vertex of
the pencil.

When four points 4, B, P, Q on a line form a range such that

— —

AP A4Q

— -

PB 0B
they are said to form a harmonic range; P and Q are then harmonic
conjugates with respect to A and B.

Since
- —
PA PB
=TT S
AQ BQ

it follows that 4 and B are also harmonic conjugaies with respect
to P and Q.

2. Harmonic Pencils ‘
- We are to prove a very important theorem,. of great generahty,
pr_oceedmgz by stages.

(i) THE PrOBLEM. Let 4, B, P, Q form a harmonic range, so that

.6
Ab_ 40

9
PB 0B
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A P g Q
Fig. 42

Take an arbitrary point O and form the pencil of four lines
OA, OB, OP, OQ. Let an arbitrary line through A4 cut the lines
of the pencilin 4, B’, P', Q'. ltis required to prove that A, B', P’, Q'
also form a harmonic pencH.

THE DiscussioN. By the theorem of Menelaus, PP’ O is a
transversal of AABB’

PB OB' P’A
and QQ’O is a transversal of AABB'

:>AQ BO BQ

— 1.
QB OB' Q A ‘ ’ .
Hence L e
- — - > ‘
AP B'P' OB’ AQ B'Q’
. =— =5
PB P'A4 BO QB Q4
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But
— -
AP AQ
== =
PB OB
so that
— -
AP AQ
= — —_)—.
PIBI QlBl

(ii) Generalization of the preceding work

0/

Fig. 43

THE PROBLEM. Once again, let 4, B, P, Q, form a harmonic range
and take an arbitrary point O. It is required fo prove that, if the
pencil OA, OB, OP, OQ is met by ANY LINE WHATEVER in points
A', B, P', O, then the range A', B', P', Q' is also harmonic.

Definition. A pencil of four lines is said to be harmonic when it
is met by an arbitrary line in the points of a harmonic range.




Harmonic Properties 61

(By the present theorem, it is sufficient to test the harmonic
property for one range.)

THE DiscussioN. Join AQ’, meeting OPP’ in P”’ and OBB’ in
B". By theorem (i) just proved,
A, B, P, Q harmonic = 4, P, B”, Q' harmonic,
and argument similar to that used in (i) proves that
A, P", B”, Q' harmonic = 4’, B’, P’ Q' harmonic.
Notation: We write i
harm. (4B, PQ)
to mean that the range 4, B, P, Q is harmonic, with P, Q
separating 4, B harmonically. Then results such as -
harm. (B4, PQ), harm. (PQ, AB), harm. (QP, BA)
follow automatically.
We write similarly
harm. O(4B, PQ)

to mean that the pencil 04, OB, OP, OQ is harmonic, with
OP, OQ separating OA4, OB harmonically.

Problems

1. The internal and external bisectors of / A of AABC meet BC in
P, Q. Prove that harm. (BC, PQ).

2. Points D, E, F are taken on BC, CA, 4B so that AD, BE, CF are
concurrent; U = EF N BC. Prove that harm. (BC, DU).

3. In AABC, with the notation of Chapter 2, §5, harm. (GH, ON).

3. The Harmonic Tests for Collinearity and
Concurrence

(i) THE PROBLEM. Suppose that two harmonic pencils, with
vertices U, ¥ have a common *‘arm”, which is necessarily the
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Fig. 44

line UV. 1t is required o prove that the three other pairs of corre-
sponding arms intersect in collinear points; that is, if the intersec-
tions are 4, B, C, so that

harm. U(VB, AC), harm. V(UB, AC),
then A, B, C are collinear.
THE DiscussioN. Let P = AB N UV, C' = AB n UC,
C" = AB N VC. Then

harm. U(PB, AC) = harm. (PB, AC’),
harm. ¥(PB, AC) = harm. (PB, AC").

‘Hence C’ and C” coincide, each being the harmonic conjugate

of A with respect to P and B. Since their common point must be
on UC and on VC, it must be C, so that C € AB.

(ii) THE PROBLEM. Let A4, B, P, Q@ and A4, C, X, Y be harmonic
ranges on distinct lines, but having a common point 4. It is
required to prove that the lines PX, QY, BC are concurrent.
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Fig. 45

THE DiscussioN. Let U= PX N QY, and suppose that UC
meets PQ in a point B’ not shown separately in the diagram. Then

harm. (4C, XY) = harm. U(4C, XY)
= harm. (4B’, PQ).

But we are given that harm. (4B, PQ), so that B’ is at B. Hence
UeBC.

Problems

1. Two triangles ABC, A’BC’ have a common vertex B, the points
B, C, C’ not being collinear. The bisectors of / A4 meet BC in P, Q;
the bisectors of / A’ meet BC’ in P/, Q’. Prove that
PPN QQ eCC, PO NP’QeCC.

2. Uis a point in the plane of AABC; E= BUN CA, F= CUN AB;
Y € BU such that harm. (YE, BU) and Z € CF such that harm. (ZF,
CU). Prove that EF N\ YZ € BC.
3. (4B, CD) and (4’B’, C'D’) are two harmonic ranges on different
lines; O, O’ are points on. the line 4A4’. Prove that the points OB N
O’'B’, OC N\ O’'C’, OD N O’ D’ are collinear.
4. ABCD is a rectangle; U is the middle point of AD, V is the middle
point of BC; X = UV N BD, Y = UC N BD. Prove that harm.
(BY, XD).

Prove also that, if L is the harmonic conjugate of C with respect to
Band V, then XL N YV € DC.
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5.In AABC, P € AB, U € AB, Q € AC, V € AC such that harm.

(AU, PB) and harm. (4V, QC). Prove that, if L = BV N CU and

M = BQ N CP, then A € LM.
Prove also that PQ N UV € BC.

4. The Quadrangle

The reader who is new to this work will probably not have given
much thought to what he means precisely by the word “quadri-
lateral”. There are, in fact, two similar, but distinct, concepts:

X
|

|
I
!
I
|
I
1

1

1

I
!
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the quadrangle and the quadrilateral, and it is, indeed, more
convenient to begin with the former.

Definitions. The figure defined by four points 4, B, C, D and
the lines joining them in pairs is called a quadrangle, of which
A, B, C, D are the vertices.

The two diagrams give alternative ways of depicting a typical
quadrilateral. They are equally valid for our purposes, but there
are sometimes visual advantages in the second, where D is taken
inside the triangle ABC.

The six lines

BC, AD; CA,BD; AB,CD

are called the six sides of the quadrangle; we have grouped them
in pairs, called opposite sides. The points X, ¥, Zin which opposite
sides meet form a triangle called the diagonal, or harmonic,
triangle of the quadrangle.

The harmonic property of the quadrangle.
The property which follows is basic in the theory of quadrangles
and is of very great importance in geometry.

THE ProPERTY. Consider any side, say YZ, of the diagonal
triangle of the quadrangle ABCD. It meets each of C4, BD at Y
and each of 4B, CD at Z. Suppose that it meets BC at P and
AD at L. It is required to prove that harm. (YZ, LP).

THE DiscussioN. (The second diagram, with D inside the
triangle 4BC, may be found more convenient for reference.)
PYZ is transversal of AABC

> S == 1 (Theorem of Menelaus);
PC YA ZB
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- AX, BY CZ meet at D

BX_CY Az
gy
XC YA ZB

Hence, comparing these results,

=

=41 (Theorem of Ceva).

— —
BP _ BX
— . -
: PC Xxc
so that
harm. (BC, XP).-
Thus
harm. A(BC, XP)
= harm. (ZY, LP)
= harm. (YZ, LP).

Snmlar results hold on the sides X7, XZ of the diagonal
tnangle

Problems
1. XYZ is the diagonal triangle of the quadrangle 4BCD; a point D’ is
taken on AD, and B = AB N YD, C’' = AC N ZD’ Prove that
BCNBCeYZ
2. XYZ is the diagonal triangle of the quadrangle ABCD; P = BC N
YZ,L = AD N\ YZ; U= BL N AP, V = BY N AP. Prove that
UX N VC e AB.
3. The altitudes of AA4BC are AD, BE, CF, meeting in H. Verify that
B, C are two vertices of the diagonal triangle of the quadrangle
AEHF, and deduce that EF N BC is the harmonic conjugate of D with
respect to B and C.
4. The incentre and the escribed centres of AABC are I, I, I, I;.
Identify the diagonal triangle of the quadrangle 7, I, I,, 1,.

5. Duality

There.is a large field of work in which the concept known as
duality is fundamentally important. This book is not greatly
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concerned with such aspects, but a brief account must be given
here so that the distinction between a quadrangle and a quadri-
lateral may be clearly understood.

Much of geometry is concerned with the interrelations of
points and lines; for convenience, points may be named by capital
letters 4,B,C, . . . and lines by lower case letters @, b, c, . . .. Then
two points such as 4, B define a line, say x; and two lines such
as p, q define a point, say U. The essence of the principle of
duality is that properties of incidence (such as joins and inter-
sections) for a given figure of points 4, B, C, . . . and lines
P, 4, 1, . . . have an exactly analogous counterpart in a figure of
lines a, b, c,... and points P, Q, R, ... provided that inter-
sections such as (p, g) are replaced by joins such as PQ while
joins such as 4B are replaced by intersections such as (a, b).

Fig. 48

For example, it can be proved that, if points A, B, C lie on a
line u and points D, E, F on a line v, and if

L=BFNCE M=CD N AF,N = AE N BD,
then L, M, N lie on a line p.
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It is an immediate consequence of the principle of duality,
or it can be proved directly, that the theorem obtained by inter-
changing points and lines, joins and infersections, is also true:

If lines a, b, c, pass through a point U and lines d, e, f through a
point V, and if the line joining the point of intersection (bf) to the
Dpoint of intersection (ce) is I, with similar notation for m, n, then
the lines I, m, n pass through a point P. ’

6. The Quadrilateral

Definitions. [Compare the dual definitions given in §4.]

The figure formed by four lines a, b, ¢, d and their six inter-
sections when taken in pairs is called a quadrilateral, of which
a, b, c, d are the sides.
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Fig. 50

The six points, which we many conveniently denote by the
notation

(6¢), (ad); (ca), (bd); (ab), (cd)

are called the six vertices of the quadrilateral; we have grouped
them in pairs, called opposite vertices. The lines ‘

x = join of (bc), (ad),

y = join of (ca), (bd),

z = join of (ab), (cd)
form a triangle known as the diagonal or harmonic triangle of the
quadrilateral.

Quadrangle and quadrilateral together.
The accompanying diagram can be interpreted to give both a
quadrangle and a quadrilateral. As a quadrangle, it has vertices
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A, B, C, D and sides BC, AD, CA, BD, AB, CD, with XYZ as
diagonal triangle; as a quadrilateral, it has AB, BC, CD, DA as
sides, 4, B, C, D, X, Z as vertices, and UYW as diagonal triangle.

U

Fig. 51

Thus the two diagonal triangles are different, but they have a
common vertex Y and side XZUW.

The harmonic property of the quadrilateral

THE ProPERTY. The vertex (yz) of the diagonal triangle (Fig. 50)
lies on the line joining (ca), (bd) and on the line joining (eb),
(cd). Let its join to (bc) be the line p and its join to (ad) be the
line /. It is required to prove that harm. (yz, Ip).

THE DiscussioN. This is actually identical with the property
already proved for the quadrangle; for, in the notation of Fig. 51,
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what we have to prove is that'harm. Y(XZ, UW), and this is an
immediate consequence of the quadrangle property for the side
ZX of the diagonal triangle and its intersections with the lines
CA, BD. ‘

COROLLARY. In the “joint” diagram of Fig. 51, the vertices
X, Z of the diagonal triangle of the quadrangle are separated |
harmonically by the vertices U, W of the diagonal triangle of the
quadrilateral. |

7. Some Illustrations |
(i) The polar line of a point with respect to a triangle

1
|
|

Fig. 52

THE PrOPERTY. Let ABC be a given triangle and D a point in
itsplane.Let X = BC N AD, Y = CA N BD,Z = AB N CD;
and thenlet P = BC N YZ, Q = CA N ZX, R = AB N XY.
It is required to prove that P, Q, R are collinear.
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Definition. The line PQR is called the polar line of D with respect
to the triangle ABC. ’

THE DiscussioN. If L = AD N YZ, then XYZ is diagonal
triangle of quadrangle 4BCD = harm. (LP, YZ) = harm.
X(LP, YZ) = harm. (4AC, YQ).

Similarly harm. (4B, ZR).
But
harm. (4C, YQ)
harm. (4B, ZR)

Thus CB, YZ meet on QR, that is,
P e QR

} = CB, YZ, OR collinear

(ii) The angle bisectors of a triangle

%

Fig. 53

THE PrOBLEM. Given a triangle ABC, let the internal and ex-
ternal bisectors of the angle 4 meet BC at P, Q. It is required
to prove that harm. (BC, PQ).

THE DISCUSSION:
BP 4B

AP is internal bisector of 4 = —5 = + —&;

: PC
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._)
. . B
AQ is external bisector of /A4 = —_—>Q~ = — 4B .
AC
ocC
Hence
- —>
BP BQ
=7 =0
PC ocC

so that harm, (BC, PQ).

8. The Bisection Theorems for a Harmonic Pencil
(i) Tue ProBLEM. The pencil U(4AC, BD) is given to be harmonic,
with B, D separating A, C.

Fig. 54

An arbitrary line is drawn parallel to U4, cutting UB, UC, UD
in O, R, S. It is required to prove that R is the middle point of QS.

THE DiscussioN. Draw any line through R cutting U4, UB, UD
in L, M, O. Then
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harm. U(AC, BD) => harm (LR, MO)

LM LO
- e
MR OR
so that, numerically,
LM LO
MR~ OR
But ‘
LM LU
QRILU = 72 = Or
and
‘ Lo LU
RS|LU = OR = RS
Hence
LU LU
OR™®S
so that
OR = RS.

(ii) THe PrOBLEM. [The converse of Illustration (ii) of §7.]
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Let U(AB, XY) be a harmonic pencil, with UX, UY separating
UA, UB, and such that
AU 1 UB.

It is required to prove that UA, UB are the bisectors of angle XUY.
Let a line parallel to U4 meet UX, UB, UY in P, M, Q. Then,
by the preceding,

harm. U(4AB, XY) .
PMQlIAU} = PM = MQ.
Also
PMQ| AU

UMLAU} = UM 1 PQ.

In trianglés UMP, UMQ:

UM = UM, MP = MQ, /UMP = /fUMQ,
so that
AUMP = AUMQ,
so that
L PUM = / QUM.

Hence UM is a bisector of / PUQ, and so AU, being perpendicu-
lar to UM, is the other bisector.

Theorems

1. The converse of §8(i) is also true:
If U(ABCD) is a given pencil, and if a line parallel to UA cuts UB,
UC, UD in Q, R, S so that QR = RS, then harm. (AC, BD).

Problems

1. Given a parallelogram ABCD and a line AU such that AU||BD,
prove that harm. A(BD, UC).

2. ABCD is a parallelogram; P, Q are the middle points of AB, AD.
Prove that harm. B(4D, QC) and harm. D(4B, PC), and deduce that
BQ N DP € AC.

3. XYZ is the diagonal triangle of the quadrangle ABCD. The line
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through Y parallel to XZ cuts BC, AB, AD, CD in L, N, P, R. Prove
that LN = PR.

4. Points D, E, F are taken on the sides BC, CA, AB of AABC so that
AD, BE, CF meet in a point O; U = EF N BC. The line through D
parallel to AU cuts AB, AC in M, N; the line through D parallel to
OU cuts OB, OC in QR. Prove that MQNR is a parallelogram.

5. The diagonals AC, BD of a parallelogram meet in O; through O are
drawn lines /, m so that I||4B, m||AD, and any point R is taken on m.
The line RC meets / in P and DB in U; the line RD meets / in Q and
AC in V. Prove that harm. (RP, CU) and harm. (RQ, DV), and deduce
that UV||AB.

9. A Test for a Harmonic Range

4 o A 5 G
Fig. 56
Tue ProBLEM. Let 4, P, B, Q be four collinear points, and let
O be the middle point of AB. It is required fo prove that
harm. (4B, PQ) <> 04® = OP-00Q,

the arrow of consequence going in both senses.

THE DiscussioN. Since O is the middle point of 4B,

— —
AO = OB.
Now
AP A0
harm. (4B, PQ) <> — = — :—_>Q—
PB 0B

- = - =
< AP-QB + AQ'PB=0
- —> > —>
< (40 4+ OP)(QO + OB)
—> —> —> —
"+ (40 + 0Q)(PO + OB) =0
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<+ (OB + OPXOB — 00)

A -
+ (OB + 0Q)OB — OP) =0
- —> —> —> - —>
< OB® + OB(OP — 0Q) — OP-0Q
- > —> — > >
+ OB* — OB(OP — 0Q) — OP-0Q = 0

- - —>

< 20B* — 20P.0Q = 0
—> —> - =

< 0A4* = 0B? = OP-0Q.

Problems

1. A4, B are two given points; a circle is drawn through 4, B and a point
P is taken on it; the tangent at P meets the line 4B in U. Prove that the
circle of centre U and radius UP cuts 4B in points X, Y such that
harm. (4B, XY).
2.In AABC, AD L BC, BE | CA, CF 1L AB,P = EF N\ BC and A’
is the middle point of BC. Prove that A’E is the tangent at E to Q EDP.
3.In AABC, /A = 90° and AD | BC. The circle of centre B and
radius BA cuts BC in U, V. Prove that harm. (UV, BC).
4.In AABC, /A = 90°, AD | BC and the tangent at 4 to QABC
meets BC in X. Prove that harm. (BC, DX).
5. 4, B, P, Q are four collinear points such that harm. (4B, PQ). An
arbitrary circle through P, Q cuts the circle on 4B as diameter in U, V.,
Prove that OU, OV are the tangents from O to QPUQYV.
6. 1 is a given line and A4, B two points not on it, both on the same side
of . Prove that 3 two points U, ¥ € such that / is a tangent to O ABU
and to ©QABY.

An arbitrary circle through 4, B cuts / in P, Q. Prove that harm.
(PQ, UV).
7. Two circles cut orthogonally. A diameter AB of one cuts the other
in points P, Q. Prove that harm. (4B, PQ).



SIX
Pole and Polar

1. The Polar of a Point with Respect to a Circle

L

(0) P inside 2 (ii) P outside
Fig. 57

Definitions. Two points P, P’ in the plane of a circle 2 of
centre O are said to be conjugate with respect to 2 if the line PP’
meets the circle in points U, ¥ such that harm. (UV, PP’).

78
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[We shall have to extend this definition later to cover the cases
where the line PP’ does not meet the circle.]

When P is fixed, the locus of points P’ such that P, P’ are
conjugate with respect to £2 is called the polar of P with respect
to 2. The point P itself is called the pole of its polar.

THe PROBLEM. It is required fo prove that the polar of Pis a
straight line perpendicular to the diameter through P.

THE Discussion. Draw the diameter through P, meeting 2 in
the points 4, B. Let an arbitrary chord through P meet the circle
in U, V and let P’ be the harmonic conjugate of P with respect
to U, V; then P’ lies on the polar of P. Finally, let QO be the
harmonic conjugate of P with respect to 4, B; in particular, Q
lies on the polar of P.

Now

harm. (UV, P'P) , )
harm. (4B, 0 P)} = UA, VB, P'Q concurrent, say in L.

Also
g:rr:;: EZZ’ gﬁ;} = UB, VA, P'Q concurrent, say in M.
Further,
AB diameter of 2

= BU J AL, AV | BL

= AV, BU meet in the orthocentre of AABL

= M is the orthocentre of AABL

= LM | AB

=>P'Q 1 AB.
Thus P’ lies on the line through the fixed point Q perpendicular
to the fixed line AB, so that the locus of P’ is t the straight line
through Q perpendicular to 4B. :

1 But see §2.



80 Deductive Geometry
Note:

harm. (4B, PQ)

2 — .
O middle point of AB} > 04* = OP-0Q

= P, Q inverse points with respect to 2.
Hence the polar of P is the line through the inverse of P with
respect to 2 and perpendicular to the diameter through P.

COROLLARY. It is an immediate consequence of the definition
that if the polar of a point P passes through a point P’, then the
polar of P' passes through P. For if the line PP’ cutst the circle
Q in points U, V, then harm. (UV, PP') <> harm. (UV, P'P).

2. The Case when P is Outside the Circle 2

f\ X :
7 Q —*F
£

A B

Y

Fig. 58

In §1 we ignored a complication, with which we now deal,
occurring when P lies outside the circle 2. But first we prove a
theorem of some importance in itself.

1 But see §2.
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THE PROBLEM. Let the polar of a point P outside the circle
meet the circle in points X, Y. It is required to prove that PX, PY
are the tangents from P to .

THE DISCUSSION. As in §1, P, Q are inverse points with respect
to Q. Hence

OP-0Q = OX?
L 9X_ 09
OP ~ 0X

so that, since also / XOP = / QOX,
AXOP ~ NQOX
> /OXP= /00X
= 90°
= XP ] OX
= XP is the tangent at X.

Similarly YP is the tangent at Y.

The difficulty in the stated definition for the polar of P is that
an arbitrary line through P may not meet the circle at all: indeed,
it will not do so unless it lies “within” the angle XPY. The locus
of P', as defined, is only that part of the straight line which lies
between X and Y. We have nevertheless adopted the given
definition since it is hoped that the reader will later come to study
complex projective geometry where that definition stands and
where the difficulty does not arise (because of so-called “im-
aginary” points of intersection of line and circle).

To resolve the dilemma, such as it is, we can replace the given
definition by the equivalent property that P’ is on the line through
the inverse of P and perpendicular to the diameter through P.
All positions of P’ are then accounted for, even when the line
PP’ does not meet 2.

We must check that, in the excluded case, it is still true that;
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if the polar of P passes through P’, then the polar of P' passes
through P. (The proof in §1 depended on the existence of U, V.)

Suppose that P’ is on the polar of P. Then OP’ OQ = a2 and
P'Q 1 OP', where Q is the inverse of P with respect to £2. Now let
Q' be the inverse of P’. Then

Fig. 59

" OP-0Q = a® = OP'-0Q'.
= PQ Q'P’ cyclic
- PQ' 1 OP'
= P is on the polar of P’.

The result is therefore true whether or not the line PP’ meets the |
circle 2. ' ‘ ' o
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Theorem
1. 4, B, C, D are four points on a circle, and X YZ is the polar triangle
of the quadrangle ABCD. Then AXYZ is such that each side is the
polar of the opposite vertex. (Compare §3 below.)

Problems

1. 4, B, P are three collinear points. Prove that the polars of P with
respect to all circles through A4, B have a common point.
2. Prove that the angle between the polars of 4 and B is equal to the
angle subtended at the centre by AB.
3. A, B, C, D are four collinear points such that harm. (4B, CD);
their polars with respect to a circle 2 are a, b, c, d. Prove that the lines
a, b, ¢, d form a pencil such that harm. (ab, cd).
4. The sides of AABC are the polars of the vertices of APOR with
respect to a circle £. Prove that the sides of APQR are the polars of
the vertices of A4BC.
5. Given two points 4, B and a circle £ of centre O; draw BX 1 polar
of A and AY ] polar of B. Prove that 4Y/40 = BX/BO.

[A possible method is to draw OM 1 AY and OL | BX; then
NAMO ~ ABLO.}

Corollary. If AY = 0, so that A is on the polar of B, then BX = 0,
so that B is on the polar of A.

3. Self-Polar (Self-Conjugate) Triangle with Respect
to 2

THE PROBLEM. Let P be any point (inside or outside the circle)

in the plane of a circle 2 of centre O, and let Q be any point

(inside or outside the circle) on the polar of P. Let the polars of

P, Q meet in R. It is required to prove that PQ is the polar of R.

THE Discussion. The proof is direct:
R is on the polar of P = the polar of R is through P;
R is on the polar of Q = the polar of R is through Q.
Hence the polar of R is PQ.

Definition. A triangle such as POR, in which each side is the
polar of the opposite vertex, is said to be self-polar or self-
E
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conjugate with respect to 2. Each two vertices are then conjugate
with respect to 2. The following result is immediate:

Fig. 60

THE PrROBLEM. To prove that the four points O, P, Q, R are so
related that each is the orthocentre of the triangle formed by the
other three.

THE DiscussioN. QR is the polar of P = OP is perpendicular
to QR. Similarly OQ, OR are perpendicular to RP, PQ. By
definition of orthocentre, this is the required result.

We now prove a basic property of self-polar triangles:

THE PrOBLEM. It is required to prove that a triangle self-polar
with respect to a circle is necessarily obtuse-angled.
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THE DiscussioN. Observe first that a triangle self-polar with
respect to £ must have at least two vertices outside 2; for if
there is one vertex at all, say R, inside £, then the polar of R
lies entirely outside £2, so that both P and Q must be outside.

If, say, P is one of the outside vertices, then its polar passes
through the points of contact X, Y of the tangents from P to
and, since Q, R lie on XY and are harmonically conjugate with
respect to X, Y, one of them, say Q, is outside and the other, R,
is therefore inside. Let OP, OQ, OR meet QR, RP, PQin L, M,
N; then L, P; M, Q; N, R are inverse pairs with respect to £,
so that L, P are on the same side of O; M, Q are on the same side
of O; N, R are on the same side of 0. When, however, APQR
is acute, O lies between L, P, between M, Q, and between N, R,
so this case is not possible. Hence APQR is obtuse-angled.

4. Harmonic Pencils on a Circle

8

Fig. 61

(i) We start with a lemma:

THE PrOBLEM. Let 4, B, C, D be four fixed points and P a
variable point on a given circle. It is required fo prove that the



86

Deductive Geometry

~ pencil PA, PB, PC, PD remains constant, in the sense that the
angles between those four lines (produced in both directions) have
the same values for all positions of P.

THE DiscussioN. Suppose, for example, that P is on the arc 4D
as shown. The angles APB, BPC, CPD remain constant for all

such positions of P.

If, however, P moves into, say, the arc CD, to the position
marked Q, then, if DQ is produced beyond Q to D',

L/ AQB =
/BOC =
/COD =

/ APB (same segment)
/ BPC (same segment)
£.CPD (external angle theorem)

so that the pencils can be superposed, in the way implied by the
diagram. Corresponding angles are therefore equal.

Note: The result is
also true when P is at
A, B, C or D, pro-
vided that (for, say, P
at A) the line PA is
interpreted as the tan-
gent at A4.

_ The proof is the
same as in the general
case save that, if AT
is the tangent at A4,

/TAB = / APB

because of the theor-
em on the angle be-
tween tangent and
chord.

Fig. 62
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(ii) Harmonic separation on a circle

We have seen what is meant by harmonic separation on a
straight line, and this concept must now be extended from
straight line to circle.

¥
Fig. 63

THE PROBLEM. Let 4,B, P,Q be four given points on a circle Q.
If X is a varying point of the circle, then we have just proved that
the pencil X(4B, PQ) remains constant in shape for all positions
of X. What we are to prove is that the pencil X(AB, PQ) is
harmonic when the four points are so related that each of the chords
AB, PQ passes through the pole of the other.

THE DiscussioN. Having in mind the note at the end of (i),
let the tangent at 4 meet PQ in 7. Let M = PQ N AB. Then
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pencil harmonic = harm. A(TB, PQ)
= harm. (TM, PQ).

Moreover, if the tangent at B meets PQ in 7", then, in the same

way,
harm. (T'M, PQ),

so that T, T" are the same point.
Thus PQ passes through 7, the pole of AB; and, consequently,
AB also passes through the pole of PQ.

Note: The converse theorem is also true:

If AB, PQ are chords such that each passes through the pole of
the other, then X(AB, PQ) is a harmonic pencil for any position
of X on L2.

It is, indeed, sufficient to take X at A4, so that we may refer again
to Fig. 63, where T is now known to the pole of 4B. Then

T is pole of AB = harm. (TM, PQ)
= harm. A(TM, PQ)
= harm. A(4B, PQ)
= harm. X(4B, PQ)

Definitions. Two chords such that each passes through the pole
of the other are said to be conjugate with respect to £2.

Four points such as 4, B, P, Q which subtend a harmonic
pencil at every point of the circle (so that, as just proved, the
chords AB, PQ are conjugate) are said to be harmonic on the
circle; we also say that A, B separate P, Q harmonically.

Theorem
1. XYZ is the diagonal triangle of a cyclic quadrilateral ABCD (nota-
tion of p. 64). The tangents at B, C meet in U, the tangents 4, D meet
in ¥, the tangents at 4, B meet in L, the tangents at C, D meet in M.
Then Y, Z, U, V are collinear and X, Y, L, M are collinear.
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Problems

1. AB is a diameter of a circle and CD a chord perpendicular to it.
Prove that harm. (4B, CD) on the circle.

Deduce that, if U = BC N AD, V = AC N BD, then the tangents
at C and D meet on UV.
2. The tangents at points 4, B on a circle meet in 7 and a line through
T meets the circle in UV. Prove that, if L = AU N TB and
M = AV N TB, then harm. (TB, LM).

Prove also that, if X = BU N TA, and Y = BV N TA, then
LXN MYe ABand LY N\ MX € AB.
3. The chords UV, PQ of a circle meet in T and A4, B are the points of
contact of the tangents from T to the circle. Prove that PU N QV € AB
and PV N QU € AB.
4. A point U is taken on a circle of which AB is a diameter. The tan-
gents at B, U meet in T, and AU meets BT in S. By first proving that the
lines AU, AB divide harmonically the line AT and the tangent at A4,
prove that T is the middle point of BS.

Prove this result also by elementary geometry.
5. AB is a diameter of a circle of centre O. A line through B cuts this
circle in U and also cuts the circle 2 on OB as diameter in ¥. The line
through O parallel to UB cuts £2 again in L; the line UO cuts the circle
£ again in M. Prove that harm. (LV, MB) on £2.




SEVEN
Line and Plane

1. Preliminary Ideas

A detailed study of the properties of lines and planes in space
is lengthy and, at this stage, somewhat tedious. We propose to
pass lightly over some of the things that intuition, not necessarily
correctly, regards as obvious, reserving closer study for those
matters that are more likely to be found troublesome.

The basic concepts are the point and the straight line, which
we assume to be familiar. From them we derive the plane, which
is defined to be a surface such that, if 4, B are any two points
whatever upon it, then the line 4B lies wholly in it. Whether such
a surface can exist effectively is not as clear as might be thought,
but that is a consideration over which we do not linger.

We enunciate without proof a number of propositions of inci-
dence, whose truth is to be regarded as evident. Certain compli-
cations arising from ideas of parallelism are ignored for the
present. (But see below, p. 91.)

(i) Two lines lying in a plane have a point in common.

(ii) Two lines meeting in a point lie in a plane; all the points of
that plane can be constructed by taking two variable points, one on
each given line, and drawing the line joining them (see (iii) below).

(iii) A unique line joins any two points in space.

(iv) Two planes in space intersect in the points of a straight line.

(v) A straight line and a plane meet, in general, in a single point.

90
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(vi) Given a point and a line, there is, in general, a unique
plane passing through each of them.

(vii) Three planes meet, in general, in a single point.

(viii) Three non-collinear points determine a unique plane.

Notation: We shall often use capital letters 4, B, C, . . . to
denote points, small italic letters a, b, ¢, . . . to denote lines, and
Greek letters o, B, v, 8, . . . (alpha, beta, gamma, delta, . . .)
to denote planes.

Thus two planes a, 8 might meet in a line u which, in its turn,
might meet a plane y in a point P.

2. Parallel Lines and Skew Lines

Let /, m be two given straight lines. According to the properties
listed in §1, they lie in a plane if they meet and they cannot lie
in a plane if they do not meet.

We did, however, indicate in §l that those properties, while
perfectly true in general, were subject to certain exceptions. These
we must now study.

Suppose that /, m do indeed lie in a plane. They necessarily
intersect, with the one case of exception: they may be parallel.
We are therefore led to consider two distinct types of non-inter-
secting lines:

Definitions. Two straight lines which lie in a plane but do not

meet are called parallel.
Two straight lines which do not lie in a plane (cannot meet

and) are called skew.

For example, in the “box” shown in the diagram,
AD|BC||A'D'|B'C’,
AB||DC|A’'B'|D'C’,
AA’||BB'||CC'||DD'.
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Examples of pairs of skew lines are:
AB, CC'; A'B', DD'; CD, BB'.
D' c’

Fig. 64

Theorems
1. If u, v are two skew lines and p, g are two lines each meeting each of
them, then p, g are skew.
2. Given two skew lines u, v and a point O not on either, a unique line
(a transversal of u, v) can be drawn through O to meet both « and .
3. Given three mutually skew lines u, v, w, a line can be drawn through
an arbitrary point of # to cut v and w (a transversal of u, v, w). Any
two such lines are skew.
4. Two lines each parallel to a third are parallel to one another.
5. If two triangles ABC, A’B’C’ in different planes are so related that
AA’, BB’, CC’ have a common point O (the triangles then being said
to be in perspective), the points L = BC N B'C’, M = CA N C'4’,
N = AB N A’B’ exist and L, M, N are collinear. (Theorem of De-
sargues.)

Problems
1. A, B, C, D, O are five points in general position in space. A trans-
versal from O meets DB in M and CA in Q; another meets DC in N
and 4B in R. Prove that MN N QR € BC, NQ N\ MR € AD.
2. Three mutually skew lines u, v, w are each met by each of three other
mutually skew lines p, ¢, r. Notation such as p N u denotes the point
common to p, u; notation such as p A u denotes the olane containing
P, u. By considering the lines of intersection of the planes p N u,
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g N v, r N\ wtaken two at a time, prove that the three lines
@nw,rnne,(rNu,pnw),(p No,q N u are concurrent.

3. If u, v are two skew lines and a line p parallel to u meets v while a
line ¢ parallel to v meets «, prove that p, g are skew.

4. A line I meets a plane = in a single point O. Prove that / is skew to
every line in 7 not passing through O.

3. The Angle Between Two Lines
Let AB, CD be two skew
lines. The angle between
them is defined as follows:
Definition. Let O be an
arbitrary point, and draw c
the lines through O parallel )
to AB, CD. The angle be- y
tween AB and CD is defined
to be the angle between these \
two (coplanar) lines through s
0.
THE PROBLEM. It is required to prove that the angle so defined is
independent of the position of O.

Fig. 65

THE DiscussioN. If O’ is an

P
alternative position, choose a
point P and a point Q on the
two lines through O; on the 0 N
\\ P'

corresponding parallel lines

through O’, choose P’, Q' so

that OP' = OP, 0Q' = 0Q.

Then OO'P'P, 00’'Q’'Q are \ a
parallelograms, so that PP/, 0

Q Q' (being equal and parallel
to 00') are equal and parallel;
hence PQQ'P’ is a parallelogram, so that PQ = P'Q’.

Fig. 66
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Hence
AOPQ = NO'P'Q" (3 sides)
= /POQ = LPOQ.
Note: There are two angles between the lines through O, being
supplementary angles. In practice, this seldom causes confusion.

4. Perpendicular Lines and Normals to Planes

oT
V‘ Q
A4 w
R
v
P
o+
Fig. 67

(1) THE PrOBLEM. Let O 4 be a given line, and AP, AQ two lines
each perpendicular to it. The lines 4P, 4Q define a plane and it is
required fo prove that OA is perpendicular to every line through A
in the plane.

THE Discussion. Let AR be any line through A in the plane
APQ. We have to prove that 04 | AR.
Produce OA its own length to O’ and let an arbitrary line be
drawn to cut AP in U and AQ in V. Then:
UV meets AP, AQ = UV is in the plane APQ
= UV meets AR, say in W.
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Then
AOAU = NO'AU = OU = 0'U

ANOAV = NO'AV = OV = O'V}:> L0UV = A0'UV.

But .
AOUV = AO'UV = LOUW = LO'UW,
and
LOUW = L O'UW
ouU = 00U }=> AOUW = AO'UW
uw =Uw
= OW = O0O'W

= 0A | AW (since OA = O'A)

Note that the converse result is also true:—

(ii) THE PROBLEM. A line OA is given in space, and AP, AQ,
AR are three distinct lines perpendicular to it. It is required o
prove that AP, AQ, AR are coplanar.

THE DiscussioN. The lines AP, AQ define one plane and the
lines OA, AR define another (different from the first since 04
cannot have two distinct lines perpendicular to it and lying with
it in one plane). Let the two planes meet in a line 4S. Then

OA | AP, 0OA | AQ
AS in plane PAQ } = 04 L AS.
But
OA, AR, AS coplanar
OA 1 AR, 04 | AS

Hence AR is in the plane 4APQ.

} = AR, AS coincide.

Definition. Given a point A in a plane, a line through A is
said to be perpendicular or normal to the plane if it is perpendicu-
lar to every line through A4 in the plane.
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Test: The line will, in fact, be perpendicular to the plane if it
is perpendicular to two lines through A in the plane.
This follows from the preceding work.

(iii) Existence of a normal
THE PROBLEM. Given a point 4 in a plane, it is necessary fo
establish the existence of a line which is normal at A to the plane.

THE DISCUSSION. Let AP, AQ be two lines through A in the
plane. Draw the plane through A having 4P as normal (by
drawing two lines through 4 perpendicular to AP) and the plane
through A having 4Q as normal. Let these planes meet in a line
AO.

Then

AO in plane with AP as normal = A0 | AP
AO in plane with AQ as normal => 40 | AQ
and
OA 1 AP
OA}1 AQ

so that OA is the required normal.

} = OA 1 plane APQ,

Theorem

1. There cannot be two distinct lines through a point 4 normal to a
given plane, whether or not A is in the plane.

Problems

1. In the figure of the cube (p. 92) find the angles between the following
pairs of lines:

(i) AB, CC’; (ii) AC, A’B’; (iii) BD, A'C’; (iv) A’D, B'C’.
2. Prove that an arbitrary point P on the normal to a plane 7 at a
point A in the plane is equidistant from every point of any given circle
of centre A4 lying in =.
3. Three points 4, B, C in a plane 7 are equidistant from a point O not
in 7. The centre of O ABC is U. Prove that OU | =.
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5. Parallel Planes

Definitions. Two planes which do not meet, however far they
are produced in any direction, are said to be parallel.

Remark: Strictly speaking, we do not assert that such planes
can exist; we have merely provided a name for them if they do.

Fig. 68

(i) THE PROBLEM. Let a, 8 be two given parallel planes and let 8
be an arbitrary plane meeting them in lines u, v. It is required ro
prove that u|.

THE DiscussioN. The lines u, v cannot meet, otherwise each
plane a, 8 would pass through their common point so that the
planes could not be parallel. Also, u, v are coplanar, lying in 8.
Hence u|v.

(ii) Tue ProBLEM. It is required to prove that two planes which
have a common point O have a whole line in common.
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Fig. 69

THE DIscUSSION. Let the given planes o, B (not shown in the
diagram) have a common point O, and let 04, OB be the normals
at O to a, B. Let u be the line perpendicular to OA4 and OB.

Then

Ul OA = u € a,
ul OB =uecp.

Hence a, 8 meet in the line u.

(iii) THE PrROBLEM. The actual existence of parallel planes can be
confirmed by giving a precise construction:

Let o be a given plane and A4 a point not in it. It is required to
define a plane through A parallel to a.
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Take two non-parallel lines u, v € a and write P = u N o.
[n the plane containing 4, u draw the line m through 4 parallel

Fig. 70

to u; in the plane containing 4, v draw the line n through 4
parallel to v. Then the plane B through m, n is parallel to a.

THE DiscussioNn. If the planes a, 8 are not parallel, they meet,
by (ii), in a line x. Now the plane through m, u meets x in a
point M which, being by definition in a, must lie on » and which,
being by definition in 8, must lie on m. But u|jm, so that M cannot
exist. Thus x, u lie in « but do not meet; hence x|ju. Similarly
x|jv. But u, v are not parallel, and so the existence of x is con-
tradicted.

Hence

Blla.

Definition. A line u is said to be parallel to a plane a if there is
no point common to u and a.
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Theorem
1. If u||a, then an arbitrary plane thiough u meets o in a line parallel
to u.

(iv) The following result enables us fo draw a straight line u
through a given point A parallel to a given plane 8. (There are
many solutions, all such lines u lying in the plane through A
parallel to 8. See the Theorem below.)

Fig. 71

THe PROBLEM. Let p, ¢ be two parallel lines lying in the plane 3.
Draw the planes through 4, p and 4, g, meeting in a line u,
necessarily through A. It is required to prove that the line ullthe

plane 6.

THE DISCUSSION. Suppose that # does meet §, say in a point O.
Then O, being on w, is also in each of the planes a, 8. But

Oina
0in3}=’0°“1”
0in B

0in8}=>00nq'
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But O cannot be on each of the parallel lines p, ¢, so that the
assumption that O exists is false. Thus # does not meet 8, so that
u|d.

Theorem

1. The lines through a given point A parallel to a plane q line in a plane
B parallel to a.

6. Properties of Normals

P

Fig. 72

(i) THE PrOBLEM. Let AP be the normal to a given plane at a
point 4. We have proved that AP is perpendicular to every line
through A in the plane. We now observe that, more generally, AP
is perpendicular to EVERY line in the plane.

THE DiscussioN. Let XY be a line in the plane, not through 4,
and draw AU, in the plane, parallel to XY.

Then, by definition (§3), the angle between AP and XY is
equal to the angle between AP and AU. Since AP is normal to
the plane, this is a right angle.

(ii) THE PrROBLEM. In a similar way we prove that a line AP is
normal to a given plane if it is perpendicular to ANY TWO (non-
parallel) lines in the plane.
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THE DiscussioN. Draw through the point A4, where the given
line meets the plane, the two lines parallel to the lines in the plane.
Then, as in (i), AP is perpendicular to each of these lines and
therefore normal to the plane.

(iii) THE PrOBLEM. Two perpendicular skew lines AB, PQ are
given. It is required fo prove that there exists a unique plane through
PQ having AB as normal.

V23
7 /
— S
- 7 S
N //
X
A
P
Fig. 73

THE DiscussiON. Let X be an arbitrary point of PQ, and draw
XN 1 AB. Then

AB1PQ

AB L NX} = AB ] plane NPQ.

The required plane is thus determined.
Also it is unique; for if there were a second plane, cutting
AB in N’, then XN’ | AB, which is impossible unless N’ = N,
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(iv) The theorem of the three perpendiculars

THE PROBLEM. Let AB be normal at 4 to a given plane and PQ
an arbitrary line in the plane. It is required to prove that, if
BM 1 PQ, then AM 1 PQ or, alternatively, that, if AM | PQ, then
BM 1 PQ.

Fig. 74

THE DISCUSSION.

AB normal to the plane = AB ] PQ = PQ | AB.
Then

PQ1A4B

PQ_LBM} = PQ 1 plane ABM

= PQ 1 AM.
Conversely,

PQ1AB
PQ_LAM} = PQ 1 plane ABM
=> PQ ] BM.

(v) THE PROBLEM. It is required fo prove that all normals to a
given plane are parallel.
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Fig. 75

T DiscussioN. Let AP, BQ be normal at 4, B to a given
plane a. Draw BX in the plane o so that XB | AB.
Then, by the theorem of the three perpendiculars,

PAlo
AB 1 XB
Thus XB is perpendicular to BA, BP, BQ, so that those three

lines are coplanar. In particular, AP, BQ are coplanar and,
each being perpendicular to 4B, are therefore parallel.

}:>PB_LXB.

6. The Common Perpendicular of Two Skew Lines

B
P
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THE PROBLEM. Two skew lines AB, CD are given. It is required
to construct a line PQ meeting them (with P € AB and Q € CD)
so that PQ is perpendicular to both AB and CD.

THE DiscussioN. Draw through CD the plane o parallel to
AB; this is done by drawing through any point U of CD the
line UV parallel to 4B and taking the plane CDUV. Draw
AX, BY | a, and let XY meeet CD in Q. Then the line through Q
perpendicular to AB is the required common perpendicular, meeting
AB in P.

The proof is immediate:

AB|a = AB| XY
AB|XY

AX 1 XY, BY_LXY} = ABYX is a rectangle

= XA | AB.
Also ABYX is a rectangle and PQ is in its plane, so that
XA 1 AB

OP L AB = PO|lAX = PQ L a

= PQ 1 CD.

Theorems

1. If A, B are two given points, the locus of a point P such that
PA = PBis a plane to which AB is perpendicular.

2. If 4, B, C are three given points, the locus of a point P such that
PA = PB = PC is, in general, a line perpendicular to the plane ABC.
3. There is, in general, one single point equidistant from four given
points 4, B, C, D.

4. (A converse of the theorem of the three perpendiculars). Given a
point B and a plane a not through it, if PQ is a line in « and BM | PQ,
and if, further, MX is drawn in a so that XM | PQ, then the line B4
such that B4 1 XM is the perpendicular from B to a.

5. If a line u is normal to two distinct planes o, 8, then .

6. The common perpendicular of two skew lines is the shortest distance
between them.

7. Two straight lines with two distinct common perpendiculars are
parallel.
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Problems

1. The common perpendicular of two skew lines u, v meets « in 4 and
v in B. Prove that the locus in space of points equidistant from A4, B
is a plane a such that «|la, v|a.

Prove that P € u, Q € v = the middle point of PQ € a.
2. Given three mutually skew lines u, v, w, prove that a line can be
found meeting them in U, ¥V, W such that U is the middle point of VW.
3. Given two skew lines «, v and variable points P € u, Q € v, prove
that the locus of the middle point of PQ is a plane to which the common
perpendicular of u, v is normal.
4. The common perpendicular of two perpendicular skew lines u, v
meets u in P and v in Q. Points A4, B are taken on u so that P is the
middle point of AB. Prove that every point of » is equidistant from A4
and B.
5. Given four skew lines, u, v, &', v’ such that u|l’, v||v’, prove that the
common perpendicular of u, v is parallel to the common perpendicular
of u',v'.
6. Three parallel planes a, B, v are given; « is a line in a, v a line in B,
w a line in y. Prove that, if 8 lies between a and v, then the sum of the
common perpendiculars of u, v and of v, w is equal to the common
perpendicular of u, w.



EIGHT
Some Standard Solid Bodies

1. The Parallelepiped

0: cl

Fig. 77

(The purpose of this account is to make the reader familiar
with the basic properties of the figures. The definitions are pre-
sented in a correct logical order, but proofs are sketched rather
than given in detail since that seems more appropriate to the
present level of work.)

107
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(i) Three pairs of parallel planes serve to define a “skew box”
known as a parallelepiped. In the diagram, the pairs of parallel
planes are

ABCD|A'B'C'D’,
ADD'A'||BCC'B’,
ABB'A’|DCC’D'.

These six planes determine the faces of the parallelepiped, in
each of which is a parallelogram cut out by the four faces not
parallel to it. '

There are eight vertices A, B, C, D, A’, B’, C', D' and twelve
edges grouped in three parallel sets:

AB|DC|A’'B'|D'C,
AD|BCA'D'|B'C’,
AA'|BB'|CC’ D D'.

There are four diagonals AC’', BD', CA’, DB’, and they bisect
each other at a point O known as the centre of the parallelepiped.

(ii) THE RECTANGULAR PARALLELEPIPED (or “box”). If the
three angles at 4 are all right angles, then all the angles of
all the faces are right angles and the parallelepiped is called
rectangular.

A special feature of this case is that the four diagonals are all
equal. A sphere can be drawn with centre O to pass through the
eight vertices.

(iii) THE CuBE. If the three edges through 4 of a rectangular
parallelepiped are all equal, then all the twelve edges are equal,
and the figure is called a cube.
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2. The Tetrahedron

Four planes in general position serve to define a figure known

1/

Fig. 78

as a tetrahedron. It has four faces, each cut in a triangle by the
other three, so that the faces are

DBC, DCA, DAB, ABC.
There are six edges, grouped in three opposite pairs:
AD, BC; BD, CA; CD, AB.
The four points 4, B, C, D are called vertices.

Problems
1. A parallelepiped is named as in Fig. 79 so that 4, A’; B, B’;
C, C’; D, D’ are pairs of opposite vertices. Verify that the parallelepiped
can be split up into the five tetrahedra

A'BCD + AB'CD + ABC'D + ABCD’ + ABCD.
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B 4’

Fig. 79

2. Prove, in the diagram, that AD’A4’D is a parallelogram. Hence prove
that A4’, BB’, CC’, DD’ have a common point O.
3. Prove that, if the parallelepiped is rectangular, then

AA™® = AB? 4+ AC® + AD™.

4. Prove that the middle points of AB’, B'C, CD’, D’A, A’B, BC’,
C’D, DA’ are at the vertices of a parallelepiped.

3. Centroid Properties of the Tetrahedron

Consideration of the middle points of the edges of a tetrahedron
leads to an exciting chain of properties. Denote by P, Q, R the
middle points of BC, CA, AB and by L, M, N the middle points
of AD, BD, CD.

(i) THE PROPERTIES. We are to prove that

(@) ORMN, RPNL, PQLM are parallelograms, whose sides are
parallel to the appropriate edges of the tetrahedron.

(b) LP, MQ, NR bisect each other at a point G.
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Fig. 80

THE DISCUSSION.

AR =RB
40 — QC}: QR||BC and QR = } BC
DM = MB

‘ —=
DN = NC} = MN|BC and MN = } BC.

Hence
OR|IMN, QR = MN
= QRMN is a parallelogram.

111
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Similarly
RPNL, PQLM are parallelograms
Further
ORMN is a parallelogram
= QM, RN have a common middle point G.
Also
RPNL is a parallelogram
= LP, RN have a common middle point, which is also G.

Thus LP, MQ, NR bisect each other at G.

(ii) An alternative treatment links these properties from a somewhat
different point of view
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THE PROBLEM. Let P be the middle point of BC. Then the
centroids of ADBC, AABC are points G;, G, on DP, AP such
that PG, = } PA, PG, = } PD. 1t is required to prove that, if
points G,, G, are defined similarly for NCAD, AABD, then
AG,, BG,, CGy, DG, have a common point G.

THE DiscussioN. Let 4G, meet DG, in a point which we shall
call G.
Then _
PGy =1%1PA _
PG, — %PD} = Gy G1||AD and G, G, = } AD.

Hence AG, meets DG, in the points of quadrisection furthest
from A4 and D.

Similarly BG,, CG;,, defined in the same way, pass likewise
through G. ‘
Thus AG,, BG,, CGs;, DG, have a common point G which is,

Jfor each, the point of quadrisection farthest from the corresponding
vertex of the tetrahedron.

(iii) THE PROBLEM. We have o identify the point G as defined in
(it) with the point G as defined in (i). In case (ii), let L = PG N AD.
Then it can be proved by ratios, or by the theorem of Ceva, that
L is the middle point of 4D; for example,

AG4 PGI DL
> =
G.P G,D LA
.9
L3.1. DL
==
13 3
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Thus G, as defined in (i), lies on 4P and, similarly, on BQ, CR.
It is thus the same as G as defined in (i).

Definition. The point G is called the centroid of the tetrahedron.

4. Orthocentral Properties of the Tetrahedron

D

Fig. 82

Definition. The lines AH,, BH, CH;, DH, drawn from the
vertices of a tetrahedron perpendicular to the opposite faces are
called the altitudes of the tetrahedron.
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The properties of the altitudes with which we shall be con-
cerned presuppose a specialisation of the tetrahedron which must
now be considered. The tetrahedron will be of the type known as
orthogonal.

THE PROBLEM. Suppose that the tetrahedron has the property
that two pairs of opposite edges are perpendicular: say BD | CA,
CD | AB. 1t is required to prove that the remaining edges are
also perpendicular, so that AD | BC.

Definition. A tetrahedron whose opposite edges are perpendicu-
lar is called orthogonal.

THE DiscussioN. Referring to Fig. 80,

BD]ICA=LR]LN
= LNPR is a rectangle
= LP = NR.

CD]) AD = MP ) ML
= MLQP is a rectangle
= LP = MQ.

Hence
MQ = NR

= NMRQ is a rectangle
> NQL1NM
= AD | BC.

For the rest of this paragraph, we assume that the tetrahedron
ABCD is orthogonal.

(i) THE PROBLEM. Let ABCD be an orthogonal tetrahedron, so that

AD ) BC,BD | CA,CD | AB.
F
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It is required to prove that the four altitudes AH,, BH,, CH;, DH,
meet in a point H.

Fig. 83

Definition. The point H is called the orthocentre of the
tetrahedron.

THE DiscussioN. Draw AU 1 BC. Then
BC ] AU
BC1 AD

Thus DU | BC.
Now draw AH, | DU, DH, 1 AU, and let AH,, DH,, in the

plane ADU, meet in H. Then
BC | plane ADU = BC )} DH,,

} = BC ] plane ADU = BC | DU
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and
DH,} BC
DH, | AU

Thus DH, is the altitude from D; similarly 4H, is the altitude
from 4.

In other words, AH; meets DH,.

Similarly BH, meets DH,. If, then, BH, does not pass through
H, it must lie in the plane of 4H, and DH,: that is, in the plane
ADU, which is impossible. Hence BH, passes through H. Simi-
larly CH, passes through H, so that AH,, BH,, CH,, DH, all
pass through H.

} = DH, 1 ABC.

COROLLARY. .H,, H,, Hy, H, are the orthocentres of ADBC,
ADCA, ADAB, AABC. For H, is on the altitude from A4, and
similar argument would have obtained it on the altitudes from
B, C; and similarly for the other triangles.

(ii) There is a test for an orthogonal tetrahedron in terms of the
lengths of the sides
THE PROBLEM. It is required to prove that

ABCD is orthogonal <> DA* + BC? = DB?-}- CA® = DC? 4 AB2.

THE Discussion. By (i),
ABCD orthogonal == AU | BC, DU ) BC
= AB* — AC? = BU? — UC? = DB?® — D(C?
= DB? 4 CA% = CD? + AB?

and the result follows.
If, conversely, DB2 + CA2 = CD? 4 AB?,
then
DB2 — DC? = AB®* — AC?,
so that, if
DU, 1 BC, AU, ] BC,
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it follows that
U, = U, = U, say.

Thus
BC |1 DU,BC 1 AU
= BC | plane ADU
= BC1 AD.
Similarly

CA1BD,AB1 CD.

Theorems

1. If 0y, O,, O3, O, are the circumcentres of ADBC, ADCA, ADAB,
NAABC, then the lines through O,, O0,, O;, O, perpendicular to the
planes containing those points 0
have a common point O which is
equidistant from A4, B, C, D.

Definition. The point O is called
the circumcentre of the tetra-
hedron ABCD.
2. The diagram shows the section
of an orthogonal tetrahedron
ABCD by the plane through D
and the Euler line 0,G,H; of
AABC. The circumcentre and H
centroid of the tetrahedron are
0, G and OG meets DH, ina point 0O
temporarily called H*. Prove that
GH* = OG and deduce (by
symmetry of argument) that H* is 0
the orthocentre H of the tetra- ° Ga Ha
hedron. Fig. 84
3. The middle point of the edges of an orthogonal tetrahedron lie on
a sphere.

Problems
1. (Notation of §3). Prove that, if AD = BC, BD = CA, CD = AB,
then LP, MQ, NR are mutually orthogonal.
By proving first that ALBC and APAD are both isosceles, or
otherwise, prove that LP is the common perpendicular of AD, BC.
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2. Given a tetrahedron ABCD and a point O, the transversal from O
to BC, AD cuts BC in P and AD in L; the transversal from O to CA,
BD cuts CA in Q and BD in M; the transversal from O to AB, CD cuts
ABin R and CD in N. Prove that AP, BQ, CR meet on DO, and that
BN, CM, DP meet on AO.
3. Given a tetrahedron ABCD, points M, N are taken on CA, AB and
points O, R are taken on DB, DC so that MN||BC, QRI||BC. Prove that
NQ N MR € AD.
4. A plane meets the edges of a tetrahedron in six points. Prove that
they are the vertices of a quadrilateral in the plane.

The tetrahedron is ABCD and the plane meets AB in P, BC in Q,
CDin R, DA in S. Prove that (having regard to sign)

AP BQ CR DS _ |

PB QC RD SA4

State and prove the converse of this property.
5. ABCD is a tetrahedron in which AB = AC, DB = DC. Prove that
AD 1 BC.

Prove also that any point of 4D is equidistant from B and C.
6. ABCD is a tetrahedron in which DA = DB = DC. Prove that the
foot of the perpendicular from O to the plane ABC is the centre of
OABC. :



NINE
Angles between Lines and Planes.

WE HAVE already (p. 93) considered the angle between two
skew lines, We pass now to some further definitions.

1. The Angle Between a Line and a Plane

Let u be a given line and « a given plane meeting it in a point 4.

Fig. 85

Definition. The angle between the line u and the plane « is defined
to be the angle NAP, where N is the foot of the perpendicular to
the plane from an arbitrary point P of the line.

It is an elementary exercise in similar triangles to verify that
this angle is independent of the position of P on .

THE PROBLEM. Let AB be an arbitrary line through A4 in the
plane . It is required fo prove that

L PAN < /PAB
120
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and that
/. BAN < / PAB.

THE DiscussioN. Draw PQ | AB. By the theorem of the three
perpendiculars, NQ | AB.
Thus
PN < PQ (right-angled triangle NPQ)
= /PAN < /PAQ
and
ON < PQ (right-angled triangle NPQ)
= QAN < £ PAQ.

2. The Angle Between Two Planes

Fig. 86

Let a, B be two given planes meeting in a straight line .

Definition. The angle between the two planes is defined to be the
angle PLQ, where L is an arbitrary point of » and LP, LQ are
the lines in a, 8 perpendicular to u.
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This angle is independent of the point L selected, since, if
P’L’Q’ is an alternative position,
LP,L'P' Ju=LP|LP

Lo.Lo u- Loiief~ LFLY = Lo

3. The ‘Line of Greatest Slope’ Property

R

Fig. 87

THE PrROBLEM. For convenience of reference, regard 8 in §2 as
the horizontal plane, and consider a line v in the plane a. It is
required to prove that the angle between the plane o and the
horizontal is greater than the angle between v and the horizontal:
in other words, if v meets the common line u of a, 8 in L, and if
LP in o is perpendicular to u, then the line LP makes a greater
angle with the horizontal than ».

THE DISCUSSION. Let P be an arbitrary point of the line w
through L perpendicular to u; draw PQ L B and let PR|ju cut
vin R; draw RS 1 B.
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Then PRSQ is a rectangle, so that RS = PQ, and also, since
/LPR = 90° LR > LP.
Thus, in the language of trigonometry,

PQ

LP
= sin /PLQ > sin / RLS
= /PLQ > /RLS.

Definition. The lines in the plane « which are perpendicular
to u are called the lines of greatest slope of the plane.

Remark: The language of trigonometry is not essential to the
argument, but it helps to make statements more concise.

Problems

1. ABCD is a regular tetrahedron. Prove that, if 8 is the angle between
DA and the plane ABC, then cos f = 1/4/3 and that, if ¢ is the angle
between the planes DBC, ABC, then cos ¢ = 3.
2. A cube has two parallel square faces ABCD, A’B’'C’D’, so that the
edges perpendicular to those faces are A4°, BB’, CC’, DD’. The face
ABCD is horizontal. Prove that
(i) the plane DAB’C’ makes an angle of 45° with the horizontal,

(ii) if AC" makes an angle 6 with the horizontal, then sin 6§ = 1/4/3,

(iii) if the plane D’AC makes an angle ¢ with the horizontal, then
cos ¢ = 1/4/3.
3. ABCD is a tetrahedron in which BC = CA = AB = 4,
DB = DC = 5, DA = 3. Prove that, if @ is the angle between the
planes DBC, ABC, then cos 0 = 2/4/7, and that, if ¢ is the angle
between DB and the plane ABC, then cos ¢ = £.
4. ABCD is a tetrahedron in which / BDC = LCDA /.DAB = 90°,
and DA = a, DB = b, DC = c. Prove that the angle between AD
and the plane ABC is 6, where tan § = bc/ay/(b* + ¢?), and prove that
the angle between the planes DBC, ABC is 90° — 6.

Verify that the tetrahedron is orthogonal.
5. ABCD is a tetiahedron in which BC = CA = AB and in which also
DA = DB = DC. Prove that, if the line 4D makes an angle of 60°
with the plane ABC, then the angle between the planes DBC, ABC is
¢, where tan ¢ = 24/3,
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4. Angles at a Point

Fig. 88

Let three planes meet at a point O, their lines of intersection
in pairs being 04, OB, OC. The three plane angles BOC, COA,
AOB form a unit known as a trihedral angle.

Two properties are important:

(i) THE PrOBLEM. It is required to prove that the sum of any two
of /. BOC, /COA, / AOB is greater than the third: say

/ AOB + £ AOC > /BOC.
THE DiscussioN. Draw AN | plane BOC. Then (pp. 120-1)

/ AOB > / NOB,
/AOC > / NOC,
so that
/AOB + L A0C > /NOB + /NOC.
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If, as in the diagram (Fig. 88), ON lies in the angle BOC, it
follows at once that
/NOB + /NOC = /BOC,
so that
L AOB + / AOC > / BOC.

If ON lies outside the angle BOC, then one or other of / NOB,
£/ NOC is greater than / BOC, so that

LNOB + /NOC > /BOC,
and, again,
L AOB + £ AOC > / BOC.
Note: The case of equality occurs only when OA, OB, OC are
coplanar with OA4 “inside” the angle BOC. Then

LAOB 4+ / AOC = /BOC.

(ii) THE PROBLEM. It is required to prove that
/BOC + /COA + /AOB < 360°.
By what we have just proved,

/L OAB 4 L 0AC > /BAC,
/OBC -+ LOBA > /CBA,
/OCA+ LOCB > /ACB.

Add and rearrange:

(LOBC + £ OCB) + (LOCA + L0OAC) +
+ (LOAB + LOBA) > /BAC + /CBA + /ACB,
so that
(180° — £ BOC) + (180° — £ COA) + (180° — L AOB)
> 180°,
or
LBOC + £COA + /L AOB < 360°,
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5. The Five Regular (Platonic) Solids

THE PrOBLEM. The regular tetrahedron has all its faces equi-
lateral triangles and the cube has all its faces squares. It is a
matter of interest to prove that there are only five convex solids
whose faces are regular polygons.

THE DiscussioN. The possible regular polygons, with the sizes
of corresponding angles, are, in the first instance,

triangle 60°
square 90°
pentagon 108°
hexagon  120°, etc.

the angles increasing with the number of sides.

Now there must be at least 3 faces at a vertex, and there may
be more. On the other hand, the theorem of §4 can be extended
to prove that the sum of the angles at a vertex is in all cases less
than 360°. Hence, if there are n faces meeting at a typical vertex,
we have ‘

n=>=3
and
triangles, 60n < 360,
squares, 90n << 360,
pentagons, 108z << 360,
hexagons, 120n < 360.

The possibilities are thus:

triangles 3, 4, 5 at a vertex
squares 3 at a vertex
pentagons 3 at a vertex.

The figures defined in this way are called the regular or Platonic
solids. Several books may be consulted for further details. In
particular, the reader will find an excellent account of how to
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construct them in Mathematical Models by H. Martyn Cundy
and A. P. Rollett, Clarendon Press, 1952.

The regular tetrahedron (triangles, n = 3) and the cube (squares,
n = 3) are familiar. The following diagrams of the other solids
are based, with permission which we gratefully acknowledge,
on Mathematical Models.

v\ >

Octahedron Dodecahedron
Triangles, n=4 Pentagon, n = 3

TN

Icosahedron
Triangles, n=6

Fig. 89
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Problems

1. Copy the cube shown in the diagram and mark the middle points of
the edges.

Fig. 90
A new solid is formed by
removing the 8 tetrahedra
each of which has as its four
vertices one vertex of the
cube and the three middle
points nearest to it. Verify
that the resulting solid has
12 vertices, 24 edges, 14
faces of which 6 are square
and 8 triangular. Prove also
that the sum of the angles
at any vertex is 300°.
2. Copy the regular tetra-
hedron shown in the dia-
gram and mark the points
of trisection of the edges.
A new solid is formed by
removing the 4 tetrahedra
each of which has as its . Fig. 91
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four vertices one vertex of the given tetrahedron and the three
points of trisection nearest to it. Verify that the resulting solid has 12
vertices, 18 edges, 8 faces of which 4 are hexagonal and 4 triangular.
Prove that the sum of the angles at any vertex is 300°.

Remark: A famous theorem due to Euler states that, for any
such convex body, the number of vertices + the number of faces
exceeds by 2 the number of edges.



TEN
The Sphere

1. Definition and First Properties

Fig. 92

Definitions. The sphere is a surface traced in space by a point
whose distance from a fixed point O (the centre) has a constant
value (the radius). Any chord through the centre is called a
diameter and any plane through the centre is called a diametral
plane.

() THE PROBLEM A general plane may or may not meet the.
sphere. It does meet it when its distance from the centre is less
130 '
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than the radius. It is required to prove that a plane meeting the
sphere does so in the points of a circle.

THE DISCUSSION. Let
a be a given plane in
the presence of a
sphere of centre O and
radius a. Draw OA4 1
a, and let 04 = p.
Then the plane cuts the
sphere if p < a.

Now let P be any Fig. 93
point common to « and the sphere.

Then OA | a = OA | AP

=> AP? = OP? — OA? = a® — p? = constant.

Thus P, lying in «, is at constant distance /(a2 — p?) from the
fixed point A, so that the locus of P is a circle.

(ii) The tangent plane at a point Q

As a particular case of (i), suppose that p = a. Then the foot of
the perpendicular from O to the plane is on the sphere, at a point
which we now call Q. The plane « is the tangent plane at Q,
meeting the circle at the point Q, and only at Q. The radius 0Q is
perpendicular to every line in the tangent plane at Q.

Q
_ v—T___

Fig. 94
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Theorems

1. Two circles in different planes but having two points in common
define a sphere on which both lie.
2. If two spheres pass through a point 4 and have the same tangent
plane there, the distance between their centres is either the sum or the
difference of their radii.

Definition. The two spheres are said to rouch at A4.
3. Two spheres which intersect do so in the points of a circle; the dis-
tance between their centres is less than the sum of their radii.

Problems

1. The line joining the centres of two circles cut on a sphere by parallel
planes is perpendicular to each plane.

2. The centres of the circles of given radius on a sphere lie on a con-
centric sphere.

3. The centres of the circles on a sphere whose planes pass through a
fixed point A lie on the sphere having OA as a diameter, where O is the
centre of the given sphere.

4. The larger the radius of a circle on a given sphere, the less is its
distance from the centre.

2. Circles on the Sphere

We have seen that a plane /
cutting the sphere does so in a
circle.

Definitions. A circle whose
plane passes through the
centre of the sphere is called
a great circle. Its radius is
equal to that of the sphere.
A circle whose plane does
not pass through the centre Fig. 95
of the sphere is called a small
circle. Its radius is less than that of the sphere.
Given a great circle lying in a plane o, the diameter perpen-
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dicular to a cuts the sphere in two points N, S called the poles
of the great circle. The plane o is then called the polar plane of
N and of S. Any plane through
the line NS cuts the sphere in a
great circle whose plane is per-
pendicular to a.

It is sometimes convenient,
for obvious reasons, to call the
great circle in a the equator and
N, S the north and south poles.
The small circles in planes
parallel to a are circles of
latitude and the great circles
through NS are circles of longi-
tude.

Problems

1. If A lies in the polar plane of B, then B lies in the polar plane of A4.
2. Every point of the sphere has a unique polar plane.

3. Two given points, not at the ends of a diameter, define a unique
great circle and so a point on whose polar plane both lie.

4. Given three points 4, B, U on a sphere (in general position on it)
such that UA, UB both subtend a right angle at the centre O, then U
is the pole of the great circle through A, B.

3. Spherical Triangles

It is not our aim to study in great detail the geometry of circles
on a sphere, but one or two basic ideas may be helpful.

It is assumed throughout this paragraph that all circles men-
tioned are great circles.

Let 2 be a given sphere, and draw three diametral planes
meeting it in great circles a, B, y. There are two points common
to each pair of circles and they lie at the ends of the diameter
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common to their planes. Suppose that 8, y meet in 4, 4’; y, a
meet in B, B'; «, 8 meet in C, C’. (In the diagram, o is taken as the
plane of the paper.)

Fig. 97

Definition. The figure on a sphere bounded by arcs of three
great circles is called a spherical triangle. (But see the last sentence
of this paragraph.)

In the diagram, there are 8 triangles, ABC, A'BC, AB'C,
ABC’, AB'C’', A'BC’, A'B'C, A'B'C’, grouped in diametrically
opposite pairs. We focus attention on one of them, say 4BC.

For the purposes of calculations, mainly in spherical trigo-
nometry with which we do not deal, the ground sphere £ is
taken to be of unit radius. Thus a spherical triangle is defined by
three great circles on a sphere of unit radius.

The lengths of the sides of the triangle are the lengths of the
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arcs of the defining circles, say BC = a, CA = b, AB = ¢. Note
that the length of the arc BC is, by standard formula, equal to the
radius of the circle BCB'C’' multiplied by the radian measure of
the angle subtended by BC at the centre O. 1t is in this sense that
the side BC is often spoken of as an angle (in radian measure),
namely the angle subtended by it at the centre when the sphere
has unit radius. With this convention, a formula involving sin a
or cos a has a clear meaning.

The angles of the triangle are defined to be the angles between
the tangents at the vertices to the defining sides. For example, the
angle A is defined to be the angle between the tangents at 4 to
the circles AB, AC. Since these tangents are both perpendicular
to 04, this angle is, by definition, the angle between the planes
containing the circles 4B, AC.

Finally, we remark that, given the vertices of a spherical tri-
angle ABC, there still remains ambiguity, since there are two
arcs of great circles joining, say, B, C. It is agreed by convention
that the triangle is so selected that its sides and angles are all less
than =.

4. The Polar Triangle of a Spherical Triangle

4

Fig. 98
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Given a spherical triangle ABC whose sides a, b, c lie in planes
a, B, v, let A, B’, C' be the poles of a, B, y, selected in each case
to lie on the same side of the plane as the corresponding vertex.

Definition. The spherical triangle with vertices 4’, B, C’ is
called the polar triangle of ABC.

(1) THE ProBLEM. It is required to prove that ABC is the polar
triangle of A'B'C’.

THE DisCUSSION.

B’ is the pole of AC = B’A = }« (on unit sphere)

C’ is the pole of AB = C’'4A = 1=,
Thus

AB', AC' = }m.
= A is the pole of the great circle B'C’.
Moreover,
A’ on the same side of BCas A = AA' < in
= A on the same side of B'C’ as A4'.

Hence, since similar results hold for B and C, the triangle ABC
is the polar triangle of A’'B’C’.

(ii) THE PROBLEM. It is required fo prove that, if the sides of the
triangle ABC (in radian measure, for a unit sphere) are a, b, ¢ and
its angles A, B, C,and if &', ', ¢', A', B', C', are the corresponding
magnitudes for the polar triangle A'B’'C’, then

a+ A =b+ B =c+ C ==,
a+A=b+B=c +C=m.

THE DiscyssjoN. Let BC meet A" B’ in U and A'C’ in V,
Then
A’ is the pole of BC
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> AU=AV =1z

= UOV (where O is the centre of the sphere) is the angle between
the planes A'B’, A'C’

= UV = A’ (in radian measure on the unit sphere).

But
B is the pole of 4'C’
= BV = i=;
C is the pole of A’'B’
= CU = 1.
Then
BV 4 CU=m
>BCH+CMN+CU=mn
=>BCH+ (CV4+CU)=mn
=BC+UV=mn
>a+ A ==

The results b + B’ = =, ¢ -+ C’ = = follow similarly. The other
three formulae follow at once since ABC is the polar triangle of
A'B’'C’, so that rdles can be reversed.

Theorems
1. Two spherical triangles are congruent which have
(i) three sides equal,
(ii) two sides and the included angles equal,
(iii) three angles equal.
2. If a spherical triangle has two sides equal, the corresponding angles
are also equal.

Problems
1. The angles of a spherical triangle ABC, on a unit sphere, are all }.
Prove that the sides are all 7.

U is the point of BC produced such that CU = }s; V is the point of
CB produced such that CV = 1z, Prove that UV is a diameter of the
sphere, and that a great circle can be drawn through U, ¥V blsectmg
AB at P and AC at Q.
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Prove that the triangles BVP, APQ, CQU are congruent, and deduce
that PQ = im.

Fig. 99

2. In a spherical triangle ABC it is given that AB = AC, and U is
the middle point of BC. Prove that AU 1 BC.

3. A spherical triangle has all its sides equal. Prove that its polar tri-
angle also has all its sides equal.

5. Area on a Sphere
(i) The area of a lune

Definition. A lune on a sphere is that portion of the surface which
is cut off between two diametral planes.
(See the diagram, Fig. 100.) N

If the angle between the two planes is 8,
then we may call @ the angle of the lune.

As a matter of simple proportion, the area
of the lune bears to the whole sphere the
same ratio as 0 (in radian measure) bears
to 2#. Further, it is known that the area of
a sphere of radius g is 4ma?, and so the area
of the lune is (0/27)4ma®, or

20a2.

In particular, the area of a lune of angle 6 on ¢
a unit sphere is 26, Fig. 100
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(ii) The area of a spherical triangle

AI
Fig. 101

THE PROBLEM. It is required o prove that the area of a spherical
trzangle (on a unit sphere) whose angles in radian measure are
A, B, Cis given by the formula:

area=A+ B+ C — .

THE DiscussioN. Let the other ends of the diameters through
the vertices 4, B, C of the given triangle be 4’, B’, C'. Then
(Fig. 101) ABA'C, BCB'A, CAC’'B are lunes of angles 4, B, C
so that the sum of their areas in 2(12 + B+ é).

Refer now to Fig. 97 (p. 134). The sum of the three lunes is the
sum of the areas of the spherical triangles

(4BC + A'BC) 4 (ABC + AB'C) + (ABC + ABC")
= (ABC + A’BC + AB'C + ABC') + 24BC.
But AAB'C = AA'BC’, and so the sum in brackets is (re-
arranging)
ACB + CA'B 4 A'C'B + C'AB,
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which, by inspection, is the sum of the four triangles in the “upper”
hemisphere of the diagram. Hence

2(AA + B+ é’) = hemisphere + 2 AABC
= 27 + 2AABC,
so that
AABC = A+ B+ C—m

CoOROLLARY. Since the area is necessarily positive, the sum of
the angles of a spherical triangle is greater than =.

Definitions. The quantity A + B + € — =is called the spherical
excess of the spherical triangle 4BC.

Problems

1. If OA4, OB, OC are three mutually perpendicular radii of a sphere of
unit radius, the area of the spherical triangle ABC is 4.
2. Prove that, in a spherical triangle ABC,

A + B + é > .
By considering the corresponding result for the polar triangles,

deduce that
a-+ b+ c<2m

6. The Right Circular Cone

Definitions. Given a point O and a curve not lying in a plane
through it, the surface traced out (generated) by lines passing
through O and a variable point of the curve is called a cone of
vertex O, the variable lines being called generators.

When the curve is a circle whose centre D is the foot of the
perpendicular from O to the plane of the circle, the cone is said
to be right circular. The line OD is called the axis of the cone.

By congruent triangles, the angle between the axis and a gener-
ator has a constant value, known as the semi vertical angle of the
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cone. If OD = h and the radius of the circle is a, then the semi-
vertical angle 9 satisfies the relation
a = htané.
In some contexts, the cone is regarded as truncated to lie

/

Fig. 102

between O and the plane of the defining circle. Then OD is
called the height, the circle is called the base and the length of the
segment of a generator intercepted between O and the base is
called the slant height.

Theorems

1. A plane through O cuts the cone either at O only or in two generators.
Exceptionally, the plane may cut the cone in a single generator, when
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its plane cuts the base in a straight line touching the circle there. Such
a plane is called a rangent plane to the cone.

2. Every plane parallel to the base cuts the cone in a circle. Each tan-
gent line to the cone cuts such a plane in a line which is a tangent to the
circle of section.

3. The tangent lines to a sphere which pass through a point O outside
the sphere are the generators of a right circular cone of vertex O.
The points common to the cone and the sphere lie on a circle.

7. The Right Circular Cylinder

"

N

Fig. 103

Definitions. Given a line / and a curve not lying in a plane
through it, the surface generated by lines parallel to / and passing
through a variable point of the curve is called a cylinder of which
the variable lines are generators.

When the curve is a circle whose centre D lies on / and whose
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plane is perpendicular to /, the cylinder is said to be right circular.
The line / is the axis of the cylinder.

Theorems

1. The planes perpendicular to the axis cut the cylinder in circles of
constant radius.

2. The tangent lines to a sphere which are parallel to a given direction
are the generators of a right circular cylinder. The points common to
the cylinder and the sphere lie on a circle.

Problems

1. A right circular cone of base radius @ and height 4 is cut by a right
circular cylinder of radius }a whose axis coincides with that of the cone.
Prove that the points common to the cylinder and the cone (extended
“beyond its vertex”) lie on one or other of two equal circles.

2. A right circular cone has vertex A, axis 4B and vertical angle 60°;
another right circular cone has vertex B, axis BA4 and vertical angle 30°.
Prove that the points common to the cones lie on one or other of two
circles whose radii are in the ratio 1:2.

3. Prove that the radius of the largest sphere that can be inscribed in a
right circular cone of height 4 and base radius a is

a{\/(@ + b%) — a}/h.

4. Prove that the points common to a right circular cone and a sphere
whose centre is on the axis lie on one or other of two circles.

Prove the corresponding result when the cone is replaced by a right
circular cylinder.
5. Prove that a right circular cone and a right circular cylinder having
the same axis meet in the points of two circles (one on either side of
the vertex of the cone).



ELEVEN
The Nature of Space

THE THEOREMS outlined in Chapter 1 have a dual purpose: they
form a basis for the study of geometrical relationships founded on
logical argument, and, even more fundamentally, they seek to
describe the structure of space itself in so far as it is concerned with
such matters as size and relative position. The ideas of point,
line, length, angle, are undoubtedly abstract, but they are de-
signed to agree as closely as possible with the physical world of
sight and touch.

There are certain relationships of particular importance which
may usefully be emphasised here. It is probable that they will
present little that is new, but the attempt to classify them helps
towards clearer thinking.

For simplicity of statement we confine ourselves mainly to
geometry in a plane.

1. Translation
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Let ABC be a given triangle. It may be moved bodily in any
given direction (without “rotation”, which we shall discuss later)
to a new position 4’B'C’ by moving each of the vertices an
agreed distance in that direction; thus

AA'||BB’||CC’ and AA' = BB’ = CC".

Definition. Such a movement from position 4BC to position

A'B'C'is called a translation.

It is an immediate consequence of the theorems of Chapter 1
that .

B'C' = BC, C'A' = CA, A’B' = AB,
so that
AA'B'C' = AABC;

that is, the triangle in the new position under a translation is
congruent to the triangle in the old position. The point to be
emphasized, though, is that all this arises from our instinctive
belief that space itself has such a property—space, so to speak,
does not “crinkle”.

2. Rotation
Take the triangle 4BC as before, and select a point O in its
plane. Rotate the triangle about O through an angle 6 to a
position A’'B'C’: then
OA’ = 04, OB’ = 0B, 0C’ = OC,
/AOA' = /BOB' = /COC' = 0.

Definition. The movement from position ABC to position
A'B'C' is called a rotation with centre O.

When a position A’B’C’ is known to be obtainable by rotation
from a position ABC, the centre O is easily located: it lies at
the intersection of the perpendicular bisectors of AA' and BB'.

Here, again, the result of congruence holds:

AA'B'C’ =-AABC.
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3. Direct and Inverse Congruence

Experience with left-handed and right-handed gloves will
already have convinced the reader that there are two kinds of
congruence: one in which a triangle 4'B’'C’ can be moved con-
tinuously to a congruent triangle ABC so as to lie on it point for
point (4’ on 4, B’ on B, C’' on C), and the other in which such
superposition is not possible until the triangle has been ‘“‘turned
over” first.

The two cases may be called direct congruence and inverse con-
gruence respectively.

The “turning over” of the triangle may be described more
scientifically as a rotation of 180° about a line / lying in its plane.
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A

Fig. 106

Fig. 108



148 Deductive Geometry
Note. A point may be regarded as “going round” the sides of

3 - . . . 0 . 9 % _>
a triangle if it is conceived as moving along the sides BC, CA, AB
in the sense implied by the arrows.

4 a’
] /\c C,/\g'

(a) Counter-clockwise (b) Clockwise
Fig. 109

In Fig. 109 (a) the sense may be called counterclockwise, and in
Fig. 109 (b) it may be called clockwise. Then the congruence

AABC = NA'B'C’
(with 4 corresponding to A’, B to B’ and C to C’) is direct if

both senses are counterclockwise or both clockwise, and inverse
if the two are opposite.

4. The Rotation of a Configuration

c

o’ A’

Fig. 110
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It is a problem of interest to decide whether two congruent
configurations can be rotated the one to coincide with the other.
This will certainly not be possible unless the congruence is

direct.

On the other hand, if the congruence is direct, then it is suffi-
cient to consider only two corresponding lines, say AB, A'B’;
for if A'B’ is brought to coincidence with 4B, the other points

will automatically fall into position.

Suppose, then, that we are given two equal lines AB, A’'B’,

If they can be brought to
coincidence by rotation, the
centre O, being equidistant
from A, A" and from B, B’,
must lie on the perpendicular
bisectors of 44" and BB'.

Let these perpendicular bi-
sectors be constructed, as in
the diagram. [We pass over a
point of instrinsic difficulty
about the relative senses in
which the angles OAB, OA'B’
turn. The diagram is correct,
but it is not easy to prove that
it must be. For a discussion of
the problems involved, see
E. A. Maxwell, Fallacies in
Mathematics, Cambridge Uni-

Fig. 111

versity Press (1959) p. 34. The significance of the dotted lines in

the diagram will appear later.]
Now

O on perpendicular bisectors of 44", BB’

= OA = 0A4', OB = OB’
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and

OA = OA', OB = OB', AB = A'B’

=> NAOAB = NOA'B’

= /BOA = /B'OA’

=> /BOA -+ /AOB = /AOB' 4+ /B'OA’

= /BOB' = [/ AOA'.
Hence rotation about O through an angle 404’ (or BOB’)
carries A to A’ and B to B’, so that AB can be rotatedt to the
position 4’B’.

Note. The difficulty in this proof is to make sure that the tri-
angles OAB, OA’'B’ lie on the correct sides of OA4, OA’ for the
additions

“/BOA + [ AOB' = / AOB’ 4 /B'0OA’
= /BOB' = /AOA"™

to be legitimate. If, however, AOA'B’ is rotated about 04’ over
to the position OA'U, then it can be shown that BU||44’, the
figure AA'UB being symmetrical about the perpendicular bi-
sector of AA’. Thus U lies “out from” OA’ just as B lies “out
from” OA; and B’ is therefore in the position shown. But this is
hard for a reader at the level of study envisaged and may per-
haps be accepted for the present.

5. Expansion; Homothetic figures
Let ABC be a given triangle and O a point in its plane (inside
_)
or outside the triangle). Take points A’, B’, C’ on OA, 0_3, O_C> SO

that
OA’ = kOA, OB’ = kOB, OC' = kOC.

Then it is an immediate exercise in similar triangles that
AA'B'C' ~ AABC,
t If, exceptionally, AB|lA’B’, the argument breaks down.
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A'

Fig. 112

with
B'C'||BC, C’A’||CA, A'B'||AB,
B'C’' = kBC, C'A’ = kCA, A'B’ = kAB.

The triangle A’B’'C’ is an expansion (k > 1) or contraction
(k < 1) of AABC.

Definition. Two figures related in this way are said to be
homothetic or similar and similarly situated. They may be called

directly similar in that the senses of description BC, CA, AB and

- - >
B'C', C'4’, A’B’ are the same,
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—-> = =
Suppose, next, that 4’, B, C’ are taken on 40, BO, CO so that
OA' = kAO, OB’ = kBO, OC’' = kCO.

A/

Fig. 113

Then, once again, ,
AA'B'C' ~ AABC,
with
B'C’'||BC, C'A'||CA, A'B’|AB,
B'C' = kBC, C'A’ = kCA, A'B’ = kAB.
The triangles may be called inversely similar in that the senses

s —> > >
of description BC, CA, AB and B'C’, C'A’, A’'B’ are opposite.
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6. Symmetry
Definition. A figure is
said to be symmetric
about a line I if corre-
sponding to each point P
of the figure there is an-
other point Q of the figure
suchthat theline PQisper-
pendicular to / and bisec-
ted by /. Theline /is called
the axis of symmetry.
Typical symmetrical
figures are the rectangle,
the isosceles triangle, the

S

e e e e e e e ————

Fig. 114
circle, as indicated in the diagram (Fig. 115).

153

A figure may have more than one axis of symmetry. For

Fig. 115
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example, a rectangle has two, an equilateral triangle three and a
square four. A circle is symmetrical about every diameter.
’ |

AN s
\\ //
\ Ve
AN //

N Ve

7
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e
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Fig. 116

A figure may also be symmetric
about a point O (the centre of
symmetry), when corresponding
to each point P of the figure
there is another point Q of the
figure such that O is the middle
point of PQ. Thus a rectangle is
symmetric about its centre, and a
circle is symmetric about its
centre.

Theorem
1. If a figure is symmetric about a line
!/ and a line m, it is also symmetric -
about the point O = I N m,




TWELVE
Transformations

THERE ARE many problems in geometry where a figure F can
be brought into close relationship with another figure F’ which,
at first sight, is very dissimilar. The advantages are twofold: on
the one hand, an unexpected unity can be brought to the subject
when it is realized that apparently distinct configurations are,
basically, just different aspects of one another; on the other hand,
it often happens that the properties of one aspect are particularly
simple, or particularly familiar, and then the corresponding
properties of a more complicated alternative can be *“‘read off”
with comparative ease.

1. Orthogonal Projection ,

Definiiion. The foot of the perpendicular from a point 4 on
to a given plane = is known as the orthogonal projection of A
on . ‘ ' o

If A, B are two points whose orthogonal projections on = are
A’, B', then it follows directly from the work of Chapter 6 that
the orthogonal projection of every point of AB lies on A'B’,
That is, if C € AB, then C' € A'B'.

More generally, if a figure F lies in a plane a, then the corre-
sponding figure F’ in = obtained by taking the orthogonal pro-
jections of all the points of F is called the orthogonal projection
of Fon m. : : '

155
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Fig, 118

Theorems

[The points A’, B, C’, . . . are the orthogonal projections on =
of points 4, B, C, . . . ina.]
1. A, B, C collinear < 4’, B’, C’ collinear.
2. AB/BC = A’'B’|B'C’.
3.IfL=ABNCD,then L' = A’B' N C'D'.
4. If AB||CD, then A’B’||C'D".
5. If ABCD is a parallelogram, then 4’B’'C’D’ is a parallelogram.
6. A harmonic range (4B, CD) projects orthogonally into a harmonic
range (4’B’, C'D").
7. Let the planes a, = meet at an angle 6, and denote by / their line of
intersection. Then

(i) the length of the projection 4’B’ of a line 4B parallel to / is
unchanged, so that A’'B’ = AB;

(ii) the length of the projection C'D’ of a line CD perpendlcu]ar to
1 is reduced in the ratio cos 8, so that C'D’ = CD cos 0.
8. If a triangle ABC in the plane o is projected into a triangle A’B’C” in
ar, then area A’B'C’ = area ABC x cos 8.
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Problems

1. A line AB lies in the plane o and makes an angle ¢ with the line of
intersection of a, 7. Its orthogonal projection on = is A’B’, and 6 is
the angle between the planes a, 7. Prove that

(A’B’

AB

Prove also that, if i is the angle between A’B’ and the line of inter-
section of the planes, then

2
) = cos? ¢ + sin® ¢ cos? 6.

tan ¢ = tan ¢ cos 6.

2. Prove that, in general, if ABCD is a rectangle, then A’B’C’D’ is not
a rectangle.

3. Show how to project (a) a rectangle, (b) a thombus orthogonally into
a square,

2, Conical Projection

7/

Fig. 119

Definition. Let O be a given point (the vertex of projection)
and = a given plane (the plane of projection). If A is any point in
general position in space, then the point where the line 04 meets
= is called the projection (or conical projection) of A on =; it is
usually denoted by the name 4.
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If 4, B are two given points and A’, B’ their projections, then
the projection of any point of 4B lies on A'B’.

(i) The vanishing plane

N
D

-

Fig. 120

Definition. The plane p through O parallel to = is called the
vanishing plane for the projection. The reason for the name is
simple: if 4 is any point in the plane, the line OA cannot meet
o and so the projection A’ is non-existent.

For a figure lying in a general plane a, the intersection of a
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with the vanishing plane p is called the vanishing line in the plane
a for the projection on m by means of the vertex O.

In particular, two lines u, v.of a which meet on the vanishing line
project into two parallel lines u', v' in m:—

For an intersection L’ of u’, v’ would arise from the intersection
L of u, v. But, by definition of the plane p, L' cannot exist, and
so u', v’ are parallel.

(ii) THE PROBLEM. It is required to project a given quadrangle ABCD
into a parallelogram A'B'C'D’.

c !

Fig. 122

THE DiscussioN. Write X = BC N AD,Z = AB N CD.
Through XZ draw any plane p, and select any point O in it.
Take any plane  parallel to p. Then, by what we have just done,

- B'C'|A'D', AB'|C'D,
so that 4'B’C’D’ is a parallelogram.
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(iii) THE PrROBLEM. Given two lines u, v, intersecting in A, lying
in the plane a and meeting the vanishing line in points U, V, it
is required to prove that the angle between u' and v' is equal to
LU0V,

v
2
P b ¢
/
@ A
4
vl
A
ul
Fig. 123

THE DiscussioN. By definition of conical projection, 0A4’,
u, u' are coplanar, so that

oU|u'
and OAA', v, v’ are coplanar, so that
orijy'.
Hence the angle between u’, v’ is / UOV.

(iv)}To project a given quadrangle into a square
THE PROBLEM. Given a quadrangle ABCD, it is required to find
a vertex and plane of projection such that A'B'C'D’ is a square.
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THE DiscussioN. A parallelogram is a square if one angle, say
D'A'B’, is a right angle and if the angle B'U'C’ between the
diagonals is also a right angle.

w

4
B
Q
C
A U y
12
X
Fig. 124

let X=BCNAD,Y=CANBD,Z=ABNCD, W =
BD N YZ. Following on (iii), take XYZ as vanishing line.
In order to get the right angles, let Q be one of the points of
intersection of the circles on XZ, YW as diameters. Rotate the
lines QX, QY, OZ, QW about XYZ out of the plane a of ABCD
so that Q now assumes a position O, the plane OXW being the
vanishing plane p. Any plane = parallel to p can then be taken as
the plane of projection.
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The proof is immediate, since
/ D'AB = X0Z = / X0Z = 90°,
and . .
/B'UC = /WOY = /WQY == 90°.

Theorem
1. A harmonic range (4B, CD) projects conically into a harmonic
range (A'B’, C'D’).
If, however, A is on the vanishing line for the projection, then B’ is
the middle point of C’'D’.

Problems

1. Prove by the conical projection of a quadrangle ABCD, with the side
XZ of the diagonal triangle as vanishing line, that the diagonals of a
parallelogram 4’B’C’D’ bisect each other.

2. (AB, UP) and (AC, VQ) are harmonic ranges. Prove that UV, BC
meet on PQ.

By conical prOJectlon of this figure with PQ as vanishing line, prove
that the line joining the middle points of the sides of a triangle is parallel
to the base.

By conical projection making UVCB a parallelogram, prove that the
line joining the middle points of one pair of opposite sides of a parallelo~
gram is parallel to the other pair.

3. Two triangles ABC, PQR are so related (in perspective) that AP,
BQ, CR have a common point O; L = BC N\ QR, M = CA N RP,
N = AB N PQ. Prove that, in a projection with MN as vanishing line,
the projections B'C’, Q’R’ of BC, QR are parallel. Deduce that L € MN
(Theorem of Desargues).

4. A, B, Cand P, Q, R are two sets of collinear points on distinct lines;
L=BRNCQ, M= CPN AR, N = AQ N BP. Prove that, in a
projection with MN as vanishing line, the projections B’R’, C'Q’ of
BR, CQ are parallel. Deduce that L € MN (Theorem of Pappus).

5. Establish the equivalence of the following theorems:

(a) ABCD, A’B’C’D’ are two quadrangles 50 related that BC N AD
=BC NA'D = X,ABNCD = AB NCD = Z

Then, if BD N B’D’ € XZ, it follows that AC N A’C’ € XZ.

(b) ABCD, A’B'C’'D’ are two parallelograms so related that
AB|[CDI|A’B’|[C’D' and AD|BC||A'B’|C'D’.

" Then, if BD||B’D’, it follows that AC||4’C"."
. Give independent proofs of each of the results.
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6. ABCD is a quadrangle; X = BC N\ AD, Y = CA N BD, Z =
"~ AB N CD. A line through ¥ meets AB in P, CD in R; another line
through Y meets BC in Q, AD in S. By means of a projection with
XZ as vanishing line, prove that PQ N RS € XZ, PS N QR € XZ.
7. ABC is a triangle. Parallel lines AP, BQ, CR meet BC, CA, AB in
P,Q,R;L=QRNBC,M=RPN CA, N = PQ N AB. Prove that
L € MN.
8. 4, B, O are three non-collinear points, and parallel lines AU, BV are
drawn; P = 04 N BV, Q = OB N AU, R is the point where the line
through O parallel to AU and BV meets AB; L — QRN BV, M =
RP N AU, N = PQ N AB. Prove that L € MN.
9. A line LMN meets the sides BC, CA, AB of NABC in L, M, N.
Points 4’, B, C’ are chosen on BC, CA, AB so that harm. (4'L, BC),
harm. (B’M, CA), harm. (C’N, AB). By means of a projection with
LMN as vanishing line, prove that 44’, BB’, CC’ are concurrent.
10. Establish the following interpretation of the problem stated in
converse in question 9: ,

B’CC’B is a parallelogram whose diagonals BC, B'C’ meet in L;a
line through L meets B'C in M and BC’ in N. If ‘the line is chosen
so that NB = BC', then MC = CB’." -~ - -~

3. Inversion :

Definition. Recall, first, the definition of inverse points. Given
a circle Q of centre O and radius a, the inverse of a point 4 with
respect to £2 is the point A’ (on the same side of O as A) such that
0404’ = a2 "

Fig. 125
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In many problems the actual circle £ is irrelevent so long as its
centre O is known. We then speak of inversion with respect to O.

If 4 moves on some such curve as a straight line or a circle,
the locus of A4’ is called the inverse curve of the given curve with
respect to £2. '

(i) The magnification theorem

Fig. 126

THE PrOBLEM. Let 4, B be two given points, with inverses
A’', B'. The magnification of AB under the inversion may be
defined as the ratio 4'B’/AB. It is required to prove that

A'B° OB 04
4B T0A OB

THE DIsCUSSION.
OA-0A"' = a? = OB-0PB

OA OPF
= =
OB 04"
and
04 _ 0B
OB 04’ = AAOB ~ AB'OA’

L AOB = /B'OA’
AB OA OB

= e, =, =

BA T 0B~ 04
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Thus

_08 .04

AB =054 0B’

AB.

(ii) We can now find the inverses of straight lines and circles:

(2) To prove that the inverse of a straight line not through O is a
circle through O.

Let / be the given line, O the centre
of the circle of inversion 2, 4 the foot
of the perpendicular from O to / and
A’ the inverse of A. P

Take an arbitrary point P on [, and P
let P’ be its inverse. Then

OA:0A' = a®* = OP - OP' o —H 4
= A4, A, P, P' concyclic, A

and

/. A'AP =90° = A'Psubtends a right
angle on the circle A4’P'P
= LA'P'P = 90°
= /OP'A" = 90°. Fig. 127

But O, A4’ are fixed points, and so P’ lies on the circle on OA’ as
diameter.

(b) To prove that the inverse of a circle through O is a straight
line not through O.

Let m be the given circle, O the centre of the circle of inversion
0, A the other end of the diameter of m through O, and A’ the
inverse of A.

Take an arbitrary point P on m, and let P’ be its inverse. Then

OA-0A' = a2 = OP - OP'
= A, A', P, P' concyclic,
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and
04 diameter = /OPA=90°
= /OA'P = 90°.

._/
Fig. 128

But O, A’ are fixed points, and so P’ lies on the straight line through
A’ perpendicular to OA’.

Problems

1. Two circles cut orthogonally at O. Prove that their inverses with
respect to O are two perpendicular lines.

2. Two circles touch at O. Prove that their inverses with respect to O
are two parallel lines. ;

3, Two lines /, m are parallel and O €. Prove that the inverse with respect
to O of 1is [ itself, and that the inverse of m is a circle touching / at O.

(c) To prove that the inverse of a circle not through O is a circle
not through O. )

Let m be the given circle, O the centre of the circle of inversion
Q, B the inverse of O with respect to the circle m, and B’ the
inverse of B with respect to 2.
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What we shall prove is that the inverse of m is a circle m’
whose centre is B’, so that the method of proof locates the centre
of m’ at the same time.

Fig. 129

Take an arbitrary point P on m, and let P’ be its inverse with
respect to 2. Then, by the magnification theorem,
,.., OB
B'P = OP BP
BP ,
= O_P OB
Suppose now that U is the centre of the circle m. Then
O, B inverse with respect to m

= UP? = UB-UO = UP/UB = UO|UP
= AUPB~ AUOP

PB" UP ’
= 6P~ U0
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Hence
’ '] UP *
B'P = o OB ,
== constant,

since UP is the radius of m and U, O, B’ are fixed points, and so
P’ lies on the circle of centre B’ and radius B'P’.

(iii) The angle between two curves

In order to make full use of the techmque of inversion, we
must give a short account of the angle between two curves at a
common point. The basic ideas will be familiar from work on
calculus.

(a) The tangent at a point,

Fig. 130

Let 4 be a point on a given curve. We seek to define the tangent
to the curve at A. Let P be any point of the curve, fairly near to 4,
and consider the line 4Q through P. The point P may be supposed
to approach more and more closely to 4, and the line 4Q will
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then (in normal cases) take up a limiting positive AT known as the
tangent at A to the curve.

(b) The angle between two curves.

P
7

Fig. 131

If two curves cut at a point A, the angle between the curves at A
is defined to be the angle between the tangents there.

(c) The fundamental theorem:

The angle between two curves is equal to the angle between their
inverses.

Let m, n be two given curves intersecting at 4. Take a point P
on m, fairly near to A4, and let OP meet n in Q. The inverses

, Q' on the inverse curves m’, n’ also lie on the line OPQ,

Suppose finally, that A’ is the inverse of A; the two curves
m’, n’ then necessarily intersect at 4'.
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Now

OP-0OP =0Q-0Q =04 04
= APP'A’ cyclic and AQQ’'A’ cyclic
> /OAP = /OP'A’, [/OAQ = /004
= /0AQ — /OAP = /OQ'A' — LOP'A
= /PAQ = /P'A'Q.

Fig. 132

Thus, however close P is to A (so that Q is also close to A),
the angle between the chords A'P' and A’'Q’ is equal to the angle
between the chords AP and AQ. In the limit, then, the angle
between the fangents at A is equal to the angle between the
tangents at A'.

INTERPRETATION. (a) Two
curves which have the same
tangent at A are said to fouch at
A. Their inverse curves will also
touch at A—but note that the .
tangent AT at 4 will, in general,
NOT invert into the tangent A'T’ Fig. 133
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at 4’, since straight lines usually do not invert into straight lines
but into circles. :

When A4, where the curves touch, is also the centre of inversion,
more complicated problems arise. For straight lines and circles,
the rules are:

Fig. 134

(i) When a line / touches a circle m at O, the inverses are a line
I’ which is the same as I and a line m’ which is parallel to I',

Qe

Fig. 135

(i) When two circles m, n touch at O, the inverses are two
parallel straight lines m’, n’. ' '

(b) Two curves are called orthogonal when the angles between
them is a right angle. In particular, when a line I is orthogonal to a
circle m, then | is a diameter of m. '

ey
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This interpretation for line and circle is very important in
problems involving inversion.

Fig. 136

Theorem

1. A circle and a diameter invert, with respect to a point on the circle,
into “a diameter and a circle”. «

Problems

1. Two circles a, 8 touch at O. A circle L2 through O cuts them again at
A, B respectively. Verify (what is in any case obvious at O) that the
circles o, 2 cut at A4 at the same angle that the circles 8, £ cut at B.
(Invert with respect to O.)

2. A point O lies on a circle having BC as diameter and 4 is a point
ont BC. By inversion with respect to O, prove that the circles OAB,
OAC cut orthogonally.

3. Establish the equivalence of the two following theorems:

(a) Two circles OAPX, OBQX meet in O, X and PXQ, AOB are
straight lines. Then AP|BQ.

(b) Two straight lines APX, BOX meet in X and O is a point on 4B;
the points O, P, X, Q are concyclic. Then the circles OAP, OBQ touch
at O.

4. Given a circle / and two points 4, O not on it, prove that a unique
circle can be drawn through A, O to cut / orthogonally.

5. A, B, C are three collinear points and O a point not on the line
ABC. Prove that there is a common point H to each of the circles
passing through O and one of the points 4, B, C and cutting ortho-
gonally the circle through O and the two others of the points A, B, C.
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6. Establish the equivalence of the following theorems:

(a) Given three non-collinear points A4, B, C, the circles on 4B, AC
as diameters meet on BC.

(b) Given three non-collinear points A, B, C, the line through B
perpendicular to AB meets the line through C perpendicular to AC
on OABC.

(c) Given three non-collinear points 4, B, C, the line through A
perpendicular to AB cuts the circle through 4, C cutting OA4BC
orthogonally in a point on BC.

7. Four points 4, B, C, O lie on a given circle. A circle through
B, C touches a circle through 4, O at a point P. Prove that, as the
touching circles vary, the locus of P is a circle.

8. Given three fixed points O, 4, B and a variable point P on either
the line 4B or a fixed circle through A, B, prove that the circles OPA,
OPB cut at a constant angle.

9. Estabiish the equivalence of the following theorems:

(a) Two circles p, g touch at O and two circles 7, s touch at 0. If
one of the pairs of circles (p, r), (p, s), (g, 5), (g, r) is orthogonal, so are
the other three pairs. :

(b) If one angle of a parallelogram is a right angle, so are the other

three.
10. In question 9(a), the further intersections of the four pairs of
circles, in that order, are 4, B, C, D. Prove that, if a circle can be
drawn to touch each of the circles p, g, r, s, then the circles 0OAC,
OBD are orthogonal.
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(Results Assumed Known, pp. 6-13, are not listed in detail.)

Altitude, of triangle, 17
of tetrahedron, 114
Angle between curves, 168
line and plane, 120
lines, 93
planes, 121
Angle bisectors, harmonic property,
72

Angle, trihedral, 124
Apollonius, circle of, 50
Area, of spherical triangle, 139

Bisection theorems for harmonic
pencil, 73

Centroid, of triangle, 14
of tetrahedron, 110
Ceva, 53
Circles on sphere, 132
Circumcentre, of triangle, 16
of tetrahedron, 118
Circumcircle, 16
Coaxal circles, 49
Cone, 140
Congruence, direct and inverse, 146
Conical projection, 157
Conjugate chords, 83
points. 78
Cross-ratio_ 57
Curve, tangent, 168
Curves, orthogonal, 171
Cylinder, 142

Desargues, 56, 92, 162
Direct common tangents, 37
Duality, 66

Escribed circles, 19
Euler line, 18, 26
theorem for convex body, stated,
129
Expansion, 150

Great circle, 132

Harmonic pencil, range, 58
on circle, 85
test 042 = OP-0Q, 76
Harm. (4B, PQ), 61
Homothetic figures, 150

Incentre, 19

Incidence, propositions, 90
Inverse, 46

Inversion, 163

Limiting points, 42, 47
Lune, 138

Magnification theorem for inversion,
164

Medians, 14

Menelaus, 52

Mirror image, 33

175
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Nine-points circle, 22, 24
Normal, 94, 101
Notation used, 2-6

Orthocentre, of triangle, 17
of tetrahedron, 116
Orthogonal circles, 44
curves, 171
projection, 155
tetrahedron, 115

Pappus, 162

Parallel lines, 91
planes, 97

Parallelepiped, 107

Perspective, 92

Platonic solids, 126

Pole and polar for triangle, 71
for circle, 78
for great circle on sphere, 133

Power of point with respect to circle,

43

Projection, conical, 157
orthogonal, 155

Ptolemy, 27

Quadrangle, 64
projected to parallelogram, 159
square, 160

Radical axis, 40, 47

Regular solids, 126
Rotation, 145, 148

Self-conjugate (self-polar) triangle, 83
Sense on a line, 51
Similitude, 36, 39
Simson line, 30, 32
Skew lines, 91

common perpendicular, 104
Slope, line of greatest, 122
Solids (regular, Platonic), 126
Sphere, 130

circles on, 132

tangent plane, 131
Spherical excess, 140
Spherical triangle, 134

area, 139

polar triangle of, 135
Symmetry, 153

Tangent to curve, 168

plane to sphere, 131
Tetrahedron, 109

orthocentre, 114

orthogonal, 115
Three perpendiculars, theorem, 103
Translation, 144
Transversal, 92
Transverse common tangents, 37
Triangle, spherical, 134

Vanishing line, 159
plane, 158
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