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PREFACE

Every beginner in the science of geometry knows that the

circle and the sphere have always played a central rdle, yet

few people realize that the reasons for this are many and

various. Attention was first called to these figures by their

mechanical simplicity and importance, and the fortunate

position thus won was further strengthened by the Euclidean

tradition of limiting geometry, on the constructive side, to

those operations which can be carried out with the aid of

naught but ruler and compass. Yet these'facts are far from

sufficient to account for the commanding position which the

circle and the sphere occupy to-day.

To begin with, there would seem no a 'priori reason why
those curves which are the simplest from the mechanical point

of view should have the greatest wealth of beautiful properties.

Had Euclid started, not with the usual parallel postulate,

but with the different assumption either of Lobachevski or

Riemann, he would have been unable to prove that all angles

inscribed in the same circular arc are equal, and a large

proportion of our best elementary theorems about the circle

would have been lacking. Again, there is no a priori reason

why a curve with attractive geometric properties should be

blessed with a peculiarly simple cartesian equation; the

cycloid is particularly unmanageable in pure cartesian form.

The circle and sphere have simple equations and depend

respectively on four and five independent homogeneous para-

meters. Thus, the geometry of circles is closely related to

the projective geometry of three-dimensional space, while the

totality of spheres gives our best example of a four-dimensional

projective continuum. Still further, who could have predicted
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4 PREFACE

that circles would play a central r61e in the theory of linear

functions of a complex variable, or that every conformal

transformation of space would carry spheres into spheres?

These are but examples of the way in which circles and spheres

force themselves upon our notice in all parts of geometrical

science.

The result of all this is that there is a colossal mass of

literature dealing with circles and spheres, the various parts

of which have been developed with little reference to one

another. The elementary geometry of the circle was carried

to a high degree of perfection by the ancient Greeks, but by

no means completed, for in comparatively recent times there

have been notable contributions from mathematicians of no

mean standing, Steiner and Feuerbach, Chasles and Lemoine,

Casey and Neubej-g, and a countless following host. The

relation between circle geometry and projective geometry has

been thoroughly studied by Reye, Fiedler, Loria, and their

pupils. Every text-book of the theory of functions of a com-

plex variable discusses the relation of circles to the linear

function, while the general theory of circle transformations

has had such distinguished exponents as Mobius and von

Weber. The circle and sphere with positive or negative

radius have been the subject of admirable studies by Laguerre

and Lie, algebraic systems of circles in space have been studied

by Stephanos, Koenigs, Castelnuovo, and Cosserat, while circle

congruences in general have received no little attention from

recent writers on differential geometry, notably Ribaucour,

Darboux, and Guichard.

The present work is an attempt, perhaps the first, to present

a consistent and systematic account of these various theories.

The greatest difficulty in any such undertaking is obviously

that of selection. This is particularly the case in the early

part of the subject. A complete account of all known elemen-

tary theorems regarding the circle would be far beyond the

strength of any writer, or reader. The natural temptation
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is to go to the other extreme, and omit entirely the elementary

portions; yet this would be equally fatal. How could one

write at length on the geometry of the circle without dis-

cussing the Apollonian problem and the nine-point circle?

But if we include the circle of Feuerbach, why should we
exclude the circles of Lemoine, Tucker, and Brocard ? Where
does the geometry of the circle end, and that of the triangle

begin? Clearly any principle of choice must be largely

arbitrary and illogical.

In the present treatise preference is shown to those theorems

which are unaltered by inversion, and to those which are as

general as possible in their scope. The author has tried to

say something about every circle that is known by a recog-

nized name, but the vast subject of the geometry of the

triangle is treated only in a superficial manner. Similarly,

only a small number of the most famous problems in con-

struction have been discussed, but these have been treated

at some length.

When we pass from the elementary to the more advanced

portions of the subject, we find a tolerably clear line of

demarcation running through the geometry of the circle and

the sphere, namely, the separation of those theorems which

involve the centre or radius from those which do not. Other-

wise stated, we have those theorems which are invariant

under the group of conformal collineations, and those which

are invariant for inversion. An attempt is made to keep

these two classes as far separate as practicable. For this

reason, distinction is drawn between cartesian space which

is supposed to have been rendered a perfect continuum by

the adjunction of a plane at infinity, and pentaspherical

space where the finite region is defined, in the real domain,

as a single point. Among the cartesian theorems there is

a sharp sub-division between those where the radius is looked

upon as essentially signless and those where a positive or

negative radius is allowable. The circle and the oriented
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circle should be considered as essentially dissimilar figures

;

the former is a locus of points, the latter, in the plane, is best

handled as an envelope of oriented lines, and considered under

a totally different group. In the present work the oriented

circle and sphere are discussed in three chapters entirely

devoted to them.

Every writer knows that the pleasantest part of his task

consists in writing the preface, for here he has a chance to

express his gratitude to the generous friends who have helped

him with suggestion and counsel. The present author would

especially mention his colleague Professor Maxime B&cher,

who kindly read the proof of Ch. VIII, and his former pupil

Dr. David Barrow, who not only supplied much of the

material in Ch. XIV but also did yeoman service in unearth-

ing mistakes in various parts of the work. Another pupil,

Dr. Roger Johnson, has kindly suggested a number of minor

corrections, mostly of a bibliographical nature. Yet the

greatest debt is not to any one of these.

The present work went to press in the spring of 1914.

During the two years which have intervened, the Delegates

of the Clarendon Press, despite the fact that their country

was passing through the most severe trial in her history,

have yet seen fit to continue the publication of a book which

dealt with a subject utterly remote from all that occupied

men's thoughts, and which was not even written by one of

their countrymen. Let the author's last word be one of

gratitude to them for this great kindness, as signal as it

is undeserved.

Cambridge, U.S.A.

July, 1916.
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CHAPTER I

THE CIRCLE IX ELEMENTARY PLAXE
GEOMETRY

§ 1. Fundamental Definitions and Notation

All figures discussed in the present chapter are supposed

to exist in the real and finite domain of the Euclidean plane

;

the domain of elementary plane geometry. As fundamental

objects, we shall take point?, lines, and circlet. We shall

make no attempt to define a point. By line we shall mean

a $t)\iight line: a class of points uniquely determined by any

two of its members. It extends to an infinite distance on

either side of any of its points. That portion of a line which

is on either side of any point shall be called a half-line; the

portion which includes two points and all between them shall

be a segment. It two half-lines be given which are not

collinear. but are bounded by a common point, that portion

of the plane which includes all segments whose extremities

are on the given half-lines shall be called their interior angle,

or, more shortly, their angle. The remainder of the plane

shall be their exterior angle. These definitions may be easily

extended to include null and straight angles. Three non-

collinear points will determine three segments forming

together- a triangle. The given points and segments ai-e

the vertices and sides respectively, the lines whereon the

segments lie shall be called the side-lines* The three ancles.

each of which is bounded by two half-lines including two

sides of the triangle, shall be called the angles of rl.e triangle.

* This term suggests football rather than geometry. It is. however,

proper to distinguish between the side of a triangle, and the line whereon

that side lies.

B 2



20 THE CIRCLE IN ch.

their supplements its exterior angles. A line through a vertex

perpendicular to the opposite side-line shall be called an

altitude line, its intersection with the side-line its foot, and

the segment bounded by the foot and the opposite vertex,

the altitude.

We shall mean by a circle the locus of points at a given

distance from a fixed point called the centre. A segment

bounded by two points of a circle shall be called a chord,

its line a secant. The limiting position of a secant as the two

points of the circle approach one another shall be a tangent.

A segment bounded by the centre and a point of the circle

is a radius, that which is made up of two collinear radii

a diameter.

Let us pass from these definitions to establishing certain

conventions as to notations. Points shall be denoted by large

italic letters as A B P
f
. The segment bounded by A and B,

or the distance of these points, shall be written (AB). When
a question of algebraic sign arises, or a segment is looked

upon as measured in a particular sense, we shall superpose

an arrow pointing to the right, to indicate that the segment

is measured from the point denoted by the first letter to that

denoted by the second, thus

(AB) = -(BA).

The line determined by the points A and B shall be indicated

AB. It is often convenient to indicate a line by a single

small italic letter as a, l
{

. The angle of the half-lines which

include the segments (AB) (AG), when considered as a quantity

bereft of sign, shall be indicated i^BAC. When the sense

of description is essential we shall introduce a right-pointing

arrow, as

4JBAC=-4-.CAB.

When we wish one of the lesser angles determined by two

lines, including its sense of description,* we shall use the

notation LBAC or Ll^. Parallelism shall be denoted by
||,

perpendicularity by L. The distinction in meaning between

* There is, of course, a slight ambiguity when the lines are mutually-

perpendicular ; it does not, however, cause any practical inconvenience.
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our various symbols will appear from the following familiar

equations

:

If lx || 1/ and Z2 1| ?/, then 11,1^=1 7,'V-
If ^1 V and 1,11,;, then ll^ = ^72

'.

If ABCD be concyclic,

i-ABC = %_ADC or ,r-,£_AD<7,

4LZB0 = ^_ZdC or KTT + iLZDC1

).

If ABCD be any four coplanar points,

IABB + ABDG+AGDA = € (mod ir),

4-ADB + 4_BDC+4_CDA = (mod 277).

A triangle where vertices are ABG shall be indicated

A ABC.
It is useful to make certain further conventions for the

study of a single triangle. The vertices shall be A^^A^
this order of letters corresponding to a circuit of the triangle

in a counter-clockwise or positive sense. If the letters i, j, k

indicate a circular permutation of the numbers 1, 2. 3,

4-AjA
i
Ah = 4.AhA i

Aj = 4-A
i

(A
J
A

1) = a
i 2^ = 28.

If P be an}- other point of the plane, the line A
t
P shall

meet A:Aj. in P
f ; a line through P ± AjA^ shall meet A-Ak

in Pa
t . The middle point ofAAk shall beM

{
-. the centre of

gravity of the triangle is thus M. The centre of the cir-

cumscribed circle shall be 0, the orthocentre, the point of

concurrence of the altitude lines, shall be H. We have thus,

incidentally, H
t
= Ha

t
. The area of this triangle shall be A,

the radius of the circumscribed circle shall have the length r.

A theorem shall be referred to as x] or y] while an equation

is (p) or (q).

§ 2. Inversion.

A truce to these preliminaries! Suppose that we have

given a circle whose centre is and radius has the length

r =fc 0. Let P and Pf be any two points collinear with

such that

(0P)x(d~P) = r*. (1)
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The relation between the two is perfectly symmetrical, each

is said to be the inverse of the other with regard to that circle,

and the transformation from one to the other is called an

inversion. The point is called the centre of inversion, the

given circle the circle of inversion, and its radius the radius

of inversion*

Theorem 1.] Every point other than the centre of inversion

has a single inverse.

Theorem 2.] The circle of inversion is the locus of points

which are their own inverses.

Theorem 3.] Points within the circle of inversion other

than the centre will invert into points without, points without

will always invert into points within.

Another transformation similar to inversion is found by

taking S and S' collinear with so that

(OS)x(OS') = -r2
.

This is seen immediately to be the product of an inversion

and a reflection in the centre, though algebraically it is an

inversion in a circle of imaginary radius. We shall make
but little use of this transformation in the present chapter.

Returning to the direct study of inversion, let the reader

show that if P be without the circle, P' is the intersection

of OP with the chord of contact of tangents from P to this

circle, i.e. with the polar of P. We notice further that if OP
meet the circle in H and K, H lying between and P,

(HP) = (OH) -(OP)
.

(KP) (OK) -(OP)

(HP') (OH)- (OP')' (KPr

)
(0~K)-(OP')

* This transformation is Usually credited to Pliieker. See his Analytisch-

geomeirische Aphorismen, Crelle, vol. xi, 1836. It was rediscovered a decade

later by Sir William Thompson, Principe des images eleclriques, Liouville,

vol. x, 1845. The most recent view, however, seems to be that the method
was found some time previous by Steiner. Cf. Butzberger, Ueber bisentrische

Polygone, Leipzig, 1913, pp. 50-5. The inversion of a small region can be
effected mechanically by lint works invented by Peaucellier, Hart, Kempe,
arid others.
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(HP) (KP') =
- r2 + r2_ |-(0P) (0k) + (

0Jpf) f0^
(HP') (KP) -r* + r*-[(OP)(0H) + (OP') (OK)]

~

We thus reach a theorem slightly beyond the limits of elemen-
tary geometry strictly construed.

Theorem 4.] Mutually inverse points are harmonically
separated by the intersections of their line with the circle of
inversion.

If P' and Q' be the inverses of P and Q respectively, we have

(OP)(OP') = (OQ)(0-Q'), $g-$g- (2)

A OPQ and A OQ'P' are similar.

(
p^ =^m =iPQ) (opwQy (

3
)

If PQRS be four points whose inverse are P'Q'R'S',

(P'Q'J(R'S') = (PQ)(RS)
^

(^Pt)(Q
f
R') (SP)(QR)'

We shall make great use of this equation subsequently. For

the moment we merely draw therefrom an extension of the

previous proposition.

Theorem 5.] The cross ratio of four points collinear with

the centre of inversion, but distinct therefrom, is equal to that

of their inverses.

We now assume specifically that P and Q are not collinear

with 0. We see from (2) that A OPQ and A OQ'P' are similar,

hence t- OPQ = £. OQ7?'.

If R be a fourth point in general position,

$J)PR = t-OR'P'.

We substitute for each angle on the right its equivalent in

terms of the other two angles of the triangle whose vertices

are thereby designated, then subtract

;

4-RPQ + 4-R'P'Q'= 4-ROQ = %-R'OQ'.
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Theorem 6.] The algebraic sum of the corresponding angles

of two mutually inverse triangles is equal to the angle sub-

tended at the centre of inversion by the sides opposite these

angles.

Theorem 7.] If two opposite angles of a quadrilateral be

measured in such a way that the two initial sides and the two

terminal sides meet respectively in vertices of the quadrilateral,

their algebraic difference is numerically equal to the corre-

sponding difference for the inverse quadrilateral.

Of course, when we say that two triangles or quadrilaterals

are mutually inverse, we merely mean that this is true of their

corresponding vertices. We next let Q approach P as a limit,

so that PQ and P'Q' approach tangency in two mutually

inverse curves.

Theorem 8.] The angle made at any poi/nt by a curve with

a line from there to the centre of inversion is numerically the

supplement of the corresponding angle for the inverse curve

at the inverse point.

Theorem 9.] An angle at which tiuo curves intersect at any

point other than the centre of inversion is the negative of the

corresponding angle made by the inverse curves at the inverse

point.

Theorem 10.] Curves which intersect at right angles not at

the centre of inversion will invert into curves intersecting

at right angles.

Any curve which is its own inverse is said to be anallag-

matic*

Theorem 11.] If the circle of inversion intersect an anallag-

matic curve at any point which is a simple point for the

latter, the two will intersect at right angles.

Theorem 12.] A line through the centre of inversion is

anallagmatic.

Theorem 13.] A circle through a pair of inverse points is

anallagmatic.

* This curious word seems to be due to Moutard.
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We see, in fact, that if we consider any pair of points on

such a circle collinear with the centre of inversion, the

product of their distances therefrom is the square of the

radius of inversion. Let the reader show that

Theorem 14.] A circle which cuts the circle of inversion

at right angles is anallagmatic.

Theorem 15.] If two intersecting circles cut a third at

right angles, their intersections are inverse in the third circle.

This last theorem leads to another way of looking at

anallagmatic curves. If we have a system of circles moving

continuously yet always orthogonal to a fixed circle, we see

that the intersections of infinitely near circles are inverse in

the fixed circle, i. e. the envelope is anallagmatic. Conversely,

if an anallagmatic curve be given, a circle through two

inverse points and tangent at one, will be tangent at the

other ; the curve is the envelope of circles orthogonal to the

circle of inversion. The locus of the centres of the moving

circles shall be called the deferrent.

If a circle orthogonal to the circle of inversion be anallag-

matic, what is the inverse of a circle in general position?

Fig. 1.
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Let C be the centre of such a circle, p the length of the

radius ; PQ shall be two points of the circle collinear with

the centre of inversion, P' and Q' their inverses. We assume

for the moment that our given circle does not pass through

the centre of inversion. A line through P'
||
QG shall meet

00 in C". Now (OP) x (OQ) and (OP) x (5P) have constant

values, hence

(OP') (OC') (C'P^)
y- — COnst. = y = -

>
•

(OQ) (00) (CQ)

The locus of P' is thus a circle of centre C" and radius

P = t>-=^-

(00)

Theorem 16.] The inverse of a circle not passing through

the centre of inversion is a circle of the same sort.

The reasoning above is inapplicable when the given, circle

passes through the centre of inversion. In this case Q
coincides with 0. Let R be diametrically opposed to this

point, R' its inverse. Then since A OPR is similar to A OR'F'

i.OR'P' = I

Theorem 17.] The inverse of a circle passing through the

centre of inversion is a line not passing through that centre.

Theorem 18.] The inverse of a line not passing through

the centre of inversion is a circle through that point.

Theorem 19.] Parallel lines invert into circles tangent to

one another at the centre of inversion.

Theorem 20.] If two figures be mutually inverse with

regard to a circle, their inverses in a second circle whose

centre does not lie on the first are mutually inverse in the

inverse of the first circle with regard to the second.

Suppose, in fact, that P and P' are inverse in a circle C
x

.

Every circle through them will, by 13], cut Cj at right angles.

The inverses of these circles with regard to a second circle
2

will cut the inverse of (7j at right angles, and the two points
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common to them will be mutually inverse in that inverse

of <?!•

Theorem 21.] If a cii-cle be inverted into a straight line,

a pair of points inverse tcith regard to the circle will become

a point and its rejection in the line.

Theorem 22.] If a curve be anallagmatic with regard to

two circles, it is anallagmatic with regard to every circle that

can be obtained by successively inverting one circle of inver-

sion in another.*

We saw in the reasoning which led up to 16] that mutually

inverse circles are similar figures radially situated. If two
figures be similar we may clearly adjoin to the one and the

other as many points as we please, getting more comprehensive

figures which are still similar with the same ratio of similitude,

and include the originals as parts of themselves. If there be

a point which corresponds to itself in two such similar figures,

it is called a double or self-corresponding point. When the

figures are radially situated, corresponding points are collinear

with the double point, and their distances therefrom bear to

one another a ratio fixed in magnitude and sign. The double

point is called the centre of similitude, and the fixed ratio the

ratio of similitude.

Theorem 23.] Iftuv circles be mutually inverse, the centre

of inversion is a centre of similitude for them while the ratio

of similitude is numerically that of their radii. If this centre

lie outside of one circle it is outside of the other, and is the

point of intersection of their direct common tangents.

Suppose, conversely, that we have two circles which are

neither concentric nor of equal radius. Let us divide the

segment bounded by their centres in two parts proportional

to the radii, and find the harmonic conjugate of this point

with regard to those centres (loosely called dividing the

* C£ Mobius, CWeded Works, toI. ii, p. 610 ; also Finsterbuseh, Die OeomeMe

ebCHo- Krtissysteme, Werdau, 1893, p. 6S. For the conditions that an algebraic

curve should be anallagmatic see Picquet, Sur tes eourbes ei surfaces analiagma-

tiques, Oomptes rendus de 1"Association franeaise pour l'avancement des

sciences, Session of 1S7S at Paris.
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segment externally in that ratio). These points are the in-

ternal and external centres of similitude respectively, and are

the points of intersection of such common tangents as the

circles may have. Let be one of these points and let a line

through it meet one circle in PQ and the other in Q'P'. Then

(6P) = (QQ) =1 p
j

(0Q
f

) (OP) ~ p
''

(OP) x (5P) = (OQ) x (OQO = k.

We easily find that k will be positive in the case of one

point when the circles do not intersect, and in the case of both

when they do. They are thus certainly mutually inverse in

one circle of radius \fic.

Theorem 24.] Any two circles of different centres' and
unequal radii are mutually inverse in at least one circle

whose centre is one of their centres of similitude.

The circle or circles in which the given circles are mutually

inverse are called their circles of antisi/militude ; that on the

segment bounded by the centres of similitude as diameter is

their circle of similitude.

Theorem 25.] If two circles of unequal radius lie outside

of one another, their common tangents intersect at their centres

of similitude and at four points of the circle whose diameter

is the segment bounded by their centres.

Let us define as a tangential segment of a point with regard

to a circle a segment bounded by that point and the point of

contact of a tangent to the circle which passes through the

point, The common tangential segments of two circles will

be segments lying on common tangents and bounded by the

points of contact. Let us find the locus of a point whose

tangential segments to two circles are proportional to their

radii. The circles being c^, their centres C^Cg, while the

radii have the lengths r
x
r^, if P be a point of the locus while t

i

is the tangential segment from there to c
4
-

tl_r_l_ t* + r» _ (PC,)' (PCJ _ rj

tf
~ r? ~ ti + r* ~ (PG2f (PG

2)
~ r2

'

We have, thus, by a familiar theorem of elementary geometry,
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Theorem 26.] The locus of points whence the tangential

segments to two non-concentric circles of unequal radius are
proportions! to the radii is so much of the circle of simili-

tude as lies without the citxles.

Theorem 27.] The distances from a point of the circle of
similitude of two given circles to their centres are proportional

to the respective radii.

Theorem 28.] The circle of similitude of tico given circles

includes all points whereat equal angles are determined by

the pairs of tangents to the two.

We find at once from Menelaus's theorem

Theorem 29.] If three circles be given, no two concentric

nor of equal radius, a line connecting a centre of similitude

of one pair with a centre of similitude of a second pair will

pnss through a centre of similitude of the third pair.

If two circles touch one another, their point of contact is

a centre of similitude.

Theorem 30.] If a circle touch tav c4hers of unequal

radius, the line connecting the points of contact icill pass

through a centre of similitude of the tux>.

Theorem 31.J The centres of similitude determined by three

circles whereof no two are concentric or of equal radius lie by

threes on the sides of a complete quadrilateral? whose diagonal

lines connect the pairs of centres of the circles*

We find at once from the theorem of Ceva

Theorem 32.] If three circles be guvn, no two being con-

centric or of equal radius, the lines connecting each centre

with the centres of similitude ef the other two are the side-

lines of a complete quadrangle whose diagonal points are the

centres of the giivn circles.

Let us return to the point of view where we regarded the

two circles as inverse in a circle of antisimilitude. If their

radii be p and p'. the radius of inversion

p_(QP)
nr _(QQ')p_ n

**
,-s

P
' ~ (OQ')

p - (OP) - P (0P) (OQ)

'

{0J

* Chasles, Traili de gcmv.-.irie SHperfeMrc, Paris, 1S52, p. 589,
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If we define as the power of a point with regard to a circle

the product of its oriented distances to any two points of the

circle collinear with it (the square of the tangential segment

when the point lies without) we have

Theorem 33.] The radius of the inverse of a given circle

not through the centre of inversion is equal to the radius of

the given circle multiplied by the square of the length of the

radius of inversion, and divided by the absolute value of

the power of the centre of inversion with regard to the given

circle.

Let us next follow the fate of the centre of the given circle.

This point has the property that all straight lines through it cut

the given circle at right angles. These lines invert into circles

through the centre of inversion, whence by 1 5]

Theorem 34.] The inverse of the centre of a circle which

does not pass through the centre of inversion is the inverse

of that centre in the inverse of the given circle. The inverse

of the centre of a circle through the centre of inversion is the

reflection of that centre in the line which is the inverse of the

given circle.

If two circles be given which do not intersect, either they

lie outside of one another, or the one includes the other. In

the first case we may easily find a point of the segment

bounded by their centres which has the same positive power
with regard to the two. This will be the centre of a circle

cutting the two at right angles, and intersecting the line of

centres in two points inverse in both circles. In the second

case, if a point move off" indefinitely on the line of centres

from that intersection with the outer circle which is nearer to

the centre of the inner one, its inverse in the outer circle will

trace a segment which includes in itself the segment which is

the locus of its inverse in the inner circle. In each case we
can find a pair of points which are inverse in both circles. If

we take either as centre of inversion we find :

Theorem 35.] Any huo circles which do not intersect may
be inverted into concentric circles.
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§ 3. Mutually Tangent Circles.

The last theorem enables us to solve a problem very dear to

Jakob Steiner.* Suppose that we have given two non-inter-

seeting circles. What relations must exist between their radii

and the distances of their centres in order that there should be

a finite succession of circles all tangent to the given two,

and each tangent to its two neighbours in the ring ? Let us

imagine that there are » circles in the ring, and that they

make m complete circuits. These numbers will be invariant

when we invert the given circles into two concentric circles of

radii i\ and r
2
respectively. If the common radius of circles

of the new ring be ;,

tan

>"+<•!=*(>•!

tan2— =

Nest, let any line through the common centre of the two

meet them in P/Q/ and Pa
'Q

a
'.

Fre. 2.

* See Ms Collected Worts. vol. i, pp. 43 and 135. The resulting

systems of circles are described by English writers as - poristie\ See

H. 3L Taylor, ' Porisni on the ring of circles touching W: circles '. Misscngsr
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To be definite, we assume that the former pair includes the

latter, and that P/P/ are on one side of the centre while

Q1Q2 are on the other side. Then

r* = (P
1

/P
gQx(Q,

/

Q1Q
|

We saw, however, in equation (4) that the right-hand side

of this is invariant for inversion, the centre of inversion being

on the line of centres of the given circles. If, thus, this line

meet the original circles in P^ and P
2Q2

n (P&)x(P~QJ

This equation has a simple geometric meaning. Reverting

to the concentric case, let us construct circles on (P/Q2O an<^

(Pjs'Q/) as diameters. The distance from the common centre

to their centres will be £fa — rj, their common radius

£(r2 + r
i)-

To find the angles at which they intersect, we
have

_ -fa-r^ + ^fa +r^ _ * fa+ r^2- 4 r2

LUo u — zr—. rs — z—

7

tb *

tan240 =— = tan2— •
(6)

r
Y
r
2 n v '

We thus get, recalling 9]

,

Theorem 36.] Let tiuo non-intersecting circles be given,

and let the line of centres meet the first in P1Q1
and the second

in P
2Q2 ; the points P

tQ2
separating the points PiQ1

. A
necessary and sufficient condition that it should be possible

to construct a finite succession of circles tangent to the given

ones and successively tangent to one another is that the circles

constructed on the segments (P^) and (P
2QX)

as diameters

of Mathematics, vol. vii, 1878, and his brother W. W. Taylor, ' On the Ring
of Circles touching two Circles', ibid. See also Lachlan, 'On Poristic

Systems of Circles', ibid., vol. xvi, 1887. Our present treatment follows

Vahlen, 'TJeber Steinersche Kugelketten', ZeitschriftfiirMathematikund Physik,

vol. xli, 1896. For an interesting generalization see Emch, ' An Application

of Elliptic Functions', Annals of Mathematics, Series 2, vol. ii, 1901.
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should intersect at an angle commensurable with, it. The
denominator of the measure of such an angle when expressed

in terms of 2 it and reduced to its Invest terms will give the

number of circles in the succession and the numerator the

number of complete circuits formed by them. If one such

circuit exist, there will be an infinite number of them, one

circle being perfectly arbitrary except for the types of contact

with the given circles. The points of contact of successive

circles in all of thete circuits lie on one circle.

We may pursue this subject further. If we take as a

circle of inversion any circle orthogonal to the two given

ones, they are, by 24], anallagmatic therein, the line of

centres becomes a circle orthogonal to the two given circle*,

the circles on (P
XQ2)

and (P
2Qi) as diameters, become circles

tangent to the original circles, and orthogonal to a circle

orthogonal to them. We may thus state our condition in

slightly more general terms by means of the angle of these

last two circles. Suppose, then, that we have a ring of

circles, and that two circles of the ring touch the given circles

at four points of one same circle orthogonal to the original

ones. By two successive inversions we may go back to the

concentric case where, in our previous notations two circles

of the ring have (P
X
P

2)
and (QXQ2)

as diameters. The con-

centric circles will be two out of a ring tangent to the circles

on (P
1
P

2)
and (QX Q2 ) and to one another in turn, and the

circles on (P
X Q2)

and (P
2QX)

a8 diameters play the same role

with regard to both rings. If, then, nijUj be the numbers

for the new ring, we have

m, m , m, „ m
2 7T— = 27r— or else 2tt—-

• = it— 2tt — •

n
x

n n
x

n

The decision between these two possibilities requires delicate

handling.* Let us first remark that, — being given, these two

Oil-

equations give different values for—- except in the case where

* Vahlen, loc. cit., overlooks the necessity for making both assumptions.

1702 C
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8 = -• As 6 changes continuously the correct value for —
cannot leap from being a root of one equation to being the

root of the other, except, perhaps, when 6 passes through

the value - . First take r
t
= 0,

m = 1, n = 2, 6 = tt, m
1
= 1, ?ij = co

,

since the circles on (P
1
P

2)
and (Q1 Q2 ) can be simultaneously

inverted, into parallel lines. Here, surely,

m m
l _ 1

n n
x
~ 2

and this will hold for 6 > - • On the other hand, if we take

r
i = r2>

m — 1, n = co.

To find -J notice that if two extremely small circles lie

without one another and be inverted into concentric circles,

the one becomes tin}', and m
1
= 1, % = 2.

Theorem 37.] Given two non-intersecting circles which

possess the property that a ring of n circles may be constructed

all tangent to them and successively tangent to one another

making m complete circuits, and if two circles of the ring

touch the original ones at points on one circle orthogonal to

these two, then the original circles are members of a ring of nt

circles making m
x
complete circuits, all tangent to the two

of the first ring, where

m m, 1
~ + — =o' 7

)
ft ?lj 2

v
'

This theorem so far astonished Steiner that he called it one

of the most remarkable in all geometry.*

We know that two mutually tangent circles can be inverted

into parallel lines. Let us do so for two internally tangent

circles c, c. The circles tangent to these two lines will all

have the same radius p ; let c ' be that circle of the system

whose centre lies on the perpendicular on the lines from the

* Collected Works, vol. i, p. 136.
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centre of inversion, the circles of a system of successively

tangent circles, which touch the parallel lines shall be

co c
i

c-2--- ck> their centres C ' C/ ... Ck\ Inverting back
we get our ox-iginal circles with the system of circles c c

x
... c&

tangent to them and to one another in succession. The centre

Fig. 3.

of cn shall be Cn , the perpendicular thence to the line of

centres of the original circles shall meet the latter in Dn .

Since Gn and Gn
' are collinear with the centre of inversion

[GnDn) = 2»/
(0Cn ) (UCn

-)

'

But since is a centre of similitude for Ga and G,'

(OG,y
Pn (0Gn )

CHDn = 2nPn . \8)

Theorem 38.] Given two circles c and c externally tangent

to one another and a third cirde c having as diameter the

sum of tlieir collinear diameters. Then if a series of circles

e e
1
...fj he all dmwn tangent to c and c, and successively to

one another, the distance from the centre of cn to the line of

centres ofc. c' is n times the diameter of cn .

This theorem is sometimes called the ' Ancient Theorem

'

of Pappus. Steiner deduces a number of rather dull corrol-

laiies therefrom.
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The figure bounded by the halves of c, c, c which lie on one

side of the line of centres was first studied b}T Archimedes

and named by him 'The Shoemaker's knife '.* Let A be the

point of contact of c and c, B that of c and c , while B is

the point of contact of c and c . A perpendicular to AB
at B shall meet c again in E. The following theorems are

then easily proved.

f

Theorem 39.] The area of the knife is equal to that of the

circle on (BE) as diameter.

Theorem 40.] The perimeter of the knife is equal to the

circumference of c.

Theorem 41.] The point A has the same power with regard

to all circles which touch c internally and BE on the same

side as c .

Theorem 42.] The two circles which touch c internally

and BE on opposite sides while one is externally tangent to

c and the other to c are equal.

Theorem 43.] The common tangent to the first of these

and to c passes through A.

Theorem 44.] Thecircle on (BE) as diameter passes through

the p>oints wliere c and c touch a common tangent, while its

centre is the intersection of this tangent with BE.

We next pass to an invariant of two circles. Let them be

CjC
2
with centres G^G^ and radii p1 pi . The centre and radius

of inversion being and r,

(OCA = (OCy-l- (0C,') = (0G
2
/J.

,

Pi Pi

(c/r/)2 = oca + oc2

' 2 -2(oc
1
') (oca cos^c/oo,

= (oca p

-f*
+ (oca p£ + ^/f [(ocy + (OGA -(W]

P\ p% P\ Pi

* Cf. Heath, The Works of Archimedes, Cambridge, 1897, pp. 304 ff.

(• For an account of the authorship of the theorems concerning the knife,

see Simon, Ueber die Entwickelung der Elementar-Qeometrie im XlXien Jahrhundert,

Leipzig, 1906, pp. 87, 88.
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from these and formula (5) we find

«YC/)s
-fr/-p/)* _ +

iC,c^- (^- Pl)^
4p*V *p*pi

*HPi 4p2Pi

The numerators of the left-hand sides of these equations are

the squares of the direct and transverse common tangential

segments, when these exist. Suppose that we have four

mutually external circles cu c*s , c3 , c± tangent to a fifth.

Either all are on one side thereof, or two on one and two on
the other, or three on one and one on the other. We may
invert them into four mutually external circles e/, c2

'

s c3
'
5 c4

'

tangent to a line. Let them touch it at points P/, P2
',

P3, -P4'j which will he connected by the identity

(A
;
JV)(^A')+(Ar^'H^??/)+(iV?/)(^^') = 0.

H txg indicate a common tangential segment of cx and c
g ,

we may write this

Here ti;
' must indicate a direct common tangential segment

if Cf and e-'touch the line on the same side, otherwise a trans-

verse one. Dividing through by the square root of the product

of the diameters we get a form invariant for inversion, hence
dropping the primes and multiplying the diameters out again,

we get Casey's condition for four^circles tangent to a fifth.*

Theorem 45.] Four mutually external circles tangent to

afifth are connected by a relation

tatu± t
i3

ta± '14*33 = °- @)

Here all the £y's denote common direct tangential segments, or

those connecting two pairs with no common member denote

direct tangents and the other four transverse, or those which

lack one subscript denote direct, and those which include it

transverse tangential segments.*

* See his greatly overrated Sequel to Euaid, Loudon. 1831, p. 101. The
ingenious writer makes two characteristic mistakes. He assumes that in

proving the theorem he has also proved the converse. Secondly, he omits
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Theorem 46.] If a convex quadrilateral be inscribed in

a circle, the sum, of the products of the opposite sides is equal to

the product of the diagonals.

This is Ptolemy's famous theorem. Let us proceed to the

converse of 45]. We assume that we have four mutually

external circles connected by that relation. We shall call

them c
1
,c

2
,c

s
,ci and suppose that p1

is the smallest radius.

We shrink the radius of c
x
by p^ and shrink by that same

amount the radius of each of the given circles whose common
tangential segment with c

2
is direct, but increase the radius

by Pj if the tangential segment be transverse. We thus get

four circles c/, c2
', c

3
', c/, whereof c{ is a point-circle 0/ con-

nected by

,
b
12 ''34 T <13 b

i2 X "14 43 — "•

These circles are still mutually external. Let us next invert

with Cj' as a centre, we get three new circles c2
", c3

", c4
",

4. » _ J. / / Pa Pi 4. » _ v IH_
34 34 V p.W 12 Vft"

^34 i^42 +% = "

Let us show that these three circles, which are also external

to one another, will touch a line. Once more shrink the

smallest circle until it becomes a point shrinking or increasing

the radii of the other two as before. We have a point so

related to two mutually external circles that the sum of its

tangential segments with them is equal to a common tangential

segment of theirs. If the point lie on a common tangent to

the two circles such a condition will be fulfilled, and if it

move off on a circle concentric with the one, the condition will

be unfulfilled until it fall again on the like common tangent.

Hence the point lies on a common tangent to the two circles

;

hence c
2
", c3

", c4
" touch a line, c

z
', c/, c4

' touch a circle

through Cj', and clt c2 , c3 , cA touch one circle.

to require his circles to be mutually external. But in that case it is easy

to find four circles tangent to a fifth whereof one surrounds the three others

and has no common tangential segments with them, in the real domain.
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Theorem 47.] If there exist among the common tangential

segments offour mutually external circles an equation of the

type [9) with the same requirements auto direct and transverse

tangents as there obtained, then these four circles are tangent

to a fifth*

Theorem 48.] If the sum of the products of the opposite

sides of a convex quadrilateral be equal to tlie product of the

diagonals, the vertices are concyclic.

As a second application of our formula (9) let us prove the

justly celebrated theorem of Feuerbach.f

We start with a triangle with the standard notation ex-

plained on p. 21. Construct the three altitude lines, and let

AfE meet the circumscribed circle again at B
t

. We have

then

4-B
{
AjAk = 4-BiAiA* = l~4-A k = 4-BjAjAk .

This shows that Ha^ is mid-way between H and i^. If we
take H as a centre of similitude and a ratio ^, the given

triangle becomes that whose vertices are half-way from H to

the given vertices, and the circumscribed circle is transformed

into the circle through these three half-way points, and also

through the feet of the altitudes. These sis points are thus

concyclic. Again, if we take the AHA:Ak the orthocentre

is Af ; the feet of the altitudes are the same points as before,

the points M;, Mk are half-way from the new orthocentre to

two of the vertices. We thus get the first part of our theorem,

namely, the feet of the altitudes of a triangle, the middle

points of the sides, and the points half-way from the ortho-

centre to the vertices lie on one circle. We next construct

the. escribed circle c,- tangent to \A,A k) and to the prolonga-

* This proof is substantially taken from Lachlan, Treatise on Pure Geometry,

London, 1S93. pp. 245 ff. See also Allardice, f Note on Four Circles Tangent

to a Fifth', Proceedings Edinburgh Ua'hetiiatkal Siclvy. vol. xix, 1901. Neither

writer takes the pains to require the circles to be mutually external. It

might thus happen that Cj surrounded c., and the proof would break down.

+ First published in 1S2-. The number of proofs in existence is almost

transfinite, a recent writer adding nine. Swayama. ' Xouvelles demonstra-

tions d'un theorems relatif au cercle de neuf points', L'Enseignement

maihcmatique, vol. xiii, 1911.
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tions of (A
i
Aj) and (AfA^ beyond A- and A

]c
respectively.

Let x be the tangential segment from A- to this circle. The

equality of the two tangential segments to this circle from A^

gives

ak + x = aj + a
i
—x,

x = S— Cli \ajA— JO — a— Cv,!

Let us take this as our circle c
4 , while the middle points of the

sides shall be the point- circles c
1
,c

2
,c3 ,

Hi — -2 ahi Uh1 1 — 2 v"/£! Hlc — ~2 Uj> tjlt — 2'

hi = ± i (
ak ~ a

j) > hi = \ (
a

i + a
j)> hi = *(<*» + a

u)>

hjhci—hntji+kitjic — °-

A similar relation will be found connecting the new circle

with the inscribed circle; we thus get the theorem in its

entirety.

Theorem 49.] The middle points of the sides of a triangle,

the feet of the altitudes and the p>oints half-way from the

orthocentre to the vertices lie on a circle which is tangent to

the inscribed and the three escribed circles.

This circle is, for obvious reasons, called the nine-point

Fig. 4.
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circle. Let us give another proof that it touches the inscribed

and escribed circles.*

Let the circles c2 and c3 be escribed to the given triangle

and touch the line AiA3 in the points P2 and P3 respectively.

Let S be the point of concurrence of c3c3 (the line of centres),

A3A3 , and the fourth common tangent to c2 and c3 . Ax and jS

are thus the centres of similitude of c3 and c3 . Moreover, if we
recall the original definition of centres of similitude, we see

that Ax and S are harmonically separated by C3 and G3 , or

Ha^ and S are harmonically separated by P2 and P3 . The
tangent atM

1 to the nine-point circle makes with M1H3 , and

so with ^jjl3s an angle equal 4-Aa and so is parallel to the

fourth common tangent. The nine-point circle is thus the

inverse of the fourth common tangent in a circle whose centre

is J/j and radius is equal to (J^P^) = (JfjPg). The nine-

point circle must thus touch the escribed circles cs , c3 , which

are anallagmatic in this last circle. By similar means we
show that it touches the inscribed circle also.

If a triangle have an obtuse angle, the orthoeentre lies

without it. The feet of the altitudes lie in pairs on the three

circles on the sides of the given triangle as diameters. The

orthoeentre has the same positive power with regard to these

three, so that the product of the distances from the ortho-

centre to each vertex and the foot of the corresponding

altitude is a constant positive number.

Theorem 50.] The circumscribed and nine-point circles

of an obtuse-angled triangle are mutually inverse in a circle

whose centre is the orthoeentre.

It is to be noted that this is the only circle with regard

to which the given triangle is self-conjugate in the sense of

modem geometry.

Feuerbaeh's theorem may be extended in a number of

ways. The second part states that the inscribed and escribed

circles of a triangle touch another circle. By inversion this

* Fontene, ' Sur le Theoreme de Feuerbach ', JfbuwBes Annates de Uttikc-

uuUiques, Series 4, toL fiii, 1907. This proof possesses the advantage over

the other of showing where the points of contact are.
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will hold if we replace the triangle by a curvilinear one
formed by concurrent circles. Let us try to remove the

restriction that the three original circles should be concurrent.

We start with three inter-

secting circles c1; c
2 , c3 , the

intersections of CsC^ being-

points AfA/. Eight circular

triangles are thus formed

whose angles are connected

in simple ways. It is in-

tuitively evident that a

circle may be inscribed in

each of these triangles. In

particular let us take the

triangle A
1
A

2
A

3
which we

assume to be convex, and

thethree triangles A/, A:,A k

which we shall call asso-

ciated with it. The four

inscribed circles shall be c ', c{, c
2
', e

3
'. If we write t

{
-

to indicate a direct common tangential segment and tj a

transverse one, we have three equations of the type

Fig. 5.

Let us determine the signs more specifically. In the arcual

triangle A 1% A 2 , A3 two of our circles c ', c( touch the circle of

each side between the vertices, but with opposite contacts.

Suppose, to fix our ideas, that in making the circuit of- the

triangle we meet the vertices and points of contact with the

tangent circles in the following order

-^i c3 c A
2
c c

x
-a.

3
c cs :

We have the following orders on our original three circles :

on



i ELEMENTARY PLANE GEOMETRY 43

These will yield the following equations

:

*©2 *31 = '01 *23 "*~ *03 T2 -

'03 '12
=

*oi %a + '02 ^a 5

/ 'r
-
'

—

t
rt~'-i-t~'t

'

l
03 l31 — '01 lS3 T «03 l12 •

Hence

*os 'is — '01 '23 + *os ^31 •

We thus get Hart's theorem.*

Theorem 51.J The inscribed circle of a convex circular

triangle and those of three associated triangles are touched by

a circle which has contact of one sort with thejirst. and of the

opposite sort with the other three.

This new circle is called a Hart circle of the first three.

It may coincide with one of the four inscribed circles. It will

exist even when the given triangle is not convex ; our proof is

not, however, necessarily valid in that case, for the four may
not lie external to one another. These delicate considerations

are usually ignored in the geometrical treatment of this

subject.

Let the Hart circle be called e4 . The following will give

the system of contacts.

Cf,' touches c15 cs , es , c4 internally.

c
i' jj f2' <% iutemally c1; ct externally.

*"B » ^3' **1 " ^2! Ci «

^S » fl! fa :» C3' Ci :-'

The essential thing to notice is that c,- has an opposite sort of

contact with c/ from what it has with c ', cf, cjf.

Theorem 52.] If four cin'les be given whereof one is the

Hart circle for a convex circular triangle formed bu the

other three, then each of the four is a Hart circle for the

remainder.^

* 'On the extension of Terqnem's Theorem ", Qtiaiieriy Journal ofMathematics,

toL iv, I860. For a much simpler proof see p. 165, foot-note.

t For an elaborate treatment of this and similar theorems see an unusually

badly written article by Orr, 'The Contact Relations of Certain Systems

of Circles *, Transactions Cambridge FkOosQpkical Sedetii, vol. xvi, 1S9S.



44 THE CIRCLE IN ch.

§4. Circles related to a Triangle.

Suppose that two circles are so related that a triangle can

be inscribed to the one and circumscribed to the. other. Their

radii shall be r and p respectively, while the distance of their

centres and 0' is d. Let 00' meet the circumscribed circle

Fig. 6.

in BC. Let AjA h touch the inscribed circle in A/, while 0'A
{

meets A- A h
' in A(' the middle point of (Aj'A k') and the

inverse of A
i
in the inscribed circle.

Theorem 53.] If two circles be so related that a triangle

inscribed in the one is circumscribed to the other, then the

former is the inverse in the latter of the nine-point circle of

the triangle whose vertices are the 'points of contact.*

The nine-point circle is circumscribed to a similar triangle

of one-half the size of the original, so that its radius is one-half

that of the circumscribed circle. If the inverses of B and G
be B" and G" respectively,

(O'B") = -jLr = p~, (0'G")=
p2

,

(O'B) r-d v
' r + d.

(B"G") = P = -^-. + -?—-.
v

'
r

r + d r-d

* The treatment of this and the four following theorems is taken direct
from Casey, loc. cit. , Book VI.
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Theorem 54.] The radii of the circles circumscribed and
inscribed to a triangle are connected by the equation

1 1 1

+ „7-^=7> (
10

)r + d r—d p

where d is the distance of their centres.

This necessary condition is also sufficient if r be greater

than p, for the inverse of the nine-point circle of the triangle

whose vertices are the points of contact with the smaller circle

of a triangle circumscribed thereto and having two vertices in

the larger circle will be that larger circle which thus goes

through the third vertex. Let us pursue our inquiry further

and find a necessary and sufficient condition that it should

be possible to inscribe a quadrilateral to one circle which is

circumscribed to the other. We need two preliminary

theorems.

Theorem 55.] If a variable chord of a circle subtend a

right angle at a fixed point not on the circle, the locus of the

intersection of the tangents at its extremities is a circle.

This locus is, in fact, the inverse of that of the middle

points of the chord. The sum of the squares of the distances

of this middle point from the fixed point and from the centre

of the circle is easily seen to be constant, so that it traces

a circle about the point half way between the centre of the

given circle and the given point.

Suppose, now, that we have indeed a quadrilateral inscribed

in one eircle and circumscribed to the other. The sum of

the opposite angles is tt, double the angle formed by the lines

connecting opposite points of contact.

Theorem 56;] If a quadrilateral be inscribed in one circle

and circumscribed to another, the lines connecting the points

ofcontaH of opposite sides are mutually perpendicular.

Theorem 57.] If two circles be so related that a triangle

or quadrilateral may be inscribed in the one and circum-

scribed to the other, then an infinite number of such triangles

or quadrilaterals may be found, one vertex being taken at

random on the other circle.



46 THE CIRCLE IN CH.

Let us take this random vertex on the line of centres : call

it A
x ; the opposite vertex A

3
-will clearly be on this line also.

The pairs of sides which do not meet in these vertices and are

not opposite to one another are mutually perpendicular, as

are the radii of the inner circle to their points of contact.

If thus A{ and A
3

be the intersections of the line of centres

Fig. 7.

with the chords of contact to the inner circlo of the tangents

from A
x
and A

3 , i.e. the inverses of these points

+
l

(r-df (r+d) 2 ?
As before, we have no difficulty in showing that this necessary

condition is also sufficient, hence

Theorem 58.] If r and p be the radii of two circles, the

former surrounding the latter, while d is the distance of their

centres, a necessary and sufficient condition that it should

be possible to construct a quadrilateral inscribed in the one

and circumscribed to the other is that *

1 1 _ 1

(r + d)*
+

(r-d) 2 ~f'
(1 1

>

* There is a considerable body of literature connected with equations 10

and 11 ; see Simon, loc. cit., pp. 108, 109. They are originally due to Euler.
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Continuing with the inscribed quadrilateral of vertices

A
x , As , As , At , let P be any point of the circumscribed circle.

Pre. &

If Pfj indicate the distance from P to the side-line A
t
Aj,

we have

PiaP3i _ sin %-PAxA % sia/LPA3A4 = 1.

PsiPa sin 4-PAjAt sin^_PJ.3J.s

Theorem 59.] The product of the distancesfrom a point on
a circle to one pair of opposite side-lines of an inscribed

quadrilateral is equal to the product of the distances to the

other pair of side-lines, and to the product of the distances

to the diagonal lines.

If a polygon of an even number of sides be inscribed in

a circle, it may be divided into one or two less sides and

an inscribed quadrilateral. We thus get by mathematical

induction
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Theorem 60.] If a polygon of a n even number of sides be

inscribed in a circle, the product of the distances of any point

of the circle to the even numbered side-lines is equal to the

product of its distances to the odd numbered ones.

Theorem 61. J If a polygon be inscribed' in a circle and

tangents be drawn at all of its vertices, the product of the

distances of any point of the circle from these tangents is

equal to the product of its distances from the side-lines.

The circle circumscribed to a triangle is, on the whole,

Fie. 9.

more interesting than the inscribed one. Let us take a

triangle in standard notation and consider the pedal triangle

Pa
Y
Pa

2
Pa

3
of a point P Let PA

1
meet the circumscribed

circle again in B
1

. To fix our ideas we shall take P outside

the triangle, near Az ,

iH Pa1
Pa

i
Pa

z
= i.Pa1

PPa
i + ^.Pat

Pa
l
P + ^Pa iPa z

P.

Since, however, the quadrilateral PPa
1
Pa

2
A

3
is cyclic, i.e.

inscriptible in a circle,

4LP«iPa 2
Pa

3
= ii-^.A

i
+ 4^A 3

A
l
P +^A

1
A.

i
P,

= tt-4_PA
s
B

1 ,
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APa^Pas = J (PotPaJ (Pa^Pa^ sin £.?AZBX ,

(PajPaJ= (PA{) sin £4f
. (P^^sin ±.PAzBt

= (P^sin^.A %

i"=S

AP^Pa^ = \(PAJ{PBdO ^ 4^,-
t=i

= ±i[>4-(OP>8]IIsin^^.
t = i

Theorem 62.] The locus of the points whose pedal triangles

with regard to a given triangle have a given area is a circle

concentric with the circumscribed circle.

Theorem 63.] The locus of the points so situated that the

feet oftheperpendicularsfrom them to the side-lines ofa tria ngle

are coUinear is the circumscribed circle to the given triangle.

This line is called the pedal or Simson line of the given

point
>

Let the value of %-A^AiP be o^, while

4-AJA%T= a/,

1=3 .

n Sill a-~K=-1. (12)
. . sina/ v '

Conversely, if three lines be drawn through the three vertices

of a triangle in such a way that this equation is satisfied,

these lines will be concurrent or parallel. If, then, starting

with P we take the reflection of A
t
P in the bisector of

%-AiAjA];, we get three other lines concurrent in a point P'

called the isogonal conjugate of P with regard to the given

triangle, or else three parallel lines.

Theorem 64.] Every point not on the circumscribed circle

to a triangle has a single definite isogonal conjugate. The

relation between the two is symmetrical.

Let as consider the pedal circles of two isogonally conjugate

points, i.e. the circumscribed circles of their pedal triangles.

(AjPah =
cost*,- ^ {AjPaJ

(A]Pa^) «"«/ (A^ad'

(AjPaJ x (AjPa/) = (AjPaJ x (AjPak').
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The points Pa
{ , Pa/, Pak , Pa

Jc

' are thus concyclic. The six

points Pa
{ , Pa/ could not lie by fours on three circles, for the

common chords of these circles would be the side-lines of

Fig. 10.

the triangle, instead of being concurrent. Hence the six

points are concyclic. We thus get a generalization of the

first part of Feueibach's theorem.

Theorem 65.] Two isogonaUy conjugate points have the

same pedal circle.

Theorem 66.] Iffrom the foot of each altitude of a triangle

a perpendicular be dropped on the remaining side-lines, the

six points so determined are concyclic.

A generalization of 65] is found as follows. It is not

necessary in the above proof to assume 2jLPPa-.4j. = -
;

we merely need ^LPPa^y = %_FPa/A u
= d.

The &AjPPa
{

is thus similar to AAjP'Pa,/,

(AjFa*/) x {A~P~a/) = (I7iX) x (A~jPa
ĉ).

Hence Pa it
Pa/, Pak , Pak

' are concyclic, and, as before,
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Theorem 67.] If through a chosen pAnt not on the circum-
scribed circle of a triangle three lines be drawn each making
a faced angle with one side-line of the triangle so oriented as
to ti-ace the whole circuit in one sense, and if through the

isogonaUy conjugate point three others be drawn making
the supplementary angles ivith their oriented side-lines, the

six points where the lines of the two concurrent triads meet
the corresponding side-lines are concyclic*

Let us see where the pedal circle of a point P meets the

nine-point circle. The intersection of the lines Pa:Pak and
MjM} shall be A

{. We intend to show that the three lines

A
tPaf are concurrent in a point L of the nine-point circle.

L, A,

Fig. 11.

Construct the circle ^l^Mi/j. It will contain which,

parenthetically, is the orthocentre of the AM
1
MiM3 , and

is diametrically opposite to A
t
. Let PO meet this circle

again in L
t . The points LfPajPa^ are the vertices of three

right triangles on (At
P) as common hypotenuse, and so are

concyclic with At
and P. This circle will also contain Pa/,

the reflection ofPat in MjM^. Moreover, the points A^Baf

* Cf. Barrow, 'A Theorem about Isogonal Conjugates', American Mathe-

matical Monthly, vol. xz, 1913, p. 25.

d2
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are collinear. For L
{
lies on the circles A

{
M.^Mk , A^a^Pa^,

hence the feet of the perpendiculars thence to the four lines

AfMj, A
t
Mk , MjMh , Pa-Pak are collinear by 63], so that L

{

lies on the circle A
i
MkPak .

lA
i
L

i
Pak = LA^M^Pa^.

The pentagon A
i
PPakPai

'L
i

is inscriptible, as we have just

seen, and

-lPakLi
Pa{=-lPakA i

Pa
i
'=lPa

i

fPPak = I A^Paj,,

the sides being perpendicular each to each.

-S-AiLiPaj,. = lPak , Z^Pa/.

Hence A
i
L

i
Pa{ are collinear. Now let the reflection of L

t

in MjMk be L. It lies on the line A
i
Pa

i
and also on the nine-

point circle. Also

(AM (
Ai^i) = (

A ih) M^/) = (^i-Pa/) (AiPak).

Hence L is the intersection of the nine-point and pedal circles.

If P move along a fixed line through the points L
t
L remain

fixed, whence *

Theorem 68.] If a point move along a fixed line through

the centre of the circumscribed circle, its pedal circle will

contain a fixed point of the nine-point circle.

The other intersection of the nine-point and pedal circles

will be similarly obtained from the isogonal conjugate of P,

whence

Theorem 69.] A necessary and sufficient condition that the

pedal circle of a point should touch the nine-point circle is

that the point and its isogonal conjugate should be collinear

with the centre of the circumscribed circle.

We deduce Feuerbach's theorem, second part, at once from

this by noticing that the centres of the inscribed and escribed

circles are their own isogonal conjugate.

* This theorem and the next are due to Fonteng, ' Extension du th6oreme
de Feuerbach ', Nouvelles Annales de Mathemutiques, Series 4, vol. v, 1905. The
proof here given is that of Bricard, under the initials E. B., and inserted in

the next volume of the same journal.
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We have already noticed that the orthocentre of a triangle

is one centre of similitude for the nine-point and circumscribed

circles. The other centre of similitude will be the harmonic

conjugate of the orthocentre with regard to the centre of the

nine-point circle and the point 0. This must be the centre

of gravity, since the foot of the perpendicular from there on

A: A j. divides (AjA k) in the ratio 1 : 2.

A,

Fig. 12.

Theorem 70.] The orthocentre and the centre of gravity are

centres of similitude fur the nine-point and circumscribed

circles, tlie ratios of similitude being 1 :2 and —1:2 respec-

tively.

There is another circle much less well known than the nine-

point circle but possessing a number of analogous properties.*

Let the inscribed circle touch (AjA^) in A{ while the escribed

circle corresponding to this side touches it in A".

{A -A!) = s-aj, {AyAS) = (s -a t),
(AjA/') = s-ah ,

(A h A t
") = 8-aj.

The lines A
t
A{' are thus concurrent in a point X.-f J shall

* Spieker, 'Ein merkwfirdiger Kreis um den Sehwerpunkt des Perimeters

des geradlinigen Dreiecks als Analogon des Kxeises der neun Punkte
',

GruaerPs Archiv, vol. li, 1870.

f This is Nagel's point : Vntersudmngen uber die wichtigslen ::'in Dreiecke

gehtirigen Ereise, 1836 (inaccessible to present author). It corresponds to

Gergonne's point where meet lines from the vertices to the points of contact

of the opposite sides with the inscribed circle.



54 THE CIRCLE IN CH.

be the centre of the inscribed circle. Applying Menelaus's

theorem to A
i
A-A-\ and the line Aj

c
A

]c

".

A,

A/ M

We have further

Fig. 13.

W') UjA k
") (AjA k)

(NAf\A
j
A h")'(A {

"A k)

(NA{>) = 8-a
t

(NAd ' a< '

(NA
t)

_cH
(AfAi) s

'

= 1,

(AtHai)^, (JA
i
') = ^,
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{A
j
Ha

i
) = ak cos£-A i

,

(HatA/') = (s-ak)-akCos^Aj = Ls [i«._ (s_ a )];

The triangles ^.-fli/^," and JJ /J/
f
. are thus similar.

{A^T) ~ ~2s
~ *

j37I7J
: («™i) = 1 (^.)-

Hence (JiT) meets (A
{
J/,) in J/, and is divided internally

thereby in the ratio 1:2. We see also by 70] that OJHX
axe the vertices of a trapezoid whose diagonals meet in 21,

(JO) = i(H2f).

Now let P be the middle point of (JiV). Join A{ with J
and Mf with P, and draw A(M

it

(JP) = | (JIT), (JJ/) = § (XY).

It then appears that if we take the centre of gravity as centre

of similitude, a ratio of —1:2. the following are interchanged

Mi~Ah O^H, J~X.

Theorem 71.] The centre of the inscribed circle is the

Nagd point of the triangle whose vertices are the middle

points of the sides.

We have further

(JM) _ (AjM) _ 2

(MP) ~ (MMJ ~ 1

*

Hence AtJ is parallel to J/jP, or lf
(
P bisects %-MjM

i
Mk

so that P is the centre of the circle inscribed in the triangle

M^M%MZ . Its radius is one-half that of the inscribed circle,

and N is a centre of similitude. We shall call this the

P circle, and exhibit its analogies to the nine-point circle

as follows

:
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Nine-point circle.

Circumscribed to the tri-

angle whose vertices are the

middle points of the sides.

Radius one-half that of

circumscribed circle.

Centre of gravity and

orthocentre are internal and

external centres of similitude

for nine-point and circum-

scribed circles, ratios being

— 1:2 and 1 : 2 respectively.

Nine -point circle passes

through points half-way from

orthocentre to the vertices of

the triangle.

Nine-point circle cuts the

sides of triangle where they

meet the corresponding alti-

tudes.

P circle.

Inscribed in the triangle

whose vertices are the middle

points of the sides.

Radius one-half that of

inscribed circle.

Centre of gravity and

Nagel point are internal and

external centres of similitude

for P circle and inscribed

circle, ratios being —1:2 and

1 : 2 respectively.

P circle touches the sides

of the triangle whose vertices

lie half - way between the

Nagel point and the vertices

of the given triangle.

P circle touches the sides

of the middle point triangle

where they meet the lines

from the Nagel point to the

corresponding vertices of the

given triangle.

To prove the last statement on the right let us suppose that

N- is the point of contact of (MjMk ) with the P circle. Let
JA{ meet A(N in M(,

(A/Mi) = bat
-(8- aj) = \{ah - aj),

(A/A/') = (ak~aj
) = 2(A

i
'M

i).

Hence, since JM
{
is parallel to A

t
A{\ J is the middle point

of (A{M{),

(JM{) = (A[J) = P =2 {PN{), PNS
II
JM{.

Ni is thus the middle point of (NM{) and on M
j
Mk ,
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Nine-point circle. P circle.

Meets the lines through the Touches the sides of the

points mid-way from the triangle whose vertices are

orthocentre to the given ver- half-way from the Nagel point

tices parallel to the corre- to the given vertices at the

sponding side-lines where they points where each meets the

meet the perpendicular bi- line from the centre of the in-

sectors of the given sides. scribed circle to the middle

point of the corresponding

sides of the original triangle.

The last statement is at once proved by noticing that JM
i

bisects (NA{).

Theorem 72.] The nine-point circle passes through twelve

notable points, the P circle touches six notable lines at notable

points. Each is obtained from a notable circle by either of

two similarity transformations, the ratios being —1:2 and

1 : 2, while the centres of similitude are notable points whereof

the centre of gravity is one.

Returning to the Nagel point we saw that

(NAj') s -at {NAj) a_i

(NAJ a, ' {A!'A!) s'

2 oS
The altitude (A

i
Ha

i)
has the length -!—

. Hence the ortho-

gonal projection of (A
i
W) thereon has the length 2 p. Again,

if i/'M/'i/" be the vertices of the triangle whose side-lines

each pass through one of the original vertices parallel to the

opposite side-line, we see that iV" is the centre of the inscribed

circle to LA"'A^"A^". Since A
{
J passes through the

middle point of the arc AjA k of the circumscribed circle,

A{"N passes through the reflection of this point in AjA k .

Call this #/; the points Af'Aj, H2L/A k are concyclic, since

the reflection of H in A:Ak is on the circumscribed circle, and

HA(" is a diameter since if and A(" are at the same distance

from the diameter 1 to A- A h £. HSL/N = 4- HZ{A{"= \
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Hence

Theorem 73.] The circle on the segment from the Nagel

'point to the orthocentre as diameter passes through those three

points on the altitudes whose distances from the corresponding

vertices are equal to the diameter of the inscribed circle, and
the reflections in the side-lines of the given triangle of the

middle points of the corresponding arcs of the circumscribed

circle.

This circle is known as Fuhrmann's circle.*

Pig. 14.

Let us continue to study the relations of a triangle to the

circumscribed circle. Let Afi meet the circle again in A
i
so

that (HHa^ = (Ha^A^. Let B be any other point of the cir-

cumscribed circle ; BA
i
shall meet AjA

1e
in R. Draw HR. The

Simson line Ba:Ba
lc
of B shall meet BH in B', while it meets

BAi in B". Let RBa
{
meet HR in B'". We see from the

cyclic quadrilateral BBaiBa^Aj,

LBa
lt
Ba

{
B = iBa^AjB,

lB"BaiB = lAjAiB = lBaiBB".

* Synthetische Beweise planimetrischer Sdtze, Berlin, 1890. This and the

Brocard circle presently to be discussed are special cases of a more general

circle discovered by Hagge, 'Der Fuhrmannsche Kreis und der Brocardsehe

Kreis ', ZeilschriftfUr mathematischen Unterricht, vol. xxxviii, 1907.
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The triangles HRJ h Ba-
t
B"B are similar isosceles triangles.

4- BaiB"B = t B"RBai + t- £"BaiR,

= 4-HRAi = 2^Ba;RB,

tBa
i
RB"=2LB"Ba

i
R

(BB") = (Ba-B") = (B"R)

Ba
{
B"

||
HR.

Theorem 74.] The middle point of a segment bounded by

a point of the circumscribed circle and the orthoccntre lies on
the cor respondivy Simson line and the nine-point circle.

If we drop a perpendicular from A
i
on the Simson line of B

its lesser angle with A
t
A- will be equal to

LBBa
li
Ba

i
= lBA

;
A h .

Theorem 75.] The isogoncd coiijugate with regard to an
angle of a triangle of a line through the vertex of that angle is

perpendicular to the Simson line of the second intersection of

the given line with the circumscribed circle.

Let us next take a fourth point A± on the circumscribed circle,

let Hi be the orthocentre of the AA
t
A A

lc
. The line from M

t
to

the middle point of (H^l
;)

bisects (i^O), being a diameter of the

nine-point circlo, and (-4j-H) = 2 {0M
;
). Hence, in our present

case, (AjHj) = (A-H;), and their lines are parallel. We assume

that A
i
and A- are on the same side of A

1: Ai.

Theorem 77.] If four points be taken upon a circle, the

nine-point circles of the four triangles which they deteiinine

three by three are concurrent in a point common to the Simson

line of each point with regard to the triangle of the otliers.*

Let us for the moment call this the point <S'.

Theorem 78.] The perpendicular from the middle point of

(AjAA on A k Ai passes through S, and the distance from S to

* Laehlan, loc. cit., p. 69, assigns the credit of this theorem to the Cam-

bridge Tripos of 18S6. It will be found much earlier in rather a clumsy

article by Greiner, ' Ueber das Kreisviereck', Grunerts Archiv, vol. Ix, 1S77.

For this, and the five following without proof, see Kantor, ' Ueber das

Kreisviereck und Kreisvierzeit ', Winter Akademie, Siteungsberichte, vol. lxxvi,

section v, 1877.
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the middle point of (A}A •) is equal to the distance from
to A kA t

.

Since the diagonals of a parallelogram bisect one another,

Theorem 79.] The segments connecting the middle points of

the pairs of segments (A
i
AA(A k Ai) bisect one another in the

middle point of (08).

Theorem 80.] Thefour orlhocentres are the vertices ofa quad-

rilateral congruent to that with the vertices A
1
A

2
A

3
A i

and
having the same point S. Each is a reflection of the other in

this point.

Theorem 81.] The centres of the four nine-point circles are

vertices of a quadrilateral similar to that with vertices A
{ ,

and bearing thereto a ratio 1:2. It is inscribed in a circle of

centre S.

We see, in fact, that the distance of each nine-point centre

from S is %r. Remembering the relations of 0M
{
H developed

in the study of the P circle,

Theorem 82.] The centres of gravity of the four triangles

are vertices ofa quadrilateral similar to that having the vertices

A, and bearing thereto the ratio 1 : 3.

§ 5. The Brocard Figures.

Besides the inscribed, circumscribed, nine-point, and P circles

there are many others which bear simple and striking relations

to the triangle. For example, let us construct three circles

through the pairs of points AjA; tangent respectively to A;A k .

If 12 be the intersection of two of these,

t-A 1
Q,A

i
= it-i.A

1 ;
4.A

a
aA

1
= n-4.A

i ;

hence %-A
s
Q.A

2
= w— £.A 3

.

It thus appears that the three are concurrent in 12, which is

called the positive Brocard point of the triangle. Had we
constructed circles through A

i
Ai tangent to A kA i

we should

have had three concurrent in the negative Brocard point 12'.*

* In the study of the Brocard figures which follows we shall lean heavily

on an admirable little book by Emmerich, Die Brocardschen Gebttde, Berlin, 1891.

This gives not only proofs, but bibliography and historical notices. The
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The distinguishing characteristic of these points is ex-
hibited by the equations

4-O.A^, = 4_QA
2
A

3
= ^_OJ

3
^

1
= a>;

4LQ A.
2A X = t&^iA3 = 4-QA

3
A

2
= «'.

Conversely, it is easily seen that if we seek a construction

Fis. 15.

for points to satisfy these equations we shall fall back upon
the Brocard points. To calculate a>

(QAJ-.a^ sin <i>:sin4-A.
2 . (&A^) : a1 = sin2£_(J.

3 -a>):sin£_^l3,

sin^_ J. s _ sin^LfJ.,,— a>)sin£. A.
2

etna) =

sin^.^!

sin2£_A
s

an^A
1
sm.4-A,

sin to sin 2(LA3

l = S

+ ctn 4-^ 3 =2 ctn £- -4,--

The symmetry of this expression shows that q> = &>'.

called the Brocard angle.

113)

It is

Brocardian geometry, like the study of nine-point and P circles, is part of the

modern • Geometry of the Triangle '. This subject has attained colossal pro-

portions almost over night. Tig;\rie, 'La bibliographie de la geonieirie du
triangle ', 3laihesis, Series 2, vol. vi, 1S9(3. estimates that, up to 1SP-5.

603 articles had been written dealing therewith. The subject was only

"started in the s-venties.
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Theorem 83.] The two Brocard points are isogonal con-

jugates of one another.

csc2 oi = csc2 ^_^ 1 + ctn2 J.
2 + ctna ^_J.

3
+2Sctn^_ J4

i
ctii^_^.

1 — ctn ^_4 1
ctn^_ J4

2

ctn 4- A 1
+ ctn 4-A %

'

1 = 3

esc2
oo = 2 csc2

^-^.^. (14)

But ctni£_ A 3
=

Tisin4-Ai

suru, =
4 A2

2 sin2 £_A t
sin2

£.Aj 2 «/«/
i = l

16A 2 = 16sn(s-c^)

= 2 2a{a
i
*-2a

{
*,

2<
»=i j

2 a
*
2a/

*=i

1 = 3

From (13) ctn.

2nsin;M,
i= 1

1=3

2^2

ctn (o =
4 A

(15)

(16)

(17)

(D,ilak) = {&A>) sin a> = a.
1 sin^L.-

(I2X2a
ft)
= 2rsin2 a>-^, (I2'i2'ttA,)

= 2rsin2a>^;
- (18)
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sin^ij-a)) _ sin-^Ak
sin w
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distances from 0. Let A
i
Q. meet the circumscribed circle

again at A,-.

Fig. 16.

4_A k
= 4-A

i
A kA k +^A hA kIj ,

= 4-A
i
A

i
A h + 4-A kAj

A
j ,

= 4_A
i
-a> + a> = 4-A

i
.

We have thus two similar triangles inscribed in the same

circle, i. e.

Theorem 87.] The points where the lines from a Brocard

point to the vertices of a triangle meet the circumscribed circle

again are vertices of an equal triangle.

Since ^AyAjAj = a>, $-A kOAj = 2<o.

We may pass from AA
t
A

2
A

3
to AA

z
A

l
A

i by a rotation

about through an angle whose measure is 2a>. Moreover,

since %_AjA k £L = a>,

Theorem 88.] 12 is the negative Brocard point for the

Theorem 89.] The six triangles A
i
QA k! A k D.Aj are

similar to the given triangles.

We have but to compare the various base angles.

(o^(^) = (-Mj):(^a),

(QA
i
)x{Q.A

i)= -4r2 sin2 o).
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Theorem 90.] The power of a Brocard point with regard
to the circumscribed circle is minus the square of the chord
determined by a central angle equal to the Brocard angle.

»-2 -(OX2)2 = 4ri sina <Bj

012 = r -/l-4sinV

= 'J
COS 3d)

(20)
COSO)

(HOT) = 2r sin-/™5±?. (21)V cos to
V

'

We have here a second proof of 84].

There is another notable point of the triangle which bears

the closest relation to the Brocard points. We reach it as

follows. Let a transversal meet A
(
Aj and AfA^ in two such

points Bk and B- respectively that

4-BtBjAi = 4-Aj, 4-BjBtAi = 2^.
Such, a line is said to be antiparallel to AjAk

* The
distances from the middle point of (jB-Bj) to (AjA^) and

(AiAj) are proportional to or- : at .

The locus of the points is thus a line, called a symmedian.
Incidentally, the tangent to the circumscribed circle at A {

is antiparallel to A-A^.
The three symmedians of a triangle meet in a point called

the symmedian point,f and indicated in our present scheme

by the letter K. It is the isogonal conjugate of the centre

of gravity, and its distances from the side-lines are propor-

tional to the lengths of the corresponding sides. Three anti-

parallels pass through this point, and it is the centre of the

three equal segments determined by each two sides on the

antiparallel to the third.

Theorem 91.] Hie symmedian, point is thecentre of a circle

"meeting each side of the triangle where the latter meets the two

* This term is said to be doe to Leibnitz.

t In German works this is referred to as Grebe's, and in French ones as

Lemoine's point. We are not in a position to decide the question of

priority, so use the usual English term.

17*5 K
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antiparallels to the other side which pass through this sym-

median point.

This circle is called Lemoine's second circle.

Having premised this account of K, let us draw through 12^

a line
||
A

t
Aj and let it meet A

i
A h in K'. The distances

from 12^ to A
i
A h and A

{
As are proportional to sino>,

sin (£_ Aj — u>); K' is at the same distance from A
t
Aj as is 12^;

its distance from A AA k is (%£"') sin#_ As, and so bears to the

distance from Sis, to A
i
A k the ratio ak : a,j = sin $-A h , sin 4-Aj.

The ratio of the distances from K' to AjA k and A i
A h is thus,

V (18),a<:a,.. Z'= Z,.

Theorem 92.] Sl
{
Kj is parallel to As.A^.

We have already seen that

(4fo) = V (^*g/) = a? (
MhA i) _ l

{a
t
A k)

a
* (KjAj

a
* (AjMk)

l

Theorem 93.] The line from A
{

to the positive Brocard

point, the symmedian through As , and the median through A k

are concurrent.

Fig. 17.

Let the point of the circumscribed circle diametrically

opposite to As, be B
{ , and let A

{
Bj meet AjBk in L

{
. We pro-

ceed to prove
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Theorem 94.] The triangles A
1
A.

2
A

3 , L^L^ are similar

figures with the double point D.

4-BjA^A^^AjA^, ^Lh = ^A,.

The quadrilateral £2 A:L:A k is inscriptible, since

4-12LjLh = 4_aLjA k = 4-QAjAj. = «.

Hence 12 is the positive Brocard point for the triangle

L
Z
L

X
L.

2
. To find the ratio of similarity we have

(L^) : (AjA k) = (9.Lk) : (QA^,

= sin (^ — co) : sin to,

= ctn to.

Since A
(
Bj is antiparallel to £,-£,-. we have

Theorem 95.] The centre of the circumscribed circle is tlie

symmedia n point for AL3
L^L

2
.

Let us next notice that we pass from A
1
A.

2
A

3
to L

3
L

X
L,. by

n
rotating through an angle — - about i2, and altering radii

vectores (distances from Q) in the ratio ctn to : 1. It is evident

that we might have reached a similar triangle L3 L(L.2 by

rotating about Qf through an angle £- . This yields the im-
-

portant result

Theorem 96.] The centre of the circumscribed circle and

the symmedia n point subtend right angles at the Brocard

points.

We have from our previous formula (20)

(0Q.) = (Oa'j = r Vl - 4 sin2 a>. (20)

(KQ) = (KQ!) = j- tan co </l-4shi-eB. (22)

(Q.Q.') = 2j-sinco %
7
1 -4 sin-to. (21)

(OK) = 2rseca>\/l — 4sin-co = 2?Vl -3 tan-<u. (23)

The Brocard points play an important role in the problem

E 2
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of inscribing in a given triangle a second similar thereto.

Let P
{ be such a point of (AjAk) that ^AjilPi = 6.

i.P
J
apk = ^A kaA i ,

(OPj) = (QQaf) esc ((o + 0),

= (^*):
Sin a>

sin (w + 6)

The AP
3
P

1
P

2
is thus similar to A i^^j and has X2

as its positive Brocard

point. Conversely, if the

AP
3
P

1
P

2 be similar to

the given triangle, P
{

lying on AjA k , then the

three circles A
i
PjPk will

be seen to pass through

such a point that the angle

subtended there by PjPk

will be w— 4-A it and this

is easily found to be the

common positive Brocard

point for both triangles.

In like manner from the

negative Brocard point and

the angle — we get another inscribed similar triangle

P^P{P
2

. The six points P
{
P- are concyclic by 67]. Let

e
be the centre of this circle

(aP
J
):(aA^ = (ao

l
):{ao).

(flPA : (iiO
s )

is a ratio independent of 6, and since

4-PjQ0
e
= 4-.A k Q,0 the locus of

e
is a straight line. This

line goes through corresponding to = 0, and through the

middle point of (1212') corresponding to = - — a>. It is

therefore the line OK.

Fm. 18.

Theorem 97.] The six points PiP/ lie on a circle whose

centre is on OK.

Such a circle is called a Tucker circle.
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Theorem 98.] The line PfPf is parallel to A
{
Aj.

Theorem 99.] The line P/Pj is antiparallel to A
;
Aj.

The proofs of these latter theorems come immediately from

the definition of the Tucker circle. They also give a means
for constructing a Tucker circle.

Theorem 100.] The three segments (P{Pj) are equal to

one another.

We see, in fact, that the lines of any two are equally

inclined to one side-line of the triangle, and the segments are

comprehended between parallel lines.

Theorem 101.] The triangle formed by the three lines

PjP;' is similar to the original triangle, the double point

being a symmedian point for each.

We see, in fact, that the sides of the two are parallel in

pairs, and in the parallelogram having as three vertices

A}., P: , P{ a diagonal goes from Aj. to a vertex of the second

triangle and, being a symmedian, passes through K.

Theorem 102.] The triangle formed by the three lines

Pi'P: bears such a relation to the original triangle that lines

connecting cori'esponding vertices are concurrent in K.

We have but to find the ratio of the distances of a vertex

of the first triangle from two sides of the second.

Theorem 103.] The perpendiculars on the side-lines of the

given triangle from the corresponding vertices of that triangle

whose side-lines are P/P ; are concurrent in the centre of the

Tucker circle.

Let us take up certain special cases of the Tucker circle

obtained by giving to 8 special values.

8 = 0. The Tucker circle is the circumscribed circle.

= ^—0). The Tucker circle is the pedal circle of the

Brocard points.

8 = £. Here, by theorem 96], the centre of the Tucker

circle is the symmedian point. Moreover, we shall have
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Pi'P/ || PjPit- Hence the lines P{Pj are concurrent in the

centre of the Tucker circle. But these are also antiparallels

to the side-lines of the original triangle, whence,

Theorem 104.] The Tucker circle where 6 — - is the second

Lemoine circle.

The segments which this circle cuts on the sides of the

triangle will be bases of isosceles triangles whose base angles

are equal to the angles of the original triangle.

Theorem 105.] Lemoine's second circle cuts on each side

of the triangle a segment proportional to the cosine of the

opposite angle.

For this reason Lemoine's second circle is sometimes called

the Cosine Circle. The perpendicular from Ka
t
on (PjPk')

bisects the latter at a point of A^^, and the symmedian

point is half-way from there to Ka^ Hence MsK bisects

(A.Ha,).

Theorem 106.] The lines connecting the middle points of

the sides of a triangle with the middle points of the corre-

sponding altitudes are concurrent in the symmedian point.

6 = 0). Here P
t

is equidistant from As and £l, and P/
is equidistant from A h and 12', PjPj

c

'
\\
AsA k . Moreover,

1j-0£lO
g
= a> = |2f_f20l2', and the centre of this circle,

called Lemoine's first circle, is the middle point of (OK).

The three lines P^P/ must be concurrent in the second

Brocard point of AP^P-Pj., or the first Brocard point of

A PiP/Ph
'. This is K since £.ZO <2' = ».

Theorem 107.] In the case of Lemoine's first circle the

segments (P.-Pj.') are bisected at the symmedian point, and
the centre of the circle is half-way from there to the centre of

the circumscribed circle. The symmedian point is a Brocard

point for each of the triangles.

This circle is easily obtained by drawing through the

symmedian point parallels to the side-lines of the triangle.

(P
t
P{) : a{

= (KKas) : (A tHa$ = {KKa,) X -|j
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But, by the fundamental symmedian property. (KEdj) is

proportional to a
t
and

Theorem 10$.] The signups which Lemoim's f.rst circle

cuts on the sides of the triangle are ^ropyrtioitoJ. to the cules

on those tides.

For this reason this circle is sometimes called the trioleate

ratio circle.

There is one more Tucker circle which merits special

attention ; it is. however, more easily approached from another

point of view.

,
A

F:,:. 19.

Let 6{
be the middle point of HcijHai.. and let G

(
Gj meet

AjAj. in Pj, and AjAj. in P/. It is easy to see that the

length of our segment (P,'P .-> i=? equal to the semi-perimeter

of the pedal triangle of H

Z-PtPi'Pi = t-J.,+±-PsPi'Gj = 4-^i+i-Pi'P-,^/

= 4_A
j
+±A i

.

Since

(PtG > = (Haj, Gj)=
t
G;Ha j\

= (P,'6
f

). 2-P* G. P,'= *- 2 $_J^. .

Hence the four points P,-. P,', Py. P are coney elic. and so

all six points P..P' lie on one circle. This circle is called

Taylor's circle. Since the A GP^Pf' is isosceles, the perpen-

dicular bisector of (Pj
(
P,') bisects also 2_ Gj.
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Theorem 109.] Taylors circle is concentric with the circle

inscribed in the triangle whose vertices lie midway between

the feet of the altitudes.

Let us show that Taylor's circle is a Tucker circle. The

three lines A
i
G

i
are concurrent in the symmedian point.

PkP{ ||
A

{
A h since 4.PkP/Aj= ^-^A {

-4-Aj.

The triangles P
{
PjPk , P{P(P- are equal by three sides, and

^PiPjPit = ^-^PkP/Pi=4-A k .

Hence these equal triangles are similar to the original one, and

Theorem 110.] Taylor's circle is a Tucker circle.

The process of finding the corresponding value of 9 is a bit

difficult. Let ©^ be the foot of the perpendicular from
e

on GjGk .

t-Pko9 ®i = 4-PkPjP/=*-o,

(Pt &j = HPkP/) = 1 2 (Ha, Haj),

= | Sc^ cos t- A t
= rn sin £. A,.

6
®

i
is, by 109], the radius of the inscribed circle in a

triangle whose sides are \ a, cos %- A,

(O
e
®

i
)=rncoa^A

i ,

tan0 = — n t&n4-A it

(GjHak) = (GjPk ) = (GjP/) = (GjHa,).

The circle on (Ha
i
Hak) as diameter passes through P/, Pk

.'

Theorem 111.] Taylors circle contains the intersections of

each side-line with the perpendiculars from, the feet of the

altitudes on the other two.*

(AjP/) = (AjHah ) cos ^Aj = a, cob"2|_ 4,-,

(A kPi)
= a

i
cos2£.A k ,

(PiP/) = ^(l-COB^M-COB**-^),
= a, (sin2£. Aj sin2 t-A k - cos2 £. A

j
cos2 £_ A k).

Theorem 112.] The segment cut by Taylor's circle on the

side (A:A k) has the value

at
cos £.^ cos {t- Aj ~t-A k ).

* Cf. Theorem 66.
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The centre of the circumscribed circle is the orthocentre

of the AM
1
lf.

2
M3 . Hence, by 74], the Sanson line of Ha

;

with regard to this triangle passes through the middle point

of (HajO). The segment (A(Hitf) is bisected perpendicularly

by .Ot so that the before-mentioned Simson line of Ha
t

is
jj

0.1,-. The AG-G^Og is similar to the triangle whose

vertices are Ha hHa- and the orthocentre of A AfHa^Ha:,
the ratio of similarity being 1 : 2, while Ha

t
is the centre of

similitude. Hence
e

is the middle point of the segment from

Ha
t
to the orthocentre of the AA

i
Haj.Ha.j, which point lies

on A
{
0.

Theorem 118.] The centre of Taylor's circle lies on the

Simson line of the foot of each altitude with regard to the

triangle whose vertices are the middle points of the sides of

the given triangle.

The perpendicular from J/,- on Ha:Haj. bisects (HafHa^)

since (J/^i/a ) = (-l/jfia
fr
). The perpendiculars from J/; on

HafHa, and Ha/Haj. make equal angles with AjA^.. Hence

the Simson line of J/
f
with regard to A HcijHajHaj. is the

perpendicular on A-Aj. or on PjP^' from the middle point of

Hajffa^, and so is the line GjO
g

.

Theorem 114.] The centre of Taylor's circle lies on the

Simson line of the middle point of each side with, regard to

the triangle whose vertices are the feet of the altitudes.

(J,P,.)x(4,.P/) = a/cos2 £. J,.eos2
£. A k .

This last expression is equal to the square of the distance from

A
{
to Ha: Hay. But A; is the centre of a circle escribed to

the AHoiHajHaj..

Theorem 115.] Taylor's circle cut* at right angles the

circles escribed to the triangle whose vertices are the feet of

the altitudes.

Enough has now been said about the Tucker circles.

Returning to the figures more nearly associated with the

name of Brocard, we remember that we originally found
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the Brocard points by constructing circles through A
t
Aj

tangent to A;Ah for 12 or to A
]e
A

i
for 12'. The centre of the

first of these circles shall be called X • , that of the second X(.

Theorem 116.] The triangles XX
X2
X

3
and X{X

2
X

%
' are

similar to the original triangle, the double 'points being the

positive and negative Brocard points respectively, and the

ratio of similitude being 1 : 2 sin to.

Theorem 117.] The centre of the circumscribed circle is the

negative Brocard point for AX
1
X

2
X

3
and the positive

Brocard point for A X/X2
X

3
.

We see, in fact, that X
i
lies on the perpendicular from on

AkA i , while XkXi
is the perpendicular bisector of [&Ah).

Hence l^Q,X
i
Xh

= ^LlA^ = w.

We have already seen that

£_I20J2/
=2o>, 4-.0Q,K = ?-

a

Hence, if Z be the middle point of (OK),

(Za) = (ZK) = l(OK) =
(OK)

2 sin to

Theorem 118.] The centre of the first Lemoine circle is the

common symmedian point for AX 1
X

2
X

3 and A X/X2
'X

3
'..

Fio. 20.
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Let the circles whose centres are X,- and X/ intersect, not

only at A
; , but again at A". AA^A/'A.f is called Brocard's

second triangle.

4-AjA
t
"A h = ^Ai + i-A^'AjAi + ^At'-A^At = 2JM,,

Theorem 119.] The points AjAj.OA^ are eoncyclic.

Theorem 120.] A" lies on the s</mmedian through J.,-.

We see. in fact, that the triangles J.
(
-JL-JL,-". A^AfA" are

similar; hence the altitudes from A{' have the ratio a k :a.:.

We notice also, since AjA^OAS' are coney clic.

lOA
i
"A

J
= £OA

ItAj=l-lA i
.

But -A-Ai'A; - {--A^-Aj.

Theorem 1.21.] A^' is the projection of on A
{
K.

Theorem 122.] TAc rt/'ee points A
t
" lie on the circle on

(OK) as diameter.

We hare thus, remembering 96], seven points on this

important circle, which is called BrocanTs circle. We find

three more as follows. Let A/ be the intersection of J..Q

with JUG'. The AJ/J/J/ is called Brocard's lirst

triangle.

Theorem 123] The three triangle* Aj'AjAj. are similar

isosceles tria ngles.

The distance from A{ to AA
J:

is 3<z,tana), and this is

also the distance from the symmedian point to that line

by (ID.

Theorem 124.] The three li nes through the points A/ parallel

to the corresponding side-lines A-A^, are concurrent in the

sum median point.

Since 2_£> J. ,-'£>'= 2<o

Theorem 125,] The verttees of Brocard's nrst triangle lie on

Brocard's circle.

Since (AjAj.) subtends at A k
' and at K an angle = 4-Ai



76 THE CIRCLE IN CH.

Theorem 126.] Brocard's first triangle is similar to the

given triangle.

We get from formula (23)

Theorem 127.] The ratio of similitude of Brocard's first

triangle and the given triangle is

Let A( be the reflection of A( in A ;Ak , so that

(A/MJ = WM-).

Connect A( with As and Ak , also connect As and A k
' with

A h and A- . Then A Aj'A hA{ is similar to A As.A
]c
Aj since

4-AfA h
A

t
'=4-A k-» + » = l-A i ;

(A i A/):{A kIi
') = a

j
:a

i
.

Hence also Ak A:A[ is similar to A A
{
A A k , and as

(Afl/) = (A h A{) ; A A kA/A/= A l^'Aj
;

(A/If) = (A k>Aj) = (A h'Ai).

Similarly (A h'A{) = (A-A() and A
{
A-AlA k are the vertices

of a parallelogram. Hence the median from A( in A A(As'A k

is the median from A[ in A A/A^Al. A second median of

this triangle is AsM^ The median of A A(A/A^ through A(
divides (AsM-) in the ratio 2 : 1, i.e. goes through M,
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Theorem 128.] Brocard's first triangle has the same centre

of gravity as the given triangle.

The quadrilaterals AfAjA/'Aj/, A^A^l'A- are equi-

angular and similar, so that

(A h'A t
") : (A/Af) = ak : a, = (A,'A/) : (A/A k

')

= sin *.A{A!Ar : sin i£_4/^,".
Hence A/^4/' is a median of the Ai/i.'i,/.

Theorem 129.] J%e Kn.es connecting the corresponding

vertices of Brocard's two triangles are concurrent in the

common centre of gravity of the first Brocard and the given

triangle.

The triangles A^A^A
Z
', A

1
A 2A 3

are similar, but are easily

seen to be arranged in opposite order. It is easy to see that

under the similarity transformation of the plane thus defined,

a line through A
i ||

A-'A k will pass into one through

A{\\A
}
A h .

Theorem 130.] The lines through the vertices of a triangle

parallel to the corresponding side-lines of Brocard's first

triangle are concurrent on the circumscribed circle.

This point of concurrence is called Steiner's point. That

diametrically opposite is Tarry's point.

Theorem 131.] The lines through the vertices of a triangle

perpendicular to the corresponding side-lines of Brocard's

first triangle are concurrent in Tarry's point.

Suppose that Afi meets the Brocard circle again in T
i

.

Let us find the magnitude of 4-TjOA/.

OAf ±AjA k ; 4_ 0A t
Ha

t
= £4* - *- Aj ;

t. T.A/A/ = 4-A k -4-Aj ; t- ^A/Aj/ = 4_A k
'.

Theorem 132.] The angle between A^A k and Aj'A k is

equal to ^K0A
t

.

It appears at once from the construction of Fig. 14 that

the Simson line of any point P makes with AjA
]c
an angle
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equal to the angle formed therewith by PA it and this is equal

to | - (4_Aj-4_PA.A k). The angle which A
4

makes

with A
4
A k is 4-A k + Q-4_Aj).

Fig. 22.

Hence the angle which the Simson line makes with 0A
{

is

4-

A

k—4-PAjA k , and this is the angle of PA
t
with A-

A

k .

The Simson line of Steiner's point and OK are equally

inclined to 0A
{

. They must, thus, be parallel, or make with

0A{ an angle whose algebraic sum is zero. But two lines

cannot simultaneously make with the three concurrent lines

pairs of angles differing only in sign.

Theorem 133.] The Simson line of Steiner's point is

parallel to the line from the centre of the circumscribed circle

to the symmedian point, while the Simson line of Tarry's

point is perpendicular thereto.

Suppose that we have given the side {A-A k) of our original

triangle, and the Brocard angle, what will be the locus of the

opposite vertex? Restricting ourselves to one side of AjA k ,

we construct an arc at whose points (A;A k) subtends an

angle equal to u>. Suppose that A^ has been found, and that
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A,A
i
meets this arc again at Tk . Draw Y^A^, and A^

which is
||
Tj

i
A k and meets AjA^ in X2

;
.

(Aj^) : (12^,) = a/ : a/, (i^J x (1^.) = -a/.

J.; has thus a constant power with regard to a given circle

;

its locus is the arc of a second circle concentric therewith.

Theorem 134.] The locus of the vertex of a triangle irhose

opposite side and Brocard angle are given is formed by the

arcs of two circles concentric ivith those containing all points

u-hereat the given side subtends the given Brocard angle.

These circles are called Xeuberg circles and have many
interesting properties whereof we shall give but a few.* If

the original triangle be given there are three pairs of Xeuberg

circles ; let us restrict ourselves to those three whose centres

lie on the same sides of the side-lines as the opposite vertices

of the original triangle, and call these the Neuberg circles

of the given triangle. Let the centre of the Neuberg circle

corresponding to A;A k be X
t

. Then $-X
i
AjA

lt
= -—a>.

The distances from X; to -4^-4^ and AiAj are in the ratio

cos (£.A j. + co) : cos (4- A; + co). Now if a point lie on the

perpendicular from A
;
on AJA }

', i. e. on the line from A;

to Tarry
J

s point, the ratio of its distances from AjAj and

AiAh will be, by 132],

cos 4-KOA h
'

: cos %.KOA/ = sin £. OKA h
'

: sin £_ OKA/.

The sine of the angle of OK and A
t
Aj, or of OK and KA h

',

is, by (23),

(KKak) — (0H() sin Ak tan <o — cosAk

{OK) ./l-Stan^co
Hence

sin £_OKAk
'

-. sin £_ OKAj'= cos (£.Ah + a>): cos (£. Aj + w).

Theorem 135.] The U nes con necting the vertices of a triangle

with, the centres of the corresponding Xeuberg circles are con-

current in Tarry s point.

* Emmerich, loc. cit., pp. 133 ff.
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We see that if one angle and the Brocard angle of a triangle

be given, the other angles are determined by symmetrical

Pie. 23.

equations. Hence the various possible triangles with these

data are similar.

Theorem 136.] If A {
A: and A

i
A h meet the corresponding

Neuberg circle again in B? and B
]c
respectively, then AAjBjA^

and A AjB]
c
Ak are similar to A4ji;4j.

Theorem 137.] The power of A; or A k with regard to the

corresponding Neuberg circle is af-

If the points A and A^ be given, there will be po 1 circles

with regard to which each has the power (A •A
]c)

2
, and these

will all be Neuberg circles. Le,t A;B
1(
meet such a Neuberg

circle again at C-, while A^B- meet it at Gk . Then, by the

preceding, A^C^ and A;G; will intersect on the Neuberg circle,

which gives the curious theorem

:

Theorem 138.] If a circle bear such a relation to two points

that the power of each with regard to it is the square of the

distance of the jioints, then oo 1 re-entrant hexagons may be

inscribed in the circle such that alternate side-lines pass

through the one or the other given point.

We obtain an interesting sidelight on the Brocard con-

figuration by a study of three similar figures to which we now



i ELEMENTARY PLANE GEOMETRY 81

turn our attention.* Two figures are directly similar if

corresponding distances be proportional and corresponding

angles equal in magnitude and sense ; when the signs of

corresponding angles are opposite, the figures are inversely

similar. A relation of direct similarity will he determined

as soon as we know the two points A:'Ay' which correspond

to two given points AjA^. The locus of the points whose

distances from J- and Aj' bear the ratio (AA^-^A'Aj^ is

a circle, and a similar circle may be found for Aj. and Aj/.

These circles intersect in two points which are the double

points of the similarity transformations determined by the

corresponding segments.

Suppose that we have three similar figures /x ,/». fs
. The

double point of/j and/;, shall be «S'
;

, the three ratios of simili-

tude i\: r
2

: r
3

. Let Bx , D2 , I)
:j
be the vertices of a triangle

whose sides lie along three corresponding lines. The distances

from .S'j to -Di-Djt and I)J): are proportional to *••
: r

]:
. Hence,

by Ceva's theorem,

Theorem 139.] If three similar figures be given, the three

lines connecting each double point to the corresponding vertex,

of a triangle whose side-Iir.es correspond in the three figures

are concurrent.

Let us call this point of concurrence C. Notice that if not

only the side-line but the actual sides are corresponding, it

will be the symmedian point. The angles of AD
1
B2D3

depend merely on the transformation, as do the angles which

SiDi make with B-J)- and BjB^, ^ince their sum and the

ratio of their sines are constant. Hence the angles Z.^CSj-

are constant in size.

Theorem 140.] The locus of the points of concurrence oflines

from each double point to the corresponding vertex of a triangle

whose side-lines correspond, is the circle through the three

double points.

If we draw through C three bnes parallel to the three lines

DjD: they will intersect this circle again in points Eh . They

will also be three corresponding lines as their angles are those

* McClelaad, A Treatise on the Geometry of ike Circ'.e, London, 1891, cb. ix.

1704 F



82 THE CIRCLE IN oh.

of any three corresponding lines, and the distances from 8t
to

CBj and CRk are in the ratio rk : Tj. Also the points R
t
are

fixed, since ZP^C/Sy has a constant value. Conversely, if

three corresponding lines be concurrent, the locus of their

point of concurrence is, by 140], this circle.

Theorem 141.] The locus ofpoints where three corresponding

limes are concurrent is the circle through the three double

points; the three corresponding lines must pass throughfixed

points of this circle.

These fixed points on the concurrent lines are called in-

variable points.

Theorem 142.] The lines connecting the double points to

the corresponding invariable points are concurrent.

We see, in fact, that the invariable points are surely corre-

sponding.

r
J
:ri = (8iRJ

):(S
i
Rk)

= sin £_ StRiRj : sin #_ 8tRtRh

Hence the three lines /S^P^ meet in a point M.

Suppose that we have Pj, P2 > -Pg three corresponding points

which are collinear. The angles of A S^PjPjc are constant in

magnitude, hence Z 8kPiSj has a constant value, or the locus

of Pi is a circle through Sj and 8k . If S/ be the point which

corresponds to Si in fit the line S^/ must correspond to two

other lines through 8$, namely $
i
P- and SiRk , so that 8/ is

on SiRi- Again, Z/S^P^P- is constant, so that PiPj meets

the Pi circle in a fixed point, namely M, and this is common
to all three circles. Conversely, there are surely co 1 sets of

corresponding collinear triads, generating three circles which

correspond, and if we take Plt P2 , P3 three corresponding

points on them Z SkPiPj has a fixed value, so that PiPj goes

through a fixed point, namely M, and Pk lies on PiPj.

Theorem 143.] The loci of three collinear points in three

directly similar figures are three circles each through two

double points. There is one point common to all three circles,

and sets of three collinear corresponding points are collinear

with this.



i ELEMENTARY PLANE GEOMETRY 83

Theorem 144.] If three directly similar figures be con-

structed on the three sides of a triangle following one another

in cyclic order,

(a) The vertices of the second Brocard triangle will be the

double points.

(b) The vertices of the first Brocard triangle will be the

i a va riable poi nts.

(c) The lines connecting corresponding vertices of the

original and second Brocard triangle will be concurrent in

the symmedian point of the former which lies on the Brocard

circle.

(d) The lines connecting corresponding vertices of the two

Brocard triangles are concurrent in the common centre of

gravity of the given and first Brocard triangle.

(e) The symmedian point of every triangle forrued by three

corresponding segments in cyclic order will lie on the Brocard

circle.

(/') If three corresponding lines be concurrent they pass

through the vertices of the first Brocard, triangle, and their

point of concurrence is on the Brocard circle.

(g) The loci of three corresponding collinear points are the

three circles through tico vertices of Brocard's second triangle

and the centre of gravity of the given triangle.

The three circles mentioned in (g) are called MacKay circles

and deserve some further notice. The three lines A^A{' pass

through If, which lies hetween A{ and A
t
".

Theorem 145.] The JIacKay circles are the reflections in the

centre of gravity of the given triangle of the inverses of the

sides of the first Brocard triangle in a fixed circle ivhose centre

is that centre of gravity.

Theorem 146.] The MacKay circles intersect at angles equal

to those of the given tria ngle.

As M is the centre of gravity of the first Brocard triangle,

it is the middle point of three segments each on a line parallel

to one side-line of this triangle and terminated by the

other two.

p2
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Theorem 147.] The centre of gravity of the given triangle

is the middle point of the three segments which each two

MacKay circles cut on the tangent to the third at that point.

Starting with our original triangle, we may construct three

others similar to it as follows :

C
1
shall be such a point on the same side of A 2A 3

as A
1
that

%_C
X
A

2
A

3
= %_A

3 ,
%-C

1
A

3
A

2
= 4-A

2
.

C
2
shall be such a point on A

2
A

3
that

(7
3
shall be such a point on A

2
A

3
that

£.C3A1
A

2
= 4-A

3
.

The centres of gravity of our three triangles G
1
A

2
A 3 ,

A
X
G
2
A

3 , A 1
A

2
C3

lie on the line through M
||
A

2
A 3 and are

corresponding points. The centre of gravity of A C
1
A

2
A

3
is

thus on the MacKay circle through A
2
A

3
and is the reflection

of M in the perpendicular bisector of (A
2
A

3).

Theorem 148.] The centre of each MacKay circle lies on the

perpendicular bisector of the corresponding side of the original

triangle.

We shall show in the next chapter that M
i

is a centre

of similitude for the corresponding MacKay and Neuberg

circles. The geometric proof seems to be, however, decidedly

intricate.*

* MeCleland, loo. oit, pp. 213 S.
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§ 6. Concurrent Circles and Concyclic Points.

We have so far had certain examples of circles through

a number of notable points : the nine-point circle passed

through twelve, the Brocard circle through ten. We shall

next proceed to find, by induction, circles which contain

notable points ad libitum. Suppose that on each sideline

AjA k of our typical triangle we take a random point B
{

.

UP be the intersection of the circles A
1
B.

2
B3 , A 2

B.
i
B

1 ,

/.B^PB
3
= Zi.J,^, lBs

FB
1
= Z -ijJLJ^;

hence lB
1
PB

i
= 1 A.^A.^A^

and our three circles are concurrent.

Theorem 149.] If a point be marked on each side-line of

a triangle, the three circle* each through a vertex and the

adjacent marked- point* are concurrent*

The numher of corollaries which flow from this truly

admirable theorem is almost transfinite. Suppose that P lies

within the triangle, the most important case,

4-A
;
PAj = 1_A

Jt
+ L.A };

A
i
P + Z-A

l:
A.P,

t_A,A,P = LB
j
Bk P>

4_A
i
PA

j
= )LAk + 4-Bk .

A similar result is easily found when P is not within. It

appears also that if the angles of the A B
1
B

i
B3 be known

the point P is also known.

Theorem 150.] If a triangle with knou-n angle* have its

vertices anywhere on S2>eeified side-lines of a given triangle,

the three circles each through one vertex of the fixed triangle

and two adjacent one* of the variable triangle are concurrent

in ajived point.

The most interesting case i^ where the two triangles are

similar. If %-A
f
= i.B(

we may take for B
t
the point M

(
.

* The earliest proof of this theorem known to the author is that of

Miquel, 'Theoremes de geometric *, LiouviUes Journal, vol. iii, 1S3S.
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If %-A
i
= %_Bk we take Bk infinitely near to A

{
on A

{
Aj,

and similarly if %_ Ak = B
f .

Theorem 151.] If three points be so taken on the side-lines

of a triangle that they are vertices of a triangle similar to the

given one, then the three circles each through a vertex of the

given triangle, and the tv:o adjacent vertices of the new
tnangle are concurrent either in the centre of the circum-

scribed circle of the given triangle or in one of the Brocard

points.*

Let the reader prove

:

Theorem 152.] The only case where the lines A
t
B

t
are

concurrent in the point P is where they are the altitude lines

of the triangle.

We easily find from 67] :

Theorem 153.] If the intersections of a circle with the

side-lines of a triangle be divided into two groups of three,

each group containing one point on each side-line, then the

point of concurrence of the three circles each through one

vertex and the adjacent points of the first group, and that of

circles through each vertex and the adjacent points of the

second group, are isogonal conjugates.^

It is immediately evident by inversion that our funda-

mental theorem 149] holds equally well when the side-lines

of the triangle are replaced by concurrent circles. It may
then be reworded as follows

:

Theorem 154] If four points on a circle or line be taken

in sequence and if each successive pair be connected by a circle,

the remaining intersections of successive pairs of circles are

concyclic or coUinear.

Still another form for the theorem is as follows

:

Theorem 155.] If four circles be arranged in sequence,

each two successive circles intersecting, and a circle pass

* McCleland, loc. cit., ch iii, takes this as the hasis of the whole Brocard

theory.

f This excellent theorem is due to Barrow, loc. cit., p. 252.
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throuph one print of ench such pair of intersections, then the

remaining intenecti:m lie on another circle or a line.*

Let us give another proof of this theorem depending on
different considerations. If a triangle be formed by the arcs

of three circles e
x

. c
3 , c3 , and if 4- c

i
c : mean the oriented

angle of the half-tangents to two circles at a vertex of the

triangle, those halves being taken which correspond to the

positive orientation of the circle, then, if the three circles be

concurrent, we have

^tyU^^ +^V^O-
Conversely, if this equation holds, it is easy to see that the

circles are concurrent. Suppose now that we have a sequence

of four circles l\. c
t , <\. ex , and that one intersection of each

two successive lines lies on c,

1- cx\+ Z_ i\ .\ - X- C-2 • = 4- «', + %- <y : + 1- C-r

= i_^-^_cv4 +^'V = 4-^+4-^1-4-^= 0.

4-Vi+2-<^ + ^Vi-^-'Vi = °-

Conversely, when this equation holds, the circle through three

properly chosen intersections passes through the fourth. But
when we move from one intersection on c

x
and <\- to the other

we have merely to reverse the sign of 4-'-Y\ ' tne theorem is

thus proved.

Let us next suppose that we have given not three lines

but four, no two being parallel nor any three concurrent.

Let each line be used to determine the marked points on the

other three : we thus get

Theorem 156.] If four lines be given, whereof no two are

parallel nor any three concurrent, the circumscribing circles

of the triangles which they form three by three are concurrent.

Let us call this the Miquel point of the four lines. If we

invert with this a5 centre we get a second figure entirely

analogous to the given one, but the present circles become

* 3£i<juel, 'ilemoire de geometric ', Liourine's Joun-.jl. vol. is. 1S44. p. 23.
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lines and the present lines become circles. The feet of the

perpendiculars on the four new lines from the Miquel point

are on the Simson line of the four new triangles for this

point; the four reflections of the Miquel point in the four

new lines are also collinear; hence, inverting back and
remembering 34],

Theorem 157.] The centres of the circles which circum-

scribe the triangle formed by four lines lie on a circle through

the Miquel point.*

The following theorem is interesting in this connexion,

though the proof is based upon different considerations which
we leave to the reader.

Theorem 158.] The centres of the circles which touch sets

of three out offour given lines, whereof no three are concurrent

or parallel, lie by fours on four circles.

Fig. 25.

* Ql. Steiner, Collected Works, vol. i, p. 223.
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The circle in theorem 157] seems to contain five notable

points ; we may easily find five others thereon. Let the

original lines be ?1 . l
2

. l3 , lt
. The lines /; and h shall inter-

sect in J.,--, while the circle about the triangle formed by

liljlji shall be q, its centre 0;, the Miquel point If.

We shall temporarily use
|
LXYZ for the positive value

of IXTZ.

\lA
Jl
MC

i \
= l-\lAjl

A
j]
JI\,

llCi
UCk \

= \lA
i}:

.

Let A
lj
jG

i
meet A a Cj. in 5,

I

^ CiSC* =
I

lA^A^C; -
,

L A
;J
An Ch

= i-i Z^|-(f- | ^(/)

Theorem 159.] Given four lines in a plane, no two parallel

and no three concurrent. The lines connecting each vertex of

a triangle formed by three of the lines with centre of the circle

circumscriled to the triangle formed by the two lines meeting

in this vertex and the fourth line, are concurrent on the circle

through the centres of the four circumscribing circles.

Suppose that five lines are given l^, L. l3 ,li; l
s

. Omitting

each in turn, we have five Miquel points. Consider the circles

circumscribing the triangles with l5
as a common side-line.

Successive circles intersect on"Z
5 ; hence, by 154], their other

intersections, which are Miquel points, are coneyclic.

Theorem 160.] If jive lines be given, no two parallel and

no three concurrent, thejive Miquel points ivhieh they determine

four by four are coneyclic cr cdlinear.

Theorem 161.] If a pentagon be given, and jive triangles

be constructed each having as vertices two adjacent vertices of

the pentagon and the intersection of the remaining side-lines
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through them, then, if circles be circumscribed to these five

triangles, the remaining intersection of pairs of successive

circles are concyclic or collinear*

Let us tabulate the results so far attained.

One line may be associated with a circle of infinite radius,

the line itself.

Two lines may be associated with their point of inter-

section.

Three lines may be associated with the circle circumscribed

to their triangle.

Four lines may be associated with their Miquel point.

Five lines may be associated with a circle or line through

the five Miquel points which they determine four by four.

We are thus led by analogy to announce the following

theorem

:

Theorem 162.] Given n lines in a plane, no two parallel

and no three concurrent. Ifnbe odd there is associated there-

with a circle, and if n be even a point. The circle will contain

the n points associated with the n sets of lines obtained by

neglecting each of the given lines in turn ; the point will lie on

each of the n-circles obtained by neglecting each of the lines

in turn.-f

It is to be understood for the purposes of this theorem that

a line is considered as a special form of circle. .Let us begin

with the case where n is even. We take the three sets of

lines (Izh-'-ln)' (hh---^n)> (hhh •••^»)- The associated

circles shall be c
x , c

2 , c
3 , and, in general, the circle associated

with the system obtained by omitting the line l
i
shall be c

{
.

If lines l
th be omitted, the point associated with the others

shall be P
{j , and so on.

* It is to this theorem alone that the name of Miquel is usually attached

f This theorem is due to Clifford, ' A Synthetic Proof of Miquel's Theorem

'

Messenger of Mathematics, vol. v, 1870. Independently given by Fuortes

'Ricerche geometriche ', Battaglini's Journal, vol. xvi, 1878, and Kantor,
' Ueber den Zusammenhang von re Geraden in der Ebene ', Wiener Berichte.

vol. lxxvi, section v, 1877. Recently given without demonstration and in

incorrect form by Hagge, ' Ueber Umkreise und Transversalen des vollstSn

digen re-Beits ', Zeitschriftfur mathematischen Vnterricht, vol. xxxvi, 1905.



i ELEMENTARY PLANE GEOMETRY 91

Circle ciu contains Pvl , P14 , Pi4 , PVV4 .

Circle e.,s . contains P.,,. P ,, P.,.. P.,,..

Circle cvu contains P
13 , Pu , P34 , Pr 4

.

We have thus exactly the figure of three concurrent circles

corresponding to 149] generalized by inversion.

Points P
i;

. P13 , Pu lie on c
x

.

Points P
12 , P^, P24

lie on c2 .

Points P
13 , P^, P34 lie on i-

3 .

Hence these three circles are concurrent, and as they are

any three of our system the theorem is proved for n even,

provided it holds for n— 1. We now imagine that we have

an odd number a of lines ; let us show that any four of the

points Pj, P
3 . P3 . P4 are concyclic or collinear.

The circles cl2 and c.>, meet in P
% and Pia..

The circles c^ and oE4 meet in P3 and Pj^.

The circles os4 and ca meet in P4 and P^.
• The circles c

41
and r

i;
meet in P

x
and P4in .

But the four points P123 , Pi4 . PMi.
P

4i; a1* on the circle

c1234 ; hence the four points P
x , P2 . P3 , P4 are concyclic or

collinear, and so all of our points are on a circle or line.

Let us try another method of generalizing 149]. We stall

with four lines 71S 1.
2

. Z3 , Ii . and on each line 1
{
mark a point

P
t

. If these four be concyclic or collinear, then, by 154]. the

six circles each of which passes through the intersection of

two line* and the marked points thereon will pass by threes

through four points on one circle or line. Suppose, next,

that we have five lines lt , 1.
2

. I3 , Z4! /5 , and live concyclic

marked points thereon. The point marked on l
t
shall he P,-.

The point obtained by omitting ?,- and L shall he P,y. The

circle obtained from what immediately precedes by neglecting

1
{
shall be e,-; that which contains PjPjPtf shall be e

{j.

Cj contains P
V2

. P13 , P]4 , P1V

\, contains Pr, . P
2,

. P£4 . PK .

c3 contains P
13

.
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But the circles c
1B , c25 , c

3S
are concurrent in P5 ; hence the

circles c
x , c

2 , c3 are concurrent, and so all five are. The

extension to n is as before, and, as before, we define a line

as a special case of a circle.

Theorem 163.] Let n concyclic or collinear points be marked

on n lines whereof no two are •parallel and no three concurrent.

If n be even there is associated therewith a circle, and if n be

odd a point; the circle will contain the n points associated

with the n sets ofn—1 lines obtained by neglecting each of the

given lines in turn; the point will lie on each of the circles

obtained by neglecting each of the lines in turn.*

In these two generalizations there is a distinction between

n even and n odd. In the remarkable one which follows this

disappears. Four coplanar lines are given, no two parallel and

no three concurrent. Each line is associated with the circle

circumscribing the triangle formed by the other three. The

centres of these four circles are concyclic, and the circles

themselves pass through the Miquel point.

Theorem 164.J Given n lines whereof no two are parallel

and no three concurrent. Each set of n—\ will be associated

with a circle in such a way that all n circles pass through

a point, and their centres lie on a circle which is associated

with the n given lines.-\

We shall assume that the theorem has been proven for to— 1

lines. We use the previous notation for the circle associated

with certain lines, its centre being indicated conformably,

while the point associated with certain lines shall be in-

dicated by the letter M with suitable subscript. We shall

also assume that

LC
ilt
Ou Cih =LCihMhQpi =Llfr,

this equation being certainly true in the case n = 4, if C^

* Due to Grace, ' Circles, Spheres, and Linear Complexes ', Cambridge

Philosophical Transactions, vol. xvi, 1898.

+ Pesci, ' Dei cercoli circonscritti ai triangoli formati di n rette in un
piano ', Periodica di Matematica, vol. v, 1891. The case n = 5 was given by
Kantor, ' Ueber das vollstandige Vierseit ', Wiener Beriehle, Ixxviii, section 2,

1878.
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indicate the intersection of l^lj. Suppose that cx and c, inter-

sect in J/".

Cj contains t",
2

. C,,-. ('
•. Jf.

cs contains C^. 0*,-, C2
-. .1/.

ZC\
2
J/Q

;
= z.C'

12
r

3 „ (

r
;

. = /./
1

.

But -tV)Ai=-^i-
Hence J/ lies on c,- and the circles are concurrent. Again.

<\ and t',- meet in C
i;
and J/.

€j and i\, meet in C.
z;
and J/.

Z C\ QC, = ^ CjjJ/"C„ = Z ZJi.

Hence all points Q are concyclic, and the theorem is

proved.

The following corollary is rather curious.

Theorem 165.] If n be greater than four, If will not

lie on c.

Suppose, on the contrary, Z QCJ/ = Z CjC
3
M.

(CnJI) is the common chord of i\ and e„

.

_c
1
cj/=zri;

c„j/,

Hence Z Cu C,
i
M = _ C13

CV. J/.

Z^Qs^^O.
But t^lf,..,!. and f/lsl«.

Z^Cu3 J/3 = 0.

This, however, is impossihle since these three points lie on

Cjg. Hence, if C
1S3

exist or n > -i. the point J/ cannot be

concyclic with all t','s.

In the theorem last given we associated n lines with

a circle and a point, the circle being the locus of the centres

of n others. In the theorem before we associated n circles or

points with n lines and n concyclic points. Here is another

form of association akin to both.
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Theorem 166.] Given n points on a fixed circle n ^ 4.

We may associate with them a point and a circle in the

following manner :

(a) The point is the centre of the circle.

(b) The radius of the circle is one-half that of the fixed

circle.

(c) The point lies on the n circles each associated with n—\
points obtained by omitting each of the given points in turn.

(d) The circle contains the centres of these circles.*

Let us call the radius of the fixed circle 2, for convenience.

When n = 2 we shall associate with two points the point

midway between them. When n = 3 we associate the nine-

point circle whose radius is here unity. When «=4we
have, by 77], four nine-point circles passing through a common
point. Their centres lie, therefore, on a circle of radius 1

about that point as centre. The theorem thus holds when

n = 4. To prove it in the case where n = 5 we proceed,

exactly as in the case of 162], to prove that the circles are

concurrent. P
{j will be the centre of the nine-point circle

of the A PkPl
Pm . ctjk

will be the circle through the centres

of the three nine-point circles associated with Pj and Pm , i. e.

the locus of points at a unit distance from the middle point of

(PlPm). Pijjd will be the point midway between Pm and

the centre of the fixed circle, which is at a unit's distance

from the middle point of each of the chords (P
i
P„^, (PjPm),

(
pkpm\ (Pipm)> and so on all three circles cjkl ,

cm ,
c
ifl

. We
may thus repeat our previous reasoning word for word ; the

five circles cv c2 , c3 , ci , c5 are concurrent, and as all have

a unit radius their centres lie on a unit circle about the point

of concurrence as centre. For n > 5 we proceed in exactly

the same way.

Here is a second proof of the foregoing that has the advan-

tage of being easily extended to the analogous case in three

dimensions, while our first proof cannot be so enlarged.

Take n = 4, the centre of gravity of the four points will be

* See the Author's ' Circles Associated with Concyclic Points ', Annals of

Mathematics, Series 2, vol. xii, 1910.
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the point of concurrence of the segments, each bounded by
one given point and the centre of gravity of the other three,

and will divide these segments in the ratio 1:3. The centres

of gravity of the four triangles will thus lie on a circle whose

radius is one-third the radius of the given circle ; hence, by

what precedes T2], the centres of the four nine-point circles lie

on a circle of half the radius of the circumscribed circle, and

4
whose distance from the fixed centre is - the distance to the

u

centre of gravity. The theorem thus holds for n = 4. Assume

that it is true for n— 1 points, and that the centre of their

circle is collinear with the centre of the fixed circle, and the

centre of gravity of the n — 1 points, but the distances from

the centre of the fixed circle to these points is in the ratio

—— . If n points be given, we have n centres of gravity

of groups of n— 1 points. These lie on a circle whose radius

bears to that of the fixed circle the ratio 1 : n — 1. Hence the

?i points lie on a circle whose radius is one-half that of

the fixed circle, and the n associated circles pass through

a fixed point at the proper distance from the fixed centre.

§ 7. Coaxal Circles.

We have defined the power of a point with regard to

a circle as the product of its oriented distances to any two

points of the circle collinear with it. When the point is

outside the circle this is the square of the length of the

tangential segment. The sum of the power and the square

of the radius is seen to be the square of the distance from

the point to the centre. We see, thns, that if a point move

along a line perpendicular to the line of centres of two non-

concentric circles, the difference of its powers with regard to

the two is constant.

Theorem 167.] The locus of points having like powers

with regard to two non-concentric circles is a line perpen-

dicular to the line of centres.
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This line is called the radical axis. It is the common
secant when the circles intersect, the common tangent when
they touch.

Theorem 168.] The radical axes formed by the pairs of

three given circles whereofno two are concentric, are concurrent

or parallel.

The point of concurrence, when it exists, is called the

radical centre of the three. It is the only point having

equal powers with regard to all three, and when these powers

are all positive it is the centre of a circle whose radius is the

square root of this power, and which cuts the three given

circles at right angles.

Let us calculate the difference of the powers of a point with

regard to two given circles. When, the circles are concentric,

it is the difference of the squares of the radii- Suppose them

non-concentric. Their centres shall be CC, their radii rr',

while the distance of their centres shall be d. Let F be the

intersection of the radical axis with the line of centres

{CF)-{G7F)= ±d

m=r*-£t #. (24)

Now let P be any point, H the foot of the perpendicular

from there on the line of centres, its powers with regard to the

two circles p and p'. We easily find

p-p'=2(FH)d. (25)

Theorem 169.] The numerical value of the difference of

the poivers of a point with regard to two non-concentric circles

is twice the product of its distance from the radical axes

multiplied by the distance between the centres.

If a point be taken upon the circle of similitude of two

circles, outside of both, and a tangent be drawn thence to each

circle, the two not separated by the centres, it will be found at

once from 26] that the chords which the circles determine on

the line connecting the points of contact are equal, so that the
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power of each point of contact with regard to the other circle

is the same : the converse will also hold, hence

Theorem 170.] If tico points le taken on two unequal and
non-concentric ciixles in such a icay that each has the same

power with regard to the other circle, and the tangents at these

points are yiot sqxtmted by the centres of the circles, then the

inte}~section of these tangents 's on the circle of similitude of

the two.

Let the distance from C to a point of CC be x. this point

beinst the centre of a circle of radius p. If

1"
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Here the given circles intersect in real points. Any point

on their line may be taken as the centre of a circle through

their intersections ; the least possible radius for such a circle

will be one-half the distance between these two common
points, and there are no limiting points in the system.

If a system of circles be so related that each two have the

same radical axis, they are said to be coaxal circles. Circles

through two common points or touching the same line at the

same point are examples of such systems.

A system of circles through two points will cut interesting

ranges on any line through either point.* Let two such

points be A and B, and Let two lines through B meet the

various circles in the ranges P
1
P

2
...Pn and Q-^Q^.-.Qn

respectively.

Since AAPjPk and AAQjQ^ are similar,

(PiPj) : (QtQj) = (AP
S )

: (AQj) = (PjP
]e)

: (Q
f
Qk ),

(PtPj) : (PjPh)
: {PhPt)

= (QiQj) : (QjQ lc)
: (Q&).

Theorem 171.] A system of circles through two points cut

such ranges on any two lines through one of the points that

corresponding distances are proportional, and, conversely, if

two ranges be given on intersecting lines in such a way that

corresponding distances are proportional and the point of

intersection does not correspond to itself, then the lines con-

necting corresponding points in the two ranges are concurrent

in a point common to all circles containing a pair of corre-

sponding points and the point of intersection of the two lines.

Since the Simson line of A is the same for all triangles

BPiQj,

Theorem 172.] If a system of circles through two points cut

ranges on two lines through one of these points, then the feet of

the perpendiculars from the other point on all lines connecting

corresponding pairs of points of the two ranges are collinear.

Theorem 173.] If two circles cut a third either orthogonally

or in tvjo pairs of diametrically opposite points of the latter,

* Casey, loc. cit., ch. v.



i ELEMENTARY PLANE GEOMETRY 99

then the centre of the third circlets on the radical axis of the two,

and every pohvt of the radical axis not between the intersections

of the circles, when such exist, is the centre of a circle cut by

both at right angles, wh He every point between such intersections

is the centre of a circle cut by both in pai rs of diametrically

opposite poiivts.

We see, in fact, that if a point have the same positive power

with regard to two circles it is the centre of a circle cutting

both orthogonally, while if it have the same negative power

with regard to both it is the centre of one cut by both in

pairs of diametrically opposite points, the radius being in the

first case the square root of the power, and in the second the

square root of the negative of the power.

Theorem 174.] If two circles intersect two others ortho-

gonally, then every circle coaxed with (orthogonal to) one pair

is orthogonal to (coaxal vjith) the other. The radical axis of

each system is the line of centres of the other.

We see that the plane is thus covered with a double net-

work of circles in such a way that every point not on either

radical axis is the intersection of two circles, one of each

net-work, and these circles cut orthogonally. Remembering

that the limiting points of a coaxal system are point circles of

the system,

Theorem 175.] If two circles intersect, the coaxal system of

circles cutting them orthogonally will have their points of in-

tersection as limiting points; if two non-concentric circles do

not intersect, the limiting points of their coaxal system are

common to all circles orthogonal to them.

Theorem 176.] If a system of circles be tangent to one

another at any point, they are orthogonal to a second system

tangent at this point.

Two coaxal systems of mutually orthogonal circles are said

to be conjugate.

Theorem 177.] The limiting points of a coaxal system of

circles are mutually inverse v:ith regard to every circle of the

system.

G 2



100 THE CIRCLE IN ch.

Theorem 178.] The inverse of a coaxal system is either

a coaxal or concentric system, or a pencil of concurrent or

parallel lines.

Theorem 179.] If three non-coaxal circles be given, no hvo

concentric or intersecting, the three pairs of limiting points

which they determine hvo by two are concyclic or collinear.

Theorem 180.] Two mutvally inverse circles are coaxal

with the circle of inversion.

Theorem 181.] If two points A and C lie on a circle ortho-

gonal to all circles through B and D, then B and D lie on

a circle orthogonal to all circles through A and C.

Two such pairs of points are said to be orthocyclic.

It is perfectly clear that the circles of a coaxal system with

two common points may be inverted into a system of con-

current lines. A system with no common point, being the

orthogonal trajectories of a system with two such points,

may be inverted into a concentric system. A system all

tangent at one point may be inverted into parallel lines.

The following theorem has already been suggested.

Theorem 182.] If the radical centre of three circles lie

without one, and, hence, without all of them, it is the centre

of a circle cutting all three orthogonally, and they may be

inverted into three circles with collinear centres; if it lie

within one, and, hence, within all three, it is the centre of

a circle cut by all three in pairs of diametrically opposite

points.

Suppose that we have a triangle with our usual notation,

a point P not on any side-line, and let PjPj
e
meet A:A

Je

in B
{

. Applying Desargues' triangle theorem to A A
:
A

2
A

S

and A PjPjjPg, since the three lines A
i
P

i
are concurrent, the

points Bit Bj , B
Jc
are collinear. If, in particular, P be the ortho-

centre, we see HjH
le

is anti-parallel to AjA
lc

, and the points

Aj, A
]c

, Hj, H
Jc
are concyclic, i. e. B

{
has the same power with

regard to the nine-point and circumscribed circles.
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Theorem 183.] The radical axis of the nine-point and
circumscribed circles contains the intersections of'corresponding

side-lines of the given triangle and the pedal triangle of the

orthocentre.

Theorem 184.] The orthocentre of a triangle is the radical

centre of any three circles each of which has a diameter uhose

extremities are a vertex and a [joint of the opposite side-line,

but no tico passing through the same vertex.

AYe see. in fact, that, since the orthocentre is a centre of

similitude for the circumscribed and nine-point circles, the

product of its distances from each vertex and the foot of

the corresponding altitude is constant. Suppose next that

we have a complete quadrilateral.* The orthocentres of the

triangles formed by the given side-lines three by three will,

apparently, all be radical centres for the three circles whose

diameters are the three diagonals of the complete quadri-

lateral. This apparent contradiction leads to the Gauss-

Bodenroiller theorem.

Theorem 185.] The three circles on the diagonals of a

complete quadrilateral as diameters are coaxaLf

We get from 74] and 156]

Theorem 186.] The radical axis of the three circles on the

diagonals of a complete quadrilateral as diameters contains

the orthocentres of the four triamjlcs determined three by three

by tlie side-lines of the quadrilateral, and is parallel to tlie

Simson line of the Jliquel point, but twice as far from this

point as is the Sinuon line.

Theorem 187.] Two pairs of circles i\c
3
and c2e± are each

coaxal with a given circle; then if c
L

intersect c2 and c
s

intersect cit tlie four points so determined are concyclic*

Suppose that we have three segments each bounded by one

vertex of a triangle and a point of the opposite side-line, and

* Cf. McCleland, loc. cit., p. 189. >"ot a little of the remainder of tbo

present chapter is taken froni this source.

+ Bodenmiller, Analytische Spharik, Cologne, 1830, p. 138.

J Chaslee, loc. cit., p. 540,
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all having in common a point S. Let the perpendiculars on

the lines of these segments from the orthocentre meet the

circles having the segments as diameters in the three pairs

of points B
{
B[. Let us first show that these six points are

coneyclic. We see, in fact, since H is the radical centre of

the three circles with diameters (-4;$^), (AjSf), (A^S^),

(HBJ x (#£/) = (HB
2) x (HB,') = (HB.J x (HB./).

On the other hand, the perpendicular bisectors of the segments

(JB^B/) pass through S, hence S is the centre of a circle

through all six. We next notice that H has the same power

with regard to the three circles on diameters (A^) as with

regard to those with diameters (AjAj.). If we take M as

a centre of similitude, and a ratio —1:2, we cbange A^^A^
into M

1
M

i
M

3
. Let T be transformed into 8.

Let Ofil be the points where the line through HITA;
meets the circle whose diameter is (AjA

]c
). Once more

(HG
i
)x(HG/) = (HG

j
)x(HC

j
').

The perpendicular bisectors of the segments (t'^C/) pass

through the points M
i
and are parallel to the lines A/f, and

correspond to them in the similarity transformation. They

are thus concurrent in S. Lastly, since H has like powers

with regard to all six circles,

Theorem 188.] If S be any point, and T the point which

bears to tlie original triangle the same relation that S bears to

the middle point triangle M
1
M

2
M

i , then the intersections of

the circles on segments (A
t Sfj as diameters with the perpen-

diculars from the orthocentre on these segments, and of the

circles on the segments (AjA]
c )

as diameters with the corre-

sponding perpendiculars from the orthocentre on the lines TA
i ,

lie on a circle with centre S.*

Let us return to our theorem 169] from which flow a great

.

wealth of interesting results. If a circle of radius p have

contact of a specified kind with two others, the difference of

the powers of its centre with regard to these two will be

2 P (r±r').

" Hagge, ' Ein merkwurdiger Kreis des Dreiecks ', Zeitschrtft fur matlie-

tnatischen Unterricht, vol. xxxix, 1908.
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Theorem 189.] If a variable circle have contact of a fixed

type with each of two given non-concentric circles, or have just

the reverse contact with each, then its radius will bear a fixed

ratio to the distance of its centre from the radical axis.

If we call the distance to the radical axis 8, the fixed ratio e,

and take a line parallel to the radical axis at a distance -

therefrom and on the proper side thereof, the distance of the

centre of the variable circle therefrom is - times its distance
e

from the centre of the circle of radius r. We see, also, that

the sum or difference of the distances from the variable centre

to the fixed centres is constant. We thus reach the fundamental

theorem for central conies.

Theorem 190.] If a point so move that the sum or difference

of its distances from tivo fixed points is constant, its distance

from either fixed point bears a constant ratio to its distance

from a corresponding fixed line perpendicular to that whkh
connects the fixed points.

The power of a point with regard to any circle of a coaxal

system is by 169] twice the product of its distance from the

radical axis multiplied by the distance from the centre of

the circle to that of the circle of the coaxal system through

the given point. The point is supposed, of course, not to be

on the radical axis.

Theorem 191.] If there be any points whose pawers with

regard to two non-co acentric circles bear a fixed giveii ratio

different from unity, they all lie on one circle coaxal with the

two given ones.

The necessity of the proviso that such points should exist

is apparent when we reflect that if, for instance, the circles

were very small and far apart there could be no point corre-

sponding to such a ratio as — 1.

Theorem 192.] If a variable chord of a circle subtend a

right angle at afixed point, the foot of the perpendicularfrom

the fixed point on the line of the chord and the point of inter-
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sections of the tangents at its extremities trace coaxal or

concentric circles.

We see, in fact, that if we treat the given point as a circle of

radius zero, the foot of the perpendicular on the line of the

chord and the middle point of that chord trace the same

circle, since the power of each with regard to the given circle

is the negative of the square of its distance from the fixed

point. We have then but to apply 180].

Suppose that a variable line meets one circle in points S^^,

and makes therewith an angle c^ , while its intersections and

angle with a second circle are S2
T

2
and <x

2
. If we find a point

where a tangent at S1
or 2\ meets one at S2

or T
2 , we see that

the tangential segments thence to the two circles bear the

ratio sin a
2

: sin ar

Theorem 193.] If a pair of tangents be drawn to each of

two circles, the points of contact being collinear, then the

intersections of the tangents to one circle with the tangents

to tlie other will lie on a circle concentric or coaxal with the

given circles, or on their radical axis.

Theorem 194.] If a variable line move in such a tuay that

the segments cut thereon by two fixed circles have a constant

ratio, then the locus of the intersections of the tangents to the

first circle where it meets this line, with the corresponding

tangents to the second, is a circle concentric or coaxal with the

given circles or their radical axis.

Suppose that we have a quadrilateral inscribed in a circle.

If a transversal be so drawn that it makes an isosceles triangle

with one pair of side-lines, or with the diagonal lines, then it

will do so with the remaining side-lines or diagonal ones.

Let us also momentarily extend our concept of the isosceles

triangle so as to say that a line perpendicular to two parallel

lines makes an isosceles triangle with them.

Theorem 195.] If a quadrilateral be inscribed in a circle,

then we may, in an infinite number of ways,find three other

circles concentric or coaxal with the original circle and with

one another such that each is tangent to a pair of opposite

side-lines or diagonal lines of the quadrilateral.
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Theorem 196.] If a variable triangle be iiitcrd-u.1 in

a curie, and if two of its sidcdines continually touch ta\>

circles coneentric or c<eu:al with the gi.en circle, tlie same iV

true of the third side-line.

A rigorous proof of this is not difficult, but a little delicate.

Let us take two positions of our triangle AL
A,

A

c , Af~A.2'Ad.

Suppose that A
X
A., and A/AJ touch a certain circle, while

J.
I
J.

1
'. A A;.' touch another concentric or coaxal with this

and with the given circle. In the same way J-j-i/. A A '

will touch a third circle of the coaxal system. Now it it

conceivable that the circle touched by J., A/, A.-.A./ should

be ditferent from that touched by Jj-1/, A 3
-l

u
. for two

circles of the coaxal system might well both touch JL.J./.

If, however, we can show in a particular case that one of the

circle^ of the coaxal system tangent to -I^jy is extraneous

to the discussion, we shall know that in general both circles

will not appear. The particular ease is when J./ is infinitely

near A
x

. the circle tangent to A
1
-l1

' is the original circle, the

other coaxal circle tangent to this is distinct from this and

not connected with the discussion. Hence J-i-1/, A 2
A ',

A- AJ all touch one circle of the coaxal svstem, and

A
3
J.3, A/A/ also touch one of these circles.

Theorem 19?.] Pon.celei's theorem. If a jx-h/jvn of a n't

number of side* le in^.ribed in •.: cirde. and all if its side-

lines but one each touch a jLced cirde of a s^'siem tvacentric

or coaxal with the >jiven v.ie, then the same is true if the

re :

:

l'J ininj s ide-ii , e.*

Theorem 19S.] TJ-e problem of iuscrib^rj a ^dt/gon if

any gi'xn number
-:f

sides in a jicen circle so that its s-di-

li.es shall ids:> touch a second given circle has an >nnnrfi.

number if < duti- s if it June aj.j at all.

There are certain special cases coming under our theorem 191]

which deserve particular notice. If the fixed ratio be unity

we do not get a circle, but the radical axis. Let us rather

look at the case where the ratio is —1. The locus is in this

* For the most fall discussion of this and allied questions see Weill. Sar

les polygenes inserits et circonSt'rits k la fois a deux cerelea'. LicurHte'i

Jturr.al. Series 3. toL It, 1STS ; also Butzbeiger, loc ^i:.. pp. 7-32.
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case called the radical circle of the two original ones.*. It

will actually exist if the circles intersect, or if, not inter-

secting, they lie on the same side of their radical axis, or if

they be concentric. The centre will be half-way between

their centres. We leave the verification of these statements

to the reader.

Theorem 199.] Two intersecting or tangent circles, or two

non-intersecting circles which are concentric or else lie on the

same side of their radical axis, have a radical circle which

is the circle coaxal with them whose centre is mid-ivay between

their centres.

The slight modification needed in the case of concentric

circles is easily made.

Theorem 200,] If three circles be given whereof no two are

concentric, the radical circle of each pair is identical with that

of the radical circles determined by the circles of the pair

severally with the third circle.

The truth of this theorem is, of course, contingent on the

existence of all the radical circles in question. We see, more-

over, that the radical axes of both pairs of circles are parallel,

for one is orthogonal to a side-line of a triangle while the

other is perpendicular to the line connecting the middle points

of the other two sides. Moreover, the radical centre of three

original circles is easily seen to be the radical centre of the

radical circles which they determine two by two. The theorem

is thus proved.

If a circle be cut by a second orthogonally, while it is cut by

a third in a pair of diametrically opposite points, its centre

has powers with regard to the other two circles which differ

only in sign.

Theorem 201.] The radical circle of two given circles 'is the

locus of the centres of circles cut by the one orthogonally, and by

the other in diametrically opposite points.

* Cf. Duran-Loriga, ' Ueber Radicalkreise ', Grunerts Archiv, Series 2, vol. xv,

1896.
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Theorem 202.] The pedal circle of two isogonally conjugate

2X>ints is the radical ciixle of any pair of circles whose centres

are these points, and each of -which cuts orthogonally the three

circles whose diameters are the segments cut by the other on the

side-lines of the triangle.*

Theorem 203.] The nine-point circle of an obtuse-angled

triangle is the radical ciixle of the circumscribed circle and
a circle of anti-similitude of this and the pedal circle of the

orthoceutre.

Theorem 204.] The circles on two sides of a triangle «*

diameters have the circle whose diameter is the included media it

as their radical circle.

Besides the radical circle there is one other circle of the

coaxal family that is interesting. We see at once from 2 7]

Theorem 205.] The circle of similitude of tuo given circles

is coaxal with thein.

Consider, now, three circles with non-collinear centres. The

three circles of similitude which then determine two by two

cut orthogonally the common orthogonal circle of the original

three, when that exists, and the circle through the centres

of the original three by 13]. This latter will be the radical

circle of the common orthogonal circle and the circle cutting

each of the original three in a pair of diametrically opposite

points.

Theorem 206.] If three circles have non->:ollinear centres,

and their radical centre lie* outside of them, then the circle

through their three centres is the radical circk of their common.

orthogonal ciixle and that circle, when it e.eists, which cuts

each of the three in a pair of diametrically opposite points.

The coaxal system conjugate to that determined by these new

ci ivies contains the circles of similitude determined two by two

by the given circles.

* Koberts, 'On the Analogues of the Nine-point Circle in the Space of

Three Dimensions', Pn<::diu-j^ London Mathematical Society, vol. xis. 157S.
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Theorem 207.] If a circle move so that each of two given

points has a constant power with regard to it, it will trace

a coaxal system.

The line connecting the points is a radical axis for any two

positions of the circle.

Theorem 208.] If a circle so move that it cuts two others

in, diametrically opposite points, or cuts one in diametrically

opposite points and the other orthogonally, it will generate

a, coaxal system.

Theorem 209.] If three mutually external circles be given,

their centres being non-collinear, three other circles may be

found each cutting two of them orthogonally and the third in

diametrically opposite points, and three each cutting two

in diametrically opposite points and the third orthogonally.*

Theorem 210.] Given two non-concentric circles. If there

be a circle coaxal with them whose centre is the reflexion of

the centre of the first circle in that of the second, then this

third circle will cut in diametrically opposite points all

circles orthogonal to the first circle whose centres lie on the

second.

Theorem 211.] Given two non-concentric circles. If there

be a circle coaxal ivith them whose centre is the reflexion of

the centre of the first circle in that of the second, then this

circle will cut orthogonally all circles cut by the first in

diametrically opposite points, and having their centres on the

second.

Let us start with two fixed circles. These may be inverted

into concentric circles or into two lines. We thus get

Theorem 212.] If a variable circle cut two fixed circles at

given angles, it will cut every circle coaxal with them either

at a fixed angle or at the supplementary angle.

It is clear that there would be advantage in sharpening

our idea of the angle of two circles in such a way as to

remove the ambiguity in this statement. We do so as followB.

Let each circle be looked upon as generated by a point

* For the three theorems which follow see Affolter, ' Zur Geometrie des

Kreiaes und der Kugel ', Grunerts Archil), vol. lvii, 1876.
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tracing its circumference in a positive or counter-clockwise

sense. At a point of intersection draw the half-tangents

which lie on the same sides of their respective diameters

as near by-points of the circle traced subsequent to the point

of contact. At each intersection these half-tangents will

make the same angle, except for algebraic sign, and this shall

be defined as the angle of the two circles* Analytically it is

the angle 8. where

eos* = ^t£=*. (24 ,

Theorem 213.] If a mriable. circle cut two fired circles at

given angles, it mil cut at a f/iven angle every circle con-

centric or coaxal with them.

Suppose that we have a circle cutting three given circles

at chosen angles. If we simplify the figure by inversion, we
see that there will be a second circle cutting them at the same
angles or cutting all three at just the supplementary angles

;

the two are mutually inverse in the common orthogonal circle

of the first three, when this circle exists. The problem of

finding a circle cutting three given circles at assigned angles

or at exactly the supplementary angles has thus, usually,

more than one solution. The circles will be orthogonal to

three circles each coaxal with two of the given circles. These

three new circles must be coaxal, as otherwise they would

have but one common orthogonal circle. The circles sought

will thus belong to a coaxal svstem. and touch six sriven

circles, but every circle of the system touching one of the six

will touch the other five.

Theorem 214.] The problem of constructing a circle to cut

three non-concentric and non-coaxal circles at preassigned

angles or at just the supplements of these angles Los. at most.

tuv solutions. The construction may be effected by the aid of

ruler and comjxis*.

We shall postpone to a subsequent chapter the explanation

of the actual construction to be employed. For the moment

* The angle, so defined, will be transformed into its supplement by

inversion if one circle surrounds the centre of inversion, and the other

does not.
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let us consider the problem of constructing a circle to meet

certain given circles at equal angles. We easily see by
inverting two circles into concentric circles or into two lines

that a circle cutting them at equal angles will be orthogonal

to one particular circle of anti-similitude, when such exists,

and, conversely, every circle orthogonal to this circle of

anti-similitude will cut them at equal angles, while a circle

orthogonal to the other circle of anti-similitude will cut them

at supplementary angles. To be more specific, we see that

if two circles intersect, both circles, of anti-similitude, exist

;

the circles which cut them at equal angles are orthogonal

to the external circle of anti-similitude, i. e. to that whose

centre is the external centre of similitude ; a circle cutting

them at supplementary angles will be orthogonal to the

internal circle of anti-similitude. If two circles lie outside

one another, there is no internal circle of anti-similitude, and

circles cutting them at equal angles are orthogonal to the

external circle of anti-similitude, or to the radical axis when
the radii are equal. When one circle surrounds the other

there is no external circle of anti-similitude, and the internal

one is orthogonal to those circles which cut the two at

supplementary angles.

Theorem 215.] If a circle cut two others at equal angles

it is orthogonal to their external circle of anti-similitude

when this circle exists, and every such circle cuts them at equal

angles if at all. If a circle cut two others at supplementary

angles it will be orthogonal to their internal circle of anti-

similitude when such a circle exists, and every circle orthogonal

to an internal circle of anti-similitude will cut the given

circles at supplementary angles if it cut them at all.

If a circle cut two others and be orthogonal to a circle of

anti-similitude, it is anallagraatic with regard to the inversion

in that latter circle (which interchanges the original circles).

The intersections with the original circles are thus collinear

in pairs with the centre of this circle of anti-similitude. If

the circle of anti-similitude do not exist, and be not replaced

by the radical axis, the given circles are interchanged by the
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product of a reflexion in the centre of similitude, and an

inversion in a circle -with this as centre, and every circle

invariant for such a transformation will cut the original

circles in equal or supplementary angles. Conversely, if

a circle cut Wo others at equal or supplementary angles, yet

be not orthogonal to a circle of anti-similitude or radical axis,

it is easily seen to be carried into itself by such a trans-

formation.

Theorem 216.] If a circle intersect hvo other non- concentric

circles of unequal radius at equal angles, the points of inter-

section are collinear two by two with the external centre of

similitude ; if it intersect two others at supplementary angles,

the points of intersection are collinear in pairs with the

internal centre of similitude.

Theorem 217.] If each of two non-concentric circles cut

two other non-concentric ones at one same angle, then the

radical axis of each pair passes through the external centre

of similitude of the other pair or is parallel to their line of

centres when the circles of the second pair have equal radii.

If each of two non-concentric circles make supplementary

angles with each of two other non-concentric circles, and each

circle of the second pair make supplementary angles with

each of the first, then the internal centre of similitude of each

pair lies on the radical axis of the other.

The radical axis of two circles will replace the external

circle of similitude when, and only when, they have equal

radii, whence

Theorem 218.] If a centre of inversion be taken on a circle

of anti-similitude, the inverses of two given circles will have

equal radii.

Suppose next that we have three circles. A line connecting

two external centres of similitude will pass through the third,

when the latter exists ; a line connecting two internal centres

of similitude will pass through an external centre.

Theorem 219.] If three circles be given with non-collinear

centres, the circles cutting them at equal angles form a coaxal
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or concentric system, as do those which cut one at angles

supplementary to those cut on the other three. The locus of the

centres is the perpendicular from the radical centre of the

original three on a line containing three of the centres of

similitude which they determine two by tivo.

Theorem 220.] If four circles be given, no three having

collinear centres, there is at most one circle cutting all at

equal angles, four cutting one in angles supplementary to the

angles cut in the other three, and three cutting one pair in

angles supplementary to those cut in the other pair.

Theorem 221.J A necessary and sufficient condition that it

should be possible to invert three circles simultaneously into

three circles with equal radii is that a circle of anti-similitude

of one" pair should intersect such a circle of another pair in

a point outside all three given circles.

It is a parlous undertaking to suggest possible lines of

further advance in the subject of plane geometry. On the

one hand, the subject has shown itself inexhaustibly fertile,

new discoveries have come in such numbers at times when
a superficial observer would have felt sure that the last word

had been said, that it would be highly unwise to assert that

with a little patience one might not strike oil by working in

any portion of the subject. On the other hand, the existing

literature is so vast that there is a large antecedent probability

that any new seeming result may have been discovered decades

if not centuries before.

It seems likely that there are other simple criteria for

various systems of tangent circles like Casey's condition for

four circles tangent to a fifth, Vahlen's criterion for poristic

systems, or the Euler conditions that there may be a triangle

or quadrilateral inscribed in one circle which is circumscribed

to the other. There seem to be limitless possibilities for

finding circles through notable points or tangent to notable

lines. There must be other circles analogous to the P circle.

It seems likely also that there are other special cases of Tucker

circles which are worthy of attention. Moreover, it may be

possible to generalize the Tucker systems in interesting ways
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as suggested by 67]. It seems likely that there are other

chains of concurrent circles and concyclic points besides those

noticed in theorems 162-6. The Brocard figures seem to offer

an inexhaustible store of theorems. It is quite likely also that

in coaxal systems of circles there may be other interesting

circles besides the special ones which we have discussed. For

instance, the following theorem came to our notice too late

to be inserted in its proper place.

Theorem 222.] If a transversal through the centre of the

circumscribed circle meet the sides of a triangle in the points

Blt -B.,, B
3 , the circles on (-!;£,-) as diameters are concurrent

on the circumscribed and nine-point circles.*

The concurrence on the nine-point circle comes from 68],

that on the circumscribed circle comes from 184] and the

remark immediately following.

* Thebault, "Sur quelques theorenies de geonietrie elementaire *. Xuurelhs

Annates rfe Math., Series i, vol. x, 1910.



CHAPTEE II

THE CIRCLE IN CARTESIAN PLANE
GEOMETRY

§ 1. The Circle studied by means of Trilinear

Coordinates.

All figures studied in the present chapter are supposed to

exist in one plane which has been rendered a perfect con-

tinuum by the adjunction of the line at infinity. The

complex domain is included as well as the real. We call

this the cartesian 'plane. The assemblage of all points in

such a plane may be put into one to one correspondence. with

that of all triads of homogeneous coordinate values, not all

simultaneously zero.

In studying circles in the cartesian plane, three types of

coordinates may properly be used. We start with the least

fruitful, trilinear coordinates* Let us take a fundamental

triangle whose side-lines have the equations

cosc^a;+ sin tx^ — ts
{
= 0, £=1,2,3. (1)

We take as the trilinear coordinates of any finite point,

whose cartesian rectangular coordinates are (x, y), the three

quantities

Pi
= -(cob otiX + sin a^) + ir

f
. (2)

We assume that the triangle surrounds the cartesian origin,

so that each coordinate of the origin is positive. Every

other point within the triangle will also have three positive

* Cf. Whitworth, Trilinear Coordinates, London, 1866 ; Casey, Analytic

Geometry of the Point, Line, Circle, and Conic Sections, Dublin, 1893, a brilliant

but untrustworthy book. Also Clebsch-Hndemann, Vorlesungen iXber Geometrie,

second ed., Leipzig, 1906, vol. i, part 2, pp. 312 ff.
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coordinates. The coordinates of any finite point will be

connected by the fundamental identity

; = 3

2« 1p i
=2A. (3)

i = 1

If the left-hand side of this equation be equated to zero,

we have the equation of the line at infinity, whose points

may be put into one to one correspondence with sets of

coordinate values satisfying such an equation. If the radius

of the circumscribed circle be /•, our fundamental identity

may also be written

'4,
3

2 A
2.woit.A

tp {
=— (4)

Let us begin by finding the equation of this circumscribed

circle. Since it is a conic circumscribing the triangle of

reference, it must come under the form

1=3

We determine the coefficients by noticing that the tangent

at a vertex will have an equation

8111 4-Aj P* + sin 4-^hPj-

Hence the equation of our circle may be put in any one of

the three forms

, = 3 . = 3 ; = 3

^smZ-AiPjPk = 0, ^a
ipJ p 1e

=0, 2S=°- <
5
)

; = 1 i = l ; = l
l '

We may proceed in similar fashion to find the equation of

the inscribed circle. In line coordinates it must have an

equation of the form

i=3

4=1

The point of contact of a side-line will have the equation

cos2 1 i-A h u.j + cos2
1 4_ Ajuh = 0.

h 2
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Hence the equation of the inscribed circle will be

i' = 3

» = 3

2cos4
f 4-APi -^ coam- Aj cos* % 4- 4-kPjPh = °-

! = 1 1=1

This last equation is factorable, giving the reduced form

for the equation

cos \i-A { s/pt

±

cos \ 4- Aj Vpj

±

cos \ 4- A h ^Pu — °- (
7
)

The escribed circle corresponding to the side «$ will be

likewise

i cos \ 4- A{ " P̂i± sin \ 4- A\ ^P§ + sm \ %- A-k Vplc
= 0.

The equations of circles circumscribed or inscribed to a

polygon of n sides may be found in like shape.* Suppose,

in fact, that the sides of an inscribed polygon have the

lengths a
1
...an ; the perpendiculars on these side-lines from

any point of the circle shall be px
...pn . Taking this point as

centre of inversion, we transform our circle into a straight

line. Let p' be the distance from the centre of inversion to

this line. Then

Pi = p'-=^i— > y (aIa-h-i) = o.

With regard to signs, we may take all of these segments

except the extreme one as positive, while the latter, which

comes from that side of the original polygon (supposed to be

convex) which shuts the given point from the other sides,

is negative. On the other hand, the number p{
corresponding

to this side is negative, while the other numbers p; are

positive. Hence, for every point of our circle,

i = n

2- = °-

The equation of the circle will be a factor of this.

* See a highly ingenious article by Casey, ' On the Equations of Circles
',

Transactions Royal Irish Academy, vol. xxvi, 1878.
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To find the equation of an inscribed circle we see that if

B
t
be the point of contact of the side (^ ;

^ i+1), the circle

must have an equation of the type

Pi-iPi = <*Pi'\

where />/ is the distance to {B^B,). We see also that a = 1,

since our circle passes through the middle point of the circle

inscribed in the triangle B^A^,. But, by the formula for

the circumscribed circle,

2 (%- = 0. (5
(

._
1
B,) = 2poo8i2|LJ

|
..

, = i
y <

Hence for our inscribed circle

—'cosl2M/=o

When the polygon has an even number of sides, the

equation of the circumscribed circle may be put into much
simpler form by means of I. 60], namely

PlP:.Po •••All-l+ftftft Pin = 0.

In the case of the quadrilateral this gives

PiPi+PiPi = °-

When this is reduced to rectangular cartesian form the

coefficient of ,t'
2 + y

2
is

% [cos (ofj — (Xj) + cos (X— a4)].

Since properly- oriented opposite angles of our quadrilateral

are equal,

cos (ofj— sj = — cos (a4
— <x

3),

cos (ax— aj = — cos (a., - a
3 )

.

Now, suppose that this same quadrilateral is circumscribed

to another circle of radius p, the distance of the centres being d

and the radius of the circumscribed circle /• as before. Taking

the centre of the inscribed circle as origin, the cartesian

coordinates of the centre of the circumscribed circle will be
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i = 4

—p2 cosa
*

iCn
cos (ctj—

a

8) + cos (a2
— <xt

)

'

?=4

-2 sina
*

y =
.cos (ofj —

a

3 ) + cos (a
2
—

a

4)

The power of the centre of the inscribed circle with regard

to the circumscribed may be obtained by substituting (ppp) in

the equation of the latter when the coefficient of x2 + y
2 has

been divided out, and found to be

-(l*-d*) = ^ ;
,

•

cos (ofj — a
3) + cos (a

2
— a4 )

On the other hand, if we first find d we get

2P
!

: + d2 =

i = 4 i = 4

(2cos<X;) +(^smc(i) — 4 p
2 [cos ((Xj — a

3 ) + cos (a
2
—

a

4
)

"

[cos (o^ — a
3) + cos (a

2
— a4)]

2

(r2 + tZ
2
) _ _1

r
2-d2

)
2 ~

p
2

.1=4 i=i

(2 cos a») + (2 sin a») - 2 [cos (oij- a
a) + cos (a

2
- a

4)]

Multiplying out on the right, and remembering the identities

recently found,

2(r2 + c£
2)_ 1

{r
2-d2

)

2
p
2 ' (r + d)2 {r-df P

2

This is our old formula I (11).

A circle concentric with that circumscribed to our triangle

will have an equation

i = 3

2 shi 4- AifyPj = const.

! = 1

The left-hand side of this equation is the double area of the

pedal triangle of the point (p) which proves I. 62]. Let us
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inquire under what circumstances the general equation of the
second degree

* = 3

j = 3

2»yft^ = 0, a
ij = aji

(" = l

j = l

will represent a circle. It is necessary and sufficient that
it should be possible to rewrite this

.
= 1 i = 3 , = 3

We have three equations

and three others

sin^L^

Jiiuninating p

tijj sin2£. Ak + akk sm
i
4- Aj— 2 a -

k sin
2
2£_ A sin 4-Ak = const.

In the special case where an. = 0, j =fi k,

van = sin2^_*i
l
[sin2^_^l

i

— sin2^_^— sin'
2^_J.i.]

j = 3

= sin 2 4-A
(
Hsiu £_ J,-.

.. = i

We thus find the equation of the only circle with regard to

which the triangle is self-conjugate,

i = 3

2sin2^_^l
f^2 = 0. (8)

; = i

Let us find the coefficient of -ir + ir when the circle

- aiiP%Pi — is changed to its cartesian form. The coeffi-

cient of :r is 2 a,v cos a
(
cos Xj, that of <r is 2 a

tj sin }
f
sin <Xj

.

As these two are equal we may replace both by half their

sum, namely

h [«u" + a ,2
2 + «33

s-2 ajh cos t-A ,-]
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For the circumscribed circle this becomes

-^am2^A
i
= -Ilsin^-

; = 1 ; = 1

This will also be the coefficient of x2 + y
2 in the cartesian

equation corresponding to the trilinear form

i = 3 i' = 3 (=3

2 sin £_A { Pj Pk + 2 v>i Pi 2 sin t- A t Pi = 0.

; = i ; = i ; = l

since the second factor of the last term is a constant. If the

coordinates of a point be substituted in the equation of a circle

and the result be divided by the coefficient of x2 + y
2
, we shall

get the power of the point with regard to the circle. Thus, if

we take (ppp) the coordinates of the centre of the inscribed

circle, and substitute in the equation of the circumscribed

circle,
i = 3

d2-r2 = - -££ = -2rP ,

Ylsm^Ai

1
+ '

'

r + d r— d p

This is our previous formula I (10).

It is geometrically evident that the centre of our circle (8)

is the orthocentre of the triangle, for the polar of any point

with regard to a circle is perpendicular to the line from that

point to the centre. We know from I. 50] that this is

a circle of antisimilitude for the circumscribed and nine-

point circles, so that the equation of the latter will be of

the type

i = 3 i = 3

2 sin 2 4_AiPi
2-\ *2,aix&.A

tpjpk = 0.

1 = 1 i = 1

We find A. by requiring this circle to pass through the foot

of one altitude.
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The nine-point circle has thus the equation

2 sin 2 £. Au >f - 2 2 sin 4_A iPjph
= 0. (9)

; = i ; = i

We next notice the identity *

2 sin 2 i_ A i t ,f + 2 2 sin £_ A
.

^

< = i < = i

= 2 2 sin 41 .4,.^.2 cos #_ .4 ,7/;.

« = 1 ; = i

Hence the equation of the nine-point circle may he written

' = 3 i = 3 , = 3

22 sin£-^^-2 sin 4-^-jfi2 oos2|Ld ;Y>; = 0. (10)

i = i ( =

i

.=i

The equation of the inscribed circle was seen to be

i = 3 ; = 3

2 cos4 1 £_A ipf - 22 cos2
1 £. 4; cos2

§ t-A tPjIjk= 0, (7)

and this may also be written

. = 3 . , , i = 3

-r. cos4 i4_J.- .— . . .

1 = 1
T~ » ,-_i

_ -n- cos- i 4_ -4 , ^ . . .- 4H gin^'S™*-^* = °"

- The radical axis of the nine-point and inscribed circle

will be

; = i i = i
**-

*

,=3 i = 3

-2ncos2 ^4l^
i
2cos^_^

;ft = 0,

i = l i.= l

* Whitwoi-th, loc. cit., pp. 294 ff.
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i = 3

t = i

i = S , ,

^sinj^-*-^
The coordinates of this line are seen to satisfy our

equation (6), so that the nine-point circle touches the inscribed

one. In like manner we may prove that it touches the

escribed circles.

At this point let us make a short digression into the geometry

of conic sections.* We start with the familiar theorem that, if

the side-lines of two triangles touch a conic, their vertices lie on

another conic. If the first conic be a parabola and one triangle

be formed by the tangents through the focus and the line at

infinity, we see that a circle circumscribed to a triangle circum-

scribed to a parabola will pass through the focus. The Miquel

point of four lines is thus the focus of the parabola which

touches them. Let this be the point F, and let us find the

polar reciprocal of our figure with regard to another circle of

centre G. The polar of the parabola will be a conic through G.

A triangle with vertices Av A
2 , A 3

will be inscribed in this

conic, and another conic with focus at G will touch the side-

lines of the triangle. This last conic, regardless of the positions

of Av A 2 , A 3
on the coDic through them, will always touch

a fixed line, the polar of F with regard to the circle of

reciprocation. The foot of the perpendicular from G on any

line is the inverse of the pole of this line with regard to the

circle whose centre is G; the pedal circle of G with regard to

Ai„ A2 , A 3
is the inverse of the circle through F and will

pass through the inverse of F, a fixed point.

Theorem l.J The pedal circle of a chosen finite point of

a conic with regard to all triangles inscribed in this conic

passes through a fixed point.

If the conic be a rectangular hyperbola, we see, by taking

the special case where the vertices are the extremities of the

* Mannheim, 'Solutions de questions 1798 et 1803', Nouvelles Annates de

Math4matiqv.es, Series i, vol. ii, 1902.
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asymptotes and either vertex, that this fixed point will be
the centre.*

Let us return to the geometiy of the circle. Every conic

through the vertices and orthocentre of a triangle is a rectan-

gular- hyperbola, for the involution determined by such conies

on the bine at infinity has three pairs of mutually perpendicular

directions. The locus of the centres of these conies is a conic,

namely, the nine-point circle. We thus get t

Theorem 2.] If four unite points be given, whereof no three

are collinear, which are not the vertices and orthocentre of

a triangle, the four nine-point circles which they determine

three by three, and the pedal circle of each with regard, to the

triangle of the other three, are concurrent.

This theorem enables us at once to deduce Fonten^'s exten-

sion of Feuerbach's theorem which we had before in I. 68],

For if a point move along a line through the centre of the

circumscribed circle, its isogonal conjugate, whose coordinates

are proportional to the reciprocals of its own, will trace a conic

through the vertices and orthocentre of the triangle, i.e.

a rectangular hyperbola, and the pedal circle of the moving

point and its isogonal conjugate will continually pass through

the centre of this hyperbola.

For the sake of reference it may be worth while to give the

trilinear coordinates of the various notable points of the

triangle which appear in connexion with the Brocard figures.

We get from formulae (13) to (23) of Ch. I.

Point 0, px '-Pi'-Pa = eosijU^ : cos 4-A.2 : cos i-A„.

Point K, //j : p.2 : p3
= sin/£_ J.jisin^L J.

;
:sin^--i

s

„ . n sinX_J.„ sinX-^i. sinX_J...
Point a, px

:A : ,, =^-^ : ^^-j^ : ^^
= a^a^2 : a.2 a-f : a^af. (11)

* See a remark by • G.'. Xoucettes A» ila de Matiiematiqt-s, Paries i, vol. v,

1905.

f Fontene. ibid., p. 504, speaks of this as a well-known theorem.
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Point 12', p : « : » = . 3T ,

2
: ~iP—/ : sin . ,, Vn ^2 Z3 sin4L^

3
sin^LJ.! sin#_^L

x

= Ojttg
9

: a2
a

3

2
: as

a^-

Point ^4/, pt
:p- :pk = sin o> : sin (4-A h

— a>) : sin (4-Aj— w)

= a
x
a%a^ : a

lc

3
: a$-

The vertices of the second Brocard triangle are not quite so

easy to determine.

The equation of any circle through A- and A k will be of

the form
i = 3 i=8

;=i ;=i

We wish this to touch A
i
Ak at A

{
. Putting p- — 0,

ajPlcPi + lPk(aiPi + ah Vk) = °-

There will be two roots ph = if Z = 1- The equation

of our circle is, then,

(
a?- aj*)PjPk + *iHPiPj-<*j«kPk* = °-

To find where this meets the line from A to K we put

PPj = aj> PPk = ak-

We thus get our desired coordinates.

Point A/', pi :

p

j
:

p

k = a? + ak*-a? : a^ : a««
fc

. (12)

Let us find the equation of a Tucker circle. If P
i
be such

a point of A;A k that

4-A
J
nP

i
= e,

at-

(A
j
P

i)
= (aA

j
)-

sin ak sin u> sin (

sin(w + 0) sm{(n + e)sm.^A-'

The distance from P.- to J.,-^1; is, thus,

a
fc
sin (a sin

sin (co + 0)

The equation of the line PjP/ is, by I. 98],

i = 8

• / . ,!\ a?, sm <o sin -v
Ph sin («+«)- "

2A 2. «ift = °-

i = 1
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; = s

U^2A sin (go + 6)2J
i
— a

!
sin<M sin 6 2 a j'Pj)

.! = 1 y=i

- x ^iftl'3 = o

will contain the six points PjPf. If we can so choose \ that
i = 3

this equation contains 2 f';Pi as a factor, the other factor

; = i

will give the Tucker circle for the angle 6. We have but to

take A = 8 A 3 sin3 (to + 0). The Tucker circle is

T^s II (
2 A sin (co + 6)p i

— «7 sin co sin d 2 a
; Pj)

2«,2',
L;=1

< = i

— 8 A3 sin3
(to + 0)2h'P°lh = 0. (13)

In the special case of the first Lemoine circle sin 6 = sin <

, = 3 . = 3 ; = 3

16 cos2w A ^''il'ift- * A sin a> cos a) 2 a <i'; ^ a
j
a l;Pi

; =

l

i=i

i = 3

+ rt
1
Ooa 3

sin2
(o^2";ft-) = °-

The Brocard circle is concentric with this, and so has an

equation of the type

i = 3 .' = 3 < = 3

1 6 cos'
2
co A22 « / Pj Pk— * A sin co cos co2 a

i Pi 2 a
j
ak Pi

, = i i=i

+ (tw^ sin2 co — A) f

2

f
-

;

Pi) — °-

i =i

This must pass through the symmedian point whose

coordinates are proportional to the sides of the triangle.

Remembering that ctn to = —j- > A. = c^a.-.a., sin2
to, we get the
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following different forms for the equation of the Brocard

circle

:

i = 3 i = 3 i=3

4 A ctn co 2 aiPj Pic~ 2 aj ahPi2 aiPi = °-

i = 1 i=l »' = 1

i = 3 •< = 3 i = 3 i = 3

2 «< 2 a>ipjPk- 2 «i
a^Pi2 «ift = °' (

14
)

; = i ; = i : = l » = l

2 sin2 £. 4 •2 sin £.^-ft
i' = i ; = i

i =3

- 2 sin 4- Aj sin #_A
le Pi2 sin £_A t p{

= 0.

It will be found by direct substitution that the circle with

this equation does effectively pass through our ten points.

Radical axis of Brocard and circumscribed circle

= 3

Pi2^=o.
-.l":

The area of the pedal triangle of a point (p) is

i'=3
A x

2, aiPiPh-a^a^dg
. _

|

The sum of the squares of the lengths of its sides will be

= 3 i = 8

2 2 Pi
2 + 22 PiPh cos 4- A i

; = i

i = a t, = a

= 2 2^2 + T^-77 2M«/+«//-^>i2v"*'
«l«'2a8*"

; = i

The cotangent of the Brocard angle of this triangle will be
;=3 1=3

2 ax
a2az2^2 + 2 a

i (
aT + ah-<)PjPh

ctn to'=

4A 2vift
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Writing the equation of the Brooard circle

i = 3 i' = 3

«ia2
«
3 2#i

2 = 2 a
i
3
PjPh> (

15
)

2«<,
2

ctn w' = ——-— = ctn (o,

4 A

we thus reach an interesting theorem due to Schoute.*

Theorem 3.] The locus of points whose pedal triangles have

the same Brocard angle as the given triangle is the Brocard

circle.

Theorem 4] The locus of points whose pedal triangles have

a given Brocard angle is a circle coaxal ivith the circumscribed

and Brocard circles.

Let us find the equation of the Neuberg circle corresponding

to (AjA,).
; = 3 ; = 3 ; = 3

2 aii3jPk + 2 uiPi2 aiPi = °-

! = 1 ! = 1 1=1

As this is to contain A
{

, while A-
}

and A
lt
are to have like

powers with regard to it,

u
i
= 0, v,j = Art-, Uj. = Xa h .

1 = 3 i' = 8

2 aiPjPk

+

A
(
ajP; + ahPi) 2 'uvi = o.

^7
The coordinates of Aj are 0, — 0. Its power with regard

to the Neuberg circle is, by I. 137], a/, and the coefficient of

x2 + y
1 in the corresponding cartesian equation is

— a
i
sin 4- Aj sin 4-A

]c
.

-A 4 A2 <*/ „ , (H
X „/.„, = aA A = -

a/ ^sin^^sinJMfc *' V(
'<

* ' Over een nauwer verband tusachon hoek en cirkel van Brocard
',

Amsterdam Transactions, Series 3, vol. iii, 1887.
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The equation of the Neuberg circle is

i = 8 (=3

i' = l i = 1

We turn to the closely related MacKay circle. The radical

axis of the MacKay and Brocard circles is Aj'Aj'' whose

equation is

(a/— aj*— rij* + afa,]?) 'p
{
+ a

t
Us (2 a

lc

2— a/— af) p-

+ a
i
ak (2a

J
.
2—a/— ah

2
) = 0.

The MacKay circle will thus have an equation of the type

; = 3 ) = 3 i = 8

2 a
i 2 «ity-P* -2 aiPi {

[

a
j
ak + k«-«/ - ai* + «/%2

)]ft
j = i i = i i = i

+ [a/. di + Xcti a- (2 a
7
,

2- a/—
ay

2
)]^

+ [a
j

ffl

i
+ Uja,

i

.(2(i/-«
;
/-a j

2
)]j)l.} = 0.

Moreover, by I. 148] As and Ah have like powers with

regard to the MacKay circle,

<t>iaic + Xai
aj{2ah- a

'i

, - a
j

i

) _ a
i
a
j + ^aiak(2aj

2 -ai2-ak)

i

X = -
3a

j
ak'

1=3 i = c

3 oj a,.2 »/2 »< Pj Pic~ 2 a* ft { [(«/ + V) 2- «<*] Pi
i=i i=i ' = i

i = 3

+ a
t2 «*' [«/ JPj + «* Ph]} = °- (17)

Substituting ^ = — > the coefficient of p
2 will be

&)- '{af + affi-i
+ 20f2«i"

= 0.
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This shows that the centre of gravity lies on the MacKay
circle. M

f
has the coordinates

Pi = °- Pj = -7-r > Ph = -r1
'

Its power with regard to the Neuberg circle is

ZLJ: : _ o 22 ar_
, _ 3a,-

2

a
x
a 2a3 sin £-Aj sin 4- A,.

a
*
a
i "*' * I6r2 ;

4~ '

Its power with regard to the MacKay circle is

12

The ratio of these is 1:9, A
{
is three times as far from M

t

as is M, hence the second intersection of A
S
M with the

Xeuberg circle is three times as far from M as is the second
intersection with the MacKay circle.

Theorem 5.] The middle point of a side of a triangle is

a centre of similitude for the corresponding MacKay and
Neuberg circles, the ratio of similitude being §.

This justifies a remark made after I. 148]. Remembering
the original definition of MacKay circles, we have

Theorem 6.] The MacKay circle corresponding to a par-
ticular side of a given triangle is the locus of the centre of

gravity of a triangle having tlie given side and Brocard

angle, its vertex also lying on a specified side of the given

side-line.

§ 2. Fundamental Relations, Special Tetracyclic

Coordinates-

It is clear that the trilinear coordinates which we have so

far used are not adapted to dealing with the circle in any
broad way, and, in fact, are of use only in studying those pro-

perties of a circle which are related to a particular triangle.

Let us now turn to homogeneous rectangular cartesian coordi-

nates x-.y.t, and define, once for all, as a circle in the
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cartesian plane every locus which corresponds to an equation

of the type

x i (x2 + y
2 +

t

2
) + x

1
(x2 + y

2-

t

2
) + x

2
(2xt) + x3 (2 yt) = 0. (1 8)

The quantities (x) shall be called the coordinates of the

circle ; they are homogeneous, and subjected only to the

restriction that all may not vanish at once. We distinguish

the following types of circles

:

i =3

2 %*< = (»*)•

- =o

(a) Proper circles (xx) ^ .0, ix + x
l
^ 0.

(b) Non-linear null circles (xx) = 0, ix + x
1
=£ 0.

These consist in pairs of finite lines through the circular

points at infinity.

(c) Non-isotropic line circles (xx) ^ 0, ix + x
1
= 0.

These consist in a non-isotropic line and the line at infinity.

(d) Linear null circles (xx) = 0, ix
a + x

x
= 0.

These consist in an isotropic line and the line at infinity, or

the line at infinity counted twice.

The four multipliers of x , xlt x2 , xz in (18) shall be called

the special tetracyclic coordinates of the point (x, y, t), or rather,

any four quantities not all zero which are proportional to

them. The reason for this curious designation will appear

later. The relation between our homogeneous cartesian co-

ordinates and our special tetracyclic ones may be written

2/o =
2/i

= 2/s = V, = i(x2 + y
2 + t

2
) : (x

2 + y
2 -t2

) : 2xt: 2yt,

x:y.t = y2 :y3
:-(iy + yi).

y

Every finite point has thus a definite set of special tetracj'clic

coordinates (y) for which

(yy) = 0, iyo +y^O.
Conversely, every set of homogeneous values which satisfy

these relations will correspond to a single definite finite point.

Returning to our circle (x), which we assume to be not a line

circle, we have for the radius

^(xx) ..
r = -j—^

—

'- • (20)
1/oCn ~J~ £Ct
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This expression is. of course, double valued as it stands

Where the circle is real we assume that such a sign has been

attached to the radical that r ^ 0. The concept of a circle

with a negative radius will be treated most fully in a subse-

quent chapter. Let the reader show that the special tetracyclic

coordinates of a point are nothing more nor less than the

coordinates of that null circle whose centre the point is. The
special tetracyclic coordinates of the centre of (x) are

po: = x
-M'^o + ^i)

i (xx)
(21)

px.
2
'= x.

2 ,

px
3
'= x.,.

The coordinates of the circle concentric with (x) and ortho-

gonal thereto are

i (xx)

(ix +xj'

"^^-(i^k' (22)

<TX.
2
= X„,

<TX3 = Xs .

The power of the finite point (y) with regard to the proper

circle (aj) will be
- 2 ^y)

(23 )

This formula holds even when (x) is null, if it be not a line

circle, and gives the square of the distance of the finite points

(re) and (y). If the power of a finite point with regard to

a proper circle be divided by the radius, the quotient is

^2^
- (24)

V[xx){iy + y1)

This expression has a meaning when the circle is a non-

isotropic line circle. In fact we see that if a point remain

fixed while the radius of a certain circle increase indefinitely,
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the ratio of power to radius will approach as a limit double

the distance from the point to that line which is the limit of the

circle. If we extend the phrase ratio of 'power to radius to

include this limiting case, it is easy to see that this ratio for

the circle x
t
= 1, as- = will be

-2&
.

%o + 2/i

The special tetracyclic coordinates of a point are thus pro-

portional to the ratio of power to radius with regard to four

mutually orthogonal circles, namely, the y axis, the x axis, the

unit circle around the origin as centre, and the concentric

circle the square of whose radius is — 1. It is this aspect of

our coordinates which we shall subsequently generalize. If

two circles be given which are not null, their angle 6 will be

given by
(xv)

CoS 6 = —_ry)
• (25)

V(xx) V{yy)

In the case of real circles the radicals in the denominator

should be so taken as to make the radius of each positive.

The formula is then

COS0=^p -. (26)

The condition for orthogonal intersection is

(xy) = 0. (27)

For internal or external contact we shall have

(xx){yy)

Before proceeding further, let us look at our tetracyclic

coordinates from still another point of view.* The homo-

geneous coordinates (x) may be taken to represent a point in

a three-dimensional space 8, which we shall assume has an

* One of the earliest writers to look upon circles as corresponding to

points in a three-dimensional space seems to have been Mehmke, ' Geometric

der Kreise in einer Ebene ', Zeitschrift fur Mathemalik und Physik, vol. xxiv,

1879. He does not, however, make use of the idea of elliptic measurement.

The reader not familiar with non-Euclidean geometry will find this measure-

ment fully treated in all books on the subject, e.g. the Author's Elements of

Non-Euclidean Geometry, Oxford, 1909.
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elliptic type of measurement, the equation of the absolute

quadric being
(xx) = 0.

Our formula ^25) for the cosine of the angle of two circles

(.'.) and (y) -will give exactly the cosine of the distance of two

points in our non-Euclidean space. The totality of circles

whose coordinates are linearly dependent on those of two

will give the pencil of circles through the intersections of

two given circles. When the given circles are proper, this

will be a coaxal system as defined in the last chapter. We
shall extend the term coaxal system to include the pencil in

every case. Our correspondence may thus be written

:

Plane -. Space s.

Circle. Point.

Null circle. Point of Absolute.

Angle of two not null circles. Distance of two points not

on Absolute.

Mutually orthogonal circles. Points conjugate with regard

to Absolute.

Coaxal system of circles. Line.

Pencil of tangent circles. Line tangent to Absolute.

Circles mutually inverse in Points collinear with a given

proper circle, or reflexions point and equidistant there-

of one another in a non- from,

isotropic line.

Circle of anti-similitude of Centre of gravity of two

two circles. points.

Inversion, or reflexion in a Reflexion in a point,

line.

As an example of the sort of theorems that correspond in

the two domains, we take the following :

Plane -. Space 6'.

The circles of anti-similitude The centres of gravity of jja.irs

of three rno-n-coaxal circles formed by three given points

are coaxal in threes. are collinear by threes*

* See the Author's Xon-Evdidtan Geometry, cit, p. 102.
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We may establish our correspondence of circles in -n with

points in S by a direct geometric process without recurrence

to non-Euclidean notions. Starting with our typical circle (18),

the cone with the vertex (0, 0, 1, i) through that circle will

have the equation

x i[x2 + y
2 + t

2 -z2 -2itz]+x
1
[x'

i + y
2 + z 2 -t2 + 2itz]

+ x
2
(2xt—2 ixz) + xs

(2yt—2 iyz) — 0.

This may be written

(ix + x
1
)(x2 + y

2 + z2 + t
2
)

— 2 i (z + it) (x
2
x3 + x.

6y + xuz + xj) = 0.

This cone will thus cut the sphere

x2 + y
2 + z2 + t

2 =

in a circle whose plane is

x^ + x^ +x^ + x^ = 0.

The coordinates of the pole of this plane with regard to the

sphere in question will be

The coordinates of a circle in the cartesian plane may be

interpreted as the coordinates of a point in space whose polar

plane with regard to a fundamental sphere cuts that sphere

in a circle whose stereographic projection is the given circle.

Let us in this connexion give the formulae for inversion.

Suppose that we have a point (y) and a circle of inversion (a;).

Since every circle through (y) and (y') is orthogonal to (x),

and these relations are expressed by linear equations of like

type, the coordinates of (y
r

) must be linearly dependent on

those of (x) and (y).

(y'y') = (yy) = o,

Pyi
' = (xx)y

i
-2(xy)x

i
. (29)

We may go further. Suppose in this equation (y) is any

circle. Then if (t) lie on (y) we shall find that its inverse

lies on (y'). Our formula will thus give the inverse of any
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chosen circle. We next turn to the non-homogeneous cartesian

coordinates, taking for our circle of inversion

the inverse of {x, y) -will be

'_ yX =

dafbx' + dy'by' dxbx + dyby
s
/dx'- + dy- -/6./- + S/2 ~ i/dtf + dy- Sbx? + by2

'

This last equation shows that the angle between two curves
is equal or supplementary to that of their inverses.

§ 3. The Identity of Darboux and Frobenius.*

It is now time to take up an important identity connecting

the coordinates of any ten circles, which plays a fundamental
role in much of our theory. Let us suppose that we have two
groups of five circles each, (x) (y) (z) ^) (t) and \x') (y')(z')(s')(f).

Multiplying together the two determinants
|
x y z s t j and

x i/z's't'O
|
we get the fundamental identity

(xx') [xy'j (xz) \xs') yxt')

Ulx') (</#') •*/-'> ('7*') <^'> '

(zx'\
K
zy) [zz') i--/) ^r'> = 0. (30)

\sx') (?y) {&:') uv-') [St')

itx') W) {
tz) [ts) (W)

As a first special case, let \x'), (y'). (z'), (s') be four finite

points, no three collinear. nor are all four concyclic. (x) shall

* It is rather a delicate question to know to whom one should give the

credit for the identity which forms the subject of the present section. It

was first given in a particular form by Darboux, • Group es de points, de eereles

et de spheres *, Annaks de TEcole Xonnale, Series 2, voL i, 1ST2. Frobenius

thereupon announced that he had long been familiar with it, and proceeded

to publish his results, ' Anwendungen der Determinantentheorie anf die

Geometrie des Masses ', Crelle's Journal, vol. lxsix. 1S75. Another elaborate

discussion is in an important article, by Lachlan, ' On Systems of Circles and
Spheres ", Philosophical Transactions of ike Royal Socidu, vol. elxxvii, 1886.
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be the circle circumscribed to the triangle whose vertices are

(V% {*?), (A and so for (y), (s), and (s) : (<) and (f) shall be the

line at infinity.

(xx') («B + »i)

(2/2/0 ° (%0 + 2/j)

(02') (iz + Zi)

(ss') (*s + s
i)

(it/ + a;/) (t%' + y{)« + i/) (is ' + s/)

=

2 (a;*')

(ia; + Xj) (ix '
-f a;/)

-2(W')
(iy +yi)(Wo+yi)

2 (^')

(Wo +a^OV +O
• 2 (as')

K + si)(iso'+ s
i')

If p t
be the power of (x') with regard to the circle (x), and

so for p2,2h>Pt> 1111— + — + — + — =0.
Ih Pt lh 'Pi

Theorem 7.] Iffour finite points be given of which no three

are collinear nor do all four lie on one circle, then the sum of

the reciprocals of the powers of each point with regard to the

circle passing through the other three is zero.

If none of our circles be null or isotropic line circles, we
may divide the various rows and columns in the left side of (30)

by expressions of the type «/(xx). If, then, we indicate the

angle formed by the circles (x) and (a/) by 4- (%%')>

cos 4- %x' cos 4- ®y' cos 4- xz
1
cos 4- xs' cos 4- OS?

cos 4~yx
'
cos 4-yy' °°s 4-yz

'
cos 4-ys' cos 4-yt'

c,os4- zx' cos 4- zy' cos 4-zz' co&4- zs' cos 4-zt'

cos 4- sx' cos 4- s|/' cos 4- sz' cos 4- ss' cos 4- st'

cos 4- to' cos 4- ty' cos 4- ttf cos 4- ts' cos 4- tf

= 0. (31)
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On the other hand, suppose that (t) and (f) are both the line

at infinity, so that the last row and column are divided by

'-t^ + t-L and it '+ t~{, we have

cos 4- xx' cos 4- •*'>/' cos 4- •'--' cos 4- .'>' —
'V

COS £_ (/,/•' COS /£_ 1/y' COS 4- 7-
' COb ^_ '/>'' —

cosset-' cosmic*/' cos*L;;' cos£_c e
' -i

! = 0. (32)

cos 41 &c' cos 2£_ $y' cos i_ sc' cos 4- &s' — '

1_ J_ 1

'V 'V >\

/",, /'y. ''_-• /'

g
are the radii of the first four circles and

'V> 'V- r
.- 'V those of the second four. Again, suppose that

our circles are non-linear null circles. We have, for any two

groups of five finite points,

V d,f dx/ dx/ d7r
dy/ dvi' dyz~ d,/ <-hf~

'I;/ d
:f '-hr <V ''.-f = 0. (33)

d
tf V d,r d

tr d
sr

d
t/ t 7,

-" ^ df^ </,,*

Here cf^' means the distance from the point \y:) to the

point (."(.'(. If the second set of live proper circles or non-

isotropic lines be identical with the first, we have

1 coi4-®y cos4~xz cos4_,>> cos2J_arf

cos4~yx 1 cos4~y~ cos 4- ys cos 4- yt <

cos4- :x cos4-:y 1 cos^_:tf cos£.-f — 0. (34)

cos 4- sx cos 4-^1 cos 4--- 1 eos^Lsf

cos2£_&b cos 4-ty cos4-tz cos 4- ts 1
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We get similarly from (32)

1 eos£.xy coatf-xz cos£_£s —

cos^_2/aj 1 cos 4- yz cos$_2/s —

cos^.sa; eos^-zy 1 cos#_2s

coa^-sx cos £. sy cos £. sz 1

l 1

CH.

= 0. (35)

If each set of five be made up of four finite points and the

line at infinity, we get Euler's identical relation for any four

(finite) points in the plane,

dxy dxz dxs 1

ayx " ayz ^ys l

dj d2y* dj 1

dj d* dn
*

1

1

= 0. (36)

If we take four finite concyolic points, and the circle through

them,
dxy dxz dX8

dyx ° dyz dys

dzx dzy dzs

d8X dsy d
sz

0.

(dxydzs + dxzdys + dxsdyz) {dxydzs + dxzdys
— dxsdyz)

(dXydzs
— dxzdyS

+ dxs dyZ) {
— dxydzs+ dxzdys+ dxsdyz)= Q. (37)

This last equation gives Ptolemy's theorem for a quadri-

lateral inscribed in a circle.

If three circles have the coordinates (y), (z), (s), their equa-

tions are

(xy) = (xz) = (xs) = 0.

The coordinates of their common orthogonal circle will be

PXi
=

M-\
tyZ8 (38)
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A necessary and sufficient condition that this should be

null is

(yy) (vz) (y*)

(zy) (zz) (zs) = 0. (39)

(sy) (sz) (88)

When all of our given circles are proper this may be written

1 cos 4- xy cos 4- xz

cos 4-yx i cos 4- yz —o. (40)

cos 4- zoo cos %-zy 1

A necessary and sufficient condition that four circles (y), (z),

(s), (t) should be orthogonal to a fifth is

yzst
|

=
(yy) (y^) (ys) (yt)

(zy) (zz) (zs) (zt)

(sy) (sz) (ss) (st)

(ty) (tz) (ts) (tt)

When none of them are null we may write

1 cos 4-yz cos 4- ys cos 4- yt

cos 4- zy 1 cos 4- zs cos 4- zt

cos 4- sy cos 4- sz 1 cos 4- st

cos 4-ty gos 4-tz coa4-ts 1

= 0. (41)

= 0. (42)

On the other hand, if we have four proper circles, (x), (y),

(z), (s), each two of which are orthogonal, we get from (35)

h + + — 0. (43)

Theorem 8.] The sum of the squares of the reciprocals of the

radii offour mutually orthogonal proper circles is zero.

We defined as the special tetracyclic coordinates of a point

numbers proportional to the ratio of power to radius with

regard to four mutually orthogonal circles which were not

null ; extending the meaning of this ratio to the cases where

some of the circles were non-isotropic lines. Suppose, now,

that we have any four mutually orthogonal circles not null

and we take the ratio of power to radius with regard to each,



140 THE CIRCLE IN CH.

interpreting this ratio as before for line circles. If the four

ratios be proportional to s
x

, s
2 , s3 , sit we have

1

1

*2 -*2

2

1

-S,

-»3

— s.

= 0.

+ s
2
2 + s

3
2 + s4

2 = 0. (44)

If, then, we define these ratios as the general tetracyclic

coordinates of a point,* we see that they are linear in the

special tetracyclic coordinates, and connected by the same

quadratic identity ; the sum of the squares vanishes.

Theorem 9.] The passage from one set of tetracyclic

coordinates to another is effected by a quaternary orthogonal

substitution.^

The sum of the squares of the four variables will be a

relative invariant for all such substitutions, as will be the

polar of this form, hence the expression for the angle of two

not null or isotropic circles will be invariant, and we have in

the general tetracyclic coordinates for two circles (x) and (y)

cos 6 — (®y)

V(xx) V(yy)
(25)

The determination of the signs of the radicals in the

denominator can only be effected by a further knowledge

of the relation of the present coordinate system to the

original one. It is to be noted also that our formula (29) for

the inverse of a point or circle will hold equally well here.

* Strictly speaking, perhaps, the term general should be extended to the

case of any four circles where the simple identity would be replaced by

a more complicated quadratic relation. The restriction to the orthogonal

case is highly useful in the case of tetracyclic coordinates, and sanctioned by
custom.

t The term orthogonal substitution is sometimes restricted to the case where

the square of the determinant is unity. We do not impose this restriction,

and merely require the invariance of the sum of the squares of the variables.
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Theorem 10.] The equation of a circle u-ill be linear in the

general system of tetracyclic coordinates, and the expression

for the cosine of the angle of two not null or isotropic circles

will be invariable inform.

If two proper circles cut two others orthogonal]y, the

radical axis of one pair is the line of centres of the other.

Theorem 11.] If four mutually orthogonal proper circles

be given, their vertices are the vertices and orihocentre of

a triangle.

Let (y), (s), (s) be three proper circles, (y') (z') (s') the vertices

of an arcual triangle determined by them. Let (x) be the

circle circumscribed to this triangle, (t) the common ortho-

gonal circle to (y) (z) (s), while (y") is orthogonal to (z) (s) (t).

Taking the two groups of circles

(y)(z)(s)(x)(t), (y')(z')(s')(y")(t),

(yy') (yy")

(zz)

(ss')

(ay") (xt)

! (ty') (tz>) (tt') (tt)

(yy')(vy")(tt) + (yy")(xt)(ty') = o.

(xy") (xt) r (yy") (ty')

V(xx) V(y"y") V(xx) V(tt) \_(yy') J(tt) V(y"y")\

Now, since (y') (y") (t) are orthogonal to (z) and (s),

ti = pyt+m">
o = p (yy') + q (yy"), (ty') = q (y'y'%

(tt) = p(ttf) = 2pq (y'y") + f (y"y") = 2j> (ty') + f (y"y'%

(tt) = p(ty')=-q2
(y"y"h

(yy")(¥) _ .... (*?/') -• W
= +t;

V(xx) V(y"y")
= + i

V(xx) V(tt)(yy') V(tt) V(y"y")

The right-hand side of this equation is unaltered when we

permute the letters (y), (z), (s).
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We thus get an interesting theorem due to Study :

*

Theorem 12.] The circles circumscribed to the arcual triangles

formed by three non-concurrent proper circles cut at equal or

supplementary angles the three circles each orthogonal to two

of the given circles and to the common orthogonal circle.

If four proper circles touch one another externally,

-1 -1 1 —

— 1 1-1-1

-1 -1

-1 -1

-1

1 —

— — —1
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case of this. Suppose, more generally, that (x) cuts (y), (z), (s)

at angles au a
2 , a3 . We get from (33)

1 cos 4~yz cos 4~ys cosaj —
r
y
1

cos 4_ zy 1 cos4_0s cosa
2
—

cos 4- sy cos 4- sz

cos a, cosa
2

1

r.

cos a.

cosa„ = 0. (46)

The condition that there should be a real circle cutting the

three real circles at these three real angles is that the dis-

criminant of this quadratic equation in - should be greater

than zero. This condition is easily transformed by means of

the familiar determinant identity

7>A dA 3A SA

lau iiajj Day i> aji
= A

32A
*<*« iajj

thus giving

i cos 4- yz cos 4- ys cos a
i

cos 4-zy 1 cos 4- zs cos a2

cos4~sy ooa 4- sz 1 cosa
3

cos a
x

cos «2
cos a

3
l

(47)

l cos 4- yz cos 4- 2/s

cos 4- zy l cos 4- zs

cos 4- sy cos 4- sz *

> 0.
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The second of these factors may be written

2/0 Vi y-2 y*

V(yy)
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To find a circle which meets four others at one same angle </>.

i cos 4- yz cos 4- ys cos 4- yt cos $
cos 4-zy 1 cos 4- zs cos 4- st cos $
cos 4- sy cos 4-sz 1 cos 4- st cos 4>

cos 4-ty cos 4-tz cos 4-ts 1 cos <\>

COS0 COS$ COS$ COS(/> 1
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axis of the couple and the orthogonal circle will, by I. 217],

pass through a centre of similitude of each two of the three.

Let the given circles be (y) (z) (s), (t) the circle sought,

(x) a point thereon,

(yy) (&*) (p) (yt) (yx)

I (*») (**) (») («*) (**)
1

(ay) (m) (ss) (si) (sas)

|(fy) (te) (fe) (tt)

(an/) («z) (aw) (0)

Multiplying through by
| (yy) (zz) (ss)

|
and remembering (47),

= 0.

(yy) M M W
(«2/) (**) M («»)

(82/) («z) (SS) (8(B)

(fy) (te) (to)

+
|

yzst
|
x

|

yzsx
\
= 0.

But

Let

l

{by) = ei S(tt) V(yy) ;
<* = 1, &c.

(2/«)
cos 4- -A3 cos £. A 2

cos2£_-A 3
1 COS^-J.!

cos 4--A-2 cos 4- -4! 1

^(2/2/)

jggL
V(zz)

M_
/(ss)

(51)

cos 4-A s
cos #_ J.

2
fj

1 COS 2£_ A j e
2

cos i£_.A
3

cos4-A
2
cos 4-^!

yzsx

S(yy) S(zz) ^(ss)

i.

= 0. (5

This is the equation of a circle touching our given three

;

the radicals in the denominator of the second part have known
signs. The problem of constructing a circle tangent to two

circles and orthogonal to a third has clearly four solutions, for
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the coordinates of the circle sought are limited by one linear

and two quadratic equations. We thus get

Theorem 13.] Any two couples of circles tangent to three

given circles are tangent to a fourth circle also.

It is easy to see by examining the case, where the common
orthogonal circle is a line, that no two of the four circles of

this theorem can fall together unless two circles of a couple

become null. But then our three original circles would be

coaxal, and the whole theorem goes to pieces. The three

original circles and the fourth found by this theorem are said to

form a Hart system of the second sort.* The discussion of the

Hart systems of the first sort is much more difficult, but, in

compensation, reveals a number of most interesting theorems.

To this we now turn our attention. We start with two circles

(y') and (:'). Let (y) have external contact with (y') and internal

contact with (/\ ; (c) has external contact with {s') and internal

contact with (y'). Let (s) have internal contact with (y)

and (:'). while (.>•) has external contact with both. Froru

>.vsyzy'0\-2 =
:

1 cos 4- xs cos 4- xy cos 4- xz
' cos 4- *''-' 1 cos 4- sy cos 4- s:

cos 4- yx cos 4- ys 1 cos 4-yz ~^ = o

:

! cos 4- -<b cos 4- -II cos 4-- s 1-11-11

cos-

coss

4-XS

sin-

cos

4-xs . a 4- xy *$- x3

it-xy „~.2^-2/'
cos-

,*..-., .
a
2jLc

sin-

sin cos*

. „4-ys > 4- - s
cos- ^- sin2 2=^—

cos
ii--y

cos-
4-y-

= o.

cos
4-xs 4-vz 4--''y • 4- :s 4--v: 4-ys——cos^r- + sm^-^sin^V- + cos^=— cos 2^- =0.

2 —

Study, loc. cit., p. 637.

k2
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If we replace (y
1

) by (0') and interchange (y) and (z),

4-ocs i-yz . i-xz . i~ys %-xy )Lzs
cos T=j— cos + sin^-- sin

—

^- + cos cos —— = 0.
2 2 J 2 2 2

#_<w/ + 2(_a;z = + (£_S2/ + #_S0).

The left side of this equation is independent of (s). If,

then, we drop the terminology of speaking of internal or

external contact, which is meaningless in the complex domain,

and refer to the circles which are tangent to two given circles

as belonging to the one or the other system, according to the

circle of similitude to which they are orthogonal, we have

Theorem 14.] If two circles of one system be taken tangent

to two fixed circles, neither of which is null, the sum or differ-

ence of their angles with all tangent circles of the other system

is constant.

Let us now sharpen our concept of angle as we did for the

second proof of I. 155]. Let us measure the oriented angle of

two circles at a point by measuring the angle at that point

from the half-tangent to the first, which starts there and is

oriented in the positive sense of rotation (for a real circle)

to the similarly oriented tangent to the second. The angles

which two circles make at their two intersections will thus

differ in sign. By choosing the proper intersection for each

two successive circles above, we may write the congruence

4-xy— 4- ys + 4- sz + %- zx = 0, mod. 2 it. (53)

If three circles (a), (b), and (c) be concurrent, we have

4-ab + 4-bc + 4-ca = 0, mod. 2 it.

Conversely, if this equation hold, since the cosine of the

negative of an angle is the cosine of the angle, we may deduce

(ab) (be) (ca)

V(aa) V(bb) V(bb) V{aa) (cc)

V(bb) (cc) - (be)
2 V{cc) (aa) - (ca) 2

Vbb Vaa(cc)
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(ad) (ab) (ac)

(ba) (bb) {be)

(ca) (cb) (cc)

= 0.

The last equation shows that the common orthogonal circle

of the three given circles is null, they are concurrent, or have

their centres on an isotropic, and each two have but one finite

intersection.

We now return to equation (53), and explicitly exclude the

possibility that two of the circles should have their centres on

an isotropic. This equation distinguishes two sets of four

points, each point being the intersection of two successive

circles of the sequence. Let a circle (t) pass through the

intersection of (x) and (y), that of (y) and (s), and that of (s)

and (z) in one set. We have

(4-ty- 4-tx)- (4-lT- iJy) + (£-1?- 4-ts) + t-zx = Q, mod. 2 it.

Now the two expressions for 2jL ty are equal with opposite

sines since they are taken at the two intersections of (t) and (y),

and the same will hold for the two expressions £. ts.

4-xt + 4_t* + £.:x = 0.

Theorem 15.] Iffour proper circles be given, tangent to two

fixed proper circles, tivo belonging to the first system and two to

the second, but no tivo having their centres on an isotropic,

the intersections of the two circles of the first system with the

two of the second lie by fours on two circles.*

Suppose, conversely, that (y) (s) (s) are given, tangent to

(y'j and (z'), where (y) (z) belong to one system and (s) to the

other. If P be an arbitrary point on (y), we may find two

points (Q) on (z) where it meets the circles through P, and

through an intersection of (y) (s) and one of (z) (s), which give

properly chosen signs to 2£_ ys and 2f_ sz. These points are the

* See a carelessly written paper by Orr, ' On the Contact Kelations of

Certain Systems of Circles ', Transactions Cambridge Philosophical Society, vol. xvi,

1895. Theorem 16 is from the same source.
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two intersections of (z) with the two circles through P tangent

to (y') and (z') and belonging to the same system as (s).

Theorem 16.] If three proper circles be given tangent to

two fixed proper circles, hoo belonging to one system and one to

the other, yet no two having their centres on an isotropic, and

if a point be taken on each of the first two concyclic with

a properly chosen intersection ofeach of the two with the third,

then these two points lie oil a circle tangent to tlie fixed circles

and belonging to the same system as the third.

Let us next assume that (53) holds, that (y) (z) (s) have

the same contacts with (y') (z') as before, and that (x) is

tangent to (y'). The intersections of (x) and (s) with (y) and

(z) lie on two circles (t). But, by (16), such pairs of points lie

on circles touching both (y') and {z'). Hence (x) touches (z')

also. We are thus led once more to the Hart system of the

first sort developed in Ch. I. We start with (y) (z) (s), and

suppose that circles (y') (z') (s') are all tangent to them,

circles given by the same letter having external contact, while

those given by different letters have internal contact. We
then take (x') having internal contact with (y) (z) (s), and,

lastly, (x) having external contact with (y') [z') (s'). Since

(y) and (z) have unlike contacts with (y') and (z), while (x)

has like contacts with both, and (s) has also, (53) holds. But

(y) has like contacts with (x') and (s'), (z) has like contacts

with them also, (s) has unlike contacts with them, and (x)

touches (s') externally. Hence (x) touches (x') internally, and

we have indeed the Hart system. In the complex domain,

of course, the words external and internal contact lose their

geometric significance, and depend merely on the sign of a

complex radical. Our Hart system may be arranged in three

sequences

:

(x) (y) (s) (z), (x) (y) (z) (s), (x) (s) (y) (z).

Each sequence gives rise to two circles of the type above,

thus leading to two beautiful propositions due to Larmor.*

* Cf. Lachlan, ' On the Properties of some Circles connected with a

Triangle formed by Circular Arcs ', Proceedings London Math. Soc., vol. xxi,

1890, p. 267. Also Study, loc. cit., p. 621.
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Theorem 17.] The intersections of the circles of a Hart
system of the first sort fall into two groups of six points each;

each system is the total intersection of three circles.

Theorem 18.] The circles circumscribing the arcual trio, ngles

formed by three non-concurrent proper circles are two Hart
systems of the first sort, mutually inverse in the common
orthogonal circle of the given circles.

These two theorems may also be established in the following

manner, which is of interest in itself. Let us start with

a fundamental proper circle c. Each finite point P, except

the centre of c, and its inverse P' with regard to c, may be

associated with the circle coaxal with the null circles (P), (P')

and orthogonal to c. Conversely, c and any circle orthogonal

thereto but not concentric will determine a pencil or coaxal

system whose limiting points are inverse in c. When the

circles are concentric we take the centre as one limiting point,

and treat every straight line as though it were a circle through

the other limiting point*

We next notice that two circles mutually inverse in c, if

looked upon as point loci, will be transformed into two other

such circles, considered as envelopes and vice versa, and that

tangency of circles is an invariant property. A Hart system

will go into a Hart system. We start with a Hart system of

the first sort, and take c\, c2 , c
3
as three circles of the com-

plementary Hart system, c being the common orthogonal circle.

The original Hart system, and its inverse in c, looked upon

as envelopes, will go into the eight circles circumscribed to the

arcual triangles of q, c
2 , c3 , and these eight will be seen to

form two Hart systems. Clearly there is nothing special about

the circles cu c2 , c3 , so that 18] is proved. To prove 17] we

have but to show that there is nothing special about the type

of Hart systems formed by the circles circumscribing eight

arcual triangles. But this is evident when we remember that

we may choose three circles, so that three of the surrounding

* This transformation is due to Lachlan, ' On Coaxal Systems of Circles ',

Quarterly Journal of Mathematics, vol. xxvi, 1892. If we take the corresponding

transformation on a sphere, and take for c the circle at infinity, we have

the correspondence of a great circle to its two poles.
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Hart circles shall intersect at any three chosen angles not

congruent to zero, modulo it. But we may pass from any
Hart system where three circles meet at specified angles to

any other where the same angles appear by means of inver-

sions and transformations of central similitude ; hence any

Hart system may be so transformed into one surrounding

eight arcual triangles, and 1 7] is proved.

The Hart systems of the second sort are simpler ; their pro-

perties are intuitively evident when we replace the circle of

inversion by a straight line.

Theorem 19.] The relation of a Hart system of the second

sort to the four circles tangent to them is reciprocal; the

common orthogonal circle of one system is a circle of anti-

similitude of each pair of the other*

Theorem 20.] The intersection of a system of Hart circles

of the second sort fall into two groups. The pairs of inter-

sections of couples of circles lie on the common orthogonal

circle of the complementary system, the remaining eight lie by

fours on two circles orthogonal to this orthogonal circle.

Theorem 21.] If of the twelve intersections of four circles

six are the total intersections of three other circles, then the four
belong to a Hart system.

§ 4. Analytical Systems of Circles.

We have now given a sufficient number of examples of our
fundamental Frobenius identity (30) ; let us pass on and con-

sider systems of many circles. The theorems concerned with
concyclic points and concurrent circles which we took up in

the last chapter are, for the most part, better handled by
geometric means than by analytic ones. This rule, like all

others, however, has exceptions. For instance, take I. 149].

The three circles each through a vertex of a triangle and two
marked points of the adjacent side-lines will constitute, with
the adjunction of these side-lines, a system of three cubic

curves through eight common points. Such cubics have always

* For this theorem and the two following see Study, loc. cit., p. 625.
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a ninth point in common, hence the circles are concurrent.

Let us next repeat Clifford's own proof of I. 162].*

A curve of class n+ 1 is required to have the line at infinity

as a multiple tangent of order n and to touch 2 a + 1 given

finite lines, no three of which are concurrent, and no two

parallel. The number of linear conditions imposed on the

coefficients is

. Jl+ 1 + _ _
^

1.

If these conditions were not independent, we could have

x 1 curves touching the line at infinity n times and 2 (n+ 1)

common finite tangents. Two such curves would have

(?i+l) 2 +l common tangents, which is absurd. The con-

ditions are independent, and we have a one-parameter family

of curves ; all are linearly dependent on two of their number.

From each circular point at in finity we may draw one more

tangent to each curve, and these two tangents will clearly

generate projective pencils ; the locus of their intersections,

the finite focus, is thus a circle. Among our curves are n + 1,

which degenerate and consist in the infinite point of one of

our finite tangents, and a curve of class n, touching 2 n given

lines. We thus get 2 n + 1 curves of class a, each touching

2 u of our given lines and having their foci on a circle. If

another line were added there would be one focus associated

with 2 u + 2 lines lying on as many circles each through

2 n + 1 foci, and so on.

The analytic discussion of 1. 155] will bring to light a new

theorem not easily reached geometrically. We started with

four points on a circle, and arranged them in order. Through

each two successive points we passed a circle, and showed that

the remaining intersections of successive circles were con-

cyclic Xow the four points may be arranged in three different

cyclic orders, so that they are connected in pairs by six circles,

and three new circles are produced. The points being P1
,P2 ,

* loc. cit. For a proof by an ingenious analysis apparently invented

ad hoc, see Morley, ' On the Metric Geometry of the Plane n line ', Transactions

American Math. &x., vol. i, 1900. A proof is also given of Pesci's theorem,

I. 164].
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P
3 , P4 on the circle c, the points P

i , Pj shall be connected

by the circle c^. The circles c^ and C;k will intersect again

in iV
Let P

123 , P234 , P341 , P412 lie on c
x ,

let -Piaa . -fsu. A^ A23 lie on ca>

let P124 , P243) P431 , P312 lie on e
a

. Pijk = P^.

The sextic c
li

c.u c
1
contains every point common to cn cu

and c
41 t'23J and has a triple point at each circular point at

infinity ; hence, by Nother's fundamental theorem, we have an

identity

C
13 C24 C1 = 9.C12 C34 + r C

41
C23"

The curves
(f>
and yjr are circles, since they are curves of the

second order passing through the circular points at infinity,

and they contain the remaining points P
i;

- . Hence they are

the circles c2 , c
3

.

C
13

t 24 Cl = C34C12 C2 + C41 C23 tV
But this shows that c

1 , c
2 , c

3
are coaxal.

Theorem 22.] If four points on a circle be arranged in

three cyclic orders, each two points be joined by a circle, and
each cyclic order be associated with that circle which contains

the remaining intersections of successive circles joining pairs

of points in the given cyclic order, then will the three associated

circles be coaxal*

The advantages of the analytic as compared with the

synthetic method are nowhere more apparent than when we

come to study coaxal systems of circles. We shall extend

that term to include every system through the intersections

of two, i.e. every system linearly dependent on two circles.

If (x) be the coordinates of a point on a circle coaxal with two

proper circles (y) and (z), we have an equation,

> / x / \ ^ (yx) (sx)

This proves immediately the important theorem, I. 191].

* See the Author's Circles Associated, &c, cit.
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The equations of the most interesting circles coaxal with (y)
and (z) are written immediately.

Radical axis

l<-o + -i) L'/.v)

-

(iy + yx ) (:.v) = 0. (54)

Radical circle

Circle of similitude

~m i^~
=0

-
(66J

Circles of antisimihtude

/(I7) {yx) + ^
/
(1/i/) (.-.<) = 0. (57)

We easily see that the two circles represented by these

equations are mutually orthogonal, and bisect the angles made
by the circles (y) and (:) when these are not null or isotropic.

The limiting points of the coaxal system will have the co-

ordinates

p*i = (yy) -i -[(*/-) ± *V)*-(w)i")] »,-
• (

58
)

If r and r be the radii of (y) and (-), while their angle is d.

the limiting points are

The fact that if two circles be orthogonal to two others,

every circle coaxal with (orthogonal to) one pair is orthogonal

to (coaxal with) the other appeals at once, for if

(yy) = <</0 = (^) = (-') = o,

then
1 = 3

Jt
(ky

i + ,x-
i
)(\'y

i

' + IJ.'z i

') = 0.

1 =

Such conjugate coaxal systems will appear in three dimen-

sions as parrs of lines conjugate with regard to the absolute

quadric. The circle coaxal with (y) and (z) which is orthogonal

to (s) will be

Theorem 23.] If three circles be given, the three circles each

coaxal with two and orthogonal to the third are coaxal.



156 THE CIRCLE IN ch.

Theorem 24.] If three circles be given, the three circles each

coaxal with two of them and orthogonal to a fourth circle are

coaxal.

The concurrence of the radical axes appears as a limiting

form of this. Let the reader devise an analytic proof of I. 2 1 ]

,

namely, the radical circle is the locus of the centres of circles

cut by one circle orthogonally, and by the other in diametri-

cally opposite points.

A system of circles whose coordinates are proportional to

analytic functions of one variable yet not bearing to one

another constant ratios shall be called a series of circles.

A coaxal system is the simplest type of series, and the only

one lacking a curved envelope. If the circles be orthogonal to

a fixed not null or isotropic circle, the envelope is anallagmatic

with regard to this fixed circle. This was proved geometrically

in what followed 1. 15] ; the easiest analytic proof is found by

taking the fixed circle as fundamental for a tetracyclic coordi-

nate system ; the corresponding coordinate will be lacking

in the generating circles and in the envelope.

Plane tt. Space S.

Anallagmatic envelope. Plane curve.

In general the circles of a series will touch their envelope

in pairs of distinct points. In special cases there will be but

one point of contact. It is tolerably clear geometrically that

this occurs when we have the circles osculating a given curve,

and then only. Let us give an analytic demonstration. Let

the variable circle be

Vi = Vi (*)»

then, if adjacent circles tend to touch one another,

(yy)(y'y')-(yyJ = o, y/ = ^>

(2/2/) W) = (z/2/0 (yy")-

The point of contact will have the coordinates

pxi = (yy)yi-(yy
,

)yi
-

But from this

(yx) = (yx') - {yx") = 0,
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which shows that the circle osculates the envelope. Con-
versely, take three adjacent points of the envelope

(x). (x) + (x') dt
,

(x) + 2 (x) dt + (x") dt2 .

We have identically

(xx) = (xx) = 0.

The osculating circle will have the equation

(yX) = xx'x"X\ = 0.

The adjacent osculating circle is

j
xx'x"X + 1 xx'x'"X

|

dt = [,/X) + (y'X) dt = 0.

The condition of contact for (</) and (y) +(y') dt gives

(xx") (x'x') (xx") [xx'") (x'x'\ (xx'")-[{xx"')(x'x) (xx")f = 0.

Theorem 25. J A necessary and sufficient condition that

the circles of a series should touch their envelope but once each

is that they should l>e the oscviating circles thereof.

Plane -. Space />.

Series of osculating circles. Curve of length zero.

Nest to the linear or coaxal series, the simplest are those

whose coordinates are quadratic functions of the variable.

Such will correspond to a conic in £, and we shall call it

a conic series. We exclude the case where the series is re-

ducible.

Theorem 26.] If a circle move so that it is orthogonal to

a fixed circle not mill or isotropic, and the sum or dinerence

of its angles with two fixed circles be constant, it tracts o conic

series.*

We see, in fact, that in £ we have the intersection of a plane

with a quadric of revolution. If we accept that the pro-

perties of confoeal quadrics (which are nearly the same in

non-Euclidean as in Euclidean spaced, in particular the relations

of their focal conies, we have, from the known relations of

three such conies,

"* For the proofs of the theorems about non-Euclidean conies and quadrics

on 'which our present circle theorems are based see the Author's Xon-E-iciitkan

Geomt*ry. cit.. cb. xii and xiii.
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Theorem 27.] The general conic series contains four dis-

tinct null circles. If such a se7*ies be given, there are associated

therewith two other general conic series. The sum or difference

of the angles which all circles of one series make with any two

of another series depends merely on the choice of the latter.

We shall prove this theorem in a later chapter without the

use of non-Euclidean geometry.

Theorem 28.] The radical axes of the circles of a conic series

and a fixed circle will envelop a conic; the radical centres of

these circles and two fixed circles generate a trinodal quartic.

Theorem 29.] The locus of a circle orthogonal to a fixed

circle, and to corresponding circles in two projective pencils,

neither of which includes the fixed circle, is a conic series.

Since a central non-Euclidean conic has three axes of

symmetry.

Theorem 30.] A conic series which includes four distinct

null or isotropic circles is anallagmatic in three mutually

orthogonal circles, all orthogonal to that circle which is ortho-

gonal to all circles of the series.

From the focus and directrix property of central conies.

Theorem 31.] If a circle move so that it is orthogonal to

a fixed not null or isotropic circle, and the sine of its angle

with one circle orthogonal thereto bears a constant ratio to the

cosine of its angle with another circle also orthogonal thereto,

it generates a conic series.

Since the coordinates of a circle of a conic series are quad-

ratic functions of an auxiliary variable, the same is true of the

cartesian coordinates of their centres.

Theorem 32.] The locus of the centres of the circles of a conic

series is a conic.

To find the envelope of the circles of a conic series, we put

yi
= a

i
r2 + 2b

i
rs + c

i
s
2

. (59)

We then eliminate r and s between (x - -*-) = and (x —\ = 0,
v dr' ^ 3W

and replace the x/s by their cartesian values.
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Theorem 33.] The envelope of the circles of a conic series is,

in general, a curve of the fourth order with a double point

at each circular point at infinity.

As we shall study this curve in some detail in a subsequent

chapter, we shall say no more about it now.

We pass next to the general cubic series. We sriflll define

this as an algebraic series whose members are not all ortho-

gonal to one circle, but whereof three are orthogonal to an

arbitrary circle. In three dimensions we have a non-planar

curve which is algebraic and of the third order, and there is

only one such type of curve (under the general projective

group).

Theorem 34.] The common orthogonal circles to correspond-

ing triads in three projective pencils of circles whereof no two

have a common member will generate a general cubic series, and
every general cubic series may le so generated in x ways.*

Theorem 35.] The coordinates of the circles of a general

cubic series are homogeneous functions ofihethird order of two

variables.

Theorem 36.] The locus of the centres of the circles of a

general cubic series is a rational curve of the third order.

Since the osculating planes of a space cubic generate

a developable envelope whose properties are dual to those of

the curve.

Theorem 37.] The common orthogonal circles to sets of three

successive circles of a general cubic series generate another such

series. The relation between the two series is reciprocal.

Theorem 38.] The envelope of the radical axes of successive

circles of a general cubic series is the locus of the centres of the

circles of the reciprocal series.

A theorem analogous to this is clearly true of any series

not orthogonal to one circle. The general cubic series is

* For a general purely geometrical account of this series see Timerding,

Ueber eine Kngelscnar', OrtBe'sJoitrnai, voL cixi, 1899. Also Taubertb, Dk
Atbildung des ebenm Krassystemes aw/ den Rawn, Dissertation, Jena, 1SS5.
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distinguished by the fact that it is not the same type as the

reciprocal series.

Theorem 39.] The envelope of the circles of a general cubic

series is a curve of the eighth order with a quadruple point

at each circular point at infinity.

Theorem 40.] The tangents to the loci of the centres of the

circles of two reciprocal general cubic series can be put into

such one to one correspondence that corresponding lines are

mutually orthogonal. The asymptotes to one curve will corre-

spond to the inflexional tangents to the other.

A two-parameter family of circles, that is, a system whose

coordinates are proportional to analytic functions of two
independent variables, not having ratios all functions of one

variable, shall be defined as a congruence of circles. Such

a system, when algebraic, is best represented by means of an

equation

f(x x
1
x
2
x

3 ) = 0.

Remembering that in non-Euclidean space, as in Euclidean,

every surface not a developable circumscribed to the Absolute,

is covered by a double network of curves of zero length,

isotropic curves, we have

Theorem 41.] Every congruence of circles may be either

generated oik a one-parameter family of pencils of tangent

circles, or, in two ways, by the osculating circles of a one-

parameter family of curves.

If (x) be a circle of the congruence, the circle (~) shall be

called its correlative circle. It is orthogonal to (x), and, to the

first degree of approximation, to all infinitely near circles

of the congruence. If we take two adjacent circles of our

congruence, the pencil which they determine is not, in general,

orthogonal to the pencil determined by their correlative

circles. If we take the pencils determined by (a;) (x + dx) and

(x) (x + bx), then, if the first be orthogonal to the pencil

determined by the correlatives of the second two circles,

the second pencil is orthogonal to that determined by the
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correlatives of the first two circles. Two such pencils are said

to be pseudo-conjugate; they correspond to conjugate direc-

tions on the surface in .5 which corresponds to our congruence.*

Since the only surface where the asymptotic lines fall

together is a developable, we have

Theorem 42.] A congruence of circles is either determined

by a one-parameter family of coaxal systems each determined,

by successive circles of a series, or else each coaxal system

determined by a circle of the congruence in general position

and an adjacent circle is pseudo-conjugate to another suck

coaxal system. Each circle will belong to two coaxal systems

pseudo-conjugate to themselves which cannot coincide for every

circle of the congruence.

We mean by a circle in general position one whose cor-

relative exists. Since there are two sorts of ruled surfaces

in space,

Theorem 43.] Congruences of circles generated by one-

parameter families of coaxal systems are of two sorts. In the

first case the coaxal systems are determined by adjacent circles

of a series, in the second co.se they are not so determined. In

the first case all circles of a coaxal system hive the same cor-

relative circle, in the second case no two have the same.

If we define as the order of an algebraic congruence the

number of its members in an arbitrary coaxal system, we see

that this is equal to the order of the equation of the con-

gruence. A. congruence of the first order is the system of

circles orthogonal to one circle.

The most interesting congruences of circles are the quadric

ones. We shall define such a congruence as the totality of

circles satisfying an equation

2«v^ = '
(
60

)

i. .; = o

We may classify these in various ways. The broadest

classification is under the fifteen-parameter group of all linear

* We call these coaxal systems : pseudo-conjugate ', as ' conjugate ' coaxal

srsteras have already been otherwise defined, p. 99.

17OT I«
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transformations of our circle coordinates. Here we have the

following types :
*

I.
|
a
i} |

gfc 0.

3
1

a
ii I _Ln-KI=°. Jat±°-

IV. . '

»' = 0.

We shall call I the general quadratic congruence.

Theorem 44.] The general quadratic congruence contains

two families of coaxal systems ; each circle belongs to one coaxal

system of each family, each two systems of different families

share a circle, but not two of the same family have any common
circle. The congruence may be generated in 2 00

2 ways by the

coaxal systems, determined by corresponding members in two

given projective coaxal systems which have no common circle.

The lines of centres of the coaxal circles of the two families

envelop one same conic.

To prove this last part of the theorem, the line of centres

of a coaxal system in tt will correspond in S to the point

where the polar in the Absolute of the line corresponding to

the coaxal system meets that plane which represents the

totality of straight lines. The totality of lines of centres will

be represented by the intersection of this plane with the

polar in the Absolute of the quadric representing the series.

Theorem 45.] The assemblage of all circles meeting a given

not null or isotropic circle at a given angle or its supplement

is a quadric congruence.

Theorem 46.] The correlative of a general quadric con-

gruence is a second such congruence.

* The best discussion of these congruences is in a pleasantly written

paper by Loria, ' Kemarques sur la geomelrie analytique des cercles du plan
',

Quarterly Journal of Mathematics, vol. xxii, 1886.
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Theorem 47.] If tivo correlative quadric congruences be

given, the coaxal systems of one will correspond to those of the

other. All circles of one coaxal system cut all those of the

correlative system at right angles.

Theorem 4S.] The locus of the centres of the null circles

of a quadric congruence includes the locus of the points

common to coaxal systems of the correlative congruence.

Two quadric congruences which have the same null and

isotropic circles shall he called homothetic : if their correlatives

have the same null circles they shall be called confocal.

Plane -. Space S.

Homothetic quadric con- Homothetic quadric surfaces.

gruences.

Confocal quadric congruences. Confocal quadric surfaces.

Theorem 49.] There are x 1 genera? quadric congruences

confocal with a given general congruence ; an arbitrary circle

icill belong to three of these.

The system of congruences confocal with (60) will be

= 0. (61)

Theorem 50.] In a homothetic system of quadric con-

gruences there will, in general, befour congruences of type II.

The correlative to each of these will be a conic series of circles

which envelop the locus of the centres of the null circles of the

given homothetic congruences.

The meaning of the words in general as here used will

appear more fully in Ch. IV.

Theorem 51.] The assemblage of all circles the sum or

diference of whose a Tries with two given not null or isotropic

circles is constant is a quadric congruence.

L 2

^00 + ^ ^u
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In non-Euclidean space there are two types of parallel

lines. The first are Lobachevski parallels and intersect on

the Absolute, the second are Clifford parallels and intersect

the same two generators of one set of the Absolute. Let

us reserve the name parallel for the first kind and use

paratactic for the second.

Plane w. Space S.

Coaxal systems with common Parallel lines.

limiting point.

Coaxal systems whose null Paratactic lines.

circles are orthogonal in

pairs.

Theorem 52.] If a coaxal system of circles be given with

two distinct null circles, an arbitrary not null circle will

belong to two coaxal systems each sharing one limiting point

with this coaxal system, and to two whose limiting points are

in pairs at null distances from those of the given system.

In special cases the coaxal system may be concentric and

have no limiting points ; the reader can easily find for himself

the slight modification here needed.

Paratactic lines are at a constant distance from one another,

and have an infinite number of common non-Euclidean per-

pendiculars. These generate a quadric, whose generators of

each set are paratactic*

Theorem 53.] If two coaxal systems have their limiting

points in pairs at null distances from one another, but no

point is at a null distance from all four, nor do they lie on one

isotropic line, then their circles may be so paired that corre-

sponding circles make a constant angle with one another, the

least angle which any proper circle of one system makes with

one of the other. The coaxal systems determined by such sets

of circles will generate a quadric congruence. Two coaxal

systems of the same family in this congruence will have their

limiting points in pairs at null distances.

* See the Author's Non-Euclidean Geometry, cit., pp. 114, 129, 130.
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It is clear that our quadric congruence of type II will

correspond to a cone in S, and, as we have seen, its correlative

is a conic series.

Theorem 54.] A quadric congruence of type II may be

generated in oo
2 ways by coaxal systems determined by one

fixed circle and the circles of a conic series.

Theorem 55.] A quadric congruence of type III is re-

ducible, and consists in the totality of circles orthogonal to

either of two distinct circles. A congruence of type IV consists

in the circles orthogonal to a given circle all counted twice.

It is clear that although the subject-matter of the present

chapter does not offer such a wide field for further study

as did that of Ch. I, yet there is room for further advance.

It is probable that there is little to be gained by a further

study of the circle in trilinear coordinates. On the other hand,

there is no knowing how much more may be obtained by

a further study of the Frobenius identity. The subject of

Hart circles and the circles inscribed or circumscribed to

arcual triangles seems almost illimitable. It seems likely that

the Frobenius identity should yield a simpler proof of the

existence of the Hart circle than any yet found, and this would

be a real gain.f There is also room for much new material

connected with the interpretation of non-Euclidean three-

dimensional space in the geometry of the circle.*

* An extended account of how the geometry of the circle may be used to

interpret non-Euclidean geometry will be found in Weber und Wellstein,

' Encyklopadie der Elementar-Mathematik ', Second Edition, vol. iv, Leipzig,

1907.

+ Since the present work went to press the Author has noticed that

either the transformation of p. 151 or a dilatation will carry three proper

circles in general position into three circles through one point. Hart's

theorem will then come at once from Feuerbach's, generalized by inversion.



CHAPTER III

FAMOUS PROBLEMS IN CONSTRUCTION

Theee has been one conspicuous lack in all the work that

we have done so far in the geometry of the circle ; we have

paid next to no attention to any problems in construction.

This omission, let us hasten to say, has been intentional, as

it is much easier to attack such problems satisfactorily if both

algebraic and geometric methods are available. No one would

ever have found by the aid of pure geometry alone that it

was impossible to square the circle. The time has now come

when certain problems in construction must be seriously faced.

It is clear that the number of such problems is illimitable

;

we shall restrict ourselves to a very few which have become

famous in the history of the subject.

In discussing problems of geometrical construction one has

frequently to face the question, 'Which of the various solutions

is the simplest ?
' Such a query cannot be answered categori-

cally. What is a simple solution? Is it one that involves

very little drawing, or one that is based on elementary

theorems, or one that can be explained and proved in a few

words ? These desiderata seem to vary almost independently

of one another ; there must be a great measure of arbitrariness

in any criterion of simplicity.

The best known and least undesirable tests for the sim-

plicity of a geometrical construction are those originally

devised by Emile Lemoine.* Three distinct operations are

recognized for the compass, two for the ungraded ruler

:

(1) To place one point of the compass in a given position.

(2) To place one point of the compass on a given line.

* His various writings on this subject are summed up in his Qiornitrographie,

Paris, 1902. For convenience we shall refer to this work by page number.
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(3) To draw a circle.

(4) To place one edge of the ruler on a given point.

(5) To draw a line.

The sum of the number of times that all of these operations

are performed is called the simjrtieity of the construction, the

sum of the number of times that the first, second, and fourth

are performed is called its exactitude. Lemoine recognizes

that these names are ill chosen, and suggests that the word
* CO

simplicity might better be replaced by ' measure of com-

plication ', but neither he nor his followers have seen fit to

adopt this improvement in terminology. Moreover, as tests

they are of the roughest. As the area of a parallelogram is

equal to the product of its altitudes divided by the sine of the

angle formed by intersecting sides, the exactitude of the

operation of drawing a line through the intersection of two

others will vary directly with the sine of their angle. It is not,

however, our present business to devise tests of geometrical

simplicity, but to apply certain recognized tests to concrete

problems. We shall start with the most famous of all, the

problem of Apollonius, To construct a circle tangent to three

given circles*

Let us begin by examining how many real solutions can be

found for the problem. The answer to this is intuitively

evident in any particular case by examining the figure. It is

more sportsmanlike, however, to use II (48), which we rewrite

for the case of contact,

1 cos£.(/c cos 4~ys €j

cos %-zy 1 cos 4- zs e
2

cos ^_ sy cosi£_^ 1 e3

<0, cf = ef = e* = 1.

Remembering that 2 rr' cos 6 = r2 + r'
2— d'

2
,

if (y) and (z) lie outside one another,

cos4-V: < — 1, sin2 f 4-.yz > 0, cos2 ^/^yz < 0.

* Simon, loc. eit., pp. 98 ft, mentions some seventy works dealing with

this problem which appeared in the nineteenth century.
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If they intersect in real points,

— 1 < cos$-yz< 1, sin2 £i£_i/2 > 0, . cos2
\ 4-

V

z > °-

If one include the other,

cos%-yz > 1, sin2 ^£.i/2 < 0, cos2 ^ 2£_ 3/2 > 0.

(A) A circle having like contact with all three,

sin2 f^zssin2 i31s2/sin2 i£.2/z > 0, Cl = e
2
= e

s
.

The construction of two circles satisfying the given con-

ditions is real unless one circle separate the other two, or

unless two intersect and the third surrounds or lies within

the one but not the other.

(B) A circle having with (y) a contact opposite to that with

(z) and (s),

sin^^zscos^^-SJ/COS2^^ ^ 0, -e
x
= e2 = e3 .

The construction is possible unless two circles are separated

by the third, or (z) and (s) intersect, while (y) lies within one

but not within the other, or surrounds the one but not the

other.

The first method which we shall employ for the solution of

the problem is that ascribed to Apollonius himself*

Problem 1.] To construct a circle which shall pass through

two given points and touch a given circle.

It is clear that to obtain a real solution we must have two

points not separated by the circle. We see also that the

common secants of the given circle and all circles through the

two points will be concurrent on the line through these two

points.—We therefore make the following construction. Draw
a convenient circle through the two points, find where the

radical axis meets the line through the two points, and draw
tangents thence to the given circle. A circle through the given

points and either point of contact will satufy the given con-

ditions, and there are no other circles which do so.

Let us apply Lemoine's criteria. To construct a circle

through two given points involves drawing two circles with

* Killing-Hovestadt, Handbuch des mathematischen Unterrichts, Leipzig, 1910,

p. 414. A very clear and easy discussion of the method will be found in

Cranz, Das apdlonische Beriihrungsproblem, Stuttgart, 1891.
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the same compass opening and the given points as centres,

and a third circle with the same radius and a given centre

S. 6, E. 3.

We next connect the two intersections of two circles by
a line, S. 3, E. 2. Then draw tangents to a given circle from

an exterior point, S. 18, E. 12 (p. 33; the usual construction

has S. 19). Then construct two circles through two common
points, one through each of two given points, S. 23, E. 14.

We have for the total construction

Simplicity 38, Exactitude 25.

Problem 2.] To construct a circle through a given point

tangent to two given circles.

Let us, to be specific, take a point P external to both circles

and imagine them external to one another. A shall be the

external' centre of similitude. We find Q on AP so that

(AP)(AQ) is the square of the radius of the circle of anti-

similitude corresponding to A. Then a circle through P
and Q tangent to one of the given circles is tangent to the

other also.

We first construct the common tangents to two mutually

external circles, S. 35, E. 22. (These are Lemoine's numbers,

p. 43 ; the usual construction runs much higher.) Starting

with one centre of similitude, let R and R' be corresponding

points of contact on the same tangent which are mutually

inverse in the circle of antisirailitude. We must find Q on AP

so that (AP) x (AQ) = (AR) x (A~R'). To accomplish this

we draw AP and PB, S. 6, E. 4. and through R' a line making

a given angle with AR. S. 1 1, E. 7. There is another point Q
found in similar fashion from the other centre of similitude.

These operations give S. 34, E. 22. We then must solve

problem l] twice in succession. Our total numbers are

Simplicity 145, Exactitude 94.

As an alternative we offer the closely allied solution. Take

any convenient circle about the given point as centre for

a circle of inversion, andfind the inverses of the given circles.

Find the common tangents to these circles and invert back.
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We see that this construction is simpler than the last, in the

sense that it is described in fewer words. To construct our

circle of inversion, which we shall imagine cuts the given

circles in real points, we have S. 1, E. 0. We next find the

inverses of two given points, one on each circle, S. 19, E. 12

(p. 54). To find the inverses of our given circles we must

find the inverse of a point on each and construct two circles

each through three points; each of these latter constructions

involves S. 15, E. 9. We next construct the common tangents

to two circles, S. 35, E. 22. Assuming that these intersect

the circle of inversion, the construction of their inverses will

amount merely to drawing a circle through three points four

times, one point being the same in each case ; this will require

S. 54, E. 43. For our total construction,

Simplicity 139, Exactitude 95.

Problem of Apollonius. To construct a circle tangent to

three given circles.* We assume for the sake of definiteness

that they lie outside of one another, so that there are effec-

tively eight real solutions. Let G
y
be the centre of the circle of

smallest radius r
x

. Construct a circle or circles through G
x

having external contact with the two circles concentric ivith the

other two given circles, but whose radii are less than the radii

of these by the quantity rv Two of the required circles are

concentric with those last constructed, but their radii are r
x

greater. To construct circles tangent externally to some of our

circles and internally to others we must shrink some radii by

r
x , and increase others by like amount ; on the other hand, we

shall not in any one case need more than two out of the four

circles through a given "point tangent to two given circles. The

processes of finding direct and transverse common tangents to

two circles have nothing in common except the drawing of

the line of centres, hence the construction of one pair of

common tangents involves S. 19, E. 12. The construction

of two of the four circles through a point touching two circles

will require S. 97, E. 60. This operation will have to be

* An elaborate geometrographie discussion of various solutions of this

problem will be found in Bodenstedt, ' Das Beriihrungsproblem des Apollo-

nius', Zeitschriflfur mathematischm Unterricht, vol. xxxvii, 1906.
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performed four times. To shrink or swell a radius by a given

amount will involve S. 10, E. 8, and this operation must be

performed twice on two of the given circles, and once on each

of eight constructed. We have, all told,

Simplicity 508, Exactitude 336.

It is certain that these numbers can be very greatly reduced

by ingenuity in construction ; they are sufficiently exact to

show, however, that the problem is not of the simplest.

As a second solution of the Apollonian problem we give

the neatest and most famous of all, that of Gergonne.* We
saw in I. 2 1 7] that if two circles intersect two others at equal

or supplementary angles the radical axis of each pair passes

through a centre of similitude of the other. When the given

circles are mutually external there will exist a pair of circles

which have either a preassigned type of contact with each, or

else exactly the opposite type of contact with each. The

radical axes of the circles sought will be the lines which contain

triads of centres of similitude for pairs of the given circles.

On the other hand, a centre of similitude of a pair of solu-

tions (which have each the same or exactly opposite contacts

with each of the three given ones) will lie 6n the radical axis

of each two given circles, i. e. be their radical centre. The line

connecting the points of contact of a pair of circles sought

with one given circle will go through this radical centre, and

through the pole with regard to this chosen circle of the

corresponding line containing three centres of similitude, for

the pole of this line will lie on the radical axis of the pair.

We thus get Gergonne's construction. Find the poles with

regard to the given circles, of the lines containing triads of

their centres of similitude two by two. The lines connecting

the corresponding poles with the radical centre of the three

circles will meet these circles in the points of contact with one

pair of the circles sought.

Let us examine this geometrographically. The determina-

tion of the radical centre of non-intersecting circles involves

* 'Recherche du cercle qui en touche trois autres clans un plan ', Aimales de

Mathematiques, vol. vii, 1817. Inaccessible to the Author.
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(p. 57) S. 26, E. 16. The construction of the three tetrads of

common tangents calls for S. 105, E. 66. The determination

of the lines containing triads of centres of similitude, S. 12,

E. 8. Determining their four poles of each (p. 55), S. 60, E. 36.

Twenty-four points of contact, S. 36, E. 24. Construction of

the eight circles through given points, S. 120, E. 96. Totals,

Simplicity 479, Exactitude 318.

As an example of how much the manual labour of geometry

may be shortened by using constructions which are difficult

to remember, and ingenious rather than obvious, let us mention

that, apparently, these numbers can be reduced to

Simplicity 199, Exactitude 129*

It is geometrically evident that Gergonne's construction

fails when the centres of the three circles are collinear. Here,

however, we may employ a very simple method. All circles

tangent externally to Cj and c
2

will cut the radical axis at

a fixed angle by I. 212], the angle which this axis makes with

a direct common tangent, or the angle which either circle

makes with the corresponding polar of the external centre of

similitude. The polar and radical axis are corresponding lines

in a transformation of central similitude between c
x
and the

circle sought, the centre of similarity being the point of contact.

The radical axis of c
:
and c2 being a2 , while the polar is l

2 ,

and c is the centre of the circle sought,

fei) = _ TJ , ^A = _ Vl
, r - ri(a2as)

.

(ca
2)

'

(ca
3)

'

(l2 l3)

The value of r is thus easily found, and so the circle sought,f

Gergonne's construction is also at fault when the radii of two

given circles reduce to zero. The solution by other means is,

however, extremely easy in this case, as we have already seen.

Another problem closely allied to that of Apollonius is

* Eeusch, Planimetrische Konstruktionen in geomelrographischer Ausfiihrung,

Leipzig, 1904, p. 84. Gerard, Scientia, vol. vi (inaccessible to the Author), is

said to give a construction of S. 152 ; Lemoine, Geometrographie, cit. p. 62, gives

one of S. 154.

f Cranz, loc. cit., p. 157.
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the problem of Steiner, to construct a circle meeting three

given circles at given angles.* The easiest way here is to

throw the problem back on the preceding one. We have
already seen in I. 212] that all circles which make given

angles with two given circles will make constant angles with
every circle coaxal with them, and this may also be easily

shown analytically. If, therefore, we assume that the three

circles lie outside one another, we have

To construct a circle cutting three given circles clt c
2 , c3 at

the angles
t , 2 , 3 respectively. Let P

{
and Pj be two con-

venient points on the circles c
{
and c- respectively. Through

them draiv lines which make with the radii angles - —
t
and

7T
- — 0j respectively, and on these lines take Q{

and Q; so that

(PiQi) = (Pj Qj)- Find the intersections ofthe circles with centres

C; and Cj, and radii (C
{ Q t)

(GjQj), and with one of these points

as centre and radii equal to (-P,-Qj) construct a circle ck
'. This

will intersect c
{
and c- in the angles

{
and 0; respectively.

Construct c
}
." coaxal with c

4
- and c- and tangent to ch

'
. The

circles required v:ill touch c(\ c", <°

7
/'.

It is to be noted that whenever the problem can be solved

at all we shall get the solution by this method. Let us see

how much has been added geometrographically to our original

problem. One circle ck
' will involve S. 36, E. 23 (p. 22).

Three such circles will cost but S. 63, E. 39. We have sup-

posed that both 6- and - — 0^ were known, i. e. constructed.

It would be easy to find ck
" if we supposed c

i
and c.- intersected,

but for the purposes of our present problem it is better to

suppose them external to one another. We draw the radical

axis of c^ and Cjf, S. 3, E. 2, and the radical axis of c^ and c-,

which costs, if cleverly done (p. 56), S. 16, E. 10. The radical

centre of cit c-, Cy is thus found, and from here we draw

tangents to ck
' which will (p. 33) involve S. 18, E. 12. We

next must draw a circle coaxal with c^-, and passing through

a given point of contact. We know a line c
{
C: through the

* 'Einige geometrische Betrachtungen ', CreUe's Journal, vol. i, 1826, p. 162.
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centre of such a circle, and one of its points. We find the

centre then as the intersection of c^a with the diametral line

of ck
' through the point of contact. The total labour on ck

"

has been S. 46, E. 30. Multiplying by 3, and adding to the

price of ck', we have finally

Simplicity 201, Exactitude 129.

Here again it is certain that great reductions could be

effected by sufficient geometrographic ingenuity.

We pass now to another problem of an analogous sort. To
construct a circle cutting four given circles at equal or supple-

mentary angles. We may determine the number of real

solutions from II (50). The circles sought are orthogonal to

a circle of antisimilitude of each pair of the given circles.

Among such circles of antisimilitude we may always find

three which are not coaxal. The problem then resolves itself

into that of finding the common orthogonal circle of three

given circles. Instead of supposing that the given circles are

mutually external, let us this time assume that each two

intersect. We first draw tangents to two circles at ah inter-

section (p. 32), S. 18, E. 12. Draw the bisectors of the angles

of the tangents, S. 12, E. 10. Since the two circles of anti-

similitude of intersecting circles are mutually orthogonal, the

tangents to one intersect in the centre of the other. Hence

the construction of two such circles will involve in addition

S. 6, E. 4. Three such pairs of circles must be constructed.

The construction on the common orthogonal circles of three

given circles involves (p. 57) S. 44, E. 28, if done in the most

improved fashion. Hence we may construct the eight solu-

tions of our problem for the small cost of

Simplicity 460, Exactitude 302.

Our next problem has also to deal with contact of circles,

and is nearly as well known as the others ; the celebrated and

often-discussed problem of Malfatti. To construct three circles,

each of which shall touch the other two, and two sides of a given

triangle.* One reason for the popularity of the problem is

* Memorie di matematica e di Jisica della Societa Italiana delle Sciense, vol. x,

Modena, 1803. Inaccessible to the Author. Simon, loc. cit., pp. 147 ft., gives

some forty titles bearing thereon.
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that Steiner * left the classical solution without proof as an

example of the power of his methods. His solution is as

follows

:

Let the vertices of the triangle be A lt A,. A... Let L be the

centre of the inscribed circle. Inscribe a circle in each of the

triangles LAjAy. The circles inscribed in ALA
{
A: and

ALAjA k have LA? as one transverse common tangent. Con-

struct DjEj. the other such common tangent. The circles

required are inscribed in the quadrilaterals v:hose side-lines

arcAiAj.AiA^DjEj.D^.

Fig. iW.

The simplest proof, beyond a peradventure, is that of Hart.t

Suppose, first, that the figure has been drawn. The two

circles which touch (JL-I
t.)

shall touch one another in P,-.

Their common tangent thereat shaD meet Aj Aj. in D
t

. The

radical centre of our three circles, the point of concurrence of

the tangents -P,-P,, shall be K {not supposed here to be the

symmedian points The points of contact on J.,--Ij shall be

BjCj. the former being supposed to be the nearer to Aj. Each

of the lines P
f
D

{
meets two sides of the triangle. Suppose.

* Einige geometr;?cht\ fk.

f • Oreonietrical investigation of Steiner' s Solution of Malfatti's Problem',

Quarterly Journal ef Xathtmatics, toL i, lSo>'3.
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to be specific, that i^-E^ and P
S
D

3
both meet A

X
A

3
in E

1
and

E
s respectively.

{E,D
2
)-{E

3
D

2)
= (E^-iE.C,) =

(
JF

1
P

1)-( 8̂
P

3 )

= (E
1
K)-(E

t
Z),

It thus appears that B
2
is the point of contact of A

X
A

3 , with

the circle inscribed in the A E
1
KE

3
. The reasoning would

hold equally well if Elt or E
3 , or both, were not between

A
1
and A

s
. We shall therefore inscribe circles in the three

triangles with side-lines KE
lc

, KEi , A li
A

i , the points of con-

tact being Dj with (A kA£, F
i
with {E^K), and Gk with

(EkK). We next notice that

(il
1
D

s
)-(il

1
i>3) = (C,Z)

!)- (a,!),)

= (P
3 3

)-(P2
P

2)

= (p1
p

1
)-(P

1
G

1)
= (P

1
e

1).

Hence the other transverse common tangent goes through

A
x , and a similar phenomenon holds for A

2
and A

3
.

(D
2
F

2)
= (D P

2) + (P
2
F

2 )

= (P
2
(7

2) + (P
3
P

3)

= (P
3 (?

3 ) + (2)3P3)
= (2)3 #3).

The circles B2
F

1
Ga

and JD
3
F2 G1

cut equal segments on

(2)2 2)3), and so, by I. 170], J^ is on their circle of similitude,

and, by I. 28] converse, the other transverse common tangent

will bisect the ^-A
1

. If there be a solution of Malfatti's

problem this will be it. Conversely, if a very small circle be

drawn tangent to two sides of the triangle, the two circles

each touching this little circle and two other sides will surely

intersect. But if the little circle swell up, always touching

the two sides till it become the inscribed circle, the other two

circles are eventually separated by it. Hence, for some inter-

mediate value of the little circle, the three will touch. Hart's

solution is thus complete.

It has been objected to Hart's proof that it makes use of

theorems which probably Steiner did not know, but were
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invented ad hoc by Hart.* The criticism seems to us trivial,

and certainly not of sufficient importance to justify the great

pains bestowed by subsequent writers to devise less simple

proofs of the construction. There is a suspicion which
naturally arises that, if the first discoverer of a proof had been

of Steiner's own nationality, less trouble would have been

given to disparaging his work.

Let us find what geometrographic numbers should be

attached to Steiner's construction. We first bisect the angles

of a triangle ip. 27), S. 21, E. 12. Inscribe circles in three

adjacent triangles (p. 27), S. 80, E. 46. If we take two of

these circles, we have already one common transverse tangent.

To draw the other, we find the intersection of this tangent

with the line of centres, sweep out an arc with a radius equal

to the given tangential segment to one circle, and thus find

the point of contact for the other common transverse tangent.

This tangent will involve S. 9, E. 6. We draw three such

common tangents, then inscribe circles in three given triangles,

which can be done at a cost of S. 63. E. 36, since some

bisectors are already known. The totals will be

Simplicity 191, Exactitude 112.

Let us give another solution of the problem, which depends

on finding the point of contact of the circles.i The lengths

of the sides of the. triangle shall be, as usual, alt •:/.,, a,, the

distance from A
t

to the points of contact of the cirele

which touches i J.,-^1-) ( J.,-i
fc)

shall be .r,-. We a'so write, by

definition,

'i«l= 2,,
N
/^=»„

N/f-> o>

The ra-iii of our three circles shall be /\ . r
t , r

3 . The

* See Sehr'-rer in Crdk't Journal, vol. Ixxvii, l>7i. p. 1)32. As a matter

of feet some >:f the theorems objected to were discovered by Plucker long

before Hart's time, though after Sreiner's.

* These formulae -svere first found by Schellbaeh. Sam>ihi~$ und Auftasung

matte^iatisAtr Au/gabeiu Berlin. l>>iS. pp. l'X 1 ffi. The form here given is from

Mertens. -Die Malfattische Aafgabe fur das geradlinige Dreieck', Zmtachril fur

MaSiemitik undPkysik, voLm 1S56.
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distance from A
i
to the centre of the inscribed circle shall

be d
{

. We have the following additional relations

:

p = sb
1
b
i
b
3

. (2)

p = ^sini4_^. (3)

^ = s^CjCj.. (5)

The side (A
i
A) is made up of distances from A

i
and A; to

two points of contact, and a common tangential segment

x + xj + V(r< + rjf- (r
t
- rj)

2 = ak .

The radical reduces to the simple value 2 Vr
i
rj. We

have also

r
{
= x. tan £ £_4 f , ?y = as. tan | #_J.

;
, 2 Vr

t
r~j = 2 V^ -/xj

b

h .

x
i + Xj + %h J*i ^xj = ak- (

6
)

Vxi + bk </xj = ch Vs- xj

,

Vxj + b
le
Vx

i
= ck Vs— x^

.

Multiplying these together, and. subtracting (6) multiplied

tyh> _ _
(1 -6

7c

2
) Vxi Vxj = ch

2 Vs-Xi >/s-Xj-a
1c
bh ,

Vx
t
Vxj- Vs-Xj Vs-xj = -sbh , (7)

^x
i
= ~h ^xj + ck «/s-Xj,

^x
j = ~h ^xi + ck ^s~ x

i>

Vx
{
Vxj — bk

2 Vx
{
Vxj + Ch

2 Vs— Xj s/s— Xj

~h Ch [ ^Xi
Ss~ xj + Vxj Vs- Xf],

Vx} Vs — Xj + Vxj Vs— x
{
= sch . (8)

From (7) and (8) we get, permuting the subscripts,

(</a>i + iVs-Xi) {Vxj + i</s-xj) = s(-bk + ich), (9)
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But ?,.s + r
.s =1 .

= ^[ N/¥-\/¥] _
[ v/^ + ,-,/^][ v

/i^ +i^]
.r

(

- = «.-, m,.
s +i'

i

.

2 = s.

= * (-6,— "^ (-6; + «_,) (-h+ict),

*» = 5[s-^
1
^?'3 + ^,oJl-,,-s6 /

ct c l
-s6t cl

-c
;],

These simple equations give us another construction which

is geometrographically simpler than that of Steiner. Deter-

mination of rfj, (7
; , (?.,. S. 27. E. 15. Determination of 2 s, S. 6,

E. 4, that of s—p, S. 11, E. 6. Combining the quantities

rfj. c?2 , c?
;
with these, the total determination of 2,r15 2.v„. 2.r

3

involves S. 69, E. 41. We next bisect three eollinear seg-

ments 2a-

,- with one common extremity, which will cost S. 17.

E. 10. To find a point of contact after .r
t
- is known requires

S. 4. E. 3. We pick one point of contact for each circle, erect

a perpendicular to the corresponding side-line, and, finding

where it meets the corresponding bisector (p. 24), already

drawn, construct circle. These will involve S. 33, E. 21, so

that we have for our total construction

Simplicity 131, Exactitude 81.*

Let us now try to generalize the problem. We first replace

side by side-line. The problem then reads

To construct three circles each of which shall touch the other

two and two out of three given lines which form « triangle.

* These numbers also can be wonderfully reduced. Hagge. 'Zur Kon-

struktion der Malfattisehen Kreise'. ZaiscArr? fiir mathcmntisuhen UnterriM,

vol. tttjt, 190S. p. 5&5. gires S. 66, E. 42.

m2
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We begin by seeking the number of solutions. How many
real solutions are possible? There will surely be no fewer

solutions in the general case than in the special one, where

the lines determine an equilateral triangle. To count the

solutions here let us first notice that the two side-lines at any

vertex form four angular openings, which we shall refer to as

inside, vertical, and the two adjacent. We notice also that

if two circles touch one another, and also the same line at

different points, their contact must be external, and they lie

on the same side of the line. These facts premised, it is easy

to show that we have the following real solutions ; the proofs

come by simple considerations of continuity.

Circles in three inside openings . . 8 ways.

Circles in two inside and one vertical

opening...... 3 ways.

Circles in one inside and two adjacent

openings . . . . . 15 ways.

Circles in two adjacent and one vertical

opening 6 ways.

Malfatti's problem so generalized must usually have thirty-

two real solutions : how shall we find them analytically ? *

When we pass from the narrower to this wider form for the

problem, the quantities a
t
must be allowed to take either

positive or negative values, the quantities a
i , Si, s— a} will be

permuted among one another. More specifically, as reversing

the signs of all three quantities a
1 , a2 , a3

may be looked upon

as leaving everything unaltered, we see that the quantities

bit
bj, bk may take the following sets of values

:

( h

~

a
i /s

~ a
j ls

- ah\( I s
l
s~ ah ls -^j\

«-«fe / s A-<w A- a
j A- a

i I s
\

s*— a- V s— aj\ s— a-' V s— ak \ s— a
lc
\ s— ak

The product, multiplied by the common denominator within

* Taken with some alteration from Pampuch, 'Die 32 LOsungen des

Malfattischen Problems ', Grunerts Archiv, Series 3, vol. viii, 1904.
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the radicals, will be the radius of an inscribed or escribed circle.

We now write

4 (s-ctj.) XfXj = (ay-.i-i-x^s,

a? = A it a/ = Aj, ot
s = A

);
, (12)

assuming that Ah A A k are known values. These equations

have sixty-four solutions, which include the thirty-two real

solutions of the problem in hand and thirty-two others

obtained by altering the signs of all the c^'s and xfs, which

gives nothing new geometrically. These equations will thus

contain nothing extraneous if we impose the restriction

a
1
a,a3 > 0. They give the thirty-two real solutions of the

problem and nothing besides. The quantities crls a
2 , a3 are

capable of taking four sets of values. We pick out one set,

and write the equation

(13)
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The analytical expression of the distance from each vertex

to the points of contact of the corresponding circle in the thirty-

two cases of the extended Malfatti problem is of the same type.

It would be tedious to determine which value of <x
i
and

which sign for each 8^ should be used in. every case. On the

other hand, let us notice that Hart's proof may easily be

extended to every case, so that

Steiner's construction may be extended to all thirty-two cases

of the extended Malfatti problem, the triangles abutting at

the centre of the inscribed circle being replaced in twenty-four

cases by those abutting at the centre of an escribed circle. The

triangles being chosen, we can associate with each, either its

inscribed circle, or the escribed one which actually touches the

side which it shares with the original triangle.

There is a further extension of Malfatti's problem due even

to Steiner himself. To construct three circles, each of which

shall touch two out of three given non-coaxal but intersecting

circles, and also the other two circles sought.*

When the three given circles are concurrent, we get the

construction at once by inversion. Steiner's own construction

for the general case is as follows

:

Find a circle of antisimilitude of each pair of the given

circles. Inscribe circles in the arcual triangles each deter-

mined by one given circle and two circles of antisimilitude.

The remaining circles orthogonal to the common orthogonal

circle of the original three, each touching a pair of the con-

structed ones, and belonging to the same system as the common
tangent circle of antisimilitude will, in pairs, touch the circles

sought.

The proof of this is given by Hart immediately after his

proof of the simpler case. The reasoning is as follows. Hart's

proof for the Steiner construction holds just as well on the

surface of a sphere as in a plane, provided that straight lines

be replaced by great circles, and that I. 28] and 170] be

extended to the sphere, which can be done as follows. If two

* Einige geometrische, &c, loc. oit., p. 180.
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small circles cut equal arcs on a great circle, we find, by the

formulae for a right spherical triangle, that if a circular

triangle be formed by this great circle and tangents to the

small ones at a pair of points of intersection that do not

separate the other pair, then the sines of the legs of this

triangle are proportional to the tangents of the radii of the

small circles, i.e. the two small circles will subtend equal

angles at the opposite vertex of the triangle. On the sphere

then, as in the plane, the second transverse common tangent

of the circles D.F^, D^.^ will bisect the %-A^. This

established, the previous proof holds word for word. We next

see that any three circles of the plane which are not concurrent

may be carried by a real or imaginary stereographic projection

into three great circles. We have but to take the sphere

whose equator circle is concentric with but orthogonal to the

common orthogonal circle of the three. This transformation

is conformal and carries great circles bisecting the angles of

given great circles into circles of antisimilitude in the plane.

The number of solutions is seen to be sixty-four.

The most systematic attempt ever made to reduce to a

uniform method the solution of all problems involving the

construction of circles subject to given conditions was made

by Fiedler,* and we must now give some account of his

method.

In the preceding chapter we showed how the circles of

a plane may be represented by the points of a three-dimen-

sional space. A more direct method of accomplishing the

same end, when none but proper circles are involved, is as

follows. At the centre of each proper circle in the plane, erect

a perpendicular on a specified side of the plane, which we

shall call above, equal in length to the radius of the circle.

The extremity of this perpendicular shall be taken to repre-

sent the circle. Conversely, if any point (in the finite domain)

be given above the plane or upon it, the circle whose centre

is the foot of the perpendicular from the point to the plane,

and whose radius is the length of this perpendicular, will be

* Cyklographie. Leipzig, 1SS-. See also Muller. 'Beitrage zur Zyklographie
',

Jahresbericht der deutschen Hatluanatikerrereinigung, vol. xiv, 1905.
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the circle which is represented by the point. There is thus

a one to one correspondence between the proper circles of the

plane and the finite points above ; the points of the plane will

represent the null circles whereof they are centres.

The circles of one system tangent to two intersecting lines

will be represented by the points of two half-lines above the

plane, intersecting in the intersection of the lines, and making,

with the plane, angles whose cotangents are equal to the

cosecant of the corresponding half-angle of the given lines.

Conversely, the points of every half-line above the plane will

be represented by circles tangent to two intersecting or parallel

lines which will be real if the angle which the half-line makes

with the plane be S-> The reflection of the opposite half-

line in the same plane will represent the remaining circles

tangent to the two lines and belonging to the same system.

The points of a half-plane above the given plane, and of the

reflection in that plane of the opposite half-plane, will represent

the circles intersecting at a fixed angle the line common to

the two half-planes and the given plane. The cosine of this

angle will be the cotangent of the angle between the half-plane

and the given plane. Conversely, every such system of circles

will be represented by a half-plane and the reflection of its

opposite.

We next observe that every line in space, not parallel to

our plane or lying therein, may be represented by its inter-

section with the plane, and by the intersection therewith of a

parallel to the given line through a fixed point above the plane.

The line connecting the two points will be the intersection

of our given plane with the plane through the given line and

the fixed point. The circles tangent externally to a given

circle will be represented by the portion above the given plane

of a cone of revolution through the given circle, with its

vertex at a radius distance below. The circles which touch

the given circle internally will be represented by the reflection

in that plane of the remainder of the same cone. The word

cone is here used in its widest sense to indicate a conical surface

of two nappes.
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Let us make two specific applications of these methods.

Problem 1.] To construct a circle having contact of a pre-

assigned sort with each of two given intersecting lines, and
with a given proper circle.*

Analysis. The given circle shall be c with its centre C.

The vertex of the corresponding cone, which -we shall assume

below the plane, shall be T
r

The lines shall be I and I' meeting

in P at an angle 8. Their bisector orthogonal to the circle

sought shall be b. We wish to find the intersection of the

cone with a bine through P whose projection on the plane

shall be b, and making with the plane an angle whose cotan-

gent is cos - • A plane through this line and V will meet the

given plane in the line from P to the intersection with a

parallel to the given line passing through V. and will meet

the circle c in the points of contact desired.

Construction. Through C draw a line parallel to b, and

take thereon points whose distances from Care 2cos -• Connect

these points with P. These lines will intersect the given circle

in the points of contact desired.

Problem 2] of Apollonius. To construct a circle tangent

externally to three mutually external circles.'f

Analysis. Let the cones of revolution be constructed as

before, the vertices being T^TjT^. Each two of these have

a common conic in the plane at infinity, hence they intersect

also in a finite conic. We wish to find the intersections of

two of these conies, as one intersection will represent the

circle desired. Let Ax be the intersection of the given plane

with F2 , Y,, assuming no two circles are of equal radius;

it is the external centre of similitude of c2 , c
3

. The plane

through the line A^.^, tangent to c„. o
3 , will touch the

finite conic, but at infinity, since it is there that the finite and

infinite conic intersect. Hence a plane through Y3 ,
parallel to

* Fiedler, loc. cit., p. 30.

f Ibid., p. 161.
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the plane of the finite conic, will intersect the given plane

in the polar of A
x
with regard to c

3
. The plane of the finite

conic will meet the given plane in the radical axis of c
2
and c

3 .

The line common to the planes of the three finite conies may
be repressnted, if F

3
be the fixed point without the plane,

by the radical centre and the pole with regard to c
3
of the line

containing the three external centres of similitude.

Construction. Find the poles with regard to each circle of

the line containing the external centres of similitude. The

lines connecting these poles with the radical centre will meet

the circles in the points of contact sought.

It is certainly striking that Fiedler's method should lead us

back to the Gergonne construction.

The work which we have done in problems of construction

not unnaturally raises the old question of what constructions

are possible and what ones are not with the means allowed

in elementary geometry, namely, the ungraded ruler and the

compass. Various suggestions have also been made for sub-

stituting other instruments for these. Steiner employed the

ruler and one circle completely drawn. Others have studied

the constructions possible with the ruler and compass of

a single opening, the two-edge ruler, and even the constructions

possible with the aid of paper folding.* The most interesting

attempt of this sort from our present point of view is that

originally made by Mascheroni,f to see what constructions

are possible with the aid of the compass alone. Mascheroni's

original procedure may be greatly shortened by the aid of

inversion.

What are the constructions possible with ruler and compass 1

To connect two points by a straight line, and to describe

a circle of given radius about a given point. Clearly no

compass alone will enable us to perform the first of these.

At the same time the primary uses which we make of these

constructions are to determine certain points, and, so con-

* For an excellent account of all these attempts, as well as the construc-

tions that follow, see Enriques, Questioni riguardanti la geometria elementare,

Bologna, 1900.

f La geometria del compasso, Pavia, 1797.
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sidered, the fundamental problems are three in number: (1)

To find the intersections of two circles given by radius and
centre. (2) To find the intersection of a line given by two
points with a circle given by radius and centre. (3) To find

the intersections of two lines, each given by two points. The
primary object of the geometry of the compass is to show that

all three of these problems maj- be solved by the aid of that

instrument alone. About the first nothing need be said : the

last two may be thrown back upon the first by means of

inversion. It is only needful to show, therefore, that with the

aid of the compass alone we can find the inverse of a given

point with regard to a given circle, and can find the centre of

a circle through three given points.

Problem 1.] To construct the multiples of a given seg-

ment [AO).

Construct a circle with centre and radius (OA). Inscribe

a regular hexagon with one vertex at A. The opposite vertex

B will determine a segment tAB) whose middle point is 0.

Problem 2.] To construct a fourth proportional to three

given length* m, n, p.

Take a convenient centre and construct concentric circles

with radii m, n. Let A and B be two points of the first

separated by a distance p. If 2 m < p we replace our circles

by concentric ones of radius km, kn, both > j-j and proceed
a

as before. With A and B as centres and the same radius,

construct circles intersecting the other circle in two pairs of

points. We then take the points A' and B', one belonging

to each pair. (A'B*) is the length sought.

We may, in fact, take such a radius at A and B that the

radii (OA). (OB'), \0B). (OA') follow around in order. Then,

since A AOA'= A BOB' by three sides,

4.AOB = 4-A'OB'.

Hence the isosceles triangles AOB and A'OB' are similar.

(OA) : (OA') = (AB) : (A'B').
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Problem 3.] To construct a circle through three non-collinear

points.

The points shall be A, B, G. With B as centre and (BA) as

radius, and with G as centre and (GA), construct circles meeting

again in A', the reflection of A in BG. If be the centre

of the circle sought, the triangles BAA', OAG are clearly

similar. Hence the radius sought is a fourth proportional to

(AA')
t
(AB), (AC). The radius being found, the centre is

found at once, and so the circle.

Problem 4.] To construct the inverse of a given point with

regard to a given circle.

The given point shall be P, the centre of the given circle 0,

r
and its radius r. Suppose, first, that (OP) > - • Take P as

centre, and radius (PO), and construct a circle cutting the

given circle in A and B. With A and B as centres construct

circles intersecting in and P'. Then P' is the point sought.

We see, in fact, that by symmetry P' is on the line OP.

Moreover, A OPA and A OAP' are similar.

(OP) x (0~P') = (OA) x (AP') = r1
.

When (OP) < £ let us find (OM) = k(0P) > I

Then, if (OM) x (OM') = r\

k (OP) {OM') = r2
,

(OP) = k (OM').

We can now find the intersection of a line and a circle or

of two lines by finding those of their inverses, and our funda-

mental problems are solved. It is surely a remarkable fact

that with the single instrument we can find any individual

point which normally we reach only with the aid of both.



CHAPTER IV

THE TETRACYCLIC PLANE

§ 1. Fundamental Theorems and Definitions.

Axy set of objects which can be put into one to one corre-

spondence with the sets of essentially distinct values of four

homogeneous coordinates x : .i\ : x
a

: x
3 , not all simultaneously

zero, but connected by the relation

V + *f + a-
2
2 + ^' = (xx) = 0, (1)

shall be called points ; their assemblage shall be called a

tetracyclic plane. The assemblage of all points (x) whose

coordinates satisfy a linear equation

U/.f) = o,

where the values of (y) are not all simultaneously zero, shall

be called a circle, to which the points (x) are said to belong,

or be upon. The coefficients (y) are called the coordinates of

the circle. If they satisfy the identity (1) the point (y) is

called the vertex of the circle, which is then said to be null.

If (y) and (r) be two not null circles, the number 6 defined by

coatf= ,—
Z\— (2)

Ayy) A^)
is called their angle. If one possible value for the angle be -.

the circles are said to be mutually perpendicular or orthogonal,

or to cut at right a ngles. If one possible value be or - the

circles are said to be tangent. The conditions for orthogonality

and tangency are. respectively,

(yz) = 0. (3)

(yy)(zs)-<y:)* = 0. (4)



190 THE TETRACYCLIC PLANE ch.

If (y) and (z) be two mutually orthogonal null circles, i.e.

two null circles whose coordinates satisfy equations (3), (4),

every circle of the system

is null and orthogonal to every other. The locus of the ver-

tices of the circles (x) shall be called an isotropic. Through

each point in the tetracyclic plane will pass two distinct

isotropics which together constitute the null circle having the

given point as vertex.

The coordinates of each point in the tetracyclic plane may
be parametrically represented by means of the isotropics

through it as follows. Let i be supposed to be a well-defined

value of V — 1, a given irrational adjoined to the number

system. We may write

= (
AlMl + ^2) :

(
AlMl- X2M2)

: {KH + Klh) = (
AlM2

- A2^l)>

\ : A
2
= (ix + Xi) : (x

2
-ix

3)
= (\2 + ix

3)
: (ix —x^),

^ : ix, = (ix + Xj) : (x
2 + ix

3)
= (A

2
- ix

3)
: (ix -xj. (5)

If (x) and (x') be two points, we shall have

p (xx')= (A^jj'-AgX/) (n^'-p:^/).

It thus appears that if we keep either A
x

: A
2
or /x

2
: p.2

fixed we
have the points of an isotropic.

The system of all circles through the intersections of two

given circles, i.e. that of all circles whose coordinates are

linearly dependent on those of two given circles, shall be called

a coaxal system.

Two points are said to be mutually inverse in a circle (which

is supposed not to be null) when every circle through them is

orthogonal to the given circle. The vertices of the null circles

orthogonal to those null circles whose vertices are the given

points must lie on the circle of inversion ; hence the coordinates

of the circle of inversion are linearly dependent on those of

the given points. If the points be (x) and (x'), while (y) is the

circle of inversion,

poo
i
' = (yy)x

i
-2(xy)y

i
. (6)
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The transformation from (x) to (x'), being linear, carries

a circle into a circle, and we see also that equation (6) may be

interpreted as giving the relation between any two mutually

inverse circles. They are coaxal with the circle of inver-

sion, and make equal or supplementary angles therewith. We
shall also speak of (y) as a circle of anfisimilitv.de for (x)

and (.)•').

The definitions so far given have been apparent!}" arbitrary.

Let us see whether there be any sets of familiar objects which

obey all the rules prescribed for the points of a tetracyclic

plane. Obviously a Euclidian sphere is a perfect example

of such a plane, and the definitions of angles, inversions, &c.

,

for the tetracyclic plane are entirely in consonance with what

we should have on the surface of such a sphere. Again, the

relation between the tetracyclic coordinates of all finite points

of the cartesian plane is the same as that for all points of the

tetracyclic plane. We rewrite the equations

:

x:y:t = x.
2

: x
3

: - (ix + x^\. ( 7

)

x : .r
:

: x.2 : X, = i [X2 + <r + f-) : (x2 + y- - /-) : 2 xt : 2 yt

.

Every finite point of the cartesian plane (t ^ 0) will be

represented by a definite point of the tetracyclic plane for

which ('.r + a^ # 0, and conversely. If, however, we make

the cartesian plane a perfect continuum by adjoining the line

at infinity, the correspondence ceases to be unique, for all

infinite cartesian points other than the circular ones will

correspond to the same point of the tetracyclic plane. We
may extend the finite cartesian plane to a tetracyclic plane

by first omitting the line at infinity, then extending the plane

to be a perfect continuum as follows :
*

The set of coordinates x : x
x

: x.2 : x^ = i : 1 :0 : shall be

said to represent the point at injinity. Every other set of

coordinates (y) satisfying the equations

-iyo+Vx = (yy) = °

* Gonf. Beck. • Eiu Gegenstfiek zur projektiven G-conietrie', Grunerts

Archir. Series 3, to], xviii. 1911, and B:«her, • The Infinite Eegions of various

Geometries', Bulletin American Math. Soc. vol. xs, 1914.
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shall be taken to represent a minimal line

The point at infinity and the totality of such minimal lines

shall be called improper points. By adjoining them to the

finite domain, the cartesian plane becomes once more a perfect

continuum, and obeys all the laws for a tetracyclic plane.

The definitions of circle, angle, inversion, &c, given in Ch. II

for the cartesian plane, and here for the tetracyclic one, are

entirely compatible. Care must be taken not to confuse

minimal lines, looked upon as improper tetracyclic points,

with isotropics which are point loci. If we take as our tetra-

cyclic plane the cartesian plane rendered a perfect continuum

in this fashion, the following expressions are synonymous :

Circle orthogonal to point at Line.

infinity.

Inversion in such a circle. Reflection in line.

Null circle whose vertex is Totality of minimal lines.

point at infinity.

Null circle containing point Points of a minimal line

at infinity. and minimal lines parallel

thereto.

Improper points of a circle Asymptotes of a circle.

not through the infinite

point.

We shall mean by the cartesian equivalent of a tetracyclic

figure the following: If the tetracyclic plane be taken as

a Euclidean sphere, we take the stereographic projection of

this sphere. If the tetracyclic plane be built on the cartesian

one in the present fashion, we replace the coordinates of each

proper tetracyclic point by their cartesian equivalents from

(7), then render the plane a perfect continuum by the adjunc-

tion of the line at infinity. In either case, if we mean by the

degree of an algebraic curve of the tetracyclic plane the

number of its intersections with a circle, we see

The cartesian equivalent of an algebraic curve of order n

with a multiple point of order k at infinity, is an algebraic
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curve of order n — k xvith a combined multiplicity of order

n — 2k at the circular points at infinity.

It is worth while to look also at cross ratios in the tetra-

cyclic plane. We start with the circle .v
3
= 0. Let {y yly2yi)

and (2/o2/i2/2~ 3/3) be anJ two points mutually inverse therein.

Let (/3) be any circle through these points, cutting the funda-

mental circle again in (a) and (y),

Ho 2/i 2/2

<x a, q
2

y Yi y-i

2 ^y)(yy)-{ocy)y
s
i = o.

Our circle ,a\ = may be represented parajnetrically by the

equation

C-OCi + tJi + yi (33) + 2 (Oiy) = 0, i — 0. 1, 2. ($)

The circles through the points (y yY yt y3) (y y1 y2 -y3)
and

the points with parameter values t
t
and t.2

will be

(l) .-

; =v • +*i

+u
2/j »*

+

+

yj
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x
3
= 0. Had we taken any other pair of points besides (a)

and (y) to use in the parametric equation (8), we should have

replaced t by ——- ; the right-hand side of the equation would

have been unaltered. Moreover, every not null circle can be

expressed parametrically in this form, and our two expressions

(9) for a cross ratio will be the same for all such circles. If

this cross ratio have the value — 1, the points t
x
and t

3
are said

to separate the points t2
and ti harmonically. The relation

between the two pairs, is reciprocal. If we take the harmonic

pairs of parameter values 0, oo , t, — t, we see that the circle (/3)

is orthogonal to every circle through the last two points. Our
four points are thus both coneyclic and orthocyclic if we
extend the definition of p. 100 to the tetracyclic plane, and,

in fact, we find that

A necessary and sufficient condition for harmonic separa-

tion is that the concyclic points should also be orthocyclic.

If we pass a circle through the fundamental circle meeting

it orthogonally at the points t
1
t
i , while another orthogonal

circle meets it at the points t
2
ti , and if 6 be the angle of these

circles, we easily find

_ tan2
* = (t1=m^-Q

For harmonic sets, our new circles will be orthogonal to one

another.

We must next consider the cross ratios of four points of an

isotropic. If (a') and (/) be two points of one isotropic, then

every point thereof will have coordinates of the form

We shall define the right-hand side of (9) as a cross ratio

of the four points corresponding to the parameter values

tlt t2 ,
t
3 , t4 . Harmonic separation shall be as before. We

find the geometric meaning of the cross ratio of four points

of an isotropic as follows. What point of the circle (8) will

lie on an isotropic with a given point of the isotropic (10)?

Writing the condition of orthogonality for the corresponding
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null circles, we have an equation quadratic in t and linear in t'.

This must be reducible, if looked upon as an equation in t, for

one point sought is the intersection of the circle and isotropic.

The other root is a fractional linear function of t', and, since

a linear transformation leaves cross ratios invariant, we see

that the cross ratio of four points of an isotropic may be

denned as that of the points u-liere the other four isotrojrics

through them meet any not null circle.

We next take up the question of problems of construction

in the tetracyclic plane.* What constructions shall be allowed

here 1 The point at infinity shall play no special role, and we

shall require our constructions to be invariant for inversion.

We next remark that there are two different ways in which

we may suppose that a circle is known. We may know all

of its points, or all in a domain called real. Or, secondly, we

may know how to find the inverse of any known point. In

the first case we say that the circle is known by points, in the

second that it is knou'ii by inversion.

Suppose that we took for our tetracyclic plane the real

domain of a real sphere and represented each circle known by

points by the pole of its plane. Points of the sphere eollinear

with this pole would be mutually inverse in the circle. On
the other hand, if we took an interior point of the sphere it

would be the pole of a self-conjugate imaginary circle of the

sphere whose points are not in the domain : at the same time

we know the circle by inversion, for we can join any point

of the sphere with the interior pole and find where the line

meets the sphere again. Moreover, in three dimensions, we

assume that we can connect two points by a line, three points

bv a plane, and find the intersection of lines, planes, and

sphere when such intersections exist. This leads us naturally

to the following postulates for constructions in the tetracyclic

plane.

Postulate l.J If three points be knmcn. all points of their

circle are kumni.

* The whole question of tetracyclic constructions is elaborately discussed

by Studr. loc. cit.

x 2
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Postulate 2.] If two circles be known by points, their inter-

sections, if in the known domain, are also known.*

If we consider as known the whole tetracyclic plane, then

the intersections are always known. On the other hand, we
might limit ourselves to such a domain as one where x was

proportional to a pure imaginary value, while the other

coordinates were proportional to real values, in which case

it is not certain that intersections will be real. We make,

therefore, the further assumption

Postulate 3.] If two not null circles known by points have

one common known point, they have a second such point unless

they be tangent to one another.

Theorem l.J A circle is completely known by inversion if

two pairs of inverse points be known.

Suppose, in fact, that we have two pairs of inverse points

QQ\ RR', to find the inverse of any point P we have but to

construct the other intersection of the circles PQQ', PRR'.

The construction is of the first degree.

Problem 1.] Given two circles by inversion, to find by

points a circle through a given point orthogonal to them.

We have but to find the two inverses of the point, then

apply postulate 1].

Problem 2.] Given a circle by points, to determine it by

inversion.

Take four points thereon. They may be divided into two

pairs in three different ways. The product of the three inver-

sions, each of which interchanges the members of two pairs,

will be the inversion sought. The proof comes by easy

analysis, which we leave to the reader.

Problem 3.] Given two circles by inversion, to construct by

points the circle coaxal with them, passing through a given

point.

* Study, loc. cit., p. 53, makes a different assumption. He is not interested

in separating real from imaginary, and so assumes that if two circles be

mutually orthogonal, and one be known by points, their intersections are

known. It will easily follow from this that if a circle be known by

inversion it is also known by points.
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We construct by points two circles orthogonal to these two.

Then we find these same two by inversion, and then the circle

through the chosen point orthogonal to them.

Problem 4.J To construct by inversion the circle orthogonal

to three non-coaxal circles given by inversion.

Through any point pass three circles, each coaxal with two

of the given circles. These three are concurrent again in the

point inverse to the given one in the circle sought.

Problem 5.] To jjttss a circle through tv:o points of a circle

given by points which shall be orthogonal thereto.

We pass any circle through these points, find the inversions

in both, then find by points, and so, by inversion, two circles

orthogonal to the given ones. Lastly, find by points the circle

orthogonal to these last two circles, and to the original one.

Problem 6.] Given, the points A. B, and C, to find the

harmonic conjugate of B icith regard to A and C.

We assume that these points are not on one isotropic. We
take two other pairs of points A'C" and A"C", both concyclic

with AC. We next find the inversion which interchanges A
with G, A' with C". and that which interchanges A with C,

A" with G". We pass a circle through B coaxal with these

last two circles of inversion. It will meet the circle ABC
again in the point required.

Definition. Two ranges of points on the same or different

circles shall be said to be projective if their members are in

one to one correspondence, and corresponding cross ratios are

equal. We have at once

Theorem 2.] Two ranges of points on the same circle har-

monically separated by two jixed points of the circle are

projective.

Two such ranges are said to form an involution.

Theorem 3.] The circles through a fixed point and through

the pairs of an involution will be a coaxal system.

We see, in fact, that all of these circles will pass through

the inverse of the given point in the circle orthogonal to the
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given circle, and passing through the two points which

separate the pairs of the involution. These separating points

shall be called the double points of the involution. We shall

also extend the meaning of the word involution to validate

the converse theorem, i.e.

Definition. The pairs of points where a fixed circle inter-

sects the circles of a coaxal system not including this circle

form an involution. We see that if any circle of the coaxal

system (in the given domain) touch the given circle, the point

of contact, which is said to be double for the involution, lies

on the circle orthogonal to the given circle and to those of the

coaxal system, and that an inversion in this circle interchanges

the pairs of the involution, i.e. they are harmonically separated

by the double points. The coordinates of these double points

may always be found, even though the corresponding points

may not be in that domain which for" the purposes of our

construction we define as real ; hence the two definitions of

involution amount to the same thing if we include the limiting

case where the double points fall together.

Problem 7.] Given two pairs of an involution, to find the

double points if they exist in the given domain.

The solution comes at once from what immediately precedes,

and from problem 4].

Theorem 4.J If two projective ranges have three self-corre-

sponding points, every point is self-corresponding.

The proof of this is immediate from the definition, and from

the fact that a point is uniquely known as soon as we know

a cross ratio determined thereby with three given points.

Equally evident is

Theorem 5.] The projective transformation between two

ranges is completely determined by the fate of three points.

The analytic formula for a projective transformation is found

immediately if we write our circle in the paramethic form (8)

and then make the transformation

t> = «-i±§, « 8-^o.
yt + o
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The whole theory of projective ranges may be at once
deduced from this familiar analytic form by simple methods
known to every student of geometry. Nevertheless, we shall

continue to follow a geometric development more closely akin
to the fundamental methods of the tetracyclic plane. We
next have

Theorem 6.] Four points of a circle correspond protectively

to the points obtained by interchanging them two by two.

We see, in fact, that this may be done by an inversion.*

Theorem 7.] If, in a projective transformation of a circle

into itself, MAA
X
correspond to MA

1
A

2 , and M and A
x

be

separated harmonically by A and A
2 , then M is the only self-

corresponding point.

Consider the involution with double points M and A
1

. The
given projective ranges are carried hereby into those deter-

mined by MA.
2
A

X
C, MA

1
AC

1 , and were it possible for C\ to

be identical with G we might find an involution to carry

CMAA
1
into MGA

X
A. Hence MA

2
A

X C, 7:MA X
AG, 7:CAA

X
M,

if we use the symbol 7i for projective, and CM, AA
2 , A 1

A
1
are

pairs of an involution. But MM, AA
2 , A 1

A
1
are pairs of an

involution, and two involutions cannot share two pairs.

Theorem 8.] Given two projective ranges of points. They

have either a single self-corresponding point which may be

found by a linear construction, or the problem offinding their

self-corresponding points is the problem of finding the double

points of an involution.

If the projective ranges form an involution, nothing need

be said. If not, let AA
1
in the first correspond to A

1
A

2
in

the second. Let H
}
be the harmonic conjugate of A

x
with

regard to A and A
2

. If S
1
be self-corresponding, it is the

only such point, by the last theorem. If not, suppose that

H
1
in the first corresponds to H

2
in the second. Suppose

that there is a pair of points MN which are double for the

* For the next three theorems see Von Staudt, Beitrage sur Geometrie der

Lage, Nuremberg, 1858, pp. 144-6, or Wiener, ' Verwandtschaften als Folgen

zweier Spiegelungen ', Leipsiger Berichte, vol. xliii, 1891, pp. 651 S.
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involution A
1
H

1 , A2
H

2
. There is also an involution with

double points A^H^ and in this MN, AA
2 , A

1
A

1
are three

pairs, so that

MNAA» 7:NMA
2
A lt X MA7A

X
A

2
.

Similarly MNAH
X , X MNA^.,.

Hence MNAA^, XMNA^H^
and M and N are the self-corresponding members of our two
projective ranges. The reasoning is reversible, so that the

theorem is proved.

Problem 8.] Given two pairs of an involution, to find the

mate of any point.

This comes by a simple construction which we leave to the

reader.

Problem 9.] Given ABC, "KA'B'C, to find the mate of any

chosen point.

This transformation is the product of two involutions,

ABC, -KB'A'C^ and B'A'C
X , 7\A'B'C. Incidentally, we have

proved that in a projective transformation the mates of three

members may be chosen at random.

Problem 10.] To construct the circles of antisimilitude of

two given circles.

We mean, of course, the circles which invert the given

circles into one another. Any circle orthogonal to both our

circles is anallagmatic with regard to every such circle of

antisimilitude, and it will intersect the circle of antisimilitude,

if at all, in a pair of double points of the involution deter-

mined by the intersections with the given circles. The prob-

lem thus reduces to that of finding the double points of an

involution, or the intersections of two circles given by points.

Problem 11. J Of Apollonius. To construct a circle tangent

to three given circles.

We begin by finding their circles of antisimilitude two by

two. These, when they intersect in our domain, will pass

by threes through at most eight points, inverse in pairs in

the circle orthogonal to the three given circles. Through each
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such pair of points pass a circle orthogonal to each of the

given circles ; when the points of contact of the circles sought

exist in our domain they will be found in this way.* The
proof consists in noticing that this is exactly the construction

for finding the circles which touch three great circles of

a sphere.

Before proceeding to discuss further loci in the tetracyclic

plane, let us look once more at the parametric representation

already touched upon.f We begin with a slight change of

notation, writing

A point shall be said to be real if the homogeneous coordi-

nates (x) be proportional to real values. The real domain of

a sphere will serve as the best example of a real tetracyclic

domain, the identical relation being

— ®0 ' ^1 '
*^2 ~^~ ^3 ~ 5

A
x

: A
2
= (x + xj : (a

2
- ix

3)
= (x

2 + ix,
6)

: (x -xj, (10)

Mi = H = (®o + *i) : (^2 + ^s) = (*g--i»3)
: (»o-*i)-

For a real point the isotropic parameters A
x

: A
2
and ^ : /x

2

must take conjugate imaginary values. We therefore write

^1 : A
2 = £1 : £2" Mi : H — £1 : &•

A real circle, or a self-conjugate imaginary one, will be

given by an equation bilinear in (£) and (f), which is unaltered

by interchanging conjugate imaginary values, i.e. by a Hermite

form

«£ili + /^il2 + /3li& + c&l2 = 0.

Here a and c are supposed to be real, j3 and /3 conjugate

imaginaries. This may be wiitten in a satisfactory abbreviated

form by the aid of the Clebsch-Aronhold symbolic notation

ad, = 0. (11)

* Cf. Plucker, ' Analytiseh-geometrische Aphorismen ', Crelle's Journal,

vol. x, 1833.

f See Kasner, 'The Invariant Theory of the Inversion Group ', Transactions

American Mathematical Society, vol. i, 1900.
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If p and o- be fixed complex multipliers, while I and m are

real variables, the assemblage of points

€i = hni +'m<rCi ; |1*=^ + m?Ci (12)

are said to form a chain. These equations are equivalent to

requiring t to be real in our equations (8). The cross ratio

of any four points of a chain is real, and, conversely, every

set of points on a circle, such that the cross ratios of any four

are real, will belong to one chain.* If, in these equations, we

allow — to take all values, real and imaginary, we have a

parametric representation of a circle connecting the points

(rj) and (() ; by changing the constant multipliers p and <r, we
get every circle through these two points in this fashion.

Let us write the relation between the binary and quaternary

coordinates once more

:

X = VVL M. "*" t2 f2)

'

X
l = (ClCl

-
C2C2/J . ,

X
2 — (&162+ t2tl))

X3 — (ClC2
—

C2Cl)'

If thus

(u x) = ad- = 0,

a
1
d

1
= u

(j
-\-u

1 , a
x
d

2
= w,

2
— iu

s , d
1
a

i
= ,

it2 + iu.
6 , a^d^ — u^ — Vj^

(-Ugi^ + u^^ + w^ +u^) = — -j
I

a i
I

•
I

a 6 |.

The cosine of the angle of the circles (u) and (v) will take

the simple form
I ab I

•
I db I ....

coS e= —- ' ' __— (I*)

V\aa'\- \dd'\ V\bb'\-\bb'\

Here a and a' are equivalent symbols, as are b and V. The

condition for orthogonal intersection of two circles will be

\ab\-\db\ = 0. (15)

To find the inverse; of the point (ij) in the circle (11) we

* The corresponding concept in projective geometry is due to Von Staudt,

loc. cit., p. 137.
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have merely to require that every circle through them shall be

orthogonal to this circle :

(16)

§ 2. Cyclics.

The only loci which we have so far discussed in the tetra-

cyclic plane are circles (or chains). Let us now take up others

of a more complicated sort.

Definition. The locus of the vertices of the null circles of

a quadric circle congruence shall be called a cyclic. We mean
by a quadric circle congruence of the tetracyclic plane exactly

what was meant by that term in the case of the cartesian

plane. Every cyclic will have two equations of the type

i, j = 32w =
' (•")= 0, u

ij = a
Ji

. (17)
>' j = o

The first of these equations has ten different coefficients.

As, however, the cyclic is unaltered if we replace that equa-

tion by
i,j =3

2 a
ij
X

i
X
j + X i®®) = °-

Theorem 9.] Eight points in general position will deter-

mine a single cyclic, but all cyclics through seven points have

an eighth common point ateo.

The problem of classifying cyclics under the inversion

group, that is, under the group of quaternary orthogonal

substitutions, is the problem of classifying the intersections

of two quadric surfaces in three-dimensional projective space,

of which one surely has a non-vanishing discriminant. The

modern way to do this is by means of Weierstrassian elemen-

tary divisors applied to the two quadratic forms. We may
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take this problem as solved, merely interpreting the known
results in the language of our tetracyclic plane.*

[1111] General cyclic.

[(1 1) 1 l] Two circles, not tangent and

neither null.

[(1 1) (1 1)] Two isotropics of each set.

[(1 1 1) 1] Not null circle counted twice.

[(1 1 1 1)] No locus.

[2 ] 1] Nodal cyclic.

[(2 1) 1] Mutually tangent not null circles.

[2 (1 1)] Null and not null circle, not

mutually orthogonal.

[(2 1 1)] Null circle counted twice.

[2 2] Cubic cyclic and isotropic, not

tangent to it.

[(2 2)] Two mutually orthogonal null

circles.

[3 1] Cuspidal cyclic.

[(3 1)] Null and not null circle, mutually

orthogonal.

[4] Cubic cyclic and isotropic tan-

gent thereto.

In what follows, unless otherwise stated, we shall confine

ourselves to the first type, the general cyclic. A number of

facts can be at once stated about this curve by considering

the Cayleyan characteristics of the elliptic space curve of

the fourth order, and re-interpreting them in our present

terminology.f

Tetracyclic plane it. Projective space S.

General cyclic. Elliptic quartic space curve.

Twelve osculating circles or- Class of developable 12.

thogonal to given circle.

* Cf. Bromwich, Quadratic Forms, and (heir Classification by means of Invariant

Factors, Cambridge, 1906, especially pp. 46, 47. Also Kasner, loc. cit.

t Cf. Salmon, Geometry of Three Dimensions, Fourth ed., Dublin, 1882, p. 312.



iv THE TETRACYCLIC PLANE 205

Eight circles of arbitrary co- Order of developable 8.

axal system orthogonal to

the curve.

Sixteen circles have four-point Sixteen planes have stationary

contact. contact.

Sixteen circles orthogonal to Sixteen points on two tan-

an arbitrary circle belong gents lie in an arbitrary

to two pencils of mutually plane.

tangent circles orthogonal

to the curve.

Eight circles orthogonal to an Eight planes having double

arbitrary circle have double contact pass through an
contact. arbitrary point.

A simple construction for a cyclic is suggested by the

foregoing. There is a theorem ascribed to Chasles whereby
a line meeting two skew-lines and touching a quadric will

have its points of contact with the latter on a quartic. The
easiest proof would seem to consist in writing the condition

that the line from a point of the quadric to meet two skew-

lines shall touch the quadric. If we take this quadric to

correspond to our tetracyclic identity, we have

Theorem 10.J If two coaxal systems be given, with no

common circle, the locus of the points where a circle of one

system touches one of the other will be a cyclic, general or special.

Let us simplify the equation of our general cyclic. This is

immediately accomplished if we remember that in the case

of the elementary divisors [l 1 1 l] the two quadratic forms

may be simultaneously carried by a linear transformation

into two forms involving only the squared terms ; in other

words, keeping the identity for tetracyclic coordinates in-

variant, we may write the equation of the general cyclic

in the form
( = 3

{aa?) =2 a
i
x

i

2 = °> <*(>«! «2 rt
s =£ °> a

i
=£ aj (

lS)

. =o

This last equation is unaltered if we change the sign of any

one of the x/s. hence
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Theorem 11. J The general cyclic is anallagmatic with

regard to four mutually orthogonal circles. It may be

generated in four ways by the circles of a conic series.

The circles with regard to which the cyclic is anallagmatic

shall be called the fundamental circles. To prove the last

part of the theorem, take the circle

yi
= \x

i + a
i
x

i
.

If this be orthogonal to one of our fundamental circles,

X = -a
t

.

It is, moreover, tangent to our cyclic at the point (x). Sub-

stituting for (x) in the equations (18),

2

yi =-K- + J!L- + JL- = o. (19)
aj~ a

i
a h
~ a

i
al~ a

i

The last part of our theorem is thus proved. Let (z) and

(s) be inverse in the circle (y)

:

Vi = °> Vj = s
i
zj~ s

j
z
i> Vk = hzk- skzi> Vl = *i

zl- s
l
z
i>

(SiZj-SjZi)
2

(8
i
Zk ~8kZi )

t
(«i«l-fll*i)*

1 1 = 0.
aj-a

{
ah-a{

^-a^

Theorem 12.] The locus of the inverse of a fixed point with

regard to the generating circles ofone system ofa cyclic is a nodal

or cuspidal cyclic, whose double point is at thefixed point.

If we take the equivalent cartesian figure, the fixed point

being the point at infinity,

Theorem 13.] The general cartesian cyclic is a curve of the

fourth order with a node at each circular point at infinity

;

and, conversely, every such curve is a cyclic. It may be

generated in four ways as the envelope of a circle moving

orthogonally to a fixed fundamental circle, while its centre

traces a central conic. The four fundamental circles are

mutually orthogonal, and each meets the corresponding deferent

in four of the sixteen foci of the cyclic.
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We mean by & focus of any curve the vertex of a null circle

having double contact therewith, this definition holding

equally in the cartesian and the tetracyclic plane. It appears

also that the inverse of a focus will be a focus.

Theorem 14.] The general cyclic has si-xteen foci lying by

fours on the fundamental circles.

If we invert in either the tetracyclic or cartesian plane the

inverse of a general cyclic will, in the first case, always be

a general cyclic ; in the second case it will usually be such a

cyclic except for special positions of the centre of inversion

which we need not particularize. The foci will be inverted

into foci also. Now in the case of the cartesian cyclic the

foci are the intersections of isotropics, not tangent to the curve

at the circular points at infinity. At each circular point there

will be two tangents to the curve, and these intersect in pairs

in four points called the double foci, which are not invariant

for inversion but have a certain importance. Let the centre

of a generating circle pass through a point of contact of a

tangent to the deferent from a focus of the latter, i.e. a tangent

from one of the circular points at infinity. The centres of two

successive generating circles will He on this line ; hence the

circles will touch this line and one another at a circular point

at infinity, or

Theorem 15.] The four deferent conies of the general

cartesian cyclic are confocal, their foci being the double foci of

the cyclic.

The cyclic is completely determined by one fundamental

circle and the corresponding deferent. The radical axis of

successive generating circles is the perpendicular from the

centre of the fundamental circle on the corresponding tangent

to the deferent. The cyclic will cut the fundamental circle

at points of contact of common tangents to circle and deferent.

These four tangents form a complete quadrilateral. Let us

take a pair of opposite vertices of this quadrilateral and

construct two circles, with these points as centres, orthogonal

to the fundamental circle, i.e. cutting it at pairs of points of
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contact with the tangents mentioned. These circles have

double contact with the cyclic and, so, are generating circles of

a second family. The common orthogonal circle to these two

and to the given fundamental circle will be a second funda-

mental circle ; the conic confocal with the given deferent and

passing through the chosen pair of vertices of the complete

quadrilateral of common tangents is the deferent corresponding

to the second fundamental circle. We are thus enabled to

pass from one generation to another.*

The locus of the centres of gravity of the intersections of

a cartesian algebraic plane curve with a set of parallel lines

is a line, the line-polar of the infinite point common to the

parallels. In the case of a cartesian cyclic, this line will

meet the line at infinity in the harmonic conjugate of the

point common to the parallels with regard to the circular

points at infinity, i.e. this line-polar will be perpendicular

to the direction of the parallels. The line-polars corresponding

to two such systems of parallels meet in a finite point 0,

whose first polar meets the like at infinity four times, i.e.

includes the line at infinity. Hence lies on the line-polar

of every infinite point. If a point on the line at infinity

approach one of the circular points as a limiting position, its

conic polar with regard to a general cartesian cyclic will

approach as a limit the two tangents to the cyclic at that

circular point, and its line-polar will approach the line from

that circular point to 0. This line will be harmonically

separated from the line at infinity by the two tangents to the

cyclic at that circular point We thus reach an interesting

theorem due to Humbert, f

Theorem 16.] The locus of the centres of gravity of the

intersections of a general cartesian cyclic with a set ofparallel

lines not passing through a circular point at infinity is the

perpendicular on these lines from the common centre of the

four deferents.

* Darboux, Sur une classe remarquable de combes et de surfaces, Paris, 1873,

p. 35.

t 'Sur les surfaces cyolides', Journal de tEcole Polylechniqve, vol. lv, 1885,

p. 127 ff.
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If we take the common centre of the deferents as origin,

the rectangular cartesian equation of the genera] cyclic will be

(x' + y*)*+f(xy) = 0. (20)

Here /2
is a quadrate polynomial from which we may remove

the term in xy if we choose the axes of the focal conies as

axes of coordinates.

Let us return to the tetracyclic cyclic from which we have
strayed. To find the coordinates of a focus, we have

x
i

xk x
i

aj- a
i

ak~ a
i

ai-°;

X
t : Xj : X* : x, = : v'(o,- a

t)
(o

fc
-o,) : ^(a A.-c,-) (a,-^)

•VTai-aJiaj-a,;). (21)

Let us find the cross ratio of these four, which will clearly

be an invariant of the curve. In particular, if we take the

foci on x = and seek the corresponding values of A
x

: A, from

(5), we get

A
1
:A

i
= V(a

l
-a )(a

1
-a

?):[± </<a.
2
— a ) (a3— aJ

+ ;V(a s-a )(a
1
-rt

2)]-

The cross ratio of four points of a circle will be that deter-

mined by four isotropics through them, as we have seen from

the definition of the latter. Hence we have, as a cross ratio

for four foci,

The six possible cross ratios are obtained by permuting the

four letters a
f

. Hence we have the same sets of cross ratios

on all four fundamental circles.

Let us next seek the points of contact of the cyclic with

isotropics tangent thereto. If such a point be (y), a taDgent

circle there will be^+ /xa,-^. This will be null if ju
2 (a2y

2
) = 0.

Hence the points sought are the intersections of the cyclic

with a second general cyclic whose equation is

(oV) = o.

170J O
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The coordinates of the points of contact will be

Py?=~\laa*s\. (23)

These eight points will also lie on the cyclic

2(a2
y

i)-

i = S

2 a
i

t = J

(ay*) = 0, (24)

which bears to the given cyclic a curious relation. Substitut-

ing the isotropic parameters from (5) in (18) and (24) we get

[K- %) Mi
2 +K~ «s) ^2

2
]V + 2 [(- ao~ a

i + a
2 + a

s) ^i fts]
A
l
A
2

+ [(o
2
- 03)^ + (Oj- o

) /*2
2
] A

2
2 = 0.

+ [ - (a
2- a

3) Ml
2 +K-

<»o) M2
2
] A2

2 = °-

Keeping either parameter fixed, we may look on these as

quadratic equations in the other parameter, and it will be

found that the simultaneous invariant vanishes identically;

hence

Theorem 17.] A general cyclic has a covariant cyclic so

related that every isotropic of either set intersects the two in

pairs of harmonically separated points. The relation of the

two cyclics is mutual, and at every intersection each curve is

tangent to one of the isotropics through that point.*

This covariant is simply expressed in our symbolic nota-

tion,f Let our cyclic be

a,2a?2 = 0.

The covariant is

I

a a'
I

•

I

a a'
\
at as dt a^' = 0.

* This excellent theorem was discovered by the Author's former pupil,

Mr. Lloyd Dixon, but never published.

f Kasner, loe. cit., pp. 480 ff., gives a list of concomitants with their

geometric properties. Those which follow are from this source.
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We see. in fact, that if (fi be fixed the roots of these two
quadratics in (g) divide one another harmonically. Or we may
reason otherwise. The circle

a c a c - a-; a:- =

is called the polar circle of {£'). It contains the harmonic
conjugate of (f) with regard to the intei-sections of the iso-

tropics through that point with that cyclic. The covariant

cyclic is the locus of points whose polar circles are null. If

we add to our equation (1S» such a multiple of (yy) that

Zl a
i = °-

i =0

the equation of the covariant becomes simply

(a :
.l°-) = 0. ,25)

The polar eircle of [y\ will be

; = 3

3«,« = <>- 1 26)

Another covariant circle is the autopolar circle

0.

= s

= o *

This is orthogonal to the polar circle of every point on the

null circle whose vertex is r-/\. The locus of points lying on

their own autopolar circles will be another covariant cyclic :

(^) = 0. <2 8.

The circles of different generations of a cyclic are connected

bv an interesting relation which we shall now develop. Let

{a) be a circle of one generation

:

,
y* y-

:
- yf _

aj-af ak-a, «,-a,
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^ ah
— a

i ai— a^

^ = 7r^y* + ^yi-ah~ a
i

a
l
— a

i

In the same way, if (z) and (z') be two circles of another

generation,

sin^_j/0= +

Kai~ aj)
y

2 +
(«;- aj)

y
» M-°^) ^2 +

(^~ ffl»)

V(ajfc-a<) ' (oi-«i) V (a^-a,-) ' (a?-^)

^ i,H- ai)ial- aj)

kl ^ (
ak- aj)(ai- ai)

/K~ a
j) 2 (

gz- aj) 2 /(
ak- a

i)
j,

(^rt) 2 n

V (a
ft
-a/* +

fo-a/1 V (a,_ a .)
*
+

(a,-*.)
*

cos #_ i/0 cos £_ ys' + sin iljl 1/0 sin #_ 1/0'

y*
9 r / (a 7C

—
<*.j) (

a
z
—

a

i) /i .

2\~(ai— ai)(ak— ad >. 1

L (a
7c

_ a .)(a
z
-a,) J L(a,-a<)(a

fc
-a,)

a
ft ~ a

j
a

l
~ a

j

This expression is independent of (y), thus giving an

admirable theorem.*

* Jessop, 'A Pir erty of Bicircular Quarties', Quarterly Journal of Math.,

vol. xxiii, 1889.
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Theorem 18.] The sum or difference of tlie angles icJiich all

circles of one generation of a general cyclk make with tuv fixed-

circles of another is constant.

This theorem enables us to give an invariant geometric

definition of the cyclic.

Theorem 19.] The envelope of circles orthogonal to a fixed-

circle the sum- of whose angles with two other fixed circles is

constant is a cyclic.

This is essentially, II. 26], proved without the aid of non-

Euclidean geometry. If we pass to the limiting case where

the cyclic becomes a pair of circles we reach another proof

of II. 14].

The generating circles tangent to our cyclic at the point (%)

will be

Vi = °> yj = (
a
j~ a

i)
x
j > <//>• = («*~ «,) xh , Vi = («z- a,-)

-'-i

Permuting the indices, and taking the cross ratio of the

four, we get

{a
i
-a

l
)(a

]
.-a

j )

Theorem 20.] Tlie cross ratios of four generating circles

tangent at the same point are those of tlie four foci on any

fundamental circle.

This theorem can be easily generalized. Passing over to

the cartesian plane, let P and Q be any two points of a general

cyclic. Inverting, with P as centre of inversion, we get an

elliptic cubic curve. The cross ratio of the four tangents to

this curve from the inverse of Q, is independent of the position

of the latter on the curve, by Salmon's theorem ; hence

Theorem 21.] The cross ratio of four circles through two

points of a cyclic tangent to the curve at other points is equal

to that offour concyclic foci.

We find the coordinates of the osculating circle at (x) as

follows. We write

Vi = Xx
i + «,•'-'«
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Since
i = 3 t =3

(yd2x) = 0, (dxcfce) = - (xd2
x), 2 a^a;^ = - 2 a

i
xi^ 2xu

1 = 1 =

A (ctecfa;) + (adx2
) — 0.

Let us assume (ttcfce) = 0.

i = 3

(ojcfa) = 2 a
i
xid®i = (udx) = 0,

pdx
i
=

p Va,ak a x

x
i

xk x
x

cijXj ak x ]c
a

x
x

x

Uj uk u
x

VcijXj Jak xk Va
x
x

x

x
i

xk _fz_

,-,. Va
x

Va.j Va-u

it u
1:

U
X

-/a, Vak Va
x

X(a2x2)+a a
l
a

2 as
(-x2

) = 0,

Vi = a aia2
a

3
(-

x

2
) x{

- (a2x2)a
i
x

i
. (29)

Theorem 22.] Twelve osculating circles to a general cyclic

are orthogonal to an arbitrary circle.

Theorem 23.] The evolute of the general cartesian cyclic is

of the twelfth order.

We may get the class of a cartesian cyclic, and also of its

envelope, from one same formula. The circle tangent at (a;),

which is orthogonal to (s), will be

Vi

j = B

^CtjXjSj

3=0
xi~ (

xs)a
i
x

i
.
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This will be orthogonal to (t) also if

J = 3 j = 3

2 a
j
x
j
s
j i

xt
) - 2 «;*;*/ (*s) = 0-

j = o j = o

Adjoining the equation (18) we see

Theorem 24.] iftg/if circles of an arbitrary coaxal system

will touch a general cyclic.

Theorem 25.] Tlw class of the general cartesian cyclic is

eight.

This agrees with Plucker's equations. If the coaxal system

be a concentric one, we see

Theorem 26.] The class of the evolute of a general cartesian

cyclic is eight.

A circle in the cartesian plane is an adjoint curve to the

general cyclic. We may thus apply Nother's fundamental

theorem and the residue theorem.

Theorem 27.] If a circle meets a cyclic in ABCD, while

a second meets it in ABC
1
D

l
,and a third meets it in A^-^GD,

tlien A
l
B

1
C

l
D

l
are coneydie.

When the cyclic has a node we may invert into a conic.

The theorem is easily proved for a conic; hence it is true

of the universal cyclic.

Numerous simple and easy corollaries follow from this

theorem.*

Problem 12.] To construct a tangent circle at a given point

of a cyclic passing through another given point.

Let the given points be A
1
B

1
. Suppose that the pair of

points A.
2
B„ is coresidual to the pair A

1
B

1
on the cyclic, that

is, both are concyclic with the same pair of the cyclic. Let

A
X
B^ be concyclic with A.

2
B

2 , and on the cyclic, i.e. residual

to A„B.
2 \ then A-^B.^ and A^B^ are residual, or the circle

through A
1
B

1
B

1
' is tangent at -4r

* Cf. Saltel, ' Th^orenies sur les cycliques planes ', Bulletin de la Sociiti

mathematique de France vol. iii, 1874. pp. 96 ff.
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Problem 13]. To construct the osculating circle at a given

point.

Let A
1
be the point. Construct a tangent circle there, and

let A
%
B

2
be the residual pair. Let A

3
B

3
be residual to A

2
B

2 ,

and let A{ be residual to A
X
A

3
B

3
. Then the circle tangent

at A
x
and passing through A{, which can be constructed by

the last problem, is the circle required.

Theorem 28.] The locus of pairs of points concyclic with

each of three given pairs of points, no tivo of which are con-

cyclic, is a cyclic.

We may, in fact, pass a cyclic through the six given points

and through one pair of the locus. The residuation with

regard to this cyclic will give pairs of points concyclic with

the given pairs.

Problem 14.] To construct a cyclic through eight given

2Joints.

Let the points be A
x , Bx , A,B, G, D, E, F. Omitting the point

F, we have x 1 cyclics with one other common point L, by 9].

We find this point as follows. Let the circles A
x
B

x
G and ABG

meet again in G' ; let the circles A
X
B

X
B and ABB meet again

in D'; let GG'E and DB'E meet again in E'. The cyclic deter-

mined by pairs of points concyclic with A
X
B

X , AB, EE' will

contain all of our given points but F. A second such cyclic

may be found by interchanging the rdles of B and E. Now
take an arbitrary circle c through A

X
B

X
. The pencil of cyclics

through A
x , Bx , A, B, C, D, E meets c in pairs of points. The

circles through such pairs, and through a fixed point V. will

be a one-parameter family linearly dependent on two of its

members, i.e. a coaxal system. Two circles of the system

may be determined from the two cyclics just found, and so

the other fixed point V
x
of the coaxal system. Replacing E by F

we find V
2 , which plays the rdle formerly played by V

x
. Let

the circle W
X
V

2
meet c in A

2
B

2
. Then A

2
B2 are two points

of the cyclic sought. We may find two such on every circle

through A
X
B

X ; the construction is thus complete. We may
also, with the aid of the two preceding theorems, find tangent

and osculating circles to the cyclic given by eight points.
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Suppose that we have in the cartesian plane two sets of

four circles. By taking one circle from each set we have,

in all, sixteen pairs of circles. Let one intersection of each

of fifteen pairs lie on a given cyclic
;.
one intersection of the

sixteenth pair will lie thereon also. We see, in fact, that

a lineal" combination of the product of the equations of the

first four circles and of the product of the equations of the last

four will be a curve of the eighth order, with each circular

point at infinity as a quadruple point. These curves have

sixteen infinite and fifteen finite fixed intersections with our

cjclic. If there were one variable intersection the cyclic

would be a rational curve, which it is not. Hence our cyclic

contains sixteen intersections of pah's of circles. It is to be

noted that the other sixteen lie on another cyclic, for a curve

of the family containing a seventeenth point of the given

cjdic would degenerate into that and another cyclic. We
may restate our theorem in better form.

Theorem 29]. If three circles meet a general cyclic in

A
1
A.

2
A

s
A i , B1

B.
2
B

i
B4 , G1

C.
2 3

C
i

respectively, and if each vf

tlie four points D
t

be residual to the corresponding triad

Ail!;!'), then D
1
B.1Bi

Di are concyclic*

The limiting cases of this theorem are more interesting than

the general one.

Theorem 30.] The osculating circles at four concyclic points

of a cyclic meet the curve again in four concyclk points.

If the first three circles have four-point contact.

Theorem 31.] A circle which meets a cyclic in three points

where the osculating circles have four-point contact meets the

curve again in such a point.

There are, as we have seen, sixteen of these points. Let us

look a little more closely at their position. To begin with,

a circle with four-point contact is a generating circle, so that

our points lie by fours on four fundamental circles. If we take

two of our points on one fundamental circle they are mutually

* Laehlan. 'On a Theorem relating to Bieireular Quarties '. Proa-. dings

London Ma'/i. S.c, vol. xxi, 1591. pp. 276ff. Cf. S'ehr.'ter. GnindsSge einer

rtingtometrischen Thiorit der Raumkurren l-iitv Ordmmg. Leipzig. 1S30.
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inverse in one of the other fundamental circles. Another

pair of points of four-point contact not on either fundamental

circle so far mentioned, but mutually inverse, can be found in

four ways. "We may thus find two pairs of points of four-

point contact mutually inverse in one of the fundamental

circles in forty-eight ways. Lastly, we may find four points

of four-point contact, one on each fundamental circle, in sixty-

four ways. There are thus 116 circles, each of which meets

the cyclic in four points of four-point contact. The coordinates

of these points are easily found by taking the intersections of

the curve with each fundamental circle

:

x
t
= 0, xj=± Vak-ah ask=± Vctj-aj, x

l
=± </aj-ak . (30)

We have already seen that twelve osculating circles are

orthogonal to a given circle. If the given circle be null, its

vertex on the curve, three of these will be accounted for by

the osculating circle at that point.

Theorem 32.] Let the osculating circles at the points

A
1
,A

2
,...,A

S
'meet the general cyclic again at A, those at

B
1
,B

2 ,...,B9
meet it at B, those at G

1
,G

i
,...,G^meetitatC,

and those at D1; D2 , ...,D9
meet it at D; then, if the points

A, B, C, D be concyclic, the points A
{ , B-, Ck , B

t
lie on 729

circles.

Theorem 33.] If the osculating circles at A 1} A 2 , ...,A

meet the general cyclic again at A, while those at A, B
t , ..., Bs

meet it at B, then the points A
i , A;, A k lie by threes on eighty-

four circles, each of which contains a point B
t

.

Theorem 34.] Let A, B, G, D be four concyclic points of

a general cyclic. Let the four generating circles which touch at

A touch the curve again respectively at A lt A 2 , A z , A i;
and so

for B, G, D. Then the points A
{ , Bj, Ck , Dl

lie by fours on

sixty-four circles.

The theorems of intersection and residuation for the general

cyclic are best handled by the parametric representation of

the curve with the aid of elliptic functions. This, of course,

is essentially a familiar process, being one of the classical
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examples of the application of elliptic functions to geometry.*

We first replace our equations (18) by

(«o-«s) -V + (°i-«s) x
i

2 + («2-«s) 'V = °.

(a - o.l .v
2 + (ax- a„)V +(a

3-a.J xz
2 = 0.

Let us then write

Y«3 -«0»o' V «3-«0-''o'

«, — a., .c
3

o„ :c.V «
2
-

.,'-- + 2/
2-l =0,

F.v2 + :
2 -l = 0.

( 31)

(«i- a3)(«o- a -2>'

It is to be noted that k2 is one of our fundamental cross ratios.

These equations are equivalent to

x = sn u.

y = cnu, (32)

- = dim.

The right-hand sides of these equations are the Legendrian

elliptic functions of periods ih, 4(1'. There will be a one to

one correspondence between the points of the cyclic and the

values of v. in a period parallelogram of sides 4&, ii¥.

Four points u
1

, «.,. u
3

. » 4
-will be concyclic iff

ui+ u -2+ ui+ u i = ° (
mo^ 4 ^'> 4 ^'0-

(
33

)

To prove 2"]. let

(/_! + «.-, + u. + « 4
= (mod 4k, 4 ik'),

ttj + u.-, + v
:i
+ r4 = (mod 4k, 4 <£•'),

-'i + vi + J( 3+ u 4 = ° (mod 4 £•, 4 ik').

Then t-
x
+ ?•, + >-

3 + i 4 = (mod 4/;, 4 ik').

* Cf. e. g. Appell et Lacour, Principes d- la tfc'orie dts/onettons ellipiiques, Paris,

1S97. ch. t.

t Ibid., p. 163.
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To prove 29]. If

u
1
+ u2 + u3 + ui

= (mod 4&, 4ik'),

v
i + v2 + v3 + vt = ° (mod 4/c, 4i/</),

w
1 + u2 + u3 +wi

= (mod 4/c, 4 i¥),

u
i + u

i
+-'M,

i + wi — ° (mod 4/c, 4i/c'),

u
2 + v

2 + w2 + w2
= (mod 4 &, 4 i/c'),

u3+ w
3 +w3 +w3 EE (mod 4 k, 4i¥),

ui+vi + iu
i + wt

= (mod 4 /c, 4 &/</)

.

Then w
x +w2 + w3 + wi

= (mod 4 /c, 4 i¥).

Let us next take up 34] in detail. If a point A = u
x
be

chosen, the other points of contact of generating circles tangent

at A are

— uv — u
x
+ 2k, —u

1
+ 2iJc', —u

1
+ 2k + 2ik

f
,

(a) If the generating circles tangent at AA it BB-, GG
lc

belong to the same generation, that taDgent at DD
t
belongs

to the same generation also, for the circles A, B, G, D and

A
i , Bj, G

lc
, I>i are interchanged by inverting in the corre-

sponding fundamental circle.

(b) Let the circles AA
{
and BB; belong to one generation,

while CGj
c
belongs to a second : we may write

A — wlt A
i
= —w

1 ,

B = v
x , Bj= -vx ,

C = wlt G
]e
= — %v

1 + 2k.

Then D = —(u
1 + v

1 + Wj), D
l
= (u

x + v
t
+ Wj) — 2k.

This shows that GG; and DJD^ belong to one generation.

(c) If AA
i

, BB,, and CGk belong to different generations,

then DDi must belong to the fourth generation, as otherwise

we should be in conflict with (b).*

" Laehlan, Bicircular Quartics, cit., seems rather afraid of 34], as lie

says, p. 278 : ' But it would .seem in the above reasoning that the three

bitangent circles at ABC need not necessarily belong to the same system.'

Of course they need not

!
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The osculating circle at v will meet the curve again at

u = —3 v.

The point u lies on the osculating circles at the nine points,

w 4 mk 4 nik'
v = - - + -— + -j- , m = 0, 1, 2, n = 0, 1. 2.

The points where the osculating circles have four-point

contact are

». = mk + nik', m = 0, 1, 2. 3, n = 0. 1, 2, 3.

Besides the study of individual cyclics there is not a little

of importance in the study of systems of cyclics. The most

interesting systems are the confocal ones. We shall define

these as the loci of the vertices of the null circles of a system

of confocal quadric congruences, these latter being defined

exactly as in the cartesian case. Analytically, we replace our

cyclic (18) by
i = 3

2ii'r
i
, =

(ar) = ' (34)

,=0 '
'

where A takes all possible values. The expression for the

coordinates of the foci in (21) will be unaltered, so that con-

focal cyclics have the same foci. We shall presently see that

the converse is not always the case. If we look upon (:r)

as fixed in (34), we have a quadratic equation in A, for the

coefficient of X3 will vanish in virtue of our fundamental

identity. There are thus two confocal general cyclics through

each point in general position. If these correspond to the

parameter values A. and A', we have for two tangent circles

to the two curves at

Since {.r) lies on both cyclics, we have

i = S . = s

y a
' r-2= ^ "* xr = 0.

i = *
, = o *
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Subtracting one equation from the other we get

2(T^U)(dk>-*=°-
i = * *

This yields, however,

W) = o.

Theorem 35.] Through each point in general position in

the tetracyclic plane will pass two confocal general cyclics of

a given system, and these two intersect orthogonally at that

point.

We mean by a point in general position one where the

roots of the quadratic in A. are distinct, i.e. a point not on

the isotropics, which are the envelope of the system.

Confocal cyclics in the tetracyclic plane will correspond to

confocal ones in the cartesian plane. There are some advan-

tages in studying the latter rather than the former, as we shall

now show. We begin with the differential equation

du dv
dw =

VJl^u?) (1-W)
=

a/(1 -v2
) (1 -IW) ' (35)

These lead to the solution

u = snw,

v = sn(w— a),

where a is the constant of integration. Eliminating w, we
get*

au2v2 + bu2v + cuv2 + du2 + ev2 +fu + gv + h = 0.

If we give u and v the foliowiug values,

u = x + iy, v = x— iy,

we see that we have the general cartesian cyclic. By varying

a we get a one-parameter family of cyclics, and these have

the same foci. We see, in fact, that in (35)

du — if u = + 1, u= + j-.

* Darboux, Sur une classe, cit., p. 76 ; Appell et Lacour, loc, cit., p. 129.
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Hence + 1 and + T are the values of the isotropic para-

meters corresponding to the tangent isotropics of the two

systems. The fact that we have the same quadratic expression

on both sides corresponds to the fact, proved at once by

inversion, that the two triads of tangent isotropics of the two

systems have the same cross ratios. Suppose, conversely,

that we have a general cyclic. The tangent isotropics of the

two systems have the same cross ratios, and, by a linear

fractional transformation of u and v, we may make these

tangents correspond to the parameter values + 1 + T • Then

the one-parameter family of cyclics given by (35) will include

the given cyclic. If u v be known, the two values of -j-

obtained from (35) differ only in sign, i.e. the curves intersect

at right angles.

Let us consider what will be the effect on (35) if we subject

v to such a linear transformation,

, otv + /3
v — ^ ,

yv + 8

that the denominator on the right is covariant. There are

four conceivable types of such transformation, when the tan-

gent isotropics are all different.

(a) The tangent isotropics are interchanged in pairs. This

will be done by the involution whose double members separate

the interchanged pairs harmonically, i.e. the double members
are a pair of roots of the sextic covariant of the quartic form.

The sextic covariant has the property that each pair (not

each two) of its roots separates harmonically two pairs of the

roots of the quartic. If we take for the roots of the sextic

0, co, 1, -1, i, -i,

the three involutory transformations of the quartic into

itself are
/ / /

v = —v, v = — > v = ;

v
x

v

these will change the right-hand side of (35) at most in sign.
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(b) The roots of the quartic are permuted cyclically. Here

we reduce the sextic to the previous form. The quartic will

involve only even terms, and not lack the term in w4 - The

transformation will carry the sextic into itself, and it is easy

to see that it will leave one pair of roots of the sextic in place.

Hence we shall easily find that it is of the form *

1 .v+1 .v—1 v+i v— i
±V, + ~, + 1 -, +1 -, + ., + ;•

~v — v—1 ~ v+l ~ v— % ~v-t%

These will all leave the whole right-hand side of (35) in-

variant, except for sign.

(c) One root of the quartic is left in place, the other two

permuted. The roots here have at most two cross ratios,

instead of the usual number of six, i.e. they must be equi-

harmonic. Under these circumstances we may rewrite (35)

Vu3 + 1 vV + 1
'

the transformations to be effected on the right are

i/= a>v, v'=cu2
v, to

3 = 1.

The right-hand side of (36) will be multiplied by +a> or

+ £o
2

, and we get two new confocal systems with the same

foci. The angle of the curves -=-> -=— is, by Laguerre's

projective definition, —: times the logarithm of the cross ratio

of the four quantities 0, oo, -^- 3 —=— •

^ du du

» = r
The six curves through any point make equal angles with

one another.

(d) One pair of roots retrain in place, the others are inter-

* These are the transformations of the tetrahcdral group. Cf. Weber,

Lehrbuch der Algebra, second ed , Braunschweig, 1899, vol. ii, p. 274.
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changed. Here the roots must form a harmonic set. If we

take two of them as and co, we may replace (35) by

-r^_=-^r4'-=- (37)
Vn(u"-1) \'v{i™-l)

The change of v into — 1> will multiply the right-hand side

by ±i.

eii9 =/, 6 = -.
4

Theorem 36.] There is but one set of cyclics having the

same foci as a given general cyclic, namely, those confoealicith

it, e.vcept where the tangent isotropics form n. harmonic or an

equiharmonic set. In the harmonic case four cyclics pats

through each point in general jwsition, making successively

angles of -
; in- the harmonic case six cyclics will pass through

a general point, making successively angles of~*

The tetracyclic plane does not seem to offer such a promising

field for further study as some other parts of our subject. The

subject of problems of construction might certainly be carried

further. Something might be done to line up our analytic

work with the large amount of literature dealing with the

geometry on a sphere in general, and the study of sphero-

conics in particular. There are doubtless also numerous

theorems of interest concerning special types of cyclics still to

be discovered. Some of these, such as the lemniscate, have

been already extensively treated. It is never safe to say that

any branch of mathematics has been explored to the end

;

merely, in this case, the outlook is less promising than in some

others.

* The equiliarmonie case seems to have been discovered by Roberts, 'On

foci, and confocal Plane Curves'. Quarterly Journal of Mathematics, vol. xxxv,

1904. It is not clear how he was first led to his results : had he made an

exhaustive study of the transformations of the quartic into itself he could

not have overlooked the simpler harmonic case.



CHAPTER V

THE SPHERE IN ELEMENTARY GEOMETRY

§ 1. Miscellaneous Elementary Theorems.

The elementary geometry of the sphere is closely allied to

that of the circle, or, rather, to certain portions of the latter.

Theorems about the circle, which are largely descriptive in

character, carry over easily into three dimensions. On the

other hand, the sphere has no simple property corresponding

to the invariance of the angle inscribed in a given circular

arc. For this reason we fail to find in the case of a sphere

many theorems corresponding to the most beautiful metrical

ones associated -with the circle.

The likeness between circles and spheres extends beyond

individual theorems to general methods of proof. Often the

procedure which is applicable in one case may be directly

transferred to the other. Furthermore, a goodly number

of theorems, where all the spheres involved have collinear

centres, may be obtained from the corresponding circle

theorems by rotation about an axis. For this reason it will

be possible in the present chapter to omit the proofs of

a considerable proportion of the theorems, leaving to the

reader the task of referring back to the corresponding cases

in Ch. I. To facilitate such reference we shall follow much

the same order as there prevailed.

All figures considered in the present chapter shall be

supposed to exist in the finite real domain of Euclidean space,

the domain of elementary solid geometry. Points, lines, and

angles have the same meaning as before. Let us mean by

a plane the surface generated by lines meeting in distinct

points anyltwo sides of a given triangle. The portion of
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a plane on one side of one of its lines shall be called a half-

plane. If two non-coplanar half-planes be bounded by the

same line, the region -which includes all segments whose

extremities lie in these two half-planes shall be called their

interior dihedral angle, or, more shortly, their dihedral angle.

The remainder of space shall be their exterior dihedral angle.

Four non-coplanar points determine four triangles, and the

figure bounded by them is called a tetrahedron, the triangles

are its fares, their planes its face-planet, the sides of the

triangle are the edges of the tetrahedron, their lines its edge-

lines. The meanings of such words as vertex, face angle,

dihedral a ngle, trihedral angle of a tetrahedron are immediately

evident. A line through a vertex perpendicular to the

opposite face-plane is called an altitude lin-e, the portion

between the vertex and the intersection with the plane is

the altitude, the extremities of the altitude are the vertex

and its foot.

The locus of points at a given distance from a given point

shall be called a sphere. Centre, radius, diameter, diametral

line have meanings conformable to those used for a circle.

Spheres of equal radius shall be called equal.

Let a sphere be given with centre and radius r. Let

P and P' be two such points collinear with that

(0P)x(0P')=r2
- (1)

Each is said to be the inverse of the other in the given

sphere. The sphere is called the sphere of inversion, its

centre and radius the centre and radius of inversion.

Theorem l.J Every point except the centre of inversion

has a single definite inverse with regard to a given sphere.

Theorem 2.] The sphere of inversion is the locus of points

which are their own inverses. Points outside the sphere will

invert into points within, points within, other than the centre,

v:ill invert into points without.

Theorem 3.] Mutually inverse points are harmonically

serrated by the intersections of their line with the sphere

of inversion.
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Theorem 4,] If A,B,C,B be four points, and A', B', C, D'

their inverses,

(AB) (CD) _ (A'B') (CD')

(AD) (GB)
~~

(A'D') (G'B')
'

Theorem 5.] The angle at which two curves intersect is

equal in absolute value to that made by their inverses.

This is easily proved when we remember that two trihedral

angles are symmetrical if two face angles and the included

dihedral angle are equal to the corresponding parts in the

other, but arranged in opposite senses.

Theorem 6.] The angle at which two surfaces intersect is

equal to that made by their inverses.

Any locus which is its own inverse shall be said to be

anallagmatic.

Theorem 7.] An anallagmatic curve or surface cuts the

sphere of inversion orthogonally at every intersection which

is a simple point of the curve or surface.

Theorem 8.] A plane through the centre of inversion is

anallagmatic.

Theorem 9.] A sphere through any pair of inverse points

is anallagmatic; every sphere cutting the sphere of inversion

orthogonally is of this sort.

Theorem 10.] The inverse of a plane not passing through

the centre of inversion is a sphere passing through that point,

and vice versa.

Theorem 11.] The inverse of a sphere not passing through

the centre of inversion is a sphere of the same sort.

Theorem 12.] The inverse of a circle not passing through

the centre of inversion is a like circle, the inverse of a circle

passing through the centre of inversion is a line not passing

through that point, and vice versa.
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Theorem 13.] A circle passing through a pair of inverse

points, oi'a circle or line orthogonal to the sphere of inversion,

is anallagmatic.

Theorem 14.] If two figures be mutually inverse with

regard to a sphere, their inverses with regard to a second

sphere, whose centre is not on the first, are mutually inverse

in the inverse of the first sphere with regard to the second.

When the centre of inversion is on the first sphere, the inverses

are the reflections of one another in the plane into which tlve

first sphere is transformed.

Theorem 15.] If two figures be mutually inverse with

regard to two spheres, they are mutually inverse with regard

to the inverse of one sphere in the other, or are reflections of

one another in the plane which is the inverse of one sphere

in the other.

Theorem 16.] If an anallagmatic surface do not contain an
anallagmatic- series of circles, it is the envelope of a two-para-

meter family of anallagmatic spheres whose centres move on a

fixed surface called the deferent, and, conversely, the envelope of

every such system of spheres, if a surface, ivill be an analla-g-

mo.tic one. The line connecting corresponding /mints on the

anallagmatic surface is the perpendicular from the centre

of inversion on the corresponding tangent plane to the

deferent.

Theorem 17.] An anallagmatic surface which contains a

one-parameter family of anallagmatic circles, which are lines

of curvature, is the envelope of a one-parameter family of

anallagmatic spheres, and vice versa.

These last two theorems belong more properly in the

domain of differential geometry, the last one arising from

the well-known fact that every evolute of a circle is a point.

Theorem 18.] If two spheres be mutually inverse, the centre

of inversion is a centre of similitude for them, the ratio of

similitude being in absolute value that of their radii.

It is immediately evident that two non-concentric spheres
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of unequal radii have two centres of similitude, the ratio

being positive in one case, negative in the other.

Theorem 19.] Any two spheres of unequal radius are

mutually inverse with regard to one real sphere. When they

intersect in a real circle they are mutually inverse ivith regard

to a second such sphere. When they do not intersect or

touch and are not concentric, there is another sphere of such

a nature that the two are interchanged by an inversion in

this sphere followed by a reflection in its centre.

A sphere with regard to which two spheres are mutually

inverse is called a sphere of antisimilitude for them ; its

centre is one of their centres of similitude. We shall also

define as the power of a point with regard to a sphere its

power with regard to any circle of the sphere coplanar

with it.

Theorem 20.] The locus of points whose powers with regard

to two unequal and non-concentric spheres are proportional

to the squares of the corresponding radii is the sphere having

as diameter the segment bounded by the centres of similitude

of the two spheres.

This sphere shall be called the sphere of similitude of

the two.

Theorem 21.] If three unequal spheres be given, no two

concentric, a line connecting a centre of similitude of one

pair with a centre of similitude of a second pair will pass

through a centre of similitude of the third pair.

Theorem 22.] If a sphere touch ttuo others, the line con-

necting the two points of contact will pass through a centre

of similitude or be 'parallel to the line of centres.

Theorem 23.] Iffour spheres be given, no two concentric or

equal, nor with their four centres coplanar, they will determine

in pairs twelve centres of similitude. These lie by sixes in

planes through three centres of given spheres, and by threes

on sixteen lines. Four such lines pass through each centre

of similitude, fotir lie in each plane through the centres of
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three spheres, and four in each of eight other planes, whereof

two pass through each of the sixteen lines. The centres of

similitude lie by sixes in these twelve planes.

To prove this theorem let the spheres be sv s
2 , s

3 , c4 . The
external centre of similitude of j*,- and *• shall be Cr , their

internal centre Gv '
. Then by I. 31] the following triads are

collinear

:

G
ij
Gjh Gl;i >

C
ij
Gjl Gll'-

Hence G
t
j Cp.

C

}
.

i
C\{ C{

G

k{ are coplanar, and of these

there are four. Similarly Cr Gkl Gi}
.' Gn' C-

}
.' €{ are coplanar,

and here there are three. Lastly, G
{
Gik Cn C-k C

'

-j Ct j are

coplanar. The twelve planes may be grouped to be the face-

planes of three tetrahedra. Every face-plane of one tetra-

hedron, and every face-plane of a second, will be coaxal with

a face-plane of the third, thus giving the well-known desmic

configuration of Stephanos* Three parallel planes are here

considered coaxal, and the word tetrahedron means any four

planes, no three coaxal.

Theorem 24.] The radius of the inverse of a sphere not

through the centre of inversion is equal to tliat of the given

t-phere multiplied, by the square of the radius of inversion, atid

divided by the absolute value of the power of the centre of

inversion with regard to the given sphere.

Theorem 25.] The inverse of tlie centre of a sphere not

through the centre of inversion is tlve inverse of the centre

of inversion with regard to the inverse of the given sphere.

Theorem 26.] The inverse of the centre of a sphere through

the centre of inversion is the reflection of the centre of inversion

in that plane which is tlve inverse of the given sphere.

Theorem 27.] Any two non- intersecting spheres may be

inverted, into concentric spheres, the centre of inversion being

on their line of centres.

* 'Sur les systemes desmiques de trois tetraedres ', Bulletin des Sciences

mathemaiiques, Series 2, vol. iii, 1879. pp. 424 ff.
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The three-dimensional analogue of Steiner's chain of succes-

sively tangent spheres is neither easy nor attractive except in

special cases.* The criterion for five spheres tangent to a

sixth is not neatly expressible except in determinant form,

so that we pass it over till the next chapter. Let us" turn to

the relations of a tetrahedron to certain special spheres. In

particular, let us search for something to correspond to the

nine-point circle. It will be remembered that one method

of finding that circle is to treat it as the pedal circle of two

isogonally conjugate points. In a similar spirit we now take

up the question of isogonal conjugates in three dimensions.

Let two half-planes be given forming a dihedral angle,

but not coplanar. IfP be any point not in either plane, and Q
any point in that plane through the edge I of the dihedral

angle, which is the reflection of the plane PI in the bisector,

then the points P and Q are said to be isogonal conjugates

with regard to the dihedral angle; the relation between the

two is clearly reciprocal. If Pa Pp, Qa Qp be the feet of

the perpendiculars from P and Q on the two planes,

(PPa)_(QQB)

(Me) (QQa
)'

If P move parallel to the edge I till it fall into the plane

QaQQp a* P'> while Q moves parallel to I till it reaches Q' in

the plane Pa PPp, then, by I. 66], Pa'Pp', Qa Q$ lie on a circle

whose centre is the middle point of (P'Q), while PaPp, Qa'Qe
lie in a circle whose centre is the middle point of (PQ').

Hence PaPp and QaQp lie on a sphere whose centre is the

middle point of (PQ).

We next take a trihedral angle. The locus of points isogo-

nally conjugate to a point which does not lie on any edge of

this trihedral angle with regard to two of the dihedral angles,

is a line through the vertex, and since the feet of the perpen-

diculars from two such points on the three face-planes lie on

a certain sphere whose centre is half-way between them, we
see that they are isogonally conjugate with regard to all three

dihedral angles. Lastly, we take a tetrahedron. We see that

* Valilen, loo. cit.



v ELEMENTARY GEOMETRY 233

even- point not on any edge-line has a definite isogODal con-

jugate with regard to all sis dihedral angles. If, thus, we
define as the pedal spliere of a point that which passes through

the feet of the perpendiculars, thence to the face-planes of

a tetrahedron, we get the interesting theorem *

Theorem 28.] If two points be isogonally conjugate with

regard to a tetrahedron, they /tare the same pedal sphere, whose

centre i$ mid-way between them.

We reached the nine-point circle as the pedal circle of the

centre of the circumscribed circle and the orthocentre. Let us

try a similar method here. We must first notice that, by I. 199]

and 201], the locus of points whose powers with regard to two

spheres differ only in sign is a sphere whose centre is mid-way

between theirs. Let us call this their radical sphere.

Theorem 29.] The locus of the centre of a sphere which

is cut by one of two given spheres orthogonally, and by the

other in a great circle, is their radical sphere or a portion

thereof.

Let us anticipate our future work to the extent of assuming

that if four spheres be given with non-coplanar centres, there

is just one point which has the same power with regard to

all four. This shall be called their radical centre. If it be

without the given spheres, it is the centre of their common
orthogonal sphere ; if within them, the centre of a sphere cut

by all in great circles. Suppose, then, that we have given

a tetrahedron, and the circumscribed sphere. We may find

four spheres each having as a great circle a circle cut by

a face-plane from <>. The centres of these four spheres are

not coplanar, there is a sphere s' which is either orthogonal

to all or cut by all in great circles. If s' be orthogonal to

the four spheres whose centres are in the face-planes, we see

that these centres are on the radical sphere of s and s\ In

any case, it is quite easy to prove trigonometrical ly that the

centres of s and s' are isogonal conjugates ; hence f

* Cf. Neuberg, ' Memoire sur le tetra&dre ', Mi'moins couronnes de VAcademie

royaie de Belgique, vol. xxsvii, 1886, p. 11.

+ Roberts, On the Analogues, &c
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Theorem 30.] The centre of the circumscribed sphere to

a tetrahedron and the radical centre of the four spheres, each

of which has a great circle through three vertices of the tetra-

hedron, are isogonal conjugates ; the feet of the perpendiculars

from these points on the face-planes and the reflections of

these feet in the point mid-way between the two points are

co-spherical.

Let us call this the sixteen-point sphere. It is the first

analogue to the nine-point circle. We reach another analogue

as follows.*

Let the vertices of a tetrahedron be A
1
A

2
A

z
A i

. Let us

first assume A
1
A

2
± A

3
A i and A

1
A

3
± A

2
A t . The plane

through A
X
A

%
and the altitude line from A

1
will be perpen-

dicular to A
2
A it and meet that line at the foot of the A

2

altitude line in the A A
2
A

z
A i . In the same way the plane

through Aj^A
3
and the A

x
altitude line will meet A

2
A

3
Ai in

a second altitude line. Hence the altitude line through A
x

meets the opposite face-plane in the orthocentre of that face.

Hence each pair of opposite edge-lines will be perpendicular

in direction, each altitude will pass through the orthocentre

of the corresponding face, and the four altitude lines are

concurrent in a point called the orthocentre of the tetrahedron.

Conversely, if the altitude lines be concurrent, each edge-

line is perpendicular in direction to two altitude lines, and,

so, to the opposite edge-line. This special case shall be called

the orthogonal tetrahedron.

In the general case we see that if we pass a plane through

any altitude line and the orthocentre of any face, .we have

a plane perpendicular to the plane of that face. If, further,

we speak for the moment of parallel lines as meeting at

infinity, and consider on the one hand the four altitude lines,

and, on the other, the perpendiculars to each face-plane at

the orthocentre, we see that each line of one system meets

each of the other, but in neither case are all four lines

parallel to one plane. In the general case the altitude lines

of a tetrahedron are generators of the same system of a

* See an excellent article by Intrigila, ' Sul tetraedro ', Rendiconti della

R. Accademia dette Scieme di Napoli, vol. xxii, 1883.



ELEMENTARY GEOMETRY 235

hyperboloid.* Let us call this the associated ltyperboloid,

its centre 0. Let us prove that the centre of gravity G of the

tetrahedron is half-way between G and 0, the centre of

A k

Fig. 27

A|

the circumscribed sphere. The orthogonal projection of P
on the face-plane o^ shall be Poc

i ; the orthocentre of this face

shall be H
i

. Remembering that the centre of the hyper-

boloid lies mid-way between each pair of parallel generators,

(AotiQxi) = 1.

(CotiHi)

But we know, from- 1. 72],

(fl,0«<)= -3(0 «,(?,),

where G.
t

is the centre of gravity of this face. Again, from

* It is highly unsportsmanlike to make use of a hyperboloid in elementary
geometry. Frankly, the author does not know how to dispense with it in

this case.
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the fundamental property of the centre of gravity of a tetra-

hedron,

(A<x
i
Ga

i)=3{Q«i
G

i

Fig. 28.

Applying Menelaus's theorem to the AH
i
Aa

i
Gi , we see

that the points Gtxit 0ai(
(?a^ are collinear. Reasoning in the

same way for the other face-planes, GO G must be collinear.

Again, since Got^ is the middle point of {Hj^Aa.^, a line through

it parallel to Acl^G^ meets H
i
G

i
in the middle point of
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(HjG;), and this is the reflection of 0a
;
in G;. Hence Ga

(

-

is the middle point of (CtXjOotj), or G is the middle point

of (OC).

The tetrahedron G
1
G2 G3 G± is inversely similar to the tetra-

hedron A
X
A.

2
A^A 4 , the ratio of similarity being — |, while

the centre of similitude is G. Hence 0', the harmonic con-

jugate of with regard to G and C, which divides ((?C) in

the ratio — \, is the centre of the sphere about G
1
G

2
Gz Gi :

G and G are the centres of similitude for the spheres circum-

scribed to our two tetrahedra. The four points, one-third of

the distance from G to the vertices of the tetrahedron, lie on

the new sphere. If such a point be B
{

, we see that B
i
and

G; are diametrically opposite on the new sphere, since

AjBjCOGGj are in a plane through the centres of both

spheres. Hence, since ^.B^y.^^ = ~, Boi; is on our new

sphere. \Ye also see that B<x
;

is the harmonic conjugate of

Hj with regard to Cz
;
and 4a

;
.

Theorem 31.] The centres of gravity of the fares of a tetra-

hedron, the points on one-third of the distance from the centre

of the associated hyperboloid to the vertices, and the harmonic

conjugates of the ortJwcentre of each face icith regard to the

orthogonal projections on its plane of the opposite vertex, and
the centre of the associated hyperboloid, are on one sphere.

We shall call this the twelve-point sphere of the tetrahedron.

Let us now take up the special case of the orthogonal

tetrahedron. Here C will coincide with H, the orthocentre of

the tetrahedron. The points A h Cy
;

. H
;
coalesce.

Theorem 32. J In an orthogonal tetrahedron the centres of

gravity of the faces, their orthocentres, and the points one-third

the dista neefrom the orthocentre to the vertices are co-spherical.*

Let us call this the first twelve-point sphere of the orthogonal

tetrahedron. \Ye might naturally guess that it was identical

with the sixteen-point sphere, but such is not the case. The

* Cf. Prouhet, 'Analogies du triangle et du tetraedre', Xouvelles Anvales de

Math., Series 2, vol. ii, 1863, p. 138.



238 THE SPHERE IN OH.

sixteen-point sphere passes through the centres of the circles

circumscribed to the face triangles, while the first twelve-point

sphere passes through their orthocentres and centres of gravity,

and these three points are collinear. It is true, however, that

the first twelve-point sphere passes through sixteen notable

points, for

Fig. U9.

Theorem 33.] If each altitude of an orthogonal tetrahedron

be extended beyond its foot by double the distance from that

foot to the orthocentre, the points so found lie on the first twelve-

point sphere.

Besides the first twelve-point sphere we have a second one

reached as follows :

Theorem 34.] The nine-point circles of the four faces of an

orthogonal tetrahedron lie on the second twelve-point sphere.
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The centre of this sphere is the centre of gravity of the tetra-

hedron.

The four vertices and orthocentre of an orthogonal tetra-

hedron shall be called an orthogonal system : each point is the

orthocentre of the tetrahedron whose vertices are the other

four. We thus determine four circumscribed spheres, four

twelve-point spheres of the first sort, and four of the second

sort. Each face-plane is the radical plane (i.e. the locus of

points having like powers) for two circumscribed spheres,

and two twelve-point circles of each sort.

Theorem 35.] Each point of an orthogonal system is the

radical centre for four circumscribed spheres, four twelve-

point spheres of the first sort, and four twelve-point spheres

of the second sort.

Turning especially to the twelve-point spheres of the first

sort, we see that the centre of gravity of all five points

lies one-fifth of the distance from G to H. The distance

from G to the centre of the first twelve-point sphere asso-

ciated with H is § (GH), hence the distance from r to the

centre of this sphere is §• (TH) ; T is the centre of similitude

for the given points and the centres of the first twelve-point

spheres. Lastly (TO) = 3(fff) = -f (rH).

Theorem 36.] The centres of the five circumscribed spheres

of an orthogonal system, those of the five twelve-point spheres

of the first sort, a nd those of the five twelve-point spheres of

the second sort, form three orthogonal systems.

There seems to be very little in the geometry of the

tetrahedron which bears a close analogy to the Brocard

figures ; we pass therefore to the analogy of our descriptive

theorems about concurrent circles and concyclic points.

We start with the figure of I. 149], three concurrent circles

each through a vertex of a triangle and the marked points on

the two adjacent side-lines. We invert this figure with

a centre not in its plane, and we have on a certain sphere

six circles concurrent by threes in eight points. Next let

us take a tetrahedron, and mark one point on each edge-line.
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Four spheres (or planes) may be passed, each through one

vertex and the marked points of the edge-lines adjacent.

If we consider how one of these spheres is met by the three

planes concurrent thereon, and by the other three spheres,

we have exactly the preceding figure of six circles. We
thus get*

Theorem 37.] If a point be marked on each edge-line of

a tetrahedron, and a sphere be passed through each vertex and
the marked points of the adjacent edge-lines, these four spheres

are concurrent.

Unfortunately, we cannot proceed immediately from this to

the case of five, and so to n spheres. For if five planes be

given in general position, they determine five tetrahedra and

five circumscribed spheres, but these, instead of being all con-

current in one point, ai-e concurrent by fours in the five

planes.

There is an easy three-dimensional analogue to 1. 166] stated

as follows : f

Theorem 38.] Given n points on a sphere, no four of v:hich

are concyclic. We -may associate with them a point and a

sphere as follows :

(a) The point is the centre of the associated sphere.

(b) The radius of the sphere is one-half that of the given

sphere.

(c) The point lies on n spheres each associated with the

systems of n— 1 points obtained by omitting each of the given

points in turn.

(d) The sphere contains the centres of these n sp>heres.

We may copy closely our second proof for the above-named

theorem. When n = 5 the centres of gravity of the five

tetrahedrons are the points — ^ of the distance from the centre

of gravity of the five points, to those points, that is to say,

* The credit for this theorem is visually ascribed to Roberts, ' On certain

tetrahedra specially related to four spheres', Proceedings London Math. Soc,

vol. xii, 1880. It is, however, implicitly given by Miquel, loe. cit.

f Intrigila, loe. cit., pp. 78, 79.
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they are on a sphere whose radius is -| that of the given

sphere. But the centre of each twelve-point sphere is f the

distance from the centre of the circumscribed sphere to

the centre of gravity of the tetrahedrons, and the radius of

the twelve-point sphere is £ the radius of the given sphere.

Hence the centres of the five twelve-point spheres he on

a sphere of -| the given radius, and all pass through the centre

thereof. The theorem is thus proved when n = 5. Assume
that it is true for n— 1 points, and that the point associated

with ii—l points is —-— of the distance from the centre of

the given sphere to the centre of gravity of n — 1 points.

A centre of gravity for h — 1 points is of the distance

from the centre of gravity of all n to the remaining point.

These n centres of gravity will thus lie on a sphere of

-, the given radius whose centre is — -—- of the dis-
n-l' ° w-1
tance from the centre of gravity of all n points to the centre

of the given sphere. Hence the associated points lie on

a sphere of -| the given radius, whose centre is — the distance

from the centre of the given sphere to the centre of gravity,

and this point lies on all n spheres. The centre lies — of the

distance from the centre of the given sphere to the centre

of gravity of all n points.

§ 2. Coaxal Systems.

No part of the geometry of the sphere follows more closely

the analogy of the geometry of the circle than the system

of coaxal spheres, and allied systems.

Theorem 39.] The locus of points having equal powers

with regard to two' non-concentric spheres is a plane per-

pendicular to their line of centres, and containing all points

common to the two.

1702 Q
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This we defined as their radical plane. A system of

spheres having a common radical plane shall be called a

coaxal system.

Theorem 40.] If three spheres be given, whereof no two are

concentric, the radical planes which they determine two by two

pass through a line or are parallel.

Theorem 41.1 Given four spheres, whereof no two are

concentric. The radical planes which they determine two by

two are all parallel when the centres are collinear, they are

parallel to one line when the centres are coplanar, and they

are concurrent when the centres are not coplanar.

We have already designated this point as the radical centre

of the spheres, and noted that it was the centre of a sphere

either cut orthogonally or in great circles by all four given

spheres, unless indeed they all pass through that point.

Theorem 42.] The numerical value of the difference of the

powers of a point with regard to two non-concentric splieres

is twice the product of its distance from their radical plane

and the distance of their centres.

Theorem 43.] If a sphere be intersected by two others either

orthogonally or in great circles, its centre lies in their radical

plane. Such a sphere will be intersected either orthogonally

or in a great circle by every sphere coaxal with the given two.

Theorem 44.] If the spheres of a coaxal system have no

common points, they will have as limiting positions two point-

spheres called the limiting points of the system. These are

mutually inverse in every sphere of the system, and every

sphere through them is orthogonal to all spheres of the

system. A sphere orthogonal to any two spheres of the

coaxal system will p>aS8 through the limiting points and be

orthogonal to all.

Theorem 45.] The system of all spheres through a circle

will be orthogonal to that of all spheres orthogonal to that

circle.

Theorem 46.] The system of all spheres tangent to a given
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plane at a given point will be orthogonal to that of all spheres

tangent to the normal to that plane at that point.

The system of all spheres orthogonal to two spheres or two
planes, or a plane and a sphere, shall be called a linear

congruence. The assemblage of all spheres cut by a given

sphere or plane orthogonally or in great circles, or passing

through a given point, shall be called a linear complex.

Theorem -A?.] Three non-coaxal spheres will belong to one

linear congruence determined by them; four spheres of non-

eoplinar centres will belong to one linear complex determined

by them*

Theorem 48.] The inverse of a coaxal system v.ill be a

coaxal system, a concentric system, a pencil of jolunes through

a line, or a pencil of ixtrallel planes.

Theorem 49.] The inverse of a linear congruence is a

linear congruence, a bundle of concurrent planes, or a bundle

of pla nes parallel to a line. The inverse of a linear complex

is a linear Comdex, err the assemblage of all planes.

Theorem 50.] The assemblage of all spheres cutting ortho-

gonally three given spheres with non-collinear centres is a

coaxal system, and cuts orthogonally every member of the

linear congruence determined by the three.

Theorem 51.] Two mutually inverse spheres are coaxal

with their sphere of inversion.

We have already named this a sphere of antisimilitude.

Two spheres of unequal radius will always have at least one

sphere of antisimilitude. It is called the external sphere

of antisimilitude if its centre be the external centre of anti-

similitude, otherwise it is the internal sphere.

Theorem 5.2.] If four spheres be given, whereof no two are

concentric and no three coaxal, nor do al' belong to a linear

congruence, the spheres thi-ough a given point each coaxal with

two of the given spheres will belong to a linear congruence

* Cf. Reve. Syntiietische Geometric der Kuoil Leipzig, 1S79. p. '21.

q:2
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and 2mss through a second common point which is inverse

to the given one in the common orthogonal sphere to the

four when such a sphere exists, and which coincides with

the given point only when the four are concurrent.

Theorem 53.] The locus of a point whose powers with

regard to two given spheres have a constant ratio different

from, unity is a sphere coaxal or concentric with them.

Theorem 54.] Two spheres are coaxal with their sphere

of similitude. If three spheres of unequal radius be given,

no two concentric, their spheres of similitude are coaxal.

Theorem 55.] If four spheres be given with unequal radii

and non-coplanar centres, the six spheres of similitude which

they determine two by two belong to a linear congruence.

Theorem 56.] Givenfour spheres with non-coplanar centres.

If there be a sphere orthogonal to all four, and a sphere which

cuts them all in great circles, then these are coaxal with the

spheres through their centres and orthogonal to the spheres

of similitude which they determine two by two.

Theorem 57.] If a sphere so move that each of two given

points has a constant power with regard to it, it traces

a linear congruence.

Theorem 58.] If a sphere so move that each of three non-

collinear points has a constant power with regard to it, it

traces a coaxal system.

Theorem 59.] If a sphere so move that it cuts two given

spheres in great circles, or cuts one in a great birds and the

other orthogonally, it traces a linear congruence.

Theorem 60.] If a sphere so move that it cuts three spheres

of non-collinear centres in great circles, or cuts two in great

circles and one orthogonally, or one in a great circle and two

orthogonally, it will trace a coaxal system.

Theorem 61.
J Iffour mutually external spheres with non-

coplanar centres be given, there is a sphere cutting each set of

three orthogonally and the fourth in a great circle, and a
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sphere cutting any three in great circles and the fourth ortho-

gonally.

We have already in 29] noticed the fundamental property

of the radical sphere of two given spheres. It is the sphere

coaxal with them whose centre is mid-way between theirs.

Theorem 62.] Given two non-concentric spheres. If there

be a spliere coaxal with them whose centre is the reflection of

tfie centre of the first in that of the second, then this third

sphere will cut in a great circle all spheres orthogonal to the

first whose centres lie on the second, and will cut orthogonally

all sphere* cut by the first in great circles whose centres lie on

the second.

We may sharpen our concept of the angle of two spheres,

exactly as we did in the case of circles, by starting from the

formula
/-+/'- — d-

C08«=—27/— • &
Theorem 63.] If a variable sphere cut tivo given spheres at

fixed angles, it will cut alto at a fixed angle every sphere con-

centric or coaxal with them.

Theorem 64.] All spheres of a coaxal system, will cut at equal

or supplementary angles two spheres which cut two spheres

of the system at equal or supplementary angles.

Theorem 65.] If a sphere intersect two others which are

non-concentric and of unequal radii, the circles of inter-

section are in perspective from the external centre of similitude,

while if it intersect them at supplementary angles, these circles

are in perspective at the internal centre of similitude.

Theorem 66.] If a sphere intersect two others of unequal

radii orthogonally, the circles of intersection are in perspective

from both centres of similitude.

Theorem 67.] If two spheres of unequal radii intersect,

oil spheres cutting them at equal angles are orthogonal to the

external sphere of antisimUitv.de, all cutting them at supple-

mentary angles are orthogonal to the internal spliere of simi-

litude. The first statement remains true when the spheres
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are mutually external, the second when one surrounds the

other.

Theorem 68.] If each of two non-concentric and unequal

spheres intersect each of two other such spiheres at the same

angle, the external centre of similitude of each pair lies in the

radical plane of the other. If each sphere of one pair meet

each of the other at supplementary angles, the internal centre

of similitude of each pair lies in the radical plane of the other.

Theorem 69.] If three unequal spheres be given, passing

through two common points, the three external spheres of anti-

similitude which they determine two by two are coaxal, as are

each external and the remaining two internal spheres of

antisimilitude.

Theorem 70.] If four unequal spheres of non-coplanar

centres be given, each two intersecting, the spheres cutting all at

equal angles form a coaxal system, as do those cutting one in

angles supplementary to the angles cut from the other three,

and those cutting two in angles supplementary to the angles

cut from the other two.

Theorem 71.] Iffive unequal spheres be given, no four with

coplanar centres, but each two intersecting, there is at most one

sphere cutting all at equal angles, five cutting one at angles

supplementary to those cut from the other four, and ten cutting

two at angles supplementary to those cut from the other three.

The construction of these spheres depends on finding spheres

of antisimilitude and spheres of a given coaxal system cut-

ting a given sphere at a given angle.

Theorem 72.] If a sphere touch two others with like contact,

the line connecting the points of contact passes through the

external centre of similitude, or the common centre, or is

parallel to the line of centres; if it have opposite contacts

with the two, it passes through the internal centre of simi-

litude, or the common centre.

Theorem 73.] If two non-concentric unequal spheres touch

two other such spheres, a centre of similitude of each pair will

lie in the radical plane of the other.
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Theorem 74.] If four mutually external spheres of non-

coplanar centres be given, there are sixteen spheres which touch

all. These fall into eight pairs. To find the points of

contact of one pair with one of the given spheres v:e have but

to connect the radical centre of the four with the pole with

regard to that sphere of a plane not through three centres

of given spheres, but containing six centres of similitude*

Theorem 75.] If two spheres be inverted from any point

on their sphere of antisimilitv.de, but not on them, their

inverses ivill be equal, and conversely.

It is clear that much remains to be done in the elementary

geometry of the sphere to bring it to a level with that of

the circle. Leaving aside the fact that the geometry of the

tetrahedron lags far behind that of the triangle, the two

most important deficiencies are in the theorems about chains

of concurrent spheres and cospherical points, and contact

theorems. The twelve- and sixteen-point spheres are far less

known than the nine-point circle ; is there an analogue to

Feuerbach's theorem ? Above all what corresponds to the

Hart systems ? What is the proper analogue of Malfatti's

problem, and how is it solved ? These difficult but important

and interesting questions offer ample scope for serious work.

The following theorems came to the Author's attention too

late for insertion in place,f

Theorem 76.] If a sphere be inscribed in a tetrahedron,

the lines connecting each point of contact with the adjacent

vertices make the same three angles in each case.

Theorem 77.] If a tetrahedron be inscribed in a sphere,

the three angles made by three concurrent face-planes with the

corresponding tangent planes are the same in each case.

The proof of the first is immediate, the second comes by

inversion.

* This is, of course, the analogue of Gergenne's construction.

f For a history and extension of these theorems, see Neuberg. ' Ueber die

Beriihrungskugeln des Tetraeders'. Jahresberieht der Deutschen Matliematiker-

rereinigung, vol. 16. 1907.



CHAPTER VI

THE SPHERE IN CARTESIAN GEOMETRY

§ 1. Coordinate Systems.

All figures discussed in the present chapter are supposed

to lie in a three-dimensional space of Euclidean measurement,

rendered a perfect continuum by the adjunction of the plane

at infinity ; in other words, the set of points in one to one

correspondence with the homogeneous complex coordinate

values

X : y : Z : t,

where -r > t > r &re rectangular cartesian coordinates. Before,
t t t

a

however, taking up the detailed study of spheres in this

space, let us glance for just a moment at the application of

tetrahedral coordinates to the study of the sphere. Starting

with a tetrahedron of reference whose face-planes have the

equations

cosa^ +COS&! +cosy^ -7r
i
= 0, i = 1, 2, 3, 4,

we take for our tetrahedral point coordinates the four

quantities

Pt= - ((508 0^1+ COS &! +COSy^ -TTf). (1)

The vertices of the tetrahedron being A
i

, the altitudes h
t ,

and the edges diitJ
; = 4

P2g s .. o)
; = l »
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Let us find the equation of the circumscribed sphere.*

The section of this sphere by the plane /<, = has the

trilinear equation

1 dijPi'pj' = 0,

ij

^ di/ Jjk d).ipi'pj' = °.

ij

2 [AiHainAjHajf'Pj ~ °'

The two terms in the denominator are altitudes of the

triangle. But for any point in this plane
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should be a sphere are

u . dy' + Uthi + Ujhj
aa = Pj.' *V + aJi = P^ hThT—'

t b J

Kan + h/ajj- hi
hj (

a
ij + aji) = lcd

ij
2

-
(
5
)

If a tetrahedron be self-conjugate with regard to a sphere,

the altitude lines must be concurrent, i. e. it must be an

orthogonal tetrahedron, and the centre of the sphere will

be the orthocentre. Conversely, if we start with an ortho-

gonal tetrahedron, the orthocentre is orthocentre for every

triangle whose vertices are two vertices of the tetrahedron,

and the common foot of two face-altitudes in the opposite

face-planes. Hence the product of the distances from the

orthocentre to each vertex and the opposite face-plane is

the same, i. e. the orthocentre is the centre of a sphere, real

or imaginary, with regard to which the tetrahedron is self-

conjugate.

Theorem 1.] The sphere with regard to which an orthogonal

tetrahedron is self-conjugate is a sphere of antisimilitude for

the circumscribed and the first twelve-point sphere.

We leave the subject of tetrahedral coordinates with these

brief indications, and return to the homogeneous cartesian

form. We shall define as a sphere every locus whose equation

is of the type

x i (x2 + y
2 + zL + 1

2
) + x

1
(x2 + y

2 + z2 -

1

2
)

+ x
2
(2xt) + x

3
(2yt)+xt (2zt) = 0. (6)

The quantities (x) may take all values, real or imaginary,

provided they are not all simultaneously zero. They shall

be called the coordinates of the sphere. Under the group

of conformal collineations, we have the following types of

sphere

:

(a) proper spheres

(xx) ^ 0, ix + x
1 ^ ;

(6) non-minimal plane spheres

(xx) =£ 0, ixn + .i\ = ;
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(c) non-planar null spheres

(zx) = 0, iz + z
t ^ :

these are spheres of zero radius;

(d) planar null spheres

(zz) — 0, ix + X
x
= :

these are planes tangent to the circle at infinity, except in the

one case

;

(e) plane at infinity

x : ,1'j :x
2
:x

3
:zi = i:l:0:0:0.

The coefficients of the coordinates of the sphere in (b) shall

be called the special pentaspherical coordinates of a point, or,

rather, any five quantities proportional to them. Every finite

point will have five such homogeneous coordinates, the sum of

whose squares is zero. Conversely, if we have values (y) for

which

ho + #i =£ °> (yy) = Vo
2 + 2/i

2 + 2/2
2 + Vi + V* = °.

we may find a corresponding finite point. The relations

between homogeneous cartesian coordinates and special penta-

spherical ones will be exhibited by

Vo '•

2/i
:

V-i = 2/3 = 2/*

= i (as* + y- + z" +

1

2
) : (x2 + y

2 + z°--t2
) : 2xt : 2yt : 2d. (7)

z:y:z:t = y2 :y3
: yi : -{iy + yj. (8)

If our sphere (z) in (6) be non-planar, its radius will be

iz + z
x

We shall give to the radical such a sign, in the case of

a real sphere, that this expression is positive. The special

pentaspherical coordinates of the centre are

i (zx)

py°
= X

°~2(iz +zj
(zx)

py2
= x.2 . (10)

P2/3

P2/4 = X
i

3-
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The special pentaspherical coordinates of a finite point are

the coordinates of the null sphere whereof it is the centre or

vertex. The power of the finite point (y) with regard to the

non-planar sphere (x) is

-2 (ay)
j

(
iy +yi)(ixo+ x/ (

xy)=^ xiVi- (
n

)

=

When the sphere becomes null but not planar, this is the

square of the distance between the points (x) and (y). If the

sphere be proper, and we divide the power by the radius,

we get

— 2 (an/)

, /. :• (12)
V{xx){%y + y,)

The limit of this expression as the sphere approaches the

limiting form of a non-minimal plane is twice the distance

from the point to that plane. Let us conserve the expression

' ratio of power to radius ' even for this limiting form.

Theorem 2.] The special pentaspherical coordinates of a

point are proportional to the ratios of power to radius with

regard to five mutually orthogonal not null spheres.

If we define the cosine of the angle of two spheres as in

V (2), p. 245,

cos0 =
/
Jl V\— , (13)

V(xx) V(yy)

the radicals in the denominators, in the case of real spheres,

should be taken so as to give a positive sign to each radius.

For mutually orthogonal spheres

(ay) = 0. (14)

For tangent spheres

{xx){yy)-(xy)* = Q. (15)

Theorem 3.] The assemblage of all spheres of cartesian

space can be 'put into one to one correspondence with that

of all points of a four-dimensional projective space with

elliptic measurement. The angle of two not null spheres will

be equal to the distance of the corresponding points. Null
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spheres will correspond to points of the Absolute hyperqvuadric.

A coaxal system will correspond to points of a line, a linear

congruence to points of a plane, and a linear complex to

points of a hyperplane.

If (x) and {pa') be two spheres, we find one of their spheres

of antisimilitude by finding (y) the sphere coaxal with them,

which makes with them equal angles,

Py{
= </(xW)x

i ± JJ^c)xl. (16)

ax/ = (xx)y
i
-z{xy)x

i
. (17)

The last equation will give the inverse of the sphere or

point (x) in the proper sphere (y), or the reflection of (a;) in the

non-isotropic plane (y). If the sphere of inversion be

x2 + y
2 + z2 — 1,

the inverse of (xyz) will be

x

xi + y
i + z i xi + y

i + zi x^ + y^ + z*

From these we easily find

dxfbx' + dy'by' + dz'bz'

Vdx'2 + dy'2 + dz'2 Vbx'2 + by'2 + bz'2

dxbx + dyby + dzbz= -f

Vdx2 + dy2 + dz2 Vbx2 + by2 + bz2
'

which shows that inversion is a conformal transformation

of space.

§ 2'. The Identity of Darboux and Frobenius.

Suppose that we have given any two systems each of six

spheres (x) (y) (z) (r) (s) (t), (x') (y') {z') {r'){s') (f) ; they will

be connected by an identical relation entirely analogous to

that subsisting in the case of ten coplanar circles, namely,*

* Lachlan, On Systems of Circles, &c, cit. Much of our work on the present

identity follows this article fairly closely.
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= o. (19)

{axe') {xy') {xz') {xr') {xs') {«&')

(y«f) iyy') (y*) iyr') (ys') {yt')

{zx') {zy') {zz') {zr') {zs') {zt')

{rx') {ry') (rz') (rr') (rs') {rt')

{sx') (62/') («0 («0 (ssO (si')

{tx') {ty') {tz') {tr') {ts') {ti')

As a first application, let the reader pr"ove the following

:

Theorem 4.] If five non-cospherical finite points be given

whereof no four are coplanar, the sum of the reciprocals of the

power of each point with regard to the sphere circumscribed to

the other four is zero.

Our formula {y) is usually more interesting when the two

systems are identical. For instance, if we take five proper

spheres and the plane at infinity,

1 cos 4- xy cos 4- xz cos 4- xr cos 4- xs —

cos 4- yz cos 4- yr cos 4- ys —cos 4-yx !

cos 4- zx cos 4- zy i cos 4- zr cos 4- zs

cos 4- rx cos 4- ry cos 4- rz * cos 4- rs ~

cos 4-sx cos4-sy cos 4~sz cos$_sr 1

i1

r„

1 1 1

r„

= 0, (20)

The distances of any five finite points will be connected by

the relation

(X
]2

d
1B

du d15
1

d 2a2l
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The common orthogonal sphere to four given spheres

will bo
3

Px i = M. \
^ c?' s (22)

This will be null if

(yy) (//-) (yr) (ys)

(zy) (:„-) (,r) (-«)

(ry) (>;) (rr) (rs)

(sij) (s:) (sr) (ss)

(23)

(y) (:) (?') (s) will belong to one linear congruence if the

following matrix have rank (3)

Ho V\ y-i Hi y*

-0 "I '- " ^4

»0 >'l
''2 >';; ''4

c **! *"'2 S
3

S4

If (i/) (c) (c) (s) (?) belong to a linear complex,

|

y:rst\ = 0.

Squaring, we get

(yy) (//-) (2/»') (2/s) W
(zy) (:z) (:>) (.-«) (zt)

(ry) (rz) (rr) (re) (ri)

(My) («) (or) (ss) (s0

(ty) (tz) (tr) (ts) (tt)

(24)

(25)

If (y)> (-)• ('')•
(
s) t>e f°ur non-collinear and non-concyclic

finite points, (x) the sphere or plane through them, of radius r,

and (t) the plane at infinity,

Q J 2 J 2 / 2 /o

</
21

2 J,
3
" Jo/ /2

^ ^32
2 o ^

r7
2 d - d 2

"41 "42 "43

./o ./o ./o

/2

\
A2

n/2

1

1

.
9-

= 0.
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Remembering that if ?'be the volume of the tetrahedron

whose vertices are

(*i 2/i^i) fej/^a) (<h 2/3^3) (^2/4^4)

aj
1
»+y

1
» + «

l

a
«! 2/ t

0, 1

6 7:

*i 2/i «i !

^2 2/2
Z
2

1

^3 2/3 3
!

a=4 2/4 «4 !

fl3
2
2 + 2/2

2 + S
2
2 X

<L 2/2 *2 !

a;
3
2 + 2/3

2 + ^3
2
^3 2/3 ^3 !

3'
4
2 + 2/4

2 + ^4
2

^4 2/4 *4 !

1

If we write

2<r = d
l2
a
3i + dudM + dud23 ,

, _ "/(t(t— d,
2
dM ) (cr — d^d^) (a — dud2z) „.

6V

If our five spheres be mutually orthogonal but proper,

; = 5

2 -2 = °- (26)

Theorem 5.] The sum of the squares of the reciprocals

of the radii offive mutually orthogonal •proper spheres is zero.

If s
i
be the ratio of power to radius with regard to the

sphere

1

1

= 0.

2 Si" = 0. (27)

Theorem 6.] The sum of the squares of the ratios of power

to radius for a finite point with regard to any five mutually

orthogonal not null spheres is zero.

* Salmon, loo. cit., p. 37.
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These five ratios, or rather, any five numbers proportional

to them, shall be defined as general pentaspherical coordinates

of the point.*

Theorem 7.] The passage from one set of pentaspherical

coordinates to another is effected by means of a quinary
orthogonal substitution. The equation of a spliere tvttl be

linear in every set of pentaspherical coordinates, and the

expressions for the angle of two not null spheres, the inverse

of one sphere in another, and the condition that a sphere

should be null are invariant inform.

If two spheres be orthogonal to three others, the line of

centres of the two is orthogonal to the plane of centres

of the three, since this is the radical plane of the two.

Conversely, suppose that we have an orthogonal point system.

Each point is the orthocentre of the tetrahedron whose

vertices are the other four points, and so, as we saw recently,

is the centre of a sphere with regard to which the tetrahedron

is self-conjugate. Any two of these spheres will meet the

plane through the centres of the other three in the circle

where that plane meets the sphere whose diameter is the

segment joining the two points, and the two will cut ortho-

gonally there.

Theorem 8.] The centres offive mutually orthogonal spheres

form an orthogonal system and, conversely, every orthogonal

system will yield the centres offive mutually orthogonal spheres.

Four proper non-concurrent spheres will determine sixteen

spherical tetrahedra, each having its own circumscribed

sphere. If (y), (z), (s), (t) be the four spheres, (y'), (z'), (s), (f)

the vertices of such a tetrahedron, (.i) a circumscribed sphere,

(w) the common orthogonal sphere to the original four, while

(y") is orthogonal to (z), (s), (t), ('(c), we may follow exactly

the steps that led to II. 12], getting

* We might, of course, take any five spheres not belonging to a linear

complex and get still more genei-al coordinates with a more complicated

quadratic relation.
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Theorem 9.] The spheres circumscribed to the siocteen tetra-

hedra formed by four non-concurrent proper spheres cut at

equal or supplementary angles the four spheres, each of ivhich

is orthogonal to three of the given spheres, and to their common
orthogonal sphere.

If five spheres touch one another externally, we have
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If five spheres be tangent to a sixth we get the analogue

of Casey's criterion,

j

o ^ '«
s
'»

2
t
15

>

I
t-n *n* t.J U* = 0. (31)

! V **f tj f^

',f '-/ ^r ^s o

If we take four not null spheres, a sphere tangent inter-

nally to them, and a point thereon, then, if p; be the ratio of

power to radius with regard to the i'
h sphere,

sin- ^ X_ \iz sin2 \4~yr sin2 ^ 2L ys ±\

sin2 ££_:>/ sin2 |£_:/- sin'- -§ X_ :•? pi

sivrht-W sin2 ££-'': sin2 i £_ >'> /'3 = 0. (32 >

sin 2 i^_sv sin2 ^}£_i?c sin2 iX_^r /'4

j»i i's l'i I** °

From this we may derive the tetrahedral equation of the

inscribed sphere to a given tetrahedron. If a sphere meet four

others at angles als x,. x, , v. while its radius is r, we find

1 co$4-y : cos>L.v<? cosl_yf cos^ —

,
cos 2f_ -J/ 1 cos 4- :s cos %- =t cos ^i T"

cos4_yj/ cosi£_>: 1 eos^_tf cos a- —
'* = 0. (33

)

eos^-ty cos2f_fc eosi_f^ 1 eos^ 4
—

cos ^ cos :\ 3
COS 1. COS A

4
1 -

1 11 11,
r-, ,:, r3 r4 r
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The equation in - has real roots by II (47) if

CH.

1 cos 4- yz cos 4~ys cos %~yt coso^

cos 4- zy 1 cos$_0s cos 4- zt cosor
2

cos 4- sy cos£_sz 1 cos- 4- st cosa
3

cos 4-ty coasts cos 4-ts 1 cosa4

cos a, cos a, cos a, cos a.

1 cos 4~yz cos 4-Vs cos 4~yt

cos 4- zy 1 cos 4- zs cos 4- zt

costf-ty cos 4- sz 1 cos 4- st —

cos 4- ty cos 4-tz cos 4-ts 1

1

> 0.

The second factor is

yzstt

(2/2/) (**) (*<) («)
•

o)^ : o>
x

: o>
2

: o>
3

: o>4
= ?'

: 1 : : : 0,

and is essentially negative or zero for real spheres. Hence the

condition for a real sphere cutting four real proper spheres

with non-coplanar centres at given real angles is

1 COS 4- 1J
Z COS 4-ZS COS 4- Zt COS(Xj

cos 4-zy 1 cos 4- zs cos 4- zt cos a
2

cos 4- sy cos 4-sz 1 cos 4- st cos a3

cos 4- ty cos 4-tz cos 4-ts 1 cosa
4

cos <*! cos a2
cos a

3
cos a4

1

< 0. (34)
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The equation of the sphere which touches the spheres

(V)> (-5). (>')> (s), four non-concurrent proper spheres, is

(.'/.'')

1 cos2£_?p cos 4- >J>'
cos 4- ys —

*• iyy)

cos4-~U 1 cos^_;y cos^_es —'-'-
-

cos 4- i'if cos #_ rz 1 cos 2jl rs --=L.
S{rr)

cosX_j>(/ cosX-*i cosX_6/" 1 —!=r

1 cos#_ip cos 4-yr cos4-l/s e
x

cos4-~y 1 cos2£-~>' cos^_:s ».,

cos £. >!/ cos £_ re 1 cos 2jl rs e
3

cos 4- ny cos4-8z co$4- sr * f4

e, ?., 6.. e, 1

xye/'y
|

^) A==) A™) A">)
= 0.

(33j

Two spheres, tangent to four given non-concurrent proper

spheres, are said to form a couple if they be mutually inverse

in the common orthogonal sphere of the four. Evidently, in

the construction given at the close of the last chapter, two

such spheres will correspond to the same plane containing sis

centres of similitude; or, in the equation above, the spheres

of a couple correspond to the same sets of values for the e/s,

and differ only in the sign connecting the two terms. Let us

take three spheres tangent to four not null and not concurrent

spheres, no two of the three forming a couple. We easily see

that the problem of finding a sphere tangent to these three and

orthogonal to the common orthogonal sphere of the first four has

eight solutions, corresponding to eight spheres all tangent to the

inverses of the three in the common orthogonal sphere of the four.

Theorem 10.] Any' three couples of splieres tangent to four

given not null and not concurrent spheres will touch four other

spheres as well. There are eight such couplet-. There are also

twelve tetrads of pairs of splieres each tangent to the given



262 THE SPHERE IN CH.

spheres and to the inverses of two in a sphere of antisimiliiude

of the other hvo.*

Such systems correspond in a measure to the Hart systems

of the second sort of Ch. II. Does any figure in the geometry of

the sphere correspond to the Hart system of the first sort? This

most interesting question is still to be answered.

Let us give one theorem about cospherical points,f

Theorem 11.] Iffive points, no four of which are concyclic,

lying on a not null sphere, be arranged in sequence, and any

five spheres be constructed, each through three successive points,

the five remaining intersections, each of three successive

spheres, are cospherical.

The points shall be P
1
,P

2 , P3
,Pi,P5 , the original sphere s.

The sphere constructed through Pit Pj,Ph shall be si7c . The

successive spheres stei , smij, s^ will meet in P^ and a second

point P(, Consider the surface

\ S451 S123 + ^2%12 S234 + ^3 S123 S346 +\S234S451 + ^6 S346 S512
= "

This is a quartic with the circle at infinity as a double

curve, and containing all ten points P\Pf- The various

terms are not usually linearly dependent, as we see from

a special case ; hence, by varying the coefficients, we have

apparently a four-parameter family of cyclics on s. Since,

however, the system of cyclics through seven points have an

eighth common point also by IV. 9], when eight points are

fixed we still have two degrees of freedom for our surface.

Hence we may choose such a value for the A's that the

surface includes s as part of itself. The remainder will be

a sphere through the points PA When the terms are linearly

dependent we prove by continuity.

§ 3. Analytic Systems of Spheres. J

A system of spheres whose coordinates are proportional to

analytic functions of a single parameter, not all having

* Cf. Schubert, ' Eine geometrische Eigenschaft, &c.', Zeitschrift fur Mathe-

matik und Physik, vol. xiv, 1867, p. 506.

f E. Muller, ' Die Kugelgeometrie nach den Principien der Grassmannschen

Ausdehnungslehre ', Monatshefte fur Math., vol. iv, 1893, p. 35. Also the

Author's Circles Associated, oit.

% For an admirable elementary account of systems of spheres see
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constant ratios, shall be called a series. The simplest series

is the coaxal system of pencil.

Theorem 12.] If three non-coaxal spheres be given, the

three spheres, eaeh coaxal -with two of the given spheres, and all

orthogonal to a fourth sphere, are coaxal.

We shall not waste our time in finding coordinates of the

simple spheres coaxal with two given spheres; the formulae

II (54)-(5S) suffice here also. Let us rather pass to some more
interesting series. An algebraic series of which two members
are orthogonal to an arbitrary sphere shall be called a conic

series. We see that all members of a conic series must be

orthogonal to the spheres of a coaxal system. We may take

as typical equations of a conic series

(ax) = (bx) = 2 aijWj = °- (36)

.... =o

Theorem 13.] The spheres of a conic series are orthogonal

to two distinct or coincident nidi spheres.

Of course, in the usual case, the spheres pass through two
distinct points. We shall mean by a general conic series one

where this is the case, and where, also, the series is unfactor-

able, and four distinct solutions are obtained by combining

the three equations with the identity for all null spheres.

Theorem 14.] The assemblage of all spheres orthogonal to

tivo not null and not tangent spheres, and to corresponding

members in two projective coaxal systems with no common
member, and neither containing the Jived spheres, is a general

conic series.

Theorem 15.] The general conic series may be generated in

three dinerent imys by spheres through two fixed points, the

sum of difference of who?e angles with two fixed spheres

through these two points is constant.

Dtjhleniann, Geometrische Transformational, Leipzig, 190$. vol. ii 5 Peselrka,

DarsttUende und projektict Geometric, Vienna. 1S*4. vol. iii. pp. 192-310. Also

Keye and Timerding. loc. cit.
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The general conic series corresponds to the general central

conic in four-dimensional projective space of elliptic measure-

ment. More interesting is the series corresponding to a circle

in this space. This is a conic with double contact with the

Absolute, so here we shall consider an irreducible conic series

whose null spheres fall together in pairs. This shall be called

a Dupin series. If the spheres of the series be orthogonal to a

coaxal system not entirely composed of null or tangent spheres,

we shall say that such a series is general. We may write the

equations of the general Dupin series in the form

(c x
x
+ c

x
x

± + c2x2)
2— (cc) (xx) = x3

= xi — 0. (37)

Let us next write

Vo= i°
c
o. Vi = P ci> 2/2 = P c2> Vs = pc3 + A, yi = pc^ + ix,

(xy) 2
p
2 (ex)

2

cos2 %-xy —
(xx) (yy) (xx) (p)

2
(cc) + A 2 + /t

2 + 2 Xp

c

3 + 2 p.p

c

i

P
2
(ce)

~
p
2
(cc) + A2 + p.

2 + 2 p (Kc
3 + jjlCi)

If, then, we make the further restriction

\2 + p?+2\pc3
2p.pci = 0,

we see that every sphere (y) of a certain series is tangent to

every sphere of our Dupin series. This new series is a conic

series, with only two null spheres, a Dupin series, since its

null spheres come from p = 0.

Theorem 16.] A Dupin series will be generated by the

totality of spheres orthogonal to those of a coaxal system

including distinct null spheres, and making a fixed angle

different from - with a fixed sphere not belonging to the

coaxal system, and, conversely, every such series will be a Dupin

series.

Theorem 17.] The spheres of a Dupin series are all tangent

to those of a second Dupin series.*

* Strictly speaking, we havo only proved this for the general case. We
see by continuity, however, that it holds in the other cases.
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Two such Dupin series shall be said to be conjugate.

Suppose, conversely, that we have three spheres (y), (s), (s)

which are not coaxal, nor are they all three null. If a sphere

(x) be tangent to them we have

/(IF) (yx)- V(yJ) (:x) = 7(li) (zx) - V(z~z) (sx)

= (;;)(xx)-(;xf=0.

Theorem 18.] 2%e assemblage of all spheres tangent to

three non-coaxal spheres which are not all null, and having

a fixed type of contact with each, or else the exact reverse of

tliat type of contact with each, will be a Dupin series conjugate

to the Dupin series which includes the three given spheres.

Theorem 19.] The assemblage of all spheres tangent to

three non-coaxal not null spheres is four Dupin series. The

radical axis of any three spheres of one series trill contain

one centre of similitude of each two of the given spheres.

The normals to any proper sphere along one of its circles

generate a cone, which is a developable surface. On the

other hand, by Joachimsthal's theorem, every evolute of

a circle is a single point.

Theorem 20.] The characteristic circles of tlie spheres of

a non-coaxal series tvill be lines of curvature of their envelope ;

and, conversely, every surface, one of whose systems of lines

of curvature is composed of circles, will be the envelope of

a series of spheres.

Such a surface is called an annular surface. The first

part of the theorem suffers an exception when the charac-

teristic circles are null. Here there will be two sets of

characteristic isotropics; they will be lines of curvature on

one surface or two. Conversely, any non-developable ruled

surface circumscribed to the circle at infinity is the partial

envelope of a family of spheres.

Suppose, next, that we have a surface where the lines of

curvature of both systems are proper circles. This may be

generated in two ways by a series of spheres, and all the
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spheres of one series will touch all of the other. The two
series must be Dupin series, and the surface, when not a cone

of revolution, shall be called a Dupin cyclide.*

Theorem 21.] The only surfaces having circles for their

lines of curvature of both systems are Dupin cyclides and
cones of revolution. They are the envelopes of two conjugate

Dupin series.

When the null spheres of each of two conjugate Dupin
series are distinct and not planar, the Dupin cyclide shall be

said to be general. It will have four conical points at the

centres of these four null spheres.

Theorem 22.] Not more than one pair of the conical points

of the general Dupin cyclide can be real, and those of one pair

lie on isotropics with those of the other. The surface is of the

fourth order, and has the circle at infinity as a double curve.

To prove the latter part of the theorem we have but to

notice that the Dupin series may be written parametrically,

y. = \2a
i
+ 2\,J.b

i + IJ.
2
c
i

.

Eliminating A and fx from

we get an equation of the second order in our special penta-

spherical coordinates. The order of the surface cannot be

more than four, nor can it be less, since we have two double

points whose connecting line is not embedded.

Suppose, conversely, that we have a surface of the fourth

order with the circle at infinity as a double curve, and two

pairs of finite conical points. A plane through two such

points would cut the surface in two circles, unless the line

connecting the finite conical points were part of the section,

in which case it would be an isotropic line. Now each of our

conical points could not be on an isotropic with each other one,

as we should have triangles with finite vertices and isotropic

* Dupin, Applications de la geometric el de la mecanique, Paris, 1822, pp. 200 ff.
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side-lines, which is an absurdity. Hence, if A and B be two

conical points not connected by an isotropic, and we invert with

A as centre, the inverse surface will be a cone with its vertex

at the inverse of A, two generators in each plane through AB
but not containing AB as a generator, i.e. a quadric cone.

Since the other two conical points of our surface do not invert

into conical points of the cone, they must have been on two

isotropics through A. The tangent planes to the cone will

invert back into a series of spheres each tangent to the surface

all along a circle. A second such series may be found from

the other two conical points.

Theorem 23.] Every surface of the fourth order with the

circle at infinity as double curve and fourfinite conical points

is a Dupin cyclide.

Since the inverse of a Dupin series is another such series,

Theorem 24.J Every general Dupin cyclide can be inverted

into a cone of revolution.

Theorem 25.] Every general Dupin cyclide is anallagmatic

with regard to all proper spheres of two coaxal systems.

Theorem 26.] The locus of the centres of the spheres of a

general Dupin series is a conic.

We see, in fact, that it must be a plane curve, since the

spheres of the series are orthogonal to two spheres, and also

must lie on a quadric, since the sum or difference of the

distances from all its points to the centres of two chosen

spheres of the conjugate series is constant.

Theorem 27.] The assemblage of all spheres orthogonal to

a given sphere, and having contact of a preassigned type

with each of two other given proper and not tangent spheres

not coaxal therewith, or having exactly the opposite type of

contact with each of these, is a Dupin series, as is the assem-

blage of all spheres orthogonal to two given spheres tangent to

a third not coaxal with them.
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Theorem 28.] Every general Dupin cyolide can be inverted

into an anchor ring.

We saw a moment ago that a general Dupin cyelide is

anallagmatic with regard to every sphere of each of two

coaxal systems. This raises the general question, what sorts

of surfaces are anallagmatic with regard to an infinite number

of surfaces? Every anallagmatic surface is the envelope

of co
2 or co

1 spheres orthogonal to the sphere of inversion.

Our given surface could not have oo 1 systems of oo2 tangent

spheres, for then every sphere tangent at one point would

touch the surface again, and the surface could be inverted into

one that touched each plane of a parallel pencil at a different

point, which is quite impossible. Hence our surface is the

envelope of co 1 spheres, i.e. annular. These generating spheres,

being orthogonal to two spheres of inversion, must belong to

a linear congruence. If the surface be anallagmatic in any

other spheres besides those of the coaxal system determined

by two, it must be doubly annular, and so a Dupin cyclide.

We thus get an excellent theorem due to Hadamard.*

Theorem 29.] The only surfaces which are anallagmatic

'with regard to a one-parameter family of spheres are those

annular surfaces which are generated by spheres orthogonal

to the spheres of a coaxal system. The only surfaces which

are anallagmatic with regard to more than one one-parameter

family of spheres are Dupin cyelides and their inverses.

The only surfaces which are anallagmatic with regard to

a tivo-parameter family of spheres are spheres themselves, and
these are anallagmatic with regard to oo 3 spheres.

If a non-degenerate central conic be given, not a circle,

there is a one-parameter family of quadrics confocal therewith,

i. e. inscribed in the developable tangent to this and to the

circle at infinity. Four quadrics of the family, considered

as envelopes, degenerate into conies, whereof one is the circle

at infinity. The other three lie in three mutually perpen-

* ' Recherche des surfaces anallagiuatiqucs par rapport ii une infinite de

poles d'inversion ', Bulletin, den Sciences maihematiques, Series 2, vol. xii, 1888,

p. 118.
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dicular planes, each piercing the plane of another in two foci

of the latter. These conies are the focal conies of the confocal

system of quadrics.

Theorem 30.] If the centre of a sphere trace a central

conic, while the sphere passes through a fixed point of one of

the other focal conies of the confocal system determined by the

given conic, then the sphere will trace a Dupin series.

We see, in fact, that it is a conic series, whose null spheres

fall together in pairs.

The characteristic circle of a sphere of a Dupin series is

the locus of its points of contact with the spheres of the

conjugate series. The lines from the centre of a sphere of

one series to those of the spheres of the other series will

generate a cone of revolution (in the limiting case two

isotropic planes). Hence the deferent (i. e. locus of centres)

of each series subtends a cone of revolution at each point

of the deferent of the other series. The axis of revolution
1

will be the tangent to that deferent wbich passes through the

vertex, for it is the perpendicular on the plane of the corre-

sponding characteristic circle. The isotropic planes through

this axis touch the other deferent, hence the vertex of the

cone is a double point of the developable determined by

the other deferent and the circle at infinity, i.e. the conies

are focal conies of a confocal system of quadrics.

Theorem 31.] The deferents of tuv conjugate Dupin series

whose null spheres are not planar are two central conies, focal

for a confocal system of quadrics and, conversely, any two

such conies will determine oo
1 Dupin series. Each conic

subtends a cone of revolution at each point of the other, the

axis of revolution being tangent to the latter. The sum or

difference of the distances of evo-y point on one conic from
two points of the other will depend- only on the positions

of the latter*

Remembering Joachimsthal's theorem about the evolutes

of curves,
* Dupin, Inc. cit., pp. 207-9.
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Theorem 32.] The tangents to all lines of curvature of one

system on a Dupin cyclide where they meet a line of curvature

of the other system pass through a common point of the axis

of the cone of revolution of normals along this same curve.

Theorem 33.] A sphere through a circle of curvature of

a Dupin cyclide will meet the surface again in another circle

of the same system. Two circles of different systems will

intersect once, and only once.

The general Dupin cyclide has two planes of symmetry,

those of its two deferents. Each will cut the surface in two

circles. The circles of the other system will be orthogonal to

that plane, and, since they are anallagmatic in an inversion

which interchanges the given circles, will meet the plane in

pairs of points collinear with a determined centre of similitude

of the two circles. We thus reach a neat method of con-

structing the cyclide due to Cayley.*

Theorem 34.] The circles orthogonal to the plane of two

proper circles and meeting them in pairs of points collinear

with, a fixed centre of similitude of the two will generate

a Dupin cyclide.

Enough has now been said about the conic series : we pass

to the cubic. This may be defined as an algebraic series

•whereof three members are orthogonal to an arbitrary sphere.

Since any four spheres have at least one common orthogonal

sphere, we see that all members of a cubic series are ortho-

gonal to at least one sphere. We shall say that the series

is general if there be but one fixed not null sphere to which

the members of the series are orthogonal. Such a series will

coiTespond in four dimensions to a rational non-planar cubic

curve in a space of three dimensions which is not tangent

to the Absolute.

Theorem 35.] A general cubic series will be generated by

the spheres orthogonal to a fixed sphere and to corresponding

members of three 'projective coaxal systems, which have no

* ' On the Cyclide ', Quarterly Journal of Mathematics, vol. xii, 1873, p. 150.
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common sphere, and none of which includes the fixed sphere,

and, conversely, every such series will be a general cubic series.

Theorem 36.] The centres of the spheres of a general cubic

series trace a rational cubic curve.

Theorem 37.] The general cubic series is generated by the

spheres orthogonal to a not null sphere whose centres are on

a rational cubic curve. If the fixed sphere be planar, the

rational cubic curve lies in that plane, and vice versa.

Theorem 38.] When the fixed sphere for a cubic series is

null but not planar, the spheres of the series may be inverted

into the tangent planes to a developable of the third class.

Theorem 39.] The spheres of a general cubic series cut the

fixed sphere in the circles of a general cubic series.

This series was defined in Ch. II only for coplanar circles,

but the definition is immediately extended to cospherical ones.

Theorem 40.] The spheres orthogonal to sets of three succes-

sive spheres of a general cubic series, and to the fixed sphere,

generate a second general cubic series. The relation between

the two is reciprocal.

Since the general cubic series is rational, we may express it

in the form

Vi = 2//
3>

W- (
38

)

We get the equation of the envelope of the spheres of the

series by equating to zero the discriminant of the cubic

equation (xy) = 0.

Theorem 41.] The spheres of a general cubic series envelop

a surface of the eighth order, anallagmatic in the fixed sphere,

and having the circle at infinity as a quadruple curve.

The coordinates of the planes of the characteristic circles

of the spheres of a general cubic series are easily seen to be

rational quartic functions of r ; these planes are all orthogonal

to the fixed sphere.
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Theorem 42.] The planes of the characteristic circles of

the spheres of a general cubic series generate a rational

quartic cone or cylinder.

Definition. An algebraic series of spheres whereof four are-

orthogonal to an arbitrary sphere shall be called a quartic

series. If the spheres of the series be not orthogonal to any-

fixed sphere, the series is said to be general. It will corre-

spond to a curve of the fourth order in four dimensions which

lies in no space of lower dimensions. Such a series is surely

rational, for each sphere of a coaxal system orthogonal to

three of its members will be orthogonal to but one other

member of the series.*

Theorem 43.] The general quartic series may be generated

in oo12 ways by the common orthogonal spheres to the corre-

sponding members of four projective coaxal systems, no two

of which have a common member, and, conversely, every such

system of projective coaxal systems will determine a general

quartic series.

Four spheres of the series, usually distinct, are planes;

eight, usually distinct, are null.

Theorem 44.] The locus of the centres of the spheres of

a general quartic series is a non-planar rational quartic

curve whose asymptotic directions are perpendicular to the

planes of the series.

Theorem 45.] The common orthogonal spheres to sets of

four successive spheres of a general quartic series will 'generate

a second such series; the relation behveen the two is reciprocal.

Since the coordinates of the spheres of a general quartic

series are rational quartic functions of a parameter, and the

discriminant of the general quartic equation is of the sixth

degree,

* For an exhaustive treatment of this series by pure geometry see

Timerding, loc. cit., pp. 193 ff.
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Theorem 46.] The envelope of the spheres of a general

quartic series is a surface of the twelfth order with the circle

at infinity as a sextuple curve. The planes of the circles of
curvature of this surface generate a rational developable of the

sixth class: the osculating developable to the rational quartic

curve trhich is the locus of the centres of the spheres orthogonal

to sets offour successive spheres of the given series.

Definition. A system of spheres whose coordinates are

proportional to analytic functions of two independent variables,

and whose ratios also depend on two essentially independent

variables, shall be called a congruence. When the functions

involved are all algebraic, the congruence shall be said to

be algebraic. Every such congruence, if irreducible, may be

expressed in the form

x
; =f;

(rstu), <fr(rstu) = 0, (39)

the only functions involved being homogeneous polynomials.

Definition. An algebraic congruence whereof two members

are orthogonal to two arbitrary spheres shall be called a

quadric congruence. Consider four spheres of the congruence,

which, three by three, determine linear congruences. If no

one of these linear congruences be included entirely in the

quadric congruence, it must share therewith a conic series.

A linear congruence which includes one member of each of

three such conic series will meet the congruence in a conic series,

and, since we may find oo 2 spheres of our congruence in this

way, we find the whole. Hence all spheres of the congruence

are orthogonal to one fixed sphere orthogonal to the first four.

If the congruence include in itself a linear congruence, the

remainder is also a linear congruence.

Theorem 47.] A quadratic congruence consists either in

two distinct or identical linear congruences, or else all its

members are orthogonal to one sphere.

The spheres of the quadric congruence will be represented

in four dimensions by the points of a quadric surface. When
the sphere to which the members of the congruence are ortho-

gonal is not null, the coaxal systems in the congruence have
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no common member, and the series of null spheres have no

double member, we shall say that we have a general quadric

congruence. Such a congruence will correspond to the general

central quadric of three-dimensional non-Euclidean space.

Theorem 48.] A general quadric congruence contains Uvo

families of coaxal systems. Two systems of different families

have one common sphere; no two of the same family have

a common sphere.

Theorem 49.] A general quadric congruence may be deter-

mined in 2 x cc 2 ways by coaxal systems, each determined by

corresponding members of two projective coaxal systems with

no common member.*

Theorem 50.] The locus of the centres of the spheres of

a general quadric congruence is a quadric surface.

A general central quadric in non-Euclidean space has eight

sets of circular sections, a circle being a conic with double

contact with the Absolute.f

Theorem 51.] A general quadric series may be generated

in eight ways by the circles of a one-parameter family of

Bupin series.

Theorem 52.] The spheres of a general quadric congruence

cut the sphere to which all are orthogonal in the circles of

a general quadric congruence.

Strictly speaking, we have only defined, such congruences

in the case of coplanar circles, but the definition is immediately

extended to cospherical ones.

Theorem 53.] The spheres orthogonal to sets of three succes-

sive non-coaxal members of a general quadric congruence and
to the common orthogonal sphere will generate a second such

congruence. The relation between the two is reciprocal.

" Cf. Eeye, ' Lehrsatze fiber projektive Mannigfaltigkeiten projektiver

Kugelbiiseheln ', &c, Annali di Matematica, Series 3, vol. v, 1900.

f Cf. the Author's Non-Euclidean Geometry, cit., pp. 157, 158.
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Theorem 54.
J

The radical planes which the spheres of

a general quadric congruence determine with a fixed sphere

envelop a quadric. When the fixed sphere is that to which all

spheres of the congruence are orthogonal, the planes envelop

the polar reciprocal with regard to this fixed sphere of the locus

of the centres of the spheres of the congruence.

The order of the surface enveloped by the spheres of

a general quadric congruence is that of the curve where the

surface meets the fixed sphere. This curve is the locus of

the vertices of the null spheres of a quadric congruence, and

so, by IV. 2], is a cyclic.

Theorem 55.] The spheres of a general quadric series

envelop a surface of the fourth order having the circle at

infinity as a double curve. It is anallagmatic with regard

to the fixed sphere.

We shall find out a great deal more about this surface in

the next chapter.

Theorem 56.] The assemblage of all spheres meeting at

given angles other than x tivo not null spheres will be a

quadric congruence.

Theorem 57.] The spheres orthogonal to a not null sphere,

the sum or difference of whose angles with two not null spheres

is constant, will be a quadric congruence.

Definition. The assemblage of all spheres whose coordinates

are proportional to analytic functions of three independent

variables, the ratios also depending on three independent

variables, shall be called a complex. When the functions

involved are algebraic, the complex is said to be algebraic.

The simplest way to express an algebraic complex is by

means of a single equation

f{x x
1
x
2
x
3
xi)

= 0, (40)

where / is a homogeneous polynomial. Next to the linear

s 2
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complex already studied, the simplest algebraic complex is

the quadratic one.* 'This has an equation of the type

i, j = 4

2 aij xi
x
j = °. a

ij = aji- (
41

)

i, j =

If we classify these complexes under the twenty-four

parameter group of linear sphere transformations we have the

following types

:

General complex

I

a
{i I

¥= 0. (42)

Simply special complex

a
<> a,-- I

*l = °- ^r*°- <
43

>
3 %!

Doubly special complex

4^=0, - tJ £ 0. (44)

The other cases consist in pairs of distinct or coincident

linear complexes, and need not be discussed. Starting with

the general quadratic complex, we may associate each sphere

(y) with the linear complex

', 3 - i

i,J-0

which is called the polar linear complex of (y). Every linear

complex will be the polar of a determinate sphere called its

pole sphere.

Theorem 58.] The polar linear complex with regard to

a general quadratic complex of a sphere not belonging to that

complex is the totality of all spheres harmonically separated

from the given sphere by pairs of spheres of the complex.

Theorem 59.] A linear complex will intersect a quadratic

one in a quadric congruence.

* Loria, 'Eicerche intorno alia geometria della sfera', Memorie delta

R. Accademia dette Scienze di Torino, Series 2, vol. xxxvi, 1885 ; Reye, ' Ueber

quadratische Kugelcomplexe ', Crelle, vol. xeix, 1885, and ' Quadratische

Kugelcomplexe', &c, Collectanea Mathematica, Naples, 1881.
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Theorem 60.] The general quadratic complex contains

x s coaxal systems. Each sphere of the complex belongs to oo 1

such systems, and they generate the quadratic congruence

common to the given complex and the polar complex of the

given sphere.

Definition. Two spheres shall be said to be conjugate

with regard to a general quadratic complex when each

belongs to the polar linear complex of the other.

Theorem 61.] The assemblage of all null spheres is a

general quadratic complex. Mutually orthogonal spheres are

conjugate with regard to this complex, and the polar of any
sphere is the complex of spheres orthogonal thereto.

Theorem 62.] The planes of a quadratic complex envelop)

a quadric.

Theorem 63.] The totality of spheres, each orthogonal to

a sphere of a general quadratic complex and to three infinitely

near splieres, the four not belonging to a linear congruence,

is a second general quadratic complex. The relation between

the two is reciprocal, and each may be defined as the totality

of spheres orthogonal to the various spheres of the linear

complexes which are polar to the spheres of the other complex.

More generally, if we have any complex of spheres, and if

we construct a sphere orthogonal to each sphere of the complex

and to three infinitely near spheres thereof which do not lie

with the first in a linear congruence, then, if the totality of

these new spheres be actually a complex, the original one is

said to be non-developable, and the new complex is called its

correlative. The relation between the two is reciprocal. It is

a peculiarity of the quadratic complex that we can reach the

correlative by means of polar linear complexes.

If (y) be a sphere of the complex (40), the linear complex

shall be called the tangent linear complex at the sphere
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(y). The correlative complex is obtained by eliminating

2/o2/i2/22/33/4 from the equations

The reciprocal nature of the relation between the two

appears from the fact that the equations

(yz) = (ydz) =
involve also (zdy) — °-

Theorem 64.] Two spheres of an arbitrary coaxal system

belong to a given quadratic complex ; two spheres of the com-

plex have their centres at an arbitrary point.

Let us turn for a moment to the simply special quadratic

complexes (43). We may find one sphere (s) which is con-

jugate to every sphere in space with regard to the complex.

Its coordinates will satisfy the equation

; = 4

2 aqXj = 0, i=0,l, 2, 3, 4.

3=0

We shall call this the singular sphere of the complex. Let

the reader prove

:

Theorem 65.] The simply special quadratic complex

contains every coaxal system determined by the singular

sphere and any other sphere of the complex. All spheres of

such a coaxal system have the same polar linear complex.

This quadratic complex is the first example of a developable

complex. We see

Theorem 66.] The correlative of a simply singular quad-

ratic complex is a quadratic congruence.

Two quadratic complexes which have the same null spheres

shall be called homothetic ; two, whose correlatives have the

same null spheres, shall be called confocal. If our original

complex be (41), we have for a homothetic one

2 a
ij
x

i
x
j + P(xx) = 0-

i, i = o
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Theorem 67.] A general quadratic complex will be homo-
thetic at most and in general tcith jive simply special com-
plexes. Hie surface which is the locus of the centres of the mill

spheres of the complex- is of the fourth order with the circle at

infinity as a double curve, and may be generated in general

and in Jive ways as the envelope of the spheres of a quadrie
congruence.

T\ e shall not now stop to define the elusive words in

general more explicitly, as this is the surface which we have
already encountered and which we have promised to discuss

in detail.

The correlative to our complex ^41) is
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projective ranges in general position. To justify the name of

the complex, let us note that we may express it parametrically

in the form

x
i = P frVi + l^i + vh] + « frVi + Pzi + "<*'}

(
47

)

To find the order of the complex, i.e. the number of its

spheres in a given coaxal system, we adjoin the three

equations

(ux) = (vx) — (wx) = 0.

Substituting for (x) we get three linear homogeneous

equations in the variable p and <r. Equating the various

discriminants to zero,

[(wy) A + (uz) fx + (ut) v] [(vy) A + (vz') p. + (vf) v]

- [(uy') A + (uz')
fj. + (uf) v] [(vy) \ + (vz) y. + (ut) v] = 0.

[(uy) A + (uz) ux + (ut) v] [(wy') A + (wz') ju + (tut') v]

- [(uy') A + (uz') ix + (ut') v] [(wy) A + (wz) ^ + (wt) v] = 0.

Here we have two homogeneous quadratic equations in the

variables A, jx, v. One solution will be

(uy) A + (uz) fx + (ut) v — (uy') A + (uz') p + (ut') v — 0.

This must be rejected, since it will not give a solution of

all three equations in p/a- ; the three other solutions give the

three spheres required.

Remembering that the spheres of a coaxal system are

orthogonal to those of a linear congruence, we see

Theorem 69.] The rational cubic complex contains all

spheres orthogonal to the various coaxal systems determined

by corresponding members of three projective pencils of linear

complexes, which three have no common sphere, nor have any
two a common coaxal system.

We see from (47) that every sphere of the complex lies

in a linear congruence obtained by giving a fixed value to

p/a. On the other hand, if we take two pairs of values p, a-

and p', </, and give to the other parameters first the values

A, p., v, then the values A', p.', v, and equate the corresponding

expressions for (x), we have five linear homogeneous equations
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in the six homogeneous variables A, /u, r, A.', /*', r'. There are

thus x 2 double spheres, each in two linear congruences.

A coaxal system determined by two double spheres must be

included entirely in the complex. If this system were not

composed entirely of double spheres we should have x 4 coaxal

systems, each sphere of the complex would lie in oo
1 of them,

and so in x 1 of our linear congruences, which is absurd.

Theorem 70.] A general sphere of a rational cubic complex

lies in a single linear congruence of the complex ; a double

sphere lies in two such congruences, and the totality of double

spheres is itself a linear congruence.

Reverting to (47), if we require (x) to be a plane, we impose

one lineal' condition ; two others are imposed bjT fixing two

points of the plane. On the other hand, each sphere of the

system belongs to x 1 coaxal systems thereof, each plane to

one pencil of planes.

Theorem 71.] The planes of a rationed cubic complex

envelop a ruled surface of the third order and class. The

generators of this surface are the radical axes of the linear

congruences of the complex.

The radical axis of a linear congruence is. of course, the

locus of points having like powers with regard to all spheres

thereof.

Theorem 72.] The centres of the null spheres of a rationed

cubic complex is a surfue of the sixth onler with the circle at

infinity as a triple curce and with a circle of double points.

With regard to the last statement we see that the centres of

the null spheres of a linear congruence must lie on a circle.

Theorem 73.] A spliere through the double circle of the

surface meets it again in a simple circle. The planes of these

simple circles are those of the centres of the spheres of the linear

congruences of the complex, and each ci)'de of the surface is

cospherical with the double' circle.

We see, in fact, that if we invert with a centre on the

double circle wa get a quartic through the circle at infinity
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with a double straight line, and such a surface contains no

other lines or circles.

Theorem 74.] A sphere which meets the surface in a simple

circle meets it also in a cyclic. The two intersect twice on the

double circle, and twice at points where the sphere touches the

surface.

It is perfectly clear that there remains a good deal to

be done in the study of spheres in cartesian space. It is

hard to believe that a sufficiently intelligent use of the

Probenius identity will not settle the interesting question of

the existence of Hart systems, and the relation of spheres

circumscribed to spherical tetrahedra and spheres tangent to

other spheres. There must surely be a great deal more in the

subject of tangent spheres than has yet been found. Is there

a three-dimensional analogue of Malfatti's problem, and what

is the solution? It seems likely that although the Dupin

series is undoubtedly the most interesting of the various conic

series, yet others are worthy of further investigation. The

elementary metrics of four-dimensional non-Euclidean space

has never been studied in great detail, and may well include

many beautiful theorems of real importance in the geometry

of the sphere.



CHAPTER VII

PENTASPHEFJCAL SPACE

§ 1. Fundamental Definitions and Theorems.

Any set of objects which can be put into one to one

correspondence with sets of essentially distinct values of

five homogeneous coordinates x :x
1
:x.,-.x

3
:xi , not all simul-

taneously zero, but connected by the relation

(xx) = x - + x* + x2
2 + x3

2 + .r4
2 =0, (1

)

shall be called points, and their totality a pentaspherical

space.

The assemblage of all points (x) whose coordinates satisfy

a linear equation

(yx) = y x +y^ + y2
x

2 + y3
xs + y4 .v4

= 0, (2)

where the values (y) are not all zero, shall be called a spliere,

to which the points (x) are said to belong, or on which they lie.

The coefficients (y) shall be called the coordinates ofthe sphere.

If the j- satisfy the identity (1) the sphere is said to be null,

the point with the coordinates (y) is called the vertex of the

null sphere. If (y) and (:) be two not null spheres the

number 6, defined by

cos 6 = —=J^L== , (3)

is called their angle. If one possible value for the angle

be -j the spheres are said to be orthogonal or perpendicular,

or to cut at right a ngles. The condition for this is

(F) = 0, (4)

and when this condition is satisfied we shall call the spheres

orthogonal, even when one or both are null. If a possible
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value for the angle be or - we say that the spheres are

tangent. Here the condition is

(yy)(zz)-(yz)2 =0. (5)

The assemblage of all spheres whose coordinates are linearly

dependent on those of two are said to form a coaxal system

or 'pencil. They all contain all points common to the first

two, the locus of which shall be defined as a circle.

If (y) lie on the null sphere whose vertex is (z), and so (z)

lies on the null sphere whose vertex is (y), every sphere

coaxal with (y) and (z) is null. The totality of their vertices

shall be called an isotropic. Through each point will pass

oo 1 isotropics generating the null sphere whereof this point

is the vertex. The circle common to two tangent not null

spheres shall be called a null circle ; it consists in two iso-

tropics. If two null spheres have a common isotropic this

is the totality of their intersection, and shall also be classed

as a null circle.

If two null spheres be coaxal with any not null sphere,

every sphere through their vertices is orthogonal to this

sphere. The vertices are said to be mutually inverse in

this sphere. The inverse of the point (x) in the sphere (y) is

x
i
= (yy)x

i
-2(xy)y

i
. (6)

If {x) trace a sphere, (a/) will also trace a sphere, and

the equation will give equally well the relation between two

inverse spheres (x) and (a/). The sphere (y) is called a sphere

of antisimilitude for the two.

Two examples of pentaspherical space will at once occur

to the reader. We may take a Euclidean hypersphere in

a space of four dimensions. Secondly, we may start with

cartesian space, that is the finite domain, and proceed as in

Ch. IV. We begin with the equations VI (8)

x : y : z : t = x
2

: x3
: xi : — (x + x

t) ,

x :x
1
:x2

:x.
i
:xi = i(x2 + y

2 + z2 + t
2
) : (x2 + y* + z2— t

2
) :

2xt:2yt:2zt. (7)

Every finite point of cartesian space will correspond to

a definite point of pentaspherical space, for which ix + x
1
— 0,
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and conversely. If, however, we make cartesian space a

perfect complex continuum by adjoining the plane at infinity,

the coiTespondence ceases to be unique, for all infinite

cartesian points not on the circle at infinity correspond to

the same point of pentaspherical space. We may extend

the finite cartesian domain to be a perfect pentaspherical

continuum as follows

:

The set of coordinates i : 1 : : : shall be said to repre-

sent the point at infinity. Any other set of coordinates (y)

satisfying the equations

*!/o+yi = (w) =

shall be taken to represent the minimal plane

2/2* + VtV + yts + 1 (iy - y,) = o.

The point at infinity and the totality of such minimal

planes shall be called improper points. By adjoining them

to the finite domain the cartesian space becomes once more

a perfect continuum, and obej^s all the laws of pentaspherical

space. The definitions of sphere, circle, angle, inversion, &c,

given in Ch. V for cartesian space, and here for pentaspherical

space, are entirely compatible.

If we take as our pentaspherical continuum the cartesian

space rendered a perfect continuum in this fashion, the

following terms are synonymous

:

Sphere orthogonal to point Plane..

at infinity.

Inversion in such a sphere. Reflexion in plane.

Null sphere whose vertex is Totality of minimal planes.

point at infinity.

Null sphere containing point Points of minimal plane and

at infinity. minimal planes parallel

thereto.

Isotropic not containing point Minimal line.

at infinity.

Isotropic containing point at Pencil of parallel minimal

infinity. planes.

The points of pentaspherical space on any not null sphere
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will be a tetracyclide plane, and we may take over bodily

for them the definitions of Ch. IV.

We shall mean by the cartesian equivalent of a penta-

spherical figure the following. We replace the coordinates

of every proper pentaspherical point by their cartesian equi-

valents from (7), then render the space a perfect continuum by
the adjunction of the plane at infinity.

The cartesian equivalent of a surface of order n, where the

'point at infinity has the multiplicity Jc, is an algebraic surface

of order n— k with the circle at infinity as a curve of order

*(n-2 4).

We mean by the order of an algebraic surface in penta-

spherical space the number of intersections with an arbitrary

circle. When the surface is given by equating to zero a homo-

geneous polynomial in (x), the order is twice that of the

polynomial.

§ 2. Cyclides.

The definitions of series, congruences, and complexes of

spheres used in the last chapter may be carried over bodily

into pentaspherical space. We thus reach the fundamental

locus with which we shall be occupied in the present chapter.

Definition. The locus of the vertices of the null spheres

of a general quadratic complex shall be called a cyclide.

The equation of a cyclide may be written

2 %-®i®j = 0) a
ij = a>ji

I <*ij I

=£ °- (8)

?,; =

The problem of classifying all cyclides under the group of

quinary orthogonal transformations is the problem of classi-

fying pairs of quinary quadratic forms, whereof one certainly

has a non-vanishing discriminant. This is best done by

means of the elementary divisors of Weierstrass, exactly as we
classified cyclics in Ch. IV. It will be found that there

are exactly twenty-six species of cyclides under this classifi-

cation : an enumeration of all, with canonical forms for their
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equations, would lead us altogether too far afield ; * we shall

therefore confine ourselves to one or two types beginning with

the general one, i.e. that characterized by the scheme of

elementary divisors

[1111 1].

The canonical form for the equation of the general cyclide

will be

(ax*)=0, (aa') = 0, 110,(0,-0*) =jt 0. (9)

Since this equation is unaltered by a change of sign of any

one of the «/s,

Theorem l.J The general cyclide is anallagmatic ivith

regard to five mutually orthogonal spheres. It is a surface

of the fourth order, and is the envelope of five different quad-

ratic congruences of spheres.

This theorem has already been proved as VI. 67].

The five spheres shall be called the fundamental spheres

of the cyclide. The equations of the five generating con-

gruences are easily found. An arbitrary tangent sphere at

the point (%) will have the coordinates

P2/; = (* + «;K- (10)

In particular, if Vi — °,

Vj
Xj = !— •

3 aj-at

j = i
2 J = i

22-^ = 2,-^ = 0. j±i. (11)

If (r) and (s) be mutually inverse in (y),

2(r,s
;
— ?'S.;)

2

j = o (
aj- a

>)
J

Theorem 2.] The locus of the inverse of a given point with

regard to the generating spheres of one system of a general

cyclide is a cyclide tcith the given point as a conical point.

* Cf. Loria, Geometria delta sfera, cit., and Segre, 'Etude des differentes

surfaces de quatrieme ordre a conique double ', Math. Annalen, vol. xxiv, 1884.
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Theorem 3.] The general cartesian cyclide is a surface of

the fourth order with the circle at infinity as a double curve,

and every such surface is a cyclide of some sort. In the

general case it may be generated in five ways by a sphere

moving orthogonally to one offive mutually orthogonal spheres,

while its centre lies on a central quadric.

The words 'in general' mean that the point at infinity shall

not be on a fundamental sphere of the pentaspherical cyclide,

nor yet on the surface itself.

Theorem 4 J
The intersection of a not null sphere with

a cyclide is a cyclic.

The generating spheres will cut the cyclide in cyclics with

two double points, i.e. in two circles. Let us show, con-

versely, that if any sphere have double contact with the

cyclide it will be a generating sphere of one system or another.

Writing that a tangent sphere at (x) is also a tangent sphere

at (x'),

(^+a
i
)x

i
= (\

, + a
i
)x

i
'.

Multiplying through by x( and summing, also multiplying

through by a^ and summing,

i = 4 i = 4

k(xx') + 2 a
i
x

i
x

i
= k'(xx') + 2 a

i
x

i
xl = °-

i = 1=0

This shows that A = A.',

x
i
= x

i
if A +a^0.

Hence A must take one of the five values —a
{ , which

proves our result.

These facts have a good many interesting consequences

which we shall develop gradually. We begin by noticing

that if we define as a focus of a surface the vertex of any

null sphere which has double contact therewith, the foci of

a general cyclide come merely from the five systems of

generation. Their coordinates will be given by the equations

*i = *f + *k' + *? + *«?

= Ji— +
Z
* + -!L- + —giB— = 0. (12)

«/-«* <*k- a i
al~ ai

am- a
i
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Theorem 5.] The focal curves of a general eyclide are five

cyclics. one on each of the fundamental spheres. Each cyclic

meets each fuiulamental sphere other than its otvn in four

foci of the focal cyclic on that sphere.

Suppose that one focal cyclic is known. Its foci and

fundamental circles are known ; hence the other fundamental

spheres are known. On each of these spheres we know the

fundamental circles of the corresponding cyclic, and four

points (on the first sphere). Hence the focal cyclics are all

known.

Theorem 6.] If two general cyclides have one focal cyclk in

common, they have" all jive focal cyclics in common*

A eyclide contains five pairs of systems of circles. This

suggests that there may be a certain number of isotropics

embedded in the surface. These isotropics will not lie on the

fundamental spheres, but be inverse in pairs with regard to

them. Let such an isotropic be determined by the points (x)

and (x
r

), where

.r,. = 0, (t.v'j = 0, t
{
= 0.

j = *

Clearlv (xx') = 2 a
j
x
j
x'/= °>

Xj xk x
}

ajXj a
1;
xk a,x,

t.- h. tj

Va^aj

J

Va h •Ja-i

S'ljXj Sa,.*,. /«;.>•,

*f

'Ja-f. '1

* That erratic genius, John Casey, in an article full of interest, ' On

Cyclides', &c, Philosophical Transactions, vol. clxi. 1ST], p. tiST. seems to hare

held the curious idea that a eyclide shared one focal curve with each of

five different systems of others. He gives the equations of all five systems,

failing to note that they are really identical.

i9fti r
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(x'x') = (ax'2) = 0.

x
i
= (xx) = (ax -) = a^a^ (-a2

) ~a{
(a2*2

) = 0.

These equations give eight values for X;-.xk :xi:xm , each

corresponding to two sets of values for (x') differing in the

sign of x(.

Theorem 7.] A general cyclide contains sixteen isotropics,

inverse in pairs with regard to the five fundamental spheres.

The generating spheres tangent at (x) have coordinates

Vj = (
aj~ a

i)
xj-

Four of these will have the cross ratio

(a
i
-a

j
)(ak-al )

(a
i
-a

l
)(ak-aj )

Theorem 8.] The generating spheres offour chosen systems

tangent at any point have a constant cross ratio.

The condition that a sphere (y) should touch the cyclide is

i =
ai+ K

' ^Sai+V 2

This may be interpreted as requiring that the discriminant

of the first equation, looked upon as an equation in A, should

vanish. The equation is quartic, the degree of the discriminant

is six, the coefficients being linear in y?.

Theorem 9.] Twelve spheres of an arbitrary coaxal system

will touch a given general cyclide.

Theorem 10.] The general cartesian cyclide is of class

twelve, and twelve normals pass through an arbitrary point.

We may draw still further conclusions from the first of our

equations (13). Let (y) be any sphere, and (z) a point

common to it and to the cyclide. A sphere tangent to the

cyclide at this point will have the coordinates

(a
i
+ X)z

i
.
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Suppose that this sphere touches the cyclic of intersection

again, say at t,

PVi + vU + UiU = («{ + *)=,•

(U-) = («) = (<iz
2
)
= (yt) = (tt) = (at

2
) = 0.

"(--0+ 2";-V; = 0.

1=0
. =4

2«rVf+ M:() = 0.

< =

<r = X.

1
L l - i

•

(y;) = (yt) = 0.

2-^=0.

It thus appeai-s that the absolute invariant of our quartic

in (13) gives the fundamental cross ratios for the cyclic

common to the cyclide and to (y). This absolute invariant

is a constant multiple of the ratio of the cube of a relative

invariant of the second degree, whose vanishing gives the

equiharmonic case, to the square of a relative invariant of

the third degree, whose vanishing gives the harmonic case.

Theorem 11.] In an arbitrary coaxal system are four
spheres meeting a general cyclide in equiharmonic cyclics,

and six meeting it in harmonic cyclics.*

We return to the tangent sphere

y,- = (\ + a ,.).*,-.

This will be null if

(a2
a-

2
) = 0.

When this equation is satisfied, every tangent sphere at

that point is null, i. e. the two tangent isotropics coincide,

and we have a parabolic point.

* This theorem and the three preceding are taken direct from Darhoux,

Sur line classc, eit., pp. -SO ff.
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Theorem
12. J The locus of the parabolic points of a general

cyelide is the intersection with a second cyelide having the

same fundamental spheres.

It must not be supposed that the tangent isotropic to the

cyclide at a point of this curve is tangent to the curve itself.

The cyclide has covariants under the quinary orthogonal

group analogous to those of the cyclic. Let our orthogonal

substitution be

j= l j-i j=4

*< = 2 hi*], 2 V = i.2 hjhj = o, u ± i.

i = j = j =

If the corresponding cyclides be

(ace
2
) = 0, (a/ a;

2
) = 0,

i = 4

2 afiijhj = °-

i =

a/ = 2 «A/
i =

i = 4 i, j =4 i = 4

2 «/ = 2 «A/ = 2 «;•

; = o ', j = o t = o

If thus 2 a
i
= °

we have also 2 °/ = 0.

We may always suppose the first of these equations is

satisfied by replacing the first of our equations (9) by a

suitable linear combination of the two. If (y) be any sphere,

we have the covariant polar sphere

Pzi = aiVi-

If (x) and (x) be any two points of the cyclide inverse

with regard to (y), the other sphere orthogonal to (y) in

which (x) and (x') are also inverse is orthogonal to the polar

sphere. The covariance of the polar sphere is thus evident.
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All spheres orthogonal to (?/) will have their polar spheres

orthogonal to the antipolar sphere of (»/),

«'• = £•

This also is covariant, as we see by its definition. The locus

of points whose polar spheres are null is our previous cyclide

(uV-) - 0.

The locus of points lying on their antipolar spheres is

(>)=o, '£*,= 0.

Once more we write the tangent sphere

2/; ={K + a
i
)x

!
.

If this have stationary contact, the cyclic thereon must

have a cusp, the class of the corresponding cartesian cyclic

will be still further reduced, and so, by the reasoning which

led up to 1 1], the first equation (13) has three equal roots, or

14)

Now a quartic has three equal roots if the invariants of

degree two and three both vanish. Hence we have an equa-

tion of the fourth degree, and one of the sixth in yi;
or,

Theorem 13.] The congruence of stationary tangent spheres

to a general cyclide is of tlie twenty-fourth order.

Theorem 14.] The locus of the centres of curvature of a

general cartesian cyclide is a surface of the twenty-fourth

order*

We see that a sphere is an adjoint surface to the general

* Darboux, Snr tine clasie. oit.
, p. 2S9.
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cartesian cyclide. Cospherical circles shall be said to be

residual, hence

Theorem 15.] If two circles of a cyclide be coresidual, every

circle residual to the one is residual to the other also.

Theorem 16.] Two residual, or two coresidual circles of

a general cyclide are orthogonal to the same fundamental

sphere.

Theorem 17.] Two residual circles of a, cyclide meet twice,

two coresidual ones do not meet at all, two circles which are

neither residual nor cm*esidual meet once.

We have so far considered all systems of generation together

;

a good deal of interesting information may be obtained by

fixing our attention on a single generation. We rewrite the

equation

Vi = 0, 2/^ = 0, a,=jfca<.

In an arbitrary coaxal system orthogonal to x
i
= there

will be two generating spheres of this system. If (y) and (z)

be orthogonal to the fundamental sphere, and if

j=4

2^X = 0] aj^at,
Vi*'

3 = J *

these two are harmonically separated by the spheres coaxal

with them which are generators of the cyclide. If (z) be

fixed, the spheres satisfying this equation will generate a linear

congruence. The points common to the spheres of the con-

gruence have the coordinates

Qua • OCj '• ™h * *&! • ™s,

tf
z
j **

.

z
i

= {
aj- a

i)
aj- a

i
ak~ ai

al~ ai
am~ a

i
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Let (x) be the point of contact of a generating sphere which
is orthogonal to (y), and belongs to the present system

j = *

A (as) + > ajSjXj = 0, kx
;
+ a

(
..v

;
= 0,

,; = o

i = o

Theorem 18.] 27;<3 generating spheres of one system ortho-

gonal to an arbitrary sphere touch the cyclide in the points

of a cyclic anallagmatic in the corresponding fundamental
sphere.

If we keep (s) fixed and find the corresponding cj'clic for

another generation,

a*0»»)- 2 ajSjXj = 0,

j = o

subtracting

(a
{
— a j.) (xs) = 0.

Theorem 19.] The generating spheres of all five systems

of a general cyclide orthogonal to an arbitrary sphere touch

it in the points office cyclics lying on five spheres of a coaxal

system including tJie arbitrary sphere.

Since the generating spheres of one system form a quadric

congruence whose members may be put into one to one

correspondence with the points of a cartesian quadric surface,

we see that there is an immediate correspondence between

such a surface and one system of generation of the cyclide.

Suppose, conversely, that we have a cartesian surface covered

by two networks of circles, each circle of one network

being cospherical with each of the other. The axes of these

circles, that is, the lines through their centres perpendicular

to their planes, will generate a quadric or two pencils. If we
take two circles of one network, ever}" circle cospherical

with both is orthogonal to their common orthogonal sphere,

as is, also, every circle of the same network.
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Theorem 20.] The only irreducible surface which contains

ttvo networks of circles where each circle of one network is

cospherical with each of the other is a cyclide.

The correspondence between the generating spheres of one

system and the points of a quadric appears very clearly in

the cartesian case where the quadric is the corresponding

deferent. Here we have*

Point of deferent. Generating sphere.

Generator. Circle of cyclide.

Residual generators. Residual circles.

Coresidual generators. Coresidual circles.

Conic on deferent. Conic series.

This may also be looked upon as a means of establishing

a one to one correspondence between the points of the

deferent and the pairs of points of the cyclide which are

mutually inverse in the corresponding fundamental sphere.

Suppose that we have the cartesian cyclide with the general

pentaspherical equation (9). Eliminating x
i
we have

j = 4

2^=0, bj = (aj- ai ). (15)

j =

Let the condition for a planar sphere be

(ivx) = 0.

If (z) be the coordinates of the centre of a sphere (s),

8j = XZj + pWj.

If (s) be a generating sphere of the present system, we get

the equation of the deferent

«< = 0.

Z —^-t-^— = o, J=t%.
3 = "j

* Cf. Moore, ' Circles orthogonal to a given sphere ', Annals of Mathematics,

Series 2, vol. viii, 1907.
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A n arbitrary sphere tangent thereto at (z) will be

*, =*W2^ " 3

?//. = ^^+M'^Kcr,,-wA
.-

4
.).

This will be a plane it' it satisfy the condition of being

orthogonal to (w), i. e. A' = 0.

Calling this the plane (?•), and the angle of intersection

with .Vj = 0, 0j,

2
V) /To

COS 6); = —4= J > 6; COS2 0; = 0. J =£ t.

But the cosine of the angle which a plane makes with

a sphere is the distance from the centre divided by the

radius. This yields the curious theorem due to Casey.*

Theorem 21. J If the equation of the general cartesian

eyclide he reduced to squared terms, and if one variable be

eliminated by means of tlie identity, the resulting form will

be identical with that which gives the quadriplanar equation

of the deferent corresponding to the variable eliminated, the

tetrahedron of reference being that whose vertices are the centres

of the four remaining fundamental spheres, and the coordi-

nates of a plane being proportional to tlie distaiwe from these

centres divided by tlie corresponding radii.

Let us write the tangential equations

j = 4 j =4

2 («,- «*)*/= 2 (*;-«*) '/ = <>.

j = j =

subtracting

(a A
.-«.)(rr) = 0.

This is characteristic of isotropic or minimal planes.

* On Cyclides, cit., p. 598. The forin there given to the theorems is noc

sufficiently precise. The next six theorems are from the same source.
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Theorem 22.] The five deferents of the general cartesian

cyclide are confocal.

Theorem 23.] Given nine spheres orthogonal to a tenth,

there is always at least one cyclide tangent to each at a pair of

p>oints inverse in the tenth sphere, and, conversely, if nine

pairs of points be given inverse with regard to a sphere, there

is at least one cyclide passing through all and inverse in the

given sphere.

Theorem 24.] Given eight spheres orthogonal to a ninth,

which is not null. There is always a one-parameter family

of cyelides having double contact with these and with the

spheres of a, series. In special cases there may be a two-

parameter family of cyelides having double contact with the

eight spheres.

Theorem 25.] Given eight pairs of points inverse in a

sphere. There is always a pencil of cyclides anaUagmatic in

the sphere through these points, and in special cases there may
be a two-parameter family of such cyclides.

Theorem 26.] All cyclides having double contact with seven

spheres orthogonal to a given not null sphere have double

contact with an eighth sphere orthogonal thereto.

Theorem 27.] All cyclides passing through seven pairs of

points inverte in a given sphere pass through an eighth

such pair.

Let us now turn more definitely to the cartesian cyclide.

Here, in the general case, there are five deferents, confocal

quadrics. To find the points of contact of any generating

sphere we must drop a perpendicular from the centre of the

corresponding fundamental sphere upon the tangent plane to

the deferent at the centre of the generating sphere, and find

where this perpendicular meets the latter sphere. This method

will hold for every anaUagmatic surface. When the point

of contact of the generating sphere is on the circle at infinity,

the tangent plane to the deferent will contain the tangent to

the circle at infinity at the corresponding point. But this
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plane will touch the eyclide also at this infinite point, for the

line connecting this point with the point of contact of the

plane with the deferent should be normal to the eyclide,

and the corresponding tangent plane is the plane just drawn.

We are thus led to the double focal curves of our eyclide : they

are the double curves of the developable of tangent planes

along the (double) circle at infinity. These, unlike the focal

curves, are not covariant for inversion.*

Theorem 28.] The double focal curves of lite general cartesian

ct/elide arc the focal curves of the eorrcvpcaiding deferents.

We may pass from one generation of such a eyclide to

another as follows. The points where a eyclide cuts one

fundamental sphere are the points of contact of the latter with

the developable tangent to this sphere, and to the correspond-

ing deferent This developable being of the fourth class, and

elliptic in type, has four conies of strietion. A point on one

is the centre of a sphere having double contact with the

eyclide, hence

Theorem 29.] The four quadrUs confocal -with the given

deferent, and each jxissing through one conic of striction of the

developable tangent to this deferent and the corresponding

fundamental inhere, will be the fair other deferents.

If we consider the plane of one of the conies of strietion, we

see that it contains the centres of four spheres common to two

generations, and so orthogonal to two fundamental spheres.

It is thus a radical plane for two fundamental spheres, and so

must bear a symmetrical relation to them and to the corre-

sponding deferents.

Theorem 30.] If two deferents be known, and the funda-

mental sphere corresponding to the first, that corresponding to

the second is found as follows. TJie planes of that conic of

strietion of the developable determined by the first sphere and

deferent which lies on the second deferent will cut the first

deferent in a conic. The developable circumscribed to this

conic and the second developable will touch the sphere required.

* Darboux, Siir uiu dasse, cit., for this and the two following.
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We saw recently that the planes tangent to a cartesian

cyclide along the circle at infinity will touch all five deferents.

Through each tangent to the circle will pass two planes

tangent to the deferents. These planes will fall together

when, and only when, a tangent to the circle at infinity

touches also a deferent ; hence the five deferents and the circle

at infinity touch four (usually distinct) lines. The points

of contact with the circle at infinity will be points of all the

focal cyclics.

Theorem 31.] The ge neral cartesian cyclide has four pinch-

points on the circle at infinity, ivhich are common to all the

focal cyclics.

Let us look for a normal form for the equation of a cyclide

in rectangular cartesian coordinates. We begin by noticing

that the locus of the centres of gravity of the intersections

of a general cartesian cyclide with sets of parallel lines is

a plane, the polar of the infinite point common to the lines.

If a point trace a line in the plane at infinity, its polar line

in each plane section through the infinite line will, by IV. 16],

rotate about a point ; hence its polar plane rotates about

a line. Any two such lines must intersect; hence

Theorem 32.] The polar planes of all infinitely distant

pioints with regard to a general cartesian cyclide pass through

a fixedfinite point.

This point shall be called the centre of the cyclide.* If

we consider the plane of a focal conic of any deferent, we

see that the foci of that conic are double foci of the cyclide,

and of the sections thereof in that plane; hence, by IV. 16]

and (20),

Theorem 33.] The centre of the general Euclidean cyclide

is the common centre of all five deferents. The planes of the

focal conies of the deferents cut the plane at infinity in the

side-lines of the diagonal triangle of that complete quadrangle

whose vertices are the pinch-points. The tangent planes to

the cyclide at the pinch-points pass through the centre.

* Theorems 32 and 33 are from Humbert, loc. cit., p. 132.
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The canonical form for the equation will thus be

(«
2 + y

% + z2
)

2 + ax2 + by 2 + cz2 + ex +fy + tjz + h = 0. (16)

We now return to pentasphe deal space. Before studying

systems of cyclides let us look most briefly at one or two

special types under the quinary orthogonal group. The

general cyclide being characterized as before by [l 1 1 1 l],

let ns look at the type [2 11 1]. This notation means that

in the homothetic pencil of quadratic complexes

U = i

2 %^;Xj+p{xx) — 0,

two, which are simply singular, have fallen together. This

gives the limiting case of the general complex when two

spheres of inversion fall together. As, however, they are

mutually orthogonal, in the limiting case the double sphere

must be null. The vertex of this double sphere must be

a conical point for the cyclide, for the surface is anallagmatio

in three mutually orthogonal spheres containing this point.

Theorem 34.] The cyclide of the type [2 111] w penta-

spherical space has one conical point, and is anallagmatic

in three mutually orthogonal spheres through that point. It

is covered with, eight systems of circles, residual in pairs,

of ivhkh one pair of systems pass through the conical point.

Theorem 35.] The cartesian cyclide of type [2 111] may
be inverted into a non-degenerate quadric surface, not a

surface of revolution, unless the fundamental null sphere is

planar.

Let us next take the type [(1 1) 1 1 1]. Here there will

be a doubly singular complex in the homothetic system,

whose correlative is a series of spheres. We may write the

general equation for our complex

'Vo
2 + "r''i

2 + «2''2
2 = «. (17)

Theorem 36.] The pentaspherical cyclide of the type

[(1 1)111] has two conical points, and is the envelope of the

spheres of a general conic series.
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A tangent sphere to our surface will have the coordinates

y = (
a

o + k
)
x
o< 2/i = K + A

)
a;i» 2/2 =K + A

)
fl32.

yz
^\x.

6 , yi
= \xi

.

For the sphere orthogonal to x
s
— *4

= we have X = 0.

Putting . . , „&
Vi = n

i
x

i,
l = °. l

>
2 -

Our surface is the envelope of the conic series of spheres

-
2/o

2 + - Vi + -2/2
2 = °> 2/3 = yt = 0.

(.('fi Ct-i \A/n

Theorem 37.] The pentaspherical cyclide of the type

[(1 1) 1 1 l] has seven systems of circles. Six are mutually

residual in pairs. The circles of the seventh system all pass

through ttuo conical points and are characteristic circles

of the sphens of a general conic series which envelop the

cyclide.

Theorem 38.] The Euclidean cyclide of the type [(l 1) 1 1 l]

may be inverted into a quadric cone, not of revolution, unless

the fundamental null sphere is planar.

As a last type consider [(1 1) (1 1) l]. Here there are two

distinct doubly special complexes in the homothetic system

;

the surface may be enveloped in two ways by the spheres of

a conic series.

Theorem 39.] The cyclide of the type [(11) (11)1] is a

Dupin cyclide.

The Dupin series and cyclides have only been denned in

cartesian space, but the definitions carry over immediately.

We have already defined as confocal two quadratic com-

plexes whose correlatives are homothetic ; the cyclides generated

by the null spheres of confocal complexes shall be defined as

confocal cyclides. If our original cyclide have the equation

(9), the general form for the confocal system will be

= (xx) = 0. (18)

:0
a

i + X
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Theorem 40.] The cyclides which are irreducible and
confocal with a general cyclide are themselves general. The

five fundamental spheres, each counted tivice, are the only

reducible cyclides in a general confocal system.

We mean, of course, by a general confocal system one

composed of general cyclides. We see at once in (18) that

if (x) be known, we have a cubic equation in A.

If Aj and A
2
be two roots, and we take the tangent spheres

(x'), (x") where

(,-',-) = 2

a
i
+ A

1
* a; + K

X;-

1

A
2
-A,

i i=4
: xr >r X:

., = /(
;
+A

i
, = o

a
'-
+ A

2.

= 0.

Theorem 41.] Through each point of space ivill pass three

mutually orthogonal cyclides of a general confocal system.

The word ' space ' here means ' pentaspherioal space '
; in

cartesian space we must restrict ourselves to tbe finite domain.

We havo from the Darboux-Dnpin theorem :

Theorem 42.] The lines of curvature of a general cyclide

are its intersections ivith confocal cyclides.

We get immediately from our definition, or from (18),

Theorem 43.] Confocal cyclides have the same focal curves.

The fact that the focal curves of a cyclide are of the same

type as the intersections with an arbitrary sphere leads to

some curious results.* AVe start with the general cyclide

(aar) = (xx) = 0. (9)

* The remaining theorems in this chapter are due to Darboux, Sur une

classe, cit., pp. 327 ff. The proofs there given are not easy to follow.
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Let (y) be an arbitrary sphere, and consider the cyclide

Vi

.„ a
t
+ Af a= + A

t = 4 1=0 t
,«; + A

= 0. (19)

This -will be found to be anallagmatic in (y). The tangent

sphere at (as) orthogonal to (y) will be (x'), where

Vi

-i = * .

X
i

«,-+ A
Vi

La,
;
+ A,

1 = *

2k+^/!=m = o.

The intersection of our original cyclide with (y) will be

a focal curve for the new cyclide. By varying A we get

a confocal system of new cyclides, and each is tangent

along a cyclic to a cyclide confocal with the original one.

Theorem 44.
J

The cyclides having for one focal curve the

cyclic common to a general cyclide and an arbitrary sphere

are confocal, and each is tangent along a cyclic to a cyclide

confocal with the original one.

Conversely, let us take an arbitrary cyclido tangent along

a cyclic to the general cyclide of our sy&tem,

:«A + A
+ A {zxf - 0.

If we write

yi = (
ai+^) z

i, * = - 2 V;

a,-+\

we fall back on (19).

Theorem 45.] The focal curves of all cyclides touching

a general cyclide along a cyclic lie on cyclides confocal with

the given one.

Theorem 46.] If a sphere cut a general cyclide in a cyclic,

that will be a focal curve for five cyclides each containing one

focal curve of the original cyclide.
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We see, in fact, that, considered as envelopes, the focal curves

are limiting cases of the confocal cyclides ; we then apply 44].

Several ideas for continuing the geometry of pentaspherical

space will occur to aDy one after reading the preceding

chapter. We have made no mention of problems of con-

struction ; it would be easy to lead up to the solution of the

problem of drawing a sphere tangent to four others exactly

as we did to the corresponding problem in Ch. IV. It seems

certain that some of the other cyclides deserve a more detailed

study than we have given to any but the general and Dupin

cyclides. The residuation theory for curves on cyclides should

be easy and interesting.



CHAPTEK VIII

CIRCLE TRANSFORMATIONS

§ 1. General Theory.

We have frequently had occasion, especially in Ch. IV,

to draw distinction between the cartesian and the tetracyclic

planes. There h a one to one continuous correspondence

between their circles, but not between their points, for they

have different connectivity. In the cartesian plane we con-

sidered, besides the angles of circles, the positions of their

centres and the magnitudes of their radii. In the tetracyclic

plane we considered only those properties of circles which

are invariant for inversion, or for quaternary orthogonal

substitutions. No circle has an absolute invariant under

this group, although the expression (xx) is a relative invariant.

The cosine of the angle of two circles is, however, an absolute

simultaneous invariant of two not null circles, and they have

no other invariant independent of this.

We next observe that although we have said a good deal

about this invariant we have paid next to no attention to

the transformations themselves, except the inversions and

conformal collineations of the cartesian plane. It is the

purpose of the present chapter to discuss the various types

of circle transformations and the groups thereof.*

Let us begin by defining as a circle transformation, any

analytic transformation that carries circles of a plane into

circles. In circle coordinates this will be

i — i \ o *'i *2 ""a *4 />

* For aa elaborate treatment by pure geometry see Sturm, Theorie der

geometrischen Verwandtschqften, vjI. iv, Leipzig, 1909. An admirable analytic

introduction is given by DOhlemann, Geometrische Transformationen, cit.
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where (x') represents a circle. If, further, null circles are

carried into null circles,

(.r.v) = k(.v'.v')».

Here k must be a function of the coefficients of the trans-

formation only, as otherwise not null circles of the congruence

Jc = would be carried into null circles.

Let us next assume that our transformation is algebraic

and one to one. Such a transformation might be engendered

as follows. The circles of the plane are in one to one corre-

spondence with the point:; of a three-dimensional projective

space ; the null circles in one to one correspondence with those

points of the space which lie on the Absolute quadric. If we
take the most general Cremona transformation of space

which leaves the quadric in place, we have the required

circle transformations. Now this Absolute quadric may be

stereographically projected on the projective plane, and the

Cremona transformation of space in question will give

a Cremona transformation of that plane. Conversely, let a

Cremona transformation of the plane be given. If that be

expressed in tetracyclic coordinates, it will be a transformation

of projective space which leaves the Absolute quadric invariant.

There remains, lastly, the question, could not two different

Cremona transformations of projective space produce the same

Cremona transformation of the Absolute quadric? If such

were the case, the product of the one and the inverse of the

other would be a Cremona transformation where all points

of the quadric were invariant. Such transformations do not,

however, exist. For suppose we had one,

Putting .>•/ = .r,-, and eliminating p,

*ifj—vjfi = °-

We must then have

Solving these equations for/,-, we find that each /,- contains
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(xx) as a factor, an absurd result, as we should naturally

remove such a factor at the start.

Theorem l.J The group of all algebraic circle transforma-

tions of the plane which carry null circles into null circles

is simply isomorphic with that of all Cremona transformations

of the cartesian plane.*

An interesting sub-group of these transformations is com-

posed of those which carry tangent circles into tangent circles.

We shall reserve to a subsequent chapter the discussion of

these. Let us rather note that although our transformations

carry points into points, and circles into circles (in the tetra-

cyclic plane), we have not yet required that they should carry

points on a circle into points on another circle. For this we
require the additional restriction

(ax) = (ax') if (x'x') = 0.

The first of these equations must be independent of the

second, for —-, = const, for all values of (x') where (x'x') — 0,

1-e - pi, = b
ij + k(x'xy.

Ix, lJ v
'

This equation is not homogeneous, as it should be unless

Jc = 0.

Now the most general analytic transformation of four

homogeneous variables that carries a linear form into a linear

form is a linear transformation, and since (xx) is covai'iant,

we shall always have

V(xx) V(yy) V(x'x') V(y'y')

'

Theorem 2.] The most general transformation of the tetra-

cyclic plane that carries a point into a point, and the points

of a circle into points of a circle, is an orthogonal substitution.

We shall call such transformations circular transformations,

and study them in detail analytically presently. For the

* Nothing seems ever to have been published about these general trans-

formations. The Author's attention was called to them by a conversation

with his colleague Prof. C. L. Bouton.
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moment we confine ourselves to the real cartesian plane, and

approach the subject of circular transformations by pure

geometry.*

We begin by returning to the domain of Ch. I, the real

finite cartesian domain, and inquire what will be the nature

of a transformation -which is one to one, with the exception

of a finite number of exceptional points, and carries points

on a circle or bne into concyclic or collinear points. Let

such a transformation be called T. P, and P\ two corresponding

points. The circles through P will go into circles through P'-

If we precede T by an inversion with P as centre, and follow

it by an inversion with P' as centre, we have a transformation

T' of the same type as T, which carries lines into lines. It is

clear that parallel lines will go into parallel lines, for if two

intersecting lines were carried into parallels, the oc
2 circles

through the intersection would go into x- circles meeting

each parallel once; such circles do not exist in such numbers.

A parallelogram -will go into a parallelogram, an inscriptible

parallelogram into an inscriptible parallelogram, i.e. a rectangle

into a rectangle, a square into a square, since a square is the

only rectangle -with mutually perpendicular diagonal lines.

Now a necessary and sufficient condition that a point should

be between two others is that every line through this point

should intersect every circle through the other two twice, and

this is invariant under our transformation T'. Let T' cany

the square ABCD into the square A'B'C'D'. We may follow T
by a rigid motion of the plane and a similarity transformation

which carries A'B'C'D' back into ABCD, when corresponding

orders of letters correspond to the same sense of progress about

the perimeters of these squares. Where the sense of progress

is opposite, we may accomplish the desired result by first

reflecting in a diagonal line of one square. In any case we get

a transformation T" of the same type as 2", which leaves

* The groundwork of what follows is from Mobius's Collected Works,

Tol. ii, p. 243, Leipzig. 1SS6. He defines a circular transformation as being

necessarily continuous, but we have avoided that assumption by following

Darboux, ' Sur la geometrie projective ', Math. Annalen, vol. xvii. 1SS0.

and Swift, ' On the Conditions that a Point Transformation of the Plane be

a Projective Transformation', Bulletin American Math. Soc. vol. x, 190i.
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ABGD in place. Now if a square be invariant, every square

contiguous, that is, sharing one of its sides, is invariant.

Moreover, if a square be invariant, the four equal contiguous

squares into which it can be divided will be invariant, Hence

the plane is covered with an everywhere dense network of

invariant squares of sides as small as we please, and as

betweenness is invariant every point is invariant. Hence

T" is the identical transformation, T' is a conformal collineation,

and T is the product of such a collineation and inversions.

As a matter of fact, if T be not itself a conformal collineation,

it will carry straight lines into circles meeting in only one

point not exceptional for the transformation, i.e. into circles

through a singular point, and may be factored into the product

of a conformal collineation and an inversion with the singular

point as centre.

Theorem 3.] Every circular transformation is either a

conformal collineation, an inversion, or the product of

the two.

Theorem 4.J Every circular transformation is conformal.

We may sharpen our idea of conformal transformations by

using the angular notation described on p. 20. If

%-ABG = i-A'B'C,

i-.ABC=-i-A'B'C or %-ABG = %_V B'A'.

The first equality holds when the two directed angles have

the same sense of description, the second when they have

opposite senses.

Suppose now that we have a conformal collineation, and

that

^ABC = 4-A'B~'~(?-, 4-TBC'= 4-ADU.

Hence ABGD are concyclic, as are A'B'C'D'.

t_A'D'G' = t-A'B'C' = 4-ABC=%-ADG.

Here %-ADC, 4-A'D'C are any two equal angles; we may
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at once extend to the case of any two commensurable angles,

and so to any two angles, so that if

4_ABC= ^A'B'C,

then £_ HKL = $_ i/' A" L'.

Such a collineation is said to be directly conformed ; if the

sense of description be reversed in the case of one angle it

will be for every angle, and the collineation is said to be

inversely conformal. The concepts of directly and inversely

conformal may be extended from collineations to conformal

transformations of any sort ; in the one case the sense of every

angle is preserved, in the second it is reversed. Since by

I. 9] an inversion is an inversely conformal transformation,

if we factor a circular transformation into a collineation and

an inversion, the circular transformation will be directly

(inversely) conformal if the collineation be inversely (directly)

conformal.

Theorem 5.] The group of all circular transformed ions

depends upon six parameters, and has a six-parameter sub-

group of all directly conformal circular transformations,

and a six-parameter sub-assemblage of all inversely conformed

circu lar t ra nsformat ions.

We may find the number of parameters by counting the

amount of freedom in conformal collineation, and in an inver-

sion, or by the number of arbitrary points presently to be

determined. The sub-group is called the group of direct

circular transformations, the sub-assemblage is composed of

the indirect ones.

Consider a directly conformal collineation. If there be no

fixed point it is a translation. If there be a fixed point,

the product of this transformation and a properly chosen

similarity transformation is a directly conformal collineation

which keeps one, and hence all, distances invariant. Let

the reader show that this must be a rotation or translation

;

hence

Theorem 6.] Every direct circular transfomiation may
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be factored into an even number, and every indirect one into

an odd number of inversions or reflections.

We shall determine the minimum values for these numbers

with greater precision later. Our theorem is of importance

as showing the basal role played by inversion in the theory

of circular transformations ; it is, in fact, the reason why
inversion lies at the very heart of the geometry of the circle.

Theorem 7.] Every direct or indirect circular transforma-

tion is completely determined by the fate of three points.

We leave the proof, which is very simple, to the reader.

The great use of the theorem is that it enables us to write

the analytic expression for the most general circular trans-

formation of the cartesian plane. If x and y be the cartesian

rectangular coordinates of a real finite point, let us put

z = x + iy, z = x— iy.

A real circle will have an equation of the type

Izz + iJ.z + J.z + n = 0.

The most general real direct circular transformation may
then be written*

yz + o yz + o

The most general real indirect one will be

'-7I# *-£# <"-*>**
<

2
>

Let us confine ourselves for the present to direct transforma-

tions. Suppose that the four points A, B, G, D are carried

* For a truly admirable discussion of circular transformations starting

with these equations see Cole, ' Linear Functions of the Complex Variable ',

Annals of Mathematics, Series 1, vol. v. Also Dohlemann, loc. cit.
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into the points A', B', C. D' . For any inversion of reflection

we have by I. 4] and 7]

4-CBA+4-ADC = - (4-C'£'A' + 4-A']yC'). (3)

(AB) (CD) _ {A'B') {CD')

(AD)(CB) (A'D')(G'B')
(*)

The first of these expressions is called the double angle of

the four points, the second their double ratio*

Theorem 8.] In every direct circular transformation double

angles and double ixitios are invariant.

It is worth while to verify this analytically. It four points

correspond to the parameter values :
1 , c

2
. :

s
. :

4 , and the trans-

formed values are ;/, :./. :,'. :,',

(-1--4.H--3—"a) l-i'--*'l(-V—'a')

Now (~ 1
~ :») — (AB), and by taking the absolute values

of botb sides we find the equal double ratios. Again, the

argument of :
x
— ~

2
is the angle which the line AB makes with

the axis of jr. so that

argument ~—^ = 4-^BA.

The argument of the left-hand side of the equation is thus

4-CBA+4-ADC.

Theorem 9.] The modulus of the cross ratU) offour values

of the complex variable is the double ratio of the four corre-

sponding points in the Gauss plane; the argument is the

double angle of these four points.

Theorem 10.] A necessary and sufficient condition that

four real points of the cartesian plane should be coiwyclic or

collinear is that their double angle should be eongment to

0, mod. 77.

* These invariants are due to MSbius, loc. cit.
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Theorem 11] A necetsary and sufficient condition that

four points should be orthocyclic is that their double ratio

should have the value 1.

Since harmonic points are both concyclic and. orthocyclic,

their double angle is zero and their double ratio unity.

Let the reader show that in tetracyclic coordinates

(xy) (zt) fo-ggHza- z
4) ^ (z

t
-g

2
)(i

3
-i4)

|

{xt) (yz) ~ (z
x
- z4) (03

- z.J (s
t
- i4) (53

- z
2
)

'

The expression for the double ratio is thus

J:
(gy) {zt)

(xt) (zy)

To find the expression for the double angle we take the

special case where three of the points are the origin, the unit

point of the x axis, and the infinite point (there is but one in

the Gauss plane). We thus get

• t 1 1 -j i\xyzt\
sin double 4- = — —^=^—=—=

V{xy) V{zt) V{xt) V(yz)

Let us find the locus of a point in space forming an ortho-

cyclic set with three given points B, C, D. We wish to find X,

so that

(
XB) (CD) _
(XDJlCB)'

1 '

One point of the locus will be A, the harmonic conjugate of

C with regard to B and D. Wheu A, B, C, D are collinear, we
see, by elementary geometry, that the locus is the sphere on AG
as diameter. Moreover, since double ratios are invariant for

inversion in three dimensions, the locus is always the sphere

through B and D orthogonal to the circle BCD. More
generally, if

(XB) (CD) _
[XD) (CB) ~ '

we see that the locus of X is a sphere orthogonal to the

circle BCD.

Two circles shall be said to be in bi-involution if every sphc re

through one be orthogonal to every sphere through the other.
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This relation is clearly invariant for inversion in three dimen-

sions, and if one circle be inverted into a straight line, that

line will be the axis of the inverse of the other circle.

Let A and C lie on a circle, B and D on another in bi-

involution therewith. Taking a centre of inversion on the

AC circle,

(AB)(CD) (A'B') (CD')

(AD)(CB)~ (A'D') (CB)~ '

since (A'B') = (A'B'), (CD') - (CB').

(AB) [CB)
Hence

(AD) (CD)

Theorem 12.] If two circles be in la-involution the ratio

of the distances of any point on one from two fixed points

of the other depends merely on the position of the latter.*

We write again

(-1--;>(-.,-O (AB)
{
CD)

(AD)(BC)

If our four points be on a circle, the double angle is zero

or 77. Assuming that A, C separate B, D, we see from the

special case of points on the x axis that

l--i--i)fo--V (CB)(AD)

(=i—-sU-s—'J _ UC){BD)
^—-3)^1—-,) (BC)(AD)

(AC) (BD) = {AB) (CD) + (AD) (BC).

This last equation proves Ptolemy's theorem by a method

that surely would have surprised Ptolemy.

We easily see from ll] that the locus of points forming

definitely paired orthocyclic sets with three given points and

lyiDg in their plane is a circle, hence

Theorem 13.] A necessary and tvfncient condition that

a one to one transformation of the finite domain of the real

* Mobius, l.'C. eit., p. 277. and Charles, loc. cit., p. 559.
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plane, should be a circular transformation, is that double

angles or double ratios should be invariant.

Among circular transformations inversion enjoys the advan-

tage of being involutory. It is, however, indirect. There is

a direct involutory transformation which we reach as follows.

Let us start with two conjugate coaxal systems. Each point

P, other than the limiting points of one coaxal system, will

determine a circle of each system, and these two shall inter-

sect again in P'. The transformation from P to P' is clearly

involutory, and shall be called a Mobius involution. If we

invert one coaxal system into a pencil of radiating lines,

we see that corresponding points are harmonically separated

by the limiting points of one coaxal system. The inverted

transformation is clearly a circular transformation ; hence we
have in general a circular transformation. In the inverted case

it is the product of the reflections in any two mutually per-

pendicular lines of the radiating set ; hence

Theorem 14.] Every Mobius involution is the product of

inversions in any two mutually orthogonal circles of a deter-

minate coaxal system through two points.

It will be convenient to extend the term 'Mobius involu-

tion ' to include the limiting case of a reflection in a point,

which is the product of reflection in two mutually perpendicular

lines, and from now on we understand the term to be so

extended.

Theorem 15.] A Mobius involution may be found to inter-

change any two pairs ofpoints.

If the two pairs be concyclic, the two circles orthogonal to

the given circle through the two pairs of points will determine

conjugate coaxal systems, or concentric circles and radiating

lines through their centres, and so the involution required.

Suppose that they are not concyclic, and that P and Q are

to be interchanged with P' and Q' respectively. We first

invert in such a circle of antisimilitude of the circles PP'Q,

PP'Q', that Q passes to Q2
on the circle PP'Q', where QL

is not
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separated from Q' by P and P', then interchange Q1
and Q'

by inverting in a circle of the coaxal system with limiting

points P and F'.

Theorem 16.] Every invohdory direct circular trans-

formation is a Mobius involution.

Such a transformation is surely determined when we know
two pairs that are interchanged, but we may find a Mobius

involution to interchange any two pairs.

Theorem 17.] If a direct circular transformation inter-

change a single pair ofpoints it is a Mobius involution.

Suppose that such a transformation carry ABCC into

BAC'G". If we follow with the Mobius involution

BAG'C" ~ ABCC,

the product will have three fixed points and so be the

identical transformation.

Theorem 18.] Every direct circular transformation is the

product of two Mobius involutions*

Suppose that we call our transformation T and determine

it by ABG^A'B'C.
Consider the Mobius involution I which interchanges

A and B', A' and B. Then under TI

B'A'K - A'B'C.

Hence TI is an involution J, or T = JI.

Theorem 19.] If an indirect circular transformation be

invohdory, it is either a reflection, an inversion, or the product

of an inversion and a reflection in the centre.

If it be a collineation, it could not be a reflection in a point,

since this is direct. There can be no self-corresponding

* It. is instructive to compare these last theorems and 7] with theorems

4] to 6] of ch. iv. Lot the reader give the analytic reason for the similarity.



318 CIRCLE TR VNSFORMATIONS ch.

points, hence lines connecting corresponding points are all

parallel, and we have a reflection in a line.

Suppose, next, that it is not a collineation. Three non-

concurrent and not parallel lines will go into three concurrent

circles, since the sum of the angles of the arcual triangle must

be tt. Any other line in the plane will go into a circle or line

meeting each of the first three in only one point not singular

for the transformation. Hence lines go into circles through

a point 0. If P and P' be two corresponding points not

collinear with 0, the circle OPP' and the line PP' are inter-

changed. The angle from (PP') to arc PP' at P would be

equal to the negative of the angle at P' from the arc P'P to

(P'P)- But evidently these angles are equal both in magni-

tude and sign. Hence corresponding points are collinear with

0. If P and P' be not separated by every circle through

P and P' is transformed into itself, and clearly we have an

inversion. If P and P' be separated by it is the product of

an inversion and a reflection in 0.

§ 2. Analytic Treatment.

The majority of facts so far noted about circular transfor-

mations have been reached by the methods of plane geometry.

It is now time to make a more detailed study of the analytic

aspect of these transformations. We shall take as our domain

the real sphere, or a real tetracyclic domain such as the Gauss

plane, the real finite cartesian plane made a perfect continuum

by the adjunction of a single point at infinity. This may
also be defined as that region of the general tetracyclic plane

where x is proportional to a pure imaginary number ; each

other x is proportional to a real number. Since the groups of

circular transformations of the cartesian and tetracyclic planes

are simply isomorphic, we have made no essential alteration

by such a choice of domain. We express our domain para-

metrically in terms of the isotropic parameters. Recalling

the equations of IV,

(6)
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We rewrite IV (13) in non-homogeneous form :

i, = c5-l,

.('., — z + z,

•**= ~i {:-':).

We get the whole tetracyclic plane by removing the

restriction that z and z should have conjugate imaginary

values. Real direct circular transformations will be given

by (1) and indirect ones by (2). A direct transformation

has the form of a complex one-dimensional projectivity, so

that our theorems 16] to 19] might have been deduced from

familiar theorems of projective geometry.*

The inverse of our trans lormation (1) will be found by

interchanging a and — 8 ; a necessary and sufficient condition

for a Mobius involution is thus

a + 5=0. (8)

On the other hand, the inverse of (2) is

;==¥¥ C)
y- -a

The transformation (2) will thus be involutory if

8 = -a, ,3 = = 11, y = y = C. (10)

All points of the circle

cz~+bz + lz-b=0 (11)

are invariant. If this be real, we have an inversion ; if self-

conjugate, imaginary, the product of an inversion and a Mobius

involution.

If we follow our transformation (1) by

„ _ <x'z' + i3

'

y s +o

* This point of view is emphasized by Wiener, loe, cit. Much of the

following discussion is taken from an article of unusual excellence by

Von Weber, 'Zur Theorie der KreUverwandtschaften in der Ebene',

MBncfaner Berkh't, xxxi, 1901.
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the product will be

(a
/« + /3'y)z+(«

/

/
3 + /3

/

8)

(/a + 5'y)2 + (//3 + 8'8)'

If (2) be followed by

(12)
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Theorem 20.] Gorresponding points in a parabolic trans-

formation lie on tangent circles through a fixed point.

A transformation of a non-parabolic type will have distinct

fixed points. It may be written in the highly suggestive

form

Z'—z = ,e — -:
•

(
irv

z — *
2 ~ — -

2

The expression re' is called the invariant of the transfor-

mation. Let the reader show that in the cartesian plane r will

give the double angle of two corresponding points and the

fixed points, while 6 gives the corresponding double ratio.

The point of the word ' invariant ' is that if we carry our

transformation into an equivalent one by means of a circular

transformation, the invariant does not change in value. Taking

as the fixed points those which correspond to the parameter

values co and 0, we get the canonical form for our non-

parabolic transformation

z'=rei9
z. (17)

We see from this that there are three standard types of

these transformations

:

Hyperbolic = (mod. 77).

Coii'esponding points are concyclic tcith the fixed points.

Elliptic r=l.

Corresponding points are orthocyclic with the fixed points.

Notice that a Mobius involution may be classified under

either of these types.

Loxodromic ''t^ 1> £ (mod. tt).

This we might naturally call the general case. Corre-

sponding points will lie on the same double spiral which

circulates around the two fixed points and meets at a fixed

angle all circles through them.

Theorem 21.] The only periodic circular transformations

are of elliptic type.
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Suppose that we have two non-parabolic direct transforma-

tions with one common fixed point. We may take this to

correspond to z — co.

z'— z
1
= re'

6
(z—Zj).

z"~z2
= r'e

i9
'(z'-z

2).

z" = r'e
i6 '

[re
ie

(z - «,) + (z,- ?,)] + z,.

(z"-z.
i
)=rr'eiie+e

'

) {z-z
i
.).

Theorem 22.] If two non-parabolic direct transformations

have one common fixed point, the invariant of their product

is the product of their invariants.

Consider a hyperbolic transformation with fixed points

H and K which carries P into P'. Take any circle which

has H and K as mutually inverse points, and invert. Let

P' be carried into P
1

. Wo can find a second circle of

inversion interchanging H and K which carries P
t
into F'.

The product of these two inversions will be a direct trans-

formation with H and K fixed and carrying P into P', i. e.

our original hyperbolic transformation. Let the reader show

similarly that an elliptic transformation may be factored

into the product of two inversions in circles through the fixed

points, and a parabolic transformation may be factored into

the product of inversions in two tangent circles. Conversely, if

we have two inversions, their product will transform into them-

selves all circles orthogonal to the two circles of inversion.

Theorem 23.] The hyperbolic, elliptic, and parabolic direct

transformations, and these alone, are the product of two

inversions.

Theorem 24.] A necessary and sufficient condition that

the product of three inversions should be an inversion is

that the three circles of inversion should be coaxal, or else the

circles of two successive inversions should be orthogonal to

the third circle of inversion.

Theorem 25.] The product of two inversions may be

replaced by that of two other inversions whereof one has
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a circle taken at random in the coaxal system determined by

the ttvo given circles of inversion; the second inversion is

uniquely determined by the first.

There are certain problems in construction associated with

direct circular transformations which should now claim our

attention. The postulates assumed are those of Ch. IV.

Problem l.J G-iven tiro }jairs of 'points corresponding in

a Mobius involution, tofind the mate of any point.

When the two pairs are concyelic, this has already been

done in Ch. IV, problem 8. If not, suppose that the involu-

tion is given by the pairs PP' and QQ', and we wish to find

R' the mate of i?.*

Let the harmonic conjugate of R with regard to PP' be B
x ,

that of i?j with regard to QQ' shall be RJ2 ; in like manner the

harmonic conjugate of R with regard to QQ' shall be R2 , while

that of R
2
with regard to PP' shall be R21 . Lastly, the

harmonic conjugate of R with regard to R10 R.n shall be R,

while R' is the required point. Let us first take the product

of the two Mobius involutions with fixed points PP' and QQ'.

We have a direct transformation whose fixed points are those

of the given involution. If, further, we operate with a Mobius

involution whose fixed points are RR'
S
these last-found fixed

points are interchanged. Hence the product of these three

involutions is an involution. The product of the involutions

having the successive pairs of double points PP', QQ', RR',

PP', QQ' is the involution with the double points RR', but

this involution will carry R
12

into R
2l

. Hence R and R' are

harmonically separated by R
12
and i? 21 , and the problem con-

sists in finding a succession of harmonic conjugates, and was

solved in Ch. IV.

Problem 2.J Given a direct transformation by means of

three sets of corresponding jioints, to find the mate of any

point.

We have but to factor our transformation into two involu-

tions by means of 18], then apply the solution of problem 1.

* Cf. Wiener, loc. cit.
, pp. 670, 671.
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Problem 3.] Given two jjairs ofpoints of a Mobius involu-

tion, to find the double points.

Tins is a problem of the second degree. We may, by the

solution of problem l], find as many pairs of corresponding

points as we please, and so construct as many pairs of

corresponding circles as we like, through two chosen corre-

sponding points. These circles will cut on any circle through

one of the latter points, two ranges of points in one to one

reciprocal algebraic correspondence, i.e. an involution, and the

double points of this involution must be real, since they lie

on real self-corresponding circles of the Mobius involution.

We may thus, by Ch. IV, problem 7, find the double points

of the involution on the circle, and so two self-corresponding

circles of the transformation. On one of these circles find

two pairs of corresponding points, and through each pan- pass

a circle orthogonal to the given circle. Then either these two

intersect in the two self-correspondiDg points sought, or else

those points are the limiting points of the coaxal system

determined by these circles.

Problem 4.J Given two Mobius involutions, to find their

common pair.

We find the fixed points of each, then the fixed points of

that Mobius involution having them as two pairs.

Problem 5.] Given a direct circular transformation, to

find the fixed points.

We factor the transformation into two involutions, then

apply the solution of the last problem.

Let us now turn to the classification of indirect transforma-

tions. We see that the square of an indirect transformation

is a direct one. The fixed points of the direct transformation

were either interchanged or fixed in the indirect one. We
thus get the following types of indirect transformation, the

points mentioned being, when distinct, those which correspond

to the parameter values oo, 0.

Hyperbolic z = re'
e
z, 5' = re

"
" z'

.

(18)
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Two real points are fixed, two conjugate imaginary ones

interchanged. The circles through the fixed points are inter-

changed, two being invariant ; the circles orthogonal to these

are also interchanged, but no real ones stay in place.

Elliptic z'z=re\ ;:' = r<T
:

°.
(19)

Two real points are interchanged, two conjugate imaginary
ones invariant. Circles through the interchanging points are

interchanged, none invariant. Circles orthogonal to these are

interchanged, one real and one self-conjugate imaginary one

invariant.

Parabolic z'=~+x z'=: + y. (20)

No fixed proper circle. Members interchanged in each of

two orthogonal systems of tangent circles.

J aversion z'z=z:'=k'2
. (21)

Product of inversion and Mobius involution

z'Z = z:'=-k\ (22)

Let the reader, -with the aid of 24], complete 6] as follows

:

Theorem 26.] Every indirect circular transformation may
be factored into three inversions ; even/ direct one may be

factored into four inversions.

The last statement may also be proved immediately

from IS].

Let us turn aside for a moment to consider the effect of

a real circular transformation upon the imaginary points of

our domain. Suppose that we take an imaginary point of our

tetracyclic plane, which we shall here suppose a real sphere.

It will have parameter values (:, :'). On each of the isotropics

through this point will lie one real point, namely, the points

(z~\, (:':'). Conversely, to each pair of real points (zz\ {:':')

will correspond two conjugate imaginary points (zz'j. (:':).

The geometrical interpretation is as follows in the case of

a sphere. If two real points be given, we may draw tangent

planes to the sphere thereat, which planes meet in a line
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without the sphere. Conversely, if such a line be given,

through it we may draw real tangent planes.

Suppose, next, that we have a real indirect transformation;

what will be the locus of the pairs of conjugate imaginary
points associated in this with corresponding pairs of real

points under the transformation ?

_, CK2 + /3 , oTz + fi
z = z> z — =— a

yz + o yz + h

yzz + lz —ocz—13 — 0, yz'z— lz'— ckz -/3 — 0.

Theorem 27.] If a real indirect circular transformation

be given for a real sphere, the polars with regard to that

sphere of the lines connecting pairs of corresponding points

will intersect two conjugate imaginary circles of the sphere.

These circles will fall together when, and only when, the

transformation is an inversion in a real or self-conjugate

imaginary circle.*

A curious figure arises when we consider the corresponding

problem for a direct transformation

:

, otz+p _, ai + /5
Z = J Z = -=r^ =- •

yz + h yz + o

yzz' + bz'-ocz-j3 — 0, yzz +Sz'-ocz-i3 = 0.

We have two assemblages of points depending on two real

parameters, but not on one complex parameter.

Theorem 28.] If a real direct circular transformation be

given for a real sphere, the polars with regard to that sphere of

the lines connecting corresponding points will meet the sphere

in pairs of points depending on two real parameters. These

systems are characterized by the fact that the corresponding

cross ratios of the four isotroi^ics of the two sets through four

points are conjugate imaginary.

It is to be noted that the real domain is a special case of

one of these systems.

* Von Weber, loe, cit., pp. 383 ff. See also Study, Ausgew'dhlte Qegenstande

der Oeometrie, Part 1, Leipzig, 1911, p. 32.
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We next turn our attention to the question of commutative
transformations. We begin by recalling the familiar fact that

in any group of transformations those which are commutative
with a chosen member will form a sub-group. In fact, if

TA = AT, TB = BT,

then TAT~ l = A, TBT~ l = B,

and TABT- 1 = AB, TAB = ABT.

It is also to be noted that if two transformations be commu-
tative, each must leave invariant or permute all points which
are invariant in the other.

A.] Two direct transformations. If neither be involutory

they must have the same fixed points. Conversely, we see at

once from formulae (15) and (17) that two direct transforma-

tions with the same fixed points are commutative. If one

be a Mobius involution and the other not, the fixed points

of the Mobius involution must be fixed for the other. Lastly,

we see that harmonic pairs will determine two commuta-
tive Mobius involutions, each interchanging the other's fixed

points.

Theorem 29.] A necessary and sufficient condition that

two direct circular transformations should be commutative

is that they should have the same distinct or coincident fixed

points, or that they shmdd be two Mobius involutions whose

fixed points separate one another harmonically.

B.] A direct and an indirect transformation. If the indirect

one be not involutory, the fixed points of the direct one must

be fixed or interchanged thereby. If the indirect one be

hyperbolic, the two fixed points might be interchanged if the

direct one were involutory. Otherwise the fixed points and

real fixed circles of the indirect transformation must be fixed

for the direct one also, i. e. the direct one is hyperbolic also.

If the indirect one were elliptic, the direct one might be

involutory, and either keep invariant or interchange the

interchanged points of the indirect one, or else the direct

one might be elliptic, keeping invariant the interchanging
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points of the indirect one. If ODe were parabolic, the other

would have to be parabolic, if not involutory. On the

other hand, it is easy to see from equations (17) to (20) that

an inversion is commutative with any direct transformation

whose fixed points are either invariant or interchanged, and

these same equations show us the sufficiency of our necessary

conditions.

Theorem 30.] If a direct and an indirect circular trans-

formation be commutative, neither being involutory, then both

are hyperbolic or parabolic with the same fixed points, or the

interchanging points of an elliptic indirect transformation

are fixed in the elliptic direct one. If the direct transforma-

tion be involutory, its fixed points are either fixed or inter-

changed in the indirect one. These conditions are both

necessary and sufficient.

C] Two indirect transformations. If neither be involutory,

they will be hyperbolic, elliptic, or parabolic together, with

the same fixed or interchanging points. If one be involutory,

it must either keep fixed or interchange two points which

are fixed or interchanged in the other, or transfer them to

another pair of fixed or interchanging points. If both be

inversions, they must either have the same circle of inversion

(in which case they are identical) or else their circles of

inversion intersect orthogonally. If one be an inversion and

the other the product of an inversion and a Mobius involution,

the circle of inversion must be invariant in the other trans-

formation. Two transformations of this latter type cannot

be commutative, for if two self-conjugate imaginary circles

could intersect orthogonally, two planes conjugate with regard

to a real sphere might both be outside of it, an impossibility.

Theorem 31.J If two indirect circular transformations be

commutative and neither be an inversion, they must be hyper-

bolic, elliptic, or parabolic together with the same fixed or

interchanging points. If one be an inversion, its fixed circle

is fixed in the other. These conditions are necessary and

sufficient.
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If we have two indirect transformations

T r' = .\;+3



330 CIRCLE TRANSFORMATIONS ch.

problem of finding two points which correspond in two direct

circular transformations, i. e. the fixed points of the product

of one and the inverse of the other. This is problem 5]

above.

§ 3. Continuous Groups of Transformations.

Enough attention has now been given to individual circular

transformations; it is time to turn our attention to groups

of such. The study of finite groups is nothing but the study

of finite groups of fractional linear substitutions of the linear

complex variable. It is well known that such groups are

simply isomorphic with the groups of the regular solids.

We may consider such groups as sufficiently familiar ; in any

case they are of more importance to the algebraist than to

the geometer.* In the same way the study of infinite dis-

continuous groups would lead us into a vast field but little

germane to our present purpose.f Let us rather turn to

the geometrically more interesting study of continuous and

mixed groups. The problem here is nothing but the problem

of studying the groups of collineations of a three-dimensional

space which leave a real quadric with imaginary generators

in place.J Under a continuous group (corresponding to

direct transformations) the generators of each system are

permuted among themselves ; in a mixed group there will be

transformations where the two systems of generators are

interchanged. What can we say about three-parameter

groups? If such a group have an invariant two-parameter

sub-group it is integrable, since every two-parameter group

is integrable.§ On the other hand, if a three-parameter

group of direct circular transformations had an invariant

one-parameter sub-group, the two fixed points of the sub-

* The classic discussion is, of course, in Klein's Ikosaeder, Leipzig, 1884.

-|- Especially Klein-Fricke, Theorie der autamorpJten Functionen, vol. i, Leipzig,

1897.

X The following discussion is an amplification of Amaldi, ' I gruppi reali

di trasforcnazioni dello Spazio ', Memorie della B. Accademiu delle Sciense di

Torino, Series 2, vol. lv, 1905.

§ Cf. Lie-Scheffers, Vorlesungen fiber continuirliche Qruppen, Leipzig, 1893,

p. 563.
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group would be invariant throughout the three-parameter

group
; this is quite impossible when the points are distinct.

If the one-parameter group consisted in parabolic transforma-

tions, the single fixed point would be invariant throughout
the whole non-integrable three-parameter group. We shall

present!}- see that this is impossible.

Let us begin with the study of simple three-parameter

groups. A simple three-parauieter collineation group in three

dimensions must leave invariant either a cubic space curve,

a conic and a point not in the plane thereof, one system of

generators of a quadric, or a line and all points of a second

line skew thereto.* In the present case, where we have real

transformations leaving a real quadric with imaginary gene-

rators in place, all but the second case will be impossible.

If there be a real fixed point in three dimensions, there will

be a real or self-conjugate imaginary fixed circle in the

tetracyclic plane. The group with a real fixed circle is

simply isomorphic with the real binary projective group. It

has no fixed real point, and so is simple. There will be

two-parameter sub-groups with any chosen point of the fixed

circle fixed, one-parameter sub-groups with two fixed points

in the circle. These will be hyperbolic. There will be

one-parameter elliptic sub-groups which keep invariant a

pair of points mutually inverse in the circle : also a parabolic

one-parameter sub-group. When the three-paranieter group

leaves a self-conjugate imaginary circle in place, the only real

sub-groups are one-parameter elliptic ones. There are no

other two-parameter sub-groups in either case, for if in such

a group both fixed points might be chosen at i-andom on the

circle, the transformation would be determined by its fixed

points, which is absurd.

If there were any four- or five-parameter groups of circular

transformations, they would have to contain three-parameter

groups. A five-parameter group would have to contain a three-

parameter sub-group keeping a chosen point invariant, while

* Cf. Fano, • Sulle varieta algebriehe eon un grappo continuo non integra-

bile di trasformazioni in se ', Memorie dtUa 2?. Accademia dclle ScU-r,;, di Ton no,

Series i vol. xlri, 1S96, p. 209.
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every four-parameter group has a three-parameter sub-group.*

If our three-parameter group were contained in a four-para-

meter group it would have to be invariant, or else have an

invariant sub-group of its own.f The latter, however, is ruled

out, as we are assuming for the present that the three-

parameter group is simple. But if our three-parameter group

were invariant, i'.s fixed circle would be invariant in the four-

parameter group, which again cannot be, as the total group

with a circle fixed has but three parameters. If our simple

group were in a five-parameter group, the latter, not having

any fixed circle or point, would have to have a fixed circle

congruence composed of the transforms of the fixed circle of

the three-parameter group- Keeping any one circle of the

congruence fixed, we may carry any second circle into any

third circle thereof, as otherwise, each circle having but one

degree of freedom, we should have four-parameter groups with

a fixed circle. But escaping this absurdity, we fall into the

worse one of having a congruence of circles, each two of which

make the same angle. Our simple three-parameter group lies

thus neither in a four- nor a five-parameter one.

Let us next look at integrable groups. Every such group

has a one-parameter invariant sub-group, and the fixed points

of the one-parameter group must be invariant throughout. But

if the integrable group be of more than two parameters, the

invariant one-parameter group must be parabolic. A canonical

form for such a group will be

z' — z + b.

What two-parameter groups might include our one-para-

meter one? The second fixed point for a transformation of

such a group could not trace the whole plane. If a ^ 1 the

transformation is hyperbolic, and the only curves carried into

themselves are circles. Hence the other fixed point must lie

on a circle through the point z = co. Hence the two-para-

meter group must either be of the type

z' = az + b,

* Lie-Soheffers, loo. cit., p. 577.

f Ibid., p. 544.
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or else of the parabolic type

Now take an integrable three-parameter group. This has

a fixed point which we may take as z = x, and we have

a three-parameter sub-group of

s' = ac + ,3.

It will have the two-parameter parabolic sub-group in-

variant. The second fixed point for a transformation of the

group must be free to move over the whole plane, for if it

were restricted to a certain curve, that curve would be carried

into itself by the transformations of the group, while the

parabolic sub-group is transitive for the whole plane except

its own fixed point. Now let both points be fixed. We have

a one-parameter group of the form

s'= re's, r = }($),

r(6)r(6') = r^ + e'),

r = c
k9

.

Here k would seem to depend on the position of the second

fixed point. Such is not, however, the case. We see, in fact,

that if we take two transformations with the invariants e'V
and (.'*'"<.' '*', since, by 22], the invariant of the product is the

product of the invariants

kd + k'd'= 1(6 + 0'),

k = k'.

We thus get three-parameter groups of the form

- = e z + ,o,

where 6 and ^ are independent variables. This equation may

be written

z + J^Zi ~ '

|_~
+ ^-lj' (2o)

and it is evident, conversely from 22], that the totality of these

transformations will be a group. We shall call such a group
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a Newson group.* We characterize it geometrically by

examining the significance of the constant k. Taking for

simplicity a transformation of the group with fixed points

co and 0, we write our transformation in polar form,

,,V*' = e
(* +i)V*.

What sort of a double spiral will be carried into itself by
this transformation 1 If the equation of such be

P = e
,

we easily find A = k.

This shows that k is the tangent of the angle which the

spiral makes with a circle through the fixed points : the pitch

of the double spiral, let us say. The Newson group is thus

characterized by the fact that one point is fixed, and all double

spirals carried into themselves by transformations of the group

have a constant pitch.

We have thus covered three-parameter groups. There are

no five-parameter groups. A five-parameter group would have

a three-parameter sub-group with any chosen point fixed, and

such a group would be a Newson group. The pitch here

must be independent of the position of the fixed point, for

in any Newson group one fixed point can be chosen at

random. But this leads us to another absurdity, for it is

easy to show that if two loxodromic transformations have

different fixed points but the same pitch, the pitch of their

product is different.

If there be any four-parameter groups, and we know that

there are, they must have Newson sub-groups, as we saw two

pages back. If the Newson group be invariant, its fixed

point will be invariant throughout the four-parameter group,

and, conversely, the four-parameter group will be entirely

characterized by the invariance of this point. If the Newson

group were not invariant the position of one fixed point for

each transformation would have to be limited to a specific

* Newson, 'Groups of Circular Transformations', Bulletin of the American

Math. Soc, vol. iv, 1897.
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curve, for if the position of both fixed points were free the

pitch -would have to be constant, there being only four

parameters, and we should run into our preceding contradiction.

But if one fixed point lay on a certain curve, this curve must

be invariant throughout the group, whereas the transformations

of the Xewson group are transitive. We may summarize

as follows :

Theorem 33.] There air no real fire-parameter continuous

groups of circular transformations.

Theorem
34-.J

The only real four-pi rametev grouj^s are

those with one fixed point.

Theorem 35.] The only real )wn-i ategcable three-para-

meter groups are those with a fixed real or self-conjugate

imaginary circle.

Theorem 36.] The only real integrate three-parameter

groups are the Sewson groups.

Theorem 3?'.] The only real two-parameter groups are

those with two fixed points, the parabolic ones wi fh one fixed

}xnnt,and those with a real fixed circle and real fixed point

thereon.

Theorem 38.] The only real one-jxtramcter groups arc the

Ic.rodromie, hyperbolic, elliptic, and parabolic ones.

It is doubtful whether there be room for much further

investigation of the subject of real circular transformations.

On the other hand, the sort of circle transformation which is

obtained from a Cremona transformation of the projective

plane, and was mentioned at the beginning of the chapter, is

still utterly unexplored, and may well contain new theorems

of interest and importance.



CHAPTEE IX

SPHERE TRANSFORMATIONS

§ 1. General Theory.

The subject of sphere transformations presents, naturally

enough, many analogies to that of circle transformations. It

is not so rich, however, in interesting and easily obtainable

results, owing to the impossibility of representing either

cartesian or pentaspherical space parametrically by means
of isotropics. Thus, a large part of the theory of circular

transformations which is reached through their connexion

with the theory of the linear function of the complex variable

is lost.

We shall mean by a sphere transformation any analytic

transformation that carries spheres into spheres. In sphere

coordinates this will be

x
i ~ Ji \

x
o
x

i
x

?.
xz
x
i)>

where (x) represents a sphere. If, further, we require that

null spheres shall be carried into null spheres,

(x'x') = Jc (xx),

where k depends merely on the coefficients of the transforma-

tion. We find, exactly as in the last chapter,

Theorem 1.] The group of all one to one algebraic trans-

formations of the spheres of pentaspherical space which carry

null spheres into null spheres is simply isomorphic with that

of all Cremona transformations of projective three-dimensional

space.

We shall mean by a spherical transformation any analytic

point transformation of cartesian or pentaspherical space which
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carries the points of a sphere or plane into points on a sphere

or plane.

We have

Theorem 2.] The most general spherical transformation of

pentasphevieal space is given by a quinary orthogonal substi-

tution.

In the last chapter we dealt with a real tetracyclic plane.

Iu the present one we shall deal with finite real cartesian

space, as well as a second continuum which may be called

a real pentaspherical space. We may define this as that

region of the general pentaspherical space where x is propor-

tional to a pure imaginary number, and the other penta-

spherical coordinates to real numbers. An example of such

a domain is afforded by a real hypersphere hi four-dimensional

projective space with Euclidean measurement. Or we may
start with the real finite domain of cartesian space and extend

it to a real continuum by adjoining a single real point at

infinity. We shall also fix our attention on real spherical

transformations of this space.

Let us begin with a purely geometrical analysis of the

cartesian case as before. If no finite point be singular for

the transformation, the latter is a conformal collineation, and

mav be factored into translations, rotations, reflections in

planes, and similarity transformations, the latter being easily

factorable into two inversions, while the three preceding are

factorable into reflections in planes. If one finite point be

singular, the spheres through it being carried into planes,

we may factor into an inversion with this point as centre,

and a transformation of the preceding type.

Theorem 3.] Every spherical transformation of real carte-

sian space is conformal, and may be factored into a product

of inversions and reflections in planes.

We see, incidentally, that a similar theorem holds in penta-

spherical space, the word 'inversions' covering both t}pes.

We shall return to this presently ; for the moment we prefer
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to prove the remarkable converse theorem which is due to

Liouville.*

Theorem 4.] Every conformed analytic transformation of

cartesian space is a spherical transformation.

The easiest proof is, perhaps, the following. Every con-

formal transformation will carry a triply orthogonal system

into another such system. Hence, by the Darboux-Dupin

theorem, it will carry a line of curvature into a line of

curvature. It will therefore carry a surface, all of whose

curves are lines of curvature, into another such surface, i e.

it will carry a sphere into a sphere or plane.

Theorem 5.] A spherical transformation is necessarily a

circular transformation, and every analytical point trans-

formation that carries circles into circles will be a spherical

transformation.

The first part of this theorem is immediate ; the second comes

from the fact that the necessary and sufficient condition that

two circles should be cospherical is that there should be oo
3

circles meeting both twice.

Our formula for double ratio in Ch. I (4) yields an

invariant for inversion and reflection, and so for all spherical

transformations. Conversely, if we have a quadrilateral

where the sum of the products of the opposite sides is equal

to the product of the diagonals, we may take a centre of

inversion at one vertex and transform the other three vertices

into collinear points. The original four were thus concyclic.

If, then,

(AB) (CD) + (AD) (BC) = (AC) (BD),

we have also

{BA)(CD) (AD)(BC) _
(CA)(BD)

+
(BD)(AC)

Theorem 6.] A necessary and sufficient condition that real

one to one transformation of the real finite cartesian space

should be a spherical transformation is that double ratios

should be invariant.

* See his appendix to Monge's Applications cle Vanalyse a la geometrie, Paris,

1850, pp. 609 ff.



ix SPHERE TRANSFORMATIONS 339

Let the reader show that in special pentasplierical coordi-

nates the double ratio of four point* may be expressed in the

form

(AB)

(JLZJji

BuCD) _ RTyJHF)

Since the expressions involved are covariants, we may
remove the restriction that the pentasplierical coordinates

should be special, and let them be any pentasplierical set.

Another invariant for spherical transformations is

(XH) (XZ)
{
.rt)

I
ft*) (

,/.-) (yt)

(:.r) (zy)
(
:t) \

\ [tx) (ty) (/.-)

I'jj-yj %'(~0 /(jtf) /(^/)
(2)

In the case of coplanar points this reduces to the sine of the

double angle.

Let us nest take up the question of direct and indirect

spherical transformations. We start in finite real cartesian

space, and suppose that a transformation T carries a point H
into a point R'. Let 8 be the translation that carries H' back

into H. while R is the inversion with H a^ centre. The
transformation BSTR. the operator being written to the left

of the operand, will be a conformal collineation. Considering

the effect of this transformation on the whole of projective

cartesian space, we see that in the plane at infinity there will

be two conjugate imaginary fixed points on the circle at

infinity, and a fixed real point besides. The lines through

this point are permuted by a collineation. two conjugate

imaginary ones tangent to the circle at infinity are fixed,

hence one finite real one is fixed. Our conformal collineation

may thus be reduced to one of the following form?

:

x = r (cos C.v'— sin t\</'i. x = r (cos t'.c' + sin 6 y'),

y = r (sin ex + cos ey'), (3) y = r (sin ex'— cos G ?/'). (3')

; = r: +d. : = rz' + d.

Y -2
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Equations (3') may be much simplified. We see that two
mutually perpendicular planes are invariant. These may be

taken as fundamental in the coordinate system, so that we
may write transformations of this type in the simple form

x — rxf

.

y=-ry', (4)

z = rz + d.

Such a transformation is the product of one of type (3) and

a reflection, so that we may confine ourselves mainly to

type (3). Here, if r > 0, we have the product of a translation

parallel to the fixed axis, a rotation about that axis and a simi-

larity transformation, that is, the product of four reflections and

two inversions. When r < 0, if we change into n + 0, we fall

back on the other form. When the number of reflections and

inversions is even, we may pass by a continuous change of

parameters from the given transformation to the identical

one. When the number is odd, we may pass continuously to

a single inversion, but not to the identity. We see, in fact>

that if we take a reflection in a plane, the sense of each

trihedral angle is reversed, and we cannot pass continuously

from a transformation which alters the senses of trihedral

angles to one that does not. As for the number of parameters

involved, any not-null sphere may be carried into any other

such, which uses up four degrees of"freedom ; when one sphere

is fixed we have as many free parameters left as there are in

a circular transformation.

Theorem 7.] The group of all spherical transformations of

pentaspherical space depends upon ten parameters. It has a

ten-parameter sub-group of direct transformations, and a ten-

parameter sub-assemblage of indirect ones. A direct trans-

formation may be factored into an even number of inversions

and reflections, and may be continuously changed into the

identical transformation ; an indirect transformation may be

factored into an odd number of inversions and reflections, and

may be continuously changed into a single inversion, but not

into the identical transformation.
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Let us look at the fixed points of a direct transformation.

^ e shall confine ourselves to real transformations, and begin

in cartesian space. First take a conformal collineation. If

we consider the -whole of cartesian space there will be one
fixed real point in the plane at infinity, and one fixed real line

through it : or all infinite points are fixed. Taking the cases

in order, if all the points of the fixed line are themselves fixed,

we have in (3) J = 0, r = 1 . We have a rotation; corresponding

points lie on circles with the hue of fixed points as axis. i. e.

on circles in bi-involutiou therewith.

Suppose, next, that but one finite point of the fixed lines is

invariant. Here, if we take this point for the origin, d = 0.

If 6=£Q, r=£ 1, corresponding points lie on non-circular iso-

gonal trajectories of the generators of cones of revolution

whose common vertex is the origin and whose common origin

is the c axis. If = 0, corresponding points are collinear with

the origin. If r — 1 we fall back on the preceding case.

Let us, thirdly, assume that no finite point of the fixed lines

is fixed. Here / = 1. 0^=0. Corresponding points are on

circular helices, i.e. isogonal not circular trajectories of the

generators of cylinders of revolution with a common axis.

There then remains the case where all infinite points are

invariant. Here = 0. If /• =£ 1 we have essentially the next

to the last case ; if r — 1 we have a translation, and corre-

sponding points he on lines of given direction.

Suppose, now, that we have any direct spherical trans-

formation T. If it have a finite fixed point, and I be the

inversion with this point as centre, we see that ITI is a con-

formal collineation which, under our spherical group, is equi-

valent to the given transformation. The only spherical trans-

formations not equivalent to conformal eollineations under

our spherical group are those with no finite fixed point, if any

such exist.

A real spherical transformation will appear in four-dimen-

sional projective space as a real collineation, and will there

leave at least one real point invariant in four dimensions.

Corresponding to this point will be a real or self-conjugate

imaginary sphere. If this sphere be real we may assume it
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not null, as otherwise we might assume its vertex in the

domain which amounts to the Unite domain of cartesian space,

and fall back on our previous types. The real spherical

transformation -will produce on the fixed real not null sphere

a real circular transformation, which must be indirect, as

otherwise there would be a real fixed point, the case we wish

1o avoid. It must either be elliptic, or an inversion in a self-

conjugate imaginary circle. Taking the cases in order, when
the circular transformation is elliptic one real circle of the

sphere is invariant, as is the circle orthogonal to the sphere

through the interchanging points. This is equivalent to a

transformation of cartesian space, which leaves invariant the

z axis and the unit circle of the z plane, i.e.

_ (cosdx'— s'mOy') _ (sin Ox' + cos By')

-z'

We see, in fact, that the transformation so written is the

product of a rotation, a reflection in a plane, and an inversion,

and so direct. It has no finite fixed point. Corresponding

points are on the non-circular isogonal trajectories of the

generators of cones of revolution whose common vertex is the

origin, and whose axis is the axis of z.

We must not forget the possibility of an inversion on our

real sphere. This may be thrown back to the previous case

with 6 = 7t. It is thus an inversion in a self-conjugate

imaginary sphere. If we mean by a Mobius involution in

three dimensions the transformation where corresponding

points are harmonically separated by two given points, we

see that this transformation is the product of an inversion and

a Mobius involution.

There remains but one possible case, that where the one real

fixed point in four dimensions corresponds to a self-conjugate

imaginary sphere in three dimensions. Let this sphere be

x = 0. We get the real transformations of the sort desired

by keeping x invariant, and subjecting the other four coor-

dinates to a quaternary orthogonal substitution ; the direct
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transformations will come from those transformations where
the determinant is positive, for here, and here alone, we may
pass continuously to the identical transformation. Each set of

isotropics of the fixed sphere will be permuted among them-

selves. For a real transformation there are two possibilities

;

either two conjugate imaginary isotropics of each set are

invariant, or all are invariant in one set, while but two of the

other remain in place. Taking these in turn, we have the

canonical equations for a transformation of the first sort

:

P-vo = :co>

p.i'
2
= :l\ sin </> + x.

2
cos #, ^6)

p.i'
3
= x

s
cos 6— xt sin 0,

pxi
= .>'

3
sin d + x

4
cos 0.

Conversely, it is clear that this transformation fulfils all the

requirements. No real point or sphere is invariant ; corre-

sponding points lie on the non-circular isogonal trajectories of

the generators of the Dupin cyelides

x
l

- + x.? + kx* = 0,

or of the Dupin cyelides

<- + -V + A.r 2 = 0.

Lastlv, it is possible that every isotropic of one set of the

fixed sphere is in place. Such transformation belongs to one

of the two three-pai-ameter invariant sub-groups of the quater-

nary orthogonal group. It may be written admirably in

quaternion form. Following Hamilton, we write

r-=j*- = V=ijk=-l. (7)

Our transformation will have one of the two forms

Px = .r ', p (.^ + ix. +>„ + kr
4)

(.v, + ix., +j.c-, + k.c
i ).

\'u i +l.- + i- + d

P .v = .<•;, P (.c
T + i*.. +./>, 4 kxj

(*)

%'«- + 6- + c--r a
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We see, in fact, that these equations give invariant three-

parameter sub-groups of the total group which leaves x =
invariant. The groups leaving the one or the other system of

isotropics invariant are also invariant three-parameter sub-

groups. Hence each three-parameter sub-group in one pair

must have invariant sub-groups of its own composed of what

it has in common with the one or the other invariant group

of the other pair. But the groups leaving all isotropics of one

system invariant are merely the binary projective group

applied to the isotropics of the other group, and have no

invariant sub-groups. Hence the two methods of dividing

into three-parameter sub-groups must be the same, and we

have indeed the transformations desired.

The transformation (8) will be involutory if

a= 0, 62 +c2 + d2 = 1.

It may also be infinitesimal. Corresponding points lie on

circles orthogonal to the fixed sphere intersecting the two fixed

isotropics of that set where only two are fixed. Two of these

circles cannot intersect, for if they intersected once they would

do so again in the inverse of the first point with regard to

x = 0, and so be cospherical. But the two isotropics which

intersect both would have to lie on this sphere ; the latter would

meet x
n
= in two skew isotropics, which is quite impossible.

Take an infinitesimal transformation of the present type.

Corresponding points lie on circles meeting two chosen iso-

tropics of the same set on x = 0, and there will be oo 2 such

circles which are carried into themselves by all transforma-

tions of the one-parameter group generated by the infinitesimal

transformation. If we anticipate our future work to the

extent of assuming that any two circles are cut twice ortho-

gonally by at least one third circle, we see that any two circles

of the present system, though not cospherical, are cut ortho-

gonally twice by oo 1 circles. Two circles so related shall be

said to be 'paratactic.*

* These will correspond to paratactic or Clifford parallel lines of non-

Euclidean space already mentioned on p. 164. The present type of spherical

transformations will correspond to translations of elliptic space. See the

Author's Non-Euclidean Geometry, cit., p. 99.
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Theorem 8.] There are nine types of real direct spherical

transformations of real pentaspherical space:

(a) Inversions in self-conjugate imaginary spheres. A
transformation of this sort is the product of an inversion and
a Mobius involution whosefixed points are mutually inverse in

the sphere of inversion. Corresponding points are concyclic

with the fixed points of the involution.

(b) Rotatory transformations. Corresponding points lie on
circles in bi-involution with a real citvle offixed points.

(c) Loxodromic tmnsformatioiis. Corresponding points are

on non-circular isogonal trajectories of the circles of curvature

of a Dupin cyclides with given double points which arefixed.

(d) Hyperbolic transformations. Corresponding points con-

cyclic with twofixed points.

(e) Loxodromo-parabolic transformations. These are iden-

tical with the loxodromic except that two conical points of the

Dupin cyclides fall together.

(/) Parabolic transformations. Corresponding points lie

on tangent circles through afixed point.

(g) Semi-elliptic transformations. Corresponding points

lie on noiir-circular isogonal trajectories of Dupin cyclides with

given conical points, whereoftwo are real a nd are interchanged

in the transformation.

(h) Loxodromo-eUiptic transformations. These are like the

loxodromo-hyperbolic transformations, but tliere are no real

fixed points or real fixed sphere. The conical point of the

Dupin cyclides are two pairs of conjugate imaginaries.

(i) Paratactic traiisformations. JVb real fixed spheres.

Corresponding points on paratactic circles.

Theorem 9.] There are infinitesimal splierical transforma-

tions of every type but intwsions and semi-elliptic ones.

Theorem 10.] The only involutory transfoi'mations are of

the hyperbolic rotatory, and paratactic types. The first are

inversiojis in self-conjugate imaginary spheres, and may be

factored into theproducts of inversions and Mobius involutions;

the second are inversions infixed circles.
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Let us look for types of indirect transformations. Starting

with (4) we see that if d =£ no finite point is fixed and the

axis of z is transformed into itself. If d — 0, the origin and

point at infinity are fixed and lines through the origin are

interchanged, whereas in a reflection in the origin these lines

are all invariant.

An indirect transformation with no real fixed point but with

a real fixed sphere is obtained from (6) by changing the sign

of z. There are no real indirect transformations with no real

fixed sphere. Such a transformation would be given by

a quaternary orthogonal substitution with negative discrimi-

nant, and permute the isotropics of the two sets on the fixed

sphere. There would thus be two fixed conjugate imaginary

points, and two interchanging conjugate imaginary points

(as in the case of an indirect circular transformation). The

transformation could be written

px = x .

px
1
— a;/ cos <p 4 #/ sin (j>.

px
2
= x/sin cp — x.J cos (p.

px
3
— x

A
' cos — x

i
sin 8.

pxi — x
3
' sin 6 + xi

cos 6.

But we see at once here that two real spheres x
1 + \x

2
—

are invariant.

Theorem 11.] There are but six types of indirect real

spherical transformations:

(a) Inversions.

(b) Tiuo real fixed points, circles through them fixed.

(c) Two real fixed points, circles through them interchanged.

(d) Adjacent fixed points, circles all tangent, at one point

interchanged.

(e) Adjacent fixed points, circles tangent at one point

invariant.

(/) No real fixed points, points of real circle interchanged,

reed fixed sphere.
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Theorem 12.] A necessary and sufficient condition that

two inversions should be commutative is that the spheres of
inversion should be mutually orthogonal.

Theorem 13.] The product of inversions in hoo mutually
orthogonal spheres is the inversion in their common circle, the

product of three such inversions is the Mobius involution
whose fixed points are common to the three mutually orthogonal
spfieres; the product offour such inversions is the inversion in
the self-conjugate imaginary sphere orthogonal to tliefour given
mutually orthogonal sphei-es.

Theorem 14.] The only real indirect iavolutory splierical

transformations are inversions and Mobius involutions.

Theorem 15.] If two points be interchanged in a spherical

t)-ansformation, either the transformation is real and semi-

elliptic, the tiro points lying on a circle of inteixlianging

points, or else the transformation is involutory.

Theorem 16.] A single direct spherical transformation
may befound to carry any three points, whereof no two are on
an isotropic, and any not null sphere through them into any
other three points and sphere similarly arranged.

Theorem 17.] The product of two inversions may be re-

placed by that oftwo others. One ofthe new spheres of inversion

may be taken at random in the coaxal system determined by

the original two; the other is thereby uniquely determined.

Theorem 18.] Any direct spherical transformation of

pentaspherical space may be factored into the product offour

inversions.

The proof of this important theorem is as follows. The
transformation being called T, take two corresponding spheres

s and s'. Let us find an inversion It to interchange the

spheres s' and s. Then 1±T leaves s invariant. Let it carry

three points A, B, C into three points A',B1

, C. We next find

an indirect circular transformation on s which carries A', B',C
into A, B, C, and, by VIII. 26], factor into three inversions.



348 SPHERE TRANSFORMATIONS ch.

Through the circles of inversion pass spheres orthogonal to s,

and let Ilt I.,, I
3
be the inversions in these spheres. The trans-

formation /j/g/j^T will be a direct transformation with

a fixed sphere and three fixed points thereon, i.e. the identical

transformation. Hence

T=IJJJX
.

Theorem 19.] Any direct spherical transformation may be

factored into the product oftivo circular inversions.

The proof comes from 13], 17], and 18], and is left to the

reader.

Theorem 20.] Any indirect spherical transformation of

pentaspherical space may be factored into the product of five

inversions.

It would be tedious to discuss the various cases where pairs

of spherical transformations might be commutative. We can

foresee the answer for the general case from what we have

already done in the case of circular transformations.

§ 2. Continuous Groups.

The classification of all real continuous groups of spherical

transformations is a long and laborious task which would

lead us altogether too far afield. We shall therefore content

ourselves with noting the results which others have found *

Theorem 21.] The group of all direct spherical transforma-

tions depends upon ten essential parameters, and has the

following real sub-groups :

One of seven parameters.

Three of six parameters.

One offive parameters.

Six offour parameters.

* Cf. Lie-Engel, Theorie der Transformaiionsgruppen, vol. iii, pp. 219 if.,

Leipzig, 1893. In more detail Standen, Invariants FlacJien und Kttrven bei

konformen Gruppen des Raumes, Dissertation, Leipzig, 1899. In the text we

follow this enumeration, although it is not clear whether it will cheek up

exactly with that of Amaldi, loc. eit. ; in other words, it is not apparent

whether Amaldi undertook to find all groups.
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Eight of three parameters.

Six of two parameters.

Seven of one parameter.

Let the reader note that the existence of seven one-parameter

groups agrees with theorem 9].

Before leaving spherical transformations let us return to

the pentaspherical notation, or rather, to sphere coordinates,

and try to find a parametric representation for the general

direct case. We shall follow the classic method of Cayley.*

We begin with the twin equations

.; = 4 .; = 4

*i = 2 OijOj, x{ = 2 bji=j> hi = L
jj = h

>

j = o ; = o

6o-=- 6
;.-. J* L

(
9
)

We then find at once

*,- + -{= 2 b:h

b(z;) = (zx) = (zx'),

(xx) = (x'x').

We have thus, indeed, an orthogonal substitution. Solving

for ..,

This gives our substitution in final forma

(10)
aH =2bB ii

-\b
ij \,

a
ij
= 2bB

ij , j ± i.

Unfortunately, it is not possible to express all quinary

orthogonal substitutions in this form.f We have, however,

ten independent parameters, so that we have a ten-parameter

assemblage, and this contains no indirect transformations, for

* 'Sur quelques propriiStes des determinants gauches ', CreUtfs Journal,

vol. sxxii, 18-46. Cf. Pascal, Die Determinanlen , Leipzig, 1900, pp. 159 ff.

f Cf. Netto, ' tjber orthogonale Substitutionen ', Acta Mathematics,, vol. ix,

1SS7, p. 295.
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we may pass continuously to the identical transformation.

To get the real transformations of the assemblage, since a real

point must have its first coordinate proportional to a pure

imaginary number, and the others proportional to real num-
bers, we must have every a

i
: in the first row and column of

the matrix a pure imaginary with the exception of au , which,

like the other a.j^'s, must be real. In other words, every

b^ which has the subscript appearing once only is pure

imaginary ; the other b^'s are real.

The theory of spherical transformations as here outlined

is far behind that of circular transformations in completeness.

There seems room for various interesting investigations con-

nected therewith. A direct circular transformation has one

invariant ; how about a spherical transformation ? For

instance, there is always a fixed not null sphere. On this

we have a circular transformation whose invariant must be

invariant for the spherical transformation. How many of

these invariants are there ? What is their geometrical mean-

ing? The detailed study of commutative transformations

might be worth while. The various continuous groups must

have interesting geometrical characteristics not yet discovered.

The subject of spherical transformations must also have an

important relation to certain systems of oriented circles in

space. There is ample room for much valuable geometrical

work on any of these questions.



CHAPTER X

THE ORIENTED CIRCLE

§ 1. Elementary Geometrical Theory.

We have occasionally found, in the work done so far, that

the concept of the angle of two circles is lacking in precision.

For instance, we saw in I. 212] that if a variable circle cut

two others at given angles, it will cut at either of two supple-

mentary angles every circle coaxal or concentric with the

two. To remove this ambiguity we defined the angle of two

circles in the form

COS = ;--,-, (1)
1 ) I

and were thus enabled to avoid the confusion as to which of

two supplementary angles given circles made with each other.

It is possible to reach even greater precision in handling

the angles of circles by the interesting device of assuming

that the radius of a real circle may be either positive or

negative, with a similar extension for complex circles.* This

is accomplished analytically by the introduction of a redun-

dant coordinate. Let us, however, postpone such a method

for a short while, and begin geometrically in the finite

cartesian plane of elementary geometry, the word circle

having the restricted significance allowed in Ch. I. When
a positive or negative sign has been assigned to the radius

of such a circle it shall be said to be oriented. Let us assume,

after the positive aspect of the plane has been chosen, that

every circle of positive radius is described by a point moving

about the circumference in the positive or counter-clockwise

* The Author has the impression that this idea is due to Cayley.
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direction, -when viewed from the positive side of the plane.

An oriented circle of negative radius shall similarly be looked

upon as generated by a clockwise moving point. Or again,

we shall assume that the normal to a circle of positive radius

is oriented towards the centre, while a normal to a circle

of negative radius is oriented outwards.

As a circle is oriented, so a straight line may be oriented

also. We may either assume it generated by a point moving
in the one or the other sense, or by assuming that it divides

the plane into a positive and a negative region, and that the

normals to it are oriented from the negative to the positive

region of the plane.

The angle of two oriented circles shall be defined as that of

their oriented normals, and a similar definition shall hold for

the angle of two oriented lines. This form of definition in

terms of normals has the advantage of being easily extended

to three dimensions. The cosine of the angle of two oriented

lines or circles is thus single valued, and agrees, in the latter

case, with (1).

Two oriented lines shall be said to be properly parallel

when they have the same system of oriented normals ; when
the normals to one have the opposite orientation to those of

the other, they are said to be improperly parallel. An oriented

line and circle shall be said to be properly tangent when they

touch, and have the same oriented normal at the point of

contact. When there is still contact, but the normals have

opposite orientation, they are said to be improperly tangent.

Two oriented circles are said to be properly tangent when
their angle is = (mod. 2 tt). They will be both properly

tangent to the same oriented line at the same point. When
their angle is = T7(mod. 2ir) they are said to be improperly

tangent : the proper tangent to one is an improper tangent to

the other. Let the reader show that when two oriented circles

are properly tangent they touch internally if their radii have

like signs, externally if the signs are unlike.

The fundamental concepts developed in Ch. I were point,

circle, power, and inversion-. It is the object of the present

chapter to show that these concepts have duals in the geometry
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of the oriented line and circle, and that a corresponding duality

extends to a large number of theorems.*

Suppose that we have an oriented circle c of radius r and

an oriented line L The centre of the circle shall be G. Let

->

-orr"^

Fib. 30.

P be a point of I outside of c, and 3\, T3 the points of

contact of the oriented tangents to P from C, ax
and o^ being

the angles which these oriented lines make with I. The

line I^Tg passes through a fixed point L (the pole of I) as P

* The idea of this duality was certainly present to the mind of that excel-

lent geometer laguerre. An admirable exposition is found in Epstein, « Die

dualistisehe Erganrung des Potenibegrifles ', ZeUsArifl Jwr waOeMottscten

rn'trmVAt. toL xxxvii, 1906.

1TM 2
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traces I. Let the line GL which is _L I meet G in A and B
so that

4-ACT
i
= a

1 ,
^AGT

2
= a

2 ,

( LT,f = (GL)2 + r2 -2 (GL) r cos ^ ,

g
t _ [(CD-rf-jLT,) 2 -(AL? + (LT 2

)

2 -[(GL) + rf + (LTS)- (BLf-(LTtf '

In the same way we have

<x2 _ -(ALf + (LT2 )

2

tan T- (BLf-(LT2 )

2

But (ZTj) (Z2V) = (4Z) (Bi). (2)

Hence tan — tan — =
(LB)

Theorem 1.] If, from all points outside an oriented circle

and lying on an oriented line, oriented lines be drawn
properly tangent to the oriented circle, the product of the

tangents of the halves of the angles which they form with the

given oriented line is constant.

This constant shall be called the power of the oriented line

with regard to the oriented circle. It will be positive when

the oriented line intersects the oriented circle in real points,

negative when there is no common point. When there is

proper contact the power is zero ; improper contact produces

an infinite power.

Theorem 2.] Given two pairs of oriented lines concurrent

on a given oriented line, but not concurrent or parallel with

one another. A necessary and sufficient condition that they

should be properly tangent to one same oriented circle is that

the product of the tangents of the halves of the angles which

one pair malce with the fifth line should be equal to the

corresponding product for the other pair.

Two non-oriented circles which are non-concentric and

unequal in radius have two centres of similitude. Two
oriented circles shall be defined as having at most and in

general one centre of similitude, namely, the external centre
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when they are non-concentric and have unequal radii of like

sign, the internal centre when their radii are of unlike sign.

Theorem 3.] An oriented line having like powers ivith

regard to two oriented circles of unequal radius passes through

their centre of similitude, aiid every line through this centre

has like powers with regard to the tiro. When the radii are

equal the line is parallel to the line of centres, and every such

line has the same p&wer with regard to each circle.

We have so far established the following duality

:

Oriented line. Point.

Oriented circle. Circle.

Power. Power.

Centre of similitude. Radical axis.

Circles with common centre Coaxal circles,

of similitude.

Suppose that we have an oriented line I; we may trans-

form other oriented lines not parallel thereto as follows.

Corresponding oriented lines shall be concurrent on I, and the

product of the tangents of the halves of their angles with I shall

be a given constant. Such a transformation shall be called

a Laguerre inversion ; let us show that it carries an oriented

circle into another oriented circle.*

To begin with, the transform of every oriented line not

parallel to I is uniquely determined. By (1) there are oc 2

oriented circles which are transformed into themselves

;

anallagmatic let us say. Every oriented line parallel to the

line is properly tangent to x 1 of these circles. The remainder

of the envelope of these oriented circles is a second oriented

line parallel to I which we define as the transform of the first

oriented line. The transformation is thus one to one for all

oriented lines ; the oriented line I is reversed.

We next observe that, if we take a point on the radical

axis of two circles and draw one tangent to each, the line

connecting the points of contact meets the two circles at

* Laguerre, ' Sur la transformation par seuii-droites reciproques, Xounlles

Annates de Matli., Series 8, vol. i, 1SS2, pp. 512 ff.

z 2
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equal angles, and so passes through a centre of similitude,

or may be parallel to the line of centres when the radii are

equal. The tangent to one circle where it meets again the

line connecting the points of contact is parallel to the tangent

to the other circle. The two tangents to the first circle meet

on the polar of the centre of similitude ; hence the product of the

tangents of the halves of their angles therewith is constant

Hence the product of the tangents of the halves of the angles

which the given tangents, properly oriented, make with the

oriented radical axis is also constant. If one circle and radical

axis be given, the other circle may be found so that this product

shall take any desired value. Hence in a Laguerre inversion

an oriented circle goes into an oriented circle, I being the radical

axis. Be it noticed that as a common proper tangent to two

oriented circles goes into a common proper tangent to their

transforms, the two meeting on the common radical axis of

each circle of the first pair with its mate in the second, then

the common proper tangential segment of two oriented circles

is equal to that for their transforms under a Laguerre inver-

sion. The Laguerre inversion is the simplest type of what

we shall later study under the general name of eqwilong

transform ation.

Laguerre inversion. Inversion.

Oriented line to oriented Point to point,

line.

Oriented circle to oriented Circle to circle,

circle.

An oriented circle properly Circle through two mutually

tangent to corresponding ori- inverse points anallagmatic.

ented lines anallagmatic.

Proper tangency of oriented Tangency of circles in-

circles invariant. variant.

Common proper tangential Angle of intersection of two

segment of two oriented circles invariant,

circles invariant.

Corresponding circles have Corresponding circles have

the fundamental line as the fundamental point as

radical axis. centre of similitude.
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There are a number of simple theorems concerning oriented

lines which are duals to the point theorems, I. 149-63]. The
algebraic proofs are, however, so much simpler than the

geometric ones that we postpone these for the moment. We
make an exception in favour of the following.

Let us start with four oriented lines ^ Z
2 , Z3 , l±, which we

suppose so related that no two are parallel. We shall mean
by the bisector of the angle of two intersecting oriented lines

the locus of the centres of circles properly tangent to one and
improperly tangent to the other. The bisector of the angle

of Z
£
with the opposite to lj shall be ?y , which is the locus of

the centres of circles properly tangent to lt
andZ-. Let C

i

be the centre of the circle properly tangent to hl^li- Let

G
; , Cj be on the same side of G-, (7j, and let

4-O
j
.c

i
.c

l
>o, LCjC&x),

Subtracting

^t-CjCft-LCjCM, or

= 4-C
j
c

i
c

l
+4-C

j
chcl

±Tt.

We see in a special case that the first hypothesis is right,

and so, by continuity, it is always right.

Theorem 4.J The centres of the oriented circles each properly

tangent to three out of four given oriented lines, whereof no

two are parallel, are concyclic.

§ 2. Analytic Treatment.

It is now time to take up the analytic treatment of

oriented lines and circles, as thus, naturally, we shall obtain

a far greater wealth of results than from purely geometric

methods. The domain shall be the complex cartesian plane,
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including the line at infinity. We shall slightly alter the

traditional form for the equation of a circle, writing

x (x2 + y
2
) + x2

(2xt)+x3 (2yt) + x1
(2t

2
) = 0. (3)

— 2x x
1 + x

2
z + x3

2+ x£ = 0. (4)

The radius will have the value

We see thus that we have for every oriented circle five

homogeneous coordinates (*) connected by the identity (4).

Conversely, we shall define as an oriented circle every locus

which satisfies the equations (3) and (4). We have the

following types

:

1) Proper oriented circles a; a34 ^ 0.

2) Non-linear null circles x4 = 0, x ^ 0.

3) Oriented lines x = 0.

4) Minimal lines x = xi
= 0.

The line at infinity is included in this latter class. This,

may also be looked upon as the class of all oriented lines

which are identical with their opposites. If we have two

proper -oriented circles (x) and (y), the length of their proper

common tangential segment will be

(6)•d»-(r-r)» = /2 (- fDoVi- a)iyo + ai»y* + xsya + x*V*\
v — x y

For their common angle we have the expression

sin2 i _ -xoVi-giyn + ^2/2

+

x*yg +

g

4y«
(7 ,

2 2xiVi
[ >

By continuity this formula will hold even when x y = 0.

The condition of proper tangency will be

-x y1
-x

1y + x2yi
+ x.iyz

->r xiyi
= 0. (8)

The point of contact may be a circular point at infinity;

the radii are then equal and the centres on a minimal line.

It must be specially noted that this is the identity polarized.
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A point in the tetracyclic plane has four homogeneous

coordinates connected by a quadratic identity; the same is

true for an oriented line.* Fundamentally important, how-
ever, is this difference, that whereas the discriminant of the

quadratic identity for tetracyclic coordinates does not vanish,

the oriented line identity has a vanishing discriminant. The
two may not therefore be put into a one to one analytic

correspondence. Still, the circle has a linear equation in

tetracyclic coordinates ; so, too, a linear relation among the

coordinates of an oriented line will usually give us the proper

tangents to a circle. Let us begin by writing

- a a\ + a.
2
x
2 + a3 a-

3 +a^ = 0. (9)

When a =fc we see that (;c) is properly tangent to the

oriented circle

/ a„2 + aJ + a, 2
\

("»' 2« ' "*' °" "J'

When o = 0, a„2 + a
3
2 ^ o the slope will be

x3 a 2
2 + a/

The oriented line makes a fixed angle with a fixed oriented

line. An equation of the first degree will give either the

oriented lines properly tangent to a fixed circle or two distinct

or coincident pencils of parallels. The power of the oriented

line (.r) with regard to the oriented circle (y) will be

-x^ +x^ +x^ + x^^
x

1y -x2y2
-x3y3 + x^ji

If (a) be a fixed non-minimal oriented line, and (x) an

arbitrary oriented line, let us write the following trans-

formation :

a
i
= (a^-ai

2
)j.'

i
-2(a

2xt + arv3 + oc
i
x^a

i
, i gfc 4,

x/ = (xi
2-ai

s)xi-2 (a.,x
2 + a3x3 + cxi

x
i
)oii .

* The comparison of the two is well brought out by Miiller, ' Die Geometric

orientierter Kugeln ', Monaishefte fur Math., toI. ix, 1898, pp. 288 ff.
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Here, regardless of the value of the parameter <x4 , we have

«2 + x* + z4
'2

) = (a* + a./ + a/)2 {x* + »3
2 + as,

2
).

The oriented lines (x) and (x') are concurrent on the line (a),

the product of the tangents of half their angles therewith is

We have thus, in general, i.e. when a4
2 g£a4

2
,a4 + a4

a Laguerre inversion, and every Laguerre inversion may be

thrown into this form. In the limiting case where ct
2
= a.

3
= 0,

we replace each oriented line by its opposite moved through

a fixed distance.

It seems almost axiomatic that there must be a number of

interesting theorems about oriented lines arising from the

adaptation of the Frobenius identity. The present Author

has been somewhat disappointed in the results obtained in

this fashion. There is one interesting theorem which is

perhaps more easily proved in this way than in any other.

Let us take four proper oriented circles cW, c(2
', c^\ cW, whereof

each is properly tangent to the preceding and the succeeding

in the natural cyclic order. The common proper oriented

tangents shall be Z<
12

>, U23
\ P4

>, Z<
41

>. We write the identity

co
m c/') c2

m c3
« c4

m o

c (
2
> c^) c2

<
2
> c

3
M c4

(2)

o ip*> yi2
> yi2

> z4
(12>

l^) y23
> Z3

(23> Z4
(23>

o i^) i^ y3*> i^) o

o 1^) y«) Z3
<") Z4

<«)

_
Ci

(i) _c (i) c,m c3
p) o4

w o

_
Cl

(
2
) -c (2) c

2
(
2
> c,» c4

(
2)

-c/3) -c (
3
> c2

(3> c3
(3> c4

<3)

-
Cl
W _ Co

(4)
Cl

{«) c3
« c4

W

-2/i -2/o 2/2 % % °

1

= 0.

Here (y) is supposed to be properly tangent to tt
12
\ £

(23
', Z

(34)
.

Divide each of the first two rows of the first determinant by

its first member ; divide each of the first five rows of the second

determinant by its second member. Multiply the two deter-

minants together by rows. For simplicity write T(ab) for

half the square of the common tangential segment of the

circles (a) and (b).
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Theorem 7.] If four proper oriented circles meet a fixed

oriented line at a fixed angle, and if a common proper

tangent be drawn to each two, then, if no two of these tangents

be parallel, four new oriented circles may be found, each

properly tangent to three of these tangents which do not touch

one particular circle. These four new oriented circles will

also meet a fixed oriented line at a fixed angle,* or be the

limitingform offour such circles.

The proof is as follows. If an oriented circle meet a fixed

line at a fixed angle we see by (7) that all of the coordinates

hut the second are connected by a linear relation, and con-

versely, if such a relation exist, the circle will usually meet

a fixed line at a fixed angle. The exceptions to this last

statement are easily noted. Secondly, if three oriented lines

be given, all of the coefficients but the second of the oriented

circle properly tangent to them are given by the three rowed

determinants of the matrix formed by the coordinates of the

given oriented lines, the first coefficient having the reverse

of the natural sign. These facts premised, let our oriented

circles be cW, c(
2
), c(3

>, c (*>, the common tangents H*f> as before.

Finding all the coordinates but the second of the oriented

circles each tangent properly to three of these lines which

lack a common index, the statement that these new oriented

circles meet a fixed oriented line at a fixed angle will lead to

the equations

|
a tt

u
) IW J(23) |

= o,

|
a IM Z(«) IW

|

= 0,

|
a IW U*1

) IW
|

= 0,

|
a Z<

23
> tt

al
) IW

|

= 0.

Eliminating (a)

|
U3i

) Z(
42

> IW 1<W
|

|
Z<

34
) Z(

42
) Z(

23
> Z<

12
)

J(34) 2(41) 2(12) 2(23)
I I

2(34) 2(41) 2(12) 2(31)
|

,!

2(34) 2(41) 2(13) 2(23)
| |

2(34) 2(41) 2(13) 2(12)

* Ibid., p. 183.
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. This last equation will be unaltered if we replace each #v>

by the complementary l^\ which has the effect of replacing

each of our new circles by the corresponding old circle. By
hj'pothesis, the four original circles met a fixed oriented line

at a fixed angle. Hence the four new ones will do the same,

or at least be the limits of four circles doing so.

Suppose that we have three oriented circles c (1)
, c^-\ c^l

properly tangent to an oriented line I. The remaining common
proper tangents shall be /<-V), l& shall be an arbitrary proper

tangent to e<*), and the oriented circle properly tangent to

H l)
)
?u'\ lyt.h shall be e^'>. Consider the one-parameter family

of quadratic oriented line envelopes given by the equation

All of these will share the proper tangents I, W-\ ku\ #13
)

with c^\ We may therefore so choose \/ft that this envelope

shall touch another proper tangent to c {l\ i.e. include c(1
) as

part of itself. The remainder of the envelope will be another

oriented circle which is properly tangent to I^\ l(
3
\ l^. It

will then be identical with ft1 ), which latter must touch the

remaining proper common tangent to t^''
1 and c

{3\

Theorem 8.] If three oriented circles be properly tangent

to an oriented line, and an arbitrary proper tangent be

drawn to each, tlien tlie three oriented circles, each properly

tangent to two of these arbitrary tangents and to the remain-

ing common proper tangent of the cori'esponding original

circles, are themselves properly tangent to one oriented line

or are the limit of such circles.

This theorem is dual to our fundamental I. 149]. It may

be somewhat generalized by a contact transformation of circles,

as the previous one was generalized by inversion. The result is,

however, rather involved ; it is better to draw corollaries from

the proposition as it stands. As a first, let the reader show

Theorem 9.] Iffour oriented tangents to an oriented circle

betaken in cyclic order, and four oriented circles be drawn

each properly tangent to two successive oriented tangents, then

the remaining common proper tangents to successive oriented
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circles of the sequence are themselves tangent to an oriented

circle or are properly parallel in pairs.*

The number of simple results which, can be deduced from

this is almost absurd. We first get a precise wording for

a well-known theorem due to Plucker.f

Theorem 10.] From two points, one on each common
proper tangent to two oriented circles, the remaining proper

tangents to these circles are drawn. The two tangents to one

circle and the opposites to those to the other touch a circle

or are properly parallel in pairs.

Theorem 11.] Three oriented circles c^\ c^\ c^ are so

arranged that one common proper tangent to cW and cW and

one to cW and c^ are concurrent on an improper common
tangent to c^ and c^ ; then the remaining common proper

tangents of c^\ c(2
> and cW, c(3> are concurrent on the remain-

ing improper tangent of c^, c^ or are parallel thereto.

Theorem 12.] Four oriented concurrent lines are arranged

in cyclic order and an oriented circle drawn properly tangent

to each two successive lines. Then the remaining common

proper tangents to successive circles are properly tangent to

one oriented circle or are properly parallel in pairs.

Theorem 13.] Given two oriented non-parallel lines and

four oriented circles, the first properly tangent to both, the

second properly tangent to the first and improperly tangent

to the second, the third improperly tangent to both, and the

fourth improperly tangent to the first and properly tangent to

the second. The remaining common proper tangents of succes-

sive circles are properly tangent to an oriented circle or are

properly parallel in pairs.

We get a special case of this when the first and second

circles differ only in the sign of the radius from the third

and fourth.

Theorem 14.] Given two non-concentric circles and the

* Ibid., p. 173. The five following are from the same source,

f ' Analytisch-geometrische Aphorismen ', Crelle's Journal, vol. xi, 1884,

p. 117.
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two common direct or transverse common tangents. Then, if

any circle be taken touching these two tangents, but not with

its centre coUinear with those of the given circles, its remaining

common tangents with these circles are tangent to another

circle.

Theorem 15.] Let four oriented lines be drawn properly

tangent to an oriented circle, and six oriented circles be

drawn each properly tangent to two of these oriented lines.

These six may be arranged in three sequences of four, each

sequence determining a new oriented circle by Theorem 9].

The three new oriented circles are properly tangent to the

same tioo oriented, lines.

The proof is entirely analogous to II. 22] though demanding

a little more care. We leave the details to the reader and

continue the process of drawing corollaries from 8] even as

we drew some from I. 149].

Theorem 16.] Givenfour oriented circles properly tangent

to an oriented line. If four other oriented circles can

be found, each properly tangent to the three remaining

common proper tangents to three pairs of the given circles,

these four new onented circles are also properly tangent to

a common line.

Theorem 17.] Given five oriented circles properly tangent

to a common line. With each set of four we may, by 16].

associate another oriented line, and these five oriented lines

are properly tangent to an oriented circle.

The proof is entirely analogous to that of I. 160]. We
leave the details to the reader, as well as the task of proving

the following, which is dual to I. 162].

Theorem 18.] Gi'-en n oriented circles properly tangent to

an oriented line. If n be odd ice may associate therewith an

oriented circle, if n be even an oriented line, in such a way

that the circle (line) is properly tangent to the n oriented

lines (circles) associated u-ith the n sets of oriented- circles

obtained by omitting each of the original ones in turn.
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In the same way we have the dual to I. 163].

Theorem 19.] Given n oriented circles properly tangent to

one oriented line, and an oriented tangent common to each

and to a given oriented circle. If n be odd we may associate

therewith an oriented line, and if it be even an oriented circle,

in such a way that the line (circle) is properly tangent to the

oriented circles (lines) associated with the n sets of (n— 1)

oriented circles obtained by omitting each of the original

circles in turn.

It is to be noted that in 17] to 19] lines properly tangent

to an oriented circle will, if two be properly parallel, be

replaced by lines of given direction.

§ 3. Laguerre Transformations.

In our development of the analogy between the geometry

of the oriented line and elementary circle geometry we have

pointed out the three following analogies :

Oriented line. Point.

Oriented circle. Circle.

Tangential segment of two Angle of two circles,

oriented circles.
;

We are immediately led to the idea that there must be

a whole theory of transformations which carry oriented lines

into oriented lines, and oriented circles into oriented circles.

An example of such a transformation was the Laguerre

inversion, under which the common tangential segment of

two oriented circles is invariant. The question arises

immediately, Is this segment invariant under every trans-

formation that carries an oriented line into an oriented line,

and the oriented lines properly tangent to an oriented circle

into proper tangents to another circle 1 The answer to this

question is ' No '. At the same time the total group of such

transformations has an important sub-group where tangential

segments do retain their size. This group presents interesting

analogies to the conformal group of circular transformations,
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and we find invariants analogous to the double angle and

double ratio. Before attacking this group directl}", let us

give a space representation of our oriented lines and circles

which is of capital importance in our subsequent work with

theru.*

We begin -with the equations

~- = P-v ,

-XT = Px,, (12)

~ZT = Px„

Here (XYZT) are supposed to indicate homogeneous rect-

angular cartesian coordinates. The null sphere with centre

(XYZT) will have the equation

(Tx - Xt) 2 + (Ty- TtY2 + (Tz - Ztf = 0.

It will meet the plane c = in the circle

'o (**

+

f) + •>-» (- *) +^ (
2vf) + *i (

2 *"-) = °- (
3
)

-2.r
u
x

1
+ jr* + x* + x* = Q. (4)

This is the oriented circle with centre (ATIT) and radius

ixt _ iZ

If now we make our three-dimensional space a perfect

pentaspherical continuum by adjoining improper points, as in

Ch. VII, the improper point

X = X
2
- + ,r:2 + Xi

2 = 0,

being interpreted as the minimal plane

x.
2
x + x, y + a-4 : + xx

t = 0,

we see that the latter cuts our plane z — in the oriented line

;i\,.r + .r
3 2/ + a:

1
f = 0.

This transformation shall be called a minimal projection.

* Cf. Klein. Hohere Gemvutrie, GOttingen, 1S98. vol. i. pp. 473 ff. ; Lie-

Seheffers, Beruhrungsfransformaiionen., Leipzig, IS9t>, pp 42S ff. ; Seheffers,

' Bestimmung aller Beruhrungstransfonnationen des Kreises in der Ebene ',

Leipziger Bericlite, vol. li. 1S99. p. 145.
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Theorem 20.] If finite cartesian space be made a perfect

pentaspherical continuum by adjoining a single point at

infinity, and the totality ofminimal planes as improper points,

there is a perfect one to one correspondence between the points

of such a space and the oriented circles of the plane. In this

correspondence each proper point corresponds to that proper

oriented circle whose centre is the orthogonal projection of the

given point on the plane, and whose radius is the algebraic

distance from the point to the plane multiplied by —i,

a definite square root of — 1 ; each improper point is repre-

sented by the line where the corresponding minimal plane

meets the given plane, with an orientation rationally depen-

dent upon the coordinates of the improper point.

If (XYZT) and (X'Y'Z'T) be two proper points, their

distance will be

J'
{XT'- TX'f + (YT'- TY'f + {ZT- TZ'f

= /2 (- a^i- «i2/n + a22/2 + x3y3 + xiyi )

'V -x y
(13)

Theorem 21.] In a minimal projection the distance between

two proper points is equal to the common tangential segment

of the corresponding proper oriented circles.

This last theorem is also simply proved by elementary

geometry. Two proper points whose distance is null deter-

mine an isotropic, the locus of points at a null distance from

both. If a proper point lie in a minimal plane, there is one

isotropic through the point lying in the plane. Parallel

minimal planes determine one tangent to the circle at infinity.

Our correspondence is as follows :

Plane w. Pentaspherical space 2.

Oriented circle. Point.

Proper oriented circle. Proper point.

Non-linear null circle. Point of plane n.

Oriented line. Minimal plane.

Minimal line. Minimal plane parallel to

normals to it.
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Distance of proper points.

Isotropic in finite domain.

Pencil of parallel minimal

planes.

Conformal collineation.

Common tangential seg-

ment ofproperoriented circles.

Pencil of properly tangent

oriented circles.*

Pencil of properly parallel

oriented lines.

Transformation carrying

oriented line into oriented

line, and proper tangents to

oriented circle into proper

tangents to oriented circle.

Theorem 22.] The group of transformations which carry

oriented lines into oriented lines, and the proper tangents to

an oriented circle into those of another circle, depends upon
seven parameters. Every transformation of the group will

multiply the common tangential segment of two proper

oriented circles by some constant. There is a six-parameter

sub-group that keeps such tangential segments invariant.

Seven-parameter group of Seven-parameter group of

oriented lines and circles as conformal collineations.

envelopes of such.

Theorem 23.] The six-parameter group which carries

oriented lines into oriented lines, oriented circles which are

the envelopes of such lines into other such circles, and keeps

invariant the common tangential segment of two proper

oriented circles, is mixed. It has a six-parameter continuous

sub-group, and a six-parameter continuous sub-assemblage.

Six-parameter group keep-

ing tangential segments in-

variant.

Six-parameter continuous

sub-group.

Six-parameter sub-assem-

blage.

congruentSix-parameter

group.

Six -parameter group of

motions.

Six-parameter assemblage

of symmetry transformations.

* Proper circles of equal radii whose centres lie on a minimal line must be

considered as properly tangent.

1702 A a
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The mixed six-parameter group for the oriented line shall

be called the group of Laguerre transformations, or the

Laguerre group. We may reach this group from another

point of view which possesses the highest interest. Let us

define as eqwilong any analytic transformation of the oriented

lines of a plane which keeps invariant the distance between

the points of contact of each line with any two oriented

envelopes properly tangent to it* This is the natural dual

to a conformal transformation. Even as in determining the

most general conformal transformation of the Gauss plane we

express each point by means of a single complex coordinate,

so here we shall introduce complex coordinates of another sort

for an oriented line.f We begin by writing

(=£+er,, C=£-«l, <
2 = 0,

(14)

Every oriented line not passing through a specified circular

point at infinity will thus have a complex coordinate f.

When x
2 + ix

3
=0 (=cc, and a whole parallel pencil of

isotropics correspond to the single value oo. Conversely,

suppose that we have given (= £+ tr\, we may writo

Pxx
= 2 V ,

px
2 = (l-O, px

s
= -*(1 + P), P«4 = 2 £ (

15
)

and thus find a determinate oriented line corresponding to

our complex value C Suppose now that we have an equilong

transformation. It will give rise to equations of the type

?=em, v = -?'(£•>).

If an oriented line touch an envelope at infinity, the same

will hold for the transformed line and envelope, hence in-

* Cf. Scheffers, ' Isogonalkurven, E^uitangentialkurven, und complexe

Zahlen ', Math. Annalen, vol. lx, 1905.

f First done by Scheffers, ibid., p. 528. We follow the treatment of

Blasehke, ' Untevsuchungen viber die Geometrie der Speere in der Eukli-

dischen Ebene ', Monatshefte fur Math., vol. xxi, 1910. We shall lean heavily

on this excellent article in the present chapter. See also Griinwald, ' Duale

Zahlen in der Geometrie ', ibid., vol. xvii, 1906.
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finitely near parallel lines go into other such lines, i.e. £' is

a function only of £. The invariance of the distance of the

intersections of a line with two others infinitely near requires

that the expression

r tM£-rf£8ing

L d£b{ J

shall be invariant. The corresponding expression for £V
will give the value

- ± M\ d&t

On the other hand, if we have either function of the

complex variable,

(f +«i') =/(f+«j), (i'W) =/(£-«*),

the differential equations corresponding to the Cauchy-Riemann

equations for the usual complex variable are

and these give an equilong transformation above. Con-

versely, when these equations are satisfied £' is an analytic

function of £ or of £,

Theorem 24.] The most general equilong transformation

of the plane is obtained by taking £' as an analytic function

of £ or of £. and, conversely, every such function uill give an
Aa2
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equilong transformation. The group of all equilong trans-

formations is mixed, having a sub-group which is continuous

and depends upon an arbitrary function, and also a con-

tinuous sub-assemblage depending on an arbitrary function.

Every equilong transformation of the sub-group shall be

called direct, those of the sub-assemblage indirect. Every

indirect transformation is the product of a direct transforma-

tion, and of the indirect one

c = -c,

which reverses the orientation of every line. We may pass

continuously from any direct transformation to the identical

one ; not so for an indirect transformation.

The Laguerre transformation is a special case of the

equilong. The analytical expressions for the direct and

indirect transformations are

,,, ,_ (a + 6«Q (£+»,) + Q3 + t/3')

*
n ~

(y + «/)(£+«») + (» + «»')' (
'

f+e,=
(y + «/)<£-«i) + (» + «»')" (18)

The Laguerre inversion is an indirect transformation, for it

is involutory and keeps invariant all circles which meet an

oriented line at a fixed angle, and so corresponds to an involu-

tory congruent transformation of space with all points of

a plane invariant, i.e. a reflection in a plane.

Plane w. Space 2.

Laguerre inversion. Reflection in a plane.

Four oriented lines will have an absolute complex invariant

under the group of direct Laguerre transformations, namely
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An indirect transformation will carry this into its con-

j ugate. The part independent of r/ is seen at once to be

(fi -& (fs- &) /^ p*
/ 2 ^W / 2 z/3>^2>

= sin|2f_fl
]2 sinf^-fl34 _ g

sini2£_0u sinA2f_0g
2

'

This is the cross ratio of the points of contact with a fixed

oriented proper circle of proper tangents properly parallel

to the given oriented lines. The coefficient of e is more

complicated : it may be written

1=4

2 ± *«/-&)(& -6) (&-£;•)
, = i -i\x^x^x^>x^

&-&) 2
(f3-&)2 ~

=
4

"=
4

The ratio between the two invariants is a third invariant

* H = t

2<v 1)*/2) /2*iw *<w /2*i(1)^w /2-f
i

(3)
'
(,

/
2)

We get the meaning as follows. Let the four oriented

lines be arranged in cyclic order, and four oriented circles be

taken, each properly tangent to two successive lines of the

system. The difference between the sum of the first and

thix'd sides of the oriented (perhaps re-entrant) quadrilateral

determined by the given lines in order, and the sum of the

second and fourth sides, is equal to the corresponding expres-

sion among the common tangential segments of the four

circles, each circle corresponding to the vertex of the quadri-

lateral which is the intersection of the two oriented lines

which it touches. This expression among the common

(20)
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tangential segments is an invariant for a Laguerre trans-

formation; hence the difference between the sums of pairs

of opposite sides of the quadrilateral is also invariant.

Reverting to our expression (2), let us take for our oriented

lines (x
x
,x

2
,x

3 ,x^) (0,1, 0,i) (0,a,6,i\/a2 + 62
) (0, 0,1, i), as any

four may be reduced to these by a suitable Laguerre trans-

formation. The quadrilateral has for its sides three sides of

a right triangle and an infinitesimal side passing through

the vertex of the right angle. The invariant is thus the

difference between the sum of the two legs and the hypo-

tenuse. But our expression (26) reduces to

x
x
(a + b- Va2 + 62

)

2 Vx
2 + ix

i VxA + ix
i s/a— Va- + b'

i \/b— Va'z 1 b2

x
2 + x

3 + %xi

_ x
l
(x

2
+ x

x
— ixi)

which is one-half the difference in question.

Theorem 25.] The complex invariant offour oriented lines

in chosen order is made up of two parts. The first part is the

corresponding cross ratio of the points of contact with any

proper oriented circle of four oriented proper tangents,

properly parallel to the given lines; the ratio of the two parts

is one-half the difference between the sums of the pairs of

opposite sides of the quadrilateral determined by the given

lines in the given order.*

The invariants of a Laguerre transformation and the sim-

plification of figure by these transformations lead us to certain

properties which might not suggest themselves naturally.

Let us say that three pairs of oriented lines belong to an

involution when this is true of the points of contact with

a fixed proper oriented circle of proper tangents properly

* Blasohke, loo. cit., p. 17, confuses the second part of the invariant with

the ratio of the two parts. He courteously acknowledged the mistake when

' it was shown to him.
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parallel to them. This condition is invariant for a Laguerre
transformation.* We thus get

Theorem 26.] If three proper oriented circles have each

a pair of proper common tangents, these will he three pairs

ofan involution.

We see, in fact, that there is a motion of our three-dimen-

sional space 2 which will bring any three proper points to lie

in a plane
||

it ; hence there is a Laguerre transformation of tt

which will carry three proper circles into three others all

of equal radius. The common tangents to these latter are

improperly parallel in pairs, and so clearly are pairs of an
involution.

Suppose that we have IJ/, IJ/, Z
3 Z3

', three pairs of a non-

parabolic involution. Since we may find a motion of 2 to

bring any two non-isotropic lines to be parallel to the plane

•n, so we may find a Laguerre transformation carrying l-J,^

and IJ.,' into two pairs of parallel lines, and owing to the

existence of the involution l.JA
' become a third pair of parallel

lines also. Let the triangle whose side-lines are lj.2 ls be

marked according to the standard notation of Ch. I, A
t
being

opposite to ?,-. Let 1/ meet ljlk in points whose distances

from Jj are rjOj, >';«£. Under these circumstances it is an

easy matter to calculate the lengths of the common tangential

segments of the oriented circles properly tangent to the

triads of oriented lines; then, exercising great care as to

signs, we apply Casey's criterion, I. 47]. We thus reach an

admirable theorem due to Bricard.f

Theorem 27.] If IJ/. l
2 U, l3 l3

' be three pairs of oriented

lines in involution, the four oriented circles properly tangent

respectively to the triads IJnh, IJ*'?3>h'hh'>Ws are properly

tangent to ajifih oriented circle.

Numerous corollaries follow immediately. The side-lines

of a triangle and those of the middle point triangle, when

* This definition is due to Laguerre, Collected Wotks, vol. ii, p. 597.

f ' Sur le probleme d'ApoIlouius', Xouvelles Annates de Math., Series 4,

vol. vii, 1907, p. 503.
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properly oriented, are pairs of an involution. The four

circles in this case are the inscribed circle (or an escribed

circle) and the middle points of the sides. We thus get

Feuerbach's theorem, I. 49]. Again, consider the circle

inscribed in a triangle and the tangent thereto anti-parallel

to one side-line. We see that the line connecting the points

of contact of the anti-parallel tangents is parallel to the

bisector of the corresponding angle of the triangle. But if

through each point of contact with a side of the triangle we
draw a parallel to the bisector of the opposite angle, we have

three concurrent lines, as we see by applying Ceva's theorem

to the triangle whose vertices are the points of contact. We
thus find

Theorem 28.] The side-lines of a triangle and three anti-

parallel transversals when properly oriented are pairs of an
involution.

Since the tangents to the circumscribed circle at the

vertices are respectively anti-parallel to the corresponding

side-lines, we have

Theorem 29.] The inscribed circle to a triangle and three

circles escribed to the triangles, each having as side-lines a

side-line of the given triangle and the tangents to the circum-

scribed circle at the corresponding vertices, are tangent to

a fifth circle.*

We return to the Laguerre group.f There are three types

of involutory transformation, corresponding to the involutory

congruent collineations of 2.

Plane w. Space 2.

Laguerre inversion. Reflection in plane.

Corresponding oriented Reflection in line,

lines properly tangent to the

same oriented circle which

touches properly two fixed

* ; Sur le probleme d'Apollonius ', Nouvelles Annates de Math., Series 4,

vol. vii, 1907, p. 505.

t Cp. Bricard, ' Sur la g£om6trie de direction ', Nouvelles Annates de Matke-

matiques, Series 4, vol. vi, 1906.
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oriented lines,while the points

of contact make two harmonic

pairs.

Each oriented line is re- Reflection in a point,

fleeted in the properly parallel

tangent to a fixed oriented

circle.

Every direct Laguerre transformation corresponds to a

motion in 2) ; every motion is either a rotation, a translation

or a screw, or a limiting case of these. The first and third of

these leave just two minimal planes invariant ; the translation

leaves invariant all minimal planes parallel to a given line.

Theorem 30.] In a direct Laguerre transformation there

will be invariant either two distinct oriented lines, or else

all oriented lines making a fixed angle uitk a given line ivill

be invariant.

Let us look at this analytically. We see from (17) that the

invariant lines correspond to roots of the equations

yf
I
+ (8-a)e-,3 = /£» + 2jft + (8'-30£+(«-aM-,*'=0.

If (8-a)=
/3 = y =0,

these equations are satisfied regardless of 7;. Our indirect

transformation (18) will be involutory if

$ = y = 0, 8 + a = 8'- a' = 0,

or ,3 = y — 0, 8— a = 8' + a' = 0.

It will be the first of these which gives the Laguerre inver-

sion, as the special Laguerre inversion

is included therein.

It is clear that a direct and close analogy exists between

a considerable number of theorems concerning circular trans-

formations which were developed in Ch. VIII and theorems

concerning Laguerre transformations. One reason for this

may be seen in the fact that the circular group is that of

congruent transformations of three-dimensional non-Euclidean



378 THE ORIENTED CIRCLE CH.

space, while the Laguerre group is that of congruent Euclidean

transformations. In order to exhibit as clearly as possible

this analogy, we shall give in parallel columns the corre-

sponding theorems, appending to the theorem on circular

transformations the number which it had in Ch. VIII. We
start with the well-known fact that every motion of 2 can

be factored into four plane reflections.

Laguerre group.

Theorem 31.] Every direct

Laguerre transformation can

be factored into four Laguerre

Circular group.

Theorem 26.] Every direct

circular transformation can

be factored into four inver-

%nvers%ons. sions.

Theorem 32.] Every direct Theorem 7.] Every direct

Laguerre transformation is circular transformation is

completely determined by the completely determined by the

fate of three oriented lines. fate of three points.

In (17), if there be a single pair of values C, and £ which

are interchanged,

(a + itx') =-(a + e8').

Every pair of corresponding values are changed in an

involutory manner.

Theorem 33.] If a direct Theorem 17.] If a direct

Laguerre transformation in- circulartransformationinter-

terchange a single pair of change a single pair of points

oriented lines it is involutory. it is involutory.

There is a fundamental theorem due to Wiener whereby

every motion can be factored into the product of the reflection

in two lines.*

Theorem 34.] Every direct Theorem 18.] Every direct

Laguerre transformation is circular transformation is the

the product of two involutory product of two Mobius in-

transformations. volutions.

' Zur Theorie der Umwendungen ', Leipziger Berichte, vol. xlii, 1890, p. 20.
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Every real motion of 2 is a translation, a rotation, or

a screwing about a real axis. Unfortunately, the real motions

of 2 will not usually give real Laguerre transformations in it

and vice versa. Among the imaginary congruent transforma-

tions of 2 there are those where the only fixed point is on the

circle at infinity. These will correspond to parabolic Laguerre

transformations where the fixed oriented lines form a parallel

pencil. Moreover, such transformations can be real, as we see

if we replace ix
i by x4 , and the denominator of ( by x

2
—

x

3
.

A real oriented line will then have real coordinates £ and rj,

and it is easy to find a real parabolic transformation.

A proper choice of our (old) complex coordinates will

enable us to write any parabolic transformation in the form

c = £

(y + e/K+i

Let the reader show that under this transformation every

circle

— yX
1 + k (x

2
— ix

3) + y'x± =
is invariant.

Theorem 35.] Correspond- Theorem 20.] Correspond-

ing oriented lines in a para- ing points in a parabolic

bolic Laguerre transformation circular transformation lie

touch properly the same on tangent circles through

oriented circle of a properly a fixed point,

tangent pencil.

A Laguerre transformation which corresponds to a screw

in 2 shall be called loxodromic. The indefinite repetition

of an infinitesimal transformation of this sort will carry into

itself a one-parameter family of oriented envelopes. There is

also a one-parameter invariant family of oriented circles (not

a one-parameter family of invariant circles) properly tangent

to the two oriented lines which are fixed in the transforma-

tion, and these are permuted by the given transformation.

If an envelope be carried into itself it will be repeatedly so

transformed when the transformation is indefinitely repeated.
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Every screw motion is a member of a continuous one-para-

meter group of screw motions all carrying into themselves the

same systems of curves. We may then inquire what sort of

an envelope will be carried into itself by a one-parameter

family of loxodromic Laguerre transformations. When we
remember that a Laguerre transformation is equilong, we see

that all such envelopes must be equitangential of this system

of circles, i.e. each envelope determines a common tangential

segment of constant length with each circle of the system.

Lastlv, this tangential length will be the same for all the

equitangentials, for each transformation of the loxodromic

group will be seen to be commutative with every Laguerre

transformation having the same two fixed oriented lines.

Thus let T be our loxodromic transformation, 8 a Laguerre

transformation with the same fixed oriented lines, k an equi-

tangential envelope of T,

Let Sic = ¥,

TSk = Tk' = k",

S- 1 TSk = Tk = k = S- 1 k",

k = S~ l
k',

k' = k",

Tk' = k',

and k' is an equitangential of our group. All these equi-

tangentials will thus correspond to the same fixed length.

We characterize our group analytically as follows. We write

the transformation

For a one-parameter group

q=/(p);

following with a second such transformation we have

pq'+p'q=f(pp'),

pf(p')+P'f(p)=f(PP'h

f(p) = k\ogp.

The fixed tangential segment will thus be a function of k.
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The Laguerre transformation corresponding to a rotation

of space shall be called hyperbolic if the fixed oriented lines be

real, elliptic if they be conjugate imaginary. The Laguerre

transformation corresponding to a translation of space shall

be called a parallel transformation. All oriented lines of two

distinct or coincident parallel pencils are invariant.

Real Laguerre transforma-

tions.

Loxodromic. Two types.

Corresponding oriented lines

touch tho same equitangen-

tial of a system of oriented

circles properly tangent to two

real or conjugate imaginary

oriented lines.

Hyperbolic. Corresponding

oriented lines touch properly

the same oriented circle

properly tangent to two real

lines.

Elliptic. Corresponding

oriented lines touch properly

the same oriented circle pro-

perly tangent to conjugate

imaginary lines.

Parabolic. Corresponding

oriented lines touch properly

the same oriented circle touch-

ing properly a fixed oriented

circle at a fixed point.

Parallel. Three cases.

Corresponding oriented lines

are properly parallel. Two
real and distinct coincident

or conjugate imaginary pen-

cils of parallel invariant lines.

Real circular transforma-

tions.

Loxodromic. Correspond-

ing points lie on the same

isogonal trajectory of a system

of circles through two real

points.

Hyperbolic. Corresponding

points are concyclic with two

real points.

Elliptic. Corresponding

points are concyclic with two

conjugate imaginary points,

and orthocyclic with two real

points.

Parabolic. Corresponding

points are on the same circle

touching a fixed circle at

a fixed point.
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Theorem 36.] Every periodic Theorem 21.] Everyperiodic

direct Laguerre transforma- direct circular transforma-

tion is elliptic. tion is elliptic.

If we write a non-parabolic Laguerre transformation in the

the expression (p+eq) is called the invariant of the trans-

formation. It is the complex invariant of the fixed lines and

any two corresponding lines.

Theorem 37.] If two direct

non-parabolicLaguerretrans-

formations have a common
fixed oriented line, the in-

variant of their product is the

product of their invariants.

Theorem 22.] If two direct

non-parabolic circular trans-

formations have a common

fixed point, the invariant of

their product is the product

of their invariants.

The product of the reflection in two planes may never be

a screw motion, but may be any of the other kinds of motion.

Theorem 23.] The hyper-

bolic, elliptic, and parabolic

circular transformations, and

these alone, are the product

of two inversions. When the

circles of inversion are mu-
tually orthogonal the two

inversions are commutative.

Theorem 38.] The hyper-

bolic, elliptic, parabolic, and
parallel Laguerre transfor-

mations, and these alone, are

the products of two inversions.

The necessary and sufficient

condition that two inversions

should be commutative is that

the system of oriented circles

invariant in the one should

be an invariant system in the

other.

Let us return for a moment to the indirect Laguerre trans-

formation. The square of an indirect transformation is a

direct one, with the same fixed elements. We see also that

this square cannot be a loxodromic transformation.
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Theorem 39.] Every in- Theorem 26.] Every in-

direct Laguerre transforma- direct circular transforma-

tion may be factored into three tion may be factored i ivto th ree

inversions, every direct one inversions, every direct one

into four inversions. into four inversions.

§ 4. Continuous Groups.

The problem of finding real continuous groups of Laguerre

transformations may be handled like the similar problem for

circular transformations. We have the advantage of starting

from familiar facts concerning Euclidean motions, but, as

already remarked, the question of reality requires delicate

handling, for real motions do not usually give real direct

Laguerre transformations. Our Laguerre group is simply

isomorphic with the six-parameter group, which leaves in-

variant one real non-degenerate conic. We begin with three-

parameter groups, and find that our previous reasoning holds

in the matter of integrable and non-integrable groups.

Theorem 40.] The only real Theorem 35.] The only real

non-integrable three-para- non-integrable three-para-

mete)' groups of Laguerre meter groiqis ofeireulartrans-

transformations are tJwse formations are those with one

with one real fixed oriented real or self-conjugate imagi-

circle. nary fixed circle.

It should be noticed at this point that whereas a real tetra-

cyclic equation will give a real or self-conjugate imaginary

circle, the latter type of circle having a real centre but a pure

imaginary radius will correspond to a real point in 2. The

group in 2 will be that of a real fixed point, and will not carry

into one another those points whose distances from -a are pure

imaginary, i.e. will not give a real Laguerre group.

An integrable three-paranieter group of Laguerre trans-

formations might have as its invariant sub-group a two-

parameter group of parallel transformations. In 2 there are
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two such integrable groups, corresponding to screw motions

of fixed pitch about axes of given directions and the group

of translations.* The first of these will correspond to a

three-parameter Laguerre group with fixed direction for the

invariant lines, and a fixed segment for the invariant equi-

tangentials. The second will give the parallel Laguerre

group. We have also the Newson group with fixed real line

and fixed tangential segment.

With regard to four- and five-parameter groups we may
pursue our previous reasoning whereby these must contain

three-parameter sub-groups. As before, we see that there are

no five-parameter groups. Four-parameter groups will fall

into two classes—those with one fixed real oriented line, and

those with fixed directions for the fixed lines. The two-

parameter groups are composed of those with two real and

distinct or conjugate imaginary invariant oriented lines,

and those composed of parallel transformations. We see,

in fact, that every two-parameter group is integrable. If

the one-parameter invariant sub-group have two distinct

fixed oriented lines, these will be invariant throughout the

whole two-parameter group. On the other hand, if the one-

parameter group be a parallel group, there are oo
1 invariant

parallel oriented lines which must be permuted by every

transformation of the two-parameter group ; hence every such

transformation must be a parallel or parabolic one. Let us

exhibit in parallel columns the corresponding groups in the

two systems.

Real Laguerre transforma- Real circular transforma-

tions, tions.

Five-parameters.

None. None.

* Cf. Study, 'Von den Bewegungen und Umlegungen ', Math. Annalen,

vol. xxxix, 1891, pp. 485 ff. Our enumeration of groups of Laguerre trans-

formations differs from his for motions precisely in this, that the real domains

are not in correspondence.
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Four-parameters.

Real fixed oriented line. Real fixed point.

Fixed lines have two real

and distinct, coincident, or

conjugate imaginary direc-

tions.

Three-parameters.

Fixed real oriented circle. Fixed real or self-conjugate

imaginary circle.

Newson. Newson.

Constant real or conjugate

imaginary directions for fixed

fines, and fixed tangential

lengths for invariant equitan-

gential curves.

Two-parameters.

Two real fixed oriented Two real fixed points,

lines.

Conjugate imaginary fixed

lines.

Lines of one direction fixed. Coincident real fixed points.

Fixed real tangent to fixed Fixed real point on fixed

real circle. real circle.

One-parameter.

Loxodroniic, with real or Loxodromic.

conjugate imaginary fixed

lines.

Hyperbolic. Hyperbolic.

Elliptic. Elliptic.

Parabolic. Parabolic.

Parallel.

§ 5. Hypercyclics.

We have now studied sufficiently the simplest oriented

envelope, the oriented circle. It is time to pass on to oriented

envelopes of a more complicated sort

lToa B b
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Let us define as a hypercyclic * every oriented envelope

having an equation of the type

i, j ~ 4

2 dij^i^j = 0, x 2 + x
3
2 + x 2 = 0. (21)

We may, without restriction, assume that the discriminant

of the first of these quadratic forms is different from zero.

Let us seek to reduce our equations to a canonical form under

the Laguerre group. A transformation of the coordinates of

a circle will be of the form

2/o
= coo2/o>

Va = c20 2/o + ««& + c
23y3 + c

2ly4 ,

Vi= c3o2/o + c32 2/2 + cE3 2/s + caiyit

Vi = c4o2/o + c42 2/2 + CisVz + CuVt-

The coefficients c
i

- , i ^ 0, j ^ have the form of a

ternary orthogonal substitution. Reverting to our previous

hypercyclic, we write the equation

= 0.

Let us suppose that this has three distinct roots. We may
in this case perform such an orthogonal substitution on the

coordinates x2 , xz , xi that the transformed equation lacks

the terms x
2
x

3 , x
2
xi} x

z
x±. We still have the parameters

c00 , c
20 , c30 , c40 free, and we make use of them to destroy

the terms x^x
2 , xx

xs , x
x
xv Our hypercyclic has thus the

canonical equations

(ax2
) = x* + x 2 + x 2 = 0. (22)

We mean by a general hypercyclic one where this reduction

is possible, and where the envelope is not transformed into

* The more usual name is hypercycle. See Laguerre, Collected Works, vol. ii,

and Blaschke, loc. cit. The word is hero modified to accentuate the com-

parison with the cyclic.

a22
—
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itself by reversing the orientation of every line. We have
the following correspondence.

* Plane -. Space 2.

Hypercyclie. Focal developable of quad-

ric.

General hypercyclie. Focal developable of cen-

tral quadric.

Theorem 41.] The general hypercyclie is transformed into

itself by a group of eight involutory transformation* includ-

ing the identical one. Three others are Laguerre inversions.

and three are direct transformations.

These transformations will, of course, correspond to the

reflections of various sorts which carry a central quadric into

itself.

If an oriented envelope be anallagmatic in a given Laguerre

inversion, the anallagmatic circle of that inversion which

touches the envelope at any point will also have proper

contact at another point. The envelope will thus Degenerated

by a one-parameter family of anallagmatic oriented circles.

These circles will correspond to the points of a focal curve

of the corresponding focal developable. In the ease of the

hypercyclie, this focal curve is a conic, whose orthogonal

projection on the plane - is another conic, the deferent of the

corresponding generation of the hypercyclie.

Theorem -1.2.] The general hypercyclie may be generated in

three ways by an oriented circle which meets a fixed oriented

line at a fixed angle, while ik centre traces, a central conic.

Remembering the fundamental property of the focal conies

of a central quadric, TI. 31],

Theorem 43.] If two fixed oriented circles be taken in one

generation of a general hypercyclie, the sum or difference of

their common tangential segments with all proper cirdc-o of

a second goieration <V constant.

Since every oriented circle having double proper contact

Bb2
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with a general hypercyclic will correspond to a focal point of

the corresponding quadric,

Theorem 44.] The only oriented circles having- double

proper contact with a general hypercyclic are generating

circles of one system or another.

Reverting to the oriented circles of one generation of

a hypercyclic, we see that the oriented tangents at the points

of contact meet on the fundamental line of the corresponding

Laguerre inversion, so that this fundamental line passes

through the centre of similitude of two successive generating

circles. If the angles which these tangents make with the

fundamental line be a
1
and a

2 ,

tan -i tan -r — Ic.

2 a

Now let be the angle which a normal to the deferent

makes with a line perpendicular to the fundamental line,

while 0' is the angle which it makes with a normal to the

hypercyclic, i.e. the line connecting corresponding points

of deferent and hypercyclic,

• „ cos -*——
, ,

sin 9 _ 2 _ 1— k

sin 0' ~
a, — a,

—
1 + k

cos '
i

Theorem 45.] The general hypercyclic is an anticaustic by

refraction of the deferent of each generation, the incident rays

being supposed to come in a direction orthogonal to the

fundamental line of the corresponding inversion.

In the last equation we may not have k(k + l) = 0. The

first would not give a Laguerre inversion at all, the second

would give an inversion which merely replaced each oriented

line by its opposite, excluded by the definition of the general

hypercyclic.

There are two tangents to the deferent perpendicular to

each real or imaginary direction that is unaltered by the

inversion. These will meet the fundamental line in points
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where the hypercyclic has four-point contact with the gene-

rating circle. They will correspond in 2 to the points where
the focal conic intersects the quadric. The hypercyclic will

meet the fundamental line at these four points, and at the

two intersections with the deferent, which are double points

with distinct tangents, since the radius of a generating circle

and the distance of its centre from the fundamental line are

infinitesimals of the same order. The hypercyclic will have
no other intersections with the fundamental line.

Theorem 46.] TJie general hypercyclic meets the funda-
mental line of each Laguerre inversion in two double points,

in four points where the corresponding generating circle has

four-point contact, and in no other points.

The condition of passing through a fixed point is linear

in the coordinates of an oriented line, hence

Theorem 47.] The general hypercyclic is a curve of the

eighth order and fourth class.

The extremities of the asymptotes of a deferent will not

usually correspond to self-corresponding directions for the

Laguerre inversion, so that each asymptote of the deferent

gives two distinct asj'mptotes of the hypercyclic. Conversely,

each asymptote of the hypercyclic must correspond to one of

the deferent in each generation, unless the point of contact

happen to be a circular point at infinity. Remembering that

the hypercyclic must meet the line at infinity eight times,

we have

Theorem 48.] The general hypercyclic has each circular

point at infinity as a double point.

Theorem 49.] The general hypercyclic has four double foci

which are also the foci of the four deferents.

The proof for this last is identical with that given for the

analogous theorem for the cyclic, IV. 1 5].

Suppose that we know one generation of a hypercyclic, we

pass to another as follows. First of all we know all the

asymptotes and double foci. The other fundamental lines are
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the remaining diagonals of the complete quadrilateral of the

asymptotes. The asymptotes of the deferents bisect the angles

of the asymptotes of the hypercyclic. The deferents are all

known because we know their foci and asymptotes, the funda-

mental lines are known, and the asymptotes determine the

constants of the Laguerre inversions. It is to be noted that

we have here taken no account of the difference between real

and imaginary.

The tangents to the general hypercyclic are in one to one

correspondence with the planes of the focal developable of

a central quadric, which is a developable elliptic. Thus,

since the points and tangents of any curve are in one to one

correspondence, the hypercyclic must be an elliptic curve.

This fact, combined with its order and class, will enable us to

find all of its Pluckerian characteristics.

Theorem 50.] The general hypercyclic is of order eight,

class four, and deficiency one. It has eight nodes, twelve

cusps, two double tangents, and no inflexions.

Suppose that we have a Laguerre inversion characterized

by the equation

tan -* tan -2 = k.
2 2

Let us transform it by inversion with the same fundamental

line, and the equation

*
a

+
a ' 1

tan - tan — =—-
2 2 ijk

The result will be the inversion

tan -r tan -f = — 1,
2 2

'

which merely has the effect of reversing every oriented line.

A hypercyclic which is anallagmatic under this new inversion

must be a conic counted twice.

Theorem 51. J There are six Laguerre inversions which

carry a general hypercyclic into a non-oriented conic.
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Four oriented lines shall be said to form a harmonic set

when their complex invariant has the value — 1. Under
these circumstances they touch one oriented circle and, if

the latter be proper, their points of contact form a harmonic

set. A given oriented line will have a single harmonic

conjugate with regard to two given oriented lines. If these

two be opposite lines, the other pair of the harmonic set are

the reflections of one another therein. If we reflect all the

tangents to a conic in a straight line we get tangents to

another conic, hence

Theorem 52.] The oriented envelope of the harmonic con-

jugates of a given non-minimal oriented line with regard to

the pairs of oriented tangents to a general hypercyclic which

correspond in one Laguerre inversion, is a second hypercyclic

anallagmatic in the same inversion.

The theorems so far developed for the hypercyclic corre-

spond very closely to theorems developed in Ch. IV for the

cyclic. The reader would do well to turn back and compare

one by one. The correspondence may be brought into an

even stronger light as follows. The general hypercyclic may
be written

a^x, 2 + a
%
x 2 + a3

x3
2 + a4 a;4

2 = x 2 + x3
2 + x

t
2 = 0.

A general cyclic may be written

(b
t
-bjx* + (b

a -bjxf + (bt-bjx* = X 2 +X 2 +X*+ X 2 = 0.

Theorem 53.] There is a perfect one to one correspondence

between the points of a general cyclic and the oriented tangents

to a general hypercyclic. Concyclic points of the first wiM

correspond to oriented tangents to the other, which either touch

one oriented circle or meet a fixed oriented line at a fixed

angle.

This theorem may be used to verify the calculation of the

Pliickerian characteristics of the hypercyclic given in 50].

Suppose that we have four oriented circles properly taDgent
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to two oriented lines. Every oriented circle tangent to these

lines will have coordinates of the form

(Kx ' + ij.x ", x
X) KxJ + ixXi', \x

z
' + ixx", kx±+\j.x"),

where (x
f

) and (x") are two oriented circles of the system.

The cross ratio of the centres of four such will be

I V I

•
|
A'V"

I

"..'

an absolute invariant for every Laguerre transformation. We
thus get from IV. 21]

Theorem 54.J The centres offour oriented circles properly

tangent to a general hypercyclic and to two fixed oriented

tangents thereto, have a cross ratio which is independent of the

choice of the oriented tangents, and is an invariant of the

hypercyclic for every Laguerre transformation.

Theorem 55.] If three generating circles be properly

tangent to a general hypercyclic at the same point, the dis-

tances from the centre of the first to those of the second and
third have a fixed ratio which is an invariant of the hyper-

cyclic.

The general cyclic is anallagmatic in four inversions and

has four systems of generating circles. These will correspond

to the three systems of generating circles of the hypercyclic

and to a one-parameter family of pencils of parallel lines,

two members of each pencil being properly tangent to the

hypercyclic and being the reflections of one another in the

properly parallel proper tangent to a fixed proper circle.

They correspond in the remaining involutory transformation

which carries the hypercyclic into itself. The circles of

four-point contact with the cyclic will correspond to the

generating circles which have foui'-point contact and to

the asymptotes.

It is at once apparent that our various residuation theorems,

IV. 27-34], have exact duals in the case of the hypercyclic.

We give some of the most interesting.
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Theorem 56.] If a, b, c, d be the four proper tangents

which a hypercyclic shares with a circle, a second oriented

circle touches the proper tangents to the hypercyclic a, b, c1 ,d1 ,

a third touches the proper tangents a^, 6
1 , c, d, then the four

oriented lines alt blt clt d
x
touch a circle or make a fixed

angle with a fixed oriented line.

Theorem 57.] Tlie envelope of pairs of oriented lines each

touching a common oriented circle with each of three given

pairs of oriented lines is a hypercyclic.

There are many special cases of this which we shall not

investigate further.

Theorem 58.] Tlie osculating oriented circles to a hypercyclic

corresponding to the oriented tangents which the hypercyclic

shares with a given oriented circle, will each determine with

the hypercyclic one other common proper tangent, and these

will also be properly tangent to an oriented circle or meet

afixed line at a fixed angle.

Theorem 59.] If three of the proper tangents common to

a general hypercyclic and an oriented circle correspond to

generating circles having four-point contact, the same is

true of the fourth common tangent, or else the latter is an
asymptote.*

Theorem 60.] If three oriented circles ofone generation of

a general hypercyclic share with the curve the pairs ofproper

tangents aa', bb\ and cc' respectively, and if a, b, c, d touch one

oriented circle, zvhile a', V, c', d' touch another, then dd' will be

a pair of corresponding proper tangents in this generation.

§ 6. The Oriented Circle treated directly.

We have so far, in the present chapter, treated the oriented

circle almost exclusively as an envelope of oriented lines.

* Cf. Blaschke, loc. cit., p. 59. Much of what we have given in the present

chapter, both in connexion with the Laguerre group and the hypercyclic, is

from this excellent memoir,
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Let us now change our point of view, and examine the oriented

circle directly. We repeat the previous analogies.

Plane it. Space 2.

Proper oriented circle. Proper point.

Common tangential seg- Distance,

ment.

Ten-parameter group of Ten-parameter group of

contact transformations of spherical transformations,

oriented circles.

This last truly admirable correspondence is due to Lie.*

It is proved by noticing the isomorphism of the conformal

group of Ch. IX with the collineation group in S4 , that leaves

invariant the quadratic form

— 2x x
1
+ x2

2 + x
3
2 + x

3
2 + x£ = 0.

A one-parameter system of oriented circles, that is, a system

whose coordinates are proportional to analytic functions of

one independent variable whose ratios are not all constants,

shall be called a series. A system whose coordinates are pro-

portional to analytic functions of two independent variables,

the ratios being not all constants, nor functions of one same

variable, shall be a congruence. Among congruences the

simplest are the linear ones, determined by equations of

the type
— a1

x — a x
1 + a

2
x
2 + a

3
x3
+aixi

=0. (23)

They have the following interpretations with the aid of

(7) and (6)

:

a) - 2 a a
x + a

2
2 + a* ^ o,

— c^ aSp—a^ + a2x2 + a
3
x
3 + V2 ct a

1
—a*— a3

2xi

2 ^1a^a
x
— a

2
—a

3
x^

-jU a
* 1-

2 L V2a a
1
— a2

!i— a
3
*-i

* 'Ueber diejenige Theorie des Eaumes', etc., Gbttingische Nachrichtm, 1871.
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The circles of the congruence meet an oriented circle at

a fixed angle which will be null if

— 2 a a
1
+ a2

2 + a
3
2 + a4

2 = 0.

When this last equation holds the congruence is said to

be special, even when the inequality above does not hold.

It consists in the oriented circles properly tangent to one

oriented circle.

b) a J= 0.

r(a
2
2 + a,2 + a4

2
)

2
L -2a

X°

~

a
°Xl + a2 '1

'

2 + "s^3 + CliXi

-['

The circles have a fixed common tangential segment with

a fixed oriented circle.

c) — 2a «
1
+<z

2
2 + a

3
2 = 0, aQ

= 0.

Circles invariantly related to a minimal line.

One or two special cases deserve notice.

d) a = 0, a 2
2 + a

3
2

=fi 0.

Circles meet an oriented line at a fixed angle.

e) a
x
= a2

= a
3
= 0.

Cii-cles have a given radius which is null if aA
= 0.

«0 = a%
~ a

3 = «4 = °-

Congruence of all line circles.

If the coordinates of an oriented circle be connected by

a linear relation, it will thus in the general case, where all

of our inequalities hold, meet one circle at a fixed angle, and

have a fixed tangential segment in common with another.

If we mean by ' in general ' that these inequalities shall be in

force, we see

Theorem 61.] The assemblage of all oriented circles whose

common tangential segments with two proper circles bear
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a fixed ratio, will meet at a fixed angle an oriented circle

coaxal with the given two, or be the limit of such an assem-

blage.*

Theorem 62.] The ratio of the common tangential segments

of all circles of a coaxal system with any two of the conjugate

coaxal system is constant.

Theorem 63.] The assemblage of all oriented circles common
to two linear congruences is that of all oriented circles properly

tangent to two oriented circles, or to a given oriented circle at

a given point.

The proof is immediate and left to the reader. We pass to

the general consideration of two linear congruences. These

will have an invariant under the contact group of oriented

circles, namely

- a b
x
- a^o + a

2
b2 + as

b
3 + aibi

*/

-

2 «„«! + a} + a
3
2 + a4

2 V-2b b
1 + b

2
* + b

!?+ b*
=

'
'

Let us restrict ourselves to the general case where

(-2a a
1 + a

2
2 + a3

2 + a4
2)(-26 6

1 + 62
2 +V + V) po-

under these circumstances, if fa and fa be the angles

associated with the definition of the congruences, and the

angle of their fundamental circles,

cos fa cos fa— cos _ T
sin fa sin fa

Two linear congruences shall be said to be i/n involution

when / vanishes, i.e.

— a b
x
—a^ +a^ +a^+a^ = 0.

If one of the complexes be special, its fundamental circle

is a member of the other congruence ; if both be special, their

fundamental circles are tangent.

* This theorem and the next are from rather a poor article by Sobotka,

' Eine Aufgabe aus der Geometric der Bewegung', Monatsheftefiir Math., vol. vii,

1896, p. 347.
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Plane ir. Space 2.

Linear congruence. Sphere.

Invariant of two linear Cosine of angle of spheres,

congruences.

Congruences in involution. Orthogonal spheres.

This analogy of linear congruence with sphere leads us to

consider that oriented circle transformation which corresponds

to an inversion in 2 and which contains the Laguerre trans-

formation as a special case.* We start with a non-special

linear congruence {a^a-^a^a^, and define as an inversion
therein the following transformation, which is seen at once
to correspond to inversion in space.

(
25

)
xi=(ai

2-ai
2
)
xi-^(-aixo- ao

x
i + a

2xi + a
3
x3 + (Xixs

)ixi ,

— 2 a a
x + a

2
2 + a

3
2 + a4

2 = 0,

= (a4
2- a*f (- 2 x x

x
+ x£ + x3

2 + x*).

When a = we fall back upon the Laguerre inversion (11).

The oriented circles (x) and (x') are coaxal with the circle

(a). The product of the tangents of the halves of their angles

therewith is

tan - tan - = — = tan2 - >

2 2 a4 + a4 2

where
<f>

is the fundamental angle associated with the linear

congruence.

Theorem 64.] If a general linear congruence consist in

oriented circles meeting a fixed oriented circle at a fixed

angle not zero, then two oriented circles are mutually inverse

in the congruence when, and only when, they are coaxal with

the fixed circle, and the jyroduct of the tangents of half their

* This transformation seems to be due to Smith, ' On a Transformation of

Laguerre', Annals of Math., Series 2, vol. i, 1900, and ' On Surfaces enveloped

by spheres belonging to a linear Complex ', Transactions American Math. Soc,

vol. i, 1900.
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angles therewith is equal to the square of the tangent of half

the angle associated with the congruence.

We shall not enter into the special or limiting cases of this

transformation. Let the reader prove the five following

theorems

:

Theorem 65.J When the angle associated with a linear

congruence of oriented circles is - > inversion in the congruence

is circular inversion.

Theorem 66.] Inversion in the linear congruence of all

null circles is the reversal of the sign of the radius of each

oriented circle.

Theorem 67.] Inversion in the congruence of all oriented

circles of given radius will change each oriented circle into

a concentric one whose radius differs from the negative of that

of the given circle by a constant.

Theorem 68.] A necessary and sufficient condition that

the product of the inversions in two linear congruences should

be commutative is that the congruences shbuld be in in-

volution.

Theorem 69.] Every contact transformation of oriented

circles can be factored into the product offive or less inversions

in linear congruences.

Before making any further study, of series or congruences

of oriented circles it will be wise to make a slight alteration

of notation. This amounts essentially to determining each

circle by the special pentaspherical coordinates of the repre-

senting point in 2, that is, in (1 2) we replace the homogeneous

cartesian coordinates X, Y, Z, T by special pentaspherical

ones. We write, therefore,

-^/2x ~
P (X + iX

1),

Vlx
l
= P {X()

-iX
1),

x
2
= PX2 , (26)

x3
=pX

3 ,

84 = pX±.
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An oriented circle has thus five homogeneous coordinates

(X) connected by the relation

(XX) = 0. (27)

The condition of proper contact of two oriented circles (X)

and (Y) is

(XY) = 0. (28)

In Ch. VI we passed from special to general pentaspherical

coordinates which were related to five mutually orthogonal

spheres. Let five congruences in involution be

the angle associated with the congruence (AM) shall be <£ ; ,

the angle at which an arbitrary circle cuts the fundamental

circle of (AW) shall be
f

. Let us then write

x ,_ cos fr- cos 6j _ (A®X)
ain(

t>i X
i
</(AWAM)'

|
A WA

X
W A

2
W A

3
W AJH |

2 = 0.

(29)

(AWAW)
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Theorem 70.] If five linear congruences in involution of

oriented circles consist in the circles meeting five fundamental
oriented circles at five fundamental angles, then we may
take for the coordinates of every proper oriented circle five

quantities each proportional to the quotient of the difference

of the cosine of a fundamental angle and the cosine of the

angle made with the corresponding fundamental circle,

divided by the sign of that fundamental angle. The sum
of the squares of these coordinates will in every case be zero.

Four oriented circles have an absolute invariant for all

contact transformations.

(XT) (ZT) _ Bin»fr£.XrBin'illgr
(XT) (ZT) ~ mn*tf.XTniL*l4-ZY' (

'

We pass to the general study of systems of oriented circles.

A general congruence may be expressed in the form*

f(X ...Xi) = 0. (32)

Or else in the form
X

t
=X

t
(uv). (33)

Let us look for series of oriented circles in the congruence

which osculate their envelopes. If (X) and (X + dX) make
an angle which is infinitesimal to higher order we have

(tt- r— Wtt2 + 2(— —) dudv+ (-^- ^-W = 0. (34)
\<>u lu/ \2>u }>v' \7>v Zvs

The solutions of this differential equation give the two

one-parameter families of osculating series ; an arbitrary circle

will usually belong to two different series; they coalesce if

/ix ix\ six ix\ _ /bx *X\ 2_ (35)

* The following study of congruences and series of circles is based on two

interesting but highly unreliable articles by Snyder, ' Geometry of some
Differential Expressions in Hexaspherical Coordinates ', Bulletin American

Math. Soc, vol. iv, 1897, and ' On the Geometry of the Circle ', ibid., vol. vi,

1899. On p. 464 the author corrects several misstatements in the preceding

paper ; certain erroneous results appearing in the earlier paper have not,

apparently, ever been corrected.
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Again, if the adjacent circles (X) and (X + dX) be tangent

to one another,

(XX) = (XdX) = (dXdX) = 0,

(X+ c?X) belongs to the properly tangent pencil determined

by the mutually tangent circles (X) and {dX). These two
both belong to the linear congruences

(
xx, = (gx)

To find the special linear congruences linearly dependent

on these we must solve the quadratic equation

AHXX) +2v(X^) +^g:) = 0. (36)

Assuming first

$)*«ux?x
the only solutions of the quadratic are /i = 0. The series

determined by the two linear equations consist in oriented

circles properly tangent to (X) at either of two given points.

its points of contact with its envelopes in the osculating

series. We next assume

&& = ' (»)

Here the state of affairs is entirely diflerent. Let us first

assume that the congruence is algebraic, i.e. / is a homo-

geneous polynomial.* Representing our oriented circles by
means of points in a projective four-dimensional space we

see that, as in this case. (—=. ^=.) vanishes identically with

(XX) and (X ^A ; we may apply Xother's fundamental

theorem and write

(&&) = ***+(*&)*
* Cf. Klein, ' TTeber einige in der Liniengeometrie auftretenden Differential-

gleiehungen ', Haft, AhkuUh, vol. t. 1ST:!, p. 2SS.

itm C C
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f K* +
K
*x)-2i.

if=o *Xi
2>x; aZ.az/

2 2^ sx^z;.
- (ZZ

) az}
+

(
z
az) az;

'

'^c* a2
/ a/ _a/_ / s/ a</>\

r^az.az^. az, ax,
- (AA

' Vax azJ

It appears thus that the first term in the above expansion

of/ (X + \^y) vanishes. We may continue thus and show

that every term vanishes, i. e. every circle properly tangent to

the properly tangent circles (Z) and (=r4) belongs to the

congruence. The latter must consist in the circles tangent to

one curve. Conversely, suppose that we have a congruence

of circles properly tangent to an oriented envelope. The

osculating circle being (Z) we may write

Y
t = ZtM + vZU*).

(ZZ) = {ZZ') = (Z'Z') = {ZZ") = {Z'Z") = 0,

V Tr) ~ \
z
i?) ~ V a^ it) ~ \Jim ~ °'

P jjr = I

T
j
Zh Zl

Zm" I

.

\dyiy)-

When the equation of the congruence is not algebraic we

may express it approximately as closely as we please by

a development in Taylor's series, the theorem holding for

each approximation. Hence, it is universally true that (37)
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expresses the necessary and sufficient condition for a con-

gruence of oriented circles properly tangent to an envelope.

Suppose that we have two algebraic congruences

/=0, = 0.

The oriented circle (X) and its immediate neighbours belong

to the linear congruences

(S*')=(S *') = »•

The special linear congruences linearly dependent upon
them will be given by the roots of the quadratic equation

When the roots of this equation are identically equal, i.e.

when /If j>/\ /3<£ ^0\ _ /If 3^y

_

\bX ZXJ UI M7 \7>X ix) ~ '

we have a series of osculating circles, by II. 25].

Reverting to our congruence (32), that series for which

& H) =

°

<
39

>

is said to be composed of singular circles. The infinitely near

circles tangent to (X) touch it where it touches the oriented

circle (^-4)* That part of the envelope of the singular series

which comes from this point of contact is called the singular

curve.

This hazy talk about neighbouring or infinitely near circles

attains a clear meaning when we consider our minimal pro-

jection.

Plane it. Space 2.

Congruence of oriented Surface,

circles.

Congruence of oriented lines Isotropic ruled surface,

properly tangent to one en-

velope.

c c 2
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Pencils determined by ad- Isotropic directions in sur-

jacent circles properly tangent face,

to given circle.

Singular circle. Parabolic point.

Series of osculating circles. Minimal curve.

Let us apply these general principles to the study of the

quadratic congruence, that is, the congruence given by equa-

tions
i, ) = i

2 aij
X

i
X
j
= (XX) = 0. (40)

i, i = o

We shall mean by a general quadratic congruence one for

which the equation

*30

«40

has distinct roots.

aoo~P

«10

"01

an- P

"03

a20

-"si

<*22
_

P

"32 "33

*04

Z14

*24

^34

au~P

=

Space 2.

Cyclide.

General cyclide.

Plane it.

Quadratic congruence.

General quadratic con-

gruence.

We may, as we well know, find a contact circle transforma-

tion to carry the equations of the general quadratic congruence

to the canonical form

(aZ2
) = (XX) = 0. (41)

Theorem 71.] The general quadratic congruence is carried

into itself by an inversion in any one offive linear congruences

in involution.

Let the condition for a null circle in our present coor-

dinates be
(UX) = 0,

while that for a line circle is

(VX) = 0.
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Theorem 72.] The null circles of a general quadratic con-

gruence generate a cyclic, its line circles a hypereydie.

Let us look for the singular circles of the congruence

(al-l = (a-X-) = (XX) = 0.

If (Z) be the point of contact with the singular curve, i. e.

the null circle whose vertex is there, while (Z) is the oriented

tangent,

Z
i
= (ai+ X)X i;

Z{= ia i
+ y)X{.

' = -1 1=4 1=4 » = -47

1

72 7 /2 7 '2

^a
{+ \ ^(a

{
+ \f ' ^ai + K' ^(Oi + k) 3=0* i = v '

'
i = * i=0 Vi '

The first pair of equations are a cubic in X and its derivative.

The elimination of A amounts to setting the discriminant

to zero, and is a quartic in Z? ; another such quartic will

come from the other pair of equations. If we combine with

(UZ) = (AZ) = yZZ) = 0, (YZ') = (A'Z') = (Z'Z') = 0,

we get sixteen solutions.

Theorem 73.] The singular curve of a general quadratic

congruence is of the sixteenth order a nd class with a multi-

plicity eight at each circular point at infinity*

This curve may be generated in various ways as an envelope

of circles. We see, in fact, that a properly tangent oriented

circle belonging to one fundamental linear congruence is

doubly tangent.

Plane -. Space 2.

Five generations of singular Five focal cyclics ofcyelide.

curve of general quadratic

congruence.

The centre of one of the generating circles will be the

orthogonal projection on 2 of a focus of the cyclide; we
thus see

* Blaschke, loc. cit., p. 55.
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Theorem 74.] The singular curve of a general quadratic

congruence of oriented circles may be generated in five ways

by an oriented circle which meets a fixed oriented circle at

a fixed angle, while its centre traces a binodal quartic. It

will have a node at each finite intersection of one of these

quartics with the corresponding fixed circle.

The deficiency of this curve, being that of a cyclic, is unity.

We have thus a sufficient number of facts to enable us to

calculate the Pliickerian characteristics of the curve ; we find

Theorem 75.] The singular curve of a general quadratic

congruence has the equivalent of 88 nodes and double tangents,

16 inflexions and cusps.

The singular circles which satisfy all the relations

(XX) = (aX2
) = (a2X2

) = (asX2
) = (42)

are said to be singular of the second sort. Every oriented

circle of the system

iXi + liatXi

will belong to the congruence. Our correspondence is

Plane w. Space 2.

Sixteen singular circles of Sixteen isotropics of general

the second sort of general cyclide.

quadratic circle congruence.

The one-parameter family of quadratic congruences

2^=0 (43)

are said to be cosingular. They have, in fact, the same

singular curve. We have

Plane w. Space 2.

Cosingular quadratic circle Confocal cyclides.

congruences.
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Long as has been our present chapter, it is clear that we
have by no means exhausted the subject of the oriented circle.

We began with the study of these circles by means of

elementary geometry, and there is no doubt that we merely

scratched the surface. The analogy between the geometry of

inversion and the geometry of direction could be pushed much
further. Our next task was to study the Laguerre group, and,

though we carried this far, yet much remains to bring it to an

equality with the group of circular transformations. Thirdly,

be it noticed that we have made no mention of any of the

special forms of quadratic circle congruence. Several of these

must be of importance, especially those which correspond to

two-horned and Dupin cyclides. Lastly, it would seem as if

the coordinates of the oriented circle offered an ideal method

of studying Hart systems. The Author must confess that his

success in this last line has been disappointing, yet he has not

lost his conviction that much might be done.



CHAPTER XI

THE ORIENTED SPHERE

§ 1. Elementary Geometrical Theorems.

We saw in the last chapter what a profound change was

introduced into the geometry of the circle in the plane, or, for

that matter, the circle on the sphere, by giving a sign to the

radius. Exactly similar changes occur in the geometry of

the sphere when a like orientation is introduced.

We start, as before, with the real finite cartesian domain,

the domain of Euclidean geometry. The radius of a sphere

shall be considered as positive when each normal is oriented

inwards ; outwardly oriented normals shall correspond to

a negative radius. The angle of intersection of two spheres

shall be defined as that of their oriented normals at a point

of intersection ; its cosine will be

r2 + r' 2—

d

2
...

cosfl = —
-. (1)

When this expression is equal to unity the spheres are said

to be properly tangent; when it is equal to —1, improperly

tangent. Every plane (we are in the real domain) may be

oriented by requiring all of its normals to point from one

of the two regions into which the plane divides space to the

other. Two planes shall be properly parallel when they have

the same system of oriented normals; when the normals to

one are opposite to those to the other they are said to be

improperly parallel. The angle between two intersecting

planes shall be defined as that of their oriented normals at

a point of intersection, and this definition shall be extended

to include the angle of any two oriented surfaces. If at any

non-singular point they have the same oriented normal, they
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are said to be properly tangent ; when the normal to one is

opposite to that to the other, improperly tangent.

A number of simple theorems about oriented spheres may
be obtained immediately from the elementary theorems about

oriented circles. Let the reader prove

:

Theorem 1.] If, through all lines of an oriented plane

which lie outside of an oriented sphere, pairs of properly

tangent planes be drawn to the sphere, the product of the

tangents of half the angles which they make with the given

oriented plane is constant.

This constant shall be called the power of the oriented plane

with regard to the oriented sphere. It may take any value

between — oo and oo according to the position of the plane.

Let us note that two oriented spheres, like two oriented

circles, have but one centre of similitude ; we have then

Theorem 2.] All oriented planes having equal powers with

regard to two non-concentric oriented spheres of unequal

radii pass through the centre of similitude ; when the spheres

have equal radii, these planes are parallel to the line of

centres.

We get at once from the Laguerre inversion in the plane

Theorem 3.] If oriented planes be transformed in such

a way that corresponding ones are coaxal with a fundamental

oriented plane, while the product of the tangents of the halves

of the angles which they form therewith is constant, then an
oriented sphere is transformed into an oriented sphere, and
corresponding oriented spheres have the given fundamental

plane as their radical plane. The common tangential segment

of two oriented spheres will be invariant under this trans-

formation.

We mean, of course, by the ' common tangential segment

'

of two oriented spheres the distance of the points of contact

with any properly tangent oriented plane. Our transforma-

tion shall be called a Laguerre inversion. It is a special

case of the general equilong transformation, to be studied

later.
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§ 2. Analytic Treatment.

It is hardly worth while to delay any longer on the elemen-

tary geometry of the oriented plane and sphere, as much
more interesting material lies beyond. We pass, therefore, to

cartesian space rendered a perfect complex continuum by the

adjunction of the plane at infinity, and write the equations

x (x2 + y
2 + z2)+x

2
(2xt) + xs

(2yt) + xi (2zt)+x1
(2t2

) = 0; (2)

- 2a^ + x 2 + x 2 + x 2 + x6
2 = 0. (3)

Every oriented surface corresponding to these two equations

shall be called an oriented sphere. When the first coefficient

does not vanish, we shall define as its radius the expression

r = — (4)
x

We have the following types of oriented sphere

:

a) Proper oriented spheres x x5 ^0.

b) Non-planar null spheres x =fc 0, x
6
= 0.

c) Non-minimal oriented planes x = 0, x
h ^ 0.

d) Minimal oriented planes x = x
s
= 0.

The plane at infinity is included in the latter category.

The common tangential segment of two non-planar spheres

(x) and (y) will be

t
_ /2 (-3q2/i-^y + x

2y2
+x

3y3 + xiyi+x&y5 ) _
,

g
.

For the angle of intersection of two not null spheres we

have
•

2
e _ - x y1

-x
xy + x

2y2 + x
3y3 + xiyi + x

6y5sm _ _ __
(6)

We shall leave till a later stage of the present chapter the

further direct discussion of the oriented sphere, and take up
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for the present a detailed study of the oriented plane. This

has five homogeneous coordinates (a?) where

x
2x + x3y + x^ + xj — 0,

(7)

x2
* + x

3
2 + xi

2 + x5
2 =0.

Suppose that these coordinates are limited by a single

linear equation

—a^ + a
2
x

2 + a
sx3 + «4«4 + a6x5

= 0. (8)

If a =£ the plane is properly tangent to the oriented

sphere

/ a2
2 + as

2 + a
4
2 + «

5
2

\

\
a
°'
—

b^r— '

a» a
*'

a
*> ««)

If a = we see that the extremities of the normals to the

planes will trace in the plane at infinity a conic having double

or four-point contact with the circle at infinity, i.e. the oriented

planes make a fixed angle with a fixed oriented line or is

invariantly related to an isotropic. Every oriented sphere

has a linear equation in oriented plane coordinates; every

such equation will represent either an oriented sphere, or the

planes making a fixed angle with an oriented line, or in-

variantly related to a minimal line. This latter corresponds

to the case

The power of the oriented plane (x) with regard to the

proper oriented sphere (y) is

~2/o*l + 2/2*2 + 2/3*3 + 2/A + 2/=*5

2/0*0- 2/1*1- 2/2*2- 2/3*3~ 2/4*4 + 2/5*5

The formula for a Laguerre inversion in the oriented plane

will be

*/= K2 -«52)**- 2 («2*2+ a3-*'3+ a4*4 + a5'^)«i' * =£ 5
>

*S
'= K2- «5

2
) *5- 2 («2*2 + ffl3*3 + «4*4 + «5 *6) <*5

The geometry of the oriented sphere furnishes simple duals

to various residuation theorems, which we found in our sphere

geometry. We start with V. 37]. Suppose that we have four
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oriented spheres slt s
2 , s

3 , si properly tangent to a plane it.

Let n
i
be the other oriented plane properly tangent to the

three spheres s-, Sj., Sj, while ir« is an arbitrary oriented plane

properly tangent to sk and s
z

. The oriented sphere properly

tangent to -nit ir^, irih , ir
l7

shall be s/. We write the equation

\s
1
s
1
' + ps

2
s
2
' + vs

3
s
3
'= 0.

This oriented envelope will determine with an arbitrary

proper oriented sphere a developable of the fourth order ; the

points of contact will trace a cyclic. The terms of this

equation are linearly independent, the planes of the system

properly tangent to s4 would seem to determine thereon a two-

parameter family of cyclics through the seven points of con-

tact with it, n-j, tt
2 , ir3 , irjg, tt

is , tt
23

. Through these points

there will pass but a one-parameter family of cyclics. Hence

we may choose A, fi, v so that s4 itself shall be part of the

envelope. The rest will be a second oriented sphere which

will share with s/ the proper tangent planes 7r4 , ir
14 , ir

2i , irsv
The points of contact are not concyclic in the general case,

hence this sphere must be identical with s/ ; the latter must

touch the remaining common proper tangent plane to s/, «/, 8
S
'.

Theorem 4.] If four oriented spheres be given, all properly

tangent to the same oriented plane, but no three properly

tangent to three oriented planes, and if the remaining common
proper tangent planes be taken to each set of three, as well

as one arbitrary plane properly tangent to each two, then

the four oriented spheres each properly tangent to a plane

touching three of the original ones and to the three arbitrary

planes each tangent to two of these three spheres are themselves

properly tangent to one oriented plane.

This theorem may be somewhat generalized by a contact

transformation of spheres ; the statement, which is certainly

bad enough at present, becomes altogether too involved to be

worth while. Let the reader prove by methods analogous to

those which were used in the case of VI. 11].

Theorem 5.] Given five oriented spheres properly tangent

to an oriented plane, no three properly tangent to more than
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two oriented planes, and all arranged in cyclic order. Let

the common proper tangent plane he constructed to each set

of three succe^ive spheres. And let five oriented spheres be

constructed each properly tangent to three successive oriented

planes just found. Then the remaining common proper

tangent planes to the five sets of three successive spheres in the

new sequence will themselves touch a sphere, or make a fixed

angle with a fixed line, or be invariantly related to a minimal
line.

It is intuitively clear that the geometry of the oriented

sphere may be treated by a minimal projection exactly as

was that of the oriented circle. We begin with the funda-

mental equations

-XT = Px2 ,

(9)

-YT = Px3 ,

-ZT = px
i:

-WT = Px5
.

The finite point in four-dimensional space 24
with the homo-

geneous rectangular cartesian coordinates (X : Y :Z : W: T)

will be the centre of a null hypersphere which will cut the

hyperplane TT = in the sphere

x (x* + y* + z°)+x2 (2x)+x3
(2y)+xi (2z)+x5 {2t)

= 0. (2)

The radius of this sphere will be

.'=!=-¥• a.)

We shall make our S
4 a perfect continuum by adjoining

a single point at infinity with the coordinates xx
= 1, x

i
= 0,

and oo3 other improper points whose coordinates satisfy the

equations
x

u
= ay + x3- + <v + :c

5
2 =0. (11)
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We shall define such points as the minimal hyperplanes

x.
2
X+x

3
T+xi

Z+x5W + x
1
T = 0,

which cut the hyperplane 2
3
in the oriented planes

Theorem 6.] If a four-dimensional cartesian space of

Euclidean measurement be made a perfect hexaspherical con-

tinuum by the adjunction of a single point at infinity, and
the totality of minimal hyperplanes as improper points, there

is a perfect one to one correspondence between the points of

such a space and the oriented spheres of a three-dimensional

cartesian space. The correspondence may be effected by letting

each proper point of 24 correspond to the sphere in 2
3
whose

centre is the foot of the perpendicular on 2 from the given

point, ivhile the radius is —i times the algebraic distance

from that centre to the given point. Each improper point

is represented by the plane where 2
3
meets the corresponding

minimal hyperplane of 2
4 , with an orientation rationally

determined by the coordinates of the improper point. The

distance of two proper points will be the tangential distance

of the corresponding oriented spheres.

2
3

. 2,.

Oriented sphere. Point.

Proper oriented sphere. Proper point.

Non-planar null sphere. Point of 2
3 .

Non-minimal plane. Minimal hyperplane whose

point of contact with the

sphere at infinity is not in 2
3 .

Minimal plane. Minimal hyperplane whose

point of contact is in 2
3

.

Common tangential seg- Distance of two proper

ment of proper spheres. points.

Pencil of properly tangent Isotropic line,

spheres.

Pencil of properly parallel Pencil of parallel minimal

planes. hyperplanes.
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Transformation carrying Conformal collineation.

oriented planes properly tan-

gent to an oriented sphere

into oriented planes also tan-

gent to a sphere.

Theorem 7.] There is an eleven-parameter group of

transformations which carry oriented planes into oriented

planes, and those tangent to an oriented sphere into others

tangent to another sphere. Every transformation of the

group will multiply the common tangential segments of two

proper' spheres by a constant, characteristic of the transfcrrma-

tion.

Eleven-parameter group of Eleven-parameter group of

oriented planes and spheres. conformal collineations.

coordinates in 24 , and put^ for ^75 the Lie symbol for this

If we use temporarily xlt av,, x
3 , xi for rectangular cartesian

)ordinates in 24 , and put pf

eleven-parameter group is *

[Pi, ®iPj-njpi> 2 a'i^l-

The transformations of this group which multiply tangential

segments by the factor +1 shall be called Laguerre trans-

formations.

Theorem 8.] The Laguerre group in space is a ten-para-

meter mixed group, with a ten-ixirameter continuous sub-

group, and a ten-parameter continuous sub-assemblage.

The Laguerre transformations of the sub-group shall be

* Cf. Pa°e, 'On the Primitive Groups of Transformations in a Space of Four

Dimensions'. American Journal ofHath., vol. x, 18SS, p. 345.
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called direct, those of the sub-assemblage indirect. The Lie

symbol for the continuous group is

[Pi, xiPj-®iPi\

2
3

. 2
4 .

Laguerre group. Congruent group.

Continuous direct sub- Group of motions,

group.

Sub-assemblage of indirect Sub-assemblage of sym-

transformations. metry transformations.

Laguerre inversion. Reflection in hyperplane.

It would be natural to assume that this ten-parameter

group was simply isomorphic with that of all conformal trans-

formations of three-dimensional space. Such is not, however,

the case. The conformal group appears in four dimensions as

a collineation group keeping invariant a hyperquadric of non-

vanishing discriminant; the Laguerre group is a sub-group

of the eleven-parameter group which leaves in place, not

a hyperquadric, but a quadric surface.

Before resolving our Laguerre transformations into factors,

it is well to approach the subject from another point of view,

exactly as we did in the plane. Let us define as equilong

any analytic transformation of oriented planes which keeps

invariant the distance of the points of contact of an arbitrary

oriented plane with any two envelopes. We seek the general

analytic expression for such a transformation. We first

write our oriented plane

ax + by + cz = p. (12)

Here a, b, c are supposed to be the direction cosines of the

directed normal to the plane. We may write this same

equation also in Bonnet coordinates *

X + % — V 4 z= —

•

(13)
uv + 1 ' uv +

1

a uv + 1 uv + 1
v

* Cf. Darboux, Theorie generate des surfaces, vol. i, Paris, 1887, pp. 243 ff.
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Let the reader establish the relations between these and

our previous oriented plane coordinates, namely

px, = —v: .va —ix\
1 w = — ——;—

J

p.v.
2
=u+v, v* +lx'

Px3 = i(u-v), 1"
=
SttS'

(H)

pxi = uv-l,
IV =

Pxs = i(iru+l), Xi+lJ-S'

u and i' are the isotropic parameters of the spherical repre-

sentation of the plane. In an equiloDg transformation

parallel planes must go into parallel planes, exactly as in the

case of the plane equilong transformation, hence

U= U(u. i-), F= V(u, v).

Moreover, two planes which intersect in a minimal line,

whereon all distances are null, must correspond to two other

such planes, hence

either T= r(n-), V= V(v\

or else U = U (r), Y=V(u).

Evidently, if we prove that we have transformations of

both types, the first of these will be direct and the second

indirect. In order that the transformation be real we must

have
v=u, V=C.

Let us now look at the triangle in the plane (u, v, w)

formed by the adjacent planes

(u + du. v + dv. ic+ d-ic), (u+d'u, v + d'v, v: + d\v),

(u + d"u :
v + d"v

;

ir + d"lf).

Since our equilong transformation is to carry this into an

equal triangle (the sides of one are, by definition, equal to

those of the other), its area must be invariant, at least if

we disregard the sign. Conversely, suppose that we have

a transformation of oriented planes which is conformal for

their spherical representations and leaves the areas of such

D d
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triangles invariant. Every such triangle is carried, into

a similar and equivalent triangle, i. e. into an equal one, and

the transformation is equilong. Reverting to the first form

for the equation of the plane (12), we find the area of a

triangle from the volume of a tetrahedron, and the distance

from a vertex to the opposite face-plane. Thus the square

root of the area of the triangle in question will differ by

a constant factor from
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To cany through the direct transformation we put this

equal to the corresponding form, remembering that

dU = V'du, dv = V'dv, dW= —du+ -^-dv+ T—dw.
du 7>v <>w

Our expression above thus becomes equal to

du dv div

d'v, d'v d'tu

J ±(U'V'f V
'

±{dud'v-dvd'u) V ±{d'ud"v-d"ud'v) V ±{d"udv-d"vdu)

^ = VTWT.
CIV

—

We thus get the fundamental equations for direct and

indirect equilong transformations,*

U=U(u), V=V(v), W = w</±UT + F(u,v),

(15)

U = U{v), V = V(u), W = W± U'V + F(u, v).

Let us now see what form these various functions take if

the oriented planes properly tangent to an oriented sphere go

into other such tangents. The equation of an oriented sphere

* The fact that these transformations depend upon arbitrary functions was

first suggested by Study, ' Ueber mehrere Probleme der Geometric, welche der

konformen Abbildung analog sind ', Sitzungsberichte der niederrheinischen GeseU-

schaft/iir Natur- und Seilkunde, December 5, 1904. The formulae with the upper

sign were first published by the Author, ' The Equilong Transformations of

Space ', Transactions American Math. Soc, vol. ix, 1908. The complete form

given above was published independently a year or two later by Blaschke,

'Ueber einige unendliche Gruppen von Transformationen orientierter

Ebenen im Euklidischen Raume', Grunerts Archiv, Series 3, vol. xvi, 1910.

Between these two articles appeared the dissertation of Lohrl, Ueber konforme

und aquilnnge Transformationen im Raume, Wiirzburg, 1910. Here we find no

such formulae. On the contrary, the author's object is to establish the

correspondence between the conformal and equilong groups. In consequence

the whole dissertation rests upon the erroneous idea (p. 27) that the equilong

group depends upon ten parameters. The proof which he offers for this

incorrect theorem is geometrical, and contains an obvious error.

D d 2
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is linear in the quantities u, v, uv—1. Hence U and V
must be linear functions, W must be a fraction whose

denominator is the product of the denominators of U and V,

while its numerator is linear in u, v, w, {uv— 1). Our direct

Laguerre transformation will thus have the form

„ _ <xu + f3 y_ tx'v + p
'

~ yu + b' ~
y'v + b''

w _ V ± (Qib- /3y) (oc'b' -fi'y')w + puv + qu + rv + s

{yu + b) {y'v + b')
'

{b)

The general indirect one will be

„ _ ocv + (3 „ _a!u + $
~ yv + b'

~ y'u + b"

w _ "J + (a<3 — /3y) (0i'b'— l3'y')lU+puv + qu + rv + S .

{y'u + b') {yv + b)
( '

The ten independent parameters are well set in evidence

in these equations. Four oriented planes will have an abso-

lute invariant under the Laguerre group

(u
x
— u

2)
{u3—u^

(«.
1
-M.4)(U3

-U
g )

Recalling theorem 9] and equation (5) of Ch. VIII, we see

that the modulus and argument of this complex expression will

give the double ratio and double angle of the stereographic

projection of the points of contact of the four oriented planes

with their common proper tangent sphere. We find a more

direct interpretation for the modulus as follows. Consider

the real oriented planes («1
w

1
w

1 )
{u2 u.2 iu2).

2*/ 1)
*i

(2) = — a^j-Wjj) {u
x
—u^.
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A« 1
-1(

2
)(i( 3 -'U,4 )

/(,7,-i7.
2
)(iT.,-j7

4 )

;*/««,« 2-^' .1-*)

+

2.»';aW 4'2^3V2)

i = '2
i = 2

_ sin^l2sin^£_34
~ sin A £_ 14 sin* £.32

(18)

This invariant "will take the value unity when the points

of contact form an orthocyclic set. Another absolute in-

variant is

o 2 *t
l" x,^> 2 J^Z;^ 2 «V" *;

{i)

i = 5 t = 5 i = 5

2-V2
^e l11

° 2 aV
2^Y3) 2-1

'

i

A2W i)

i = 2 i = '2
i - 2

i — ."> i = 5 i = 5

2 x^xjn 2*/*.^ 2 *,- i*ws)
°

i = 2 t = 2 * = _ t = -

_ n (sin |#_12sin | ^-34+ sin § £.13 sinful 42+ sin |£.14 sin §£.23)

sin2
1- ^L 1 2 sin2 1 ^- 34 sin2 i

i_ 1 4 binH ^_ 32

This vanishes when the points of contact are concyclic.

(19)
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A real indirect transformation will be involutory if it have

the form

CV— tX CU— OL

w _ — (aa 4 be) w + luv + jaw + p.v + n
(cv— a.) (cu— a)

6 = 6, c = c, 1 = 1, n = n, — hi + jj.<x + jla + uc = 0.

Let us consider the real Laguerre group a little more
closely. Instead of minimal projection, let us consider the

analog of Fiedler's cyclographic method developed in Ch. IV.

If the centre of a real sphere be xyz, and its radius r, we
represent it by the point xyzr of four-dimensional space.

We define as the distance of two points in this space the

expression

V{x - x'f +(y- y'f -viz- z'f + (r- r'f-

The Laguerre group is simply isomorphic with the group

in our four-dimensional space $4 , leaving invariant a real

quadric with imaginary generators in the hyperplane at

infinity, i.e. the Lorenz group of the modern theory of rela-

tivity.* The hyperplane at infinity shall be called $3 , the

quadric S
2
2
. The group in 8

a
is that of Ch. VIII. As we

may pass continuously from a direct transformation to the

identical transformation, we have in 8a a collineation per-

muting among themselves the generators of each set of $2
2

.

We have the following types of fixed elements in 83 :

1) Two real and two conjugate imaginary fixed points of $
2
2

,

no other fixed point in 83
.

2) One real line of fixed points, and two real or conjugate

imaginary fixed points where its polar intersects $2
2

.

* Of. Wilson and Lewis, ' The Space-Time Manifold of Eelativity ', Pro-

ceedings American Academy of Arts and Sciences, vol. xlviii, 1912. The nature of

the group of relativity was, of course, known from the first ; its geometric

exposition is nowhere more elaborately discussed than in this article.
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3) Limiting cases of 1) and 2), where pairs of real fixed

points tend to fall together.

4) All points of ^
3 fixed.

In a transformation of typo 1) there will be two real fixed

lines in S
3 , mutually polar in S,\ The totality of planes

through each will be a two-dimensional projective manifold
which is subject to a real collineation. Two fixed planes are

the tangent ones to S./ through the given line ; there will be
a third not in <Sj. We thus get two real fixed planes not
lying in a real space, and so intersecting in a finite fixed

point. Each of the fixed planes through this point is the

locus of non -Euclidean perpendiculars to the other thereat

(lines conjugate with regard to S.
2
2
). The transformation of

>$j is the product of successive rotations about these two
planes, and each rotation can be factored into the product

of reflections in two hyperplanes.

2) In a transformation of this type, if there were a finite

fixed point there would be a pencil of fixed lines through

it to the fixed points in S
3

. the transformation would have
to be a non-Euclidean rotation about the plane of the pencil,

and so the product of two reflections. If there were no finite

fixed point, but a finite fixed plane as before, we should have

a screwing about this plane which, again, could be factored

into four reflections in hyperplanes.

3) Since these transformations are limiting cases of the

previous, they also can be factored into four reflections, for

every limiting form of a hyperplane reflection which is not

a degenerate transformation is still a reflection.

4) There can be no finite fixed point, for then every point

would be fixed ; we must have a translation.

Theorem 9.] Every direct Laguerre transformation can

be factored into four Laguerre inversions, every indirect one

into five inversions.

The Laguerre inversion is not the only type of involutory

Laguerre transformation. We have transformations which

correspond to reflections in planes, lines, and hyperplanes.
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The nature of these is seen by choosing the simplest case, and

noticing the behaviour of the invariants* We thus get

Reflection in hyperplane.

Reflection in plane.

Reflection in line.

Reflection in a point.

Laguerre inversion.

Corresponding oriented

planes touch properly oo x

oriented spheres properly tan-

gent to two fixed oriented

planes, the points of contact

being in every case a har-

monic set.

Corresponding oriented

planes properly tangent to

same oriented sphere which

touches properly oo
1 fixed

oriented planes
;

points of

contact with corresponding

planes inverse in circle of

contact with fixed planes.

Corresponding oriented

planes reflections of one

another in oriented plane

properly parallel to them, and

properly tangent to fixed

proper oriented sphere.

It should be noticed that the second and fourth of these

transformations are direct, while the first and third are

indirect.

§ 3. The Hypercyclide.

Let us next take up the oriented surface which corresponds

in three dimensions to the plane hypercyclic. We shall define

* First studied by Laguerre, Collected Works, vol. ii, pp. 432 ff. See also

Smith, On a Transformation, cit., p. 165 ; Blaschke, Qeometrie der Speere, cit.,

p. 55 ; Muller, ' Geometrie orientierter Kugeln ', cit.
, pp. 295 ff. ; Bricard, ' Sur

la g6om6trie de direction dans l'espace', Nouvelles Annales de Math., Series 4,

vol. vi, 1906.
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as a hypercyclide every oriented envelope given by oriented

plane equations of the form

i, j - i

2 tlijViXj = 0, X.f + XS + X^ + X,- = 0. (20)

<', J = 1

V V
-'.!• - ,4'

Hypercyclide. Focal hyperdevelopable of

hyperquadric.

Theorem 10.] The hypercyclide is an oriented envelope of

the fourth class.

Suppose that our hypercyclide is of such structure that the

following equation has four distinct roots,

« 32
-
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Theorem 13.] The general hypercyclide is an anticaustic

by refraction of each of its deferents, the rays of light being

supposed to come in a direction perpendicular to the funda-
mental plane of the corresponding Laguerre inversion.

The proof of this is identical with that for the corresponding

theorem about the hypercyclic, and so is omitted. We pass

to the determination of the order of the general hypercyclide.

We see, first of all, that the intersection of the fundamental

plane of each Laguerre inversion, -with the corresponding

deferent, is a double curve of the hypercyclide (cf. Ch. X,

theorem 46). It will also meet this plane simply along a curve

which is the envelope of lines through which pass tangent

planes to the deferent which are perpendicular to anallagmatic

planes through the same lines. This curve is the intersection

of the fundamental plane with the developable which touches

the deferent and a conic in the plane at infinity which has

double contact with the circle at infinity. The order of the

curve is eight, for it is of the fourth class with deficiency one,

and has two double tangents. (It is dual to the cone from an

arbitrary point to the curve of intersection of two quadrics.)

Theorem 14.
J

The general hypercyclide is of the twelfth

order. It meets the fundamental plane of each Laguerre

inversion when the plane is finite, in a double conic, the

intersection with the corresponding deferent, and in a simple

curve of the eighth order and fourth class which is a line of

curvature of the surface.

The truth of the last statement is evident from the fact

that the tangent generating spheres have stationary contact.

Each infinite point of the deferent in general position will

give two distinct asymptotic planes of the hypercyclide.

Conversely, each asymptotically tangent plane to the hyper-

cyclide whose point of contact is not on the circle at infinity

will give an asymptotically tangent plane to the deferent.

How about the circle at infinity, is that also on the hyper-

cyclide 1 If we take a line in a fundamental plane tangent

to the focal developable of the corresponding deferent, one

tangent plane to the deferent is minimal, hence one tangent
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plane to the hypercyclide touches it on the circle at infinity,

but in no other case will a finite line in the plane give

a point of the hypercyclide on the circle at infinity. Through

each point of the infinite line of a fundamental plane will pass

four tangent planes to the focal developable of the corre-

sponding deferent, but only two tangents to the circle

at infinity; the latter must be a double curve of the

hypercyclide.

Theorem 15.] The general hypercyclide has the circle at

infinity as a double conic, it has no proper foci, its double

foci are those of the deferents.

It is easy to see that in four dimensions there are two
hyperplane reflections which carry any non-minimal hyper-

plane into any other not parallel to it. When they are

parallel there is but one.

Theorem 16.] If no fundamental plane for a Laguerre

inversion in which a general hypercyclide is anallaginatic lie

at infinity, there are eight Laguerre inversions which will

carry it into a central quadric counted doubly.

Since every transformation of the Laguerre group is a

contact transformation of oriented spheres, it will carry strips

of curvature of a surface into other such strips. We thus get

from the familiar properties of the lines of curvature of

a central quadric

Theorem 17.] The lines of curvature of a general hyper-

cyclide are algebraic, and are determined by the common
generating spheres of one system which it shares with a

one-parameter family of hypercyelides, all anallaginatic in

the same set of Laguerre inversions.

Theorem 18.] The oriented tangent planes to a general

hypercyclide may be put into one to one correspondence ivith

the points of a general cyclide in such a way that the planes

properly tangent to an oriented sphere, or making a fixed

angle vMh a fixed oriented line, or invariantly related to

a fixed minimal line, will correspond to jioints on a sphere.
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The common oriented developable of a general hypercyclide

and oriented sphere will touch the latter at the points of

a cyclic. The cyclic degenerates into two circles in the case

of a generating sphere of one system or another, and in that

case alone, for there are no other spheres with double proper

contact. The common developable becomes in this case two

cones of revolution. Two such cones circumscribed to the

hypercyclide and to the same oriented sphere are said to be

residual ; two cones residual to the same cone are coresidual.

Theorem 19.] If hvo cones of revolution properly circum-

scribed to the same general hypercyclide be coresidual, every

such cone residual to the one is residual to the other.

The vertex of a properly circumscribed cone of revolution,

being the centre of a generating null sphere, is on a focal

conic of the deferents, hence

Theorem 20.] The cones of revolution properly circum-

scribed to a general hypercyclide fall into four systems, each

containing two series. The cones of each system are anallag-

matic in one of the fundamental Laguerre inversions, their

vertices trace the corresponding double conic, each point of the

conic being the vertex of a cone of each series belonging to

the system. Two cones of the same series are coresidual, two

of the same system but different series residual.

§ 4. The Oriented Sphere Treated Directly.

We turn now from the consideration of oriented planes and

their envelopes to the direct discussion of oriented spheres ; in

other words, we pass from the Laguerre group to the
-

fifteen-

parameter contact group of oriented spheres. A system of

such spheres whose coordinates are analytic functions of three

parameters, their ratios not being all functions of a lesser

number of parameters, shall be called a complex. The simplest

complex is the linear one composed of spheres whose coor-

dinates satisfy a linear equation of the type

- a^g— a Xj_ + <x
2 £c

2 + a
3
x
3 + aixi + a

5
x

5
= 0. (22)
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The discussion of the special cases is exactly analogous to

that carried out in the last chapter

:

-2(V7 t + rt
2
2 + a

3
2 + «

4
2 ^0.

— K
l
x — a

lt
x, + a

2
x.

2 + a
s
rc
3 -f a 4a4 + V2 a „ a 1

— a
2
2

-

2 s^a^— a

1

2
1-

y2« rt
1
-a

2
2- ( (

3
2-a4

2 J

(23)

The oriented spheres of the complex meet a fixed oriented

sphere at a fixed angle. If to have

- 2 « «i + a
2
2 + «

3
2 + a4

2 + «6
2 =0, (24)

our oriented spheres are properly tangent to a fixed oriented

sphere, and the complex shall be said to be special.

r « 2 +« 2 +a 2 +«
i n

2

_ 2
r_^i_ +

«
2 +«3

* + a* + a
b

2« 2

The oriented spheres have a fixed common tangential seg-

ment 'with a given sphere.

- 2 a a
1 + «

2
2 + a

3
2 + a4

2 = a (a
2
2 + «

3
2 + «4

2 + a
5
2
) = 0.

Oriented spheres invariantly related to a fixed minimal

plane.

a =°> «
2
2 + a

3
2 + a 4

2 # 0.

Oriented spheres meeting a fixed plane at a fixed angle.

a
t
- a

2
= a3

= a
4
= 0.

Complex or oriented spheres of given radius, which is null

if a 5
= 0.

«0 = «2 = «3 = «4 = ao = °-

Complex of all oriented planes.
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Theorem 21.] The assemblage of all oriented spheres whose

common tangential segments with two fixed oriented spheres

bear to one another a fixed ratio is, in general, that of all

oriented spheres meeting at a fixed angle a fixed oriented

sphere coaxal with the given spheres.

Two linear complexes (a) and (b), neither of which is special,

have an absolute invariant under the fifteen-parameter group,

namely

— a
Q
b
1
—a^ + a2 b2

+ a
3
b
a + ai bi + a5 &5

</-2a a
1
+a2

2 + a
3

1i + a 2 + a 2 V -2bd
1 + b

2
2 + b3

* + bi
2 + b

5
2

= 1. (25)

In the general case where the complexes consist in oriented

spheres meeting fixed spheres at the angles 4> 1
and <j>2

respec-

tively, while 6 is the angle of these fixed spheres, we have

cos d>, cos <b„— cos 9 r , ,V , . = 7. (26)
sin </>1

sin </>2
N

'

When the numerator of this expression vanishes, the com-

plexes are said to be in involution.

Theorem 22.] Two linear complexes of oriented spheres,

which consist in the assemblages of all spheres meeting two

fixed oriented spheres at fixed angles, will be in involution

when, and only when, the product of the cosines of these fixed

angles is equal to the cosine of the angle of the fixed spheres.

Theorem 23.] A special linear complex is in involution

with every linear complex which includes its fundamental

sphere.

Theorem 24.] If a linear complex consisting in oriented

spheres meeting a fixed sphere at a fixed angle be in involution

7T

with that of all null spheres, the angle is - •

Theorem 25.] If the fixed sphere of a linear complex be

planar, the complex is in involution with that of all oriented

planes.

The transformation of inversion in a linear complex is
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analogous to the corresponding transformation in the plane.

The anatytical expression will be

— 2 (— ajiTy— a
v
x

1
+ a

2
a\ + a

3
x

3 + a
i
x
i + a,a;

5 )
c^, i^ 5.

<=(as
2- a

:>

2K
-2(-a

1
ft- -a

1
.r + «

2 a;2 + « 3
.r3 + ff 4 .-r4 + a

5
a-

5
)a

5
. (27)

-2a a
1
+ a

2
2 + a

3
2 + a

4
2 + a

5
2 = 0.

(-2<.l
-

1

/ + a;2
/2 +< 2 + ^' 2 + ;r/ 2

)

= K2- a,2
)

2
( - 2Vi + «

2
2 + -''a

2 + ^4
2 + a

'o

2
)-

Theorem 26.] Two oriented spheres are mutually inverse

in a linear complex consisting in the totality of oriented

spheres which meet a fixed sphere at a fixed angle, if they be

coaxal with the fixed sphere, and the product of the tangents

of the halves of their angles therewith is equal to the square of

the tangent of half the fixed angle.*

Theorem 27.] When the fixed angle of a linear complex

is -, inversion in that complex is inversion in its funda-

mental sphere.

Theorem 28.] Inversion in a linear complex of oriented

spheres of given radius is a dilatation.

Theorem 29.] Inversion in the linear complex of all null

spheres reverses the orientation of every sphere.

AVe may easily find such a linear complex, called temporarily

the inverting complex, that inversion therein will carry the

complex of all null spheres into any other non-spacial linear

complex. We see also that our geometrical definition for

inversion in a linear complex breaks down in the case of null

* Cf. Smith, Transformation of Laguetre, cit., On the surfaces enveloped, cit., and
' Geometry within a Linear Spherical Complex ', Transactions American Math.

Soc, vol. ii, 1901.
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spheres. In this inversion corresponding spheres are coaxal

with the fixed sphere, and the oriented spheres of the inverting

complex properly tangent to the one are properly tangent

to the other. The points of the fundamental sphere of

the complex transform into themselves. The points of a

minimal line will be transformed into a pencil of properly

tangent oriented spheres whose point of contact is on the

fundamental sphere.

Theorem 30.] Each oriented sphere of a linear complex

is properly tangent to a pencil of spheres of the complex at

each point of a circle.

A surface considered as a point locus will transform into

a congruence of oriented spheres in a linear complex. The
spheres tangent to a point surface at a given non-siDgular

point will fall into two pencils, according to their orientation,

and will be transformed into two pencils of properly tangent

oriented spheres to the oriented envelope of the spheres of the

congruence. When the point of contact in the first place is

on the fundamental sphere of the inverting complex, the

points of contact of the two transformed pencils fall together.

Theorem 31.J If a point surface be inverted in a linear

complex with a fundamental sphere, the curve of intersection

with this fundamental sphere will be a double curve of the

envelope of the oriented spheres which correspond to the points

of the surface.

Lines of curvature of the point surface will correspond to

strips of curvature of the corresponding envelope, the curve

of contact with the focal developable will correspond to a strip

of contact along a line of curvature of the envelope which lies

on the fundamental sphere of the inverting complex, and con-

focal surfaces will correspond to surfaces with the same strip

of curvature along such a curve.*

* These ideas are developed in detail by Smith, Geometry within a Complex,

eit., pp. 238 ff. He finds interesting analogues to various classical theorems,

such as those of Joachimsthal and Dnrboux-Dupin.
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We revert to the minimal projection

—3. _
4

.

Linear complex. Hypersphere.

Complexes in involution. Orthogonal hyperspheres.

Special linear complex. Xull hypersphere.

Fifteen parameter group Fifteen parameter group

of contact transformations of of hyperspherical transforma-

oriented spheres. tions.

Every hyperspherical transformation of 54 may be carried,

by an inversion in a hypersphere, into a conformal collinea-

tion. and this -will be accomplished by any inversion with

a fixed finite point of the hyperspherical transformation as

centre. We speak loosely here about hyperspherical inver-

sions and collineation of ^, leaving to the reader the simple

task of defining these analytically according to the analogy

of what was done in two and three dimensions. The ratio of

similitude in this transformation will not be independent of

the radius of the hypersphere of inversion ; hence we may
choose this radius so that the ratio of similitude shall have

the value + 1. Our conformal collineation is thus a congruent

one : we ha ve from 9]

:

Theorem 3:2.] Every contact transformation of oriented,

spheres may hi factored into the product of inversions in si.?

or s^ven linear complexes*

When we come to the study of complexes of oriented spheres

of a more complete structure there is advantage in changing

slightly the form of our coordinates, exactly as we did in the

case of the oriented circle. Let us write

(28)

* Smith,

r *
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We have a one to one correspondence between our oriented

spheres, and systems of coordinates (X) connected by the

identical relation

(XX) = 0. (29)

The condition for proper contact of two oriented spheres

(X) and (F) will be
(XY) = 0. (30)

More generally, if we have six linear non-special complexes

in involution, where #4
- is the fundamental angle of the ith

complex, and 6
{
is the angle which a given sphere makes with

the fundamental sphere of that complex, then we may take as

the homogeneous coordinates of that sphere the six quantities

„ _ COS<^— COS0,;

Equations (29) and (30) will subsist and retain their mean-

ings for this more general system of coordinates.

§ 5. The Line-sphere Transformation.

The system of oriented sphere coordinates just explained

lead in the most natural way to one of the most beautiful

transformations in the whole field of geometry, the line-sphere

transformation of Sophus Lie.* We begin by taking two

points of complete cartesian (projective) three-dimensional

space with the homogeneous coordinates (£) and (7}). Their

line has the Plticker coordinates

Pij = ^iVj-ijVi

The condition of intersection of two lines is

2 PijVki = °. (*-*) (*-*) (y-*) {y-l)± o-

* There are innumerable accounts of this transformation. It was first

published by Lie in his article, ' Ueber Complexe, insbesondere Linien und

Kugelcomplexe ', Math. Anna'en, vol. v, 1872.
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From these we pass to what are sometimes called the Klein

coordinates, as follows :

Pi:]
= X -iX

3 ,Pn ~X + iX.
6 ,

Pol = Xl + ^4 > PS2 = ^1- '•^4
>

/>03
= X, + iX

a , Pn = X2
- *'x

5 .

{XX) = 0. (29)

The condition for the intersection of the lines (A') and (Y)

will be

(XY) = (30)

Let us further call the linear complex

X
the notable complex, while the line with the coordinates

(1, /, 0, 0, 0, 0) shall be the notable line. We have, then, the

following correspondence.*

Sphere space.

Oriented sphere.

Properly tangent oriented

spheres.

Null spheres.

Spheres differing only in

orientation.

Plane at infinity.

Oriented planes.

Minimal planes.

Pencil of properly tangent

oriented spheres.

Oriented surface element.

Line space.

Line.

Intersecting lines.

Lines of notable complex.

Polar lines in notable com-
plex.

Notable line.

Lines intersecting notable

line.

Lines of notable complex

intersecting notable line.

Pencil of lines.

Surface element.

There is one special case of the last correspondence which

should be mentioned. Two spheres of equal radius whose

* The form here"given is that followed by the Author, ' Metrical Aspect of

the Line-sphere Transformation', Transactions American Math. Soc., vol. xii,

1911. Cf. also Snyder, Ueber die linearen Complexe der Liesclien Kugetgeometrie,

Dissertation, GOttingen, 1S95.

Ee 2
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centres are on the same minimal line fulfil the analytic

requirements of contact and will correspond to intersecting

lines ; a pencil of lines may thus correspond to a system of

spheres of given radius whose centres lie on a minimal line.

The surface element here is at infinity at the end of the

minimal line ; the tangent plane is the corresponding minimal

plane. But the point of contact and tangent plane are

independent of the magnitude of the constant radius assigned

to all the spheres, so that the correspondence of surface

elements in the natural sense is not one to one for such cases.

When we speak of a surface element as in general position

we shall mean that this case does not arise.*

Points of minimal line.

Pencil of properly parallel

planes.

Pencil of parallel minimal

planes.

Spheres containing minimal

line.

Group gu h1&
of all contact

transformations of oriented

spheres.

Group gl6
of all contact

transformations factorable

into an even number of in-

versions.

Inversion in linear complex.

Linear complexes in involu-

tion.

Oriented spheres properly

tangent to oriented spheres.

Dupin series.

Pencil of lines of notable

complex meeting notable line.

Pencil of lines meeting

notable line, but not belonging

to notable complex.

Pencil of lines of notable

complex meeting notable line.

Point and polar plane in

null system of notable com-

plex.

Group g15h1Si
of all collinea-

tions and correlations.

Group g16 of all collinea-

tions.

Polarization in null system.

Linear complexes in involu-

tion.

Linear congruence with

distinct directrix lines.

Regulus.

* The Author's attention was first called to this exceptional case by a con-

versation with Professor Study.
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Xot null circle. Regulus in notable complex.

Involutory transformation Polarization in quadric of

where corresponding members non-vanishing discriminant,

are properly tangent to same
two members of two conjugate

Dupin series.

Six linear complexes in Six linear complexes in

involution. involution.

Group of thirty-two invo- Group of sixteen collinea-

lutory transformations inter- tions and correlations inter-

changing these. changing these.

It is clear that the properties of six linear line complexes in

involution will lead to a number of simple theorems about

six linear oriented sphere complexes in involution. It would

be tedious to carrv through the results, in the case of the line

complexes, as thev are familiar enough :* we have but to trans-

late into sphere geometry, as follows

:

Theorem 33.] .Si'jj linear completes in involution deter-

mine, by fours, fifteen pairs of oriented spheres, and, by threes.

twenty Dupin scries, forming ten pairs of conjugate series.

Each pair of spheres determined by four complexes belongs to

four Dupin series; each such series contains three of the fifteen

pairs of spheres. If a pair of spheres do not belong to a Dupin
series or its conjugate, they correspond in the involutory

transformation determined by the series. Each of the thirty

spheres is properly tangent to six others constituting three

pairs.

We shall define as a series of spheres a system whose coor-

dinates are proportional to analytic functions of a single

variable, ihe ratios being not all constants. A congruence,

likewise, shall be a system whose coordinates are proportional

to analytic functions of two independent variables, the ratios

not being all functions of one variable. The envelope of

a series of spheres is an annular surface, in the general case.

If. however, adjacent spheres tend towards contact, i.e. the

* Cf. Koenigs, La Geonic'rie rtgln. Paris, 1S95, pp. 99-125.
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difference between the radii of any two spheres of the series is

equal to the negative of the corresponding arc of the deferent,

the spheres trace two isotropic ruled surfaces. Conversely,

if an isotropic ruled non-developable surface be given, adjacent

generators determine a sphere. A one-parameter family of

spheres is thus determined, part of whose envelope is the

given surface. The remainder will be another surface of the

same sort, which we shall speak of as confled with the first.*

Coupled isotropic ruled sur- Developable and its polar

faces. in notable complex.

Let us now show that not only do surface elements corre-

spond to surface elements, but surfaces to surfaces ; in other

words, we have a contact transformation. Consider a con-

tinuously oriented non-developable surface in sphere space,

i. e. a non-developable surface where the orientation of the

normal is analytically determined—the envelope of oo 2 oriented

planes. The surface elements can be assembled in two ways
into a one-parameter family of curvature strips, each element

belonging to two strips, and the point will have two usually

distinct lines of advance in the plane, so that the plane is

tangent to the locus of the point. Corresponding to these we
shall have oo

2 surface elements which can be assembled in two

ways into oo 1 developable strips, each element belonging to

two strips, and once more the point has two lines of advance

in the plane. Hence again the envelope of the planes is the

locus of the point.

Minimal developable. Developable in notable

complex.

Oriented surface not mini- Non-developable surface,

mal developable.

Congruence. Congruence.

Envelope of oriented spheres Focal surface of congruence,

of congruence.

* The Author has been told that this idea of coupling ruled minimal

surfaces dates back to Monge ; he has not, however, been able to verify the

statement.
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This correspondence of surface element to surface element

is subject to the 'in general' restriction mentioned on

p. 436.

Theorem 34. J In a general In a general line con-

congruence of oriented spheres, gruence the strip of contact

the strip of contact with the with the focal surface of those

envelope of those ivhose surface lines whose focal points and
elements of contact fall to- planes fall together is an
gether is a strip of curvature. asymptotic strip.

Theorem 35.] The spheres The asymptotic lines of one

of curvature of one system of system ofa surface are tangent

a surface have no other en- to no other surface,

velope.

The two theorems on the right are familiar enough in

differential line geometry, arising from the fact that the

developable surfaces of a line congruence determine two

conjugate systems of curves on the two nappes of the focal

surface ; the theorems on the left come from those on the right

by our transformation.

The focal surface of a line congruence of the second order

and class is the Kummer quartic surface with sixteen conical

points and sixteen planes of conical contact.* Since every

such congruence is contained in a linear complex, let ns

assume that we have a congruence in our notable linear

complex. It will be the total intersection of this complex

and a quadratic one, and correspond under our transforma-

tion to the points of a cyclide. Now, by VII. 42], the lines

of curvature of a cyclide are its complete intersection with

the confocal cyclides, and are space curves of the eighth

order.

Theorem 36.] The Kummer quartic surface has algebraic

asymptotic lines of the sixteenth order, being curves of contact

inth doubly enveloping ruled surfaces of the eighth order.

* Cf. Jessop, Treatise on the Line Complex, Cambridge, 1903, pp. 101 and 296.
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§6. Complexes of Oriented Spheres.

The general complex of oriented spheres shall be indicated

by an equation
/(Z

1
...X ) = ; (31)

or else in the parametric form

X
i
=X

i
(u,v,w). (32)

If a sphere adjacent to (X) in the complex be properly

tangent thereto,

(XX) = (XdX) = (dXdX) = 0.

The oriented spheres (X) and (dX) belong to the linear

complexes ^ =& X') = °"

To find the special linear complexes linearly dependent on

these, we must solve the quadratic equation

X-(XX)+2V(X^) +M«(^) = 0. (33)

Assuming first \\Y T?) ^ °'

the only solutions of the quadratic are A — ; hence

Theorem 37.] The oriented spheres of a complex infinitely

near and properly tangent to an arbitrary spliere thereof,

touch it in the points of a circle. %

We next assume that

Vax -bx)
~

We may repeat exactly our reasoning in the last chapter

and show that the spheres of the complex are properly tangent

to an oriented surface or curve. The converse is better proved

as follows. Consider the corresponding question for a line

complex. Equation (33) in line space means that the lines of

* Lie, 'TJeber Complexe', cit., p. 207.



xr THE ORIENTED SPHERE 441

a complex infinitely near one line thereof aud intersecting

it will usuallj' belong to a linear congruence with one directrix

line, i.e. those which meet it at any point lie in a plane

connected with that point by a process called a normal corre-

lation. When, however, the identity is satisfied, the lines of

the complex infinitely near (A") pass through a fixed point,

or lie in a fixed plane.* It is this, and not the other, which
must happen for a complex of tangents ; hence the identity

must be satisfied, and it will likewise be satisfied for a complex

of oriented spheres properly tangent to a surface.

Suppose, thirdly, that the identity is not satisfied, but (A")

is such a sphere that

\*X SA7

It is then said to be a singular sphere of the complex.

The oriented spheres (X) and (r4i) are properly tangent. The

envelope of their surface element is called the singular surface.

The point of the name is seen as follows. If
(
Y) be an oriented

sphere through an isotropic common to (X) and (v-4) 3 s°that

<•"•) = (a '•) = »

then in finding the oriented spheres of the tangent pencil

\(Y) + n(X) which belong to the complex, we see that two

members fall together in (X), the series of spheres through

this isotropic, and in the complex will have (A) as a double

member. Converse^, suppose that (A" ) belongs to the complex,

and there is such an isotropic thereon that (X) counts as

a double member of the series through this isotropic and in

the complex. If (Y) and (Z) be any two oriented spheres

through this isotropic, they touch (A') and one another.

(xr) = («, - (k, =$ r )
= (g: z) = (g: x) = ..

* Koenigs, loc. cit., p. 36.
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The linear complex (^L X'j = having three mutually

tangent members, not linearly dependent, must be special, and

our equation is satisfied.*

Let us next consider a congruence

/=* = 0.

The spheres of the congruence infinitely near an arbitrary

sphere and tangent to it are given by the equations

There are but two special linear complexes linearly depen-

dent on those given by these equations ; they fall together if

XbXT>Xj\!>X?>XJ vax ax
)' (34)

This equation will be identically satisfied when, and only

when, the spheres of the congruence are properly tangent to

but one surface or curve. Next take a series

/=* = * = o.

The spheres of the series infinitely near (X) belong to the

linear complexes

These equations have usually two distinct solutions,

fall together if

They

/V V\ (1L ^±\ (1L^
VaX IXJ \iX IX) \i>X IXJ

= 0, (35)

lax Yx) val aXj vaX ix)

" The matter of singular elements is more luminous when regarded from

the point of view of line space. Transforming our reasoning above about

isotropics, we see that a singular line of a complex is a double line of the

cone of the complex whose vertex is any point of the line.



XI THE ORIENTED SPHERE 443

and this equation is identically verified when, and only when,

the envelope is not an annular surface, but two coupled

isotropic ruled surfaces.

Let us apply these general methods to the particular case of

the quadratic complex. This will be defined by the equations

2 «yAVY; = (XX) (36)

We shall limit ourselves to the study of the general quadratic

complex, that giving distinct roots to the equation *

aoo~P «,,

«io f'n-

a.
30

a40

C(22~P

Ct
i,2

«.-,„

«4i aU~P

Ct.y,

= 0.

We may find a contact transformation of oriented spheres

to reduce the equation of such a general complex to the

canonical forms
(aX2

) = (XX) = 0. (37)

Theorem 38.] The general quadratic camples: of oriented

spheres is anallagmatic in six linear complexes in involution.

Theorem 39.] The null spheres of a quadratic complex

generate a cyclide, its planar spheres a hypercyclide.

The singular spheres of the general quadratic complex have

the equations -

(a2A' 2
) = (aX-) = (XX) = 0. (38)

The condition that an oriented sphere shall be either null or

planar is linear in our present coordinate system. If Z be

* For an elaborate discussion of the various types of quadratic complex,

see Moore, • Classification of the Surfaces of Singularities of the Quadratic

Spherical Complex', American Journal of Math., vol. xxii, 1905.
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either the point or plane of contact of a singular sphere with

the singular surface, we have

Z
t
= (ai + r)Xi.

(zz) = 2
Z? ~* Z;

Of these last two equations, the first is quartic in r, the

second its derivative. The result of eliminating r will be to

equate to zero the discriminant of the quartic, an expres-

sion of the sixth degree in Z 2
. Considered with the first

equation in Z and three linear equations, we get twenty-four

solutions.

Theorem 40.] The singular surface of the general quad-

ratic complex of oriented spheres is of the twenty-fourth order

and class with the circle at infinity as a curve of the twelfth

order. There are six spheres which meet it in a double cyclic

and a line of curvature of the sixteenth order. It is the

envelope of six quadratic congruences of oriented spheres, each

contained in one linear complex with regard to which the

given quadratic complex is anallagmatic*

We may also reach this surface from the focal surface

of the general quadratic line complex, the Kummer surface

with sixteen conical points and sixteen planes of conical

contact.f

Sphere space. Line space.

General quadratic complex. General quadratic complex.

Singular surface. Kummer surface.

We next turn to the lines of curvature of the singular

surface. They are connected with the singular spheres of

the second order determined by the equations

(XX) = (aX2
) = (a2X 2

) = (a*X*) = 0. (39)

* Smith, Surfaces Enveloped, &c, p. 387, and Blasohke, Geometrie der Speere,

cit., p. 59, incorrectly by Snyder, Some Differential Expressions, cit., p. 150.

f Jessop, Line Complex, cit.
, pp. 97 ff.
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The easiest proof comes from considering the correspond-

ing question in line space. Here every line of the pencil

\ (Xf) + ixa [Xj belongs to the complex, and this pencil consists

of tangents to the Kummer surface which is the singular

surface of quadratic line complex. The line connecting the

centres of two infinitely near pencils of this sort is tangent to

the singular surface, and belongs to both pencils. Hence, as

the centre of such a pencil proceeds along the surface, its plane

rolls about the tangent to the curve, and we are following an

asymptotic direction which corresponds to a direction of

curvature of the singular surface of the sphere complex. Thus
one line of curvature is given by the singular spheres of the

second order. More generally, consider the quadratic complex

(X'X')=2-^ = 0- (40)

1=0 '

Let us write further

(a
!
+ X)X

!
'=X

i
.

Then, if (X) be a singular sphere of the complex (37), (A")

is a singular sphere of the complex (40), and, since (X') belongs

to the tangent pencil determined by (X) and «;X
;
-, the two

quadratic complexes have the same singular surfaces. We get

other lines of curvature of our surface from the series

i = o ;=o
, 2

« = 5

Since the lines of curvature are algebraic, and the two sets

are not rationally separable, we get all of our lines of curvature

in this way. To find the order of one such line or the class of

the envelopijig developable, let (Z') be the point of contact, or

the properly tangent plane

Z
i
= (a

i
+ p)X

i ,

We may eliminate p exactly as in previous cases, and find
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Theorem 41.] The lines of curvature of the singular surface

of the general quadratic complex of oriented spheres are of the

thirty-second order; the tangent developable along such a line

is of the thirty-second class.*

We saw in 40] that the singular surface can be generated

in six ways by an oriented sphere belonging to a linear

complex. Such a sphere will usually meet a fixed sphere at

a fixed angle. These generating spheres are the minimal

projections of one focal surface of the hypersurface in four-

dimensional space which corresponds to the complex ; which

surface is a pentaspherical cyclide. The locus of the centres

of the generating spheres will be the orthogonal projection of

this cyclide. A hyperplane will meet this cyclide in a

spherical cyclic whose orthogonal projection is a binodal

quartic. The projection of the cyclide will bo a surface of

the fourth order with two double points in an arbitrary

plane

:

Theorem 42.] The singular surface of a general quadratic

complex of oriented spheres may be generated in six ways by

an oriented sphere which meets a fixed sphere at a fixed angle,

while its centre traces a surface of the fourth order with

a double conic.

A slight modification must be made to this theorem when
the linear complex does not consist in spheres meeting a

fixed sphere at a fixed angle.

There are few parts of our whole subject where more

remains to be done than in connexion with the oriented

sphere. It is impossible not to believe that a sufficiently

ingenious use of our plane and sphere coordinates will settle

the interesting question of whether there be any systems

of spheres which correspond to the Hart systems of circles of

the first sort. Again, the group of euclidean motions in four-

dimensional space and the allied group which leaves a real

* Deduced differently by Smith, Surfaces Enveloped, cit., p. 387.
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quadric invariant are deserving of the same sort of careful

study that has been bestowed on three-dimensional motions,

for their own sakes, for the light thereby thrown on the

oriented sphere, and for their relation to the theory of

relativity. The general equilong three-dimensional trans-

formation has never received any more attention than we
have here given to it ; surely there must be much of interest

to be found in this connexion. Lastly, there must still

remain a number of interesting undiscovered properties of

the simplest linear and quadratic systems of oriented spheres.



CHAPTER XII

CIRCLES ORTHOGONAL TO ONE SPHERE

§ 1. Relations of Two Circles.

We have at various times caught glimpses of curious

relations which can exist between circles which are not on
one sphere. In particular, in Ch. VIII. 12] we met two
circles in an interesting relation which we called bi-involu-

tion, while in Ch. IX we met two circles so situated that they

were each cut twice perpendicularly by an infinite number of

circles. The time has now come to make a detailed study

of circles which are not cospherical, and the rest of the

present work will be chiefly devoted to this purpose. The

space in question is pentaspherical space. We begin with

a couple of elementary theorems.

Theorem l.J Any two circles will have one common ortho-

gonal sphere, and only one unless they be cospherical, in

ivhich case they are orthogonal to a coaxal system.

Theorem 2. J If a circle be cospherical with two others

which are not cospherical with one another, it is orthogonal

to their common orthogonal sphere.

We leave the proofs of these simple theorems to the reader.

A most fundamental element in the study of the circle in

pentaspherical space is its focus. Suppose that we have

a circle determined by two spheres (a/) and (y'). Let us see

whether there be any null spheres through this circle. Such

a sphere will be linearly dependent on (a/) and (y
r

), and have

coordinates (x), where

Xi^kxS + ny/.
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Substituting in the fundamental identity for pentaspherical

coordinates,
\- (asV) + 2 ^ {x'y') + v? (y'y') = o.

If, now, these spheres (x') and (y') do not touch one

another, the discriminant of this quadratic equation is not

zero, there are two null spheres in the coaxal system and

their vertices shall be called the foci of the circle.

Theorem 3.] A necessary and sufficient condition that two

not null circles should be cospherical is that their foci should

be concyclic.

Theorem 4.] A necessary and sufficient condition that tico

not null circles should touch is that their foci should lie on two

intersecting isotropics, whose intersection is not a common
focus of the two circles.

If a sphere be orthogonal to a circle, and so to the spheres

through it, it passes through the foci of that circle when they

are distinct, and vice versa. Two circles shall be said to be in

involution when each is orthogonal to a sphere through the

other. If a circle c' he orthogonal to a sphere S through

a circle c, its foci, if distinct, lie on s. Every sphere through

c' will be orthogonal to s, since the two null spheres through c'

are orthogonal to it, and the foci of c are clearly mutually

inverse in every sphere through c. Hence a sphere through c

and one focus of c goes through the other focus.

Theorem 5.
J If one not null circle be cospherical with the

foci of a second, then the second is cospherical v:ith the foci of

the first, and the hvo cere in involution.

^Ye have defined two circles as being in bi-involution when

every sphere through one is orthogonal to the other. Let the

reader prove

Theorem 6.] If the foci of one not null circle lie on a second

such circle, then the foci of the second lie on thefirrf, and the

two are in bi~involution.

1702 f f
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Theorem 7.] A necessary and sufficient condition that two

not null circles should be in bi-involution is that each should

contain the foci of the other.

The common orthogonal sphere of two non-cospherical not

null circles is that through their foci.

Theorem 8.] A necessary and sufficient condition that two

non-cospherical not null circles should be in involution is that

each should be cospherical vnth the circle orthogonal to their

common orthogonal sphere which is in bi-involution with the

other.

Let the reader show that the word each may be replaced by

the word one.

Let us next seek a common perpendicular to two non-

cospherical circles. The first shall have the foci (x) (y), the

second the foci (x') (y'). If such a common perpendicular,

and we mean thereby a circle cospherical and orthogonal to

both, be determined by the spheres A. (x) + p(y), k'(x')+jx (y
r

),

there must be some sphere through each circle that is ortho-

gonal to each of these spheres. This will require that

\(x) — fj.(y) be orthogonal to A'(ce') +f/(y'), and k'{x') — y.

f

(y')

orthogonal to A {x) + jx{y). We thus get the equations

kk'(xx')-w'(yy') = o,

M'(2/<>-VW) = o.

Eliminating A'///,

k*(xx')(xy')-y?(yx')(yy') = 0.

The roots of this equation differ only in sign, and give two

mutually orthogonal spheres, and the samo would be true of

the corresponding equation in A'/ju,'.

Theorem 9.] Two non-cospherical not null circles are

usually cospherical and orthogonal to tiuo circles in bi-in-

volution and no others.

We must now find the exact meaning to attach to the word
' usually '. The discriminant of this quadratic equation is

- 4 (xaf) (xy') (yx') (yy').
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Theorem 10.] A necessary and sufficient condition that two

not null and non-cospherical circles should be cospherical and
orthogonal to two and only hvo circles is that no focus of one

should lie on an isotropic ivith a focus of the other.

Suppose, next, that a single pair of foci lie on an isotropic,

say

(x.?')=0, (xy')(yx')(yy')^Q.

If they had a common focus they would be cospherical,

which we exclude. We therefore cannot have (x) = (.>:') ; we
must have /i = /*'= 0, and the isotropic connecting (x) and (x')

is the only circle to fit the conditions.

Next suppose
{xx') = (yx') = 0.

Here \/p is entirely indeterminate, but the system of circles

found are all null. Thirdly, let

(xx') = (yy') = 0.

Here, since the circles are not cospherical, their foci lie in

pairs of two skew isotropics. There are oo 1 sets of values for

A//.1 ; the circles, though not cospherical, are cut twice ortho-

gonally by oo
1 circles, i. e. they are paratactic.

Theorem 11.] A necessary and sufficient condition that

two not null and non-cospherical circles should be cospherical

and orthogonal to a single circle is that just one focus of one

should lie on an isotropic with one focus of the other.

Theorem 12.] A necessary and sufficient condition that

hvo not null and non-cospherical circles should be paratactic

is that their foci should lie in pairs on two skew isotropics.

Lastly, suppose
[xx') = {xy') = (yx') = 0.

If (2/2/O 9^ the common orthogonal circles are all null

;

if (yy') = the given circles are in bi-involution.

Theorem 13.] A necessary and sufficient condition that

tico not null circles should be cospherical and orthogonal to

F f 2
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a two-parameter family of circles is that they thould be in

bi-involvbtion.

We shall define as the non-Euclidean angles of two circles

those of two pairs of spheres, the spheres of each pair being

determined by the given circles and a circle cospherical and

orthogonal to both. If we represent each sphere of our

pentaspherical space by a point in four-dimensional projective

space of elliptic measurement, the angles of two circles will

correspond to the distance of the corresponding lines, or the

angles of these lines.* The pairs of spheres are

V(yx') V(yy') (x) ± V(xx') V(xy')(y)
;

JW) JWv) ¥) ± JW) ^Wv) ¥)

If d
1
and 8

2
be the angles of these circles, we find

„ „ „ „ 2 \(xx') (mi') + (yx') (xy')~\
cos2 6

1 + cos2
2
= —^— •' '

cos2
1
cos2

2
=

(xy) (x'y')

[(xx')(yy')-(yx')(xy')f

(1)

(xy) 2
(x'y'f

The condition that these angles should be equal or

supplementary is

(xx') (xy') (yx') (yy') = 0.

This will involve either (xx') = (yy') = 0,

or else (xy') = (yx') — 0,

as otherwise the spheres making these angles are null and the

angles meaningless.

Theorem 14.] A necessary and sufficient condition that

two non-cospherical not null circles should be paratactic is

that their non-Euclidean angles should be equal or supple-

mentary.

Suppose that we have two paratactic circles whose common
orthogonal sphere is not null. Take any circle cospherical

* Cf. the Author's Xcn-Evclidean Geometry, cit., pp. Ill and 113.
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with both and the x1 circles into which it is transformed by

the one-parameter group of spherical transformations which

leave the given circles invariant (cf. IX, p. 344). The foci

of x 1 circles must all lie on the same pair of generators of one

set of the fixed sphere; any two of the x 1 circles are thus

paratactic. There will thus be a second one-parameter group

of spherical transformations leaving all of the x 1 circles in

place, and carrying the two original ones into x 1 others

generating the same surface as the first group of x 1 circles;

hence

Theorem 15.] Two paratactic circles are generator? of x 1

cyclides, each having tic? conjugate generations composed of

paratactic circlet.

Strictly speaking, we have only proved this in the case

where the common orthogonal sphere of the first two circles is

not null. When it is null we reach the same theorem by
continuity, or, in cartesian space, by inverting into a non-

Euclidean hyperboloid with paratactic generators.

§ 2. Circles Orthogonal to one Sphere.

The theorems so far developed in the present chapter were

of a general character for circles in pentaspherical space ; from

this point on we shall limit ourselves to the discussion of

circles orthogonal to one fixed not null sphere, which for

definiteness we shall take as x
t
— 0. Every sphere orthogonal

to the fundamental sphere will lack the last coordinate. If

two such spheres (x) and (y) be given, we may determine their

common circle by the following six homogeneous coordinates

called the Pliicler coordinates of the circle.

p'p-is

=

x-2y-i- xzH-i, ppn =

»

3#i

-

A'i&> ppvi= *iy-i - x-iyi-

These coordinates being homogeneous axe essentially un-

altered when the original spheres are replaced by any two

others coaxal with them. They depend, therefore, on the circle,
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and not on the individual spheres. They are, moreover, con-

nected by the fundamental quadratic identity

|

xyxy
1

= 2(p01 £>23 +_ft)2 £>31 +£>o3 2:,i2) = °-

Introducing (merely for the purposes of the present chapter)

the symbolism

our identity becomes

(p/p) = 0. (4)

Suppose, conversely, that we have a system of homogeneous

values, not all zero, which satisfy (4) ; to be specific, suppose

p23 ^ 0, we then write

P23Xl+PalX2+Pl2X3 = °»

P23*0 ~^~Po3X2 Po2X3
= ">

~I)
31
X PoSXl ~^~PoiX3 = ">

Pl2X "t"Po2X 1 Poi®2 ~ ""

We see by a simple elimination that every solution of the

first two equations is also a solution of the last two ; the four

will represent a coaxal system of spheres. Take the spheres

of the system orthogonal to two arbitrary spheres (u) and (v)

PVi =Ms

t ij c
2

t3

P23 P31 P12

-P23 ° P03 -P02

un u, u„ u„

' (TZj =
M,

tg fj t
%

t
3

" P23 Pai P12

'P23 ® Po3 ~P02
Vn V, v.

The Plucker coordinates of the circle of intersection will be

Pzz Pn P12

-P23 P03 -P02
P"(y^j-y^i) = -^23

U U
l
U2 u..

Pi

Here neither coefficient of ptj will vanish, so that there is

indeed a circle with these coordinates. Lastly, if we know
the coordinates of a circle, we may easily find, rationally, in
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terms of them the coordinates of the sphere through the circle

orthogonal to an arbitrary sphere, so that two different circles

could not have the same Pliicker coordinates.

The condition that two circles of our system should be

cospherical is

(p/q) = 0. (5)

If (p) and (q) be two circles of our system, then

will represent a circle when, and only when, the two are

cospherical, and, by varying A//* in this case we get all circles

coaxal with (p) and (q). Similarly, if we have three circles

cospherical two by two, then either all pass through two

points, or are on one sphere orthogonal to the fundamental

sphere. The circles

Mp)+i* (2) + »(»•)

will in the first case be those through the two points, in the

second those of our system lying on the particular sphere.

If (x) (y) and (x') (y') be respectively the foci of two circles,

the condition that the two should be in involution is

(xx') (xy')

(yx) (vy')

i,j = 3

= 2 ptj}>ij = o-* (6)

i, i =

For bi-involution we shall have

(xx) = (2/2/) = (*v) = W) = (2/-0 = (2/2/O = K-0 = (y'y')= o-
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We therefore get the circle of our system in bi-involution

with a given circle by replacing each Pliicker coordinate" by

its complementary. With regard to the non-Euclidean angles

of two circles we easily find

2 PijPi/= l>« (yy')-(y®') (*»')]

;

"', j =

;

,J = S i',J=3

2 V 2 V = (^)'(*V)
S

,J = i, i=o

(ftw =

[xy) (xx') (xy')

(yx) {yx') (yy
f

)

(x'x) {x'y) (x'y')

tf*) (y'y) (y'*') °

(3)

O)

The cosines of the angles of the circles will be found from

the equation

i, 3 = 3 i, j = 3

2 Pif 2 Pif cos* e

i, 3 = i, 3=0

T / ;
, 3 = 3 \ 2 i, j = 3 i, j = 3

+ Ovyy-f 2 PijPiA- 2v 2 V* cos2 *

L \i, j = / i, j = i, j =

(j,
j = 3 v!

2 PijPif)=0. (10)

The condition that the circles should be paratactic is

{p/p')+ 2 PaPa
i, 3=0

2 i, j = 3 i, } = 3

- 2 V 2 Pi/
2

!, j = i, ,)' =

i, j = 3

a, j =

2 i, ^ = 3 i, j = 3

.^ Pij £* Pij = 0. (11)

i. 3 = i,3=0

It will be found, in fact, that the first factor vanishes if
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(y.v') = (xy') = 0, while the second vanishes if (xx') = (yy') = 0.

Conversely, when this equation is satisfied, we find

(aw:') (xy') (y.v') (yy') = 0.

The most important invariant for two circles under the

spherical sub-group which leaves the fundamental sphere in-

variant is the product of the cosines of their non-Euclidean

angles. This is

>, J = 3

2 PaPa'

I(pp') = cos 6, cos e
2
= ,..^

=
°

,lj = s (
12

)

J2VJ.2V1

\ i, j = A' i, J =

When we speak in general of the invariant of two not null

circles we shall mean this product.

A great flood of light is thrown upon the system of circles

orthogonal to one sphere when we compare the formulae here

developed with those of line geometry in the usual Plucker

coordinates. We have the following correspondence :

Spheres orthogonal to fixed Points of projective space,

sphere.

Circles orthogonal to fixed Lines,

sphere.

Cospherical circles. Intersecting lines.
.

Pllicker coordinates. Pliicker coordinates.

Coaxal system. Pencil of lines.

Point-pair inverse in fixed Plane,

sphere.

Angle of cospherical circles. Angle of intersecting lines

in elliptic measurement.

Non-Euclidean angles of Angle of skew lines in

circles. elliptic measurement.

This correspondence, which we have reached by purely

algebraic means,* inay also be derived directly by geometrical

* Cf. Forbes, Geometry of Circles Orthogonal to a given Sphere, Dissertation, New
York, 1904.
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considerations.* Let us imagine that our circles lie in cartesian

space of Euclidean measurement, and that the fundamental

sphere is not planar. Each circle orthogonal to this sphere

may be set into correspondence to its axis, i. e. the line through

the centre orthogonal to the plane of the sphere. Every

proper circle and every null circle whose centre is finite

and on the sphere will correspond to a determinate line.

A diametral line will correspond to the line in the plane at

infinity, and in the planes perpendicular to the given diametral

line. Conversely, if any line be given, there is one plane through

the centre of the sphere orthogonal to it. If the line be not an

isotropic through the centre, the plane meets it in a definite

point, the centre of a circle in the plane orthogonal to the

sphere. An isotropic through the centre will correspond to

a parabolic circle, i.e. a parabola touching the circle at infinity,

with the line as axis. Here the correspondence is not one to

onei Intersecting lines will correspond to cospherical circles.

We pass to the consideration of the simplest systems of

circles orthogonal to one sphere. We begin with the linear

complex, defined as the totality of circles whose coordinates

satisfy an equation of the type

i, .7 = 8

2 <*ijPij = o-
(
13

)

i, j =

If (a/a) = 0,

the complex consists in the totality of circles cospherical with

the fixed circle q^ = p<%. When this equation does not hold,

we have a more complicated system, which we shall call the

non-special case, the sphere being not null.

Theorem 16.] A non-special linear complex of circles ortho-

gonal to a fixed sphere will share a coaxal system with every

sphere orthogonal to this sphere, and with every point-pair

anallagmatic therein. It will set up such a one to one corre-

spondence between the spheres orthogonal to the fundamental

* Cf. Moore, 'Circles Orthogonal to agiven Sphere', Annals ofMath., Series2,

vol. viii, 1907.
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sphere and the 2X>int-pairs, that each point-pair lies on

the corresponding spli&re and each sphere passes through the

coiTesponding point-pair ; the spheres through a circle ortho-

gonal to the Jived sphere will correspond to point-pairs on

such a circle, and vice versa. The two circles so defined bear

a reciprocal relation, and will fall together in the case of the

circles of the complex; and in no other case.*

This long theorem may he immediately deduced from the

fundamental properties of the linear line complex, or else

proved immediately by a simple analysis. A linear complex

has an absolute invariant, under the sub-group of spherical

transformations which leaves the fundamental sphere invariant,

namely

"2 V
Hr'' J=0

(14)

{a/a)

Let us see what will be the meaning of this. We note, to

begin with, that circles orthogonal to the fundamental sphere,

and in bi-involution with those of the given complex, will

generate a second complex

(a/p) = 0. (15)

The circles common to the two complexes will satisfy the

equation

i, J'
=

regardless of the value of A/ju. We shall thus get two circles,

usually distinct, by requiring the complex whose equation was

last written to be special, i.e.

i, J = 3

(\= + ju
2
) («/«) + 2 AM 2 «i/ = °-

;, ; = o

The resulting circles shall be

Paij = i-H+SH*-l)a
tJ
+ aM .

<r<Xi/= a
tJ

+(-H+SH--l)akl .

* Cf. Forbes, loc. cit, pp. 19 ff.
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It is immediately evident that these two are in bi-involution.

If p be any circle orthogonal to our fundamental sphere, the

ratio of its invariants with regard to these two will be

i, 3 = 3

(

-

H + VH*-\) 2 a
ij fij + («/p)

Ijorp) i,j = o

I(a» ~ i.3 = s

2 aijPij + (-H+VH*-l)(a/p)
hi

For a circle of our complex this ratio reduces to

-H- VTF^i.

Conversely, when the ratio so reduces, the circle (p) must

belong to our complex.

If H 2 =£ 1,

the two circles (a), (a') are distinct.

We shall find it convenient from now on to speak of two

circles in bi-involution as forming a cross, and the cross formed

by the circles (a) and (a.') shall be the axial cross of the com-

plex. Restricting the word general to those linear complexes

where (a) and (a') are distinct, we have

Theorem 17.] The circles orthogonal to a fixed sphere, whose

invariants with the two circles of a cross orthogonal to this

sphere bear a fixed ratio which is finite and different from or

± 1, will generate a linear complex with the given cross as

axial cross, and, conversely, every general linear complex may
be generated in this way.

When the fundamental sphere is null we must prove by

continuity, or by inverting into a linear line complex in non-

Euclidean sphere.

The existence of the axial cross leads us to the canonical

form for the equation of the linear complex. In fact, if we

take the fundamental circles of our pentaspherical coordinate

system as passing two by two through the circles of the axial

cross, the equation of the linear complex may be written

<haPn + «uP*=°, H=°f^- (
16

)
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A thorough discussion of all special cases of the linear com-

plex, under the quaternary orthogonal group of substitutions,

would lead us too far afield. We merely note that if

H 2 = 1,

the two circles of the cross fall together in an isotropic. On
the other hand, if the complex be in bi-involution with itself,

i.e. if

a
ij = Pald> P

2 = !>

any two circles which correspond by means of the complex

according to the description in (16) may be taken to give the

axial cross.

The assemblage of all circles orthogonal to a fixed sphere,

and common to two different linear complexes, shall be

called a linear congruence. Let the reader show that

usually this consists in the assemblage of circles cospherical

with two distinct or adjacent circles orthogonal to the

fundamental sphore. Let him also show that the totality of

circles common to three linear complexes will usually be one

generation of a cyclide.

Eefore leaving altogether the linear complex, and systems

of linear complexes, let us look again for a moment at the

transformation mentioned in 16]. If the complex be that

given by (13), the transformation will be

qt/= (a/a) qtj
- 2 (a/q) akl . (1 7)

We see. in fact, that this will permute circles orthogonal to

the fundamental sphere, leaving invariant only such as belong

to the given complex. It will also carry cospherical circles

(orthogonal to the sphere) into cospherical ones. The trans-

formation is involutory, but is not a spherical transformation,

and will carry a sphere orthogonal to the fundamental sphere

into a point-pair anallagmatic with regard thereto. A circle

of the complex cospherical with (q) is cospherical with (q')

also. We shall call this transformation a polarization in the

linear complex. The necessary and sufficient condition that

the linear complex
;, j = 3

2 bvPij=0
i, i = o
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should be carried into itself by polarizing in our given com-

plex is

(a/b) = 0.

Let the reader show that this is also a necessary and sufficient

condition that the product of successive polarizations in the

two linear complexes should be commutative.*

It is easy to find a system of six linear complexes, each of

which bears this relation to the five others. They will deter-

mine ten cyclides each having the given sphere (when not

null) as a fundamental one, and a group of sixteen spherical

transformations which carry the whole figure over into itself.

If we define as a complex of circles orthogonal to our fixed

sphere a system where the coordinates of each member are

proportional to analytic functions of three independent

variables, the ratios not being all functions of two variables,

then a general complex may be written

fip) = 0-
#

Remembering that our circles are in one to one correspon-

dence with the lines in projective space, and they in turn with

oriented spheres, we find at once, if

Kbpi ipf~ '

the complex consists in circles bitangent to a surface anallag-

matic in the fixed sphere, or meeting a curve in pairs of

anallagmatic points. When this expression does not vanish

identically, we get the singular circles of the complex by

equating it to zero. Each singular circle determines a sphere

orthogonal to the fundamental sphere, and an anallagmatic

point-pair thereon ; the locus of the point-pairs is the envelope

of the spheres. The circles of the complex through the point-

pair will generate a surface having the singular circle as

* The reader familiar with line geometry might naturally expect us to

speak of two such linear complexes as being in involution. Such a locution

might, however, lead to confusion, for if the complexes were special,

(a/a) = (b/b) = 0, the circles (a) and (&) would be in involution if

i,i = i

2 V« =
> ^t if (a/6) = 0.

i, j =
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a double circle, and the singular circle will be double among

the circles of the system on the sphere.

A system of circles whose coordinates are proportional to

analytic functions of two independent variables, their ratios

not being all functions of one variable, shall be called a

congruence. We determine a congruence frequently by two

equations

f(p) = <P (p) = o-

An arbitrary circle of the congruence will, in general, be

cospherical with two adjacent circles thereof, that is to saj',

the circles may be assembled in two ways into generators

of a one-parameter family of annular surfaces. These will

reduce to a single system if

(*I /U\(U

\%p/ ip'\i>p/

A system of circles whose coordinates are proportional to

analytic functions of one independent variable, their ratios

not being all constants, shall be called a series. If a series be

given by the equations

f(p) = <t>(p) = +(p) = 0,

the necessary and sufficient condition that the surface

generated should be annular is

7>p)

ipj

= 0.

\*p/ S/Wj)/ 1>2j)\Zp/ ip)

\*p/ 7>p)\t>p/ lp/\ip/ Zp'

\lp/ 1>p)\7>p/ 1>p)\Zp/ *p'

0.

If the series be given in the parametric form

p=p(u),

the condition for an annular surface will be

huJ-
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§ 3. Systems of Circle Crosses.

We have now given in outline the most important facts

concerning systems of circles orthogonal to one sphere.

Before leaving these circles altogether, let us revert to that

striking figure, the circle cross, for a good deal of interest

comes to light when we take the cross rather than the

individual circle as a space element.* We start with the

linear complexr
i, J = 3

2 <HjPij = °-
(
13

)

i,J=0

t us then write
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We see thus that (X) and (X) may be taken as two separately

homogeneous triads of coordinates to determine the cross.*

Two crosses, orthogonal to the same not null sphere, will

have certain invariants under the quaternary orthogonal

group. Let the circles of the cross have the coordinates (a)

and (a'), where

«</ = />«'*J-

In the same way let a second cross be determined by the

circles (/3) and (/3'). If 6\, 2 be the angles of the circles (a) and

03), we have by (12)
>; = s

2* aijPij

cos
1
COS 2

= -

,j = o

I 2 <v / 2 %"
\ i, ; = o \ ;, ; = o

In like manner we find without difficulty

sin
1
sin

2
= (a/®

,

cos (0X + 6
2)
=

cos^ + tf,,) =

2 V / 2 %»

(XY)

V{XX) V{YY)

(XY)

V(XX) J(ft)

The condition that the circles (a) and (/3) should be co-

spherical, or that one should be cospherical with the mate of

the other in a circle cross, is that

(xY) =± Jif)^- (is)

V(XX) V{YY) ~ V(XX) V{YY)

* The idea of taking a line cross as a space element is due to Study, and

plays a fundamental role in his Geometrie cler Dynamen, Leipzig, 1903. See

also, for the case of non-Euclidean space, the Author's Non-Euclidean Geometry,

cit., pp. 124 ff.

1702 G g
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They will be cospherieal and in involution, i.e. intersect

twice orthogonally, if

(XY) = (XY) = 0. (19)

Theorem 18.] If the circles of two crosses be orthogonal to

the same sphere, then, if one circle of the first cross be cospherieal

with one of the second, the same will be true of the remaining

circles of the two crosses.

Suppose that (a) is cospherieal with the two circles (/3) and

(/3'j of a certain cross. It is then, by 2], orthogonal to their

common orthogonal sphere. Every sphere through (j3) will

be orthogonal to the sphere (a) (/3')> hence (/3) cuts (a) twice

at right angles. Our equation (19) is thus satisfied. It will

also be satisfied if we replace (a) by (a').

Theorem 19.] If a not null circle be cospherieal with hvo

circles of a cross, it will cut each of them twice orthogonally,

as will the circle orthogonal to the common orthogonal sphere

of these three circles and in bi-involution with the first one.

Theorem 20.] If hvo circles, neither of which is null, inter-

sect twice orthogoncdly, then each intersects twice orthogonally

the circle in bi-involution with the other which is orthogonal

to the common orthogonal sphere of the two.

We shall say that two crosses intersect orthogonally when
each circle of one meets twice orthogonally each circle of the

other. The condition for this is given by (19). The con-

dition for parataxy will be, from (11),

[(XX) ( YY) - (XY)f [(XX) (YY) - (XYf\ = 0.

This may be written

X
J
xn

Y
J
Yu

X
j
X

lc = o.

The only real solutions will be

Y
i = Pxi

or Y
t

<rXt . (20)
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Theorem 21.
J If two not null circles be pa?*atactic, each is

pa redact ic with the circle orthogonal to the common orthogonal

sphere ichich is in hi-involution with the other.

It will be proper here to speak of the crosses themselves as

paratactic.

The simplest one-parameter families of crosses are those

given by equations of the form

I
i
EAr

i +^1 X
i
= kY

i
+ y.Z

i
. (21)

These will be the axial crosses of the pencil of linear com-
plexes

aij-zxbtj + pctj.

There are four important varieties in this system

(«) Ti = pZi, ^ = <r4

The system consists in but a single cross

(&) y
t
=pz

t > Yi$°Zi-

Here all crosses of the system are paratactic. Let (X')

satisfy the equations

(X'Y) = (X'Z) = 0,

then (X'X) = 0.

On the other hand (X') shall merely be required to satisfy the

equation

(XT) = 0.

We may then write

We thus have a second system of crosses exactly like the

first, each cross of one system cutting each of the other ortho-

gonally. We have, in fact, two residual generations of the

same cj'dide, each not null circle of one generation cutting

each of the other orthogonally, while each two proper circles

of the same generation are paratactic.

Gg2
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(") T^pZi, Y^vZt.

This is not essentially different from the last.

(d) Yi^pZi, fiJEcrZ..

Here we have something quite different. Let us write

tU^YjZ^Yj.Zj, 8 tr
t
=-t

f
&k-th &j.

The crosses of our system cut this fixed cross orthogonally.

The surface generated by these crosses shall be called a pseudo-

cylindroid.* It has one highly remarkable property. Suppose

that we have a congruence of circles orthogonal to our funda-

mental sphere. We may express them parametrically

X^X^v), X^X^v).
Let us assume that

.-dX-dX

5b5o
X

3w iv
£0.

The cross cutting orthogonally the adjacent crosses (X) (X)

and (X + dX) (X + dX) will be determined by the equations

P'; =

<rY,=

x
j
xh
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circles, then the circles cospherical and orthogonal to a circle

of the congruence in general position and its adjacent circles

generate a pseudo-cylindroid.

We may find a canonical form for the equations of the

pseudo-cylindroid as follows. The cross which is orthogonal

to the various crosses of the series shall be (1, 0, 0) (1, 0, 0).

There will be two crosses of the series which intersect ortho-

gonally. Let us, in fact, undertake to solve the simultaneous

equations

XX' (YY) + (A/ + M\') (YZ) + pp.' (ZZ) = 0,

XX' (IT) + (A/ + MX') (YZ) + ,V {ZZ) = 0.

Eliminating A'/p.' we get a quadratic in A///., which is seen

to be the Jacobian of (XX) and (XX) looked upon as quadratic

forms in X//u. If our crosses (Y) (Y) and (Z) (Z) be real, the

quadratic equations (XX) = 0, (YY) = have conjugate

imaginary roots. The two quadratics can have no common
root unless they are identical. Hence the invariant cannot

vanish, and the quadratic in A/^x has distinct roots. Let us

take the crosses corresponding to them as (0, 1, 0) (0, 1, 0),

(0, 0, 1) (0, 0, 1). Our canonical form then becomes

X
1
= A\ = 0,

A
2
= /3i'a ,

A'
3
= yA

v
„

, /3, y constant.

To find the equation of the surface generated, let (p) be the

Plucker coordinates of a circle of our system.

Poi = Pm = °.

t3(Poi-pn) (Pos+PiJ = YiPoi+Psi) (Pvi~Pi^-

A point (x) will lie on this circle if

l'iPo2 + X3'Po3- °>

Pxo = —Pv>> P xi =Po2> w-i = Pm> °"'r
3 = ~-i"o2>

(p/p) = 0.

pn = x .r
3 , pw = -.1'!%, pm = *

a
a;
a , p31

= x x.
2

.

,3 (x a>„ + x, .r,) (x x3 + x
1
x„) - y (x x., - .r

3
x

x ) (x
ti
x.

s
- a\x

s)
= 0. (2 2)
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Theorem 23.] The general pseudo-cylindroid is a surface

of the eighth order, which, in cartesian space, has the circle at

infinity as a quadruple curve, and two circles in bi-involution

as double curves.

Among congruences of crosses the simplest are those which

come from the axial crosses of a three term linear system

of linear complexes. Here we have

X^aYi + bZt + cTt; X
{
= af^bZ^cT^ (23)

(a)
|
YZT

|

=
|
YZT

|

= 0.

This gives the crosses, cutting a given cross orthogonally,

(b) \YZT\ = Q, \YZT\£o,

l'
i
= XY

i +^Zi ,

X
(
=(a + ke)Y

t + (b + vLc)Z
t

.

Let (a + Xc) = p, (b + ixc) = q.

bp— aq
c =

Kq—up

X^pY
i + qZi , ^ = «[^-^J +^ +Ag_^

The congruence contains one paratactic generation of each

of co
1 cyclides corresponding to different values for - • The

residual generations will generate a second congruence of

like sort.

(c)
|
YZT

|
x

|
YZT

|
£ 0.

Here we may solve one system of equations for a, b, c, and

substitute in the other, getting

pxi = 2 a
ij
xj- (

24
)

The crosses intersecting orthogonally pairs of crosses of this
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congruence will generate a second congruence of like sort

called the conjugate to the first.

3 = 3

^i=2«/*^- (25)

i = i

The relation between the two is reciprocal. If we seek

a cross that belongs at once to both systems, we shall fall

upon three equations of the type

rX
i
= 2 byXj.

The condition for compatibility gives a cubic in t whose

discriminant does not vanish identically. If, now, we give

the name general chain congruence only to a congruence of

our present type where this cubic has distinct roots, we see

that it shares with its conjugate three crosses, and only three.

The common perpendicular to each two of these crosses which

belongs to both congruences must be the third cross; hence

each two intersect orthogonally, and we may take them as

fundamental in our coordinate system. Our chain congruence

and its conjugate may thus be reduced to the canonical form

pt^cuXi, aU^a^, (26)

i = 3 i = 3

n«^°> ii(«j-«*)^ -

1=1 i = 1

Theorem 24.] The crosses cutting orthogonally pairs of

crosses of a general chain congruence generate a second such

congruence. The relation between the two is reciprocal, and

they have in common three orthogonally intersecting crosses.

The condition that two circles of our two systems should be

cospherical, or that one should be cosphorical with the circle

in bi-involution with the other, is

{UX)[V{aX*)J(l U*) ± V{XX) V{UU)} - 0.
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If the first factor vanish, (UX) = {UX) = 0, the two cut

orthogonally. If the second factor vanish, every circle of

a cross of the first congruence for which

q(aX*)=p(XX)

is cospherical with a circle of every cross of the second for

which

p(^U*)=q(UU).

Theorem 25.J The circles of a general chain congruence

cospherical with one circle of the conjugate congruence and
orthogonal thereto generate a pseudo-cylindroid ; those co-

spherical with a circle of the conjugate congruence but not

orthogonal thereto generate a cyclide ; the residual generation

will be composed of circles of the conjugate congruence.

If we have a cyclide one of whose fundamental spheres

is our given sphere xt
= it is clear that the circles of either

corresponding generation form a rational series which can be

expressed in the parametric form

X
t
= t'7

i + tZ
i + Tii X^t'ti + tZi + ft.

Eliminating t
2

, t, and 1 we fall back upon three equations

of the type (24). The series of circles is thus surely contained

in one of our chain congruences.

Theorem 26.] The circles which are cospherical and ortho-

gonal to pairs of circles of one generation of a cyclide will, in
general, generate a chain congruence whose conjugate includes

this generation of the cyclide.

The words ' in general ' here indicate that there are a number
of possible exceptions. We shall not, however, stop to investi-

gate them. If we take the equation of our congruence in the

form (24), we may assume that the sphere x
Q
= bears no

special relation thereto. Now all circles of this sphere satisfy

the relation

x
i
- pX

{
.
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Hence three circles of the sphere (orthogonal to the funda-

mental sphere) lie in our congruence.

Theorem 27.] Three circles of the general chain congruence

lie on an arbitrary sphere orthogonal to that sphere which is

orthogonal to all circles of the congruence, and three circles ofthe

conjugate congruence also lie thereon. Each spherical triangle

formed by the three circles of one congruence is polar to each

formed by the circles of the other congruence.

Our congruence is traced by pairs of circles in bi-involution.

If a circle generate a sphere orthogonal to the fixed sphere,

the circle in bi-involution therewith passes through two fixed

points, the foci of the circle common to the two spheres, and

vice versa.

Theorem 28.] Through each pair of points anallagmatic

in the sphere, which is orthogonal to the circles of a general

chain congruence, will pass three circles of the congruence,

and three of the conjugate congruence. Each circle of one

congruence through these points cuts orthogonally two circles

of the other congruence.

It is doubtful whether there remains a great deal in the

subject of circles orthogonal to a fixed sphere which is worth

protracted study. Of course it would be possible to develop

the subject until we had an explicit counterpart for every

known theorem in line geometry, metrical or projective, but

most of these results would be of mediocre interest, and easily

found by any one who needed them. The pseud o-cylindroid

might well be given some further attention, and also certain

complexes of circles, notably those corresponding to the

quadratic line complex. The methods to be emploj'ed are

perfectly obvious, and the results can be at once predicted.



CHAPTER XIII

CIRCLES IN SPACE, ALGEBRAIC SYSTEMS

§ 1. Coordinates and Identities.

The greatest aid to the study of. circles in space is the

correspondence established in Ch. VI between the spheres

of pentaspherical space and the points of a four-dimensional

projective space of elliptic measurement. Let us write down
again such facts in regard to this correspondence as will be

particularly useful to us in the present chapter.

Pentaspherical space S
3

.

Sphere.

Point.

Circle.

Null circle.

Point-pair as locus of spheres.

Spheres orthogonal to given sphere.

Mutually orthogonal spheres.

Coaxal circles.

Conjugate generations of cyclide.

Intersecting circles.

Cospherical circles.

Circles in involution.

Projective space $4 .

Point.

Point of S3
2

.

Line.

Line on or tangent to S
3
2

.

Plane.

Hyperplane.

Points conjugate with re-

gard to $
3
2

.

Pencil of lines.

Conj ugate generations of

quadric.

Lines whose hyperplane

touches S
3\

Intersecting lines.

Lines, each of which inter-

sects the polar hyperplane of

the other with regard to $
3
2

.
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Circles in bi-involution. Lines, each of which lies in

polar hyperplane of the other

with regard to >S'.
2

.

Circles meeting twice ortho- Intersecting lines conjugate

gonally. with regard to S.r.

Twenty-four - parameter Group of all collineations.

group carrying spheres to

spheres and circles to circles.

Ten-parameter group of Ten-parameter collineation

spherical transformations. group leaving Ss
2 invai-iant.

The basis for the algebraic study of circles will be the

Pliicker coordinates *

- 1 = 0... 4
Ppij = xiyJ

-.v
J yi ,

j = Q ^ (1)

Of these there are clearly twenty-five. They are connected

by the following identities :

Pij = ~Pji> Phk = °
(
2
)

iP- (pp) ^PuPll + pKpV+PliP-X = °-

i &i (PP) = PoiPu +/W32 +PosPn = °-

i P-2 (PP) = PoiPu +PoiPn + PoiPu = 0-
(
3 >

i n3 (PP) = PoiPn + PmPhi +Po-iPu = 0-

#i24 (pp) = p01p^+P02P3l+ PviPli = °-

The last five arise from the obvious equation

D-i(pp)=jf, \txyxy\.

The polar of the form Ll
i (pp) shall be written il^pq).

Since the totality of circles in space depends upon six

independent parameters, it is clear that the identities above

cannot all be independent. Suppose that we have twenty-

five homogeneous quantities (p) which satisfy merely the

equations

Pij = -Pji- I
2

)

* The first writer to use these seems to have been Stephanos, ' Sur une

configuration remarquable de cercles dans l'espace', Comptes rendus, vol. xciii,

1881.
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We easily find

n = i

2&Q»to)SO, *=0...4.
?i =0

If thus

Pij ¥= o, % {pp) = Hi (pp) = On (pp) = o.

We have also Sl
i {pp)

— SI: {pp) = 0.

Every circle will have thus ten essentially distinct Plucker

coordinates which satisfy our identities (3). When we say

essentially distinct we mean that no two, in the general case,

differ merely in sign, and none vanishes automatically. Let

us show, conversely, that just one circle will correspond to

each set of homogeneous values not all zero which satisfy these

equations. Assuming first p^ ^ o.

Let us take the two spheres

n = 4 n = 4

2 Pin ®n= 2 Pjnx» = °- (
4
)

n = n =

Multiply the first equation by p-
?i
., the second by p^, and

add, we get

n - 4

-Pij 2 Phnan = °"

» = o

The points (x) which satisfy these equations will lie on one

circle. To find the Plucker coordinates of this circle we have

but to take the spheres (4)

Mr,
Pir Pis

Pjr Pjs
lUtP:ij l^rs"

There will surely be one circle corresponding to each set of

Plucker coordinates. Let the reader show that there cannot

be more than one.

The coordinates of a circle are occasionally determined in

another manner. Suppose we start with the knowledge that
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our circle is orthogonal to the three spheres (r), (s), (t). The

spheres through this circle orthogonal to (u) and (v) are

%i = ^\lurst\, yi
=^-\lvrst\.

uvrst\ = A^0.

PPij = A
rh
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This will be null, and the circles will intersect if

*2, a? W) = o. (10)

i =0

The left-hand side of this equation is a relative invariant

of the two circles for all spherical transformations. More

interesting is their absolute invariant which we found in

Ch. XII. (12).

cos ft cos ft. = _3iP
jl = . (11)1 2

VSpi/VSpi/*

There is a second meaning which may be attached to this

invariant, and which is of not a little interest. We first ask,

when will the circle (p) be tangent to the sphere (a/) ?

An arbitrary sphere orthogonal to (x), (y), (x') may be written

pz
i
= X j-y-

|
lux xy

\ +n ^j- \
Lvx xy

\

.

Here (u) and (v) are two arbitrary spheres not linearly

dependent on (x), (y), (x').

We also introduce the notation

* ij — ^ Pin Pjn — --— Pni P:

« =
nj-

The condition for tangency is the condition that there

should be but one null sphere orthogonal to (x'), (x), (y). We
thus write the condition that the equation in \/jx, (zz) = 0,

should have equal roots, and apply the identity

32A dA 3A 7>A SA

**ii tajj »o« toy <*a,j: <>a
J

i

•(xx) (xy) (xx'j

(yx) (yy) (2/O
(x'x) (x'y) (x'x')

= 0.

{x'x')W = 2 Pti»t'x/
i,j =
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Let us next define as the orthogonal projection of a circle

on a sphere the intersection of that sphere with a second

orthogonal to it, passing through the circle. This becomes

indeterminate only when the circle is itself orthogonal to the

sphere. Let us, then, take two not null circles (p), (%>') Let

(x') be a sphere through (p') tangent to (^>) ; we seek the cosine

of the angle of (p') with the orthogonal projection of (p) on (x').

If (y') be the sphere through (p') orthogonal to (#'), we need to

find the angle of (y) with the sphere (y) through (p>) orthogonal

to (a/). We easily find
3 = 4,

Vi = 2 Pij */•

(yy') 2 PijPa
cos 6 =

Siyy) Ay'y') ^(y'y') •(*V) siV

Theorem l.J The product of the cosines of the non-Euclidean

angles of two not null circles is the cosine of the angle which

the one maJces with the orthogonal projection of the other on

a sphere through the first tangent to the second.

We shall define this angle as the angle of the two circles.

It will be found that such a definition will agree with the

usual one when the circles are cospherical, or reduce to straight

lines of cartesian space.*

The condition that two circles should be paratactic is

reached by rewriting XII. (11) in invariant form

2P;f Zpi/2 + VPijPijf- 2 <V (PlO

= 4[2(PijPif)]
3 Sp

i

°-2p
i

* This invariant is due to Koenigs. See his remarkable article ' Contribu-

tions a la theorie du cerele dans l'espace ', Annates de la Faculte des Sciences de

Toulouse, vol. ii, 1888. The interpretation as the product of the cosines of two

angles first appeared in the Author's Study of Vie Circle Cross, cit., p. 155. The

interpretation as the cosine of a single angle is due to Dr. David Barrow.
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Our last two equations can be put into particularly neat

form by introducing an additional circle coordinate : let us

write

2
Pij

*+p* = 2 Pi/*+p
,2 = 0. (13)

I{m')J^l- (14)

pp

For parataxy

i = 4

i =

When the given circles are real this last equation must

amount to two distinct equations.

Assuming that the paratactic circles are determined by

their foci,

(axe) = (yy) = (a;V) = {y'y') = (axe') = (yy') = 0.

The conditions for parataxy become *

n =4 « = 4 n =

4

n=4

J*^ ft™ *)( "rP ^J jJi» * ire — Pi-* jZ* Pin Pin "•" ^ ^in-'-in — ^ -

m=o m = o « = » =

n = 4 n = 4

P -— Pi» -^ i» .P -i .Pin -'in

w = w =

n ~ i n = 4

= Jjp' 2 ft» JPto - 2 Pfo Pin =0. i = 0, . . .
4. (15)

n = n =

The sphere through a given circle orthogonal to a sphere

(r) has the coordinates
n = 4

Pzi= 2W*?V (16)

* Of. von Weber, 'Zur Geometrie des Kreises im Eaume', Grunerts Archiv,

geries 3, vol, vii, 1904, p. 292.
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Two circles will be in bi-involution when ever}' sphere

through one will be orthogonal to every sphere through the

other. The condition is

2, PinPjn =0, i, j = . . , 4. (17)
n = o

We have now a sufficient analytic basis for the study of

systems of circles. Before taking up continuous systems we
shall discuss a very curious figure formed by five circles, and
an analogous one involving fifteen. We shall approach these

figures by means of our four-dimensional representation.*

Suppose that we have three lines a, b, c in four-dimensional

projective space, no two coplanar, nor are the three in one

hyperplane. There are co 3 planes which intersect all of them.

Let an arbitrary hyperplane it be taken. It will contain one

plane of the system, that which joins its intersections with

the three lines. We assume that the hyperplane does not

contain the single line df that intersects a, b, c. The cross

ratio of the four points where d' meets a, b, c, it will be that of

the four hyperplanes through any plane of the system, and

through a, b, c and the point d'tt, or the cross ratio of the four

planes through the line of intersection of this plane with it,

and the four fixed points ait, bit, cit, d'it. This brings out the

important fact that the planes of our system meet an arbitrary

hyperplane in the lines of a tetrahedral complex, which is,

of course, of the second order.

Suppose, next, that we have four lines a, b, c, d, no two

coplanar, no three in one hyperplane, nor does one lie in

a plane which meets the other three. They will be inter-

sected in threes by the four lines a', b', c', d', a similar system

Let us fix our attention on the hyperplane (dd'). Every line

in this hyperplane which intersects d' will lie in a plane

meeting a, b, c.

The linear complex (d') will thus split off from the quadratic

complex. The residue will be a linear complex which does

* Cf. Segre, 'Sull' incidenza di retti e dipiani nello spazio a quattro dimen-

sion! ', Rendiconti del Cercolo matematico di Palermo, vol. ii, 1888.

1703 H h
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not contain (d'), so that the lines thereof which meet (d) will

also meet a line e. In other words, every plane which inter-

sects a, b, c, d will also intersect e. The linear complex could

not be a special one with e as directrix, for then every plane

meeting a, b, c would meet e, an absurdity, since through

each point of the plane common to the hyperplanes (ab) and

(ce) there will pass but one line to meet ab and one to meet

ce. Hence d, e are mutually polar in the linear complex, and

are symmetrically related to a, b, c. No other line / can meet

all the planes which meet a, b, c, d. For if it were in the

hyperplane (dd') it would meet all lines of the linear con-

gruence with directrices d, d', which is impossible; but if not in

this hyperplane, the linear congruence with directrices d, f
would not lie in the tetrahedral complex determined by planes

cutting a, b, c. Our five lines will thus bear to one another

a symmetrical relation : any plane meeting four will intersect

the fifth.

Theorem 2.] If four circles be given, no two cospherical,

no three orthogonal to the same sphere, and no one containing

a point-pair cospherical with each of the other three, then every

circle in involution with these four circles is in involution

with a fifth. The relation connecting the five is reciprocal, each

being uniquely determined by the other four.

This figure is the famous pentacycle of Stephanos.* To find

the construction let us notice that e lies in the hyperplane

(dd') ; by symmetry it is in the hyperplanes (aa'), (bb'), (cc').

Four circles fulfilling the restrictions mentioned in 2] shall be

said to be in general position.

Theorem 3.] If four circles be given in general position,

there are four others each of which is cospherical with three

of the given ones. The common orthogonal spheres to each two

non-cospherical circles, onefrom each system, will pass through

the foci of the circle completing a pentacycle with the four
original circles.

* Sur une configuration remarquable, cit., p. 579.
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We next note that e plays the same r61e with regard to

a', b', c', d' as it does with regard to a, b, c, d. Draw the line

connecting (ab') (a'b). This lies in the hyperplanes (aa'), (bb'),

and so is coplanar with t'. In the same way the line

(cd') (c'd) is coplanar with c. But the line (cd') (c'd) lies in

the hyperplanes (cd), (c'd'), which are identical with the

hyperplanes (a'b'), (ab), so that (cd') (c'd) intersects (ab') (a'b).

Theorem 4.] Given four circles c
l , c2 , c\, c4 in general

position, a nd fou r others c/, c2
', c

3 , ct
' so placed tJiat c

{
a nd Cj'

are cospherical if i^fcj. The circle of intersection of the

sphere (CjC:') with the sphere (c/cf) and the circle of intersection,

of the sphere (Cf.Cj') with the sphere (o&'q) are cospherical. The

three spheres so obtained pass through a ci>rle c5
' which com-

pletes a pentacycle with clt c2 , c
3 , cA and icith l\\ c„'. c/, c4

'.

This method of construction leads to an extension of the

pentacyclic figure which is of much interest. Let the circles

t\. c
2 , c

3 , i\. t'/be renamed 01, 02, 03, 04, 05 respectively, while

l\', c.f, c/, c4
', f5

' become 15, 25, 35, 45, 05. The circle deter-

mined by the spheres (01. 25), (02, 15) shall be 34; it is

cospherical with the circle of the spheres (03, 45), (04, 35)

which shall be 12. We have the following fifteen circles:

01 02 03 04 05

21 12 13 14 15

31 32 23 24 25

41 42 43 34 35

51 52 53 54 45

The necessary and suflicient condition that two of these

should be cospherical is that their symbols should have no

common digit. They are cospherical by threes on fifteen

spheres. The circles with the digit and those with the

digit 5 form two pentacycles. Consider the circles 01, 21,

31, 41. Each three are cospherical with one of the circles

05, 25, 35, 45. 15 completes a pentacycle with the latter

four, hence it does with the first four also. Next consider

two triads (ij,jk. ki), (lm, inn, nl). Each circle of one triad is

cospherical with each of the other, but no two of the same

Hh2
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triad are cospherical. We thus reach a beautiful theorem

due to Stephanos.*

Theorem 5.] Given four circles in general position. We

may associate therewith eleven other circles as follows. The

fifteen circles lie by threes on fifteen spheres, each circle

belonging to three spheres. They may be grouped by fives

in six pentacycles, each circle belonging to two pentacycles.

They may, lastly, be grouped by threes in ten pairs of con-

jugate triads, each such pair of triads belonging to conjugate

generations of the same cyclide.

Let us call such a system associated circles. We get

a construction for them by reverting to four dimensions.

Suppose that we have six points P1; P2 , P3 , P4 , P5 , P ,

whereof no five are in one hyperplane. We have fifteen

triads of lines such as (P^^, (P
8
P4), (P

5
P

6).
These will

not lie in a hyperplane, so that there will be one line ln , 34 , 66

intersecting all, and of these fines there will be fifteen. They

are concurrent three by three as follows: lip U , mn , lijt ]em , nu
hj'lcn>ml meet in the intersection of [P

iPf) with the hyper-

plane (P
]c
PiPmPn). In no other case will two of the lines

meet. Our lines are thus concurrent by threes in fifteen

points, hence f

Theorem 6.] If six spheres be given, no five having a

common orthogonal sphere, they may be divided, in fifteen

ways, into three groups of two each, and a circle found
cospherical with the circle of each group of two spheres. The

resulting figure will be fifteen associated circles.

It will be noticed that the pentacycle and the figure of

fifteen associated circles are carried into like figures by any
linear sphere transformation.

* Sur une configuration, cit., and Sur une configuration de quinze cercles dans
Vespace, ibid., p. 633.

f This figure is discussed by Eiohmond, 'On the figure of six points in

a space of four dimensions', Quarterly Journal of Math., vol. xxxi, 1899. The
most complete discussion is in » long article by Weitzenbbck, ' Projektive
Geometrie des R, ', Wiener Berichte, vol. cxxi, 1912.
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Let us now see what can be done towards an algebraic

study of the pentacycle. We start with four circles (p), (q),

(r), (s). If (p') be in involution with them we have

-PijPif = ^VijPij = ^ rij'Pij = 2sijP>/ = °-

2 (A PiJ + nq{J
+ Wij + pSij) pu

' = 0.

For how many values of kip-.v-.p will the coordinates

(p') satisfy our identities (3)1 If we substitute in three

identities we have three quadratic equations in \: ix:p : p

giving eight solutions. Let us show that only five of these

will satisfy the other identities. We write

x Pij + Mij + vr
ij + P sij = hj

Let us try to satisfy the equations

lai
= n (ll) = n

1
(ii) = o.

One solution will be

^23 = '24
=

^34 = ^'

Otherwise, we have, by (2), three solutions for the equations

iM = n (U) = a
1

(ii) = a,(U),

and for these

O, (11) i24 (11) ^ 0.

There are thus five values of A. : ju : v : p for which J2
4
- (U) = 0,

and our theorem 2] is proved algebraically.* To find the

coordinates of the circle (s') which is cospherical with

(p), (q), (r), let these latter be determined by the pairs of

spheres (x) (y), (x') (y'), (x") (y"). Let («), (v), (w) be three

spheres orthogonal to (s'). Then, by (5),

s
ij =

|

v
l:

l7 vm
i
wk u

'l
'«'«

* The actual equation of the fifth degree, on whose solution the problem

depends, was exhibited by WeitzenbOck at the fifth International Congress of

Mathematicians in Cambridge, 1912, and will be found ibid., p. 2574.
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We may take (u), (v), (w) as orthogonal to (q) (r), (r) (p),

and (p) (q) respectively

&*(&) fll(?r) ^(S*")

%M %(rp) a»M • (
18

)

&k(P9) &l(Pl) am(Pl)

The fifth circle forming a pentacycle with (p), (q), (r), (s) is

orthogonal to the common orthogonal spheres of (p) (p'),

(q) {q'), (r) (r% hence

&kW) ^l(PP') &m (PP')

%to') ShW) «»(??') • (19)

A
fc
(rrO fl,K) <2TO (rr')

hj -

If (a), (j/), (z), (r), (s), (<) be six spheres, no five having

a common orthogonal sphere, the fifteen associated circles

thereby determined will be the intersections of pairs of

spheres such as

I

x z r s t
I
(y) —

I

y z r s t
|

(as) ;
\xyrst \(z) —

\
xyzst \(r).

These expressions may be much simplified. We may find

such multipliers for the homogeneous coordinates (x), (y), (z),

(r), (s), (t) that

^ +
2/i +^ + ^ + s

i
+ ^ = 0, i=0...5.

Otherwise written

(Xx) + (Xy) + {Xz) + (Xr) + (Xs) + (Xt) = 0.

Our circles will be determined by pairs of equations

such as

(Xx) + (Xy) = (Xz) + (Xr) = (Xs) + (Xt) = 0.

These simple formulae lead us to another property of the

system of fifteen associated circles. Let us write the equation

(Xx) 3 + (Xy) 3 + (Xzf + (Xr)3 + (Xs)3 + {Xt) 3 = 0. (20)

This will be a surface containing all fifteen circles, hence

Theorem 7<] Every system of fifteen associated circles wiU
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lie on a surface of the sivth order ivhich, in cartesian space,

has the circle at infinity as a triple curve*

§ 2. Linear Systems.

A system of circles whose coordinates are proportional to

functions of five independent variables, the ratios not being

all functions of four variables, shall be called a hypercomplex.

The simplest hypercomplex is the linear one, determined by

an equation of the form

2a
ijpij

= 0. (21)

Theorem 8.] Nine arbitrary circles will belong to one, and,

in general, only one, Ihiear hypercomplex.

Theorem 9.] The assemblage of all circles in involution

with a given circle is a linear hypercomplex.

Manifestly this will not give the general linear hyper-

complex, in fact the necessary and sufficient condition that

(21) should represent a linear hypercomplex of this sort is

Q;(aa) = 0, i = ... 4.

A linear hypercomplex has two important invariants under

the group of spherical transformations, namely

7=2^/, J=2<VM- (
22

)

i =

The vanishing of these invariants and of various expressions

dependent on them will lead to special types of linear hyper-

complex, some of which we shall investigate. Let us write

(21) at length

2aij{x
i
yj-x

j yi)
= 0.

The sphere (y) being fixed, (x) is orthogonal to (z) where

« = 4

s,= 2«,„2/„- (23)

.1 =

* Stephanos, Quinie codes, cit., p. 634.
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Theorem 14.] All circles of the central sphere of a linear

hypercomplex belong to tlie hypercomplex.

We may find a spherical transformation to carry our central

sphere, when not null, into xi
= 0. The equation of the

linear hypercomplex will then lack all terms with the sub-

script 4 ; equation (23) will give the same values for (z) if we
replace (y) by either null sphere through the circle common
to (y) and the central sphere. It will thus give a relation

between each point-pair anallagmatic in the central sphere,

and a corresponding sphere. This, however, is nothing in the

world but the polarization in the linear complex of circles

of our hypercomplex which are orthogonal to the central

sphere, a process described on pp. 461, 462. We see by con-

tinuity, or non-Euclidean line geometry, that this relation

holds even when the central sphere is null.

Theorem 15.] Tlie circles of a linear complex lying on an

arbitrary spliere are ooihogonal to tlie polar in the linear

complex of the circles of the system which are orthogonal to the

central sphere, of the foci of the circle common to the given

sphere and to the central sphere.

When the equation of the linear hypercomplex is written

in the form (21) we may assume xi
= to be an arbitrary

sphere. Circles orthogonal to this will lack the subscript 4 ,

hence

Theorem 16.] The circles of a linear hypercomplex ortho-

gonal to an arbitrary sphere will generate a linear complex.

Are there any exceptions to theorems 10] and 16] 1 For

an exception to 10] we must have in (23) zn = pyn . If

P ifc °j (yy) = 0, and the sphere is null. But on a null sphere

there are but oo
2 circles orthogonal thereto, so that we have no

exception. In the second case (y) is the central sphere, and

this will constitute the only exception to 10] when there is

a central sphere. When the hypercomplex consists in circles

in involution with a given circle every sphere orthogonal

thereto will be exceptional. As for 16] if all circles ortho-

gonal to any sphere belonged to a linear hypercomplex, we
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might cboose this (when not null) (0, 0, 0, 0, 1) ; in the equation

of the hypercomplex there would be no terms except those

involving the subscript 4 , and the hypercomplex would be

without a central sphere. By continuity this will hold

even when the sphere in question is null. When the hyper-

complex consists in circles in involution with a fixed circle,

every sphere through the fixed circle will be an exception

to 16].

We next look for a canonical form for the equation of

our hypercomplex. The hypercomplex shall be said to be

general if

J(I 2-J)^Q.

Whenever the first factor does not vanish there is a not null

central sphere which we may take as x4 = 0. We have then

ii (aa) — £2j (aa) = i2
2
(aa) = J2

3
(act) = 6, ilt (aa) ^ o.

a
oip01 + a02pu2 + a

03p0i + a23p23 + a
31p3l + anp12

= 0.

This equation is independent of pit .

Theorem 17.] When the central sphere of a linear hyper-

complex is not null, the system consists in the circles meeting

this in the same pairs of points as a linear complex of circles

orthogonal thereto.

Theorem 18.] The assemblage of all circles meeting a not

null sphere in the same pairs of points as do the circles of

a linear complex orthogonal thereto will be a linear hyper-

complex with this as central sphere.*

If we confine ourselves to what we have described as the

general linear hypercomplex, we may, as in Ch. XII, reduce to

the canonical form

«oi2'oi + a23^3 = - (25)

Here 1 1 ] suffers no exception except for two points on the

central sphere, and on a circle of the system.

* Cf. Cosserat, ' he cercle comme Pigment g6n6rateur de l'espace ', Annates

de la FacvXti des Sciences de Toulouse, vol. iii, 1889, p. E. 66.
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The axial circles of the linear complex orthogonal to the

central sphere shall be called the axial circles of the hyper-

complex, their cross its axial cross. Their coordinates are

here
a01
=1

' <*•// = °; a23
,= 1

. <V= °-

We have thus

I (<XP) = Pn
J (*'p) P-x

For a circle of our hypercomplex this becomes

I(ocp) _ JI- VT^7 I- VP^J
I{«'p) V/+ VT^J V'J

(26)

Theorem 19.] The ratio of the cosines of tJie angles which

each circle of a general linear complex makes with the two

circles of the axial cross is constant, and, conversely, the

assemblage of all circles such that the cosines of their angles

with the two circles of a proper cross ha ve a constant finite

ratio different from zero or unity is a linear hypercomplex

with the given cross as axial cross.*

This theorem may be somewhat generalized. Let (q) be any

circle orthogonal to the central sphere, and (q
/
) its polar in the

linear hypercomplex (25); we see, by XII. (17), that if (p)

belong to our hypercomplex,

Theorem 20.] The cosines of the angles of the circles of

a general linear hypercomplex with any two circles orthogonal

to the central s-phere and mutually polar in the linear complex

of circles of the hypercomplex orthogonal to this sphere will

have a constant ratio.

Let us turn aside for an instant to look at special types

of the linear hypercomplex. If

1=0, J^O, I (up) = ±il {at'p).

* Cf. the Author's Circle Cross, cit., p. 165.



492 CIRCLES IN SPACE oh.

If P-J—o the circles of the axial cross coalesce in

a circle which is in bi-involution with itself, i.e. an isotropic.

Eeverting to the general case, we rewrite the canonical

equation

<>mPai + *aPm= - (
25

)

Let us take an arbitrary sphere (y). The spheres through

the circles of the axial cross which are orthogonal to (y) are

(2/i-2/o°°°) (0 2/3 -3/2 0).

The circles of the hypercomplex on the sphere (y) are

orthogonal to its intersection with (z) where

Z = «0l2/l ,
Z
l = ~ aOl2/o> Z

i = a232/3= Z3 = ~ a23#2> Zi = "

This sphere is a linear combination of the two spheres

above, orthogonal to (y). The ratio of the cosines of the

angles of (z) with these last two spheres is found to be

a-°^M+£, hence
%>v2/22 + 2/3

2

Theorem 21. J In a general linear hypercomplex the circles

on an arbitrary sphere are orthogonal to a circle coaxal with

the orthogonal projections of the circles of the axial cross

thereon, while the cosines of its angles therewith have a ratio

which is a constant multiple of the, ratio of the cosines of the

angles which the circles of the axial cross make with the given

sphere.

This construction for the hypercomplex is simplified if we
limit ourselves to those spheres where the ratio of the angles

with the circles of the axial cross is

m
23 _ I— */ll—J . .

aoi Vj
Here the circles of the complex will be orthogonal to a circle

of antisimilitude of the orthogonal projections of the circles of

the axial cross. If I = we have

Theorem 22.] A general linear hypercomplex where 1=0
is composed of the circles on each sphere tangent to the central
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sphere, orthogonal to one circle of ant(similitude of the ortho-

gonal projections of the circles of the axial cross thereon.

Suppose that we have a spherical transformation. There

is necessarily one fixed sphere which will not be usually null.

On this sphere there will he two pairs of fixed points, lying

two by two on four isotropics. If we choose our fixed sphere

as x± = 0, and determine our fixed points by the pairs of

spheres x — x
x
= 0, x

2
= x

3
=' 0, our transformation, if direct,

may be written

x ' = a; cos — Jt\ sin 0,

x\' = x sin + x
1
cos 0,

x
2
= x.

2
cos (p— x

s
sin

<fi,

x./ = x2 sin <f>
+ x

3 cos <f>.

For an infinitesimal transformation we may write

dx = — x\dd,

da\ = x d0,

dx2 = -xz d<j>,

da>
3
= x

2 d<f>.

Let (y) be a sphere orthogonal to (.r) and (x + dx).

{yx) = (ydx) = d0 (x^-x^ +d<j> (x.^-x^) = 0.

Remembering, lastly, that an infinitesimal transformation

must be direct

:

Theorem 23.] If an infinitesimal spherical transformation

leave invariant a )wt nidi sphere and hco distinct isotropics

of each set thereon, then the circles on each sphere in sjxtce

orthogonal to the circle of intersection with the transformed

sphere will generate a linear hypercomplex with the given

fixed sphere as central sphere, while the axial circles meet this

spliere infixed points for the transformation.

The general linear hypercomplex contains certain rational

systems of circles which are worth mentioning. Let us first

define as a series of circles a system whose coordinates are
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proportional to analytic functions of one variable, their ratios

being not all constants. When the coordinates are pro-

portional to analytic functions of two variables, the ratios not

being functions of one variable, the system shall be called

a congruence. When the coordinates are proportional to

analytic functions of three variables, their ratios not being

all functions of two variables, the system is called a complex

;

when they are functions of four variables, their ratios not

being functions of three, a hypercongruence. We thus find :
*

Theorem 24.] The characteristic circles of every rational

series of spheres of order less than six will be contained in

a linear hypercomplex.

Theorem 25.] Given two rational series of spheres of order

less than three; there is a linear hypercomplex containing

the circle of intersection of every sphere of one series with

every sphere of the other.

Theorem 26.] The complex of characteristic circles of every

rational congruence of spheres of order less than three lies in

a linear hypercomplex.

The next type of circle system to engage our attention is

the hypercongruence. We turn especially to the linear

hypercongruence given by

^ aijPij = 2bijPij = 0. (29)

The circles of the hypercongruence are common to all linear

hypercoDgruences of the pencil

K(a) + n(b).

To find the central spheres we write

12; (cc) = X.
2a

{
(aa) + 2 A/tty (ab) + ^il{

(bb). (30)

Suppose first

P&i (aa) = 12. (66).

* Cf. Mesuret, ' Sur les propriety infinit&jimales des syst&mes linSaires de
cercles ', Comptes Rendus, vol. cxxxvi, 1903.
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We have a transformation of the twenty-four-parameter

linear sphere group which will carry this into .r
4
= 0.

Equations (29) will lack all terms in ^>w .

Theorem 27.] If tiro linear hypercomplexes have the same

central sphere, this is also the central sphere of every linear

hypercomplex linearly dependent on them. The hypercon-

gruence common to the two hypercomplexes consists in the

totality of all circles in involution with two circles, usually

distinct, orthogonal to this sphere.

Theorem 28.] If two linear hypercomplexes consist in the

totality of circles in involution with tivo non-cospherical circles

the pencil of linear hypercomplexes determined by them have

all one central sphere, namely, that orthogonal to the two

circles; tvhen the circles are cospherical, the hypercomplexes of

the pencil consist in the systems of circles in involution with

the circles of the coaxal system determined by the given circles.

Theorem 29.] If one linear hypercomplex consist in ci^es

in involution with a fixed ei)-cle, while a second hypeixomplex

has a central sphere, the central spheres of their pencil trace

a coaxal system.

Theorem 30.] If two linear hypercomplexes have different

central spheres, the central spheres of their pencil generate

a conic series.

In this case, and this alone, we shall say that the hyper-

congruence is general.

Theorem31.] The circles of a linear hypercongruence lying

on an arbitrary sphere generate a coaxal system.

The circles of the hypercongruence on a sphere (y) are those

orthogonal to the sphere (c) in (23 1, and to a second such

sphere determined by another hypercomplex of the pencil. It

is conceivable that the two spheres orthogonal to {y) should

coalesce. Here we should have

H = 4 H = 4

*•2 ai>iVn + f 2 b
in >/, = <>• * = . .

.
4.



496 CIRCLES IN SPACE CH.

These, however, are the equations to determine the central

sphere of X (a) +/x (b).

Theorem 32.] The only spheres which contain more than

a coaxal system, of circles of a general linear hypercongruence

are the central spheres of the corresponding pencil of linear

hypercomplexes.^

Theorem 33.] Through an arbitrary point-pair will pass
but one circle of a linear hypercongruence.

Theorem 34] The circles of a linear hypercongruence

orthogonal to an arbitrary sphere generate a linear hyper-

congruence.

We leave to the reader the task of noting exceptions to the

last few theorems. Let us note that it occasionally happens

that a linear hypercongruence splits into two parts. For

instance, suppose that we have

Pa. = P02 = °-

Here, since 12
3 (pp) = I24 (pp) = 0, we must either have

p03
= poi

= or else pi2
= 0. In the first case we have the

circles orthogonal to a fixed sphere, in the second those

cospherical with a fixed circle. We note that in this case

Qi (aa) = 12^ (ab) - i2
€
(bb) = 0, i = ... 4.

Suppose, conversely, that we have

Q.
t
(ab) = 0, i = . . . 4.

From (2) we easily find

rt = 4

2 {^ain + y.bin)
{\H\ {aa) + 2tyO„ (ab) +^&H (bb)) = 0,

* = 0...4.
bk4 n = '1

2 din&n(bb) = 2 bin Q.n (aa).

n = n —

* See an interesting article by Castelnuovo, ' Ricerche nella geometria della

retta nello spazio a quattro dimensioni ', Atti del B. Istituto Veneto, Series 7,

vol. ii, Part I, 1890.
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Then either

&„ (aa) = piln (bb), n = ... 4.

In this case there is but one central sphere for all hyper-

complexes of the pencil, or else

an (aa) = iln (bb) = 0, n = ... 4.

The hypercongruence consists in circles in involution with

the circles of a coaxal system, i.e. either orthogonal to their

sphere or cospherical with the circle whose foci are the points

common to the coaxal circles.

Two linear hypercomplexes have a simultaneous invariant

under the group of spherical transformations which is of

interest, namely, the cosine of the angle of their central

spheres.
n — 4

COS 6 = ,_ ,

AmoDg complexes of circles the simplest is the linear one,

defined by three equations of the type *

2 a
tJ Pij

= 2 b
{j Pij

= 2 c
{j py = 0. (31)

The study of this figure is clearly closely connected with

that of the linear hypercomplexes linearly dependent on three

given hypercomplexes. The complex shall be said to be

general when no two hypercomplexes of the net have the

same central sphere. Remembering that one central sphere

can be taken as x4 = 0,

Theorem 35. J If three linear hypercomplexes have the same

central sphere, that is, the central sphere for every linear hyper-

complex, linearly dependent on them ; if, further, the three be

linearly independent, the corresponding linear complex con-

sists in the totality of circles in involution with those of one

generation of a cyclide.

Theorem 36.] If two linear hypercomplexes have the same

central sphere, and a third have a central sphere different

* Many writers, as Castelnuovo, loc. cit., use the term ' linear complex ' for

that which we have called ' linear hypercomplex *-

1702 I i
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from theirs, the central spheres of the net determined by then:

will generate a conic series.

Theorem 37.] An arbitrary sphere will contain but om
circle of a general linear complex. The only exceptions to this

rule are the central spheres of the linear hypercomplexes of thi

corresponding net.

Theorem 38.] The circles of a linear hypercomplex ortho'

gonal to an arbitrary sphere generate a cyelide.

This theorem will suffer no exceptions in the general case.

Let us look for the equation of the surface enveloped by the

central spheres of the net in the general case. If we write

yt
= \2 I2

f
(aa) + /^fy (bb) + v

2&. (cc) + 2^^ (be)

+ 2v\% (ca) + 2\
l
iQ,

i
(ab), (32)

we must have

(H?-(-i?) -(•&-*

(il(aa)x) (Q,(ab)x) (Sl(ac)x)

(Q,(ba)x) (£l(bb)x) (Q(bc)x)

(£l(ca)x) (a(cb)x) (a(cc)x)

= 0.

Theorem 39.] The central spheres of the linear hyper-

complexes which contain a general linear complex envelop

a surface of the sixth order which, in cartesian space, has the

circle at infinity as a triple curve.

It will be convenient to call this congruence of central

spheres the central congruence. Each sphere of the con-

gruence contains a coaxal system of circles of the complex.
It will pay to investigate this congruence with some care.*

If (y) be a sphere of the central congruence, we must have
five consistent equations.

I 2 HjVj +m 2 hjVj + n 2 fiiVj = 0, i = ... 4. (33)
j = j = j =

* Cosserat, loc. cit., slights the linear complex surprisingly. The following
discussion is based upon Castelnuovo, loc. cit., pp. 867 ff.
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The following matrix must therefore have a rank not

exceeding two :

j = i

; = o

/ = *

;=0

j = i

j =
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Let this circle be determined by (x) and (z), while (y) is

a sphere of the central congruence through it.

Vi = ^i + ^i' aji = ~ aij>
&c-

j = 3 , j = 3 .7
= 3 j = 3

*o2 %>a
|/
+ «l2 «l/®j+»a2«2

i/
a

j

/+*3 2«3/*j = °-

,7
= .7=0 .7=0 j =

J =8 .7 = 3 j = 3 j = 3

Z 2 &0j *,/ + Z
l2 &

lj ^ + Z
22 6

2j ^ + Z32 ^ «,•=<>•

.7=0 j = .7=0 .7 =

j = 3 .7 = 3 .7 = 3 j=3

Z 2 C
0j
X
j + Z

l2 Clj «/ + *22 C
2j «J + Z3 2 C

3./ «/ = °-

.7=0 j=0 .7=0 j=0

But

j=3 J =3 j = 3 j=3

Z 2 «
j
Zj + Z

l2 ^lj Zj + ^22 a
2j *j + Z32 «3j _?

= °> &C "

.7 = j = j=0 j =

Hence

2
i, j = i, .7 =
2 ay »» ^ + M «,) = 2 % z

i
(A ay + M sj)

«', i = 3

= 2 <ty*4 (
x «j+i**./) = -

j, j = o

Substituting for (y) in (33), we get four equations:

J = 3 j = 3

I 2 «y (X*,- + M«/) + W» 2 &y (*«,- + M«j)
j=0 j=0

} =

+ w2 %• (^a'j- + M«,/) = °i i = ... 3.

; = o

Every solution of three of these is a solution of the fourth

by the equations immediately preceding. Hence we may
eliminate l:m:n from three, getting a cubic in A./^, or

three central spheres go through our circle.
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Theorem 40.] The general linear complex is generated by

circles which lie on sets of three spheres of a rational quartic

congruence. The congruence will be the central congruence

of the complex.

Certain special forms of the linear complex are worth

particular notice. Consider the five equations

\2
ili (aa) + ij.

2
i2; (bb) + v 2I^ (it) + 2 jxv n,

t
{be) + 2 v\ i2

;
(ca)

+ 2\
l
Ma

i
(bb) = 0.

If these equations have a common solution, then all circles

of the complex are in involution with a fixed circle. The

congruence of spheres orthogonal to this will be a part of

the central congruence. A second linear congruence of spheres

will split off when the equations have two common solutions.

If they have three common solutions the congruence is

defined by the circles in involution with three fixed circles.

If no two of these are cospherical, and the three are not

orthogonal to any common sphere, the central congruence

will include all spheres orthogonal to any one of these three

circles or to the circle cospherical with all three. We see,

in fact, that in four dimensions we wish to find those points

through which pass a pencil of lines intersecting each of three

planes in general position. The locus will be the three planes

and the plane lying with each in a hyperplane.

It is conceivable that four linear hypercomplexes of our net

might consist in circles in involution with fixed circles. If

three of the fixed circles were (a), (b), (c), the matrix

S2 (be) ^ (be) il
2
(be) i23 (be) 12

4
(6c)

i2 (ca) ilj (ca) i22 (ea) ii
3
(ca) X2

4 (ca)

Q. (ab) Q
x
(ab) J2

2
(ab) Q,

3
(ab) I2

4
(ab)

would have a rank of two or less. If no row vanish identi-

cally, and no two were proportional, the spheres orthogonal

to the pairs of our three circles would be coaxal, and there

would be a circle in bi-involution with all three. Conversely,

when there is such a circle this matrix will have a rank of

two or less. But if three circles be in bi-involution with
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a fourth, every circle cospherical with the latter is in involu-

tion with the three former, and we have a hypercongruence,

not a complex of circles.

If two rows of the matrix be proportional, but no two

identically zero, the three circles are orthogonal to one sphere.

If we take this as x± = 0, the five equations above reduce to

XfxQ.i {db) + y-v^ipc) + vAi24 (ca) = 0.

The circles of our complex are in involution with all those

of a series. If all the elements of one row vanish, the

circles of our complex will be in involution with the circles

of a coaxal system and with one other circle. If all the

members of two rows vanish, the circles of the complex are

in involution with those of two coaxal systems with a common

circle. If the matrix have rank zero, we have no complex,

but a hypercongruence.

We next turn to the linear congruence, characterized by the

equation

2
<ty Pij

= 2 b^ Pij = 2 Cij Pij = 2 dy pq = 0. (34)

If we write the conditions that a linear hypercomplex

linearly dependent on these four should consist in circles in

involution with a given circle, we find exactly the same

equations which we encountered in our first analytic treat-

ment of the pentacycle. Defining as general the linear con-

gruence where these have five distinct roots, we see

Theorem 41.J The general linear congruence consists in the

circles in involution with those of a pentacycle.*

Theorem 42.] Two circles of a linear congruence are ortho-

gonal to an arbitrary sphere.

It appears from this that two circles of the congruence will

pass through an arbitrary point. Assuming a theorem to be

proved in the last chapter, namely, that the circles of a con-

gruence are, in general, tangent to four surfaces, we see that

the circles through a point fall together when it is a focal

* Cf. Koenigs, Contributions a la theorie, cit., p. F. 11.
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point, i.e. a point of one of these focal surfaces. We find

these surfaces by seeking the spheres such that the circles of

the congruence orthogonal to them coalesce. The equation

of this complex of spheres is

(Q,(aa)x) (Q,(ab)x) (Sl(ac)x) (£l(ad)x)

(il(ba)x) (Q(bb)x) (Q(bc)x) (Q.(bd)x)

(Q.(ca)x) (£l(cb)x) (Q.(cc)x) (Q.(cd)x)

(Q(da)x) (il(db)x) (il(dc)x) (Q(dd)x)

0. (35)

= 0.

We see, in fact, that this is a covariant form, and when we
make a linear transformation of the twenty-four parameter

group to carry this sphere (x) to xi
= 0, this equation

becomes, in the notation of the last chapter,

(a/a) (a/b) (a/c) (a/d)

(b/a) (b/b) (b/c) (6/(2)

(c/a) (c/b) (c/c) (c/d)

(d/a) (d/b) (d/c) (d/d)

This is the necessary and sufficient condition that four

linear complexes of circles orthogonal to a sphere should have

but one common circle.*

Theorem 43.] The focal surface of the general linear con-

gruence is of the eighth order and, in cartesian space, has the

circle at infinity as a quadruple curve.

This theorem will admit of special cases when the circles

of the pentacyele have special positions. Let us pass over to

the consideration of the surface of foci of the circles of the

congruence. It will simplify our reckoning if we assume that

(a), (b), (c), (d) are circles of the pentacyele. The complex

of central spheres will be parametrically expressed by the

equations

y{
= A/nil; (ab) + Kv^ (ac) + \pil

t
(ad) + nr£l

{
(be)

+ HP&i
(bd) + vpQ,

i
(cd). (36)

* Cf. Jessop, Line Complex, cit., p. 72.
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It is to be noted also that the central spheres are the only

ones on which lie circles of the linear congruence. The foci

are thus the vertices of the null spheres of this complex. The

spheres of this eomplex are in one to one correspondence

with the points of a three-dimensional projective space. The

points (10 0), (0 10 0), (0 1 0), (0 1) and one other are

exceptional. They correspond to linear hypercomplexes with

no central sphere, or rather each has a linear congruence of

central spheres orthogonal to a circle of the pentacycle. The

vertices of the null spheres of such a congruence are the

points of the circle of the pentacycle. The five circles of the

pentacycle are thus imbedded in the surface of foci.

Again, if we write the equations

(qy) = (ry) = (sy) = 0,

we have three quadrics in our three-dimensional space with

eight intersections. Five of these must be rejected as they

correspond to circles of the pentacycle ; there will remain but

three, so that the complex of central spheres is of the third

order, and has an algebraic equation

f(x) = 0.

The surface of foci is thus a surface of the sixth order.

Suppose, now, that (a') is the circle cospherical with (b), (c),

and (d). The spheres through (a) cut (a') in pairs of points

which are foci of circles in involution with (a), (b), (c), (d), so

that (a') lies on the surface we seek. We thus find another

excellent theorem due to Stephanos :
*

Theorem 44.] Fifteen associated circles lie on a surface of

the sixth order tvhich is the surface of foci of the six linear

congruences of circles in involution with those of the six

pentacycles of the associated system.

This is, of course, the surface of the sixth order previously

found.

In the three-dimensional projective space five points corre-

spond to linear congruences of spheres orthogonal to the

* Quime circles, oit., p. 634.
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circles of the pentacycle. Let us call these the notable

points. For a point in a plane through three notable points

we have such equations as

P = °. Vi = Va
i
(ab) + \v i\ (ac) + fxv^ (be).

If these notable points correspond to the circles (a), (b), (c),

since (a") is cospherical with them, it is orthogonal to the

common orthogonal spheres which they determine two by two
(cf. XII, theorem 2), so that

2 <*<i/2/ii
= 0, i=0...4.

Hence these planes will correspond to the congruences of

circles orthogonal to the other ten circles of the associated

system.

Again, consider a line joining two notable points, say

v = p = 0. All points of this line will correspond to a single

central sphere, z
i
= Q.^ab). It will be a double sphere in our

variety. We see, in fact, that the intersections of the variety

with a coaxal sphere system including such a sphere will

correspond to the intersections of three quadrics through a line

of this type. Three such quadrics have but four other common
points, whereof three, in the present case, are notable. Every

line of this sort contains two notable points, lies in three

planes through three notable points, and intersects one plane

through three such points, hence

Theorem 45.] The pairs of foci of fifteen associated circles

lie by sixes on ten spheres, four of which pass through each

pair of foci. These are the double spheres of the ten cubic

complexes of central spheres corresponding to the six penta-

cycles of the associated system.

Each double sphere is orthogonal to two circles of our

pentacycle ; there is thereon a coaxal system of circles in

involution with these two and with two other circles of the

pentacycle.



506 CIRCLES IN SPACE ch.

Theorem 46.] Each of the ten double spheres of the complex

of central spheres contains a coaxal system of circles of the

linear congruence.*

There is almost a transfinite number of special varieties

of the linear congruence. The essential facts connected with

some are obtained by remembering that such a congruence

corresponds to the lines in Si , which intersect four planes.

We leave to the reader the proofs of the following theorems

which are easily reached in this way.

Theorem 47.] The circles in involution with four circles

whereof two, and only two, are cospherical, while no three are

orthogonal to one sphere, form a reducible congruence composed

of a linear congruence of circles orthogonal to the sphere of

the two circles, and a congruence of circles cospherical with

a fixed circle. The complex of central spheres reduces to that

of spheres orthogonal to the sphere of the two circles, and
a quadratic complex.

Theorem 48.] The congruence of circles in involution with

four circles whereof three are orthogonal to one sphere, while

no two are cospherical, consists in a linear congruence of

circles on the given sphere.

Theorem 49.] The circles in involution with four circles

which are cospherical in two pairs, but no three orthogonal to

one sphere, will consist in a linear congruence orthogonal

to each of the given spheres, and the congruence of circles

cospherical with the two circles on each of which lie the foci of

two of the given circles.

The last linear family of circles which we shall consider is

the linear series. This is characterized by such equations as

2 %-Pij - 2 hjPij = 2 OijPtj = 2 dijPij = 2 eijPij = °- (
37

)

* This cubic complex of spheres has been quite thoroughly studied. Cf.

e. g. Segre, ' Sulla varieta cubica con dieci punti doppii ', Alti delta R. Acmdemia

delle Scienze di Torino, vol. xxii, 1887.
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A circle (p) of the series is orthogonal to x
4
= if the five

squations

Wp) = Q>/p) = WP) = (d/p) = (e/p) =

lave a common solution which is also a solution of (p/p) = 0.

A necessary and sufficient condition for this is

(a/a) (a/b) (a/c) (a/d) (a/e)

(b/a) (b/b) (b/c) (b/d) (b/e)

(c/a) (c/b) (c/c) (c/d) (c/e)

(d/a) (d/b) (d/c) (d/d) (d/e)

(e/a) (e/b) (e/c) (e/d) (e/e)

This, in turn, may be written in the covariant form

(Q.(aa)x) (Q,(ab)x) (Q(ac)x) (Q(ad)x) (Q.(ae)x)

(Q(ba)x) (Q.{bb)x) (S2(bc)x) (Q(bd)x) (Q.(be)x)

(Q.(ca)x) (il(cb)x) (Q(ec)x) (il(cd)x) (£l(ce)x) = 0. (38)

(H(da)x) (Q(db)x) (Q.(dc)x) (Q.(dd)x) (Q(de)x)

(a(ea)x) (9.(eb)x) (Q.(ec)x) [Q.(ed)x) (il(ee)x)

Theorem 50.] The circles of a linear series generate a sur-

face of the tenth order which, in cartesian space, has the circle

tt infinity as a quintuple curve.

The coordinates of the circles of our series satisfy five linear

equations, and are linearly dependent on those of five of their

mmber. Exactly the same is true of the coordinates of the

lircles in involution with all those of the given series.

Theorem 51.] The circles of a linear series are in involu-

ion with those of a second such series. The relation between

he two is reciprocal. Each series will contain every penta-

"ycle whereof it contains four circles.

Our linear series will correspond to a ruled surface of the

enth order in Si . In the series of planes which correspond

© the foci of the circles of our series ten members will intel-

lect any line. Consider any point on the curve generated

>y these foci. A circle through it is always cospherical with
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the other focus, mate to the given one. There will also be

two circles through this point in involution with four given

circles, as we see from 42].

Theorem 52.] The foci of the circles of a linear series trace

a curve of the tenth order which is a double curve of the surface

traced by the linear series of circles in involution with the

given ones.*

Suppose that we have six linear equations

laijl}ij = 2b
ij pij = ZcyPij = ZdijPij = Ze^Pij

= 2/^=0.
All solutions of these will be dependent linearly on four

such, whence

Theorem 53.] Six circles of which each four determine

a pentacycle not including either of the other two are in

involution with the circles of a pentacycle and with no

others.-f

§ 3. Other Simple Systems.

Enough has now been said about linear systems of circles in

space. We turn to certain other algebraic systems of almost

equal simplicity. The first of these shall be the complex of

circles lying on the spheres of a general quadratic complex.:]:

We shall mean by the order of a complex of circles the number

of circles on an arbitrary sphere, the linear complex being

thus of order one.§

Theorem 54.] The complex of circles lying on pencils of

spheres of a general quadratic complex is of order zero. On

* Cosserat, loc. cit., p. E. 76.

f Richmond, loo. cit., and WeitzenbBek, loc. cit., reach the five-line figure

which corresponds to the pentacycle originally in this way.

X Cf. Fano, ' Sul sistema di rette di una quadrica dello spazio a quattro

dimensioni ', Giornale di Matematica, Series 2, vol. xii, 1905.

§ For a study of complexes of orders one and two see various articles by

Marietta, Rendiconti del Cercolo Matematico di Palermo, xxviii, 1909, xxxiv, 1912,

xxxviii, 1914 ; Atti dell' Accademia di Catania, Series 5, vol. iii, 1910, and vol. vi,

1913 ; also Giornale di Matematica, Series 2, vol. xix, 1912.
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each sphere of the complex will lie a conic series of circles

of the circle complex.

Other properties of this circle complex are reached by
representing it as the totality of lines on an S

3
2 in St . If two

lines of such a hypersurface intersect they belong to a cone

imbedded in the hypersurface ; if they do not intersect their

hyperplane cuts the hypersurface in a quadric whereof one

system of generators includes the two lines.

Theorem 55.] Two circles of the complex ivhich are

cospherical determine a conic series of the complex which

includes them ; tivo which are not cospherical determine like-

wise one generation of a cyclide.

We shall mean by the order of a congruence of circles the

number orthogonal to an arbitrary sphere, that is, the order

of the complex of spheres through them ; the class shall be the

number cospherical with an arbitrary circle. Our general

linear congruence of circles is thus of the second order and

third class. A hyperplane in St tangent to Ss
2 meets it in

a cone whereof one generator will meet any chosen line

of (S3
2
. Thus two bines of S

3
2 meet any chosen line thereof

and any arbitrary line. A hyperplane in St meets S3
2 in

a quadric, two of whose generators will intersect an arbitrary

line of S3
2

- Three arbitrary lines of S
3

2
, whereof no two are

cospherical, meet one line in space.

Theorem 56.] The circles lying on ^jeRC-ife of spheres of

a general quadratic complex which are cospherical with one

of their number generate a congruence of the second order

and class. Three circles of the complex, whereof no two are

cospherical, belong to one such congruence and only one.

Two such congruences wiU meet in a conic series, or in one

generation of a cyclide.

An interesting algebraic congruence of circles is reached as

follows. Suppose that we have three circles, no two of

which are cospherical, nor are all three orthogonal to one

sphere. The spheres orthogonal to them will form three

linear congruences. Let a projective relation be established
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between the members of these three congruences, the common

orthogonal sphere to two of our given circles being in no case

self-corresponding. We propose to study the congruence of

circles, each orthogonal to three corresponding spheres in the

three projective congruences.* In S4 we have the lines of

intersection of corresponding triads in three projective bundles

or nets of hyperplanes. An arbitrary hyperplane will cut

these three bundles in three projective bundles of planes.

Corresponding planes in the three bundles will be con-

current in the points of a general cubic surface. Analytically,

if we express these three bundles in se4
= in the form

x( =\y; +M +vTS,

Si = ~\ RYZ'T"
I

= Sf*> (X, n, v), i = ... 3.

If there be a line of the congruence in this hyperplane,

three corresponding planes of the three bundles will pass

through it. This will require

X (pY
i + qY/ + rYi

")+
l
*(pZ

i + qZi
' + rZ

i
")

+ v(pT
i + qT/ + rTi

") = 0, i=0...3.

Taking two sets of three equations from these four and

eliminating p, q, r, we get two homogeneous cubic equations

in X, ix, v with nine common solutions. Three of these must

be rejected, for the equations in X, fi, v arose from equating to

zero the discriminants of two sets of three linear equations,

two equations being the same in both sets. It is easy to see

that there will be three values of X, \i, v, which will make these

two equations identical, yet will not correspond to solutions of

all four equations. Six lines of the congruence lie in an

arbitrary hyperplane.

Theorem 57.] If a projective relation be established between

the members of three linear congruences of spheres with no

* Cf. Castelnuovo, ' Una congruenza di terzo ordine ', Aid del R. Istituto

Veneto, Series 6, vol. v, 1887.
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zommon member, where no two of the congruences have more

than one common member, and that one not self-corresponding,

then the circles orthogonal to corresponding triads of spheres

will generate a congruence of the third order and sixth class.

We shall call this the general congruence of the third order

and sixth class. We may express such a congruence analy-

tically in the form

x
i
= k Vi + V zi

+vt
{ ,

«*' = *»/ +/**/+**/,

x
i
"=\y

i
" + vzi

" + vt
i
",

PPij= \xk x{xm"\, i = 0...4.

The congruence is rational. If we connect X, ju,, v by

a. homogeneous linear relation, we get a rational cubic series

of circles.

Theorem 58.] If a projective relation be established among
the members of three coaxal systems of spheres, no two having

a common sphere, nor are all three orthogonal to one same

sphere, the circles orthogonal to corresponding triads of spheres

will generate a rational cubic series. Three circles of such

a series will be in involution voith an arbitrary circle.

A sphere (x) will be orthogonal to our circle (p) if

* — 4 n = 4

w 2} l7i
xn— 2* Pjnxn

= 0.

H = 1! =

If the coordinates (p) be homogeneous binary cubic forms,

the resultant of these equations will be of the sixth degree

in (x).

Theorem 59.] A rational cubic series of circles will

generate a surface of the twelfth order which, in cartesian

ipace, has the circle at infinity as a sextuple curve.

Let the reader prove the following

:

Theorem 60.] The spheres orthogonal to pairs of adjacent
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circles of a rational cubic series will generate a rational

quartic series of spheres. The circles of curvature of the

corresponding annular surface are in bi-involution with

the cm-responding circles of the cubic series, and will generate

a rational sextic series.

The rational cubic series of circles will appear in $4
as

a rational ruled surface of the third order, not lying in

a hyperplane. If a hyperplane pass through a line which

meets three generators of such a surface in three distinct

points, this line will be a part of the cubic curve which the

hyperplane cuts from the surface. If, further, the hyperplane

include two of the generators meeting this line, the cubic

curve must consist in these two generators and the line, hence

all the generators meet this line. If three such skew gene-

rators could not be found the surface would be a cone. This

possibility is ruled out, as otherwise the congruence would be

composed of oo 2 cones, an absurdity.

Theorem 61.] The circles of a rational cubic series are all

cospherical with one fixed circle.

Reverting to our congruence, we see that two sets of

parameter values for A, p, v, which are essentially distinct,

will be connected by just one linear relation ; hence

Theorem 62.] Any two circles of the general congruence

of the third order and sixth class will belong to just one

rational cubic series of the congruence.

The circles which determine our projective linear con-

gruences of spheres do not belong to our given congruence.

They have the coordinates

Plij = I Vh^m \, PVi/ = I !fc'*iV |, P"<lij" =
I ife'V**" I- (

40
)

We next write

yi = iyi + ,my
i
' + ny

i
",

Zj = Izt + nxz( + nz{',

t, - It.- + mt/ + nt/\
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If we replace (y) (:) (t) by (y) (;) (i) in (39) and (40) the

coordinates of (p) are unaltered in value, as are those of (q)
and (q"), while (q) becomes any circle of a general congruence

of the third order and sixth class which includes (q) (q') (q").

Any three circles of this congruence may be taken to replace

(q) (q
/

)
(q")- Our new congruence is determined by a projec-

tive relation among the linear congruences of spheres respec-

tively including to (y) (/) (if), (-) (c') (-"), and to (t) (f) (*")•

The two congruences of circles bear a reciprocal relation to one

another (analogous to that of the two systems of generators of

a uuadric) ; each shall be said to be conjugate to the other.

Theorem 63.] There is associated with each general circle

congruence of the third oixler and sixth class a conjugate

congruence of like structure. Each congruence is composed

of circles orthogonal to the corresponding members of three

projective linear congruences of spJieres each orthogonal to an
arbitrary circle of the other congruence, the three not being

members of one same rational cubic series.

The last restriction amounts in the above case to the

inequality 1^0. We see that otherwise (q) would belong to

a rational cubic series with (q') and (q") and p{j
= 0. It is

thus a characteristic feature of three circles belonging to

a rational cubic series that spheres orthogonal to them and

to the same circle of the conjugate congruence are coaxal,

the common circle which we shall presently find to be that

appearing in 61]. Let us call this the directrix circle.*

Let us take a cubic series of our congruence, and two circles

of the conjugate congruence which are cospherical with the

directrix circle. In Si we have a rational cubic series of

lines, which meet a directrix line d. and two other lines / and

V, which also meet d. The lines of the first series will deter-

mine projective pencils of hyperplanes through I and V.

Corresponding hyperplanes of these pencils intersect in planes

through d (which lies in every hvperplane of each pencil)

* Castelnuovo, Una congrueiKa, cit., calls the circles of the conjugate con-

gruence directrix circles, while these are axial circles,

nos K k
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and the various lines of the series. If, now, I" be any line

of the cubic series of the second congruence which includes

I and V, it will intersect every plane which includes d and

a line of the first series, for the lines of the second series will

determine with any line of the first a pencil of hyperplanes

through the plane of the first line and d.

Theorem 64.] Two conjugate general congruences of the

third order and sixth class have the same congruence of

directrix circles.

Each circle of our congruence belongs to co 1 cubic series

and is cospherical with so many directrix circles. Each two

belong to one such series and are cospherical with one same

directrix circle. We shall prove presently that each two

circles of the congruence are cospherical with but one directrix

circle. Since a cubic series arises from a linear equation

in the homogeneous variables A, ju, v, each two of these series

have a common circle, or each two directrix circles are

cospherical with (at least) one common circle of the given

congruence.

We see that in Si the cubic hypersurface corresponding to

the complex of spheres through our surface will meet a hyper-

plane in a cubic surface which will usually be non-singular.

This surface contains twenty-seven straight lines. Six of

these are lines of the congruence in the hyperplane. We next

notice that as each directrix lines meets a line of either con-

gruence at each of its points, and through each point of a line

of the congruence will pass one directrix line, the directrix

lines generate the same hypersurface as the lines of either

congruence. Hence of the twenty-seven straight lines six

belong to either congruence, and constitute together a double

six of Schlafli.* No two lines of the same double six intersect,

but each line of one intersects four of the other. The remain-

ing fifteen lines of the twenty-seven intersect the lines of each

double six in pairs, and are the lines of the congruence of

directrices which are determined by these pairs. This proves

* 'The twenty-seven lines upon a surface of the third order', Quarterly

Journal of Math., vol. ii, 1858.
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our statement that two circles of our congruence are co-

spherical with but one same directrix circle.

Theorem 65.] The congruence of directrix circles is of the

third order and fifteenth class.

There is one more type of algebraic congruence which is

capable of complete and simple discussion. We ask this

question, 'What are the possible types of irreducible algebraic

congruence of the first class?' We must lay stress on the

fact that the congruence is supposed to be irreducible, as

otherwise we might adjoin to any such congruence any

number of congruences of cospherical circles. In S± the

analogous question is this :
' What types of line congruence

are there such that there are a series of lines in every hyper-

plane which contains two lines of the congruence?'* Such

a congruence will be dual to a congruence of planes whereof

but one member goes through an arbitrary point. These will

meet an arbitrary hyperplane in a congruence of lines of

which but one passes through an arbitrary point. This

congruence can have no focal surface but a focal curve, or else

consist in concurrent lines. There are but four types of such

congruence : f

A) Concurrent lines.

B) Lines meeting two skew lines.

C) Secants to a cubic space curve.

D) Lines intersecting a given line and a space curve of

order n which meets the given line n— 1 times.

Working back to the congruence of planes we see that in

the first case each two must be coaxal, i. e. all the planes go

through one line. In each other case each plane is coaxal

* Circle congruences of the first class have been studied by Pieri, ' Sopra

alcune congruenze di coniehe *, Atti della B. Accademia delle Scienze di Torino,

vol. xxviii, 1893. His work contains the vicious assumption that if but one

circle goes through an arbitrary point it must be a congruence of the first

class, without showing that the complex of null spheres might not be the

complex of spheres such that the circles orthogonal to them fall together.

+ Cf. Kummer, ' Uber algebraische Stralilensysteme ', Berliner Akademie,

Abhandlunqen, 1866, pp. 8 ff.

K k 2
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with oo 1 others. There are thus cc
1 of these axes, and each is

coplanar with one other in each plane of the system. Hence

all the axes and all the planes pass through a point, or, in

the original case, all the lines of the congruence are in a

hyperplane.

Theorem 66.] There are but four types of irreducible

algebraic congruence of the first class

:

A) Circles through two points. Order zero.

B) Circles cospherical with two distinct or adjacent non-

cospherical circles. Order one.

C) Circles each containing two members of a rational cubic

series of point-paws anallagmatic in a given sphere. Order

three.

B) Circles which contain point-pairs of a series of order n
anallagmatic in a fixed sphere and point-pairs of a fixed

circle containing n—\ point-pairs in the series. Order n.

Let us close our discussion of algebraic circle systems by

exhibiting a transformation that is rather different from any

that we have yet seen.* We saw frequently in the last chapter

that if a circle be given orthogonal to a not null sphere, there

is just one other circle orthogonal to that same sphere which

is in bi-involution with it. This leads us to a new circle

transformation as follows. We start with a fundamental not

null circle (q) and transform each circle (p) into the circle (p'),

which is in bi-involution with it and orthogonal to the

common orthogonal sphere to (p) and (q). If (p) be deter-

mined by the spheres (x) and (y),

PPv

= Pirn% (M) +Pmh% (M) +Pkl &m (Pi)- (41)

Another way of stating this correspondence is to say that

(p') is the circle which passes through the foci of (p) and is

* See the Author's Circle Cross, oit,, pp. 172 if.

xk



cm ALGEBRAIC SYSTEMS 517

nthogonal to the sphere connecting these foci with those

jf (q). The transformation is involutory, and the only

singular circles are those which are cospherical with (q).

The most striking fact about the transformation is that it

ioes not carry spheres to spheres, i.e. cospherical circles are

not carried over into cospherical circles. Suppose, in fact,

that we have the circle (p) determined by the spheres (a;)

and (y), and the circle (p) determined by (x) and (y). We
find

nm (p'p) =
\

o &i(pq) &j(pq) ak(M) aiU"l) &m (ps)
!

I

am (pq) &i(pq) ^j(P'-j) %(w) ®i(M) o

Assuming that (p) and (p) are cospherical so that

^i(pp) = 0, i = 0...4,

1 = 4

[PjkPmi +PkiPmj + PijPmk]
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a contact transformation. Suppose that (p) traces a coaxal

system including one cospherical with (q), we have

Pi/^Xcitj-ixbij, i,j=0...4.

When no member of the coaxal system is cospherical

with (q)

Pi/ = tfatj + 2 XfLby + M
2
Cy- , *, ; = . . . 4.

All of these circles are orthogonal to the sphere traced by
the coaxal circles. We need to impose three linear conditions

upon a circle orthogonal to this sphere in order to make it

cospherical with all circles* of the system, hence

:

Theorem 68.] A coaxal system of circles including one

member cospherical with the fundamental circle is transformed

into another such coaxal system ; a coaxal system which in-

cludes no member cospherical with the fundamental circles

is transformed into one generation of a cyelide anallagmatic

in the sphere generated by the coaxal system.

It would be pleasant if the coaxal system cospherical and

orthogonal to the given one transformed into the conjugate

generation of the cyclide ; such is not, however, the case. We
find the transforms of the circles of a sphere xi

— (which, we
may assume, bears no special relation to the fundamental

circle) as follows, (p') will have (different from zero) only

those coordinates which lack the subscript 4 , for (p) the only

non-vanishing coordinates are those which do involve the

subscript 4 . We find also in the notation of the last chapter

{p'/q) = 0.

Theorem 69.] The circles of a sphere not containing the

fundamental circle non-orthogonal thereto are transformed

into the circles orthogonal to that same sphere and cospherical

with that circle which is orthogonal to this sphere and meets

in the same points as the fundamental circle.

Consider the circles of the sphere xt
— 0, which are ortho-

gonal to x.
A
— 0. The only coordinates which are not zero

are poi , pu , and pM . The transformed circles are found to

generate a linear congruence.
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Theorem 70.] The circles of a linear congruence on a
sphere which does not contain the fundamental circle, and is

not orthogonal thereto, are transformed into those of a linear

congruence orthogonal to the given sphere.

Suppose that we have a bundle of circles through two
points. Their foci will be any pair of points of the circle

whose foci are the given points.

Theorem 71.] The circles through two points not on the

fundamental circle will transfornn into the circles through

each pair of points on the circle with the given points as foci,

and orthogonal in each case to tlie sphere through the pair of

points and the foci of tlie fundamental circle.

Theorem 72.] The circles ortlwgonal to a sphere which does

not contain tlie fundamental circle are transformed into the

circles through pairs ofpoints of this sphere orthogonal in each

case to the sphere through the pair of points and the foci of the

fundamental circle.

Suppose that we have a fixed circle (r) and that (p) is

cospherical therewith. The foci of (p) and (r) are concyclic,

and conversely, if a pair of points be concyclic with the foci

of (r) they are the foci of a circle cospherical with (r).

(p) transforms into a circle through the foci thereof and

orthogonal to the sphere which connects them with the foci

of (q). If we take any sphere through the foci of (q), the

pairs of points thereon concyclic with the foci of (r) are

mutually inverse in the sphere through (r) orthogonal to

the given sphere.

Theorem 73.] The circles cospherical with a circle which is

not cospherical with the fundamental circle transform into

circles orthogonal to the spheres orthogonal to the fundamental

circle at pairs of points which arc mutually inverse inthesphere

through the given circle orthogonal to the sphere in question.

When (r) and (q) are cospherical, every circle through the

foci of (»•) lies on a sphere through the foci of (g).



520 CIRCLES IN SPACE, ALGEBRAIC SYSTEMS

Theorem 74.] The circles cospherical ivith a circle which is

cospherical with the fundamental circle transform into circles

in involution with the given circle, and with the circle which

contains the foci of the given and the fundamental circle.

It is superfluous to state that few parts of our subject offer

better opportunities for further study than what we have

taken up in the present chapter. There is much that has

already been done in the line geometry of four dimensions

which gives simple and interesting results in circle geometry,

but which we have been forced to omit for lack of space.

It seems certain that there is still a good deal left in the linear

systems beside what we have taken up. The quadratic

hypercomplex is an entirely undeveloped field ; no researches

whatever seem to have been made there so far, and unless

it belies entirely the reputation of the analogous quadratic

line complex, there must be a large amount of treasure to

be unearthed Then a study of further congruences and com-

plexes of low order and class would seem advisable. Lastly,

the involutory transformation just described is after all of

very special type. Is there not an interesting general theory

of circle transformations which are not sphere transformations ?

Truly, the harvest is ripe for the reaper.



CHAPTER XIY

ORIENTED CIRCLES IX SPACE

§ 1. Fundamental Relations.

We saw in Chapters X and XI what important changes

were introduced into the geometry of circles in the plane and

of spheres in space by orienting the figures, that is to say. by

attaching a positive or negative sign to the radius. It is the

purpose of the present chapter to study the oriented circle in

space.* It will appear that the alterations introduced in this

case are much less profound than before. The reason for

this is that whereas formerly the non-oriented circle in the

plane was treated as a point locus and the oriented one as an

envelope, and the two had markedly distinct transformation

groups, in the present case it seems impossible to treat the

oriented circle in space fruitfully as other than a point locus

and under the group of spherical transformations.

We start with two points (.r) and (.r) of pentaspherical

space. The circle with these as foci has the coordinates

This circle will be null if

We nest suppose that the circle has been oriented. This

may be done for a real circle by attaching thereto a sense of

description, or giving a sign to the radius, or, better still, by

* About half of the results given in the present chapter were first worked
out by Dr. David Barrow, and presented in his dissertation for the doctorate

of philosophy in Harvard University in 1913. Many were subsequently

published in a short article, ' Oriented Circles in Spa?e ', Transactuins American

llatK Sx., vol. xvi. 1915.
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establishing an order between the two foci, calling one the

first and the other the second, this latter method holding

even in the complex domain. We shall therefore define as

an oriented circle in pentaspherical space a circle between

whose foci there has been established a preference. When
the rdles of the two foci have been interchanged, the resulting

oriented circle is said to be the opposite of the original one.

A null circle is its own opposite. An oriented circle shall

have twenty-one homogeneous coordinates ptj p, defined as

follows : {Pij) shall be the coordinates of the circle not oriented.

The first and second foci being (x) and (x),

PPij = XiXj-XjXi, Pp = (xx). (1)

These twenty-six coordinates are connected by the sixteen

relations
t'= i

Pji = ~Pij> &i (PP) = 0, i = 0...4, 2 <V (PP) +P* = °- (
2
)

s =

Suppose, conversely, that we have twenty-six homogeneous

coordinates, not all zero, which satisfy the equations (2). The
circle, not oriented, is uniquely determined. The foci are

found as follows. If (x) be the first focus, (z), (s), and (t)

three points on the circles, we have

(xx) = (xz) = (xs) = (xt) = 0.

pXi = |
Zi sk t

t
xm |

= 2 Pi:

= 0.

We have five homogeneous linear equations in (x) which

are compatible if

~P Pol Po2 P03 Poi

Pio -P P12 Pn Pu
P20 Pl\ ~P P23 Pu
PiO PSI PZ2 ~P Pu
PiO Pil Pi2 Pi3 ~P

Remembering our equation (2),

P= ±p.
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If we substitute either of these values and find (x) from

four of the five equations, we have an unsymmetrical result.

A better plan consists in taking an arbitrary sphere (y),

multiplying the solution obtained by omitting the equation

corresponding to subscript k by yk , and summing.

Hi Pi) Pik Pa Pim :

<rX;

yj -p Pjk pji pj,„

Vk Pkj ~P Phi Pkm

Hi Plj Plk ~P Phn.

Vm Pmj Pmk Pml ~P

P = P

If we reintroduce a symbol already used in the last chapter,

.1=4

P;j = 2 PiuPjiv

we find for the first and second foci respectively

^i = ^{pPij-Pij)yj-
j=0

) = i

(3)

P-*i= ^{PPij + PipVj-

These formulae enable us to write at once the formula for

paratactic circles, XIII. (15)

n — 4 )l = 4 n = 4 it — 4

pHPinPin+/'2,Pi,i

r

PiH=Pp' ^PinPin'+ 2^i»-?V=°-
.1=0 .1 = .1=0 H =

(4)

» = 4 a = 4 a = 4 a — 4

P^PinPin'-p' ^Pin'Pln^PP^PinPin- 2 -P,-h-P«i»'= 0,

i = ... 4.

When the first equation prevails, the circles shall be said

to be properly paratactic ; in the other case, improperly so.

Proper parataxy occurs when the first foci are on an isotropic,
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and the second foci on another skew to the first. In the case

of improper parataxy each first focus is on an isotropic with

the second focus of the other circle. We find for the angle of

two circles from XII. (12)

. 6 2pijqij +pq
sin- = ~r- •

2 2pq

Note that the angle of properly tangent circles is zero.

Suppose now that we have a linear transformation of our

homogeneous coordinates which leaves invariant our identities

(2). Let us show that it must be a spherical transformation or

such a transformation followed by reversal of orientation.

We first ask, ' When will a linear combination of the coordi-

nates of two oriented circles give the coordinates of another

circle 1 ' Let us write

Substituting in the identities (2) we see that the circles

(q) and (r) must be cospherical and, if their common sphere

be not null, they must be properly tangent. If the common
sphere be null, the last condition is satisfied automatically

for two oriented circles with the same first or second focus.

Now a system of circles whereof each two are properly

tangent could not depend upon more than two parameters

at most, while the circles with a given first or second focus

depend on three parameters. Hence a system of circles with

a given first or second focus will go into another such system

;

hence properly tangent circles on a not null sphere will go

into other such circles.

If two not null circles be cospherical they will be properly

tangent to an infinite number of common circles. Conversely,

when this is the case for two not null circles (in cartesian

space), every point on the line of intersection of their planes

must have the same power with regard to the two. Hence

this line meets them in the same two points, and the circles

are cospherical. Cospherical circles will, then, go into co-

spherical circles, or a sphere goes into a sphere, and since

none but a null sphere contains two sets of co 3 oriented
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circles with a common first or second focus, a null sphere goes

into a null sphere. A null and a not null sphere will have but

one common oriented circle when, and only when, the vertex

of the null sphere is on the not null one. Hence points

of a sphere go into points of a sphere, and we have either

a spherical transformation or such a transformation joined

with a reversal of orientation.

It is worth wbile looking a bit more closely at this question

of lineai- dependence. Let us write

p = ka + ixb + vc + pd + cre, i,j = 0,..4.

We then substitute in the equations

<2 (pp) = xij (pp) = a2 (pP) = spif+p* = o.

There are usually sixteen different solutions for A : p. : v : p : <x.

The equations

ii (pp) = a, (pp) = p3i
= zpif+p* = o

have eight independent solutions, whereof two are solutions of

1*23 = I'li = P34, ~ °-

The remainder are solutions of

Q,
i (pp)=0.

There are thus six solutions for the equations

ii (pP) = a
x (pp) = n, (pp) = p[i4

= 2 -p.fi +P* = o.

The remainder of our sixteen solutions will solve all the

equations (2).

Theorem 1.] The totality of oriented circles of penta-

spherical space may be put into one to one correspondence

with that of tlie points of a six-dimensioned manifold of the

tenth order S6
10 lying in a space often dimensions.

Theorem 2.] A necessary and sufficient condition that the

coordinates of three distinct oriented circles should be linearly

dependent is that they should be properly tangent, or else that

they sJicndd have a common first or second focus.
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Theorem 3.] A necessary and sufficient condition that the

coordinates of four distinct oriented circles should be linearly

dependent is that all should be properly tangent to one

another, or else that all should have a common first {second)

focus, while their second {first) foci lie on one same sphere

through the common focus.

Theorem 4.] The necessary and sufficient condition that

the coordinates of five distinct oriented circles should be

linearly dependent, while no four are dependent, is that they

should have a common first {second) focus, while their second

{first) foci do not lie on a sphere through the common focus.

Theorem 5.] The. S
e
10 contains two systems of co 7 straight

lines, co
2 lines of the first, and two sub-systems each of go

2

lines of the second, pass through each point thereof.

Theorem 6.] The Ss
i0 contains a first system of co 5 planes,

and a second system of oo 6 planes. The only lines of the Se
10

which lie in planes of the first system are lines of the first

system, and the same is thus of lines and planes of the second

system. Each point of the variety lies in cc
1 planes of the

first system, and 2oo3
of the second.

Theorem 7.] The S6
10 contains two systems of cc3 three-way

linear spreads. Two spreads of the same system have no

common point, two of different systems have one common
point. Through each point of the variety will pass one three-

way spread of each system. The only limes and planes of the

variety lying in these spreads belong to the second system of

lines and planes.

§ 2. Linear Systems.

It is natural for us next to take up linear systems of

oriented circles. We shall define hypercomplexes, hypercon-

gruences, complexes, congruences, and series of oriented circles

exactly as was done for non-oriented circles. We begin with

the linear hypercomplex. This is given by an equation of

the type

2a
ij pij + ap = 0. . (5)
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The hypercomplex shall be said to be general if

i = i i = 4

2 &i
2 (aa) # 0, 2 <V (««) * t

2VI 2
-

i=0 j =

Theorem 8.] Ten oriented circles will belong to one and, in

general, only one linear hypercomplex.

Theorem 9.] The totality of oriented circles making a fixed

angle with a given not null oriented circle will belong to

a linear hypercomplex.

If in the equation of a linear hypercomplex such as (5) the

coefficient a be equal to zero, the hypercomplex is said to be

reduced. Each general linear hypercomplex is associated with

a reduced hypercomplex : the two have the same null circles.

Theorem 10.] If a linear hypercomplex contain a single

pair of opposite circles which are distinct from one another, it

contains the opposite of each of its circles and is reduced.

We shall define as the central sphere of a general linear

hypercomplex that of the corresponding reduced hypercomplex

;

the coordinates of this will be

Pz{
= J2; (aa).

Substituting in (5) for (p) its value from (1),

i,3 = i

2 aijXiXj + a(xx) = 0, ajt = -a-.
f,i-o

If (y) be any sphere through the circle, we may put

y. = XXi + v-Xi.

(xy) = ix(xx).

;, j = 4

2 «y a3d// + «>2/) = 0.

-', i = o

If, thus, (y) be fixed, (a;) will trace a sphere. The corre-

sponding oriented circles will trace a linear congruence of the

type discussed in Ch. X.
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Theorem 1 1
.J

The oriented circles of a linear hypercomplex

which lie on a not null sphere in general position trace a

linear congruence.

With regard to the words ' in general position ' we see

that if

'"afiaayai -'2a
i
/a2 + 2 * m)

] ^
i =0 -"

there is no exception. When (y) is the central sphere,

a (xy) = 0.

Theorem 12.] A general linear hypercomplex which is not

reduced will usually share with every not null sphere a linear

congruence. In the case of the central sphere this is the

congruence of null circles.

Let us write

xk x
l
xm

Pij= rk r
l I'm

sk s
l

sm

The equation of our hypercomplex is
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Theorem 13.] The oriented circles of a linear hypereom-

plex through two points generate a Dupin series.

We may find a canonical form for the equation of the

linear hypereomplex exactly as we did in the last chapter,

getting

«oi Poi + a23p2i+ap= 0. (6)

Theorem 14.J The locus of the oriented circles, the sines of

whose half a ngles v.-iih the two oriented circles of a cross are

connected by a linear relation, is a general linear hypereomplex

and., conversely, every general linear hypereomplex. may be

described in this way. The cross is the axial cross of the

corresponding reduced hypereomplex.

Theorem 15. J The sines of the half angles of each circle of

a linear hypereomplex v.-iih any two properly oriented circles

orthogonal to the central sphere, and mutually polar in the

corresponding reduced linear complex of circles orthogonal to

this sphere, are connected by a linear relation.

We pass to the figure next below, the linear hypercon-

sjruence, given by two equations of the type

2 «y Pij + «P = 2 hj Pij + ip=0. (7)

The oriented circles of the hypercongruence are common to

ill hypercomplexes of the pencil

c
ij
= Xa

ij + ^ij, c = \a+fib, ij=0...i.

Theorem 16.] In a pencil of linear hypercomplexes there is

ilways one reduced complex. Jf there be more than one such,

ill hypercomplexes of the pencil are reduced, and the corre-

ponding linear hypercongruence contains the opposite of each

f its circles.

Theorem 17.] If tv:o hypercomplexes of a pencil corre-

pond to different reduced hypercomplexes, yet have the same

intral sphere, this is the central sphere for every hypereomplex

f their pencil, and the corresponding linear hypercongruence

170! L 1
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consists in the totality of oriented circles making fixed angles

with tvoo distinct or adjacent circles orthogonal to this sphere.

When one or both of these fixed circles are null, the circles of

the hypercongruence are invaria.ntly related to them.

Theorem 18.] The oriented circles of a linear hypercon-

gruence lying on a not null sphere, which is not a central

sphere for the corresponding pencil of linear hypercomplexes,

are properly tangent to two distinct or adjacent oriented circles

thereof.

Theorem 19.] Through two arbitrary points there will £>ass

just two oriented circles of a linear hypercongruence.

This theorem will suffer exceptions for special positions

of the points, but we shall not take the time to determine

them. We pass rather to the linear complex given by three

equations of the type

2 aijPij + aP=°,
2bqPij + lp = 0, (8)

2c
ijpij + cp= 0.

The circles of the complex are common to the hyper-

complexes of a net linearly dependent on three of their

number which do not belong to a pencil.

Theorem 20.] If three linear hypercomplexes not belonging

to a pencil, nor corresponding to reduced hypercomplexes of

a pencil, have the same central sphere, that is, the central

sphere for every linear hypercomplex of their net, and the

corresponding linear complex of oriented circles consists in

those making fixed angles with each circle of one generation

of a cyelide anallagmatic in thefixed sphere.

The phrasing of this theorem must be slightly varied when
the fixed sphere is null or when the fixed circles are. The

linear complex shall be said to be general when no two

hypercomplexes of the net have the same central sphere. The

null circles of the linear complex are those of the complex

determined by the corresponding reduced hypercomplexes.

We thus get from XIII. 40]
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Theorem 21.] The null circles of a general linear complex

are those common to sets of three mutually tangent central

spheres.

Consider the circles of our complex which are orthogonal

to x4 = 0, which we may assume is not a central sphere.

They have seven homogeneous coordinates connected by three

linear and two quadratic equations.

If we adjoin one more quadratic equation, to make our

circle intersect a chosen circle, we have eight solutions :

Theorem 22.] The circles of a linear complex orthogonal

to an arbitrary not null sphere generate a surface of the

eighth order which, in cartesian space, has the circle at infinity

as a quadruple curve.

Let us require (x), the first focus of our oriented circle, to lie

on a sphere (z). We get from (3)

p 2 Pij 3iVi - 2 Pq*iVi-
i, j = i, j =

There will be eight solutions common to this and to the

equations above. Of these, four must be rejected as extraneous,

for this equation is equally well satisfied if the first focus lie

on (s) or the second lie on (y).

Theorem 23.] The first foci of the circles of a general linear

complex which are orthogonal to an arbitrary not null sphere

generate a cyclic, the second foci generate a second cyclic.

The linear congruence will be given by four equations of

the type

Sa
ijpij + ap=0 >

Zbypy + bp^O, (9)

2c
ijpij

+cp = 0,

2dijPij + dp = 0.

If we put

e
ij
= X "'j + '

xh
V + VC

U + pd
V '

LIS
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and write the equations

Q.
i
(ee) = 0, i=0...4,

we know from XIII. 41] that there are five solutions corre-

sponding to the circles of a pentacycle. We shall say that

the congruence is general when this pentacycle exists and

none of its circles are null. Each circle of the pentacycle

can be oriented either way, hence

Theorem 24.] The general linear congruence of oriented

circles may be described in thirty-two ways by an oriented

circle making an assigned angle with each oriented circle of

a pentacycle.

Theorem 25.] The linear congruence of oriented circles is

of the fourth class.

Let us find the locus of the first foci of the oriented circles

of our linear congruence. Let us determine our congruence

by two circles of the pentacycle, and three other linear hyper-

complexes. By a linear combination ofthe equations connected

with the two circles we get a reduced hypercomplex whose

equation can be written

\
xxrst

\ + \
xxr' s't'

\

= A + A' = 0.

The other three linear hypercomplexes may be written

2 aijXiXj + ct(xx) = 0,

', 3 =

i,j = a

2 %(^j) + c(xx) = 0, (xx) = 0.
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Looked upon as five linear equations in (x), these will be

consistent if

IA 5A'

OX OX
7>A 3A'

• = ( =

: = 4 i=i

I^i + V^. 2 ?'(4^ + &4 a;
4

: = i=0

(' = 4

^CiO^i + '-o^o .2) t
'i'4

a
'i + tVl'4

.0

= 0.

Expanding in terms of the first row and remembering the

identities

hi = 4 ', j = 4

2 « 0'^^ + a
(
xx

)
= 2 h

ij
x

i
x
j + h (a^)

,.; = o

(, .; = 4

= 2 Ci
j
x

i
x
j
+ c{xx) = 0,

,.7=0

we get the equation of our surface

(xx)

(rx) (dx) (ex) (fx)

(sx) (gx) (hx) (has)

(tx) (Ix) (mx) (nx)

+

(xx)

(r'x) (d'x) (e'x) (fx)

(s'x) (g'x) (h'x) (k'x)

(t'x) (Vx) (m'x) (n'x)

= 0.

Theorem 26.] The first (second) foci of the oriented circles

of a general linear congruence generate a surface of the sixth

order which, in cartesian space, has the circle at infinity as

a triple curve.
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The last linear figure to consider is the linear series given

by five equations of the type

2aijPij + ap=0,

2b
4jPij + bp = 0,

2e
ijpij

+cp=0, (10)

2dijPij + dp=0,

^e
ijpii

+ ep=0.

We know from (1) that there are usually ten equations

derived linearly from those whose coefficients satisfy the

identities (2). When ten such distinct circles can indeed be

found and none are null we shall say that our series is

general. The figure of these ten oriented circles shall be

called a dekacycle.

Theorem 27.] The general linear series of oriented circles

is composed of the totality of such circles as make null angles

with all oriented circles of a dekacycle.

We may, in an infinite number of ways, find an oriented

circle all of whose coordinates but the last are linearly

dependent on a--6
i

c,-cZ
i
-e

i
-. The circles, unoriented, generate

a linear series.

Theorem 28.] The oriented circles of a general linear series

make fixed angles with all not null circles of a series which,

when not oriented, is linear.

Theorem 29.] If a system of oriented circles make fixed

angles with five oriented circles whose coordinates are linearly

independent, they make fixed angles with five other oriented

circles which complete a dekacycle with the first five.

We next write the equations

°ij
= ka

ij + l
xb

ij + vCij+P dij + (re
ij>

(i b c d e
q = K

k
+n +i

'k
+p i

+<T
k'
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We get a new dekacycle. If (q) be an oriented circle thereof

we have

when (p) belongs to our linear series.

Theorem 30.] A dekacycle may be found whose ten oriented

circles make any chosen angle other than an even integral

multiple of it, with every oriented circle of a general linear

series.

The condition that two circles should intersect is quadratic

iu the coordinates of each ; hence

Theorem 31.] The oriented circles of a linear series will

generate a surface of the twentieth order which, in cartesian

space, has the circle at infinity as a tenfold curve.

Theorem 32.] There are ten null circles in a linear series.

The condition that the first focus of an oriented circle

should lie on a preassigned sphere is quadratic in the coordi-

nates of the circle ; it contains, however, extraneous elements

which vanish when the second focus lies on another sphere.

Theorem 33.] The locus of the first (second) foci of the

oriented circles of a linear series is a curve of the tenth order.

§ 3. The Laguerre method for representing

Imaginary Points.

One of the most important applications of the study of

oriented circles in space is to the representation of imaginary

points. The idea goes back to Laguerre.* We represent each

real point of pentaspherical space by itself, i.e. by the totality

of null circles having that point as vertex ; each imaginary

point is represented by the real oriented circle whereof it

is the first focus. Conjugate imaginary points are thus

* ' Sur l'emploi des imaginaires dans la geom^trie de l'espace ', NouveUes

Annates de Math., Series 2, vol. xi, 1872. See also Molenbroch, 'Sur la repre-

sentation geom^trique des points imaginaires dans l'espace', ibid., Series 3,

vol. x, 1891. The correct spelling of this author's name seems to be Molen-

broek.



536 ORIENTED CIRCLES IN SPACE ch.

represented by opposite oriented circles. Analytically, let us

write

px = j(x* + y* + z2+ t
2
), Pxt

= x2 + y
2 + z*-t\

px
%
= 2xt, px

z
= 2yt, pxt = 2zt.

i
2 =-i; (ii)

the conjugate imaginary point, -which we shall call (x), will be

obtained by replacing x, y, z, t by their conjugate imaginary

values, xlt x2 , x3 , and x± will be replaced by their conjugate

imaginary values, while x will be replaced by the conjugate

imaginary multiple of j.

Theorem 34.
J

There is a perfect one to one correspondence

between the totality of all complex points of pentaspherical

space and that of all real oriented circles of the same space,

with the exception that all null circles with the same real

vertex represent that vertex.

The simplest system of points in complex pentaspherical

space which depend on a single real parameter is the chain.

This figure we have already met on p. 202, and defined as the

totality of points on a circle such that the cross ratio of any

four is real ; the definition was there given only for the tetra-

cyclic plane, but may be extended to pentaspherical space,

as we see by noticing that the definition of cross ratio there

given by means of the angles of circles orthogonal to the

given circle may be included in a larger definition based on

the angles of spheres orthogonal to a given circle. If the

circle whereon lies the chain be not null, we easily find a

spherical transformation to carry three points of the chain

into three real points. The chain is thus carried into the real

domain of a not null circle. In any case it is clear that three

points of a chain may be taken entirely at random (when on
a null circle they must be on the same isotropic), and that the

chain is then completely determined.

The importance of the chain appears very clearly in con-

nexion with the Gauss representation of the complex binary

domain. To begin with, we should notice that the Gauss

representation is very closely allied to our present represen-
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tation. For if we take the point x+ iy as the first focus of

a real oriented circle, the intersections of this circle with the

Gauss plane are (x, y) and (,i', — y). If four values of the

complex variable x + iy have a real cross ratio, the points

representing them in the Gauss plane are on a real circle, and

vice versa, so that a chain is represented in the Gauss plane

by a circle. The corresponding circles in our present system

generate a sphere or an anchor ring.

If two points of a chain be (a) and (y), while the sphere

through them is (/3), we see from IV. (8) that every chain on

this circle connecting (a) and (y) may be expressed para-

metrically in the form

pXi = *
2 a

k
'+ <& + *•»

where t is real. For the conjugate imaginary chain

If (x') be a point of the circle whose foci are (x) and (.?)

(xx') = (xx') = 0.

Eliminating t,

(ax') (/3a:') (yx')

(ax') (/3,r')
(y x')

(ax) (/3a/) (yx')

(ax') (/3V) (yx')

= 0. (12)

Theorem 35]. The general chain on a not null circle is

represented by oriented circles generating a surface of the

eighth order.

This surface will be notably simplified in certain cases.

If (a) and (y) be real points we could remove the factors (ax'),

(yx') from (12), leaving a quadratic equation, i.e. a cyclide,

with these points as conical and transformed into itself by

2 x ' inversions, i. e. a Dupin cyclide.

Again, suppose that we have a chain possessing no real

points yet lying on a real circle. If (a) and (y) be two

real points of our circle, we may write our chain in the form

<TX;
/Kt + fj.\

2 At + n\
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A point (x') on the corresponding oriented circle will have

coordinates which satisfy the equations

Eliminating in turn (yx') and (ocx')

On clearing of fractions we find that the coefficients of (txx')

and (yx') are the same.

[A {<xx') +B (/3a/)] i
2 +[AM + B^x'j] t

+ [A
2 (ax')+B2

(/3x')] = 0.

[A (yx') +B '(l3x')] t* + [A, (yx') + B^(flx')-\t

+ [A
2
(yx') + B2

'(px')] = 0.

A (ocx') + B (l3x') A^txx') + B
x
(px') A

2
(<xx') + B2 ($x')

A (ocx') + B (/3x') A^txx^ + B^px') A
2
(ax') + B2 (/3a

A^yx^ + B^fix^A^yx^ +B^x^A^yx^ + B^x')
A (yx') + B '(J3x') A, (yx') + B^(px') A

2 (yx') + B
2
'(/3a

It is easy to see that the second and third columns may be

freed from the terms (ocx'), (yx'), so that the factor (/3x'f may
be struck off. We have left a cyclide which, as before, we see

is a cyclide of Dupin. If the chain lie on a self-conjugate

imaginary circle it may be put into the form

The transformations to be effected in this case are almost

exactly like those in the preceding one, and lead to a like

result.

Theorem 36.] Every chain which is not self-conjugate

imaginary, but contains two real points, or lies on a real or
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self-conjugate imaginary circle, will be represented by oriented

circles generating a Dupin cyelide.

A self-conjugate imaginary chain is still easier. Here we
have

Equation (12) becomes

[(ax')-(5x')f[{(yx')+(5x')r--( lSx')-] = 0.

To decide between the two factors we have but to notice

that all points of the circle (olx) = (5.x') = lie on the surface,

yet for such points the second factor will not usually vanish.

Hence the surface, which is irreducible, is given by the first

factor.

Theorem 37.] The i?oints of a self-conjugate imaginary

chain will be represented by coaxal oriented circles.

The chains which lie on null circles, i.e. in isotropics, are

much simpler. Here we have, in general,

pX
(
= 5..

i
t + yit pX

(
= «it + yh

(yx')(*'x')-(yx')(5x') = 0.

Theorem 38.] The points of a chain in general position on

a nidi circle with an imaginary vertex are represented by

properly paratactic generators of a cyclide; when the vertex of

the circle is real, the points are represented by properly tangent

oriented circles generating a limiting form of a Dvpin

cyclide when two conical points fall together.

Let the reader prove

Theorem 39.] The points of a chain including one real

point and lying on a null circle ivill be represented by properly

tangent oriented circles forming a coaxal system.

It is time to take up systems of points depending analy-

tically upon two real parameters. An analytic curve of

complex space will be an example of such a system, though

a peculiar example, as we shall see presently. Suppose that
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a point traces a non-minimal curve, i.e. such a curve that

there is not a tangent isotropic at every point. At each

non-singular point of the curve where there is no tangent

isotropic, each point in general position, there is a not null

osculating circle. Conversely, suppose that we have a system

of points in complex space (which we may assume to be

cartesian, and in the- finite domain) depending on two real

parameters, and that the circle connecting a point in general

position with two infinitely near points of the variety

approaches one definite limiting position as the two points

approach the original one in any way in the variety. At
each general point in the variety there will be a definite

tangent, and there will likewise be a tangent at each point

in the projection of the variety on an arbitrary plane. The

projection is thus a curve; hence the variety is the total or

partial intersection of two cones, and so a curve. Suppose,

then, that we take a point P of the variety in general position

while P' and P" are adjacent points of the variety. The con-

jugate imaginary points shall be P, P', and P". The circle

through P, P', P" shall have F
1
and F

2
as first and second foci

respectively, that through P, P', P" will have the conjugate

imaginary points as foci. The three real oriented circles

whose first foci are P, P'', P" will be properly paratactic or

tangent to the two real circles whose first foci are F
x
and F

2 .

These latter two are the only two real circles properly para-

tactic to the three real oriented circles with the first foci

P, P', P", and, if the two circles tend to approach definite

limiting positions, the circle through P, P', P" approaches

a definite limiting position.

Theorem 40.] A necessary and sufficient condition that the

oriented circles of a congruence should represent the points of

an analytic non-minimal curve is that the two real oriented

circles properly paratactic or tangent to a real circle of the

congruence in general position, and to two adjacent circles

thereof, should tend to approach definite limiting positions no
matter how the latter two circles tend to approach the circle in

general position as a common limit.
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The words ' in general position ' mean that the circle

PP'P" is not null, and the circles with the first foci P, P', P"
do not behave in the manner presently described. The state

of affairs is somewhat different in the case of a minimal curve.

The osculating circle is here an isotropic counted twice, and

{,
has ao 1 foci. Infinitely near circles of the congruence tend to

become paratactic, and to be cut twice orthogonally by ao 1

generators of a cyclide, or else, perhaps, they tend to become

properly tangent. This latter case would arise could we find

such a minimal curve that the tangent isotropic at each point,

and the tangent isotropic to the conjugate curve at the con-

jugate imaginary point, always intersected. Let us show that

there can be no such curve except an isotropic. Suppose, in

fact, that we had a curve of this sort in cartesian space. The

isotropic tangent lines at the conjugate imaginary points P
and P intersect, and so lie in a real plane, and PP is a real

line. There are co
2 of these real lines depending analytically

on two parameters, and each intersects all lines of the system

infinitely near to it. Hence each two lines of the system

intersect, and all lie in a plane or pass through a point. If

the lines lay in a plane the minimal curves would be plane

curves, i.e. isotropics, an excluded case. Hence the real lines

and planes pass through a real point. But the real lines

project the complex minimal curves, and we cannot have an

analytic curve which intersects every real line through a point

unless at that point.

Theorem 41.J A necessary and sufficient condition that

the real oriented circles of a congruence should represent the

points of a minimal curve not an isotropic is that the circles

cutting twice orthogonally a circle of the congruence in

general position and neighbouring circles thereof should

approach as limiting positions the "paratactic generators of

a definite cyclide, as the neighbouring circles approach indefi-

nitely near to the circle in general position, or else approach

properly tangent oriented circles of a coaxal system.

The simplest congruence of this sort will arise when we
undertake to represent the points of an isotropic.
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Theorem 42.] The points of an isotropic which does not

intersect its conjugate imaginary will be represented by the

totality of oriented circles properly paratactic to two properly

paratactic oriented circles.

The only exception to theorem 41] is

Theorem 43.] The points of an isotropic which intersects its

conjugate imaginary will be represented by the congruence of

real oriented circles properly tangent at a real point.

All circles of the congruence representing the points of an

isotropic skew to its conjugate are cospherical with these two

isotropics looked upon as null circles ; hence, by XIII. 66]

Theorem 44.J The congruence of oriented circles whose

real members represent the points of an isotropic skew to its

conjugate is of the first order and class.

We pass from the isotropic at once to a null circle.

Theorem 45.] The points of a null circle with a real

vertex will be represented by the totality of real oriented circles

properly or improperly tangent to one another at a fixed

point.

Theorem 46.] The points of a real circle will be represented

by the congruence of real oriented circles in bi-involution

therewith.

Theorem 47.] The points of a self-conjugate imaginary

circle will be represented by the totality of reed oriented circles

through two real points.

We get from VIII. 27]

Theorem 48.] The points of a complex circle lying on

a real sphere will be represented by real oriented circles

orthogonal to this sphere and connecting in a definite order

pairs of points which correspond in a real indirect circular

transformation on the sphere.

If we undertake to represent the general complex circle,

we see that each representing circle is properly paratactic to
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the real circle whose first focus is the first focus of the given

circle, while its second focus is the conjugate imaginary first

focus of the conjugate imaginary circle. It will also be

properly parataetic to a second real oriented circle whoso first

and second foci are the second foci of the given circles.

Theorem 49.] The points of a (jeneral complex circle will

be represented by the totality of real oriented circles properly

parataetic or tangent to two real non-paratactic oriented

circles. Wlien the given oriented circle lies on a self-conjugate

imaginary sphere the representing circles are invariant in

a real direct involutory spherical transformation.

This congruence of circles is surely of the second class, for

two of its circles will be orthogonal to each real or self-

conjugate imaginary sphere. To find the order we notice

that the number of circles of the congruence whose coordi-

nates satisfy the equations pox
= p02

= will be the sum of

the order and class, for every circle whose coordinates do

satisfy these equations is either orthogonal to x = or

cospherical with the circle whose foci are (0, 0, 0, 1, i). Analyti-

cally we write

.r, = (r + si)
2
a- + (?• + si) /3 ; + y, ; x

t
= (r- si)

2 a
; + (r- si) /3

{
+ y{

.

We see that these values substituted in the two equations

above will give two cartesian cyclides in the (r, s) plane

whose infinite intersections are unacceptable; hence

Theorem 50.] The points of a general complex circle will

be represented by tJie real oriented circles of a congruence of

the sixth order and second class.

Theorem 51.] The points of a real sphere will be repre-

sented by the totality of real oriented circles orthogonal

thereto.

Theorem 52.] Tlie points of a self-conjugate imaginary

not null sphere will be represented by the totality of invariant

real oriented circles in an involutory direct spherical trans-

formation.
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It is to be noted that in cartesian space we may describe

these as the oriented circles with regard to which a real

point has a real negative power. The general complex sphere

is somewhat harder to grasp. It meets the conjugate imaginary

sphere in a circle which is either real, or self-conjugate

imaginary. Let us first suppose that the circle is real. We
pick out a real point thereon and take all real circles through

that point. Our imaginary sphere will be determined by an

elliptic involution among the spheres through the first circle,

and these will determine an elliptic involution among the

points on each circle through the fixed point. Take two

pairs of such a point involution, and through each pass

a sphere orthogonal to the real circle whereon lie the pairs.

The real circle common to these spheres, when properly

oriented, will represent the imaginary intersection of the real

circle bearing the pairs, with the given imaginary sphere.

This construction fails when the circle is not real, and we
are compelled to fall back upon the construction of a sphere

by means of an isotropic gliding along three skew isotropics.

Theorem 53.] The points of a general complex sphere will

be represented by the real hypercongruenee of oriented circles

properly paratactic to sets of three properly paratactic oriented

circles, each circle of the three being pnvperly paratactic to two

given properly paratactic circles.

Theorem 54.] Two oriented circles of the hypercongruenee

whose real members represent the points of a complex sphere

will pass through two arbitrary points in space.

Theorem 55.] The real oriented circles which represent the

totality of points of a null sphere with real vertex will be

the totality passing through a real point.

Theorem 56.] The oriented circles representing the points

of a null sphere with a complex vertex will be the assemblage

of all circles properly paratactic or tangent to a real circle.
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The subject of oriented circles in space certainly seems to

offer quite as attractive a field for further study as does that

of non-oriented circles. There are certain important points

which should be cleared up as soon as possible. "What is the

focal surface of the linear congruence
1

? How do the circles

of a dekacycle lie with regard to one another, and how is

a dekacycle constructed when five of its members are known ?

What are the fundamental properties of the general quadratic

hypercomplex ? Last, but not least, this method of repre-

senting imaginaries should be pushed much further than it

has ever been before, either here or elsewhere.

M m



CHAPTER XV

DIFFERENTIAL GEOMETRY OF CIRCLE SYSTEMS

§ 1. Differential Geometry of S
6
5
.

In this concluding chapter we propose to take up at length

the differential geometry of systems of non-oriented circles in

space. We begin with a study of the infinitesimal geometry

of that point variety in higher space -which represents the

totality of all pentaspherical circles. We saw in Ch. XIII, in

dealing with the pentacycle, that if we put

-Pji = Pij = Xay + M b
ij + vc

ij + Pdij> i,j=0...4,

there are five solutions for the five dependent equations

&i(pp) = 0, *=0...4.

Theorem 1.] The totality of circles of pemiaspherical space

can be 'put into one to one correspondence with that of all

points of an $6
5 in Sa

.

A necessary and sufficient condition that a linear combina-

tion of the coordinates of two given circles should always be

the coordinates of some circle is that the two should be

cospherical. The coordinates of three coaxal circles are

linearly dependent, and linear dependence is also a sufficient

condition that the circles should be coaxal. Four circles

have linearly dependent coordinates, each three being in-

dependent when, and only when, the circles pass through

a point-pair, or lie on a sphere, and are orthogonal to a circle.

The coordinates of five circles are linearly dependent, each

set of four being independent when, and only when, the five

are on one sphere, but not orthogonal to one circle thereon,
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Theorem 2.] The S
e
5 contains oo 8 straight lines, co 3 passing

'.hrough each point of the variety. Two lines in general

position will not intersect.

Theorem 3.] The Se
5 contains oo c planes of the first sort,

:tnd oc 7 of the second. Through each point of the variety will

pass co 2 planes of the first sort, and cc 3
of the secoiul. Two

planes will not usually intersect.

Theorem 4.] The Se
5 contains oo* £3's. Through each

point of the variety there will pass ao J
of these, a nd each two

S^s will intersect in one point of the variety.

Two infinitely near points of #
6
5 will detei-mine a tangent,

or a direction on the variety. On the other hand, if we have

two non-cospherical circles, the spheres through one will meet

the other in pail's of points of an involution. Each tangent

to S6
5 at a chosen point will thus correspond to a point

involution on the corresponding circle, projectively related

to the spheres through the circle. We mean by this, that

there is a projective relation between the spheres through the

circle and those through any two points, and the pairs of

the involution. Suppose, conversely, that we have such a

projective relation between the pairs of an involution on

a, circle and the spheres through it. The circle being (q),

eonsider the linear hypercomplexes

2 qijPtj = 2 a
uptJ

= 0, 12,. (aq) = 0, i = ... 4.

The hypercongruence common to these two hypercomplexes

is the limit of that consisting of circles in involution with (q)

ind (q + dq), where dq
;

- = a^dt. The ten quantities «,• are

subject to five linear equations which, however, are not inde-

pendent, for it is easy to show that

,1 = 4

lence we have at least five free parameters. The spheres

ihrough (q) will cut (q + dq) in pairs of an involution pro-

ectively related to these spheres, which will approach

i definite limiting position as an involution on (q) when dt

il m 2
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approaches as a limit. We may make use of our five free

parameters to make this projective correspondence between

spheres through (q) and pairs of an involution on (q) exactly

the correspondence given. Now evei-y linear hypercongruence

will correspond to a line in S
9 , and if the hypercongruence

consist in circles in involution with two given circles, the line

will intersect <S
6
5 twice, while a hypercongruence of the present

type will correspond to a tangent to Se
5

. We thus see that

there is a one to one correspondence between the tangents

to $6
5 and the projective relations connecting spheres through

circles with pairs of involutions on the same circles.*

Suppose that we have a series of circles. We may express

them in the form

There are four different types of circle series

:

A) 2 <V (*>>')£<>, Pi/=
d
2-

i =

This is the general case. Adjacent circles have no common
point. In S

9
we have a curve of the variety ; the tangent at

each point corresponds to a projective relation between the

spheres through the circle of the series and pairs of an involu-

tion thereon,f

Theorem 5.] If a swface be generated by a general series

of circles, each sphere through a circle in general position is

tangent in two places to the surface, and the pairs of points

of contact trace pairs of an involution protectively related to

the system of spheres.

* This correspondence of tangents and involutions is the fundamental idea

in the first part of the article by Cosserat, cit. See also a difficult article by

Moore, ' Infinitesimal Properties of Lines in S4 with applications to circles in

Ss
', Proceedings American Academy of Arts and Sciences, vol. xlyi, 1911.

t Cf. Demartres, 'Sur les surfaces a generatrice circulaire ', Annales de

I'jtcole Normale, Series 3, vol. ii, 1885. For the surfaces contained in linear

hypercomplexes, hypercongruences, and complexes see Bompiani, ' Contributo

alio studio dei sistemi lineari di rette nello spazio a quattro dimensioni', Atti

del B. Istituto Veneto, vol. lxxiii, 1914. For an interesting recent article on

series of circles see Ranum, ' On the Differential Geometry of Ruled Surfaces

in 4 Space, and Cyclic Surfaces in 3 Space', Transactions American Math. Soc,

vol. xvi, 1915.
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i" = 4

Here adjacent circles have one common point, but are not
cospherical. This point will trace a locus on the surface

generated by the circles, and it seems likely that the circles

of this series will be tangent thereto. Let us show that this

is verily the fact. Our surface may be expressed by the

parametric equations

p.V
f
= *

i
(u)t* + l3 i

(u)t + y i
(u),

(<x«) £E (yy) = (V) = fa) = (&*) + 2 (ay) = 0.

Let us assume that the locus in question corresponds to

I = 0. An adjacent circle will contain the point (y) if dx
vanish with t.

t*i = *y/-

But (y') is a sphere through (y) orthogonal to its line of

advance, while (/3) is the sphere through (y) orthogonal to the

»iven circle.

Theorem 6.] If adjacent circles of a series tend to inter-

sect, all circles of the series are tangent to one curve, and
conversely.

C) Q
i{ /p') = 0.

Here adjacent circles are cospherical, and we have an
innular surface. For if (s) be the sphere through our circle

md an adjacent one,

«*) =M = («y) = («? a) = (**£) = (»dy)

= (dsa) = (ds/3) = (dsy) = 0,

ivhich shows that this circle is a characteristic one for the

iphere of .r, i. e. the limiting position of its intersection with

ui adjacent one.

D) a,Q>y) = o, s^+/ = o.

Adjacent circles are tangent, and we have the osculating
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circles of a curve, or else the surface is generated by null

spheres.

We pass to congruences of circles, which we express in

the form

Pij = Pij (», v)-

The condition that adjacent circles should intersect

i= 4

^^{dpdp) =
! =0

is quartic in du/dv. The general case being that where the

roots are usually distinct

Theorem 7.] The circles of a general congruence are tangent

to four surfaces, some of which may shrink to curves inter-

secting the circles.

Consider the equations

il
i
(dpdp) = 0.

These have not, usually, any common solutions. When,

however, the five equations are all equivalent to one another,

there are two sets of values of du/dv which solve all five

(unless they be satisfied identically), and the congruence is

said to be focal. Such a congruence can be generated in two

ways by the circles of curvature of a one-parameter family

of annular surfaces. As a matter of fact the largest part of

the theory of circle congruences deals with focal congruences.

A complex of circles may be expressed in the form

Pij
= p^ (u, v, w).

How many circles of the complex adjacent to a circle in

general position will be cospherical therewith ? Let us write

pXi = tXi(u, v, w)t2 + Pi(u, v, w)t + Yi (u, v, w),

"Pi:,

yh Yl Ym
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An arbitrary sphere through the circle can be written

*''
= A

F7.

1

r a P yy I

+fJ
- dV. 1

r a/3 y

z

I'

where (3/) and (s) are arbitrary spheres, not linearly dependent

on (a), (0), (y). This will contain all points of an adjacent

circle, if

^\daoc/3yy\ + fj.\da.ai3yz\ = 0,

\\d/3<X(3yy\+p\dl3oc/3yz\ = 0,

k\dyOt/3yy\ + li.\dy<xfiyz\ = 0.

Here we have three linear homogeneous equations in

du : dv : die. The condition of compatibility will give a cubic

in k : ix. When the roots are distinct we shall say that we
have the general case.

Theorem 8.] An arbitrary circle of a general complex is

cospherical with three adjacent circles thereof. The complex

is generated by the circles of curvature of a two-parameter

family of annular surfaces*

We pass to a hypercongruence. Here we have

Pij = Pij (.u, v, W, 0>).

Each circle is cospherical with oo 1 adjacent circles. In St

we have a four-parameter family of lines, and through each

will pass oo 1 planes containing each an adjacent line of the

system. In an arbitrary hyperplane there will be a con-

gruence of these lines, and through each will pass two focal

planes, the two planes of the sort just mentioned that lie

in this hyperplane. The series of planes is thus of the second

order and algebraic.

Theorem 9.] The lines connecting the pairs ofpoints where

a circle of a general hypercongruence in cartesian space meets

the adjacent circles of the hypercongruence envelop a conic.f

* Cf. Segre, ' Un' osservazione sui sistemi di rette degli spazi superiori
',

Bendiconii del Cercolo Matematico di Palermo, vol. ii, 1888, p. 148.

t This theorem and the next seem to be due to Moore, ' Some properties of

lines in a space of four dimensions ', American Journal of Malh., vol. xxxiii,

p. 151. His excellent article can be consulted with profit in connexion with

all that we have done in the present section.
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We turn lastly to the hypercomplex. This is written

Pij = Pij (
w

>
v

>
w

> "> w')-

We may assume that our circle (p) is determined by (x)

where x
i
= x

i
(u, v, w) and (y) where yi

= y$ (w, to, a/). The circle

orthogonal to the spheres (x), (y), and (y + dy) has coordinates

of the form

qij-oiijdw + fiijdm.

This circle will trace a coaxal system if (x) be fixed. Its

foci are on (p) and are the pairs of points where (p) meets

adjacent circles of the hypercomplex which lie on (x). But if

a circle trace a coaxal system, its foci move on the circle

whose foci are the points common to all circles of the coaxal

system, and are harmonically separated by the vertices of

the null circles of the coaxal system, i.e. they trace an

involution.

Theorem 10.] The circles of a hypercomplex adjacent to

a given circle and lying with it on a chosen sphere meet the

chosen circle in pairs of points of an involution.

§ 2. Parametric Method for Circle Congruences.

Of all systems of circles in space indubitably the most

interesting is the congruence. There is comparatively little

that can be easily reached in this connexion, however, if we
stick to our Plucker circle coordinates. In the next two

sections we shall develop two other methods which will be

found to yield ample returns.* The first of these is called

the 'parametric' method, and consists in expressing the

coordinates of a point on a circle of a congruence through

the fundamental equations

aiiEHjC+iJli+y,,

0L
t
= a-i (u, v), Pi = fa O, v), yt

= Yi (u, v). (1)

(oot) = (a/3) = (/3y) = (yy) = 5 (/3/3) = 1, (ya)=-|.

* A good part of all that remains in the present chapter will be found in

an article by the Author, ' Congruences and Complexes of Circles ', Transactions

of the American Math. Soc, vol. xv, 191 i.
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It appears from these that (a) and (y) are two arbitrary

points of the circle, while (/3) is the sphere through thein

orthogonal to the circle. For the Pliicker coordinates of this

circle we have

«fc <*l <*m

PPij = Pk ft Pm (
2
)

7k 7l Ym

If we remember that in $4 the circles orthogonal to one

sphere appear as lines in a hyperplane, and that the lines of

a congruence in any S3
are tangent to two surfaces (or meet

a curve or curves), i. e. each intersects two adjacent lines, we
reach

Theorem 11.] If the circles of a congruence be all ortho-

gonal to one sphere the congruence is focal.

There is a second type of congruence, or rather a sub-type

of the focal congruence, which is of special interest. This is

called the normal congruence, and consists in oo
2 circles

orthogonal to the members of a one-parameter family of

surfaces.* In counting the number of surfaces to which a

circle is orthogonal we count the number of points where

a circle meets an orthogonal surface. Thus the circles ortho-

gonal to a fixed sphere are said to be orthogonal to two

surfaces. Let us find the analytical conditions for a normal

congruence in terms of our various parameters. In (1) we
wish t to be such a function of u and v that if dxn be the

corresponding increment for xn , while bxn is the increment

along the circle,

(dxbx) = 0. (3)

From (1)

(ada) = (pdp) = (ydy) = (ad/3) + (/3rfa) = (yd/3) + (l3dy)

= (ocdy) + (yda) = 0.

dxn = t
2dan + td/3n + dyn + (2tc<n + l3n)dt.

8xn =(2ocn t + pn)bt.

(dxbx) = bt[(ocdl3)t
2 + 2(cidy)t + (pdy) + dt].

* Some writers, as Eisenhart, Differential Geometry, Boston, 1 909, call normal

congruences ' Cyclic Systems '.
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ilU \ tsW

It / 5/3n

,„-(«rD'"("2)«+('2>

-s-(«s)'+'(«3)' + ('S)-

These are compatible if

K^J-0-[(4>!D-(4:)(4l)]h

H("£('£-(-!
s>&+(s£)-<r{9}''

The last equation, being quadratic, is identically satisfied if

it have three solutions. We thus get the fundamental theorem

of Ribaucour.*

Theorem 12.] If the circles of a congruence be orthogonal

to 'more than two surfaces, the congruence is a normal one.

Theorem 13.J If a congruence of circles orthogonal to

afixed sphere have any other orthogonal surface it is a normal

congruence.

When the fixed sphere is null we imagine that we are in

cartesian space, and prove the theorem by inverting into

a normal line congruence. It is to be noted that a focal

congruence will go into a focal congruence under every

transformation of the twenty-four-parameter linear sphere

* The theorems of Ribaucour cited in the present chapter are in the follow-

ing notes in the Comptes Bendus : ' Sur la deformation des surfaces ', vol. lxx,

1870, p. 330 ; ' Sur les systemes cycliques ' and ' Sur les faisceaux de cercles
',

vol. lxxvi, 1873, pp. 478, 880.
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group, while a normal congruence will go into a normal
congruence under every spherical transformation.

When we start with the hypothesis that the circles of our

congruence are surely orthogonal to two surfaces our equa-

tions are vastly simplified. We assume at the outset that

(a) and (y) trace two orthogonal surfaces

(adf) = (Pd<x) = (ydfi) = (pdy) = 0. (5)

? * -. / <*y\ j.
M „ / <>y\

,

- ^-= 2(a^-)t, - — = 2(a T^)f.dU \ dU' Si' V <)V/

The condition for a normal congruence is then simply

Two solutions correspond to the values and ao for t
;

if a third solution be t = t (u, v) a fourth will be rt, where r

is any constant. But tliis constant gives the cross ratio of

the four corresponding points upon the circle, by IV (9).

We thus get another admirable theorem of Ribaucour's.

Theorem 14.] Any four orthogonal surfaces of the circles

of a normal congruence u-ill meet them in sets ofpoints having

a fixed cross ratio.

We next turn back to the more general focal congruence.

Let us so choose our parameters a and v that making the one

or the other constant, gives us the annular surfaces. If two

circles be cospherical, their foci are concyclic and vice versa
;

if two circles be cospherical with a third, the six foci are

cospherical. We thus get Ribaucour's third theorem.

Theorem 15.J The foci of the circles of a focal congruence

will generate the two nappes of the envelope of a congruence of

sphovs. In cartesian spine the planes of the circles will

envelop the deferent of tlie sphere congruence.

With regard to the last part of the theorem we have merely

to notice that the points where a sphere meets two infinitely
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near spheres are symmetrical with regard to the plane through

the centres of the three. Let us proceed to prove the converse

of 15]. Let the congruence of spheres be

Pi = ^ («, v).

We may always find six such quantities A, B, C, D, E, F
that /3 ... /3i

are the six linearly independent solutions of

OU 2, dUOV el? <SU eV

Let us now assume explicitly that this differential equation

is not parabolic, and define our sphere congruence likewise as

non-parabolic. Our differential equation can then be reduced

to the form

32
ft - L *0i +M*h +Irp (7)eU OV ilU dV

The points of contact of the sphere (/3) with the envelope

lie also on the spheres (-—
j and (—-\ The points where

(/3) + (— Jdu touches the envelope lie on (t-~) + (s~2)^u >

(—gjj (-—r-j are linearly dependent, there is (at least)

one sphere orthogonal to all, and the circle whose foci are

the points of contact of (/3) with the envelope is cospherical

with that whose foci are the points of contact of (/3) + (^-) du.

The same will hold for (fi) and (p)+(~\dv; hence

Theorem 16.] If the foci of the circles of a congruence be

the •points of contact of the spheres of a congruence with the

two nappes of the envelope, the congruence of circles is focal.
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When we surely know that our congruence of circles is

focal, we may introduce notable simplifications by choosing
as u and v the focal parameters, i. e. those which give the

annular surfaces. We shall take as (/3) the sphere whose
points of contact with its envelope give the foci, for such
a sphere is surely orthogonal to our circle : (y) and (s) shall be
the foci of the circle. We have the equations

(y<x) = (y/3) = (yy) = (ydj3) = 0,

(ra) = (;/3) = (zy) = (zdp) = 0.

The first set of these equations leads to an identity of

the type

Aatt + Bji + Cyi + D^izsO.

Multiplying through by tfj and summing, we find

V" = « OK: + Cy
;

, -—-* — UO.; + c'v; •on 1 'i
tiv 1 n

Since each of two pairs of points (ot) + (dd), (y) + (dy) lies

on a sphere through our circle, we find

^y oy •

OU ' ' ' OW

Sy- 03i'

(8)

If, now, we inquire under what circumstances our focal

congruence shall also be a normal one, we must substitute

in (4). The coefficient of t
2 and the constant will be found to

vanish automatically, and there remains

'0<x otx\

["'-«(l3]<"-ri = »-

We first assume r = p.
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Then every solution of the equations

(sea) = (x/3) = (xy) = (xdot) — 0,

where du and dv are variable parameters, will be a solution of

(xdj3) — (xdy) = 0.

Hence every series of the congruence will generate an

annular surface. Any two infinitely near circles are co-

spherical, hence any two whatever are cospherical, and all

lie on a sphere, or pass through a point-pair. But the circles

on a sphere could not certainly be a normal congruence.

Hence we must have the circles through a point-pair, distinct

or adjacent. We take up now the other hypothesis,

, ,
/da 3a\

we may take for the focal spheres, i.e. the spheres through

a circle in general position which contain adjacent circles

of the congruence,

a-Sj = a-Sj = «,**'"-
<>V

It then appears that these two are mutually orthogonal in

view of the equation above.

Theorem 17.] A necessary and sufficient condition that

a focal congruence should be normal is that it should consist

in circles through a point-pair or else that the focal spheres

through every circle should be mutually orthogonal.

Having shown that a focal congruence can be normal, let

us proceed conversely to show that a normal congruence must

be focal. Starting with (5) we have the additional equations

^ = loc
i +mn +n^ + r^,

ov » <
'* 2>u

r dv
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We may iu two different ways, usually distinct, find such

a pair of values, du, dv, that the following equations are

compatible

:

(sol) = (s/3) = (sy) = (sdoc) = (sdy) = 0.

We change our parameters u and v so that these shall

correspond to the equations du = and dv = 0. We then

have r = v = 0.

The condition of orthogonality (6) will give

3a da\ /oa 3a\/da. eoc\ _ /oa 0a\

If n = p we should have

dyi^LtXi + Myt + NdtXi.

If we consider the circles whose foci are (a) and (y) we see

that each is cospherical with every adjacent circle of the

same sort. Hence all pass through a point-pair, and (a) and

(y) lie on a fixed circle—an absurdity—or all lie on a fixed

sphere, to which the circle through (a) and (y) is orthogonal.

But by 11] a congruence of circles orthogonal to a fixed

sphere is focal. There remains the possibility that n ^t p.

Similarly,

VdUdl'/ V iu <>V/

The conditions for compatibility of the equations for

© -& p™
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Multiplying through by tx
i
and summing, we find E = 0.

We have, thus, four equations :

3u3d * 3w 3d 3w3d 3u 3d

Sy,- , iocj 3y,. , 3<x-

Zw * * 3w 3d • '
'* 3d

The equations

have two distinct solutions (a) and (y), so that

3u 3d ^ 3d 3d

Again, from the equations

3u * • 3u 3d

Multiplying through by /3i
and summing, iW = 0.

Multiplying through by -y* and summing, R = 0.

iu * 3» 3d * 3d

\3l(, 3d/ \ 3u3d/

(9)

Hence, in the above partial differential equation for /34
-,

r = 0, and we have

-»h. = P ¥* + q
>Ji. (10,3u3d 3w -

1 dD
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We see from the equations

(^«) = gip) = (^ Y) = (11 >«) = (*p±£\- pi in
\7>v / Vdy / \iv '/ \ZvMJ \DvW Vdvdu/

that (—J is a focal sphere, and similarly (Jl\ is a focal

sphere.

Theorem 18.] Every normal congruence is focal.

Again, suppose that we have a focal congruence with two
orthogonal surfaces, not consisting in one fixed sphere twice

counted. The intersections with these surfaces shall be (a)

and (y), while u and v are the focal parameters.

dy,-
7 da„-

i>V;
v

d Of,--< = Aa
i + Myi + P

-*.

(a- P)^- +B^ +€>¥* +D«
i + Eyi = 0.r/ dU dl> i>U dU * "

( a ^
i<x

\ - _(^j?.^\- _ fiP da\ _ o
V ia'bv/ \iu dv/ \i>v i>u/

~

v~* = Za
; +M—-S -^ = Za/ + if' —-

*

.

du ' du dv 5/'

Vdit dy/

'da t)y\ /da d/da dy\ _ /da dy\

VdU, dV/ VdW dtt/

Theorem 19.] //" £/te circles of a congruence have two

rthogonal trajectories, not a fixed sphere counted tivice, the

ongruence will be focal if it be normal, and vice versa.

We easily see from (9) that the parameters u and v give

urves on the (a) and (y) surfaces which are both orthogonal

nd conjugate. We thus reach another important theorem,

lso due to Ribaucour.

lira N n
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Theorem 20]. In a normal congruence the lines of curva-

ture correspond to one another on all orthogonal surfaces,

and give the annular surfaces of the. congruence.

If we take the two focal spheres through a circle of

a normal congruence they are orthogonal to one another, and

each touches one annular surface all along that circle, whence

Theorem 21. J The orthogonal surfaces of the circles of

a normal congruence and the annular surfaces determine

a triply orthogonal system.

Theorem 22.] The lines of curvature of the orthogonal

surfaces of a normal congruence of circles in cartesian space

correspond to the focal developables in the congruence of axes

of these circles.*

We next seek a converse to 20]. Suppose that we have

such a congruence of not null spheres (/3) that the lines of

curvature correspond to one another in the two nappes

of the envelope. We take these to determine the parameters

u and v. The first two equations (9) will hold, (a) and (y)

being the points of contact of (/3) with its envelope. We have

also the equations

dy,- , 3 a,' da,-^ = Idi + myi +n-^ +r^,dU * %U dv

dy, , 3 a.- da,.

<>v » ' '« 7>u ov

Differentiating the first equation to v, and substituting in

the second, we have, with the aid of (9),

d2 a,- . <>a,- „da,- ~ _.

Multiplying through by /3i
and summing,

/ d2a\
r('*?)=°-

* The congruence of axes of the circles of a normal congruence has been

extensively studied under the name of ' cyclic congruence '. Vide, inter alia,

Eisenhart, loc. cit., pp. 431 ff.
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If the second factor vanish, (/3) would be the osculating

sphere for one line of curvature, and so generate a one-nappe

envelope, which is not the case. Hence r = and, similarly,

v = 0. Under these circumstances, however, we easily see

that our congruence is focal, u and v being focal parameters,

whence, from 19],

Theorem 23. J If a congruence of spheres establish such

a point to point correspondence between the two distinct

nappes of the envelope that the lines of curvature correspond

in the two, then tJie circles orthogonal to the various spheres at

their points of contact with the envelope will generate a

normal congruence.

We next vary our hypotheses by assuming that the circles

of the congruence have two orthogonal surfaces, traced by the

points (a) and (y), and that the surfaces v = const, are

annular. We have at our disposal equations (1) and (5) as

well as

dy, , da, dy; , da, da^

dw 4 ''

dtt' i)V
l l

dtt
r dv

Since (a), (/3), (y), (;— )> (^) are orthogonal to one sphere

Aoii + B/Bi + Yi +D~l + E^ = 0.
* * '* dit dtt

Multiplying through by fii
and summing, B = 0. Multi-

plying through by a
{
and summing, G = 0. It is easy to see

that we could not have E = 0, hence we may take E= 1.

Our parameter u shall now be so chosen as to give with v

an orthogonal system of curves on the surface (a). We have

the equations

/da da\ _ /d/3 da\ _ _ / J^£\ _ /^ _
\ZU()V/~\bU<>V/~ \ dudi/

-
\dv"

d/3da\

Mi)

/ s2a \

sn2
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We next observe that (a) and (/3) are independent solu-

tions of

(
X^) =

(
X TV)=(X^) = ^=°-

Hence

}>u<sv <)u t)v

This, however, combined with the condition of compatibility

P and ^of the equation for ^-' and -^> gives v = 0, and our con

gruence is focal.&

Theorem 24.] If the circles of a congruence be orthogonal

to two surfaces other than a sphere counted twice, and if they

constitute the circles of curvature of a one-parameter family

of annular surfaces, the congruence is normal.*

Let us see if we can find the condition for a normal con-

gruence in terms of (/3) alone. We begin with a slight change

of notation, writing

Pi = pZi> 1 = #) = P -/(*»)•

Differentiating, and substituting in (10), we see that our

quantities z
i
are solutions of a differential equation of the

type

B^—-+D— +E— +F6 = 0.
dUdV CU dV

Since the expression 1 = -/(/3/3) is a solution of (10), so

will V(zz) be a solution of the last equation. In other words,

the six coordinates of the oriented sphere (z) are solutions of

one same non-parabolic partial differential equation of the

* This theorem is sometimes stated without the restriction upon the two
orthogonal trajectories, but a moment's reflection shows that this restriction

is necessary.
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second order. Suppose, conversely, that we have a non-

parabolic equation

.1—t, + B—— +C^-„ +D~ +E— +F0 = 0,

B2 -4AC$0,

whereof six solutions are given by the coordinates of an

oriented sphere (-). If we change variables so as to write

J7T-(zz)

we see that /8;
and •/{$$) — 1 are solutions of an equation of

like type, so that by a suitable change of the parameter u and v

we find /3f
is a solution of (10). If (a) and (y) be the points

of contact of (/3) with its envelope,

/ a2
/j \ _ / y^j \ _ / y<3 \ _ Ad *$\ _

^ Zu i> v) " \T d% 5 v) "VJttJ v)
~~

V5 «. 7> v
)~

(.$ = «->-<*>-(.£) = (.&

Multiplying through by p- and summing, B = 0.

Multiplying through by ~ and summing, D = 0.

Differentiating to v and substituting in (10) we get to the

first equation (9). The second equation (9) comes similarly.

Theorem 25.] A necessary and sufficient condition that

a congruence of oriented spheres should establish such a point

to point correspondence between the two nappes of the envelope

that the lines of curvature correspond to one another is that

their coordinates should be the solutions of a non-parabolic

partial differential equation of the second order*

* Cf. Darboux, The'oric generate des surfaces, vol. ii, Paris, 1889, p. 332.
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We derive an interesting corollary from this by means of

the line sphere transformation of Ch. XI. A congruence

of lines which establishes a correspondence between the

asymptotic curves on the two nappes of the focal surface is

called a W congruence.

The Plucker coordinates of the lines of'aW congruence and

of no other are solutions of a partial differential equation of

the second order and non-parabolic type.

We saw that in the case of a focal congruence the foci of

the various circles generated the two nappes of the envelope

of a congruence of spheres whose deferent is the envelope of

the planes of the circles. This suggests that perhaps, in

certain cases, the locus of the centres of the spheres might

also be the locus of the centres of the circles. Suppose that

this is the case. The annular surfaces of the congruence must

correspond to the lines of curvature of the deferent, and the

centres of the focal spheres must be the centres of curvature

for the deferent. Since the locus of the centres of the circles

is the envelope of their planes, the distances from the centre

of a focal sphere to the centres of the adjacent circles lying

thereon will differ by an infinitesimal of the second order,

as will the radii of the two circles. The circles of the

congruence have thus a constant radius.

Theorem 26.] If the envelope of the planes of a congruence

of circles in cartesian space be the locus of their centres,

a necessary and sufficient condition that the congruence

should be focal is that the circles should have a constant

radius.

We now suppose that the congruence is normal. The focal

spheres are mutually orthogonal, by 17]. If px
and p2 be the

radii of curvature of the surface, while r is the constant radius

of our circles,

P1P2 = r% -

Theorem 27.] If with each real point of a real surface in

cartesian space as centre a real circle be drawn in the tangent

plane, a necessary and sufficient condition that these circles



xv CIRCLE SYSTEMS 567

sliould generate a normal congruence is that the surface should
be pseudosphcrical, and that the radius of the circle should be

equal to the square root of the negative of the reciprocal of the

vieasure of total curvature*

Suppose that we have two points A and B and a not null

sphere. It is easy to show that a necessary and sufficient

condition that the two spheres with centres A and B ortho-

gonal to the given sphere should be orthogonal to one another

is that the sphere on (AB) as diameter should be orthogonal

thereto. Secondlv, if two lines intersect, the circles orthogonal

to a non-planar sphere and having these lines as axes are

cospherical, whence

Theorem 28.] If the spheres on the focal segments of a line

congruence as diameters int-ersect orthogonally a fixed sphere

which is lion-planar, the lines are tlie axes of the circles of

a normal congruence orthogonal to the fixed sphcre.f

Theorem 29.] If the circles of a normal congruence be

orthogonal to a ji.vcd non-planar sphere, the spheres whose

diameters are the focal segments on their respective axes are.

orthogonal to the fixed sphere.

Every focal congruence is associated with a congruence of

spheres. We start with the equation (7). There will be

a similar equation with solution r
;
where

0 = ''AJfl + /31 . -1 = <Vo-A- :i= -^ :3= -$>. -4=-/V

If, thus, we assume that we are in cartesian space, and

that our points are determined by special pentaspherical

coordinates, while c = 1, then :
x

, c
3 , c

3
will be the rectan-

gular cartesian coordinates of the centre of the sphere.

Theorem 30.] In a focal congruence in cartesian space

the focal parameters give conjugate si/stems of curves on the

* Cf. Bianchi. ' Sopra aleuni casi di sistomi tripli eioliei ', Qfornatt di Matr-

wafi'cfe, vol. xxi, 1SS3, p. ~T8,

t Eiseuliart, loc. cit., p. OS.



568 DIFFERENTIAL GEOMETRY OF ch.

deferent of the system of spheres whose envelope is generated by

the foci of the given circles.

An interesting and difficult question connected with normal

congruence is the following : given a surface, to determine

a normal congruence having that surface as an orthogonal

surface* Let us suppose that we have a non-developahle

surface of cartesian space, and that it is expressed parametri-

cally in terms of the lines of curvature. Then, by the

formulae of Olinde Rodrigues, the two equations

7)0 3® 7>0 30
7)U 7)11 7)V 7>V

have the four pairs of solutions

(*, X), (y, Y), (z, Z), (t±t±t, xX + yY+zZ).

Eliminating 0,

7> / d®\ 3 / 7>@\

Tv{p^)=^Kp
*Yv-)-

(11)

This has the solutions X, Y, Z, —(xX +yY+zZ).

Similarly, the equation

7>v \p1
7>u/

~
7>u V/3

2
7>v/

^

will have the solutions — 2x, —2y, —2z, x2 + y
2 + z2— r2

,

and these are the coordinates of a sphere with (x, y, z) as

centre. There is but one equation of the type

we is . 7>0

+a— +6 — =
7)u7)V 7)U 7>V

which has the solutions X, Y, Z; hence we get all surfaces,

with the same spherical representation as our given surface,

by taking the envelope of all planes with the coordinates

X, Y, Z, ©, where the latter is a solution of (11). It appears

* This development is taken direct from Darboux, Surfaces, cit., vol. iv,

pp. 137 ff.
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also from the Codazzi equations that the lines of curvature

will correspond in any two such surfaces. Suppose, then,

that we have a surface enveloped by the planes X, Y, Z, ©',

and write

& = &'-(X.v+Yi/ + Z:).

Here and 0' are both solutions of (11). The equation of

the tangent plane will be

2(£-z)X=®.

To find the envelope we differentiate to u and c respectively,

remembering

? w ? v

„ . V
»J ?0 „ „ ,J>X ?0

We transform these by means of (11) and the Codazzi

equations, getting

where is a solution of (12). These equations give us also

the secant of contact of the points of contact with its envelope

of the sphere

{x-£f + {y- nY + {;-Cf = -26.

If, thus, two non-developable surfaces have the same

spherical representation, the normals to the one are secants

of contact with the envelope of spheres whose centres lie on

the other. Conversely, the orthogonal trajectories of such

secants of contact will be a surface of the form required,

provided the square of the diameter is a solution of (12).

We next suppose that P and P7
are two infinitely near

points on a line of curvature of that surface which is the

locus of the centre of the moving sphere : HK and H'K'

the corresponding pairs of points of contact of the sphere

with its envelope. Since the lines of curvature correspond

in the two surfaces, the lines HK and H'K' meet (to the
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fourth order of infinitesimals), let us say, in R, while the

normals at P and P' meet, let us say, in Q. The four points

H, K, H', K' are concyclic, by 16] ; hence B, has the same

power with regard to the circles PHK and P'H'K'. Again,

PQ is tangent to the first of these circles at P, and P'Q

touches the second at P' while PP' is orthogonal to PQ, so

that Q also has the same power with regard to both. It

follows that the two circles are cospherical, their common
sphere being orthogonal to the other line of curvature at P.

A similar state of affairs will hold if we proceed infinitesi-

mally along this other line of curvature. Hence the con-

gruence of circles P, H, K is focal, and, since the focal spheres

are mutually orthogonal, it is normal, the given surface being

one orthogonal surface.

Theorem 31.] If a non-developable surface be given in

cartesian space, and a second having the same spherical

representation as the first, then the normals to the latter are

secants of contact with the two nappes of the envelope of spheres

whose centres lie at the corresponding points of the former.

The circles, each inverse to one of these secants, with regard

to the corresponding sphere, generate a normal congruence,

having as one orthogonal trajectory the given surface.

It is not at all clear that all normal congruences with

a given orthogonal surface can be obtained in this way.

Any triple orthogonal system of surfaces will lead to a

normal congruence in the following simple way. Let the

parameters giving the various surfaces of the system be u, v, w.

x
i
= x

i
(u, v,w), i = ... 4.

= a-~>+b-^ +cx4 ,

i>V t)W iV t)W

- a'r—* + &;—*+ c'x,

,

t)W(>U iw ilW

WX; „ ix,-
.
,„&#,- . „= a"—l +b" ^+c"xift>UiV i)U ~bv

~ x
i _ „'" ^x

i i W" * _l o'" v 4. //'" ^ Xi
z—z-r— = a -— + o \-c Xj + a -—

5

ow^ou i>w 5w w
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The sphere (s), where

p >~\ XJZu JwW J'

contains all points of the osculating circle to the w curve at

j—

J

du. It is orthogonal to the u, v surface,

and to the v curve thereon. A similar sphere is found by
interchanging the parameters u and v ; and these two spheres

are mutually orthogonal, whence

Theorem 32.] If a triply orthogonal system of surfaces be

given, the osculating circles to one system of trajectory curves

at the points where, they meet one orthogonal surface form
a normal congruence.

§ 3. The Kummer Method.

There is a totally different method of analysis which may
be profitably applied to congruences of circles, and which

leads to theorems of a different sort from the classical ones

which we have just proved. We have frequently had occasion

to point out that the circles of a pentaspherical space could

be treated as lines in an Si of elliptic measurement. If, then,

we are interested, not only in the points on a circle, but also

in the spheres through it, there is much to be gained by

copying the standard methods of line geometry adapted to

a space of elliptic measurement, and of four dimensions.*

A circle of a given congruence shall be determined by two

mutually orthogonal not null spheres (y) and (z), whose

coordinates are analytic functions of two independent para-

meters u, v,

yt
= Hi («, v), s

s
= ~~,. («, v), i = ... 4,

(13)

(yy) = («) = i. (.v=) = o-

* For a discussion of the corresponding formulae for line geometry in

elliptic geometry of three dimensions, see the Author's Non-Euclidean Geometry,

cifc., Ch. XVI.
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We have three fundamental equations

(dydy) - (zdy) 2 = Edv? + 2 Fdu dv + Gdv2
,

(dzdz) - (ydzf = E'du2 + 2 F'dudv + G'dv2
,

(dydz) = edu2 + (f+f)dudv + gdv2
.

More specifically

(Uu)-(?Z)'- e ' (szS>-0ISO's) - *"•

G£)-(»H)'a <*"'•>

\3>uhu/- ' \Zu1>v/- J ' \lv7>uJ- J
' Klvlv/- 11

'

These various coefficients are connected by a symmetrical

syzygy. We apply the Frobenius identity to the six spheres

'7)z\

«• «• (2> ©• o ©
E F e f
F G f g
e f E' F'

f 9 F' G'

0. (16)

We saw in Ch. XII that if two circles be given in general

position, i.e. no focus of one lying on an isotropic with a focus

of the other, there are two circles of a cross cospherical and

orthogonal to both. Let us find this cross for two adjacent

circles of our congruence. Let the spheres through the first

circle be cos
<f> (y) + sin </> (z), — sin <\> (y) + cos <j> (z), while

those through the adjacent circle are l{y + dy) + m(z + dz),
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—m (y + dy) + 1 (z + dz). Writing out the conditions for criss-

cross orthogonality, and remembering

2(ydy)= -(dydy), 2(zdz) = -(dzdz),

(ydz) + (zdy)= -(dydz),

we have two linear homogeneous equations in I and m.
Equating the discriminant to zero, and neglecting infini-

tesimals of a higher order,

[l — %(dy dy)] sin
<f>
- (zdy) cos <j>,

(ydz) &m<$>— [1 — £ (cfc<fo)]cos(J>

— [1 — £ (dz dz)] sin <j> — (ydz) cos </>,

(zdy) sin <j!) + [1 — ^ (cfa/ di/)] cos <£

= 0.

Expanding, and casting aside higher infinitesimals,

[edu2 + (/+/') dudv + gdv2
]
(sin2 <#>- cos2

</>) + [(#- £") du2

+ 2(F-F')dudv + (G-G')dv2]sin4>cos(p = 0. (17)

In order to discuss this equation, we write two others

:

(E-E') du2 + 2 (F- F') du dv + (G- G') di? = 0,

edu2 + (/+/') du dv + gdv2 = 0.

These are the expanded forms of

(dy dy) - (dz dz) = 0, (dy dz) = 0.

Let the foci of our circle be (a) and (y). We may write

(18)

Vi = i («i + n), z.= (ai-yi), % = ... 4.

Our differential equations amount to the pair

(doc da.) = (dydy) — 0.

With regard to these two we have the following pos-

sibilities :

A) They have, in general, no common root. The isotropic
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curves do not correspond to one another on the two surfaces

of foci. We shall say that the congruence is non-con-

formal.

B) The equations have, in general, one common root. Then

the surfaces of foci (which must not on any account be con-

fused with the focal surfaces) are so related that one system

of isotropic curves on the one surface corresponds to one such

system on the other. These congruences shall be called semi-

conformal.

C) The equations are equivalent to one another. The

surfaces of foci are conformally related, and the congruence

shall be called conformal.

Let us begin with the non-conformal congruence. Here, if

du/dv be given, we usually get a unique value for tan2</>,

that is to say, two mutually orthogonal spheres, and so the

cross required. On the other hand, if cf> be given, we have

a quadratic equation in du/dv, so that on each sphere through

a circle of a non-conforinal congruence will lie two circles

orthogonal thereto, orthogonal and cospherical also to an

adjacent circle of the congruence. These two circles will fall

together if this equation in du/dv have equal roots, i.e. if

[«7-|(/+/') 2](tan^-l)s
^

+ [e(G-G')-(F-F') (/+/') + g{E-E')]{t&n2
<l>-l)t&n<l> (19)

+ [(E- E'){G-G')-{F-F')*)tetf<i> = 0.

This equation is unaltered if we replace tan
<f>
by — ctn $.

Theorem 33.] In a non-conformal congruence, through

each circle in general position will pass two pairs of mutually

orthogonal spheres, on each of ichich there is hut a single circle

orthogonal to the given circle, cospherical and orthogonal to an
adjacent circle of the congruence.

The words ' in general position ' mean that the two quad-

ratic differential equations just written have no common
solution. We shall call these the limiting spheres through

the circle. They correspond to maximum or minimum values
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for tan</> in (17). We see, in fact, that if we equate to zero

the partial derivatives to du and dv, we get

[edu + £tL tjJ\ (tan2^>- 1) + [(£-£") du

+ (F-F')dv]t&n<j> = 0.

[&£- du + gdv\ (tan2
<f>
- 1) + [(J

7- J")du

+ (G-<7)dv]tan4>= o.

Eliminating du/'dv we fall back upon (19). In the case of

a real congruence the real spheres containing real circles ortho-

gonal to the given circle and a next neighbour will lie in

specific angular openings determined by the limiting spheres.

We next suppose that our congruence is focal. We have

for the focal sphere

cos02/< + sin<£2
f
= cos

(<l> + d<t>) (*/,- + dy
t) + sin

(<f> + d<j>) (s
{
+ dz

;
).

dy
i
cos <£ + dz

i
sin

<f>
— (#,- sin

<f>
— z

i
cos <$>)d$ = 0.

Multiplying through by i/
(
- , summing, and neglecting higher

infinitesimals,

d<t> = (ydz)= -(sJy).

[@ C0S *+
fe'

sin< - (yi^<t>-^os<t>)(y ~)]du

+
[(-^J

cos <j> + ^ sin e/>) - (2/f
sin £- r

;

- cos
<f>)

(i/

^)J
cfo = 0.

Multiplying through by —- and summing, then doing the

same for-^S
dv

[edu +fdv] cos <j> + [Edu +Edv] sin
<f>
= 0.

[/'rfw + gdv] cos
<J> + [F'du + G'dv] sin <£ = 0.

Similarly

[edu +fdv] sin <j> + [£tfu + Fdv] cos <#> = 0.

[/i7w + gdv] sin 4> + [iWu + Gdv] cos
tf>
= 0.
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Eliminating (j>,

(E'f- F'e) dv? + [E'g - F' (/-/')- G'e]dudv

+ (F'g-G'f)dv2 = 0.

(20)

(Ef-Fe)du2 + [Eg-F(J'-f)-Ge]dudv + (Fg-Gf)dv* = 0.

Eliminating du/dv,

{E'G'- F'2) tan^ + [E'g- F' (/+/') + G'e)] tan </> + (eg -ff)= 0.

(21)

(eg-ff) tan2
,/. + [Eg-F(f+f) + Ge] tan </» + (£G- F*) = 0.

[(«/-//') -(#'(?'- F'*)] ton*4> + [(E-E')g-(F-P) (f+f)

+ (G-G') e] tan
tf> + [(EG-F*)- (eg-ff)] = 0. (22)

In order that a congruence should be focal, it is necessary

that the two equations (20) should be equivalent, and the

same for the two equations (21). It should, further, be noted

that the middle coefficient is the same in (19) and (22). This

vanishes when, and only when, the pairs of solutions make
equal angles with (y) and (z).

Theorem 34.] In a focal congruence the spheres of anti-

similitude of the focal spheres are also spheres of' antisimilitude

of the limiting spheres in pairs.

The conditions that a congruence should be focal can be

written in better shape. The foci of the circle being (a) and

(y), which coordinates we find from (18), the condition for

a focal congruence is found from (15),

This gives

Squaring

iy da 3a— ocy— —
iiu <>u t)v

3» iy <)y— VZ— _*
<>u

J iu iv

Sy Sa 5a—-Oiv— —
7>v <>u 1>v

iz iy iy

7>v iuiv

0.

0.

E F e
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What additional requirements must be fulfilled if our focal

congruence is to be a normal one ? We take as u and v the

focal parameters, then

|2= <«%+ ««,+ r|£, ^=a'y
i + a'c';

i + c'f*. (25)

E'=ce, F'=cf, =c'f, G'=c'g; cE = e, cF=f,
c'F=f, c'G = g.

Then, since the expression

is a linear combination of (y) and (z), the focal spheres are

e(y)-(z) and e'{y)-{z). (26)

The condition for a normal congruence is thus, by (17),

cc'+l = 0.

This gives

(EG- F*) = (ETr - F'>) = - (eg-ff). (27)

These equations are invariant, and our reasoning is rever-

sible. They will, therefore, give necessary and sufficient con-

ditions that a focal congruence should be a normal one.

The normal congruence of circles seems, at first sight, the

most natural extension of the normal congruence of straight

lines, which is after all but a special case of the other. There

is, however, another extension of the normal line congruence

which possesses not a little interest for us. Interpreting our

circles as lines in S4 , what sort of a congruence of circles will

correspond to a normal line congruence in this space? We
mean by a normal congruence of lines in S4 a two-parameter

family orthogonal to an analytic surface. What will such

a line congruence give us in circle geometry 1 The measure-

ment in Si being elliptic, we see bj' a little reflection that in S
3

we must have such a circle congruence that through each

circle we may pass a sphere whose pairs of points of contact

with the two nappes of the envelope are mutually inverse

in that circle. Suppose that such a sphere has the coordinates

y{= J/,- cos £ + -,• sin (/>, i = 0...4.

1TM o o
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Then every sphere through the points of contact of (y') with

its envelope cuts (y') in a circle orthogonal to the given circle,

i.e. such a sphere is orthogonal to (— y) sin
<f> + (2) cos

<f>,
the

sphere through our circle orthogonal to (y'). We thus get

the equations

- (^) sin2*+ (4l)
cos2* + vu=- (>S)

sin2*

Zu \y lu" 7>v VJ11/ v ;

/ = /'• (29)

The differential equations (28) are equally well satisfied

if we replace </> by <£ + k, where k is any finite constant.

Theorem 35.] If through each circle of a congruence it be

possible to pass a sphere whose points of contact with its envelope

are mutually inverse in that sphere, then an infinite number

of such spheres may be passed through each circle. These

spheres will generate a one-parameter family of congruences ;

corresponding spheres of any two congruences pass through

the same circle of the circle congruence and make a fixed

angle.

A congruence of circles which possesses this property is said

to be pseudo-normal.

Suppose that we have a congruence of circles which is both

focal and pseudo-normal. We find from (25) and (29) that

(c-c')/=0.

We could not have c = c', for then would

and we should have a set of circles through two points, or one

sphere, an uninteresting set. Hence

/=/'=o.
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Substituting in (17) we get an equation whereof (26) gives
two solutions.

Theorem 36.] A necessary and sufficient condition that a
focal congruence which does not consist in circles through
a point-pair or on a sphere should be pseudo-normal is that

the focal spheres should coincide %vith a pair of limiting
spheres.

Let us see what relations subsist among the foci of the

circles of a pseudo-normal congruence. We return to (18).

If, then,

we have also

(ty ^£) = (^M ^£\

VStt iv/ ~ \<SV iu/

and vice versa. If, now, (/3) be a sphere touching its envelope

at (a) and (y), we see, by (6), that the circle orthogonal to (/3)

at (a) and (y) (in bi-involution with the given circle) will

generate a normal congruence, and vice versa. Moreover,

u and v will be the focal parameters for this normal con-

gruence, i.e. give the lines of curvature of the surface (a)

and (y).

Theorem 37.] A necessary and sufficient condition that

a focal congruence of circles should be pseudo-normal is that

the lines of curvature should correspond in the two surfaces

of foci.

Let us follow further the relation between the normal and

pseudo-normal congruence. The focal spheres are

c(y)-{z); c'(y)-(z).

The spheres orthogonal to our circle through the pairs of

focal points are

These will be mutually orthogonal if F' = f' —f' = 0.

oo 2
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When, however, these spheres are mutually orthogonal, the

pairs of focal points separate one another harmonically, and

conversely, whence

Theorem 38.] A necessary and sufficient condition that

a focal congruence should be pseudo-normal is that the pairs

of focal points on each circle should separate one another

harmonically.

We get at once from (28)

Theorem 39.] If a normal congruence of circles be given,

the congruence of circles whose foci are the pairs of inter-

sections of the circles of the normal congruence with any two

chosen orthogonal surfaces is focal and pseudo-normal.

Theorem 40.] If a congruence of circles be both focal and
pseudo-normal, the foci are the pairs of intersections of the

circles of a normal congruence with two orthogonal surfaces.

When a normal and a .pseudo-normal congruence are related

in the fashions described in the last two theorems, we shall

speak of them as associated. The normal congruence has the

parametric form

Xt^t'OLi + tPi + yi.

ftS y
3

k
i)U iV

0...4.

Here we suppose that u, and v are the common focal para-

meters of the two congruences. Let one of the spheres whose

points of contact with its envelope are mutually inverse in the

(y), (z) circle be (y'), where

y(= cos 4>yt + sia4>z
i} i = 0...i.

^ = C0^^ +Sm ^_, + (y^y_y. sln<j> + z . c034>)
,

i% - cos * fv + sm * ii<

+
\y hi) (

~
Vi 8m * + Zi cos ^ ;
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as we see by the aid of (28). We also find from (18) and the
above value of (/3) that all points of the associated circle of

the normal congruence lie on the spheres (^-\ (—X so that,
\du/ va-y/

in particular, the points of contact of (y') with its envelope lie

on this associated circle, and this circle is orthogonal to (y'),

Theorem 41.] If a focal and pseudo-normal congruence be

given, the spheres whose pairs of points of contact with their

envelopes are mutually inverse in the circles of the given con-

gruence will envelop the orthogonal surfaces of the circles of

the associated normal congruence.

Since u and v give the focal parameters for both con-

gruences,

Theorem 42.] If a normal and pseudo-normal congruence

be associated, the annular surfaces correspond in the two.

Theorem 43.] If a normal congruence be given, not con-

sisting in the circles through a point-pair, pairs of inter-

sections with any two orthogonal surfaces may be taken as the

foci of the circles of an associated pseudo-normal congruence.

The other orthogonal surfaces will then be paired in such a way
that the intersections of each circle with a pair of surfaces are

mutually inverse in the corresponding circle of the associated

congruence.

The pseudo-normal congruence enjoys a sort of indestructa-

bility akin to that of the normal line congruence. Let one

such congruence be given by the spheres (y) and (z). We may
then determine (z') so that, 8 being fixed,

<*>-,. «,) = «, (,„.„* (£,*)-<££•

The spheres (y) and (z') will determine a second pseudo-

normal congruence of such sort that each of its circles is

cospherical with one of the given circles, and makes therewith
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a fixed angle. The sphere through the circle of (z) and (z'j

making an angle
<f>
with the former is (z"), where

_ sin(fl-4>) sinft ,

* " sine < + sinfl
*"

This cuts (y) in a circle coaxal with the previous circles,

and making an angle
<f>

with the first of these. If, then, <j> be

constant,

fiz" <>y\ _ /t>z" c>y\

Theorem 44.J If two pseudornormal congruences be so

related that corresponding circles are cospherical and make
a constant angle, then each circle coaxal with both and making
constant angles with them will generate a pseudo-normal

congruence.

We reach another theorem of the same sort in the following

manner. Suppose that we have two correlative complexes of

spheres, given by the equations

Pxi
= x

i
(u,v,w), <rx/= x

lxh gfS
a^m

3 <)U 2>V i>W

We assume also that we have a pseudo-normal congruence

of circles. Through each circle will pass at least one sphere of

the first complex, and this we shall take as (y). The corre-

lative sphere is (t) where

t,= y3 du lv
s

<m

sm is a function of u, V, and w. Further, let

sin
(<f>
— 6) sin <j>

sin * sin '

so that </> is the angle of (zf) and (t), while d is the angle of

(z) and (

We have

(z) and (t), and let us assume that ——
-£ = k, a constant,w w> sm
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Theorem 45.] Through each circle c of a pseudo-normal

congruence a sphere is passed belonging to a given non-de-

velopable complex in such a way as to generate a congruence

of that complex. This sphere meets the corresponding sphere

of the correlative complex in a circle c', and a circle c" is so

taken as to be coaxal with the circles c and c' while the sines

of the angles which c and c" make with c' have a constant

ratio. Then the circles c" will also generate a pseudo-normal

congruence.*

It is now time to take up some of the hitherto excluded

types of congruence. The semi-conformal type has the pro-

perty that each circle in general position is paratactic or

tangent to one adjacent circle. The circles are, however,

necessarily imaginary, and we prefer to pass to the more

interesting type of conformal congruences. Here we have

E-E':F-F':G-G'=e-/^-=g. (30)

Equations (17) take the form

[edui+ (f+f')dudv + gdv2
} [sin2 <f>— cos

2
qb + &sin</>cos<£] = 0.

The roots of the second factor give two mutually orthogonal

spheres, which we may take for (y) and (2). A circle cospherical

and orthogonal to our given circle, and to one infinitely near,

must lie on (y) or (z). The sphere (y) is, then, orthogonal to

(z) and (z + d;).

{ydz) = (zdy) = -%(dydz) = 0.

e=f+f=g = 0.

But if we return now to our equations (18) we find

/la la\ _ /7>y ?y\ /Sa Sa\ _ /Sy 3y\

Xbu iu)
=

\lu lu/ v)u lv' ~ V3wW
~)V/~ \<>V ~bv)

(dadoc) = (dydy).

* This is the interpretation in terms of circles of the four-dimensional

extension of the Malus-Dupin theorem.
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If these various expressions do not all vanish identically,

the two surfaces of foci are conformally related. If they do

vanish identically, (a) and (y) trace two minimal curves, given

respectively by the parameters u and v. Suppose, conversely,

that (a) and (y) are corresponding points on two conformally

related surfaces,

(doidoc) = p(dydy), 2((Xy)= — 1.

Replacing <x
{
by -± and 7i by Vpyi,

{dado) = (dydy), 2 (ay) = - 1, e =/+/' = g = 0.

Equation (17) reduces to

[(E- E')du2 + 2 (E- F')dudv + (G-G')dv2
] sin <}> cos 4> = 0,

a circle orthogonal and cospherical with our given circles, and

one of its next neighbours must lie either on (y) or (z). We
next write

yl-Vi cos <p+Zi sin $, y/'= y4
cos 4>-z

t
sin 4>, <f>

= const.

(dy'dy') = {dy"dy").

Conversely, if this equation hold, and if
<f>
be constant,

(dydz) = 0.

We shall say that two congruences of spheres are con-

formally related if they be in one to one analytic correspon-

dence (at least in some continuous region), and if the angle of

two adjacent spheres of the one be equal to the corresponding

angle in the other. We thus get

Theorem 46.] If the foci of the circles of a congruence be

corresponding points on two conformally related surfaces, or

trace two minimal curves, then, through each circle of the

congruence we may, in an infinite number of ways, pass two

spheres which shall make a constant angle with one another,

and describe conformally related congruences.

Theorem 47.] If corresponding spheres in two conformally

related congruences make a constant angle, then will their

circle of intersection generate a conformal congruence.
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Let us now make the additional assumption that our con-

gruence is focal. The isotropic curves will correspond on the

two surfaces of foci. If we take these to determine our

parameters u and v, we have two conceivable cases

Leaving aside for the moment the question of whether both

cases are possible, let us consider them in turn. In (A)

we have

<3a dy\ /doc 3)/dOC dy\ _ /dOC dy\

Our congruence is pseudo-normal ; the focal parameters u'

and v' will, by 42], give the focal directions for the associated

normal congruence, so that they give mutually orthogonal

lines of advance for (a) and (y). We have the partial differen-

tial equations, analogous to those previously found for a normal

congruence,

<>Y; t 7 ^Oli dy- 7/ . -.. /dOC;

^, = bcCC
i + by

i + C^, ^Wat +VnWjf-

The relation between the coefficients of (a) and (y) comes

from the equations

(«&) + (*&)-(«£) + (n?)-*

The condition that our surfaces (a) and (y) should be con-

formally related is

(££)*<+ (wIK-& £)*" +@>*-
This gives c°- = c'

2
. Now, if e = c', we have at once

d yi
= PiXi + Qyi + Rdoc;.
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Each two adjacent circles are cospherical, and we have

circles through two points or one sphere, cases which we may
exclude. Hence

c + c'= 0.

This shows that the focal spheres c(oc) — (y), c'(oc) — (y) are

mutually orthogonal, and so, by 17],

Theorem 48.] If a congruence be both conformed and
pseudo-normal it is normal.

Theorem 49.] If a congruence be both normal and con-

formal it is pseudo-normal, or consists in circles touching

a given circle at a given point.

Congruences of this type are well known. On the other

hand, in congruences of type (B) the focal parameters are also

the isotropic ones. We thus see that each circle is tangent

to two adjacent ones, or the circles of the congruence are the

osculating circles to two different one-parameter families of

curves. This much is true if such congruences exist ; unfor-

tunately, the present writer has signally failed in all his

attempts to find an example of such a congruence.*

§ 4. Complexes of Circles.

Our leading object in attempting the Kummer method for

the study of circle congruences was to follow the methods

which are fruitful in line geometry, or, rather, to study line

* The problem of finding a oonformal focal congruence is sometimes called

the problem of Eibaucour ; it amounts to finding a congruence of spheres

which establishes a conformal relation between the two nappes of the en-

velope. For an interesting discussion of congruences of type (A) see Darboux,
' Sur les surfaces isothermiques ', Annates de V$cole Normale, Series 3, vol. xvi,

1899, pp. 498 ff. Darboux here proves that this is the only type of conformal

congruence, but his proof is erroneous, as he subsequently acknowledged in

a letter to the Author. He doubted, however, whether any congruences of

type (B) really existed. The theorem that congruences of type (A) are normal

was casually mentioned by Cosserat in a short article, ' Sur le probleme de

Ribaucour', Bulletin de VAcademic des Sciences de Toulouse, vol. iii, 1900, pp.

267 ff.
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systems in jS4 . The idea lies close at hand that if in our line

geometry we move up one in the number of dimensions, we
should do well to allow ourselves an extra parameter. In

other words, will not these same methods yield interesting

results when applied to the study of circle complexes 1 We
start with the equations

y4
=

>/.; (%!utu 3 ), s i = s
{

(

u

x
u .,

w

3)

,

(33)

(yy) = (-") = l, Q/-1 = o.

(dydy)-(:di/)- = 2 a^diiiditj, a
ij
= a

ji
.

(dzd:)~(yd:r= 2 kj^dUj, b
ij
=bji . (34)

gfci.

(^.^)-(^-
i
)
=6" ;
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These coefficients are connected by the following identical

relations

^ <% M
{

dtf^ dttj dttj

iu
2

<H(,
2

dit
2

8
2/j

a
2/fc

3
Z/;

j

Sttg d^
3

dt(,
3 j

dg; 3g
/e

lz
l

Sttj 3'tij du
x

2>»j ~*H * z
l

du
2

dit
2
du

2

iz„- %Zj. <)Zi

du
3

dw
3
dws

cn
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Let us find the circles cospherical and orthogonal to a circle

in general position and to one immediately next. We pursue

exactly the same calculation which led to (17), and reach the

equation

>', j = s

2 [<\-/ (sin
2

(j>— cos2
$) + (aij — bfj) sin</> cos <f>] dui

diij= 0. (39)

'>
.' = i

As in the case of a congruence we are thrown back upon

the equations

(dot doc) = 0, (dydy) = 0.

When these equations are not equivalent the relation

between (a) and (y) does not give a conformal transformation

of space, and the complex shall be said to be non-conformed.

When the two equations are equivalent we have a conformal

transformation of space established by (a) and (y), and the

complex shall be called conformal. There is no intermediate

case corresponding to the semi-conformal congruence, unless

(a) or (y) be restricted to lie on a surface, since the equations

are irreducible. We start with the non-conformal complex,

and notice that there will be two circles cospherical and

orthogonal to each circle and each of its next neighbours,

unless the two be cospherical or paratactic. Analytically, we

have trouble in finding these orthogonal circles when

i, j = 3 ;, j = 3

Let us see whether the solutions of these equations give us

cospherical or paratactic circles. We know from 8] that each

circle of a complex is (usually) cospherical with three adjacent

circles. On the other hand, the equations as they stand are

irreducible quadratics, with four solutions, distinct or coin-

cident, and in the case of each solution c/> is indeterminate

;

hence

Theorem 50.] A circle in general position in a non-con-

formal comdex is paratactic with four distinct or coincident

adjacent circle* of the complex.
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The qualification pseudo-normal may be applied to com-

plexes as well as to congruences. We wish to find those

complexes of circles which correspond to the normals to

a hypersurface in #4 . A little reflection shows that such

circles must be the intersections of corresponding spheres in

two correlative complexes. Let the corresponding spheres be

(</') and (z'),

y(= yi cos
<f>
+ s

t
sin (/>, z(= - y{

sin <$> + z
t
cos

<f>.

We wish to have

0/W) = (z'dy') = 0.

Proceeding exactly as before, we find

(yds) = d<f>. (40)

Cij^Cji, i,j =1,2,3. (41)

We note also that if $ be one solution of the differential

equation, so is <£ + const.

Theorem 51.] If through each circle of a complex it be

possible to pass a pair of spheres which correspond in two

correlative complexes, then we may pass an infinite number

of such pairs of spheres generating as many pairs of corre-

lative complexes. The spheres of any two of these complexes

through each circle make a fixed angle.

We shall define circle complexes of this type as pseudo-

normal. We next choose for u1} u2> u3
such parameters that

by holding two constant we get the annular surfaces of the

complex. We can repeat almost word for word what we did

in the previous case of pseudo-normal congruences, and find

C
V2
= C

21
= C23

= C32
~ C

31
= C

13
= "•

mutually orthogonal, hence

Theorem 52.] A necessary and sufficient condition that

a complex of circles should be pseudo-normal is that the pairs

offocal points should separate one another harmonically.
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On an arbitrary sphere there will lie a finite number of

circles of a given complex of order greater than zero. Suppose
that two pseudo-normal complexes are determined respectively

by (V) {*)> and (y) (z'), and that (z) and {z') make a constant
angle 0. Then, if

„ „_ sm(4>-<x) sin <#> , .

where (/> is constant, we see that (y) and {z") determine a pseudo-
normal complex.

Theorem 53.] If tivo pseudo-normal complexes be so related

that corresponding circles are cospherical and make a constant
angle, then the complex of circles, each coaxal with two corre-

sponding circles of the given complexes and making with
them a fixed angle, is also pseudo-normal.

Suppose next that (s) corresponds to (y) in the complex
correlative to that generated by the latter. If, then, we write

,_sin(<f> — 8) ^ sin<£
Z; ~ sine

S;+
sinU^''

, .. sin
<f>and it t—t- be constant, we find, as before, that (y) and (z')

generate a pseudo-normal complex.

Theorem 54.J If through each circle of a pseudo-normal

complex a sphere be passed belonging to a given non-developable

complex, and if the original circle be replaced by such a circle

coaxal with it, and the circle cut by the corresponding sphere

of tlie correlative complex, that the sine of tlie angles of the

original and tlie replacing circles with the circle on the corre-

lative sphere have a fixed ratio, then will the replacing circles

also generate a pseudo-normal complex.

The consideration of circles adjacent and cospherical with

a given circle presents certain special features in the case

where the complex is conformal. Let the foci of a circle in

general position be P and P', while those of an adjacent

sphere cospherical with the first are P + A P, P' + AP'. If we
follow the conformal transformation of space established by
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our complex by an inversion which interchange P and P

,

we have a spherical transformation which leaves invariant P
and the circle through our four points. We are thus led to

the consideration of the invariant line-elements in a spherical

transformation which leaves P invariant. We have four

possibilities :

1) One proper and two isotropic line elements fixed.

2) One proper line element fixed, and all line elements

orthogonal thereto fixed.

3) All line elements orthogonal to an isotropic fixed.

4) All line elements fixed.

Remembering that a necessary and sufficient condition that

two circles on a not-null sphere should touch is that the circle

through their foci should be null, we have

Theorem 55.] If a circle of a conformal complex be

cospherical with but three adjacent circles of the complex,

the common sphere being in no case null, it will touch two

of them.

Theorem 56.] If a circle of a conformal complex be co-

spherical with three adjacent circles, and be not tangent to any
one, nor lie with one on a null sphere, it will be cospherical

with a series of adjacent circles. <

Theorem 57,] If a circle of a conformal complex be neither

tangent nor on a null sphere with more than one adjacent

circle, it will be cospherical with a series of adjacent circles.

Theorem 58.] If a circle in general position in a conformal

complex touch three adjacent circles, the complex tvill consist

in the totality of circles on one sphere.

Of course these statements in terms of adjacent circles

could be translated into terms of annular surfaces and oscu-

lating circles if we chose.

The following theorems are deduced by methods exactly

analogous to those used in the case of circle congruences.

Two complexes of spheres shall be said to be conformally
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related when their members are in a continuous one to one

correspondence, and the angle of two adjacent spheres in one

is equal to the corresponding angle in the other.

Theorem 59.] If a conformed circle complex be given, we
may, in an infinite number of ways, pass two spheres through

each circle which shall make a constant angle with one another,

and describe conformally related complexes.

Theorem 60.] Iftwo sphere complexes be conformally related,

and two corresponding spheres meet always at a fixed angle,

then will their circles of intersection generate a conformal

complex.

The subject-matter of the present chapter offers quite as

much opportunity for fruitful further study as did that which

preceded it. We only managed to prove known theorems

with the aid of the parametric method, but it is a method of

great power and, skilfully handled, seems likely to furnish

uew and interesting results. What will be found if we
attempt to extend this method to the study of complexes of

circles 1 On the other hand, the Kummer method which has

done so much for the differential geometry of the straight line

is certainly capable of much larger development than it has

here received. Other writers will prefer to study directly the

infinitesimal properties of the S6
5 by the methods which are

proving so fruitful in modern projective differential geometry.

What is certain is that the circle has been diligently studied

for two thousand years, and that it will be similarly studied

For many thousands more. The methods of attack here ex-

ribited are no more in advance of those known to Euclid and

ipollonius than will be those of future geometers in com-

Darison with the best that we have been able to show. This,

it least, is what we have a right to hope and expect. For

mrselves, ' Let us shut up the box and the puppets, for our

)lay is played out.'

pp
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Adjoint circles, 215, 216.

Altitude line, 20.

Altitude of triangle, 20.

Altitude, foot of, 20, 227.

Anallagmatic curves, 24, 27, 228.

— cyclics, 206.

— surfaces in oo 1 ways, 268.

Angle, 19.

— of triangle, 19.

— dihedral. 227.

— double, 313, 314, 321, 366, 420.
— invariant for inversion, 24, 228.
— Brocard, 61, 63, 78, 79, 126, 127.

— of two circles, cosine, 109, 132,

189, 251.

— of two spheres, cosine, 245, 283,

409.
— of two circles in space, 479, 491,

492, 524, 527, 529, 530, 532, 534,

535.
non-Euclidean, 452,

456, 457, 465, 478, 555, 564, 566.

Annular surface, 265, 437, 463, 549,

550, 562, 564, 592.

Anticaustic, 388, 426.

Antiparallels, 65, 66, 69, 376.

Associated circles, 484, 486, 504, 505.

Asymptote, of hypercyclic, 389, 390.

Asymptotic lines, of Rummer sur-

face, 439.

Axis, radical of two circles, 96, 97, 99,

101, 102, 103, 105, 106, 111, 121,

126, 128, 155, 156, 158, 159, 168,

171, 172, 173, 207, 355, 356, 361.

— of circle in space, 315.

Bi-involution, circles in, 314, 315,

34], 449, 450, 451, 455, 466, 473,

481, 492, 501, 512, 516, 517, 542,

579.

Centre, of circle, 20.

— of cyclide, 300.
— of inversion, 22, 23, 24, 26. 27, 30,

111, 223, 337.
— of circumscribed circle, 21. 52, 67,

74, 78, 123.
— of inscribed circle, 54, 55, 56.

Pp2

Centre, of circumscribed sphere, 234,

235
— radical, 96, 100, 107, 171, 173, 175.

186, 233, 239, 242.
— of similitude, 27, 28, 29, 53, 56,

107, 110, 111, 129, 146, 169, 171,

172, 173, 185, 186, 229, 230, 237,
243, 245, 246, 247, 261, 265, 270,

354, 355, 356, 409.
— of gravity of triangle, 53, 55, 56,

57, 60, 65, 77, 83, S4, 95, 106.

tetrahedron, 235, 237, 239.

Chain. 202, 536, 537. 538, 539.— congruence, 471. 472, 473.

Characteristics, Cayleyan, 204.

Chord of circle, 20, 45.

Circle, defined, 20, 129, 130, 189,

284.
— of inversion, 22, 25.— of similitude, 28, 29, 96, 97, 107,

155, 176.— of antisimilitude, 28, 29. 110, 111,

112, 120, 133, 148, 155, 169, 174,

182, 183, 191, 200.
— Nine-point, 40, 41, 44, 52, 53, 56,

57, 59, 60, 94, 100. 101, 107, 113,

121. 122, 123. 238, 247.

— Hart, 43.

— circumscribed, 41. 45, 49, 51, 53.

56, 58, 59, 64, 65,' 77, 87, 88, 89^

95, 113, 115, 116, 117. 118, 127.

— inscribed, 40, 41, 43, 45, 56, 72.

88, 115, 117, 121, 122, 142, 175,

176, 177. 376.
— Tucker, 68, 69, 70. 71, 72, 112, 124,

125.

— cosine, 70.

— triplicate ratio, 71.

— MacKay, 83, 84. 128, 129.

— Neuberg's, 79, 80. 84, 127, 128, 129.

— Taylor's, 71, 72, 73, 74.

— radical, 105, 106. 107. 108, 155.

— P, 55, 56, 57, 102.

— escribed, 40, 53, 116, 181, 182, 376.

— pedal, 49, 50, 52, 69, 107. 123.

— Hagge's, 58.

— Fuhrmann's. 58.

— Brocard's, 58, 83, 125, 126.

— Lemoine's first, 70, 71, 74, 125.

)
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Circle, Lemoine'a second, 66, 70.— proper, defined, 130.

— null, defined, 130, 189, 284.

— osculating, 156, 157, 204, 205, 214,

215, 216, 217, 218, 221, 393, 400,

401, 404.
— fundamental of cyclic, 206, 207,

208, 217, 218, 289.
— polar, with regard to cyclic, 211.

— antipolar with regard to cyclic,

211.
— directrix, of rational cubic series,

513, 514, 515.
— parabolic, 458.
— oriented in plane, defined, 351,

358.

in space, defined, 521, 522.

Class of congruence of circles, 509.

Coaxal circles defined, 98, 154.

— spheres, defined, 242.

Collineations, conformal, 210, 211,

310, 337, 339, 341, 369, 415, 433.

Compass, geometry of, 186, 187, 188.

Complex, of spheres, 275, 277, 503,

504, 582, 583, 591, 592, 593.

linear, 243, 253, 255, 276,

277.

quadratic, 276, 277, 278, 279,

286, 301, 508, 509.

cubic, 279, 280, 281, 282.

developable, 277.

non-developable, 277.

correlative, 277, 278, 582,

583, 590, 591.

polar, 276.
— tangent, 277.

nomothetic, 278.

confocal, 278, 279, 302.

oriented spheres, 428, 429, 433,

440, 441.

linear, 428, 429, 430, 431,

432, 433, 434, 435, 436, 437, 440,

441, 446.

quadratic, 443, 444, 445,

446.
— of circles in space, 462, 494, 508,

509, 550, 551, 586, 589, 590.

linear, 458, 459, 460,

461, 462, 497, 498, 501, 502.
—— conformal, 589, 592,

593.

non-conformal, 589.

pseudo-normal, 590,

591.
— of oriented circles in space, linear,

580, 531.

Concurrent circles, 52, 59, 85-92, 94,

123, 149, 289.— spheres, 240, 241, 247, 262.

Concyclic points, 39, 85-92, 94, 100,

102, 149, 194, 215, 217, 218, 219,

391, 449.

Confocal congruences and com-
plexes. See Congruences and Com-
plexes.

— cyclics, 220, 221, 222, 224, 225.
— cyclides, 302, 303, 304.

Conformally related complexes, 592.

congruences, 584.

Congruence of circles in plane, 160,

161, 332.

quadric, 161, 162, 163,

203.

nomothetic, 163.

confocal, 163, 164, 221.

correlative, 160, 161.

— of oriented circles in plane, 394,

400, 401, 402, 403.

linear, 394, 395,

396, 397, 398, 401, 402, 528.

quadratic, 404, 405,

406.— of circles in space, 463, 468, 494,

506, 509, 515, 516, 550, 553, 571,

574, 584.

focal, 550, 555, 556, 557,

558, 561, 567, 576, 579, 580, 581,

585.
conformal, 574, 584,

586.

normal, 554, 555, 558,

561, 562, 563, 564, 567, 568, 570,

571, 580, 581, 586.

pseudo-normal, 578, 579,

580, 581, 582, 583, 586.

linear, 461, 502, 503,

506, 519.

chain, 470, 471, 472.
— third order, sixth class, 510-15.
— of oriented circles in space, 540,

541, 542.— linear, 532, 533.

— of spheres, 274, 494, 555, 556, 567,

578.

linear, 243, 244, 253, 273,

277, 281, 501, 504, 510.

quadratic, 273, 274, 275.

central, 498, 499, 501.
— of oriented spheres, 432, 437, 438,

439, 442.

Conjugate coaxal systems, 99, 107,

316.— Dupin series, 264, 437.
— chain congruences, 471, 472.

Coordinates, trilinear, 114.

— cartesian, 180, 248.
— special tetracyclic, 130.— general tetracyclic, 140.— of notable points, 123, 124.

— of circle, 130, 134, 188.
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Coordinates, tetrahedral, 248.
— of sphere, 250, 283.— special pentaspherieal, 251, 398.
— general pentaspherieal, 257, 399.— complex, 370, 371.— of oriented circle in plane, 358,

398, 399.
— of oriented sphere, 410, 433, 434.— of circle in space, 475, 476, 477.— Pliicker, 434, 453, 454, 457, 469,

475, 476, 477.
— Klein, 435.
— of oriented circle in space, 522, 523.

Cospherieal circles, 448, 455, 477.— points, 234, 23S, 239, 210, 262.
Coresidual cones, 428.— points, 215, 216.

Coupled circles, 145.— spheres, 261.— ruled surfaces, 438.
Cross, 460, 464-71, 529, 572.
— axial, 460, 467, 491, 492, 493.
Cross ratio, invariant, 23, 228.— for a cyclic, 209, 213, 219, 223, 225.

tetracyclic, 194, 195, 197, 536,
537, 555.

Curvature, line of, on cyclide, 265.

266, 303, 439.

on hypereyelide, 427.

on singular surface of quad-
ratic complex, 444.

Cyclic, 203-25, 262, 275, 288, 289,

291, 292, 295, 304, 391, 392, 405,

412, 428, 531.

Cyclide, 286-305, 404, 405, 406, 439,

443, 446, 461, 472, 474, 484, 497,

509, 518, 530.
— Dupin, 266, 267, 268, 270, 302, 343,

345, 407, 529, 537, 538, 539.— Confocal, 303, 304, 305.

Deferrent, 25, 229.
— of cyclic, 206, 207, 208, 209.— of cyclide, 269, 288, 297, 298, 299,

300.
— of hypercyclic, 387, 388, 390.
— of hypereyelide, 426.

Dekacycle, 534, 535, 545.

Desmic configuration, 231.

Diameter of circle, 20.

Direct circular transformation, 311.

Directrix, of rational cubic series,

513, 514, 515.

Divisors, elementary, 203, 204, 286,

301, 302.

Edge, of tetrahedron, 227.

— line, 227.

Equitangential, 380.

Exactitude, 167.

Face, of tetrahedron, 227.
— plane, 227.

Focal, points on circle, 502, 503.

579.
— surface, for circle congruence, 503,

574.
— curves on cyclide, 288, 304, 305.— double, 299.

of circles, definition, 449.

coordinates, 523.
Foci, of cyclic, 207, 209, 221, 225.

289.

double, 207, 389.

Form, Hermitian, 201.

Groups, of circular transformations,
311, 330-5, 384, 385.— of Laguerre transformations, 369.

370, 383, 384, 385.— of spherical transformations, 340,

348, 349.

Half-line, 19.

Harmonic separation, 23, 194, 199,

227, 314, 323, 327, 377, 391, 424,

580, 590.

Hyperboloid, associated with tetra-

hedron, 235, 237.

Hypercomplex, of circles, 487, 552.

linear, 487-98, 527, 529,

547.— of oriented circles, 526.

linear, 526-30.

Hypercongruence, of circles, 494, 551.

linear, 494-7, 547, 548.
— of oriented circles, 526.

linear, 544.

Hypercyclic, 385-93, 405, 424, 426.

Hypereyelide, 424-8, 443.

Identity, of Frobenius and Darboux,
135-47, 253-61, 3G0, 361, 572.

Invariance, of cross ratio, 23, 228.

— of angles, 24, 135, 228, 253, 310,

311, 338.
— of tangential segment, 356, 366,

369, 370.

Invariant, of circular transformation,

313, 321, 322, 333.
— of Laguerre transformation, 382.

— of four oriented lines, 372, 373,

374.

planes, 420, 421.

— of two linear congruences, 396,

397.— of linear complexes, 430, 459, 460.

hypercomplex, 487.
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Invariant of two circles in space, 457,

460, 478.

Inverse, of centre, 30.

point, 22, 134, 190, 227, 284.

circle, 25, 26, 134, 135, 190,

228.

line, 26.

plane, 228.

sphere, 228, 253, 284.

Inversion, defined, 22, 190, 227, 284.— analytic formulae, 134, 135, 190,

252, 253, 284.
— Laguerre, 355, 356, 360, 376, 378,

383, 387, 388, 389, 390, 391, 397,

409, 416, 423, 424, 428.
— in linear congruence, 397, 398.
—

• in linear complex, 431, 432.

Involution, on a circle, 197, 198, 199,

200, 374, 544, 547, 548.
— Mobius, 316, 317, 319, 320, 324,

327, 328, 329, 342, 345, 346, 347,

378.
•— of oriented lines, 374, 375.
— of linear congruences, 396.
— of linear complexes, 430, 433, 437.

— of circles in space, 449, 455, 466,

474, 477, 482, 485, 497, 501, 502,

504, 506, 507, 508, 511, 520.

Isogonal conjugates, 49, 50, 51, 52,

•59, 62, 86, 107, 123, 232, 233, 234.

Isotropic, defined, 190, 284.

Limiting, points of coaxal circles, 97,

99, 100, 151, 155.

spheres, 242.

Line, defined, 19.

— oriented, defined, 351, 358.
— Simson, 49, 59, 73, 78, 88, 98, 101,

and Addenda.

Notation, explained, 20, 21.

Opposite, oriented circles, 522, 527,

529, 536.

Order of complex of circles, 508.

— of congruence of circles, 509.

Orthocentre, of triangle, 21, 40, 41,

53, 56, 57, 59, 60, 73, 101, 102, 123,

141, 234, 237, 238.
— of tetrahedron, 234, 237, 238,

257.

Orthocyclic points, 100, 194, 314,

421.

Orthogonal circles, analytic condi-

tion, 132, 189.
— crosses, 466, 470.
— spheres, analytic condition, 252,

283.
— system, 239, 257.

Parallel lines, proper defined, 352.

improper, defined, 352.

— planes, proper, defined, 408.

improper, defined, 408.

Parameters, elliptic, 219, 220.

— focal, 557, 561, 563, 567, 577, 579,

580, 585, 586.
— isotropic, 190, 201, 209, 223, 318,

417.

Paratactic lines, 164, 344, 453.

— circles, 344, 451, 456, 467, 4C8, 480,

523, 540-4, 583, 589.
— crosses, 467.

Pentacycle, 482-6, 502, 504, 507, 508,

532, 546.

Pitch, of double spiral, 334.

Plane, defined, 226.
— cartesian, defined, 114.

— tetracyclic, defined, 189.

— half, defined, 227.
— oriented, denned, 408.

— radical, 239, 242, 245, 246, 257,

409.

Point, 19, 189, 283.
— improper, 192, 285.
— Brocard's, CO, 62-8, 74, 86, 123,

124.

— Gergonne's, 53.

— Miquel's, 87, 88, 89, 90, 92, 101,

122.

— Nagel's, 53, 55, 56, 57, 58.

— Steiner's, 77, 78.

— Tarry's, 77, 78, 79.

— symmedian, 65-70, 83, 123.

Polarization, in linear complex, 459,

461, 489, 491, 529.

Polygon, inscribed, 48, 116.

Poristic systems of circles, 31-4.

Power, of point with regard to circle,

defined, 30, 131.

sphere, defined, 230,

252.— of oriented line with regard to

oriented circle, defined, 354, 359.

plane with regard to oriented

sphere, defined, 409, 411.

Projection, minimal, 367, 368, 414.
— orthogonal, of circle on sphere, 479,

492, 493.

Projective ranges, tetracyclic, 197,

198, 199, 200.

Pseudo-conjugate coaxal systems, 161.

Pseudo-cylindroid, 468, 469, 472.

Quadrilateral, inscribed and circum-
scribed, 46, 118.

Quaternion, 343.

Radius, of circle, defined, 20,- 130, 131.

— of inversion, defined, 22.
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Ratio, double, 313, 314, 321, 367, 420.

Reduced hypercomplex, 527, 529,
532.

Reflection, in line, 27, 30, 309, 376,
424.

— in plane, 337, 340, 376, 424.— in hyperplane, 416, 424.

Residual points, 215, 216, 219, 220.— circles, 294.— cones, 428.

Secant, of circle, defined, 20.

Segment, defined, 19.

Series, of circles in plane, 156, 157.

conic, 157, 158, 159,

509.

cubic, 159, 160.

oriented circles in plane, 400,

401, 403.— of spheres, 262, 263, 265, 286, 494.

conic, 263, 264, 270, 301, 495.

Dupin, 264-70, 274. 282. 436,

437, 528, 529.

cubic, 270, 271, 272.

quartic, 272, 273, 512.
— of oriented spheres, 437, 442.— of circles in space, 463, 472, 494,

502, 548, 549.

linear, 506, 507, 508.

rational cubic, 511-14.
— of oriented circles in space, 526.

linear, 534, 535.

Shoemaker's knife, 36.

Side of triangle, defined, 19.

Side-line of triangle, defined, 19.

Similar, three figures, 81, 82. 83.

Simplicity, of geometrical construc-

tion, defined, 167.

Singular, oriented circle of congru-

ence, 403, 405, 406.

— oriented sphere of complex, 441,

443, 444.

— curve, 405, 406.

— surface, 444.

Sphere, defined, 227, 250, 283.

— of inversion, defined, 227.

— of similitude, 230, 244.

— of antisimilitude, 230, 243, 246,

247, 284.
— radical, 233, 245.
— null defined, 254, 283.

— inscribed, equation, 259.

— circumscribed, 234, 235, 239, 240,

241, 250, 254, 258, 262
;— sixteen-point, 234, 247.

— twelve-point, 237, 238, 239, 247.

— singular, of complex, 278.

— polar, with regard to eyclide, 292.

— antipolar, with regard to eyclide,

292.

Sphere, fundamental of eyclide, 287,

290, 292, 297, 299, 301, 303.
— limiting in circle congruence, 574,

575, 576, 579.
— focal, 558, 562, 566, 575, 576, 579.
— central, for linear hypercomplex,

488, 489, 490, 493, 495-8, 501, 504,

505,. 527, 528, 529, 530.
— oriented, defined, 408, 410.

Spiral, double, 321, 334.

Substitution, orthogonal, 140, 337,

342, 343, 349.

Symmedian, 65, 75.

Tangent circles, succession of, 31, 32,

33, 34, 35.

Casey's condition, 37, 38, 39.

Hart systems, 43, 147, 150, 151,
152, 165, 407.

formula, 132, 189.

Apollonian problem, 145, 147,

167-72, 185, 186, 200.

Malfatti's problem, 174-82.

tetracyclic, 1 89.

proper, defined, 352.

improper, defined, 352.
— spheres, formula, 252, 284.

five to a sixth, 259.
• Hart systems, 261, 282, 446.

—— proper, defined, 409.

improper, defined, 409.

Tangential segment of point with
regard to circle, defined, 28.

common to two circles, defined,
28.

Tetrahedron, defined, 227.

Transformation, circle, 306, 307, 308,
335.

— circular, 308-35, 338, 342, 346,

378, 379, 381, 382, 383, 384, 385,

407, 542.
— Cremona, 307, 308, 335, 336.

elliptic, 321, 322, 325, 327, 328,

335, 342, 381, 382, 385.

hyperbolic, 321, 322, 325, 327,

328, 355, 381, 382, 385.

parabolic, 320, 322, 325, 327,

328, 333, 335, 379, 381, 385.

loxodromic, 321, 334, 335, 381,

385.
— Laguerre, in plane, 366, 370, 372,

374-85, 393, 407.

parallel, 381, 384, 385.

elliptic, 381, 382, 385.

hyperbolic, 381, 382, 385.

parabolic, 381, 382, 385.
loxodromic, 381.

in space, 415, 416, 420, 422, 423,
424.
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Transformation, sphere, 336.— spherical, 337-50, 394, 475, 493,
521, 525, 543, 555, 592.

— equilong, in plane, 356, 370, 371,
372.

space, 409, 417, 419, 447.
— line-sphere, 434-8.

Triangle, defined, 19, 49, 127.

— pedal, 48, 49.

— Brocard's first, 75-88, 83, 124.

— Brocai'd's second, 75, 83, 124.

Vertex, of null circle, defined, 189.
— of null sphere, denned, 283.



INDEX OF PROPER NAMES
Affolter, 108.

Allardice, 39.

Araaldi, 330, 348.

Apollonius, 167-72. 185, 200, 375,
593.

Appell and Lacour. 219, 222.

Archimedes, 36.

Author, 94, 132, 133, 154, 157, 164,

172, 210, 262, 274, 344, 360, 407,

419, 435, 436, 438, 452, 464, 465,
46S, 479, 491, 516, 552, 571, 586.

Barrow, 51, 86, 479. 521.

Beck, 191.

Benedetti. See Addenda.
Bianchi, 567.

Blaschke, 370. 373. 3S6, 405, 419, 424,

444.

Bocher, 191.

Bodenmiller, 101.

Bodeustedt, 170.

Boinpiani, 548.

Bonnet, 416.

Bouton, 308.

Bricard, 52. 375, 376.

Brocard. See An^le, Circle, and
Point.

Brornwieh. 204.

Burgess. See Addenda

.

Bfitzberger, 22.

Casey, 37, 44. 112, 114, 116, 259, 289,

297, 375.

Castelnuovo, 496, 497. 498, 510, 513.

Cauehy-Riernann, 371.

Cayley, 204, 270. 349, 351.

Ceva, 29, SI, 876.

Chasles, 29, 101, 205, 315.

Clebsch-Aronkold, 201.

Clebsch-Linderaann, 114.

Clifford, 90, 153, 164. 344.

Codazzi, 569.

Cole, 312.

Cosserat, 490. 498, 508, 548, 5S6.

Cranz, 168, 172.

Cremona, 307, 308, 335, 336.

Darboux, 135, 20S. 222, 253, 291, 293,

299, 303, 309, 33S, 416, 432, 565,

568, 586.

Demartres, 548.

Desargues, 100.

Dixon, 210.

Dohlemann, 262, 306, 312.

Dupin, 266, 303, 432, 583.— See also under Cyclide and Series.

Eisenhart, 553, 562, 567.

Emch, 32.

Emmerich, 60, 79.

Enriques, 186.

Epstein, 353.

Euclid, 593.

Euler, 46, 112, 138.

Fano, 331.

Feuerbach, 39, 41, 52, 247, 376.

Fiedler, 183, 185, 186, 422.

Finsterbusch, 27.

Fonteng, 41, 52, 123.

Forbes, 457, 459.

Frobenius. See Identity.

Fuortes, 90.

Fuhrmann, 58.

G, 123.

Gauss, 101, 313, 314. 318, 536, 537.

Gerard, 172.

Gergonne, 53, 171, 172, 186, 247.

Grace, 92.

Grebe, 65.

Greiner, 59.

Griinwald, 370.

Hadamard, 26S.

Hagge, 5S, 90. 102.

Hamilton, 343.

Hart, 43, 175, 176, 182.
— See also Tangent Circles and Tan-
gent Spheres.

Heath, 36.

Hermite, 201.

Humbert, 20S. 300.

Intrigila, 234, 240.

Jessop, 212, 439, 444, 503.

JoachimsthaJ, 265, 269, 432.

Kantor, 59, 90, 92.

Kasner, 201. 204, 210.

Kempe, 22.

Killing-Hovestadt, 16S.

Klein, 330, 400.
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Klein-Fricke, 330.

Koenigs, 437, 479, 502.

Kummer, 439, 444, 515, 571, 586, 593.

Lachlan, 39, 59, 135, 150, 151, 220,

253
Laguerre, 224, 353, 355, 375, 386, 535.

— See also under Inversion and Trans-
formation.

Larmor, 150.

Leibnitz, 65.

Lemoine, 65, 166, 168.

— See also Circle.

Lewis, 422.

Lie, 394, 415, 434, 440.

Lie-Engel, 348.

LieScheffers, 330, 332, 367.

Liouville, 338.

L6hrl, 419.

de Longchamps. See Addenda.
Lorenz, 422.

Loria, 162, 276, 287.

McCleland, 81, 84, 86, 101.

MaeKay, 83, 84, 128, 129, and Errata.

Malfatti, 174, 175, 177, 179, 180, 182,

247, 282.

Malus-Dupin, 583.

Mannheim, 122.

Mascheroni, 186.

Menelaus, 29, 54.

Mertens, 177.

Mesuret, 494.

Miquel, 85, 87-90, 101, 122.

Mobius, 27, 309, 313, 315.
— See also Involution.
Molenbroek, 535.

Monge, 338, 438.

Moore, 443, 458.

Morley, 153.

Moutard, 24.

Muller, 183, 262, 359, 361, 424.

Nagel, 53, 55, 56, 57.

Netto, 349.

Neuberg, 79, 80, 84, 127, 128, 129,

233, 247.

Newson, 334, 335.

NSther, 154, 215, 401.

Orr, 149.

Page, 415.

Fampuch, 180.

Pascal, 349.

Peaucellier, 22.

Peschka, 262.

Pesci, 92, 153.

Picquet, 27.

Pliicker, 177, 215, 364, 406.

Pliicker. See Coordinates.

Poncelet, 105.

Prouhet, 237.

Ptolemy, 38, 138, 315.

Ranum, 548.

Eeusch, 172.

Eeye, 243, 262, 274, 276, 279.

Ribaucour, 554, 555, 561, 586.

Richmond, 484, 508.

Roberts, 107, 226, 233, 240.

Rodrigues, 568.

Salmon, 204, 248, 256.

Saltel, 215.

Sawayama, 39, and Addenda.
Scheffers, 367, 370.

Schellbach, 177.

Schlafli, 514.

Schoute, 127.

Schroter, 177, 217.

Schubert, 261.

Segre, 287, 481, 506, 551.

Simon, 36, 46, 167, 174.

Simson. See Line and Addenda.
Smith, 397, 424, 431, 432, 433, 444,

446.

Snyder, 400, 435, 444.

Sobotka, 396.

Spieker, 53.

Standen, 348.

Steiner, 31, 32, 34, 35, 77, 78, 173,

175, 176, 177, 179, 182, 232.

Stephanos, 231, 475, 482, 484, 487.

Study, 142, 147, 152, 195, 196, 326,

384, 419, 436, 465.

Sturm, 306.

Swift, 309.

Tarry, 77, 78, 79.

Tauberth, 159.

Taylor, 31, 32, 71, 72. 73.

ThSbault, 113.

Thompson, 22.

Timerding, 159, 262, 272.

Tucker, 68-73, 112, 124.

Vahlen, 31, 33, 232.

Vigari6, 61.

Von Staudt, 199, 202.

Von Weber, 319, 326.

Weber, 224.

Weber-Wellstein, 165.

Weierstrass, 203.

Weill, 105.

WeitzenbOck, 484, 485, 508.

Whitworth, 114.

Wiener, 199, 319, 323, 378.

Wilson , 422.



ERRATA AND ADDENDA
P. 37. In problems dealing with four circles tangent to a fifth, a straight

line and a point must be treated as limiting forms of circles.

P. 39, note. For Swayama read Sawavama^
P. 83. Here, and later, the name MacKay should be spelt McCay. The

Author stupidly confused the names of two different writers on elementary
properties of circles.

P. 92. Theorem 164]. The credit for discovering this is, apparently, due to

de Longchamps. See his 'Note de geomfitrie', NouveUes correspondances de

mathematigues, vol. iii, 1887, pp. 306 ff.

P. 94. Theorem 165]. This is contained implicitly in an elaborate theorem
due to Burgess, 'Theorems connected with Simson's Line', Proceedings Edin-

burgh Math. Soc, vol. xxiv, 1906, p. 126.

P. 1 13. Theorem 222]. For side read side lines.

P. 143. ' The condition that there should be a real circle,' &c. This holds

only in the case where the given circles have non-collinear centres. When
the centres are collinear, the second factor of the left-hand side of the equation

at the bottom of the page, which is stated, p. 144, to be negative, is zero.

Conversely, suppose that three real circles are cut at preassigned real angles

by a circle with real radius and imaginary centre. They will meet the circle

with the same real radius and conjugate imaginary centre at the same real

angles, and so have collinear centres.

P. 165, second note. The proof here suggested is invalid.

P. 167. ' Let us begin by examining,' &c. See remark above about P. 143.

P. 221, line 3. For - *§ read - g-
o o

P. 328. Theorems 30] and 31], The conditions given in these theorems

that two circular transformations should be commutative, are necessary but

not sufficient. A hyperbolic or elliptic indirect transformation will be com-

mutative with a system of real ones depending on one real parameter. See

Benedetti, ' Sulla teoria delle forme iperalgebriche ', Annali della R. Scucla

Normale di Pisa, vol. viii, 1899, p. 62.
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