
	
  

Early	
  Journal	
  Content	
  on	
  JSTOR,	
  Free	
  to	
  Anyone	
  in	
  the	
  World	
  

This	
  article	
  is	
  one	
  of	
  nearly	
  500,000	
  scholarly	
  works	
  digitized	
  and	
  made	
  freely	
  available	
  to	
  everyone	
  in	
  
the	
  world	
  by	
  JSTOR.	
  	
  

Known	
  as	
  the	
  Early	
  Journal	
  Content,	
  this	
  set	
  of	
  works	
  include	
  research	
  articles,	
  news,	
  letters,	
  and	
  other	
  
writings	
  published	
  in	
  more	
  than	
  200	
  of	
  the	
  oldest	
  leading	
  academic	
  journals.	
  The	
  works	
  date	
  from	
  the	
  
mid-­‐seventeenth	
  to	
  the	
  early	
  twentieth	
  centuries.	
  	
  

	
  We	
  encourage	
  people	
  to	
  read	
  and	
  share	
  the	
  Early	
  Journal	
  Content	
  openly	
  and	
  to	
  tell	
  others	
  that	
  this	
  
resource	
  exists.	
  	
  People	
  may	
  post	
  this	
  content	
  online	
  or	
  redistribute	
  in	
  any	
  way	
  for	
  non-­‐commercial	
  
purposes.	
  

Read	
  more	
  about	
  Early	
  Journal	
  Content	
  at	
  http://about.jstor.org/participate-­‐jstor/individuals/early-­‐
journal-­‐content.	
  	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

JSTOR	
  is	
  a	
  digital	
  library	
  of	
  academic	
  journals,	
  books,	
  and	
  primary	
  source	
  objects.	
  JSTOR	
  helps	
  people	
  
discover,	
  use,	
  and	
  build	
  upon	
  a	
  wide	
  range	
  of	
  content	
  through	
  a	
  powerful	
  research	
  and	
  teaching	
  
platform,	
  and	
  preserves	
  this	
  content	
  for	
  future	
  generations.	
  JSTOR	
  is	
  part	
  of	
  ITHAKA,	
  a	
  not-­‐for-­‐profit	
  
organization	
  that	
  also	
  includes	
  Ithaka	
  S+R	
  and	
  Portico.	
  For	
  more	
  information	
  about	
  JSTOR,	
  please	
  
contact	
  support@jstor.org.	
  



RATIO, PROPORTION AND MEASUREMENT IN THE ELEMENTS 
OF EUCLID. 

BY HENRY B. FINE. 

The following note is concerned with a few of the definitions and 
theorems of the fifth, sixth, seventh and tenth books of the Elements of 
Euclid, all of them relating to the theory of measurement, ratio and pro- 
portion. The fifth book, it may be explained, is devoted to the theory of 
ratio and proportion of magnitudes in general and the sixth to the appli- 
cations of this theory in plane geometry, the seventh is the first of Euclid's 
three arithmetical books, and the tenth an elaborate treatise on incom- 
mensurable magnitudes. 

According to tradition it was Pythagoras who first proved that the 
side and diagonal of a square are incommensurable. The early discovery 
of incommensurability had important consequences for the Greek mathe- 
matics. It revealed the fact that the theory of proportion of numbers 
and other commensurables already known to the Pythagoreans was 
inadequate for geometry and led to the invention of a general theory- 
that of Euclid's fifth book-which is independent of commensurability, 
and, as a consequence of this, to the complete exclusion of the notion of 
numerical measurement from the Greek geometry. But it also started 
investigations which resulted in the development of the doctrine of in- 
commensurable magnitudes-chiefly line segments and rectangles cor- 
responding to quadratic irrationalities-into a department of mathe- 
matics coordinate with arithmetic and geometry. The commentator 
Proclus attributes the general theory of proportion to Eudoxus and much 
of the doctrine of incommensurables to Theaetetus. Both lived in the 
century before Euclid (the fourth century B.C.). 

Both of the above mentioned theories of proportion are contained in 
Euclid's Elements. The general theory is that presented in the fifth book 
and applied in the subsequent geometrical books. The older theory is 
developed in the seventh book as a theory for numbers but is used in 
the tenth book as applicable to all classes of commensurables. There is 
no intimation that this theory is included in the other. It is character- 
istic of both theories, as Euclid presents them, that they are based on a 
definition not of ratio but of proportion. 

It may be added that the number system of Euclid is restricted to 
70 
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the cardinal numbers. He defines a number as a " multitude composed 
of units." In the proofs of the theorems in the arithmetical books 
numbers are represented by line segments in the same way that mag- 
nitudes in general are represented in the fifth and tenth books. The 
association of the notion of geometric magnitude with number is seen 
also in the characterization of numbers as plane, solid, similar, square, 
cube, and in modes of expression often used in proofs of theorems. 

The seventh book begins by showing that if any two numbers be given 
they may be proved prime to one another, or their greatest common 
divisor be found, by the process which we now call the Euclidean method. 
From this result the conclusion is drawn that any given number is a 
definite determinable multiple, part, or " parts" (multiple of a part) of 
any other given number, and the theory of proportion of numbers is then 
developed on the basis of the definition: 

Numbers are proportional when the first is the same multiple, part, or 
parts of the second that the third is of the fourth. 

By thus basing the theory on the equality of ratios instead of ratio 
itself, the Greeks were enabled to discuss the fractional relation without 
the use of the fraction. 

The tenth book opens with the theorem: 
If from the greater of two given magnitudes of the same kind there be taken 

its half or more, from the remainder its half or more, and so on, a remainder 
will at length be reached which is less than the smaller of the two given magni- 
tudes (X, 1). 

Special interest attaches to this theorem as being that on which the 
method of exhaustions is based. The theorem itself and the assumption 
on which its proof is made to depend-the so-called " Axiom of Ar- 
chimedes," that of the smaller of two given magnitudes of the same kind 
a multiple can be found which will exceed the greater-are probably both 
due to Eudoxus, for Archimedes attributes the method of exhaustions 
to this mathematician. Next comes the fundamental theorem: 

Let A and B denote two unequal magnitudes of the same kind, of which 
A is the greater. Suppose B to be repeatedly subtracted from A until a 
remainder R1 is found which is less than B, then R1 to be repeatedly subtracted 
from B until a remainder R2 is found which is less than R1, and so on. If, 
however far this process may be carried, a remainder will never be found which 
is contained exactly in the remainder immediately preceding it, then the mag- 
nitudes A and B are incommensurable (X, 2). 

The proof may be summarized thus: If A and B have any common 
measure, let it be E. Then E will also be a measure of all the remainders 
R1, R2, * a .. But R1 is less than half of A, R3 less than half of R1 and so 
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on, and similarly R2 is less than half of B, R4 less than half of R2, and so 
on. Hence, by the preceding theorem, all the remainders after a certain 
one will be less than E and cannot therefore be measured by E. The 
theorem follows from this contradiction. 

From the proof of this theorem it follows that: If on the contrary the 
magnitudes A and B are such that the process above described when applied 
to them will ultimately yield a remainder Rn which is exactly contained in 
that immediately preceding it, then A and B are commensurable and Rn 
is their greatest common measure (X, 3). 

A basis is thus secured for the proof of the following theorem, which 
in the rest of the tenth book plays the role of a working definition of 
commensurable magnitudes: 

Commensurable magnitudes have to one another the ratio which a number 
has to a number (X, 5). 

The proof is this: If A and B denote the magnitudes and D their 
greatest common measure, we shall have A = aD and B = bD, where 
a and b are integers. Therefore, by the definition of proportion above 
given (here assumed by Euclid as a definition for commensurable magni- 
tudes in general), A : D :: a 1 and D: B :: 1: b. Hence (VII, 14) 
A :B ::a :b. 

One more proposition of this book, a consequence of that just proved, 
may be cited, the substance of which is that: The squares on com- 
mensurable line segments have to one another the ratio which a square 
number has to a square number; and therefore line segments the squares on 
which have not such a ratio are incommensurable (X, 9). It is attributed to 
Theaetetus and is of interest as being the generalization of the theorem 
that the side and diagonal of a square are incommensurable, in which this 
entire doctrine had its origin, and as being the first proof of the actual 
existence of incommensurables which occurs in Euclid's Elements. 

One who examines Euclid's presentation of this theory of proportion 
can but be impressed by the care he takes before applying his definition 
to provide a general test-the method of greatest common measure-for 
actually determining for any given numbers or other commensurables 
whether or not they satisfy its conditions. One is reminded of the dictum 
of Kronecker that no mathematical definition can be regarded as resting 
on a secure foundation unless means are at hand for determining by a 
finite number of steps whether any given object conforms to it or not. 
This was the Greek doctrine of mathematical definition. Aristotle says: 
" In geometry the existence of points and lines is assumed, the existence 
of everything else must be proved, and nothing may be legitimately used 
whose existence has not been proved." It is for this reason also that 
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Euclid was at such pains to avoid hypothetical constructions in his geo- 
metric books. 

Let us now turn to the general theory of proportion of the fifth book. 
The significant definitions of the book are these: * 

DEFINITION 3. A ratio is a sort of relation in respect of size between 
two magnitudes of the same kind. 

DEFINITION 4. Magnitudes are said to have a ratio to one another which 
are capable when multiplied of exceeding one another. 

DEFINITION 5. Let A, B, X, Y be four magnitudes, A of the same 
kind as B, X of the same kind as Y. If for all integral values of m and n 
t be the case that according as mA 2 nB, so also is mX 2 nY, then A is 
said to be in the same ratio to B as X to Y. 

DEFINITION 6. Four magnitudes A, B, X, Y related as in Definition 5 
are called proportional. 

DEFINITION 7. If (in the notation of Definition 5) m and n can be 
found such that mA > nB but mX > nY, then A is said to have a greater 
ratio to B than X has to Y. 

Here, as in the case of the earlier or arithmetical theory just con- 
sidered, there is no explicit definition of ratio. Definition 3 is merely a 
vague indication of the sort of thing that ratio is and Definition 4 is equiv- 
alent to a statement that ratio exists between any two " magnitudes ' 
for which the axiom of Archimedes (Eudoxus) above cited holds good. 
But a very definite notion of ratio is implied in the definition of proportion. 
For according to Definition 5 the condition that A, B, X,, Y be proportional 
is this: If the multiples A, 2A, 3A, ... and B, 2B, 3B, ... be supposed 
arranged in a single sequence in the order of size, and so likewise the 
multiples X, 2X, 3X, ... and Y, 2 Y, 3 Y, ..., the law of distribution of 
the multiples of A among those of B must be the same as that of the 
multiples of X among those of Y. Hence the " sameness " of the ratios 
A : B and X: Y means the sameness of these two laws of distribution, 
and the ratio A : B itself means that size relation between A and B which 
is indicated by the manner in which the multiples of A are distributed 
among those of B. A single ratio does not admit of representation in 
finite terms. But for a theory of proportion and an abstract theory of 
ratio in general the representation of single ratios is not requisite. Sound 
and applicable definitions of the relations of equality and greater and lesser 
inequality for ratios are all that is needed. These are provided in Defi- 
nitions 5 and 7. That in brief is the point of view which this scheme of 
definitions implies. 

* I have quoted Definitions 3, 4 from Heath's Euclid, vol. 2, p. 114, and have paraphrased 
Definitions 5-7. 
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For synthetic geometry no simpler or more elegant definition of pro- 
portion than Definition 5 can be desired. Thus, consider Euclid's proof 
of the theorem that: Triangles which have the same altitude are to one 
another as their bases (VI, 1). If T1, T2 be the triangles and bi, b2 their bases, 
and any multiples of bi, b2 be taken, say mb1, nb2, and the corresponding 
multiples of T1, T2, namely mTj, nT2, it follows from the simplest geo- 
metrical considerations that according as mb1 2 nb2 so also is mT1 2 nT2. 
Hence b1: b2 :: T,: T2. 

The mention of a few of the theorems of Book V will suffice to show 
how Euclid deduces the properties of proportions and the elements of an 
abstract theory of ratio from his definitions.* 

THEOREMS 7-10. According as A 2 B so also is A: C B: C and 
C: A =C: B; and conversely. 

Thus, if A > B, then A :C > B:C. For takem so that m(A-B) > C 
and mB > C (Definition 4). Next take n so that (n - 1)C c mB < nC. 
Then mA > nC but mB < nC. Hence A: C > B: C (Definition 7). 

THEOREM 11. If A :B ::K :L and K :L ::X: Y, then A :B ::X: Y. 
For, by Definition 5, according as mA 2 nB, so also is mK 2 nL and 

therefore mX 2 nY. Hence A :B ::X: Y. 
THEOREM13. IfA:B::K:LandK:L>X:Y,thenA:B>X:Y. 
For, by Definitions 7, 5, m and n can be so chosen that mK > nL 

but mX > nY, and therefore that mA > nB but mX > nY. Hence 
A :B > X :Y. 

THEOREM 16. If A, B, C, D are of the same kind, and A: B :: C: D, 
then, " alternately," A : C :: B : D. 

For it readily follows from Definition 5 that mA : mB :: nC: nD. 
By Theorems 7-10, 11, 13, according as mA 2 nC, so also is mA: mB 
2nC: mB, . . nC: nD nC: mB, .mB nD. Hence A: C:: B:D 
(Definition 5). 

THEORuM 18. If A :B ::X: Y, then A + B :B ::X + Y: Y. 
For if m n, then m(A + B) > nB and m(X + Y) > nY. If m < n, 

then, according as m(A + B) 2 nB, so also is mA 2 (n - m)B, 
mX 2 (n - m)Y, .s. m(X + Y) 2 nY. Hence, by Definition 5, 

A + B :B ::X + Y : Y. 
THEOREM 22. If A B :: X: Y and B: C :: Y: Z, then " ex aequali" 

A :C ::X :Z. 
For it readily follows from Definition 5 that mA : nB:: mX: n Y and 

nB:pC::nY:pZ. According as mA 2 pC, so also is mA:nB 2 pC:nB, 
..mX: nY pZ: nY, .:. mX pZ. Hence A: C :: X: Z. 

* Euclid represents the magnitudes and their multiples by line segments. In other respects 
the proofs as here stated, except that of Theorem 18, are substantially as Euclid gives them. 
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THEOREM 24. If both A: C :: :Z and B: C :: Y: Z, then also 
A +B :C ::X+ Y:Z. 
ForsinceA :C ::X :ZandC :B ::Z Y(Definition5),wehaveA :B ::X:Y, 
..A + B:B::X + Y: Y, . A + B:C::X + Y:Z(Theorems 18, 22). 

Theorem 22 implies a definition of the product of the two ratios 
A: B and B C, and Theorem 24 a definition of the sum of the two ratios 
A : C and B C, in the same sense that Definition 5 implies a definition 
of ratio itself. The Greeks called A : C the ratio " compounded " of the 
ratios A: B and B: C or of any two ratios equal to these. Thus in VI, 
23, Euclid proves that: Equiangular parallelograms have to one another the 
ratio compounded of the ratios of their sides. 

There is a close relationship between the notion of the ratio of two 
incommensurables implied in Definition 5 and the irrational number as 
defined by Dedekind. The essential element in Definition 5 is the recog- 
nition of the fact that when A and B are incommensurable a definition 
of the ratio A : B involves the comparison of mA and nB for all pairs of 
positive integral values of m and n, and the separation of these pairs into 
two classes, the class (m1, n1) for which m1A > n1B and the class (M2, n2) 
for which m2A < n2B. This separation of all integral pairs (m, n) into 
the two classes (m1, n1) and (M2, n2) is identical with the Dedekind cut 
defining the irrational number which expresses the ratio A : B. More- 
over Euclid was in possession of everything needed to give the notion of 
this cut the same expression in terms of the ratios ni : m1 and n2 : M2 
that the Dedekind definition would give it in terms of the fractions 
ni/mi and n2/m2. For since m1A > n1B and m2A < n2B, we have m1n2 
> nlm2 and therefore ni : ml < n2 : M2, by Definition 7. Furthermore, 
by what is contained in the proof of X, 2, cited above, if any particular 
pair m1', n1' be assigned, another pair m1, n1 can be found such that 
m1'A - n1'B > m1A - n1B and n1 > n1' and therefore such that 
ni(mi'A - ni'B) > ni'(mA - nlB), or nim1' > ni'm1, or n1 :m1 > n1' :m1' 
(Definition 7); hence there is no greatest n1 : mi. And similarly there is 
no least n2: M2. Hence, had Euclid created numbers to correspond to his 
ratios ni : ml and n2 : M2, he would have been in a position to create an 
irrational number to correspond to the ratio A : B and to define this 
number ordinally with respect to the numbers ni : m1 and n2 : m2 quite 
after the manner of Dedekind. 

Since the natural numbers are included among the ratios n : m, and 
since n1 : m1 < A : B < n2 : m2 (as readily follows from Definition 7), 
the system of ratios, commensurable and incommensurable, as defined 
by Euclid, is in fact a part of the system of real numbers as we define that 
system, a part which becomes identical with the whole when the postulate 
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is made that for every Dedekind cut there exists a pair of magnitudes 
A and B which will yield this cut in the manner above described (Cantor's 
axiom). Of course, Euclid had no such conception of his ratios; even 
the concept of n: m as a single number was foreign to him. 

It was merely as useful symbols in algebraic reckoning and without 
definition that irrational numbers first made their way into mathematics. 
The irrational was not defined until the renascence in mathematics of 
the fine critical insight possessed by the Greeks. The basis of sound 
definition was then found in notions already familiar to Eudoxus and 
Euclid. 

Euclid avoids the fraction and the irrational by basing his theory 
of proportion upon the equality of ratios instead of ratio itself, and his 
definition is in terms of the indeterminate integral multipliers m and n. 
One who has read the writings of Kronecker-as extreme a purist with 
respect to number as the Greeks themselves-will notice an interesting 
parallelism between this procedure of Euclid and the way of escape from 
algebraic numbers found by Kronecker in the use of congruences involving 
indeterminates.* 

The importance of the role which this general theory of proportion 
played in the Greek mathematics is not easily overstated. It was the 
key to the solution of the problem set by the discovery of incommensur- 
ability, the creation of a theory of geometric magnitude independent of 
the notion of numerical measurement. But it was also the instrument 
which for the Greek geometers served the purposes which are served for 
us by an algebraic algorithm and the equation. It was an unwieldy in- 
strument but they developed great power in the use of it, as is shown for 
example in Euclid's geometric treatment of the quadratic (VI, 27-29) 
and in his discussion and classification of binomial line segments corre- 
sponding to quadratic irrationalities in the tenth book, but more strikingly 
still in the Conics of Apollonius. 

PRINCETON, N. J. 
* L. Kronecker Ueber den Zahlbegriff. Journal fur die reine und ange wandte Mathematik 

Band 101. 
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