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PREFACE.

THE present work is the result of long meditations and of an
earnest search for truth. A conviction that truth in mathe-
matics must be absolute, not admitting of any compromises,
and an inmost feeling that Nature is not deceiving us and that
She reveals Herself to us in Her true appearance, unmutilated
by false logic, have guided me in my endeavors to solve one of
the hardest mathematical problems, so intimately connected
with the problem of the origin of our ideas,— namely, the
problem of the Foundations of Geometry. These meditations
were finally written up, in April, 1899, at the prompting of
my excellent and highly esteemed friend and benefactor, Dr.
Fabian Franklin, formerly Professor of Mathematics in the
Johns Hopkins University, to whom I have availed myself of
the present opportunity of expressing my gratitude, by inscrib-
ing this work to him.

Another name I ought to mention with gratitude is that of
Dr. Alexander 8. Chessin, Professor of Mathematics in Wash-
ington University, who was the first to appreciate the value of
this work and to talk to me unreservedly about it, and also to
urge me to use it as a thesis for the Ph.D. degree.

And, finally, I owe a duty of gratefulness to my distinguished
professor, Dr. Frank Morley, for his guidance in the work of
reading up the literature of the subject, for discussing with me
points of difficulty in the literature, and also for allowing me to
present some of my theorems before the conference of the
mathematical seminary of the university, where the general
discussion by the audience helped me in improving the mode
of presentation of these theorems. To this discussion I owe,
in particular, the analytical presentation of my proof that, with
the point as its element, space must be three-dimensional. The
whole of the Introduction was undertaken and carried out, dur-
ing the academic year of 1900-1901, at the suggestion and under
the direction of Professor Morley, and it is intended as a critical
review of some of the most important results obtained by modern
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-mathematicians in the subject (Riemann, Beltrami, Lie and
Poincaré), so that in the light of these an adequate estimate of
the results achieved in this Dissertation might become possible.

And last, but not least, my thanks are due to Professor
Edwin R. A. Seligman and Professor Felix Adler of Columbia
University for the generous interest they have taken in the
publication of my work in full ; and also to Mr. Isador Goetz,
A.B,, of New York City, for his valuable assistance in the re-
vigion of the proof-sheets, and to the gentlemen of The New
Era Printing Company for the care and efficiency with which
the printing of this volume has been executed.

130 HENRY STREET, NEW YORK CITY,
November, 1903,
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INTRODUCTION.

A SURVEY OF THE MOST IMPORTANT VIEWS OF MODERN MATHE-
MATICIANS ON THE FOUNDATIONS OF GEOMETRY.

Both mathematicians and philosophers at present agree that —
although the science of mathematics as a whole is undoubtedly
the most exact of sciences, one of her most important branches,
at once the oldest and the most fascinating, namely geome-
try, has to some extent lost in its prestige and can no longer be
quoted by epistemologists as the prototype of purely deductive,
a priori science, and as a proof of the existence of certain in-
nate ideas, having a purely transcendental origin, wholly inde-
pendent of experience and partly conditioning it. This change
of view upon geometry has taken place during the past cen-
tury of all-pervading doubt and criticism, and, strange to say,
it did not originate with men outside the profession of mathe-
matics, but with those who had the greatest interest in pre-
serving her sanctity, in keeping up the halo of her alleged
transcendental origin. The very priests who worship at her
shrine, the greatest mathematicians who contributed most to
her fabulous growth and development in the nineteenth cen-
tury, — Gauss, Riemann, Helmholtz, Beltrami, and Clifford
among the immortal dead, and many prominent names still
among us,— have done most to cause this change. At present,
it is almost regarded as a heresy to attempt to restore some of
the old prestige to the science which was considered by the
Greeks to be the prototype of all science and all philosophy.

All this change of view has occurred, of course, not with re-
gard to the method employed by geometry, the soundness and
legitimacy of which have never been seriously doubted, but with
regard to the very foundations upon which geometry rests. It
is the body of axioms and postulates, the definitions and common
notions, — propositions and assumptions, both implicit and ex-
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plicit, which had, for a very long time, been considered as self-
evident, intuitive,and independent of all elaborate proof,— prop-
ositions that need only be stated in order to elicit unconditional
consent, — it is this body of, so-called, self-evident truths which
at present are questioned and doubted, and by many relegated
to the realm of empiricism, true only with a certain degree of
approximation, and capable of being modified in an infinity of
ways and, hence, of giving rise to a corresponding multitude of
geometries, each consistent in itself but in contradiction with
the others, each as perfect in theory as any other, and all very
nearly agreeing with our limited experience.* It is, however,
admitted on all sides, that the old system, namely, the Euclidian
system, more than all others, seems to agree with the results of
our experience, as far as this last goes ; and if we were able to
extend our, experience considerably beyond the limits of the
fixed stars, and if even then we should find its norms to remain
unaltered and not needing revision, it would to a certain extent
prove the physical reality of the Euclidian geometry and the
unreality of the other systems, although the others would still
be theoretically admissible and would form a body of imaginary
geometries.

Now, this is rather a peculiar state of the geometrical science,
singular in its kind. For, while in other branches of science
two contradictory systems of thought would hardly be allowed
to stand side by side, both claiming to represent the truth simul-
taneously, — while, for instance, the Ptolemaic and Copernican
systems of astronomy could not avowedly coexist — the latter
having superseded the former as soon as it was found to agree
better with astronomical observations and with the abstract
laws of mechanics, — while no quarter was given to the Aristo-
telian theory of the fixity of species by the new evolutionary
systems of Lamarck and Darwin, or to the ancient doctrine
of the Four Elements by modern chemistry and physics, — the
contradictory systems of geometry, according to some mathe-
maticians of note, could be allowed to stand together, side by
side, and be of equal theoretical (if not practical) value and
importance. So, for instance, F'. Klein, in his memoirs in the

* Professor F. Klein in many places in his memoirs on the non-Euclidian
geometry, Math. Ann., Bd. IV, VI, XXXVII, and in his *‘ Nicht-Euklidische
Geometrie,’’ lithographed impression, Gott., 1893, foreibly presents and de-
fends this opinion. See lithogr. lectures, I, pp. 208-365; Math. Ann.,
XXXVII, p. 570.
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Mathematische Annalen, vols. 4, 6, 7 and 37, and in his “ Nicht-
Euklidische Geometrie,” second impression, Gottingen, 1893,
develops from the projective point of view three systems of
geometry, — the Elliptic, the Hyperbolic, and the Parabolic
systems (which in broad features had been drawn already by
Riemann), corresponding to the three possible hypotheses which
can be made concerning our space, namely, as possessing con-
stant positive, negative, or zero, curvature.

Giving no theoretical preference to any of these systems, he
even goes so far as to think that the question, whether one
of these systems is to be preferred as expressing the real rela-
tions of our space, is unanswerable, since by allowing the
radius of curvature to be sufficiently great, the elliptic or hy-
perbolic geometry would give results approximating, with as
great a degree of accuracy as we please, to the results obtain-
able by the most exact measurements, performed with the most
powerful telescopes upon distances such as are involved in
the determination of the annual parallax of a fixed star. He
prefers the parabolic geometry, however, on account of its pre-
senting the simplest hypothesis in the theory of measurement.
So he says in his lectures on the non-Euclidian geometry,
referred to above, first part, page 277:* ¢There is, how-
ever, on the other hand, no lack of enthusiasts, who do not
answer the question in the way we have done, by asserting that
to our conception and experience of space could with sufficient
precision correspond alike the hyperbolic or the elliptic, as well as
the parabolic system of measurement, and that we decide in
favor of the parabolic, solely on account of its offering the
simplest hypothesis (just as in physics, among hypotheses of
equal probability, the simplest is always allowed to prevail).”
Each of these geometries, according to Klein, in another place in
the same work (p. 295), admits of an infinity of different space-
forms, — in which respect he differs from Killing, who thinks
that only in case of the elliptic geometry an infinite variety of
space-forms — Raumformen —is possible. He says: ¢ We thus
expressly contradict the remark of Killing that in case of the
hyperbolic or parabolic metrics there exists the possibility only
of one space-form ; we say, on the contrary, that also in these
cages there exists an infinity of space-forms.”” — It has come to

*See also pp. 161-170 of same work, where this idea is presented with
especial force and elegance. .
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pass, indeed, that some mathematicians are vying with one
another in devising new space-forms, as they call them, for
which new systems of geometry are supposed to hold. Clif-
ford, Klein, Lindemann, Killing, and others have contributed
much to this field of investigation. The enumeration and de-
scription of some of these geometries would lead us too far,
and the reader interested is referred to the numerous memoirs
in the Math. Ann. and in Crellés Journal and to separate
books and reprints from mathematical and philosophical peri-
odicals, which have appeared since the beginning of the seven-
ties up to the end of the past century.

It may, however, be said without exaggeration, that most of
these space-forms impress the reader rather with the ingenuity
of their inventors than with their actual value in bearing upon
the question of the foundations of geometry. There seems to
be rather too much license given to the imaginative faculty of
the human mind ; and while the origin of almost all investiga-
tions of this nature is to be sought in the impetus given to the
non-Euclidian geometry by the deep-searching criticism of
Riemann’s inaugural dissertation on the foundations of geome-
try,*—— where, it may be said, he formulated questions without
giving final answers to some of them,—the new systems devised
hardly ever carry conviction with them, and it may be stated
as a certainty, that many of them would not stand a scrutiniz-
ing criticism and would have to be relegated to the realm of
fancy rather than be classed with such an exact science as
mathematics. To quote an instance, the elliptic space, i. e., one
of positive curvature with two geodesics meeting only in one
point, described by Klein, Lindemann 1 and Killing,} is one of
such systems. Beltrami in his “Teoria fondamentale degli
spazii di curvatura costante’’ § makes the express statement
that any two geodesics in a space of positive curvature meet in
two antipodal points, through which a whole pencil of (an

# ¢ Ueber die Hypothesen, welche der Geometrie zu Grunde liegen,’’
Math. Werke, pp. 2564-269. It was not intended for publication by the
author in the form it appeared after his death in the Gottinger Abhand-
lungen. See *‘ Nioht-Euklid.,” I, p. 206 ; Lie, *‘ Transformationsgruppen,’’
1II, pp. 485-4886.

1 Clebsch, Vorlesungen iiber Geometrie, t. II.

i Crelle, t. 86, p. 72.

§ Annali di Matematica, ser. 2, II, 1868 (The French translation of this
work of Beltrami and also of his famous *‘ Saggio,”’ by Hoiiel, appeared in
the Jour. de I’ Ecole Normale, t. VI).
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infinity of ) similar geodesics must pass; and to this statement
Klein takes exception in his ¢ Nicht-Euklid. Geometrie,” pp.
240-242 and in other places of the same work, and in the Math.
Ann., t. 6, p. 125 and t. 37, p. 5564 et seq. Another instance
is the spiral space-form, in which a rotation of a rigid body is
accompanied by an increase or decrease in its volume, so that
by a continuous rotation about a fixed point, any arbitrarily
chosen body can be made to enclose any given point of space,
and by an inverse rotation the body can be made to shrink
down to an arbitrarily small portion of space around the fixed
point. (Killing, “Ueber die Grundlagen der Geometrie,”
Crelle’s Jour., t. 109, 1891, pp. 185-266).

There are, however, other mathematicians, who,—agreeing in
the main that the foundations of geometry have thus far not
been laid down with any degree of certitude and that they are,
therefore, open to considerable differences of opinion, — think,
nevertheless, that there ought to be some objective truth con-
cerning the nature of these foundations, and that it is not at all
unlikely that some day a satisfactory body of axioms and pos-
tulates may be found, which will prove undebatable. The
question is only in finding the minimum of simple truths, de-
rived from experience as an original source and formulated by
abstraction into a body of definitions and propositions which,
— on account of their incontestable efficiency as a basis for
geometry, on the one hand, and by their unquestionable real-
ity, on the other, as well as by their being irreducible to a
smaller number with equal efficiency, — should carry conviction
into the mind of the mathematician, whose taste is especially
fastidious in this relation, and should satisfy him that the basis
is a unified whole, without leaks, and that it is capable of stand-
ing the test of a scientific scepticism (of course, not a meta-
physical scepticism putting questions of the nature of whether
space and time or even matter and mind, the ego, the universe,
and so on, have any reality, objective or subjective, phenomenal
or noumenal, etc.). Among these mathematicians is especially
to be mentioned Sophus Lie, who, it seems, has contributed
more than any contemporary mathematician to sound views in
this matter, by treating the so-called Riemann-Helmholtz prob-
lem in a masterly way, which won for him the Lobatchevski
Prize in 1897. So Lie says in his ¢ Transformationsgruppen,”
Vol. III, p. 398, “ We wish, however, to express the opinion,
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which is a conviction with us (wollen wir doch als unsere Ueber-
zeugung die Auffassung aussprechen), that it is in no wise im-
possible to establish a system of geometrical axioms which at once
shall be sufficient and shall contain nothing superfluous. It is
distressingly certain, however, that there are very few investiga-
tions which have actually furthered the problem as to the foun-
dations of geometry.”

In another place in the same work (p. 536) he says: « Ge-
ometry in its different stages ought, as much as possible, to be
founded on a purely geometrical basis; this is a demand with
which everybody undoubtedly will agree.

“TFor the first stage of geometry are necessary, in the first
place, certain fundamental conceptions, like space, curve, point,
and surface ; second come certain axioms concerning, for in-
stance, the properties of the right line, the existence of a sphere,
and so on. KEvery new conceivable stage is characterized by
the introduction of new axioms,—one stage, for instance, by the
axiom of parallels, another by the Cantor-axiom.”—In my own
work, this last axiom, i. e., that the straight line is a number-
manifold, will be proved to be one of the fundamental properties
of the straight line, from which its construction and all its other
properties are obtained.— Upon this axiom it is possible to
establish rationally the conceptions of area, length of are, etc.,
while Euclid virtually needs a separate axiom in each case.

“The great question is now, what axioms in each stage are
not only sufficient but also necessary, in other words, are in-
dispensable. In the answer to this question the whole problem
of the foundations of geometry would find its solution.

And then further (p. 537) Lie sketches a programme for the
mathematician who would undertake to establish the necessary
axioms, which perhaps might prove fewer in number than those
which Lie assumed provisionally for the purpose of solving the
Riemann-Helmholtz problem.—¢ First one would have to estab-
lish certain fundamental conceptions, like space, point, curve,
surface, and also the conception of motion. . .

« As a first axiom one would have to establish the following :
If a point P is fixed, every other point can still describe a sur-
face which does not pass through the point P. In this may be
found the reason that two points in all rigid motions (Bewegun-
gen) remain separated.” [These two conceptions are certainly
also connected in my treatment (see pp. 63—64, definition of
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distance and the proof following of the existence of a sphere),
except that the second is coming first, as the simplest one, and
following at once from the conception of rigidity.]

‘ As a second axiom it would be necessary to assume that, —
When two points P, and P, are fized, there are still an infinity
of other points which remain fixed simultaneously, and these
points form one and only one line passing through P, and P,.”—
I think Lie would certainly not object to a proof of this prop-
osition, which at once makes space a number-manifold and,
thus, supplies also the Cantor-axiom. He says that these prop-
ositions are not yet sufficient for the first stage of geometry.
Now, I think, that by means of only one additional axiom (vz.
axiom 1, p. 63), which, according to my mind, happens to
coincide with Lie’s fundamental notion of a continuous group
of displacements, I have succeeded in establishing all that is
necessary for the first stage together with the most important
postulate of the second stage, namely, the postulate of parallels,
—in a sense, however, that does not exclude the spherical and
pseudospherical geometries, proving only the necessity of a
plane geometry in the Euclidian sense.

Lie himself treated this subject from the point of view of
continuous group-transformations. Starting with the Riemann-
Helmholtz postulate that space is & manifold of three dimen-
sions, in which the position of the single element, the point, is
determined by three codrdinates, and adding a few very simple
postulates, characterizing the group of continuous motions of
rigid bodies (i. e., transformations in which every two points
have one essential invariant), he showed that there remains
only the possibility of the Euclidian and the two non-Eucli-
dian systems of motions.* The latter two are such as leave
invariant respectively the imaginary surface «f + 2} + 23 +
1 = 0 (Riemannian group), or the real surface #} + 3 + 27 —
1 = 0 (Lobatchevski group of motions). The group of Eucli-
dian motions together with the group of transformations by
similar figures are characterized by their leaving invariant the

absolute,
P?+y+22=0, t=0.t

* Transformationsgruppen, III, ﬁ 464-479. The whole of the fitth
ohapter is devoted to the Riemann-Helmholtz problem. See also Leipziger
Berichte, 1890, pp. 356-418, 284321, and 1892, pp. 297-305.

1 Transformationsgruppen, III, p. 218.
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The following are the axioms* which Lie considers suffi-
cient for his investigation :

1. Space is a number-manifold of three dimensions, R,.

I1. The displacements or motions of R, form a real continu-
ous group of pomt-transformatlons.

III. If any real point of general position, ¥}, ¥3, 43, is held
fixed, all the real points 2, z,, , into which another real point
x), x5, 3 can be moved, satisfy an equation with real coefli-
cients, of the form

W(y‘l’, .'/:) 3/33 a’:r x‘z’r z:; Ty Ty )

which is not fulfilled for z, = y}, #, = y3, z, = 3}, and which,
in general, represents a real "surface passing thmugh x}, 23, z°
(A synthetic proof of this proposition is given in Theorem 1,
p- 64, of my Dissertation.)

IV. About the point ¥3, y3, v a finite tnply-extended region
may be so bounded that aﬂer ﬁxmg the point yl, 9 Yy every
other real point 2}, 23, 2§ of the region can still i) con-
tinuous motion into the posmon of every other rea.l point of the
region which satisfies the equation, W =0, and which is joined
to the point ¥}, 33, y3 by an irreducible continuous series of
points. (This proposxtlon is also proved in the theorem referred
to above.)

In the Leipziger Berichte, 1890, pp. 367-358, he character-
izes the axioms necessary and sufficient to define the Euclidian
and the two kinds of non-Euclidian motions in a somewhat
different way, which, however, amounts to the same thing.
The analytical formule are interesting, and I repeat them here.
The assumptions are :—

An infinite aggregate of real transformations of the points ot
R, (z, y, z) is given by the equations :—

T, =f(, Y, 2 @ @y --), =¢(z,9,2 0, a - ),
‘ z—‘l'(z)%z: 1 z)"')'
These equations have to satisfy the following conditions :

A. The functions f, ¢, 4 are analytical functions of the co-
ordinates «, y, z and of the parameters a,, a,, a

* Ibid., pp. 506-507.
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B. Any two points z, y,, 7,; @, ¥, 7 have one essential
invariant under all transformations of the group, of the form

‘Q(wl’ Y %5 Ty :'/z, z,) = const.
Hence,

. . — ’ Pt ro
Q2 Y,y 2,5 Ty Yoy 23) = U@}, Y35 205 Tpy Yo 22)

where 2, y,, 21 ; Z;, ¥,, 2, are the new positions of the original
pair of points ,, ,, 2,; Z,, ¥,, %,, which these obtain in virtue
of any transformation of the group.

C. The group is transitive, 4. e., any point of the R, can be
transformed into any other point. If, however, one point
z, ¥, 2, is fixed, every other point w, y, 2, can assume co?
different positions, which are defined by the equation :

'Q'(xp Yo %5 x;; :’/;; z;) = ‘Q'(wv Yo %45 :v?, Yss zz)'

If two points z,, y,, 2, and z,, y,, 2, are fixed, any third point
of general position, x,, ¥,, 2, can assume oo’ different positions
%5, Yy, 2, defined by the equations :

. ’ ’ ’ — .
Q@ Yy 205 Tsy Ygy 25) = QL (T Yyy 2,5 Ty Yy 25)
’ ’ ’
O (2y Yy %35 Tgy Yo 23) = D (T Yy 2,5 Ty Yy 2)-

[The point x,, y,, 2z, must be of general position, in order to be
able to assume oo' different positions, since there exists a singly-
infinite number of points defined by the last two equations Q,
such that «;, y,, 2, = =, y,, 2, namely the co! points collinear
with 2, v, 2, ; ,, y,, 2,.] If three points 2, v,, 2,; @, ¥, 2,;
Ty, Yy 7, are fixed, all points of space remain fixed, and three
similar equations will be satisfied only for =, ==, ¥y, =y,, 7,
=z,

The interpretation of the results obtained by Lie with regard
to the possibility of the two groups of non-Euclidian motions,
according to my mind, represents still an unsolved mathemat-
ical problem, alongside with the interpretation of similar re-
sults obtained by him for n-dimensional manifolds. A concrete
interpretation of these must be found in our empirical space,
for which the Euclidian axioms hold, in order to appreciate
their full geometrical significance.
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Not considering myself competent at present to undertake even
a partial solution of the problem, I wish, however, to indicate
that for two-dimensional manifolds an interpretation seems to
be near at hand, not at all in conflict with our Euclidian con-
ceptions of space. The non-Euclidian groups of transforma-
tions, assuming an invariant between two elements, only of
the most general kind, and presenting projective relations to
certain special forms of the fundamental quadric, must repre-
sent the real metric relations of our space, as imaged by pro-
jection upon certain surfaces of the second degree. In such a
projective image the anharmonic ratio of four points, or some
function of it, will remain unaltered, which will have to be
taken for a definition of distance or angle in these transformed
metrics; so that these metrics will coincide with the generalized
Cayleyan metrics, developed by Klein. For an interpretation
of this nature, we may refer to Poincaré’s paper on the founda-
tions of geometry in the Bull. de la Soc. Math. de France, t. 16,
Nov., 1887. Another interpretation for these groups has been
found in the metrics upon surfaces of positive and negative
curvature, when the straight lines are replaced by geodesics on
these surfaces, — an interpretation which has been fully justi-
fied by the works of Beltrami, to which reference will be made
later. Klein, in his ¢ Nicht-Euklid. Geometrie,” has shown, it
seems to me, conclusively (although he intended his procedure
to illustrate and to show in a concrete manner the possibility
of the plane having elliptic or hyperbolic metrics) that what he
calls an elliptic plane is actually the central projection upon a
Euclidian plane of the metrics upon a sphere,* and what he
calls the hyperbolic plane is the orthographic projection of a
system of metrics upon a sphere touching the plane, in which
the straight lines are represented by circles orthogonal to the
equator of the sphere which is parallel to the plane. At any
rate, this also shows that by certain processes of projection and
by making certain conventions as to the meaning of « distance’’
and “angle,”” we may be able to account for the two non-
Euclidian groups of motions, as well as for the non-Euclidian
metrics deduced by Klein from the Cayleyan metrics. The
non-Euclidian groups of displacements for three dimensions,

* The radius of the sphere is taken to be = 2k, and = 1/4k? is the measure
of ourvature of the elliptic or hyperbolic plane, resp. See ‘‘ Nicht-
Euklid.,”” pp. 94-97 and pp. 220-237.
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however, as well as the Euclidian and the non-Euclidian
groups of displacements for manifolds of a higher number of
dimensions than three, which Lie derives from postulates simi-
lar to those he assumed for R,, still need an interpretation, and
this interpretation seems to lie in the change of element from a
point to a figure depending upon any number of parameters,
which is Plicker’s idea of making our space n-dimensional.
(To this I shall yet have occasion to refer later.)

Another eminent thinker on the subject who, in the main,
holds the same opinions and who has written some expositions of
the ideas of Lie and of his own views on the subject, is the illus-
trious French mathematician Poincaré. The first publication of
his on this subject is the paper in the Bull. de la Soc. Math. de
France, quoted above ; then papers of his on the same subject
appeared in the Revue Générale des Sciences Pures et Appliquées,
t. ITI, 1892, and in the Revue de Métaphysique et de Morale.
Another paper, in which he further develops and complements
his views in the previous papers, appeared in the Monist, Vol.
IX, 1898, translated into English by McCormack. I quote
extensively from this paper, as I find in it so many points of
agreement with some of my own views— to which I have ar-
rived independently — about the relation of experience and
pure reasoning to the formation of our geometrical notions, also
in relation to the number of dimensions of space, and other
points.

He begins thus: “Our sensations cannot give us the notion
of space. That notion is built up by the mind from elements
preéxisting in it, and external experience is simply the occa-
sion for its exercising this power . . . . ”

He maintains further that variations in our sensations give
rise to our notions of space. We observe two kinds of changes
in our impressions, which we thus separate into two classes :

1) External changes, independent of our will, and

2) Internal changes, accompanied by voluntary muscular
exertions.

The external changes again fall into two subdivisions :

1) Displacements, capable of being corrected by an internal
change, and

2) Alterations, or physical changes not having this property.

Only Displacements are the Object of Geometry.

An identical displacement can be repeated a number of times.
Hence the introduction of number.
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The ensemble or aggregate of displacements form a group,
since the combination of any number of these is one of the
aggregate.
The notion of group could not be formed by a priori reas-
oning, but by experience together with reasoning. We ab-
stract from the concrete alterations which may accompany dis-
placements, so that geometry is safe from all revision.
“When experience teaches us that a certain phenomenon
does not correspond to the laws of the group, we strike it from
the list of displacements. When it obeys these laws only ap-
proximately, we consider the change by an artificial convention
as the resultant of two compound changes. One is regarded
as a displacement, rigorously satisfying the laws of the group,
while the second is regarded as a qualitative alteration. Thus
we say that solids undergo not only great changes of position,
but also small thermal alterations.” (Compare with this Pos-
tulate 1 and Scholium to Definition 8 in my Dissertation.)
“The fact that the displacements form a group contains in a
germ a host of important consequences. Space must be homo-
. geneous ; that is, all points are capable of playing the same
part . ..
“ Being homogeneous, it will be unlimited, for a category
that is limited cannot be homogeneous, seeing that the boun-
daries cannot play the same part as the center. But this does
not say that it is infinite, for a sphere is an unlimited surface,
and yet it is finite.”

[To this reasoning I should object, for I should ask : Is not
a sphere a bounded body, and therefore non-homogeneous in

the third dimension? If space were finite, it would not be
homogeneous in some dimension ; but as all dimensions belong
to space, it would be non-homogeneous in some of its own
dimensions ; hence, we could not say without limitation that
any two displacements form a new displacement.

In my proof of the infinite extent of the straight line, I do
not, however, assume the infinity of space. I only postulate
that “each point is capable of playing the same part as any
other,” which is postulated by Poincaré also, as being involved
in the notion of the group. Hence, from any point we can de-
scribe a sphere with a distance actually given by a previous
construction, if it is possible to do it for one point and for one
given distance. (See Theorem 2, p. 67.)]
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After postulating continuity for the group of displacements,
and defining what is meant by subgroups, isomorphism, inva-
riant subgroups, etc., into which I cannot go in detail without
transcribing the paper as a whole, Poincaré goes on to say
that by experience combined with abstraction we arrive at the
notion of a rolative subgroup, or the ensemble of displacements
which conserve a certain system of sensations. Then he says :

« By new experiences, always very crude, it is then shown :

«“1, That any two rotative subgroups have common dis-
placements.

%2, That these common displacements, all interchangeable
among one another, form a sheaf, which may be called a rotative
sheaf (rotations about a fixed axis).

«3. That any rotative sheaf forms part not only of two
rotative subgroups but of an infinity of them. There is the
origin of the notion of the straight line, as the rotative sub-
group was the origin of the notion of the point.”

[In these few sentences one may discover a somewhat crude
empirical statement of the facts of which I availed myself in
constructing the straight line in Theorem 2 (see pp. 67-83).]

He then goes on to say that the evistence of an invariant sub-
group, namely, the subgroup of translations, in which all dis-
placements are interchangeable, is the only fact “that determines
our choice in favor of the geometry of Euclid, as against that of
Lobatchevski, because the group that correspmuis to the geometry of
Lobatchevaki does not contain such an tnvariant subgroup.”

When he comes to the discussion of dimensions, Poincaré
points out the distinction, from the point of view of the theory
of groups, between the order & and the degree n of a group, and
states that the order % is the more important characteristic of a
group. So that two groups can be isomorphie (7. e., their opera-
tions obey the same laws of combination and hence have the
same number of subgroups ete.), and still be of different de-
gree, provided their order % is the same. In continuous groups,
in general, and in the group of displacements, in particular, the
object of operations ¢“is the ensemble of a certain number n of
quantities susceptible of being varied in a continuous manner,
which quantities are called coordinates.” — ¢ Then, every infini-
tesimal operation of the group can be decomposed into % other
operations belonging to k£ given sheaves. The number n of the
codrdinates (or of the dimensions) is then the degree, and the
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number % of the components of an infinitesimal operation is the
order.”” — “ The degree is an element relatively material and sec-
ondary, and the order a formal element.” — The study of the
group is mainly the study of its formal properties. The order
k corresponds to the number of essential parameters of a group
of transformations. — “The group of displacements is of the
sixth order.” — The order % in case of R, is 6, since R, can
have oo® displacements. — As to the degree n, it depends upon
the choice of the element.

If we choose the different transformations of a rotative sub-
group, we get a triple infinity of elements. “The degree of
the group is three. We have chosen the point as the element
of space and given to space three dimensions.

“Choosing the different transformations of a hehcoxdal sub-
group, we obtain a quadruple infinity of elements. We have
chosen the straight line as the element of space, — which gives
to space four dimensions.

¢ Suppose, finally, that we choose the different transformations
of a rotative sheaf. The degree would then be five. We have
chosen as the element of space the figure formed by a straight
line and a point on that straight line. Space would have five
dimensions.

¢ The introduction of a group more or less complicated, ap-
pears to be absolutely necessary. Every purely statical theory
of the number of dimensions will give rise to many difficulties,
and it will always be necessary to fall back upon a dynamical
theor

[Iywwh to observe here that the deduction of the number of
dimensions in my Dissertation is based upon kinematical prin-
ciples.

“ VV]hen I pronounce the word ¢length, a word which we
frequently do not think necessary to define, I implicitly assume
that the figure formed by two points is not always superposable
upon that which is formed by two other points; for, otherwise,
any two lengths whatever would be equal to each other. Now,
this is an important property of our group.

“I implicitly enunciate a similar hypothesis when I pronounce
the word ¢ angle.””

. I bave still to quote his ideas concerning contradictions in
geometry, as I think they are of cardinal importance. Here is
what he says :
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“In following up all the consequences of the different
- geometrical axioms are we never led to contradictions? . .
The axioms are conventions. Is it certain that all these con-
ventions are compatible ?

“These conventions, it is true, have all been suggested to us
by experience, but by crude experience. We discover that
certain laws are approximately verified, and we decompose the
observed phenomenon conventionally into two others : a purely
geometrical phenomenon, which exactly obeys these laws ; and
a very minute disturbing phenomenon.

¢Is it certain that this decomposition is always permissible ?
It is certain that these laws are approximately compatible, for
experience shows that they are all approximately realized at
one and the same time in nature. But is it certain that they
would be compatible if they were absolutely rigorous ?

¢ For us the question is no longer doubtful. Analytical geom-
ery has been securely established, and all the axioms have been
indroduced into the equations which serve us as its point of depar-
ture; we could not have written these equations if the axioms had
been contradictory. Now that the equations are written, they can
be combined in all possible manners ; analysis is the guarantee
that contradictions shall not be introduced.”

We see thus that both Lie and Poincaré are of the opinion,
that the question about the foundations of geometry represents
a more concrete and, therefore, more easily manageable prob-
lem than Klein. and Killing and some others are willing to
grant. Neither of the former mathematicians allows an infin-
ity of contradictory geometries, and Poincaré even gives some
reasons for our choice in favor of the Euclidian geometry. He
thinks only that this is solely due to the mode of experience
we have of space, and when he speaks of hypothetical beings,
whose experience might have led them to a predilection for the
geometry of Lobatchevski, he certainly is right, in the sense
that our geometrical notions, such as they are, are not altogether
independent of the mode of experience we have, and the nature
of the universe we live in. In Poincaré’s own words:

¢ It i8 our mind that furnishes a category for nature. But
this category i8 not a bed of Procrustes into which we violently
force nature, mutilating her as our needs require. We offer to
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nature a choice of beds, among which we choose the couch best
suited to her stature.”

Now, this view of the matter is certainly more encouraging
to the one who would venture to find, by methods more ele-
mentary and, consequently, more legitimate for the given pur-
pose than those based upon the laws of continuous groups, ex-
actly which couch is the most suitable for nature’s stature, and
even under what conditions the other couches may become just
as suitable.

Let us now turn to Riemann, whose paper on the founda-
tions of geometry seems to have been the occasion (apparently
unintended by the author),* of many a misconception sanc-
tioned by his name. Riemann himself, as well as can be gath-
ered from the fact that he tried to find the laws of free moblhty
in manifolds of n dimensions, considering space as a special
case of such manifolds, where n = 3, seems to have been of the
opinion that geometry, as a science ‘of space and spacial magni-
tudes alone, must be one and only one, although he did not de-
cide in favor of any of the three possible systems. He thought,
at any rate, that the discovery of the truth concerning the nature
of the geometry of our space represents a concrete and not unsolv-
able scientific problem. He stated expressly that the solution of
this problem was not to be found in investigations of such a

general character as was his own about manifolds in general — -

a thing which his followers have not always heeded sufficiently
—sgince space was for him a manifold of special character,
whose science alone he called geometry, as distinguished from
the science of the general laws of manifolds, which, accord-
ing to him, belongs to analysis and the theory of functions.
So he says on p. 258 of his ¢ Math. Werke ”” : ¢« These magni-
tudinal relations” (of multiply-extended manifolds in general)
“admit of investigation only in terms of abstract quantity, their
natural connection being representable by formule ; under certain
assumptions they can, however, be decomposed into relations,
which, taken separately, are capable of geometrical representation,
and through this it becomes possible to express geometrically tlw

* See above, note to p. 4.
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result of the calculation. So that, although an abstract investi-
gation, by means of formule, remains unavoidable, it will still
be possible to invest its final results in geometrical attire.”
And on page 256 he says, « More frequent occasions for cre-
ating and developing these conceptions (of multiply-extended
manifolds) we find only in the higher mathematics.”

His own investigation he considered useful only in so much
a8 it threw light upon the extent and nature of the implicit as-
s'cmptwm of geometry and upon the many questions of measure-
ment in the wider region of multiply-extended manifolds, upon
which these assumptions touch, and which, apparently, have
escaped the attention of his predecessors. He says on p. 268 :
“ Such investigations which, like the one here carried through,
start from general conceptions, can serve only the end that
this work (the investigation of the real facts underlying our
notions of space and of its magnitudinal relations) shall not be
hampered by too narrow conceptions, and that the progress of
discovery of the connection of things should not be impeded by
the burden of inherited prejudice.”—He looked, however, for
the solution of this problem in the wrong dlrectlon, when he
thought that some physical hypothesis which may in time prove
Decessary, to account for certain, as yet unexplained, physical
phenomena in the realm of the infinitely small, might also
throw some light upon the true nature of geometry. He cer-
tainly erred in respect of this physical hypothesis of the geo-
metrical properties of our space.* They could lead to no better
results than astronomical observations upon the stellar paral-
laxes, instituted with the purpose of finding some testimony in
the immensely large triangles concerning the amount by which
the sum of the three angles of a triangle is less than two right
angles,—as is very evident from the truly philosophical treat-
ment of this subject by Poincaré. But be this as it may, the
fact still remains that Riemann, in the first place, regarded
space as an unbounded manifold of three dimensions, and spoke
of it as being an empirical certainty greater than any other we
have, and, secondly, thought that the problem as to the admissi-
bility of the propositions of the Euclidian geometry beyond the

*4 15 must be, therefore, either that the realities which lie at the basis
of space form a discrete manifold, or that the foundasion of its magnitudinal
;:la,ﬁ?ns 24;1;;?115 to be looked for outside, in the binding forces working upon

)

7 (p. .
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bounds of observation was still an unsolved, but not unsolvable,
scientific problem.

Some of the results arrived at by Riemann are :

1. The simplest form of the linear element in any n-fold-
extended manifold admitting of measurement, is

ds = l/za“da?'.d.’t,‘,

where the a’s are continuous functions of the 2’s ; of these, n func-
tions can be taken arbitrarily, and n(n — 1)/2 are fixed by the
nature of the manifold. In space, for instance, even if it were
curved, three of the a’s could be taken = 0, each, and the rest would
have to take their chances, which would depend upon the nature
of the curvature. At this stage of his investigation, Riemann
seems to assume that space and the plane are flat manifolds, so
that their linear elements can be' brought to the form of v/'Zdz*
(see p. 200, Werke). It would seem, therefore, that when later
he speaks of the possibility of space-curvature, and of a physical
investigation in the realm of the infinitely small, he means
rather that, since he does not see any logical, @ priori necessity
of the necessary and sufficient assumptions of the Euclidian
geometry, which he establishes in § 1 of Art. III, p. 205, he
hopes to find an explanation of their necessity in physics, as
he does not hope to find light on this subject in geometry
proper, her realm being only the finite.

2. In an n-manifold we can construct at each point co™!
geodesics ; then a surface-element is determined by any two of
these given by their linear elements, when these are prolonged
until they become finite geodesics. In other words, as Klein
puts it in his “ Nicht-Euklid. Geom.,” p. 211, we have to con
sider the collectivity of geodesics whose linear elements

ds;=Nd's,+ \'d"s,

or such whose initial directions are in the same linear manifold
with the two given ones. Each of the surfaces thus obtained
will have its own initial Gaussian curvature, which Riemann
defines as the curvature of the n-manifold at the given point in
the given surface-direction.

3. A manifold of constant curvature is such as has the Gauss-
ian curvature in its surface-element the same at all points and
in all surface-directions. But the nature of the manifold at a
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point will be completely determined as soon as the surface-cur-
vature is given in n(n — 1)/2 surface-directions.

4. Only a manifold of constant curvature allows free mobility
of figures, and if the Gaussian curvature be denoted by a, the
linear element of such a manifold can be reduced to the form of

1 R
———a—‘l/Zd:c’.
1 +12x’

5. All metrical relations of the manifold depend upon the
value of the curvature. The number of ways in which an
n-manifold can move in itself without deformation is

n(n + l)=nz_’n(n—1)=
2 2

number of codrdinates minus number of distances between n
points.

Riemann then gives three possible forms of the conditions
necessary and sufficient to determine the measure-relations of
space, as distinguished from all other three-dimensional mani-
folds admitting of measurements and flat in their smallest
parts, . e., such whose line-length is independent of position
and in which the linear element is expressible as the square
root of a positive differential expression of the second degree.

1°. The Gaussian curvature in three surface-directions is zero
at each point; or, otherwise, the metric relations of space are
completely determined, if the sum of the three angles of a tri-
angle is always equal to two right angles.

2°. Besides the independence of line-length from position, we
may assume with Euclid the existence of rigid bodies, inde-
pendent of position,—which is equivalent to postulating constant
curvature. The sum of the three angles in all triangles is then
determined, when it is known in one triangle.

3°. We may assume not only the independence of line-
length from position, but also the independence of length and
direction of lines from position.

Each of these three alternatives adds something to the prop-
erties of a manifold, flat in its smallest portions. The first
and last lead at once to the Euclidian geometry ; the middle
one allows the possibility of all three different geometries,
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according as the sum of the angles of a triangle is greater
than, equal to, or less than, two right angles.*

Now, then, the position and the opinions of this second cate-
gory of mathematicians (Riemann, Lie, and Poincar¢), and
especially those of Lie, seem to indicate that the task of estab-
lishing an efficient system of axioms is not perfectly hopeless.
And if the reader admit with Lie that but few investigations
have materially farthered the problem concerning the founda-
tions of geometry, he may find it of interest to read through
the present memoir, even if its purpose is disclosed at the very
beginning to be—the establishment of such a system and the
restoration of a goodly part of the old prestige to the origin
and foundations of the geometrical science.

It may not be amiss here, in this connection, to remind the
generously disposed and impartial reader that this problem,
besides its philosophic interest, is also of importance from a
purely mathematical point of view. The fact which will sub-
stantiate my statement is, indeed, very well known to mathe-
maticians who have familiarized themselves, at least superficially,
with the non-Euclidian geometry, although little stress is put
upon its bearings by those mathematical writers on the subject,
- who, having satisfied themselves that within the bounds of our
limited experience the Euclidian geometry holds, concluded
that beyond these limits actual deviations of the metrical rela-
tions of space may take place, of which we are not bound to
take heed in our analytical geometry, as long as we intend to
avail ourselves of its results in actual practice only. Already
the earliest non-Euclidians, and among them the two great
founders of the hyperbolic geometry, Lobatchevski and Bolyai,
have made it clear that the theory of proportion and similar
figures is based upon the parabolic system of measurement, and
that it has no meaning when the Euclidian postulate of paral-
lels does not hold. In fact, they have both given formulse for
the solution of rectilinear tnangles, perfectly analogous to those
of the spherical trigonometry.t Further, Bolyai has shown

*Bee Lie, “‘ Transformationsgruppen,” Vol. III, p. 497, where he finds
this paragraph in Riemann’s paper (§ 1 of art. III) not clear.

T See Lobatcheveki, ‘Theory of Parallels,” translated by H:

Pp.
35-46. Also, ‘¢ Urknnden zur Geschichte der Nicht-Euklid. Geom.” F.
Engel, pp. 216-235.




21

that, by assuming the hyperbolic geometry to be true, the prob-
lem of the squaring of the circle presents no difficulty.* It is,
therefore, evident that the establishment of the Euclidian
geometry on a basis more rational than mere empiricism even
if very accurate, still remains a desideratum.

It will, however, become incumbent upon me to explain my
own point of view in this matter, and give in outline the re-
sults at which I have arrived, and also to throw some light
upon the methods pursued in this dissertation, as well as to
present the reasons which, according to the best of my judg-
ment, can be assigned to the final success with which these
methods have been rewarded.

To give my own views upon the réle of experience and reason
in the formation of our geometrical conceptions would, I think,
only be a repetition of what is stated more or less explicitly in
my introductory chapter on dimensions, as well as a repetition
of many excellent remarks of Poincaré in his paper in the
Monist, which I have allowed myself to quote so extensively.
In a few words these views may, however, be summarized
thus :—

As in all pure sciences, our fundamental conceptions in
geometry are formed by experience helped on by pure reasoning,
which abstracts from certain unessential irregqularities in the rough
data of experience, by reducing certain general morms to ideal
Jforms, not admitting of exception. The exceptions, indeed, are
purposely eliminated by ascribing to them some other eauses,
which are not the subject of the given investigation. So, for
instance, in mechanics, the fact that no body in actual experi-
ence, possessing a certain momentum, can go on and move for-
ever, does not bother the physicist, who postulates the first law
of Newton, and ascribes the stopping of the body or the retar-
dation of its motion to external causes, like frictional resistance,
ete. Similarly, if ideal solids are postulated in geometry, the
deformation which natural solids undergo in motion is ascribed
to physical causes, and not to properties of space.}

Further, I think that we cannot start simply with an axiom
— that space is a number-manifold, . e., each point in it can

*See ¢ Science Absolute of Space ’ by John Bolyai, Halstead’s transla-
$ion, p. 47.

+ See postulate 1, Definition 6, and Scholium $o Definition 8, of the intro-
ductory chapter of my Dissertation (pp. 40, 41).
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be determined by three codrdinates, or three numbers which
can be made to vary continuously. I think rather that space
ought to be proved capable of being made a number-manifold,
and the best starting point in this direction is, according to my
opinion, to be found in the simple physical facts of impenetra-
bility, rigidity, and divisibility of bodies, each in geometry be-
ing idealized. The bulk of a given portion of space, bounded
on all sides, can certainly be represented by a number, showing
how many times it will contain a smaller bulk of definite shape.
By considering the smaller bulk as rigid, or such in which
internal motion or rearrangement of parts is excluded, and
making this smaller bulk take up all possible positions within
the larger bounded portion of space, we observe that no matter
where it be placed within the larger one, it always occupies or
Jfills up the same numerical portion of the larger bulk. The num-
ber of other bulks like the smaller, necessary to fill up the
larger completely, besides the smaller one itself, or the num-
ber of places the smaller can be made to occupy within the
larger, such that no two have any portion in common, is always
the same. And this is true also when the smaller bulk is
broken up into infinitely small portions, free to change position
with respect to one another, but still capable of filling up com-
pletely the same space; or, in other words, when the smaller
bulk is allowed to change its form in all possible ways, so as to
retain only impenetrability. Equal bulks are then measured
by equal spaces of same shape, which they are capable of filling.*

We postulate that this be true for any bounded space and
for any small bulk which is placed in the larger one, in any
position, — that there should always be the same numerical re-
lation between the smaller and the larger bulk as soon as these
are given, as a rigid solid, on the one hand, and a bounded
vacuum in which the first is to lie in any position, on the other
hand. We arrive at the notion of congruent portions within
the bounded space, meaning such which the same solid fills up
to the exclusion of others,—and by considering, besides, very
small portions of the smaller bulk, their number and disposi-
tion with respect to one another are seen not to change as long
as rigidity of form is postulated for the whole. So that, after

*For a complete and rigorous treatment of this question, the reader is
referred to the introductory chapter, Scholium o Definition 8, pp. 41-44.
Here is possible only a short indication of the procedure.
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we have worked ourselves up to the notion of surface, line, and
point, as done in the introductory chapter, rigidity is seen to
imply that no two points, separated in one position of a rigid
body, become ever coincident on account of change of position
of the solid. And, moreover, the same continuous series of
separated points of the solid must be capable of being con-
structed between any two given points of the solid in any one
of its positions as in any other. .

But this is only a starting point. We must further make
clear to ourselves what we understand when we say that space
is a three-dimensional manifold, considering a point as its ele-
ment, and whether there is any sense in looking for a fourth
dimension, not directly given by experience. It will appear
from the treatment of the question in the introductory chapter
that the tridimensionality of space is actually postulated by the
definition of a point, and that, therefore, to look for a fourth
dimension, without changing its element from that which lies at
the basis of the metrical geometry of Euclid to some other
geometrical object (which is, in fact, a figure in the Euclidian
sense, depending upon a certain number of parameters), as is
done, for instance, in Pliicker’s line-geometry, — is a contradic-
tion in terms. Finally, from the same principle of rigidity,
the motion of distance as an invariable relation between two points
in rigid connection or in fixed space, is easily derived by a defi-
nition which makes use of the principle of superposition.

Next, continuity must be postulated,* and then we must show
how distances can be added and subtracted, and whether there
is a line, or a one-dimensional manifold, in space, capable of rep-
resenting by the actual distances of its points all possible dis-
tances arrived at by addition and subtraction, and whether this
can be done in a unique way. It appears, that from this property
alone a notion of the straight line can be deduced, which will
have all other properties of the straight line, commonly postu-
lated for it in the Euclidian geometry ; the construction, more-
over, based upon this property, will make it a number-manifold
of infinite extent, such as can in no way be mixed up with a
geodesic returning into itself at a finite distance. This, in a

*8ee axiom 1, p. 63.

1 The oonstruction makes the straight line a number-manifold in the
Cantor-sense, since, a8 we can construcé all possible sums of all possible ra-

tional numbers, we can construct the irrational numbers by sequences, in the
way it is done by Cantor for pure numbers. Math. Ann., t. 5, pp. 123-128.
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certain way, disposes of the so-called elliptic geometry of the
straight line.  Further, the line so constructed will prove to
be both an axis of rotation and an axis of helicoidal motion, or,
in Poincaré and Lie’s language, admitting either the transfor-
mations of a rotative sheaf, or those of a helicoidal subgroup, ac-
cording as one point, at least, upon the line is taken as an in-
variant point, or none, at a finite distance, is taken as an inva~
riant point —the line being able to slide upon itself, while
all points in rigid connection with the line, but outside it,
being free only to twist, 1. e., to move with a screw-like motion.
The notion of distance, as thus defined, is, of course, of a
very abstract nature, and does not depend upon the paths
which either of two non-coincident points can be made to
in a given surface from its own position to the position of
the second, nor upon any given position of the point-couple in
space, but only upon the relative position of the two points
themselves. It is simply a fact of experience that a pair of
points in a solid are capable of coincidence only with certain de-
terminate couples of points in other solids or vacant space, and
this fact of congruence or non-congruence is the only factor
determining equality or non-equality of distances. It is only
after it has been proved that this geometrical magnitude is
representable uniquely and perfectly by some line (a priori, a
surface or a volume might perhaps have been found more
capable to represent this magnitude, as happens, for instance,
with the angular magnitude, which is equally well represented
by a portion of a circular arc as by the area of a sector of ,the
circle of radius unity, and as, for instance, the solid angle,
considered as a geometrical magnitude, may be measured equally
by the area of a spherical surface of radius unity whose center
is the vertex of the angle, or by the corresponding spherical
sector ; so that it is only an accident, having, of course, its rea-
sons in the nature of things a posteriori, that distance as a
geometrical magnitude has for its representation a line), it is
. only after this fact has been established, that any curve can be
broken up into linear elements ds, each of which is comparable
with the elements of three given straight lines dz, dy, dz, and
can be expressed in terms of these. So that any complicated
expression for a linear element of some curve in space, in terms
of dz, dy, dz, say, ds = f(dz, dy, dz), must necessarily be based,
in the first instance, upon a certain relation, which could be




25

considered the simplest and which would be formed exactly in
the same way as a finite distance is expressed in terms of three
other finite distances, which must be taken as parameters in the
case of tridimensional space.

I wish here to call attention to the fact that the deduction of
the existence of the straight line in space, not as a line in the
plane, as far as I am aware, seems never to have constituted a
serious problem with mathematicians. This is, perhaps, the
only reason why the straight line has always been regarded as
a geodesic which is determined by two points in the surface to
which it belongs, i. e., as a geodesic in some plane. The plane
is postulated or constructed before the straight line, and angles
and triangles and circles are regarded not only as plane figures,
that i8, such as can lie in a plane, but also as figures constructed
in a plane. The distinction, according to my mind, is not at
all trivial, since the existence of a plane can be proved with
perfect rigor only after a number of theorems concerning
angles, triangles, and circles, have been established for these
figures in space. Then only, according to my opinion, we
ought to prove that these simple figures, as well as the straight
line, are plane figures.

The plane, as constructed from a certain origin, must then be
shown to be capable of moving upon itself in a triply-infinite num-
ber of ways, and alsa of coincidence with itself when s two sides
are interchanged. The first will establish the legitimacy of
what is called in analytic geometry change of origin and change
of axes ; the second, a revolution of the plane through an angle
o, which appears in the theory of groups to need special sub-
groups of displacements. (See Lie, “ Continuierliche Gruppen,”
p- 101. The first kind of displacements form the group of con-
gruent figures, the second, the group of symmetrical figures.*)
In the Euclidian geometry both processes are invariably used
in superposition of figures for demonstrations. In spherical
and pseudospherical geometry this is also practised, with the
understanding that bending without stretching is postulated.
In spherical geometry bending is necessary only for making the
inner side of a portion of a spherical surface coincide with the
outer side of the same surface, or for the purpose of applying

* Group of congruent figures,—— 2, —z008a— y sina + @, y; =2 gina +
y cos a | b ; group of symmetrical fignres,—— 2, =2z cos a{ yeina+ a, y, =
sgina—ycos -+ b.
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its figures to figures formed upon other surfaces of equal con-
stant curvature ; in case of pseudospherical geometry, i. e., sur-
faces of constant negative curvature, no superposition of parts
of different regions, even on the same side of the same surface,
would be possible without bending. And it was just by ab-
stracting from rigidity, in so much as bending without stretch-
ing was allowed, that Beltrami, in his “Saggio” * and in his
¢ Teoria fondamentale,” was able to prove that Lobatchevski’s
geometry holds good, in our Euclidian space, upon surfaces of
constant negative curvature, which he first named pseudo-
spherical surfaces.—The fundamental criterion of the demon-
strations in the elementary (Euclidian) geometry,” Beltrami
begins his investigation in his “Saggio,”  consists in superpo-
sition of figures. The criterion is applicable not only to the
plane, but also to all surfaces upon which there can exist equal
figures in different positions, that is to say, to all surfaces whose
any portion can by means of simple flexion be applied to any
other portion of the same surface. We see, in fact, that the
rigidity of the surfaces upon which the figures are traced, is
not an essential condition for the application of this criterion ;
for instance, the exactitude of the plane Euclidian geometry
would not become deteriorated, if we should begin by conceiv-
ing the figures traced upon the surface of a cylinder or a cone,
instead of a plane.”

Stating then that the surfaces whose figures have a structure
independent of position, and hence allowing the principle of
superposition without restriction, are those of constant curvature
only, he goes on to say :

“The most important element of figures is the straight line.
The specific characteristic of this line is that it is completely
determined by two of its points, so that two straight lines can-
not pass through two points in space without their coinciding
in all their extent. In plane geometry, however, this principle is
used only in the following form:

“ In making coincide two planes, in each of which there is a
straight line, it is sufficient that the two lines coincide in two poinis,

in order that they coincide in the whole of their extent.
" ¢ Now, this property the plane has in common with all surfaces
of constant curvature, where, instead of the straight lines, we take

* ¢ Saggio di interpretazione della geometria non-Euolidea,’’ Giornale di
Mathematiche, 1868, t. VI (see note above, p. 4).
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the geodesics. . . .” If we make coincide two surfaces of constant
and equal curvature, 8o that two of their geodesio lines have two
points in common, these lines will coincide in all their extent.

« It follows that, excluding the cases where this property is sub-
Ject to exceptions, the theorems of planimeiry which are proved by
the principle of superposition and the postulate of the straight line
Jor plane figures, are true also for figures formed in an analogous
way, upon surfaces of constant curvature, by geodesic lines.

« Upon this are based the many analogies between the geometry
on a plane and that on a sphere, the straight lines corresponding
to geodesics, 1. e., to arcs of great circles. For a sphere, how-
ever, there evist ewceptions, for any two points diametrically op-
posile, or a,ntzpodal points, do not determine a geodesic without
ambiguity, since through such points an infinity of great circles
will pass. This is @ reason why certain theorems in plane geom-
etry are not true for the sphere, as, for instance, the theorem that
two perpendiculars to the same line do not meet.”

Beltrami further makes clear that the basis of investigation in
plane geometry is too general, if, as usually done, the only facts

ing at this basis are taken to be the principle of superposition
and the postulate of the straight line. The results of the demon-
strations must exist whenever this principle and this postulate are
true. They must, evidently, be true for surfaces of constant cur-
vature, in which the postulate of the straight line holds without

Now, the purpose of Beltrami’s investigation was precisely to
show that this postulate does mot admit of ewceptions in case of
surfaces of constant negative curvature. And, in his own words,—
“If we can prove that such exceptions do not exist for these sur-
Jaces, it becomes evident that the theorems of the non-Euclidian
planimetry hold without restriction wpon such surfaces. And then
certain results which seem incompatible with the hypothesis of a
plane, may become conceivable upon such a surface and obtain
thereby an explanation, not less simple than satisfactory. - At the
same time the determinations which produce the transition from
the non-Euclidian to the Euclidian planimetry, are shown to be
identical with those which specify the surfaces of zero curvature in
the series of surfaces of constant negative curvature.”

Lobatchevski and Bolyai, who, together with Legendre, were
aware of the defects of the Euclidian geometry in respect to
all the postulates regarding the straight line and the plane, have
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both tried to construct them and to deduce their properties
from the construction.* But, as it seems to me, they did not
succeed in doing it with sufficient rigor ; and, besides, neither of
them freed himself from the idea that a plane is given in concep~
tion previous to a straight line, and, therefore, they constructed
Jirst the plane and then the straight line in it. The straight line,
therefore, again has the same properties as a geodesic upon a
surface, which will coincide with another geodesic in a similar
surface, of same constant curvature, as soon as the two surfaces
are superposed so that two congruent pairs of points in the two
geodesics are made to coincide. At least, neither of the two
mathematicians separated the straight line from the plane suffi-
ciently, to come to the clear idea, that fiqures of straight lines in
space can be considered without comuia‘mgthe planes in which
they lie. This is one of the reasons why they could not prove the

of parallels, which, in fact, distinguishes the plane from .
all other surfaces of constant curvature. ;‘?u it is evident, that
since the curvature of a surface is an extrinsic property of the
surface, . e., it is a parameter by varying which we can obtain
all surfaces of constant positive and negative curvature, the
limit between the two being the plane (of zero curvature)t, —
those properties of the geodesics which depend wpon any particu-
lar value of the wrvatwre,oouldnat be found, except by leaving
the surface and going out into space. Of course, the expression
of the linear element can, certainly, give the true metrical prop-
erties of the corresponding surface, and hence, also of the plane.
But this very expression, as Riemann has shown, depends upon
the curvature. (In fact, for a surface of Gaussian curvature,
1/i* = a, the linear element is reducible to the form

__1_1/'2'@ X

1 +%2z’

so that in case of positive curvature, a is 4 , of negative curva-
ture, a is — , and in case of the plane, if the ““parallel post

*8ee ‘ Urkunden zur Geschichte der Nioht-Euklidischen Geomesrie,
Nikolaj Iwanowitsch Lobatachefskij,”” by F. Engel 1898 (pp. 93-109), and
Frischauf, ‘‘ Elemente der absoluten Geomefrie,’’ 1876, pp. 8-18,

f:l:llk' gives ocurvature of spheres and peeudospheres, with all their,
varieties resulting from bending, and ¥ =  gives the plane. See Rummn,
Ueber die Hypothesen, eto.,”” II, 5.
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holds, a = 0, and, conversely, if a = 0, then the postulate of par-
allels holds.)

Hence, as long as we remain in the surface itself, and suppos-
ing we do not know the form of the linear element, we could in no
way prove or disprove the “parallel postulate.” And this is
exactly the reasoning of those who think that the “ parallel postu-
late” cannot be proved. 1 could not do better than refer
again to the last quotations from Beltrami, who, although
he, as far as seen from his ¢ Saggio” and “ Teoria fonda-
mentale,” may never have expressed himself directly on the
possibility or impossibility of proving the postulate of paral-
lels, showed, however, the reason why Lobatchevski and
Bolyai had arrived at a geometry for the plane which is actu-
ally true only for pseudospheres. In another place in his
“ Saggio” he says : “ We see, then, that two points of the sur-
face (pseudospherical surface), chosen in any manner whatever,
always determine uniquely a geodesic line. . . . Thus, sur-
faces of constant negative curvature are not subJect to excep-
tions which, in this respect, happen in the case of surfaces of
positive curvature, and, therefore, we can apply to them the
theorems of the non-Euclidian planimetry. Moreover, these
theorems, in their grealest part, are not susceptible of a concrete

etatum, unless they are rqferred precisely to these surfaces,
instead of the plane, as we are going to prove presently in detail.”

It is interesting to compare this sober view upon the non-
Euclidian geometry of the great Italian mathematician, whose
works more than those of any other succeeded in putting this
geometry upon a respectable footing, with a few quotations
from Bianchi, ¢ Lezioni di geometria differenziale,” German
translation, 1898, t. II, p. 434, The quotations referred
to are headed by the superseription, “ A Review of the Non-
Fuclidian Geometry,” and follow an excellent account of pseu-
dospherical geometry treated by the method of conform repre-
sentation, and they read as follows : —

¢In the principal theorems of the pseudospherical geometry,
which we have deduced in the preceding paragraphs, a close
analogy is observable to the propositions of the plane and the
spherical geometry. The basis for these analogies, as well as
for the differences, we can foresee a priori. If, in fact, we
examine the axioms and the fundamental postulates of the plane
geometry, as laid down by Euclid in his first book, and if, in case
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of pseudospherical surfaces, we replace the straight line by the

geodesic line, we see that when we leave out of consideration the

XII postulate, concerning parallels, all others will hold without
change in the pseudospherical geometry. This ts, in particular,
the case with the principle of congruence and also with the prin-
ciple that a geodesic line is uniquely determined by two of ils
points. Those propositions of plane geometry which do not
depend upon the parallel postulate hold, therefore, for the pseudo-
spherical geometry ; theothersmulergomh changes as to become
wdentwalwzthtlwoldones,assoonastheradmequthepseudo-
spherical surface is made infinite.

 The above considerations show readily the USELESSNESS OF
ALL ATTEMPTS MADE TO PROVE THE PARALLEL POSTULATE.
If this proof could be logically deduced from the other principles,
IT WOULD HAVE TO HOLD EQUALLY FOR THE PSEUDOSPHERI-
CAL SURFACES IN EUCLIDIAN SPACE.

“ And, in fact, if in the plane geometry we drop the Euclid-
ian postulate, we are led to the so-called ahstract or non-
Euclidian geometry, whose foundations were laid down by
Bolyai and Lobatchevski, and which (the straight line being
taken as unlimited) perfectly coincides with the pseudospheri-
cal geometry.”

Now, this objection is certainly valid, if we were bound to con-
sider plane figures only. Fortunately, we can have constructions
involving distances, or straight lines, and angles, not bound to lie
tn any particular surface at all. The conception of a quadri-
lateral without fixed area, consisting of four fiwed distances, which
are equal by pairs (opposite sides), and whose angles are vari-
able, and equal by pairs, is an important conception in elementary
geometry. A triangle is fixed as soon as its sides are fixed :
@ cannot “rack” ; its area and its angles are fixzed with its
sides ; it is necessarily a plane figure. And if the proposition
is true that the area of a geodesic triangle = a const. times the
excess or deficiency of the sum of the angles of the triangle over
m, i. e, A==+ K*A + B+ C— ), where A is always posi-
tive and K is the radius of curvature, we have no means of
varying this area, when the geodesic triangle 18 conceived as bound
up with the surface. But* the ¢ immaterial quadrilateral, which
consists always of two triangles, is not bound up with any fixed

*8ee Definition 10 of my Dissertation (p. 44).
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area and 18 not bound to move in any particular surface, and its
angles, under certain imposed conditions, being in certain deter-
minate relations among themselves, are still variable,— and, by con~
sidering the continuous series of deformations given in Theorem
18,* we arrive at the conclusion that there must exist a quadrilat-
eral with equal opposite sides, whose two angles adjacent to the
same side are equal to two right angles, not knowing, however,
whether the quadrilateral is a plane quadrilateral or not. And
then only, with the aid of the lemma, Theorem 19, which proves
that the sum of any two face-angles of a triedral angle is greater
than the third, we find either that such a quadrilateral must be a
plane quadrilateral, or that the sum of the three angles is greater
than two right angles. But the second alternative, which holds
for surfaces of positive curvature, was proved to be impossible in
the oase of a plane, by Theorems 14—17; hence, only the first alter-
native remains, FROM WHICH IT IMMEDIATELY FOLLOWS THAT
THE SUM OF THE THREE ANGLES OF A RECTILINEAR TRI-
ANGLE I8 EQUAL TO TWO RIGHT ANGLES, OR, in other words,
THE GEOMETRY OF THE PLANE IS PARABOLIC.

Now, it so happens that this proof has been formulaled in such
a manner as to take in consideration the eristence of both the
spherical and the pseudospherical geometries. It actually leaves
room jfor the existence of surfaces of constant curvature — such where
the sum of the three angles of a geodesic triangle is greater than
two right angles, and such where this sum is less than two right
angles. The first prove to be finite in extent, all their normals
meeting in a point at a finite distance,—as follows immedi-
ately from Theorems 14 and 17, since these theorems assume
the impossibility for two geodesics in a plane to intersect
in two points, and the infinite extent of the plane, (both of
which assumptions have been proved in Theorems 2-5 and 8);
while the second class of surfaces have their normals non-co-
planar, or meeting at an imaginary point. Hence, the plane
appears to be the limiting case between the two, being infinite
in extent and having its normals meeting in a point at 0. The
considerations of Bianchi and others, which they put forward
against the possibility of proving the Euclidian postulate, on the
ground that if it could be proved for the plane, it would have to
hold for the pseudosphere (or for the sphere), evidently have no
value against such a proof where both of these cases have been con-

* For the pages corresponding to the references given on this page see
Table of Contents, above.
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sidered, and where the proof first establishes the eristence of a
kind of metrics somewhere in space, that afterwards is proved to
be possible only for the surface of zero curvature which is the
plane. Then only follows the proof of Euclid’s postulate proper,
Jor the plane, which by its metrics i3 now singled out among all
surfaces of constant curvature, as the only ome for which the sum
of the angles of a triangle equals two right angles.

If we examine in detail the axioms which have been made
use of in my Dissertation, we find that they are actually those
which are necessary for defining the group of continuous motions
in general, without, however, postulating that a point in space is
definable by three coordinates. Of the postulates that Helmholtz
enumerates in his work ¢ Ueber die Thatsachen, die der Geo-
metrie zum Grunde liegen,” Kon. Ges. der Wis. zu Géttingen,
1868, I assume only the first and the third, stated as follows :

1) Continuity in motion — defined exactly in Axiom 1, on
page 63 of my memoir.

2) Free mobility of rigid bodies and consequent independ-
ence from position of spacial figures of all kinds.

To these, whose order, of course, is reversed, I add impene-
trability and infinite divisibility. The number of dimensions I
do not assume, but deduce from the postulates.

A word still with regard to the non-Euclidian geometry.
What is its significance and the place it has to occupy in the
general science of geometry ?

I shall here, even at the risk of repetition, recapitulate and
supplement in a concise way what I have said with reference
to the two non-Euclidian groups of motions obtained by Lie
from the Riemann-Helmholtz axioms as modified by him.
I think that in this regard the position of Beltrami in his
“Saggio” and ¢ Teoria fondamentale ” is, in general, the only
tenable one. In our point-space of three dimensions the Lo-
batchevskian and Riemannian geometries for two dimensions
are realized respectively on the pseudospherical surfaces and on
the surfaces of constant positive curvature, and they can have no
other concrete interpretation. With special conventions, how-
ever, as to the meaning of ¢ distance”” and ¢ angle,” we get the
Poincaré interpretation by means of what he calls the quad-
ratic geometries, 7. e., geometries on certain quadric surfaces.
Professor Klein’s interpretation of the generalized metrics can
in no way make the plane become either an elliptic or a hy-
perbolic plane, and if Cayley’s generalized metrics can be turned
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into account for obtaining the elliptic, hyperbolic, and parabolic
geometries, it is only for different surfaces actually existing in
the Euclidian space that this interpretation can be of any
value. The very arbitrariness of these different kinds of metrics,
which depends upon the arbitrary value of the constant ¢ in the
Jormula* (z, y) = clog [z, y, 0, 0'1) where 0, 0’ are the points
of intersection of the range zy with the fundamental quadric,
shows that the different metrics must refer to a whole series of dif-
Serent two-dimensional manifolds, differing in curvature and con-
stituting the elements M, of some R,. The aggregate of all these,
however, will, in our case, constitute a Slat maanold of three
dimensions, namely, the point-space of our experience, — just as
the aggregate of all possible plane curves of different curva-
ture passing through a point in a plane, constitute a plane
manifold of two dimensions.

As to the non-Euclidian metrics in three dimensions, I can-
not see any interpretation for this, unless the space to which
these metrics refer, be a derivative manifold contained in a
higher manifold of four dimensions, since again the very para-
meter of the curvature suggests only a particular case out of
an infinity of possibilities, arrived at by giving the param-
eter all possible values, ranging from — oo to + o0, and the
aggregate of all these would then plainly make a manifold of four
dimensions. Here, agam, Beltrami seems to have hit the truth
with regard to this interpretation of the geometries of Riemann
and Lobatchevski for space of three dimensions. Thus, at the
beginning of his ¢« Saggio,” Beltrami says : ¢ We have sought to
render account to ourselves of the results to which this new
doctrine (the geometry of Lobatchevski) leads; and following
a process which seemed to us actually to conform to the good tradi-
tions of scientific investigation, we have tried to find a real basis
to these results. We think we have found one for the planimetric
part, but it seems to us impossible to find one for the case of three
dimensions.” And then, at the end of the same work, after
having proved the interpretability of Lobatchevski’s planl-
metry, in every particular, by the geometry upon pseudospheri-
cal surfaces, Beltrami goes on to say: “From the very nature
of the interpretation, we can easily foresee that there can ewist no
analogous interpretation, EQUALLY REAL, for the non-Euclidian
stereometry. In fact, in order to obtain the interpretation

* Math. Ann., Bd. 6.
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which we have just given, it was necessary to substitute for the
plane a surface which cannot be reduced to a plane, that is to
say, whose linear element can in no way be reduced to the

form y/dx? + dy?, which essentially characterizes the plane itself.
Consequently, if we were lacking the notion of surfaces non-appli-
cable to a plane, it would be impossible for us to attribute a veri-
table geometric meaning to the constructions which we have developed
up to this point. Now, the analogy leads one naturally to think
that if there can exist a similar interpretation for the non- Euclidian
stereometry, this interpretation must be deducible from the con~
sideration of a space whose linear element is not reducible to the
form Vde? + dy? + d2*,—a form which essentially characterizes
the Euclidian space. And since up till now, as it seems to us,
we have been wanting the notion of a space different from the
Euclidian, or, at least, such a space is beyond the domain of
ordinary geometry, it i8 reasonable to suppose that, even if the
analytical considerations upon which the preceding constructions
are based, were susceptible of being extended and carried over from
the region of two variables into that of three variables, nevertheless
the results obtained in this last case could not be interpreted by the
ordinary geometry. 'This conjecture acquires a degree of prob-
ability bounding very closely on certainty, when one under-
takes to extend the preceding analysis to the case of three
variables.
¢ Putting

R
2
18 ds (=t —v—v

+ (a® — £ — u?)dv® + 2uvdudy + 2vtdvdt + 2tudidu],

g [(@® — v — v*)df* + (a® — v* — F)du?

which takes the place of (1) in two dimensions,* — it is easy to
assure oneself that the analytic deductions obtained from
formula (1) subsist integrally for the new expression, and that
the value of ds given by this last is effectually the value of the
linear element of a space in which the non-Euclidian (Loba-

* The formula (1), here referred to, is the one which Beltrami gives at the
beginning of his work, for the linear element of a surface of constant negative
(a® —v¥)du? - 2uvdudy + (a® — u?)dv®

(G—wi—o ; this serves as

curvature,— ds® — R?
the baais for his interpretation.

]
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tch:evskian) stereometry finds an interpretation, as complete, SPEAK-
ING ANALYTICALLY, as that given for the planimetry.
“ But putting

t=rcosp,, u = rsin p, cos p,, v =rgin p, sin p,,

and
Radr d
il
we get

2
ds’ = dp® + (R sinh % ) (dp} + sin’ p,dp}),

a formula which shows that p, p,, p, are the orthogonal curvi-
linear codrdinates of the space considered.

“ Now, M. Lamé has proved that, taking as curvilinear co-
ordinates of points in space the parameters p, p,, p,, of three
families of orthogonal surfaces — in which case the distance be-
tween two infinitely near points is represented by an expression
of the form

ds* = Hdp* + Hidp! + Hidpl,—

the three H’s, as functions of the p’s, must satisfy two distinct
systems, each consisting of three partial differential equations
of the types,

7H _ 1 0H oH 1 oH 8,

e~ H, 2p, o, TH, ap, %’
and

o (1 2H)\ & (1 oH)\ 1 2H,0H,
H 5 o 0

o T 2,) * 30,5, 25,
(Legons sur les coordinées curvilignes, pp. 76 and 78).
“In our case

H=1, HI=Rsinh-1’;~ IIZ=Rsinh%sinpl,

and for these values, the first system is evidently satisfied ; but
the second system is satisfied only for R = co. Hence the
expression (18) cannot belong to the linear element of the ordi-
nary Euclidian space, and the formule founded upon this expres-
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sion cannot be constructed by means of figures given us by the or-
dinary geometry.”’

And, again, in his ¢ Teoria fondamentale degli spazii di cur-
vatura costante,” Beltrami says :

¢ Thus all conceptions of the non-Euclidian geometry find
a perfect correspondence in the geometry of a space of constant
negative curvature. It is only necessary to observe that while
the conceptions of the planimetry obtain a true and proper inter-
prédation, since they can be constructed upon a real surface, those,
on the contrary, which refer to three dimensions, are susceptible
only of an analytic represendation, since the space in which such
a representation could be realized is different from that to which
we ordinarily give the name of space. At least, it does not seem
that experience could be brought into agreement with the results
of this more general geometry, unless we suppose R to be infi-
nitely great, that is, the curvature of the space to be zero.
This circumstance might, of course, also be due only to the
smallness of the triangles which we can measure, or to the
smallness of the region to which our observations extend them-
selves.”

In his “Teoria fondamentale,” Beltrami shows, from a general
discussion of n-dimensional manifolds, that the linear element
in the Riemannian geometry of three dimensions may be taken
to be the same as the linear element upon a hypersphere in a
space of four dimensions. The equation of the hypersphere,
with center at origin, will be

. B+ul4 o'+ wi=dl
and hence,
do? = df + du? + dv* + dw?

is at once the representation of the linear element upon the hyper-
sphere of radius @, and in a Riemannian space of curvature 1/a®

To obtain the linear element of the three-dimensional space
of Lobatchevski, he substitutes ds = — Rdo [w, and by elimi-
nating w he gets (18). The curved Lobatchevskian space, of
infinite extent, is then imaged upon the interior of the sphere
of Euclidian space,

+ulfv'=a?—

the geodesics of that space being represented by chords of the
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sphere. Every geodesic has two distinet real points at o, which
are imaged upon the representative sphere by the two ends of
the corresponding chord, so that the spherical surface itself cor-
responds to the locus of all points at oo in the Lobatchevskian
space.

But since we proved * that to assume a four-dimensional
point-space is to commit a logical error, and since Beltrami’s
results have certainly given a conclusive analytical proof that we
could obtain Lobatchevski’s geometry for three dimensions, if
we could actually construct a curved three-dimensional manifold,
contained in a four-dimensional plane manifold, — we may sur-
mise that the only way to obtain a concrete and true interpreta-
tion of the Lobatchevskian (as well as the Riemannian) stere-
ometry is to be found in Pliicker’s idea that our space becomes a
manifold of a higher number of dimensions, when, instead of the
point, we take as its element a figure depending upon n para-
meters, making space a manifold of » dimensions. Therefore,
it would seem that one of the simplest ways to look for such a
concrete interpretation would be to start with line geometry,
which makes space an R, — the next simplest after the point-
space, which is an R, — and seek what in this geometry would
be meant by the terms : ¢ distance,” ¢ angle,” ¢ linear element,”
¢¢ curvature,” “ parallel,” ¢ perpendicular,” and other metrical
terms ; and see whether the results thus arrived at, — by con-
gidering in it the special three-dimensional manifolds (com-
plexes) possessed of “ curvature,” (since by excluding the postu-
late of parallels, which is now proved for a flat manifold,
such as our point-space must undoubtedly be, we actually ob-
tain a manifold of constant curvature), — whether these results
do agree with those obtained in the Lobatchevskian and
Riemannian geometries, respectively. But such an investiga-
tion would go far beyond the limits of the present Dissertation.

*In the introductory chapter of the Dissertation.



ON THE FOUNDATIONS OF THE EUCLIDIAN
GEOMETRY.

CHAPTER 1.

SBPACE AND ITS DIMENSIONS.

Definition 1. — Geometry is the science which treats of spacial
Jorms and magnitudes and their mutual relations. Dealing
with magnitudes, and with spacial forms only in so far as these
are determined by their magnitudinal relations, Geometry is a
branch of the general science of quantity— Mathematics.

A few introductory remarks are necessary in the way of more
acourately specifying the subject of geometry, which I prefer
to put in the form of definitions. These definitions, however,
will not be only nominal ; most of them prove the actual ex-
istence of the objects they define.

Definition 2. — Space is that in which all bodies exist. It is
the condition sine qua non of material objects. This truth is
expressed in physics by the assertion that matter, or the sub-
stance of which all bodies consist, has extension, or, in other
words, material objects occupy space.

Definition 3. — Experience teaches us that matter is also im-
penetrable, i. e., that every material object occupies a definite por-
tion of space, which s fived by certain limits or boundaries and
which cannot at the same time be occupied by any other material
object.  The portion of space thatis for a time exclusively occupied
by a certain material object is called the place of that object.
For the sake of accurate terminology I propose to call it the
geometrical place.

Definition 4. — Experience further teaches us that the re-
sources of space with regard to its capacity of containing ma-
terial objects, or of affording place to the material substance,
are absolutely limitless. Thus, notwithstanding the impenetra-
bility of material substance, explained above, beside any occu~
pied space there is always room enough for the existence of other
material objects, and any vacant space is always conceived of only
as susceptible of being filled up with matter. Moreover, any
material object is conceived of as capable of being divided into

38
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any number of portions, and these again subdivided into lesser
ones, and so on, ad infinitum. In this respect, extended sub-
stance and, hence, also space, follow perfectly the nature of ab-
stract quantity, ranging both ways — from the finite to the in-
definitely small, on the one hand, and to the indefinitely large,
on the other.

Definition 5. — The geometrical place of a body, being that
portion of space which is ocoupied by that body to the exclusion of
any other body, has the same spacial form and dimensions as the
body which fills it wp. 'We mean by this, that whatever meas-
urements in regard to extension the whole body, or its several
parts, may- have, the same are attributed to its geometrical
place, and whatever arrangement of extended parts makes up
the form of the body, the same belongs likewise to the geomet-
rical place, and vice versa, — so that in these regards the geomet-
rical place may be substituted for the body, and conversely.
The geometrical place alone, apart from all other physical prop-
erties, or, in fact, apart from the matter filling it up, is dealt
with in geometry, —and is regarded by this science :

1°. As a magnitude —that is, not only as something that
can be greater or less, the reason for which is given in Definition
4, but as something that can be measured, that is accurately
compared, with a view of an exact quantitative determination,
with a standard magnitude of the same kind, which is arbi-
trarily taken as a wunit, and can be repeated any number of
times, or divided into a certain number of equal parts, thereby
becoming either equal to, or greater, or smaller than the mag-
nitude in question; and

2°. As a form, consisting of a definite arrangement of parts
according to some law, which can also be expressed by numbers.

Definition 6. — The geometrical place of a body is called a
solid in geometry, meaning by it, that it is mentally represented
as preserving a fived form and dimensions. The geometrical
solid is a mere ideal abstraction and has nothing to do with phys-
ical solidity, from which, however, it is originally derived.
Geometry does not, therefore, treat it as impenetrable. It is,
indeed, only the impression left by a body in surrounding space
conceived of as capable of preserving the impression after the
body itself has been removed. As a magnitude or thing to be
measured and expressed in numbers, without regard to its
form or outer appearance, itis called volume.
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Postulate 1. — The geometrical solid or body may be mentally
imagined as moving about in fixed space, or changing is position
with respect to other bodies, whether physical or geomelrical,
without distortion or change of form. The solid is said to pos-
sess geometrical rigidity, meaning by it that the disposition of the
partamthrespecttomhotlwrwﬁzedandmwhangeable or, that
there is no internal motion. This idea of geometry is derived
from the fact that space s conceived of as affording a mere passive
capacity of being filled up with matter, all changes of form being
referred to the active principle of the material substance proper,
i. e., to physical causes alone (cf. Definition 4). It is also based
upon the undoubted fact of universal experience that, in so
far as can be ascertained by observation and experiment
(measurements — astronomical, physical, and geodesic), no real,
or physical, rigid body, moving about in space, has ever been
known to undergo any alteration in form or dimensions on account
only of change of position in space, without regard to physical
causes which, in most cases, have been found quite adequate to
account for such alterations. And even if the contrary were
the truth in the case of real bodies, the Fuclidian geometry
would still have nothing to do with such alterations, as it con-
siders only ideal rigidity, where change of form or dimensions
as depending upon position, is purposely eliminated for the
sake of simplicity, and may be left to other branches of the
mathematical sciences to consider (Kmematxcs, for instance,
may very properly consider such questions as a special kind of
liazsons — constraint — depending upon any number of para-
meters, those of position included). But the Euclidian geom-
etry considers only the simplest case, even if it were only an
idealized abstraction.

Definition 7. — A4 body is said to be equal to another geomet-
rically, when their geometrical places can be made to fill each
other without remainder of amy parts of the one, not filled by
corresponding parts of the other. 'When the geometrical places
thus fill each other, we say that the geometrical bodies coincide,
— coincidence, as thus defined, being a proof of equality, in-
variably resorted to in geometry.

‘When the coincidence can take place only with the change
of form resulting from a mere rearrangement of parts, these
last preserving separately their respective magnitudes and forms,
:‘he bodies are said to be of equal volume, though not equal in

orm.
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Definition 8.— One body is said to be greater than another,
when some of the parts of the one can be made to coincide
with all the parts of the other, while there still remain some
parts of the first, having no corresponding parts of the second
to coincide with. The other body is then called the less. )

Scholium. — Having firmly established the empirical and
rational basis of the notions contained in the previous defini-
tions, it may not be amiss to give a more compact and abstract
form to the logical process by which they are obtained, which is
free from all cavils on the part of those who think that spacial
forms and magnitudes may, for all we know, be certain functions
of absolute position, which we shall never be able to ascertain or
disprove. Starting with the notions of space, matter or ex-
tended substance in general, position, and change of position or
motion, and with the abstract notion of quantity, we may as-
sume, for the sake of abstraction, the existence of a hypothet-
ical impenetrable material substance, infinitely divisible, —i. e.,
possessed of the following properties : —

1. Impenetrability. — Every determinate portion or quantity of
this substance occupies or fills up a corresponding portion of space
which cannot at the same time be occupied by any other portion of
the same substance. Any two portions of space thus filled up by
the same quantity of the substance at different times, are said to be
equal in capacity, and any two portions of the substance which
can fill up the same portion of space at different times, or dif-
Jferent portions of space of equal capacity at the same time, are said
to be of the same bulk. So that to each bulk, which measures
the quantity of the hypothetical substance, there is a correspond-
ing capacity of the space which is occupied by it at any moment,
to the exclusion of any other portion of the same substance ;
to a greater portion of the substance, there corresponds a greater
capacity of the space occupied by it, to a double or multiple
bulk, a double or equimultiple capacity of the space, and to
any part of a given bulk, a corresponding part of the capacity
of the space occupied. The generic term for bulk or capacity
alike is volume, so that the quantity of the substance (bulk) and
the space filled up by it, to the exclusion of any more of the
same substance (capacity), are said to be equal in volume.

2. Infinite divisibility. — If a portion of the substance is di-
vided info n portions, such that they can fill up spaces of equal
capacity each, that portion is said to be divided into n equal parts.
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The property of infinite divisibility now becomes perfectly com-
prehensible, and is possessed, according to hypothesis, both by
the hypothetical substance, and by the space giving position to this
substance.

3. Form ; rigidity, or plasticity. — If two equal portions of
the substance (of equal bulk or volume) are made to fill up succes-
sively the same fixed portion of space (not merely spaces of equal
capacity), then in these two portions of the substance we observe not
only equality in bulk of the whole, but also of corresponding parts,
filling up in the two cases the same corresponding parts of space ;
that is, the two portions of the substance, while each fills up
in turn the space considered, have a similar arrangement of parts
that are equal in bulk in the two cases, no matier in what man-

ner the division i8 made, and however small the parts. considered.
The two equal portions of the substance, in their successive positions,
are, therefore, said to be equal not only in volume, but also in
Jorm — equal form thus meaning an equal arrangement of equal
parts. When a portion of the substance leaves a certain posi-
tion, passing into another position, it may change its form (i. e.,
the arrangement of parts may change, so that an arrange-
ment denoted by a, b, c, voo k, may now have to be repre-
sented by .- k- -f--g--a--- h-... where a,
b,e e f, g h k ete., denote unequal portlons) Moreover,
even if ‘as & whole it does not change its position, that is,
if some one part of it, at least, preserves its old position, the
Jorm of the whole may still change, and actually does change,
whenever the remaining parts change their relative positions to this
Jixed part and to each other ; and, provided the space filled up
by the whole is still continuous, that is, it is still filled up com-
pactly and represents one concrete whole, without interruptions
of vacant or unoccupied portions intervening, we say, the space
occupied by the whole has not changed its volume, but has
changed its form, and so has the substance filling it up. The
distinction between two portions of space of equal volume and
two portions of both equal volume and equal form is now clear
and unambiguous. In fact, we have seen that, when the sub-
stance as a whole does not leave its original position, i. e., when
at least one of its portions preserves its position, a change in form
is possible only in virtue of the change of position of the remain-
ing parts with respect to the stationary part and with respect to
one another,— in other words, change of form is caused by mo-
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tion of parts of the whole with respect to one another, that is,
by internal motion! The same is, therefore, true with respect
to a substance which has left its original position entirely, fill-
ing now up a portion of space which has not the smallest part
in common with the original position. If there has been inter-
nal motion or a rearrangement of unequal parts besides, then
the substance has also changed its form ; if there has been no
internal motion, the original arrangement of parts having been
preserved, the substance has only changed its position, but not
its form. If a substance resists a change of form, as just de-
fined, whether the whole is at rest or in motion, we may say
that the parts are held fixed to one another, and we call
this state of the substance the rigid state; the whole substance
is then said to form a solid or a rigid body. The portions of
space which represent any two successive positions of a solid
in motion, are said to be equal to each other, in volume and
form, just as two solids that can be made to fill up successively
the same space, are themselves said to be equal in volume and
form. When two equal solids are made successively to fill up
the same space, then, by abstracting from time, that is, disre-
garding the fact that the filling up can take place only at dif-
ferent moments, we simply say that the two solids are made to
fill up the same space, or, they are made to coincide with each
other — coincidence being a test of equality in volume and form.
If, on the contrary, the substance does not resist a rearrange-
ment of parts, these parts are not held rigidly to one another,
and change of form is possible without change of volume.
Such a portion of the substance is said to possess plasticity.
We see now that these notions, though having a firm empir-
ical basis, are not absolutely dependent upon the actual con-
dition of things. The hypothetical substance, of absolute impene-
trability, need not actually exist, but as an abstraction, agreeing,
in general, with our experience, it may serve as a starting point
Jor the only possible science of measurement of extension ; since the
notions based on its assumption are clear and unequivocal, and
absolutely necessary to make the investigation of the laws of
spacial forms and magnitudes possible. Moreover, we must
agree to class all actual phenomena, in so far as they conform
to the laws deducible from these notions and from those that
follow in this introduction, as geometrical phenomena, that is,
such as depend upon the essence of extension only ; and, in so



44

far as they deviate from these laws, they must be explained by
physical causes, and any attempt to confuse these two (as very
able geometers, like Clifford and others, have done) would
only tend to raise a dust of endless discussion, which would
never permit us to see the real foundations of geometry.

Definition 9.— A rigid physical body is said to be sur-
rounded by vacant space on all sides, when it can be moved in
all directions : forwards and backwards, to the right or to the
left, and so on, in all intermediate directions.* When some
other body is posited beyond the vacant space, in any part of &,
the two bodies are said to be at a distance from each other, that
admits, either of the position of some third body between them,
or of the motion of one towards the other. In the latter case,
the bodies are said to approach each other, the distance between
them becoming less and less, until it vanishes altogether, ad-
mitting of no further approach towards each other, the bodies
then being in contact. These ideas of distance and contact are
transferred upon geometrical solids, or the geometrical places of
the bodies corresponding to the positions of the physical bodies
Just mentioned.

Definition 10. — When two rigid physical bodies are brought
into close contact with each other, so that no further motion of
one toward the other is possible, they are said to have reached
the limits or boundaries of each other, and if these limits are to
some extent continuous, — i. e., when they touch each other in
many parts, the touchings being uninterrupted by intermediate
vacant space, which happens when the bodies fit each other,— the
limits are then called surfaces. A physical surface is, accord-
ingly, the continuous boundary where the rigidity of a body
Jjust begins, or where the physical property of impenetrability
just begins to act. If the body is surrounded by vacant space,
the surface of the body is the boundary separating the impene-
trable matter of the body from the capacious space. But it is
neither the one nor the other, since the smallest part of the
body has some of its parts removed from the boundary by the
interposed rigidity of other parts of itself. No other rigid body
oould possibly have access to those concealed parts without
overcoming rigidity, and, therefore, no part of the body, how-

* The word direction is used here in the common acceptance of its meaning,
viz: some course, but it is really vague. The scientific meaning of the
word will be given in another place in this work.
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ever small, can belong to its surface, of which the essential
characteristic is s being in contact with some other body, or,
with vacant space and, hence, capable of being brought into
contact with some other body. Surface, therefore, has no mag-
nitude of the same kind as a body ; in other words, it has no
bulk or volume, and it can never amount to any part of volume.
But, as is shown in the following definition, it nevertheless has
magnitude and form of its own; in other words, it is a thing
that can be measured and expressed in numbers — these numbers
being in determinate relations to those expressing the volume
of the body bounded by the surface. One of the tasks of
geometry is, in fact, the discovery and determination of these
relations. The idea of surface is also transferred from physical
bodies to geometrical solids, and the geometrical surface may be
said to represent the geometrical place of a physical surface. Geom-
etry regards it as a separate entity, capable of existing by
itself and moving about in space, or changing its position with
regard to other bodies and surfaces, whether physical or geo-
metrical, without distortion or change of form.

Definition 11. — Since a rigid body, immersed in unoccupied
space, or in any plastic material substance, displaces a portion
of the material, or occupies a portion of the void, to the exclu-
sion of other matter, equivalent to its own volume, and since
this rigid body exposes only its surface —the interior parts not
coming into play at all in the act of this displacement (the in-
terior might as well be imagined hollow or devoid of matter in
this connection), — it is evident that, in general, surface ought to
be a function of volume, increasing with the increase of the
last ; that is, to a large volume there must in general correspond
a large surface, although the converse is not a necessary conse-
quence. At any rate, it is quite inconceivable how a rigid im-
penetrable body could take up space to the exclusion of other
material substance, which, on account of its capability of mo-
tion or change of position, can be prevented from occupying the
same space as the body considered, only by the boundaries of the
last,—were it not that these boundaries are in themselves an extended
magnitude, standing in some functional relation to volume and
Jorm. Accordingly, surface must have portions, all of which
may be exposed to vacant space, or in contact with surfaces of
other bodies, or some exposed and the others covered by cor-
responding surfaces of other bodies. In this last case, the ex-
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posed surfaces can again be brought into contact with surfaces of
other bodies. Two surfaces will then be equal, if they can lie
upon each other and mutually cover all their parts; and one is
greater than the other, when a part of the first can cover the
whole of the second, while another part of the first will remain
exposed, or covered by a third surface.

Scholium. Any part of a body may be regarded as a sepa-
rate body (in the geometrical sense of the term) from the re-
maining part, since each can be imagined to move about in
space independently of the other, and without distortion or
change of magnitude ; and, while the two constitute the parts of
the same solid, the limit common to both is a surface of some
definite shape and magnitude.

Corollary. Surfaces coincide with one another when the
bodies limited by them coincide and, conversely, bodies limited
by surfaces that can be made to coincide with one another,
must themselves be capable of coincidence, since when the sur-
faces are brought into actual coincidence, none of the bodies
can help being everywhere within and nowhere beyond their
coinciding limits.

Definition 12. — Both experience and reasoning lead us to
the conclusion that, while volume, or unspecified space— space in
all possible directions, wherever motion is possible— is homogeneous,
surface, or that which limits a body, may be of very different
kinds, having almost nothing in common, except that an in-
definitely small, or infinitesimal, part of any surface may be
imagined to move towards another infinitesimal part of the
same surface by a continuous infinity of paths in the surface
itself, as will be shown later. But this common property is not
sufficient to make surface a magnitude, always definable with
mathematical precision, and capable of being expressed in a
voluntarily chosen unit. The indefinite size of the small part
that is capable of congruence would make the computation of
areas with mathematical precision impossible, unless there be ways
of reducing these to surfaces capable of coincidence in finite por-
tions. Volume, as a magnitude, which, in fact, is only the
capacity of space to contain matter of a constant ideal impene-
trability, is everywhere the same. Any part of volume is
capable of coincidence with any other corresponding part of
volume ; this coincidence is given directly in the fundamental
idea of motion together with the idea of rigidity of the moving
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bodies. Volume, therefore, or space unspecified, is homo-
geneous ; whereas purface, as having an infinite variety of forms,
isnot so. And while, for instance, a smaller body, being posited
within, or surrounded by, a larger one, invariably occupies a
part of the volume of the larger,— the limits of the two unequal
bodies may be, and, in fact very frequently are, incapable of co-
incidence in any of their finite parts. In order to make surface
a mathematical magnitude (i. e., definable with precision), there
must be found at least one homogeneous surface, of which any
finite part is capable of coincidence with any other correspond-
ing part of the same, and, after taking such a surface as stand-
ard, there must be found rules how to reduce other surfaces, with
any desirable degree of precision, to this standard. Such homo-
geneous surfaces, the essential characteristic of which is that
any part of them can be imagined to slide upon the whole, re-
maining always in coincidence in all its parts with correspond-
ing portions of the whole, do really exist; and their existence
is likewise a matter both of experience and of mathematical de-
duction. Any of these homogeneous surfaces might be taken
as a standard of measurement ; but one, as affording the greatest
advantages for computation, and being capable of indefinite ex-
tension, is accepted as the standard, and all others are always
reduced to this single standard. (It is needless to remark that
a difference of choice of the standard surface would, like dif-
ferent systems of numeration, lead only to different methods of
computation, but not to different results.)

To sum up :—surfaces are multiform and are, therefore, seldom
capable of coincidence in their finite portions. The nature of
measurement, however, requires a homogeneous standard, to
which all magnitudes of the same kind that are to be meas-
ured, can easily be reduced. Surfaces answering this descrip-
tion of homogeneity and, hence, capable of serving as a standard
of measurement of area and form, actually exist — of different
species and infinite in number—the essential characteristic of
all of which is the capability of any portion of such a surface
to slide along the whole, remaining always in coincidence with
different corresponding portions of the whole. The simplest
of these is chosen as the norm ; it will be shown that it pos-
sesses the additional properties of being indefinitely extended,
beyond any arbitrary limit, and of its side towards the interior
of the body which is limited by it, fitting upon the opposite
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exposed side, so that the two can be made to coincide
(plane).

Definition 13. — If two bodies are in partial contact of their
surfaces with each other, the boundary separating the part of
surface in contact from the part not in contact, in either of the
bodies, is the limit of either the covered or the exposed portion
of the surface. For simplicity, let us imagine the surfaces to
be homogeneous. Any finite portion of the uncovered surface
can be imagined to be in contact with the surface of some third
body (see Def. 11), whose form at a finite distance is immaterial,
and which moves upon the rest of the uncovered surface, along
any path in it, until it reaches the limit of the covered surface,
where it is checked in its motion by the rigidity of the surface
of the covering body, and can only move so, that, while a por-
tion of its surface touches the covered, another portion
touches the covering, body. Motion al(l):g the boundary
separating the covered from the uncove surface, must
still be possible for an indefinitely small portion of a finité
body, whose contact with the two bodies, in the exposed por-
tions of their respective surfaces, blends along the boundary
for the infinitesimal element; for, as this finite body can be
conceived to move along the two, remaining always in partial
contact with each, the infinitesimal element, touching the two
simultaneously, must, of necessity, find a region of motion
along their common boundary. This boundary will, therefore,
have parts of its own, viz., the specializations of position of
the infinitesimal touching element considered ; but these parts
will not be of the same kind as the parts of a surface ; neither
can the whole be a part of surface. In fact, it cannot be a
part of the covered surface, since it must likewise belong to the
uncovered surface; but, however small, a portion of the cov-
ered surface, if not infinitesimal, will always have some of its
parts removed from the exposed region by intervening parts of
the covered region. Similarly, it cannot be a part of the ex-
posed surface. But we have proved that it must have parts of
its own. The boundary between two portions of surface is,
therefore, a new magnitude ; it is a line, and its parts are dif-
ferent from those of a solid or a surface, but like them expres-
gible in numbers having some determinate relation to the num-
bers expressing the magnitudes of volume and surface. (The
same reasoning holds also in the case of non-homogeneous sur-

e |
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faces, provided a certain amount of plasticity of form is al-
lowed to the touching parts of the moving body).

Scholium. — The analysis of the last Definition can be made
more concrete by the following résumé, which also puts its re-
sult in a somewhat different light :—

When three bodies touch one another in their surfaces and
they also fit one another, so that no vacant space is left between
the parts of the touchings, the same part of surface can belong
only to two of the touching bodies at once ; while the boundary
separating the surface belonging to any pair simultaneously,
from the surface belonging to either of the pair and the re-
maining third body, belongs to all three bodies simultaneously
and, hence, is not a surface, but a line. It is the continuous
boundary of rigidity of three bodies that have come into con-
tact with one another, and any indefinitely small part of it can
be conceived to pass to the position of any other of the same
only by two different courses, in case the boundary is com-
pleted and the line returns into itself, and only by one course,
if the boundary is not completed. '

Corollary.— From this follows immediately the statement
made in Definition 12, that an infinitesimal part of a surface can
move towards another infinitesimal part of the same surface,
by a continuous infinity of different paths in the very surface.
. The idea of a line is also transferred from a physical sur-

face upon a geometrical ome, and the geometrical line may
be said to represent the geometrical place of a physical line.
Geometry regards it as a separate entity, which can be conceived
to move about in space, or upon a suitable surface, without
change of form or magnitude.

Definition 14.— Any body may be regarded as divided into
two definite parts, having one part of their surfaces — namely,
that created by the section —in mutual contact, while the surface
of the original whole body is now also cut into two parts, each
belonging to one of the two bodies now taking the place of the
original one. The boundary separating the common surface
from the distinct parts will, according to Definition 13, be aline
on the surface of the original body,— thus being, from one side
at least, exposed to space. Any part of this line may be brought
into contact with some other body. When the whole line is in
contact with other bodies, leaving no part of it adjacent to va-
cant space, it can be regarded as covered by another, the
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duplicate of the first in form and magnitude, which is traced
upon the surfaces of the touching bodies,—and no body, be-
sides, can be in contact with the line. The line and its du-
plicate are then said to coincide — coincidence in this case also
being a proof of equality in both form and magnitude. If we
form, in a similar way, the duplicate of only a portion of the
line, this duplicate will evidently be less in magnitude than the
whole line.

Corollary. — Lines coincide with one another, when the sur-
faces limited by them coincide, since none of the lines limiting
these surfaces can be within or without the limited surfaces.
The converse, however, is not necessarily true (except in the
case of the plane, as will be shown later).

Scholium. — Lines, like surfaces, are multiform ; but there
exist also homogeneous lines, of which any part is capable of coin-
cidence with any corresponding part of the same. One of such
homogeneous lines, capable of indefinite extension and uniquely
determined by any two of its elements, is accepted as the stand-
ard of line-measurement (straight line).

Definition 15. — When the surfaces of two bodies are in par-
tial contact, the bounding line being, in its turn, brought into
partial contact with a corresponding line upon the surface of a
third body, or, in other words, a part of the line being covered,—
any indefinitely small part of the remaining uncovered line may
again be covered with a corresponding infinitesimal line upon
the surface of still another body ; then the parts of the last body,
immediately adjacent to the line in question, may be imagined to
move along the uncovered part of the line, only by two opposite
paths, until they reach the limit of the covered part of the line,
where further motion is checked altogether by the rigidity of
the surface of the body which has effected the first partial
covering of the line. This limit, therefore, separating the
covered part of the line from the uncovered, has no parts at all,
since an infinitesimal element, coming up to it, finds no exten-
gion to move upon. (There would be no advantage in this case
in starting with a finite part of the line moving upon the un-
covered part, by allowing plasticity of form in case of non-
homogeneity, since — a line being a region of motion, only for an
infinitesimal part of a body, touching two surfaces at once —
the motion upon it must be a filing in, or successional motion,
all along the line; that is, the motion of a row of individual
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members, where there is a unicursal succession of each mem-
ber into the place of the one immediately preceding, going on
either indefinitely, or returning to the original starting place,
— the members being the infinitesimal portions of the line, and
all of them belonging to the same series.) The proof that the
limit we have found is a part neither of the covered, nor of
the uncovered, portion of the line, is perfectly similar to the
proofs given for the limits of a solid and a surface, and need
not be repeated again. The boundary of a line is no magnitude.
It is called a point in geometry, which regards only its position
or geometrical place. We say its motion generates a line,
meaning by this that a line represents a field of motion for it,
or, otherwise, the path of a moving point. It is regarded in
geometry as a separate entity, which can move about in space
independently. It is neither homogeneous nor heterogeneous,
since it has no parts. The geometrical places of two points
always coincide with each other, as soon as they are brought
into the same position in space, within a body, upon a surface,
or a line. It is, therefore, regarded as the element of space.

Corollary.—When two lines coincide, their ends, or the points
limiting them, coincide also, 7. e., these ends have the same
positions, two by two.

To sum up what has been stated in the foregoing definitions :—

The boundary separating impenetrable substance from capa-
cious space, or the region where no motion is possible, from
the region where motion is wholly unimpeded, is a surface, and
admits only of motion in contact along finite regions, with the
condition of plasticity of the touching surface of the moving
body for the case of non-homogeneity.

The boundary separating uncovered surface from coVered
surface, or the region where motion in contact is possible, from
the region where motion in contact for finite bodies is also im~
possible, is a line, and belonging neither to the first nor to the
second, it admits motion in contact for an indefinitely small
portion of a body. .

The limit separating an uncovered portion of a line from a
covered portion, or the region where motion in contact is pos-
sible for an infinitesimal portion of a body, from the region of
absolute exclusion of motion, is a point, which is, thus, the
position of an infinitely small portion of a body at rest ; it has,
therefore, no dimensions and only position.
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Space, in its totality, being the repository of extended sub-
stance which is capable of motion (change of position) and
endowed with the properties of impenetrability, rigidity, and
infinite divisibility, hmltmg and bounding vacant space in cer-
tain definite ways, — gives rise to three different kinds of spacial
magnitude, so connected that one is the limit of the other and
is limited by the third. The point is the result of limitless
divisibility of any of the three kinds of extended spacial mag-
nitude.

Space is, therefore, a tridimensional manifoldness, only be-
cause of its three chief attributes, giving three different kinds
of specializations of position, limiting each other and so con-
nected that there is always a certain determinate relation be-
tween the units of one kind of space and the units of the other
kinds. It was shown in Definition 11, that the rigid surface
by means of which the property of impenetrability makes itself
effective, must be some function of the volume ; reasons were
also given why a surface should be a field of motion for finite re-
gions in contact, and a line, a field of motion for infinitesimal
regions of contact; from which will follow at once, that a line
is a differential element of a surface, and a point, an element of
a line. Limitless space, in its totality, would be a one-dimen-
sional magnitude, ranging from zero to infinity, in terms of
volume alone,— were it not for the invariable relations between
the units of volume and those of the two subcategories of speci-
fied space, resulting from the fact that they always limit one
another. In order, therefore, to suppose that space has more
than three dimensions, we must conceive that a point has di-
mensions, since we began our analysis from free unlimited space,
and found it, in itself, without considering its limits, to be one-
dimensional ; and only in relation to its limits does it become
tridimensional, since its first two limits (but not the third) are
also magnitudes and bear certain fixed relations to unspecified
space as a magnitude. Since u, du, d*u, where u represents a
piece of unspecified space, 7. e. volume, are all variables, but
not so d, it follows that, if u is a function of z, it must be of
the third order : u = az® may do for the simplest representation
of such a function, where dx will represent the differential of
a line ; de may, of course, be a homogeneous function of the first
degree, of a number of differentials dz,, dz,, dz,, ‘- dz,_; but
then there must be n — 3 linear relations between the da’s, re-
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ducing the number of independent ones to three. It is absurd,
by reasoning in a reversed order, to infer by a kind of induc-
tion, that, just as a point in moving generates a line, a line,
in moving out of its regions, generates a surface, and a sur-
face generates a body, so tridimensional space, in moving
out of itself, will produce a new kind of space. In the first
place, we would have to prove in general, that if our reasoning
holds for m, it will hold for n 4 1, as we always do in mathe-
matics in such a kind of induction. Riemann’s construction of an
(n + 1)-fold variability, out of an n-fold one and a variability
of one dimension, is based on the assumption that the n-fold
variability passes over into another one, entirely different, in a
determinate way, so that each point of the first passes over into
a definite point of the other, which is not at the same time a point of
the first,— an assumption that must be proved in each particular
case. In our case, this assumption is actually equivalent to as-
suming, that space can move out of space, which is absurd by the
very definition of space, viz., space is that which gives place to
material objects, whether at rest or in motion ; so that wherever
motion is at all possible for a tri-dimensional piece of space, there
is spaceagain. In the second place, even if we admit the possi-
bility of space moving out of itself into some other region, we have
not admitted any new property of space which might be the ob-
ject of measurement, since we tacitly assume that the new region
is not space, so that space would remain again tridimensional.
And even if we should admit a new unknown property of
space, we would still have to prove that tridimensional space
is its limit ; and that its units bear a fixed mathematical rela-
tion to the units of space we have already considered. Indeed,
it is not sufficient for a phenomenon to have a certain number of .
properties, in order to consider that phenomenon of as many
dimensions as the number of its properties. The properties
must be the limits of each other, and their units must stand in
a certain invariable mathematical relation to one another.

The following is an analytical deduction of the number of
dimensions of space considered as a point-manifold, which
was written up and added, as a supplement to the introductory
chapter of the main body of the Dissertation, two years after
the latter had been completed. The purpose of this analysis
is to prove the a-priori necessity of three dimensions, when the
point, as usually defined in elementary geometry, is taken as
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the element of space. It will follow that to make space a four-
dimensional manifold, without changing its element to some
other geometrical entity, will involve a contradiction in terms.
The discussion is divided into 13 paragraphs. —

1) Let the whole original manifold be S, which we suppose to
be continuous, i. e., any two different positions in it can be
reached from each other only through an unbroken series of other
positions, all in S, whose number is infinite.

2) Let an invariable piece of it — U, endowed with impen-
etrability, rigidity, and infinite divisibility, be imagined as
capable, as a whole, of changing its position in S. The invari-
ability of U is characterized by the fact that the mutual dispo-
sition, or arrangement, and the relation, of the parts of U, ob-
tained in a determinate way by any arbitrary subdivision, is to
remain unaltered with respect to one another and with respect
to the whole of U, considered as an entire manifold in itself.
We say that internal motion, of parts of U within U, is ex-
cluded, and any two parts that have been separated from each
other by certain continuous series of other parts, in one posi-
tion of U within S, will remain so in any other position. We
thus arrive at the notion of Bulk or Volume. Further, this
notion is made more precise by postulating, that, when such a
rigid piece has once occupied a definite portion of vacant or
unoccupied 8, to the exclusion of any other impenetrable
piece, it will always be brought into coincidence with that
portion again, as soon as a finite part of it, no matter how
small, will be brought into coincidence with the corresponding
part of S it has occupied originally ; any other small portion
of U will then also have to occupy its original position within
S. SlAccording to this postulate, it is perfectly indifferent
whether U is conceived to move within S, or U is conceived
as stationary and S as changing its relation with respect to
U, in giving it position in different portions of itself —all
these portions being, of necessity, equal in bulk or volume to
one another and to U.) If we should measure only bulk or
volume, we would get only one dimension. The property of
impenetrability of the movable pieces, however, leads us to
distinguish a new category of manifold, subordinate to the cate-
gory S and contained in it, in the following way : —

3) Suppose U fixed, and another piece V, of same nature,
moving up to it, reaches the boundary of the latter. It will
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then be prevented from occupying the same place as U by the
impenetrability of the two, exhibited in their boundaries, so
that a certain kind of motion of V'is checked when the latter
comes into contact with U. Here we have the notion of the
boundary of U separating it from vacant S, or from other pieces
V of same nature as itself.

4) This first derivative boundary of U, which we may denote
by U, is neither a portion of U, nor of V that has come into
contact with U, nor of the vacant S, in which U is posited; it
may, or may not, have portions of its own. Example :— the
limits of a period of time, no matter how great, have no parts,
since there is no possibility for an invariable piece of time to
change its position with respect to other invariable pieces, and
move up to them to come in contact with their boundaries. In
our case, however, U’ must have parts of its own, as will
become evident from the following considerations :

5) By infinite divisibility of a rigid piece V, we may arrive
at the notion of a plastic substance, each infinitesimal portion
of which occupies a corresponding infinitesimal portion of the
manifold 8, and the whole retaining only the property of im-
penetrability, having lost, however, rigidity. It will repre-
sent, in fact, a plastic substance, the smallest portions of which
are easily capable of separation and change of position with
respect to one another and with respect to the whole of their
aggregate. The rigid piece U considered, if immersed in this
plastic substance, will displace a portion of it equivalent to the
bulk of the portion immersed. To a smaller portion of U im-
mersed will correspond a smaller bulk of the plastic material
displaced, and to a greater portion immersed will correspond a
greater bulk displaced. Now this displacement is necessarily
effected only by the boundary of the immersed portion of U,
and by that part of it alone which has, before immersion, been
exposed to vacant S, as distinguished from the remaining part
which —separating the immersed portion of U from the non-
immersed —could have no effect in the act of displacement
considered. It follows, therefore, that to a greater bulk dis-
placed —and hence to a greater portion of U immersed — cor-
responds a greater portion of the boundary U’, which we may
call U] (i = immersed), as distinguished from the remaining
portion of U’, which, as belonging to the exposed portion of
U only, we may call U (e = exposed). By changing con-
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tinuously the portion of U immersed, from an infinitesimal
bulk to the whole bulk of U, we arrive at the notion of a con-
tinuously increasing boundary U], from an infinitesimal to the
whole of U’, and a correapondmgly decreasing U, from the
whole of U” to an infinitesimal of U, and then to zero.

6) The limit separating the two portions of U’ (i. e, U; from
U)), at each and every stage of the process, is evidently a new
kind of boundary — U”,—and the infinitesimal portion of
U’, between two very near U™s corresponding to two very
nearly equal bulks of U immersed, in the continuous process
described above, may be denoted by dU’, meaning an infini-
tesimal of U’, and the aggregate of all these, YrdU,, may be
taken to equal the whole of U’ belonging to the whole of U,
just as U= Y3dU,. (Inthe synthetic discussion of the dimen-
sions, above (Definition 12), allusion was made to the geomet-
rically indispensable notion of a homogeneous U’, which might
serve as a standard of measurement for different U’’s, and
later the actual existence and construction of such a U’ will
be rigorously proved.) A homogeneous U’ may be considered
a field of motion for finite portions of U’, covered by corre-
sponding portions of V"’ belonging to some moving rigid 7,
which, in the process of motion, touches U in the variable por-
tions of U’ considered. U’ in itself, without the piece U
which is bounded by it, has an mdepemlem existence, only as an
abstraction (like, for mstance, force without matter) In fact,
we can speak of it as moving aboul, either in S or in its own
region, only in virtue of cowespondmg motions of U (or V) to
which U’ Sr V’) belongs

7) Corollary. — It follows also, that U’, as a boundary be-
tween U and unoccupied adjoining portlons of 8, or between
Uand V, must be considered as having the property of im-
penetrability. In fact, U’ is conceived of as that which pre-
vents any portion of V, no matter how small, from penetrating
into the region occupied by any portion of U, and wvice versa.
But, as a region of motion for portions of itself, i. e., as a mani-

Jold in itself, it cannot possess the property of impenetrability, and
must, in fact, be of the same nature with respect to portions of V'
or U’ moving in the whole, as vacant S i with respect to impene-
trable U or V. This is a reason why the boundary between
U, and U, can be obtained only through the medium of an
auxiliary V, which may also be considered rigid, and portions

PR |
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of whose boundary —V_, very near V(= U], ¢ = covered),
will then serve as a check to a third rigid piece W, of same
nature as U and V, a finite portion of whose boundary w!
is conceived as oovering corresponding finite portions of U,:
(exposed with respect to ¥V only) and moving in the manifold
U’, until a finite portion of W, comes into coincidence with a
corresponding portion of V, which thus becomes V. = W,.

8) It is important to observe that, when a piece of the original
manifold V comes into coincidence with another piece of the
same kind U, in general only finite portions of their boundaries
coincide and thus become U] =V, ; the remaining portions of
their boundaries combine in forming a new combined boundary
of the piece (U+ V), taken as a whole, —this combined
boundary being now represented by (U+V)Y=U, +V .*
It is, therefore, evident that, when W, considered in No. 7
moves up to V, the two portxons of its boundary — W and
W, — become now combined into the boundary separating W
from the combined piece (U + V), viz.,

(We, + W) =(U+7V).,;

and, in general, for the same reason as above, there will yet re-
main a finite portion of (U + V)’ exposed which we may denote
by (U+ V),

9) We see now that U”, — originally obtained as the limit
separating U, from U/, when V was considered s the plastic
substance in which a portlon of U was immersed, and then
identified with the boundary separating U/(= V) from U/, and
also from V, in case V is considered rigid and a portion of its
boundary V covering an equal portion of U’,— by means of
the process considered in No. 7 becomes broken up into two por-
tions : one lying in the region of (U4 V), exclusively, and sepa-
rating U, from V., or each of these from the same correspond-
ing portlon of U/ (= V') and the other lying exclusively in
the region of (U+ V)..= (W, + W.), and separating U,
from V.. Let the first be ca ed U” and the second U..

10) ]§y introducing another piece 7, which we make to play
the role of W for the breaking up of U,, into U, and

#*This combined boundary is in no way different in character from U”,
being like &ty continuous, and having finite parts represented by A (U4 V)’
=AU + AV
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U, ., and then still another piece X for the breaklng
up of U, , into two pieces, and so on, we see that U"” consists
of as many parts as we please. Moreover, by making W move
up to T, so that (W, + W), — conceived as changing its posi-
tion oontmuously and as changlng its form and magnitude if
need be,* — shall always remain during this process in coinci-
dence w1th an equivalent variable (U + V), , we shall convince
ourselves that an infinitesimal d(W; + W), in the neigh-
borhood of U”, remaining always in coincidence with a variable
dqU+7)y)., will displace itself and find a region of motion
along the element d(U + V)’ taken in the neighborhood of U”
and conceived, in toto, as a locus for the different positions of the
moving infinitesimal portion of the first derivative boundary.
U” itself, therefore, as a whole, will prove to be a locus in quo
for U, =limd(U+V),. When W comes up to 7, it is there
0

checked, — and we arrive at the conception of U™, separating the
reglon of motion for U, from the region where such a motion
is impossible. It is, of course, the same boundary as that
which separated U,’,, from Uy, ,, obtained at the beginning of
this paragraph.

11) In summing up, we see that, while S is a region of mo-
tion for pieces like U, V, etc., the first derivative boundary
U’ is the limit of dU, and that, not being a portion of U, it has
portions of its own, being a region of motion for corresponding
finite portions of the boundaries of a movable covering piece
V. U”is the limit of dU’ as dU’ =0, and, not being a part
of U’, on account of its separating the 'region of motion in con-
tact for a finite piece W from the region where such a motion
is impossible, it still has portions of its own. For, although
W cannot find upon it a region of motion, even for a finite
portion of its boundary, it can find upon it a region of motion
for the limit of an infinitesimal portion of its boundary, namely
for lzm dW' (= W”). For, as it was shown, I can be made

to move so, that, while two finite portions of its boundary, dis-
tinct but contlguous in W”, move each upon a corresponding
portion of U” and V"’ respectively, an infinitesimal of its boun-
dary d W', contiguous to W”, and taken as near W” as we please,

* This was previously shown to be possible, by supposing the first deriva-
tive boundary to be homogeneous, for simplicity, or by allowing sufficient
plasticity to W”.
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on either side of it, will move and remain in coincidence with
corresponding variable infinitesimal portions of both U’ and
V’. 1In passing as near to the limit as we please, we come to
the conception of portions of the limit W” itself, moving in the
whole of it as in a locus in quo.

The third derivative boundary U” separates the region of
motion for the limit of an indefinitely small portion of the
boundary of the first order from the region where motion is
impossible even for the limit of an infinitesimal portion of such
a boundary. An infinitesimal portion of U”, very near U"”, on
both sides of it, namely dU”, may be considered an element
of U”, so that we have 2dU" = U".

12) And now, if we agree that any manifold derived from S
in the manner indicated, will have to be capable of giving place
to impenetrable substance, or fo its boundary which is directly
connected with the substance, we find that the last derived
boundary, U”, which does not, even near its limit, afford a
region of motion to an infinitesimal of the first derivative
boundary dU" of the impenetrable substance, has only position
but no dimensions. So that we have three categories of space,
corresponding to three properties of bodies — rigidity, im-
penetrability, and infinite divisibility, — each limiting the pre-
ceding and limited by the following.

These are : —

8, a region of motion for pieces of the impenetrable substance
itself — U, 7, etc., and their boundaries, both finite and infini-
tesimal ;

U, the first derivative boundary of impenetrable substance,
a region of motion in contact of finite pieces like U, V, i. e., a
region of motion for a finite portion of the boundary of a piece
of impenetrable substance, and, lastly,

U”, the second derivative boundary, a region of motion for
the limit of an infinitesimal portion of the first derivative boun-
dary dU".

The boundary, U”, between two portions of this last region
of motion, because of its limiting the region of motion for an
infinitesimal portion of the boundary belonging to impenetrable
substance, from the region of no motion even for an infinitesi-
mal portion of the boundary, must be of zero dimensions, but
still capable of having definite position, being the primary irre-
ducible element of space. It follows, therefore, since each of
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the boundaries is capable, near the corresponding limit, of
being cousidered an infinitesimal element of the category which
is bounded by it, the last category in order derived, namely
U”, has one dimension ; the one preceding, two dimensions ; and
the original one U, or a piece of vacant S as measured by U,
three dimensions.

13)* By the very process of the deduction of the three
qualitatively different categories of space (regions of different
kinds of motion, which, however, are the boundaries of each
other, in a series), we have arrived at the notion of a manifold
of two dimensions, objectively not independent from the main
category, but, none the less, having a true abstract reality, and
which, by its very nature, as a manifold in itself and not
as a boundary, is devoid of the property of impenetrability
(see No. 7). In this derived manifold, therefore, boundaries
of portions can be established only by means of a piece of the
higher manifold, having the property of impenetrability in the
region of the dimensions of the derived manifold considered,
and, for this very reason, suggesting a dimension over and above
those of the derived manifold. It is no wonder, then, that the
general reasoning, applicable to the original manifold, is not
applicable to the derived manifold. The figure given as an
objection, instead of disproving the reasoning, is only another
proof of its validity. Mark, that in order to attribute impene-
trability to the limits of the circle, you must postulate it to
be infinitely thin, and ¥ an infinitely thin film, — which, of
course, is equivalent to postulating a third dimension, but in a
very disguised form.

Now, this infinite thinness is already capable of being increased
indefinitely. In other words, the assumption of impenetrability,
by the reasoning employed above, would involve a third dimen-
sion, outside of the given manifold of two dimensions, leaving
this last unchanged. A reference to Nos. 7, 8, 9, 10 will fully
justify this assertion.

And still otherwise, — perhaps thie way of looking at the
thing may be more satisfactory :— To such intelligent beings

*13) is a reply to an objection raised during a oonference when this was
presented : Why by the same general reasoning we are unable to prove a
third dimension even in the domain of an admittedly two dimensional mani-
fold, as is, for instance, the first derivative manifold. The nature of the ob-
jeotion will be understood by the reader from the reply, which alone is given
here explicitly.
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as would have no sense of the third dimension, if such beings
were at all possible, the speculation about a third dimension
would not only involve no logical contradiction, but, on the con-
trary, would be a perfectly logical and necessary generalization.
For, they would have to postulate some dimension —not directly
given in experience —as a medium for the continuous passage
of W to T, remaining always in contact with both U and V,
which, even in two dimensions are not essentially separated,
since they are both on one and the same side of U’ and V.
But the speculation about a fourth dimension for such beings as

U, V, W, T are supposed to be two dimen-

sional regions of motion to startwith.

Fia. A.

have already risen to the empirical verification of the abstract
deduction of three dimensions, would certainly involve a logi-
cal inconsistency. For, starting with the manifold S as de-
fined above, in its most general aspect, without boundaries at
all, and, for all we know, having n dimensions, where n may
be any entire positive number, we were led, by a simple analysis
of its definition, to three different manifolds, containing each
other in series, and the third derivative boundary which is
the boundary of the lowest category in this series, was found
to be something that can have, at most, position, but no dimen-
sions. If preferred, you may say that we have proved that the
maximum number of dimensions of space as defined by the
properties of S, is three, and that, having logically arrived at
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the maximum, we find it in perfect agreement with our intuitive
experience, which, of course, also served us as a starting basis
in defining the manifold &S, at the beginning of the present dis-
cussion.

J deem it necessary to repeat at the conclusion that I ac-
knowledge the fruitfulness of the idea of making space a mani-
fold of a higher number of dimensions, by dropping the property
of impenetrability in the physical sense, and assuming a figure
depending on n parameters, as the element of space.




CuaPrER II.

THE SPHERE, THE CIRCLE, THE STRAIGHT LINE, THE ANGLE, THE
TRIANGLE, THE PLANE, ETC.

Definition I.— A pair of fixed points in space, or any two
points in rigid connection which can bemade to coincide with these,
are said to be at an invariable distance from each other.

Corollary I. — If a pair of points, A and B,in rigid con-
nection, are capable of coincidence, one by one, with another pair,
C and D, likewise in rigid connection between themselves, the two
pairs will be at equal distances, each point from its pair, i. e.,
distance of B from A = distance of C from D or of D from C.

Corollary II.— Two pairs of fixed points in space, A, B, and
C, D, both of which are capable of coincidence successively with
the same freely movable pair in rigid connection, E and F, are re-
spectively at equal distances.

For shortness we shall call a pair of points in rigid con-
nection, free to move as a whole, simply a rigid pair of points,
and will denote them thus (4.B).

Axiom 1.— If any surface or line can be made to coincide
with another surface or line, it can do so only by passing from
one position to the other by a continuous path, consisting of an
infinity of such positions, every position in which is a surface or
line, respectively congruent with the moving one.

Lemma 1. — From the principle of rigidity and the defini-
tions of body, surface, line, and point, it follows that a body is
absolutely fixed in space when, and only when, a finite portion
of the surface limiting it, or in any way rigidly fixed in it, is
fixed in space.

For, whenever a body is fixed in space, the whole of its sur-
face, limiting it from all space around, and hence every finite
portion of this surface, is fixed in space; and whenever the
body is moved, the whole of its surface, and hence every finite
portion of it, no matter how small, changes its position. We
cannot say, however, the same of a point in the surface, since
a point, having no magnitude, but only position, does not limit
the surface to which it belongs and which may be conceived to

63
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change its position as a whole, and hence to interchange the
positions of all congruent lines in it that are drawn from a
common point limiting them all and remaining fixed. Hence,
a body and, therefore, also any surface or line, rigidly fixed in
it, may be conceived to move when only one point in the body,
the surface, or the line, is held fixed in space. Such a motion
of the body is called rotation, revolution, or turning, about the
fixed point.

Theorem 1, — If (4.B) denote arigid pair of points, of which
A is fixed and (B) is made to assume all possible positions
compatible with the rigidity of the pair and the fixity of 4,
then (B) will describe a homogeneous surface called a apherwal
surface, limiting a body called a sphere. A i3 called the center of
the sphere, or of the spherical surface, and the invariable distance
AB, from the center to any point in the surface, is called the
radius of the sphere.

In fact, the moving point (B) can pass from any fixed point
B with which it initially coincided to any other point B’, B”,
and so on, by a continuous infinity of paths crossing and re-
crossing one another in all conceivable ways, provided all these
points are at the same distance from A as B (preceding Lemma
and Axiom 1). Let (B) pass from B to B’ by a continuous
path of some determinate rigid form, BB’; while doing so, any
rigid line connecting A and (B) will describe a portion of a
surface. This surface, in its turn, conceived as a rigid form,
can (according to Lemma) be imagined so to move while 4 is
fixed, that every one of its points describe a line not already con-
tained in the original position of the surface itself, —thus describ-
ing a body. The line (BB"), conceived rigid and always limit-
ing the moving surface (4. BB’), will then be dragged along with
it in its motion and will describe a surface, since each of its
points describes a line not coincident with the original position
of the moving line; in other words, each point of the line
(BB') passes to another point not already contained in the
original position of the line. Moreover, since the surface
(ABB’) can be conceived to sweep through all that portion of
space around A whose aggregate of points is characterized by
the property that their distances from A are correspondingly
equal to those of the aggregate of points contained in (4BB’)
in its original position, it follows that the surface described by
the line (BB’) will contain the whole aggregate of points which
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are at the same distances from A4 as (B) in its original posi-
tion. It is also evident from the mode the body described
by the surface (ABB’) is generated, that it is a continuous
body, <. e., the aggregate of points composing it is a continuous
aggregate, which allows to pass from any point in the body to
any other through any third point belonging to the body, by a
continuous path lying wholly in the body (i. e., every point of
which belongs to the body). The surface, therefore, is also con-
tinuous, in the same sense, — namely, that we can pass by con-
tinuous motion from any point in it to any other, through any
third, by a path every point of which is in the surface. More-
over, the moving point will during such a motion remain at the
given distance from A, hence, on the surface of an imagined
fixed sphere ; and if the moving point is conceived to be fixed in
a sphere, of same center 4, but which is dragged along with (B)
in its motion, we see that every portion of a spherical surface
is congruent with every other of same limits ; that is to say,
the spherical surface s a homogeneous surface.

Corollary I.—Since the spherical surface separates a continu-
ous portion of space from all other space, that is, all points
that can be reached by one continuous path wholly contained
in the body, from all points of space that can not be reached
by a continuous motion from the center, unless the boundary
of the body is crossed by a path of which a portion, at least,
does not belong to the body, — it follows that this surface is
also a closed surface. )

Definition IT1. — Al points in the sphere (body limited by the
spherical surface) generated by the given radius 4B, from the
given center A, which can be reached by continuous motion from
the center, without crossing the surface at all, or after crossing and
recrossing it an even number of times, are said to be within the
surface or inside the sphere, and the distances of all these poinis
Jrom the center (excluding those of the surface itself) are said
to be smaller than the distance AB. Al poinis that can be
reached by conlinuous motion from the center, only after crossing
the surface once, or crossing and recrossing it an odd number of
times, are said to be without the surface or oulside the sphere, and
their distances from A are said to be greater than the distance AB.

Corollary II. — When a sphere is conceived to move within
the boundaries of a fixed spherical surface which is always in
coincidence with the surface of the moving sphere, its center
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(or centers, if there can be more than one), remaining at a con-
stant distance (or constant distances) from each and every one
of the same fixed aggregate of points belonging to the same
surface, will remain fixed in position. But since, when the
sphere moves around one fixed center, from which it is con-
ceived to be generated, every other point in it, at a distance
from the center, moves upon the surface of a sphere (Theorem
1), it follows that, given a spherical surface as a whole, its center
18 uniquely determined. A complete spherical surface s, there-
Jore, said to be the locus of all points equidistant from a unigque
point, called the center.

Corollary ITI.— If two spheres coincide in any finite portion
of their surfaces, they coincide throughout, and, hence, have the
same center and radius.

For, by holding the finite common portion of each spherical
surface fixed, each of the surfaces remains fixed (Lemma 1).
But if either of the spheres is conceived as moving within its
fixed boundaries, around its fixed centre, every point at a dis-
tance from the fixed centre, moves upon a corresponding sphere,
and passes into the position of every possible point on the last,
and of no other point. Hence, there is only one center com-
mon to both, since the portion of each movable spherical sur-
face, which is initially in coincidence with the corresponding
common portion of the two fixed surfaces, can, without leaving
either of the spherical surfaces, pass over into any congruent
portion of either.

It follows from what has preceded, that a distance is a geo-
metrical magnitude. No two points at different distances from
a given point, can be connected with the given point by the
same line, which might serve as a path of motion from one end-
point of each distance to the other. If we take, to fix ideas,
as the connection between 4 and B, a line of some determinate
shape, lying wholly within the sphere described by (4.B), a
concentric sphere, described by a distance AC less than AB,
will cut every line (4B) into two parts, one of which will lie
within the smaller sphere, and the other, outside. Thus we
see that to a smaller distance corresponds a smaller path of
motion from one end of the distance to the other. This sug-
gests the idea of representing the distance-magnitude by a line.
But, then, we must find a line such that to a fixed distance,
from one fixed point on it to another, should correspond a
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unique position of the line, and to a smaller portion of the line
should also correspond a smaller distance, — which is not al-
ways the case with any line. Is there such a path between
A and B? 1 say, that if we eliminate all paths between A
and B which can assume different positions while A and B
remain fixed, — since their distance is unaltered, — there must
still be left a path between them which is unique for this fixed
position of the ends, and which will also satisfy the other re-
quirement,— as I shall proceed to prove with the utmost rigor
in the following two propositions and their corollaries.

Measurement of Distances From a Fized Origin; Addition and
Subtraction of Given Distances.

Theorem 2. — Let S represent a sphere described by radius

a from origin 0. OA = a, as soon as 4 is on its surface. De-
scribe from A a sphere 8’ with a radius b, where b <<a. Then
O is outside S’ (by Defin. 2), and, hence, some portions of S are
outside 8’; for if the whole of S were inside S§’, the center of S,
which is separated from its own outside by some portions of S,
would be inside S’ a fortiori. Similarly, some portions of 8’
are outside S; otherwise A would have to be within the surface
of S, and not on it. But some portions of S are also inside S’; for
otherwise it would be impossible to reach by continuous motion
from A any point belonging to S, before crossing the surface of
&’ once, — which is absurd, since A itself is on the surface of S,
and hence belongs to S; a portion of § is, therefore, inside S’.
Also some portions of §" are inside §; for if S' were wholly
outside &S, it could not contain in its interior any point belong-
ing to S — contrary to what has just been proved to be the case.
Hence, the spheres penetrate each other,— having one portion
of space in common, limited by the portions of their surfaces
which they have inside each other, and two other portions of
space, enclosed each between the interior side of the one and
the exterior of the other. The two surfaces must intersect
along a line every point of which is at equal distances from O
and from A, respectively. Hence, a rigid connection of any
point C on this line, with both centers O and A, will be cap-
able of displacing itself in such a manner that, while O and 4
remain fixed, C shall take all different positions on the line.
Describe now from O a sphere 8” concentric with S, with a
radius equal to the distance from O of a point lying in the in-
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terior of both § and 8'. Its surface will pass through this
point, hence will cut this space linto two portions, of which
only one will lie inside 8. This new sphere will still have a
portion of its surface inside S’ and the other portion outside,

gince it encloses centre O, which lies outside 8'. Describing
again a concentric sphere from O, with a radius whose end-point
passes now through a point lying in the interior of 8§’ and §”,
we shall still more reduce the portion of volume enclosed in the
interior of S and §”, to that only which is left inside this new
sphere 8” and §’. (The portion of the surface of S’ exposed is
continually increasing during this process of variation of 8, &7,
8" ... etc., since some portions of it enclosed by a greater sphere
described from O are exterior to any of the smallerspheres.) Evi-
dently, by continuing this process far enough and in a suitable
manner, the variable portion of volume can be made less than
any assignable small volume. This will happen when the two
spheres, the constant one §’, described from A4, and the variable
8™, described from O, touch each other in one or several points,
or in one or several lines ; for they cannot touch in any portion
of surface without their coinciding in every part (Cor. 3 to
Theorem 1). Now, they cannot touch in several distinct lines
or distinct points; for any line of fixed form, connecting O and
A with a point of the contact, could be displaced so, that, while
O and A remain fixed, the point on the line which has been
in coincidence with the touching point originally taken, shall
coincide with any other point in the common touching parts,
which must be at the same distances from O and from A, re-
spectively. Hence, since by the principle of continuous congru-
ence in motion (Axiom 1), the figure described by the displaced
line is a continuous one, — the figure described by a determinate
point in it is also a continuous ome. It must, therefore, be
either one line, —any portion of which can, by a continuous
motion along itself, pass without deformation into any other of
same limits, — or one point.

Scholium. — By continually decreasing the radius of the
variable sphere, and dropping the condition of its having to
pass through a point within S', we shall, at last, arrive to a
series of spheres which have all their volume outside S’, and
have not one point in common with the constant sphere. It isevi-
dent, therefore, that in this process.of passing continuously from
spheres having some portions inside S’, to such whose volume



69

and surface are wholly exterior to 8, — so that there is an ap-
preciable distance from each and every point belonging to the
region of these exterior spheres, and each and every point be-
longing to the region of 8’,— we must on the way encounter
a sphere, such that any sphere described by a radius greater
than its own, has some portions of volume inside 8’, and any
sphere described by a smaller radius, has every point of its re-
gion at some appreciable distance from the region of S’. And
in crossing from the series of greater to the series of smaller
spheres, we obviously can choose two, one from either series,
whose radii differ as little as we please from each other and
from the radius of the bounding sphere. Evidently the
minimum sphere of the first series and the maximum of the
second series, both tend towards the same limit — the bound-
ing sphere, which, we say, touches the constant sphere. This
bounding sphere must have at least one point in common with
the constant sphere, and may have even a continuous line of
contact, until otherwise shown,— which is done in what follows.
Similar remarks hold in the next
supposition of the present demon-
stration, viz., when we have to
add a distance to a given one, in-
stead of subtracting (see p. 70).
Now, the contact cannot be a
line. For this would imply that
the surface of the sphere S®,
lying wholly outside S’ according
to hypothesis, is divided by this
line into two parts: one,* which /
together with the exposed por- |
tion of S’ that has been continu- | i
ally increasing during the process |
of variation of S®, makes up a \
" closed surface, separating the in- '\
terior of both spheres from the
whole of the exterior space ; and
the second part, which, as derived
from the portion of the variable T
surface that has remained inside the combined closed surface of
both spheres during all the process of variation, must still be-

* Fig. 1a and 15 on p. 70 illustrate this in two ways.

Se~—_————
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long to the interior and, hence, must be enclosed between the
outside of S’ and the interior side of the part of surface of S™
previously considered. Some volume must, therefore, be enclosed
between the outside of 8’ and the outside of the portion of sur-
face of 8™, last considered. Describing now a sphere from O
with a radius of some point in this portion of volume, which,
consequently, is greater than the radius of the touching sphere
8™, we see that the new spherical surface must enclose every point
on 8™ and, hence, also the line of contact. It must, therefore,
enter into the interior of 8" along a line lying on the covered
portion of &', and again come out from there by another line,
lying on the exposed portion of same, — which is possible.
Hence, the contact must be in a single point.

We say that the radius of §®,
described from O and touchmg
§',is = (a — b), and the distance
from O to any point in S® and,
in particular, to the point of
contact, is (a — b); the distance
of this last point from A being
equal to b, the distance from O
to A=(a—b)+b=a—in
perfect agreement with original
hypothesis.

If, instead of diminishing the
radius of the sphere S, we should
continuously increase it, we
would, by a reasoning perfectly
similar to the preceding, come
to the conclusion that the space
between the exterior portion of

itk the surface of 8™ and the inte-
rior of 8§, would continuously
diminish Sand llkew1se the exposed portlon of the surface of §')
and could be made less than any assignable volume, — when
the two surfaces would have to touch, either along a single
line, or in a single point. Now, it cannot be along a line;
for, then,— since S™ in the limit will have to encluse in its
interior both the portion of S" which has been interior to S at
the outset and which has kept on increasing during the pro-
cess of variation of 8®, and also the remaining portion of
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S’ which has been exterior to S™ and has been decreasing
during the process, —there must be, in the limit, a portion
of volume, contained between the portion of the surface of S’
considered last, on the outside of it, and that portion of the
surface of 8™ which is now separated from the first por-
tion of S’ by the surface of the other portion of 8. The two
portions of surface, enclosing this volume and belonging to
the two spheres respectively, are separated by the line of con-
tact. Now, if we describe a sphere from O by the distance
from it to any point within this space, this sphere will lie
wholly within §®, and must be one of the spheres which have
cut S’ before reaching the limit. It must, therefore, first emerge
from that space ; but as it cannot cut S, it must cut S’ in two
lines, one on each of the portions of its surface, separated from
each other by the line of contact of 8’ and 8™, — which is im-
possible. Hence, the contact 8’ and S™ must be in a single
point.

‘We then say that the radius of the sphere 8™ described from
O, enclosing 8" and touching it in one point, is equal to @ + .
The distance from O to any point in 8™, and, in particular, to
the point of contact, is = (a + b) ; the distance of this last point
from A being equal to b, the distance from O to A is (a + b) —
b = a, in perfect agreement with the original hypothesis.

Suppose now we have to add to OA4 a distance 4B greater
than OA. We describe then from A a sphere §’, with radius 4 B;
it will enclose O and, hence, at leasta portion S; it may, how-
ever, encloseitall. Describe now a sphere §, from O, with radius
equal to AB; it will enclose 4, and hence S, and S’ must have
common portions ; but neither can enclose the whole of the
other, since, as one cannot be greater than the other, they would
have to coincide, which is impossible — the centres being distinct.
Hence, they will intersect as previously. Increasing now the
radius of the sphere described from O, we can prove, as in the
last case, that some 8™ will come to touch 8’ in one point B,
and enclose it all, so that OB will be equal to OA + AB, as
previously. Also, by diminishing the radius of S, continuously,
we shall get another point of contact, whose distance from O
we shall call OA — AB=a—b<0. Such a point of con-
tact as this last can never be obtained from the above rules of
addition and subtraction by adding any positive distance, either
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greater or less than 04, nor by subtracting from OA any posi-
tive distance less than OA. Hence, points corresponding to

negative distances from O, where OA is positive, are distinct
not only from one another, but also from all points mark-
ing positive distances from O under same hypothesis. We see
now, that we can add and subtract distances as abstract
quantities.

Scholium.— The rules for addition and subtraction given
above are based upon the fact that every two rigid pairs of points
connected at one end give rise to an infinity of distances
between the free ends, having a perfectly determinate higher
and lower limit (maximum and minimum), which we have de-
fined, respectively, as the sum and the difference of the two
given distances represented by the rigid pairs themselves. An
additional reason for singling out the maximum and minimum
distances from the host of all the aggregate, is found in the
further fact that, when the ends of one of the two connected
rigid pairs are fixed in position, the position of the remaining
free end is not fixed for any one of the derived distances, with the
exception of these two limiting distances. It is also evident,
that one of the essential conditions which the addition and sub-
traction of measurable quantities must satisfy, namely, that the
sum increase with the increase of each of the terms, and that any
two quantities differing in value should always give a determinate
difference (see Weber, ¢ Traité I’ Algebre Supérieure,” t. 1, p. 9),
is perfectly satisfied by our rules for all the three cases considered
in the theorem. In order, however, that these rules be perfectly
consistent, and should lead to no contradictions in their appli-
cation, it is further necessary to prove that, in the first place,
the operation of addition obeys the associative and commutative
laws of addition of abstract quantities, and, in the second place,
the rule for subtraction is actually the inverse of the rule for
addition. This can be done by the aid of the following two
lemmas :

Lemma 1, Theorem 3. —If the point B has been so de-
termined by our rule of addition, from the fixed points O and
A, that OB = OA + AB, then, taking B as origin and & mov-
able rigid pair (40’) congruent with (40), the fixed point
O, determined so that BO,= BA + AO’ coincides with the
original starting point O.
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Demonstration. — Let O, A4, B be the triplet of points of the
original operation; §;, S7, S, the corresponding spheres.
Then, by construction, if C' is any point on 87 not coincident
with B, we have OB > OC. The spheres S, and S have same
centre O and pass through A4 and B, respectively, and the
sphere S7, with center A, is wholly interior to 87, with the
exception of point B, at which the two spheres touch. Let
now the sphere (S7), conceived rigid, rotate about the fixed
point A ; every point (P) belonging to the rotating sphere,
will remain upon a sphere described about 4 as a center,
with radius (AP). Hence, the center of the moving sphere,
(0), will move upon the surface of S{ described from A with
radius (A0) ; and, since (B) is the only point of the surface of
(S;) which has, at the beginning of the motion, been at a dis-
tance (4B) from A, this point (B) will be the only point in the
moving surface (S7)
which will, during all the
rotation, remain upon the
surface of S7. All other
points in the moving sur-
face (S;), having been at
the beginning of the rota-
tion outside S7, will re-
main outside during any
moment of the rotation.
Hence, the moving sphere
(83) will, during all the
rotation, remain in inte-
rior contact with the sta-
tionary sphere S, touch-
ing it at any moment in
some point B’, which
marks the corresponding FIG. 2.
position in space, at that
moment, of the moving point (B)rigidly fixed in the moving sur-
face of (S};). Let O be the corresponding position, at the moment
considered, of the centre (0). It is now evident that the rotation
of (S7) can be so arranged that its centre (O) describe the whole
of the spherical surface 8{. (Itis sufficient for this purpose, that
the radius (A4 O) describing 8¢, be rigidly fixed in the sphere
(S7), which moves along with the radius about 4 fixed.) Simi-
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0

surface S7. Our original construction of the triplet of points
0,4, and B, will, in either case, at any moment be presented
by a congruent triplet O’y A, B’; hence, O'B' = O'A + AB'-
‘We conclude, therefore, that : —

Firgt. To any point O’ on the surface of S corresponds one,
and only one, point B’ on the concentric surface S 1, such that
O B’ = 0'A + AB' = OB, and, at the same time, 0’4 = OA
and AB’ = AB, and, further, O'B’ is the maximum distance
between the ends of the connected rigid pairs (O'4) and
(4B).

Sec?md. To any point B’ on the surface S’ corresponds some
point O’ on the surface 8¢, such that our original construction,
repeated from O’ and A, instead of O and 4, will lead us ex-
actly to the point B’. We cannot say, however, until proven
so, that to B’ corresponds only one point O'. For, although
we know that there is only one point B’ on 87, corresponding
to a fixed point O’ on 89, such that 0'B” > O’ C— C being any
other point on 87, not coincident with B’, we cannot affirm
that, conversely, B'O’ is
also the maximum dis-
tance from fixed B’ to
any point on the surface
8¢, or, in other words,
that B"O” > B'D, where
D is any point on S} not
coincident with O’ ; and
if it is not the maximum
distance, then we know
from the preceding, that
a spherical surface de-
scribed from B’ with ra-
dius = B’0’, will cut the
surface S¢ in a closed line,
every point of which is
exactly at the same dis-

Fia. 2. tances from B’ and from
A as O, and can, therefore, replace O’ in our construction.
Let us now start with the fixed points B and A4, as in the
theorem, and let the movable rigid pair (40’), congruent with

larly, (S7) can rotate so, that (B) describe the whole of the

-
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(40), be put in the position AO,, where BO, = BA + AO,,
in the sense of the definition of addition given in Theorem 2.
I say, that O,, which is by construction unique on S¢, and which
satisfies the inequality BO, > BO’, where O’ is any other point
on S not coincident with O,, cannot be any other point than
the original starting point O. For, let it be some other point
D; D is unique on 8% and BD> BO. In this new con-
struction, B being the starting point and D, the final point in
the operation, we know that, when (B) moves upon S, its cor-
responding unique point (D) moves upon 8). (It is hardly
necessary to explain that the sphere rotating about A fixed in
the new construction, and corresponding to S in the old one,
is (SY) touching internally in D the stationary sphere 87, and
supposed, at the beginning of the motion, to have its center at B.)
We know, further, that to every point (D) on S}, there is at
least one point (B) (and maybe an infinity of such points) on
87, such that the construction repeated from the point (B), or
from any one of such points, and from 4, will lead exactly to
(D). Let now (D) move up to O; none of its corresponding
points (B) can, for this new position of (D), coincide with B,
since, by construction, BD > BO. Hence, the point corre-
- sponding to O in the new construction, must be some other point
Con S},— and we have CO = BD > BO— which is in con-
tradiction with the result obtained from the first construction,
namely,0B>OC. Hence O, marking that position of the end of
the rigid pair (40’) in the new construction, which corresponds
to the maximum distance BO’ from B to any point on S¥,
cannot coincide with any point on 8¢ except O. We conclude
hence, that if OB = OA + AB, then BO= B4 + AO—in
the sense of our rule of addition,—and if the distances are
measured from the same origin O, then b + a=a + b.
Q. E. D.

Lemma 2, Theorem 4.—If OB= OA + AB, then a
sphere described from B with radius BA, will touch externally
the sphere described from O with radius O4. In other words,
if from the rule of addition O4 = OB — AB, then OA is the
minimum distance between the extreme ends, of the fixed rigid
pair (OB) and the movable rigid pair (BA4) jointed to the first
at B; or, otherwise still, the rule for subtraction is an actual
inverse of the rule for addition.
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Demonstration. — Let the theorem not be true. Then a
construction of a triplet of points, O, 4, and B, is possible, like
that in the figure, where the sphere 8§ — touching internally
at B the sphere S of center O, and lamving its center A on
the spherical surface §;, likewise described from O— has a
radius AB such, that the sphere S described from B with
this radius, cuts S in a closed line A4’. Then, we can describe
from B as center another sphere S7, such as will touch exter-
nally the sphere S in the point C, and, consequently, whose
radius BC<< BA. Hence, the sphere S described from C
with radius CD = AB, bhaving B and some space in the
neighborhood, in its inte-
rior, cuts S or encloses it
wholly in its interior. By
conceiving now the spher-
ical shell contained between
the concentric surfaces S,
and S7, to be rigid and to
rotate about the stationary
sphere S/, dragging along
(S;'? rigidly fixed to this
shell, (C) will come to 4,
and SY will now coincide
with a congruent sphere 8’
described from 4 with ra-
dius CD = AB and cut-

oy ting Sy in a closed line or

enclosing it wholly in its

interior ; but this is contrary to hypothesis, according to which

the sphere described from A with radius 4B, is S, tangent

internally to 8. Our theorem, therefore, can never be untrue,

but must be true without exception. Hence, the rule for sub-
traction is a real consequence of the rule for addition.

Q. E. D.

Scholium. — Now we can prove that the operation of addi-
tion obeys the associative and commutative laws in their full
generality. 'We have, however, to remark : — first, that from
the very sense of the rule for addition follows the equality :
a + b + ¢ = (a 4 b) + ¢, and, in general, any number of terms
following the first, written separately with signs +, may be
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incorporated in a parenthesis enclosing the first, and hence
such a parenthesis may be dropped ; and second, that in any
parenthesis, by Lemma 1, we may interchange the order of the
first two terms, if they are both positive.

Theorem 5. — The operation of addition obeys the associ-
ative and commutative laws, so that any number of terms, be-
ginning from, and ending with, any term we please, may be en-
closed in a parenthesis, and the result added to the preceding
terms, — and any term may be transposed forwards and back-
wards, through any number of other terms.

Demonstration. — We have by lemma 2 :

b+e—ec—b=0—-0=0,
andalso b+c—(b+c)=0+c)—(0+¢c)=0;
co—(b+e)=—c—0b.
Therefore, a + b+ c—(b+c)=a+b+4c—c—1>
=a+b—b=a.
a+dbte—0+o)+(d+e)=a+ (b+o),

or a+b+ec=a+(b+o),
and still otherwise,

(@+b)+c=a+ (b+c)
Put now b=d+e+---,
e=(f+9+ - +@+ - +1)++1;
then we get
a+@+e+-)+[(f+D+-+@+-+r)+--+1]
= [a+(@+e+" )]+ [(FH)+ -+ (g -+ 8]
=[a+d+et ]+ [f+g+ -+ {g+ T4r+--+1}]
=(a+d+et - )+(f+g+ - +g+-+r+ -+
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=a+td+e+: -+ f+g+- gt oot
=(a+d)+(e+- . .+f+g)+(. gt .+t)
=ete.
Suppose, now, we have the sum,
at+btet+d+e+f+g+--
and we wish to transpose b 4 ¢ over the terms
d+e+f.
a+b+ct+d+e+f
=a+[b+0)+@+e+S)]
=a+ [d+e+f)+ G +o)]=a+(d+e+f+b+0)

‘We write then,

=a+d+e+f+b+e.
We add then the remaining terms to both sides of the equation,
and get the desired transposition. Q. E. D.

Scholium. — The process of obtaining any integral multiple
of a given distance, and also, of obtaining the ratio (commensur-
able or incommensurable) of two given distances, ought no
longer fo detain us, and we shall only remark that this process
is a direct consequence of the rules for addition and subtraction
and of the postulate of continuity, which says that between
any two positions of any geometrical entity (a point included)
there is always an infinity of other such positions, all in space,
and that at least one infinite series of such positions must be
passed through, to reach either of the two given positions from
the other. By the associative law of addition and its extension
to subtraction in considering this operation as the addition of neg-
ative terms, we can get a given series of points, either by adding
and subtracting separate terms, each to, or from the preceding
sum, or by adding to the same given term a series of distances
equivalent to one, two, three- - -, - - -, of the added and subtracted
terms taken in any order we please. This last process, in as-
suming that the term to be added (in a positive and a negative
sense) increases continuously, leads us to the important concep-
tion of a homogeneous line, completely determined by two
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points in it, which serves as the basis of all line-measurements,
and is fully described in the following definitions and succeed-
ing corollaries.

Definition III.— By conceiving the sphere 8" described from
A (in Theorem 2), to vary continuously beginning from one
whose radius is indefinitely small, and, passing all imaginable
distances, to become indefinitely large, we shall get all possible
distances OB, positive and negative, whose general expression
is (@ + #). To each such distance from O corresponds, by con-
struction, one, and only one, point, and the aggregate of all these
points will, evidently, form a continuous line, which, satisfying
fully the conditions necessary for a line suitable to represent

the distance-magnitude, may be called the distance-line or the
straight line.
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Corollary I.—To every distance on the line, as measured
from O, there will correspond a point B at a corresponding
distance from A4, such that no other point in space can have
the same distances from O and A, respectively.

For, if we describe two spheres from O andj4 with the cor-
responding distances as radii, these two spheres will have
only one point in common, namely, the point on the distance
line ; but if there were another point in space at the same dis-
tances from O and A, this last point would also be on both
these spheres, which is contrary to construction.

Corollary IT. — If A and B,and A’ and B’, are two pairs of
points, at equal distances from each other singly, then the
straight lines constructed from each pair as from O and 4 or-
iginally, will coincide with each other along the whole of their
extent as soon as the congruent pairs (4B) and (4'B’) are
made to coincide. This follows immediately from the fact that
the distance-line is unique when constructed from two points
of fixed position.

Corollary I1I.— Every point not on the distance-line between
A and B or its prolongation, is such that we can find a con-
tinuous series of points of which this is one, which have the
same distances from 4 and B, respectively, as the given one.

For, since the given point is not on the distance-line con-
structed from A and B, it follows that the two spheres through
the point, described from 4 and B as centers, will not touch in
this point, but cut along a line which is the locus of points
having the same distances from A and B as the given one;
hence our corollary.

Corollary IV.—If we imagine a rigid body to be placed so,
that two of its points coincide with A and B considered pre-
viously, and to be fixed there, then all the points of the body
fall in either of the following two categories : —

(1) A contiuuous series of them coincide with corresponding
points on the distance-line through 4 and B, which is fixed in
space as long as A and B are fixed ;

(2) The remaining points coincide, each with a point in space
whose distances from 4 and B, respectively, it has in common
with every point on the intersection of the two spheres described
from A and from B through this point.

It is evident, therefore, that any point in the body, of the
second category, can be displaced along the line of intersec-
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tion of the two spheres, on which it originally fell, while (4)
and (033 are still fixed in 4 and B, letting all other points in
the body take care of themselves, or, rather, the rigidity of the
body—which consists in preserving the relative distances of the
points of the body—take care of their individual positions dur-
ing this displacement. We find then that every other point of
the second category will have, in all its displacements, to re-
main on a corresponding line of intersection of two spheres
from A and B. Every point in the first category, however,
will have to remain stationary, since there is no other point in
space having the same distances from A and B, besides the one
with which it coincided originally. These conditions are seen
also to be perfectly compatible with the relative distances of
the individual points of the body from one another, as soon
as a continuous series of spheres, described from A and B as
centers, is imagined, together with their mutual intersections ;
for, as the points of the body move along these lines of intersec-
tion, these lines, together with their spheres, can be conceived
to glide upon themselves, never changing their form, since a
sphere is a homogeneous surface; hence, the mutual distances
of the moving points are defined alike throughout their motion.
Such a motion of a rigid body, about a stationary straight line
(axis), we call rotation, and the body moving with such a mo-
tion, is said fo rotate or to revolve about the axis A B, or, simply,
about the two fixed points A and B.

Corollary V. — Since in the rotation of the solid, considered
in the preceding corollary, any two points in the solid, (C') and
(D), which lie on the axis (4B), will remain in coincidence
with a pair of congruent points C' and D fixed upon the dis-
tance-line 4 B, and since no other points in the solid, besides
those lying on the axis, remain fixed,—it follows that if a solid
is moved so, that a given pair of points in it, (C) and (D), re-
main fixed in space, then all the points in the moving solid fall
in two categories : — such as remain on a fived axis determined
by Cand D and constructed from any two points in it, A and
B, and such as move constantly upon corresponding intersec-
tions of two systems of spheres of centers 4 and B, respectively.

For, rotating upon the fixed axis constructed from, and
therefore determined by, C' and D, no other points in the solid
besides those lying on the axis can remain fixed in space. Any
two points (4) and (B) in the axis, however, remaining fixed, the
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solid rotates also about the distance-line constructed from 4 and
B, and this must coincide with that determined by C and D.

Corollary VI. — It follows,* that there is no difference in the
form of the distance-line when constructed from any pair of
points in space, and that any two such lines will coincide with
each other throughout the whole of their extent as soon as two
congruent points in both are made to coincide.

Corollary VII. — Any portion of a straight line will, by the
preceding corollary, coincide with any other portion of the
same straight line, as soon as their limits coincide. In other
words, a straight line is homogeneous, i. e., any portion can
move upon the whole without deformation.

Corollary VIII. —If we move up the ségment (4.B) of a
straight line upon itself a distance 4A4’, so that the position of
(A4B) at the end of the motion will be A’BB’, then the whole
line AA’BB’ is also a straight line.

A A B B’
Fi1a. 5.

In fact, AA’B and A'BB’, separately considered, being, re-
spectively, the original and final position of the same segment
)AB), are two segments of a straight line, having the portion
A’'B in common. Hence, by Corollary VI, they must coin-
cide, each with a corresponding segment upon the unique dis-
tance-line determined by 4'B, 1. e., AA’' BB’ is likewise a seg-
ment of a straight line.

It follows, that in this way we can prolong a segment of a
straight line indefinitely far, solely by shoving it along itself
and its successive prolongations.

Corollary IX.— A straight line cannot have more than one
branch on each side of a point belonging to it. It cannot, for
instance, have the branch 4B on one side of the point B, and
BC and BD on the other side of it.

B

A ’ \ ¢

'D
F1a. 6.

* This oorollary follows also very readily from the associative law of ad-
dition of distanoes.
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For, otherwise, by revolving a solid containing both branch
ABD and branch ABC, about ABD fixed, BC would be
displaced — which is impossible if ABC is a straight line.

Another proof is obtained thus : — If the line ABD is con-
structed from A B, then the points between B and A4 and be-
tween B and D are obtained by continuously increasing the
distance & — respectively to be subtracted from and added to
AB—from zero to infinity. But, in doing so, the radius of
the corresponding sphere 8’ described from B as center, on
whose surface the corresponding points lie, increases continu-
ously, 7. e., these points recede more and more from
the center B, both ways, and can never come back 1o C
it without crossing the intermediate spherical surface,
or, which is the same thing, without retracing their
steps backwards. But as this is not permissible in
the continuous description of the distance-line, we
can never come back to B. Hence, it is impossible
that the additional branch BC be ever described.

Theorem 6.— A straight line 4B, issuing from a
fixed point 4 and prolonged indefinitely on the other
gide of B, will not return to 4 again, after any num-
ber of prolongations, each equal to 4B, however large
that number.

For, if this were possible, then taking just half of
the whole extent, whose end let be C, we would have
two distinct straight lines between 4 and C, namely,
ABC and CB’A,since CB’A is supposed to be differ-
ent from ABC, as the point B is not supposed to re-
trace its steps backwards beginning from C.

Another proof is exactly like the second proof of
Corollary IX to Theorem 5, where the impossibility
of returning back to a point in the distance-line is Fia. 7.
deduced from the fact that, as we continually move
away from it both ways, all the points passed in either sense,
become separated from those not yet reached, by a series of
closed spherical surfaces, which, by the definition of an increas-
ing distance, can never be crossed backwards.

Corollary.—From this theorem and from the preceding one
it follows, that two distinct straight lines can have no more than
one point in common, like AOB and COD. As soon as,
besides O, another point E in COD, is made to coincide with
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E in AOB, the two lines must coincide up to the ends of
the smaller segments of either, on both sides of O, and their
prolongations must coincide as far as we please to take them.

T~ “

A [9)

Fia. 8.

Definition I'V.— A pair of straight lines having only one
point in common are said to diverge and form an angle at the
point O, which is the vertex of the angle, and the straight lines
themselves are the sides of the angle. Such a pair of straight
lines is called a crossing pair of straight lines.

Scholium. — It is evident, since an angle has four segments,
having six combinations in pairs, if we leave out the two pairs
belonging to the same straight line each, we get only four — the
number of angles as defined above. (We shall learn later an
extension of the definition, which will give an indefinite num-
ber of angles.)

We shall consider at present one angle, made only by two
segments of distinct straight lines issuing only on one side of
the vertex O, like A OB. We imagine this to be a rigid figure,

in which any two points
. _-B k and [, each on one side,
preserve always a con-
stant distance between

each other.
The vertex and one
side of any other angle
A'O’B’ can, evidently,
k 4 be applied to the vertex
Fig. 9. and either side of AOB.
If, at the same time, a
point in the remaining side O’ B’ can be made to coincide with a
point equidistant from O on OB—the corresponding free side of
the angle AOB— without breaking the rigidity of either of
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the figures as explained above, the whole side O’B’ will coin-
cide with OB, and the two angles will be said to be equal ; if on
the contrary, this is not possible, the angles are unequal.

Let us see whether there is a way of measuring angles.

Theorem 7. — If two straight lines, AOC and BOD, inter-
sect so that they form two adjacent angles AOB and BOC (such
as have one side in common) equal to each other, all four
angles are equal.

Demonstration. — For, put an exactly equal movable figure,
which we denote by small letters upon the given one, so that
Za0b of the movable figure shall coincide with BOC' of the

B
a

[4
D
Fi1a. 10.

original figure ; then Oc, the prolongation of a0, will coincide
with OD, the prolongation of BO, and Od, the prolongation
of b0, will coincide with OA, the prolongation of CO.
Hence ZBOC= £aOb= £bOc= £LCOD = LcOd= £LDOA
= Zd0a = £ AOB; that is, all four angles are equal.
Q. E. D.

Definition V. — Each of the four equal angles formed by the
two intersecting lines, is called a right angle, and the lines are said
to be perpendicular to each other.

Theorem 8.—Let the straight lines AOA’ and BOB’ inter-
sect each other at right angles. Let one of these be fixed, and the
other turn round Oin space,— A 0A’, say, taking up all possible
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positions compatible with the rigidity of the figure. Then OA
will generate a surface, which is indefinite in extent if OA is
indefinite in extent, and which is capable of revolving upon
itself around O without deformation, i. e., any portion of it
inclosed between any two positions of OA, like OA4, and OA,,
will be capable of coincidence with any other portion inclosed
between two other positions of OA making an angle equal to
4,04, ; moreover, if BOB' is turned over about the fixed
point O, so that the segment OB’ come to coincide with the
original position of OB, and OB with that of OB’, the whole
surface will, without deformation, turn about O and come into
ocoincidence with the trace of its original position, upside down,
as soon a8 BOB’ comes into coincidence with B'OB.
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Demonstration. — The first half of the proposition follows
immediately from the principle of continuity of congruence in
motion e& xiom 1) and from the property of a straight line,
combined with the fact that in the rotation of a rigid body any
point of the second category moves upon a closed line — the
intersection of two spheres described from any two points in
the fixed axis as centers and passing through the point in
question (Corollary IV. to Definition 3)* The second half

*1f the two points on the axis are taken equidistant from O, the plane

represents the system of concentric circles which served for Lobatchevaki as

a definition of a plane in his work (see ‘* Urkunden zur Geschichte der Nicht-
Eukl. Geom.,”” Engel, 1898, pp. 93-109).
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follows from the equality of the angles AOB and A0B’. For
we can imagine from the start, that a duplicate of the figure
BOAOB’ has been brought into coincidence with B'OAOB ;
so that BOA and the duplicate of B’ OA generate the same sur-
face on one side, as the duplicate of BOA and B’ OA itself, on
the other side. Hence the theorem.

Definition VI. — The surface is called a plane, OA —the
generator, and, in any of its fixed positions, a half-ray, which
together with its prolongation on the other side of O composes
a complete ray or element. The point O is the origin ; the axis
B’OB is said to be normal to the plane AOA,.

Corollary I. — It follows, that we can revolve the plane
about any element or ray passing through O, until its upper
side comes into coincidence with the original lower side, and
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vice versa — the ray itself remaining fixed ; since, in this mo-
tion, the ray will always coincide with itself while the normal
is displaced and revolves around O into coincidence with its own
reversed position. :

Corollary I1. — It follows also, that a plane divides all space
into two equal portions, which become coincident with each
other as soon as the normal coincides with its reversed position.

Corollary II1. — The plane described by the segment OA,
using the perpendicular OB as an axis, is identically the same
as that described by the prolongation of OA, viz., OA’ ; also
this plane is unique as long as BOB’ is fixed.
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Corollary IV. —Given the plane AOA, whose normal is
OB, and a straight line OC not lying in this plane, then
ZBOC is not a right angle.

For, joining by a straight line, b and a, a point on the normal
and some point in the plane, not O, and then revolving (BbOa)
around BbO fixed, (ba) must somewhere in its motion intercept,
in some point o, the straight line OC, which is supposed to re-
main stationary until this occurs; since, after (Oa) comes
round back to its original position, (6Oa) will have described
a closed surface, separating a finite portion of space from all
other space. This surface will consist, partly of the portion of
the plane described by the segment (Oa) of the element OA4,
in which @ is situated, and partly of the lateral surface de-
scribed by (ab), every point of which will be at some appreci-
able distance from O. Hence, a sphere described by the
smallest distance from O of any point in the lateral surface,

F1G. 12,

will enclose an appreciable portion of OC; while a sphere de-
scribed by a distance greater than that of the pointin the lateral
surface farthest from O (only the finite segment (ab) is con-
gidered), will enclose in its interior a portion of OC having
some points exterior to the closed surface. Hence, a variable
point on OC, in moving continuously from a position on the
interior portion towards a position on the exterior portion,
must cross the closed surface. But as OC can meet neither an
element of the plane A4 Oa, nor the normal OB, in any other
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point than O, it must pierce the lateral surface described by
(ba) in some point ¢. Thus, the generator of the lateral sur-
face (ba) in the position of bea intercepts OC in the point c.
Let then the element (OA,), starting from its new position, de-
scribe its own plane anew, dragging along OC in its motion.
Then, this last will describe a surface which will lie wholly on
that side of the plane 4OA, where the half of the normal OB
is situated. Reversing now the plane, the surface generated
by OC will lie wholly on the side where OB’ was originally,
and will be separated from its original position by double the
space between its original position and the plane A OA,. There-
fore, the surface generated by OC in its rotation around the
axis BOB',is not a plane (Corollary II), and hence ZBOC is
not a right angle.

Corollary V.—1t follows, that all planes coincide with one
another as soon as their normals and origins coincide.

Theorem 9. — All right angles are equal.

Demonstration. — If the vertex of any right angle is made
to coincide with the origin O of our plane, and one of its sides,
with the normal OB of the plane, the other side must coincide
with some one of the elements of the plane, say OA,, by pre-
ceding corollary. Hence, all right angles can be made to coin-
cide, or are equal. Q. E. D.

The preceding theorems about the properties of a plane and
of right angles will suffice to render more concrete our notions
about angles in general as geometrical magnitudes. First, we
observe that we have found a natural unit for measuring angles,
namely, the right angle; and, secondly, we shall soon see how
the plane will afford us a means of comparing all possible
angles with our standard unit, the right angle. The following
preliminary remarks are necessary.

Scholium I. — Any pair of crossing lines will be capable of
being applied to the plane so, that the vertex shall lie on the
origin, and the lines themselves shall lie wholly in the plane.

In fact, one of the two lines can always be brought into co-
incidence with any ray in the plane so, that the vertex fall on
the origin. If, now, the other line falls upon another ray, the
proposition is proved for the case under consideration. If not,
this other line will have pierced the plane (which is admissible
during the process of applying; we may imagine, if necessary,
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a portion of the plane removed during the application and then
restored back to its original position ; see also definition of
rigidity), and will have only one point in common with the
plane, viz., the origin, like OB or OC in Fig. 12. If| now,
we revolve the plane about the fixed ray with which the first
side is in coincidence, it will sweep through all space during a
revolution that brings the normal into its reversed position.
Hence, some time during this revolution, it will have to inter-
cept another point on the line which has not been in it origi-
nally and which is supposed to have remained fixed in position ;
but just as this interception occurs, this line will have two
points in common with some ray in the plane, and will, hence,
coincide with it along the whole of its extent — 1. e., both lines
of the crossing pair will lie in the plane. Hence, all pairs of
crossing lines can be made to coincide, each with a pair of
crossing rays in the plane. In other words, all possible angles
are to be found among the different angles between the different
rays of any plane.

Scholium II. —If we apply any two perpendicular lines of
indefinite extent to a corresponding pair of rays in the plane,
we see that the whole extent of the plane can, from any initial
position of a ray, OA say, be divided into four congruent parts,
each of which will be enclosed by a right angle. The end of
any fixed distance from O, measured along a ray, will generate
in its motion around O a homogeneous curve every point of
which is equidistant from O. The curve is called the circum-
Jerence of a circle, and O is its center. A portion of the plane
enclosed between any two rays measured one way from center
to circumference and termed radii is called a sector, that is, a
part of the whole portion of the plane enclosed by the circumfer-
ence ; such a sector is congruent with any other sector enclosed
between two radii making the same angle with each other. It
is now evident that, since, whenever the angle between two
fixed radii is equal to the angle between two other fixed radii,
both the sectors of the circle and the segments of the circumfer-
ence, or arcs, enclosed by the respective pairs of radii, are equal
each to each —the angles can be measured either by the cor-
responding sectors or by the arcs enclosed between their sides,
so that a greater angle corresponds to a greater sector or arc, and
a multiple or part of an angle corresponds to the same multiple
or part of the corresponding sector or arc. Since every possible
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position of two intersecting straight lines, with respect to each
other, has been proved to find its analogue in some position of
two intersecting rays of a plane, it is sufficient to investigate
these last. Now, we can conceive the whole aggregate of dis-
placements possible for a ray in the plane (Fig. 13) with re-
spect to a fixed ray 4'a’Oad, to be bound up with the corre-
sponding displacements of a circle rigidly fixed to the moving
ray and revolving with it about the center, so that the circam-
ference moves in its own trace. Then we see that, if (Oc), one
segment of the moving ray, makes in any of its positions an
angle A Oc with O4, measured by the arc— passed over by the

’

B

b

b

B
Fie. 13.

moving point in the circumference — from a to o, then the pro-
longation of (Oc) must have been displaced just as much on the
other side of OA’ —the prolongation of OA—and must form
an equal angle 4’ OC’—as measured from the fixed segment
OA’ or, along the circumference of the circle, from a’ to ¢/, in
the same sense a8 ac. For, any fixed point in the moving cir-
cumference must have been displaced an equal arc with any
other. So we see that the two half-rays of the same ray lie on
opposite sides of the two half-rays of any other ray not coinci-
dent with it—since any fixed ray can be taken as the initial ray
— and the angle made by the prolongations of any two half-rays
will be exactly equal to the angle made by the half-rays them-
selves. Also, that any point in the moving ray will be dis-
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placed a quarter, a half, three quarters, and a whole circumfer-
ence, when the ray is displaced one, two, three, or four, right
angles ; further, that the half-ray will fall upon its own prolon-
gation — for a displacement of two right angles, and will come
to its original position — for a displacement of four right angles.
It follows, then, that a half-ray, in any of its positions, makes
with the two half-rays of another ray two angles, one of which
is just as much less than a right angle, as the other is greater, —

A a A

b’

B
Fia. 13.

their sum being equal to two right angles (acute and obtuse
angles).

The following theorem, concerning angles in space, becomes
at once evident by the application of the angles to the plane.

Theorem 10. — Two adjacent * angles whose two non-com-
mon sides form the opposite prolongations from the vertex of
the same straight line, are together equal to two right angles;
the two non-adjacent angles, made by two straight lines and
their prolongations, respectively, are equal; and all the four
angles taken together are equal to four right angles.

Definition VII. — A figure bounded by three straight lines
intersecting, two by two, in three points and making three
angles, each less than two right angles, is called a triangle.
We must not, at the beginning, consider the triangle as contain-
ing any surface that may be limited by the sides of the triangle.

* Adjacent angles are defined as usual.
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Scholium. — It is evident from the way we have constructed
the straight line, that any three points at fixed distances from
each other are capable of congruence with any other triplet of
points of the same fixed distances ; since, if in any such a triad
we revolve one of the points around the straight line connect-
ing the remaining pair, we get the locus of all the points which
are at the same two distances from the fixed pair as the given
third one, and no point outside this locus can have the same
distances from the fixed pair,— as shown in Theorem 2-5 and
corollaries. Hence, when the corresponding points of the two
equidistant pairs in the two triads are brought into coincidence,
the third ones, in each triad, will be capable of coincidence.

Corollary. — Since as soon as the ends of two equal distances
ocoincide the straight lines representing these distances coincide,
it follows that any two triangles whose sides are respectively
equal to each other are congruent.

Theorem 11. — Two triangles are equal when two sides and
the included angle of one are respectively equal to two sides
and the included angle of the second.

The demonstration given by Euclid in his Elements for
this theorem, holds here word for word, and need not be
repeated.

Corollary. — In every isosceles triangle the angles at the base
(opposite the equal sides) are equal. For, its duplicate can be
applied to it so, that the equal sides be interchanged by turning
over; the base and, hence, the angles interchanged, will still
coincide with the corresponding ones in the original triangle.

These two theorems concerning congruent angles and tri-
angles are sufficient to deduce a most fundamental property of
the plane—namely, that the origin may be transposed to any
point in the plane, and hence, any straight line having only
two points in common with the plane, anywhere, will lie wholly
in the plane ; hence, the plane itself is capable of translation or
rotation upon itself without deformation.

Theorem 12. — A straight line having two points in common
with a plane, will lie wholly in that plane.

Demonstration. — If the two points are upon the same ray,
the straight line coincides with the ray, <. e., lies in the plane.
Suppose, however, that the two points lie upon different rays ;
we then can prove that any other point of the straight line lies
upon some other ray of the plane.
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Let BOB’, where OB = OB’, be the normal of the plane
AOC, and let the straight line X'X cut the rays 04 and OC
in the points 4 and C, respectively ; we have to prove that any
point D of the line X' X lies upon a ray OD. Connecting OD,
we join B and B’, respectively, with 4, C, and D.

A X
' Fia. 14.
Then ABOC=AB OC and ABOA =AB'OA, by last
proposition.

.. BC=B'C, BA= B'A, whence AABC=AAB’'C, by
corollary to Definition VII.

Whence, ZBAD = LB'AD;

.« ABAD = AB'AD, and BD = B'D;
whence, again, ABOD = AB’OD.

.*+ £BOD = right angle by Theorem 10.

OD is, therefore, a ray. Now, since this is true for any point
D in the line X'X, the whole of its extent lies in the plane.
Q. E. D.

Definition VIII.—A plane can now be re-defined as the sur-
face in which every straight line lies wholly if it passes through
two of its points.

Corollary. — It immediately follows, that any angle can be
made to lie anywhere in the plane; and so also a triangle, — for
one side of the triangle will lie wholly in the plane as soon as
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its two ends lie in the plane ; now, if also the third vertex is
brought into coincidence with some point in the plane, by re-
volving the triangle around the side held fixed in the plane,
the other two sides will likewise come wholly into the plane.

Scholium.— When a movable half-ray in a plane describes
a positive (continuously increasing) angle, and in doing so it
slides upon a fixed straight line termed ¢ransversal and inter-
secting its initial position in a point other than the vertex, the
segments which it cuts off upon this transversal — measured
from the fixed point of. intersection towards the corresponding
positions of the variable point of intersection with the moving
half-ray — will continuously increase as long as the moving
half-ray meets the transversal; that is, until a segment is
reached which exceeds in length any arbitrarily given finite seg-
ment, no matter how great. For, any point of the transversal,
that is at a finite distance greater than the given length from
the origin of the segments, can readily be joined with the ver-
tex of the variable angle, and will therefore form the limit of
one of the segments greater than the given one.

Definition IX.— The normal is said to be perpendicular to
the plane, because it is perpendicular to every straight line
passing through it and lying wholly in the plane.

Theorem 13.— A straight line perpendicular to any two
intersecting straight lines at their point of  intersection, is per-
pendicular to the plane in which these straight lines are situ-
ated. The straight lines need not be the rays of the original
construction of the plane, but any two straight lines intersect-
ing these and, hence,
lying in their plane. L M

The proof is word for .
word that given by Eu- N
clid in Book XI, prop- AN
osition IV, of his Ele- AN
ments. R

Corollary I.—An im- N
mediate consequence is Y%
that at every point of a N
plane we can erect a per- F1a. 15.
pendicular to the plane.

For, if K is such a point, not the origin of the original
construction, and LKM and KN are any two perpendicular
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straight lines through K in the same plane, then, fixing the
line LKM and revolving (NK) about it the amount of one
quadrant, into the position of N'K, this last is now perpen-
dicular to KM and KN; hence, it is perpendicular to the plane
in which they are situated. In other words, KN’ may now be
regarded as a normal, and all straight lines in the given plane
through K, as the rays.

Corollary I1.—Since any two planes coincide as soon as their
origins and normals coincide, it follows that a plane will coin-
cide with itself when the origin is displaced, in any manner
whatever, to any other point in the same plane, provided the
normal at the origin is made to coincide with the normal at the
point to which the origin is shifted; also, that the origin or,
indeed, any point in a plane, treated as such, may displace itself
continuously, describing any curve in the plane —the whole
plane remaining unaltered in shape or position ; and, further,
that the plane may be turned upside down, shifted upon itself
in any manner whatever, without altering its position or shape
as a whole (Leibnitz).

At this stage of our investigation our elementary figures, viz.,
the angle, the triangle, and the circle, can be made more concrete.
Since each of these figures can be made to lie wholly in a plane,
we may suppose their boundaries to limit corresponding por-
tions of a plane. This is the reason of their being called plane
figures, in contradistinction to those which cannot be made
to lie wholly in a plane. Thus, a network of straight lines
and circles may be conceived to cover these plane figures, just
like the plane itself ; crossing and recrossing one another in all
possible ways, since every point in a plane may be conceived as
an origin of rays and angles and as a center for the circumfer-
ences of the circles described by the fixed points in these rays.
Geometry invariably makes use of this conception of the plane,
in the way of a fiaf: “ Describe a circle, from such and such a
point as centre, and with such and such a distance as radius,”
etc., — just as it does with respect to homogeneous space in
general. '
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CHAPTER III

THE QUADRILATERAL AND THE IMMATERIAL QUADRILATERAL.
PARALLEL STRAIGHT LINES

The following propositions of the first book of Euclid’s Ele-
ments can now be proved very rigorously, either by Euclid’s
demonstrations, or in a more elegant way — like the one used by
Legendre and his followers, —since none of the hypotheses,
whether tacit or explicit, which Euclid assumes in the shape of
postulates, definitions, and axioms, in these demonstrations, are
now wanting a solid basis. I omit the demonstrations, refer-
ring the reader to Euclid or Legendre, whose treatment of these
propositions is admitted to be rigorous and faultless, once you
grant the postulates and axioms upon which their proofs rest,
and which have now been established with the utmost rigor.
The propositions referred to are :

IX*, X, XT, XII, XTIV, the converse of XV, XVI, XVII,
(for the last two I prefer to give my own proofs, which will
throw some light on the nature of parallels); then X'VIII,
XIX,t XXI, XXII, XXTIII, XXTV, XXV, XXVI. Now
we come to Euclid’s treatment of parallels, which has been
acknowledged to be the weakest spot in the Euclidian geometry.
I propose to treat this subject in an entirely different manner,
using again, as in the rest of this treatise, the kinematic method,
which is much more powerful than the static method adopted
by Euclid, and which, I flatter myself with the belief, will es- -
tablish on a foundation firmer than ever before, the most im-

*The propositions left out have been proved by us explicitly or implicitly,
exoepting VII, which is unnecessary, and VI, which is a consequence of XXV
case 1, since the duplicate of a triangle with two equal angles can be turn
over and applied to the original triangle, with which it will coincide.

1 The Twentieth of Euclid and also the more general proposition that a
straight line is the shortest path between two points (not the shortest dis-
tance, since there is only one distance between two fixed points) can be
proved immediately by the consideration,— that any point of the second cate-
gory with respeot to two fixed points, lies upon the intersection of two
spheres desoribed from the points with radii whose sum is greater than the
sum of the radii of the two spheres in contaot described from the same
fixed points, whose point of contact is a point of the first category, on the
straight line between the fixed points, by the very construction.

97
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portant truths of similarity and proportion, on which rests all
the grand superstructure of our actual mathematics, both pure
and applied.
I proceed to prove XVI and XVII of Euclid’s first book.
Theorem 14. — The sum of any two interior angles of
a triangle is less than two right angles.

a+b<2rt. L.

Demonstration. — If @ 4+ 6= 2 rt. £’s, then, because ZABE
+ b= 2 rt. Z’s (Theorem 10), it follows a + bSZABE+ b,
anda= ZABE. Forasimilarreason = £ZDAB. Now, apply-

c ing the lower part of the diagram,
namely DABE, to the upper ABC
so, that A shall fall upon B and B
upon A, and the angle a, being
= ZEBA, shall coincide with or in-
close the latter, and b shall coincide
with or inclose ZDAB,— AD will
A lie, either on the side BC, or within

B the angle b, and BUE, either on AC, or

within the angle a. In either case AD

and BE will intersect — namely, at C,

the vertex of the triangle, or in some

point within the triangle; and when

returned to their original positions, they

b o, —while making the prolongations of

Fia. 16, CA and CB, respectively — will in-

tersect at some other point C'’, below

AB. Or, in other words, the two lines CAD and CBE will

intersect in two points C and C’, — which is impossible (The-

orems 2, 5 and, corollaries). Therefore, it is impossible that
in the triangle ABC, a +b=2 rt. £’s. Q. E. D.

Corollary I. — If in the formula a + 6= 2 rt. £’s, we sepa-
rate the case of equality, namely, a + b = 2 rt. £’s, we shall have
a=LABEand b= £ DAB; and thetwo straight lines mak-
ing such angles with the secant, cannot meet either below or
above the secant,— for, in either case, they would have to
meet simultaneously also on the other side of the secant, which
is impossible. Therefore, if two straight lines intersected by
a third one make with it two interior angles on the same side
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of the secant, equal to two right angles, they cannot meet, even
if produced indefinitely both ways.

Corollary II. — Any exterior angle of a triangle is greater
than either of the interior and opposite angles.

Because any of the interior angles with its adjacent exterior
angle equals two right angles (Theorem 10); while with eithe of
the opposite interior angles it is less than two right angles ; hence,
each of these last ones is less than the exterior opposite to it.

Corollary III. —If one of the interior angles of a triangle
is a right or an obtuse angle, either one of the remaining two is
less than a right angle ; therefore, in any triangle there can be
no more than one right or obtuse angle, and not less than two
acute angles.

Corollary IV.— A perpendicular is the shortest line from a
point to a straight line (Proposition X'VIII of Euclid’s Ele-
ments). A perpendicular is, therefore, assumed to represent
the distance from a point to a straight line.

Definition X. — A quadrilateral is a figure bounded by four
sides containing four interior angles. A rectilinear quadrilat-
eral is one bounded by the segments of four straight lines —
of fixed length each — between four points which are the ver-
tices of the quadrilateral,— each vertex being connected only
with two adjacent ones. A plane quadrilateral is one that can
be placed wholly in a plane. We shall have occasion to use
quadrilaterals of fixed sides only, but not of fixed angles. Of
course, such are, so to speak, non-material ones, <. e., bounding
no fixed plane area, and in such, the relative distances of the
four vertices are fixed only for the four (out of all six pos-
sible) pairs, constituting the ends of the four sides respec-
tively. While the three distances, AB, BC, CA, must
necessarily fix all distance-relations between three points—a
distance being a relation between one pair (number of com-
binations of three different things taken two at a time), only
six distances will be sufficient to fix uniquely the distance-
relations between four points (number of combinations of four
different things taken two at a time) ; hence, four distances are
insufficient in the case of a quadrilateral. If, however, the
quadrilateral is restricted to lie in a plane, we have an addi-
tional relation,—and only one additional distance, like one diago-
nal (the distance. between either pair of the opposite vertices),
will be sufficient to determine the complete form of the quadri-

Se
.
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.
o®
®e
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lateral. This property of a quadrilateral is expressed by say-
ing that a quadrilateral can “rack.” We shall call such a quad-
rilateral with variable angles an immaterial

Theorem 15.—1In a.ny rec-
tilinear quadrilateral, whether
plane or not, whose opposite
gides are equal, the opposite an-
gles are equal.

Demonstration.— Let AB=
DC, AD = BC. Then join-
ing AC and DB, we get

A ABD = p CDB;

*.LABCw= LCDA, £BAD=/XDCB.
Q. E. D.

Corollary I. —1It follows, that ZABD = /BDC and £ZADB
= ZCBD; similarly ZCAB= LACD and ZACB = ZCAD,
— that is, 'the angles made by the same diagonal with the two
opposite sides, are equal.

Corollary II. —It also follows, that in a plane quadrilateral,
with equal opposite sides, two non-opposite sides and the
angle enclosed by them are suf-
ficient to determine the whole D, 9
quadrilateral.

Theorem 16. — Two plane
quadrilaterals ABCD and
A’ B’ ¢’ D', having three sides and B
two included angles in the ome
equal respectively to the corres-
ponding three sides and included D $
angles in the other, are equal to
each other.

Demonstration, — If B’

DA=D'A’,
AB=A'F, F1c. 18.
BC= B'C,

and also,
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LDAB= /D'A'B,
LABC= LA'B'C,

then, by superposition, we see that the two quadrilaterals coin-

cide with each other.

Q. E. D.

Theorem 17. — In a plane quadrilateral, two of whose op-

posite sides are equal and in
which the interior angles made
by these with one of the re-
maining sides, are supplemen-
tary, this last side cannot be
greater than the side opposite
to it.

Let OA= 0,4, £A00,
+£00,4, =2rt.L7%s;

then 00, » AA,.

For, let 00, > AA,. Then
since OA = 0,4, and £ A0Q,
= £ A,0,0,, the supplement of
£00,4,, we can apply the
lower side of the quadrilateral
to its upper side 0, 4,, and we
get 4,4, < 0,0, = 00,

Now, suppose 00, — A4,=,
some length ; then, every time
O s transposed a distance = 00,
along the straight line XX, 4
is transposed a distance = 00,
— 1. Let OA =ml+ 1, where
m is a positive integer, and [,
is either zero or a length less
than I. Then, applying this
quadrilateral to itself, along the
same straight line XX, 2(m
+ 1) times, we get, —

Og(m+1)

Ot/A'

VA
)

!

X

Asg(m+i)

-———————

E/A'

X
Fia. 19.

00,,.,,=2(m+1)00,=2(m+1) 44, + 2(m + 1)1
>2(m+1) A4, +2ml+ 2], =AAA,..- A, .+ OA+

O+ Asm+ 13
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that is, the straight line between O and O, , ,, is greater than
the broken line between these same two points — which is
absurd * (Euclid XX, Book 1). Hence, 00, » AA,.

Q. E. D.

Corollary. — The sum of the three angles of a triangle can-
not be greater than two right angles.
p p  For, if ABCis such a triangle, then apply-
ing to it an equal triangle BCD, where BD
= ACand CD = AB, weget ZDBC+ LCBA
+4BAC=4LC+ LB+ LA >2rt. L%s;
c therefore, if L D'BC+ LB+ /£ A=2rt.
Z’s, and D'B = DB, we have £ D'BC<
u £DBC, whence CD' < CD (Euclid I, XV);
we have also, D’B=CA and ZD'BA+
LBAC=2rt. [’s, 1. e., D’BAC is just such
B a plane quadrilateral as has been discussed in
the theorem, and CD' < A B,— which is im-
possible. Hence, the sum of the three angles
of a triangle cannot be greater than two right
angles. Q. E. D.

Fia. 20. Theorem 18. — An immaterial quadrilateral
whose opposite sides are equal, can so “rack’ or change its
angles that, while one of them is passing through all possible
magnitudes, the middle points of one pair of opposite sides
shall always remain at a distance from each other, equal to
each of the other pair of opposite sides.

Demonstration.—Let A BCD be a quadrilateral whose oppo-
gite sides are equal, and E and F, the mid-points of AD and
BC, respectively.

‘We observe first, that, A BCD being an immaterial quadrilat-
eral, the only restriction imposed upon the relative position
of its sides is that resulting from the equality of either pair
of its opposite sides. In any deformation or ¢ racking ” of the
quadrilateral, the sides need not stay in one plane, if this is re-
quired by the conditions of the relative motion to which they
are subjected, so that any pair may be in a different plane from
the remaining pair. t,e(SB), for instance, is free to move in some
path or other, situated in a spherical surface around (C), this

A

*See note, p. 116.

|

—— e —
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last moving in a sphere about (D), and this one about (4) —
provided the four distances do not change during these motions.
Initially the distance EF is not given ; it is, however, capable
of determination. At least in one of the infinite number of
relative positions which can be assumed by the points (4), (B),
(C),and (D), as just defined, the distance EF will be equal to
each of the sides (4B), (CD); this will, evidently, be the case

Fia. 21.

when all four points (B), (C) (4), (D) will fall upon the same
straight line, say, upon B’, C’, A’, D', respectively, where B’ C’
=2BF=2CF=A'D'=2AE=2ED, and A'B' = AB =
DC=D'C.

For LB = ZD—always (Theorem 15); hence, when the
first becomes zero, the second must also become zero ; that is,
when (BO{ falls upon (4B), (AD) falls upon (DC); hence,
(4’B’) will be in the same straight line with (B’C’) when and
only when (A4'D’)is in the same straight line with (D’C’),

" where the primed letters denote some particular position of the

sides ; in other words, B’ will be in the same straight line with
A’'Cyand D’ will be in the same straight line with these.
Hence, F and E are the middle points of B'C" and A'D’,
respectively. We have, then,

EF=FEA' + A'B'— FB =3}A'D' + A'B' — }C'B’
— A'B'= AB = CD,
since A'D'/2 = CB/2.

In this position, then, let (EF") be hinged to the two ends of
a straight line of fixed length, or let £ and F become fixed, so
that (BC) singly may revolve around F' in a sphere, and (4.D)
singly, around E in a sphere. I say that the quadrilateral may
be brought out of coincidence with a single straight line and
may assume all values for any one of its angles, provided the
equality of opposite angles is preserved, not only in the whole
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quadrilateral, but also in the partial quadrilaterals. For, if
not, the reason of this must be sought only in the mutual
geometrical relations of the distances, which are the only parts
of our immaterial quadrilateral given, including now the addi-

tional distance EF between the mid-points of (4D) and (BC);
that is to say, these distances must be incompatible with an
angle b other than zero, so that an attempt to change this value
would involve a contradiction in theory and, hence, a break in
the distance-relations in practice. Calling the interior-angles
of the two partial quadrilaterals as in the figure, we get six
independent relations between the angles, which, on the suppo-
sition that the motion sought is possible, must hold for all
values of the angle &, the value b = 0 included. We have
also, in addition, two independent relations, derived from the
supposition that (BFC) and (AED) are to remain straight
lines in the whole course of the motion. We have thus at first
appearance relations enough, and just enough, to determine each
angle, if such a determination is at all involved in the mutual
relations of the angles and distances. Accordingly, if the mo-
tion postulated were impossible, these relations would have to
lead us to a contradiction for any value of b other than b = 0.
Now, instead of leading to such a contradiction, the first six
relations give us, as an immediate consequence, a new relation
verified by the remaining two, — showing that our supposition
does not involve any contradiction, and that such a motion can
be realized. The relations referred to are :

Na=a 4)B8=1>
2y=0} ..a=9,1; 5)8=d; .-.8=9IL
3)a=c 6)b=d

Na+8=2rt. Ls
8) B+ y=2rt. Ls.
Combining I and II, we get,

a+8=pR8+1v, III, —

which agrees with (7) and (8). Of course, I and II can be
realized without the relations (7) and (8), when (BFC) and
(AED) are not restricted to remain straight lines. But the

Besides {

| NG
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argument is thereby not invalidated — that the motion presup-
posed in the theorem cannot be impossible under the only con--
ditions given. It may, of course, be impossible under certain

D C
\ N\
r—g g —F
(] 1)
4 B
Fia. 21.

additional conditions, like the restriction of the lines to slide on
certain surfaces ; but such a restriction is excluded in the given
conditions, where only abstract distances are given. The motion
itself may involve certain positions as possible and others as
impossible; — which circumstance we shall presently proceed to
investigate only in so far as will be necessary for our main
purpose, which is the establishment of the theory of parallels.

Remark.— Such a motion would also be possible, even in
the case of spherical arcs of great circles, provided these arcs
are at liberty to move out of the surface to which they belong
initially, — that is, provided an additional restriction is not im-
posed upon them that every point of all five must remain, dur-
ing the motion, at a constant distance from the center of the
sphere to which they belong when the spherical angle b is
zero. In other words, in order that such a motion be realized
for arcs of great circles of the same sphere, the planes deter-
mined by the arcs in motion can all have a common point of
intersection only when the spherical angle of two of these linked
arcs is zero or m —i. e., when they coincide with one and the
same great circle; for all other values of the angles these
planes cannot intersect in the same point, — in other words, the
arcs must leave the common surface to which they originally
belong, as can easily be proved when we come to a maturer
stage of the science of geometry, to which the treatment of
spherical geometry properly belongs. A similar remark holds
with respect to geodesics upon a pseudosphere. It seems, that
proceeding from these considerations, it ought to be possible to
prove that, whenever the normals to a surface-element of a ho-
mogeneous surface meet in & point, or, what is the same thing,
whenever the surface has constant positive curvature, there must
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be an excess of the sum of the three angles of a triangle over
two right angles; and whenever the normals lie in different
planes, or the homogeneous surface has constant negative cur-
vature, there is a deficiency of the sum of the three angles of
a triangle from two right angles.

Analytically, the proof of the possibility of such a motion
as defined in the theorem, is obtained also by showing that, if
we add to the above eight relations an arbitrary relation b= 6,
the determinant of the nine linear equations in nine variables —
when the equations are made homogeneous — vanishes identi-
cally, proving that b can have any value. The determinant in
question is—if a, @, b, 8, ¢, v, d, 3, 1 is the order in which
the variables are written — as follows :

1-1 0 0 0 0 O O0 O
0 0 1-1 0 O0 O O O
0o 0 0 0 1-1 0 0 O
o 0 0 0 0 0 1-1 0
1 0 0 0—-1 0 0 O O|=0.
0o 0o 1. 0 0 O0-1 O0 O
0 1 0 0 0 O0 0 1-—m=
0 0 01 0 1 0 O0-—=w
o 01 0 0 O O O0-6
Q. E. D.

Theorem 19. Lemma.— Given an
angle and a straight line through its ver-
tex, not in the plane of the angle, the sum of
the angles made by this line with the sides
of the angle, is greater than the angle.

The theorem needs proof only for the
supposition that £ COA and £ COB,
taken singly, are each less than Z AOB.
Connect any two points, @ and b, on the
sides of the given angle AOB, by a
straight line ab ; this last will be in the
plane of the angle (Theorem 12), and
hence OC; the line through O outside the
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plane, cannot meet ab. Pass now alineOd in the plane AOB,
at an angle aOd equal to £ 40C and cutting ab in some point
d— which it must do, since it cannot cut either Ob or Oa
again (Theorem 6 and corollary), and because the straight line
from O will pierce a sphere inclosing the whole triangle abO
(Theorems 2-5 and corollaries). Lay off on OC a segment Oc
equal to Od, and join ca, ¢b ; then ca = da (Theorem 11), and
in the triangle ach, ac + cb > ad + db (Euclid I, XX *); hence,
£Lc0b> £d0Ob (Euclid I, XXV). .:. ZaOc+ £c0b>
Za0Od + £dOb, or £ AOC + £ COB> LAOB.
Q. E. D.

Theorem 20.—1In the motion considered in Theorem 18, the
foursidesof each quadrilateral will, at any instant, be in one plane.

For from I, a = v, or from II, 8 =&, combined with (7),
a+8=2 rt. £’s, it follows that y +8= 2 rt. Z’s. Now, join-
ing FD, we find that if CF is always in the plane of A DFE,
then CD, FB, EA, and A B are in the same plane, and the theo-
rem is conceded. But if CF is sometimes out of the plane

D o
d [
y g
AL, JB
Fi16. 23.

DFE,then Z CFE determines a plane different from plane DFE
—that is, DF is not in the plane of Z CFE ; hence, by preced-
ing lemma, £ CFD + £ DFE > L CFE, or L CFD + £ FDC
> & (Theorem 15); and since c= v, we get ¢ + £ CFD +
LFDC>q+ 8,00 LDCF+ £LCFD + LFDC> 2rt. £’s—
which is impossible (cor. to Theorem 17). Hence, CF is always
in the plane DFE, and the theorem is proved as before.
Q. E. D.

Corollary I.— It follows, that any immaterial quadrilateral
with equal opposite sides, can move in a plane so, that one of its
angles assume any value we please, and that the distance between
the middle points of one pair of opposite sides constantly remain
equal to each of the remaining pair of opposite sides.

* See also note, p. 97.

.
e
«le
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Corollary IT. — It is evident that the sum of the interior
angles and, hence, also of the exterior angles, adjacent to the
same side in any of the positions of such a moving quadri-
lateral, is equal to two right angles, since 2 rt. £’s =a + 8 =
y+8=d+e=a+ b=>b+ e, etc.

Theorem 21. — The sum of the interior angles adjacent to
the same side of any plane quadrilateral with equal opposite
sides, is equal to two right angles.

For, an immaterial quadrilateral having sides of equal
length with the given one, can assume such a position in a
plane, that the angle enclosed between any two of its non-oppo-
site sides, be equal to the corresponding angle in the given
quadrilateral. And as the sum of the interior angles adjacent
to the same side of this immaterial quadrilateral in the particu-
lar position, is equal to two right angles, it follows by Corollary
IT to Theorem 15, that the sum of the interior angles adjacent
to the same side in our given quadrilateral, is likewise equal to
two right angles. Q. E. D.

Corollary I. — The sum of the three interior angles of any
triangle is equal to two right angles.

For, if in the triangle 4 BC we produce AB to E, £ CBE >
C; hence, making £ CBD = £BCA, BD falls within angle
CBE (Theorem 14, Cor. IT). Taking BD = ACQ, and joining

CD, we have, ACBD = A BCA,

o and CD = AB (Theorem 11),

hence, we have a plane quadri-

lateral with equal opposite sides

therefore, £ CAB + £ ABD =

g 2rt. L8, or LA+ LB+ ZLC

=2rt. L’s.

Fra. 34 Corollary II.— The exterior

angle of a triangle is equal to the two interior and opposite
angles.

%orollary III. — The four angles in any plane quadrilateral
equal 4 rt. Z’s, since it can be divided into two triangles having
their six angles coincident with the four given ones.

Theorem 22. — Two straight lines perpendicular to a third
one in the same plane with it, —

1) Will both be perpendicular to any other perpendicular
drawn from any point in the one to the other ;

A
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2) Will both have the same inclination towards any secant
to both ;

3) Will be everywhere equidistant from each other, 1. e., any
perpendicular from one to the other will be of the same length
with any other.

Demonstration.— 1) Let 4B, CD be both perpendicular to
the same straight line KL in the same plane; and draw any
other perpendicular MN, from any other point M in AB to
CD; and join LM. The sums of the interior angles of each of
the two triangles are equal to two right angles singly, and to-

P

| S

F1a. 25.

gether they are equal to four right angles. But the six angles
of both triangles make up together the four angles of the quad-
rilateral KLMN. Of these last, the angles K, L, and N are
each a right angle (by construction); therefore, £ M also is
a right angle, and hence any perpendicular to CD, from any
point in 4 B, will also be perpendicular to AB. For the same
reason, any perpendicular to 4B, from any point in CD, will
also be perpendicular to CD.

2) In the same diagram, if PML is a secant to AB and CD,
which are both perpendicular to a third line in the same plane,
then draw from L a perpendicular LK to A B,and from M, a per-
pendicular MN to CD. The first will also be perpendicular to
CD, and the second, to 4B (section 1 of our proposition). Now,
in the triangle LMN we have £ LMN + £ NLM = 2 rt. £’8 —
£ N=rt. £ (corollary to Theorem 21); besides, Z LMN +
LLMK=M=rt. Z. Hence,{ LMN + / NLM=/LMN +
£ LMK; L/ NLM = £ LMK, or £ PLD = £ PMB (Theorem
10). That is, both AB and CD have the same inclination
owards any common secant.
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3) If KL, MN are any two perpendiculars to both 4B and
CD, which are situated in the same plane, and M L joins the
opposite angles M and L, then £/ NLM = £/ LMK; £ LMN
= £ MLK (section 2 of our proposition), and ML is common
to both triangles ; therefore, A LMN = A MLK, and MN =
KIL,— and as the same reasoning applies equally to any other
two perpendiculars to both, all the points of either line 4B or
CD, are at equal distances from the other.

Definition XT.— Two straight lines perpendicular to a third
in the same plane, as having the same inclination towards any
common secant and being everywhere equidistant from each
other, are said to be parallel to each other, meaning — beside
each other, or going in the same direction and being everywhere
at the same distance from each other.

Corollary I.— Any perpendicular to one of a pair of parallel
lines, in the same plane with both, if produced indefinitely
must meet the other at right angles.

For, if from the point of intersection with the first a perpen-
dicular be drawn to the other, it must also be perpendicular to
the first (section 1) and, therefore, coincide with the perpen-
dicular to the same, previously drawn.

Corollary II. — From any given point without a given
straight line only one parallel can be drawn, namely, that line
which is at right angles to the perpendicular from the point to
the given line.

Corollary ITI. — Any two points at the same distance from
a given straight line, in the same plane with, and on the same
side of it, determine another straight line parallel to the first.
For, joining these points and drawing the perpendiculars to the
given straight line, we get a plane quadrilateral which is con-
gruent with the duplicate turned over, so that the equal perpen-
diculars become interchanged in position ; hence, the angles op-
posite the given right angles are equal, and as their sum equals
two right angles (Theorem 19, corollary III), each is equal to
one right angle ; that is, the line connecting the points, and the
given line, are both perpendicular to the same straight line in
the same plane with these. Hence, they are parallel.

Corollary IV. Any two straight lines lying in the same
plane and having same inclinations towards a common secant
are parallel ; for if a parallel to one of the given lines is con-
structed through the intersection of the other with the secant,
the corollary becomes evident (section 2).
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Theorem 23.— Not more than two points of equal distances
from a given straight line, can be situated in another straight
line which is in a different plane from that passing through the
given line and one of these points.

Demonstration.— Let AB, CE be the two straight lines, of
which Z'C is not in the plane BA C passing through the line
AB and the point C; and let the distances of the points C'
and Z from AB (i. e., the perpendiculars ZB and CA drawn
from these points to 4B) be equal. Then no other point on
E C can be of the same distance from A B.

For, produce the plane BAC indefinitely beyond BC, and
drawinit CD L AC, . .| AB (Definition XI),and BD 1 AB.
BD will meet CD, and BD = AC= BE (Theorem 22, Cor.
I and Definition XIE Join AD, BC, EA. The right-angled
triangles BAE, A BD, and BA Care equal (Theorem 11) ; there-
fore, EA= DA =CB, and L EAB=/DAB= /£ CBA.
Also, since EA is not in the plane CAB, L CAE + L EAB
> £ CAB (Theorem 19), or ZCAE+ LEAB> £ CAD
+ £DAB; hence, LCAE> £ CAD. Now the triangle
EAC must have £ ECA <rt. Z. For, if we imagine it re-
moved from its original position and applied to A DAC in

such a way that A shall coin- 4 B

cide with its equal DA — the AR \
other side, inclosing the greater - \
angle EAC, will fall without . \
the smaller angle DAC and .\
will take the position 4C’, g
as in the diagram ; and join- (' SN

ing CC’, we obtain an isosceles e 2

triangle ACC’, of which the

angles C and C’, at the base, are equal, and each less than
a right angle (Cor. to Theorem 11 and Cor. III to Theorem
14). Then, DC and CC’ form an angle DCC’ <2 rt. £L’s,
having its opening towards A4 ; that is, the prolongation of C’ C
is separated from 4 and from any point on 4D by the half-ray
CD. Therefore the half-ray C’C, including its prolongation, in
passing continuously, not through A, to the position C” D contain-
ing one point of the segment 4D, must first pass through some
point on the prolongation of A.D before reaching its final posi-
tion. Hence £ AC’D is less than some angle which is less than
£ AC'C(Scholium to Theorem 12); or LZAC'D < LAC'CL
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rt. Z. Now, any point on the prolongation of EC to the
left, must also be without the plane DCA, since one part of
EC cannot be without, and the other within, the plane DCA
(Theorem 12); and any straight line connecting C and an-
other point of the same distance from A4 B, without the plane
DCA, makes with CA an angle <rt. £ and, consequently,
cannot be the prolongation of EC, since such a prolongation
forms with CA an angle > rt. £ (Theorem 10). Therefore,
no point of the same distance from AB as C, can be on the
prolongation of EC to the left. For a similar reason, no point
of the same distance from 4B as the two given points, can be

B on the prolongation of CE to

N \ the right, because CE is not
SN \ in the plane AEB passing

~_ |\ through 4B and the point E.

1\ Neither can a point of an

\}--—=r equal distance from AB be

""" situated on CE, between C

e > and E, since then, either E

Fia. 26. or C would be on the prolong-

ation of a straight line connecting two points of equal dis-
tances from another straight line—one of the points connected
being in a different plane from that passing through the other
point and the other straight line, — which has just been demon-
strated to be impossible. Therefore, no other point besides E
and C, on the same straight line with them, or on its prolonga-

tions, is possible, of the same distance from 4B as E and C.
Q. E. D.

Corollary I. — Hence, any straight line in space which con-
nects three points at equal distances from another straight line,
must lie wholly in the plane passing through the other line
and one of its own points, —and, therefore, is parallel to the
other; and all that is said in Theorem 22, with reference to a
parallel straight line, is also true of any straight line in space
having, at least, three points at equal distances from a given
straight line.

Corollary II. — It also follows, that if two equal lines inter-
sect two others in four points, and three of these lines are at
right angles to one another, all four are in the same plane,and,
therefore, are parallel, each pair singly.

Corollary IIT. — A parallel can also be defined as the locus
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of all points equidistant from a straight line, and collinear with
two given points. ‘

The definition of alternate interior and exterior angles of a
line intersecting two others in the same plane, is as usually
given. If the definition of parallels is taken provisionally
in the sense in which we have defined them, we see that we
have proved propositions XX VII, XXVIII, XXIX of Eu-
clid, also XXXIT and some others, from which a number of
corollaries can be drawn, regarding the conditions of paral-
lelism of straight lines in space, which we will not give
here. We are now in a position to prove propositions XXX,
XXXIII, and XXXTIV of Euclid, using his proofs word for
word. This will now enable us to deduce Euclid’s famous
Eleventh Axiom, and thereby extend the definition of paral-
lelism to any two lines situated in the same plane and not meet-
ing each other at a finite distance.

Theorem 24. — C
Two straight lines D ”
in the same plane, 1B
of which one is
perpendicular to a
third one, and the ht- —-
other makes an )
acute angle with
it, if sufficiently —_
produced on that
side of the secant
where the acute z
angle is situated, Z
must meet each PR A T
other somewhere.

Let BC be per- v—Hn
pendicular to A B, a
and AE make an T’
acute angle with p
AB at A, then 4imn  pBg
AE and BC, if Fro. 27.
produced towards the opening of the acute angle, will meet in
some point f.

Demonstration. Take some point a on A E, draw a perpen-
dicular from it to 4B (Euclid, prop. XT). This perpendicular

(7] R — P
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will cut AB in some point ! between 4 and B, and not on its
prolongation AR ; otherwise £ZBAE, being according to sup-
position an acute angle, would be greater than a right angle
(Theorem 14, Cor. IT) — which isabsurd. Let now A7 be con
tained in 4B m times (m being a whole number), or m times
with some remainder less than Al. Take upon A E, beginning
from A and proceeding towards E, m + 1 parts equal to Aa,
namely Aa, ab, bc .-+, and let f be the end of the last part.

C
,E
i /] s
(7]
r'y ef 1
v
q, g
B AdAlmn pBq

Fi1a. 27.

Draw now perpendiculars aa,, bb,, cc,- - - ff;, to A.D which is made
perpendicular to AB (Eucl,, prop. XI); they will also be
parallel to AB and to one another (Defin. XI). Draw also
bm, en, - - - fq, parallel to BC, AD, al,— which will all meet at
right angles all the perpendiculars to 4.D (Cor. 1 to Theorem 22).
Let the vertices of these right angles be g, A, i, --.f. All these
perpendiculars will represent two sets of parallels. The triangles
Aal, abg, - - - efk will be equal to one another because they have
one side and two adjacent angles equal respectively, in all
of them — those adjacent angles being alternate angles (Theorem
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22, section 2, and Euclid, prop. XXVI). Therefore 4=
ag = bh - - - ek, and therefore also — according to Euclid, proposi-
tion XXXTIT—Al=1I!m = mn--.=pq. For the same reason
aa= Al bb= Am,cc= An.-.f f= Aq. But Aq, contain-
ing m + 1 times Al is greater than AB ; hence f,f>AB. In
other words, the distance of f from AD is greater than the dis-
tance between the parallels BC, AD, which is everywhere the
same and equal to AB; hence, f must lie beyond the space in-
closed between both the parallels — and since it is a point on
AE, AE must intersect BC in some point of f’ below f.
Q. E. D.

Corollary I. — Two straight lines in the same plane, which
cannot meet how far soever produced both ways, are parallel
to each other. For, any perpendicular to one of them, drawn
from any point in the other, cannot make an oblique angle with
the latter — otherwise they would meet on the side of the acute
angle ; it must, therefore, be at right angles to both —or both
the lines must be parallel (Theorem 22, Defin. XI).

Q. E. D.

Corollary II. — Any straight line intersecting one of a pair
of parallel lines, and in one plane with the other, if produced
sufficiently far, must meet the latter.

For, being in one plane with both, were it not to meet the
second somewhere, it would be parallel to it (preceding Corol-
lary) and hence also to the first (Euclid, prop. XXX); but it is
not, since it intersects the first. Therefore it must likewise
intersect the other, somewhere at a finite distance. Q. E. D.

* * *

With this, the theory of parallels, as well as that of the elements
of geometrical measurement — distance, straight line, plane,
angle, circle, ete., —is firmly established. We see, then, that
THE FOUNDATIONS OF THE EUCLIDIAN GEOMETRY rest on a
much firmer basis than mere arbitrary assumptions verified by
experience to a very great degree of approximation. They
are, rather, implanted in the very nature of our logic, being to
a great degree what the Kantists call a priori, and are empirical
only in so much as all our conceptions of quantity, form, and
motion depend upon experience.




