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PREFACE

The object of this book is to provide a compact ex-
position of the fundamental results in the theory of
tensors and also to illustrate the power of the tensor
technique by applications to differential geometry,
elasticity, and relativity. In the first five chapters the
mathematical concepts are developed without undue
stress on rigour. The remaining three chapters are in-
dependent of one another except that sections 88 and 39
of chapter VI, which treats Euclidean three-dimensional
differential geometry, are necessary for a proper under-
standing of chapter VII which contains the theory of
cartesian tensors and elasticity. Finally, chapter VIII is
devoted both to the special and general theories of
relativity. In the limited space available it is impossible
to do justice to the physical principles underlying both
these theories. But in order to help the reader unac-
quainted with relativity some explanatory matter has
been incorporated into the text.

The presentation owes much to the authors listed in the
bibliography, especially to McConnell, Synge and Schild.
In particular, I wish to express my thanks to Dr. D. E.
Rutherford for numerous suggestions and helpful
criticisms during the manuscript and proof stages. Lastly
I wish to thank my wife for her help with the proof-
reading.

B. S.
Trinity College, Dublin; July, 1952

PREFACE TO THE THIRD EDITION

In this edition various errors have been corrected.
Further, I wish to thank Mr. L. Lovitch for a neat proof
(inserted on page 56) that the curvature tensor is zero in
a flat space.

B. S.
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CHAPTER I

TENSOR ALGEBRA

§ 1. Introduction

The concept of a tensor has its origin in the develop-
ments of differential geometry by Gauss, Riemann and
Christoffel. The emergence of Tensor Calculus, otherwise
known as the Absolute Differential Calculus, as a syste-
matic branch of Mathematics is due to Ricei and his pupil
Levi-Civita. In collaboration they published the first
memoir on this subject: — ‘Methodes de calcul differential
absolu et leurs applications’, Mathematische Annalen, vol.
54, (1901).

The investigation of relations which remain valid when
we change from one coordinate system to any other, is
the chief aim of Tensor Calculus. The laws of Physics
can not depend on the frame of reference which the phy-
sicist chooses for the purpose of description. Accordingly it
is aesthetically desirable and often convenient to utilise
the Tensor Calculus as the mathematical background in
which such laws can be formulated. In particular,
Einstein found it an excellent tool for the presentation of
his General Relativity theory. As a result the Tensor
Calculus came into great prominence and is now invalu-
able in its applications to most branches of Theoretical
Physics; it is also indispensable in the differential geome-
try of hyperspace.

It is assumed that the reader has an elementary know-
ledge of determinants and matrices. As he may not be
acquainted with the Caleulus of Variations, the minimum
problem in the theory of geodesics is treated from first
principles.

B



2 TENSOR CALCULUS §2,3

§ 2. N-Dimensional space
Consider an ordered set of N real variables 2!, 2% .. .,
at, . .., @"; these variables will be called the coordinates
of a point. (The suffixes 1, 2, . . .1, ... N, which we shall
call superscripts, merely serve as labels and do not possess
any significance as power indices. Later we shall introduce
quantities of the type a; and again the ¢, which we shall
call a subscript, will act only as a label.) Then all the
points corresponding to all values of the coordinates are
said to form an N-dimensional space, denoted by Vy.
Several or all of the coordinates may be restricted in
range to ensure a one-one correspondence between points
of the Vy and sets of coordinates.
A curve in the Vy is defined as the assemblage of
points which satisfy the N equations
at = a'(u), (£=1, 2+ 0N)
where u is a parameter and a‘(u) are N functions of u,
which obey certain continuity conditions. In general, it
will be sufficient that derivatives exist up to any order
required.
A subspace Vy of Vy is defined for M < N as the
collection of points which satisfy the N equations
at = at(ul, u?, ... uM), (=1, 3,.-.N)
where there are M parameters !, u? ...uM. The
@i(ul, u? ...uM) are N functions of the !, u? ... u¥
satisfying certain conditions of continuity. In addition
the M x N matrix formed from the partial derivatives
Oa'/ow’ is assumed to be of rank M*, When M =N — 1,
the subspace is called a hypersurface.

§ 8. Transformation of coordinates

Let us consider a space Vy with the coordinate system
a1, a®, ...aY. The N equations

(8.1) & =g¢i@@,a%...aY), (i=12...N)
* T, Levi-Civita, The Absolute Differential Caleulus, pp. 9—12.
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where the ¢f are single-valued continuous differentiable
functions of the coordinates, define a new coordinate
system &, 2, ... &Y. Equations (8.1) are said to define
a transformation of coordinates. It is essential that
the N functions ¢! be independent. A necessary and suf-
ficient condition is that the Jacobian determinant formed
from the partial derivatives 0#'/02’ does not vanish *,
Under this condition we can solve equations (8.1) for the
2* as functions of the # and obtain

o = i@, @@, ...8%) (i=1, 2,...N)

§ 4. Indicial and summation conventions

We will now introduce the following two conventions:
(1). Latin indices, used either as subscripts or superscripts,
will take all values from 1 to N unless the contrary is
specified. Thus equations (3.1) are briefly written
Tt = @(at, 2% ... @V), the convention informing us that
there are N equations.

(2). If @ Latin index is repeated in a term, then it is un-
derstood that a swmmation with respect to that index over
the mn.ge;, 2, ... N is implied. Thus instead of the ex-

pression Xa,af, we merely write a;a’.

i=1
Now differentiation of (8.1) yields
. N oz
A8t = 2 2 dor = 3 o2 i =
f2 r§1 e dzr, =1 %)

which simplify, when the above conventions are used, to

(4.1) i 2
oz’

The repeated index 7 is called a dummy index, as it
can be replaced by any other Latin index, except i in

* R. P. Gillespie, Partial Differentiation, pp. 43—46.




4 TENSOR CALCULUS §5
this particular case. That is, equations (4.1) can equally

i
well be written dit = %‘ dem or for that matter
oo = g—i dzi. In order to avoid confusion, the same

index must not be used more than twice in any single
N
term. For example (£ a;2%)? will not be written a;at agwt

i=1
but rather a;a;azia’. It will always be clear from the con-
text whether z% means & with superseript 2 or @ squared.
Usually powers will be indicated by the use of brackets;
thus (z¥)? means the square of @V. The reason for using
superscripts and subscripts will be indicated in due
course.

Let us introduce the Kronecker delta defined by
=1 ifj==F
=0 if § # k.
An obvious property of the Kronecker delta is that
0kdi = A*, since in the left-hand side of this equation
the only surviving term is that for which § = k. Also
dw*[da? = 6%, because the coordinates a* are independent.

dak 3
= 8 =N: = &
Ex. Show that 8}0] = &f; 6 = N; 5= = = §;

(4.2)

§ 5. Contravariant vectors

A set of N functions 4 of the N coordinates z* are said
to be the components of a contravariant vector if they
transform according to the equation.

o
= 5 A,
on change of the coordinates 2! to #. This means that
any N functions can be chosen as the components of a
contravariant vector in the coordinate system #¢, and the
equations (5.1) define the N components in the new
coordinate system #. On multiplying equations (5.1) by

(5.1) At

§5 TENSOR ALGEBRA 5

9x*/0 and summing over the index i from 1 to N, we obtain

Dk 7 %
P ‘=%:%A‘=%A’=6}‘A5=A*.
Hence the solution of equations (5.1) is
(5.2) A* = o At
oF!

When we examine equations (4.1) we see that the
differentials da? form the components of a contravariant
vector, whose components in any other system are the
differentials ‘d@’ of that system. It follows immediately
that dzf/du is also a contravariant vector, called the
tangent vector to the curve af = af(u).

Consider now a further change of -coordinates
2’ = gi(#, 7%, ...4"). Then the new components A'f
must be given by

A = oa't A - ozt 0% , Oz
oF! .

et Sl S
o7 o o
This equation is of the same form as (5.1), which shows
that the transformations of contravariant vectors form
a group *,

With the exception of the coordinates zf themselves
a single superscript will always denote a contravariant
vector unless the contrary is explicitly stated. The coor-
dinates z¢ will only behave like the components of a
contravariant vector with respect to linear transfor-
mations of the type &' = ajaf, where the af are a set
of N2 constants, which do not necessarily form the com-
ponents of the entity introduced in section 8 and there
called a tensor. For in this case 9#/02’ = af and the trans-

A*,

" i
formation can be rewritten & = % #!., With respect to
@
general transformations of coordinates, the z* do not form

* W. Led i
Ty ermann, Introduction to the Theory of Finite Groups,
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the components of a contravariant vector. Essentially
this means that if we select 47 = af, then the new com-
ponents A* with respect to_the coordinate system &' do
not satisfy the equations 4* = .
d*x dy . b
Ex. If a vector has components @ in rectangular cartesian
2 2 3
coordinates, show that they are d—-r—r (‘.i_o) 4 d_q 3 i‘f d_ﬂ in
di? dl di® r dt dl

polar coordinates.

§ 6. Covariant vectors

A set of N functions 4; of the N coordinates z* are said
to be the components of a covariant vector if they
transform according to the equation

On?
(6.1) A.,r = 5 A;;

on change of the coordinates ¢ to &. Any N functions
can be chosen as the components of a covariant vector
in the coordinate system af, and the equations (6.1)
define the N components in the new coordinate system Z'.
On multiplying (6.1) by 9&/0z* and summing over the
index 7 from 1 to N, we obtain

0! 0! 0a’ Oa’
(6.2) @Ai=@§§A§=WAI=Ak
of 0f ox
o Ol 07’
that the quantities df/dz¢ are the components of a co-
variant veetor, whose components in any other system
are the corresponding partial derivatives 9f/0%. Such a
covariant vector is called the gradient of f.

A single subseript will always denote a covariant vector
unless the contrary is explicitly stated. In conformity
with this convention we shall regard the index 7 in the
covariant vector 9f/0z' as a subscript.

Since it follows immediately from (6.1)

§7 TENSOR ALGEBRA 7

We now show that there is no distinction between con-
travariant and covariant vectors when we restrict our-
selves to transformations of the type
(6.3) # = ale™ + b,
where b* are N constants which do not necessarily form
the components of a contravariant vector and ai, are
constants (not necessarily forming a tensor) such that

gl =&,
We multiply equations (6.3) by af and sum over the
index 7 from 1 to N and obtain

o = al® — albl.
Thus

0%  Oaf

o ~om
which shows that the equations (5.1) and (6.1) define
the same type of entity.

Ex. Prove that the transformations of covariant vectors form a
group.

§ 7. Invariants
_ Any function I of the N coordinates 2! is called an
Invariant or a scalar with respect to coordinate trans-

formations if I = I, where I is the value of I in the new
coordinate system &',

Frc-_m the components 4% and B, of a contravariant and
covariant vector respectively, we can form the sum 4¢B,.
When we change to new coordinates #, this sum trans-
forms to 4B, Now

oy i
4B, = %Ai g%f B.= #4'B, — 4*B,.
That is,
AiB; = AiB,.
Thus A'B; is an invariant.
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Another invariant is the quantity
H=80+8+...+ 6y =N.

§ 8. Second order tensors

Form the N? quantities 4% = BC’, where B* and C’
are the components of two contravariant vectors. It
follows from (5.1) that the 4% transform according to

. OF 0%
et g
(8.1) A 3 o A%,

More generally, if we have N® functions 4% whose
transformation law is that of (8.1), then we call 4% the
components of a contravariant tensor of the second
order. This tensor is not necessarily the product of the
components of two contravariant vectors. Any set of N*
functions can be chosen as the components of a contra-
variant tensor of the second order, and then (8.1) defines
the components in any other coordinate system Z'.

Similarly, if we have N functions 4,; whose transfor-
mation law is

(8.2) Ay=7= 55

we call 4,; the components of a covariant tensor of the
second order.

Further, if we have N2 functions 4} whose transfor-
mation law is

ot ox'

£ e e

) i oa* 0%’

we call 4i the components of a mixed tensor of the
second order.

Note that the indices are placed on the tensors as super-
scripts when they denote contravariance and as subscripts
when they denote covariance. In particular, the mixed
tensor A} transforms like a contravariant vector with
respect to the index i and like a covariant vector with

A%,

§9 TENSOR ALGEBRA 9

respect to the index j. Consequently the ¢ is placed as a
superseript whilst the j is placed as a subscript.
Now choose 4% to be the Kronecker delta ¢j. From
(8.83) we have
J‘___%a_w‘ kzﬁaik:@: i
P Owbon P Ouko® OV e
That is, the Kronecker delta is a mixed tensor of the
second order whose components in any other system
again form the Kronecker delta. This justifies the
placing of one index as a subscript and the other as a
superscript. Yet if we select the N? quantities d;; = 0f
as the components of a covariant tensor in a coordinate
system af, the components in the new system &‘ are
Oz* ox*
i 0% o0&’
ponents §;; do not form the Kronecker delta.

given by 8, = . Therefore the transformed com-

Ex. Prove that 4,BC’ is an invariant, if Bf and C/ are contra-
variant vectors and 4, a covariant tensor.

§ 9. Higher order tensors

A set of N*+? functions 4327 +-% of the N coordinates
@' are said to be the ca:mnponenl;slI of a mixed tensor
of the (s 4 p)-th order, contravariant of the s-th order
and covariant of the p-th order, if they transform ac-
cording to the equation

1), it CETOE T L
ety Bty T Gt 0T 0dfe T G’

on change of the coordinates ! to & This formula,
although rather formidable in appearance, is merely a
combination of (5.1) with respect to contravariant in-
dices and of (6.1) with respect to covariant indices.
The order of indices in a tensor is important. The
tensor 4% is not necessarily the same as the tensor 4%,
(In the language of matrices 47 is the transpose of 4%.)
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If however two contravariant indices or two covariant
indices can be interchanged without altering the tensor,
it is said to be symmetric with respect to these indices.
We shall now prove that if a tensor is symmetric with
respeet to two indices in any coordinate system, it
remains symmetric with respect to these two indices in
any other coordinate system. There is no loss in generality
in proving this for the contravariant tensor A4 — A7,
On applying (8.1) we have
0%t 0% 0% 0% ;

i N gy SO e AR
44 = St = o a4 =A%,
as required. We cannot usually define symmetry with
respect to two indices, of which one denotes contra-
variance and the other covariance, because this symmetry
may not be preserved after a coordinate transformation.
The Kronecker delta, however, is a mixed tensor which
possesses symmetry with respect to its two indices,

When all the indices of either a contravariant or a
covariant tensor can be interchanged without altering
the tensor, it is said to be symmetric. A symmetric tensor
of the second order has at most }N(N 4 1) different com-
ponents.

A tensor each component of which alters in sign but not
in magnitude when two contravariant indices or two co-
variant indices are interchanged is said to be skew-
symmetric with respect to these indices. It can be
shown by equations similar to (9.2) that the property
of skew-symmetry is also independent of the choice of
the coordinate system. Skew-symmetry, like symmetry,
cannot be defined with respect to two indices, of which
one denotes contravariance and the other covariance,

If all the indices of a contravariant or a covariant
tensor can be interchanged so that the tensor changes its
sign at each interchange of a pair of indices, the tensor
is said to be skew-symmetric. A skew-symmetric tensor
A% of the second order has at most 3N (N — 1) different

(92)

§ 10 TENSOR ALGEBRA 1

arithmetical components, as all the quantities 4% (no sum-
mation) are zero. The several components of a skew-
symmetric tensor of the N-th order are either zero or differ
merely in sign. So there is essentially only one non-zero
component of such a tensor. e

The most important deduction from (9.1) is this: if all
the components of a tensor in one coordinate system are
zero at a point, they are all zero at this point in every
coordinate system. Further, if the components are iden-
tically zero in one coordinate system, they are also iden-
tically zero in every coordinate system. It is this property
which constitutes the importance of tensors in physical
applications.

When a tensor is defined at all points of a curve or
throughout the space Vy itself, we say that it constitutes
a tensor-field.

Ex. 1. If 4,; is a skew-symmetric tensor, prove that
(050F + 630F) 4y = 0.
Ex. 2. Prove that the transformations of tensors form a group.

§ 10. Addition, subtraction and multiplication of
tensors

It is clear that we cannot expect to give any tensorial
meaning to the expression 4% - Bf, because it cannot
satisfy the transformation law (9.1). It does, however,
follow from this equation that any lincar combination of
tensors of the same type whose coefficients are invariants
is a tensor of the same type. For example, from the two
tensors 4%, and BY;, we can form the tensor 44§, + B}
which will satisfy (9.1) provided that A and yu are in-
Vvariants. In particular, 4} + Bj, and A, — Bj, are
called the sum and difference respectively of the two
tensors. As another example, we can write

Ay = YAy + Ay) + Ay — Ayg)-
Now 4,; + A,; is symmetric and 4, — A4, is skew-sym-
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metric. Thus any covariant tensor of the second order
is the sum of a symmetric and a skew-symmetric tensor.
This is, of course, also true of a contravariant tensor of
the second order.

Let us select two tensors, one of contravariant order
s and covariant order p, the other of contravariant
order ¢ and covariant order ¢. It then follows from (9.1)
that the products of the components form a mixed tensor
of contravariant order s + ¢ and covariant order p + ¢.
This tensor is called the outer product of the two
tensors. For instance 4§ , = BY C! . is the outer pro-
duct of the two tensors By and C? , and is a tensor of
the type indicated by its indices.

The division, in the usual sense, of one tensor by another
is not defined.

§ 11. Contraction
Let us start with any mixed tensor, say 4% . and form
the sum 47 .. From (9.1) we have
s _ 0% 0F 02! Ja™ Qam A
2" Q' Oa’ & 0% 0% © P
Therefore

" = Jut O’ 9 99 o7 *
0% 0a* Dam™
= 9at 93> 070
__ 0B or G .,

s 53’? _a'é_p aﬁ Imn*
Thus we observe that 4% . is a mixed tensor, contra-
variant of the first order and covariant of the second order.
This process, which is called contraction, enables us to
obtain a tensor of order » — 2 from a mixed tensor of
order r. In the above example we could contract a stage
further and arrive at the covariant vector 4, When

ar 0% 0z 0* Oa™ Oa™

op A

imn

§ 12 TENSOR ALGEBRA 13

contracting, any superscript may be used to sum wi!;h
any subseript. Therefore we can form the following dif-
ferent tensors by contraction:- A% .. Af ., AP . AP .,
Af,, AL A, A4, AL, Af, AY, and A7, If
the tensor A possesses any symmetric properties,
there will be fewer tensors formed from it by con-
traction. As another example, the invariant A{ is formed
by contraction from the mixed tensor Af. This justifies
us in calling an invariant a tensor of zero order.

We can also combine multiplication and contraction
to produce new tensors. From the tensors 47 and B},
we may obtain such tensors as 4 B, 49 B! ., Ay Bf,
and many others. This process is called inner multipli-
cation of two tensors and the resulting tensor is called
an inner product of the two tensors.

Note carefully that we never contract two indices of
the same type as the resulting sum is not necessarily a
tensor. Also it should now be clear that with our index
notation, the summation convention generally applies
to two indices one of which is a superscript and the other
a subscript.

§ 12. Quotient law

Sometimes it is necessary to ascertain whether a set
of functions form the components of a tensor. The direct
method requires us to find out if they satisfy a tensor
transformation equation of the type (9.1). In practice
this is troublesome and a simpler test is provided by the
quotient law. The quotient law states that N? functions
of ¢ form the components of a tensor of order p, (whose
contravariant and covariant character can readily be
determined), provided that an inner product of these
functions with an arbitrary tensor is itself a tensor. It
will suffice to set out the proof for the following parti-
cular case. The set of N3 functions 4%* form the com-
ponents of a tensor of the type indicated by its indices if
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AiikBY — Co*,
provided that BJ; is an arbitrary tensor and C?* a tensor.

The transformed quantities, referred to a system of coor-
dinates &, satisfy the equations

Aiix B, — Cok,
which become on substitution from (9.1)

Jﬁka_ﬁaimai" _ ?ﬁpa“_’k car
0a' 9% 0% "™  0af Oa”
‘= 0 0
% 2 17 Bis-

With a change of dummy indices, we have
P s 000 O]
= [J wow 4 a?] By,
On multiplying this equation by 02°/0Z” and summing
over p from 1 to N, (in future we shall merely write ‘on
inner multiplication by 82°/d#?’) we obtain
Oa™ Oan oz*
o L e

) [“I w4 aa!"]
Since Bj,, is an arbitrary tensor, we can arrange that
only one of its components differs from zero. Now each
component of B may be selected in turn as that one
which does not vanish. This shows that the expression
in brackets is identically zero. That is

a=0.

Bl

m

a =0,

. T
(12.2) AP mg = S

Inner multiplication of this equation by a&% g%ﬂ yields

the result
0% o0& 0z*
[ i Tt
A = da™ Qa™ Oa’ A,
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Thus 4™ is a tensor of the third order and contra-
variant in all its indices. In the above proof it is important
that the tensor B!, shall be arbitrary and must not
possess any symmetric or skew-symmetric properties. Let
us examine what happens if B!, is symmetrical in m
and n. It is no longer possible to deduce (12.2) from (12.1).
The correct deduction now is that

o 0X™ O s Lo O

Y oawwt wmw =t

On changing several dummy indices, this equation be-
comes

oz*

+ Ak

Oa™ O SRR
(‘,{i.ﬂ:_l_l{ﬁk)@a_ﬁ:(&{ + 4 ).a?.

Inner multiplication by aa—:; %:; shows that 4mnr |- gnmr

is a contravariant tensor of the third order. If in
addition we know that 4™ js symmetric in m and n,
it follows immediately that 4™ is a symmetric tensor
with respect to the indices m and n. We observe, there-
fore, that the quotient law must be applied with care.

Ex. 1. If 4¢ and B' are arbitrary contravariant vectors and
CyA*B is an invariant, show that C is a covariant tensor
of the second order.

Ex. 2. If 4f is an arbitrary contravariant vector and CyAid? is
an invariant, show that C,; + Cy is a covariant tensor of
the second order.

§ 18. Conjugate symmetric tensors of the second
order

Consider a symmetric covariant tensor of the second
order 4, whose determinant | 4, | # 0. Let B¥ denote
the expression formed by dividing the cofactor of Ay in
the determinant | Ay | by | Ay | itself. We shall prove
tha!: the B so obtained are the components of a contra-
Variant tensor of the second order. In anticipation of




16 TENSOR CALCULUS § 13

this, B is labelled as if it were a contravariant tensor.
We have from the theory of determinants*.

(18.1) A“ B‘k == 6;.

We cannot establish the tensor character of B by
applying the quotient law directly to this equation,
because 4,; is not arbitrary. Let us choose an arbitrary
contravariant vector C%. Then D; = 4,(? is an arbitrary
covariant vector, because these Nequations can be unique-
ly solved for the Cf in terms of the D, since | 4, | # 0.
Consequently,

D, Bt = A,,C} B* = 8’ = C*.

Now if we apply the quotient law to the equation
DB = C*, we see that B is a contravariant tensor of
the second order. Also it is clear from the definition that
B, like 4, is symmetric.

We will next attempt by the same process to obtain
another tensor from B, Let E; denote the cofactor
of BY in the determinant | By | divided by | B, | itself.
From the theory of determinants | 4, |.| By | = 1 and
consequently | By | # 0, which means that E, always
exists. Further we have

E,B* = g},
Inner multiplication by 4,, yields on application of
(18.1) that
Eu = A“ = Au.
Thus this process only leads back to the original covariant
tensor of the second order. We say that 4, and BY are
conjugate tensors if they satisfy equations (18.1). It is

important to note that a tensor of the second order has
a conjugate only if its determinant is not zero.

Ex. If A, = 0 for i 7 j, show that the conjugate tensor BY = 0
for i 54 j, and B* = 1/4, (no summation).

* A. C. Aitken, Determinants and Matrices, pp. 51—52.

CHAPTER II

THE LINE ELEMENT

§ 14. Fundamental tensor

At this stage we introduce the concept of distance into
our space Vy. If the distance ds between the neigh-
bouring points with coordinates ! and @' + da' is given
by the quadratic differential form

(14.1) ds’ —_ g‘,d{ﬂ‘d‘?j

where the g;; are functions of @%, subject only to the
restriction g = | g; | # 0, the space is said to be a
Riemannian space. In addition we postulate that the
distance between two neighbouring points is independent
of the coordinate system. That is, ds is an invariant.
From the quotient law, it follows that g;; + g;; is a co-
variant tensor of the second order. We can write

8 = ¥(8us + &) + 38y — &n)-

The contribution of }(gy — g;;)da'da’ to ds? is zero, hence
there is no loss of generality in assuming that g,; is sym-
metric. Thus g, is a covariant symmetrical tensor of the
second order called the fundamental tensor of the Rie-
mannian space. The quadratic form g;da'da’ is called the
metric, It is also the square of the line-element ds.

The line-element ds of a three dimensional Euclidean

Space, referred to a system of rectangular cartesian axes,
1S

ds® = (da)? + (dot)? + (da®).

All the components of the fundamental tensor are zero
except g;, = gyp = g33 = 1. It is evident that the metric

C
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of a Kuclidean space is positive-definite*. That is, ds?
is zero when dal! = da® = da® = 0 but can only take
positive values for all other real values of d2', dz® and da®.
The Special Theory of Relativity discusses the four
dimensional space with the line-element ds given by

(14.2) ds* = — (da')® — (da®)* — (da®)® + c(dat)?

This metric is not positive-definite, as it is positive for
all curves along which 2%, 2® and a® are all constants, but
negative for all curves along which a* is constant. Thus
along these latter curves the distance between neigh-
bouring points cannot be real. In order that the distance
ds between two neighbouring points be real, equation
(14.1) will be amended to

(14.8) d\?n — egﬁd&‘dfﬂ’,

where the factor e called the indicator takes the value
+ 1 or—1 so that ds* is always positive.

Ex. Show that the metric of a Euclidean space, referred to spherical
polar coordinates a* =7, 2* =0 and a® =y is given by
ds® = dr? 4 rdf* + 7 sin® Ody*

§ 15. Length of a curve

Consider the curve af = a'(t) with the parameter 2.
From (14.3) the length of the curve between the points
corresponding to ¢ = ¢, and ¢ =i, is given by

(15.1) 8= L Veg“ = T

i
If gy %— % = 0 along a curve, then the two points

corresponding to ¢, and {, are at zero distance from one
another, despite the fact that they are not coincident.

* A. J. Mc. Connell, Absolute Differential Caleculus, p. 16.
A. C. Aitken, Determinants and Matrices, p. 137.
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Such a curve is called minimal or null. The curve
given by

ml=cfrcos 0 cos v dt, w*=cjrcosﬂsinvydt,
(15.2)
a*=cjrsin9dt, m"=_'.fdt,

where 7, 0 and y are functions of ¢ is a real null curve
in the V, whose metric is (14.2). It is clear that no real
null curves lie in a Riemannian space whose metric is
positive-definite.

A curve will consist of portions along which the in-
dicator e is + 1, portions along which the indicator is
— 1, and null portions. The length of the curve is then
the sum of the lengths of these portions, the null part
contributing zero to the value of the length.

Except in the case of null curves, the parameter ¢ may
be chosen as the arc-distance s from some fixed point
of the curve. From (14.3)

dmi dw.f
Lk o e
along any portion of a curve which is not null.

(15.3)

§ 16. Magnitude of a vector

The magnitude 4 of the contravariant vector 47 is
defined by
(16.1) (4) = ew) gy 4' 4,
where e(4) is the indicator 4 1 or — 1 which makes 4
real. The magnitude 4 is an invariant. In a Euclidean
space, referred to rectangular cartesian coordinates,
(16.1) reduces to the familiar definition of the magnitude
of a vector.

At this stage it is necessary to introduce the contra-
Variant tensor conjugate to g,;, which can conveniently
be written g¥, Then equations (13.1) read

(16.2) gug™ = 9.
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We can now define the magnitude B of the covariant
vector B; by the equation

(16.3) (B)* = e 8B, B;,

where ep) is the indicator of the vector B,, and it is clear
that B is an invariant.

A vector, whose magnitude is unity, is called a unit
vector. It follows from (15.8) that daf/ds is a unit con-
travariant vector. If the magnitude of a vector is zero,
it is called a null vector. The tangent vector to a null
curve is a null vector.

§ 17. Associate tensors

The inner product of the fundamental tensor g, and
the contravariant vector 47 is the covariant vector g,;47,
which is said to be associate to 4. We define

(17.1) A‘ = g“A’-
Similarly we define
B! = gB
and say that the vector Bf is associate to the vector B,

The relation between a vector and its associate is
reciprocal, for the vector associate to 4, is

gid; = gig, A% — 8 4% = A,
This process of association is often referred to as ‘lowering

the superscript’ or ‘raising the subscript’ respectively.
We have

e(a) iy A'A? = e)8;; 845 874, = e4)g¥ 4, 4,
which shows that the magnitudes of associate vectors
are equal.

The process ofraising and lowering indices canbe perfor-
med on tensors. From the tensor 4%, we can form associ-
ate tensors like 4%, =g 4", or A\ =g, gigma¥
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The dot notation is introduced to indicate which indices
have been raised or lowered. The dots will be omitted
when there is no possibility of confusion. For example, we
shall write A% = girg#4, .. Note very carefully that
although g;; and g are conjugate tensors, the tensors
Ay and A% are not as a rule conjugate.

Ex. Show that (4)* = e(q)4.4"

§ 18. Angle between two vectors - orthogonality
The angle between two unit vectors 4% and B' is defined

by

(18.1) cos 6 = gﬁA‘B’ = AJB’ = g’kA’Bt — AkBk.

This equation will be found to agree with the usual for-
mula cos 0 = lI' - mn' 4 nn' for the angle between the
unit vectors (I, m, n) and (I', m’, »') in a three dimensional
Euclidean space when it is referred to rectangular car-
tesian coordinates. We will now show that (18.1) always
defines a real angle between two real vectors if the metrie
of the Riemannian space is positive-definite. For then the
magnitude of the vector A4 4 uB' is greater than or
equal to zero for all real values of 2 and u. That is

gs(Ad* + uB)(A4! + uB’) = 0,
which reduces to
72 4 2Au cos 0 + p® = 0.
That is
(A + pcos 0)2 + p*(1 — cos? 0) = 0.

Since this equation is true for all values of 2 and p,
it follows that 1 — cos? = 0. Thus | cos | = 1 which
means that 0 is real. If the metric is not positive-definite
then the angle between two real unit vectors need not
e real.
An immediate deduction from (18.1) is that the angle 6
between two vectors 4¢ and B, which are not necessarily
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unit vectors, is given by
At B!
(18.2) cos 0 = &y X
Vewe g A 4™g,, B B*

Two vectors are said to be orthogonal to one another
if the angle between them is a right angle. From (18.2)
the necessary and sufficient condition for the ortho-
gonality of the two vectors 4 and B is that

(18.3) g“AiB’ = 0.

We do not define the angle between two vectors if one
or both of them happens to be a null vector, but we shall
take (18.3) as the definition of orthogonality of two null
vectors. It follows that a null vector is self-orthogonal.

Ex. Prove that (1, 0, 0, 0) and (4/2, 0, 0, 1/8/c) are unit vectors in
the ¥, with the metric (14.2). Show also that the angle between
these vectors is not real.

§ 19. Principal directions

From the symmetric covariant tensor 4,; we can
construct the determinantal equation

(19.1) | Ais—Agis | = 0,
which is of degree N in . When we change to a new
coordinate system &, this equation transforms to

_ | O oz*
(A'u:_jgu:) a_:‘ ai.‘n’

On applying the multiplication law of determinants, this
equation can be written
Ap— g

o'

ozt

The Jacobian determinant

oz :
=—| does not vanish; con-
Ot
sequently this equation reduces to
| A —Ague | = 0.
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By comparison with (19.1), we deduce l}hat the roots
Au) of this equation are invariants. (Ca.?:tal letters are
used to label the roots. Their enclosure in brackets em-
phasises that they have no tensorial significance, and the
summation convention is not to apply to them.)

Now consider the N equations

(19.2) (Ayy— A 8i5)Ligy = 05 -

where A%, is a simple root of (19.1). These determine
the ratios of the N values of L{,,. We cannot deduce
immediately from the quotient law that Lig, is a contra-
variant vector, because the tensor A, — Ax) gy With

which it shares inner multiplication, is not arbitrary.
Instead we change to the coordinate system &', and equa-
tions (19.2) transform into
. o 08 0P
(l{m 7 ;l(m gu) @ a"&? L:K) = 0.
Inner multiplication by da7/0z™ yields
| 0
(‘{Im _;'(K) glm) oz fo'} =0.
These N equations determine the ratios of the N quan-

= i
tities % Lix,, which are the components of Lig, in the

& coordinate system. That is, L, transforms in accor-

dance with equations (5.1) and thus Li, is a contra-

variant vector. Let us now choose the ratios of the Li,

so that it is a unit vector. That is,

(19.8) gL Ligy = e

where ¢, is the indicator of the vector Lix.
Similarly we can show that corresponding to each

simple root Ay of equation (19.1) there corresponds the

unit vector L{,, satisfying the equations

(19.4) (4i; — Apn 8is)Lipn = 0
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and

(19.5) 8usLiar) Lisy) = epn-

When Ay is a multiple root of (19.1), the vector L

is not uniquely determined by equations (19.4) and (19.5).
Let us choose two simple roots Ay, and Apn of (19.1).

Since Ay # Aar, the inner multiplication of (19.2) by

Ly and (19.4) by Lig, gives us on subtraction, the

equation

(19.6) 8usLigy Lipy = 0.

This shows that the two unit vectors Lik, and L}y, are
orthogonal. Thus if all the roots of equation (19.1) are
simple at any point, the covariant symmetric tensor deter-
mines uniquely N mutually orthogonal unit vectors. The
directions of these vectors at a point are called the
principal directions determined by 4. If the metric
giyda*da’ is positive-definite all the roots of (19.1) are
real*. That is, the principal directions are real in a space
with positive-definite metric.
Now consider the invariant A defined by
ol Ay LA L
Gl
The finite maxima and minima of 1 are given by % =1,
that is, by 0
Ay LY (g L L") — g,y LH(A,,, L' Lm) = 0.
This equation can be written

(A — 2g;)LF = 0.
Elimination of the L* yields the determinantal equation
| Ais— 284 | = 0.
Thus the finite maxima and minima of 1 are those values
corresponding to the principal directions determined
by 4.

* W. L. Ferrar, Algebra, p. 145.
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i incipal directions

If 4, = Ag; at a point, then the principal -
are indgterm.inate at that point. If 4,; = g, at all points
of a Vy, the space is said to be homogeneous with

et to the tensor 4.
resll:ne a Euclidean spact:ir of N dimensions referred to

gular i i f the
rectan cartesian coordinates, tl3e components o!
fundamental tensor g;; form the unit matrix. Hence the
roots of (19.1) are in this case the latent roots* of the
matrix 4,; and the principal directions are those of the
latent vectors.

I ==
Ex. Prove that A, Lte Lip = e gy and Ay Lig) Lizy = 0.
(No summation over (K)).

Examples
1. Show that the angle 0 between the vectors A* and B! is given by
(e(4) e(B) Eniln — EmLus) AP A*BI B* )
€(4) €(B) Eniln AP A'B'B*

2. If 4,, is a skew-symmetric covariant tensor, prove that (A,,;_«/z
A,u-"\/g_, A“}V_g_) are the compo_n-ents o& a contravariant
vector. Show also that (Vgd4®=, Vgd®, v g4'?) are the com-
ponents of a covariant vector if 4% is a skew-symmetric
contravariant tensor.

8. Prove that no relation of the type

Agydu + paAp + v8ady =0
can exist in a ¥y, (N > 1), where 4, g and » are invariants
i symmetri r.
zfm.ill : ';:a rs?tew-synfrt;in?:nt::sor, show that this equation can
not exist in a ¥y for which N > 2.

sin?f =

* A. C. Aitken, Determinants and matrices, p. 73.



CHAPTER III

COVARIANT DIFFERENTIATION

§ 20. Christoffel symbols

Although we found in section 5 that daf/du is always a
contravariant vector, the exercise at the end of that sec-
tion should convince us that its derivatives d*z*[du? do not
form a vector, whose components in any other system are
the corresponding second derivatives. Again, in section 6
we proved that the partial derivatives of an invariant
form the components of a covariant vector; yet we shall
show in section 22 that the derivatives of a vector do
not form a tensor whose components in any other system
are the corresponding derivatives of the transformed
vector. Our aim is now to build up expressions involving
the derivatives of a tensor, which are the components of
a tensor. In order to carry out this programme we must
first investigate two functions formed from the fun-
damental tensor g,;. These are the Christoffel symbols of
the first and second kinds defined respectively by

s _ 1 (0gy , 08 0gy
and
l i
(20.2) {i’.} = g™[#j, k.

Although we shall see that the symbols [if, k] and l :;}

are not tensors, this notation is introduced in keeping
with the summation convention which generally applies
to two indices, one a superscript and the other a subseript.
Thus all but one of the indices of the Christoffel symbols
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are regarded as subscripts. The exception is the I in the
symbol of the second kind, which is treated as a super-
seript. :
Tl;le definitions show that both symbols are symmetric
with respect to the indices ¢ and j. Inner multiplication

of (20.2) by g,,, yields

i l
(20.3) [, m] = g I'i?-] £
It follows immediately from (20.1) that
08 (. : 3
(20.4) B = L ¥ + K, 5]

We now wish to express the derivatives of g’ in terms
of the Christoffel symbols, and so we differentiate equa-
tion (16.2) with respect to 2%, and obtain

dg'* 0
%ga+§;’g“=0-

Inner multiplication by g™ gives us

b 0,
agm +g.fmg(k$ = 0.

oxt
Substituting from (20.4) and (20.2), we finally obtain
ogm* k m
(0:53 % S [il] S il] ;

[
We shall now deduce a useful expression for L] Diffe-

rentiate the determinant g = | g;; |, remembering that
g'™g is the cofactor of g, in this determinant, and obtain

ag_ im agﬁ
=8 8

From (20.1) and (20.2) and the symmetry of g;; we have
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1 i (%im, % D2y 1 0g
MERT (W+5m7_§;m)=ig‘“a—§"
Thus

) 331
(20.6) {} alilde 0 {log Vg}.
_Sinee g is not an invariant, it does not follow that
). :
iy'} is a covariant vector. Ifg i; negative, equation (20.6)
should be altered to {'] = o= {log V=
ij| = 7 Mg V—2}.

Ex. 1. Caluc;;]ate the Christoffel symbols corresponding to the
m

(a) dst = (da')® + (2)%(da?)® + (a1)* sin® a(da?)".
(b) ds® = (dz')* + G(a?, a?)(da?)?, wher: ¢ i(s a ;unction of

&' and a2,

Ex. 2. Eat::e metric of a Vyy is such that g, = 0 for i 5 j, show
METR S
Jk Ji 28, %"’

| i 2 i 2 —
'ij} Py {log 1/;;}; {‘.'.} & Py {log Vgﬁ'}:

where i, j and k are not equal, and the summatio
tion does not apply. s

§ 21. Transformation law of Christoffel symbols
The fundamental tensor g, bei i

I i1 covariant, trans-

forms according to the equation i ve

5 ozt Oa!
(211) B 20 2

l(l)!::véiii"ﬂ;-.:cenl:iai:ing this equation with respect to &, we
Ol _ 00t 00l Oy 0% | %0t 00l Oat
02" ~ 0% 07" 0a* & ' 90w dam o T 57 s G-
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We subtract this equation from the sum of the two
similar equations obtained by cyclic interchange of the
indices I, m and n, and divide by two. Then with appro-
priate changes of dummy indices we have

¥t .. .. Oa* 0o’ Oa* oz' o*a
(21.2) [lm, n] = [ij, k] 73 95 a%- + &y a%- 0F oz’

where the bar over the Christoffel symbol indicates that
it is calculated in the coordinate system #* with respect
to its fundamental tensor 7;;. Now the transformation law
of the contravariant fundamental tensor is

(21.8) g =g" g% %§

Inner multiplication of both sides of equations (21.2) by
the corresponding sides of (21.8) yields on reduction the
relation
(214) ? = ai’a_w‘E a_i’_a’z"
1 Im| ~ \ij| 0a* 0% 9™ ' Oa’ 9F'0Z™
Equations (21.2) and (21.4) comprise the transfor-
mation laws of the Christoffel symbols, and clearly in-
dicate that they are not tensors. However, in the very
special case of linear transformations of coordinates,
0%4/07'0™ = 0 and the symbols then transform like ten-
sors. Now inner multiplication of (21.4) by 0a’/0Z* yields

o _ (7)o (r)0et
270z  |lm| 0z»  |ij) 9% 9a™

This important equation expresses the second partial
derivatives of the a” with respect to the & in terms of
the first derivatives and Christoffel symbols of the
second kind.

Ex. Prove that the transformations of Christoffel symbols form
a group.

(21.5)
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§ 22. Covariant differentiation of vectors

Let us investigate the tensor character, if any, of the
partial derivatives of a contravariant vector. We start by
differentiating the transformation law

(22.1) A* = Aig—::

with respect to a’, and obtain
04  9At &n oa* ; dlz* oFn

0z'  Oa" 0! OF 0% 07" a?
The presence of the last term on the right-hand side of
this equation shows that the partial derivatives 8.4*/da? do
not form a tensor. To obtain a tensor involving the
partial derivatives we eliminate the partial derivatives
of the second order by means of (21.5) and this gives us

04* 94 9z Oa* (0& [[p) 0% (k) dar 0a*
oz’ ~ 0z" Oa) 9T oa? [iﬂ}a_:i’” 7s 558?‘]

In virtue of (22.1) and by appropriate changes of dummy
indices, this equation reduces to

o4 | (k) . [9d* | [T\ ;| 0& du*
"a?+|ﬁ}‘4—[ﬁ+lm}‘]awa—z‘"

Introduce the comma notation

04* k
2.2 G — il g
(2 ) A,j o’ 5 [1“?} A ]
so that the above equation can be written
0" ga®
[ T { ok o L i 1
4,=4, da’ ozt

Hence from (8.8) it is obvious that 4% is a mixed tensor

of the second order and it is called the covariant deri-
vative of A* with respect to a’.

§ 22 COVARIANT DIFFERENTIATION K}

i i iant
In order to set up the corresponding entity for covarian
vecfc.lors, we may conveniently start by differentiating the
transformation law
ox!
(22.8) Ad;,= A4, =

with respect to &. This yields
94, 04, 0a* 02! *a’
o ~ 02 0% 0&' ' ' 0%'0%

Again, by (21.5), we eliminate the partial derivatives of
the second order. Further we change dummy indices as
required and we have on substitution from (22.8), that

od, (m 04, (r 0! ga"
o (B0 - [ ) )

The comma notation

04 r
(22.4) Ay, = a—m; — fn] ’
is now introduced, and the above equation can be written
da! 9an
A(.I = A4;,n '@ P

which shows that 4;, , is a covariant tensor of the'seaond
order, called the covariant derivative of 4; with res-

ect to a". ;
v In a Euclidean space of N dimensions, referred to

rectangular cartesian coordinates, the components of the
fundamental tensor g,; are zero except g;; = ggg =+« » =
= gyn = 1. Thus all the Christoffel symbols are zero an
so covariant differentiation reduces to the familiar partial
differentiation. It is well to observe that the Christoffel
symbols do not all vanish in a Euclidean space referred,
for example, to spherical polar coordinates. _
We can construct the invariant 4’; by contraction.
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Applying (20.6) we obtain
04’ i 047 d
O e "
A.,—-aw, {Tf}A——aF+Aa—{log‘Vg}.
That is

1 0
22.5 A=
( ) W] ‘\/E ait'
This invariant is called the divergence of the contra-
variant vector 4* and is often denoted by div 4%. The
divergence of a covariant vector 4, is defined by

(22.6) div A‘ = g’kA"k.

The partial derivatives of an invariant form the com-
ponents of a covariant vector. We extend the definition
of covariant differentiation to invariants by calling the
familiar partial derivative the covariant derivative, That
is, from the invariant I we form by definition

oI
I.‘ Ew-

{(Vea}.

Since 1 ,i 18 a covariant vector, we find from (22.4) that
its covariant derivative with respect to 2’ is given by

021 r) oI
s = 555 — g} 3
Thus (I ;) ;= (I ,), That is, the covariant differen-
tiation of invariants is commutative. In section 81, we
shall see that the covariant differentiation of vectors is
not in general commutative,

We can form the divergence of the covariant vector
I ;; this is called the Laplacian of I and written J72I. Then

VI = g1 ,),, = g* (a_.:l'“aia,-'I = { 4 ] a_I)

(22.7)

ik) oar) "
4, 4,

Ex. 1. Show that A;.-'—‘A." = MT; ._z.w_ -
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Ex. 2. Prove that div 4, = VLE % (VEgr4,) = div 4.

Ex. 8. Evaluate div Afand %I in (a) eylindrical polar, (b) spherical
polar coordinates.

§ 238. Covariant differentiation of tensors

In the last section we constructed tensors containing
the partial derivatives of vectors. Can we now extend the
process of covariant differentiation to tensors? For our
typical tensor we shall choose 4j. There will be no loss
in generality involved as this tensor has one contra-
variant and one covariant index. Inner mu}tiphcanon of
its transformation law (8.8) by da™/0#* yields

O™ O’

We differentiate with respect to *, then eliminate the
second order partial derivatives by means of (21.5) and
obtain

oo,y [(F)em_ () o o]
oz* oz i1 \ik| 0z» rs| 0% 0E*

204y ox* dat (p) 0at L) Oar 0a*
=% s T AT Ufk o |\rs| 0@ 97+ |
Applying (28.1) to this and changing appropriate dummy
indices, this equation becomes

(5 + 4[] — 2 ()] 55

adm . [m e oa* Oat
- [ +aln) ()] 5 35
Introduce the comma notation

o4r - )
(23.2) =t + {:} S - [u] An,
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and the above equation takes the form
i, 2" _ g Ox' 0!
»* ozt bt 9%k 07
On inner multiplication by 9#/da™ we have
m OF Oa' Oa'
bt Qam 0% Oz*

Hence 47, is a tensor of the third order of the type
indicated by its indices. This tensor is called the co-
variant derivative of 47" with respect to at.

An examination of equation (28.2) shows that the
covariant derivative of 4} contains three terms. They
are (1) the partial derivative, (2) a term with positive
sign similar to that contained in the covariant derivative
o_f a contravariant vector and (3) a term with negative
sign similar to that contained in the covariant derivative
of a covariant vector. This suggests that the expression

A4

A, =4

Uy, .ty

A“p-“. =a r:..l',+i| ua, A“l"“ﬂ-lhﬁ .ot
Tyeofo,m aa'ﬂ il kn FyTy +1°+ %y

8 [ 1
— Uy Uy
p=1 {?“ﬂ] Arl..rﬂ_llrﬁl..r,

is a tensor, called the covariant derivative of A% %
with respect to a”. The proof which we worked out for
the mixed tensor of the second order applies also to (23.8).
We will omit its tedious details and supply an alternative
proof in section 80.

On referring to equations (20.8), (20.4), (20.5) and
(28.3) we deduce that

0, l l
(28.4) Bisk = % = l‘ik} S l?k} ga=0,

(28.8)

PR Y ] P
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and "
% (3 !
¢« __ 99 s K 0.
(26) O =5k + {m] 8 [?.k] 8= 0

The covariant derivatives of covariant derivatives are
again tensors. We indicate these covariant derivatives
of the second order by adding another index without a
comma. For example 4, ;; is the covariant derivative of
A, ; with respect to a*.

Ex. 1. If 4,= B, ;— By, prove that A, , + A, ¢ + Ay, 3=0.
Ex. 2. By means of (23.5), show that div 4f = div 4,.
Ex. 8. If A¥* is a skew-symmetric tensor, show that

A l (4/g Ai*) is a tensor.

Ve

§ 24. Laws of covariant differentiation

Covariant derivatives obey the following laws:-

(1) the covariant derivative of the sum (or difference)
of two tensors is the sum (or difference) of their covariant
derivatives. This law is an immediate deduction from
(23.3).

(2) the covariant derivative of an outer (or inner)
product of two tensors is equal to the sum of the two
terms obtained by outer (or inner) multiplication of each
tensor with the covariant derivative of the other tensor.
Consider as an illustration

e i e[ (]

= Au.mB‘ =} Aif B,lm-
This type of proof is quite general and will apply to any
case of outer multiplication of two tensors. (Another
proof is provided in section 28). Contraction of I and j
gives us
(AHB’).M = Ai!.m B 4 Aﬂ Bfm’

which makes it clear that the rule also applies to inner
products.
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(8) the tensors g, g and 6§ are constants with respect
to covariant differentiation. T]:us is merely another way
of stating equations (23.4), (28.5) and (28.6). For example

(8940),m = g4, A + 8944, = 894y, -

Ex. If I and J are invariants, show that
div (J1,,) = JV*I + g¥1,,J,,.

§ 25. Intrinsic derivatives
Consider the tensor 4% whose components are

functions of ¢ along a curve @¢ — ai(f). The intrinsic
derivative is defined by

dAY da,"‘
(25.1) e = g, o

Accordingly, the intrinsic derivative is a tensor of the
same order and type as the original tensor.
Corresponding to the invariant I, we have
o, dot_ Ol ot _dI
& td wda &
That is, the intrinsic derivative of an invariant coincides
with its total derivative.
Intrinsic derivatives of higher order are easily defined.
For example,
0°4; & (04f\ _ [, da¥\ dat
o T at\ot) T\ s .
In general, intrinsic differentiation is not commutative.

From (22.2), (22.4), (28.4), (28.5) and (28.6) we cal-
culate that

we W s
04, _ dd, {},,] da’

(25.8) 'd_t =7 — 5 A"a"i-s
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and

581; 88§ _ -
(25.4) ot az S fane

From the definition of intrinsic derivati‘tes, it follows
that they obey the same three laws which apply to
covariant derivatives.

8 (daf\ _ arat | i) do! da*

Solutions

p. 28 Ex. 1. The only non-zero Christoffel symbols of the second
kind are

(@) ;2} -—a, {818} -t aint e, | 122] e
}:5} A s gl [fa] = s, {;’s] Mo

1 136 [2|_ 123 [2|_123
i {m]=_?ﬁ’ 12| T 2624 |22] 26 %t
p. 33 Ex. 8.
LT dA® A
- L 5
(a) div 4 st
‘oA 124, 4, :
- @rw Tw ?c?A"
2 1A
L AR TR P

Qi) T (a') a?) (az'r @' dat
d4r  d4r 4P

p s 2, QA At + cot a?4?,
(b) div4 i T3 T 3 -
24, 1 4, 1 344, +G:)t o '
=% T@r % | @) sntat 02 +m' O
eI 1 F 1 I 2  cotatdl

P =

ey T @ e | @ysme ) | @ om | (@) o8
The corresponding results in Rutherford’s Vector Methods, pp.

72—73, differ slightly because they are expressed in terms of the
physical components of the above vector (see section 62).




CHAPTER IV

GEODESICS ~ PARALLELISM

§ 26. Geodesics

In Euclidean three-dimensional space, a straight line
is the path of shortest distance between two points, and
it is our aim to generalise this fundamental concept to
Riemannian spaces. Let C be the curve a* = ai(t) with
parameter ¢ joining two fixed points P, and P,, whose
parameters are #, and ¢, respectively. Then the distance
s along the curve between Py and P, is given by

h dxt da?
26.1 2 dat da? .,
i : J;, V"g" e

Consider all the curves passing through the two fixed
points Py and P,. Any of these curves, for which the
distance P,P; measured along the curve is stationary,
is called a geodesic. We could obtain the differential
equations of the geodesics by applying Euler’s equations,
a well-known result in the calculus of variations, to
equations (26.1). However we shall find it more instruc-
tive to appeal to first principles.

Let us choose a small arbitrary vector da* varying con-
tinuously along C. Then the equations # = af -+ daé
define a neighbouring curve ( to C. Further let us impose
the conditions that dz' = 0 at P, and P,. This means
that the curve C always joins P, to P,. The distance §
from P, to P, along C is given by

% T,
’ L et 2

§ 26 GEODESICS - PARALLELISM 39
where the g;; (&) are now functions of &‘. We have

dzt d&’ 08 dat | d(da')\ (do’ d(éa:’))
g"(j)ETds":(g"*'a?&“’)(?{'" a \at a
da* da? dat d(8a?) | Ogy 5, dat da’
=8t B g —a +37 Ok -
where terms of higher order than the first are neglected.
Thus
. dzt dBf
egu(®) o a5 =
dat d0w) | 1 Ogy o, dot 0
&' boF @ 20w @ @|
Vﬂgug P 3 1+ dat da?
8 gy ar
Consequently the variation in length ds from the curve
C to the curve C is given by
ds=§—s
0 dat dOR) | 1 Bgy o, dotdef
86°g “a@ 2 oa* . dt dt
= Veg dﬂ}‘@
t 4974t dt
We now simplify this equation by choosing the arc-
distance s along C as parameter and obtain

g, A | 1Oy, ]
""=L[g"}i§ ds %~ Sl W

where s, and s, are the values of s cm:responding to the

points P, and P, respectively. Integration by parts yields

dat 1 (™ot (g, L 13_2151”1“&"]
a":[g""d?"‘”']:"j., M[ﬁ(g"al)"? -~ % 1
0

The integrated portion vanishes since 2’ is zero at P,

dt.
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and P;. Also we have

d da d*a*  0g, dat da®

a(g*fa) ~ Tt G @
g, P L By datdat | 1 O, det do?
g‘! ds? + ¥ da do .
2 Oz* ds ds 2 0ot ds ds
It follows that
(26.2) &:—I'ldm’ [., 22+l
& oif ds? = [N", ?] ds ds ds.
The variations dz are arbitrary, thus the necess d
sufficient conditions that the curve C be a geodz?irc sa:,lre
a?at vy o G da®
(26.8) 8 g 1 [k, 7] Tare
Inner multiplication by g yields the contravariant form
d (dw‘ _ da? l) da* da*
3 \@) =3 Lfk a ="

_Either set of equations (26.8) or (26.4) are the differen-
tial equations of a geodesic. They constitute N differen-
tial equations of the second order. The theory of differen-
tial equations states that a solution a' = a%(s) is deter-
mined uniquely if the initial values of 2* and daf/ds are
given at any point. Geometrically this means that there
is a unique geodesic with given direction at any point
of the space. We defined the geodesic in terms of the
curve passing through two points, but this geodesic may
not be unique unless the two points are sufficiently close
to one another. The problem of uniqueness now involves
?;opologl.ca.l properties of the space Vy. For example, there
Is a unique geodesic passing through two points on a
sphere, except when the two points are at the ends of
a diameter. In this latter case, all great circles passing
thll'i?ugh Ei}:he two points are geodesics.

or a Euclidean space, referred to rectangular cartesi
coordinates, the Christoffel symbols are zero. Hence tilz

(26.4)
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esics are given by d%'/ds® = 0, whose solution is
2t = A's + B, where 4' and B' are constant vectors.
That is, the geodesics are straight lines.

§ 27. Null-geodesics
Equations (15.8) state that
dat da!
(27.1) i T ~hd
along any portion of a curve which is not null. On diffe-
rentiation we obtain

d( datdat\ 6 ( datdet\ , datd (dof
e ) =\t @) =% ds s\ @)
da:‘dw’)

It follows from (26.4) that the invariant S\ T
is zero at all points on a geodesic. Thus the indicator e
cannot change abruptly along a geodesic, and so if the
tangent vector is not null at any one point, it cannot
be null at any other point on the geodesic. On the other
hand, if the initial direction is null, then the curve is
null and it is of course impossible to introduce the arc-
distance as parameter. Instead we now say that a null
curve a* = a(t) which is a solution of the equations
d*a 1) da? da*
@ " \ik| dt dt
is a null-geodesic.

The null-geodesics in the V, with line-element (14.2)

i
satisfy the equations d% = 0. Therefore the null curves

given by (15.2) do not satisfy these equations unless 7,
6 and y are constants. It follows that a null curve is not

necessarily a null-geodesic.

(27.2) =0

§ 28. Geodesic coordinates

We shall now show that it is always possible to choose
the coordinate system so that all the Christoffel symbols
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are zero at a particular point. Consider a general
dmatf systzl:n @', whose values at a pa.rticr.ﬁir pom?g;
are @i, and introduce i 3
0 a new coordina
the equations g
(28.1) #=o'—of Ll -
: %o + 3 \mn - (@™ — afg) )(@" — afy)).
e index (0) attached to an i i
: y entity denotes its
at the point Py The brackets serve to empha;isev:]?::
::;3 nr1!n::11«3x has no tensorial significance and that the
U ation convention does not apply to i i i
tion with respect to @’ yields gt
0! ;
(28.2 =04 n
) 22 of + inf o (a* — ay)).

Hence gx_'_ = i
=] M f. Accordingly the Jacobian deter-

: o' A
minant 3 - is not zero, which shows us that the
transformation (28.1) is permissible in the neighbour-

hood of P,. On inner Itiplicati i
SO e gbtain multiplication of (28.2) with

ot i
5 = o’
o . {?'ﬂ} &%) 5z

We differentiate this with respect to # and obtain

*at i) 02" 0a |
; Azl (@ —ah) e
Thusaﬂ;taﬂ; n) (0) 0" 0z* mnj o) ( %o ) oz* o7’

aw‘) o2z’ : ;

— = - =

(32”‘ s (35*35") © [f‘-”-"}(n} R4 =— {’:‘J »
We now substitute in (21.4) and derive "

: [?ﬂ-@} o [‘;‘} o Bo%—a [I;}(o) '

That is,
P
= 0.
{Im} )
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Hence a particular system of coordinates, called geodesic
coordinates, can always be chosen so that the Chris-
toffel symbols are zero at any assigned point called the
pole. The transformation (28.1) is not the only method
of obtaining geodesic coordinates. However, we have
shown that one such system exists and in this particular
system &, = 0, which means that the pole is also the
origin of coordinates.

The important property possessed by a geodesic coor-
dinate system is this: the covariant derivatives reduce to
the corresponding partial derivatives at the pole because
at this point all the Christoffel symbols are zero. We men-
tioned earlier in section 9 the fact that if a tensor is zero
in one coordinate system, it is zero in every coordinate
system, since the transformation law of tensors is linear.
The setting up of a tensor equation often involves heavy
algebraic manipulations. Generally, the volume of work
is reduced by first proving the equation with respect to
a geodesic coordinate system at its pole. It follows that
the equation is true for all coordinate systems at this
point. Then if this point is general, the equation is true
at all points of the Vy.

We shall illustrate this method by proving the multi-
plication law of section 24 which is satisfied by covariant
derivatives. Consider the tensor

(4 BY), n— Ai, B — Ais Bl

Let us choose a geodesic coordinate system with pole at
P,, then the covariant derivatives reduce to the familiar
partial derivatives at P,. Since partial derivatives satisfy
the multiplication law

d dp oy

3 PPV =3, 9+ 95,
the above tensor is zero at P, in the geodesic coordinate

system. Thus it is zero at P, in every coordinate system.
But P, is a general point, therefore the above tensor is
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zero at all points in the Vy. This establishes the truth
of the multiplication law.

Ex. Show that at the pole P, of a geodesic coordinate system
R4, v (1

A = —d, 2
T e lq]

§ 29. Parallelism

An important property of parallelism in a Euclidean
space, which is referred to rectangular cartesian coor-
dinates, is this: a parallel field of vectors 4, is obtained
throughout a Euclidean space if the components A; are
constants. We can express this analytically either in the
form d4,/dt = 0 or by 04,/02 = 0. Since the Christoffel
symbols are zero, we can write these equations equi-
valently in the tensorial forms 84,/6t = 0 or A,;=0
respectively. This suggests two ways of generalising the
concept of parallelism to a Riemannian space. We shall
see in section 81 that the partial differential equations
4,4, = 0 are in general not consistent. Thus the second
suggested generalisation is not a profitable one. Also the
intrinsic derivative 64,/t is only defined along a curve,
hence, using the first suggestion, we can only define
parallelism along a curve. Formally, the vectors 4,
constitute a field of parallel vectors along the curve
@' = a'(t) if 4, is a solution of the differential equations

GA‘ dee! M‘ I dmk .
o) § LT {ik] 4, e 0.

These equations form a set of N differential equations
of the first order, and consequently if the vector 4, is
given at any one point on the curve, it is uniquely deter-
mined at all other points of the curve. We may also say
that a field of parallel vectors is obtained from a given
vector by parallel propagation along the curve, Since
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adb 8 a0k
T_E(g“l’) g

ot
we can write the condition for parallelism along a curve
in the contravariant form

84¢ _ dA! ) , 4% _ &
@2 =g tal e
i it tangent
ee from equations (26.4) that the uni 1
vezg:rss form a fieclld of parallel vectors along a geodesm.
The magnitude 4 of the vector At is given by
(4)2 = ey gis 4'4%. On differentiation we have

3 . A
24% - d% (eu)gud'Al) =5 (eagud'A?) =268
= 01 field of
i tion becomes A(d4/dt) = 0 if A* forms a
gah;saﬂe&u?relgtr:}m. We deduce that the-magmtude of all
vectors of a field of parallel vectors 1s constar:f:. :
The angle 0 between the two vectors At _and Bt is given
by AB cos 0 = g,A'B’. We obtain on differentiation

ad o 498 84t b, 0B
AB%(cosﬂH(-a? B+Aa-)c038=g‘,( 3 Bi+ A4 3

When both 4* and Bi form fields of parallel vt?ct‘:irs, ttilh;:
equation reduces to d(cos 6)/dt = 0, provided o
neither of the vectors 4* and B! is null. :l‘ha.t ls’t,ant
angle between two non-null vectors remains :1?“8 >
whilst both undergo parallel propagation along the sam
Cur'l\‘r;é vector obtained at @ by Eara.llel propa%;.tlzl;
from P depends on the curve joining P to Q.t ::es *
parallel propagation around a closed curve does no 1: e
sarily lead back to the initial vector. As an Eaxamhp eod
sider the V, formed by the surface of :a. un;t sg _e-r i
choosing spherical polar coordinates & = 0, #° =79
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metric of the Vj is given by ds?* = d6? + sin? Ody® and a
brief caleulation shows that the only non-vanishing Chris-
toffel symbols of the second kind are 212] = —sin 0 cos
and {12 2} = cot 0. Let us select the small circle § = ¢ for
the purpose of parallel propagation of the vector A

Along this circle df/dt = 0, and consequently the equa-
tions (29.2) reduce to

1 2
%—cosusinad’=0; % +cota 4l =0

whose solution can readily be obtained in the form

A' = sin « [esin (p cos o) + d cos (p cos a)];
A? = ¢ cos (y cos &) — d sin (p cos a),

where ¢ and d are constants. Suppose we choose the vector
4 to be (1, 0) at the point defined by 3 = 0. Then by
substitution we have ¢ = 0 and d = cosec «. Thus the
vector A* is uniquely determined by the components
(cos [y cos a], — sin [y cos &]/sin ). The result of parallel
propagation around the small circle then yields the vector
(cos [27z cos &), — sin [27 cos o] /sin o) which differs from the
original vector (1, 0). The case of the great circle ¢ — 72
is exceptional, as along it parallel propagation does lead
back to the original vector.

Ex. In the ¥V, with metric ds® = du® + 2}idudo + do?, where }
is a function of u and v, show that the tangent vectors to the
curves # = constant form a field of parallel vectors along the
curves v = constant.

§ 80. Covariant derivative

By means of the concept of parallelism we are now
able to supply a proof that the right-hand side of equation
(28.8) constitutes a tensor. Consider a curve € determined
by the equations @ = #%(t). Choose p arbitrary contra-

§ 30 GEODESICS - PARALLELISM 47

variant vector-fields X}, _X‘m, .« X{; each pa;'_a]i];l
along the curve C and s arbitrary covariant vector-Tields

Y ayi> Y @i - ¥ (9¢ Which are also parallel along the curve
C. Then

435 g .08 =12...9)
won) o+ xp G0 G=12...p)
and

d-Y . M = = .- e -
ooz) Ty, G =0 =120

Now let us set up the invariant
I=Am e XXy X0 Yoy, Yo, Yo,

e derivative of this invariant with respect to
Enhinvariant, and by application of (.80.1) a.nd_ (80.2) and
appropriate changes of dummy indices we f

(ddy:s 1
dt
s 8 Ry, .ot Ua E
gnx'gb--r(izymul“ym“- e o il {fm] dt
gt l}dﬁ
_ﬁ{';A"l"'s-:"BH"r’ rgn dt )

deduce from the quotient law that the expression in
?r:ckei: on the right-hand side of this equation is a
tensor, which we call the intrinsic derivative, and denote
by 4y 7oL, 1t follows immediately that
odp1 ey  dan [343::-‘3' $ *u tuu

ot a

]

}':‘A“:--“- ¢ ]].
-M "1""3_1"34.;"', f.cﬂ
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The quotient law again shows us that the expression in
square 'bra.ckets is a tensor, which we denote by 4¥1%
and which we call the covariant derivative. This comf:;l'et'és
the required proof.

CHAPTER V

CURVATURE TENSOR

§ 81. Riemann-Christoffel tensor

We will now investigate the commutative problem with
respect to covariant differentiation. Let us begin with the
covariant derivative of an arbitrary covariant vector 4;

a4,
e

A further covariant differentiation yields

!
ﬂp} o

e alA,_LI %—Ai‘! __{r. 04,
=~ %a"0a®  |jn) da? ! Oa® fﬂ} ip) Oa®

+ i ] = o 3 ool L 4+

We interchange the indices n and p and subtract. After
changing several dummy indices we have

dy = 2 () — {1} 10—

A’. np S A’l’“ o

o (1 0 (1 I)ife L) (s
[ﬁ“ {ip} T o Lﬂ] X [M] [7'?‘ s [m} [7"}] "
Since 4, is an arbitrary vector, it follows from the quotient
law that the expression in square brackets is a mixed
tensor of the fourth order, of contravariant order one and
covariant order three. Using the notation

E
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(81.1) R, Ea%{f;]_ 52‘3 ;:a.] i la:s} [f;]_[z:s] !;] ’

we observe that R';  is a tensor of the fourth order,
called the Riemann-Christoffel tensor. It is formed
exclusively from the fundamental tensor g; and its
derivatives up to and including the second order. This
tensor does not depend on the choice of the vector 4,.
We can now write

(81.2) Ay, up— Aj,on = RYy,,

4.
It is clear from this equation, that the necessary and
sufficient conditions that the covariant differentiation
of all vectors be commutative, is that the Riemann-
Christoffel tensor be identically zero. We stated in section
29 that the equations 4, ; = 0 are not as a rule consistent.
In fact, equations (81.2) show us that a necessary, but
not sufficient condition, for the consistency of 4; ;=0
is that R!, 4,=0, a set of equations which is not
generally satisfied.

Referring to the definition (81.1), we observe that

(81.8) R —R

e 1
Janp T Jpn*

That is, R',,  is skew-symmetric with respect to the
indices » and p.

t ’ d
Ex. 1. Prove that R, + R .+ R, =0.
Ex. 2. Prove that R_'m, = 0.

§ 82. Curvature tensor

We now introduce the covariant curvature temsor
defined by

(82.1) Rypy =By
On substituting from (81.1) into (82.1) we obtain
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2 [enlf]— 322 () — 55 [50lin))
Brins = 3 [g" L'p}] o \jp] 3 |5 \jn

38 )+ o e o i)

which reduces on application of (20.8) and (20.4) to

9. g .. l } o { I} .
By = 50 91— g i)+ ) 01— {1}t
We can reduce this further by means of (20.1) and (20.2)

and finally obtain the important formula
1 (0%, , 8w Pém 3"&,)
2 \0279a " 0a'0a? 0Oa’0z®  OatOa"
3 o g“( Uﬂ! 8] [rp, t] T [i'pv 8] [ms t])-
From this result we immediately deduce the relations

(32'2) Rr.ﬂw a

Rjpy = — Bypup)
(32.8) [ Byuy =— Rﬁm’
Rrjnn = Rnpr! ’
and
(82.4) R, + R, + Rrﬂn =0.

We are now faced by this problem: how many distinct
arithmetical non-vanishing components does the tensor
R,,,, generally possess? Referring to (82.8) we see that a
component is zero if either r = j or n = p. Thus the com-
ponents apart from sign conform to the three types
R, R, and R, wherer,j,nand p are distinct from
one another. There are as many components of the type
R,,,; as there are ways of combining r and j. That is,
3 N(N — 1). There are as many components of the type
R,,,, as there are ways of combining j and p after selec-
tion of r. That is, 4N(N — 1)(N — 2). The number of
combinations of 7,j,n and p is g3z N (N—l)(N—%_)(N—.B).
But R,,,, is determined, except for sign, when r is paired
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with either §, nor p. Thus there are }N(N—-1)(N—2)(N-38)
components of the type R, . Equations (32.3) enable
us to rewrite (82.4) in the form

Ry + Ryppy + By = 0.

And so with a given set of four indices, only one in-
dependent equation of the type (82.4) exists. Further,
if the indices §, r, » and p are not distinct, (32.4)
reduces to one of the equations (82.83). Hence the
number of independent equations of the type (32.4) is
ﬁN (N —1)(N — 2)(N — 8). Therefore the number of
distinct components of R, is

IN(N—1)+-N(N—1) (N—2)+FN(N—1)(N—2)(N—38)
— ggN(N —1)(N —2)(N — 8) = 5 N*N*—1).

In particular we see that the curvature tensor of a V,
has only one distinet non-vanishing component.

Ex. 1. Prove the relation (32.4) by setting up a geodesic coor-
dinate system.
t ]
Ex. 2. Prove that R, = —G?BT? for the ¥, whose line-
element is ds* = du® |- G*dv®, where G is a function of u and v.

§ 83. Ricci tensor - Curvature invariant

At first sight there appear to be three different ways of
contracting the Riemann-Christoffel tensor B!, . We have
R, = g"R,,, =0, because R, is skew-symmetric
in s and 1. We see from (81.8) that R, , = —R!,,.

Hence we need only consider the contraction, called the
Ricci tensor, defined by

(83.1) R,, = Rf.nu = g"R,;n-

On contraction of I and p in (81.1) and on substitution
from (20.6) we find that
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2 2 (1
= Faiow U8 VE — gz {fn}

* o i) = ) e e v@

from which it is clear that Ry, is symmetric. (If g is
negative, we must replace log /¢ ‘by log v/—g.)
The curvature invariant is defined by
(88.3) R = g"R,,. -
A space for which R, = Ig,; at all points, where I is
an invariant, is called an Einstein space. Inner _multfl-
plication by g¥ shows that B = NI. Thus for an Einstein

space

(83.4) Ry =

R
(83.2)

.
N

Ex. For a V,, prove that gR,, = — g,,R,,!,, az_ld ER = — 2R 34
Hence deduce that every V, is an Einstein space.

Rgy;

§ 84. Bianchi’s identity

Let us choose a system of geodesic coordinates. On
referring to (81.1) we have by covariant differentiation
that

0 0* l 0* { 1 ]
R.‘ma,r — (Rljnp) = da" 0™ l??’} T 0a?oa" \jn

at the pole. Cyclic interchange of 2, p and r gives us two
other equations. We obtain by addition

(34.1) Rfms.r + R.Iipr.n + Blypn,y =0

This is a tensor equation, true at the pole of a geodesic
system of coordinates. Thus it also holds for every coor-
dinate system at that pole. Further any point can be
chosen as the pole of a geodesic coordinate system.

Therefore equation (34.1) is true at all points of space.
Inner multiplication by g, yields the Bianchi identity

(84-2) Rm.mr.r . 3 Rmdsﬂ'.n + Rmdﬂhv =
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The Einstein tensor is defined by
(84.8) G_‘, = g“ Rﬂ, e {\Rﬁj N

The inner multiplication of (84.2) by gm’g/ and the

application of (88.1), (88.8), and (82.8) give us the
equation
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(8rn€sp—Erp8in )XanYpr
— ().A,,+,uB,,)(?.A"+pB")(pA,+-rB,}(pA’+~rB’)
—(Ad,+uB,)(pA?+TB?)(Ad;+pB;)(pA! +TB’)
— (e4A2A2+eppu® B2 +2hu cos 0 AB)(e4 p2A%+epv? B+ 2prcos 0 AB)
— (e4ApA2+epur B+ [Av+pp] cos 0 AB)?
= (Ar—pp)*(esp — cos® 0)4*B*
b (J.T—#p)‘(gmg”—g”g’“)ArA“BjB’,
where 0 is the angle between the vectors 4f and B It
follows that

(85.1)

E,—g"B,,—g" R, ,=0,
which may be written
(84.4) R,=2¢"R, ..
Differentiating (34.8) covariantly, we obtain
G, =¢"Ry— 3R ;6 =g"R; ,— iR ;.

o R,,,,A"A"B'B®
(g“ugfn — &rp8in )ArAnBJBr

That is is an invariant which is unaltered at a point, when the
(34.5) ¢ two vectors determining it are replaced by any linear
1 7 S o combination. This invariant is called the Riemannian

curvature of the space Vy associated with the vectors
At and B'. Note that the denominator of K is unity if
the vectors Af and B' are orthogonal unit vectors.

At any point of a two-dimensional space there exist
only two independent vectors. Hence the Riemannian
curvature of a V, is uniquely determined at each point.
Its value is easily found by choosing the two vectors
whose components are (1, 0) and (0, 1) respectively. Then

This equation is important in the theory of Relativity.

§ 85. Riemannian curvature

From any two vectors 4% and B at a point of a Vy,
we can construct the invariant R, A4"4"B'B?. Let us
consider what happens if we replace the vectors 4¢ and
Bt by the two linear combinations

X¢ = Ad* + uB, Y¢=pdi + B,

where A, u, p and 7 are invariants. A straightforward
calculation, with the aid of (82.8), shows tlllga.t

R,y X' X" YY? = (Jr — pu)?R,,,, ArA" B B

Thus the expression R, A47A"B'B?, which is an in-
variant with respect to coordinate transformations, is
almost an invariant under linear transformations of vec-
tors. In order to obtain an expression which is also in-
variant under linear transformations of vectors let us
evaluate

(85.2) Wl faa oo T
811822 — 818" ' 8

§ 86. Flat space

We say that a space is flat if K = 0 at every point of
it. From (85.1) the necessary and sufficient condition is

Byyuy 474" B/B? = 0

for all vectors A¢ and Bi. In virtue of equations (32.8)
it follows that

Rr!lw + Rndrg #* Rﬁﬂf + RMJ = 0.
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That is,
Rdnp : Rmi =0,
which ean be written

Rr.ﬁw S Rrpm-
Interchanging j, » and p cyelically we obtain
By = Ryjpy-

Thus we have
Rr.fnﬂ = Rﬂml = Rmp! .

Substitution in (82.4) immediately yields

R"’M = 0.
Conversely, if R,.;, =0, then it is clear that K = 0.
Therefore, the necessary and sufficient condition that a

space Vy be flat is that the Riemann-Christoffel tensor
be identically zero.

In a flat space RY,, = 0, hence we deduce from (31.2)
that in a flat space the equations 4, , = 0 are con-
sistent. Inner multiplication by da’/dt yields 84,/6t = 0.
Thus in a flat space the property of parallelism is in-
dependent of the choice of a curve. We may therefore
say that parallelism is an absolute property of a flat
space,

A familiar example of a flat space is the Euclidean
plane for which the metric is ds* = da® + dy® in rec-
tangular cartesian and ds® = dr? + 7%d0? in polar coor-
dinates.

Ex. If the metric of a two-dimensional flat space is f(r)[(dat)? +
(d2%)7], where (r)* = (2')* + ()%, show that f(r) = c(r)%,
where ¢ and k are constants,

§ 87. Space of constant curvature

Let us now investigate spaces in which the Riemannian
curvature at every point does not depend on the choice
of the associated vectors 4 and B‘. From (85.1) the
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necessary and sufficient condition is that
{K(gﬂl gf’ o gmg"ﬂ) S Rfjng}ArA“B’Bp =4

for all vectors 4% and Bf. A similar calculation to that
of the previous section will show that this condition
reduces to

Rfﬂw = K(gmgin == grsgin)!

where K is now a function of the coordinates a*.
Covariant differentiation gives us

Rrﬂw.t = K,l(gmgfw — gmgjn)-

We substitute this result in Bianchi’s identity (84.2) and
obtain

K,r(gmngdp 3 8,.;,8;,,) + K'“(gmg” e gm-gfp)
+ K.w(gmrgin == gmug,fr) =0,

Inner multiplication by g™"g# yields
(N—1)(N—2)K  =0.

Hence if N > 2, it follows that K is constant. Thus we
have proved Schur’s theorem; ‘if at each point of a space
Vu, (N > 2), the Riemannian curvature is a function of
the coordinates only, then it is constant throughout the
Vy'. Such a Vy is called a space of constant curvature.

The metric of the V, formed by the surface of a sphere
of radius a is ds® = a®(d0® + sin® Ody?®) in spherical
polar coordinates. The reader is asked to verify that
= a?sin? f and that it follows from (85.2) that the

N
surface of a sphere is a surface of constant curvature 1/a®

Ex. 1. Show that a space of constant curvature is an Einstein
space.
Ex. 2. In a Euclidean ¥, prove that the hypersphere
a' = csinfsingsiny, a®=csinfsingcosy
a® = ¢ sin 0 cos ¢, at =ccosl
is a ¥, of constant curvature 1fe%.




CHAPTER VI

EUCLIDEAN THREE-DIMENSIONAL
DIFFERENTIAL GEOMETRY

Euclidean Geometry investigates the properties of
figures which are invariant with respect to translations
and rotations in space. It may be subdivided into Al-
gebraic and Differential Geometry. The former studies by
algebraic methods the theory applicable to entire con-
figurations such as the class or degree of a curve. The
latter discusses by means of the Calculus those properties
which depend on a restricted portion of the figure. For
example, the total curvature of a surface at a point only
depends on the shape of the surface at that point. Suc-
cinctly we may say that Differential Geometry is the
study of geometry in the small. This chapter is not intend-
ed to be a complete course on the subject. However,
sufficient theory is developed to indicate the scope and
power of the tensor method.

§ 88. Permutation tensors

In the Euclidean three-dimensional space let us in-
troduce the quantities defined by

1
(88.1) i = VBl & = BVZ T

where ¢,;, are the permutation symbols defined by the
following conditions:-
(i) ey = Oifany two of the indicesi,j and k are equal,
(1) 195 = €ggy = €39 = + 1,
(iii) eyg9 = €591 = €333 =—1,

——
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and g is the determinant formed from the fundamental
tensor g;; of the space referred to some general coordinate
system, which is not necessarily rectangular cartesian.
The definitions show us that ey, &y and &* are skew-
symmetric in all their indices. (Note that in this chapter
the range of Latin indices is now from 1 to 8).

We shall first prove that although e, is not a tensor,
both & and &¥* are tensors. We observe that

oa* 9! Oa* 0a’ 0 Oa* ox* Oa?! Oa*
Gk 35 gam 0 OB 0am 0B * 0&™ 0B 0%
Thus ey g%:g%:n g—g is skew-symmetric in [ and m. Simi-

larly it is skew-symmetric in the indices [, m and n. But
this expression apart from sign is the Jacobian determi-

nant g—g| It therefore follows from the theory of deter-
minants that
02t 0’ Oa* oz’
ik 57 o 05 [0
Now the fundamental tensor g, transforms to g;; when

we transform to the coordinate system &, We find from
(21.1) that their determinants satisfy the equation

dar
P

§=8

The quantities &, transform to &y, where

ox* 0z’ Oa*

oa’
§Imn='\/§eiﬁm='\/§elmn ﬁi =‘\/§8m=—-;§§m——-

D

T

Hence

ozt 0! Oda*

(38.2) Eimn = £k 321 zm 570
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from which we see that g;;; is a covariant tensor of the
third order. Also

3“"‘=_}.—g ,___:!'.._airg =ig Eaﬁmaﬂ'
‘\/E imn 1/? o7 imn 1/? ik oF 0F afk’
therefore,
i gun 008 0 3o
0%* 0%’ 0F*

which shows that ¢™" is a contravariant tensor of the
third order. We call g;; and g¥* the permutation
tensors.

If the coordinate system is rectangular cartesian, g = 1
and the permutation tensors have as their components
the permutation symbols. In this coordinate system the
covariant derivatives &g , and &“* ,, which are both
tensors, are zero. Thus the covariant derivatives g;; ;
and &Y% ; are zero tensors in all coordinate systems.
Hence the permutation tensors behave like constants
with respect to covariant differentiation.

From a covariant vector 4; we can form the vector

B’ = S’HA;';‘

and we call B/ the curl of the vector 4; and write it
curl 4,

Ex. 1. Prove directly that g, = 0.
Ex. 2. Prove that g, = g2u8m&me™™
Ex. 8. Show that the components of curl 4, are

L (4 24 1 (34 24 1 (4, 2,
vEaWer @)’ VEa\ser w )’ Ve\se wa)

§ 89. Vector product
We can form the contravariant vector

(39.1) Ot = 8“*;4‘ Bg

from the two covariant vectors 4; and B,. To find the
geometrical interpretation of the vector C¥, let us choose

-
2

B -
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a rectangular cartesian coordinate system. In such a
system the distinction between contravariance and
covariance disappears and the C? are now the components
of the vector product* of 4; and B;. Thus C' is a vector of
magnitude 4B sin 6, orthogonal to both vectors 4; and
B;, where 0 is the angle between these vectors. Its direc-
tion is uniquely determined by the fact that 4, B; and
Ci form a right-handed system.

§ 40. Frenet formulae

In this section we shall investigate the theory of
twisted curves. Let the curve be given by the equations
@' = a%(s), where the parameter s measures the arc-
distance along the curve. Then the unit tangent vector
T to the curve is 1" = da'/ds and satisfies the equation

i
g, TT7 = 1. On differentiation we obtain g“% =40,

That is, 07%/ds is a vector orthogonal to the tangent
veector, Its magnitude « is called the curvature of the
curve, and the unit vector

Wi
(40.1) N
is called the unit principal normal vector. We define
the unit binormal vector Bi to be the unit vector or-
thogonal to both the tangent and principal normal vec-
tors, and oriented so that the tangent, principal normal
and binormal vectors form a right-handed system. Hence
from (89.1) we have

(40.2) Bt = gii* T,Nk.
Since the vectors 7% and N are orthogonal, g;;T"N? = 0.
We differentiate intrinsically and obtain
ONi oT
it il o BRI
85T 3 + 8u 3 Ni=0

* D. E. Rutherford, Vector Methods, p. 7.
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i
We substitute for % from (40.1) and then replace

2 NN/ by g, T*T%, both being equal to unity, and obtain
ON?
& S i ( ds o KT’)

Now we differentiate g NN/ =1, which gives us

g‘,N‘%-—O Thus

2, N* ("’N 3 xT’) -

Therefore the vector % + «T? is orthogonal to both

the tangent vector 7 and the principal normal vector
Ni. Accordingly it is in the direction of the binormal
vector B/, and we can write

(40.8) B = = (6N + T’)

The invariant 7 thus introduced* is called the torsion of
the curve. Note that it may be positive or negative in
contrast to the curvature which is essentially positive,
being the magnitude of a vector.

We differentiate (40.2) intrinsically and substitute
from (40.1) and (40.83) and the result is

OB _ 8T, . SN
= Tt ht Ry

= ke N;N, + &*T,[vB, — «T]
which reduces on account of the skew-symmetry of g%

to
%‘ L 1.'8“" T’ Bk‘

But 7', N; and B; form a right-handed system of unit
* Some text books use 7 to denote the reciprocal of the torsion.
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vectors; and so £ T'; B, = — N and our equations become

B¢
X =N
(40.4) %= N*,

Equations (40.1), (40.3) and (40.4) are called the
Frenet formulae. On account of their importance in the
theory of curves we group these formulae together for
convenient reference in the form

-

T K
i
(40.5) % = — T* + 7B
; 4
% = — zN*,

9

If the coordinate system is rectangular cartesian, the
intrinsic derivatives become the ordinary derivatives and
we have the well-known Frenet formulae.

g A
8N,
Ex. 2. Prove that v = ¢* T N, — %

Ex. 8. A helix is defined to be a curve whose tangent vector makes
a constant angle with a fixed direction. Prove that the
necessary and sufficient condition that a curve be a helix
is that the ratio of the torsion to the curvature is constant.

g_,a-_r,a-_r.=x,£ X ). Hence a curve
ds ds* &s® ds

K
8T, 8T, *T,
is a helix if and L ettt Bucllid Y
a and only % 38 38

Ex. 4. Prove that g'/*

§ 41. Surface - First fundamental form

We will now investigate the theory of surfaces. The
three equations
(41.1) 2* = a'(u?, u?); o® = a®(ul, u?); 2® = a3(u, u?),
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where u! and u? are parameters and the @' are three func-
tions of u! and 2 which are real and continuous, generally
represent a surface. These equations may be briefly
written af = a'(u*) if we adopt the convention that Greek
indices will always have the range 1, 2. A point at which

i
the Jacobian matrix aia] is of rank #wo is called a regular

[au
point. A point may fail to be regular either because it
is a singularity on the surface, for example, the vertex
of a cone, or because it is a singularity of the parametric
representation, for example, the poles of a sphere. (See
equation (41.2)).

Each pair of values of u* determines a point on the
surface. That is, the u* form a coordinate system upon it.
Thus an equation of the type j(u!, u*) = 0 must define a
curve. Although a unique point on the surface corresponds
to a fixed pair of values of u%, the converse is not neces-
sarily true. This is illustrated by the equations

(41.2) a'=asinu!cosu®; 2®=asinu!sinu?; 2®=a cosul,

which specify the surface of a sphere of radius a. In
practice we restrict the range of the parameters so that
the converse will also be valid. In our example, the
parameters are limited to the ranges 0 = ' =z and
0 < u?< 27 Then, except for the two poles, there
corresponds to each point of the sphere a unique pair of
values of u*. The equations #* = 0 and u' = x represent,
not curves, but the poles respectively. At the poles, the
coordinate u® is indeterminate.

We shall exclude singular points from our discussion
by considering only that portion of a surface on which
there is a unique correspondence between its points and
pairs of values of the coordinates u® That is, in this
portion every curve of the family 4* = constant intersects
every curve of the family u? = constant in one point
only. The curves u! = constant are called u?-curves

-
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and the curves u? = constant the wu!-curves. Collec-
tively they are designated the coordinate or parametric
curves on the surface. Along a coordinate curve we
choose the positive direction to correspond with increasing
values of the variables u' or u® respectively.

The contravariant vectors da* and dux which represent
the same displacement in space and on the surface respec-
tively are connected by the equations

i
(41.8) dat = % duz
where we extend the summation convention to apply to
Greek indices. Hence the line-element ds on the surface
is given by

i
ds® = gudﬂ‘d@j = g“ % ‘g‘% du= dub.
Let us write
oxt da’
(41.4) Gap = 8y 5 50

from which it is clear that a,s is symmetric, and so we
have

(41.5) ds® = agpdua dub.

To this equation we apply the quotient law. Since a4
is symmetric it follows that a,y is a covariant tensor with
respect to transformations of the coordinate system we.
We call it the fundamental surface tensor. Also
aqpdusduf is named the first fundamental form of the
surface.

Let us seleet rectangular cartesian coordinates in space.
Then we readily obtain the metric in the well-known form

ds® = Edu® + 2F dudv + Gdv?,
where 4 = u!, v = »? and
ox' ozt oat oo ox' oot

F=lnm T imwm i
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§ 42. Surface vectors

When we transform coordinates in space, da' is a
contravariant vector but du= is an invariant. On the other
hand, if we transform the coordinates u= on the surface,
dat* is an invariant but dus is a contravariant vector.
Thus the equations (41.8) indicate that we can regard
Oaf/dus as both a contravariant space vector and a co-
variant surface vector. We may therefore introduce the
notation

oat
du=

and rewrite (41.4) in the form

(42.1) at

Il

(42.2) Gep = 840}

A curve on the surface is represented parametrically
by the equations u* = u=(t). The vector du=/dl is a tangent
vector to this curve. Its space components are then given
by the equations

(42.8) i el e e
But if the components of the space tangent vector daf/dt
are fixed, (42.8) consists of three equations for the two
unknowns du=/di. They are not consistent unless the vec-
tor lies in the surface, when a unique solution would exist.
Next we consider a surface vector-field 4=. We can
set up a unique curve C on the surface by the differential
equations du#/dt = A, provided that the vector-field is
fixed at some particular point. Then 4= is the surface
tangent vector to this curve C. Let us designate the space
components of 4= by Af, and so equations (42.8) state
that these components are connected by the relations

(42.4) AF = af 4o,

§ 42 THREE-DIMENSIONAL DIFFERENTIAL GEOMETRY 67

The magnitude of the vector 4¢ is given by
(4)? = g;A' A’ = gy, ap A= BS.
That is,
(42.5) (4)? = apA* A48,
In particular, du=/ds is the unit tangent vector to a curve
on the surface if the parameter s measures arc-distance
along it.
The angle 0 between the two unit vectors 4% and B
is obtained from
cOos 6 = guA‘Bj = g“miﬂ%A“Bp.
That is,
(42.6) cos 0 = a,pA=BA.
It follows that the necessary and sufficient condition for
the orthogonality of two surface vectors 4= and Bf is
(42.7) Qup A% BF = 0,

We see from equations (42.5), (42.6) and (42.7) that
the familiar formulae apply equally well on the surface
provided that we employ in them the components of the
vector in the surface and the surface fundamental tensor.
Also we can raise and lower indices of surface tensors in
the usual way with the surface fundamental tensor a,p
and its conjugate symmetric tensor a2, These two tensors
are connected by the equations

(42.8) Agpa® = ﬁ;,
where 8} is the two-dimensional Kronecker delta. It is
worthy of note that
(42.9) a'' = ayla; a'? = a®* = — ay,/a; a® = ay,fa,
where

@ = @y Gy — (a39)*
Ex. Prove that 4, = a," 4,.
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§ 43. Permutation surface tensor

In section 88 we introduced the permutation tensors
in space. Similarly we introduce on the surface the
quantities defined by

1
(48.1) Eap = 1/ Geup; M=Td8¢3,
where
€3 =€6p=20; gy=+4+1; ey =—1

It is left as an exercise for the reader to show that g,
and &*f are a covariant and a contravariant skew-symme-
tric surface tensor respectively. They are called the
surface permutation tensors. We see that g,5 can
be obtained from ¢=# by lowering the indices since
Eqp = QgyQps &vs,

Now we derive an important formula for the angle 0
between two unit vectors 4= and B=. This angle is given
by cos 6 = a,pA=Bf. Accordingly, using (42.6)

sin? 0 = 1 — a5 4> Bfa,; AY B}
= (Gay gy — Gopay)A* AY B2 B®
= ey byp A*AY B# B
= Eu3 arpA“ATBﬂB’
= (ca A B

To remove the ambiguity in sign the convention is made
that we choose that value of 0 which satisfies

(43.2) sin 0 = + g,9 4% B2,

In accordance with the convention just made, we say
that the rotation from C= to D= is positive if the invariant
e,pCeDF is positive. This in effect chooses the positive
rotation as that one which rotates C# to D« through an
angle less than or equal to z.
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Let us form the contravariant vector
(48.8) Bf = g28 4,
from the covariant unit vector 4,. Its magnitude is
given by
(B)? = a,pB*BF = a,567* 6% A, A,
= Ggy(812)%(4,)? + 2ay56"2 3 4, 4, + 0,y (e*)*(4,)*
1
i {ag9(4,)* — 20,54, 4, + ay5(4,)%}

That is, in virtue of (42.9)

(B)? = a''(d,)? + 20124, A, + a®(d,)*
= a A, Ay = (A =1.

Thus B= is a unit vector. Further the angle 0 between
A* and B* satisfies

sin 0 = g,pA* Bf = g% 4,By = BF By = 1.

Therefore § = x/2 and by the above convention, equation
(48.8) determines the unit vector B# orthogonal to the
unit vector 4% and oriented so that the rotation from
A= to B* is positive.

We now apply (48.2) to caleulate the angle @ between
the coordinate curves. The unit tangent vectors to the

u!- and u®-curves are L 0f and xR 03 respectively.

Va1 Vg
Hence the angle o satisfies

LI P V .
a, == : . S .

) AR Vanay 112
We also note from this equation that the rotation from
the direction of a u*- curve to a u*-curve is always positive.
It is easy to deduce that the necessary and sufficient

(48.4) sinw =




70 TENSOR CALCULUS § 44

condition that the coordinate curves are orthogonal
everywhere on the surface is that a,, vanishes everywhere.
We then say that the coordinates are orthogonal
curvilinear.

§ 44. Surface covariant differentiation

We can form Christoffel symbols starting with the
fundamental surface tensor a,s, and hence introduce
covariant and intrinsic derivatives which are now sur-
face tensors. So 4, ; will denote the covariant derivative
of A4, with respect to wf. Written in full

04, P
Ay p= = [mﬂ] Ay

There will be no confusion between the Christoffel sym-
bols formed with the g;; and those formed with the tensor
a,p since the Latin and Greek indices will clearly dis-
tinguish which symbol is meant. We can also form the
Riemann-Christoffel surface tensor R%,, from a,4 and the
curvature surface tensor Regys = agq RY,; .

Following the argument of section 26, we can show

that the geodesics on the surface are the solutions of the
differential equations

o () _dus  fa)dwdwr

os \ds ) = ds lﬁyIF{_'
Corresponding to (27.1) the geodesics also satisfy the
equation

(44.1)

du® duf
44.2 —— —— =1
(44.2) L el
Thus, in practice, we need only consider one of the two
((equat;ons (44.1) together with the first order equation
44.2).

As in section 28 we can introduce a system of geodesic
coordinates on the surface so that at any particular point,
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called the pole, all the surface Christoffel symbols are
zero. At the pole, covariant and intrinsic derivatives
reduce respectively to the corresponding partial and total
derivatives.

Again the theory of parallelism, outlined in section 29,
applies to surface vectors. The vector-field 4% is said
to be parallel along the curve u® = w*(t) if

04= dA= o du?
et Tl P e =0,
o=@ +{ﬁy]‘4 "

dt

Note that the covariant derivatives of a,s, a*# and 8%
are zero. We cannot apply the method of section 88 to
prove that £,4,, and &% are both zero because it is general-
ly impossible to choose a rectangular cartesian system of
coordinates on an arbitrary surface. Instead we select a
geodesic coordinate system. At its pole, the Christoffel
symbols are zero. Hence the partial derivatives of a,g
are also zero. Thus the partial derivatives of the deter-
minant @ are zero at the pole. That is &,y and &% are
both zero there. It follows immediately that these tensors
are zero at every point on the surface and in all coor-
dinate systems. Hence the permutation surface tensors
behave like constants with respect to surface covariant
and intrinsic differentiation.

Ex. Show that the conditions that the u'-curves and the u®-curves

be geodesics are [121} = 0and {2‘2] = 0 respectively. Simplify

these conditions if the coordinate system is orthogonal cur-

§ 45. Geodesic curvature

We discussed in section 40 the theory of the twisted
curve in space. To this we now add the corresponding
theory applicable to twisted curves lying on surfaces.
Let the curve be given by the equations u* = u%(s),
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where s measures arc-distance along the curve. The unit
surface tangent vector is

du=
(45.1) o=

Sinee #= is a unit vector, we have a,41*t# =1 and intrinsic

differentiation yields us a,,t“%? = 0.This shows that 6¢%/ds

is a vector on the surface orthogonal to the tangent vector
#*. Let us denote the unit vector in the direction of §i%/ds
by n#. Then

o=

_——= g
(45.2) 3% = "
where ¢ is an invariant called the geodesic curvature
of the curve. We also call ## the unit normal vector
in the surface to the curve, and choose its direction so
that the rotation from #* to n® is positive. Thus

S,pt"u’ =T
and equations (45.2) determine ¢ uniquely in sign as
well as magnitude. It is now clear from (48.3) and sec-

tion 17 that
= + e2bt,
and
= —g2bn,.
Intrinsic differentiation of the first equation gives us
onf ot
— = gof % — = —
S % ae*fn, atf.

Combining this with (45.2) we have the surface Frenet
equations of a curve

ot* oo
(45.8) T =0 - =—ot
Although ¢* is the same vector as 7%, their components
being connected by the relation 7' = z% #%, it is important
to note that n“ is in general neither the principal normal
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Nt nor the binormal BY. It does lie however in the normal
plane of the curve determined by N* and B

Along a geodesic of the surface 6/*/ds = 0 and hence
o = 0. Conversely if ¢ = 0, then 6{%/6s = 0 and so the
curve is a geodesic. Therefore, the necessary and sufficient
condition that a curve be a geodesic is that the geodesic
curvature be zero.

Ex. Prove that the geodesic curvatures of the coordinate curves are
2 _V N . =_V a (1
=¥ @y \n " @) |22)°

§ 46. Normal vector

We shall now derive an expression for the unit normal
vector & at any point on a surface. Let us choose its
orientation so that the w'-curve, the u?*curve and the
normal at the point form a right-handed system. The
surfs.ce unit tangent vectors to the coordinate curves are

8% and —— 63 respectively, and the correspondin,
‘S/_ v;—- l;. Y PO g
space components are —— 2% 67 and —— af 83, that is

x/% 1/_ fai
. In virtue of (48.4) and the co-

-l—a:{ and .
AT ‘Vﬂn

variant form of (89.1) we have

a  §
l/—f = k.
Gy Qg y m‘\‘anassz{ a
That is,

(46.1) E‘ = ‘:'v,l—a S“gw{w;.

It is not clear that &; is a covariant vector because /a
appears in this equation. However the vector form is
clearly seen from the equivalent equation

(46.2) & = je* eyl .
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For purposes of calculation (46.1) is the more suitable
and can be readily written as a determinant, but (46.2)
is preferable for theoretical purposes. Since the vector &,
does not lie in the surface, there is no corresponding surface
vector &;. We shall often require the important equation

(46.3) gybial =0,

which expresses the fact that the normal & is orthogonal
to the surface vector . This equation is also an im-
mediate deduction from (46.1).

Ex. The tangent surface of a curve is defined to be the surface
generated by all its tangent lines, called the rulings. Show that
the normals to the surface along a ruling are all parallel to the
binormal of the curve at the point of contact of the ruling.

§ 47. Tensor derivatives of tensors

In the theory of surfaces we require tensors which
possess both Latin and Greek indices, for example zf. All
such tensors in this chapter will be contravariant with
respect to space but covariant with respect to the surface.
We can then select 4% as a typical tensor. When we

change the coordinate systems both in space and on the
surface the transformation law is

. OF oW

P 0a’ Oitz"

We now ask what tensors can be constructed by differen-
tiation? Here we follow section 80 closely. As our space is
Euclidean the concept of parallelism in it does not depend
on the selection of a curve. Accordingly choose an ar-
bitrary parallel vector-field X; in space. On the surface
take an arbitrary parallel vector-field Y= along the curve
C whose parameter is . Then

dX; (j) . da*
I—m&a—°

At =4
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and
dYe« o duY
—— f— = 0.
£ E

Form the invariant 4% X, V<. By differentiation and the
use of the equations of parallelism we have
d i
5 [A,‘,XJ“] - %“ X, Y
[N x @ ya px [*) @
+ 4, {z’k}x’ i Yo — A, X, [ﬂy} ¥ T
That is, on making an appropriate change of dummy
indices,
@i JOs . [4) 4.5 [3] Ao0t
y (4 X,Y=] = [W 4 ('jk} AL xp— {aﬁ] A,] % X, Ye,
Applying the quotient law we see that the expression in
square brackets is a tensor, which we call the tensor
derivative of 4% with respect to % and we denote it
by the semi-colon notation
04; i &
i i I i
(47.1) Ayp=55+ {fk] Al zp [uﬁ] b 8

It is possible to choose a rectangular cartesian system
in space and a geodesic system on the surface. Then at
the pole, the tensor derivatives are the partial derivatives.
Consequently the laws of tensor differentiation are the
same as those that apply to covariant derivatives.

We must now extend the concept of tensor differ-
entiation further to space tensors and to surface
tensors. It is clear that the tensor derivatives of surface
tensors are identical with their covariant derivatives.
Following the method of this section, we see that the
tensor derivative of a space tensor with respect to u* is
the tensor obtained by inner multiplication of its
covariant derivative with respect to 2' by the tensor .
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For example, 4%., = A" ,ak. Thus the tensor deriva-
tives of g,,, g, 0%, ey, €%, azp, a%b, 0%, £qp and g2# are
all zero. That is, they may be treated as constants with
respect to tensor differentiation,

§ 48. Second fundamental form
By tensor differentiation

2 i y
- RAMET S ALY

which shows that @}, , is symmetric in « and . That is,
@} p = @}.,. Now the tensor derivation of (42.2) yields

gﬁm::;rmf? =+ gﬂmim,’e;y = 0.
We subtract this equation from the sum of the two

similar equations obtained by cyclic interchange of «, f
and p. Because j. , is symmetric the result is

(48.2) Byl p@, = 0.

This shows that 2., is a contravariant space vector
orthogonal to all vectors zJ, lying on the surface. Thus
it is co-directional with tﬁe normal vector &% Hence
quantities b,z must exist so that

(48-8) m;:ﬂ = b" 5‘-

Further, it follows that b,z form the components of a
covariant symmetric surface tensor. Equations (48.8)
are known as Gauss’s formulae. Since & is a unit
vector, inner multiplication of (48.8) by &, and sub-
stitution from (46.2) yields

1
(48.4) b,y = 367 e25 g0 = a Eist gy p T, T -

The quadratic form
(48.5) bapdus dub
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is called the second fundamental form of the sur-
face. It is now possible to construct the invariant
(48.6) H = }as8 by,

which is called the mean curvature of the surface.

Ex. If the space coordinates are rectangular Cartesian, show
that
1 et
bas = 7z Ein Syarop “1%5"

§ 49. Third fundamental form

Tensor differentiation of the identity g;,;£'4/ =1 yields
us g,&& =0. That is, &, is a contravariant space
veetor orthogonal to the normal vector. Accordingly it
lies in the surface. Hence quantities 7§ exist so that

(49.1) &, = nidh.

The quotient law then states that 7£ form a mixed surface
tensor. We now differentiate (46.8) tensorially and obtain

gull.ah + 8::5‘3%»;; =0,
which reduces on substitution from (49.1) and (48.3) to
8u My %y Ty + 8iy&'bapl? = 0.
We apply (42.2) and the result is
(49.2) bap = — g, 7.
Inner multiplication by af¢ yields
(49.3) Ny = — @ byy;
and so we can rewrite (49.1) in the form
(49.4) E,=—abyaf.

These equations are known as Weingarten’s formulae.
Introduce the symmetric surface tensor

(49.5) Cap = 8ij E: a Efﬁ
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and form from it the quadratic form ¢,gdu®duf which is
then called the third fundamental form of the surface.

Ex. Prove that cap = a¥8b,ybgs.

§ 50. Gauss-Codazzi equations

‘We are now in a position to obtain the central formulae
in the theory of surfaces. For the moment, choose the
space coordinates to be rectangular cartesian and the
surface coordinates to be geodesic. Then at the pole,
tensor differentiation of (48.1) yields

b e o*at 0 (o) ,
“hY T Quzoufouwr  owr |a.
Thus

0 o d (o
S IRVl £ £ 3 W
Taipy — Taivp = [W {ay} our laﬁ ] %

The expression in square brackets is the surface Riemann-
Christoffel tensor R7,,, at the pole. Therefore we have set
up a tensor equation
(50.1) Rospy — Vayp = Rlapy @y
which must be true at every point of the surface and in
all coordinate systems.

We substitute from (49.4) in the tensor derivative of
(48.8) and obtain

@y py = bap,y &' — T bypbye .

We can consequently write (50.1) in the form

(baﬂ sy buy,ﬂ)'.t $ — a“"(b,, b'rc = bay bﬂ's }mg- R, gﬂ? g'
Inner multiplication by & and g, af in virtue of (42.2)
and (46.3) yield the respective equatxons
(50.2) bas:
and
(50.3) Rpgh = by bop — bapbpy.

?_bu}':ﬂ -l
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The reader is asked to verify that (50.2) consists of
only two independent partial differential equations. They
are called the Codazzi equations. As there is only one
distinct component of the curvature tensor in two dimen-
sions, (50.8) reduces to the single equation

(50.4) Ryg15 = byy by — (bys)?

which is called the Gauss equation. By means of (35.2)
we can write this equation
b

(50.5) K= =
where b is the determinant formed from the b,z and K
is the Riemannian curvature of the surface. On a surface
it is more usual to call K the Gaussian or total cur-
vature.

It can be proved * that a surface is uniquely deter-
mined except for a translation or rotation in space when
the first and second fundamental forms are given. This
theorem can be precisely formulated as follows;- If a.z
and by are given functions of ! and u?, then there exists a
surface @' = a*(u*), uniquely determined except for its
position in space, which has a,gdusduf and b.gdu=du? as
its first and second fundamental forms respectively,
provided that a,gdu=du? is positive-definite and that a.z
and b, satisfy the Gauss-Codazzi equations.

Ex. Prove that ¢zg = 2Hbyg — Kagp .

§ 51. Normal curvature-asymptotic lines

On a surface consider the curve u# = u=(s), where s
measures arc-distance. The equations of the curve in
space will be af = af(s). Then the space vectors 1%, N*
and Bf and the surface vectors {= and n= at any point of
the curve satisfy the Frenet formulae (40.5) and (45.8).

* L. P. Eisenhart, Differential Geometry, p. 157—159.
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The tangent vectors T* and = are connected by T = t2af,.
Intrinsic differentiation yields in virtue of (48.3)

AN R T

et by il 7
duf dus
=Gt g t %

= %i: @+ baptetB £V,

Applying the Frenet formulae we have
¢ = onaal + bupts 8,

which becomes

(51.1) kNt = ont + bggie bl

when we designate the space components of n* by n'
Let us introduce the angle 0 between the principal normal
N# and the surface normal &, Then inner multiplication
of (51.1) by &; yields

(51.2) kcos 0 = byptetl,

since £, is orthogonal to the vector »' which lies in the
surface. The invariant b.st*## is the same for all curves
which have the same tangent vector ¢ at the point on
the surface. Accordingly we deduce Meusnier’s theorem
‘For all curves on a surface which have the same tangent
vector, the quantity « cos 0 is constant’. This quantity
is called the normal curvature at the point and is
denoted by «(,. Hence

baﬂdiﬁ duf
azpdusdul’
If we choose a plane section through the normal to the

surface, then 0 = 0 or . That is k() = + «. So the
normal curvature in any direction is equal in magnitude
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to the curvature of the normal plane section of the surface
in that direction.

Along a geodesic ¢ = 0, therefore equations (51.1)
reduce to kN? = b,pi=t# £, Thus either k = 0 or N = |-&,
We deduce that a geodesic on a surface is either a straight
line or is a curve whose principal normal is co-directional
with the surface normal at every point. Conversely, if
Ni = 4 & then inner multiplication of (51.1) by n;
yields ¢ = 0. That is, the curve is a geodesic.

The directions at a point on a surface which satisfy the
equation b,gzduzduf = 0 are called the asymptotic
directions. If all the points of a curve have asymptotic
tangent directions, the curve is called an asymptotic
line. The asymptotic lines on a surface are given by
bapdusduf =0, Thus along an asymptotic line we have
kNt = on’, Hence, since N* and n* are both unit vectors,
either k = o = 0 or the curvature and geodesic curvature
of an asymptotic line are equal in magnitude and its
principal normal lies in the surface. Consequently the
binormal of an asymptotic line, which is not a straight
line, is co-directional with the surface normal. The con-
verse is also wvalid.

Ex. Prove Enneper’s formula that the torsion 7 of an asymptotic

line is 4+ vV — K where K is the Gaussian curvature of the
surface.

§ 52. Principal curvatures - lines of curvature

The normal curvature i, of a surface in the direction
i is given by Ky = bapt=1f, where the tangent vector
satisfies a,5t*## = 1. The maximum and minimum values
of k(u can then be determined by the method used in
section 19. They correspond to the principal directions
determined by b, and are given by the roots of the deter-
minantal equation | b,p — Ag.s| = 0, which reduces in
virtue of (50.5) and (48.6) to

(52.1) A2—2HA 4+ K = 0.
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The roots k() and k(@ of this equation are called the
principal curvatures of the surface at the point. The
principal directions ;, and £f; corresponding to the prin-
cipal curvatures at the point respectively satisfy

(bap — xq) “aﬂ)tfx) =0,

(bap — K@) axﬂ)tfs) w0,
A point at which k) = k) is called an umbilic. At
all other points section 19 tells us that #j, and £, are
orthogonal to one another. A curve on the surface which
is a principal direction at all of its points is called a
line of curvature.

At an umbilie, equation (52.1) has coincident roots.

That is H®* = K and the reader may verify* that this
result can be written
da(ay byy — a5y, )?

+ [@43(ay by — @y byy) — 2035(ay1 byg—a43b54)]* = 0.
Since a,gdusdu? is positive-definite, a is positive, and we
deduce that

a1y by — Gyabyy = a3y byy — g5 byy = 0,
and so
bu _ b _ bas-
@y @y Gy
Equation (51.8) now shows that «(, is independent of
the direction du=/ds. That is, at an umbilie, the normal
curvature is the same in every direction**,
Ex. 1. Prove that the lines of curvature on a surface are given by
&8 Gy, by duz duf = 0.
Ex. 2. If the coordinate curves are lines of curvature, prove that
a,; = by, = 0, and conversely.
Ex. 8. Prove that a surface, all of whose points are umbilies, is a
sphere or a plane.

* L. P. Eisenhart, Differential Geometry, p. 119.
*% The reader may find it interesting to relate some of the
results of this chapter to chapter IT of Rutherford’s Vector Methods.

CHAPTER VII

CARTESIAN TENSORS - ELASTICITY

§ 58. Orthogonal transformations

In this chapter our aim is to present the Theory of
Elasticity and so we restrict ourselves to a Euclidean
space of three dimensions. In it we choose a right-handed
system of rectangular cartesian coordinates and we denote
them by y,, where Latin indices have the range 1 to 8.
The line-element ds is then given by

(58.1) ds* = dy, dy; = 6, dy, dy;,
where d;; is the Kronecker delta.
The linear equations, (compare (6.3)),

(58.2) ¥i = ayy; + by,
where b; form a set of three constants and a;; a set of
nine constants define a transformation to a new coor-
dinate system ;. The necessary and sufficient conditions
that the g; form a set of rectangular cartesian coor-
dinates is

ds? = djdij; = a; a dy;dy, = 5. dy, dy,.
That is,

(@4 — O )dy; dyr, = 0

for all values of dy;. Hence
(58.8) Q55 = Ogp.
Inner multiplication of (58.2) by a; yields the solution

(58.4) Y = Qi — Qb
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Thus
07, ay!
58.5 2t _ g
( ) oy; 0 -

In virtue of these equations, we see by examining (9.1)
that the distinction between contravariance and co-
variance has disappeared. Accordingly we shall write all
indices as subscripts on condition that we allow only
transformations of the type (53.2) subject to (58.3). We
have already anticipated this in our notation ¥, d;; and
a;;. However we may sometimes wish to adopt a cur-
vilinear coordinate system such as spherical polars. It is
then necessary to reintroduce the distinction between
contravariance and covariance, This will be indicated by a
return to the coordinates z'.

The transformation (58.2) is equivalent to the com-
bination of the two transformations §; = y; + b; and
y; = a;y;. The transformation §; = y; + b; merely
defines a translation to new parallel axes. The transfor-
mation

(58.6) Yi = QyY;

subject to the six conditions (53.8) is said to define an
orthogonal transformation. It follows from (58.8) that
the determinant | a;; | of an orthogonal transformation
is either 4 1 or — 1 and we say that (58.6) defines a
positive or a negative orthogonal transformation respec-
tively. It is well known* that the y; axes form a right-
handed or a left-handed system if the orthogonal trans-
formation is positive or negative respectively. Further a
positive orthogonal transformation defines a rotation of
the axes about the origin.

An alternative set of equations to (58.8) is obtained
by considering

* W. H. McCrea, ‘Analytical Geometry of Three Dimensions’,
pp. 10—138.
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ds® = dy,dy; = @y, 01 4; AT = 05 4F; W

from which we deduce that

(53.7) Q3 Ay = ﬁﬂ,.

Ex. Show that in the rotation of axes defined by the positive
orthogonal transformation (58.6), a,, is the cosine of the angle
between the y; axis and the y; axis. The components a;; are
therefore the direction cosines of the y; system with respect
to the y; system.

§ 54. Rotations

Equations (58.2) may be interpreted from another point
of view. We could say that they transform the point
P whose coordinates are y; into the point P whose coor-
dinates are #; referred to the same system of rectangular
cartesian axes. We then call (58.2) an affine transfor-
mation*. If in addition conditions (58.8) together with
| @y | = 1 are imposed, we have the most general rigid
body motion consisting of a rotation followed by a trans-
lation.

Next we wish to obtain the orthogonal transformation
which represents a right-handed rotation through an
angle  about a line through the origin whose direction

* Affine Geometry. According to Klein’s Erlangen Programm,
(F. Klein, Math. Ann. Vol 48, (1893), p. 63), a geometry comprises
a system of definitions and theorems that express properties which
are invariant with respect to a given group of transformations. For
example, if the group of transformations consists of all rigid body
motions, namely translations and rotations, then the geometry is
termed metrical. This is the geometry of Euclid, less the similarity
theorems, and its most important concepts are distance and angle.

Let us now examine affine geometry, defined by the group of
transformations (53.2). Suppose 4, to be the vector joining the point
with coordinates z, to the point with coordinates y,. Then
A; = y,—z;, and we immediately deduce from (58.2) that the
transformation law of vectors is 4; = a, 4;. We now choose two
parallel vectors A; and B;. The requisite conditions are
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cosines are l;. By a right-handed rotation, we mean that
a right-handed corkscrew will move outwards from the
origin along the direction I; when it is rotated through
an angle i about this direction. Using the vector notation
we have (fig.)

Ay

where Q is the perpendicular from P on the line through
the origin whose direction cosines are I;, the angle

A,[By = Ay4/By = Ay/B;. But each fraction equals (a4, + a,
Ag+ay34;)/(@;y By +0,3By+013B;) = A,/B,, and similarly equals
AylB,y and A,fB,. Thus we have A,/B, = A,/B, = A,/B,. That
is, the vectors 4; and B, are parallel. Hence the parallelism of
vectors is invariant in affine geometry.

Further we see from (53.2) that every finite point transforms
into a finite point. Therefore the plane at infinity is invariant, and
so we can distinguish between a non-central and a central quadrie
according as the plane at infinity does or does not touch the quadrie.
However we cannot define either angle or distance in affine geo-

metry, because they are not invariants under the affine group of
transformations (53.2).
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QP = QP, the plane PQP is orthogonal to

I‘ and 1;:'. is the perpendlcular from P to PQ. Since
0P= Yi» weh have OQ _I‘,I,yk and thus PQ = LLYr—Y;.
Therefore PL — (1 —-cos :p)PQ = (1—cos ) (Ll yr—y:)-
Further f;"b is orthogonal to both FQF and I; in such a
way that P_Qh, l; and L_ﬁ form a right-handed s:fs_tbem.
Then by (89.1) the unit vector in the direction LP is
gi_v;en by euillilnYm — Ys)l/ PQ = — eijy; 1/ PQ. Hence
LP = PQ sin p(— e;ys1/ PQ) = esjalsys sin p. Thus we
have

F: =y + (1 — cos p)(Lleyx — ¥:) + siny ey lyy,
which can be written
(54.1) Ji = QY
where
(54.2) a; = cos pdy + (1 — cos p);l; + sin yey, ;.

In the theory of elasticity we shall be particularly
interested in infinitesimal rotations, in which case
cos i == 1 and sin p == y. The infinitesimal rotation is then
represented by

T = Yi + Ve LY

That is,

(54.8) i = Yi + Suc¥Yr>»
where

(54.4) Six = Peiprly.

It is clear that s, is anti-symmetric. Conversely, let us
consider equations (54.3) given that s, is anti-symmetric.
Then equations (54.4) comprise only three equations for
the three unknowns I;, whose solution is in fact I, = —s44/1,
ly = — 84,/ and ly = — s,,/y. Therefore equations (54.3)
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always represent an infinitesimal rotation if y is in-

finitesimal and sy is anti-symmetric.

Ex. Caleulate a, corresponding to a rotation of 90° about the y,
axis.

§ 55. Cartesian tensors

A Cartesian tensor of the M-th order in a three-
dimensional Euclidean space is defined as a set of 84
quantities which transform according to equations (9.1)
when the coordinates undergo a positive orthogonal
transformation. This is a less stringent condition than
that imposed on a tensor. So we see that all tensors are
Cartesian tensors but a Cartesian tensor is not necessarily
a tensor in the usual sense. In virtue of (58.5) we have
that 4, ;, - is a Cartesian tensor of the M-th order

if the transformed components satisfy

(55.1) A:;:,..:M = a;,x,ﬂ:,k,..G:MkyAklk,..nus
on change of the coordinates by the positive orthogonal
transformation #; = a;;y,. We see from (58.6) that both
y; and their differentials dy; are Cartesian vectors. Also
the Kronecker delta is a Cartesian tensor of the second
order because

3!’1 = Q;, Qy, 6" = Q;, 5, = 6(!
in virtue of (58.7). Further we deduce from (88.2) that
the permutation symbol e,y is a Cartesian tensor of the
third order. Thus a, and s; introduced in the last
section are Cartesian tensors of the second order.

The fundamental tensor of the Euclidean space is the
Kronecker delta d;,. Hence all the Christoffel symbols are
zero and so the comma notation for covariant derivatives
now denotes the familiar partial derivatives which are
Cartesian tensors.

The use of (55.1) instead of (9.1) shows us clearly that
the quotient law of section 12 still applies to Cartesian
tensors,
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§ 56. Infinitesimal strain

Consider a body which is strained by the action of
applied forces. The particle at the point P with coor-
dinates y,; referred to a rectangular cartesian system is
displaced to the point P with coordinates y; -+ u;. Similar-
ly the particle which was at ) with coordinates z; is
displaced to the point @ with coordinates z; +v;. We
define the extension e(pg) of the straight line joining the
unstrained points P and Q to be the increase in length
per unit of length due to the strain. That is

(56.1) e(po) = ‘PQP;Q-PQ = i—g — 1.
We have

(PO)? = (y;s — 2:)(y: — %),
an

(PQ) = (yi + s — 2 — 0) (Y + % — % — ;)
= (Y — 2)(Ys — %) + 2(y; — 2)(ug —v;)
+ (wg — ;) (u; —vy)
- 2wy —v;) | (u— v) (4 — v;)
- oy {1 — e, B
where [; = (z; — y,;)/PQ are the direction cosines of the
unstrained line P(Q. Hence

- 2(u; —vy) | (uy — o) (uy —vy) i_
i [‘ Gin i a1 ] i

We confine our attention to the case of infinitesimal
strain, where the assumption is made that the displace-
ment vectors u; and v; are small compared to PQ.
Neglecting quantities of higher order than the first, we
obtain

B li(u; —v;)
gy "ppy—
Let us now choose Q) to be in the neighbourhood of
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P so that y; — 2, is small. Then by Taylor’s theorem for
a function of three variables*
v; = w; + (2, — Y;)u; 5 + terms of higher order in z,—y;.

Neglecting terms of higher order than the first in z;— y;,
we obtain that the extension e at P in the direction
determined by the unit vector [; is given by

z ——
e = (’P—dy’) u‘.’ = ﬂ‘.’til_f-

Introduce the symmetric Cartesian strain temsor
e;; by the equations
(56.2) ey = $uy 5 + ,4),

(there is no confusion between e;; and the permutation
symbols e,5 of the previous chapter which are distin-
guished by Greek indices), and we finally obtain the
extension e as the quadratic form
(56.3) e = 8“ l; l’ .

The dilatation or expansion 0 is defined as the
increase in volume per unit of volume. That is
=8V AV

av AV
where AV denotes the strained volume corresponding to
the volume AV, But

AV 1o

v Ea‘(-l__;“) =1+ w4y 3 + Uy 9 + Uy g + terms of
Ys higher order.

Thus in virtue of (56.2) and (56.4) we have

(56.5)

The components of the strain tensor are not entirely
arbitrary. To prove this, differentiate (56.2) twice and
obtain

* R. P. Gillespie, Partial Differentiation, p. 60.

(56.4) 6= 3

3 ""—-8“s
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€ij k1 = i(‘“i,m ot ‘“f,cu)s
from which it immediately follows that
(56.6)

There appear to be 81 of these compatibility equations.
In actual fact some are repeated due to the symmetry of
the strain tensor and others are satisfied identically. The
reader is asked to verify that only six of these equations
are independent.

To conclude this section, we investigate several im-
portant examples of strain.

(1) Uniform dilatation. Consider the displacement
vector u; = cy; where ¢ is a constant. We have ¢;; = ¢dy
and the dilatation 6 = 8c. Thus the extension at any
point in any direction is constant and equal to one-third
of the dilatation.

(2) Simple extension. Consider the displacement
vector u; = cl,l;y; where ¢ is a constant and I; a unit
vector. We have u; ; =cll; and so ey = clgl; and the
dilatation 0 = cl;l; = c. Also e;l;l; = ¢ and thus there is
an extension at any point in the direction I; of amount
equal to the dilatation. The extension in any direction
orthogonal to /; is easily seen to be zero. If ¢ is negative
we refer to it as simple contraction.

(8) Shearing strain. Consider the displacement
vector wu; = 2¢l;m;y; where ¢ is constant and both I
and m, are unit vectors. A brief calculation yields
ey = e(lym; + l;m;) and the dilatation 0 = 2¢l;m,. Conse-
quently the dilatation is zero if the directions I, and m;
are orthogonal.

Ex. Show that a simple extension along any direction together with
an equal simple contraction along an orthogonal direction is
equivalent to a shearing strain along a direction bisecting the
angle between the given directions.

€is,xt + €x1,05— Cir, 50— €q i = 0.
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§ 57. Stress

The forces acting on a body are either external or
internal. The external forces may consist either of body
forces such as gravity which act on every particle of it,
or of surface forces which act on the external surface of
the body, for example the pressure between two bodies
in contact. If F'; denotes the body force vector per unit
volume, then the force acting on an element of volume
AV is F;AV. Similarly if T'; denotes the surface force
vector per unit area, then the force acting on an element
of surface AS is 7,4S. In order to discuss the internal
forces, we select a small element of area AS inside the
body and denote the direction cosines of the normal to
this element, which is approximately planar, by n;. We
call one side of the element AS positive and the other
side negative. Then the action of the positive side on the
negative side is the internal surface force 7';,4S where
T, is the force per unit area on the element AS. It is
called the stress vector and is in general a function of
the coordinates of the point which determines the position
of the element A4S and of the direction cosines n; of the
normal to AS. It is well to emphasise that T'; is not
necessarily co-directional with n;. At all points on the
external surface of the body 7'; becomes the external
surface force.

Consider a small rectangular parallelepiped with vertex
at the point P whose edges are parallel to the coordinate
axes. We form three stress vectors Tu”, T(gu and T(s)’
corresponding to the small elements of area through P
which are parallel to the coordinate planes. The stress
vector 7';); will be called positive if it acts in the positive
direction of the y; axis provided that the external normal
is co-directional with the positive y, axis. If, however,
the external normal is co-directional with the negative
y,; axis, then the stress vector 7', is positive if it acts
in the direction of the negative y; axis, In other words,
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a stress which tends to stretch will be regarded as positive,
whilst a stress which tends to compress is regarded as
negative. We define nine quantities E;; by the equations

(57.1) Ey = Ty

and we shall show that E,, is a Cartesian tensor, called
the stress tensor.

Construct the small tetrahedron PA, 4,4, such that
the edges PA, are parallel to the y, axes. The forces
acting on the tetrahedron are the body force F;AV, the
surface forces E;AS; (no summation over i) on the
faces opposite to 4; and the surface force 7';4S acting
on the face 4,4,4,, where AV is the volume of the
tetrahedron, AS; is the area of the face opposite to 4;
and AS is the area of the face 4, 4,4,. Let the positive
direction of 7'; be that of the normal drawn outwards
from the tetrahedron and whose direction cosines are n;
and let p be the perpendicular distance from P to the
face 4,4,4,. Then AV = }pAS and A4S;=n,AS. The
equations of equilibrium obtained by resolving forces
parallel to the axes are now

F‘AV"‘“ E“AS‘ + T’AS = 0,

where the E,; occurs with a negative sign, because the
external normals are in the directions of the negative
axes. We now substitute for AV and 48,, then divide by
AS and proceed to the limit as the tetrahedron shrinks
to zero, in which case p tends to zero. The result is

(57.2) T_f = Eﬁﬂ‘-

It follows from the quotient law that Ej; is a Cartesian
tensor, and we can by (57.2) calculate the stress vector
at any point, corresponding to any direction at that point
in terms of its direction cosines and the stress tensor.
We now cite several important cases of stress:-
(1) Normal Stress. The vector 7' is co-directional
with + n;. We see from (57.2) that E;; = Cd;; where C
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is a constant. Hydrostatic pressure is an example of
normal stress for which C is negative.

(2) Simple Tension. Consider the stress tensor
E,; = CLl; where C is a constant and [, is a unit vector.
Then the stress vector in the direction I; is T;,=Cl,1,l;=Cl;
and it is thus co-directional with + l;. However the stress
vector in the direction m; orthogonal to l;is T'; = Cl;l;m ;= 0.
If C is negative the stress is called a Simple Com-
pression.

(3) Shearing Stress. This is specified by the stress
tensor E;; = C(l;m; + l;m;) where C is a constant and
l; and m; are unit vectors.

Ex. Show that a simple tension along any direction together
with an equal simple compression along an orthogonal direc-
tion is equivalent to a shearing stress along a direction bisecting
the angle between the given directions.

§ 58. Equations of equilibrium

Let us consider a body of volume V in equilibrium,
which is enclosed by the surface S. We resolve forces
parallel to the axes and obtain

[, Fsav + [ 148 =o.

Substitution from (57.2) yields

which on application of Gauss’s theorem®* becomes
J'V F,dV + J'VE,,"dV= 0.

That is,
j L (Fy + By )dv =o.

This equation is an identity, being true for any volume V.
Hence
(58.1) F’ + E“" =0,

* D. E. Rutherford, Vector Methods, p. 74.

1
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The moments of a force about the axes are the com-
ponents of the vector product of the force vector and the
position vector of any point on the line of action of the
foree. Thus in tensor notation, the moments of the force
F, about the axes are represented by the vector e y; Fy.
Now take moments about the axes for our body in
equilibrium and the result is

.[V i ls FrdV + js eisy; T dS = 0.

We substitute from (57.2), apply Gauss’s theorem and
obtain

Iy e ys FrdV + J.'V (es2:9; Eu),; av = 0.
That is,
_[V ein¥s(Fr + Ey )dV + L, €iixOp By dV = 0.
The first integral is zero in virtue of (58.1) and we have
.[V 8‘;* Eide = 0-

This equation is also an identity and consequently the
integrand e, E;; vanishes, from which we deduce that

(58.2) Ey = Ey.

Thus the stress tensor is symmetrié and the elastic
equilibrium equations for a body are given by (58.1).

§ 59. Generalised Hooke's law

In the elementary theory of elasticity, Hooke’s law
states that the tension of an elastic string is proportional
to the extension. In other words, stress is proportional
to strain. The corresponding assumption in the general
theory of elasticity is that the stress tensor is a linear
homogeneous function of the strain tensor. That is

(59.1) Ey = eyl -
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It follows from the quotient law that ¢, is a Cartesian
tensor of the fourth order, and it is called the elasticity
tensor. Further from the symmetry of E; and e we
find that c,;,; is symmetric not only with respect to the
indices ¢ and § but also with respect to k and 1.

A body is said to be homogeneous if the elastic pro-
perties of the body are independent of the point under
consideration. This means that the components of the
elasticity tensor are all constants for a homogeneous body.
We call a body isotropic if the elastic properties at a
point are the same in all directions at that point. This
means that the elasticity tensor ¢, transforms to ¢,
itself under any rotation of axes.

§ 60. Isotropic tensors

A Cartesian tensor which transforms into itself under a
rotation of axes is called an isotropic tensor. We have
already met two isotropic tensors, namely d;; and e.
We shall now search for the most general isotropic
tensor ¢, of the fourth order. Its transformation law
(55.1) becomes

(80.1) c!jk‘ = a‘,a,.ahamcmu.
Let us rotate the axes through 180° about the y, axis.
We deduce from (54.2) that a; = — &; + 21;1,.. But

for this transformation [; = I, = 0 and [ = 1, and so the
only non-zero components of a; are

ay=—1, ap=—1, ay=+1

By direct substitution in (60.1) we obtain ¢, = — €y,
that is, ¢;;; = 0 in the following cases:-

(1) any three of the indices equal to 1 and the other
equal to 3.

(2) any three of the indices equal to 2 and the other
equal to 8.

(8) any two of the indices equal to 1, another equal to
2 and the other equal to 8.
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(4) any two of the indices equal to 2, another equal
to 1 and the other equal to 8.

Similar results are obtained by the corresponding
rotations through 180° about the y, and the y, axes.
Hence the only components which survive are those
where the four indices are equal or equal in pairs.

Let us now rotate the axes through 90° about the y,
axis. For such a transformation we deduce from (54.2)
that a;;. = Il + ey l; and so the only non-zero com-
ponents of ay; are

G =—1; a5 =+1; ag=-+1.
By direct substitution in (60.1) we discover that

C1111 = Ca292,
C1133 = C2211, C1133 = C2233, C3311 = C3322;
C1212 = €2121, C1313 = C2323, C3131 = C3232,
C1221 = C2112, C13s1 = C2332, C3113 = C3223-
Similar results are obtained by the corresponding rotations

through 90° about the y, and the y, axes. Hence we can
collect all our results in the form

Citis = Cyjjgs
(60.2) Ciisi = Citkr = Cuji = Cukks
Cijis = Cirik = Cyjii = Cikiks
Cissi = Cixki = Crinn = Cikkis
where 4, §, k and I are unequal and the summation con-

vention does not apply. All other components are zero.
The most general solution of equations (60.2) is then

(60.8) cyypy = Adgy 0y + 0 b5 + ¥4 05 + KOisnas

where A, g, v and « are Cartesian invariants, and 6, = 1
if all four indices are equal and otherwise zero.
Finally we carry out a small rotation, which is re-

H
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presented by a;. = d;; + s, where sy, is skew-symmetric
and of the first order in small quantities. Substituting
in (60.1) and retaining only terms of the first order
we have

SirCrsta 1 85eCigtr T Spt Cisnr + S1uCiseu = 0.

Select i = 2,j = k = | = 1. Then in virtue of 8,, = —8,,,
the non-vanishing terms of this equation yield

€1 = Caom + €z + Comra-
Substitute in this from (60.8) and the result is

Adpt+rv+e=2+pt+v
which gives k = 0, so we can now write

(60.4) Cisrg = A0y3 Opy + U4 05y + ¥94 05

This tensor is obviously isotropic and so it is the most
general isotropic tensor of the fourth order.

Ex. 1. Prove that the most general isotropic tensors of the second
and third orders are Ad,, and e, respectively where 1 is
an invariant.

Ex. 2. Prove that ¢y, defined by (60.3) satisfies the symmetry
relations ¢y = Cyy and €y = i

§ 61. Homogeneous and isotropic body

In this section we confine our attention to a body
which is both homogeneous and isotropic. Then the
elasticity tensor is isotropic with constant components.
We therefore require an isotropic tensor ¢, which is
symmetric in both ¢ and § and in k and I, and whose
components are all constants. To obtain this tensor, sub-
stitute from (60.4) into the equation ¢y, = ¢ and we

obtain
(g — )04 05y — 65 05z) = 0.

In this equation put¢ = k = 1,§ = | = 2 and we see that
p = ». Thus the isotropic tensor

(61.1) Cisry = ABy30r1 + (042 051 + 841 052)
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satisfies the required symmetry. The generalised Hooke’s
law (59.1) for a homogeneous, isotropic body now
becomes

Ey = [A0i 0 + (0051 + 00 02)lers
where 2 and u are constants. This equation simplifies to
(61.2) Ey = 2005 + 2peyy,

where 0 is the dilatation defined by (56.5). Contracting
4 and j, we obtain the equation

which connects the two invariants 0 and @.

We now solve equations (61.2) for the strain tensor
in terms of the stress tensor and in virtue of (61.8) we
obtain

A0

It is usual to work in terms of Young’s modulus E and
Poisson’s ratio ¢ defined by

L N o A i
i T+ T WEm

Equation (61.4) then becomes

1

(616) ey =3 (—008, + (1 + 0)Ey}.

We can obtain stress compatibility equations by sub-
stituting this expression for e, in (56.6).

Sometimes we require the equations of equilibrium in
terms of the displacement vector u;. To obtain these we
substitute from (61.2) in (58.1) and obtain

F;+ 28 0y + 2uey s = 0
which becomes by (56.2)
F; + 20 5 + p(uy 50 + u; ) = 0.




e IING o e bl o

100 TENSOR CALCULUS § 62

But 0 = ey = $(u; ¢ + 4 ) = u; ;. Consequently
0 ; = u; 4, and the above equations take the form

(61.7) Fy4+ A+ p)0 ;+ pliu; =0

where P2 is the Laplacian operator. Now that we have
reverted to displacements u; we do not require any com-
patibility equations.

Ex. Show that if an isotropic, homogeneous body is in equilibrium
under no forees, then 20 = 0.

§ 62. Curvilinear coordinates

Many problems in elasticity can be investigated more
conveniently by means of curvilinear coordinates af in
which the line-element ds is given by ds® = g;;da*da?. In
this case we must return to the distinction between
contravariance and covariance.

The coordinate system serves only to describe the
actual strains and stresses. The laws of elasticity are
themselves independent of the coordinates. Therefore
these laws can be formulated as tensor equations. We
recall (section 9) that if a tensor is zero in any one co-
ordinate system, it is zero in all coordinate systems.
Consequently if we write down tensor equations, which
reduce in cartesian coordinates to the results already
established, then these tensor equations express the
theory with respect to any curvilinear system. Ac-
cordingly we immediately verify that the laws of elasticity
are represented by the following tensor equations:-

e =eyltl, ¢y = i(“t_; + uy,4), 0 =giey,
€00+ €xr, 45— €kt — € = 0,
T;=Eun, E;=E,, F/+ E} =0,
By = ey iy = Cumg = Cyn®.

* It can also be proved that ¢y = €. See I. S. Sokolnikoff,
Mathematical Theory of Elasticity, section 26.
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If the body is homogeneous and isotropic, we have in
addition
Cisir = Ay 8 + p(8rius + Brs8ui)s
By = 20gy; + 2uey, O = g¥Ey = (34 + 2u)0,

1
N~ {—00g; + (1 4 0)E,}

F.f + (4 +F‘)B,i +‘ug"“£,n= 0.

In all these equations If is a unit vector specifying the
direction of the extension e, n is the unit vector normal
to the small element AS, and commas once more denote
covariant differentiation.

It is important to note that the components of the
vectors u;, T'; and F; may not possess a physical signi-
ficance of the correct dimensionality. For example, the
exercise of section 5 shows us that the second component
of the acceleration vector in polar coordinates is an
angular acceleration, It will suffice to discuss the force
vector F,, whose components in a cartesian system

0F’ ot
are I, = F* (say). Then F‘ZBEF’ mdF‘:-gE i
are the covariant and contravariant components in the
o' system, where we have put & =y, the cartesian
variables. The component of %, which is the physical
force vector, at any point in the direction of the
unit vector [ =/, is the invariant Fi], = Fil, =
g F*l. The contravariant unit vector in the direction
of the a' axis is df/4/g;;. Therefore the actual physical
components of force along the a' coordinate curve are
8 Fi6}/v/8n = € F¥/+/E1;- In the exercise of section 5,
we have g;; =1, g, = 0, gy, =72 and so the physical
components of acceleration in polar coordinates are
2 2

g -—r(%) and r % + 2 % % , which represent the
radial and transverse accelerations respectively.
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A Si_n}ila.rly the tensors ¢;; and E,; have no direct physical
significance. Consider the strain tensor e,; which is
connecat:kda rrith the cartesian strain tensor é,, by

t* 0T
€y = 5ot md ;. The physical component of the strain

tensor associated with the directions of the unit vectors
I and m* at a point may be defined to be the invariant
€4 I m“.

As an example, let us discuss eylindrical coordinates
r, 0 and z given by

yp=rcosl, y,=rsinf, y,=z
The non-zero components of the fundamental tensor are
Bu=1 gp=17% guy=1
from which we deduce that
1
gn-=l’ g’3=;-i-, gu=1, g“=0if‘i§é?‘-
So the only surviving Christoffel symbols of the second

1 = — _1
= 1", 1 -,

The actual physical components (u,, up, uy) of the dis-
placement vector u; are

|
b et UL S R Rl

Further calculation will show that the components of
the strain tensor are

ou ou
8112_6:' e”=a—oa+m, =35
8u, 315, 2u, au!
en=§'("a‘6—+—a—7), oy = (ﬁz—-i-%).

ou
es:l.=‘}("3r—s aa_'“'l;l)s
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whilst the physical components associated with the direc-
tions of the coordinate curves are

The dilatation is
3u¢ 1 au., a’u.,

u,
ﬂ = ] Eyqy = —— —_ —_— _ﬂ'.
=g trm THm T
Ex. Find the physical components associated with the directions
of the coordinate curves of the strain tensor in terms of the
physical components of the displacement vector when the
coordinates are spherical polars.

§ 68. Mechanics of continuous matter

Let us discuss the motion of a continuous medium by
the Eulerian method. Instead of following the path traced
out by a particular particle, we focus our attention on a
definite point P of the medium whose coordinates referred
to a cartesian coordinate system are y,. Let us denote
by u; the velocity vector of that particle which happens
to be at P at time ¢ Then u, is a function of y; and &
After a further interval of time A¢ has elapsed, the particle
which was originally at P is now at the point y; + w4t
with velocity u; + Au,. Hence u; + Au, is the function
u, at the point y, + u,4t and at time ¢ 4 Af. On expand-
ing by Taylor’s theorem we have

u‘ + Aui = u‘ + u,Aﬁ&;'; + At % .

The acceleration vector f; at P is the limit of du,/At as
At tends to zero. We therefore deduce that the acceleration
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vector is given by

ou
(68.1) fi = uwyu, 4 + #

Now consider a volume V of the medium, bounded by
the surface§.The mass M contained inside Vis M= [, pdV,
where the density p is a function of y,; and t. Thus the
rate of increase of mass is % = %’JV. Let n; denote

4
the direction cosines of the external normal to the small
element of surface AS. Then the rate of mass flow out-
wards across that element A4S is pn,u,4S. Hence the rate
of increase of mass is also expressed by the surface
integral — [ pn;u,dS. Consequently we have

Ipma,dS +f -gt—pdV=0.
s v

We apply Gauss’s theorem to the surface integral and the
result is

J; (pus) AV + L %” av = o.

This equation is an identity and so we derive the equa-
tion of continuity

(63.2) (P + 2 =0,

Physically this equation expresses the principle of con-
servation of mass.

In section 58 we discussed the equilibrium of a con-
tinuous medium. The equations of motion can be deter-
mined in the same way. If we replace F; by F;— Pl
these equations become

(63.8) ply=F; + Ey ;.
We now substitute for f, from (68.1) and obtain
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pud; ; + p %! =F;+ Ey ;.

This equation can be written, in virtue of (68.2), in the
form

@.4)  luw— Byl + 2 (pu) = Fy.

(68.2) and (68.4) constitute the equations of motion of a
continuous medium.

When the coordinate system is curvilinear the equations
(68.2) and (63.4) may be expressed in the tensor forms

(08.5) (put), i + 2 =0,

(68.6)  (putnd— B9) , + 2 (put) = .

Solutions

p- 88. Ex. The only non-vanishing eomponents of a, are
Gy =—1; @y = + 1; @3 = 1.
Aty 1 dup | g
p.lDS.Ex_ m—?r—, ¢3‘=~;~-BT+7,

oo P P L
T T

1 1 dup 1 duy ootﬂu
by ?ramﬂ&rp-'-fha IR
Al 1  du, au,_:ﬁ
Lt rsind op or r)]’
1 [1duy dug ug
weEIstrutw




CHAPTER VIII

THEORY OF RELATIVITY

§ 64. Special theory

In classical mechanics, the position of a point in space
at which an event occurs can be determined by its three
space coordinates #', 2?, a® referred to some rectangular
cartesian system. Also an observer can measure the time ¢
at which the event takes place by means of a clock. An
event is then fixed in both space and time by the system
S which is comprised of the four numbers #1, 22, ® and £,

Einstein examined the concept ‘simultaneity’ and came
to the conclusion that ‘simultaneous events at different
points’ has no meaning without further qualification.
Continuing his study of fundamental ideas, Einstein
arrived at the Special Theory of Relativity which he
based on the two principles: (1) it is impossible to detect
the unaccelerated translatory motion of a system through
space, (2) the velocity ¢ of a ray of light is a constant which
does not depend on the relative velocity of its source and
the observer.

Let us now consider two systems § and § which coin-
cide at the time ¢ = 0, such that § moves with constant
velocity V along the 2! axis of the § system. Then the
Lorentz Transformation, which can be deduced from
the two principles of special relativity, connects the
space coordinates and the time of both systems by the
equations

T = B2t — V1), 2 =2?, B =ad, I = f(t— Vat/c?),
where f = (1—V2/c?)~%. We ecasily verify that
— (A8} — (d2?)* — (d8%)? + c*(dD)?
= — (dat)? — (da?)® — (dz®)® + c2(dt)2.
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The invariance of this equation with respect to Lorentz
transformations suggests that the Minkowski space
defined by the metric

(64.1) do* = — (da')* — (da?)? — (da?)* + c*(dat)?

where we have written a#* ={, is appropriate for the
geometrical discussion of special relativity. We denote the
line-element of this four-dimensional space by do (not
by ds) in order to emphasise that do is not the physical
distance between two neighbouring points.

The Minkowski space is flat and its signature, which
equals the excess of the number of positive terms over
the number of negative terms in its metrie, is — 2. It
is well-known* that there is no real transformation of
coordinates which will reduce (64.1) to the metric of a
four-dimensional Euclidean space, whose signature is 4.
Thus the geometry of Minkowski space differs in many
respects from Euclidean geometry; for example, there
exist real null curves (see (15.2)) and real null-geodesics.

In this chapter Latin indices will have the range 1 to 8
whilst Greek indices will range from 1 to 4. The velocity
u of a particle, which is at the point 2* has the components
u' = da‘|dt referred to the system S. It follows from
(64.1) that

di 1 u?\—%
(64.2) s (1 E") :

The four-dimensional Minkowski momentum vector

is defined by m,e % , where m, is a constant. The special

theory identifies the fourth component moc% with the

mass m of the moving particle. In virtue of (64.2) we
have

(64.8) m = my (l —_ c_‘)
* W. L. Ferrar, Algebra, p. 154.




108 TENSOR CALCULUS § 64

The constant m, is the mass when 4 = 0 and so it is
called the rest-mass of the particle. The mass m, which
clearly increases with the velocity, is called the rela-
tivistic mass of the particle. The components

mcg— cdm‘d‘— dst
ekl

and are evident generalizations of the Newtonian mo-
mentum vector.

We define the four-dimensional Minkowski force
vector F= by

(64.4)

d?a= d da= u?\~%d [ do=
) g =t —_— = —_—— —_— —_—
Fe =myc - gamd do'(m“ da) (1 c’) d‘(m a't)'

The Newtonian force vector is X? =%(m%') and so
2\ ~%
YL OB
P = (1 c,) xv,
We obtain by expansion from (64.8) that
1
B Ry TE 2
me® = myc? 4 g Mot s I

and so the special theory identifies the energy E as-
sociated with a particle by the equation E = me2.
Therefore
u\~%dn 1 u*\~% dE
re(-2) F -5 (3" F
The motion of a particle which moves under the action
of some force system can be represented in Minkowski
space by a curve, called the world-line of the particle.
If no forces act on the particle, we see from (64.4) that
d*a2%[do® = 0. Thus the world-line of a free particle is a
geodesic of the Minkowski space.
The velocity of a light ray is the constant ¢, and so
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we see from (64.1) that for such a ray do = 0. Accor-
dingly the world-line of a light ray is a null-geodesic of
the Minkowski space.

In order to discuss the mechanies of a continuous
medium, we introduce the symmetrical four-dimensional
energy-momentum tensor 7«4 defined by

T4 = T9 = pubd — BY; T = T4 = pui; T4 =p,

where p is the density and E¥ is the Cartesian stress
tensor defined in section 57. Then the special theory
generalises (68.5) and (68.6), which are the equations of
motion of a continuous medium into

(64.5) 7Y =P,

If we change to spherical polar coordinates 7, 6 and v,
the metric of Minkowski space becomes

(64.6) do® = — dr® — 12df® — * sin? Ody?® + c2dt.

§ 65. Maxwell’'s Equations

The classical theory of electrodynamics*, according
to Lorentz, is specified by the electric potential ¢ which
is a scalar and the magnetic potential 4; which is a
vector. The electric field strength vector E; and the
magnetic field strength vector H; are derived from
these potentials by the equations

1 904
E,=—gradtp—? —é-t—!,

H‘ = cu.rlA‘.

* Abraham—R. Becker, Electricity and Magnetism.
Coulson, Waves, chap. VII.

M.
C. A,
D. E. Rutherford, Vector Methods, p. 126.
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Using electrostatic units, Maxwell’s equations are

div E; = 4amp,
div H; = 0,
(65.1) curl E,-i—l%H‘_O
10E;, 4n

where j; is the current density vector and p is the
charge density.

In Minkowski space, with the metric (64.1), let us form
the four-dimensional potential vector @, and the four-
dimensional current density vector Je defined respec-
tively by

D, = (_‘Al’ — Ag, _‘43' O(p),

Ja = (jy» J2s I35 P);
with respect to a particular coordinate system. Next we
introduce the skew-symmetrical tensor 7, defined by

oD, oD
Nap = Pa,p— Ppa = 55 —#

and we immediately calculate that its non-vanishing
components in the given coordinate system are

Neg =—"gg = Hy; Ngy=—yg=Hy; yp=—1y =Hy;
Ma =gy = CBy; Mgy = —1gp = cE; 19y =—1y3=CEj.

The non-vanishing contravariant components 7%/ may
now be obtained and are

nB=—a? = H,; Pr=—n'® = H,; ,J13=_,1=1 = Hy;

E E E.
14 41 1, .24 42 8 @a___ 3
o= a2 n =iy 3

We now write Maxwell’s equations (65.1) in terms of
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n and J and the results are readily verified to be res-

pectively »
i 2
TR
e
M taat R taa

The first and last of these equations combine together
into the form

4
af —
(65-2) n.ﬁ J“,

— Ji,

whilst the remaining two are accounted for by the
equations of the set

(65.8) Napy + Npy,a + Mya,p =0

which do not vanish identically.

We have accordingly written Maxwell’s equations in
tensor form in Minkowski space. Thus they are invariant
under the Lorentz group of transformations.

§ 66. General theory

We now turn to the General Theory of Relativity which
was developed by Einstein in order to discuss gravitation.
He postulated the principle of covariance, which
asserts that the laws of physies must be independent of
the space-time coordinates. This swept away the privi-
leged role of the Lorentz transformation. As a result
Minkowski space was replaced by the Riemannian V with
the general metrie
(06.1) ‘do? = g,,ti‘nﬂdwﬁ.

Einstein also introduced the principle of equivalence,
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which in essence states that the fundamental tensor
g.p can be chosen to account for the presence of a gravi-
tational field. That is, g4 depends on the distribution of
matter and energy in physical space.

Matter and energy can be specified by the energy-
momentum tensor 7'=# which in the special theory satisfies
the equation 7% = F#. The only forces, namely those
due to gravitation, are however already taken into
account by the choice of the fundamental tensor g,s.
We therefore ignore F# and, in accordance with the prin-
ciple of covariance, the energy-momentum tensor must
now satisfy the equation 7% = 0. We shall write this
equation in the equ.lva.lent form 77 , =0 where
T?% = gpyT* is the mixed energy-momentum tensor.
The problem now is to determine 7% as a function of
the g,z and their derivatives up to the second order,
bearing in mind that 7% , = 0. We recall from (34.3)
that Kinstein’s tensor defined by

(66.2) G% = g7 Ry, — RO}

satisfies the equation G% , = 0. The equations of motion
require 7% , = 0, but very remarkably G% , =0 is
an 1dent1ty m Riemannian geometry. This led Einstein to
propose the relation
(66.3) kT% + G% =
In effect these equations form the link between the
physical energy-momentum tensor 7'%; and the geome-
trical tensor G% of the V; of general relativity. In order
that Newton’s theory of graﬂtatlon can be deduced as
a first approximation from Einstein’s theory, it was
found necessary to choose k = 8ak/c* where k is the
usual gravitational constant 6.664 X 1078 cm3, gm.™?
sec.”2, The value of ¢ is 2.99796 X 10° em, sec.”?, and
S0 K is 2.078 X 10748 em.™! gm.™? sec.? in c.g.s. units.
In the special theory, the world-lines of free particles
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and of light rays are respectively the geodesics and the
null-geodesics of Minkowski space. The principle of equi-
valence demands that all particles be regarded as free
particles when gravitation is the only force under con-
sideration. Then it follows from the principle of co-
variance that the world-line of a particle under the action
of gravitational forces is a geodesic of the ¥V, with the
metrie (66.1). Similarly the world-line of a light ray is a

null-geodesic.

§ 67. Spherically symmetrical metric

General relativity discusses several important problems
in which the coordinate system 7, 0, y and ¢ is such that
the metric takes the form

(67.1) do® =— erdr® — r2df® — r* sin® O dy? + c2erde?,

where A and » are functions of ». A metric of this type
is said to be spherically symmetrical. It is a generalisa-
tion of the special relativity metric (64.6), which is ex-
pressed in spherical polars. The coefficients of dr? and d¢?
have been selected as exponentials in order to ensure
that the signature of do® is — 2. Let us write 2! =7,
2* =0, 2* =y and a* = ct. Then the non-zero components
of the fundamental tensor are

8in = —€" 8ag = — 12 g3 =—12sin20, g, =¢"
The determinant g becomes
g = —risin? Ay

and hence the non-zero components of the conjugate
symmetric fundamental tensor are

gl =e.

A brief calculation shows that the only non-vanishing
Christoffel symbols of the second kind are

1
n‘=—8"a 22— L —
g » & 72’ g -r’sm“ﬂ’

1
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y R | R |
T {12]“?’ {31}_?’

(67.2)!

Il

|
-
=.
=
[ -]
L]
1

‘144} A

where a dash denotes differentiation with respect to r. We
now evaluate the components of the Ricci tensor by
means of (83.2) and the results are

1

Rll =_?)"__’i‘1’y' + i"ﬂ" + i”'s’
(67.3)) aa = cosec® 0 By = —1 +1‘"“{1 — ¥+ in'},

Ry=e2{I'v — 1}”"—? v — %},

R¢p=0 for o #ﬁ.
A further calculation gives us the curvature invariant

_2 A E g r } r !_ H'_2 !_1 ]

(67.4) R—;&'!—e— {--f=+r3 +2Zﬂ v ’—'V =y }o

2
On substituting this in (66.2) we obtain the components
of the Einstein tensor for the spherically symmetrical
metric (67.1)

- g R ¥ [ AP
G, = ,.s+r ,-s"i',-" ’

(67.5)
1 oy
G“=—§—!—e—*{ﬁ—?ﬂ.],

G%=0 for a # f.

Ex. Find the necessary and sufficient conditions that a space with
a spherically symmetrical metric be an Einstein space.

1 1 1 1 1
A ’ = o et " r Pt r
G_’E_—Gfs_-—g— {_?r;' _4,1,, +2,. +2_r,. ..|_4,,3}.
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§ 68. Schwarzschild metric

We now seek the spherically symmetrical metric
(67.1) consistent with the existence of one gravitating
point particle situated at the origin, and surrounded by
empty space. When the origin itself is excluded from our
discussion, the energy-momentum tensor T% is zero at
all points. It follows from (66.8) that G%; = 0, which
yields in virtue of (67.5) the equations

(68.1) —% e {% & % v')= 0,

1 1 1 1 1
68.2 —A ’ ot e 7y ’ s I
(68.2) e [ il e +—4V] 0,

1 1 1
— — _1 — — ¥ 3

(68.8) =1 {r, : 3.] 0.

The solution of (68.8) is readily found to be e-2=1—2m/(c%),
where the constant of integration m introduced in this
way can be identified physically with the rest mass of the
gravitating particle. Further, we subtract (68.8) from
(68.1) and obtain e=A(2’ + »')/r = 0. That is 2’ + +»' = 0,
from which we have 1 4 » = k, where k is a constant.
Thus e® = e*{1 — 2m/(c®)}. We can now verify that
equation (68.2) is satisfied identically. However, at large
distances from the gravitating point, the metric should
approximate to the metric (64.6) of special relativity.
Therefore, we must select k = 0. We thus obtain the
Schwarzschild metric

2m

(68.4) do® = — (1 —cTr)_ldr’ — r2d0? — 7% sin? Ody?
2m
+ ¢t (1 — E) di?,

Ex. Show that a space with Schwarzschild’s metric is an Einstein
space, but not a space of constant curvature.
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§ 69. Planetary motion

Let us investigate the motion of a planet in the gravita-
tional field of the sun. The sun will be selected as a
gravitating particle and the planet as a free particle
whose mass is so small that it does not affect the metric,
and whose world-line is then a geodesic in the V; with the
Schwarzschild metric (68.4). The geodesics are deter-
mined by the four equations (26.4) in which we now,
of course, replace s by o. We shall omit one of these
equations, in practice the most formidable one involving
d?r[do®, and replace it by (27.1) which is of the first order
and is satisfied along the geodesics. When this is done,
we no longer require the Christoffel symbols of the type

l:ﬁ} The remaining non-vanishing symbols of the second

kind can be calculated from (67.2) and may be found
to be

= -3 B
(3} =—smoemo, (5] =eoto

Hence the four equations of the geodesics are
d*0 2 dr do : dy\*?
ﬁ-l_? §5—51n9c083 (E)
d*y 2 drdy dydf

Wt T T TP H
@t  2m ( 2m)—1 dr dt

(69.1) =0,

wtee\'" @) W "
(-3 () (s ()

o)
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We may assume that the planet moves initially in the
plane 0 = z/2. That is, df/do and cos 0 are both initially
zero. Then (69.1)tells us that d®0/do* is also zero. Repeated
differentiation of this equation shows thatd‘0/do* vanishes
at £ = 0 for all 4. Hence 0 = 7/2 permanently, and the
above equations simplify to

2y  2drdy
) @t T lods ="
(69.8)  d*t  2m (  2m\-ldr dt _
'&T‘-l_% I_c’r dado_o'

0 () (5] (2] oo 8 1

We can immediately integrate (69.2) and (69.8) and the
results are

dy 2m\ dt

s — = —— —

(69.5) e h, (1 c‘r) T k,

where h and k are constants, On eliminating ¢ and o
from (69.4) and (69.5) we obtain

1 [dr\* 1 2m c2k? 1 2m
—alm) —2 (=) +F-5(-=)

Now substitute » = 1/u and differentiate the equation so
obtained with respect to ¢ and the result is

d*u m 8mu?
(69.6) d1’7+u=;:'s—ﬁ+-—c-s—.

For the planets of our solar system, the term m/e*h? is
much larger than 8mu?/c®. But when we neglect this latter
term, we obtain Newton’s equation for the motion of a
planet. Thus the first approximation to the solution of

(69.6) is the Newtonian solution u = ‘% {1+ecos(p—E&)},

where e is the eccentricity of the elliptic orbit and ¢ is
the longitude of perihelion. A second approximation
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to the solution can then be obtained in the form
%= E% {1 + ecos (p—E&—AE)}, where A& = 8m2y/cth?,

This means that the major axis of the elliptic orbit is
slowly rotating about its focus (the sun). The increase
in A¢ corresponding to a complete revolution p = 27 is
thus Gfrn’az/c‘kz For the planet Mercury the advance of
perihelion is calculated from this to be 42.9 seconds of
arc per century. This agrees well with the observational
figures of 48.5 seconds of arc per century.

§ 70. Einstein’s universe

Einstein was led by cosmological considerations to con-
sider the universe with the metric

(70.1) do®=—(1—r2/ ) 1dr*—r2d6%—1 sin? Ody®+-cde?,

where Z is a constant. This metric is spherically symme-
trical with e-* = (1 — 72/%2) and » = 0. The Christoffel
symbols of the second kind are readily obtained from
(67.2).

Let us investigate the path of a ray of light in Ein-
stein’s universe. The path must be a null-geodesic and
so its equations are given by three of the four equations

dat dz!

(26.4) taken together with g;; — — = 0. That is, we
have du du

d*0 2 df dr . dp\®
(70-2) ‘(m ?E;‘E-———mn BCOSG (@) mo,

dy 2 dypar dw;) do

Wt T TP ="

2
d t -

R e I
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where w is some parameter. Again, following the argument
of section 69, the equation (70.2) tells us that we can
take 0 to have the permanent value s7/2. With this choice,
the remaining equations reduce to

2 dpdr _ &t

() rdudu  ° dut

..|..

du*

(70.4) — (1—72/Z2)1 (d;) 72 (j"”) Lt (j;) 0.

We integrate (70.8) and obtain

dy dit

2 _ = —_— =

(70.5) o h, i k,

where k and k are constants, and then eliminate £ and »
from these equations and (70.4). The result is

(4 =) )

The solution of this equation is

h= gacostly—£) + S sind (p— &)

where £ is a constant. We immediately see that » regains
its initial value when y is increased by z and that r is
never infinite for any value of u. Thus all the null-
geodesics of Einstein’s universe, that is the light rays,

(70.6)

are closed curves. We see from (70.5) that & e i

Hence the time taken for a light ray to make a complete
circuit is given by
k

T— ;[ oo —0+ 5 o sint (p — £)| .
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Owing to the periodicity of ¢ we have
E[¥(1 5 oot PR
T-—XJ; {@cos 1p+Tsm tp} dy

4k (72 (1 i -1
— -};L [@ cos? p + —F—sm‘tp] dy

and on carrying out the integration we find that7'=27%/c.

Ex. 1. Show that the Einstein universe is neither an Einstein
space nor a space of constant curvature.

Ex. 2. Prove that the curvature invariant of Einstein’s universe
is B = 6/

§ 71. De Sitter’s universe

Other cosmological considerations suggested to De
Sitter that the universe could be described by the metric
(71.1) do®=—(1—7r* 72y dr®*—12d0*—1? sin? 0 dy?

+ (1 —r2/ZE2)de,

This metric has also spherical symmetry but the con-
stant & has not the same value as the corresponding
constant of the Einstein universe.

The paths of light rays are the null-geodesics given by
the equations

$+ %%%—sinﬂmsﬂ (3%)3=0,
ma) T+ 258, g B _,,
e Tt o L,
(71.4) — (1— g2y (%)’——r’ (ﬁ‘_;)’_ Msin 0 (:_3)’

+ (1 — 1% 22) (%)s =0.
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Again we can choose § = 7/2 permanently, and on in-
tegration the equations (71.2) and (71.8) become

dy dt
3 L — —_— —_— =1
nol =k = k1— g,

We now eliminate ¢ and « from these equations and
(71.4). The result is

(%)’ =r¥a®r2—1)

where a® = ¢*k?[h® + 1/Z2, This equation can be im-
mediately integrated and yields

(71.5) % = a cos (p —§),

where & is a constant. These trajectories correspond to
straight lines and are not closed, since 7 becomes infinite
when yp — & = n/2.

Ex. Show that the De Sitter universe is an Einstein space with
constant curvature 12/42,
Solution

p- 114. Ex. e =1 4 ar* +- bfr; v = k—J, where a, b and k
are constants.
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