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Preface to the Third Edition

If it ain’t broke, don't fix it

Anonymous

This new edition constitutes a fine-tuning of its predecessor. Sev-
eral new problems have been added, two other problems awk-
wardly worded in the earlier editions have been revised, and a
diagram has been corrected. The major change involves replacing
the operators div, grad, and curl by the appropriate expressions
using the V operator, to bring the text into conformity with mod-
ern notational practice. I have, however, resisted retitling the
book V:, V, V X, and All That.

I wish to express my gratitude to Richard Liu, Stephen Nettel,
and Sally Seidel for their useful reviews of the previous edition.
I take particular pleasure in thanking those of my readers who
over the years have been good enough to send me comments,
criticisms, and suggestions which have contributed significantly
to the quality of the text.






Chapter |

Introduction,
Vector Functions,
and Electrostatics

One lesson, Nature, let me learn of thee.

Matthew Arnold

Introduction

In this text the subject of vector calculus is presented in the con-
text of simple electrostatics. We follow this procedure for two
reasons. First, much of vector calculus was invented for use in
electromagnetic theory and is ideally suited to it. This presenta-
tion will therefore show what vector calculus is and at the same
time give you an idea of what it’s for. Second, we have a deep-
seated conviction that mathematics—in any case some mathe-
matics—is best discussed in a context which is not exclusively
1 mathematical. Thus, we will soft pedal mathematical rigor, which
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we think is an obstacle to learning this subject on a first exposure
to it, and appeal as much as possible to physical and geometric
intuition.

Now, if you want to learn vector calculus but know little or
nothing about electrostatics, you needn’t be put off by our
approach; no very great knowledge of physics is required to read
and understand this text. Only the simplest features of electro-
statics are involved, and these are presented in a few pages near
the beginning. It should not be an impediment to anyone. In fact,
the entire discussion is based on a search for a convenient method
of finding the electrostatic field given the distribution of electric
charges which produce it. This is the thread which runs through,
and unifies, our presentation, so that as a bare minimum all you
really need do is take our word for the fact that the electric field
is an important enough quantity to warrant spending some time
and effort in setting up a general method for calculating it. In the
process, we hope you will learn the elements of vector calculus.

Having said what you do not need to know, we must now say
what you do need to know. To begin with, you should, of course,
be fluent in elementary calculus. Beyond that you should know
how to work with functions of several variables, partial deriva-
tives, and multiple (double and triple) integrals.' Finally, you
must know something about vectors. This, however, is a subject
of which too many writers and teachers have made heavy
weather. What you should know about it can be listed quickly-
definition of vector, addition and subtraction of vectors, multi-
plication of vectors by scalars, dot and cross products, and finally,
resolution of vectors into components. An hour’s time with any
reasonable text on the subject should provide you with all you
need to know of it to follow this text.

Vector Functions

One of the most important quantitites we deal with in the study
of electricity is the electric field, and much of our presentation
will make use of this quantity. Since the electric field is an exam-
ple of what we call a vector function, we begin our discussion
with a brief resumé of the function concept.

A function of one variable, generally written y = f(x), is a rule

! Differential equations are used in one section of this text The section is not
essential and may be omitted if the mathematics is too frightening
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which tells us how to associate two numbers x and y; given x,
the function tells us how to determine the associated value of y.
Thus, for example, if y = f(x) = x? — 2, then we calculate y by
squaring x and then subtracting 2. So, if x = 3,

y=3-2=71.

Functions of more than one variable are also rules for associ-
ating sets of numbers. For example, a function of three variables
designated w = F(x, y, z) tells how to assign a value to w given
x, ¥, and z. It is helpful to view this concept geometrically; taking
(x, ¥, z) to be the Cartesian coordinates of a point in space, the
function F(x, y, z) tells us how to associate a number with each
point. As an illustration, a function T(x, y, z) might give the
temperature at any point (x, y, z) in a room.

The functions so far discussed are scalar functions; the result
of ‘‘plugging”” x in f(x) is the scalar y = f(x). The result of
‘‘plugging’’ the three numbers x, y, and z in T(x, y, z) is the
temperature, a scalar. The generalization to vector functions is
straightforward. A vector function (in three dimensions) is a rule
which tells us how to associate a vector with each point (x, y, 7).
An example is the velocity of a fluid. Designating this function
v(x, y, 2), it specifies the speed of the fluid as well as the direction
of flow at the point (x, y, z). In general, a vector function
F(x, v, 7) specifies a magnitude and a direction at every point
(x, y, z) in some region of space. We can picture a vector function
as a collection of arrows (Figure I-1), one for each point (x, y, z).

YN

Figure I-1

The direction of the arrow at any point is the direction specified
by the vector function, and its length is proportional to the mag-
nitude of the function.

A vector function, like any vector, can be resolved into com-
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Figure I-2
ponents, as in Figure I-2. Letting i, j, and k be unit vectors along
the x-, y-, and z-axes, respectively, we write

F(x, y,2) = iF(x, y, 2) + jF,(x, y, 2} + KF.(x, y, 2).

The three quantities F,, F,, and F,, which are themselves scalar
functions of x, y, and z, are the three Cartesian components of
the vector function F(x, y, z) in some coordinate system.?

An example of a vector function (in two dimensions for sim-
plicity) is provided by

which is illustrated in Figure I-3. You probably recognize this

Figure I-3

? Some writers use subscripts to indicate the partial derivative, for example, F,
= dF/dx. We shall not adopt such notation here, our subscripts will always denote
4 the vector component.
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Electrostatics

function as the position vector r. Each arrow in the figure is in
the radial direction (that is, directed along a line emanating from
the origin) and has a length equal to its distance from the origin.?
A second example,

—iy + jx

ROV Ty

is shown in Figure I-4. You should verify for yourself that for
this vector function all the arrows are in the tangential direction

y

Figure 14

(that is, each is tangent to a circle centered at the origin) and all
have the same length.

We shall base our discussion of electrostatics on three experi-
mental facts. The first of these facts is the existence of electric
charge itself. There are two kinds of charge, positive and nega-
tive, and every material body contains electric charge,* although

* Note that by convention an arrow is drawn with its tail, not its head, at the
point where the vector function is evaluated

* Purists will point out that neutrons, neutral pi mesons, neutrinos, and the like
do not contain charge.
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Figure I-5

often the positive and negative charges are present in equal
amounts so that there is zero ner charge.

The second fact is called Coulomb’s law, after the French
physicist who discovered it. This law states that the electrostatic
force between two charged particles (a) is proportional to the
product of their charges, (b) is inversely proportional to the
square of the distance between them, and (c) acts along the line
joining them. Thus, if g, and g are the charges of two particles
a distance r apart (Figure I-5), then the force on g, due to g is

where 1 is a unit vector (that is, a vector a length 1) pointing
from g to g,, and K is a constant of proportionality. In this text
we’ll use rationalized MKS units. In that system length, mass,
and time are measured in meters, kilograms, and seconds, respec-
tively, and electric charge in coulombs. With this choice of units
K = (1/4me,), where the constant €,, called the permittivity of
free space, has the value 8.854 X 107'2 coulombs? per newton-
meters?, and Coulomb’s law reads

I 949,

F = I-1
4te, r? " (=0

You should convince yourself that the familiar rule *‘like charges
repel, unlike charges attract’’ is built into this formula.

The third and last fact is called the principle of superposition.
If F, is the force exerted on g, by g, when there are no other
charges nearby, and F, is the force exerted on g, by g, when
there are no other charges nearby, then the principle of super-
position says that the net force exerted on g, by g, and g, when
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they are both present is the vector sum F, + F,. This is a deeper
statement than it appears at first glance. It says not merely that
electrostatic forces add vectorially (all forces add vectorially),
but that the force between two charged particles is not modified
by the presence of other charged particles.

We now introduce a vector function of position which will play
a leading role in our discussion. It is the electrostatic field,
denoted E(r) and defined by the equation E(r) = F(r)/q,, or
F(r) = q,E(r). That is, the electrostatic field is the force per unit
charge. From Equation (I-1) we have

Fry 1 ¢

E =
(r) 9 4me, r?

a. (I-2)

This is the electrostatic field at r due to the charge g.

A natural extension of these ideas is the following. Suppose
we have a group of N charges with g, situated atr,, g, atr,, ...,
gy at r,. Then the electrostatic force these charges exert on a
charge g, situated at r is

1 S 94 -

F = A
(r) dme, =i r — )t

(1-3)

where i, is the unit vector pointing from r, to r. From Equation
(I-3) we have

N

q: o

E = .
(r) 4me, (= [r — t

(1-4)

This is the electrostatic field at r = ix + jy + kz produced by
the charges g, atr, (I = 1, 2, ..., N). Equation (I-4) says that
the field due to a group of charges is the vector sum of the fields
each produces alone. That is, superposition holds for fields as
well as forces. You may think of the region of space in the vicin-
ity of a charge or group of charges as ‘‘pervaded’’ by an electro-
static field; the net electrostatic force exerted by those charges
on a charge g at a point r is then gE(r).

You may be a bit mystified about our bothering to introduce a
new vector function, the electrostatic field, which differs in an
apparently trivial way from the electrostatic force. There are two
major reasons for doing this. First, in electrostatics we are inter-
ested in the effect that a given set of charges produces on another
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set. This problem can be conveniently divided into two parts by
introducing the electrostatic field, for then we can (a) calculate
the field due to a given distribution of charges without worrying
about the effect these charges have on other charges in the vicin-
ity and (b) calculate the effect a given field has on charges placed
in it without worrying about the distribution of charges that pro-
duced the field. In this book we will be concerned with the first
of these.

The second reason for introducing the electrostatic field is
more basic. It turns out that all classical electromagnetic theory
can be codified in terms of four equations, called Maxwell’s
equations, which relate fields (electric and magnetic) to each
other and to the charges and currents which produce them. Thus,
electromagnetism is a field theory and the electric field ultimately
plays a role and assumes an importance which far transcends its
simple elementary definition as *‘force per unit charge.”

Very often it is convenient to treat a distribution of electric
charge as if it were continuous. To do this, we proceed as follows.
Suppose in some region of space of volume AV the total electric
charge is AQ. We define the average charge density in AV as

5. = A0
Pav = 3o (1-5)

Using this, we can define the charge density at the point
(x, ¥, z), denoted p(x, y, z), by taking the limit of p,, as AV
shrinks down about the point (x, y, z):

. A o
p(x,y,2) = lim a0 _ lim  pay. (I-6)
av—o AV Av—0
about (x,.z) about (x3.2}

The electric charge in some region of volume V can then be
expressed as the triple integral of p(x, y, z) over the volume V;
that is,

Q= f”v p(x, y, z) dV.

In much the same way it follows that for a continuous distribution
of charges, Equation (I-4) is replaced by
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PROBLEMS

I-1 Using arrows of the proper magnitude and direction, sketch each
of the following vector functions.

(a) iy + jx. (e) jx.

®y G+ jyV2. () Gy + pIVE + ¥, (x, y) # (0, 0).
(c) ix — jy. (2) iy + jxy

(d) iy i+ jy

I-2 Using arrows, sketch the electric field of a unit positive charge
situated at the origin. [Note. You may simplify the problem by con-
fining your sketch to one of the coordinate planes. Does it matter
which plane you choose?]

[-3  (a) Write a formula for a vector function in two dimensions
which is in the positive radial direction and whose magnitude is
1.

(b) Write a formula for a vector function in two dimensions
whose direction makes an angle of 45° with the x-axis and whose
magnitude at any point (x, y) is (x + y)%.

(c) Write a formula for a vector function in two dimensions
whose direction is tangential (in the sense of the example on
page 5) and whose magnitude at any point (x, y) is equal to its
distance from the onigin

(d) Write a formula for a vector function in three dimensions
which is in the positive radial direction and whose magnitude is
1.

I-4 An object moves in the xy-plane in such a way that its position
vector r is given as a function of time ¢ by

r = ia cos ot + jb sin wt,

where a, b, and w are constants.
(a) How far is the object from the origin at any time ¢?
(b) Find the object’s velocity and acceleration as functions of
time.
(c) Show that the object moves on the elliptical path

-

I-5 A charge + 1 is situated at the point (1, 0, 0) and a charge —1 is
situated at the point (—1, 0, 0). Find the electric field of these two
9 charges at an arbitrary point (0, y, 0) on the y-axis.



Introduction, I-6 Instead of using arrows to represent vector functions (as in Prob-

Vector Functions, lems I-1 and I-2), we sometimes use families of curves called field

and Electrostatics lines. A curve y = y(x) is a field line of the vector function F(x, y) if
at each point (x,, y,) on the curve, F(x,, y,) is tangent to the curve
(see the figure).

Y y=yx)

F (xy, y¢)

(xg, Yo)

(a) Show that the field lines y = y(x) of a vector function
F(x, y) = iF (x. y) + jF.(x. y)

are solutions of the differential equation
&y _ Fxy)
dx  F(x,y)
(b) Determine the field lines of each of the functions of Problem

I-1 Draw the field lines and compare with the arrow diagrams
of Problem I-1

10
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Oh, could I flow like thee, and make
thy stream
My great example .

Sir John Denham

Since the electrostatic field is so important a quantity in electro-
statics, it follows that we need some convenient way to find it,
given a set of charges. At first glance it might appear that we
solved this problem before we even stated it, for, after all, do not
Equations (I-4) and (I-7) provide us with a means of finding E?
The answer is, in general, no. Unless there are very few charges
in the system and/or they are arranged simply or very symmet-
rically, the sum in Equation (I-4) and the integral in Equation
(I-7) are usually prohibitively difficult—and frequently impos-
sible—to perform. Thus, these two equations provide what is
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usually only a **formal’’ solution' to the problem, not a practical
one, and we must cast about for some other way to calculate the
field E.

In the course of this casting about, we come inevitably to that
remarkable relation known as Gauss’ law. We say ‘‘inevitably’’
because it is hard to think of any other expression in elementary
electricity and magnetism containing the electric field [apart, of
course, from Equations (I-4) and (I-7), which we have already
rejected]. Gauss’ law is

”E-ﬁds=i. (1-1)
b 50

If you don’t understand this equation, don’t panic. The left-hand
side of this equation is an example of what is called a surface
integral, an important concept in vector calculus and one that is
probably new to you. The integrand of this integral is the dot
product of the electric field and the quantity fi, which is called a
*‘unit normal vector’” and is probably also unfamiliar. We are
about to discuss both surface integrals and unit normal vectors
in excruciating detail, and one of our main reasons for quoting
Gauss’ law at this point in our narrative is to motivate this
discussion.

We won’t stop here to derive Gauss’ law, since the derivation
wouldn’t mean much to you until you have read the next few
sections. Then you can consult almost any text on electricity and
magnetism for the gory details. And if you can contain yourself,
wait until we’ve discussed the divergence theorem (pages 44-
52), after which you will be able to derive Gauss’ law easily (see
Problem II-27).

The Unit Normal Vector

12

One of the factors in the integrand in Gauss’ law [Equation (II-
1)] is a quantity designated fi and called the unit normatl vector.
This quantity is part of the integrand in most if not all of the
surface integrals we’ll encounter; furthermore, as we’ll see, it
plays an important role in the evaluation of surface integrals even

' The word **formal’’ in this context is a euphemism for *‘useless ™



The Unit Normal when it does not appear explicitly. Thus, before discussing sur-

Vector face integrals themselves, we’ll dispose of the questions of how
this vector function is defined and calculated.

The word ‘‘normal’’ in the present context means, loosely

speaking, ‘‘perpendicular.’”’ Thus, a vector N normal to the xy-

plane is clearly one parallel to the z-axis (Figure II-1), while a

fax Y/ ».d'

Figure I1-1

vector normal to a spherical surface must be in the radial direction
(Figure I1-2). To give a precise definition of a vector normal to

Figure I1-2

a surface, consider an arbitrary surface S as shown in Figure II-
3. Construct two noncollinear vectors u and v tangent to S at
some point P. A vector N which is perpendicular to both u and
13 v at P is, by definition, normal to § at P. Now, as we know, the
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Figure I1-3

vector product of u and v has precisely this property; it is per-
pendicular to both u and v. Thus, we may write N = u X v. To
make this a unit vector (that is, one whose length is 1) is simple:
we just divide N by its magnitude N. Thus,

N uXxy

N |uxy|

is a unit vector normal to S at P.
To find an expression for fi, we consider some surface S given
by the equation z = f(x, y); see Figure [I-4. Following the pro-

Figure 114

cedure suggested by the above discussion, we’ll find two vectors
u and v whose cross product will yield the required normal vector
. For this purpose let’s construct a plane through a point P on
S and parallel to the xz-plane, as shown in Figure II-4. This plane
intersects the surface S in a curve C. We construct the vector u
tangent to C at P and having an x-component of arbitrary length



The Unit Normal u,. The z-component of u is (9f/dx)u,; in this expression we use

Vector the fact that the slope of u is, by construction, the same as that
2z
— ,
C g ___ H sf Uy
P Uy
X
Figure 11-5

of the surface S in the x-direction (see Figure 1I-5). Thus,

u=1iu +k (éjf) u, = [i + k (_‘ZJ':):I u,. (I1-2)
ax ax

To find v, the second of our two vectors, we pass another plane
through the point P on S, but in this case parallel to the yz-plane
(Figure 11-6). It intersects S in a curve C’, and the vector v can

|
~

ey
w

N ,

Figure 11-6

now be constructed tangent to C' at P with a y-component of
arbitrary length v,. Arguing as above, we have

v=ju +k (a—f) v, = [j + k (a—f)] v,. (II-3)
ay ay

Using the two vectors u and v as given in Equations (II-2) and
15 (I1-3), we now construct their cross product. The result,
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and the uXxyv [ l(ax J 3y k|uv,,
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is a vector, which as we stated above, is normal to S at P. To
make a unit vector of this, we divide it by its magnitude to get

F_ U

uXxXv E)x_‘lay
|u><v|_ 3 3
L+ () + (X
ax dy

This, then, is the unit vector normal to the surface z = f(x, y) at
the point (x, y, z) on the surface.” Note that it is independent of
the two arbitrary quantities u, and v,.

A couple of examples may be in order here. First a trivial one:
What is the unit vector normal to the xy-plane? The answer, of
course, is k (see Figure II-1). Let’s see how Equation (1I-4)
provides us with this answer. The equation of the xy-plane is

+ k

fi(x, y, z) = (I1-4)

= f(-xa )’) = 07
whence we have the profound observations

affox = 0 and oflay = 0.

Substituting these in Equation (1I-4), we get fi = k/V1 =k, as
advertised.

As a second example, consider the sphere of radius 1 centered
at the origin (Figure 1I-2). Its upper hemisphere is given by

z=flx,y) =1 —x* = y)"

whence

2 The uniqueness of our result [Equation (II-4)] may be questioned on two
counts The first of these is a sign ambiguity If fi is a unit normal vector, so is
—fi The matter of which sign to use is discussed below. The second question
anises from the fact that the two tangent vectors u and v used in determining f
are rather special, since each is parallel to one of the coordinate planes. Would
we get the same result using two arbitrary tangent vectors? This issue is consid-
ered in Problem 1V-26, where it is shown that fi as given by Equation (1[-4) is,
16 apart from sign, indeed unique
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Using these in Equation (II-4) leads to

EaPik bt ke
X
a-_2 ¢ _ L) - = ix + jy + ke,
\/xz y? Vxi+y 4+ 2
R A
7

where we have used the equation of the unit sphere x* + y? + z?
= 1. This is, as expected, a vector in the radial direction (see
Figure I1-2). To show that its length is 1, we observe that fi - ii
=x2+y'+2=1.

With the matter of the unit normal vector now disposed of, we
turn to our next task, a discussion of surface integrals.

Definition of Surface Integrals

17

We now define the surface integral of the normal component of
a vector function F(x, y, z). This quantity is denoted by

_”; F - i d§, (I-5)

and as you can see, Gauss’ law [Equation (II-1)] is expressed in
terms of just such an integral. Let z = f(x, y) be the equation of
some surface. We’ll consider a limited portion of this surface,
which we designate S (see Figure II-7). Our first step in formu-

Figure I1-7



Surface Integrals lating the definition of the surface integral (II-5) is to approxi-

and the mate S by a polyhedron consisting of N plane faces each of which
Divergence is tangent to S at some point. Figure 1I-8 shows how this approx-
z
y

S

Figure I1-8

imating polyhedron might look for an octant of a spherical shell.
We concentrate our attention on one of these plane faces, say the
ith one (Figure 1I-9) Let its area be denoted AS, and let

ny

x5 ¥ 2P
F(xp v xp)

Figure I1-9

(x, ¥, 2;) be the coordinates of the point at which the face is
tangent to the surface S. We evaluate the function F at this point
and then form its dot product with fi,, the unit vector normal to
the /th face. The resulting quantity, F(x,, y, z,) * fi,, is then mul-
tiplied by the area AS, of the face to give

F(x,. y,. z) - fi, AS,

18 We carry out this same process for each of the N faces of the
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approximating polyhedron and then form the sum over all N
faces:

N
E F(xl, Yis Z,) M ﬁ, AS,
=1

The surface integral (I1I-5) is defined as the /imit of this sum as
the number of faces, N, approaches infinity and the area of each
face approaches zero.® Thus,

N
”SF-ﬁ ds = lim > F(x, yi. ) * 1, S, (11-6)
cach AS—~0 =

If we want to cross all the ¢’s and dot all the /’s, this integral,
strictly speaking, should be written

fﬁ F(x, y, z) - ii(x, y, 2) dS

since both F and ii are in general functions of position. We prefer,
and where possible will use, the less cluttered notation [ F - fi
dS with the arguments of the functions understood.

The surface S over which we integrate a surface integral can
be one of two kinds: closed or open. A closed surface, such as a
spherical shell, divides space into two parts, an inside and an
outside, and to get from inside to outside, you must go through
the surface. An open surface, such as a flat piece of paper, does
not have this property; it is possible to get from one side of the
sheet to the other without going through it. The definition of
surface integrals given in Equation (II-6) applies equally well to
both closed and open surfaces. However, the surface integral is
not well-defined until we specify which of the two possible direc-
tions of the normal we are to use (see Figure I1-10). In the case
of an open surface, the direction must be given as part of the
statement of the problem. In the case of a closed surface, there
is a gentlemen’s agreement which specifies the direction once-

' The statement ‘‘each AS, — 0°’ is not quite precise The area of a rectangular
patch, for example, might tend to zero because its width decreases while its
length remains fixed. This would not be acceptable Here and elsewhere we must
interpret ‘‘each AS, — 0’ to mean that all linear dimensions of the Ith patch
tend to zero
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Figure I1-10

and-for-all: the normal is chosen so that it points outward from
the volume enclosed by the surface.

The integral in Gauss’ law [Equation (II-1)] is taken over a
closed surface. Gauss’ law, in fact, says that the surface integral
of the normal component of the electric field over a closed surface
is equal to the total (net) charge enclosed by the surface,divided
by €, Below (pages 32-36 and Problems II-11, 1I-12, and II-
13) we’ll see how, when the charges are arranged neatly and
symmetrically, Gauss’ law can be used to determine the electric
field. But the thrust of our whole discussion will be to subject
Gauss’ law to a series of harrowing adventures which eventually
transform it into an expression useful for finding E even when
we don’t have symmetry to help us.

Sometimes we encounter surface integrals which are a little
simpler than the kind we’ve just defined, although basically they
are almost the same. These are surface integrals of the form

IL Gx, y, z) dS, I-7

where the integrand G(x, y, z) is a given scalar function rather
than the dot product of two vector functions as in (II-5) and (I1I-
6). We go about defining this kind of surface integral much as
we did above: we approximate S by a polyhedron, form the prod-
uct G(x,, y, z;) AS,, sum over all faces, and then take the limit:

N

f L G(x,y, z)dS = lim 2 G(x,.y,z) AS. (1-8)
eac::lz.:‘o,—-'o o

As an example of this kind of surface integral, suppose we have
a surface of negligible thickness with surface density (that is,
mass per unit area) a(x, y, z), and we wish to determine its total
mass. Approximating this surface by a polyhedron as above, we
recognize that o(x, y, z;) AS, is approximately the mass of the
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N

2 o(x, y,» z) AS,

=1

is approximately the mass of the entire surface. Taking the limit

N

lim 2 o(x, y, z) AS, = IL o(x, y, 2) dS,

N—x =1

each AS—0

we get the total mass of the surface.
An example of an even simpler surface integral of this kind is

[[ as

This integral is taken as the definition of the surface area of S.
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Now that we have defined surface integrals, we must develop
methods to evaluate them, and that will be our task here. For
simplicity we’ll deal with surface integrals of the form (II-7),
where the integrand is a given scalar function, rather than the
slightly more complicated form (II-5). There will be no loss of
generality in doing this for all our results can be made to apply
to integrals of the form (II-5) just by replacing G(x, y, z) every-
where by F(x, y, z) * .
To evaluate the integral

IL G(x, y, z) dS

over a portion S of the surface z = f(x, y) (see Figure II-11), we
go back to the definition of the surface integral [Equation (II-
8)). Our strategy will be to relate AS, to the area AR, of its pro-
jection on the xy-plane, as shown in Figure II-12. Doing so, as
we’ll see, will enable us to express the surface integral over S in
terms of an ordinary double integral over R, which is the projec-
tion of S on the xy-plane, as shown in Figure II-11.
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z2=f(x,y) T~

Sl

Figure II-11

Figure 11-12

Relating AS, to AR, is not difficult if we recall that AS, (like
the area of any plane surface) can be approximated to any desired
degree of accuracy by a set of rectangles as shown in Figure
II-13. For this reason we need only find the relation between the

L
|

!

Figure 1I-13

area of a rectangle and its projection on the xy-plane. Thus, con-
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Figure II-14

sider a rectangle so oriented that one pair of its sides is parallel
to the xy-plane (Figure II-14). If we call the lengths of these
sides a, it’s clear that their projections on the xy-plane also have
length a. But the other pair of sides, of length b, have projections
of length b’, and in general, b and b’ are not equal. Thus, to
relate the area of the rectangle ab to the area of its projection
ab’, we must express b in terms of b’. This is easy to do, for if
6 is the angle shown in Figure II-14, we have b = b'/cos 0,
and so

ab =

cos 0

If we let fi denote the unit vector normal to our rectangle, then
we can readily convince ourselves that cos 8 = f - k where k, as
always, is the unit vector of the z-direction. Thus,

ab"
Ak

ab =

Since the area AS, can be approximated with arbitrary accuracy
by such rectangles, it follows that
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where, of course, fi, is the unit vector normal to the Ith plane
surface.

We can now rewrite the definition of the surface integral
[Equation (II-8)] as

, ad AR,
G(x, y,2)dS = lim 2 Gx,y,z)——, (-9
s N—oo 1=1 n,'k
cach AR—0

where the statement ‘‘each AS, — 0’ has been replaced by the
equivalent but now more appropriate ‘‘each AR, — 0.”” We are
now obviously well on the road to rewriting the surface integral
over S as a double integral over R. In fact,

> G, yin 2)
lim —"" AR
N—oo 1=2| -k !
cach AR—0

G(x, v, 2)
I1-10
ffn(x,y,z) kdXdy’ ( )

where fi(x, y, z) is the unit vector normal to the surface S at the
point (x, y, z). This is a double integral over R even though it
does not quite look like one. What appears to spoil it is that nasty
z in G and A; a double integral over a region in the xy-plane
clearly has no business containing any z’s. But the z-dependence
is spurious because (x, y, z) are the coordinates of a point on §,
and so z = f(x, y). Hence, at the expense of making the integral
look even fiercer than it already does in Equation (1I-10), we can
eliminate the apparent z-dependence of the integrand and write

Glx, y, f(x, ¥)]
dx dy. II-11
ffkﬁ[x’y’f(xvy)]'k y ( )

The faint of heart can take courage; in most cases this integrand
reduces quickly to something much simpler and pleasanter look-
ing—a fact we will demonstrate by example below. At this point
we introduce the expression for the unit normal vector [Equation
(II4)]. We find

1

Ak = ,
" V1 + @flax)* + (aflay)?

and so Equation (II-11) becomes
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f J:s Gx y, 2) dS = f L Glx. y, f(x, y)]

af\"  [of\’
: ‘/1 + (é) + (—f) dxdy, (@-12)

dy
Thus, the surface integral of G(x, y, z) over the surface S has
been expressed as a double integral of a messy looking function
over the region R, the projection of S in the xy-plane. As we
remarked above, in practice the integral is usually much less
ghastly than it appears written out in Equations (II-11) or (II-
12). You will see this in the example we now give.
Let’s compute the surface integral

ffoa
A

where § is the octant of the sphere of radius 1 centered at the
origin as shown in Figure II-15. The projection of S on the xy-

Figure 11-15

plane (that is, R) is the area enclosed by the quarter circle. The
equation of Sis x2 + y2 + z22 = 1, or

z2=flx,y) = +V1—x* -y,
It follows then that

¥ _

X
- = and ===
ox z

so that
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-
ox dy z z

where we have used x2 4+ y? + z2 = 1. Hence,

1
2 — 2 - —
sz dS—sz dedy fszdxdy.

Substituting for z in terms of x and y, we get

”sdes=”Rmdxdy.

This is an ordinary double integral, and you should verify that
its value is /6. {Suggestion: Convert to polar coordinates: x =
rcos 8, and y = r sin 6. The integration is then trivial.]

It should be emphasized that the foregoing discussion was
based on the assumption that the surface S is described by an
equation of the form z = f(x, y); in such a situation a surface
integral is converted into a double integral over a region in the
xy-plane. But it may happen that a given surface is more con-
veniently described by an equation of the form y = g(x, z) as in
Figure II-16(a). If this is so, then

Figure I1-16(a)
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ffs G(x, y,z) dS
og 2 og z
= J‘J‘R G[x, g(X, Z), Z]/l + (5) + (52) dx dZ,

where R is a region in the xz-plane. Similarly, if we have a surface
described by x = h(y, z), as in Figure II-16(b), then we use

JL G(x, y,2) dS

on\’ FAY
= h uted el X
ffk Glh(y, 2), y, Z]‘/l + (ay) + (az) dy dz

where R in this case is a region in the yz-plane. Finally, a surface

Figure 11-16(b)
may have several parts, and it may then be-convenient to project

different parts on different coordinate planes.
To evaluate surface integrals of the form (II-5), that is,

[[r-sas
N

we merely replace G by F - i in Equation (II-12) to get

”sF.ﬁds=”RF.ﬁ\/1 +(g)z+(g_fy')zdxdy_

If we now use Equation (II-4) to write this out in detail, we find
that the square root factor cancels and we get
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fLF'ﬁﬁ=JL{—RMmeyH%

9
= Fx, y, f(x, y)] a_i + Flx, y, f(x, y)]} dx dy. (1I-13)

We leave it to the reader to write down the analogous formulas
when the surface § is given by y = g(x, z) or x = h(y, z), which
must be projected onto regions in the xz- and yz-planes,
respectively.

This last equation [Equation (II-13)] is enough to make strong
men weep, but, as before, in most calculations it quickly reduces
to something quite tame. For example, suppose we wish to cal-
culate [ F - f dS where F(x, y, z) = iz — jy + kx and S is the
portion of the plane

x+2y+22=2

bounded by the coordinate planes, that is, the triangle reclining
gracefully in Figure II-17(a). The normal vector # is chosen so

Figure II-17(a)

that it points away from the origin as shown in Figure II-17(a),
and we’ll project S onto the xy-plane. We have

2= fry)=1-7-

and so

S _ _ o _ _
ox b dy
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We also have

X
Fx=Z=1_§_y’ Fyz_yv F,

Hence

”sl«‘-ﬁds
” {[ (1‘“—Y)](—%)+y(—1)+x}dxdy
-2+ Y s

The region R over which the integral must be taken is shown in
Figure II-17(b). The problem has thus been reduced to the com-

Figure I1-17(b)

putation of a rather simple double integral, and you should carry
out the integration yourself (the answer is 3).

An integral of the type

f L F(x,y, 2)* A dS (11-14)

is sometimes called the *‘flux of F.”’ Thus Gauss’ law [Equation
(II-1)] states that the flux of the electrostatic field over some
closed surface is the enclosed charge divided by €.

It is useful in obtaining a geometrical feeling for some aspects
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of vector calculus to understand the significance of the word flux
(Latin for ‘‘fiow’’) used in this context. For this purpose let us
consider a fluid of density p moving with velocity v. We ask for
the total mass of fluid which crosses an area AS perpendicular to
the direction of flow in a time At. Clearly all the fluid in the
cylinder of length v Ar with the patch AS as base will cross AS
in the interval Ar (Figure II-18). The volume of this cylinder is

vlt
Figure I1-18

v At AS, and it contains a total mass pv Ar AS. Dividing out the
At will give the rate of flow. Thus,

Rate of flow) _
( through AS) = pv AS.

Now let us consider a somewhat more complicated case in

which the area AS is not perpendicular to the direction of flow
(Figure I1-19). The volume containing the material which will

N\
1
] ~ 14
- ]

< vt >

Figure II-19

flow through AS in time At is now just the volume of the little
skewed cylinder shown in the diagram. The volume is
v At AS cos 0, where 6 is the angle between the velocity vector
v and ii, the unit vector normal to AS and pointing outward from
the skewed cylinder. But v cos 6 = v * fi. So, multiplying by p
and dividing by At, we get
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Rate of flow) _
( through AS ) =pv-AAS.

Finally, consider a surface S in some region of space contain-
ing flowing matter (Figure 1I-20). Approximate the surface by a

)
# \ASI

Figure 11-20

polyhedron. By the above argument, the rate at which matter
flows through the Ith face of this polyhedron is approximately

p(x;, yis 2)V(x;, ¥y, 2)) * By AS,.

Here, of course, (x,, y, z,) are the coordinates of the point on the
lth face at which it is tangent to S, and A, is the unit vector normal
to the Ith face. Summing over all the faces and taking the limit,
we get

Rate of
( Slfozgl? gw) = j J; p(x, y, 2)v(x, y, z) - A dS.

If S happens to be a closed surface and there is a net rate of flow
out of the volume it encloses, then you can convince yourself
that this integral will be positive, and if there is a net rate of flow
in, the integral will be negative.

If in this last equation we put

F(x, y, 2) = p(x, y, 2)V(x, y, 2),

the integral is seen to be formally identical with that in Equation
(11-14). For this reason any integral of the form (I1I-14) is called
“‘the flux of F over the surface S,”” even when the function F is
not the product of a density and a velocity! The reason for stress-
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ing this point about flux is that, misnomer though it may be, it
nonetheless gives a good geometric or physical picture of Gauss’
law: The electric field ‘‘flows’” out of a surface enclosing charge,
and the ‘‘amount’’ of this ‘‘flow’’ is proportional to the net
charge enclosed. Warning: This is not to be taken literally; the
electric field is not flowing in the sense in which fluid flows. It
is merely picturesque language intended to aid us in understand-
ing the physics in Gauss’ law.

Law to Find the Field

Having rejected the two expressions for E [Equations (I-4) and
(I-7)], we find that the only candidate left for providing us with
a good general method for calculating the field is Gauss’ law. At
first glance it does not appear to be a very likely candidate
because, unlike Equations (I-4) and (I-7), it is not an explicit
expression for E. That is, it does not say ‘‘E equals something.”’
Rather, it says ‘“The flux of E (the surface integral of the normal
component of E) equals something.”” Thus, to use Gauss’ law,
we must ‘‘disentangle’” E from its surroundings. Despite this,
there are situations in which Gauss’ law can be used to find the
field as an example will now show.

Consider a point charge g placed at the origin of a coordinate
system. Symmetry considerations tell us two things about its
electric field: (1) It must be in the radial direction (that is, it must
point directly toward, or directly away from, the origin), and (2)
it must have the same magnitude at all points on the surface of
a sphere centered at the origin. Stating this in symbols, we have
E = & E(r), where & = r/ris a unit vector in the radial direction.
Thus, Gauss’ law becomes

jfs E(r)é, - i dS = qgle,

If, for the surface S, we now choose a spherical shell of radius r
centered at the origin, a little thought will convince you that &
= ¢&,sothatii+ & = 1| and we get

f L E(r) dS = gle,.

This integral is trivial to perform if we recognize that r is a con-
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stant over the spherical surface S. This means that E(r) is also a
constant on S and we get*

jjs E(r) dS = E(r) ,”; dS = 4wrE(r) = qle,,

whence

E(r) =

B YL

4re,

and

r

& ¢
4, P’

E(r) = &E(r) =

in agreement with Equation (I-2).

We can see from this example how heavily we depend on sym-
metry when using Gauss’ law to obtain the field. In fact, to use
Gauss’ law in the form given in Equation (II-1) requires even
more symmetry and simplicity than Equations (I-4) and (I-7).
The blunt truth is that this form of the law yields the electric field
in a grand total of three situations (and combinations thereof):
(1) a spherically symmetric distribution of charge (of which the
point charge considered above is a special case), (2) an infinitely
long cylindnically symmetric distribution (including the case of
an infinitely long uniformly distributed line of charge), and (3)
an infinite slab of charge (including as a special case an infinite
uniformly charged plane).” The real value of Equation (II-1) is
that it can be twisted and beaten into a more useful form.

What is it about Equation (II-1) that makes it difficult to find
E? To answer this question, suppose we are doing a numerical
calculation on a computer and wish to evaluate [ [ E - fi dS. The
standard procedure for dealing with integrals numerically is to
approximate them as sums, a rather obvious thing to do since an
integral, after all, is the limit of a sum. Thus, suppose we divide
the surface § into, say, 10 patches. We then have as an approx-
imation to Equation (II-1)

* Shortcuts like this often make it possible to evaluate surface integrals without
using all the paraphernalia we discussed above. Further examples are given in
Problem II-10.

$ Examples of these are given in Problems II-11, 1I-12, and 1I-13
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10
E E - fi, AS, = gle,,
=

where E, is the value of E, and i, is the unit normal, somewhere
on the /th patch. There is little or no hope of finding E from this:
it is one equation in the 10 unknowns E, E,, . . ., E,,. Further-
more, it is probably not very accurate. To improve the accuracy,
we might make 100 subdivisions rather than just 10 to get

100
> E, - iy, AS, = gle,.
=1

Much more accurate! And much more hopeless, too, because this
is one equation in 100 unknowns. Even more accurate (and more
hopeless) is

jJ;E-ﬁdS=q/eo,

which is one equation in infinitely many unknowns. These
unknowns are, of course, the values of E - i at every one of the
infinitely many points of the surface S.°

We have now isolated the trouble with Equation (II-1): it
involves an entire surface and therefore the value of E - il at
infinitely many points. If, somehow, we could deal with the ‘‘flux
at a single point’’ (whatever that may mean!) rather than the flux
through a surface, perhaps then Gauss’ law might yield some-
thing tractable. How might we arrange this? For simplicity let us
surround some point P by a set of concentric spherical shells S|,
S,. S;, and so on (Figure II-21), and calculate the flux ®,, ®,,
®,, and so on, through each shell. We might then attempt to
define the ‘‘flux at the point P’’ as the limiting value approached
by the sequence of fluxes calculated this way over smaller and
smaller shells centered at P.

This sounds good; it has a heartening ‘‘mathematical’’ ring to
it. Unfortunately, it does not work because (assuming the charge
density is finite everywhere) the sequence of fluxes, calculated
as described above, approaches zero for any point P. This is fairly
obvious since it is merely the statement that the flux through a

® The reason Gauss’ law yields the expression for the field of a point charge
examined above is that symmetry in that case shows the infinitely many
unknowns are all equal. This turns Gauss’ law into one equation in one unknown.
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surface tends to zero as the surface shrinks to a point. Since our
objective was to find a way to determine the flux at a point, and
thereby learn something about the field at that point, and since
we get zero at any point no matter what the field there may be,
we have obviously not obtained what we want.

It is useful to give a physicist’s rough-and-ready proof of the
fact that the flux goes to zero as the surface shrinks down to a
point, for even though this fact may be obvious, the proof will
suggest how to pull this chestnut out of the fire. For this purpose
we note that if pa, denotes the average density of electric charge
[Equation I-5] in some region of volume AV, then the total
charge in AV is pay AV. Thus Gauss’ law [Equation (II-1)] may
be written

f J; E - i dS = pay AVe,, (II-15)

where, as indicated in Figure I1I-22, the surface integral is taken

AV

Figure 11-22

over the surface S which encloses the volume AV. From this
35 expression [Equation (II-15)] we can see the validity of our
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assertion: As § — 0, the enclosed volume AV must, of course,
also approach zero. Thus, the flux also tends to zero and the
assertion is proved.” We have not only given a proof, but (and
this is the point) we can now isolate a quantity which does not
vanish as § — 0. Dividing Equation (II-15) by AV, we get

1 . —
EILE.ndS=pAV/€°'

This expression, awkward and unappealing though it may be, is
nonetheless close to what we are after, even though it still
involves an integral of E over an entire surface. For if we now
take the limit as S shrinks to zero about some point in AV whose
coordinates are (x, y, z), then, as we see from Equation (I-6), the
average density pay approaches p(x, y, z), the density at (x, y, 2),
and we get

1
lim —
av—o AV

about (x.y.2)

jjs E - fi dS = p(x, y, 2)/€, (II-16)

This expression is admittedly downright hideous and whether it
will be of any practical use whatever depends on our being able
to pound the left-hand side into a form which looks and acts at
least half-civilized. We turn to this task now.

The Divergence
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Let us consider the surface integral of some arbitrary vector func-

tion F(x, y, 2):
jf F - i dS.
S

We shall be interested in the ratio of this integral to the volume
enclosed by the surface § as the volume shrinks to zero about
some point, for that is exactly the type of quantity which appears
in Equation (II-16). This limit is important enough to warrant a
special name and notation. It is called the divergence of F and is
designated div F. Thus,

7 This line of reasoning and the conclusion must be altered if the system contains
point charges
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1

divF= | —J'J'F'AdS. 11-17

e A:/To Av tJs " ( )
about (x,).7)

This quantity is clearly a scalar. Furthermore, it will, in general,

have different values at different points (x, y, z). Thus the diver-

gence of a vector function is a scalar function of position.
Equation (II-16) can now be written

div E = ple, (II-18)

At this stage, however, our fancy new notation has only a cos-
metic value, helping to beautify an ugly equation. Whether it has
any practical value as well is the matter taken up in the following
discussion in which we actually calculate the limit of the ratio of
flux to enclosed volume and find that it can be expressed reason-
ably simply in terms of certain partial derivatives. Before turning
to this calculation, however, it’s worth mentioning that if we take
our new terminology literally, we can interpret Equation (II-18)
to mean that the field ‘‘diverges’” from a point, and how much
it diverges, so to speak, depends on how much charge there is at
that point as represented by the density there.

Our next order of business is to find the reasonably simple
expression for the divergence of a vector function promised
above. Thus, consider a small rectangular parallelepiped® with
edges of length Ax, Ay, and Az parallel to the coordinate axes
(Figure I1-23). Let the point at the center of the little cuboid have

y

Figure H-23

8 Henceforth we’ll refer to this as a *‘cuboid,”” a made-up term that takes less
time and space than the sesquipedalian *‘rectangular parallelepiped.’’
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coordinates (x, y, z). We calculate the surface integral of F over
the surface of the cuboid by regarding the integral as a sum of
six terms, one for each cuboid face. We begin by considering the
face marked S, in the figure. We want

IL.F.ﬁdS'

Now it is clear the unit vector normal to this face and pointing
outward from the enclosed volume is i. Thus, since F«i = F,,
the above integral is

”; F.(x,y, z)ds.

By assumption the cuboid is small (eventually we shall take the
limit as it shrinks to zero). We can therefore calculate this integral
approximately as F, evaluated at the center of the face S, mul-
tiplied by the area of the face.” The coordinates of the center of
S, are (x + Ax/2, y, z). Thus,

Ax
jfs F.(x,y,2)dS = F, (x + > Y, z) Ay Az (11I-19)

The same kind of reasoning applied to the opposite face S,
[whose outward normal is —i and whose center is at

(x — Ax/2, y, 7)] leads to
- f f F_ dS
52

jf F-idS
S,
= ~F, (x BT ¥ z) Ay Az, (I1-20)

Adding together the contributions of these two faces [Equations
(11-19) and (II-20)], we get

? The rationale behind this is as follows: There is a mean value theorem, which
tells us that the integral of F, over S, is equal to the area of §, multiplied by the
function evaluated somewhere on S,. Since S, is small, the point where we should
evaluate F, and the point where we do evaluate it (that is, the center) must be
close together, and F, must have nearly the same value at the two points. Hence
what our procedure gives us is a good approximation to the value of the integral.
Furthermore, as the cuboid shrinks to zero, the two points get closer and closer
so that in the limit our result [Equation (I[-22)] will be exact.
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I
—
!

Ax Ax
+ = - - =
(x > A z) F, (x > s ¥ z)] Ay Az
Fx+Ax _F _Ax
x 2,)’,2 | X 2,)’,2

= Ax Ay Az

Recognizing that Ax Ay Az = AV, the volume of the cuboid, we
have

1
_l/fj;.+st.ﬂds
F x+g - F )c—g
x 2,)’,2 x 2,)’,2

= A . 121

We now must take the limit of this as AV approaches zero.'® But,
of course, as AV goes to zero, so do each of the sides of the
cuboid. Thus, on the right-hand side of Equation (II-21) we can
write lim,,_, in place of lim,,_,,, and we find

im 55 ) o ¥
A‘I,TO AV s,+s:

x+§ x—A—x
x 2,)’,2 2,)’,2 oF

= lim = —=
Ax—0 Ax 6x

evaluated at (x, y, z). This last equality follows from the defini-
tion of the partial derivative. It should come as no surprise that
the other two pairs of faces of the cuboid contribute 4F,/dy and
dF./dz. Thus,

oF
li —ij Ands = +—z.
A:/r_r.loAV 9z

!9 Note that we have postponed calculating the contributions from the other four
faces of the cuboid.
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already remarked, is the divergence of F [Equation (II-17)]. Thus
we have just demonstrated that

OF, o, (I1-22)
dax ay oz’

oF,

divF =

It can be shown that this result is independent of the shape of the
volume used to obtain it (see Problem II-17).

Using Equation (II-22) to find the divergence of a vector func-
tion is a straightforward matter, but we’ll give an example just
for the record. Consider the function

F(x,y,2) = ix? + joy + kyz.

We have
oF oF oF
— = 2, — =y, and — =y
ax dy 9z
Thus,

divF=2x+x+y=3x+y

Returning now to the electrostatic field, we combine Equations
(II-18) and (II-22) to get

oE oF oE,
— + — + — = ple,. (I1-23)
ox dy dz

This equation, which is much more general than our derivation
of it suggests, is one of Maxwell’s equations and is completely
equivalent to Gauss’ law [Equation (II-1)]. It is sometimes called
the *‘differential form’’ of Gauss’ law.

We have now arrived at our goal (almost!) for we have related
a property of the electrostatic field at a point (that is, its diver-
gence) to a known quantity (the charge density) at that point. In
all fairness it should be said that Equation (II-23) can in a sense
be regarded as a single (differential) equation in three unknowns.
(E,, E,, E,) and for this reason is not often used in this form to
find the field. It turns out, however, that the three components of



The Divergence  E can be related to each other very elegantly; when we develop

in Cylindrical that relationship, we shall return to this question of finding a
and Spherical convenient means of calculating E.
Coordinates

The Divergence in Cylindrical and Spherical Coordinates

One often sees Equation (II-22) given as the definition of the
divergence of the vector function F. While this is certainly
acceptable, we much prefer to define the divergence as the limit
of flux to volume as stated in Equation (II-16). Equation (II-22)
is then merely the form the divergence takes in Cartesian coor-
dinates. In other coordinate systems it looks quite different. For
example, in cylindrical coordinates the function F has three com-
ponents, which you will not be shocked to learn are designated
F,, Fy, and F, {see Figure 11-24(a)]. To obtain the divergence

z

Fl
A
1
i
--F,
Sl ?Fe
s F,
y
] z
r
X,

Figure I1-24(a)

of F in cylindrical coordinates, we consider the ‘‘cylindrical
cuboid’’ shown in Figure II-24(b) with volume AV = r Ar A6 Az

\\\\ ; .'5""3'.
2 |
,ﬁo ¢  6,2)
\\: -~ !
\}>/ “““ 1 2 | 8 Az
R e -‘s*
Y | 4 4

41 Figure I1-24(b)



Surface Integrals and center at the point (r, 6, z)."! The flux of F through the face
and the marked *‘1"’ is

Divergence
[ F-nas
S

[ 5 as
5
Ar Ar
+ = + =
F, (r 3 , 0, z) (r 2>A6 Az,
while through the face marked ‘2’ it is
fj F-ifidS=— fj F.dS
$2 5
Ar Ar
——F,<r—2,9,z><r 2>A6Az.

Adding these two results and dividing by the volume AV of the
cuboid, we find

I

1 .
Z—‘; jLﬁsz F-nds

1 Ar Ar
=— | {r+—= +—=.0,
rAr[(r 2>F,<r 2 -9 Z)

which in the limit as Ar (and therefore AV) approaches zero
becomes

la(F)
- — (rF)).
ror "

' Note that in the Cartesian case (Figure II-23) each face of the cuboid is given

by an equation of the form x = constant, y = constant, or z = constant In the

same way each face of the surface in Figure II-24(b) is given by an equation of
42 the form r = constant, 8 = constant, or z = constant.



The Del Notation Arguing in an analogous way for the other four faces (see Prob-

lem II-18), we arrive finally at the expression for the divergence
in cylindrical coordinates:

1 9F, | F.
O, | OF. (11-24)

1 o
divF = -~ (rF) + -
v rar(r R r 40 az

In spherical coordinates where the components of F are F,,
Fy, and F, (see Figure II-25) similar reasoning (see Problem

Figure I1-25

I1-21) leads to the expression

19 ) 1 oF
ivF = — — (r?F) + — (si + -2
div F r*or (rF) r sin 6 90 (sin 6 F) rsin 0 ad
(I1-25)
The Del Notation
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There is a special notation in terms of which the divergence may
be written. There would be little or no reason for introducing it
if it served only to provide another way of writing ‘‘div,”” but as
we shall soon see, it has considerable usefulness in vector
calculus.

Let us define a quantity designated V (read ‘‘del’’) by the fol-
lowing rather peculiar looking equation:

] ] ]
V=i—+j—+k—.
ox ay 9z
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If we take the dot product of V and some vector function F =
iF, + jF, + kF,, we get

a a a
V-F=[i—+j—+k—)-(F. + jF, + kF)
ax 7 ay 8z :

d d d
=—F, +_—-F +_—F,
ox ay 9z
Now we interpret the ‘‘product’’ of d/0x and F, as a partial deriv-
ative; that is,
9 p o 9F.

ax *  ox’

There are similar equations for the two other ‘‘products’’ (8/dy)F,
and (8/dz)F,. With this convention we recognize V - F (‘‘del dot
F’’) as the same as div F, and henceforth, to conform with mod-
ern notational practice, we shall always use V - F to indicate the
divergence. Thus, Equations (II-18) and (I1-23) will be written

V- E = ple,

Mathematicians call a symbol like V an operator. When we
‘‘operate’” with V by dotting it into a vector function we get the
divergence of that function, as we have just seen. In subsequent
discussions we shall introduce three other quantities (gradient,
curl, and Laplacian) all of which are operators and all of which
can be written in terms of V.

The Divergence Theorem

44

For the remainder of this chapter we digress from the mainstream
of our narrative to discuss a famous theorem which asserts a
remarkable connection between surface integrals and volume
integrals. Although this relation may be suggested by the work
we have done in electrostatics, the theorem is a mathematical
statement holding under quite general circumstances. It is inde-
pendent of any physics and is applicable in many different places.
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It is called the divergence theorem and sometimes Gauss’ theo-
rem (not to be confused with Gauss’ law).

We shall not give a mathematically rigorous proof of the diver-
gence theorem; such a proof is given in many texts in advanced
calculus. Instead we present here another physicist’s rough-and-
ready proof. Thus, consider a closed surface S. Subdivide the
volume V enclosed by S arbitrarily into N subvolumes, one of
which is shown in Figure II-26 (drawn as a cube for conven-

Figure 11-26

ience). We begin our proof by asserting that the flux of an arbi-
trary vector function F(x, y, z) through the surface S equals the
sum of the fluxes through the surfaces of each of the subvolumes:

N
fLF-ﬁdS=2f F - i dS. (11-26)
=1 5

Here S, is the surface which encloses the subvolume AV, To
establish Equation (II-26), consider two adjacent subvolumes
(Figure 1I-27). Let their common face be denoted S,. The flux

Figure 11-27
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through the subvolume marked ‘‘1°’ in Figure II-27 includes, of
course, a contribution from S,, which is

[enas
So

Here i, is a unit vector normal to the face S,, and by our usual
convention, it points outward from subvolume 1. The flux
through the subvolume marked ‘‘2°’ also includes a contribution

from S
[[ £-as
So

The vector i, is a unit normal which points outward from sub-
volume 2. Clearly fi, = —1i,. Thus, in forming the sum in Equa-
tion (II-26), we shall include, among other things, the pair of
terms

[[o-tas[[ ronas-
fj F-ﬁ,dS—jf F-ii, dS=0.
So So

We see that these terms cancel each other and there is no net
contribution to the sum in Equation (II-26) due to the face S,.
In fact this sort of cancellation will obviously occur for any sub-
volume surface which is common to two adjacent subvolumes.
But all subvolume surfaces are common to two adjacent subvol-
umes except those which are part of the original (*‘outer’’) sur-
face S. Hence the only terms in the sum in Equation (11-26) which
survive come from those subvolume surfaces which, taken
together, constitute the surface S. This establishes the validity of
Equation (I1-26).

We now rewrite Equation (II-26) in the following curious
fashion:

IR L” .
”SF ndS—;[AVI ,F ndS] AV, (11-27)

This clearly alters nothing since we have just multiplied and
divided each term of the sum by AV, the subvolume enclosed by
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the surface S,. We can now imagine partitioning the original vol-
ume V into an ever larger number of smaller and smaller sub-
volumes. In other words, we take the limit of the sum in Equation
(1I-27) as the number of subdivisions tends to infinity and each
AV, tends to zero. We recognize that the limit of the quantity in
square brackets in Equation (II-27) is, by definition, (V * F), that
is, the divergence of F evaluated at the point about which AV, is shrink-
ing. Thus, for each AV, very small, Equation (I1I-27) becomes

”S F-fdS= (V-F)AV,. (11-28)

Further, in the limit, this sum is, again by definition, the triple
integral of V « F over the volume enclosed by S:

N
lim > (V-F) AV, = ”f V-FdVv. (II-29)
N—oow  I=1 v

each Avi—0

Putting together Equations (1I-26) through (11-29), we arrive at

our result:
fLF-ﬁdS=jij-FdV. (I11-30)
v

This is the divergence theorem. In words it says that the flux of
a vector function through some closed surface equals the triple
integral of the divergence of that function over the volume
enclosed by the surface.

The major reason the proof given above is not rigorous is that
a triple integral is defined as the limit of a sum of the form

Z g(x, yi, ) AV,

where the function g is well-defined. In Equation (II-27), how-
ever, the quantity multiplying the volume element AV, in each
term of the sum is not a well-defined function in this sense. That
is, as AV, tends to zero the quantity in the square brackets
changes; it can be identified as the divergence of F only in the
limit. A careful, rigorous treatment would show that Equation
(I1-30) is valid if F (that is, F,, F,, and F) is continuous and
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differentiable, and its first derivatives are continuous in V and on
S.

Now let’s illustrate the divergence theorem. Since endless
pages of hideous integrals will not serve our purpose, we’ll use
a simple example. Let

F(x,y,2) =ix + jy + ke

and choose for S the surface shown in Figure II-28, consisting

<

Figure 11-28

of the hemispherical shell of radius 1 and the region R of the xy-
plane enclosed by the unit circle. On the hemisphere we have fi
=jx + jy + kg, sothat i-F = x? + y? + z2 = 1. Thus, on the
hemisphere,

[[-nas— [ a5-2m

where the last equality follows from the fact that the integral is
merely the surface area of the unit hemisphere. On the region R
we have fi = —k so that i - F = —z. Hence, on R,

”F-ﬁds=—”zdxdy=o

because z = 0 everywhere on R. Thus, there is no contribution
to the surface integral from the circular region R and



Two Simple
Applications of
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jLF-ﬁdS=2'n'.

Next we find by a trivial calculation that V - F = 3. It follows
then that

[[[v-wamsf[fav=atmon

where we usé) the fact that the volume of the unit hemisphere is
27/3. Since the surface and volume integrals are equal, this illus-
trates Equation (II-30).

Two Simple Applications of the Divergence Theorem
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As one example of the use of the divergence theorem we give an
alternative derivation of Equation (II-18), the analysis of which
led us to the divergence theorem itself. In other words, this is
how easy it would have been if we had known the divergence
theorem to begin with!

We start with Gauss’ law in the form

foo 1
fLE'ndS—eojfﬁpdV. (11-31)

Next we apply the divergence theorem to the surface integral in
the above equation to get

fLE'ﬁdS=jJLV‘EdV. (11-32)

Thus, combining Equations (II-31) and 11-32), we find

[[[veav=L{[[oav

In general, if two volume integrals are equal, it is not necessarily
true that their integrands are equal. It might be that the integrals
are equal only over the particular volume of integration V, and
by integrating over a different volume, we would wreck the
equality. In the present case, however, this is not true because
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Gauss’ law holds for any arbitrary volume V, and we cannot upset
the equality by changing the volume. But this can be so only if
the integrands are equal. Hence,

V- E = ple,,

which should look familiar!

Another example of the use of the divergence theorem is the
following. Suppose that in some region of space *‘stuff’’ (matter,
electric charge, anything) is moving (Figure I1-29). Let the den-

Figure II-29

sity of this stuff at any point (x, y, z) and any time ¢ be
p(x, y, z, t) and let its velocity be v(x, y, z, t). Further, suppose
this stuff is conserved, that is, it is neither created nor destroyed.
Concentrating on some arbitrary volume V in space, we ask:
What is the rate at which the amount of stuff in this volume is
changing? At any time ¢ the amount of stuff in V is

”fv p(x, y, z, 1) dV

and the rate at which it is changing is

2l -JI1.2
7 v p(x, y,z, 1) dV v ar dv.

(To be able to move the derivative under the integral sign this
way requires that dp/ot be continuous.)



Two Simple Next we recall from an earlier discussion that the rate at which
Applications of stuff flows through a surface § is

the Divergence
Theorem
SPV: fi ds.

We then assert that the rate at which the amount of stuff in V is
changing is equal to thje rate at which it is flowing through the
enclosing surface §; in"equation form this statement reads

f”v‘;_?d"= ‘ffspv'ﬁds.

There are two features about this equation that require discussion:

1. The negative sign must be included because the surface
integral as defined is positive for a net flow out of the vol-
ume, but a net flow out means the amount of stuff in the
volume is decreasing.

2. This equation states that the amount of stuff in V can change
only as a result of stuff flowing across the boundary S. If
stuff were being created or destroyed in V, terms would
have to be included in the equation to reflect that fact. The
absence of any such terms is thus an expression of the con-
servation of the stuff.

Now, finally, let us apply the divergence theorem. We find

”s"v"“'d“”fVV-(pv)dv.

Hence,

”L%‘,’d‘“ - ”fvv-(pv)dv.

Arguing as we did above that V is an arbitrary volume, we can
then say

9



Surface Integrals Usually we define the current density J = pv and write Equation
and the (11-31) as
Divergence

ap

— 4+ . = (.
Py vV-]=0

An equation of this type is referred to as a continuity equation
and is, as we have seen, an expression of a conservation law (see
Problems II1-20, I11-21, and IV-21). Besides playing an impor-
tant role in electromagnetic theory, it is a basic equation both in
hydrodynamics and diffusion theory. Finally, considerations sim-
ilar to those which led to the continuity equation are involved in
the analysis of heat flow.

PROBLEMS

II-1 Find a unit vector fi normal to each of the following surfaces.
@z=2—-x-y ©)z=(1 - xH)"~2,
) z = (x* + yH)'2 d) z = x*+ yi
€) z=Q1 — x¥a® — y¥Ya»)'”.

II-2  (a) Show that the unit vector normal to the plane
ax + byt+cz=d
is given by
fi = *(ia + jb + ke)(@® + b + A2

(b) Explain in geometric terms why this expression for fi is inde-
pendent of the constant d.

I1-3 Derive expressions for the unit normal vector for surfaces given
by y = g(x, z) and by x = h(y, z). Use each to redenve the expression
for the normal to the plane given in Problem II-2.

I11-4 In each of the following use Equation II-12 to evaluate the surface
integral [f, G(x, y, z)dS.
(@) Gx.y,2) =z,
where S is the portion of the plane x + y + z = 1 in the first
octant.
1
1+ 42 + y)
where S is the portion of the paraboloid z = x*> + y” between
z=0andz=1.
(©) Glx,y,2) = (1 =X = yy%,
52 where S is the hemisphere z = (1 — x2 — y?)'2,

(b) G(x,y,2) =



Problems I1-5 1n each of the following use Equation II-13 to evaluate the surface
integral [, F * n dS.
(a) F(x,y, 2) = ix — kg,
where S is the portion of the plane x + y + 2z = 2 in the
first octant.
(b) F(x,v,2) = ix + jy + kg,
where S is the hemisphere z = Va? — x* — y*
() F(x,y,2) = jy + k,
where S is the portion of the paraboloid z = 1 — x? — y?
above the xy-plane.

II-6 The distribution of mass on the hemispherical shell
2= (R?— x — yh*
is given by
o(x, y, 2) = (0,/R})(x* + y?).

where o, is a constant. Find an expression in terms of o, and R for
the total mass of the shell.

I1-7 Find the moment of inertia about the z-axis of the hemisphencal
shell of Problem II-6.

I1-8 An electrostatic field is given by
E = A\(iyz + jxz + kxy),

where \ is a constant. Use Gauss’ law to find the total charge enclosed
by the surface shown in the figure consisting of S,, the hemisphere

7= (R* — x* — y})2,
and S,, its circular base in the xy-plane.

z

x S

II-9 An electrostatic field is given by E = A(ix + jy), where X\ is a
constant. Use Gauss’ law to find the total charge enclosed by the
surface shown in the figure consisting of S|, the curved portion of the
half-cylinder z = (r* — y%'2 of length h; S, and S, the two semicir-
cular plane end pieces; and S,, the rectangular portion of the xy-plane.

53 Express your results in terms of \, r, and h
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II-10 Tt sometimes happens that surface integrals can be evaluated with-
out using the long-winded procedures outlined in the text. Try eval-

lot of work!
(@) F=ix + jy + kz.

54

uating [f F « fi dS for each of the following; think a bit and avoid a

S, the three squares each of side b as shown in the figure.

z

(b) F = (ix + jy) In (x2 + y?).
S, the cylinder (including the top and bottom) of radius R

and height h shown in the figure.
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(c) F = (ix + jy + kg)e= ™5,
S, the surface of the sphere of radius R centered at the origin
as shown in the figure.

(d) F = iE(x), where E(x) is an arbitrary scalar function of x.
S, the surface of the cube of side b shown in the figure

(a) Use Gauss’ law and symmetry to find the electrostatic field
as a function of position for an infinite uniform plane of charge.
Let the charge lie in the yz-plane and denote the charge per unit
area by o

(b) Repeat part (a) for an infinite slab of charge parallel to the
yz-plane, whose density is given by

P —b<x<b,

p(X) = 0’ ‘xl > b,

where p, and b are constants
(c) Repeat part (b) with p(x) = pye~ .

(a) Use Gauss’ law and symmetry to find the electrostatic field
as a function of position for an infinite uniform line of charge.
Let the charge lie along the z-axis and denote the charge per unit
length by A

(b) Repeat part (a) for an infinite cylinder of charge whose axis



Surface Integrals
and the
Divergence

56

n-13

coincides with the z-axis and whose density is given in cylin-
drical coordinates by

_Jpe r<b,
p(r) {0, r=b

where p, and b are constants.
(c) Repeat part (b) with p(r) = p,e~™.

(a) Use Gauss’ law and symmetry to find the electrostatic field
as a function of position for the spherically symmetric charge
distribution whose density is given in spherical coordinates by

_Jpe r<b,
p(r) {0‘ r=b,

where p, and b are constants.
(b) Repeat part (a) for p(r) = pee” ™.
(c) Repeat part (a) for

P r < b,
p(ry =4p, b=r<2b
0, r=2b.

How must p, and p, be related so that the field will be zero for
r > 2b? What is the total charge of this distribution under these
circumstances?

II-14 Calculate the divergence of each of the following functions using
Equation (I1-22)-

n-15

(a) ix* + jy* + ke

(b) iyz + jxz + kxy.

() ie™* + je + ke =

(d i - 3j + ke

(&) (—ixy + ) +y%),  (x,y) # (0,0).
) KV + .

(g) ix +jy + kz.

(h) (—iy + jxyVar + ¥y, (xy) #(0,0).

(a) Calculate [ F * i dS for the function in Problem II-14(a)
over the surface of a cube of side s whose center is at (xg, yg. 2o)
and whose faces are parallel to the coordinate planes.

(b) Divide the above result by the volume of the cube and cal-
culate the limit of the quotient as s — 0. Compare your result
with the divergence found in Problem II-14(a)

(c) Repeat parts (a) and (b) for the function of Problem II-14(b)
and (c).



Problems II-16 (a) Calculate the divergence of the function

F(x, y, 2) = iflx) + jf(y) + kf(-22)

and show that it is zero at the point (c, ¢, —¢/2).
(b) Calculate the divergence of

G(x, y, 2) = if(y, 2) + jglx, 2) + kh(x, y).
11-17 1n the text we obtained the result

oF F, oF.
___£+é_l+_._~
ax dy 9z

V-F =

by integrating over the surface of a small rectangular parallelepiped.
As an example of the fact that this result is independent of the surface,
redenve it using the wedge-shaped surface shown in the figure.

Az

g

X, Ay
I1I-18 (a) Let i, j, and k be unit vectors in Cartesian coordinates and
&,, &, and &, be unit vectors in cylindrical coordinates. Show that
i=@& cosB — &sin 6,

=& sin 0 + & cos 0,

[
|

k=é

(b) Rewrite the function in Problem II-14(e) in cylindrical coor-
dinates and compute its divergence, using Equation (I1I-24). Con-
vert your result back to Cartesian coordinates and compare with
the answer obtained in Problem II-14(e).

(c) Repeat part (b) for the function of Problem II-14(f).

I1I-]19 (a) Let i, j, and k be unit vectors in Cartesian coordinates and
&,, &, and &, be unit vectors in spherical coordinates. Show that

i==@sin8cosd + & cos 6 cosd — &, sin ¢,
J = & sin 6 sin ¢ + &, cos 6 sin b + &, cos §,

57 k =& cos 0 — & sin 6.



Surface Integrals [Hint: It’s easier to express &, &, and &, in terms of i, j, and k

and the and then solve algebraically for i, j, and k. To do this, first use
Divergence the f.a‘:‘ that & = r/r = (ix + j_y + kz)/r. Next, reasoning geo-
metrically, show that &, = —isin ¢ + j cos ¢. Finally, calculate

€ = &, X &.]

(b) Rewrite the function of Problem II-14(g) in spherical coor-
dinates and compute its divergence using Equation (II-25). Con-
vert your result back to Cartesian coordinates and compare with
the answer obtained in Problem II-14(g).

(c) Repeat part (b) for the function of Problem II-14(h).

I11-20 In cylindrical coordinates the divergence of F is given by

1 0F, oF,
_—_+_

190
VF=-—(F) + - .
rar(r’) r 99 9z

In the text (pages 41-42) we derived the first term of this expression.
Proceeding the same way, obtain the other two terms.

I1-21 Repeat Problem II-20 to obtain the divergence in spherical coor-
dinates by carrying out the surface integral over the surface of the
volume shown in the figure and thereby obtaining the expression

1 a9 1 oF,
Z (sin 8 F) + el
sing oo S8Rt o T

19
V-F=——(rF)+
=5 (rF)

11-22 Consider a vector function of the form
F(r) = & f(r),

where & = (ix + jy + kz)/r is the unit vector in the radial direction,

r=(x*+ y* + z9'?, and f(r) is a differentiable scalar function. Using

the results of Problem II-21, determine f(r) so that V- F = 0. A
58 vector function whose divergence is zero is said to be solenoidal.



Problems 11-23 Verify the divergence theorem

[[e-aas-[[[v-rav

in each of the following cases.
(@) F = ix + jy + kz.
S, the surface of the cube of side b shown in the figure.

4

b)) F=@&r+éz
r = ix + jy.
S, the surface of the quarter cylinder (radius R, height h)
shown in the figure

(© F=¢&r,
r=ix+jy+ kz
S, the surface of the sphere of radius R centered at the origin
as shown in the figure.

59



Surface Integrals 11-24 (a) One of Maxwell’s equations states that V+B =0, where B
and the is any magnetic field. Show that

[[a-nas—o

for any closed surface S

(b) Determine the flux of a uniform magnetic field B through
the curved surface of a right circular cone (radius R, height h)
oriented so that B is normal to the base of the cone as shown in
the figure. (A uniform field is one which has the same magnitude
and direction everywhere.)

Divergence

II-25 Use the divergence theorem to show that

[[aas-o
s

where S is a closed surface and it the unit vector normal to the surface
S.

II-26 (a) Use the divergence theorem to show that

l F3 —_—
SJLn rdS=1y,

where S is a closed surface enclosing a region of volume V, i is
a unit vector normal to the surface S, and r = ix + jy + kz.
(b) Use the expression given in (a) to find the volume of:
(i) a rectangular parallelepiped with sides q, b, c.
(ii) a right circular cone with height h and base radius R.
[Hint: The calculation is very simple with the cone on-
ented as shown in the figure]
60 (iii) a sphere of radius R.



Problems

11-27 (a) Consider a vector function with the property V«F = 0 every-
where on two closed surfaces S, and S, and in the volume V
enclosed by them (see the figure). Show that the flux of F through
S, equals the flux of F through §,. In calculating the fluxes,
choose the direction of the normals as indicated by the arrows
in the figure.

(b) Given the electrostatic field of a point charge q situated at r
= O’

where r? = x + y? + 2%, show by direct calculation that

V-E =0, for all r # 0.

(c) Prove Gauss’ law for the field of a single point charge given

in (b). [Hint: It is easy to calculate the flux of E over a sphere

centered at r = 0.]

(d) How would you extend this proof to cover the case of an
61 arbitrary charge distribution?
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II-28 (a) Show by direct calculation that the divergence theorem does

not hold for

| &

r
’

2

F(r, 0, ¢) =

~

with S the surface of a sphere of radius R centered at the origin,
and V the enclosed volume Why does the theorem fail?

(b) Venfy by direct calculation that the divergence theorem does
hold for the function F of part (a) when S is the surface S, of a
sphere of radius R, plus the surface S, of a sphere of radius R,,
both centered at the origin, and V is the volume enclosed by S,
and S,.

(c) In general, what restriction must be placed on a surface S so
that the divergence theorem will hold for the function of part (a)?

S
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We remarked above that the differential form of Gauss’ law,
Equations (II-18) and (I1I-23), although it fulfills our goal of
relating a property of the electric field (its divergence) at a point
to a known quantity (the charge density) at the same point, none-
theless falls short of providing a convenient way to find E. The
reason is that V- E = p/e, is (or seems to be) a single differential
equation in three unknowns (E,, E,, E,). But there is another
feature of electrostatic fields which has not yet played an explicit
role in our discussion and which will yield a relationship among
the components of E. It will thus provide us with the crucial last
step in obtaining a useful way to calculate fields. In the process
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of examining this question, we shall encounter some of the most
important topics in vector calculus.

The property of electrostatic fields that we shall now begin to
discuss is intimately bound up with the question of work and
energy. You no doubt recall the elementary definition of work as
force times distance. Thus, in one dimension, if a force F(x) acts
from x = a to x = b, the work done is, by definition,

b
J’ F(x) dx.

To be able to handle more general situations, we must now intro-
duce the concept of the line integral.

Suppose we have a curve C in three dimensions (Figure III-1)
and suppose the curve is directed. By this we mean that we put

4
Py

(xp ¥ 2p)

Figure III-1

an arrow on the curve and say *‘This is the positive direction.”’
Let s be the arc length measured along the curve from some
arbitrary point on it with s = s, at a point P, and s = s, at P,.
Suppose further that we have a function f(x, y, z) defined every-
where on C. Now let us subdivide the portion of C between P,
and P, arbitrarily into N sections. Figure III-1 shows an example
of such a subdivision for N = 4. Next, join successive subdivision
points by chords, a typical one of which, say the Ith, has length
As,. Now evaluate f(x, y, z) at (x, y,, z,), which is any point
on the Ith subdivision of the curve, and form the product
f(x;, ¥, z,) As,. Doing this for each of the N segments of C, we
form the sum

121 f(x, yi 2) As,.
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By definition, the line integral of f(x, y, z) along the curve C is
the limit of this sum as the number of subdivisions N approaches
infinity and the length of each chord approaches zero:

N
J’C fx,y,2)ds = lim E f(x, yi 2) As,.
N—-s»oo =1
each As;—0

To evaluate the line integral, we need to know the path C.
Usually the most convenient way to specify this path is para-
metrically in terms of the arc length parameter s. Thus, we write
x = x(s), y = y(s), and z = z(s). In such a situation the line
integral can be reduced to an ordinary definite integral:

fc flx,y,2)ds = f ‘ Flx(s), y(s), 2(s)] ds.

An example of a line integral will be helpful here. For sim-
plicity let us work in two dimensions and evaluate

_L (x + y) ds,

where C is the straight line from the origin to the point whose
coordinates are (1, 1) (Figure III-2). If (x, y) are the coordinates

Y a1n

C

\ P(x, y)

45°

Figure I1I-2

of any point P on C and if s is the arc length measured from the
origin, then x = s/V2 and y = s/\/2. Hence, x + y =
25IV2 = V2. Thus,

J’C(X+y)ds=\/§_‘;wsds=\/§.



Line Integrals
and the Curl

y a,n

Figure I11-3

Let us integrate this same function (x + y) from (0, 0) to (1, 1)
along another path as shown in Figure III-3. Here we break the
integration into two parts, one along C, and the second along C,.
On C,wehave x = sand y = 0. Thus,on C,, x + y = s, and
S0

1
— — 1
J.Cl(x+y)ds—f“sds—§.

Along C,, x = 1 and y = s [note that the arc length on this
segment of the path is measured from the point (1, 0)]. It follows
then that

i
= = g
fq (x +y)ds J;) (1 + s)ds =s.
Adding the results for the two segments, we find
fc (x + y)ds

=ch (x+y)ds+J; x+yds=%+3%=2

The lesson to be learned is this: the value of a line integral can
(indeed, usually does) depend on the path of integration.

Line Integrals Involving Vector Functions
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Although the above discussion tells us what a line integral is, the
kind of line integral we must deal with here has a feature not yet
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mentioned. You will recall that we introduced our discussion of
line integrals with the concept of work. Work, in the most ele-
mentary sense, is force times displacement. That this needs elab-
oration becomes clear when we recognize that both force and
displacement are vectors.

Thus, consider some path C in three dimensions (Figure I1I-
4). Let us suppose that under the action of a force an object moves

f(x, y,2)

Figure I11-4

on this path from s, to s,. At any point P on the curve let the
force acting be designated f(x, y, z). The component of f which
does work is, by definition, only that one which acts along the
curve, that is, the tangential component. Let t denote a unit vector
which is tangent to the curve at P.! Then the work done by the
force in moving the object from s, to s, along the curve C is

W= J; f(x, v, 2)* t ds,

where it is understood, of course, that the integration begins at s
= s, and ends at s = s,. The new feature of this integral is that
the integrand is the dot product of two vector functions. To be
able to handle such a line integral, we must know how to find
t, and it is to this problem that we now turn.

Consider an arbitrary curve C (Figure III-5) parametrized by
its arc length. At some point s on the curve we have x = x(s), y
= y(s), and z = z(s). At another point s + As we have x + Ax

'tisa function of x, y, and z and should really be written E(x, y, z) We write
simply t to avoid complicating the notation.
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Figure III-5

= x(s + As),y + Ay = y(s + As), and z + Az = z(s + As).
Thus, the chord joining the two points on the curve directed from
the first to the second is the vector Ar = iAx + jAy + kAz,
where

Ax = x(s + As) — x(s),
Ay = y(s + As) — y(s),
Az = z(s + As) — z(s).

If we now divide this vector by As, we get

Ar Ax Ay Az
As ias YA T RE

Taking the limit of this as As approaches zero yields

i 'Q+k£,
ds ds ds

and we assert that this is t. To begin with, it’s clear that as As
— 0, the vector Ar becomes tangent to the curve at s. Further,
in the limit As — 0, we see that |Ar| — As. Hence, in the limit
the magnitude of this quantity is 1. It follows then that we can
make the identification

- dx dy dz
ts)=i—+j—+k—.
(s) lds "ds ds

If we return now to the expression for work W and use this
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formula for t, we find

Ldx dy dz
= L) [i—+§j—=+k—
w fc f(x, y, 2) [1 a i s k ds] ds

= fc(ﬂdx+fydy + f. dz).
This is a formal expression; often, to carry out the integration, it
is useful to restore the ds as the following example illustrates.
Consider

f(x,y,2) =1y — jx

and the path shown in Figure III-6(a). To calculate [ (f * i) ds

y

Gy

Figure I1I-6(a)

in this case, we break the path C into three parts, C,, C,, and C,
as shown. Since f, = 0, we have

Lmbw=ﬁﬂm+ﬂ@

= fcydx—xdy.

Now, on C,, y = 0 and dy = 0, so there is no contribution to the
integral. Similarly, on C; we have x = 0 and dx = 0, and again
the result is zero. Thus, the only contribution to the integral over
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But (1 — x)/s = cos 45° = 1/V2 and y/s = sin 45° = 1"V2
[Figure ITII-6(b)]. Thus,

i s:dx 1
x: — — —_— = — —
2 T ds V2
0<s=V2
S 1
Y 2 ds 2

Hence, the integral is

[ (8) - (-35) )

Figure I11-6(b)
Path Independence
In a line integral the path of integration is one of the ingredients

which determines the very function we integrate. It isn’t remark-
70 able, then, that the value of the integral can depend on the path
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of integration. What is remarkable is that, under some conditions,
the value of the integral does not depend on the path!

We show how this path independence comes about in the case
of the Coulomb force. Let a charge g, be fixed at the origin and
let another charge g be situated at (x, y, z) (Figure III-7). The

a
(x, 7, 2) /'
q
rd

4
4

t
[}
r’ :
0y~ !
do0 ad : 4
¢ - ]
\\ 1
~ 1
~o |
x ~
Figure 111-7
Coulomb force on ¢ is
_J_%: dI-1)
4me, 1’

where r = (x* + y? + 7)) is the distance between the two
charges and i is a unit vector pointing from g, to g. With this
arrangement @i is clearly in the radial direction. Even more
clearly, the radial vector r is in the radial direction.

Thus, we have it = r/r = (ix + jy + kz)/r, and so

_ 49 ix + jy + kz
4me, r’ '

Thus,
F-tds=F. dx+ F, dy+ F,dz

_ 99 xdx +ydy + zdz
41re, r

The trick now is to use the relationship

ri=x*+ yr + 22
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Taking differentials in this equation and dividing by a factor of
2 yields

xdx +ydy + zdz = rdr,
so that

49 rdr _ 49 dr
4mre, 1t

Suppose now that the charge ¢ moves from a point P, at a
distance r, from the origin to a point P, at a distance r,, over
some path C connecting the two points (Figure I1I-8). Then

"2
[Foia= g0 [td_ge (1 1)
c dme, Jn r* dmey \ry, 1,

Figure IIT1-8

Notice that to get this result, we haven’t had to specify C in any
way whatever; we’d get the same answer for any path connecting
P, and P,. This, of course, proves that the line integral

jF‘Eds
¢

with F given by Equation (III-1) is path-independent, but the
result, so far, has been established only for the Coulomb force
on g due to a single charge g, [Equation (III-1)]. If there are
many charges ¢, q,, .. . , gy, then the total force on g is F, +
F, + --- + F, where F, is the Coulomb force on g due to the /th
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charge g, Hence,

fF-Eds=fF,°ids+---+fF,,,-Eds.
C C C

Now the discussion given above shows that each term of this sum
is path-independent; hence, so is the sum itself. (All this, of
course, is merely an application of the superposition principle.)
To phrase this result in terms of the field requires one last trivial
step: Since F = gE, it follows that g - E + t ds is path-indepen-
dent, whence [ E -1 ds is also. Strange to say, it is this fact that
will enable us eventually to convert V + E = p/e, into a more
useful equation.

If you examine the foregoing discussion carefully, you’ll see
that the fact that the Coulomb force varies inversely as the square
of r has nothing whatever to do with the path independence of
the line integral. The path independence rests solely on two prop-
erties of the Coulomb force: (1) It depends only on the distance
between the two particles, and (2) it acts along the line joining
them. Any force F with these two properties is called a central
force, and [ F - tdsis independent of path for any central force.?

One further step pertaining to path independence can be taken
here. If

fF-ids
C

is independent of path, then

f F-Eds=f F°’fds,
q fa

where, as indicated in Figure I11-9, C, and C, are two different
arbitrary paths connecting the two points P, and P, and directed
as shown in the figure. Now if instead of integrating along C,
from P, to P,, we go the other way, we simply change the sign

2 Qur having illustrated path independence with a central force may give the
erroneous impression that only central forces have path-independent line inte-
grals That is certainly not true, many functions which are not central forces have
path-independent line integrals. Later we'll develop a simple criterion for iden-
tifying such functions.
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Figure I1I-9

of the line integral; that is,

f F4m=—fF&m
=G C,

where ‘‘—C,”’ merely indicates that the integration is to be car-
ried out along C, from P, to P,. Thus

fF¢m=—f F-tds
C, -C,

or

f F-tds=0.
GG

But ““‘—C, + C,” is just the closed loop from P, to P, and back,
as shown in Figure I1I-10. Thus, if  F - t ds is independent of

Py
-Cl

Figure III-10

path, then

§rim=a

74 where ¢ is the standard notation for a line integral around a closed
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path. It follows that if E is an electrostatic field, we can write

ff E-tds = 0. (H1-2)

The term ‘‘circulation’’ is often given to the path integral around
a closed curve of the tangential component of a vector function.
Thus we have demonstrated that the circulation of the electro-
static field is zero. In what follows we’ll call this the circulation
law.

If we are given some vector function F(x, y, z) and asked ‘‘Could
this be an electrostatic field?"’ we can, in principle, provide an
answer. If

ffF-ids;eo

over even one path, then F cannot be an electrostatic field. If

ffF-ids:o

over every closed path, then F can (but does not have to) be an
electrostatic field.

Clearly this criterion is not easy to apply since we must be sure
the circulation of F is zero over all possible paths. To develop a
more useful criterion, we proceed much as we did in dealing with
Gauss’ law, which, like the circulation law, is an expression
involving an integral over the electric field. Gauss’ law is more
useful in the differential form [Equations (11-18) and (II-23)]
obtained by considering the ratio of flux to volume for ever
decreasing surfaces. We now treat the circulation law in the same
spirit and attempt to find the differential form of Equation (III-
2). To stress the generality of our analysis and results, we deal
with an arbitrary function F(x, y, z) and specialize to E(x, y, 2)
at a later stage in the development.

Let us consider the circulation of F over a small rectangle
parallel to the xy-plane, with sides Ax and Ay and with the point
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(x, y, z) at the center [Figure IlI-11(a)]. As shown in Figure
I[I-11(b), we carry out the path integration in a counterclockwise
direction looking down at the xy-plane. The line integral is bro-
ken up into four parts: C, (bottom), C, (right), C; (top), and C,

N

~

Lal

Figure III-11(a)

C v . Ay A\ Cy

Kol 14

Figure I1I-11(b)

(left). Since the rectangle is small (eventually we shall take the
limit as it shrinks down to zero), we’ll approximate the integral
over each segment by F -t evaluated at the center of the segment,
multiplied by the length of the segment.?

Taking C, first, we have

f F-Eds=f F, dx
Cy Cp

A
= F, (x, y — -21 . z) Ax. (II1-3a)

* Reread footnote 9 of Chapter II and then give an argument in support of this
approximation
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Over C; we find

f F-Eds=f F, dx
Cr Cr

~ —F, (x. y + %X , z) Ax. (IlI-3b)

The negative sign here is required by the fact that

f F,dx=f F,d'—xds
Cr Cr ds

and dx/ds = —1 over C;. Adding Equation (III-3a) and (III-3b),
we find

Lﬁq (F-t)ds

!
|
| —
e
—~
r
~
+
!
~
~—
|
R
—~
X
~
|
o
o
~——
—
£

The factor Ax Ay is clearly the area AS of the rectangle. Thus,

s Jore, @ t) ds (111-4)

Exactly the same sort of analysis applied to the left and right
sides of the rectangle (C, and C,) results in

35 e (F-1)ds

Fx+ 2y 2) -k (x- 2
> X 2 ’y’z v X 2 vaZ
= Ax . (I1I-5)
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Adding Equations (III-4) and (III-5) and taking the limit as AS
shrinks down about a point (x, y, z) (in which case Ax and Ay
- 0 as well), we get

1 A daF aoF
lim —|3E|F°tds=—*——x, (111-6)
as—o AS ax ay
about {t1.2)

where i is our semicomical notation meaning the circulation
around the little rectangle.

You may wonder about the generality and uniqueness of this
result since it is obtained using a path of integration which is
special in two ways: first, it is a rectangle, and second, it is par-
allel to the xy-plane. If the path were not a rectangle, but a plane
curve of arbitrary shape, it would not affect our result (see Prob-
lems I1I-2 and III-30). But our result definitely does depend on
the special orientation of the path of integration. The choice of
orientation made above clearly suggests two others, and they are
shown in Figure III-12(a) and (b) along with the result of

y
oF;
T dx
Figure I1I-12(a)
4
P it 2
A 4
e
v )
ST C~7
V| 7 e N/ y
7 7
4 /
—
”
x 3F, _ OF,
ay a9z

Figure III-12(b)
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calculating

1 Bﬁ )
li —y F-td
s AS g

about (xy.z)

for each.

Each of these three paths is named in honor of the vector nor-
mal to the enclosed area. The convention we use is this: Trace
the curve C so that the enclosed area is always to the left [Figure
III-13(a)]. Then choose the normal so that it points ‘‘up’’ in the

X

nght

left

Figure I1I-13(a)

direction shown in the picture. This convention is sometimes
called the nght-hand rule, for if the nght hand is oriented so that
the fingers curl in the direction in which the curve is traced, the
thumb, extended, points in the direction of the normal [Figure
IT1I-13(b)]. Using the right-hand rule, we have the following:

Figure 11I-13(b)
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Calculating limag ., § F + t ds/AS

oF oF
for a path whose normal is i, we get — — —*,
dy 0z
L. oF, oF,
for a path whose normal is j, we get -—, (I11-7a)
9z ox L
oF oF
for a path whose normal is k, we get — — — .
dax dy

It turns out that these three quantities are the Cartesian compo-
nents of a vector. To this vector we give the name ‘‘curl of F,”
which we write curl F. Thus, we have

oF, oF oF oF
carlF=i|l—=-22)+j|—=-—
ay 9z 0z ax

+ k (E - Q_Ii,) . (IlI-7b)
ox ay
This expression is often (indeed, usually) given as the definition
of the curl, but we prefer to regard it as merely the form of the
curl in Cartesian coordinates. We shall define the curl as the limit
of circulation to area as the area tends to zero. To be precise, let
$c F+ t ds be the circulation of F about some path whose normal
is fi as shown in Figure I1I-14. Then by definition

1 -

Aecurl F = i ——§ F-tds. I11-8

A - cur] A.:'To A s ( )
about (x,v,2)

By taking fi successively equal to i, j, and k, we get back the
results given in Equation (III-7b). Since this limit will, in gen-
eral, have different values for different points (x, y, z), the curl
of F is a vector function of position.* Note incidentally that
although in our work we always assumed that the area enclosed

* The word rotation (abbreviated *‘rot,”’ amusingly enough) was once used for
what we now call the curl Though the term has long since dropped out of use,
a related one survives: If curl F = 0, the function F is said to be irrotational
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b ]

Figure 11I-14

by the path of integration was a plane, this need not be the case.
Since the curl is defined in terms of a limit in which the enclosed
surface shrinks to zero about some point, in the final stages of
this limiting process the enclosed surface is infinitesimally close
to a plane, and all our considerations apply.

Since it is undoubtedly beyond the powers of a mere mortal to
remember the expression given above for curl F in Cartesian
coordinates [Equation (III-7b)], it is fortunate that there is a mne-
monic device to fall back on. If the three-by-three determinant

i j k
alax aldy aldz
F, F, F,

x ¥

is expanded (most conveniently in minors of the first row) and if
certain ‘‘products’’ are interpreted as partial derivatives [for
example, (3/dx)F, = 9F,/dx], the result will be identical with the
one given in Equation (III-7b).° Thus, the anguish of remember-
ing the form of curl F in Cartesian coordinates can be replaced
by the pain of remembering how to expand a three-by-three deter-
minant. Chacun a son goiit.

As an example of calculating the curl, consider the vector
function

F(x, y, z) = ixz + jyz — ky™

> A mathematician would object to this since, strictly speaking, a determinant
cannot contain either vectors or operators. We aren’t doing any serious damage,
however, because our ‘‘determinant’’ is merely a memory aid.
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i j kK

curl F a/ox 09/dy dloz

xz  yz Y

i(—2y —y)+ jix —0) + k(0 —0)

—3iy + jx.

You may have noticed that the curl operator can be written in
terms of the del notation we introduced earlier. You can verify
for yourself that

curl F =V xX F,

which is read ‘‘del cross F.”” Henceforth, we shall always use
V X F to indicate the curl.

The Curl in Cylindrical and Spherical Coordinates
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To obtain the form of V X F in other coordinate systems, we
proceed as we did above in finding the Cartesian form, merely
modifying the paths of integration appropriately. As an example,
using the path shown in Figure III-15(a) will yield the z-com-
ponent of V X F in cylindrical coordinates.® Note that we trace

|

/
Lo-o

Figure III-15(a)

®In deriving the Cartesian form of V X F, each segment of each path of inte-
gration (see Figures III-11 and I1I-12) was of the form x = constant, y = con-
stant, or z = constant Similarly, in deriving the cylindrical form, each segment
of each path is of the form r = constant, 8 = constant, or z = constant
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Cylindrical and previous section. Viewing the path from above [as we do in

Spherical
Coordinates Y
3
2
’
/
/// 4
VY P
' V2 P
e x

Figure I1I-15(b)

Figure III-15(b)], the line integral of F(r, 6, z) * t along the
segment of path marked ‘‘1”’ is

n A0
fF‘tdst,(r,B——,z>Ar,
G 2

while along segment *‘3’” it is

f F~fds=—F,<r,6+&,z) Ar.
G 2

The area enclosed by the path is r Ar A9, so

1
AS Jera

Ar A0 AD
= - +=,z) - -= .
r Ar A6 [F' (r, o 2’ Z) F, <r, o 27 Z)]

In the limit as Ar and A6 tend to zero, this becomes

F-tds

evaluated at the point (r, 6, z).
Along segment ‘2’ we find

- Ar Ar
. = + — + —
83 LZ F-tds=F, <r 5 0, z) <r 5 ) A®,
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and along segment *‘4’’

- Ar Ar
L‘F-tdsz—Fe (r—;,(),z) (r—-z—)AG.

Thus,

F-tds

80 (8 (e,
rAr A6 g 2 o\’ 2”Z

E G+ Gy

In the limit this becomes (1/r)(8/dr)(rF,) evaluated at (r, 0, z).
Hence,

1 0F,
VXF li —§ =
( ), = A;TOA F-tds = plry

Paths for finding the r- and 6-components of V X F are shown
in Figures III-15(c) and (d), respectively. You are asked to obtain

Figure I1I-15(c)

these two components yourself in Problem III-8. For complete-
ness we give all three components of V X F in cylindrical
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X
Figure I1I-15(d)
coordinates:
1 0F, dF,
VXF),=-—~—,
( ) r 99 dz
oF, oF,
VXF), =—-—,
( Jo 0z ar
19 1 oF
VXF), =——((Fy) — ——.
( ) r or (rFo) r 06

The three components of curl F in spherical coordinates (see
Problem III-9) are as follows:

J . 1 0F,
VXF), = — 0 F,) — —_,
¢ ) r sin 6 90 (sin 6 Fy) rsin 6 ad
1 oF 19
VXF) = — — —— (rFy),
( Je r sin 0 dd rar(r @
19 19F
X = - = - ——=.
(VX F)y ror (rfo) r 06
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The preceding discussion may leave you with the feeling that
knowing how to define and calculate the curl of some vector
function is a far cry from knowing what it is. The fact that the
curl has something to do with a line integral around a closed path
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(indeed, the word ‘‘curl’’ itself) may suggest to you that it some-
how has to do with things rotating, swirling, or curling around.
By means of a few examples taken from fluid motion, we’ll try
to make these vague impressions a little clearer.

Suppose water is flowing in circular paths, something like the
water draining from a bathtub. A small volume of the water at a
point (x, y) at time ¢ has coordinates x = r cos wt, y = r sin wt,
where w is the constant angular velocity of the water (Figure
II1-16).” Thus, its velocity at (x, y) is

v = i(dx/dt) + j(dyldt) = ro[—i sin wf + j cos wi]
w(—iy + jx).

It

This expression gives what is called the velocity field of the
water; it tells us the velocity of the water at any point (x, y). Your
intuition probably tells you that, because the motion is circular,
this velocity must have a nonzero curl. In fact, as you can show
very easily,

V X v = 2kw.

This result should seem quite reasonable because it says that curl
of the velocity is proportional to the angular velocity of the swirl-
ing water. We see that V X v is a vector perpendicular to the

"This is not a realistic description of water draining from a tub since rotating
water shears tangentially and its angular velocity will therefore vary with r The
crude description we use here is adequate for our purposes and has the virtue of
being simple
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Figure I1I-17(a)

If the water were rotating around in the other direction, the curl
of v would then be in the negative z-direction [Figure III-17(b)].

4

il :
|

R

curl ¢
Figure I1I-17(b)

Note that this is consistent with the right-hand rule (see page 79).
If we were to put a small paddle wheel in the water, it would
commence spinning because the impinging water would exert a
net torque on the paddles (Figure HI-18). Furthermore, the pad-

<

d
=1 e

87 Figure I11-18
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dle wheel would rotate with its axis pointing in the direction of
the curl.
Now consider a different velocity field, namely,

v = jue "N,

where v, and A are constants. Water with such a velocity field
would have a flow pattern as indicated in Figure I1I-19. The
velocity at all points is in the positive y-direction, and its mag-
nitude (indicated by the length of the arrows) varies with y. Since
you see only straight line flow here without any rotational
motion, you would probably guess that V X v = 0 in this case,
and you would be right, as a simple calculation shows. There
would be no net torque on a paddle wheel placed anywhere in
this flow pattern, and as a consequence, it would not spin.?

- — —
- > —
*

Figure I11-19

Our last example is trickier than the two given above and
shows that intuition can lead you astray if you’re not careful. Let
a velocity field be given by

. - 2
v = jue N,

As in the previous example, the velocity in this case is every-
where in the y-direction, but now it varies with x, not y (Figure
I1I-20). Here as in the above example you see no evidence of
rotational motion and you might guess that V X v = 0 once again.

8If V X v = 0, the flow is said to be irrotational. Compare with footnote 4.
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i = S
—>

e e = I N

Figure III-20

But as you should show for yourself,

2x
V X v=—kv, F e N,
A small paddle wheel placed in this flow pattern would spin, even
though the water is everywhere moving in the same direction.
The reason this happens is that the velocity of the water varies
with x, so that it strikes one of the paddles (P in Figure I111-21)

Figure I-21

with greater velocity than the other (P’). Thus, there will be a
net torque. In more mathematical terms, the line integral of v -
t around a small rectangle (Figure I1I-22) will be different from
zero, for while

f v"t\ds=J’ v-ids=0,
bottom top
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Figure I11-22
the contributions from the other two sides are

J‘hv"t‘ds=v‘(x+Ax)Ay
nght

and

ﬁﬁ vetds = —v,(x) Ay.
These do not cancel because v,(x) # v, (x + Ax). Incidentally,
you should try to explain to your own satisfaction why in this
example V X v is in the negative (positive) z-direction when x
is positive (negative) and why V X v = 0 at x = 0.

Differential Form of the Circulation Law

The curl is defined to be the limit of circulation to area. Thus,

1 A
A-VXE-=li —3£E-td,
" aso A8 J ’

where fi is a unit vector normal to the surface enclosed by C at
the point about which the curve shrinks to zero. But if E is an
electrostatic field, then

90 ﬁE-fds=0
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A-VXE-=0.

Since the curve C is arbitrary, we can arrange matters so that fi
is a unit vector pointing in any direction we choose. Thus,

g i = i, we have (V X E), = 0;
taking i = j, we have (V X E), = 0;
g i = k, we have (V X E). = 0.

Thus, all three Cartesian components of V X E vanish, and we
can conclude that for an electrostatic field,

VXE=0.

This is the long-sought-after differential form of the circulation
law. We are now in a position to give an alternative and much
more tractable answer to the question ‘*Can a given vector func-
tion F(x, y, z) be an electrostatic field?’’ The answer is:

If VX F = 0, then F can be an electrostatic field, and
if VX F # 0, then F cannot be an electrostatic field.

This is clearly a much more convenient criterion to apply than
our earlier one (page 76), which required us to determine the line
integral of F over all closed paths! To see how it works, let us
do several examples.

Example 1. Could F = K(iy + jx) be an electrostatic field? (K
is a constant.) Here we have

1
—VXF
K

9 9 3y 9
i([=0-2)+j(2-Z0)+k
dy 9z dz  ox

0=V XF=0.

o Oy
ax dy

il
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Answer: Yes.
Example 2. Could F = K(iy — jx) be an electrostatic field? In
this case

1 ax 9
SVXxF=k|-Z-Z2)= 2k=>VxF=-2%K
K dx dy

Answer: No
From these examples we can see how easy this criterion is to

apply.

Stokes’ Theorem

92

For the remainder of this chapter we digress from our presenta-
tion to discuss another famous theorem, one strongly reminiscent
of the divergence theorem and yet, as we’ll see, quite different
from it. This theorem, named for the mathematician Stokes,
relates a line integral around a closed path to a surface integral
over what is called a capping surface of the path, so the first item
on our agenda is to define this term. Suppose we have a closed
curve C, as shown in Figure [11-23(a), and imagine that it is made

Figure I11-23(a)

of wire. Now let us suppose we attach an elastic membrane to
the wire as indicated in Figure III-23(b). This membrane is a

{1032

Figure I11-23(b)

capping surface of the curve C. Any other surface which can be
formed by stretching the membrane is also a capping surface; an
example is shown in Figure 11I-23(c). Figure 1I1-24 shows four
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Figure I1I-23(c)

@ ®)

@

Figure I1I-24

different capping surfaces of a plane circular path: (a) the region
of the plane enclosed by the circle, (b) a hemisphere with the
circle as its rim, (c) the curved surface of a dunce cap (a right
circular cone), and (d) the upper and lateral surfaces of a tuna
fish can.

With these preliminary remarks in mind, you won’t be sur-
prised to see us begin this discussion of Stokes’ theorem by con-
sidering some closed curve C and a capping surface S [Figure
[11-25(a)]. As we have done before, we approximate this capping

Figure I11-25(a)

surface by a polyhedron of N faces, each of which is tangent to
S at some point [Figure III-25(b)]. Note that this will automati-
93 cally create a polygon [marked P in Figure III-25(b)] which is
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Figure I1I-25(b)

an approximation to the curve C. Let F(x, y, z) be a well-behaved
vector function defined throughout the region of space occupied
by the curve C and its capping surface S. Let us form the circu-
lation of F around C, the boundary of the Ith face of the
polyhedron:

fF-ids.
G

If we do this for each of the faces of the polyhedron and then
add together all the circulations, we assert that this sum will be
equal to the circulation of F around the polygon P:

N
> F-tds = ggp F-tds (I11-9)

i=1JG
This is easy to prove. Consider two adjacent faces as shown in
Figure III-26. The circulation about the face on the left [Figure

II-26(a)] includes a term from the segment AB, which is

B

L
Tl

Figure I1I-26(a)

94 JEF- t ds. But the segment AB its common to both faces, and its
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contribution to the circulation around the righr-hand face [Figure
ITI-26(b)] is

A ~ B A
fF-tds=—fF'tds.
B A

We see that we traverse the common segment AB one way as
part of the boundary of the left-hand face, and the other way as
part of the boundary of the right-hand face. Thus, when we add

B

Figure I11-26(b)

the circulations of F over the two faces, the segment AB
contributes

B R A R
fF'tds+fF-tds=0.
A B

It is clear that any segment common to two adjacent faces con-
tributes nothing to the sum in Equation (III-9) because such seg-
ments always give rise to pairs of cancelling terms. But all seg-
ments are common to pairs of adjacent faces except those which,
taken together, constitute the polygon P. This establishes Equa-
tion (I11-9).

Now we go through an analysis very similar to that which
yielded the divergence theorem. We write

N
§PF-tds=;§qF-tds

(I11-10)

N l § N
= R Fo A y
; [AS, A tds] S,

where AS, is the area of the I/th face. The quantity in the square
brackets is, approximately, equal to fi, - (V X F), where i, is the
unit positive normal on the ith face and (V X F), is the curl of
the vector function F evaluated at the point on the /th face at



Line Integrals
and the Curl

96

which it is tangent to S. We say ‘‘approximately’’ because it is
actually the limir as AS, tends to zero of the bracketed quantity
in Equation (III-10), which is to be identified as @, - (V X F),.
Ignoring this lack of rigor, we write

N 1 § .
li — ® F-tds|A
Nl_r.ll I=21 |:AS, G s] S’

each AS—0

N
lim > # - (V X F), AS,
N = =1
each AS—0

fﬁﬁ-VXFdS. (Im-11)

Since the curve C is the limiting shape of the polygon P, we also
have

lim F tds = § F-tds. (IN-12)

N—o

eachA S, -0

Combining Equations (III-10), (III-11), and (11I-12), we arrive,
finally, at Stokes’ theorem:

iF-fds=‘”Sﬁ-VdeS, (I1I-13)

where S is any surface capping the curve C. Thus, in words,
Stokes’ theorem says that the line integral of the tangential com-
ponent of a vector function over some closed path equals the
surface integral of the normal component of the curl of that func-
tion integrated over any capping surface of the path. Stokes’ the-
orem holds for any vector function F which is continuous and
differentiable and has continuous derivatives on C and S.

Let’s work an example. Take F(x, y, z) = iz + jx — kx, with
C the circle of radius 1 centered at the origin and lying in the xy-
plane, and S the part of the xy-plane enclosed by the circle [see
Figure 111-27(a)]. Now

F-tds=zdx+xdy — xdz
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Figure 111-27(a)

Thus, $. F - t ds = ¢ x dy. Heretofore we have always para-
metrized curves with the arc length s. In this situation, however,
the path C is most easily parametrized in terms of the angle 6
shown in Figure I1I-27(b). Thus, we write

_$. b _f“ . _
§xdy—§x§5d()— ) cos’ 6d6 = w, (1II-14)

where we use x = cos 6 and y = sin 6. Our next step is to notice

Figure 11I-27(b)

that the capping surface here is a portion of the xy-plane, so that
the unit normal in the positive direction is i = k. Thus,
i J k
n-VXF=Kk- (dox dloy aldz| =1,

97 Z X - X
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and

J—Lﬁ-VXFdS=fﬁdS=1'r, (111-15)

where this last equality follows from the fact that the surface
integral in this case is merely the area of the unit circle. Since
this result {Equation (I11-15)] is identical with the one obtained
above [Equation (II1-14)], we have illustrated Stokes’ theorem
[Equation (I1I-13)]. As an excrcise you should verify that the
same result comes about from integrating fi - V X F over the
hemisphere of radius 1 which also caps the curve C.

An Application of Stokes’” Theorem

98

An important application of Stokes’ theorem is provided by
Ampere’s circuital law. Consider any closed loop C enclosing a
current / as in Figure 11I-28. Note that the direction of C and that

Figure 111-28

of I correspond to the same right-hand rule which relates the
directions of C and the positive normal to a surface capping C.
Ampere’s circuital law says that the line integral of the magnetic
field B is related to the current thus:

§CB-ids=;LUI

where the constant p,, called the permeability of free space, has
the value 1.257 X 107° newtons per ampere’. This law, like
Gauss’ law and the circulation law, says something about the
integral of a field (the magnetic field in this case), and just as in
the two previous cases, it is convenient to re-express it so that it
will tell us something about the field at a point. To this end, we
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is flowing through an area AS with normal #i (Figure 111-29), the

\
\Asi‘\\—

\_

Figure I11-29

current density J is such that

where Al is the total current. That is, current density is a vector
function whose magnitude is the current per unit area and whose
direction is that of the current flow. If J(x, y, z) is the current
density, then the total current flowing through a surface S is

[[yenas

Thus, Ampere’s law can be written

3gCB-tds=,LofLJ-ﬁds.

S can be any surface capping the curve C. If, as is usually the
case, the current flows through a wire the cross section of which
does not include the entire capping surface, it does not matter;
we can integrate over more than the wire cross section if we
remember that J # O for that part of the surface S cut by the wire
and J = O for the rest (Figure I11-30). Thus,

[[5nas—[[s-nas

cross section entire capping
of wire surface §

Now using Stokes’ theorem [Equation (I1I-13)], we have

ggB-Eds=Hﬁ-Vde5=%”ﬁ-st.
C S 5
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Figure III-30

Since C and S are arbitrary, we conclude that
V X B = pyl.
This is the differential form of Ampere’s law. It is also a special

case of one of Maxwell’s equations, valid when the fields do not
vary with time.

Stokes’ Theorem and Simply Connected Regions

100

For many purposes, including some important applications, we
must be able to assert that Stokes’ theorem holds throughout
some region D in three-dimensional space. By this we mean that
we want the theorem to hold for any closed curve C lying entirely
in D and any capping surface of C also lying entirely in D. This,
of course, means the function F must be continuous and differ-
entiable and have continuous first derivatives in D. But in addi-
tion we must impose a restriction on the region D itself. To under-
stand how this comes about, suppose first that D is the interior
of a sphere. If F is smooth® everywhere in D, then Stokes’ the-
orem holds for any closed curve C lying entirely in D, and any
capping surface of C also lying entirely in D. In other words,
Stokes’ theorem holds everywhere in D. A little thought should
convince you that the same line of reasoning applies to the region
between two concentric spheres provided F is smooth in that
region. But for certain kinds of regions, troubles can arise. As an
example, suppose D is the interior of a torus (roughly like a bagel
or an inflated inner tube; see Figure ITI-31). The problem in this
case is that it’s possible to construct a closed curve in D like the

 Hereafter when we say that a function is ‘‘smooth,”” we’ll mean that it is con-
tinuous, differentiable, and has continuous first derivatives
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Figure 111-3]

one shown in the figure with the property that none of its capping
surfaces lies entirely in D. Although we insist that F be smooth
in D, no conditions are imposed upon it elsewhere, so that outside
the region it may not fulfill the requirements of smoothness that
ensure the validity of Stokes’ theorem. The relation between the
line integral over C and the surface integral over S asserted by
the theorem can, and in many cases does, break down if F is not
smooth on S.

Mathematicians refer to regions such as the interior of a sphere
or the space between two concentric spheres as simply connected,
whereas the interior of a torus is not simply connected. By def-
inition, a region D is simply connected if any closed curve lying
entirely in D can shrink down to a point without leaving D. Using
this definition, you should be able to verify that the interior of a
sphere and the region between two concentric spheres are both
simply connected, but that the interior of a torus is not. With the
concept of simple connectedness available to us, we can easily
specify the conditions under which Stokes’ theorem holds
throughout a region The vector function F must be smooth
everywhere in a simply connected region D. Then Stokes’ theo-
rem [Equation (I1I-13)] is valid for any closed curve C and any
capping surface S of C, both of which lie entirely in D.

Most of the time we’ll assume that the functions we work with
are smooth and that the regions of interest are simply connected.
There are situations, however, like the one discussed in the next
section, where simple connectedness plays an essential role, and
we'll point them out as we come to them.

Path Independence and the Curl

101

In our discussion of the differential form of the circulation law,
we showed that because the line integral of an electrostatic field
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E is zero over any closed path, the curl of E is zero. The same
is true of any vector function F; that is, if

35 F-tds=0

C

for all closed paths C, then
VXF=0.

The proof of this fact is precisely the same as the one given on
pages 90-91 with E replaced everywhere by F.

Is the converse of this statement also true? That is, if V X F
= 0, does this imply that the circulation of F is zero over all
closed paths? At first glance it might appear that the answer to
this question is yes. All we have to do is use Stokes’ theorem
and observe that since by assumption V X F = 0,

ng-ids=ffﬁ'VXFdS=0.
C N

However, there is a flaw in this line of reasoning. Recall that the
validity of Stokes’ theorem requires that F be smooth in a simply
connected region. If the region is not simply connected, Stokes’
theorem may not hold, at least for some closed paths lying in the
region, and the fact that V X F = 0 does not guarantee that the
ctrculation of F is zero over all closed paths. The closest we can
come to a converse is to say that if V X F = 0 everywhere ina
simply connected region, then the circulation of F is zero for all
closed paths in that region. The two statements *‘circulation
equals zero’’ and ‘‘curl equals zero’’ are equivalent only in a
simply connected region.

There is a slightly different, but often useful, way to state this
connection between circulation and curl; namely, if [ F - tdsis
independent of path, then V X F = 0, and if VX F = 0in a
simply connected region, then [ F - t dsis independent of path.
You should have no difficulty in establishing this for yourself.

II-1 Use an argument like the one given in the text for the Coulomb
force (pages 71-73) to show that [ F + t ds is independent of path
for any central force F.
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111-2 In the text we obtained the result

@ x by, = OB _ OF.
: ox dy

by integrating over a small rectangular path. As an example of the
fact that this result is independent of the path, rederive it, using the
triangular path shown in the figure

y

Ay

G

111-3 Calculate the curl of each of the following functions using Equa-
tion (II1-7b):

-4

Hl-5

(a) i22 + jx? — ky~.

(b) 3ixz — kx%.

(c) ie” + je™ + ke™*

(d) iyz + jxz + kxy.

(e) —iyz + jxz.

f) ix + jy + k(x* + y?.

(g) ixy + jy* + kyz

(h) (ix + jy + k2)/(x* + y* + 222, (x, y, 2) # (0, 0, 0).

(a) Calculate § F + t ds for the function in Problem [11-3(a) over
a square path of side s centered at (x,, y,, 0), lying in the xy-
plane, and oriented so that each side is parallel to the x- or y-
axis.

(b) Divide the result of part (a) by the area of the square and
take the limit of the quotient as s — 0. Compare your result with
the z-component of the curl found in Problem III-3(a)

(c) Repeat parts (a) and (b) for the functions in Problem III-
3(b), (c), and (d). (You may find it interesting to try paths of
different orientations and/or shapes )

(a) Calculate § F + t ds where
F =k( + y)

over the perimeter of the triangle shown in the figure (integrate
in the direction indicated by the arrows).
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(0,0, a)

0,a,0)

(¢,0,0)
X
(b) Divide the result of part (a) by the area of the triangle and
take the limitas a — 0
(c) Show that the result of part (b) is fi - V X F evaluated at
(0, 0, 0) where fi is the unit vector normal to the triangle and
directed away from the origin.

111-6 Show that

where r = ix + jy + kz and A is a constant vector.

HI-7 Show that V- (V X F) = 0. (Assume that mixed second partial
derivatives are independent of the order of differentiation. For exam-
ple, 3*F /3x 3z = 98°F .19z 9x.)

H1-8 In the text (pages 82-84) we obtained the z-component of V X F
in cylindrical coordinates. Proceeding the same way, obtain the 6-
and r-components given on page 85.

I11-9 Following the procedure suggested in the text (pages 82-85),
obtain the expression for V X F in spherical coordinates given on
page 85. The figures given on page 105 will be helpful.

I11-10 (a) Rewrite the function in Problem III-3(e) in cylindrical coor-
dinates and compute its curl using the expression given on page
85. Convert your result back to Cartesian coordinates and com-
pare with the answer obtained in Problem II-3(e) (see Problem
11-16).
(b) Repeat the above calculation for the function of Problem -
3(f).

HI-11 (a) Rewrite the function in Problem I1I-3(g) in spherical coor-
dinates and compute its curl using the expression given on page
85. Convert your result back to Cartesian coordinates and com-
pare with the answer obtained in Problem I11-3(g) (see Problem
H-17).
(b) Repeat the above calculation for the function of Problem I~
3(h)
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HI-12 Any central force can be written in the form
F(r) = &f(n),

where &, is a unit vector in the radial direction and f is a scalar func-
tion. Show by direct calculation of the curl that this function is irro-
tational (that is, V X F = 0).

111-13 Which of the functions in Problem III-3 could be electrostatic
fields?

111-14 Use Stokes’ theorem to show that

fﬁ?ds=o,
(o

where C is a closed curve and t is a unit vector tangent to the curve

105 C.



Line Integrals HII-15 Verify Stokes’ theorem
and the Curl §CF°Eds=J’J'ﬂ-VdeS

in each of the following cases-

(a) F =iz? — jy*
C, the square of side 1 lying in the xz-plane and directed as
shown.
S, the five squares S, S,, S, S,, and S, as shown in the figure.

() F=iy + jz + kx.
C, the three quarter circle arcs C,, C,, and C, directed as
shown in the figure
S, the octant of the sphere x? + y* + z2 = 1 enclosed by the
three arcs.

() F=iy — jx + kz.
C, the circle of radius R lying in the xy-plane, centered at
(0, 0, 0) and directed as shown in the figure.

85 5
b
S
1 s
CcCVY 1 y
1 4
\ Sa
\
x sl
C;
C; !
1 y
1
X G
y

106
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S, the curved and upper surfaces of the cylinder of radius R
and height h.

III-16 (a) Consider a vector function with the property V X F = 0
everywhere on two closed curves C, and C, and on any capping
surface S of the region enclosed by them (see the figure). Show
that the circulation of F around C, equals the circulation of F
around C,. In calculating the circulations direct the curves as
indicated by the arrows in the figure.

(b) The magnetic field due to an infinitely long straight wire
carrying a uniform current I is B = (u,J/2mr)é;. Show that
V X B = 0 everywhere except at r = 0

NI

.

(c) Prove Ampere’s circuital law for the field of the wire given
in part (b). [Hint. Use the result of (b) to find the circulation of
B around a circle with the wire passing through its center and
normal to its plane. Then use the result of part (a) to relate this
circulation to the circulation around an arbitrary curve enclosing
the current ]

I11-17 (a) Consider the function given in cylindrical coordinates by

A

F(r, 6, 2) = 3.
r

Show that Stokes® theorem does not hold for this function if C
is the circle of radius R in the xy-plane centered at the origin,
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and the Curl the theorem fail in this case?
(b) Consider the region D which consists of all of three-dimen-
sional space with the z-axis removed. Is the function F defined
in (a) smooth in D? Does Stokes’ theorem hold in D? Is D a
simply connected region?

HI-18 The electromotive force € in a circuit C is equal to the circulation
of the electric field E around the circuit:
& = é E-tds.
c

Faraday discovered that in a stationary circuit an electromotive force
is induced by a changing magnetic flux. That is,

_de
dt’

o [[p-as

t is time (don’t confuse it with the tangent vector E), and S is any
capping surface of C Use this information and Stokes’ theorem to
derive the equation

where

VxE=-2,
ot

which is one of Maxwell’s equations.
HI-19 Determine the value of the line integral . F * t ds where
F=(e?—2zeM)i+ (e7 — xe™")j + (e7* — ye~9k

and C is the path

<
I
z
=1
=
IA
™
A

1 —e

from (0, 0, 0) to (1, 1, 1). [Suggestion: Think before you write']

11I-20 Maxwell’s equations are

V-E = ple, VB =0,
B JE
VXE=—-—, d VxB= — + s
108 ot an Cobo 5 Ko



Problems where E is the electric field, B the magnetic field, p the charge density,
and J the current density. Use Maxwell’s equations to derive the con-
tinuity equation

9p
Vel+—=0.
I+%

Interpret this equation.

HII-21 The electromagnetic field stores energy, and it is possible to
show that in a volume V the amount of electromagnetic energy is

f[f oo
where the energy density

Pe = 3 (&E* E + B B/py) = } (6,E* + Bp).

Use Maxwell’s equations (see Problem I1I-20) to show that

0 EXB
Ls”.( )=_J.E.
or o

Interpret this equation.
I11-22 (a) Apply the divergence theorem to the function
Gx, y) = iG(x, y) + jG/(x, y),

using for V and S the volume and surface shown in the diagram;
its bottom is a region R of the xy-plane, its top has the same
shape as, and is parallel to, the bottom, and its side is parallel to
the z-axis. In this way obtain the relation

G, G,
§ G dy— G dx= JJ (-—5+——1)dxdy,
c R\ 0x ay

which is the divergence theorem in two dimensions.
z R
| v

(b) Apply Stokes’ theorem to the function

F(x, y) = iF,(x, y) + jF(x, y)

109 using for C a closed curve lying entirely in the xy-plane and for
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S the region R of the xy-plane enclosed by C. In this way obtain
the relation

oF, OF
éFAdx+F‘dy=J.J. (—’-——')dxdy,
c R\ Ox dy

which is Stokes’ theorem in two dimensions
(c) Show that in two dimensions the divergence theorem and
Stokes’ theorem are identical

I11-23 (a) Let C be aclosed curve lying in the xy-plane. What condition

must the function F satisfy in order that

ﬁF4w=A

where A is the area enclosed by C? [Hint. See Problem 1I1-22.]
(b) Give some examples of functions F having the property
described in (a).
(c) Use line integrals to find formulas for the area of:
(i) a rectangle.

(ii) a nght triangle.

(iii) a circle.
(d) Show that the area enclosed by the plane curve C is the
magnitude of

1 .
Eﬁrxtds.

where r = ix + jy.

I11-24 (a) There is an important theorem in vector calculus which says

V + G = 0 (where G is some differentiable vector function)
implies and is implied by G = V X H (where H is another
differentiable function). To prove this we note first of all that G
= V X H implies that V + G = 0 (see Problem I11-7) To show
that V - G = 0 implies that we can write G = V X H, the simplest
procedure is to give H:

H =0,

H, f G.(x', y, 2) dx’,

H = - f G(x',y, 2)dx’ + f G.(xp ¥', Ddy',
0 Yo

where x, and y, are arbitrary constants Show by direct calcula-
tion thatif V- G = 0, then G = V X H.
(b) Is the vector function H specified in (a) unique? That is, can



Problems we alter it in any way without invalidating the relation G =
V X H?

I11-25 Determine in which of the following cases it is possible to write
G = V X H. In the cases where it is possible, find H (see Problem
111-24)

(@ G=1y+jz + kx

(b) G = Bk, B,a constant.
() G = ix* — ky.

(d) G = 2ix — jy — kz.

() G = 2ix — jy + kg

III-26 Since the divergence of any magnetic field B is zero, we can
write B = V X A (see Problem III-24) Prove that the circulation of
A around an arbitrary closed path C is equal to the flux of B through
any surface § capping C.

HI-27 Prove the statement made in Problem III-24(a) by applying
Stokes’ theorem and the divergence theorem [Hint: See the diagram
below.]

II1-28 (a) What is the integral form of the equation G = V X H? [Hint:
Compare the differential and integral forms of Ampere’s circuital
law.]

(b) Verify your result in part (a) using for G and H functions
selected from Problem II1-25, and paths and surfaces of integra-
tion of your own choice

I11-29 In the text we defined the curl as the limit of a certain ratio. An
alternative definition is provided by the equation

. 1 .

VXF= hm—ffandS,
av—o AV J Js

where F is a vector function of position, the integration is carried out

over a closed surface S which enclosed the volume AV, and i is the

111 unit vector normal to S pointing outward from the enclosed volume.
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(This definition does not display the geometric significance of the curl
as well as the one given in the text. Nonetheless, in one respect at
least it may be preferable; it gives the V X F rather than just a com-
ponent of it.)
(a) Following a procedure similar to the one used in the text in
treating the divergence, integrate over a ‘‘cuboid’’ and show that
the definition given above yields Equation (III-7b).
(b) Arguing as we did in the text in establishing the divergence
theorem, use the above expression for the curl to derive the

equation
fLﬂXFdS=JJLVXFdV,

where V is the volume enclosed by S.

(c) Dernve the equation of part (b) directly from the divergence
theorem. [Hint: In the divergence theorem [Equation (1I-30)]
replace F by e X F where e is an arbitrary constant vector }

(d) Verify the equation of part (b) for F =iy — jz + kxand V
the unit cube shown in the figure.

y
1
—L
X/ 1 >l
II1-30 The result
oF,  OF,
VXF),=—2-—
ox ay

has been established by calculating the circulation of F around a rec-
tangle (see the text, pages 75 ff.) and around a right triangle (see
Problem III-2). In this problem you will show that the result holds
when the circulation is calculated around any closed curve lying in
the xy-plane.
(a) Approximate an arbitrary closed curve C in the xy-plane by
a polygon P as shown in the figure. Subdivide the area enclosed
by P into N patches of which the Ith has area AS,. Convince
yourself by means of a sketch that this subdivision can be made
with only two kinds of patches: rectangles and right triangles.
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(b) Letting C(x, y) = 8F,/dx — 3F /3y, use Taylor series to
show that for N large and each AS, small,

N
iF-tds=l=Zl£lF°tds

aC X
Clxp yo) AA + (‘—) (x, — x) AS,
X |

ox » 1=

n

N

acC
+ (8_) Z(YI_YO)ASI"'"'v
Y Jxyng 1=1

where C, is the perimeter of the /th patch, (x,, y,) is some point
in the region enclosed by P, and AA is the area enclosed by P.
(c) Show that

lim 35F-Eds=3gF-ids
N—so 4 <
cach AS,—0

aC
= I:C(Xov Yo + (X — x) (5;)
%o %

() o ]as
8Y /i s,

where AS is the area of the region R enclosed by C and (X, y) are
the coordinates of the centroid of the region R; that is,

= 35) 7= 55
x——AS Rxdxdy and y AS Rydxdy.

(d) Finally, calculate

i N
V X = 1 —§F'td.
@xP= i ggg Rt

about x,v,

113



Chapter IV

The Gradient

For mostly they goes up and down . . .

P. R Chalmers

Line Integrals and the Gradient

We have now investigated the relationship between the following
two statements:

-tds =0 for any closed curve C.

$c F
X F =0.

1.
2.V

We saw in the last chapter that the first of these statements
implies the second and is equivalent to the assertion that the line

integral of F « tis independent of the path. We also saw that the
second statement implies the first if F is smooth in a simply
connected region. You might think that two ways of saying some-
thing would be enough, but there is a third way, as we shall now
see.

114 Let us suppose that a given vector function F(x, y, z) has asso-
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ciated with it a scalar function {(x, y, z) and that the two func-
tions are related as follows:

3 3 3
F=%  p-¥ d F=® v
ax dy az

If the above relations hold, then the line integral of F - t is inde-
pendent of path. To show this, we use the three relations given
in Equation (IV-1) and the formula for the unit tangent vector to

get

pop_fdt dy  dyde_ du

dxds dyds dzds ds

where the second equality follows from a familiar chain rule of
multivariate calculus. Suppose now that the path C joins the two
points (xg, yo. Z) and (x,, y,. z,)- Then

L_F-fds=fci—fds=fcd¢

= q’(xl* yl* ZI) - lll(xo, y07 ZO)'

You can see that this result depends only on the points at which
the path C begins and ends. We’d get the same result for any
path joining these two points. This proves our assertion: with F
and W related as in Equations (IV-1), the line integral of F - tis
independent of path. We shall now show that the converse of this
statement is also true; that is, if the line integral of F - is inde-
pendent of path, there is a scalar function {s(x, y, z) related to F
as specified in Equations (IV-1).

We begin with the observation that, because the line integral
JcF- tdsis independent of path, if we integrate from some fixed
point Py(x,, ¥, Zo) to a second point P(x, y, z), the result is a
scalar function of the coordinates (x, y, z):

(xy 2)

(x, y, 2) = f F-tds. (IV-2)

{xg V.20

It is important to understand that this would not be true if the
integral depended on path, for then its value would depend not
only on the coordinates (x, y, z) of the point P but also on the
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path joining P, and P, and the integral would not then be a func-
tion within the standard definition of the term.

Since the integral we’re examining is path-independent, we are
free to select any curve as the path of integration. We choose the
one shown in Figure IV-1. It consists of two parts. The first, C,

2z Py 2)

i
1
|
[}
i
1
1
|
i
)
i
]

é

e——d e

o ——————bl—ae

Figure IV-1

connects P, to an intermediate point P, whose coordinates are
(a, y, z) where a is some constant. Beyond fixing its two end
points and requiring it to be reasonably smooth, we do not need
to specify anything more about C,. The second part of the curve,
C,, is the straight line segment from P, to P. Thus, Equation (IV—
2) becomes

P

Py
P(x, y, 2) = L F.tds + f F.(x', y, 2) dx'.

P

The first term on the right-hand side of this equation is indepen-
dent of the variable x. The second term is, effectively, nothing
more than an ordinary one-dimensional integral since y and z are
constant on C, and just come along for the ride. That is,

P X
L F(x',y,2)dx' = f F.(x', y = const., z = const.) dx’,
1 a

and so

o d f
— =— | FJ(x', y = const.,, z = const.) dx’
ox - d Ja Xy z )

= F(x, y, 2),



Line Integrals where we use the fact that the derivative of an integral with

and the Gradient respect to its upper limit is merely the integrand evaluated at that
limit. This establishes one of the three relations we sought. The
other two, F, = oy/dy and F, = o{i/dz, can be obtained by the
same sort of reasoning, and you should carry out the derivations
yourself. Figure IV-2(a) and (b) will be helpful.

2z
Py(x, b, 2)
Py

S
-~
)

S
<

o —t

i
1
|
J
|
1
|
|
¢

¢ ————

Figure IV-2(a)

z P
G

>

> Py(x, y, )
Co

oA o
R N

Figure IV-2(b)

You have probably recognized by now that we have here
another use for the del notation. That is,

G, a ad
Fx=—‘£, F)=—‘k, and Fz=—¢
dax dy az

can be combined to give

TN

ax ay 0z

F

|
/?
1
+
=
|
+
=
SAES
SN
<
1l
<
€
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which is read ‘‘del psi.”” This operator is called the gradient and
is sometimes written gradys. However, we shall always write Vis
in keeping with modern usage. The gradient of s is a vector
Junction of position. Its geometric significance will be discussed
in detail below.

We have now established the relationship between path inde-
pendence and the existence of a scalar function {s(x, y, z) such
that F = V. Since there is also a relationship between path
independence and the fact that V X F = 0, you may suspect that
V X F = 0 and F = V{ are also related. Indeed, if F = Vi, then
under suitable conditions, V X F = 0. This is easily established.
Consider, for example, the x-component of V F:

(VXFLJ_FZ_E::i(@)_i(%)

dy 9z dy \az dz \ dy
_ P
dy dz 0z dy

This last equality follows if {s and its first and second derivatives
are continuous for then d%/dy dz = d4/dz dy. Obviously the
other two components of V X F can be shown to vanish in exactly
the same way. Thus,

d
Fq=—¢ (g=x2) = VXF=0
aq

The converse of what we have just shown would assert that if
V X F = 0, then there exists a scalar function { such that F =
V{5, a statement that is true provided the region of interest is
simply connected. To understand this, we can consult Figure
IV-3, which shows how path independence of the line integral
of F+t,V X F =0, and F = Vi are related. The solid arrows
in the diagram represent implications which hold in general pro-
vided F is smooth. The dashed arrows represent implications
requiring not only that F be smooth, but that the region of interest
be simply connected. We have already shown that (1) implies
both (2) and (3) and that (3) implies (1) in a simply connected
region. Combining these two statements, we see that (3) implies
(2) in a simply connected region.
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fCF°tds

independent
of path

Figure IV-3

In practice, just as the functions we deal with usually have
continuous first derivatives (and are therefore smooth), the
regions we work with are simply connected. In such circum-
stances we can relax a bit and regard the three statements sum-
marized in Figure IV-3 as equivalent: each implies and is implied
by each of the others. However, you should be aware of simple
connectedness and its implications for the relations among the
three statements.

To give a simple example of the ideas we have been discussing,
consider the vector function

F(x, y, z) = iy + jx.

This function is smooth everywhere, and we have already noted
that its curl is zero (page 91). According to what we have just
said, this means there must be a scalar function {s(x, y, z) such
that F is its gradient. Thus, ¢ must satisfy

ad d d
F1=y=—¢, F=x——¢- F=0——¢-

ox ' Ty’ : T ez

119 Clearly §(x, y, z) = xy + C, where C is an arbitrary constant,
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satisfies these relations. This should be contrasted with the case
of the function F = iy — jx, the curl of which does not vanish
(page 92). If this function were the gradient of a scalar function
{5, we should have

- I -

F = - ) v X = B )
YT dy : 3z

X

but, as you should be able to convince yourself, there is no func-
tion Y which satisfies these three equations.

The expression we have written for the gradient of a scalar
function {(x, y, z), namely

ad a
V¢=i—¢+ja—¢+k—¢,
dax dy az

is really just the form of this operator in Cartesian coordinates.
To find the form of the gradient in other coordinate systems, if
you go about it straightforwardly, is a tedious job. For example,
to find the gradient in cylindrical coordinates, we would first have
to express the Cartesian unit vectors i, j, and k in terms of the
analogous quantities &, &, and &, in cylindrical coordinates.
Then, using x = r cos 8, y = r sin 0, and the chain rule for
differentiation, we would have to express derivatives with respect
to x, y, and z in terms of those with respect to r, 8, and z. We
shall not pursue this matter here because later (see pages 140 ff.)
an easier and faster method will be available to us. For the present
we merely quote the form of the gradient in cylindrical and in
spherical coordinates.

Cylindrical:
V¢=é,g—q:-+é9%%+é:%. (Iv-3)

Spherical:
V¢=é,%%+é9%%%+é¢ﬁiln—6§%. (Iv-4)

A coordinate-free definition of the gradient analogous to the ones



Finding the given for the divergence [Equation (II-17)] and the curl [Equa-
Electrostatic tion (1I1-8)] is discussed in Problem IV-2S5.
Field

Finding the Electrostatic Field
We began our discussion of vector calculus with a search for

some convenient method for finding the electrostatic field. Our
investigations led us to the differential form of Gauss’ law,

V- E = ple,

Even this expression is not often useful for finding E because it
is one equation in three unknowns (E,, E, and E, in Cartesian
coordinates). Now, at last, we are able to complete our discussion
and write down the equations which are often the most useful of
all known methods for finding the field.

This final step rests on the observation that since

%E"t\ds=0
C

for any closed path C, the field E can be written as the gradient
of a scalar function. Conventionally this function, called the elec-
trostatic potential, is designated ®(x, y, z), and we write'

E = -V

Combining this equation with the differential form of Gauss’ law
[Equation (II-17)], we get

V. (=V®) = ple,
or

V. (V®) = —ple,.

' The negative sign in this equation is not put there just to make life more dif-
121 ficult; there is a good reason for it See the discussion on pages 138-39
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When we write out the left-hand side of this equation in detail,
we find

a a d
V- Vd)=|i—+j— + k— -(i@+j@+k§2>
ox ay az ax dy 9z

PP PP P
=—+—=+—,
dx? ay? a7

and so

’d  IP I P
-t — + —
ax* 9y a7

= —ple,. (IV-5)

Equation (IV-5) can be written more compactly by introducing
a new operator, called the Laplacian, which is denoted, for fairly
obvious reasons, by the symbol V? (read ‘‘del squared’’). That
is,

=+ — + — V-6
ax*  ay? 9z ( )

In this new notation Equation (IV-5) becomes
VD = —ple,. av-1n

Equation (IV-6) provides the form of the Laplacian in Carte-
sian coordinates; its forms in cylindrical and spherical coordi-
nates will be given in the next section. The best definition of the
Laplacian is probably

Vif = V- (Vf),

where fis some suitably continuous scalar function of position.
This definition has the important advantage of being independent
of the coordinate system.

Equation (IV-7) is called Poisson’s equation. It is a linear,
second-order partial differential equation in one unknown, the
scalar function ®(x, y, z), and is the culmination of our long
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search for a method of determining the electrostatic field. A great
body of work exists describing the many elegant mathematical
schemes which have been devised to solve it, and a few simple
examples are given in the next section. In any problem, once we
have @, the field is trivial to find using E = —V®.

At any point in space where there is no electric charge, the
density p is zero and Poisson’s equation reduces to

Vo = (.

This is called Laplace’s equation and is more often used than
Poisson’s equation. The reason for this is that usually charges
are distributed over various objects; this gives rise to a field, and
we are interested in finding the potential (and from it, the field)
in the charge-free space between the objects. In the simplest of
situations it is possible to specify ‘‘boundary conditions,”’ that
is, the value of the potential on the surfaces of these objects
(Figure IV—4). We then find that solution of Laplace’s equation

Figure IV-4

which takes on the given values on the surfaces. This is illustrated
in the next section.

Using Laplace’s Equation®
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Whether solving Laplace’s equation is or is not a topic in vector
calculus is a moot point, but the basis of our entire discussion

2 This section is not essential to what follows and may be omitted.
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has been a search for a method to calculate electric fields. Since
Laplace’s equation is the end product of that search, we can
scarcely omit a few examples to show how it works.

We begin with an especially simple problem. Imagine we have
two very large (*‘infinite’”) parallel plates separated by a distance
s (Figure IV-5). Choosing a coordinate system as shown in the

| .
s

3 s

Figure IV-5

figure, let the plate at x = O be held at zero potential and that at
x = s at V. Our object is to find the potential and the electric
field in the space between the two plates. Because the plates are
infinitely large, there is nothing to distinguish a point (x, y, 2)
from any other point (x, y’, z') having the same x-coordinate. It
follows that the potential ® depends on x but not on y or z. Thus,
V2® reduces in this case simply to d’®/dx?, and so Laplace’s
equation and the associated boundary conditions are

o

0
and
0 atx = 0
¢=
Vo atx = s.

This is a trivial problem and the solution is

d(x) = V_(,x
s
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The electric field is found using E = —V®, which yields

-V,
E, = s" and E,=E,=0.

Thus, the field is a constant vector normal to the plates. This is
an excellent approximation to the potential and field between, but
far from the edges of, two plates whose linear dimensions are
large compared with their separation. You may recognize this
arrangement as a parallel plate capacitor.

Our second example is a spherical capacitor, that is, two con-
centric spheres having radii R, and R, with the inner one main-
tained at a potential V, and the outer at zero (Figure [IV-6). We

Figure IV-6

are required to find the potential and field everywhere between
the spheres. In this situation we would obviously do well to work
in spherical coordinates r, 0, and ¢, in which Laplace’s equation
between the spheres has the imposing form

1 d Gin 6 od N 1 &P 0
— | sin 6 — — =
r? sin 6 00 90 r? sin? 0 a¢?

(See Problem IV-23.) Fortunately, we need not work with this
equation as it stands; a little thought will convince you that ®
can only be a function of r since there is no way to distinguish
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a point (r, 6, ) from another (r, 8, ¢') with the same r but
different 6 and ¢. Thus,

b b

R

and Laplace’s equation reduces to
1 o
14 (r2 d—) = 0. (Iv-8)

We are interested in the solution of this equation which is valid
for R, < r < R, and satisfies the boundary conditions

Vo at r = R,
d(r) =
0 atr = R,.

Multiplying Equation (IV-8) by r? and putting = d®/dr, we
get

d

—_— 2 =

i (riy) = 0,
and so

rif = ¢y,

where ¢, is a constant. Hence,

_dd ¢
b= dr  r?¥’
and it follows that
G
o = —7 + ¢, (Iv-9)

where ¢, is another constant. Imposing the boundary conditions,
we find

-——+c =V and ~-— + ¢, =0,
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Equation
_ ViRiR, __ViR
¢ == and c, = .
R, — R, R, — R,

Substituting these in the expression for the potential [Equation
(IV-9)], we get

<I>(r)=L'R'(1—&), R, < r <R,
R, — R, r

To get the electric field, we must take the gradient of &, and this
is clearly most conveniently done in spherical coordinates [see
Equation (IV-4)]. However, since in this case ® depends only
on r, we get only a radial component:

p_ 4O VRR 1
" dr R, — R, r¥’

Eq

E, =0, (R <r<R,.

Our third and last example is more complicated (and more
interesting) than the foregoing. If a potential difference is main-
tained between two ‘‘infinite’’ parallel plates P and P’ (Figure
IV-7), then we know from our first example that the field

P y P

il
N

Figure IV-7

between them is a constant vector normal to the plates. Choosing
a coordinate system as shown in the figure (with the z-axis out
127 of the plane of the paper), we have E = Ei where E is a con-
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stant. Let an “*infinitely’’ long cylinder held at zero potential be
situated between the plates with its axis along the z-axis. Let its
radius R be small compared with the plate separation. What are
the potential and the electric field outside the cylinder and
between the plates? Here, clearly, we should use cylindrical coor-
dinates (r, 0, z), in which case Laplace’s equation reads

19 P 180 §d
Vo=~-—|r—)|+———+—=0.
ror ar r* 002 dz

(See Problem 1V-21.) You should convince yourself that & in
this case must be independent of z, so this equation simplifies
somewhat to

19 ad 1 8*®
-— (r —) + e 6_92 = 0. av-10)

There are two boundary conditions of which the first is
$(r,0) =0 at r=R.

The second condition has to do with the fact that at large values
of r, the influence of the cylinder is negligible and the field must
be, to a good approximation, what it would be if the cylinder
were not present at all, that is, E¢. To put this in terms of the
potential, we note that

® = —-FEx

will provide just such a field. Since x = r cos 6, we can write
the second boundary condition

&(r,0) = —Eyrcos 8, r>R. (IV-11)

Let’s try to solve Laplace’s equation for this problem [Equa-
tion (IV-10)] by assuming we can write

&(r, 6) = f(r) cos 0, (Iv-12)

where f(r) is an as yet unknown function. What prompts us to
do this is the fact that the second boundary condition [Equation
(IV-11)] has precisely this form—a function of r multiplied by
cos 0. If we substitute Equation (IV-12) into Equation (IV-10),
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Equation
2
Putting f(r) = r* where \ is a constant leads to
AN — DrAM2 4 A2 — A2 =,
or

A=,

and A = *1. Hence we get
B
fry=Ar + —,
,
where A and B are constants. Thus, our solution is
B
®(r,0) = | Ar + — ] cos 0.
r
The first boundary condition requires that
B
AR + = =0,
R

or
B = —AR2.

Hence,

2

AR
®(r, 0) = Arcos 6 — . cos 0.

To impose the second condition, we note that for r large, the
second term in this last equation is negligible compared with the
first. Thus,

129 &®(r, ) = Ar cos 9, r large.
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We satisfy the second boundary condition by choosing A = —E,,
The complete solution is thus

R2
®(r, 0) = —E,r (1 - —2> cos 0.
r

To find the electric field, we proceed as usual with E = —V®.
Using Equation (IV-3), we get

You should verify that for large r, this field reduces to Ei as
required.

You may find this last example disquieting since a certain
amount of clever guesswork is used in finding the potential. Actu-
ally there are standard procedures, which, in problems of this
kind, lead more or less straightforwardly to the solution. A dis-
cussion of these procedures, however, would be very lengthy and
(in the well-worn phrase) beyond the scope of this text. Before
moving on, however, one further point is worth making: A solu-
tion of Laplace’s equation which satisfies appropriate boundary
conditions is unique. That is to say, there is one and only one
such solution, so that if we solve a problem by guesswork and
skullduggery, and someone else solves it with refined and elegant
mathematical techniques, the two solutions, in spite of their dis-
parate pedigrees, must be the same. In Problem IV-24 you will
be led through a proof of this remarkable fact.

Directional Derivatives and the Gradient
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We have introduced the gradient as a sort of mathematical artifice
useful in discussing path-independent line integrals. We now turn
to a more detailed examination of the gradient in order to describe
its geometrical significance.
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Before beginning our discussion, we make a few comments on
Taylor series since these are needed in what follows. For a scalar
function of one variable which is suitably continuous and differ-
entiable, we have

flx + Ax) = f(x) + Axf'(x) + HAx)*f'(x) + -+ -

This says that the value of the function at some point x + Ax can
be written as the sum of (usually) infinitely many terms which
involve the function and its derivatives at some other point x.
Among other things, this Taylor series is useful for calculation,
for if the two points are close together (that is, if Ax is small),
then we can truncate the series after a certain number of terms
(which we hope is small) since the neglected terms, each pro-
portional to some large power of the small number Ax, will sum
to a value which is negligible.

Taylor series can also be formed for functions of several vari-
ables. Thus, for a function of two variables we have

fx + Ax, y + Ay)

= flx,y) + Ang + Ay@f + - (IV-13)
dax ay

This says that the value of the function at some point (x + Ax,
y + Ay) can be written as a sum of (usually) infinitely many
terms which involve the function and its derivatives at some other
point (x, y). We shall never need the explicit form of the remain-
ing terms of this series [represented by the dots in Equation (IV-
13)]. We should know, however, that these terms involve higher
powers of the ‘‘small’”’ numbers Ax and Ay (for example, Ax?,
Ay?, AxAy, Ax?, Ay?, Ax? Ay, and so on). With these simple ideas
in mind we turn now to our main task.

Consider some function z = f(x, y). Geometrically this rep-
resents a surface as shown in Figure IV-8(a). Let (x, y) be the
coordinates of a point P in the xy-plane. The height of the surface
above this point is represented by the length of the dotted line
PQ; that is, PQ = z = f(x, y). Suppose now we take a short
step in the xy-plane to a new point P’ with coordinates
(x + Ax, y + Ay). The height of the surface above this point is
P'Q" = f(x + Ax, y + Ay). Let As be the length of the step
(As = PP").

We next ask how much the function f has changed as a result
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Figure IV-8(a)

of taking this step. Clearly this change is the difference in the
two heights PQ and P'Q’, and

Applying the Taylor series formula stated above [Equation (IV-
13)], we get

_ of S, .. _
Af = flx,y) + Ax PPl Ay 3 + flx, y)
= a—f+Aya—f+
dax ay

We now recast this expression by what at first may seem an
unnecessary elaboration of the notation. Let As be a vector that
has magnitude As and points from P to P’. Clearly,

As = iAx + jAy.
But the gradient of f is

Lof L of
= - + -
vf lax Jay

(an obvious specialization of the gradient notation to a function
of two, rather than three, variables). It follows at once that

Af = (Bs) - (V) + .
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Complicating matters slightly more, let @i be a unit vector in the
direction of As. Then

and
Af=@-Vf)As + -+,
so that

Af

— =f - V + ...
As a-vs

We now take the limit of this equation to get

d_ . A .,
= Jim 2= a-Vf (IV-19)

There is no longer any need of ““+ --.”" since the dots repre-
sented terms which go to zero as As goes to zero.

This new expression [Equation (IV-14)] has a simple inter-
pretation: it is the rate of change of the function f(x, y) in the
direction of As (that is, of @i). Redrawing Figure IV-8(a) and
passing a plane through P and P’ parallel to the z-axis [Figure
IV-8(b)], we see that it cuts the surface z = f(x, y) in a curve C.

<

~

~

x
w\

Figure IV-8(b)

The quantity df/ds defined in Equation (IV-14) is the slope of
this curve at the point Q.
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The quantity dfi/ds is called the directional derivative of f.
Although the analysis given above which led to this derivative
was for functions of two variables, the results all apply to func-
tions of three (or more) variables. Thus,

d s
XF(x,y, 2)=1-VF
is the rate of change of the function F(x, y, z) in the direction
specified by the unit vector @.

An example of the directional denvative may be amusing here.
We’ll work with a function of two variables so that we can draw
pictures. Thus, let’s consider

2= flx,y) = (x2 + y)'”,

which is an inverted right circular cone whose axis coincides with
the z-axis [see Figure IV-9(a)]. We ask for the directional deriv-

z

Figure IV-9(a)

ative of this function at some point x = a and y = b and in the
direction specified by &t = i cos 6 + j sin 0 [see Figure IV-9(b)].

y

Figure IV-9(b)



Directional First we need the gradient of f(x, y). But
Derivatives and

the Gradient F) 9
F_ox e X2
ax z dy z
as you can easily verify. Thus,
PR
o E iy
b4
and
daf xcos® + ysin® acos® + bsin@
— =u- V = —>
ds f Z Vat + bz

Suppose 0 is chosen so that i is in the radial direction as indicated
in Figure IV-9(c). This means

cos O = S s
(aZ + b2)ll2
. b
sin 0 = —(a2 R

and so

df a a b b

= . + . =
d Va+b Vad+b Va+b Va+b

| 35 Figure IV-9(c)
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z

Figure IV-9(d)

A second interesting case is that in which @ is chosen perpen-
dicular to the direction of the previous example [see Figure
IV-9(e)]. We then have

cos 0 = —;b— s
(a2 + bZ)lIZ
. a
sin 6 = _—(a2 FENTE

and so

ﬂ‘_ a <_ b )
ds Va+ P Va + b»

+—2 < 2 )—0
Va + B \Va + b

136 Figure IV-9(e)
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The meaning of this result is illustrated in Figure IV-9(f).

Figure IV-9(f)

Geometric Significance of the Gradient
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With the concept of the directional derivative at our disposal, we
are now in a position to give a geometric interpretation of the
gradient. At some point P, with coordinates (x,, y,, Z,) We have

dF .
() -o-om,

where the subscript ‘‘0’’ means the quantity is to be evaluated at
the point (x,, ¥o, 2¢). Now (VF),, the gradient of F evaluated at
Py, may be represented by an arrow emanating from that point
as shown in Figure IV-10. If we ask in what direction we must
move to make (dF/ds), as large as possible, it is clear that @

®)

(xo. Yo
0+ Yor Zo) (VF),

y

Figure IV-10
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should be in the same direction as (VF),. This is because if we
let o be the angle between @ and (VF),, then (dF/ds), =
|VFJ, cos a, and this is as large as it can be when a = 0. Thus,
the gradient of a scalar function F(x, y, z) is a vector that is in
the direction in which F undergoes the greatest rate of increase
and that has magnitude equal to the rate of increase in that
direction.

To illustrate this interpretation of the gradient, let us go back
to the inverted cone z = f(x, y) = (x* + y)'? we discussed
above. We learned that

ix + jy
Z

vf =

and

ﬂ‘_acos9+bsin9
ds Va + b

= D(0).
To find the direction in which f(x, y) undergoes the greatest rate

of change, we set

dD_—asinf)+bcos9_0

%_ Va + b?

This gives tan 6 = b/a, whence cos 6 = a/(a®> + b*)" and sin 6
= bl(a® + b¥)'. So (dflds),,, = 1. On the other hand,

x4+ y? "
|Vf|=[ Z ] =L

since z> = x? + y* Furthermore, tan 6 = b/a corresponds to the
direction ai + bj, while at the point (a, b),

ai + bj
Vf: (az + b2)l/2 °

which is a vector in the same direction. Thus both properties of
the gradient are illustrated; it’s in the direction of maximum rate
of increase, and its magnitude is equal to the rate of increase in
that direction.

With this geometric interpretation of the gradient at our dis-
posal, we can now see the reason for the negative sign in the
equation E = —V®: Since VP is a vector in the direction
of increasing &, the force on a positive charge g is
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F = gE = —¢V®, which is in the direction of decreasing ®.
Thus, the negative sign ensures that a positive charge moves
‘‘downhill”’ from a higher to a lower potential.

There is another property of the gradient useful in understand-
ing its geometric significance. To make this discussion concrete,
let T(x, y, z) be a scalar function which gives the temperature at
any point (x, y, z). The locus of all points having the same tem-
perature T is (in the simplest case) a surface whose equation is
T(x, y, z) = T, (Figure IV-11). This is called an isothermal sur-
face. We now show that VT is a vector normal to the isothermal

Figure IV-11

surface. Let C be any curve lying in the isothermal surface and
let P be any point on C. Let i be the unit vector tangent to C at
P (it doesn’t matter which direction along C we take). The direc-
tional derivative in the direction @ is

<£) =4-Y7T =0
ds

because T does not change as we move along the isothermal
surface. If the scalar product of two vectors, neither of them zero,
vanishes, the two vectors are perpendicular. Thus VT is perpen-
dicular to C at P. By the same argument it is perpendicular to
any curve on the surface through P (such as C’' in Figure IV—
11). But this can be true only if VT is normal to the isothermal
surface at P. In general then, Vf(x, y, z), where f(x, y, z) is a
scalar function, is normal to the surface f(x, y, z) = constant.’

A simple example of this property of the gradient is provided
by the function F(x, y, z) = x? + y? + z2 The surface F (x, y, 2)
= constant is, of course, a sphere (assuming the constant is pos-

* The connection between this property of the gradient and our earlier expression
for the unit vector normal to a surface [Equation (II-4)] is the subject of Problem
1v-20
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itive). As you should verify for yourself, V F = 2(ix + jy + kz)
= 2r. Thus, we have a familiar result: A vector normal to a
spherical surface is in the radial direction. We’ll leave it to you
to ponder the geometric relation between the electrostatic field E
and its equipotential surfaces ®(x, y, z) = constant.

We can make a simple connection between the property of the
gradient just discussed and the fact that it is in the direction of
the greatest rate of increase. Any displacement from the surface
f(x, ¥, z) = constant, regarded as a vector s, can be resolved into
a component along the surface (s, ) and one normal to it (s, ), as
shown in Figure IV-12. That part of the displacement along the

o

N
|
l
|
|

Figure IV-12

surface is ‘‘wasted motion’’ if our aim in moving is to cause a
change in the value of f(x, y, z). Only the normal component
carries us away from the surface and causes a change in f. From
this it is clear that the greatest increase possible for a given mag-
nitude of displacement should occur when we move away from
the surface in the normal direction. But we have already estab-
lished that the greatest rate of increase occurs in the direction of
the gradient. Thus the gradient is normal to the surface.

The Gradient in Cylindrical and Spherical Coordinates
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A by-product of our discussion of the directional derivative is
the ‘‘easier and faster’” method for calculating the gradient in
spherical and cylindrical coordinates mentioned earlier (see page
120). To determine this method, we begin by outlining our der-
ivation of dflds:*

* The calculation outlined here pertains to a function of three variables and is a
simple generalization of the calculation on pages 130-33 which deals with a
function of two variables
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1. Our first step is to consider a scalar function of three Car-
tesian coordinates f(x, y, z) and use Taylor series to deter-
mine the change in f caused by a displacement from the
point (x, y, z) to a second point (x + Ax, y + Ay, z + Az).
We find for this change

9 9 9
Af=—fo+—j:Ay+—fAz+---
dax dy 0z

2. We next write Af in terms of As, the vector displacement
from (x, y, z) to (x + Ax, y + Ay, z + Az). Clearly (see
Figure IV-13)

As = iAx + jAy + kAz,

so that

(iYL Y Y.
Af—<16x+16y+kaz> As + - -

As

~4

Figure IV-13

3. Finally we write As = @iAs, divide by As, and take the limit:

A
im =Y (Y YY)
Ao As  ds ox ay 9z

The quantity which is dotted into i in this last expression
is then recognized as the gradient of f in Cartesian
coordinates.
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To obtain the gradient of a scalar function in cylindrical coor-
dinates we proceed in much the same way:

1. We consider a scalar function of three cylindrical coordi-

nates, f(r, 8, z). Using Taylor series, we find the change in
Jf due to a displacement from the point (r, 8, z) to a second
point (r + Ar, 6 + A8, z + Az):

Af=gAr+a—fA9+g

Az + -
ar a0 9z

2. Next, we write Af in terms of As. This is the heart of the

calculation. From Figure IV-14 we have

As = &€ Ar + &r AB + &, Az

N =~ Az

rAf

Figure IV-14

There are two features of this expression which require
some discussion. First, the displacement in the direction of
increasing 6 (of magnitude r A8) is an arc of a circle rather
than a straight line segment. However, since we will even-
tually pass to the limit as As — 0, we may regard A6 (as
well as Ar and Az) as arbitrarily small, in which case the
arc is arbitrarily close to its subtending chord. Thus, as indi-
cated in Figure IV-15, Ar, r A6, and Az approximate to
any desired degree of accuracy three mutually perpendic-
ular displacements, the analogs of the three Cartesian dis-
placements Ax, Ay, and Az (see Figure IV-13).

The second feature of our expression for As which
requires comment also has to do with the displacement in
the direction of increasing 6. It is this: Since the arc is part
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Figure IV-15

of a circle of radius r + Ar, we should, strictly speaking,
write the displacement as (r + Ar) A6, not r A6. But the
additional term Ar A9 is ‘‘second order’’; that is, it is the
product of two small quantities and therefore negligible
compared with r A6.

If we now write our expression for Afin terms of As, we
get

~of 1o o
A = - 4 -4+ 8- + ..,
f (e, ar Co r a8 & 62) As

Note the factor 1/r in the second term to compensate for
the factor r in &r A6 in As.

. Finally, putting As = @iAs, we find

lim

& —+e——+ ¢
a0 As  ds

M=ﬁ_<ﬂaf AN
T ds  \ "or r 98 oz v

The quantity in the above expression dotted into @ is the
gradient of fin cylindrical coordinates.

An analogous procedure can be used to find the gradient in
spherical coordinates; this has been left as an exercise (see Prob-

lem 1V-22).
PROBLEMS
IV-1 (a) Calculate F = V ffor each of the following scalar functions:
(i) f= xyz.
) f=x2+y*+ 22
(i) f = xy + yz + xz.
(iv) f= 3x* — 472
143 (v) f= e "siny.
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§;F “tds=0
c

for one or more of the functions F determined in part (a) choosing
for the curve C.
(i) the square in the xy-plane with vertices at (0, 0), (1, 0),
(1, 1), and (0, 1).
(i) the triangle in the yz-plane with vertices at (0, 0), (1,
0), and (0, 1).
(iii) the circle of unit radius centered at the origin and lying
in the xz-plane
(c) Verify by direct calculation that V X F = 0 for one or more
of the functions F determined in part (a).

IV=2 Verify the following identities in which f and g are arbitrary dif-
ferentiable scalar functions of position, and F and G are arbitrary
differentiable vector functions of position

(@) V(fg) = fVg + gVf.

®) VFG)=GVWF+F-V)G+Fx (VXG)+
G X (VXF).

() V. (fF) =fV+*F + F- Vf.

V- FxG) =G (VxF)—F-(VxG)

) VX (fF)=fVXF + (Vf) xF.

) VX (FxG)=(G*VIF-(F*V)G +F(V*G) -
G(V F).

(g) VX (VxF)=V(V-F) - VF.

IV-3 Show that V X Vf = 0 where f(x, y, z) is an arbitrary differentiable
scalar function. Assume that mixed second-order partial derivatives
are independent of the order of differentiation. For example, 8f/ox 0z
= 0%z ox.

IV—4 (a) Each of the following functions is smooth in a simply con-
nected region. Determine which of them may be written as the
gradient of a scalar function, and for those which can, use Equa-
tion (IV-2) to find that scalar function.

(i) F = yi.
(ii) F = CKk, C a constant.
(i) F = iyz + jxz + kxy.
(iv) F = ix + jy + kz.
(v) F=le“siny + je—sinz + ke "sin y.
(b) Neither of the following functions is smooth everywhere.
Nonetheless each can be written as the gradient of a scalar func-
tion Use Equation (IV-2) to find that scalar function.
(i) F =r/r?, r = ix + jy.
@ii) F = r/r'?, r =ix + jy + kz.

144 IV-5 The function F(r, 8, z) defined in Problem [1I-17 is smooth and



Problems has zero curl in a nonsimply connected region consisting of all of
three-dimensional space with the z-axis removed. Show that there is
no scalar function { such that F = Vi by evaluating the line integral
of F + t from the point P,(0, —1, 0) to the point P,(0, 1, 0) over two
different paths: C,, the right-hand side of the circle of radius 1 lying
in the xy-plane and centered at the origin (see figure), and C,, the left-
hand side of the same circle. Orient the paths as shown. Why does
the fact that the two paths give different results imply that there is no
scalar function s such that F = V{?

o8 Ce

Py

IV-6 (a) An electric dipole of strength p situated at the origin and
oriented in the positive z-direction gives nise to an electrostatic
field

1
E(r 6, ¢)=— 2 (28, cos 6 + &g sin 0).
4me, 1’

Use Equation (IV-2) to show that the dipole potential is given
by

p cos 0

2 .

1
145 P8¢ =
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Useful information. In spherical coordinates,

i=éd—r+érd—e+érsin9@
“ds  ds % ds
(b) Calculate the flux of the dipole field through a sphere of
radius R centered at the origin.
(c) What is the flux of the dipole field over any closed surface
which does not pass through the origin?

IV-7 Here is a “*proof’’ that there is no such thing as magnetism One

of Maxwell’s equations tells us that
V+B =0,

where B is any magnetic field Then using the divergence theorem,

we find
[[o-aas—[[[vnavo
s v

Because B has zero divergence, we know (see Problem I1[-24) there
exists a vector function, call it A, such that

B=VXA

Combining these last two equations, we get

Next we apply Stokes’ theorem and the above result to find

jf;(A-Eds=”ﬁ VXAdS=0
b

Thus we have shown that the circulation of A is path-independent It
follows that we can write A = V{ where { is some scalar function
Since the curl of the gradient of a function is zero, we arrive at the
remarkable fact that

B=VXVy=0,

that is, all magnetic fields are zero! Where did we go wrong? [Taken
from G. Arfken, Amer. J Phys., 27. 526 (1959) ]

IV-8 Fick’s law states that in certain diffusion processes the current

density J is proportional to the negative of the gradient of the density
p: that is, J = —kVp, where k is a positive constant If a substance
of density p(x, y, z, t) and velocity v(x, y, z, t) diffuses according to
Fick's law, show that the flow is irrotational (that is, V. X v = 0).

IV-9 (a) A substance diffuses according to Fick’s law (see Problem

IV-8). Assuming the diffusing matter is conserved, derive the
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vV-10

1v-11

diffusion equation

ap

— = kV?

ar e

(b) Bacteria of density p diffuse in a medium according to Fick’s
law and reproduce at a rate Ap per unit volume (\ is a positive

constant) Show that

(;—‘: = kVip + Ap.

(a) A fluid is said to be incompressible if its density p is a con-
stant (that is, is independent of x, y, z, and 7). Use the continuity
equation to show that the velocity v of an incompressible fluid
satisfies the equation Vv = 0.

(b) If V X v = 0, the fluid flow is said to be irrotational Show
that for an incompressible fluid undergoing irrotational flow,

Vi =0,

where ¢, a scalar function called the velocity potential, is so
defined that v = V¢

The heat @ in a body of volume V is given by

Q=cf”VTpdv,

where ¢ is a constant called the specific heat of the body, and
T (x, v,z t)and p(x, y, 7) are, respectively, the temperature and density
of the body. (Note that we are assuming the density to be independent
of time ) The rate at which heat flows through S, the bounding surface
of the body, is given by

Q=kffﬁ~VTdS.
dr s

where k (assumed constant) is the thermal conductivity of the body,
and the integral is taken over the surface S bounding the body. Use
these facts to derive the heat flow equation

oT
VT =a—,
at

where o = cp/k.

IV-12

In nonrelativistic quantum mechanics a particle of mass m mov-

ing in a potential V(x, y, z) is described by the Schrodinger equation

h? Y
—_— VZ + Vi = ih —
2m v b =i at’
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where # is Planck’s constant divided by 21 and {(x, y, z, f), which
is complex, is called the wave function. The quantity p = Y*{ is
interpreted as the probability density.
(a) Use the Schrédinger equation to derive an equation of the
form

9p

+V-]=
o J=0

and obtain thereby an expression for J in terms of s, y*, m, and
A,
(b) Give an interpretation of J and of the equation derived in

(a).

1V-13 (a) Find the charge density p(x, y, z) which produces the electric

field
E = g(ix + jy + kz),

where g is a constant.

(b) Find an electrostatic potential ® such that —V® is the field
E given in (a).

(c) Verify that V2@ = —p/e,.

IV-14 (a) Starting with the divergence theorem, derive the equation

i - (uVv) ds = [«V + (Vu) - (VU)] 4V,
Il 1L

where u and v are scalar functions of position and S is a closed
surface enclosing the volume V This is sometimes called the
first form of Green’s theorem.

(b) If V2u = 0 use the first form of Green's theorem to show

that
J’J’S i - (uVu) dS = jjfv |Vulf? av,

where |Vul? = (Vu) - (V).
(c) Use the first form of Green’s theorem to show that

LL f - (uVv — vVu) ds = jjjv WV — vVu) dv

This is the second form of Green’s theorem

IV-I5 An equation of the form

1 8%
Vif = ——,
f v? o
where f is a differentiable function of position and time, is called a
wave equation. It describes a wave propagating in space with velocity
v Use Maxwell’s equations (Problem III-20) to show that in the

absence of charges and currents (that is, p and J both zero), all three



Problems Cartesian components of both E and B satisfy a wave equation with
v = ¢, where ¢ = 1/V gy, is the velocity of light. For example,

Thus, the existence of electromagnetic waves traveling in empty space
with the velocity of light is a consequence of Maxwell’s equations.

IV-16 (a) In the text we found the potential and field for the case of an
infinite cylinder between parallel plates with the cylinder held at
zero potential. How must the solution be modified if the cylinder
is held at a potential V, # 0?

(b) Show that there is no net charge on the cylinder.

IV-17 (a) A sphere of radius R is situated between two very large par-
allel plates which are separated by a distance s. A potential dif-
ference is maintained between the plates and the sphere is held
at zero potential. Find the potential and field everywhere outside
the sphere and between the plates. Assume that R << s.

(b) Show that there is no net charge on the sphere.
(c) Repeat part (a) assuming the sphere is held at a potential V,
# 0.

IV-18 Let f(x, y) be a differentiable scalar function of x and y, and let
@ = icos 8 + jsin 8. Transform to a rotated coordinate system x’,
y' such that x’ is parallel to @ (see the figure). Show that the direc-
tional derivative in the direction of @

a . _ o
ds vf= '’
¥ y
i
/( x'
[} x

IV-19 You are at a point (a, b, ¢) on the surface
==X = y)" (z=0).

Assuming both a and b are positive, in what direction must you move
(a) so that the rate of change of z will be zero?
(b) so that the rate of increase of z will be greatest?
(c) so that the rate of decrease of z will be greatest?

149 Draw a sketch to show the geometric significance of your answers.
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IV-20 The unit vector normal to the surface z = f(x, y) is given by

v (g )/ G- 6)

[see Equation (II-4)]. We have also established that VF is a vector
normal to the surface F(x, y, z) = const. (page 139) so that VF/|VF|
is a unit vector normal to the surface F(x, y, z) = const. Show that
these two expressions for the unit normal vector are identical if
F(x,y, z) = const. and z = f(x, y) describe the same surface.

IV=2] Use the results of Problem II-18 and the expression for the gra-
dient in cylindrical coordinates (see page 143) to obtain the form of
the Laplacian in cylindrical coordinates given on page 128.

IV-22 Using the procedure outlined in the text (pages 142-43) obtain
the expression for the gradient of { in spherical coordinates.
N L. D Y.

V=8 —+&—-——+ .
b= e"rae e¢rsin66¢

IV-23 Use the results of Problem II-19 and the expression for the gra-
dient in spherical coordinates derived in Problem 1V-22 to obtain the
form of the Laplacian in spherical coordinates given on page 125.

IV-24 Suppose you find a solution of Laplace’s equation which satisfies
certain boundary conditions. Is this solution unique or are there oth-
ers? This problem will answer that question in certain simple cases
Consider the region of space completely enclosed by a surface S, and
containing in its interior objects 1, 2, 3, . . . (two of which are pictured
in the diagram). Suppose that S, is maintained at a constant potential
®,, object no.-1 at @, object no 2 at ®,, and so on Then in the
charge-free region R enclosed by S, and between the objects, the
potential must satisfy Laplace’s equation

Vip =0

and the boundary conditions

&, on S,
®,on S
®= ®, on S,
- V* 5 :90
| 1 4 u
s .,.".“: \
R 2 |
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The following steps will guide you through a proof that & is unique.
(a) Assume that there are two potentials 4 and v, both of which
satisfy Laplace’s equation and the boundary conditions listed
above. Form their difference w = u — v. Show that V’w = 0 in
R.

(b) What are the boundary conditions satisfied by w?
(c) Apply the divergence theorem to

_“;ﬁ (wVw) ds,

where the integration is carried out over the surface S, + S, +
S, + -, and show thereby that

I

where V is the volume of the region R

(d) From the result of (c) argue that Vw = 0 and that this, in
turn, means w is a constant.

(e) If wis a constant, what is its value? (Use the boundary con-
ditions on w to answer this.) What does this say about « and v?
(f) The uniqueness proof outlined in (a) to (e) involves speci-
fying the value of the potential on various surfaces. Might we
have specified a different kind of boundary condition and still
proved uniqueness? If so, in what way or ways would the proof
and the result differ from those given above?

=0

IV-25 In the text we defined the gradient in terms of certain partial
denvatives It is possible to give an alternative definition similar in
form to our definitions of the divergence and the curl. Thus,

f = li —ffn das
A:/TOAV f

Here f is a scalar function of position, S a closed surface, and AV the
volume it encloses. As usual, fi is a unit vector normal to S and point-
ing out from the enclosed volume.
(a) Following a procedure similar to the one used in the text in
treating the divergence, integrate over a *‘cuboid’’ and show that
the definition given above yields the expression
Vf=ia—f+ja—f+ ka—f.
dax ay az
(b) Use the alternative definition of the gradient given above to
show that the directional derivative of f in the direction specified
by the unit vector d is given by

d
oy

ds v/
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[Hint: Evaluate

ﬁ~ffsﬁfds=ffsﬁ’ﬁfds

over a small cylinder (length As, cross-sectional area AA; see
figure) whose axis is in the direction of the constant unit vector
ii. Then divide by the volume of the cylinder (As AA) and take
the limit as the volume approaches zero.]

oA

=\

=)

(c) Arguing as we did in the text in establishing the divergence
theorem, use the alternative definition of the gradient to show

that
[[oras =[] wrav

where S is a closed surface enclosing the volume V.

(d) Obtain the relation stated in (c) directly from the divergence
theorem. [Hint: In [[FfdS = [, V+F dVputF = &f where
& is a constant unit vector.]

(e) Verify the relation stated in (c¢) for the scalar function

f=xt+y'+ 2

integrating over the unit cylinder shown in the figure.

Z

7N
k—1—H
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IV-26 (a) Consider a surface z = f(x, y). Let u be a vector of arbitrary

length tangent to the surface at a point P(x, y, z) in the direction
of the unit vector p = ip, + jp, as indicated in the figure. Use
the directional derivative to show that

u=p+k@- Ve,

where Vf is evaluated at (x, y). [Note Since the length of u is
arbitrary, your result may differ from the above by some positive
mulitiplicative constant.]

(b) Let v be a second vector of arbitrary length tangent to the
surface at P but in the direction of the unit vector ¢ = iq, + jg,
(P # @ Then from (a) we have

v=4§ + k(G- Vf)
Show that
uxv=_[k-(px ik - Vf)

and use this to rederive Equation (II-4) for the unit vector fi
normal to the surface z = f(x, y) at (x, y, z). This shows that the
result dentved in the text for i is unique (apart from sign) even
though it was obtained with the special choices p = iand § = j.

z

z=f(x,y)

IV-27 (a) Using Maxwell's equations (see Problem III-20), show that

we can write

B =V XA,

E=-vo -2
ot

where A (called the vector potential) is some vector function of
position and time, and & (the scalar potential) is some scalar
function of position and time, provided A and & satisfy the
equations
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a
Vo + a—t(V *A) = —ple,
2

’A ad
VA - p.neo? = —uJ+V [V'A + p,oe(,;].

(b) Show that if we define two new potentials

A’ = A+ Vy,
d>'=d>—a—x.
at

where x is an arbitrary scalar function of position and time, then

B=VxA’

That is, the fields E and B are not modified by the change in the
potentials A and ® The change from (A, ®) to (A’, ®')is called
a gauge transformation.

(c) Show that if we require x to satisfy the equation

2

a%x b
X - —=—-{V:A + —1,
ViX = €l ar [ €olbo 8[]

then

’

, 5}
V-A +€0p.07=0

(d) If x satisfies the equation given in (c), show that A’ and ¢’
satisfy the equations

8P’
VD' — ey e —ple,
and
) 3A’
VA" — e, a_rl = ol

The point to all of this is that we can make a gauge transformation
[as in (b)], impose the condition given in (c), and thereby obtain a
scalar and a vector potential which satisfy the equations in part (d),
which are wave equations with source terms proportional to p and J

1V-28 The equation of motion of an ideal fluid can be written

”fvpf=x'dv"”3ﬁpds=”fvp[‘;—‘;ﬂv-\?)v] av

where V is the volume of the fluid and § is its surface Heref,, (x,y,2)
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is the external force per unit mass acting on the fluid, p(x, y, z) is the
pressure of the fluid, and p(x, y, z) is its density, all at a point (x, y, )
in the fluid, and v(x, y, z, 1) is the velocity of the fluid at the point
(x, y, 2) and at time ¢
(a) Use the form of the divergence theorem given in Problem
IV-25(c) to rewrite the equation of motion of an ideal fluid in
the form

1 av

f —Vp=a—t+(v'V)v

ext

(b) Show that in the static case (v = 0), the equation of motion
becomes

f.. = (1p)Vp.

(c) Consider a column of incompressible fluid oriented verti-
cally parallel to the z-axis as shown in the figure Assuming that
the only external force acting on the fluid is the downward uni-
form gravitational attraction of the earth, apply the equation for
the static case given in (b) to show that

P = Do~ P82

where g is the acceleration due to gravity and p, is a constant.




Solutions
to Problems

One must learn by doing the thing; for
though you think you know it, you have no
certainty until you try.

Sophocles

Chapter |

3. (a) (ix + jy)/Vx: + yi
(b) i + j)x + y¥V2.
(c) —iy + jx
d) (ix + jy + ko)/Vx* + y2 + 2
4. (a) (a? cos? wt + b? sin® wi)'2
(b) —iwa sin wt + jwb cos wt (velocity).
—iw’a cos wr — jw?b sin wt (acceleration).
s.o+ 1
2me, (Y + 1)
6. In the following, c is an arbitrary constant.
156 (a) x2 —y*=rc. b) y=x+c.
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12.

13.

2

) xy=c ) X —y*=c
dy=c @y=%u"+c
() x=¢ (h) y = ce.

(@ (i +j + kyVva.

(b) —(ix + jy — k2)/V2z.

(c) ix + kz.

(d) (=2ix — 2jy + k)V1 + 4z.

(e) (ix + jy + ka’z)aV1 + (& - 1)

. [—i(3g/ax) — k(aglaz) + jU¥V1 + (aglax)? + (3glaz)?

fory = g(x, 2).

[—j(8h1ay) — k(8h/az) + i1 + (8hIdyY + (8h/3z)
for x = h(y, 2).

- (@) V3/6.

(b) —’21(\6 -
(c) w/2.

. (a) 0.

(b) 2mwa'.
(c) 37/2.
4mRay/3.
16mRc/15
0

. ri\he,.

@) 0. (c) 4mR%"*,
(b) 4wR*h In R. (d) [E(b) — E(O)]b%.

. (a) E = oi/2¢,, x > 0, and —oi/2¢,, x < 0.

(b) E = pybile,, x > b; poxile,, —b < x = b;
and —p,bi/ey, x < —b.
(¢) E = = (poble)(1 — e-H)i (+ forx >0, —forx<0)
(a) E = (\2wey)é/r
(b) E = (p,b¥2¢,) & /r, r = b, and (p,r/2¢,) &,, r < b.
(©) E = (pob¥e)(1/r)[1 — (1 + rib)e~"]8,.

_ [ (B'pof3e)eirt, r > b,
@ E = {(po/3€o)ré,. r=b.
(b) E = (B'pfe)(1/r)[2 — (FHb* + 2r/b + 2)e™]8,.
(pof3e)re,, r < b,
(c) E = § (173¢, X 1/r)[bpy + (P — b)p,)é,. b < r < 2b,
(BBe)(Ur)p, + T, r > 2b.
The field is zero for r > 2b if p, = —p,/7. The total charge is then
zero.
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14.

(@) 2(x +y + 2). (&) —ylx* + y?).
(b) 0. () 0
() —(e7* + e +e) (g) 3
(d) 2z (h) 0.
. Surface integral equals 25*(x, + y, + z,) for the function of Problem

II-14a.

Surface integral equals O for function of Problem II-14b.

Surface integral equals s’(e~"? — e™)(e~* + e~ + ¢~ %) for func-
tion of (II-14C).

16. ) V-G = 0.

22. f(r) = constant/r’.

23. (a) 3p%
(b) 3wR*h/4
(c) 4mR*

24. (b) wR*B.

3. (a) 2(—iy + jz + kx) (e) —ix — jy + 2kz.

() Six. ) 2Gy - jo
() ie=* + je ' + ke, (g) iz — kx.
(d) 0. (h) 0.

4. Line integral equals 2x,s? for function of Problem I1I-3a.

13.

15

19.
25.

28

29.

Line integral equals 0 for function of Problem II1-3b.

Line integral equals s(e*> — e¢~*?)e * for function of Problem HI-
3c

Line integral equals 0 for function of Problem IIl-3d

Circulation of F equals a2, VX F =i, i = (2i + j + 2k)/3 and
area of triangle equals 3a%/2.

(d) and (h).

(a) Line integral and surface integral equal 1.

(b) Line integral and surface integral equal —3m/4.

(c) Line integral and surface integral equal —2wR".

3/e.

IfV:G=0,thenG =V XH

(@) H = }jx* + K[3y? — (x — x)zl.
(b) H = jByx.

) VG+#0. ;
(d) H= —j(x — xo)z + k(x + xp)y.
ey V-G #0.

[Note: Your results may differ from these by additive constants ]

(@) Hetds = [[4G+h dS where S is a capping surface of the
closed curve C
(d) Surface and volume integral each equal i — j — k.
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16.
17.

25

@ 1) F=iyz + jxz + kxy

(i) F = 2(ix + jy + kz)
(i) F=i(y + 2) + jx + 2) + k(x + y).
(iv) F = 6ix — 8kz.
(v) F= —ie~*siny + je~"cos y.
(a) (i) Not path-independent.
(i1) ¢ = c, + const.
(iii) ¥ = $1n (x* + y?) + const.
(iv) ¢ = $(x* + y> + z%) + const
(v) Not path-independent.
(b) (1) ¢ = Inr + const.
(i1) ¢ = 32 + const.

. (@) p = 3ge,.

(b) @ = —dg(x? + y* + 2%).

(a) Add V, to the result obtained in the text.

(a) D(r, ) = —Eyr(1 — RYr') cos 8 where the sphere is centered
at the origin and the two plates are parallel to the xy-plane and
situated at z = *s/2.

(¢} Add V, to the result given in part (a).

(@) Move in the direction x(ib — ja)/Va® + b

(b) Move in the direction of the gradient:

—(ia + jpyVvVr — & — b.

(c) Move in the direction opposite to the gradient.

(ia + jpYNVP — a* — b.

(e) Surface integral and volume integral each equal wk.
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Index

Ampere’s circuital law, 98
differential form of, 100

Arfken, G., 146

Arnold, Matthew, 1

Capping surface, 92-93
Central forces, 71

irrotational nature of, 105
Chalmers, P.R , 114
Charge density, 8
Circulation law, 73

differential form of, 90-91
Conservation, 49-50, 52
Continuity equation, 52, 109
Coulomb's law, 6

and path independence, 71-73
Curl, 75-90

alternative definition of, 111-

112

in Cartesian coordinates, 80-81

in cylindrical coordinates, 84—
85

definition of, 80-81

determinant form of, 81

and path independence, 101-
104

in spherical coordinates, 85

Current density, 51, 99

Del, 4344, 118

and curl, 82

and divergence, 4344

and gradient, 118

and Laplacian, 122-123
Denham, Sir John, 11
Diffusion equation, 146
Directional denivative, 130-136

Divergence, 36-43
in Cartesian coordinates, 41—
42,57
in cylindrical coordinates, 41—
42,58
definition of, 36
in spherical coordinates, 41-42,
58
Divergence theorem, 44-52, 109,
155
applications of, 49-52
derivation of, 44-48
illustration of, 47-48
statement of, 47
Stokes’ theorem, relation to,
107-110
in two dimensions, 109
validity of, 4748

Electric charge, 5-6, 8-10
Electric field, 7, 8
Electromotive force, 108
Electrostatic potential, 121
Electrostatics, 5-8

Fick's law, 146
Field line, 9-10
Flux, 29-32

Gauge transformation, 154
Gauss’ law, 11-12
differential form of, 40, 49
use in finding field, 32-36, 55~
56
Gauss' theorem. See Divergence
theorem
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Gradient, 114-155
alternative definition of, 151
in Cartesian coordinates, 120
in cylindrical coordinates, 120,
142-143
example of, 118
and path independence, 118
in spherical coordinates, 120,
150
Green’s theorem, 148

Heat flow equation, 147
Irrotational, 88n, 105, 147

Laplace’s equation, 123-124
in Cartesian coordinates, 122
in cylindrical coordinates, 128
solutions of, 123-130
in spherical coordinates, 125
uniqueness of solutions of, 130,

150-151

Laplacian, 122

Line integral, 63-72
definition of, 64-65
evaluation of, 66-67, 69-70
and path independence, 72-73

Magpnetic field, 98

Maxwell’s equations, 8, 40, 100,
108

MKS units, ix, 6

Normal vector, 12-17
alternative form of, 150
uniqueness of, 16n, 153

Path independence, 70-71
and central forces, 103
and curl, 101-102

Planck’s constant, 148
Poisson’s equation, 122

Right-hand rule, 79, 87
Rot (Rotation), 80n

Scalar function, 37, 120
Scalar potential, 154
Schrodinger equation, 147-148
Smooth, 114, 118-119
defined, 100n
Solenoidal, 58
Sophocles, 63, 156
Stokes’ theorem, 92-102
applications of, 98-100
derivation of, 93-96
divergence theorem, relation to,
110
illustration of, 96-97
and simply connected regions,
100~101, 102, 107-108
statement of, 96
in two dimensions, 109-110
validity of, 96
Superposition, 6-7
Surface integral, 17-29
definition of, 17-21
evaluation of, 21-29, 54-55

Tangent vector, 67-68
Taylor series, 131

Unit normal. See Normal vector
Unit tangent, 67-68

Vector functions, 2-5
Vector potential, 153
Velocity potential, 147

Wave equation, 147-148
Work, 64, 67






DIVERGENCE THEOREM

fst-ﬁdS=fffVVoFdV

STOKES’ THEOREM

?Foids=ffﬁ~VXFdS
c s

IDENTITIES INVOLVING THE OPERATOR V*

V(fg)=fVg+gVSf

V(F-G)=(G-V)F 4+ (F-V)G+ FX(VXG)+ G X(VXF)
V- (fF)=fV.-F+F.Vf

V- (FXG)=G-(VXF)—F-(VXG)

V-VXF=0

VX(fF)=fVXF+(Vf)XF
VX(FXG)=(G-V)F—(F-V)G + F(V:-G) — G(V-F)
VX (VXF)=WV-F)— VF

TXVf=0

* fand g are scalar functions of position, and F and G are vector functions of
position
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