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PREFACE.

IN 1810 a work was published in Cambridge under the follow-

ing title A Treatise on Isoper{metrical Problems and the Calculus

of Variations. By Robert Woodhouse, A.M., F.R.S., Fellow of

Cams College, Cambridge. This work details the history of the

Calculus of Variations from its origin until the close of the eighteenth

century, and has obtained a high reputation for accuracy and

clearness. During the present century some of the most eminent

mathematicians have endeavoured to enlarge the boundaries of the

subject, and it seemed probable that a survey of what had been

accomplished would not be destitute of interest and value. Accord-

ingly the present work has been undertaken, and a short account

will now be given of its plan.

As the early history of the Calculus of Variations had been

already so ably written, it was unnecessary to go over it again ;

but it seemed convenient to commence with a short account of

two works of Lagrange and a work of Lacroix, because they
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exhibit the state of the subject at the close of the eighteenth

century; the first chapter is therefore devoted to these works of

Ltgran^e and Lacroix. The notice of the two works of Lagrange

is Tcry brief, for in fact both of them were accessible to Wood-

bowe, and he has given a good account of all that Lagrange

accomplished.
The notice of the work of Lacroix is fuller because

the second edition of that work had not appeared when Wood-

boose wrote; it was also necessary to indicate two important mis-

takes which occur in Lacroix on account of their influence on the

history of the subject ;
see Arts. 27 and 39.

The second chapter contains an account of the treatises of

Dirksen and Ohm.

The third chapter contains an account of a remarkable memoir

by Gauss, which affords the earliest example of the discussion of

a problem involving the variation of a double integral with variable

limits of integration.

The fourth chapter contains an account of a memoir by Poisson

on the Calculus of Variations. The great object of this memoir is

to exhibit the variation of a double integral when the limits of

integration are variable. The memoir is important in itself, and

also from the fact that it may be considered to have led the way

for those which were written by Ostrogradsky, Delaunay, Cauchy

and Barrus.

The fifth chapter contains an account of a memoir by Ostro-

gradfiky ;
this memoir was suggested by Poisson's, and its object is

to exhibit the variation of a multiple integral when the limits of

the integration are variable.

Academy of Sciences at Paris proposed for their mathe-

matical prize subject for 1842, the Variation of Multiple Integrals.

The prize was awarded to a memoir by Sarms, and honourable

mention was made of a memoir by Delaunay. The memoir of

Delaunay is analysed in the sixth Chapter, and the memoir of
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Sarrus in the eighth Chapter; the seventh chapter analyses a

memoir by Cauchy, in which the results obtained by Sarrus are

presented under a slightly different form.

Here that part of the present work terminates which treats

of the variation of multiple integrals.

The next three chapters treat of another branch of the subject,

namely, the criteria which distinguish a maximum from a minimum;

these criteria were exhibited in a remarkable memoir published by

Jacobi in 1837, which has given rise to a series of commentaries

and developments. The method of Jacobi is founded upon one

originally given by Legendre ; accordingly the ninth chapter first

explains what Legendre accomplished, and also what was added

to his results by another mathematician, Brunacci, and then finishes

with a translation of Jacobi's memoir. The tenth chapter con-

tains an account of the commentaries and developments to which

Jacobi's memoir gave rise. The eleventh chapter contains some

miscellaneous articles which also bear upon Jacobi's memoir.

The twelfth chapter contains an account of various memoirs

which illustrate special points in the Calculus of Variations.

The thirteenth chapter contains an account of three comprehen-

sive treatises which discuss the whole subject. The fourteenth

chapter gives a brief notice of all the other treatises on the sub-

ject which have come to the writer's knowledge.

The fifteenth chapter notices various memoirs which have

some slight connection with the subject. The sixteenth chapter

notices various memoirs which relate principally to geometry, or

differential equations, or mechanics, but the titles of which are

suggestive of some relation to the Calculus of Variations.

The seventeenth chapter gives the history of the theory of

the conditions of integrability.

The writer has endeavoured to be simple and clear, and he

hopes that any student who has mastered the elements of tho
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subject will be able without difficulty to understand the whole

of the work.

It may appear at first sight that great disproportion exists

between the spaces devoted to the various treatises and memoirs

which are analysed. The writer has not considered solely or

chiefly the relative importance of these treatises
"
and memoirs,

but also the ease or -difficulty of obtaining access to them ; and

thus a work of inferior absolute value may sometimes have ob-

tained as long a notice as another of higher character when the

latter could be procured far more readily than the former.

In citing an independent work the title has usually been

given in the original language of the work, but in citing a me-

moir which forms part of a scientific journal it has generally been

considered sufficient to give an English translation of the title.

Sometimes a mathematician has been named in the history before

an account of his contributions to the subject has been given ;

in such a case by the aid of the index of names at the end

of the volume it will be easy to find the place which contains

the account. Occasionally in the course of the translation of a

passage from a foreign memoir the present writer has inserted a

remark of his own
;
this remark will be known by being enclosed

within square brackets.

The writer may perhaps be excused for stating that he has

found the labour attendant on the production of this work far longer

and heavier than he had anticipated. It would have been easy to

hare examined merely the introductions to the various treatises and

memoirs, and thus to have compiled an account of what their re-

spective authors proposed to effect
;
but the object of the present

writer was more extensive. He wished to ascertain distinctly what
had been effected, and to form some estimate of the manner in

which it had been effected. Accordingly, unless the contrary is

distinctly stated, it may be assumed that any treatise or memoir
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relating to the Calculus of Variations which is described in the

present work has undergone thorough examination and study.

This remark does not, however, apply to all the productions which

are noticed in the last two chapters of this work.

It will be found that in the course of the history numerous

remarks, criticisms, and corrections are suggested relative to the

various treatises and memoirs which are analysed. The writer

trusts that it will not be supposed that he undervalues the labours

of the eminent mathematicians in whose works he ventures occa-

sionally to indicate inaccuracies or imperfections, but that his aim

has been to remove difficulties which might perplex a student.

In the course of his studies the writer frequently found that remarks

which he intended to offer on various points had been already made

by some author not usually consulted
;

for example, the considera-

tions introduced in Art. 366 occurred to him at the commencement

of his studies, and it was not until long afterwards that he found

he had been anticipated by Legendre ;
see Art. 202.

The writer will not conceal his own opinion of the value of a

history of any department of science when that history is presented

with accuracy and completeness. It is of importance that those

who wish to improve or extend any subject should be able to ascer-

tain what results have already been obtained, and thus reserve their

strength for difficulties which have not yet been overcome; and

those who merely desire to ascertain the present state of a subject

without any purpose of original investigation will often find that

the study of the past history of that subject assists them materially

in obtaining a sound and extensive knowledge of the position to

which it has attained. How far the present work deserves attention

must be left to competent judges to decide ; should they consider

that the objects proposed have been in some degree secured,

the writer will be encouraged hereafter to undertake a similar

survey of some other department of science.
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iter will receive most thankfully any suggestion or cor-

rection relating to the present work with which he may be favoured,

and especially any information respecting those memoirs and trea-

tises which may have escaped his observation, and those of which

he has only been able to record the titles ;
see Arts. 394 and 420.

The writer takes this opportunity of returning his thanks to the

Syndics of the University Press for their liberal contribution to the

expenses of printing the work.

Sr JOHN'S COLLEGE,

April 15, 1861.
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CALCULUS OF VARIATIONS.

CHAPTER I.

LAGRANGE. LACEOIX.

1. IT is the object of the present work to trace the progress of

the Calculus of Variations during the nineteenth century. It will

be convenient to begin with an account of three works which ex-

hibit the state of the subject at the close of the eighteenth cen-

tury. We shall accordingly in this chapter give an analysis of

the treatises on the Calculus of Variations contained in Lagrange's
Theorie des Fonctions Analytiqiies, in the Legons sur le Calcul des

Fonctions of the same author, and in the Traite du Calcul Diffe-

rentiel et du Calcul Integral of Lacroix.

2. The first edition of Lagrange's Theorie des Fonctions Ana-

appeared in 1797, and the second in 1813
;
the work was

also reprinted in 1847. The portion which treats of the Calculus

of Variations remains as it was in the original edition, where it

extends over pages 198 220; we proceed to give an account of

this portion.

3. Having treated of ordinary maxima and minima problems
in the preceding pages of his work, Lagrange states that the same

principles may be applied to determine curves which possess at

every point some assigned maximum or minimum property. For

example, required the curve at every point of which

\y+(m-x)y'\ \y + (n-x)y'\

is a maximum or minimum, where y' denotes -f- .y
fix
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Here it is supposed that at any point of the curve y is suscep-
tible of variation while x and y are not susceptible of variation;

then according to the ordinary principles of maxima and minima

problems we differentiate the proposed expression with respect to

y as variable, and equate the differential coefficient to zero. This

gives

(m-ar) {y + (n-x)y'\ -f (n-x) \y+(m -x
therefore

* 2 (m x) (n x)
'

divide by y and integrate, thus we obtain

y* = h(-x) (n-x} (2),

where h is an arbitrary constant.

Differentiate the left-hand member of (1) with respect to y ; tins

gives 2 (m-x) (n-x) ; hence we conclude that at every point of
the curve determined by (2) the proposed expression

{y+(m-x}y'\{y+(n -x}y'}
is a maximum or minimum according as,(m

- x
) (
n - x) is negative

itive. From (2) it appears that the curve is an ellipse if h be
negative, and then

(77*
-

x) (n-x) must be negative and there is a
maximum ; also the curve is an hyperbola if h be positive, and then
(m-a;) (-*) must be positive and there is a minimum.

This is the first appearance of a problem of this kind La-
intimates that such problems may be proposed involving
tferential coefficients besides the first.

4 Lagrange next considers the more common problem of the
Iculus of Variations, namely that in which we require the maxi-mum or minimum value of the inte

* " "

- \f (')]'
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He also obtains the ordinary result for the terms which are free

from the integral sign, which must likewise vanish in order that the

proposed integral may be a maximum or minimum.

5. Lagrange now proceeds to the discrimination of a maximum
from a minimum value

;
he takes the case in which the function

under the integral sign contains no differential coefficient of y higher
than the first. We will here indicate his method, but we shall

use the ordinary notation instead of Lagrange's. Let p denote

-f- ,
and suppose f(x, y, p) to represent any function the integral of

which taken between certain fixed limits is to have a maximum or

minimum value. Change y into y + By and p into p + Bp >

f(x, y, p) will become

+ ~
dydp

where the &c. stands for terms of the third and higher orders in

and Bp.

Now by means of the relation between x and y given by

dy

and the fact that the integration is taken between fixed limits, the

integral denoted by

/{!**$*}-*
vanishes. We must then examine the integral

dydp

if this taken between the fixed limits is negative for all indefinitely

small values of By and Bp, the proposed integral is a maximum when

y has the value which satisfies (1) ;
if it be positive for such values

of By and Bp the proposed integral is a minimum.
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The integral which we have to examine may be put under the

where \ is any function of a;; -for we can shew immediately by dif-

ferentiation that the latter expression coincides with the integral

which we have to examine. Now assume X such that

then the last expression under the integral sign becomes a perfect

square, and the integral may be written

Awhere A -j^,
= T-4 2X.

dp ay dp

Thus we have to examine the sign of

*

dx,

where x and x
l
denote the limits of the integration, and X and \

are the values of X and SyQ
and B^ the values of Sy at the respective

limits. Let us suppose that fyt
and Sy are zero, then we have

remaining
*

ll.-nce we may conclude that if be always positive between

the limiting values of x the proposed integral has a minimum value
;

and if

3J?
** alwav8 negfttive between the limiting values of a; the

proponed integral has a maximum value.

^

Lagrange remarks that this result had been published in the
i oft/u Academy of Sciences, in 1786 [by Legendre] ; but he

'" ""I" to enran the correctness of the result it ought to
flU fhr value of X determined by (2) does not become
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infinite between the limits of integration, and it is generally im-

possible to do this, because the value of X cannot actually be found.

6. Lagrange takes for example the case in which

ncre _Z is necessarily positive, but Lagrange shews that when n is

negative we are not certain of the existence of a minimum.

7. Lagrange then indicates the method to be pursued in dis-

criminating a maximum from a minimum when the expression

which' is to be integrated involves differential coefficients of a higher

order than the first.

8. Then leaving the question of the discrimination of maxima

and minima values, Lagrange returns to the consideration of the con-

ditions which are common to both maxima and minima values. He
makes some remarks on the case in which the limiting values of the

quantities?/, y\ y" ,
... are not given, but only one or more equations

connecting them. He then proceeds to suppose that the function

under the integral sign contains, besides y and its differential co-

efficients with respect to x, another variable z and its differential

coefficients with respect to x. When y and z are independent he

arrives at the two well-known relations which must be satisfied in

order that the proposed integral may be a maximum or minimum,

namely the relation already given in Art. 4, and another which may
be obtained from that by changing y into z. Lagrange also gives

the results for the case in which y and z and their differential coeffi-

cients with respect to x are connected either by a given equation or

by the circumstance that an assigned integral expression involving
them is to have a constant value.

9. As an example of the theory Lagrange considers the pro-
blem of the brachistochrone when a particle moves from one given

point to another. Take the axis of x vertically downwards, and let

h + x) be the velocity which the falling particle has when at

the depth x below the origin ;
then the expression which is to be

rendered a minimum is
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where y'
^

,
and z =^ ;

here we have not assumed that the re-

CTfl? !

quired curve is a plane curve. Hence in order that the integral may

be a maximum or minimum we must have, by the relations referred

to in Art 8,

'
'

Integrate these equations ;
thus

;s JOT and

are both constants ;
hence by dividing the first of these expressions

by the other we have -; a constant, and this shews that the curve

must be a plane curve. Then by completing the investigation in

the usual manner we obtain a cycloid for the required curve. We
now proceed to examine whether the proposed integral is thus ren-

dered a maximum or minimum. The terms of the second order are

(see Art. 5)

f +

p stands for -f- and q for -r- . The above expression may be

written

and as this is
essentially positive the proposed integral is rendered

a minimum; and thus the cycloid fulfils the conditions of the

1

lAgrange then gives some investigations relating to the
condition* of Integra '.;/,'?</

< .f functions
;
this is a subject to which a

separate chapter will be devoted in the present work.

The treatise on the Calculus of Variations contained in the

\nalytquet ifl v. TV clear, and although the
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notation is not so expressive as that which Lagrange originally in-

troduced, it is far preferable to that employed in the Legons sur le

Calcul des Fonctions. We now proceed to give an account of that

part of the latter work which is connected with our subject.

12. In the list of Lagrange' s works which is appended to the

Mecanique Analytique it is stated that the first edition of the

Legons sur le Calcul des Fonctions appeared in 1801 as a portion
of the second edition of the Seances de VEcole Normale; the Legons
were also included in the 12th part of the Journal de VEcole Poly-

technique in 1804. In 1806 a separate edition of the Legons ap-

peared containing two additional legons, and these were also in-

serted in the 14th part of the Journal de VEcole Poll/technique in

1808. The two additional lemons are devoted to the Calculus of

Variations.

13. In the edition of the Legons sur le Calcul des Fonctions

which was published in 1806, the part bearing on our subject

extends over pages 401 501 and forms the last two legons. The
irst of these two legons extends over pages 401 440

;
it treats of

the integrability of functions, and also contains a sketch of the

early history of the Calculus of Variations
;
as we do not consider

the early history of the Calculus of Variations in the present work,
and as we reserve the subject of the integrability of functions for

a future chapter, we shall not here give any account of this part

of Lag-range's work. Lagrange states that the work of Euler,

entitled Methodus inveniendi lineas curvas... would have left nothing
to be desired respecting curves which are required to have a maxi-

mum or minimum property, if it had been based on an analysis

more conformable to the spirit of the Differential Calculus
;
La-

grange then adds that the object had been attained by his own
method given in the Memoirs of the Turin Academy. This method

is the well-known use of the symbol 8 to express a variation.

Lagrange states that this method has been explained in most works

on the Differential Calculus which have appeared since it was

published, and therefore it will be sufficient for him to give merely
an account of the principles of it

;
and accordingly a brief sketch

is supplied.
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1 I. Lagrange begins the next legon thus; "The method of

variations based on the use and combination of the symbols d andj

$, which denote different differentiations, left nothing to be desired;]

but this method having, like the Differential Calculus, the method!

of indefinitely small quantities for its base, it was necessary to

present it under another point of view in order to connect it with

the Calculus of Functions
;
I have already done this in the Theories

de* Functions, but I propose to return to the subject now in order

to treat it in a manner more direct and more complete."

!">. Lagrange proceeds accordingly to expound the subject
with the aid of a new notation. Suppose y = <j>(x}, and let <f>(x)

;

be changed into
<(>(x, i), where i is an arbitrary indefinitely small

quantity ; then suppose < (x, i) expanded in powers of * by Mac-
laurin's Theorem. The result is expressed thus,

so that dots over the symbol y indicate differential coefficients of y
with respect to t, it being supposed that i is made zero after the
differentiations. The terms of the series after the first constitute
in fact the variation of y ;

in this work however Lagrange confines
himself to an investigation of the conditions which are common to
maximum and minimum values, so that in fact the terms which
ivolve powers of t beyond the first are not used by him. Since

the way in which i enters into
</>(#, ) is quite arbitrary it follows

that y may have any value we please.

Lagrange then arrives at the ordinary conditions for the
imum or minimum value of JVdx, where V is supposed to cou-

rt y, and the differential coefficients of y with respect to x
investigation he first supposes that x itself does not receive

fom, and afterwards finds the change in his formula
occasioned by varying x.

then proceeds to the case in which V contains besides
iependent variable ., and its differential coefficients with- ''

I he gives the relations which must hold in order

= aus^^svj^i- -
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17. Lagrange gives some investigations relative to the maxi-

mum or minimum value of a function of two independent variables

which involves a double integral. We will indicate how far he

proceeds with this problem ;
but we shall use the ordinary notation

instead of Lagrange's. Suppose V a function of x, y, 2, p, q, r, s,

dz dz d*z d2
z d2

z
t, ... where p = -j~, Q ^~^ r = T~* >

s = ~r~r >
^ = ~n > > an(l

dx '

dy' dx2 '

dxdy dy
2 '

let U= ffVdydx-, then

_ ^ dV. dV.
iand o F= -T- cz + -j- 07? + -j- dq -f -^- Sr + . . .

dp
**

dq dr

say

Now by the Differential Calculus

and so on
;
thus we' obtain

. ( T dM dN d*P d2

Q dzR \~= Lt J J h -7-2 + -r:
-,- + -,-=- 02

V dx ay ax dxdy dy J

d
T>
d*z dp * n dSz \

P-j SS + <?-T-dx dx a J

,

d ( ATS , z>
^^ ^ 5 dQ * \

-+ -=- Noz -f -Zi -, T- 02 ^ 02 .

dy \ dy dy dx J

In order that SZ7may vanish it is necessary that the coefficient

of 2 in the first line of the expression for 8V should vanish
;
that

is, we must have

L- - ^!L d*

d-ft
dx dy dx2

dxdy dy
2
"

Then 8U consists of terms which involve only one sign of integra-

tion, namely, that with respect to x or that with respect to y.
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Thus Lagrange is correct as far as he has carried the investiga-

tion ;
but as we shall see hereafter the great difficulty of the ques-

tion consists in reducing the terms which involve only one sign of 1

integration to their simplest form, so as to deduce the equations

which must hold for the limiting values of the integrals. The

lty was first overcome by Poisson. Lagrange .adds a remark

which is not correct; he says
" The simplest case is that in which

the boundary of the surface represented by the equation in x, y, z

is supposed completely given and invariable. Then the variations

of * and its differential coefficients are zero with respect to the

bounding curve and therefore also through the whole extent of the

single integrals contained in BU, and the condition SZ7=0 is satis-

fied of itself." If the bounding curve be given z vanishes at every

jx>int of the bounding curve, but it is not true as Lagrange asserts

that $p t %, ... also vanish.

18. Lagrange illustrates the subject by the discussion of some

of the standard problems. He selects the following ;
the shortest

line in free space or on a given surface, the brachistochrone in a

resisting medium, the curve down which a particle must fall in a

resisting medium in order to acquire a maximum velocity, and the

surface of minimum area. The first three of these problems had

been originally discussed by Euler, the last had been originally
ussed by Lagrange himself in the Turin Memoirs.

19. The treatise on the Calculus of Variations contained in the

Lemons aur le Calcul des Fonctions is rather difficult, and the nota-

tion is extremely uninviting and perplexing. It may be observed
: here is a German translation of the two works of Lagrange

which we have considered, by Dr A. L. Crelle
;
the translation is

accompanied by a running commentary which is incorporated with
the text. In the translation of the Legons the notation of Lagrange
is replaced by the ordinary notation of the Differential Calculus.
It seems to have been the design of Dr Crelle to translate all the
works of Lagrange, but the only work which appeared besides the
two we have considered was the Treatise on the Solution ofS

/tuition*.

\Vj now proceed to give an account of the chapter on the

<! in the work of Lacroix. The first edition of the
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\Traite
du Calcul Differentiel et du Calcul Integral appears to have

[been published in 1797. The second edition of the second volume in

dated 1814; it contains a chapter on the Calculus of Variations ex-

pending over pages 721 816. There are some additions and cor-

Irections extending over pages 716 721 of the third volume, which

is elated 1819.

21. In his preface Lacroix states that the Calculus of Vari-

ations is treated at much greater length than it had been in the

first edition of the work
;
he considers that he had to effect two

'

things, namely on the one hand to exhibit the Calculus of Variations

in all the extent it had reached and with the symmetry which it

had gained by means of its peculiar notation, and on the other

hand to explain the connexion of the subject with the ordinary

principles of the Differential Calculus. He adds that those readers

who wish to confine themselves to the Calculus of Variations strictly

so called may begin at page 755.

22. The guide whom Lacroix Jias principally followed is

Euler
;
the third volume of Euler's treatise on the Integral Cal-

culus contains an appendix on the Calculus of Variations, and in

the fourth volume of the treatise a memoir on this subject is given
which is reprinted from the Transactions of the Academy of

St Petersburg (Novi Comment. Acad. Petrop. XVI.). Lacroix

devotes the first part of his chapter, extending over pages 721 754,

to an exposition of the method given by Euler in the memoir just

cited
;
the method is the same as that which was afterwards used

by Lagrange in the Legons sur le Calcul des Fonctions. Suppose

y any function of x, say y $ (x) ;
let there be a new variable

,

and let (f>(x, t]
be any function of x and t which reduces to <(#)

when t = 0. Then by Maclaurin's Theorem

where t is supposed to be put equal to zero in the differential

coefficients with respect to t after differentiation. Then </>(#, t)-(j)(x)

is equivalent to what is usually denoted by By and called the vari-

ation of y. If we suppose t small enough we may restrict ourselves

to the first term in the series for
</> (x, t) </> (x) ,

that is, to -- 1.
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Lacroix adopts this restriction and then proceeds to investigate the

conditions which must hold in order that an integral JVdx may

have a maximum or minimum value, where V is a function of x

and y and the differential coefficients of y with respect to x. The

results are of course the same as those which are obtained with the

aid of the common notation. We shall make some remarks on

various points which occur in this part of the work of Lacroix.

23. On pages 729 731 Lacroix examines some cases of the

problem of the braehistochrone. At first the starting-point is sup-

posed fixed
;
the velocity at a point which has y for its vertical

ordinatc is supposed to be *J2g(y h), where h is a constant. Now
Irt the horizontal abscissa of the final point be supposed given, but

not its vertical ordinate; then the usual result is obtained by.

Lacroix, namely, that the tangent at the final point must be

horizontal. Lacroix next supposes that the horizontal abscissa

of both the starting-point and the final point are known, but

not their vertical ordinates, and he arrives at the result that

the tangents at both points must be horizontal
;
and he gives a

figure which supposes the moving particle to start from the lowest

point of a cycloid, and to ascend to the cusp and then to descend

down the next arc until it reaches the point which is in the same

horizontal line as the starting-point. It must however be observed

that Lacroix does not examine the terms of the second order so as

to ascertain whether there really is a minimum
;
and it is obvious

khm can be no minimum in the present case, for by taking
the starting-point low enough the initial velocity may be made as

great as we please, and thus the time of passing from a point with

the first given abscissa to a point witli the second given abscissa

may be made as small as we please without restricting the moving
<!' to describe a cycloid.

On page 732 Lacroix observes that if the expression

dP

vanishes
id.-iitir.-.lly Vdx is an exact differential; thus JVdx taken

be -.\|.iv8Bcd as a function of initial and final

rallies of co-ordinates an.l din; .vntial coefficients, and so the problem
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of finding the maximum or minimum value of this integral does

not differ from an ordinary problem of maximum or minimum.

This remark leads him naturally to consider the example given

>y Lagrange of finding the maximum or minimum value of an

expression which involves a differential coefficient but no integral

ign. (See Art. 3.)

25. Up to page 734 Lacroix has supposed that the indepen-

lent variable x is not susceptible of variation
;
he now introduces

he supposition that x itself receives a variation. This part of the

subject is treated perhaps as well as it could be on the basis

adopted by Lacroix, but it would probably be obscure to a beginner,

[t is perhaps impossible to avoid this obscurity altogether if we

ascribe a variation to the independent variable
;
and thus it seems

Detter to adopt the method of some recent writers who vary only
the dependent variable and obtain the requisite generality in their
?
ormulee by giving small changes to the limits of the integral

instead of varying the dependent variable. (See the works of

Strauch and Jellett.)

26. On pages 742 744 Lacroix expounds a method which he

says in its full extent is due to Poisson. In this method the limit-

ing values of the variables and differential coefficients which occur

in the expression under the integral sign are at first supposed fixed
;

then by the ordinary process of the Calculus of Variations a differ-

ential equation is obtained, which must be solved, and which will

involve a certain number of arbitrary constants
;

these constants

Poisson proposes to determine by the principles of the Differential

Calculus. For example, if the problem proposed be that of the

brachistochrone, it would be first inferred from the differential

equation furnished by the ordinary process of the Calculus of

Variations that the curve must be a cycloid; then with the relation

between x and y thus determined, the integral fVdx may be ob-

tained, and may be expressed in terms of the limiting values of x

and of the arbitrary constants which arise from the solution of the

differential equation ;
it will now be a problem of the Differential

Calculus to assign such values to the limits of x and to the arbitrary

constants as will ensure a minimum value for the integral. In fact

instead of solving a problem at once and completely by the Calculus
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of Variations, Poisson proposes to divide it into two parts and solve

one part by the Calculus of Variations and the other part by the

ntinl Calculus. This method appears to possess no supe-

riority over the common method, and Lacroix seems to intimate the

opinion on page 744.

27. An important mistake in the treatment of the variation of a

double integral occurs on page 752, and is repeated on pages 783,

784 ; this we will now explain, using the ordinary notation. Let V
be a function of the independent variables x and y, and of the

dependent variable z, and of the differential coefficients of z with

respect to x and y ;
let

U=ffVdxdy;

then it is required to find the variation BU which arises from a

variation &z ascribed to z. Let the differential -coefficients of z be,
as usual, denoted by p, q, r, s, t\ and suppose for simplicity that no
differential coefficient of z occurs of a higher order than the second.

Then

Lacroix now proceeds to transform these terms by integration by
parts, and in doing so he makes a mistake. His process is sub-

stantially the following. Let 8 denote
,
then

as

.........
>

*-

(2),

thus finally ffSBs dx dy =
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The step taken in (2) is generally false. For in a double inte-

Igral the limiting values of the variable with respect to which we
I first integrate are in general junctions of the other variable; thus in

I (1) after integrating with respect to y, we should have to substitute
7T\

[some function of x for y in the term S,~. Therefore in the ex-
dx

/* J^

prcssion I S -7 dx, the symbol Sz does not represent a function of

tlu> independent variables x and y, but a function ofx alone. But
I J^

- indicates the partial differential coefficient of Bz taken with
(Li-

r

respect to x, and is therefore only a part of what we obtain when
we differentiate &z with respect to x, supposing y itself a function of

x. So that if we denote the complete differential coefficient of 8z
T~\^

with respect to x by 7 ,
we have

DSz dSz dSz dy_ = __
I

__ ^2._ = ____ ^.
dx dx dy dx '

error

where ^ is to be found from the value of y in terms of x which

holds at the limit. The process of Lacroix then is wrong because

d$z . f .. DSz
it uses -j as if it were = .

dx dx

28. There is no error in the transformation which Lacroix

effects of the terms
jj^Brdxdy zndJj^Stdxdy;

but the

indicated in the preceding article occurs again in the transformation

of terms arising from the differential coefficients of z which are of

an order higher than the second. It must be observed that the

error disappears when the limits of both the integrals are con-

stants.

29. The error indicated in Art. 27 was alluded to by
Poisson and corrected in his memoir on the Calculus of Variations

(Memoires de Vlnstitut, Tome XII. page 296). It seems to have

been introduced by Euler; it occurs in Art. 169 of the Treatise on

the Calculus of Variations contained in the third volume of Euler's
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Integral Calculus. In the memoir however to which we have

already referred (see Art. 22), which is reprinted in the fourth

volume of the Integral Calculus, the error does not occur
;
there

Euler has a result which is equivalent to

that is, he omits the incorrect equation (2) of Art. 27. He has

therefore here not attempted to carry his transformations farther

than they are carried in Art. 17, and has left his results in a correct

form. It should however be observed that Strauch asserts that

Kuh-r's results are not correct, since he has omitted several terms

which involve only a single integral (Strauch, Calculus of Varia-

tions, Vol. II. p. 633). There seems no reason for the assertion

made by Strauch beyond the following : In such a step as

we must remember that the integration with respect to y will have

to be taken between certain limits, so that the equation just written

would more correctly be written thus,

f
*

e* i f vdSz\

'

f od^\ f
Vl dS d*z JSos dy = [S T- - [8-J-]

-
-j- -T-dy,

Jy \ <&/! V dxJ Jy dy dx

where the first two terms on the right-hand side are respectively the
7

values of S -y- when y^ and yQ
are substituted for y. This is the

only point in which Euler's formula is liable to objection, and this

can scarcely be called an error, as it is really only an abbreviation

which is perpetually used in the Integral Calculus. This is pro-

bably all that Strauch means by his assertion
;
in the problem

which he has discussed in the pages immediately preceding his

assertion he has confined himself to the case in which the limits of

th integrations are all constants, and his results agree with those of

t!i. thinl volume of Euler's Integral Calculus, when we allow for

the abbreviated form which Euler adopts, as we have just ex-

plained. It may be added that the mistake corrected by Poisson

has been preserv* 1 in some elementary works which have been

published since Poisson's Memoir.
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30. In addition to the error already pointed out, it must be

I observed that on page 752, Lacroix exhibits the result very incor-

rectly ;
for he omits all such terms as - - and

,
and Sz is the

dx dy

jj only
form in which he introduces the variation of z. In conse-

Iquence of this, he falls into the same error on page 753, as has

been already indicated in Lagrange (see Art. 17). He states that

I' when the lines which bound the area over which the double inte-

iiion extends are absolutely given, then all the terms in the

variation of the double integral vanish except those which remain

under the double integral sign ;
and this of course is not true.

31. Lacroix closes this division of his subject with a remark on

the problem of the variation of a double integral when the limits

themselves are supposed variable
; pages 754, 755. He says that

tin 1

question is too difficult for him to stop to consider it, but that he

will return to it afterwards in order to introduce the reader to some

considerations of which no trace could be found in preceding works.

It is not apparent to which of his subsequent articles Lacroix thus

refers
;
the only place in which he appears to return to the point is

page 778, and there he gives scarcely any thing more than had pre-

viously been given by Euler.

32. On page 755 Lacroix begins his exposition of the Calculus

of Variations properly so called. Here he introduces Lagrange's

symbol S to express a variation. Lacroix devotes his first article to

proofs of the formula $dy=d&y, Sdx = dSx, Sdny = d%, .... This

article seems to require some observations. After he has considered

the case in which y alone receives a variation and not a?, he proceeds
thus :

" Hitherto we have only varied the ordinate PM or y; but this

point of view is too restricted
;
some questions may require that we

should pass from the point M of the curve CE to a point v of the

curve 76 corresponding to an abscissa AH. which differs from AP.

(See fig. 1.) It is obvious that the variation ofPM consists then of

two parts, namely of the variation Mfi which is due solely to the

change of curve, and of the increment which P/JL receives in the

curve 76 when the abscissa ^IPis changed into AH.; and we shall

have in this case dy = d$y. For let

2
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it will follow that

and ay- %
On the other hand, since

') -&*> (x)

hence % = <%.

It is moreover obvious that by supposing Sx = vr (x) we have

separately

It follows that d*y = dbdy = d*fy ;
and proceeding thus we

si i all obtain the theorem

&f *%,
in virtue of which we may transpose the characteristics 8 and d

;

this may be extended to any function whatever, so that

whatever U may be. As the basis of the Calculus of Variations

this was enunciated at the origin of the Calculus
;
but it has always

appeared to me that the truth of it had not been proved with suf-

ficient care, and that it was necessary to develop the demonstration

by bringing into view the nature of the variations attributed to the

abscissa and the ordinatc."

33. The proof given in the preceding Article may be exhibited

more clearly ;
it consists essentially of the following process. Let

y stand for ^(a;), let d denote the operation of changing x into x
and subtracting the original function from the new function, let 8

denote the operation of changing x into X and < into ty and sub-

tracting the original function from the new function
;
then
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ind %={*(*)-*(*)} = *(*)-*(*)- {*(*')-*(*)};

hercfore dSy = Sdy.

The proof is certainly sound
;

it must be noticed however that

t is assumed that S always means a change of x into X and
<f>

into
-fy

md a corresponding subtraction. This however is too restricted a

meaning of the operation denoted by S, for it is necessary to have

be power of supposing that the curve 76 in the figure is not through-
ut determined by the equation y = ty(x}. The curve may be deter-

mined by y = T/T (x) for part of its extent, by y = % (x) for another

3art, by y =f(x) for another part, and so on. All the restriction

n
i/r, %, f, . . . is that there be no discontinuity in the value of y

r of any of its differential coefficients up to that of the highest
rder which occurs in the expression we are considering ;

discon-

inuity in form is admissible, and in fact necessary. Thus the

emonstration given by Lacroix in Art. 32 is not perfectly satis-

actory, since it involves a limitation of the meaning of the sym-
olS.

34. Many elementary writers who have reproduced this de-

lonstration have however omitted that part of it in which the

symbols are defined, and thus have rendered it inconclusive. Thus
it has been considered sufficient to proceed as follows : let AP=#,
PII = cfo, PP' = &c, im' = S(x + dx)'9 then P' and IT are the

abscissas of points on the new curve which are infinitesimally near,

and AP' = x + &, therefore

P'IT = d(x + 8x)',

hence PIT' = dx + 8 (x + dx),

and PIT = PP' + P'lT = Sx + d (x + $x) ;

therefore Sdx = dSx.

But in this process the statement ~P'Il' d (x + Sx) is quite arbi-

trary, as there is no definition on which it depends.

35. But in fact there is nothing to be proved, and the subject

would be rendered more intelligible by the omission of these and

similar propositions which appear in so many elementary works.

Suppose for example that y receives an increment y, then the

first differential coefficient of y with respect to x instead of ~
22
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W * ^'
y
that is, receives an increment -^ . Hence ii

</./' uX

we please to denote this increment by Bp we have Bp = -
; there

is here nothing to prove, it is merely a definition of the meaning!

of Bp. Again, let ft denote the integral fvdx; if v receives ani

increment Bv then u receives an increment fBvdx" which we may]
denote by Bu if we please. Instead then of a formal proposition in I

which Bfvdx is proved equal to fBvdx, there is really only a defi-

nition of the meaning of Bu when u = fvdx.

36. That these supposed propositions are not required in a

treatise on the Calculus of Variations may be seen by consulting |

Airy's Tract on the Calculus of Variations. The subject will be!

found there treated with great simplicity and clearness, without

any introduction of such matter as we have taken from Lacroix inj

Article 32. It may be added that Euler, who gives the geometricall

process of Article 32 in his treatise on this subject contained in

his Integral Calculus, gives it rather as an illustration than a proof

(interim tamenjuvdbit idper Geometriam illustrasse) .

37. Lacroix now proceeds to give the usual formulae of the

subject expressed in the usual notation. He exhibits the variation

of an integral which involves both x and y and their differentials,

so that in fact x and y may be considered both functions of a third

variable. He notices the conditions which must hold in order that

a function involving two variables and their differential coefficients

may be susceptible of integration, once or more than once, without

assigning any relation between the variables. He also investigates
ariation of fVdx, where V contains another integral fV'dx

besides x and y and the differential coefficients of y ;
as this is a

point of some
difficulty we shall consider it here more fully.

38. An investigation of the variation of an integral formula
which its.-lf involves another integral was given by Euler; it occurs
in th<- -Itli rhapt.-r of the treatise on the Calculus of Variations,
wliirh in contjtiurd in tin- third volume of his Integral Calculus.

;

t in liis Ariidrs s.Vl and 871. Lacroix omits a few
lines of explanation whirl, are found in KuW. and thus the process
wllicu " net free from obscurity is rendered
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still more obscure; in fact, as we shall see, Lacroix does not

Listinguish between problems which are really different. From

jacroix the process has passed into many elementary works. We
l now give the process of Lacroix.

Kequired the variation of JVdx, where V is a function of x, y,

>, q, r, ... and v where v = fV'dx, and V is also a function of x, y,

o, q, r, . . .
;
here p, q, r, ... denote the successive differential coeffi-

ients of?/ with respect to x. Suppose

dV= Mdx + Ndy + Pdp + Qdq + dr+...+ Ldv,

dV'= M'dx + N'dy + P'dp + Q'dq + R'dr + ...

Fhen by the usual formulas of the Calculus of Variations

S fVdx
= F &B + f(dxSV- dVSx) ;

low for shortness let dV= dty 4- Ldv, then SF= 5i/r + LSv
;

hus 8 fVdx
= VSx + f(dxty

-
d^jrSx) + f(LdxSv

- LdvBx] .

Uso $v = V'Sx + f(dxBV - dV'Sx) ;
and dv = V'dx

;

herefore [(LdxSv
- LdvSx) =fLdxf(dx8V

-
dV'Bx).

yut fLdx
= /; then by integration by parts

f(LdxBv
- LdvBx) = I

f(dx*
V - dV'Sx) - fI(dxBV

- d V'Bx).

we obtain

BfVdx
= VZx +

f(dafofr>
- d^x)

+ lf(dxBV
- dV'Sx)

-
fl(dxBV

-
dV'&x).

The three terms which follow V&x on the right-hand side of

he last equation may be transformed by the ordinary processes of

le subject. Thus if CD = y -p&x, we shall obtain

dR v dco

dx dx
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7 S\ '

fJ
Z 7? '

- + .............>

Thus far there is no difficulty, but Lacroix adds in Article 871

let A denote the total value of /, that is, of fLdx taken between

limits determined by the nature of the question ;
since this value

is a constant it may be introduced under the signs of differentiation

and integration, and thus the formula will become

+
f{(N+

AN' - IN') -iL(p+AP'- IP')
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This last step is not obvious
;

it will be seen that no change

1,1s
made in the terms which are denoted by (1) and (3), but that

is changed into A in (2). Now the original integral jVdx must

|be supposed taken between some limits, say a and
;
thus the first

line for example in (2) will really when written at full become

p _dQ_ . d*R'

\T(P> dQ>

"rr:* aE
T
i5?:

and as the value of I when x = /3 will not generally be the same

as its value when x = a, we cannot as Lacroix does put A for / in

the terms included in (2).

Some variety of meaning may occur with respect to /; for by
/ we may understand simply the indefinite integral fLdx without

rx

any constant added
;
or by / we may understand I Ldx, so that

J a

I vanishes when x has the arbitrary value a, or again, a may be

supposed equal to a or to /5. None of these suppositions however

Lead to the result given by Lacroix, although the supposition that

/ vanishes when x a or when x = /3 will simplify the correct

formulae. There is another point to be noticed. We have hitherto

supposed v to mean the indefinite integral / V'dx without any con-

stant added
;
but v may stand for something different, as for ex-

ample for / V'dx. In this case in order to find what arises from

IJ(dx8V -dV'Sx), we must take the integral from c to x, then

multiply by / and put successively x = a and x = ft in the result,

and subtract the first value of the result from the second. Similar

processes must be performed with the terms in (3). For simplicity

we will suppose that J= Ldx, so that I vanishes when x = a.
J a

Thus, for example, the first term of the first line of (2) is

The second line vanishes since Ix=a is zero, and the first line may
be written
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From considering this result, we see that ^/c = a, we may adopt

final form given by Lacroix. Thus the formula of Lacroix

[
x

must be understood to imply that v = Vdx, where a is also the
J a.

lower limit of the integral / Vdx. rb

It is however possible to suppose that v stands for I Vdx,
J a

where a and b are constants. In this case the terms in (2) will

give

The terms in (3) will give

in which we are supposed to make x successively equal to a and
,

and subtract one result from the other; so that the remainder is zero

Hence in this case

+ (7^ -Ix=a)

/^(dx^r d^x] and

r.

-dV'Sx) by the ordinary processes of the Calculus of

Variations.

Moreover /^ _ Ix=a = ^Ldx.
J a.

39. We now arrive with Lacroix at the problem of the Variation
of a function of two independent variables. An important mistake
occurs on pages 779 and 780, which must be noticed here. We
aliall use the ordinary notation for partial differential coefficients

of a function ., namely jr,
forJ , q for ~

,
r for~

,
and so on.

Ijacroix gives the following process.

To find fy and fy. We have
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by differentiating the fraction in the ordinary way and changing

d into S, we shall have

^ _ dxSdz dzSdx _ dxd&z dz dSx _ dSzpd&x
bp ~~

dx* dx* dx

. -i i 2.
d&s qdBy

Similarly Sq =--~- *
.

The formulas thus obtained for Sp and $q by Lacroix are incorrect
;

they appear to have been taken by Lacroix from Euler's treatise

comprised in his Integral Calculus. The true formulas were given

by Poisson
;
the erroneous steps in the process of Euler and Lacroix

were afterwards indicated by Ostrogradsky, and Poisson's results

were confirmed. These points we shall have occasion to explain in

analysing the memoirs of the two writers last named.

40. After the error in finding Sp and $q Lacroix follows Euler

in giving erroneous formulas for Sr, $s, and St. These writers both

shew that in following out their process they obtain two formulas

for Ss, by performing the operations in different orders, and these

two formulae can only be reconciled by supposing that $x is a

function of x only, and Sy a function of y only. They proceed
thus

dy dy

d28x
and -/- = -jj s -=-- p

dy dydx dx r
dy dx

d2
&z dSx

therefore cs = -j j
-- s -j

-- p -=
^
-- s-^- .

dydx dx L
dydx dy

Again, adopting a different order, we have

8
dx~ dx

*

d^z dy d^y dSx
therefore os = -3 ^ s -^ a , j s -j

dxdy dy
a
dxdy dx
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These two formula for & contain respectively the essentially dif-

ferent terms -^ and q -r-4- ,
which can only be made to dis-

dy ttx ctx (ty

appear by supposing that &c does not contain y and that y does

not contain x.

41. The difficulty at which Euler and Lacroix thus arrive is

owing to the circumstance that they determine Bp and Sq errone-

ously, and repeat their error in determining Ss
;
the correct values

will be given hereafter. Strictly speaking it is not absolutely

necessary that &x should be a function of x only, and By of y only

in order to make -jr- and *ir-T- vanish
;
for if 8x were a function

ay ax axay

of x only or of y only . , would vanish, and a similar remark is

true with respect to oy. But the supposition that &x is a function of

x only and By of y only is more natural at this point, and is much
more convenient for the subsequent processes required in the deve-

lopment of the variation of a double integral. Lacroix seems to

intimate on page 778 that there is some loss of generality in im-

posing the restrictions on Bx and By ;
this however does not appear

to be the case. For let a?, y, z be the co-ordinates of any point ;

and let x + 8x, y + By, z 4- Bz be the co-ordinates of an adjacent

point; then if Bx bean arbitrary function of a? only, By an arbitrary
function of y only, and Bz an arbitrary function of both x and y, we
have the power of passing from the point (a;, y, z} to an adjacent

point in every possible way ;
that is, our suppositions involve all

the generality we require.

42. Lacroix now gives the ordinary development of the varia-

tion of a double integral ;
in so doing he reproduces the error which

hia been already indicated in Art. 27. He illustrates the whole

subject by discussing some of the usual problems ; he selects the

brachistochrone, the solid of least resistance, the curve which in-

clude* a maximum area between itself and its evolute, the integral

fVdx where F=y/V(l + />*) dx, and the brachistochrone in a resist-

ing medium.
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43. Lacroix then gives Euler's method of treating questions of

relative maxima and minima
;
that is, for example, he shews that if

we want the maximum or minimum value of fudx subject to the

condition that jvdx shall be constant we must proceed to solve the

problem of finding the maximum or minimum of j(u -f av) dx, where

a is a constant. This part of the subject he illustrates by the pro-
blem in which a curve is to be found of given length and area,

which by rotation round an axis will generate a maximum or mini-

mum volume. Lastly he gives some investigations with respect to

the problem of discriminating a maximum from a minimum
; these

are similar to those which we have already noticed in Art. 5.

44. In the third volume of his work, which was published in

1819, Lacroix has a note on the point which we have noticed in

Art. 39. He gives there the correct forms for Sp, Sq, ... which had

been obtained by Poisson after the publication of the second volume

of the Traite du Calcul Differentiel et du Calcul Integral.

45. On the whole the Calculus of Variations does not seem to

have been very successfully expounded by Lacroix, and this is

perhaps one of the least satisfactory parts of his great work. Mr
Abbatt, in the preface to his treatise on the subject, speaks thus of

it: "In Lacroix's Traite du Calcul Differentiel et du Calcul

Integral, Tom. n., we find materials sufficient to form a complete
work on Variations; but the subject is treated in a manner so

prolix and inelegant, that the reader's taste will scarcely be im-

proved, how much soever his knowledge may be increased by
the perusal."



CHAPTER II.

DIRKSEN. OHM.

46. IN this Chapter we shall give an account of the works

of Dirksen and Ohm. The treatise of Dirksen is entitled Analy-
tical Exhibition of the Calculus of Variations with the application

of it to the determination ofMaxima and Minima, by E. H. Dirksen,

Berlin, 1823, (Analytische Darstellung der Variations-rechnung mit

Anwendung derselben auf die Bestimmung des Grossten und

Kleinsten).

47. Dirksen's book is a small quarto of 243 pages, with a

preface of 8 pages; it is very badly and incorrectly printed.

In the preface the author says that the Calculus of Variations ap-

pears to have been neglected, for in elementary works no improve-
ment had been introduced since the time of Euler and Lagrange ;

he states that he has himself developed the subject from a purely

analytical origin ;
and in conformity with this remark it may be

observed that there is no figure in the book.

48. The work is divided into four chapters. The first chap-
ter extends over 32 pages ;

it is called an Exhibition of the prin-
ciple of the, Calculus of Variations. Dirksen takes any function
such as $(x,y,z) and changes x into x + JcSx, y into y + kSy, and
c into * + k&z

; he then expands the new value of the function in
a series proceeding according to ascending powers of k

;
the coeffi-

cient of the first power of k is called the variation of the first order
of the function, the coefficient of If is called the variation of the

!" "' l!l '

function, and BO on, In the first chapter the
author finds the variations of explicit differential and integral
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functions, and of a function which is implicitly determined by
means of an unsolved differential equation.

49. The second chapter extends from page 33 to page 73
;

it

is called Development and Transformation of the variation of the

first order of undetermined Integral Formulce taken between given

limits. Here Dirksen confines himself to the term containing
the first power of k in his general expansion, and he gives the

ordinary process of integration by parts which separates the

variation of an integral into an integrated part and a part still

remaining under the sign of integration. He also gives the trans-

formation of a double integral jjVdxdy, supposing the limits of the

integrations for both x and y to be constants.

50. The third chapter extends from page 74 to page 200
;

it is

called Application of the Calculus of Variations to the determination

of Maxima and Minima. The author first considers the maximum
or minimum of an explicit function, which is an ordinary problem
of the Differential Calculus. He then proceeds to the case where
the function involves differential coefficients, and he discusses the

example given by Lagrange (see Art. 3). Next, he considers un-

determined integral formulas
;
and with respect to these he investi-

gates the second term of his general expansion in powers of k with

the view of discriminating a maximum from a minimum
; he uses

the method given by Lagrange in the Theorie des Fonctions Analy-

tigues.

51. The fourth chapter extends from page 201 to the end; it

is called Examples relating to the determination of the Maximum or

Minimum of undetermined Integral Formulce. Dirksen states in

the preface that these examples are for the most part taken from

Euler's Methodus Inveniendi
,
but he intimates that the solu-

tions of the examples are in some respects superior to those given

by Euler. The examples given by Dirksen are in fact all in

Eulcr; but Dirksen has generally investigated the terms of the

second order so as to discriminate a maximum from a minimum,
and this gives his solutions an advantage over Euler's. Some of

these examples are also discussed in the work of Strauch ;
it will

be useful to point out those which are in Dirksen and which an-
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not in Strauch ; they are the following. The maximum or mini-

mum of the following expressions is required,

fy(ax-y
t
) dx, (Euler, page 39) ,

-
15a*xy + Say - 3/) dx, (Euler, page 40) ,

_3aJ_^) (ax-x*-xy+y*) dx, (Euler, page 41),

(Euler, page 61).

Also the maximum or minimum of fy'
2dx subject to the condition

that fyxdx is constant is found (Euler, page 191). And Dirksen

investigates the shortest line on a spheroid ;
Euler gave the general

problem of the shortest line on a surface (page 138).

52. On the whole Dirksen's treatise cannot be estimated veiy

highly, and the inaccuracy of the printing renders it repulsive to a

student. In Ohm's treatise, which we shall next examine, refer-

ences are made to some unsatisfactory points in Dirksen's work; see

Ohm's Theory ofMaxima and Minima, pages 8, 11, 18, 50, 53, 55,

62, 74, 84, 115, 119, 233, 250, 292, 313.

53. Ohm's treatise on this subject is entitled The Theory of
Maxima and Minima^ by Dr Martin Ohm, Berlin. 1825. (Die

Lehre vom Grossten und Kleinsten). This is an octavo volume of

330 pages, with a preface of 18 pages. It may be regarded as

the successor to the work of Dirksen, for Ohm gives frequent refer-

ences to Dirksen, and corrects some of his errors. Ohm's book is

very correctly printed, but from the highly condensed notation

which he adopts, and from the want of illustrative problems, it is

rather a difficult work for a student.

64. The first 84 pages contain an Introduction, in which the

author collects the propositions in Algebra and the Differenti.il and

Integral Calculus, whirh are especially used in the ordinary theory of

maxima and minima, and in the Calculus of Variations. Thus we
have theorems on th<> expansion of functions, on differentiating inte-

gral expressions with respect to any symbol which they contain.
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and on the reductions of certain integral forms by means of inte-

gration by parts. This mode of arrangement seems liable to objec-

tion, as the various propositions are given apart from their useful

applications, and thus they are rendered more difficult and less

interesting than they would be if introduced when they were

required for immediate service.

55. The portion of the book extending over pages 87 127 is

called Calculus of Variations. Ohm's view of a variation is similar

to that of Euler and Lagrange. (See Art. 22 and Art. 15.) Let V
denote any function, and FK a function which reduces to Fwhen
K =

;
then FK is what V becomes by variation, and VK is supposed

developed in a series, so that

V. = F+ SF. + 8
2 F. + S

3
F. -- + ...

The terms SF, S
2

F, S
3

F, ... are called variation-coefficients, and

by Maclaurin's Theorem they are the values of the successive dif-

ferential coefficients of Fwhen K is supposed zero after the differ-

entiations. The only terms of importance are the first and second

variation-coefficients, namely 8F and 8
2
F. In this part of the

treatise Ohm gives the first and second variation-coefficients of dif-

ferent expressions, some of which involve integrals and some of

which do not.

56. The portion of the work extending over pages 131 314 is

called the Theory of Maxima and Minima. The pages 131 208

contain the theory of maxima and minima, which is given in ordi-

nary treatises on the Differential Calculus. Ohm endeavours to

present this part of the subject under a novel aspect, but it does not

appear that there is any real extension or improvement of the com-
mon methods. The pages 209 244 contain investigations of the

maxima and minima of expressions in which differential coefficients

enter, that is, expressions of the kind exemplified by Lagrange (see

Art. 3). This part of Ohm's treatise contains more than had been

previously given on this point; the extension however was ex-

tremely natural and obvious after the example discussed by La-

grange.
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57. We now arrive at the part of Ohm's treatise which is

devoted to the maxima and minima of integral expressions. On

pages 244 304 Ohm considers expressions which involve single

integrals. He takes an integral fVdx, and at first he supposes

that F involves only x and y ;
next he supposes that F involves

a?, y, and j-\
next he supposes that F involves a?, y,

y- and

d
; lastly, on page 272 he supposes that F involves a?, y,

-^

_y ,. up to -j-%. He then takes the case in which V con-
dx* dx

tains besides y another function of x, as z, together with the dif-

ferential coefficients of y and z.

58. For discriminating between maxima and minima Ohm

gives the method which was originally proposed by Legendre,

which we have already exemplified in Art. 5. He seems however

to consider the results as more certain than they really are, for he

omits all reference to the qualifications indicated by Lagrange (see

the latter part of Art. 5). Ohm extends this method to the case

in which the function under the integral sign involves more than

one dependent variable
;
on page 279 he takes for example jVdx

where F is a function of x, y, z,
~

,

-~
2 and -y- .

59. In pages 304 310 we find some investigations with

respect to the maxima -and minima of multiple integrals. Here

for the first time the case is considered in which the limits of the

first integration are functions of the other variable. The following
is Ohm's process with some change of notation.

x y

tin- integration in U is supposed to be effected with respect to y
first, and tin- limit-

// ami
?/ i may be functions of x. It is required

to express &U. With the notation used in Art. 17 we have
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therefore =
(" f^L -

*j
-

) tzdxdy]*J yo \ dx dy)

+ rr i^J xo J yo
a'*c

here N^z) l
denotes the value of NSz when for y we put

the value of NSz when for # we put y . Now
and

;hus the term I I -*- (MSz) dxdy gives
J x Jy dX

y

r
e have thus the value of BU reduced as much as possible.

60. Pages 311 314 shew how to obtain the variations of func-

jtions
which are implicitly given by differential equations. The

book finishes with an appendix of fourteen pages, in which are

given some algebraical expansions which are in fact cases of

[Taylor's Theorem.

61. There are three other works in which Ohm has touched

upon the subject of the Calculus of Variations
;
these are

System der Mathematik, Band V. Berlin, 1831.

System der Mathematik, Band vil. Berlin, 1833.

LehrbucJi der hohern Mathematik, Band II. Berlin, 1839.

We shall make some observations on these three works.

62. In the fifth volume of Ohm's System of Mathematics the

portion of the work devoted to our subject is the eleventh chapter,

extending over pages 51 87. The chapter is divided into two

3
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parts; the first is called the Expansion of polynomial functions in

ertea'and extends over pages 5081, the second is called Calculus

of Variations and extends over pages 8287. The main point oi

the chapter may be said to be the expansion of a function of

a?, y, *, ... a, b, c, ... in powers of tc when

x - x + ae + x? + . . .

and similar expressions hold for y, z, ... b, c, ... There is only a

very brief account of the Calculus of Variations, strictly so called

and this account contains nothing of importance.

63. In the seventh Volume of Ohm's System ofMatkematid

there is a chapter on Maxima and Minima, and an Appendix o

Examples. The chapter on Maxima and Minima gives a brie

sketch of the ordinary portions of the Calculus of Variations
;

foi

fuller details Ohm refers to his separate work on the subject, o

which we have already given an account in Arts. 53 60. The ap

pendix of problems contains 41 problems and occupies 113 pages

these problems are intended by Ohm to illustrate the separate work

to which reference has just been made. The first six of the pro-

blems require maxima or minima values of expressions involving

a function and its differential coefficients, but not involving inte

grals. These problems are all reproduced by Strauch in the secon<

volume of his treatise on the subject. The first is given by Strauc

on pages 14 16
;
he ascribes it to Ohm. The second, third, am

fourth are given by Strauch on pages 23 27
; they consist of th

example originally given by Lagrange, and two modifications o

it which Strauch ascribes to Ohm. The fifth and sixth problem
are ascribed by Strauch to Ohm

;
Strauch gives them with some

extensions on pages 8289. Ohm's problems from 7 to 17 in-

clusive consist of different cases of the shortest line that can be

drawn in one plane or in free space, with various limiting con-

ditions. The problems from 18 to 20 are respecting the shortest

linrs that <un IK- lr;i\\n on assigned surfaces; Ohm gives the ordi-

nary investigations. The general problem is not treated by Strauch,
but In- r.xaiMMM-s in detail the same particular case as Ohm, namely,
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that of the shortest line on a sphere. Ohm's remaining problems
are all common examples, and are all included in Strauch's second

volume, except one which shall be given presently. The problems

21, 22, 31, 32, 33, 34 relate to the brachistochrone and to the curve

of greatest final velocity ;
these are in Strauch, pages 400 454.

The problems from 23 to 27 inclusive relate to the curve which is

of minimum length and includes a constant area, and the curve

of constant length which includes a maximum area
;

all these

problems are in Strauch, pages 476 504. Problems 29 and 30

relate to the surface of minimum area and to the surface of

maximum volume with a given area; these problems are in

Strauch, pages 616 623. Problem 35 is given by Strauch on

pages 454 458. Problem 36 relates to the curve which has the

area between itself and its evolute a maximum
;

it is given by
Strauch on pages 289 291. Problem 37 is given by Strauch on

pages 534 538. Problem 38 relates to the solid of revolution

which has a minimum surface
;

it is given by Strauch on pages

506, 507. Problem 39 relates to the solid of least resistance
;

it is

given by Strauch on page 399. Problem 40 is given by Strauch

on pages 524 527, and problem 41 on pages 527, 528.

64. The solutions of Ohm have not been examined for the

present work, as the examples he gives are all discussed in other

books. It may be observed that in his first seven problems Ohm

investigates the terms of the second order so as to discriminate a

maximum from a minimum. From the list given in Art. 63, it will

be seen that no problem is contained in Ohm which is not easily

accessible in other works except problem 28.

65. Ohm's 28th problem is this; Required the maximum or

r^ 7 C x

minimum value of / - dx, where p stands for ~-
,
and z = ydx.

J a p
" ClX J (,

His solution is substantially the following.

Here ^r v\ so that ?/
- = 0, Hence we may consider that

dx y J dx

we have to find the maximum or minimum value of F, where

F=
j a \p v axj)

32
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X being a multiplier at present undetermined. Thus

Now assume X such that the coefficient of Bss vanishes
;
that is,

assume

Then in order that 8F may vanish, we must have the coefficient

of By zero
;
that is

=(?)+*-'
............

;

...........

By eliminating X between (1) and (2) and substituting for z, we

obtain ultimately a differential equation of the fourth order for

determining y ;
so that four arbitrary constants occur. These four

constants will enable us to make the four terms relating to the

limits at present remaining in 8V vanish. It does not appear that

the differential equation for determining y can be integrated in a

finite form.

This example is given in Euler's Methodw inveniendi ......

page 102, without however any express indication of the limits of

integration. It is also solved by Dirksen, pages 139 143.

66. The work of Ohm published in 1839, is noticed by Strauch

in the preface to his treatise (page xv). He says that it is only an

abridgment of that published in 1825; it has not been consulted

for the present work.

'-7. On the whole, with respect to Ohm's works on the subject
it may be said that the only one of importance is that published in

15
; and at the time of publication this surpassed all preceding

itises on the subject. It is however at present only of historical

mtrn-t, a.s it is
completely superseded by the extensive treatise of

Strauch. Strauch in fact may be considered as the successor of
Ohm ; a good sketch of Ohm's works will be found in Strauch's

preface, pogu xiv xvi.



CHAPTER III,

GAUSS.

68. ON September 28th, 1829, a memoir was communicated by
u. F. Gauss to the Royal Society of Gottingen, entitled Principia
Generalia Theories Figures Fluidorum in Statu ^Equilibrii. The
memoir relates to the theory of Capillary Attraction and demon-

strates in a new way some results which had been already obtained

;>y Laplace. The memoir is published in the Seventh Volume of

the Commentationes Societatis Regice Scientiarum Grottingensis,lS33j

it occupies pages 39 88 of the mathematical portion of the volume.

Part of this memoir is devoted to the solution of a problem in the

Calculus of Variations involving the variation of a certain double

integral, the limits of the integration being also variable; it is the

earliest example of the solution of such a problem. Gauss himself

says on page 67,
" Sed quum calculus variationum integralium

duplicium pro casu ubi etiam limites tanquam variabiles spectari

debent, hactenus parum excultus sit, hanc disquisitionem subtilem

pnullo profundius petere oportet." We shall give the investigation

of Gauss.

69. It is not consistent with the scope of the present work to

touch upon the parts of Gauss's memoir which are unconnected with

the Calculus of Variations. We must refer the student to the

original memoir, and recommend it as important and interesting.

In Liouville's Journal des Mathematiques, Vol. XIIL, 1848, is a

memoir by M. Bcrtrand, which is in fact nearly a republication of

that part of the memoir of Gauss which does not concern the Cal-

culus of Variations, with some extensions and applications.
That

is to say, M. Bertrand reproduces the physical part of Gauss's
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memoir, but substitutes geometrical reasoning instead of the parts

which involve the Calculus of Variations. Moreover as we shall

see hereafter simpler investigations of the problem in the Calculus

of Variations discussed by Gauss have been since given by Pagani

and Mainardi, but the interest which belongs to Gauss's method,

from the eminence of the author and from the fact of its being the

first solution of such a problem, will justify us in reproducing it

here.

70. On the first page of his Memoir Gauss has a short note

which refers to a problem in the Calculus of Variations. He says,

tin- greatest attraction which a given homogeneous mass attracting

according to the ordinary law can exert on a given particle is to the

attraction which a sphere of the same mass would exert on the

same particle if placed on its surface as 3 to ^25." This result may
be easily verified

;
we have to find the form of a solid of given mass

so that the attraction upon a particle may be the greatest possible.

It is obvious that the solid must be one of revolution, and it may be

shewn to be the solid formed by revolving the curve r
2 = c

2
cos 6

about the prime radius. This result is also obtained by Schellbach

in Crelle's Journalfur ... Mathematik, Vol. 41, page 345.

71. In order to facilitate the comprehension of the researches of

Gauss we begin with a short account of his notation. Conceive a
vessel open at the top containing homogeneous fluid

;
let ds denote

an Clement of volume of this fluid, z the height of this element
above a fixed horizontal plane, T the area of the surface of the fluid

which is contiguous to the vessel, U the area of the free surface of
the fluid, a and two constant quantities. Then Gauss arrives at
th< following expression

xpreasion he denotes by W, and he has proved that for the
to I..- in equilibrium W must be a minimum. Gauss then

proceeds t.. the
investigations which occupy the present chapter.

It remains to dnmuim> the nature of the figure of equili-
r which purpose we , I1Ust find the variation that ll'oxpe-

' wl " n f! '* the space occupied by the fluid undei
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any infinitely small variation. But since the Calculus of the

Variations of double integrals in the case where the limits are also

variable has hitherto been little studied, the subject will require

careful investigation.

Consider that part of the surface of the fluid which we have

lenoted by U, and let x, y, z be the co-ordinates of any point of it.

We may consider z as a function of the variables x and y, and de-

note the partial differentials of z in the usual manner, omitting

>rackets, by
dz j dz j
-j- ax, -=- dy.dx dy

'

&t the point (x, y, z} suppose a normal to the surface of the fluid

rawn outwards, and let f, 77, f be the cosines of the angles between

liis normal and lines respectively parallel to the axes of x, y\

md z. Thus

dz dz 77
ncl :T-

= -|> *j-
= -i*dx ?' dy f

The boundary of the surface 7 will be a closed curve which we
will denote by P, and which may be supposed described by a point

moving always in the same direction, so that the element dP will

always be considered positive; also the element dU will always be

considered positive. We will denote the cosines of the angles

which the direction of dP makes with the co-ordinate axes of x, y, z

by X, Y, Z respectively, and in order to remove all ambiguity con-

cerning this direction we shall take it so that a system similar to

that of the co-ordinate axes of x, y, z may be-formed by the follow-

ing three lines, namely, the direction of dP, the direction of the

normal to dP which touches the surface U and falls within the

boundary of it, and the normal to the surface U drawn outwards.

Thus it will follow that the cosines of the angles between the

second direction and the axes of a?, ?/, z respectively are

where f , ijOJ f ,
are the values of f, 77, f which belong to the posi-

tion of the element dP.

73. Let us now suppose the surface U to undergo an indefi-

nitely small mutation. If it were sufficient to consider only those
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mutations for which the boundary P remained unchanged, or

always remained in the same vertical surface, it is obvious that

it would only be necessary to ascribe a variation to the vertical

co-ordinate z, and thus the problem would become much simpler.

But we wish to examine the problem in all its generality and

the separate consideration of the change of the limits will be in-

convenient, so that it will be better to ascribe variations to all

three co-ordinates x, y, z. We will suppose therefore that for a

point in the surface whose co-ordinates are x, y, z, another is sub-

stituted whose co-ordinates are x + &e, y -f Sy, z + Sz
; and 8x, By,

8z may be considered as undetermined functions of x and y and

indefinitely small. We will now examine the variations of the

different parts of W, beginning with the variation of U.

Let us conceive a triangular element dUof the surface U, and

suppose the co-ordinates of the angular points to be

x + dx, y + dy, z +^
x + d'x, y + d'y, z+^

The double of the area of this triangle is known to be

[This follows from the known expression for the area of a tri-

angle in terms of the co-ordinates of its angular points, in conjunc-
tion with the theorem which connects the area of any plane figure
with the area of its

projection.]
In the surface obtained by the variation of the first surface we

shall have for the co-ordinates of the points corresponding to the
angular points of dU,

lie first point

x + Sx, y + Sy, z+Sz;
for the second point
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7

r-

-j- ay ;

x dy

for the third point

,, .. dSx ,, dSx ,,x+ d x-\-ox + r- d x + -j d y,dx dy

dz 7 , dz ,, rs d&z j, dSz ,,
8 + -5-d'x+-r d'y+$e + -T-d'x + --r d y.dx dy

y dx dy

The double of the area of this new triangle is found to be

(dxd'y-dyd'x}^
where N stands for

dSy\ d&x d&y]
'

1 H r- j r- r

dy J dy dx}

(/ dx\fdz_ <tf>z\_dSx/dz_ dSz\{
2

[\ dx J \dy dy J dy \dx dxj)

dSy\ fdz dSz\
'

dSy (dz d$z\\
2+'+'~ +''

[74. There are two methods of arriving at this result
;
we may

take the ordinary expression for the area of a triangle in terms of

the co-ordinates of its angular points, and substitute the values of

the co-ordinates just given. Or we may proceed thus find the

area of the projection of the new triangle on the plane of (x, y) and

multiply the result by the secant of the angle of inclination of the

triangle to the plane of (x, y) : this method is instructive and we
will give it in detail.

The area of the projection is best found by imagining for a

moment that the origin of co-ordinates has been transferred to the

point x + &x, y + &y, z + Bz. Thus we obtain for the double of the

area of the projection,
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The first line gives

The second line may be obtained from the first by interchanging

dx with d'x and dy with d'y. Thus we have for the double area

the expression

x (/ dx\ / y\ x
(ted'y

-
dyd'x]

|(l
+ _) (l

+ ^)
_

We have then to multiply this by the secant of the inclination of

the triangle to the plane of (x, y). Now we know that if xv yv z
1

be the co-ordinates of a point on a surface the corresponding secant

is equal to

where (j-0 and
f^-

1

)
denote partial differential coefficients. The

rliii-t point of the present investigation consists in forming these

partial differential coefficients correctly. To this we proceed; in

forming
-~ we must regard dy^ as zero. Hence since x

lt y^ z
1

stand for x + &e, y + Sy, z + $z respectively, and dy^ is to be zero,

we have

, ,
,
d&x , d&x

dx =dx + -j-dx dy

;
dz . dz j d&z d&z

h *+
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therefore

dz_
dSz\

f dfy\ _ (dz
dz\ dSy

idzA _ dx
+

dx )[
+

dy) \dy
^

dy ) dx

[dxj
~

(
dx\ f d%y\ d8x d&y

l '

[

"dx~)( ~dj)~ dy dx

An analogous expression will be found for f-r-0 Thus the

required secant is known, and we finally obtain for the double of

the required area the result already given

75. If we develop the value of N and reject terras of the

second order, we have

& dy
where L stands for

_
/d8x dSy\ dz dz d&z dz dSz dz

[dy dx) dx dy dx dx dy dy
'

Thus the ratio of the first triangle to the second is that of

unity to

L

dx)
'

and is therefore independent of the form of the triangle dU.

Therefore

this may be written



44 GAUSS.

76. We shall obtain the variation of the whole surface U by

integrating the expression for the variation of the element dU.

For this purpose we shall consider separately the two parts of the

integral

and

Conceive a plane perpendicular to the axis of y such that the

value of y belonging to it is comprised within the limit of the

extreme values which y has throughout the surface U. This plane
will cut the periphery P in two, or four, or six, . . . points of which

the co-ordinates parallel to the axis of x may be denoted by a?, x,

x", ... Similarly the other co-ordinates of these points may be

denoted. Also let the surface be cut by a second plane parallel

to the former and indefinitely near it, so that its co-ordinate may
be denoted by y + dy\ between these two planes will be found

elements of the periphery dP, dP', dP", ... and it will be easily
seen that

If, further, we conceive an infinite number of planes perpen-
dicular to the axis of x, then to every element dx situated between

x9 and x or between x" and x'"
9
and so on, will correspond an

element dU such that dU=
p*. Hence it follows that the part

of the integral A which corresponds to the part of the superficies

situated between the planes determined by y and y + dy will be

found from the integral

the integral being taken from x x to x = #', then from x = x" to

x = x", and so on. The above integral, by integration by parts,

gives
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Thus we have in the present case

1 f r J

/-
I

J x
* *
by -j- V - * -rt* dx dx

This we may denote

where the summation extends to all the elements dP which are

situated between the planes y and y + dy, and the integration to

all the elements dU which are situated between the same planes.

Hence the complete integral A is equal to

dx
t,

* dx

where the first integral is to extend over the whole periphery P,

and the second integral over the whole surface U.

77. In a similar way we may shew that E is equal to

.

ty f dy
y
dy ? J

Let us assume that for any point of the periphery P
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and also that for any point of the surface U

.

and we obtain

SU=fQdP+fVdU,

where the first integral is to extend over the whole periphery
P and the second integral over the whole surface U.

78. The expressions given for Q and V admit of remarkable

simplification. By using the equation

the expression for Q may be put in a symmetrical form; thus

In order to simplify F, we observe that since

dz -. dz TJ_ = - i and -j-
=

-I ,dx dy ('

it follows that

_d_l = d_ri

dy\ dx f
'

Hence

A^
dy S

And since

_d_<n rjdrj d^^
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Substitute these values in the coefficient of &e in F, and that

coefficient becomes

Similarly the coefficient of By in F may be transformed into

Thus we obtain

79. Before we proceed further, it may be convenient to illus-

trate the expressions obtained geometrically. We shall refer

the various lines of direction which occur to the corresponding

points on the surface of a sphere with radius unity described

round an arbitrary centre. The directions of the axes of x, y, z

will be denoted by the points (1), (2), (3) respectively; the

direction of the line which is a normal to the surface and drawn

outwards, will be denoted by the point (4) ;
the direction of a

line drawn from any point of the surface to the corresponding
new point obtained by variation, will be denoted by the point (5).

The variation itself which is equal to V(&e)
2 + (%)

2 + (8s)
2

,
we

shall denote by Be and always take it positive. The arc joining

two points of the spherical surface, as for example, the points

(1) and (5) we shall write thus, (1, 5) ;
this arc of course measures

a corresponding angle.

Thus we have

&c= Secos (1,5), Sy = Secos (2, 5), Sz = Secos (3, 5).

All the above notation applies to any point on the surface.

On its boundary, that is on the periphery P, we have two other

directions that require symbols ; first, the direction of the element

dP which we will denote by the point (6) ; next, the direction of

a line which is normal to dP, and which touches the surface

and is drawn so as to fall within P, and this we will denote

by the point (7). By hypothesis, the points (6), (7), (4) lie in

the same order as the points (1), (2), (3); also (4, 6), (4, 7), (6, 7)
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subtend right angles, that is, are quadrants, Thus the relatior

given above in Art. 72 may be written

i7Z-?F=cos(l, 7), fX- 2?= cos (2, 7), ?F-77X=cos(3, 7).

And the equations which determine Q and Fmay be written

<?=-Secos(5, 7)

Thus Q expresses the transference of any point in the periphery

P, from the plane which touches this periphery and is normal to

the surface U, and the transference is positive when in a direction

outwards from P. The factor Be cos (4, 5) of F expresses the

transference of any point of the surface U from the plane touching

this surface, and the transference is positive when in a direction

outwards from the volume of which U is a boundary.

The other factor of V is also capable of geometrical illustration.

For we have

i,dz ..dz

Thus

<%.= -t -^
dx dx* dx dx

di,
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Thus f + pax a

d*\*\
,

f, dz dz d*

This expression is known to be equal to

j_
1

''here R and R are the principal radii of curvature at the point

of the surface under consideration. These quantities are considered

>ositive when the convexity of the surface is turned outwards.

80. A careful examination of the above investigation will

hew that throughout it has been assumed that only one value

f z corresponds to given values of x and ?/, and that f is positive

or the whole surface Z7. Nevertheless the final theorem, namely

BU= -fie cos (5, 7) dP+ fie cos (4, 5) f-i + i) <*&>
\-ti xt J

true generally, and not limited by the above assumption. If

we had wished from the first to have attained this generality it

ould have been necessary to adopt a different method or to enter

nto some prolixity. But the result may now be established as

ollows.

The investigation does not assume that the axis of z is vertical ;

be situation of the axes is arbitrary, and the truth of the theorem

s established for all surfaces such that the points (4) all lie in one

.emispherical surface; we may adopt the pole of that hemi-

phere for (3).

If there be a surface which does not fulfil this condition it may
e separated into two or more parts each of which singly does fulfil

lie condition. Now it will be easily seen that if any surface be

eparated into two parts, the truth of the theorem for the whole

urface follows immediately from its truth for each part. For let

lie surface U consist of the two parts U' and U", and let P' be the

eriphery of U' and P" the periphery of U"; and further suppose
and P" to have the common part P'", so that P' consists of

p '"
and P"" and P" consists of P"' and P'""; it is therefore obvious

4
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that the periphery of U consists of P"" and P'"". Tims, we si

have

/& COB (5, 7) dP' = /& cos (5, 7) ZP"' + /& cos (5, 7)WP"",

/& cos (5, 7) dP" = /fc cos (5, 7) dP'" + f*e cos (5, 7) dP

It must however be observed that the value of the integral

fBe cos (5, 7) dP'", when it is considered as a part of the former ex-

pression,
is exactly the opposite of its value when considered as a

part of the latter expression; for to every point of the line
P"',j

which is to be described in different directions in the two cases,

will correspond opposite situations of the point (7) and thus opposite

values of the factor cos (5, 7). In addition one of these two parts

destroys the other ;
thus we have

fBe cos (5, 7) dP
' + fBe cos (5, 7) dP

" = fBe cos (5, 7) dP.

Thus since BU= BU' + BU" we obtain for BU a value exactly cor-

responding to that already given at the beginning of this article,

since that formula is supposed to hold for the value of BU' and

ofBU".

Lastly, we may observe that the truth of the expression for BU
given at the beginning of this article may be shewn by geometrical

considerations, and indeed more easily than by the analytical

method. But we have adopted the method given above in order

to take an opportunity of throwing light upon a subject which

has hitherto been little studied, namely, the application of the Cal-

culus of Variations to a double integral with variable limits. The

geometrical method we leave to the reader.

[This geometrical method may be seen in a memoir by M. Ber-

trand in Liouville's Journal des Maih&matiques, Yol/ix. page 119.]

81. It remains to exhibit the variations which the other terms

in W undergo in consequence of a variation of the form of the

space s
; and first we will consider the variation of the space s.

Resume the two triangles considered in Art. 73, and join corre-

sponding points of the sides so as to form a solid. The base of

thin solid may be considered to be dU
y
and its height

Bx + *)By + $z = Be cos (4, 5) ;



GAUSS. 51

this expression will give the altitude positive or negative according
as the transposed triangle lies outside or inside the space s, that is,

according as the whole solid lies outside or inside the space s.

Thus we have

Hence it follows that the variation of fzds will be

fzdUSecoa(4, 5).

With respect to the variation of the quantity T we observe that

since P denotes the common boundary of the surfaces T and U, the

transpositions of the points in the periphery P must satisfy the

condition that the new points should be on the surface of the vessel.

It is therefore obvious that by the transposition of the element

dP the surface T experiences a variation + dPSe sin. (5, 6), and

speaking generally the sign of this quantity will depend on the

sign of the quantity cos (4, 5). But this variation may be more

neatly expressed by introducing a new direction, namely, that of

the line which lies in the plane touching the surface of the vessel,

which is normal to P, and drawn outwards from the space s. We
will denote the point corresponding to this direction by (8), and the

variation of the surface T which arises from the transposition

of the element dP will be

dPSe cos (5, 8).

Thus 5r=/d?P8ecos(5, 8),

where the sign of the factor cos (5, 8) will at once decide whether

the variation is an increment or a decrement

As the point (6) is the pole of the great circle which passes

through the points (7) and (8), and the point (5) lies in the great

circle which passes through the points (6) and (8), the points (5),

(7), (8) form a triangle right-angled at (8) ;
thus

cos (5, 7)
= cos (5, 8) cos (7, 8).

Moreover the arc (7, 8) is the measure of the angle between two

planes which touch the surface of the space s and the surface of the

vessel at their intersection P, the angle being formed by those

portions of the planes which include a vacant space. This angle

42
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we will denote by, and thus 180-*' will be the angle between

those portions of the planes which include the surface 5
;
thus the

above equation becomes

cos (5, 7)
= cos (5, 8) cos i.

88. From all the above results we have the following equation

for the variation of W,

(4, 5) \z + a
2 +

- fdPSe cos (5, 8) (a
2
cos t - a* + 2/3

2

) ;

the first integral is to extend over all the elements dU of the free

part of the surface of the space s, or of the free parts if there are

more than one
;
the latter integral is to extend over all the elements

dP of the line or lines which separate that free part or those free

parts from the other part or parts contiguous to the surface of the

vessel.

Now in the position of equilibrium the value of W ought to be

a minimum, and so ought to be incapable of diminution for any

indefinitely small change in the figure of the fluid which leaves the

volume * unchanged, that is, which makes Ss zero. Hence it

follows that in the position of equilibrium the figure of the super-

ficies U ought to be such that the variation

should be proportional to the variation Ss, that is, to

dZ78ecos(4, 5).

Thus we must have

'(!**)
2 + a

8
1 -^ + T7, 1

= constant.

For it is manifest that if this proportion did not hold, the value

of W would be capable of diminution by a suitable mutation of the

figure of the superficies U, the limit P remaining unchanged.
GaufiB then proceeds with the examination of the question of

llui'l equilibrium.
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CHAPTER IV.

POISSON.

83. THE 12th volume of iheMemoires de VAcademic Royale...
contains a memoir on the Calculus of Variations by M. Poisson.

The date of publication of the volume is 1833, but the memoir was

presented to the Academy in November 1831. The memoir ex-

tends over pages 223 331 of the volume.

Poisson begins with a sketch of the history of the subject ;
at

the end of this sketch he indicates the object of his own memoir as

follows :
"
It will appear singular if we reflect on the attention

which has been bestowed on the Calculus of Variations that an

essential part of this Calculus is still in a state of imperfection,

which renders the solutions of many important problems incomplete.
In fact, if the question be to determine the maximum or minimum
of a simple integral, the methods which Lagrange has given in the

4th volume of the old series of Turin Memoirs, and also in the

Lectures on the Calculus of Functions, leave nothing to be desired

either as to the indefinite equation which is to determine the un-

known function or as to the particular equations which must subsist

at the limits of the integral. The general method of the Calculus

of Variations may be applied also without difficulty to the case of a

double or multiple integral in which the limits are fixed and given,
so that we have only to obtain the partial differential equation from

which the unknown function must be determined. But the case is

different when the limits of the double integral are variable and

unknown. In the present state of the science we know neither the

nature nor even the number of the equations relative to each of the

limits, by which these limits are to be determined, so that they

may render the integral a maximum or a minimum. Lagrange has

considered the question of the variation of a double integral in three
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places; namely, in the Miscellanea Taurinensia, Vol. II. p. 188, in

the logons sur le Calcul des Fonctions, p. 471, of the edition of 1806,

and in the Mecanique Analytique, second edition, Vol. I. pp. 97

and 148. He has however never investigated in a complete man-

ner the terms of the variation which correspond to the two limits,

and he has not formed any of the equations which relate to the

limits. This defect in the science deserves the attention of mathe-

maticians. It has been already pointed out by M. Lacroix, in the

articles on the Calculus of Variations contained in his treatise on the

Differential and Integral Calculus. My object has been to remove

this defect, and I believe that I have succeeded in doing so in the

memoir which I now submit to the Academy. This memoir con-

tains also some new remarks on the conditions of iritegrability of

differential expressions of any order, and also an expression for the

integral under a finite form, by the method of quadratures when
these conditions are satisfied."

84. Three remarks may be made on Poisson's statement.

(1) He says that in a double or multiple integral when the limits

are fixed and given, there is no difficulty in applying the Calculus

of Variations. If by the limits being fixed is meant that the limiting
values of the differential coefficients which occur are given as well as

the limiting values of the variables the remark is obviously true
;

if

however it is meant that only the limiting values of the variables

are given the remark seems scarcely correct, for very little appears
to have been effected when Poisson wrote. We have seen in Art.

60, that Ohm gives an expression for the variation of a double inte-

gral in a particular case, but even there the equations are not given
which must hold at the limits.

(2) It is not obvious in the above statement to what part of

the treatise of Lacroix Poisson alludes. But from an article by
Poisson in the Bulletin de la SociStS Philomatique for 1816, it

appears that the allusion is to the part of which we have given an
account in Articles 39 and 40.

^(3)
It is curious that Poisson makes no reference to the me-

moir of Gauss, which was the subject of the preceding chapter of
sent work

; it is the more curious because Poisson published
a work on Capillary Attraction in 1831, and in the preface he refers
to the memoir of Gauss.
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85. The memoir of Poisson is divided into two parts; the

irst is entitled Variations of integrals relative to a single inde-

>endent variable, and determination of their maxima and minima.

The second part is entitled Variations of integrals relative to two

ndependent variables, and determination of their maxima and

minima. The first part extends from page 230 to page 286, and

he second part from page 286 to the end of the memoir.

In the first part Poisson begins by establishing the ordinary

ortnula for the variation of a single integral ; nothing new is ob-

ained but the method is different from the ordinary method. As
t may enable the reader more easily to understand Poisson's mode

f finding the variation of a double integral, to which we shall

ereafter proceed, we will give at full his treatment of the single

ntegral.

86. If K is a function of the variable x and other quantities

ependent upon a?, we shall represent by K', K", K'", ... the

ifferential coefficients of K taken with respect to x and to every-

ling which depends upon it
;
so that we shall have

dK dK'
,
dK"

Let the two limits of an integral with respect to x be denoted

y X
Q
and xv then the values of any quantity H with respect to

lese limits will be denoted by HQ
for the limit a?

,
and by H^ for

limit x
t
.

Let y be a function of the variable a;, and according to the

otation above adopted we shall have

Suppose F to denote a given function of x, y, y , y", ... up to

(the differential coefficient of some determinate order
;
and let X

Q

and x
:
be two constant quantities. Consider the definite integral

If we regard x and therefore also y as implicit functions of

another variable u we can suppose that y', y" , y'", ... have been
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in terms of the differential coefficients of x and y with

to ut by means of the ordinary rules for changing the inde-

I variable. Thus Fwill become a function of x and y and

of their differential coefficients with respect to u. Denote by U
Q

and
11,

the values of u which correspond to x = x and x = x
l ; thus

we shall have

_r r *i ,TdxU= V-r-
J* du

j
du.

Next suppose that &c and fy are indefinitely small and arbi-

trary functions of w; without changing U
Q
and u

l9 put x + Sx and

y + 8y in the place of x and y under the symbol /. Thus we

deduce

The new value of y as a function of a? will result from the eli-

mination of u between the values of x + Bx and y + By. [That is, i

we may put x + Bx = X and y -f By = F; then X and F are func-l

tions of u, and by eliminating u we obtain F as a function of X]
At the same time the new limits with respect to x of the integral

U will be a? 4-&r and x
l -\-x^ and thus although we have not

changed the limits u and u^ the preceding formula will give the

complete variation of Z/both with respect to the form of the func-

tion y and also with respect to the limits of the integration.

Now for shortness put

we shall have

W
And suppose

HMO it will be shewn
presently that we shall obtain
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and generally

g/^/^&c + o)'"'..................... (2).

Hence

SF= (M+ Ny' + Pif + Qy'" + ...) Sx

The coefficient of Sx is the differential coefficient of V with

respect to x considering y, y\ y", ... as functions of x
;
we denote

this by V. And we have

_ t

-j
V ~~j 5du du

thus 87 = to ...
du du ' du

Thus equation (1) becomes

.. Tr d.VSx
Now -j- oa; + V-j- = ^ ,du du du

and i 7

M du

If then we transform to the variable x the second integral con

tained in 8 U, we shall have

By the process of integration by parts we can remove the dif-

ferential coefficients ', ", ... from under the integral sign. For

we have

(
Xl

Pa>'dx = P^ -P o) - r'P'codx,
J X J X

f*1
; , , f* 1

J XQ J JFg

and so on.
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Thai we conclude finally that

T +
*

l

Hadx ..................... (3),

87. It only remains to demonstrate equation (2).

We have

dy
, dy du
y= =

^-
du

Put x + &e and y + by in place of x and y in this fraction,

subtract the original value y and neglect indefinitely small quan-
tities of the second order

;
thus

d&y dy d&x

* , du du du
y

du \du

But, by hypothesis,

By = y'Bx + a)
;

differentiate with respect to w, thus

i -z .

du du y du

HDocwehmve

,dx
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and = -=/,
dx dx J

du

dco

du
,

T" = w
idx

du

t
dx _dy

y d^~fa'

thus the value of y' reduces to

$y = y"x +
'

Starting from this result and from the equation

du'

du

we shall obtain in like manner
5- ii nf^ if

ty =y ox + o)
;

continuing thus we shall establish equation (2) for any index n.

In equation (3) we may replace G> which is under the integral

sign by its value

and in the terms outside the integral sign we may replace

o>
, ojj,

G)
O', o/j, ... by their values

* >

Thus the variation of the integral Z7 will be expressed ex-

plicitly in terms of the variations of x and y, and of the variations

of the extreme values of x, y, y, y ',
... up to the differential coeffi-

cient of the order next below the highest which is contained in V.

88. We have thus given Poisson's method of establishing the

fundamental formula of the Calculus of Variations in the case of

a simple integral.
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Poisson next shews how this fundamental formula may also be

bj decomposing the integral Z7into its indefinitely small

This is in fact the old method which was used be-

fore the invention of the Calculus of Variations, and it is ex-

pounded in Euler's Methods inveniendi.... Poisson however extends

the old investigation so as to include the terms relative to the

It'mtti of the integral; this according to Poisson had not been

done before.

89. We thus arrive at the end of the fourth section of the

memoir. In his fifth section Poisson shews how his results are

applied to find the maximum or minimum value of the integral U.

He says he will not consider in this memoir the question of the

distinction of a maximum from a minimum value. He then makes

tome remarks on the number of constants which will appear in the

solution of the differential equation furnished by the condition of

maximum or minimum, and the manner of determining these

constants. He draws attention to the obvious fact that the differ-

ential equation may be immediately integrated, once ifN= 0, twice

if <Y= and P= 0, and so on. He states that a first integral of the

equation can also be obtained when the independent variable does

not occur explicitly in V\ because then if we consider a; as a

function ofy, this case is analogous to that in which JV=0. He
shews however that this integral may be found without changing
the independent variable in the following manner.

We have

dV=Mdx + Ndy + Pdy' + Qdy" + Edy'" + ...
;

here the first term Mdx by hypothesis vanishes
;
eliminate Ndy by

means of the equation

N-p'+Q"-R"'+...=o,
thus

dV- Pdy' + P'dy + Qdy" - Q "dy + Edy"
1 +R '"dy + ...

But the following are identically true :

Pdy' + P'dy = d.Py',

My'" + R'"dy = d (Ry'"
- Ry + & V)
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Thus

and therefore

F= C + Py' + Qy"
-

Q'y' + Ry'"
- R y"

where C is an arbitrary constant.

90. In his sixth section Poisson says that the problem of

the maximum or minimum of an integral may be decomposed into

two parts which may be considered separately. First we may con-

sider that #
, ?/ , y^, ... and x

lt ylt ?//,
... are given, and proceed to

find the value of?/ in terms of x and the given quantities which

makes Z7a maximum or minimum. The value of?/ is then to be

found from the differential equation

JV-P'+"-...=0,
and the arbitrary constants must be determined by means of the

given values of x
, y , ?/ ', ...x^y^ ?//, ... Substitute this value of

y and the consequent values of ?/', ?/", ... in F; then integrate Vdx
from x = x to x = x

1 ;
thus we shall obtain the maximum or mini-

mum value of Z7, with respect to the form of the function y, in

terms of x
, ?/ , ?/ ',

...x
l9 ylt ?//, We may then seek for the

values of these latter quantities which make U a maximum or

minimum.

If we are able to integrate the differential equation and also to

rx
l

obtain the value of I Vdx, then this second part of the problem
J *FQ

can be treated by the ordinary rules of the Differential Calculus.

Poisson then shews that by the application of these rules we obtain

the same conditions as are found by the Calculus of Variations

when the limits of integration are varied, and consequently those

terms are introduced which have been denoted by the symbol T in

Article 86.

[91. It is necessary to make some remarks on this suggestion
of Poisson's about dividing a problem in the Calculus of Variations

into two parts. Suppose we have a problem in the Calculus of

Variations, and that for example the differential equation

N-P'+ 0"-... = o
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is the differential equation to a circle. We then according to

Poiaaon's method take the equation to a circle which involves three

arbitrary constants, and substituting the value of y in terms of x

in I' we integrate I

'

Vdx ;
then by ordinary Differential Calculus

J *9

we investigate the values which must be given to the three arbi-

trary constants in order to make the last integral a maximum or

minimum. If suitable values cannot be determined we conclude

that a curve having the proposed maximum or minimum property

cannot be found. But even if suitable values can be found we

have no right to conclude that a circle does possess the proposed
maximum or minimum property; because we do not compare a

circle with any adjacent curve in the latter part of this method,
but only one circle with another circle. To determine whether a

circle does possess the proposed maximum or minimum property
we must proceed as in Article 5, or in some similar way. In fact

Poisson's method will be unobjectionable if we know a priori t^i
a curve having the required maximum or minimum property must
exist

;
but it will not be valid to prove that we have found such

a curve when we do not know a priori that the curve must exist.]

92. In his seventh section Poisson gives the usual extension
of his preceding results to the case in which F contains two de-

pendent variables y and z and their differential coefficients with

respect to the independent variable x.

We will give Poisson's result, because it explains the notation
which he continues to use in the next section. Let F denote a
function of a?, y, z and the differential coefficients of y and z with

Wfpecttoa?; also let

U= f*
1

Vdx,
J*o

then W- T +
J*' jtf

(fy _y^) + K(Sz _^J^
whew F denotes that part of the variation of U which is free from
the integral sign.

W. We now proceed to Poisson's eighth section.
In a certain case a relation exists between the quantities H and

icn may be obtained in the following manner.
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The case is that in which the variabk x does not occur ex-

plicitly
in F, and when we have moreover

F= Wz';

W being a given function of y and z which contains likewise

-

dy dz

dz' ~dT

that is, the quantities
/ II I II

-yz
'3 >

y_
z y -y*

z"
'

z

which we will denote by t', t", .... We shall have then

Z7= [*
l

Wz'dx = I*
1

Wdz.
J*o J *Q

Now by means of the last expression for U, we may exhibit the

variation of U by the formula (3) of Art. 86, putting z and W in

place ofx and F, and t', t", ... in place of y, y", ... The second term

of &U will therefore be of the form

0(ty -**'&*)&

or, which is the same thing,

i:
G being a factor which is independent of By and Bz. In order that

this may coincide with the second term of the value of BU in the

preceding article we must have

H(By-y'Sx) + K(Bz- z'Bx)
= G (z'By-y'Sz).

This equation resolves itself into

H=Gz'
9
K= -Gy', Zry + AV = 0;

these results we obtain by equating the coefficients of Bx, &y, Bz.

The third of these results may also be obtained by eliminating G
between the other two, and it expresses the relation between H
and K which was to be obtained.
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[94. The preceding
article is clear ;

in what follows there may

be tome difficulty.
Poisson proceeds thus. In the general case

where Pi* any function of x, y, /, y", ...*,*' *", ... let us suppose

x an implicit
function of another independent variable u, and let

OB replace
therefore y, y", ...', ", ...by

y' x'y"-y'x" z_

& '~~x*~ "a?"

and r<r by Vx'du. Let us denote relatively to x, x
1

, x", ... by X
the quantity analogous to H and jfif,

then we shall find that these

quantities are connected by the identity

Reciprocally when a given function of x, x', x", ...y, y', y", .

*, *', ", ... satisfies this equation it will be reducible to the form

so that without changing its value we can put 05'=!, aj"=0, ...
,

and regard y and z in the given function as functions of x.

It may be remarked here in the first place, that the last

sentence, reciprocally when &c. is all that is new. Lagrange had

given the other part repeatedly ;
he appears to have thought it very

important. See Miscel. Taur. Vol. II. page 183, and Vol. iv.

page 177
;
also Leqons sur le Galcul des Functions, page 412, and

page 456. Lacroix also gave the theorem Cole. Diff. et Int. Vol. n.

page 763. In the next place, there is a little difficulty as to

Poisson's notation, so that it is necessary to examine the point
in detail. Let V denote a function of #, y, z, and the differential

coefficients ofy and z with respect to x. Transform these differential

coefficients into differential coefficients with respect to a new inde-

pendent variable w, so that Fmay be transformed into a function of

*, y, * and the differential coefficients of these variables with respect
to u

; we will denote the transformed function by v. Then put

We have now two modes of expressing 8Z7; we shall confine our-

aelvet to the unintegrated part. This may be written thus
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or thus

Here Y and Z are obtained in the ordinary way from F; and
r/'Y*

A, B, C are obtained in a similar way from v -r- .

ctu

By comparing the two results, remembering that the integration

in the first is with respect to #, and in the second with respect to u
y

we obtain

Y^ = B, Z~=C,du du

dy 7dz\dx_-7 r z/ -7 j M.
tdx dx) du

. dx T-tdy ~dzA^ + B-f + C-j- =0.
du du du

The last result will also follow from the first three by eliminat-

ing Y and Z.

The last result must be what Poisson denotes by

his notation is objectionable however, because he had previously
used H and K for what we denote by Y and Z.

Next let us consider the reciprocal theorem which Poisson

enunciates. Let
<f>

denote any function of x, x, x", ... y, y ', y", . . .

z, z'. } z"j . . . which satisfies the condition

Ax' + By' + Cz = 0.

Transform the independent variable from u to x and let ^ -y- beT du

what $ becomes
;
the assertion then is that

i/r
will be free from u,

that is, T|T will not contain -=-
, -=-5 ,

... To prove this we observe
ax ax

that if
i/r

did contain such terms we should have, considering only

the unintegrated part of the variation, a result of this form

dy ~ dz ^
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But again taking the unintegrated part of the variation

B - * + c * - *

Now by supposition l+dx =j^ -^du= JQdu,
and therefore

the variations of the two expressions must coincide. But $u dis-

appears from &f<l>du, because by supposition

A % + f +C^=0du du du

Hence 5w must disappear from Sfydx; and thus the terms

i jt
tt

!r
cannot occur

This proves Poisson's statement, but there appears an exception

to it which he has not noticed. The terms -7- , -y-g ,... might occur

in ^ provided they occurred in such a manner that /=
;

for then

5w would disappear from

95. In his ninth section Poisson alludes to the case where V is

a function of #, y, 2 and the differential coefficients of y and z with

respect to x
;
these functions and differential coefficients being con-

nected by an equation L = Q. He gives the ordinary method of

treatment by means of an arbitrary multiplier. He has here a slight

mistake, for he says, "having regard to the equation dV=0, &c."

Now there is no such relation as dV= 0; thus the expressions for

S V which follow are incorrect because the term -y- Sx is omitted,
dx

where
-^

means the complete differential coefficient of Fwith re-

pect to a:; (see Poisson's second section). The final expression
for &U is however correct.

96. Poisson's next three sections are devoted to the subject of
the conditions of

integrability of functions; it will be sufficient

to state what Poisson proves. Let V be a function of

't y", ... which satisfies identically the relation
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then V is integrable per se. This Poisson proves by exhibiting

the interal under the form

jVdx=JF(x, 0, 0, 0, ...) fa+j

here F(x, 0, 0, 0, ...) denotes what F becomes when in it we

put y, y', y", ... all zero, and % (u) is a complicated function of

u, x, y, y', y", ... The integration in I %(u)du is to be made
^0

on the supposition that every thing is constant except u. Next

Poisson supposes F a function of x, y, y', y'',
... z, z'

} z", . . . Let the

equation

be denoted by //= 0, and let a similar equation with respect to z

be denoted by K=Q; then Poisson proves that if^T=0 be iden-

tically true, and K be true when y whatever z may be, then

jVdx can be expressed in a form analogous to that just given.

Two forms can be given to the result according to the order in which

we consider y and z. By comparing .these two forms Poisson

obtains an equation which must hold
;
also he infers that if one

of the two equations H=0, K= 0, be identically true and the other

true when one of the variables is zero for all values of the other

variable, then both equations are identically true. These two re-

sults are verified in an example.

97. Poisson's next three sections contain some remarks on

the questions in which one expression is to have a maximum or

minimum value while another is to have a constant value, those

questions in fact from which the name of isoperimetrical problems
was obtained and applied to the problems of the Calculus of Vari-

ations
;
Poisson compares the different considerations which have

been used in the solution of such problems.

98. In his sixteenth and seventeenth sections Poisson adverts

to the problem in which a closed curve is to be found which

possesses some maximum or minimum property. If we suppose
that the function F does not contain the limiting values of x, y or

the differential coefficients of ?/, then the term T of the fundamental

52



,^ POISSON.

formula (Art 86) will be of the form -
,
where and are

the rakes which a certain function assumes at the two limits.

Now when the problem refers to a plane curve we can use the

polar co-ordinates r and 0, and if the curve is closed we can put

the origin within the figure ;
then the limiting values of 9 may be

denoted by and 2?r. Thus if the angle 6 is only involved through

the trigonometricalfunctions,
as these functions have" the same value

for the values and 2?r of the angle we obtain =
,.

Therefore F
vanishes. And the same result follows for a curve of double cur-

vature.

Thus in questions relating to closed curves the equations which

depend on the limits of the integral disappear and the arbitrary

constants introduced by the integration remain indeterminate.

99. For example ; required to determine a plane closed curve

of given perimeter which shall include a maximum area.

Let I denote the given perimeter ; then with the usual notation

The integral which is to be a relative maximum, is

Let a denote an undetermined constant
; put

then U is the integral which is to be an absolute maximum.

The quantities *, y, y
'

Of the fundamental formula are now
ty 6> r, r'

respectively; thus
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The other quantities Q, R, ... (Art. 86) are zero, and the funda-

mental equation becomes

Thus dV=Ndr

Integrate and denote the arbitrary constant by c
;
thus

F=Pr' + c.

Substitute in this equation the values of V and P, and solve it

d6
with respect to -y- ;

thus

dr~ r

This may be integrated as follows

e

r (+ 2cN
\ j

I 1 r]dr 7

- / .

^ r J
(

dz

I /A 2
, / ,

2cV JV4a2 +8c-z2 '

./ A / 4a2 + 8c - r -f

Therefore

where A is a constant. Hence

r + = V4a2 + 8c sin (0 + A).

We may write the equation

r
2

2r Va2 + 2c sin (0 -f .4) + 2c = 0.

This is the equation to a circle of which the radius is a
;
thus

a is determined since the perimeter of the curve is given. The con-

stants A and c are indeterminate
;

it is obvious that they depend
on the position of the circle and have no influence on its area or

perimeter.

If the curve instead of being closed were required to pass

through two fixed points and the arc between those points were

of a given length, then the three constants would all be determined.
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f0f we should have two equations arising from the fact of the circle

muring through the two given points and one arising from the

given length.

[The mode of integration in the above solution is more simple

than that used by Poisson.]

100. We now arrive at the second part of Poisson's memoir

which is entitled Variations of integrals relative to two independent

Yariables, and determination of their maxima and minima. This

forms by far the most important portion of the memoir
;

it extends

from page 286 to the end.

101. In the eighteenth section Poisson explains the notation to

be used. The variables are denoted by x and y. Suppose K any
function of x and y and of other quantities which depend on them

;

then K' denotes the differential coefficient ofK with respect to x
and to every thing which depends on x

;
and K

t
denotes the differ-

ential coefficient of K with respect to y and to every thing which

depends on y. And so generally accents above indicate differen-

tiation with respect to x, and accents below indicate differentiation

with respect to y. Thus

dK '

and so on.

The limits known or unknown of a double integral,

ffKdxdy,
will not be indicated. If this double integral extends over a zone
of a surface comprised between two closed curves which will gene-
rally be curves of double curvature, then x, y, z may denote the

co-ordinates of any point of the surface, and the limits of the inte-

gration will depend upon the projections on the plane of (x, y) of

*6ie
.

CO
!

TCi' * rclcr to indicate wnat a quantity becomes at the
fiwt limit we ahull enclose it in parentheses, arid to indicate what it

'ii. 1 uv J, ; ,ll enclose it in square brackets. Thus
of the following simple integrals,

[/].
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the first two belong to the interior curve and are to be taken

throughout its entire length, and the last two belong to the exterior

curve and are to be taken throughout its entire length. The

equations to these curves we will denote for the present by A =
0,

[Poisson however does not keep to the meaning of the symbols
which he gives here

;
hereafter he really uses the square brackets

for points on the upper portion of a curve and the parentheses for

points on the lower portion of that curve.]

If we replace x and y by functions of two other independent
variables u and 0, then z will also become a function of u and v.

Substitute these values of x and y in the equations to the limiting

:urves A = and B =
;
we thus obtain two equations (7=0 and

J} = o, which determine the limits of the integration relative to u

and v. Conversely the equation to the surface will be obtained by
eliminating u and v between the values of x, y, z and the

equations A =
0, B = 0, of the limiting curves in terms of x and y

will be found by eliminating u and v between the values of x
and y, and the equations (7=0 and D=Q.

Now let us denote by Bx, By, Bz arbitrary indefinitely small

functions of u and v
;
and suppose that x, y, z become respectively

x + Bx, y + By, z + Bz. Then the equation to the new surface will

be found by eliminating u and v between the values of x + Bx,

y + By, z + Bz
;
so that its form will differ in an infinitesimal but

perfectly arbitrary manner from the form of the original surface.

At the same time if the equations (7=0 and D = Q have not been

changed, the equations to the new limiting curves will result from

the elimination of u and v between the values of x + Bx and y + By,

and these equations (7=0 and D = 0. Hence these curves will

differ in an infinitesimal but perfectly arbitrary manner from the

primitive limiting curves which were given by A = Q and.Z?=0.

Thus by varying x, y, z without varying the limits relative to u

and v, the zone of surface over which the double integral extends

undergoes an arbitrary variation both in its form and its boundaries.

102. In his nineteenth section Poisson gives some important

formulae in variations. Suppose z a function of x and y, and let



POISSOK.

r be ft given function of ar, y, *, *', 2", *,',
*u ,

'

Denote the

complete differential of Fthus

</P Ldx + Mdy + Ndz + Pdz + Qdzt

00 that L M N, P, are tne partial differential coefficients of F

with respect
to x, y, 2, 2', ... The complete variation 8F of F may

be obtained from dV by changing d into 8; and if we regard

&r, Sy, &r as functions of x and y which are arbitrary and indepen-

f each other, we shall have to form the corresponding ex-

pressions
for &', &z

t , Sz", &/, ...

Consider x and y and consequently z as implicit functions of

two other independent variables u and v. Differentiate z with re-

spect to u and t> ;
thus

dz__ ,dx. dy^

du du ' du

dz ,dx dy
~7~ == Z ^ r Z. ~T~
dv dv ' dv

From these we obtain

, 1 /dz dy dz dy\

f \du dv dv du)
'

_ 1 /dz dx dz dx\
'

f \dv du du dv)
'

whew f = dxdy_dxdy
du dv dv du

Now if we represent by &e, Sy, Bz three arbitrary and indefinitely
small functions of u and v, we may suppose without varying u and v

that x, y, * become simultaneously x + &c, y + Sy, 2 + Sz. If we
differentiate relatively to the characteristic S the preceding value

of
'

and make use of the value of z we obtain

-~ --
v du du dv )

dy d&x dy dSx\
- .. **

__ 1

dv du du dv /

4^
/u dv I

'
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But we may also consider u and v and consequently Sx, &/, Sz

I as functions of x and y ;
then we have

dSx d$x dx d8x dy
du dx du dy du'

dSx _ dSx dx dSx dy
dv dx dv dy dv

'

dSy _ dSy dx dSy dy
du dx du dy du 1

d$y dSy dx dSy dy
dv dx dv dy dv

'

dSz dSz dx d$z dii_ __ _ I _ t7

du dx du dy du'

dbz _ d$z dx dSz dy
dv dx dv dy dv

'

From these we obtain

dy d$x dy dSx

dv du du dv
~

dx

dy dSy ^ dy d&y _ ^ d&y
dv du du dv

~
dx

dy dSz ^ dy dSz
__ ^dSz

dv du du dv
~

dx
'

By means of these values that of Bz' becomes

^

For shortness put

^ , ,

dx
J

dx ' dx

82 z'Sx zfiy (o,

thus

Bz' = z"Bx 4- z'
t fy + CD'.

In the same manner it may be shewn that

Sz
t

= z
t
'Sx + z

tfiy + G)
/

.

These simple expressions for $z' and Sz
t are, as we see, inde-

pendent of any particular relation which may be established between

x and y and the auxiliary variables u and v.
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We can easily deduce expressions
for oV', $z', &, ...

For since ^ = '

and^ =
,,
we have by putting its value

for

(1)

These equations hold for any function z of x and y, so that we

may substitute successively z, z
t , z", ... in place of z. Put z in

place of z in the first of equations (1), thus

But by differentiating the same equation with respect to x, we

obtain

thus

Similarly if we put z
t
in place of z in the second of equations

(1), we shall obtain

Sz
it
-z

tl
'Sx-z

ltlSy=a) tl
.

Again, put z' in place of z in the second of equations (1) ;
thus

&; - *;s* - *,;sy
= *(*'- "&-.')

.

ay

By differentiating the first of equations (1) with respect to y,

we obtain

_ ^

dy
~
dxdy

'

therefore

K-/'fc-*ty-<r
It la easy to see that by continuing this process we shall obtain

for all values of the indices m and n
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This result Poisson says he had arrived at on a former occasion

and had used in explaining a difficulty in the Mecanique Analytique.

Src Bulletin de la Societ6 Philomatique anne*e 1816, page 82.

[These formulas supply the corrections of the errors indicated in

Arts. 3941.]
By means of the general formula proved above the variation

of V takes the form

Pz'
t
+ Qz tl

+ Rz," + Sz
t; + Tz

in + . .
.) fy

+ Na> + Pa>' + Qco i
+ Ret" + S(o' + Tu>u + ...

or, which is the same thing,

BF= F'&c + Vfy + Na> + Pay' + Qa> t

+ Rco"+Sa>; + Tto
lt
+ ................... (2).

103. The twentieth section contains some reductions of the

variation of a double integral. Consider the definite integral

17= ffVdxdy.

By the known rules for the transformation of double integrals,

if we consider x and y as functions of two other variables u and v
9

we must put

j fj !^x dy &x <ty\ j 7
"

\du dv dv duj
so that we have

TT [frrfdx dy dx dy\ ,
7U= ll.Ff j- -T--J- -~ \dudv.

JJ \du dv dv duj

Now put x + Sx, y + By, z + &z in place of x, y> z under the in-

tegral sign. From what was said above it will be sufficient that

&e, y,
$z should be arbitrary functions of u and v, and it will not

be necessary to vary the limits relative to u and v in order that the

integral U may vary in the most general manner both with re-

spect to the limits relative to x and y, and with respect to the form

of the function z. The complete variation of Z/will then be

u dv dv du

rr/dx <%__^^% +^ ^:_^ <R&\

JJ \du dv dv du dv du du dv )
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But by the formula of the preceding article we have

_ _ fy <kc dy\d%y
3t* ~3v

~
dv ~du

~~

\du dv dv du) dy
'

dg d$x __
fdx dy _ dx dy\

~du ~~Hu dv
~

\du dv dv du)

Hence

dx dy dx d

that is, by restoring the variables x and y

|

In this formula the limits are the same as those of U. Now
substitute the value of 8V given by equation (2), and observe that

V'Sx+V
dx dx

~dy~ dy
'

thus

....... (3).

By the method of integration by parts we, may remove the
lerential coefficients of o> from under the double integral sign.

For

[/<?<*,]
-

(j
Qa>dx

) -jJQ,
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By two successive integrations we have

By integrating first with
(respect

to y and then with respect to x

we obtain

= \
I
Su'dx] -

fj
Su'

by performing the integrations in the reverse order, we obtain

jJ8jdx dy = ljS<ot dy\
-

(jSco,
dy\

['jff*
dx\ + (

jS'a>
dx\ +

jjst
'a) dx dy.

For the sake of symmetry we may use the half sum of these

equivalent expressions, that is

1
(f

flf.

The subsequent terms in the last part of the formula (3) may
be transformed in a similar manner. Thus the expression for

will become finally

(4),
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where for shortness,

-
lR'<dy-\\8pdy

-
^jS'^dx-JT^dx-}-

. . .1

The two expressions which have been found for llSw'dxdy

must be identically equal ;
hence we have

This may be written

This will be verified presently (see Art. 106). We may ob-

here that 8vf + S'w is the partial differential coefficient of So>

with respect to x before substituting the value of y obtained from

one of the limiting equations. But the value of (o>'+#'o>) dx

after we substitute for y its value is no longer a complete differential

with respect to x and thus cannot be integrated immediately.
Similar remarks apply to the term

(/S&>, + S
t a>) dy.

[ThU remark guards against the error indicated in Art. 27.]
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104. The twenty-first section. For U to be a maximum or

minimum we must have 8 7=0. The double integral included in

equation (4) cannot be reduced to simple integrals because co is an

arbitrary function of x and y ;
it will therefore be necessary that

the two parts of this formula should separately vanish. Thus we
obtain

for the equations which must be satisfied in order that the double

integral which we are considering should have a maximum or

minimum value. The second equation will serve to find z in terms

of x and y ;
this equation will be in general a partial differential

equation of the order 2n if V be of the order n. The first equation
will decompose into others the number and nature of which in the

different cases which may occur we will investigate in the sub-

sequent articles. This is the most delicate part of the question.

The preceding analysis may be extended without difficulty to

triple and quadruple integrals, &c. In the case of a triple integral,

for example, we shall obtain for the variation an expression

analogous to that in equation (4) ;
this expression will consist of a

triple integral, and of another part containing only double integrals

which relate to the limits of the triple integral we are considering.

We might also suppose that the quantity under the triple integral

sign involves unknown functions of the independent variables, and

that these functions are independent, or that they are connected by

given partial differential equations. We shall not stop to consider

these questions, since they present no new difficulties and no useful

applications.

The determination of the relative maxima or minima of mul-

tiple integrals can be reduced to the determination of absolute

maxima or minima by the method of the thirteenth section, which

is obviously applicable whatever may be the number of the inde-

pendent variables. Thus, for example, if the first of the double

integrals

jjvdxdy, jJTdxdy, fjwdxdy,...

is to be a maximum or minimum, and at the same time the others
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are to have*giyen values, the problem amounts to investigating the

absolute maximum or minimum value of

ff(V+aT+bW+&c.)dxdy,

where a 5, ... are unknown constants which must be determined

by means of the given values of the integrals. We suppose here

that these integrals and the first integral are all" taken between

the same limits.

105. The twenty-second section. [The results from this

point to the end of the memoir were not known before the

publication of the memoir.] Let us now examine the equations

n-lative to the limits of U which are necessary for the maximum or

minimum of this double integral, and which must be deduced from

the condition F = 0.

In order to render the reasoning easier to follow, we will sup-

pose that x, y, z are the rectangular co-ordinates of any point of the

surface determined by H=0, and that the integral U corresponds

to a zone of this surface comprised between two closed curves

which will be given or which will have to be determined. Let

ABC be the projection of the exterior curve upon the plane of

(a?, y), and DEF that of the interior curve upon the same plane

(see fig. 2). The integral relative to x and y which &U represents will

extend to all the elements dx dy of the plane area intercepted be-

tween these two curves. It may however also be considered to

represent the excess of a double integral extended to all the ele-

ments of area enclosed by the curve ABC over the same double

integral extended to all the elements of area enclosed by the curve

/'A'/-'. Now BU reduces to F since by supposition J3"=0; and
rr u -T w where T (1)

denotes that part of BU which arises

from the area bounded by ABC and T (0) that which arises from
the area bounded by DEF. Since these two limits ABC and!
DEF are in general independent of each other, the equation T =
will decompose into two others, namely,

r (l)

=o, r (0) =o.

It will be sufficient to consider one of these
;
the other will be

of the same form and susceptible of the same transformations.
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We had in the twentieth section the equation

[It has been already intimated in a remark on Art. 101, that

Poisson does not use his symbols in the sense which he assigned to

them
;
the terms in square brackets refer to the upper portions of

a curve, and those in parentheses refer to the lower portions of the

same curve.]

If this double integral relates to the area ABC, the integration

relative to y which has been effected, is to be extended from one to

the other of the two ordinates PM and PM', which correspond to

the same abscissa x. We will suppose that it is extended from

;he smaller ordinate PM' to the greater PM ;
that is, we consider

he variable y to increase and so dy to be positive. As the element

)f area dxdy is essentially positive, it follows that dx must be

egarded as positive in the two simple integrals which are indicated.

The first will correspond to the part AMB of the curve ABC and

lie second to the part AM'B supposing that A and B are the two

>oints of the curve where the tangents are parallel to the axis of y.

et s denote the length of an arc of the curve ABC measured from

any fixed point of the curve up to the point M, and let I be the corn-

lete perimeter of the curve. Then we shall consider s to increase

rom s to s I,
and thus the differential ds to be positive.

et ft be the angle comprised between the exterior normal MN and

he produced part of the ordinate PM. Since dx is the projection

)f ds on the axis of x, we shall have

dx = cos ft ds ;

he upper or lower sign must be taken according as cos ft is positive

r negative. But the angle ft is acute in all the part AMB of the

urve ABC and obtuse in all the part AM'B', hence we shall have

dx = cos ftds throughout the extent of the integral
J
VSy dx ,

and

dx = cos ft ds throughout the extent of the integral ( I Vy dx\ .

lence we conclude that their difference will reduce to a single

ntegral relative to s which will extend throughout the whole

urve
;
that is, we shall have

6
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J
Vcos/BSyck.

Similarly we shall have

-
(fvBxdy\

=
J

Fcos a $x ds,

where a denotes the angle which the exterior normal MN makes

with the produced part of the abscissa of the point M. By similar

reasoning we may reduce to a single integral each of the differences

of two homologous integrals of which the expression T is composed

Thus the equation F
(1) = will be transformed into the following :

/:

-I-

1

Lftcosc
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where the parentheses denote that each partial differential coefficient

is taken with respect to one of the variables x or y before we sub-

stitute in So) the value of the other variable deduced from the

equation to the curve ABC. If we -differentiate with respect to x
after substituting the value of y, we have

d.So) fd.S(o\ fd.Sa)\dy
7

~ =
I 7 ) ~H 7 ~J~ Jax \ ax / \ ay J dx

d . Sco d . Sco dx d . So)
and since 7

=
, ,- = , cos 6,

as dx ds dx

it follows that

f
l

fd.Sco\ [
l

d.So>j [
l

/d.Sco\dy
I \j }co$l3ds=l j ds-l j }-f- cos fids.
J o V ax / J as J o \ dy ) dx

Now I

' ^
ds = Sco + constant

;

and since /Sew has the same value at the two limits s and s = I

which belong to the same point of the closed curve ABC, it follows

that

Jo ds

Hence the equation reduces to

By help of this result we see that the equation which we are

to verify may be written thus,

[

J

dy
:r-dx

But if a and Z> denote the angles which the tangent at any

point M of the curve ABC makes with the axes of x and #, we can

take in this equation where the differentials dx and dy may be

positive or negative,

dx cos a ds, dy = cos b ds.

6-2
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Thus the equation is transformed into the following :

this result IB obviously true since the factor cos a cos a + cos ft cos b

is the cosine of the angle comprised between the tangent and the

normal at the same point
M of the curve ABC, and is therefore

equal to zero. It is evident this verification applies in the same

way to the part of equation (5) which belongs to the interior

curve*

107. In his twenty-fourth section Poisson effects some trans-

formations of the equation (6) of Art. 105. The applications of the

preceding formulae to geometry and mechanics relate to problems

where the function V depends on the inclination of tangent planes

and on the magnitude of radii of curvature. In order then to avoid

useless complication, we will suppose that the highest differential

coefficient contained in Fis of the second order. In this case the

equation H involves partial differential coefficients of the fourth

order, and the first member of equation (6) is reduced to its first

four terms. But in order to be able to deduce from this equation

(6) the conditions relative to the second limit of Z7, it is necessary
to transform its third and fourth terms, and to reduce the three

variations o>, &>', and a>
i
to two only.

All the terms of equation (6) are integrals relative to the arc s

of the curve ABC, where s is the independent variable and ds is

constant and positive. Under the integral sign z is regarded as a

function of x and y, which is obtained from the equation to the re-

quired surface, that is, from the complete integral of the equation
// 0. The variables x and y are implicitly supposed to be functions

of* determined by the equation, known or unknown, of the curve
ABC. Thus by differentiating o> with respect to s, we have

tl<*>
, dx

, dy^ =w ^ +(a
-^'

hence since dx* + dip = <&*, we may write

9 dx dm -Ay dy da> -dx
sz-'s- "-+**.

where $ is an indeterminate variation.
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The differentials dx and dy are as in the preceding article

capable of changing sign in the course of the integration, that is,

as we proceed from point to point of the curve ABC. Since the

angles a and ft relate to the exterior part of the normal MN it is

easy to see that we shall have at any point M,

dy Q dx
cos a = &-, cos p = -y- .

ds ds

Substitute these values and those of to' and eo
/
in equation (6),

and it becomes

[By some accident Poisson himself omits the last line; the

error is noticed by Bjb'rling. In consequence of this omission two

of Poisson' s subsequent formulae in this section are incorrect ;
the

necessary alterations have accordingly been made.]

By integration by parts we have

r &,*,*.
J^ ' ds ds ds

dB dT\dxdy dxd'y + dyd'x-]
,'* 2)

' ~

for the terms outside the integral sign vanish since they are the

: difference of two values of the same quantity, one relating to the

limit 5 = 0, and the other to the limit s = l, that is to the same point
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of the doeed curve ABC. [Similar treatment may be applied to

the term which Poisson omits.] Moreover

> - ,,"* af^^'lC
1

<fc ds^ 'ds' ds ds

Let UB suppose for shortness that

dx dy

1
^,

da? 1 ~ dx dy __
~ dj _

'// '///

[The value of Z agrees with Poisson's
;
those ofX and Y differ

since Poisson omits the last three terms of each.]

Thus equation (6) finally becomes

s = .................... (7);

and this is the simplest form it can take.

108. The twenty-fifth section relates to the case in which

ome condition is given. In the problems to which this equation
can be applied, it will sometimes happen that the length of the

exterior curve to which it relates is to have a given value
;
or more

generally that one or more integrals taken throughout this length
aw to have given values. It will be sufficient to consider one of!

these integrals ; for similar remarks would apply to the others. Foil

greater rfmplieity we will suppose that the differential function

which occurs undn- the sign of integration is only of the first order.

At any point of the exterior curve then, let

fa . d
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let W denote a given function of #, y, , a?', #', and suppose that

<r being a given constant, and the integral extending throughout

this curve, so that it is the same thing as I

W-^-ds.
In order to

introduce this condition it will be sufficient according to the remark

in the thirteenth section to add to ZJthe integral fWdz multiplied

by an undetermined constant which we will denote by c. Thus

the first member of equation (7) is augmented by the term c&fWdz.

Now if we put

dW dW dW dW
= =

//,,
-= =

v, -j-j-
= m, -j-r n,dx dy dx dy

s this term has for its value

1 considering x and y as functions of z in the formula of the seventh

section (Art. 92) and observing that the part outside the integral

! sign vanishes because the curve which we are considering is a

closed curve.

Suppose that this curve is to lie on a surface which we will

p
denote by the differential equation

dz = pdx + qdy,
1 where p and

qr
are given functions of #, y and z. We shall see

;, presently (Art. 114) how the case of a curve unrestricted is com-

! prised in the present. The co-ordinates a?, y, z of any point in

this curve, and also the varied co-ordinates x + Sx, y + y, z + Bz

must satisfy the equation to the given surface
;
we may therefore

differentiate that equation relatively to the characteristic 8; thus

we shall have

as well as

dz pdx + qdy.

Hence So; - x'Sz = q
(

Sx -~
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If then, for abbreviation, we put

dm , dn __ ,

the term which is to be added to equation (7) becomes

Thus it has the same form as the first term of this equation ;

consequently in order to introduce the condition that the integral

/ Wdz is to have a constant value, we have only to change in

equation (7) Finto F+ c (kp hq). The constant c will have to

be determined in every case from the value cr of the integral

f Wdz.

109. The twenty-sixth section. Let us now observe the re-

sults which may be deduced from equation (7) thus modified if

necessary. Let us put

ds ^ ~~

d
^X =

u = Sz- z'Bx -

The point M of the curve AEG whose co-ordinates are x and y
being transferred to the position indicated by the co-ordinates x + Sx
and y + fy, we see by the value of e that this variation denotes the

displacement of M projected on the normal MN. The cosines of
the angles which the normal to the required surface at the

point (a?, y, z) makes with the co-ordinate axes are respectively

FbM the variation
<f>

is the projection on this normal of the

UtpUcement of this point (x, y, z) when its co-ordinates become
k, Jf +% and + fte; and in equation (7) this displacement

a any point of the exterior curve. As to the third arbi-
ion contained in equation (7), namely (9, this depends

the change of inclination exprni-m-ed by the tangent plane to
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the required surface at any point of the exterior curve. [In fact

we have from the equations in which 6 first occurred

dx ,dy= CD
-^
-- &) -f- ;' ds ds

and if we insert the values of
G>,

and G>' from Art. 102 we have

=
(Sz,

-z> -
*J&y)J -

(&'
- z"Zx - Z,%) J .

Thus 9 involves Sz
t
and Sz and is thus connected with the

change of inclination of the tangent plane.]

Now if the second limit of U is not restrained by any given

condition, the three variations e, </>,
6 will be completely arbitrary

and independent ;
hence in order that equation (7) may subsist it

will be necessary that the coefficients of these variations under the

integral sign should be separately zero. Thus we shall obtain

three equations,

F=' r -

When the second limit of U has to satisfy some given con-

ditions the three variations e, (/>,
are no longer independent ; then

the equations (8) or at least one or two of them will not hold and

must be replaced by others. The following are the principal cases

which may arise. [Five cases are considered which will occupy the

following five articles, extending to the end of Poisson's twenty-
sixth section.]

110. Suppose that the exterior curve is fixed and given, and

let us represent its two equations by

/(or, y, z) =0, F(x, y, z) =0 .................. (9).

From the signification of e and
<f>

it follows that these quantities

now vanish
;
thus the first two terms of equation (7) disappear.

The first two equations of (8) will now no longer be necessary and

they will be replaced by the equations (9).

Let us further suppose that the required surface is to touch

throughout the perimeter of the exterior curve a fixed and given

surface, as for example the surface which has for its equation
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F(x, y, *) *0, and the differential equation of which we will repre-

sent by

It will be necessary on account of this contact that

p = z', q = z,

for every point of the exterior curve. These however are not

hoc new independent equations ;
for since the curve is already the

intersection of the required surface and the given surface, the dif-

ferential dz taken along its direction has the same value whether

it be obtained from the equation to the first surface or from the

equation to the second surface; thus we have already the rela-

tion

pdx + qdy zdx + z
tdy ;

and by means of this relation one of the equationsp = z' and q = z
j

is a consequence of the other.

On the other hand the variation < and consequently o> will

be zero, not only for all the points of the exterior curve, but also

for all those of an indefinitely narrow zone of which this curve forms

part ;
we may therefore differentiate the equation a = along the

direction of this curve and along any other direction
;
thus we shall

have throughout the whole perimeter of the curve

thus the quantity 6 which occurs in 'the twenty-fourth section

vanishes, and the third term of equation (7) vanishes.

Thus in this first case the three variations e, </>,
6 being zero,

the equation (7) vanishes
; the equations (8) which were deduced

from (7) do not hold, and they must be replaced by the equations
>) which will be given in each particular problem, and by one of

the equations p = z, q = z
t

.

111. Suppose that the exterior curve is fixed and given, so that
-0 and w = 0, and suppose that the second limit of U is not
atrmined by any other condition. The equation o> = can now be
iflcrentiated only along the direction of the given curve

;
we
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da>
, ndy ..dx

- =0, ft) = - ^ ,
ft> = _

;

ds ds ds

the factor 6 remains indeterminate, and we must have Z= in order

to satisfy equation (7) which now consists of only its third term.

In this second case the third of the equations (8) holds, and the

other two are replaced, as in the first case, by the two given equa-
tions of the exterior curve.

112. If this curve is not fixed but only constrained to lie on a

given surface which is determined by the equation

F(x,y,z)=0 ........................... (10),

then the co-ordinates a?, y, z and also x + Sx, y + Sy, z 4- Sz must

satisfy this equation. We may therefore differentiate with respect

to the characteristic 8
;
thus if we represent the ordinary differential

equation by
dz pdx + qdy,

we shall also have simultaneously

Hence the variation will be given by the equation

Suppose moreover that the required surface is to touch the given
surface throughout the perimeter of the exterior curve. We shall

have the two relations p z and q = z
t ,

one of which is a conse-

quence of the other, as we have shewn in the first case. These

relations will make co vanish for all points in an indefinitely nar-

row zone comprising the exterior curve
;
hence as in the first case

we conclude that = 0. Since the variations &) and 6 are zero the

equation (7) is reduced to its first term
;
and in order that it may

hold whatever may be the value of the indeterminate variation e we
must have F=

;
or rather

if we suppose, as before, that the value of a certain integral fWdz
is given.

Thus in this third case the equations (8) are replaced by the equa-
tions (10) and (11) together with one of the two relations p - z

and n-z.
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113 Suppose that the exterior curve is still constrained to lie

on the surface determined by equation (10), but that the tangent

iflpm to the required surface is not subject to any restriction

throughout the perimeter of the exterior curve ;
the expression for

given in the preceding
case will still hold, but there will be no

resulting limitation for the quantity 6, which will remain altogether

arbitrary and independent of 8x and By ;
the coefficient of 9 in

equation (7), that is Z, must therefore be zero. Substitute the

expression for to in this equation and it will become

But as the two variations &x and By are arbitrary and inde-

pendent their coefficients must be separately zero
;

if we add then

to V the part which arises from supposing the integral jWdz to

have a given value we shall obtain

But one of these equations is a consequence of the other ; for if

we multiply them crosswise and suppress the factor common to the

two products we obtain

(p-z')dx=(z l -q)dy;
and this equation, as we have seen in the first case, follows from

the fact that the required surface and the given surface intersect in

the exterior curve which we are considering. These equations may
be written in the following manner

Y(p z')dx=z[X(p z') + V+ c (kp qh)~\ dy,

multiply these equations and reduce, thus we obtain
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Tims in this fourth case the third of equations (8) holds, and

the two others will be replaced by equation (12) together with that

of the given surface of which the differential equation is represented

by dz =pdx + qdy.

114. Lastly, suppose that the tangent plane to the required

surface may vary arbitrarily throughout the perimeter of the ex-

terior curve, and that this curve is not constrained to remain upon
a given surface. The equation Z will still hold. We may write

equation (12) in the form

7+ c (fa*
._ kz

t ) + (X+ck) (p -*') + (
Y- ch] (q

-
*,)
=

;

multiply by dx, and put (zt q) dy for (p z') dx ;
thus we

tiave

[V+ c (kz
-

hzfi dx + [ Ydx - Xdy - c (Jidx + My}] (q
-

z)
= 0.

But the quantity q is altogether arbitrary, since now the surface

which had for its differential equation dz =pdx + gdy is not given ;

the preceding equation must therefore separate into two, and con-

necting them with Z= we shall have for the three equations be-

.onging to this fifth and last case

(13).

These equations coincide, as they should do, with the equations

(8) ,
when we put c =

;
this amounts to suppressing the condition

relative to a given value of the integral jWdz ;
so that now there is

no longer any given condition by which the second limit of U is

restricted.

115. The twenty-seventh section. The reasoning already

given applies equally to the first limit of Z7; and by the details

which have just been given we see that the conditions of a maxi-
mum or minimum of this double integral consist in this, that for

each limit the required surface must satisfy simultaneously three

known equations which will either be directly given, or which may
be formed for the different cases which can occur in the manner we
have explained. These two systems of three equations will serve
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for the determination of the four arbitrary functions involved in the

complete integral of the equation H= 0.

When the differential function F is only of the first order we

^ = (); ^=0) r=0 .

the partial
differential equation H= will not be of a higher order

than the second; we shall have

Z=P, Y=Q, Z=Q;

and the equations
of the preceding article will simplify and will

reduce to two for each limit of U.

If we wish to apply the formulas of the preceding article to the

case of a single integral, we must suppose that the quantity V is ai

function only of #, *, *', z"
;
hence we shall have

<2=0, =0, T=0.

It will be necessary at the same time that the zone of the

required surface to which the integral U will belong, should be

comprised between two planes parallel to that of (y, z). The

curve ABC will then reduce to two straight lines parallel to the

axis of y, the limits of two oval curves of which one dimension is

indefinitely increased ;
and as in the equations with which we are

concerned the differentials of x and y relate to this curve and the

differential ds is supposed constant, we must put

dx = Q, d*x = Q, dy = ds, d*y = 0.

The condition relative to the length will no longer hold, so

that we also must suppress the terms which thence arise, that is.

put c = 0. Under these circumstances the equations of the twenty-
sixth section will coincide in all cases with those which would

be derived from the fifth case (Art. 114), observing that the quan-
tities which were represented by y and Q in that section are now

represented by z and R, and that the function V being supposed oi

the second order, the quantities R, S, &c. of that section are zero,

This coincidence would supply, if that were needful, a confirmatior

of our analysis with respect to double integrals.

116. In his twenty-eighth section Poisson makes some remarks

on the mode in which the arbitrary functions arc to be determined
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in some problems. There arc particular problems in which the

curve which forms the inner boundary of the required surface accord-

ing to the hypothesis of the twenty-second section (Art. 105) does

not exist, and in which consequently the conditions relative to this

curve must be replaced by others, in order that the arbitrary func-

tions which are involved in the general integral of the equation

//= may not remain undetermined, and that these problems may
be completely solved.

This circumstance might occur, for example, in the question

where we have to find a surface of which the area should be a

minimum between certain limits. The equation H=Q is then a

partial differential equation of the second order, and its integral

involving two arbitrary functions is known in a finite form. Now
if the minimum area is to be a zone included between two given

curves, we see that these two curves through which the required

surface is to pass will theoretically serve to determine the two

arbitrary functions which occur in the equation to the surface, that

is, in the integral of the equation H 0, the only difficulty being
that which arises from the complicated form of this integral. We
see too that these two curves might be exchanged for other pairs

of conditions. But if we require that the minimum area should be

all that portion of the surface which is bounded by the exterior

curve, it seems then that the integral of the equation ff=0 will

have a greater degree of generality than the problem, and that the

given curve will not be sufficient for the determination of the two

arbitrary functions.

117. In order to remove this apparent indeterminateness, sup-

pose we exchange the rectangular co-ordinates x and y for polar co-

ordinates r and 6, where r is the radius vector and 6 the angle which

r makes with a fixed line drawn through the origin in the plane of

(x, y). Put the origin within the boundary formed by the projec-

tion DEF of the interior curve (Art. 105) when such curve exists.

Let r=f(0), * = (0),

be the two equations of this curve
;
and

r = F(ff),
= *(*),

those of the exterior curve of which ABC is the projection.
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For the zone of minimum area the values of r will extend from

r -f(ff) to r = F(0), and those of 6 from 6 = to 6 = 2ir, and the

arbitrary functions which occur in the integral of H=0 must be

determined BO that z should become <(0) and 3>(0) for r=f(0)

and r F(0) respectively.
Outside the zone, that is, for values

of r less than/(0) or greater than F(6) whatever 6 may be, the

ordinate e will be subject to no limitation and can become infinite.

Hut if the minimum area is to be all that portion of the surface

the projection
of which is bounded by the curve ABC, the values

ofr will extend fromr = to r = F(Q] for every value of 0, and

throughout this extent the ordinate z must be finite. We shall

therefore suppress in this case that portion of the integral of ff=0

which would become infinite when r =
;
and the integral thus

modified will be reduced to the degree of generality which the

problem has
;
so that the single condition that z should be equal

to 4>(0) when r is equal to F(ff) will suffice for completing the

solution of the problem.

Thus the solution of the question of the minimum area and of

similar questions, separates into two problems which are quite dis-

tinct so far as relates to the determination of the arbitrary functions.

I only here indicate this distinction which I will take up on

another occasion.

If the required surface is closed on all sides, so that for example
we have to find the surface of greatest area which incloses a given

volume, the conditions for this relative maximum will not furnish

any equation suitable for determining the two arbitrary functions

which the complete integral of the equation //= when applied
t. tliis problem will involve. It is by means of other considerations

that this integral must be reduced so as to contain only three

arbitrary constants, namely the three co-ordinates of the centre of

the sphere which solves the problem ;
the radius of the sphere will

be determined by means of the given volume. I propose to con-

sider this particular question in another memoir.

[It does not appear that Poisson ever returned to the two

problems which he proposed in the above section to consider at a
future period.]
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118. In the remaining three sections of the memoir Poisson

discusses an example. In an addition to the work entitled

Methodus inveniendi lineas.... Euler determines the figure of the

elastic lamina, properly so called, by means of a principle commu-
Cds

nicated to him by Daniel Bemouilli, namely, that the integral -5
9

taken throughout the length of the curve should be less than for

any other curve of the same length ;
ds being the differential

element of the sought curve and p its radius of curvature. In order

to give an example of the employment of the preceding formulae,

we will extend this principle by induction to the figure of equi-
librium of an elastic lamina which is curved in every direction and

the points of which are not acted on by any given force. Thus

denoting by p and f the two principal radii of curvature at any

point of this surface, or more generally the radii of curvature of

two normal sections at right angles, and by da the differential

element of the surface, we shall suppose that among all surfaces of

the same area the elastic surface is that which gives a minimum
ff/i i\

2

value to the integral 1 1 (" + 5)
^" [This is what Poisson says,

but he really takes the integral 1 1 (- +
^

\ dx dy ;
the two however

coincide to the order of approximation which he finally preserves.]

By the theory of the curvature of surfaces we know that the

sum - + -L has the same value for every pair of normal sections
P f

at right angles passing through the same point With the notation

already adopted, we have

|

_
P %

or, which is the same thing,



(JS
POISSON.

We have also

</<r = Vl

Let c denote an undetermined constant, and put

7= (u + vy + 2c Vl + z'
2

-fs,
2
;

then the question amounts to making the integral ffVdxdy an

absolute minimum. (See Art. 104.)

The quantity Not the nineteenth section (Art 102) will be zero,

and P, Q, R, 8, T, will have for values

It will be sufficient to substitute these values and their first

and second differential coefficients with respect to x and y in the

equation H=0 of the twenty-first section (Art. 104), in order to

obtain the indefinite equation to the elastic surface ;
this equation

will be a partial differential equation of the fourth order. We must

also substitute these same quantities in the equations of the twenty-
sixth section, in order to obtain the equations relative to the peri-

meter of the elastic surface in all the cases which can occur.

We will confine ourselves to writing these equations for the

case where the elastic surface differs but little from a plane figure

parallel to the plane of x and y ; and we shall neglect consequently
the terms in V of the fourth degree with respect to partial differ-

ential coefficients of z. Thus the values of P, Q, ... and therefore

the equations in question will be exact as far as quantities of the

third order.
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Thus we have, simply

^=(*
//+O 2

+2c+c(z'
2+z

/

2

)>

from which we obtain

N=0, P=2cs', Q = 2cz,, H=T-=2(z
ff+ z

/) J
#= 0;

thus the equation 11=0 will become

If we denote by f a new variable, we may replace this equation

by the following system of two equations of the second order :

"

"+= s r+t,=r .................... (a).

In consequence of these values of R, S, T, the quantity Z of the

twenty-fourth section (Art. 107) will be equal to 2f. In order to

fix our ideas, I will suppose that the limits of the elastic surface

in equilibrium are curves fixed and given, but that the tangent

plane to this surface is not restricted by any condition throughout
the perimeters of these curves; hence it will follow from the

second case of the twenty-sixth section (Art. Ill), that we must
combine with the two equations of each limiting curve the equation
Z=0 or =0, in order to form the two systems of simultaneous

equations, which with the given area of the elastic lamina will

serve to determine the constant c and the arbitrary functions con-

tained in the integrals of equations (a). The area of the lamina

cannot differ much from that of its projection on the plane of

x and y ;
denote the area of the projection by X, and that of the

lamina by X (1 + g) so that g is a very small positive fraction
;
we

shall have

X (1 +g] =JJVl
+" + , dxdy,

or to that order of approximation which we have adopted

119. We may give another form to the equations (a) and (b)

by changing the rectangular co-ordinates into polar co-ordinates.

Let r be the radius vector of the projection of any point of the

72
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surface upon the plane of x and y, and 6 the angle which this

radius makes with the axis of x, so that

x = r cos 0, y = r sin 0.

The ordinate will become a function of r and 0, and we shall

have

-^
= z' cos + s,

sin 0,

</s /

hence
, dz * dz sm0

6/2! * .
dz COS0

and as the element efcc eft/ will be replaced by r<?r c?0, the equation

(b) will become

If we put
'

in the place of z in the value of 2', we shall have

dz' ~ dz sin 6
z -j- cos 6 -jn

--
;

dr d6 r

by differentiating the value of z in succession with respect to r and 0,

we obtain

dz d*z n d*z sin^ dz sm0
T~ = TT C S V --5

--
1-

- -
5 ,dr dr* drdO r dO r
2

dg' d*z A d*z sin 6 dz . Q dz cos

ds'd^e -^ -r-Tr smd-de'
hence

rf' sin^ cos 6 d*zsni*0

dz sin
8 ^ ^ sin 6 cos
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We shall find in the same way that

d*z . d*z sin 6 cos <Pz cos
2 6

dz cos
2 dz sin 6 cos 6

ITr ~~T" TO
'

r*

The same transformations will apply to the differential coeffi-

cients ?" and ? ;
thus the equations (a) will be changed into the

following :

From the hypothesis of the preceding article and the supposition
that the exterior and interior curves which bound the required sur-

face are determined by the same equations as those in the twenty-

eighth section (Art. 117), it follows that the value of z which

we shall obtain by the integration of equations (d) must satisfy

simultaneously the three equations

z = 3>(<9), f=0 .................. (e)

relative to the exterior limit of the surface, and must satisfy simul-

taneously the three equations

r=/(0), z = 4>(0), ?=0 (/)

relative to the interior limit. In the most usual case this second

limit will not exist
; according to what has been explained above

we shall then replace the equations (f) by the condition that the

value of z, which corresponds to r 0, shall not become infinite ;

and the same must hold with respect to f, since we have supposed
in the preceding article that the partial differential coefficients of z,

and therefore f, are very small quantities through the whole extent

of surface which we are considering. In order that there may not

remain any doubt on this last case I will complete the investigation

on the simplest hypothesis, namely, supposing that the elastic

lamina is circular and that its figure of equilibrium is that of a

surface of revolution.
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120. If we take the axis of the surface for that of 2, the

quantities f and z will be independent of 6, and the equations (d)

will reduce to

Let a denote the given radius of the projection of the lamina

on the plane of the co-ordinates r and 6
;
we shall have X = Tra

2
.

[It does not appear why a is said to be given.] The double in-

tegral contained in equation (c) will extend from 6 and r =

to 6 = 27T and r = a, and this equation will become

7
=

4/3*,

where ft denotes the value of -7- when r = a, or in other words the
UT

inclination of the tangent plane of the lamina to the plane of pro-

jection at any point of the perimeter. When this inclination is

given we can immediately deduce the value of 1 +g, which is the

ratio of the area of the lamina to the area of its projection; and

reciprocally. [It is difficult to comprehend this equation g
the equation (c) is

/ ,7_\ 2 (*<x

Poisson seems to put this = TT f
j- J

I rdr, which is not justifiable.

However he only refers to this equation once again, see page 104.

Moreover if he takes ft as given he has no right to the equation

f0 at the limit; see the first case of the twenty-sixth section,

Art 110.] Wr
e may suppose that the plane of the co-ordinates

r and B is that of the boundary of the lamina
;
the equations (e)

will then be

r =
,

, = 0> ?=0 (h).

According to what I have found in another memoir (Journal
de VEcok Polytechnique 19* cahier, page 475) the complete integral
of the second equation (g) is

t- -*"
rfo> + 6 ^ 008 "

log (r sin
2

o>)
dco

;
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where a and b are two arbitrary constants, and e the base of the

Napierian logarithms. It is indeed easy to verify that this value
of f satisfies the second equation (g) ;

for we deduce immediately

!ft)

cos
2

o>log (r sin
2

ft)

r J

25 Vc

By integration by parts we have

5-2 [VrV?cos
cos wcfo = - c fV rVc

"
C08 w sin

2
coda) ;

"

^0 ^0

cos w log (r sin
2

w) Jo) = _ _ rcosa cos wcfo

- c fVfV3roo-" sin
2 w log (r sin

2

o) t?ft).

''O

Thus the preceding equation is reduced to

0+ 1^ = ac [V
rVrcosw da + IcTe-^^^ log (r sin

2

CD) da;

and this coincides with the second equation (c) by reason of the

ralue of f.

I put 5 = and suppress the second term of the value of f ;

)therwise f would become very large near the centre of the lamina

md infinite at the centre itself. We have then simply

or, which is the same thing,

*fa** dco
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By reason of the third equation (h) we shall have

and if we replace ca* by another constant T
2
, we shall have for

determining 7 the equation

I cos (7 cos w) do) = (t).
'o

The value of f will become

IT

r 77* cos &) ,

?= a I cos aft),
y a

where
|

is put instead of a. I substitute this value in the first

equation (g) ;
then integrating we have

W 7T

dz aa [* . Trcosft) da) ad? /"/_ 77' cos &A e&w (7

i-= sm-i - - 1-cos-i r- + -;
ar 7 J a cos &) <fr] Q \ a. J cos (0 r

C being the arbitrary constant. In order that
-j-

should not be-
dv

come very large for very small values of r, and infinite for r 0,

we must have (7= 0. For r = a we shall therefore have

ft = I sin (7 cos w) o- I [I cos (7 cos &))} ;

7 J
'
cos w 7

2
J

l n cos
2 w '

this equation will serve to determine the constant a, from the known

value of ft or v
7

^. Integrate again, and denote the arbitrary con-

stant by f; thus we shall have for the equation to the required
surface

IT

,
aa

*

r
*
{<f+ -r I
I -

T JQ \
COS

a /cos

ir

aaa
/* f [ /i vr cos aA dr~\ dco

111- cos-i- 5- .

7* J [_J\ a / r J cos
2 w

If we suppose that the integral with respect to r which is in-

dicated in the last term of this formula begins with r, the constant
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/will be the sagitta of tins surface, that is to say, the value of the

ordinate z corresponding to its centre, that is, to r = 0. From the

second equation (h) the value of/will be

d(o

cos
2
co

- aa? [
2 f f

a
/ . yr cos a>\ c^rl

/= ^J J i
1 " 008^ JT/'oL.o^ " J

TT

a
2

f
*
r, / N-I

2" [1 COS (7 COS 0))]
7 J n cos a?

We can replace by convergent series the definite integrals which

occur in these different formulae. In this manner the equation (i)

will become

where 27 has been put for 7. The values of 7
2 which can be de-

duced from this equation are known to be infinite in number, and

all real and positive ; the least of them is, very nearly,

7
2 = 1-46796491.

This number, which occurs in several problems, has been cal-

culated by M. Largeteau, secretary of the Bureau des longitudes.

[Poisson gives no reference with respect to the roots of the equation

just considered; the statements are proved in the memoir by
Fourier entitled Theorie du Mouvement de la Chaleur. Mem. de

VAcad. Tome IV. 1819, 1820, page 432.]

We shall have at the same time

7V 7V
47m

f 7V, 7V
4

*~
2

I
a*

"
t

"(1.2)
2
a
4

dz_irar< _ 7V ^_ 7V___<yV_ )

dr~ 4 | 2a'
+
3(1.2)V 4 (1 . 2 . 3)V

~*

"'I'

Tra^f 7V 7V 7V )

8 f 4aa

^9(1. 2)V 16(1.2.3)*a
8 ^

"J
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The equations on which the values of a and /depend will be

mwf, y 7
4

?
6_ +Tf "2 +

3(1.2) 4(1.2.3)'

A /-U! ?*
I

-

"Tl 7 +
9(1.2)' 16 (1.2. 3)*

+
'"I

'

this shews that cceteris paribus the sagitta / will be proportional

to the radius of the lamina a
;

if we take the smallest value of 7*

we shall have

/=- a/3 (1-60197).

For this value of 7* the ordinate z will have the same sign as f
throughout the lamina; and there will be no sinuosity in the

lamina; hence, disregarding the sign, z will decrease continually

from the centre to the perimeter ;
and thus it is that / has the

contrary sign to ft.

[We have to shew here that -y- cannot be zero for the smallest
dr

value of 7* except when r = 0. Let F(y) denote the left-hand

member of equation (k), so that

then rM-
Hence if -7- could vanish for a value of r between and a, weCLT

should have ^'(7) = for a value of 7* less than 1-46796491. But
this is impossible for

it

2 f*F (i)
= - cos (27 cos o>) da>

t

"fJo

F' (7)
= -- I sin (27 cos o>) cos G> da> ;nv

and *"(?) is certainly negative so long as 270030) is less than TT,

and is therefore negative if 7' lies between and 1-4679649.



POISSON. 107

We may add that the equation ^'(7) == will have real roots,

namely, a root between each consecutive pair of roots of ^(7) = ;

this will be useful to remember in reading Poisson's next

paragraph.]

If we substitute successively in the expression for z different

values of <f derived from equation (k) we shall obtain as many
different figures of equilibrium of the circular lamina. Their

number will be infinite like that of the figures of the ordinary

lamina which is curved in only one direction
;
and the number of

their sinuosities will augment more and more with the value of y
8

which is used. This number will be zero, as just stated, and there

will be no inflexion of the lamina, for the smallest value of 7*. In

all cases the inclination of the tangent plane will be zero at the

entre of the lamina: for from the value of z we have -j-
=

dr
when r = 0.

121. Here Poisson's memoir closes. The last eleven pages of

the memoir have been spent on a problem which is only a case of

single integral. It may be useful then to give a solution of the

)roblem in a simpler form than Poisson's.

Let Oz, Or be two axes at right angles and suppose a surface

brmed by the revolution of a curve round the axis of z. (See

igure 3.) The principal radii of curvature at any point of a sur-

ace of revolution are the radius of curvature of the generating
curve and the length of the normal at the point between the point

and the axis of revolution. Denote these by p^ and p2 ;
then

dz

I dr

">()}"
pr4+T

The expression which we have to make a minimum is
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If we adopt the approximation of Poisson, that is, if we rejec

terms of the fourth degree, we get

d*z 1 dz

Thus we may put

tfz 1 dz\* dz\ttfz ,

1 dz= J _ + - -T-

(\dr* r dr

where p = ~r', and we have to make / Vdr a minimum. By ordi-

nary rules then we have

*-

therefore e -$- a constant = (7 ',

NOW put 2!-- = V
; thus

c

eA? 1 Jv
-T- + - -- = CW.

II' nee assuming Poisson's integral of this differential equation
we get the value of v

; and thus finally

rooi -
log (r sin

a

G>) Jo> + (7,

where 4, .8, C are arbitrary constants.



POISSON. 109

The integrated part of 8 I Vdr is

We have now to determine the constants A, ,
C and c.

We may obviously give C any value we like, for this amounts

to pushing the surface along the axis of z without making any

change in the value of any element of fVdr. Suppose then

(7=0.

Now by hypothesis the area is given, that is, to our order

of approximation the value of the integral

extended over all admissible values of r is given. Let us

suppose with Poisson, that the boundary of the surface is a circle

of radius a ;
then

f
a

f 1 AM 2

)

2-7T I

}*
+ o IJL) r rĉ r a giyen finite quantity.

Now unless B = this integral will be infinite and therefore

cannot be equal to a given finite quantity. We must therefore

have SOj and then the fact of the area being given supplies

a condition for determining A in terms of c. We must examine

the integrated part of the variation. Since the limits of r are

fixed, namely and a, the variation Sr is zero at both limits.

Also r-~-\-p = Q when r =
;
thus to make the integrated part

vanish all that is necessary is that r ~- +p should vanish when

r = a. This, by reduction as in Poisson, leads to

/;

and shews that c must really be a negative quantity ;
from this

equation c must be found in terms of a.
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The results of this solution are thus the same as those of

PoiBSon's if we omit that statement of his that ^ is given at

the limit If were given at the limit the integrated part of

IfVdr would all vanish ;
and instead of the equation

/:

for determining c we should have

f
J.

e

where ft is the given value of -r- when r = a. The constant a

in Poisson's solution ought to be found from the circumstance

of the area being given.

It should be observed that some of Poisson's expressions might
be put in a simpler form than he has adopted. For from the values

of f and z at the bottom of page 105 we see that

This might also be obtained from equations (#); for they will

give

*':-<*)

and by integrating and determining the constants we shall obtain

the above value of z. And with that value of z we can give simpler

forms for >&,*, and/, in terms of a definite integral, than those

"M pa-.-< 1"! and 10.1.
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CHAPTER V.

OSTEOGRADSKY.

122. ON the 24th of January 1834, a memoir was communi-

cated by M. Ostrogradsky to the Academy of Sciences of St Peters-

burg, entitled Memoire sur le Calcul des Variations des Integrates

multiples. This memoir is published in the sixth series of the

memoirs of the Academy of St Petersburg ;
the volume is dated

i 1838, and is called the third volume of the section comprising the

mathematical, physical, and natural sciences ;
it is also called the

fast volume of a section including only the mathematical and

hysical sciences. The memoir occupies twenty-four pages. The
memoir is also published in Crelles Journal, Vol. xv.

We shall give here the whole of Ostrogradsky's memoir; its

bject will be seen from the introductory paragraphs. Ostrogradsky
sonfirms some of the results obtained by Poisson which have

>een given in the preceding chapter of the present work
;
and he

>oints out the error of Euler and Lacroix which has been alluded

o in Articles 39 and 40. We now proceed to the memoir.

123. The application of the method of variations to functions

which comprise integrals with respect to only one variable may
)e considered perfect with respect both to simplicity and to gene-

rality. But this is far from being the case when we have to obtain

he variation of a multiple integral which involves different vari-

ables. Certain questions relating to this case seem to require more

generality than is possessed by the Calculus of Variations as La-

grange has exhibited it. This might lead us to believe that the

ninciples of that great mathematician have not been suitably

applied, or that the principles themselves are not always sufficient.
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It is doubtless for this reason that M. Poisson, in a memoir

which he read to the Academy of Sciences at Paris, on November

10th, 1831, thought it necessary to add to the principles of the

Calculus of Variations which were established by Lagrange, a sort of

new principle,
which consists in regarding the independent variables

of the question as functions of other auxiliary variables. The latter

disappear of themselves in the course of the investigation ;
but by

making use of them in the case of two independent variables x and

y, M. Poisson has not been compelled to consider the variation

as a function of x only, and the variation fy as a function of y only;

a limitation which all mathematicians who have investigated the

variation of the partial differential coefficients of a function of two

variables have been in some way forced to make by the nature oi

their process.

Nevertheless the supposition that Sx is independent of ^, and that

By is independent of x, seems to follow from the most simple and

elementary principles of the differential calculus
;
and so long as it

remains unproved that these principles are insufficient or that an in-

accurate application has been made of them, it would be a question

whether the formulas given by M. Poisson for the variation of the

partial differential coefficients of a function of two variables ought
to be preferred to those of Euler and other mathematicians which

have the same object. It is true that the latter are a particular case

of the former; but perhaps this particular case is that which must

always, exist.

We now decide this question in favour of the formulae of M.

Poisson. We shall shew that the mathematicians who have

treated of the variation of double integrals, including Euler himself,

have not differentiated the partial differential coefficients of the prin-

cipal variable with regard to the symbol 8 correctly. But at the

same time it will be seen that the introduction of auxiliary variables

fnto this kind of question is not necessary. The memoir of M.
Poisson on the Calculus of Variations will always be cited in the

history of differential analysis. There for the first time was given
the complete variation of a double integral ;

it is deduced from the

consideration of auxiliary variables. But it is quite possible to

restrict ourselves to the principles of the immortal author of the
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Mecanique Analytique ; for those principles combine extreme sim-

plicity with all the necessary generality.

We will first point out the inaccuracy which has escaped the

notice of mathematicians who have investigated the variation of the

partial differential coefficients of a function of two variables
; and

we will then indicate a method for finding the variation of any mul-

tiple integral.

124. Let us denote by z any function of the two independent

variables x and y : and put - = z' -7- = z
, -j~ = z". ^ 5- = z

'

dx dy dx* dxdy

-^
= z

tt ,
and so on. Then let us give to the quantities #, y, z,

respectively, the simultaneous increments Sx, y, Sz, which we will

regard as indefinitely small arbitrary functions of x and y ;
in con-

sequence of these increments the quantities z, z
t , z", ... will become

respectively z + &z, z
t
+ Sz

t ,
z" + Sz", ...

;
we propose then to de-

termine the variations Sz', Sz
t , 8z", . . .

Consider first $z
f

. Since z' = -7- it was supposed that in order
CLOG

to obtain Sz' it was necessary to differentiate in the common way

the quantity -y-
with respect to 8

;
and this gave the inaccurate re-

dx
7f\ 7T\

suit Sz =-^ z',- . [See Art. 39.1 In order to discover the
dx dx

source of this error we have only to ascend to the origin of the

quantity Sz'
;

let us denote for an instant x + Sx, y + y, z + Sz,

respectively by X, F, Z\ we shall then have obviously

dZ

N ,
dZ

and oz = -j^aA.

The partial differential coefficient z is taken on the supposition
rl7

that y is invariable
; and the partial differential coefficient ^ on

the supposition that Y is invariable, that is, on the supposition

8
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that y + Sy is invariable. But it was supposed that the differentia]

dZ
coefficients

'

and -TV- were both obtained on the same supposition.

namely, that dy = ;
and this is the inaccuracy to which we have

referred*

Restore for X, F, Z their values x + &, y + Sy, z + Sz. We
shall obtain

oZ ~T~T ;
F; r ~~

2? ==
7 /^,

the differentials d (z + 52) and c? (a; 4- $x) are to be taken on the sup-

position that d (y + By)
= 0.

But

substitute these values of d (z + 82) and d (x + Bx) in the last value

of Bz'
;
we shall obtain

,d8x^_-
x

and at the same time

Eliminating <fe and
c?y, we have

,

<\ +^ /I , ^
V

h
aF; V ~3l"
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And from this by including only small terms of the first

order we have

5, , dBz
,
dBx dBy

oz = -= z i z,
~

.

dx dx ' dx

If we compare this value Bz with the former, namely,

PV CLOZ i \A/\JiAJ

Bz = -7 z j- ,ax ax

we see that by assuming dy = Q instead of d (y + By)
=

0, we

suppress in Bz' the term z
t

-~- which is of the same order of

magnitude as Bz', and which by the principles of the Differential

Calculus ought to be retained.

Suppose that the quantity By is independent of x\ we shall

lave ~-
0, and Bz = , z -r~ ,

which is the result obtained
dx dx dx

by differentiating in the ordinary way the quantity -r- with

respect to B. And it is easy to see that on the hypothesis

-T0 the common differentiation is allowable; for since then

* N /, aSy\ , . 7 / * N i i
4- t>y) 1 + -T- dy, it we put d (y + oy) = 0, we nave ob-

\ dy J

dously dy 0- then in the expression Bz' = -~ ~r
z', the

partial differential coefficients z and -77- *-? are both formed
a (x + ox)

m the same supposition, namely, that dy = 0.

It is evident that

j dBx dBy ,,^ ^ f& d(Bz z'Bx zfiy)"
Oil ~P 79 dx

We shall obtain in the same manner

s
d (Bz

-
z'Bx-^By)

82
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For the differential coefficients of the second order we have

r
. , ,

,

"
'

"
d x

Then we shall obtain the variations Sz", &/, 8*,, by changing

into
'

or z
t
in the values of 8z' and 8z,. Thus we shall have

Therefore

(8*
- ^'80; - zfy)

And similarly we can find the variations of the differentia

coefficients of the higher orders.

[These results agree with Poisson's; see Art. 102.]

125. The preceding method shews sufficiently how by direc

application of the characteristic 8 to the partial differential coeffi-

cients *', *,, ", ... we can find the variations of these differentia

coefficiente. But it is better to seek the variations 8z', 8s,, 8z", ..

by the use of total differentials.
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In order to consider the subject with due generality, let us

designate by u a function of as many quantities x, y, z, ... as we

please,
and suppose that the variable u and the independent

quantities x, y, z, ... receive simultaneously the increments Su,

, By, Sz, ... which we shall consider as arbitrary functions of

all the independent variables.

In order to find the variations

, du *.du ^du
o T~ >

o ~T~ >
o ~r~ >

dx '

dy
'

tfe
'

due to the increments &u, Sx, Sy, S, ... let us take the funda-

mental equation

put for dSu its value

$>w , d$u
_,

dx dy
y dz

and for du its value

du , du , du j
dx dy dz

develop Sdu, that is,

du ^ du j du
~T~ ax + -7- dy + T~
fix dy

' dz

n the following manner ;

^ , _ (*
du du dSx du d&y du_

dSz \,
~\dx dx dx dy dx dz dx

"
J

/.. du du dx du d$y du dSz \ ,

\ dy dx dy dy dy dz dy
"

)
"

du dSx du d$ du
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Now equate the coefficients of the arbitrary quantities dx, dy,

db, ... and we have

du dSu du dBx du dSy du dSz

ax~~ dx dx dx dy dx dz dx

^ du d&u du dSx _ du dty/ _ du dSz ^
dy** dy dx dy dy dy dz dy

~ du
__
dSu du dSx du dSy du dSz

dz
~~

dz dx dz dy dz dz dz

It is easy to give to these expressions the following form ;

;^_ fa
^*U

$
^u

8 +'

dx" dx* dxdy
y dxdz

'

j / du
5,

du ^ du ^ \d [cu -j- ox -j- Sy -y- 8z ... 1

\ dx dy
y dz )

dx

du d*u ^ d*u * d*u .

-j- = -j 5- OX + 7 o O2/ + -r= - 02? + . .

dy dxdy dy* dy dz

du _ efo <?M .

6?iC t?V <fe

^
?*tt d*tt . ^*M cs

(Z
( Bu -j- Bx j- Sy -j- Sz . . .

)

\ dx dy
* dz /

dz

For abbreviation put
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du dzu s d*u 2 d*u s ,

-y- = 3 j-ox+ -7-3- W + -JJ- oz + ... + 7 ,

dy dxdy dy*
9

dydz dy

du_ d*u
^

d*u
, d^u_ g

dDu
dz dxdz

'

dydz
"

dz* dz

We may remark that the terms which do not involve Du in the

preceding formulae are the ordinary differentials of the quantities
du du du -11

U) d~ 9 d~ '

~d~
J

' " consic^ere(i as Junctions of x, y ,
z

}
... and sup-

posing that the differentials of #, y, z, ... are &c, %, 82, ... If then

we denote by the symbol A the differential of a function of a?, y, 0, ...

due to the increments &e, Sy, 8^, ... we shall have

Su = AM + Du,

~^

du _ . ^M

^a?
~

^a;

<7M .. du
0-7- = A -J-+ ,

dy dy dy

^du . du dDu
S-y- =A -7-+ 7 ,

dz dz dz

It is not difficult to find the variations of the higher differential

coefficients
-j-g

,
, ,

}
. . .

;
it may be easily seen that we shall

have generally,

dlu d?u diDu
"
dxl

dy
m
dz\..

~
dxl

dy
m dz\..^dxl

dy
m
dz

n
...

'

[The method of this Article appears less clear than that in

Art. 124
;
there is a want of definition of what is meant by such

a symbol as 8
-j-

. In the first method definition is given and

consequences deduced from it; the formulae given in the present

Article may be obtained by the first method. An additional

advantage in the first method is, that we can see more easily to

what order of approximation the results are true.]
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126. What has now been given will suffice for finding the

variation of a function U which involves u, x, y, z, ... and the

differential coefficients of u with respect to the variables. We have

only to take the differential of U supposing that all the quantities

B, y, c, ... M>J^"- receive their variations denoted by the

symbol B. But since the variations of each of
~
the quantities

n
>
J!f

t
... is composed of two indefinitely small quantities, we may

by the principles of the Differential Calculus augment x, y, z, . . .

by Bx, By, Bz, ... and give to u, -7-, ... at first only the former

parts of their variations, namely Aw, A -y- ,
... Thus we shall ob-

tain an increment for U which will form the first part of the

variation BU. Then without changing x, y y z, ... we can augment
u and its differential coefficients by the second part of their

variations Du, i ,
...

;
the increment which the function U will

in consequence receive will form the second part of the variation

of U.

The first part of the variation SZJwill evidently be

dx
'

dy
y

~dz
'"'

dU
Cre

dx
means *ke wwpkte differential coefficient of U with re-

spect to x, and
-^-

the complete differential coefficient with respect

to y, and so on. Let us denote by DU the second part of the

variation BU; this part is due to the increment Du of the quantity u,
this increment being ascribed to u wherever it occurs in U. We
shall then have

We abstain from writing the development of the differential

DO!
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127. Let us now proceed to find the variation of the definite

integral

V=judxdydz...
taken for all the values of #, #, z ... which satisfy the inequality

L <0,

L being a function of x, y, z, ...

The variation of the integral / Udx dy dz ... is obviously equal
to the sum of the variations of all its differential elements

;
thus in

order to obtain 8V we have only to take the integral of the variation

&
(
Udx dydz...}; this will give

But by the principle of the Differential Calculus

(Udxdydz...}=ZUdxdydz... + US (dxdydz ...);

thus by the preceding article

+ U(dxdydz...}+DUdxdydz...
Therefore

r ((dU* dU^ dU s TJ (dxdydz...}\j,,F= J-r-&p + -r-Sy + -
7-&s + ... + Z7 V, j

y
j
-

'-\dxdydz...
] \dx dy

' dz dxdydz... )

+ \DUdxdyde...

We shall presently prove that

5- tj j j \

S(axaydz...) =

hence it will follow that

dx dy dz

+ ^DUdxdydz...

The differential coefficient ^,
x

'
is total with respect to x,

and ,
**'

is total with respect to y, and so on.
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128. We will now investigate the variation B (dx dy dz . .
.)

Suppose x + &r = X, y + By = F, z + Bz = Z, ...
;
we shall have

S(dxdydz...)=dXdYdZ... -dxdydz ...

The quantities -Y, F, ^... are functions of x, y, z, ...
;
to obtain

<fA" we have only to differentiate X in the ordinary way and sup-

pose F, Z, ... constant. Thus

dX 7 dX 7 ,
dX j

dY, dY

^7
,

dZ
-r-dy + -r
dy dz

From these we shall derive

a (dX dY dZ
S(-j--

,v \dx=
.

dy dz

We have followed the notation of M. Cauchy, and denoted by

the result of eliminating the quantities p, $, r
t
... which satisfy the

equations

Q=cp+clq+

N\'i; suppose that the term o^c,... in the result is taken with

the positive sign.

To obtain <JFwe must differentiate Fand suppose
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that is, dx = 0, dZ 0, ... ; thus

d
dy

"
dz

whence

(dY dZ^ \,
\fy' dz'") dy

s(
d

^...)

We shall obtain in the same manner

and so on. The denominator of the last differential will be unity ;

for if, for example, Z were the last variable, we should have had

Now form the product dX. dY. dZ ... we have

therefore

The principles of Differential Analysis require that in calcu-

lating the coefficient

dY dZ \
l

dx
'

dy
'

dz "V

we should take account only of infinitely small quantities of the

first order, because , y^V, is an indefinitely small quantity of

the first order. But except the term --
.
--

.
- ... all the terms
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L S( ...} are of the second order at least; thus the

\dx
'

dy
'

da )

following is true as far as quantities of the first order :

fdX
dY dZ \=dX <H[ <^

\dx
'

dy
'

dz '") dx
'

dy
'

dz
"

fdXdYdZ A ,
<

Hence S(dxdydz ...)
=
(^-^ -^

... -
ij

dxdydz ...

Restore for X, Y, Z, ... their values x + &e, y + %, z + $z, ...
;

we shall then have

Therefore retaining only small quantities of the first order

[This result may be simply found as follows; suppose for

example three variables, and take the equations

dX , dX , dX

dY dY. dY,= -j-dx + -j- dy + -7 dz.
dx dy

y dz

dZ , dZ ^Z^

The second and third equations shew that dy and dz are of

the second order compared with dx\ for and ^*are indefinitely

small while
-^

and are finite. Hence if we reject terms of

the third order

.

dx

Similar equations hold for rfFand dZ; therefore

dY
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where terms of the second order are rejected. Thus

With respect to some of the points suggested by this article

the student is referred to Chapter XI. of the Treatise on the Integral

Calculus.]

129. Before proceeding further we will determine the limits

of the variables x, y 9
z ... in the integral

I Udx dydz ...

when extended to all the values of #, y> z ... which satisfy the

inequality L < so that at the limits of the integral we have L = Q.

We propose to integrate first with respect to x, then with respect

to y, then with respect to 2, and so on.

Assume that the equation L when solved with respect to x

gives only two values for this variable x and x^. These values

are the limits of the variable x, and supposing that the function L
continues negative for values of x comprised between X

Q
and x

l9

we must integrate the expression

I Udx dydz ...

from x = X
Q
to x = x

l , supposing x less than x
t

. As to the quan-
tities y, z, . . . we must ascribe to them all values which allow x
and x

t
to be real, and we must exclude all values which make X

Q

and x
l imaginary ;

but in passing from real to imaginary values

the roots x and x
l
become equal, as we know from the theory of

equations ; therefore at the limits of y, z, ... we shall have simul-

taneously

J =
0, f = 0.

dx

If we eliminate x between these two equations we shall obtain

an equation in y, ,...; this equation we will suppose gives two

values of y, say yQ
and y 1 ,

which will be the limits between which
we must integrate / Udx dydz ... with respect to y ;

we take the

integral from the less of the two values y and y^ to the greater.
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We shall arrive at the same result in the following manner
;

after having integrated with respect to x we ought to integrate

with respect to y obviously from the least to the greatest value of

this variable, supposing x and y connected by the equation L 0,

and considering z, ... as constant; differentiating on this hypo-
thesis we have

_ dL dL dy~
dx dy dx '

in order that y may be a maximum we must have
-jt

=
0, and this

gives to determine the limit of y the equation -j- ;
this coin-

cides with the result already found.

To obtain the limits with respect to z we must treat the equa-

tion which results by eliminating x between L = and -, =

precisely as we have already treated the equation L = 0. But we

may suppose that this result of the elimination of the variable x

between L = and -j- = is the. equation L = 0, in which we put

for x its value found from -y- = 0. In order then to find the

limits of z we must differentiate the equation L with respect
to y, considering x as a function of y ;

this will give

dL dL dx _
dy dx dy

~

and therefore -j- = since -j- = 0. By eliminating y between

L = and ~v- = we shall obtain an equation which will furnish

the limits for z. By proceeding in this way we shall find the

limits for all the variables which occur in the integral

I Udx dydz...

Thus we have the following conclusion
;
the limits of x are

given immediately by the solution of the equation L = with
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respect to x\ the limits of y are determined by solving with

respect to y the equation which results from the elimination of

x between L = and -y- = ;
the limits of z are determined by

solving with respect to z the equation which results from the

elimination of x and y between

' dx '

dy
and so on.

We have supposed that the equations relative to the limits

of the integral

/ Udx dy dz ...

give only two values for each of the quantities x, y, z, ... but it

would be easy, from what has been given, to treat the case

where the equations have more than two roots. The number

of limiting values for each variable #, y, z, ... including if ne-

cessary infinite values, must be an even number.

130. We now return to the variation

S F^= I -1 ^-= - H *-= H 5 h r dx dy dz ...

]\ dx dy dz J

+
JDUdxdydz ...;

for shortness put U$x = P, %= Q 9
USz = E, ...-, we shall have

then

Consider first the part

of the preceding variation
; suppose that x

v
is the greater of the

two values x and x
l
which are obtained by solving the equation

L = with respect to x. We have
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By P we denote the value of P when #
t

is put in it for x,

and by P the value of P when x is put in it for x.

Since the function L has a positive value before it vanishes

when x = x ,
and a negative value before it vanishes when

x = x
,

it follows that the differential coefficient -y- is negative

for x = x
,
and is positive for x=x^ therefore if we take the

radical A /(^S) positively we shall have

\dx\

dx

Substitute these values in the equation

j(Pl
-

and we shall have

(dp
^

the integral on the right-hand side includes only those values

of x,y,z,... which satisfy the equation L = 0.

In the same way we shall obtain

..dL

/gifc%*.:.
-

,

_~_J J
... = dxdy...

J v uw
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Thus,

dPddR

The integrals on the right-hand side must be taken for

those values of x, y, z, ... which satisfy the equation L = 0.

Consider two of these integrals, for example,

r Qdx 7 , T / dy , ^

dyd^... and /

-j-Zj-dxdz
...-,

'rom the preceding article we may easily see that their limits

with respect to z, ... are the same
;
further we have

dL
, dL ..

-=- dx + -=- dy =dx dy
y

for all the elements of these integrals in which the variables z, ...

remain the same
;

so that the differentials ^ dx and -j- dy are
dx dy

equal, neglecting the sign. Thus if we take the increments dx

and dy positively and also the radicals, we have

dx

vW
and therefore multiplying by dz . . .

,

dy dz ... d.r. dz

dL
)
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It is easy to deduce that in general we shall have

dy dz . . .
__

dxdz ... __ dxdy ... _
dJS\

'

l(
d̂ \~

) VUv
Hence, if for shortness we put

ds = V%Vz2
... + dx* dz

2
... + datdif ... + ...),

dz ...
__

dxdz ... _ dxdy ...

T73lA
=

l(dL*\
"

l\dU\
'

\jf) VW/ VV^V
ds

(dL dL dL

By means of these equalities, equation (A) will become

dU dU \

~d
+

dz* 'V

We may, in order to facilitate the integration of the differ-

ential

dL dL dL

dJS MS \

^6f "/

instead of the variables as, y, z, ... connected by the equation)
L = introduce other variables a, b, c, ... which are independent.

We must transform by the usual method all the elements

,., dxdz..., dxdy..., into elements proportional to the

product dadb...; we shall have such results as dy dz ...

**Adadb ..., dxdz ... = Bdadb..., dxdy ... = Cdadb..., where
A

, //, C, . . .
, are finite functions of a, b, . . .

;
thus
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If for example we wish to integrate with respect to the

variables y, z, ... we must observe with respect to the elements

dx dz . . .
,
dx dy ....... that we must take the differential of the

variable x in the first considering y alone as variable, in the

second considering z alone as variable, and so on
;
hence

dx dz . . . =y dy dz . . ., dx dy ... =
-j- dy

dz ...,...; thus

dU dL2 dL*

dydz...^S

v
jo that

V

dL dL dL

/l
dJL

V U^
In the formula (B) restore for P, ft R, ... their values

,
. . .

; we shall then have

-v .y + "^
w

' + ,.. m \dxdydz....dx dy dz

dL dL^ dL~
dx dy dz

IfdU dL2 dL2
\

""
'

. / / L.
1

1_

A / I J 2 1 7 2 1 7 2 *^ * * * *
/

hat is,

[(d(USx) d(USy) d(USz) \,1^r H 7
yi

H S ^....l-^^^....
J (

dx dy dz }

USLds

'(dU dU dLz V
~7~2 + ~^T~Z + TT +
\dx

2

dy* dz* )

9-2
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and therefore

\DUdxdydz[
/

'V

., ,..

dL'dl^.dls
%? <

+
dz*~

131. We now proceed to indicate the reductions to be made

in the term JDUdxdydz ... of the variation F; these reductions

consist in making as many as possible of the partial differential

coefficients of the quantity Du disappear under the integral sign.

By means of the formula (B) of the preceding article it will be

easy to replace the integral JD Udx dydz... by the sum of the two

integrals fWDudxdydz ... and /<&, the first of which like

JDUdxdydz ... relates to all the values of x, y\ z, ... which satisfy

the inequality L < 0, and the second of which comprises only those

values of the variables which satisfy the equation L = 0. The
function W does not include the variation Du

;
on the other hand,

the function does include it as well as its partial differential

coefficients with respect to x, y, z, ...; the differential ds is the

same as in the preceding section
; that is,

Thus we shall have

fDUdxdydz...=

and therefore

The integrals J
WDu dxdydz...

and

are not susceptible of any reduction, but the integral fds may be
till reduced.
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To effect the reduction of f@ds, we must first of all replace the

variables oc, y, z, ... which are connected by the equation Z =

by other quantities a, ,
... which are independent. The number

of these quantities a, &, ... must be one less than the number of the

original variables a?, y , z, ...

Now considering x
t y t

z
t

... as functions of a, J, ... let us trans-

form the element ds into an element proportional to the product
da db . . .

;
we shall thus obtain

ds = Kdadb...

where K is a finite function of a, b, ... Let us also transform the

dDu dDu dDu d*Du d*Du
differential coefficients :

, j , 7,.... ,
2

- -
dx '

dz
'

efce
2

into -j , jT- ,
.... ,

2
, ,,,....; we shall have for this

da ' d& c?a
2

end

dDu dx dDu dv dDu dz_ ___ ____ I __i7. I _ _
[

da dx da dy da dz da

dDu _ dDu dx dDu dy dDu dz~"~~"" + ~ +~~ + ""

d?Du _ d*Du
da?_

d*Du dx
dy_

daz dx2 daz

dxdy da da

d*Du d*Du dx dx d*Du fdx dy dx dy\
dadb

~
dx* da db dxdy \da db db da)

But since the preceding equations are not enough to obtain the

... dDu dDu dDu dzDu d*Du
value of all the quantities ^ . =

, ^ , ... T a . - =-
, ...

dx dy dz dx dxdy
some of these differential coefficients will remain indeterminate;
the others can be expressed in terms of these and of the quantities
dDu dDu d*Du d*Du

f considerm sorae

r ,, -..- ,. , ~. . dDu dDu dDu
of the differential coefficients , , y , * ,

...... , 2dx J

dy
' dz dx*
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ag indeterminate, it is convenient, for the sake of sym-

metry, to introduce as many linear functions p, q, r, ... of

dDu u <u
as wm be nece In order

</y
'

,/z
'

dtf dxdy'
dDu dDu dDu cPDu

to express all the quantities --, --, -^-,
......-^ ,

-, dDu d*Du
,

in terms of p, q, r, ,
-^--, -^-, -^- ,

'., ,
and it will be the quantities p, q, r, .... which will

remain arbitrary.

But the introduction of the quantities p, q, r, ... amounts to

imagining among the variables a, b, . . . one variable more o>
; thus

the number of quantities o>, a, b, . . is equal to that of the variables

x, y, *,.... Considering then #, y, 2, ... as functions of o>, a, 5, ...

we have the equations
<

g?Z>M _ </>& dx dDu dy dDu dz

dot dx do) dy da) dz dco

dDu _ dDu dx dDu dy dDu dz

da,
"

dx da dy da dz da '

dDu
__
dDu dx dDu dy dDu dz

db
:=

dx 'db
+
~fy~db

+
~lk~db

+ ''''

^Dudx^ d?Dudxdy
dx2

dto* dxdyda>da>
+ '"'

d*Du dx dx d*Du /dx dy dxdy\
dx* da da dxdy \da) 5a

+
da do>)

+ ""

rhere will be as many of these equations as are necessary in

order to exDreiw
dDu dDu dDu ^Du ^^^"' W J -ar"- -as?-'

m terms
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dDu dDu dDu d*Du d*Du

really does not exist we must look upon the differential coefficients

dx dy dz

da>' da' da>'
...... ^ (luantlties wnic" we ma7 assume at our

pleasure so as to simplify the expression of 7- ,
=-^

,dx dy
'

<Z
2
Z>tt J2Dw ,.. .. , dDu

-J-JT> 7 / >
' T-he differential coefficients -

1 . -^-n-, ....(e2

dxdy dco do*

remain entirely indeterminate.

Having expressed the differential coefficients

dDu dDu dDu d*Du d*Du
~dx~> dy

'

d* '" "^2
~

>

dxdj/'"'
in terms of

we must put these values in the integral

Then by making use of the formula (B) and putting for short

ness

we can replace the integral jKdadb ... by the sum

The first of these integrals is not susceptible of reduction;

the second may be reduced in the same way as

Thus we shall have

... +
[

I w U
S?

S

dl?
-

V fo +^ + -

3?* "V
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We may treat the integral S$ds as we treated f@ds ; we may

decompose it into two integrals, the first of which is completely

reduced, and the second is susceptible of reduction; proceeding

in this way we shall exhaust the reductions which can be effected

in the integrals, and thus the variation BV will be in the proper

shape for applications.

132. Since the integral fds of the' preceding article relates

te the values of x, y, z, . . . which satisfy the equation L = 0, we

may consider one of these quantities as a function of all the others,

and the latter as independent. Suppose, for example, that we
consider x to be a function of y, z, ... ; we shall have (by
Article 130)

dU dU

put for shortness

dU dL*

we shall have

We shall obtain the equation relative to the limits of y,z, ...

by eliminating x between L = and - =
dx

The function contains the partial differential coefficients

dDu dDu dDu d*Du d*Du
'

dy
*

Uken
relatively to x, y, ,

... On the hypothesis that these
are all independent; but after the differentiation we

t put for x its value furnished by the equation L = 0. It
advisable to eliminate these partial differential coefficients as far
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I

as possible; to this end considering x as a function of y, z, ...

we shall have

dPu _ fdPu\ fdPu\ dx

dy
~

\ dy ) \ dx J dy
'

dPu _ (dPu\ (dPu\ dx
dz

~
^ dz )

+
( dx J dz

'

, fdPu\
_ (d*Pu\ (d*Pu\

dx
~
\dxdy)

+
V da? J dy

'

\dxdy] \ dx2
J dy

(dPu\
\ dx ) _ fdzPu\

(d
zPu\ dx

~\dxdz}^ \titf )Tz>

(d*Pu\
fd*Du\ dx (d*Du\ dx*

(dPu\
d*x

~\dtf) \dxdy) dy
+

( dx* ) dy*
+

( dx ) dtf
J

d*Pu /d*Pu\ fd*Pu\ dx fd*Pu\ dx
. .

J
,

J j I
I a \_ I I _

dy dz \dydz) \dxdyjdz \dxdz)dy

dx dx (dPu\
TTz* \~dx~)

dzPu
dzz

- (
d*Du\ 9 (d*Du\ fa. (d*Pu\ dx*_ (dPu\ d*x

~
( dz* J

+
\dxdz) dz

+
( dx2

J dzz + (dx) dz*
'

the brackets indicate partial differential coefficients of Pu taken

on the supposition that x, y, z. ... are independent.

From the preceding equations we deduce the following, putting

, (dDu\ , (dv\ f (d*Pu\
for abbreviation v for ( -j- \ and f

^- J
for

l-gnrJ

idPu\ dPu dx
I _ |

_^__^_ I- f)\ j_ - -

\dy )
'

dy dy'

(dPu\ _ dPu dx

\~dz~)~'"~~~
V
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dv

dy (dx) dy
'

_
Tz

~
fa ~dz

fd*Du\ d*Du dvdx (dv\ dx* d*x

(W'W dyTy+\tic)dy*-
V
d;f'

(d*Du\ __
d*Du _ dv dx _ dv dx

(dv\
dx dx d*x

\dydz)
~
dy dz dy dz dz dy \dx) dy~dz~

V
dz dy

(d*Du\ _ d*Du dv dx (d\d^_ <?x

(df)
m
"~Sr dzdz+(dx)d^~

V
d^'

p^ /. dx dx d*x
~> '"'

dy*
'

dy dz
'

dz*
J

their values found from the equation L ; thus

dL
fdDu\ __

dL dDu dL

~dx\d^)~Tx~d^'
V
d^

9

dL fdDu\ _ dL dDu dL
dx(dz )~ dx dz

*~ V
~dz'

dLdL rd*Du\ _dLd^ dL /dv\

dx \dxdy)
~
dx dy dy \dx)

'

dL fd*Du\ _dld^ dL
fdv\

dx \dxdz)~'d^dz
+

~dz \4~xJ
'

*** dL dU d*Du dLdL dv dL2
/dv

7

9^_
<h? d\f

'

dx dy dxdy
+

dy* dx*]
'

dMLdv dLdLdv dLdLdv

_ ^
dyd* dx dz dxdy dx dy dxdz dy dz
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/d*Du\ dL_ dLdLdv dU_ /dv\]

dx3

( dz* )
"
dx (dx* "dz

2
'

dx dz dz
+

dz* (dx))

(dL*<PL_ dLdLcPL_ dUdzL
V
\dx* dz2

" 2
dx dz dxdz

+
dz* d

Substitute these values in

jSds IWdydz

and use the formula (C) of Art. 130
;
thus we replace the integral

... by the sum of two integrals, namely,

the first of these integrals is completely reduced, the second is still

susceptible of reduction. The second integral is with respect to the

variables z, ...
;

its limits depend on the equation which will be

obtained by eliminating x and y between

T c\
dL

r>
dL

(\Li 0. -j- = 0, -j- = U.
dx dy

In fact this integral resembles the integral fit dy dz ... and may
be treated in the same way.

We have merely indicated the transformations which must

be applied to the portion fDUdxdydz ... of the variation SF;
because since these transformations reduce to integration by parts

they belong to the Integral Calculus rather than to the method

of variations. It is true that one of the fundamental principles of

this method consists in removing as much .as possible the dif-

ferential coefficients of the variations which occur under the in-

tegral sign; but the calculus of variations only indicates this

operation and refers the execution of it to the Ifitegral Calculus.



CHAPTER VI.

DELAUNAY.

133. THE Academy of Sciences at Paris proposed the follow-

ing as the subject of competition for their great mathematical prize

in 1842
;
To find the limiting equations which must be combined

with the indefinite equations in order to determine completely the

maxima and minima of multiple integrals, the formulae to be applied

to triple integrals.

Four memoirs were sent in which were examined by MM.
Liouville, Sturm, Poinsot, Duhamel, and Cauchy. The prize was

awarded to M. Sarrus, and honourable mention was made of M.

Delaunay.

With respect to M. Sarrus the judges said that, by the aid of a

new symbol, which he calls a sign of substitution, . he has esta-

blished elegant and general formulae which furnish, under a conve-

nient form, the variations of multiple integrals and enable us to

apply in all cases the process of integration by parts ; he has thus

contributed in a remarkable manner to the improvement of analysis,
and deserves the great prize for mathematics.

With respect to M. Delaunay the judges said that, although he
has not given to his processes all the generality which could be

desired, yet he deserves honourable" mention on account of the

elegance of his formulae, especially by reason of the applications
which he has made of them, and his researches upon the distinction

of maxima and minima.

(Comptea Rendus, Vol. xvm. page 315.)

We shall give an account of the memoir of Delaunay in the

present chapter, and of the memoir of Sarrus in the next chapter.
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134. The memoir on the Calculus of Variations, "by M. Charles

Delaunay, was published in the 29th Cahier of the Journal de

VEcole Polytechnique, which is dated 1843. The memoir extends

over pages 37 120. . Some introductory observations are given in

the first seven pages. Delaunay refers to the method which was
used in the solution of problems in the Calculus of Variations by
those who first studied the subject ;

these writers considered any

proposed integral as the sum of an indefinitely large number of

terms depending on the values of the ordinates of the different

points of a curve, and they investigated the change produced in the

sum by varying one or more of the ordinates. By this method they
obtained the differential equation of the required curve, but they did

not obtain the equations which must hold at the limits. It

was first shewn by Poisson in his memoir, which was presented
to the Academy of Sciences in 1831, that the old method could be

made to furnish the equations which must hold at the limits as well

as the general differential equation.

The method of Lagrange gives the terms which exist at the

limits in the case of a double or multiple integral, but not in a con-

venient form
; they require transforming so as to shew how many

arbitrary variations they involve, and to put them in a convenient

shape for application. Poisson led the way in these researches, by
giving in the memoir already cited the terms at the limits in the

case of a double integral. Delaunay concludes his introductory

observations with the following sentences. The Academy having

proposed for competition the question of determining the terms at

the limits for multiple integrals, I have investigated the subject, and

I present this memoir as the result of my researches, which I hope
leaves nothing to be desired. After my task was completely

finished, I became acquainted with a memoir by M. Ostrogradsky,
in which he overcomes the principal difficulties of the question pro-

posed by the Academy ;
and his method is nearly the same as

mine. But he stops there, and does not deduce from his method

the formulse which may be used in applications. M. Ostrogradsky
and myself have taken for a guide in our researches the memoir of

M. Poisson
;
the coincidence of our results proves then only one

thing, and that is that the course had been so well traced out by the

illustrious French mathematician, that it was impossible to wander
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from it, and thus to him must belong the merit of the subsequent

discoveries. [The memoir by M. Ostrogradsky, to which allusion

is made, is that which we have given in Chapter V.]

135. The first part of the memoir is called variation ofa defi-

nite integral; it extends over pages 43 79. Delaunay's investiga-

tions apply to multiple integrals; his method will be sufficiently

illustrated by the case of a triple integral, to which we shall confine

ourselves, and we shall not use exactly the same notation as

Delaunay.

Let there be a definite triple integral

fffdxdydzK,
_ . , f ,. f du du du

in which K is supposed a function ot x, y, z, u, ^ , -j- , ,

tfu d*u

dx*
' dx dy

'

The integration is supposed to extend over all the values of x, y,

and z which render a certain function /(a?, y, z) negative. We
shall denote the triple integral by U.

If we put a given function of x, y, z in the place of u, and if

f(x, y, z] be a known function, then 7 can be calculated. It will be

necessary to effect successive integrations, and to take each integral

between appropriate limits, and these can be determined in the fol-

lowing manner.

The order of the successive integrations being arbitrary, we can

suppose that we integrate first with respect to z, then with respect

to y, and then with respect to x. In the first integration y and x
are regarded as constants, and the integration with respect to z

extends over all the values of z which render f(x, y, z) negative ;

so that we must take for limits the values of z which satisfy

/fo,*)=0 (1).

The result of the first integration will be a known function of x
and y and will form the element of a new integral with respect to

these variables, and this integral must extend over all the values of
* and y which make the values of z found from (1) real. These
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limiting values of x and y then are such that if we give one of

them a suitable indefinitely small change the roots of (1) pass from

real values to imaginary values. The limiting values of x and y
must therefore be such as to introduce equal roots into (1), so that

(1) must have some roots in common with the derived equation
relative to z.

The limiting values of x and y must therefore satisfy the

equation

/>,y) = o ........................... (2),

which is obtained by eliminating z between

If the sign of the left-hand member of (2) has been properly
chosen we may say that the new definite integral must extend over

all the values of x and y which renderft (x, y} negative.

There is no difficulty in determining the limits of the integra-

tions which remain to be effected. For by proceeding as before

we find that we must integrate with respect to y considering x

[constant,
and then the limits of y are given by (2). Lastly the

limits of x are given by the equation

/,(*)
= <> .............................. (3),

which is obtained by eliminating y between

Suppose that the equation (1) gives only two values of z, and

denote them by Z
Q
and z

l ; suppose that equation (2) gives only
two values of y, and denote them by yQ

and yl ; suppose that equa-
tion (3) gives only two values of a?, and denote them by x and a?r
Then the definite triple integral may be thus written with the

limits expressed,

#0 y

Here Z
Q
and z

v
are functions of x and y ; y and yv

are functions

of x
;
x and x

l
are constants.
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If any of the equations (1), (2), (3) give more than two values

of the unknown quantity with respect to which it is to be solved,

then in order to express the limits of the integrations it will be

necessary to decompose U into several definite integrals, and the

limits for these integrals will be determined by the equations (1),

(2), (3). This decomposition of U presents no difficulty, and we

will not delay upon it
;
we shall reason hereafter on the supposition

that each equation (1), (2), (3) has two roots, and it will be easy if

necessary to modify this supposition.

136. Suppose that after having given to u a particular value

in terms of x, y, z, we augment the value of u corresponding to

each system of values of x, y, z by an indefinitely small quantity ;

or, which comes to the same thing, suppose that we augment the

general expression for u in terms of x, y, z by an arbitrary inde-

finitely small function Su of the quantities x, y, z. Suppose more-

over that we give an indefinitely small variation to the function

f(x, y, z). By these changes the triple integral 27 will assume a

new value which differs by an indefinitely small quantity from its

original value; this indefinitely small difference we shall now
calculate.

The part depending upon the variation ofK is easily expressed

by well-known methods. Ifp denote any of the quantities u, -j- ,

j ax

T-, ..... then the corresponding term in the variation of K is

*
-j- op-
dp

'

137. The only part of SZ7 to which we need give special

attention is that which arises from the variation of the limits of

the integrations. The part of 8U which arises from the variation

of the limits of z is obviously

- f
J y

where A' and A" represent what A' becomes when we put z
v
and

respectively for z.
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To obtain the terms arising from the variation of the limits yl

and yQ
we must in the integral I 'dzK replace y by y^ and yQ

J XQ

respectively, Lien multiply the first result by Sy t
and the second

by SyQ
and subtract the second product from the first, and finally

integrate with respect to x between the limits X
Q
and x^.

But when y = yl
and also when y = y the limits z^ and z

become equal, so that the integral I *dzK vanishes; thus the
J %Q

terms in BU which arise from the variation of y and yt
are zero.

Similarly 8U will not contain any term arising from the variation

of X
Q
and a^. Thus

SU= [*
l

dx

138. A remark may be made with respect to the result just

obtained, namely, that it is only the variation of the limits of the

first integration which gives rise to a term in 8 U. The student

may easily provide himself with a geometrical illustration; sup-
x* if z

z

pose that /(#,#, )
is -;-

2 + j*+i 1, so that the triple integrald u C

extends throughout the interior of a certain ellipsoid. Let the

value of /(a?, y, z) be changed by variation into

where
//, may be supposed indefinitely small, so that the varied triple

integral extends throughout the interior of a new ellipsoid which

is similar to the former and similarly situated and concentric with

it. Then the part of 8U which arises from the variation of y and

2/j
will be easily seen to be, not absolutely zero, but, an indefinitely

small quantity, which may be called of the second order if that

part which arises from the variation of Z
Q
and z

l
be called of the

first order. Also that part of 8U which arises from the variation

10
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of x
9
and x

v
will be an indefinitely small quantity which may be

called of the third order.

Thus it will be observed that by supposing the triple integral U

to be extended over all the values of x, y, z which render/(ic, y, z)

negative, the variation SU is free from any terms arising from the

variation of the limits of the integrals except those which arise

from the variation of the limits of the first integration. This sim-

plicity however is obtained by a corresponding loss of generality!

in the results. The most general supposition would be that the

limits Z
Q
and z

t
are any arbitrary functions of x and y, that yQ

and

yv
are any arbitrary functions of x, and that X

Q
and x

l
are any con-

stants; so that no mention would be made of the function /(a;, y,

One of the great merits of the memoir of Sarrus is that it treats the

problem in this most general sense; it will be remembered that

Ostrogradsky had adopted the same limitation as Delaunay. (See

Art. 129.) And in Poisson's researches on the variation of a double

integral the same limitation occurs, for the integrations are sup-

posed to extend over an area bounded by a closed curve. (See
Art. 105.)

139. We resume the consideration of the value of SU given inj

Art. 137. The last two terms in the value of BU are united by
Delaunay by means of a new notation, which he considers to pos-
sess some advantage over that hitherto used

;
in order to explain

it he says he must enter into some details.

Let ffdxdyh be a double integral which extends over all the

points in the plane of (x, y) comprised within the interior of thei

closed curve AmEn (see fig. 4). Let y and yv represent the ordi-
'
nates of the curve which correspond to any abscissa x\ let X

Q
and

a?
t
be the extreme abscissas Oa and Ob. Then the double integral

may be expressed thus,

y

Now suppose we have found the indefinite integral H of hdy, .

let //, and H
Q represent what H becomes when we substitute yj

and y respectively for y. Then we have

*
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Now suppose that a point starts from A and moves round the

curve AmBn in the direction indicated by the arrows and finally

returns to A. Let dx denote the space traversed by this point in

the direction of the axis of x in any indefinitely small time, and

let y be the variable ordinate of the point. Then the integral

jdxll taken during the time the moving point describes the por*
tion AmB will form the first part of the integral ffdxdyh, namely,

and this same integral taken during the time the moving point

describes the portion BnA will form the second part of the inte-

gral ffdxdyh, namely,

for in this second part of the motion dx is constantly negative. We
may then express the integral ffdx dy h completely by fdx II ex-

tended throughout the motion of the moving point, that is, from its

departure from A until its return to the same point ;
this will be

indicated by the notation

1

dxH.
*\

Besides the advantage of uniting in a single term the two terms

which were required to represent the value of ffdx dy h, the proposed
notation has another advantage ;

for we can express by a single

term the integral ffdx dy k in the case in which the limiting curve

can be intersected in more than two points by a line parallel to the

axis of y, as may be easily seen.

140. In the last two terms of the value found for SU (see Art.

137), we may consider the quantities Kfa and Kfiz^ as forming
the two parts of a definite integral taken with respect to z between

the limits z and ^. We may therefore, by Art. 139, put

102
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thu- 5 7= I

l

dxl
*

dy I

'

J* Jy J*o

(y)

the z which enters into the K of the last line is a function of x and

y determined from the equation f(x, y, z)
= 0.

141. We must now transform the terms in the first part of &U

by means of integration by parts. This part of Delaunay's memoir

is treated by him with great generality ;
his method will be easily

understood from a simple example which we will take.

dsu
Let p stand for -=

^
=-

,dx dy dz
'

and M for

dp

then we have in the first part of SZJthe term

I dx I dy I dz M-^ ^ j- ,

**% Jy J * dxdydz

and we will take this term and reduce it by integration by parts.

By one integration by parts the term becomes

- w, u, 1*7 \
yi 7 f

' 7 u^rj. u vu
-J-J dx I dy I dz -

dx fy J^ Jy
y
J* dz dxdy'

where in the first term the notation is used which was explained in

Art. 139.

If we effect two more integrations by parts in the second of the
above two expressions we shall easily see that we shall finally
obtain in the indefinite part of the variation BU the term

f*i , [Vi _ f*i
7 d*M

I dx
\ ay I dz -^ = , Su :

J*o Jy Jx dxdydz

we shall also have some limiting terms. The limiting terms it is

not as yet easy to write explicitly, because the limits of the respec-
tive integrations will not be the same as those we have hitherto
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used, since the order of the integrations becomes changed. In fact

to reduce the term

(
x^ f

yij [
Zl j dM d 2Su

dx dy dz -7-
J x Jy Jz dz dxdy

as much as possible by integration by parts, we must begin by in-

tegrating with respect to x or y and not with respect to z, as we
have hitherto supposed. But it will introduce confusion if we use

different limits, and thus such a transformation is required of the

terms at the limits as will allow the integrations to be all performed
in the same order. This transformation, as Delaunay says, formed

one of the principal difficulties of the problem, and he considers that

he has accomplished it with all the simplicity desirable. He adds

that Ostrogradsky had arrived at the same mode of transformation

as a particular case of a more general method, this particular case

being however the simplest that could be derived from it. See

formula (C) of Art. 130.

142. Let for example ffNdydz be a term which has arisen

from an integration by parts with respect to x and in which we

have not yet taken account of the limits between which the integral

is to extend, so that N is a, function of x, y, and z. In order to

determine the limits we must deduce from the equation f(x, y, z)
=

the values of x in terms of y and z
; suppose we thus obtain two

values of x, which we may denote by x" and x\ and let N" and N'

denote what N becomes when x" and x are respectively put for x;

then the integral may be denoted by Jf(N" N') dy dz, and it is

to extend over all values of y and z which make the values of x

found from f(x, y,z) = Q real. We want now to transform this

double integral so that it shall extend between the old limits
;
and

we shall now shew that it may be put in the form

|
I

l

dx
\

l

dyM, where M= N -7? ,

Jx Jy
*

f_

dy

and X
Q
and x^ are the same quantities as have been throughout

denoted by these symbols.
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For any assigned value of y the equation /(a;, y, z)
=

0, may be

regarded as the equation to a plane closed curve AmB of which the

variable co-ordinates are x and z. (See figure 5.) Thus in the

double integral we are considering, ffdy dz Nt
if we integrate with

respect to z we must extend the integral to all values of z which

allow us to deduce from the equation f(x, y, z)
= real values of

xt that is, the limits of z must be Oa and On. But by Art. 139,

/On f(0a)

\ (N"-N')dz= Ndz.
J Oa J (Oa)

Tbo&JfNdydz takes the form

w,
(Oa)

Ndz.
(Oa)

/(Oa)
Ndz indicates an integral taken throughout the

,0a)

motion of a point which starts from A and returns to A again after

moving round the curve in the order of the outside arrows. But if

we suppose a second point to start from B and to move round the

curve in the order of the inside arrows and return to B the symbol
f(o&)

I Ndx would indicate an integral taken throughout the second
'(06)

motion. But dz and dx being the increments of z and x which cor-

respond to the instants when the moving point is traversing in

opposite directions the same element of the curve, we have obvi-

ously

*>&**
where ^ is the differential coefficient of z with respect to x de-

duced from f(x, y, z)
= 0. Thus

(Oo)

c

(Oa) J (Ob)

Therefore the double integral we are considering becomes

r(Oo) r (0b) j-

dzN=-\ dx~N.
J (Oa) J (Ob) *B
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It must be observed that in N in the last expression z is to be

considered a function of x and not x of z. This definite integral

extends over all the values of x arid y which allow of real values of

z being found from f(x, y, z)
=

0, as is easy to see
;
and as the

order of integration may be changed at pleasure, we may take

that which has already been adopted in Art. 135. Thus we have

mally

ffNdy dz, that is, ff(N"
-
N') dy dz

dz /*! , f(y) ,

-j- N=\ dx I dyM,
(y) dx J fo J (y)

9
[*i, f-
I dx \

/* J

where M-

143. We shall not reproduce the extremely general formulae

which Delaunay now gives with respect to multiple integrals, which

extend over pages 59 73 of his memoir. His method will be suf-

iciently illustrated if we give in detail the investigations of the

variations of a double integral and of a triple integral, in which we
ihall suppose that no differential coefficient of a higher order than

;he second occurs in the proposed expression. Let us then consider

first the variation of a double integral.

Let U

T , T, , . du du ,

Let I be a function of x, y, u, ^, ^-, ^, -^
and

;
and let the variation of Z7be required arising from a varia-

dxdy
tion in u and a variation in the limits of the integrations.

The partial differential coefficient of V with respect to -7- will

je denoted by F^, that with respect to ~ by Fy ,
that with

espect to
-j-2 by Vxx ,

and so on.
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Then, as in Art. 140,

BU= [*
l

dxl
yi

dyZV+ l
(X}

3 9% ho
"

/Cf)

XT fr
_ dV * rr*du . ^*duNow>

sv=
3J

Su + F*s Tx + V"S
Ty
+

W
dxdy dy*

thus there are six terms in SF; and we shall consider how these

six terms will appear in S U.

The first term is not susceptible of reduction.

The second term is

jj&dy
V*^>

by Art. 142 this gives

The third term is
jfdady

Vy~? ;

this gives j

(X)

dx VvSu -jjdxdy^ Su.

The fourth term is

jjdxdy V^^;
by one integration by parts this gives

** dx r dx ~dx~>

and by a second integration by parts we obtain
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The fifth term is

by integrating by parts with respect to y we get

^ dx>

by a second integration by parts we obtain

/<*>
T
, dSu

, /<*> dydV^z t

Ft. , ^dxy^r- + I ax -/ --~ OM + <fcc rf?y 3 p 8u.
J

(x)
^ Ax) ^ dy ])

J
dxdy

r r ^72 5>

The sixth term is \\dxdyVvy rr',

by one integration by parts this gives

-r-,
dy dy

'

by a second integration by parts we obtain

dxVm
d^ - r*,^ Su +

(x
d J x d

(x) (x)

Then by collecting the terms we have

dv

(x]
dx dx dx dy dy

r(x)

j dxVSy.
J (x)

In this formula
-j-

is to be found from the equation /(#, y)
= 0,

which determines the limits of integrations.

It will be seen that in the third line of the value of SZ7we have

, . i i n
r- and 7- ,

both occurring under the integral sign ; we shall now
dx dy
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shew that the former symbol may be expressed in terms of the

latter.

At the limits of the integration y is a function of x determined
T\ JJ

by f(x, y)
=

; let 3 denote the complete differential co-

efficient of Bu with respect to x, obtained after we have put for y its

value
;
thus at the limit

D 8u
__
d&u d8u dy

dx dx dy dx'

Therefore

dx
'

dx
'~

dy dx'

By substituting this value of -=^ the third line of
ax

comes

The latter part may be integrated with respect to x by parts ;

the integrated part will vanish because the limits coincide; we
shall thus have

and
5c V * ~"sl

V
**}

tere means the differential coefficient with

respect to x supposing y a function of x found from f(x,y) = 0;
so that
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Thus finally

ff, ,'/dV dvx dv
v

d*vn a%

v^ #vn\ *= \\dxdy\-j -, --r* + r-r +-T- f^+ r^ &*
JJ

^
V^w tfcc % dx* dxdy dy

2
J

j

"

144. We shall now give the variation of a triple integral.

Let U=
jjjdx dy

dz 7, that is T
1

dxi^dyT'dz V.

V is supposed to contain a;, y, , w, and the partial differential

coefficients of u with respect to x, y, z, up to the second order

inclusive.

Here SU=
jjjdx dydzSV+j^xtdu dx y

dy dz

~* w
dy*

H w
cfo*

H

^dxdy^
x* dxdz

4 v*
dydz

'

There will thus be ten terms in SU arising from 8 V.

The first term is susceptible of no transformation.

The second term is

jjjdx dydz V*-^>

by integration by parts this gives
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The third term is

ff**T'i'
by integration by parts this gives

lldxdy -7- VvSu \\\dxdydz

where we have put lldxdy instead of I

*

dx I dy, and this ab-
JJ J arQ J (y)

breviation we shall continue to use.

The fourth term is

11 Idxdydz V*~j- ;

by integration by parts this gives

I\dxdy Vu -
jf(dx dy

dz -^ Su.

The fifth term is

1 1 Idx dydz

by one integration by parts this gives

dz

by a second integration by parts we obtain

The sixth term is

by one integration by parts this gives

d8u
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by a second integration by parts we obtain

The seventh term is

by two integrations by parts this gives

The eighth term is

by one integration by parts this gives

by a second integration by parts we obtain

dz rr dou f f 7 7 dz dVff,. ^ fff 7 7 7 d zV
~T~ Kw ~3 I" I \dxdy -j =-= cu + \\ \dxdy dz -^

-* ^.
aaj

v
ay JJ

^
CM/ <^a; Jjj 6?c?i/

The ninth term is

by one integration by parts this gives

by a second integration by parts we obtain

The tenth term is
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by two integrations by parts this gives

In these formulae
-j-

and -j- are to be found from the equation

determining the limits which is supposed to be given, /(a?, y, z)
=

0,

(see Art. 135). We shall put p for ~ and q for ^ .

f -f-

8u

dSu

\\dxdy VSz.

Here are six different terms in SC7; the first involves a triple

integral; the second a double integral in which Su occurs; the

third, fourth, and fifth double integrals in which -j ,

-^
, -^ ,

respectively occur
; the sixth a double integral in which Sz occurs.

In all the double integrals z is supposed a function of x and y
determined by/(#, y, z)

= 0. The third and fourth terms will now

be modified so as to get rid of~ and ~ .

dx ay
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7")

If as before
^

denote the differential coefficient of Su with

respect to x after the value of z has been substituted, we have at
the limits

DSu dSu dSu

Similarly =^ d8u

dy fy
* d '

Therefore at the limits, as on page 154,

*a (pVm
-

Thus SU finally consists of the
following terms :

the part involving the triple integral ;

the term n dandy FSz;

the terra

fJdxdy{v
a -pVa -^ +^V,x +fVm+ps

) ctz

and a term \\dxdy MSu,

where M= V, -p Vf - qV
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these being all supposed found from /(a?, y, z)
= 0.

145. The second section of Delaunay's memoir is entitled

conditions that a definite integral may le a maximum or a minimum;

distinction between a maximum and a minimum. This section extends

over pages 79 97.

Delaunay makes some remarks on problems of relative maxima

and minima, and he arrives at a result which requires examination.

Consider the integral fKdx where K is supposed to contain

different unknown functions y, z, ... and their differential coeffi-

cients with respect to x. Suppose that this integral is to be a

maximum or minimum at the same time that a relation
<j>

is

to hold between the functions and their differential coefficients.

Delaunay then supposes that as usual we proceed to find the maxi-

mum or minimum of f(K+ mfy dx, where m is some function of x

at present undetermined. Delaunay considers that there will be

different cases in this problem according as the differential coeffi-

cients which occur in
</> are, or are not, of a higher order than those

which occur in K. If, for example, the highest differential coeffi-

cient which occurs in
</>

is one order higher than the highest which
occurs in A", I Mminay arrives at the result that at each limit of
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the integration we must have m =
;

if the highest differential

coefficient which occurs in
</>

is two orders higher than the highest
which occurs in K

y Delaunay arrives at the result that at eacli

limit of the integration we must have m = and -y- = 0.

146. Without going into detail on the subject we will indicate

two objections to Delaunay's conclusions.

First. Suppose, for example, that K involves differential co-

efficients up to the second order inclusive, and that < involves

differential coefficients up to the fourth order inclusive. Let x and

ojj
denote the limits of the integration, and suppose that x

l
x is

divided into n equal parts ;
and put xl

x = nh. Then Delaunay

says that the relation < = is meant to hold for the following

values of x, when n is supposed large enough :

that is to say, it is not meant to hold for the values

For < involves differential coefficients of the fourth order, and such

differential coefficients may be supposed to depend upon four con-

secutive values of x
;
so that if for example we suppose = to

hold when x = x
t 2A, a value x^+ h would be involved in <, which

lies beyond the limits of our integration. The reply is simple;
the proposer of a problem may attach his own meaning to his con-

ditions
;
he may say that < is to be zero for all values of x within

the limits x and x
lt

or he may say that
</>

is to be zero for all

values of x within the limits x + 3h and x
l

3A. Thus Delaunay's

investigations do in effect attach one of two possible meanings to

a certain condition, but probably not the meaning which would

generally be attached to such a condition.

Secondly. Let us now take Delaunay's own view of the mean-

ing of the condition and examine if his conclusions hold. We have

f*i
then the following problem: Kdx is to be a maximum or a

J XQ

minimum while the condition < = is to hold for all values of x

comprised between f and
,
where g, and lie themselves be-

tween X
Q
and x^ In Delaunay's problem the difference between
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x and f is infinitesimal, and so is the difference between ft
and

but we need not restrict ourselves with this limitation. We have

then to make the variation of the following expression zero :

f**Kdx + f
*

J *o J o

dx
1

The variation as usual will consist of two parts, an integrated

part and a part still remaining under the sign of integration. To

make the latter part vanish we must take a solution which leads

to discontinuity in the form of our functions; that is, a certain

equation or certain equations will be obtained which must hold

between the limits X
Q
and f and also between the limits and

and a certain other equation or certain other equations will be

obtained which must hold between the limits f and fr There

will be no objection to this discontinuity in form provided we can

also make the integrated part of the variation vanish
;
this we must

now consider. The integrated part which occurs at the lower

limit of 8 I Kdx and the integrated part which occurs at the upper
J XQ

limit of & I

l

Kdx may be made to vanish in the usual way by a
^

i

proper disposal of the constants which occur in the integral of the

differential equation obtained by making BlKdx 0. The inte-

grated part which occurs at the lower limit of S I \K+m(j)) dx will

o

partly unite with that which occurs at the upper limit of 8 I Kdx
;

J *o

and the integrated part which occurs at the upper limit of

8 I (K+ m<t>) dx will partly unite with that which occurs at the

lower limit of 8 1 *Kdx. Theoretically the complete set of terms at

the limit f and the complete set of terms at the limit can bo

made to vanish by a proper disposal of the constants which occur

in the integral of the differential equation obtained by making
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We must now examine some of these terms more particularly.
We have already supposed y to denote one of the variables which

occur in K] , put

Then among the terms of the integrated part we shall have

dm<f> /s, 1\ . (dm<b d dm6\ .- ~

-3* (&
- &) +

(-3*
~& -3?) (Z - ***),

and Br and S^ will not occur elsewhere among the integrated terms.

And as m is supposed a function of x only we have

dmcj) dcf) dm(f>

ds
~ m

Thus Sr and Sq will disappear from the integrated part if we have,

at the limits f and ^
dd> _ , d<f> d dd>m -f = and m-f r m-f = 0.
ds dr dx ds

The last relations are satisfied if at both the limits we have

m = and ^ = ........................... (1)

as Delaunay states
;
but they are also satisfied if at both limits

^ = and ^--^=0.. ..(2).ds dr dx ds

Moreover if r and q are to have given values at the limits f and
,

then Sr and Sq are themselves zero at these limits, and then neither

(1) nor (2) need hold.

We conclude then that Delaunay 's results are not necessarily

true even for the special meaning which he attaches to the con-

dition
</>
= 0.

We shall presently consider a problem which will illustrate the

^receding remarks; see Art. 158. Mr Jellett has indicated his

dissent from Delaunay's conclusions; see his Calculus of Varia-

tions, page 362.

112
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147. Delaunay makes some remarks on the distinction between

maxima and minima values of an integral in the following words.

Legendre was the first who considered this question, but he only-

applied his method to simple integrals. Lagrange modified the

method, and Jacobi rendered it as complete as possible by reducing

the investigations which it requires to the general -process of inte-

gration by parts. But neither of them I believe attempted to

extend the method to multiple integrals. In examining this

question I have found that the generalisation of Legendre's method

presents no difficulty, at least if his steps are followed. But the

generalisation of the completeness which Jacobi has given to the

method appears to me to present great difficulties, and I shall not

enter upon it.

Delaunay then extends Legendre's method to a double integral ;

he confines himself to the case in which no differential coefficients

of a higher order than the second occur in the integral which is to

be made a maximum or minimum. The problem which Delaunay
considers had been previously solved by Brunacci, who had arrived

at the same results as Delaunay gives. The investigation is repro-

duced by Mr Jellett in his Calculus of Variations, pages 269 272.

Jacobi's additions to Legendre's method will be explained here-

after
;
and we shall see that the investigations of Jacobi have been

generalised so as to apply to multiple integrals.

148. The third section of Delaunay's memoir is entitled ap-

plication of the preceding theories to some examples ; this section

extends over pages 97 120, and contains four examples.

The first example is to find the curve which has a constant

curvature and has a maximum or minimum length between two

points. Delaunay intimates that this example is to bear upon
the results given in Art. 145.

Let a?, y, z be the rectangular co-ordinates of any point in the

sought line
; x and x

l
the abscissa} of the extreme points. Take x

as the independent variable and use the ordinary notation for

differential coefficients
;
then the length of the curve is
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which is to be a maximum or minimum
;
and

is the reciprocal of the radius of curvature which is to have a

constant value
;

this constant value we shall denote by
-

.

Thus we proceed in the usual way to make I

*

Vdx a maximum
J &Q

or minimum, where

By the ordinary principles of the subject we have the follow-

ing equations as necessary for the existence of a maximum or

minimum :

^__ _
dx dy dx* dy"

~''
'

d^dV <F_dV_
dx dz' dx* dz"

~

Therefore by integration

dV d dV = a '

dV d dV ,.

where a and j3 are two arbitrary constants.

The solution of the problem then depends on equations (1) and

(2) together with

This is as far as Delaunay carries the general solution ;
he adds

the following remark. Since it is impossible to obtain the general

solution we may inquire if the circle which is the only plane

curve of constant curvature satisfies all the conditions; on trial
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we shall find that the equations (1), (2), (3) are satisfied when we

establish the following relations between x, y, z and m
;

(4),

rr*; : (
5)>

(6).

And hence he infers that the circle is a solution of tlie

problem.

149. This problem will lead us into a long discussion; we

shall begin by carrying the general solution a little further in

Delaunay's notation. We shall obtain two first integrals of the

equations (1) and (2) ;
for this purpose it will be necessary to

develope these equations (1) and (2),

Let //.
stand for

+ *"* +W -
y*")'

2

}
and for V(l + 2/

2 + a"),

so that 5 is the length of the curve measured from some fixed

point up to the point (x, y, z) ;
then we shall find that

dV_y' mz"(zy-y'z")

dy' ds
~

/ds\ B
/ds\*

'

Tx *(TX) (dx)

=
dz! <3

my"(z'y" -y'z")

ds
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Multiply equation (1) by y" and equation (2) by z" and

add
;
thus

,,ddv ddv
s
353?

z'z"} d^
dV _ d^

dV
ds /dsY y

dxdy"
*

dxdz"'
x

and

- , "l '"
,'""-

dy^
'

dz")~ y dy"~ dZ'

=^m_ n,av_^.av m

dx p
y

dy" dz"
'

and

in jbfM _ m
dx

~~
ju

thus

dx \dx

" + z'z" d m
~~ds dx p

'

dx

-
dx

Therefore by integration

ay+/3^ + 7

where 7 is an arbitrary constant. Thus
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dV
Again, by ordinary transformations the values obtained for

-p>

may be written thus :

dV __m d*y ds_
dV _m d*z

ds_

dy" ~~{L ds* dx' dz" p ds* dx
'

Multiply equation (1) by and (2) by ^ and subtract ;
thus

a _/3
ds ds

m(y'y"+z
f

z") (yz"z'y"} dz d m d*y ds
dy_ d_md^ ds^

ds dx p d dx ds dx u, ds
2 dx

~dx*
(y

'

Z"~ Z>y"} d_md__+
dx u, dx \ds ds* ds df '

dz d\ x ,

;
thus

dz 0dy_m d?s fdy d*z dz dz

y\ d_m^ds fdy d*z dz dz

y
ds ds

~
p dx* \ds ds* ds ds*J dx p dx \ds ds* ds ds*)

__^ d m fds^ fdy d*z _ dz d\~
ds dx ^ \dx) \ds ds* ds ds

Divide by -^ and then integrate ;
thus

n m f ds\* {dy d*z dz d*y\
az-Py+ C= -T- i-r ^r--r T^ ............

p \dxj \ds ds
2

ds ds* J

where C is an arbitrary constant.

And, Bince - = 5 ? * T
/it \dxj \ds ds* ds ds*J p ds

_ Pm(y'z"-z'y")
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we may write equation (8) thus :

Equations (7) and (9) are the integrals it was proposed to

obtain ;
the problem is thus reduced to depend upon the solution

of equations (3), (7) and (9). The value of m from (7) may be sub-

stituted in (9) and the result will, with equation (3), constitute two

simultaneous differential equations of the second order for determin-

ing the required curve.

150. We have not yet verified Delaunay's statement that

equations (4), (5) and (G) give a solution of the problem; we shall

arrive at this result most easily by arranging the whole solution of

the problem as far as it can be completed in a symmetrical manner.

Take the arc s for the independent variable ;
then we have

(dx\* (dy\* ,
AfeV 1

- A*'aA .(<Ty\* ,/^V l

p)
+ Uv + Uj - :0

> (w)
+
(w)

+
(&) -?

=0
'

r*i

and subject to these conditions we have to make 1 ds a maximum
J S

or a minimum. We may then in the usual way consider that we

have to make I

'

Yds a maximum or a minimum, where
Js

**+5f(?)'+$)'+(?)'- 4 ni(?)+($MH2 \\dsj \dsj \dsj )
2 (\ds

2
J \ds*J \flfj p*}

X X'
Here - and denote functions of s at present undetermined.

Hence in the usual way we obtain as the necessary equations
for a maximum or a minimum,

d*
,
d*x d dx

-i o A ~j-
--

~7~ X 5
=

ds
2

ds* ds ds

--
7 2 '*' J 2 7 '* 7~
ds ds ds ds

d*,d*z d ^ dz
~7~2 X T-? --7~ X -7-
as2

ds* ds ds

(10).
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Therefore by integration

dx _- X -

d ,
d*z dz

~7~~ 7~~2
"~ " 7

~~*

(11)

Multiply the first of equations (11) by -4- and the second

by -T- and subtract ;
thus

dy d*x dx d*y\ d\' fdy d 3x dx d*y\ , _ dy ,dx
~T~ 1 9

~~"
~7 F~2~ ) T~ i 1 7 7T ~~

7 7 a I A( (Z ~T"~
~~ U ~^j~

c^s ds ds ds J ds \ds ds ds ds J ds ds

By integration we deduce the first of the following three equations,

and the other two may be obtained in a similar manner,

X'
ds

_
, (dx d*z dz dz

x\X -7- -3-5 -5 ra
V^s c?s

2
ds tar)

az ,(18).

In these equations yj /', and f" are arbitrary constants. This

method of solution is given by Mr Jellett; see his Calculus of
Variations

, page 195.

151. We have not yet considered the integrated part of the

variation. We suppose that the extreme points of the curve are

fixed. Then with the notation of Art. 149 the integrated part of

the variation will consist of

dV

If we suppose that there is no restriction on the tangents at the

limiting points, then since y' and $z' are independent, we must

have --r, = and -r = at both the limits in order that the in-
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tegratcd part of the variation may vanish. Hence from the known
dV dV

expressions for -7-77- and -py
we must either have m = at both

y

limits, or else we must have simultaneously

y" + z'(z'y"
-

y'z"}
= 0, and

" -
y'(z'y"

-
y'z")

=
0,

at one limit or at both limits. But the latter equations are not

admissible, for they lead by squaring and adding to

y"
1 + " + (y* + ") ('y"

-
y'z'J+ 2 (z'y"

- y'JJ = 0,

and this would make that expression vanish which is always equal

to the constant -
by hypothesis.

152. Let us now examine the form of the integrated part when
we adopt the method of solution given in Art. 150.

The integrated part consists of the following terms ;

first, F&?,

secondly, (\ ^ - ~\'
^f) ($x

-^ &) together with two

similar terms in y and z,

thirdly, V -^ (
5

-^ -7-5- 8s
) together with two similar

(ts \ ds els /

terms in y and 0.

Since the extreme points are supposed fixed Sx, Sy, and Sz

vanish; hence by using equations (11) we obtain for the inte-

grated part

dx
7 dy dz V\ . ,fd*x ~ dx

, d*y ^ dy dz
z ^ dz\

-r + o-/- + c^ 05 + X -7-5 o-j--t~S-?+ -vv8^- ,ds ds ds p
2
J \ds

z
ds ds

2
ds ds

z
dsj'

where it is to be observed that V 1.

It will now be convenient to determine X'; for this purpose

lx .
T ,. /n\ i d*x d*y d z

z
multiply equations (11) by -p- ?

-jjrt ^r> respectively, and add;

thus

1 d\' d*x T d*y d*z
- = a -.+ ft

2 4-c __ ;

p ds ds ds ds
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therefore ^ = a^ + J^ + c ^ + a constant
5

and in order that the coefficient of Bs in the integrated part of the

variation may vanish this constant must equal unity, so that

X' dx , dy dz
-5 = 1 +#-7 h "7- + C T"
p as as ds

In order that the rest of the integrated part of the variation

may vanish it may be shewn as in Art. 151 that X' must vanish at

both limits of the integration; this is proved by Mr Jellett on

page 197 of his work.

The value of X may also be found ; for this purpose multiply

equations (11) by -7- , -/- , -7- , respectively, and add
;
thus

as as as

, (
l

\

dx d*x dy d*y dz d*z\ dx , dy dz
-

-r- TT + -7-:r3-a-7--&-/-Cj-
ds ds

3
ds ds

3
J ds ds ds

X' dx T dy dz 2X'= -- a-j o~ C-T- = 1 --
2-

p as as ds p

153. Now return to equations (12) of Art. 150 and remember

the result just mentioned that X' vanishes at both limits of the

integration. Take the origin of co-ordinates at one of the fixed

points ;
then since we have simultaneously x 0, y 0, z =0, X'= 0,

it follows that /= 0, /' = 0, /" = ; multiply equations (12) by

-j- ,
-g-

, -jr- , respectively, and add
;
thus we obtain

/ 7 dz t N dy dx
(ay -lx}- + (cx- az) 3L+(fa- cy)

- =
0,

or
ds ds

This equation may be integrated by assuming

y = ux, z = vx;
it l.-ads to

ay-bx = n (az cx),
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where n is a constant; this is the equation to a plane passing

through the origin. Thus the required curve is a plane curve, and

as a circle is the only plane curve of constant curvature, we obtain

a circle as the required solution.

154. The preceding article is due to Mr Jellett; it will be

seen that it adds something to the result enunciated by Delaunay ;

for Delaunay stated that a circle is a solution of the problem, while

Mr Jellett shews that if there is no restriction on the tangents at

the extreme points the required curve must be a plane curve and

therefore a circle.

Some further remarks however are necessary here. The pro-

posed problem may be understood in two senses
;
for we may be

required to find a curve of maximum or minimum length while the

curvature has some constant value, or we may be required to find

a curve of maximum or minimum length while the curvature has

an assigned constant value.

In the first case, when the curvature is merely required to be

constant, we may take p as large as we please, and thus the solution

will degenerate into the straight line joining the two given points.

Let us next consider the second case, in which the curve must have

an assigned constant curvature; it might then be impossible to

draw an arc of a circle so as to have a given curvature and to pass

through two given points, and in fact this could not be done if

the given points are at a greater distance than the diameter of

a circle which has the assigned curvature. It becomes a question

then, what the solution of the problem is in such a case where the

distance of the given points is too great to allow of their being
connected by an arc of a circle. We shall shew that the problem
is solved by a set of arcs of the required curvature.

Let A and B be the two fixed points (see figure 6) .

Let A CD, DEF, FOB be three equal arcs of the assigned

curvature, and let them be placed so as to have a common tangent

at the points of junction D and F- then we shall shew that the

curve A CDEFGB constitutes a solution of the problem under con-

sideration.
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For let us suppose the quantity s
l

- s divided into three parts

and the variation of the left-hand member will be zero if the

variation of the right-hand member be so.

Now consider 8 I Vds. The part of this which remains under
J*0

the sign of integration vanishes when equations (12) are satisfied.

And by proceeding as in Art. 1 52 it appears that if X' vanishes at

both limits the integrated part at the lower limit will entirely

vanish and the integrated part at the upper limit will reduce to

(aBx + ISy + cftz) ;

this term remains because the upper limit is now not a fixed point.

The term just exhibited is destroyed by a similar term which occurs

T
"

1

at the lower limit of 8 I Vds, if a, 5, c retain the same values.
J <r

In this way we see that we shall have

8 r Vds + B I*
1

Vds + B
'1

Vds =r Vds + B I*
1

J S J cr

for the system of arcs in figure 6, provided that a, J, c retain the

same values for all the arcs.

It will be remembered that by Art. 152,

moreover the common tangent at D makes the same angle with AB
as the tangent at B, and the common tangent at F makes the same

angle with AB as the tangent at A
;
thus if a, b, c retain the same

values throughout the arcs, V vanishes at F and B if it vanishes

at A and D.

Thus all that we have to do is to shew that equations (12) are

true fur all tin- arcs in figure G while a, b, c retain the name
values throughout, and V has the value given in (13). That is, in
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effect we have to shew that equations (12) and (13) are true for a

circle of radius p without imposing any restriction on the co-ordi-

nates of its centre which it may be impossible to fulfil.

Since the direction of the axes is in our power, let us suppose
that A is the origin, AB the direction of the axis of #, and the

plane of the arcs the plane of (x, y). Then z =
;
thus we must

have /= 0, /' = 0, /" = 0, c = in (12), so that these equations
reduce to

where

Now let (x h)
z + (y &)

2 =
p* be the equation to the circle of

which the first arc A CD is a portion ;
and suppose that the axis

of y is taken so that k is positive. We shall have

fdx\* fdyY
and (-T-) + (-f =1;

\ds/ \dsj

dx_ y-lc dy _ x-h
> 7s~ (]

from these we deduce

, y Jc dy _ x
-

, -r = + -
P

dx
and supposing that s increases with x so that

-^-
is positive we

must take the lower signs ;

d*x 1 dy x k
then -j-^

=
-f-

== =-
,

as* p ds p*

d*y _ 1 dx _ y k

~d?
=

~p
ds

=
p*

'

Thus that (14) and (15) may be true, we require that

x

so that 1+^ = (17),
P

is the only relation between the constants.
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Now we have already supposed that X' vanishes both at A and

D\ at these points -?- has the same value while -~ has values

numerically equal but of opposite sign.

We must therefore have 5 = 0, so that (17) reduces to

1 + ^ = 0.

P

Now suppose Ji and Jc the co-ordinates of the centre of the

circle of which the second arc DEF is a portion. Proceeding

as before we shall find that we must now use the upper signs

in the equations which replace (16), and we shall finally arrive at

Thus k and k' are equal in magnitude and of opposite sign,

and this is the only condition necessary to ensure that equations

(14) and (15) shall hold for both arcs with the same values of

the constants a and
;
and this condition is satisfied by the

figure.

ak ok'
The relation expressed by 1 H-- = 0, or 1 -- =

0, is in fact

the same as that which must hold in order that X' may vanish

at A and D.

We have supposed in the figure three arcs, but it is obvious

that the reasoning we have used will apply whatever may be

the number of arcs; and as we may make this number as great

as we please, we can finally obtain a curved line which differs

in length by as small a quantity as we please from the straight

line AB.

Thus when the curvature is to have an assigned constant value,

the solution will, as in the former case, coincide practically with

the straight line which joins the two given points.

155. In the preceding four articles we have supposed that

there is no restriction on the tangents at the extreme points. If

the directions of the tangents at the extreme points are given,
it will no longer be necessary, as in Art. 152, that X' should
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vanish at both limits. If the tangents at the extreme points are

equally inclined to the straight line which joins the extreme points,

and if also the two tangents and the straight line are in the same

plane, then if the value of the curvature is not assigned, it will

be possible to satisfy the conditions of the problem by a series

of circular arcs as in Art. 154; and if the value of the curvature

is assigned, it will be possible to satisfy the conditions of the

problem by such an arc or such a series of arcs, if the distance

of the extreme points and the magnitude of the radius of curva-

:ure and the directions of the tangents have been given suitably,

3ut not otherwise. But no solution has hitherto been given for

the general problem when the directions of the tangents at the

extreme points are assigned in a perfectly arbitrary manner.

156. We will shew that in certain cases a helix may be

the solution of the problem. For suppose in equations (12) that

a = 0, b = 0, /' = 0, /" = ;

assume x = h cos 0, y h sin 0, z W'^

ds

~fTfl

''

dx y d'u

The first of equations (12) when these values are substituted

becomes

nd the other two become

t

And p = y ;
thus from (19) we shall obtain

(20);

12
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and from (18)

It appears from (20) and (21) that we cannot have h = &, and

with this exception a helix may be a solution of the problem.

157. We will now return to Delaunay's notation. It may be

shewn by performing some ordinary transformations that the equa-

tions (1) and (2) may be written thus :

dv /
' 2m dx\ d

dz t
' 2m dx\ d f dx d

These coincide with the second and third of equations (11)

by supposing

dx , , . 2m dx7 a x ^, , .

a = o, p = c, wp -J- = X
,
ana 1 -- -- = X,

2X'
that is X = 1 --o- .

P

And the equation (7) may be written

dx (. d dz dx

and thus the value of mp -j-
coincides with that found for X' in

Art. 152, by supposing 7 = a.

From equations (1), (2) and (7) in the form in which they
are here given, we can deduce an equation coincident with the

first of equations (11) ; so that the two solutions agree, as of course

they should.

Now in Art. 153 we obtained as the result of the symmetrical
solution that in the case in which the tangents at the limiting

points are unrestricted the required curve must be a plane curve,
and that the plane of the curve must contain the line

-

a c
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If this result 'be transformed into Delaunay's notation it leads

to this conclusion
;
the plane determined by z ay + bx + c in his

notation must contain the line determined by = =
^ in

7 -y - -ft

his notation. For this to be the case we must have 7 = ^7 .

This agrees with equation (6) and verifies Delaunay's conclusion ;

but it is not obvious in what way he arrived at it,

158. It must be observed that Delaunay does not treat the

integrated part of the variation as we have done in Art. 151
;
he

considers that in virtue of his previous remarks we must always
have m = at the limits of the integration. But if m = at the

limits the curve is necessarily a plane curve, as appears in Art. 153
;

and this is obviously impossible when the tangents at the limits are

so assigned that they do not lie in one plane. This furnishes

additional evidence against Delaunay's views.

Moreover this problem affords a good illustration of the re-

marks made in the first part of Art. 146
;
for when the condition is

given that the curvature of the required curve is to be constant the

natural meaning of this condition would be that at every point of

the curve up to and including the limiting points the radius of

curvature is to be constant.

159. The next problem considered is to find a surface of

minimum area, the required surface being supposed to be bounded

by a curve lying on a given surface. The problem had been con-

sidered originally by Lagrange, in the case in which the bounding
curve was supposed fixed

;
see Art. 18. Delaunay arrives at the

known result that the required surface must be one that has at

every point the sum of its two principal radii of curvature zero.

Delaunay shews moreover from the equation which holds at the

limits that the required surface must cut the given surface at right

angles at every point of the curve of intersection of the two sur-

faces. Delaunay then generalizes his results by considering the

multiple integral

/(, fd*\*

122
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160. The next problem is to find the surface which has a

given area and bounds a maximum volume ;
that is, z must be

determined such a function of x and y as will make tfdxdyz a

maximum, while

is to be constant. This problem was originally considered by

Lagrange ;
see Strauch, Vol. II. page 623.

Delaunay obtains as the result that the required surface must

be such that at every point the sum of its two principal curva-

tures must be constant. He supposes that the required surface

is to be bounded by a curve lying on a given surface, and he

gives a geometrical interpretation of the equation which he finds

must hold at the bounding curve. He then generalizes his results

by taking the case in which

I... \\\du...dvdxdyz

is to be a maximum, while

is to be constant.

161. Delaunay makes some further investigations respecting

the surface which includes a maximum volume with a given area.

He says that of all closed surfaces the sphere was known to be that

which included the greatest volume under a given surface, but

that this result had not yet been deduced from the equations
furnished by the Calculus of Variations. He tried the question
in another way, and although he did not succeed in arriving at

a complete solution he gives his results. The problem considered

is the following ;
it is required to join by a surface of given area

two curves of given length situated in two parallel planes, in such

a manner that the included volume may be a maximum. The
differential equations to which the problem leads are then given,

and, assuming that the required surface will be a surface of revo-

lution, it is proved that it must be a sphere. The problem is
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given by Mr Jellett, with some additional remarks on the last

of the limiting equations; see his Calculus of Variations, pages
282286.

162. The last example considered by Delaunay is the variation

of the following expression which occurs in the theory of heat,

In concluding our account of Delaunay's memoir it may be

observed that the examples, although interesting in themselves,

do not throw much light on the precise point which according to

the announcement of the Academy of Sciences required illustra-

tion, namely, the equations which must hold at the limits of the

integrations ;
see Art. 133. And there is very little that can be

considered as an application to triple integrals which was specially

indicated. From the fact that the judges drew attention to Delau-

nay's researches on the distinction of maxima and minima, it may
be inferred that they, as well as Delaunay himself, were not aware

that he had been anticipated by Brunacci on this point.



CHAPTEK VII.

SAKRUS.

163. WE have already stated that the prize offered by the

Academy of Sciences of Paris for an essay on the Calculus of Vari-

ations was awarded to M. Sarrus ;
see Art. 133. We now proceed

to give an account of the memoir which obtained the prize.

This memoir is entitled Eecherches sur le Calcul des Variations ;

it is published in the tenth volume of the memoirs of the Savants

Strangers, and the date of publication is 1846.

164. The memoir consists of 127 quarto pages. It is divided

into five chapters. The first chapter is chiefly occupied with

formulae for differentiating integral expressions with respect to any

parameter which they may involve
;

the second chapter applies

these formulae so as to obtain the variation of a multiple integral

in an undeveloped form
;
the third chapter developes this variation

and shews how many equations must be satisfied in order that the

variation may be zero
;
the fourth chapter gives special develop-

ment of the formulae in the case of triple integrals ;
the fifth chapter

applies the formulae to three examples.

The memoir is extremly interesting and valuable, and contains

a complete solution of the question proposed by the Academy.
The formulae which are obtained are rather complicated, but this

can hardly be avoided in the subject. The memoir is probably
tin- most important original contribution to the Calculus of Variations

which has been made during the present century.

165. The investigations of Sarrus apply to multiple integrals

of any order, and some doubt has been felt with respect to the

best method of giving an account of them. We shall confine

ourselves to the case of a triple integral, because it appears that



SARRUS. 183

no abridgement could render adequate justice to the general results

given by Sarrus, and it would be almost impossible to comprise
BOine of the more complicated formulas within the breadth of an

octavo page. We may hope to succeed in giving an intelligible

specimen of the investigations of Sarrus by taking the case of a

triple integral; and we must refer the student who wishes to

appreciate the full merit of the author to the original memoir.

We shall not therefore give an analysis of the memoir article

by article, nor shall we adopt the notation of the author. Sarrus

uses the symbols x^ #
2 ,

a?
3 ,

... for the independent variables; the

lower limiting values of the variables are denoted by a single

accent, as #/, cc
2 ',

a?
8',

... and the upper limiting values of the

variables are denoted by two accents as x", a?
2", #3", ... We shall

use a?, y, z as independent variables, and shall denote as we have

done heretofore the lower limiting values by the suffix and the

upper limiting values by the suffix 1. The unavoidable complexity
of the notation in the original memoir has led there to numerous

misprints, which however are not of great importance.

166. We shall use then the following notation; by the ex-

pression fdx $dy fdzu we denote a triple integral ;
we suppose that

u is a function of the independent variables x, y, z, and of any

dependent variable or variables, and differential coefficients with

respect to x, y, and z. The integration in the triple integral is

supposed to be performed, first with respect to z from the limit Z
Q

to the limit z
l ,
next with respect to y from the limit yQ

to the limit

, lastly with respect to x from the limit X
Q

to the limit x
l

. It

follows from the nature of definite integration that the limits z

and z
1
will not be functions of z, but may be functions of x and y ;

the limits yQ
and yl

will not be functions of y or z, but may be

functions of x
; and the limits x and x

l
will not be functions of x

or y or z.

The limits of the integrations being thus distinctly stated we
shall not express them in our formulas

;
but they must always be

understood. No confusion or difficulty will arise from our not ex-

plicitly introducing the limits because we shall never have occasion

to use any indefinite integral, and we shall not make any change in
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the order of the integrations. Also when we have occasion to use

a single or double integral involving respectively one or two of the

variables x, y, z, we shall not express the limits, but they must be

understood. This omission of the limits in our integrals may at

first be a little perplexing to the student, but it is strongly recom-

mended by the simplification thus effected in the formulae.

167. The symbol 7 will be employed in the following manner.

Suppose u any function which involves a quantity*p ;
if in u we

changep into q we obtain a result which we shall denote by

fu.
p

This symbol is the one which Sarrus himself employs ;
he calls it

a sign of substitution. The use of this symbol will lead us to ex-

pressions of the following forms,

*0 Jto *0-yo f Jfo [ f..
*b

1 1 u, 1 1 1 u, \dxTu, \dx\dyl u,* y x y * } y
'

J }
' *

#0

these expressions do not require any explanation.

This notation is certainly one of the great merits of the memoir,

and in this respect nothing has probably been suggested which is

of so much service to the Calculus of Variations as this sign of

substitution since Lagrange introduced the symbol B.

168. We shall now shew how to differentiate an integral

expression with respect to any parameter which it may involve;

the formula is well known, but it may be interesting to see the

method of Sarrus, and to exhibit the result by means of the

symbol 7.

Let F(t, x) denote any function of the parameter t, the variable

x, and other variables if required. Put

^ ">-#&.) (0,
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we have then identically

Let X
Q
and x

l
denote particular values of x

;
then

But from (2) and (3) by integrating with respect to x, we
obtain

Substitute these values in (4) ;
we thus obtain

rt,x dx. , dxfj t'f* \ f
Jx+(t,x)-

Now put u for ^ (^, a?)
for shortness

;
then the last result

may be expressed thus:

^ fj fj du &x
\ n

1*1 <%vn i*
\dxu= \dx-j- + -jlv u -T^-l u,

dt ] j dt dt x dt x

where u may denote any function whatever.

It will be observed that in accordance with the remark in

Art. 166, the limits of the integrals are not expressed, but they

must be understood.

169. We now proceed to differentiate a double integral with

respect to any parameter which it may involve.

We have seen that if u be any function whatever,

du dx *i dx f.*
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i

in this formula change u into \dy u ;
thus

and as in the preceding article

d

hence by substitution we obtain

dt x

170. We now proceed to differentiate a triple integral with

respect to any parameter which it may involve.

In the result of the preceding article change u into \dzu;

thus

u =
fdxfa|J*

u

r dy^ jfi r r, dyQ jo c,
+ \dx~^l \dzu- \dx~~l \dz
J dt y J J dt yj

Now transform the first term on the right-hand side by Art. 168;

thus

j fajdyfdz
u =

fdxfdyjdzJ

+jdxjdy 7^'
u
-fdxjdyJf u
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171. We may modify the form of the preceding result. It

is evident that if r be independent ofp,

J iq
I ur r I u\
P P

now z and z
l
are independent of z, also yQ

and yl
are independent

of y and z, and x and x
l
are independent of a?, y, and z. There-

fore we can alter the order of some of the symbols which occur

in the right-hand member of the result of. the preceding article,

and exhibit that result thus,

7*' J -fdxfdy
7* u^

*&f*?'[**&dt J y J dt

172. We will now give some formulas for differentiating quan-
tities affected with the symbol 7 which will be useful hereafter.

Let F(t, f) denote any function of the parameter t, the variable

f,
and other variables if required. Let

(/> (t, f)
denote the partial

differential coefficient of F (t, f)
with respect to

,
and

i|r (^ f)

the partial differential coefficient of F(t, f) with respect to f ; then

we have

now let u-F(t,x}] then

thus we have

d q ,, du d rf du

d^^^x-di + Tt^dx-

Suppose that is independent of #, then by Art. 171,

dt dx~ x dx dt
'
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and finally

du du

Now \dy
-- = /

l

u 7 w
;
and if in this we replace w by 7 w

3 dy y y

we have

\dy -j-1 u = l 1 u ll u.
J

y
dy z y z y z

Hence by (1),

/j
J /Jw <7w d\ J/\ ,, -yo Jw7 [-J- + -J- :y~

= 7 ' w "
' 7 w;y * Vdy a* dyj y z y

therefore

/,

J du Cj - C?M Jf yi ,, _yo

^yl -j- Idyl ^- +1 1 u Tlu (2).
*dy j

y zdz dy y z y z

In the applications we shall make of the formula (2) hereafter,

f will denote either z or z^

173. We shall now proceed to use the results already ob-

tained in expressing the variation of a triple integral. Sarrus

adopts an idea of a variation which had previously presented itseli

to Euler and Lagrange ;
see Arts. 22 and 15.

We consider then that we have a triple integral taken between

limits for each of the three integrations; and we use the symbol
u to denote the function to be integrated. Now u involves x, y, z,

and any function v of x, y> z, together with the differential

coefficient of v with respect to x, y, z
;
also u may involve

any]
other function w of #, y, z, together with the differential coefficients

of w with respect to x,y^z\ and so on. Now to obtain the varia-

tion of the quantity which is denoted by any symbol, we suppose
that such a symbol instead of representing a function of x

t y, z, 01

of some of these variables, becomes a function of t also, where
t is a new variable which is supposed to enter in a perfectly

arbitrary manner; then if the quantity in question be supposed
to be differentiated with respect to t, and t made equal to zero

after the differentiation, the result is called the variation of that

quantity. This idea of a variation had been used by Euler and
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Lagrange as we have already intimated, and subsequently by
Ohm

;
see Arts. 22, 15 and 55.

174. In pages 45 47 of his memoir, Sarrus distinguishes be-

tween two kinds of variations; and we will now explain this

distinction.

Suppose we had such a triple integral as we have considered

in the preceding article. We might conceive that the independent
variables #, y, z received changes by variation as well as the

dependent variables v, w, ... which occur in u. When however

the integrations are taken between limits it is unnecessary to

suppose that the independent variables themselves receive varia-

tions; we obtain sufficient generality" by ascribing variations to

the dependent variables and to the limits of the integrations.

When the variation of a function is taken on the supposition that

the independent variables themselves do not receive variations,

Sarrus calls the variation a variation tronquee^ and he denotes it

thus, . Then as he supposes his integrals to be taken between

limits, he says that he is only concerned with these variations

tronquSes.

175. Now take the result obtained in Art. 171
;
then if we

adopt the idea of a variation explained in Art. 173, and use the

symbol B to denote a variation, we have the following formula :

Idx \dy Idz u = Idx \dy Idz &u

fdx f
l

j y

{dx Idy 1\ S^ -fdx \dy 1\ Sz .

This gives in an undeveloped form the variation of a triple

integral.

176. It is certainly not necessaiy to verify the preceding

result, but it maybe interesting to shew that it does agree with that
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which had been given by previous writers
;
this Sarrus does in the

manner we will now indicate.

According to Sarrus the known formula for the variation of a

triple integral is the following :

>2 U

Sarrus calls this a known formula, but he does not say where it

had been demonstrated. He probably had in view such a method

as the following :

8 \dx\dy \dzu- \ \\Sdxdydzu

= 1 1 Idx dydz$u + II \dx dy dz u

+ 1 1 Idx dSy dzu + U \dx dy d&

[[fj j j f* du
5,

du ~ du ., duSx du&y duz\= \\\dx dy dz[Su -p ox -7- Sy ^- Sz + ^
--

1

--^~ + -
-}.

Jj]
y

V dx dy
y dz dx dy dz J

But it must be observed that before the researches of Poisson

the variation even of a double integral had not been investigated,

for the case in which the limits were variable, in an intelligible

and satisfactoiy manner. The formula which Sarrus considers to be

known will be seen to be analogous to that demonstrated by Poisson

for a double integral ; for Poisson's result is

in which the quantity SFis what Sarrus would denote by

see page 76. And the formula agrees also with the general result

given by Ostrogradsky ;
see Art. 127 at the end, where the quan-

tity which Oatrogradsky denotes by Du is what Sarrus would de-

note by
dU.
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177. In order to shew that the formula given by Sarrus agrees

with the result which he considers known, we shall require some

simple theorems of the Integral Calculus. Let u be any function
;

then

/
, du *i *o

\dz -j- =7 u 1 u:
J dz * z

therefore \dx\dy \dz-j- \dx\dyl% u \dx\dyl u ............ (1).

tin

Again

change u into \dzu] thus

/*7 d f 7 nVl !j ny [7
\dy-j- \dzu = l \dzul \dzu;
J

J
dy} y] y]

7
. du ** dz. *o dz

therefore

f j j du [j *i dz.
, f , *o efe

therefore d dz-^- \dyl u -^ + lay 7 n-.-y*
d$ J

y * dy J
J * dy

(2);

therefore \dx \dy \dz
-^
= -\dx\dyl\ -j^

-\-\dx\dy 1 u
-jj^

+ [dxf'ldzu-fdxfidzu ......... (3).
J yj J vj

Again, by (2) we have

d
^ = -

\dx 1\& + fdxfu&dx J y dx J y dx
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change u into \dz u ;
thus we shall obtain

u ............. (4).

Now transform Idxldy Idz
j by means of (4),

transform Idxldy Idz
-^- by means of (3),

and transform Idxldy Idz
^ by means of (1),

and rearrange the results ; we thus obtain from the known formula

of Art. 176,

8 Idx \dy \dz u \dx\dy\dz (&u
-^-

$x -~ By
- T-

Bzj

+ 7 \dy\dzubx 1 \dy\dz u$x

Now it is obvious that

fefo fe 7\^ = Idx \dy 7

T^jdyjdzuBx
= f



SARliUS. 193

and similar equations hold when the suffix 1 is replaced by the

suffix 0. Hence we have

SJdxjdyjdzu=jdxjdyjdz (Su-

+ 1^ \dy
\dz uSxt ? Jd^ \

+ (dxf {dzu (Syt -&Sx}- {
J yj \

J dx I }

+
fdxjdy

7\
(&,

-
1>

Sy
-

Moreover
c^

1 5,

t
~ by1 ^

dz

a
- f- Sx]dx ]

nd similar equations hold when the suffix 1 is replaced by the

suffix 0. Also

. du ^ du ^ du
5.

x
cu j- ox 7- by r bz ou.

dx ay
" dz

Thus the known formula of Art. 176 has been so transformed as to

with the formula of Sarrus in Art. 175.

178. After obtaining the general expression given in Art. 175

Ifor the variation of a triple integral, the next step is to shew how

[by integration by parts as many of the terms which occur in &u as

>ssible are removed from under the signs of integration. This

[part
of the subject is fully considered by Sarrus; we will give

[three of his formulas.

13
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In equation (4) of Art. 177 change u into uQ\ thus

fdyfdzue
-
Pfdyfde

u6

In equation (3) of Art. 177 change u into uQ\ thus

- A
J

| +/^y7>| ......... (2)

In equation (1) of Art. 177 change u into uQ\ thus

(3).

179. In his last chapter Sarrus applies his formulae to three

examples.

The first example is, to determine the surface which with a

given area contains the greatest volume.

The third example is, to determine the law of the density oi

a body of given form and position in order that the integral

\dx \<hi \
J }

J
}
dz w
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taken throughout the body may be a maximum or minimum, v

being the density at the point (x, y, z) and w a given function of

x, y, z, and v.

The discussion of the first example is too long to be conve-

niently given, and the third will find an appropriate place in the

next chapter ; the second example we will now consider.

We shall however in future omit the bar from the symbol 8.

Sarrus has indeed said very little about what he calls a variation

tronquee; see Art. 174. Perhaps this term and the corresponding

symbol S were only introduced for the purpose of enabling him to

compare his formula with the known expression for the variation

of a multiple integral as in Art. 177
;
and no disadvantage would

have arisen if the term and symbol had not been introduced into

the memoir.

180. The following is the second example given by Sarrus ;

to determine the law of density of a body of given form, position,

and mass, in order that the integral

taken throughout the body may be a minimum, v being the density
at the point (a?, y, z).

The mass of the body is equal to

\dx\dy Idzv,

and since the mass is to be constant the variation of this expression

must be zero. Moreover since "the form and position of the body
are known the variations of the limits &

, Sx^ &/ , &ylt
&s

, S^, are

all zero
;
thus the variation of the mass reduces to

f f f

J J J

and this must consequently be zero,

Again, put , for
^{l

+ (J)V (J)*
+
(*)};

then the

132
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variation of the proposed integral is

dSv 1

Then by the ordinary theory of relative maxima and minima we

must have

f^ fj [j f * 1 <* <*&>
,

1 <fo rf&?
,

1 cfo d&v)
\dx\dy \dz\cv + -

-J- -j-+-"j- -r~ + "
-y T-f = >

J J
^
J [

r dx dx r dy dy r dz dz )

where c is some constant.

Our object now is to transform this equation so as to reduce as

much as possible the number of the signs of integration which

occur with any term.

We first transform \dx\dy\dz- -- -~ by means of equation

(1) of Art. 178; we obtain as the equivalent

, 1 dv

.dx j y j r dx dx

(j [j i
Zl I dv dz.s , f j f 7 -*ol dv-

I dx \dy 1 -
-j-

-=-* bv + I dx \dy 1 --^-
J J

' * r dx dx J J
* z r d

dzn^
dx dx

Next we transform
jdxjdy jdz

i ^^ by means of equation

(2) of Art. 178; we obtain as the-equivalent

d
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Lastly, we transform Idx \dy \dz -
-y- -y by means of equation

(3) of Art. 178
;
we obtain as the equivalent

, . .

\dx \dy \dz

,
1 dv

ci . -j-

f 7 f 7
*i 1 ofo

s, fjfj n
z 1 dv

5,+ lax \dy 1 - -r- ov lax \dy 1 s-cw.
J J

' * r dz J J 9 r an

Substitute the equivalents thus obtained in the original equation;

the result will be

Sv

T 1 dv * 1 dv ,1 dv\

f 7 ( , f , /
*

r dx
"
r dy

"
r dz ]= \dx \dy \dz\c ^ 7

*
^ /

J J ^J V dx dy dz /

[j [j *! /I c?v efo. 1 ^ ^
t

1 dv\ 5.

-Idxldyl (- -j- -T-
1 + -

-y- -r1 - - -y 5t?
J J

' * \r dx dx r dy dy r dz)

, [j [j i
z

i l dv dz 1 Jv dz 1 Jy\ .

+ Idx \dy 1 --7--T-+--7 r- -j-)v
J J

' z \f dx dx r dy dy r dz]

fj n
yi [j f 1 dv fyi l dv\ *Idxl \dz\- -j-~ ri&o

J yj \r dx dx r dy)

fj iy fj /! dv fyo 1 dv\ cs

+ Idxl \dz
- -=- -JT---J- )&v

J y J \r dx dx r dy)

*i
f , f , 1 dv .

+ 7 lav |a- -y- oy
x ]

y
] r dx

-*o r r i^ s
7 ay la^- -y- Si?.
* J J r a#

Hence we must have by the reasoning commonly used in the

ICalculus of Variations

7 1 dv j 1 dv j 1 dv
a. -= a. 7- a.- -=-

r r y r

dx dy dz

lis must hold for every point of the body. We have also certain

[limiting equations, six in number, namely,
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* \r dx dx r dy dy r dz)
~

f I- -JTI
~

}
=0

>

*i 1 dv~
~T~* r das

and three more which can be obtained from these by replacing the

suffix 1 by the suffix 0.

181. There are many misprints in the original memoir, as we

have already remarked, but they are not likely to give any trouble

to a student except perhaps the following. In the third line from

the bottom of page 119 are two mistakes; in the first term the

dx"
factor -r-*- in the notation of Sarrus is omitted, and in the second

dx
dx'

term the factor -j-
4- is omitted. These lead to mistakes in those

dx

terms of Art. 155 which are numbered 9, 11, 15, 18, 21, 24; for

-r
1- is omitted in 9, 15, 18, and ~~ is omitted in 11, 21, 24. More-

dx ax

over in Art. 155 the terms numbered 14, 17, 20, 23 have the wrong

signs prefixed ;
and the terms numbered 30, 32 have in the notation

of Sarrus w instead of -7 .

dx,

182. Some other remarks may be made for the use of the

student of the original memoir.

In his Art. 156 Sarrus interprets the equations which he has

obtained in his solution of his third problem. Thus he finds that

the equation
dw d*v d5w
dv dx dydz dx dy dz

~

must hold at every point of the body; and besides this certain

limiting equations must hold. He appears to sum up his results at

the bottom of his page 126 where he says, "by combining the

different preceding conditions which hold at the limits we see that

they reduce to this -for all points of the surface of the body -in

question we must have w = 0." This must be understood to mean
that at all points of the surface of the body w must vanish and so
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must every differential coefficient of w with respect to x, y, z of any
order. In other words w must vanish identically at every point of

the surface of the body.

Moreover the result might perhaps be obtained more simply
than in the way which Sarrus has adopted. For he obtains on

page 123 as one of the limiting equations, an equation which ex-

pressed in our notation is

The equation is to hold throughout what we may call one of the

bounding faces of the body. Now if the equation just written be

not an identity it really furnishes an equation to this bounding face
;

but the body is supposed to be given in form so that the equation
to the bounding face is already known ;

therefore the equation must

*i
be an identity. The only exception is that the equation 7 w =

might happen to coincide with the known equation to the bounding
surface

;
but it may be shewn that this supposition is inadmissible

by examining the equations from which 7 w = was deduced.

Again, in the method of Sarras he might have observed that

when some of his limiting equations are satisfied some other of

these equations are necessarily satisfied also. Thus on his page 125

he has a sentence which in our notation will read thus
; moreover

the fourteenth and fifteenth terms will give

n
yi *i j/i *i dw

1 1 w = Q, 1 1 -7-
= 0.

y * y * ax

This is quite true, but it is not additional toVhat is already

known
;
for he has already shewn that 7 w = 0, and therefore of

course 7

'

7 'w must be =0, and he has also shewn that 7 '=(),
y z z dx

and therefore of course 7 7 r- must be = 0.
y z dx

We may observe that the misprints which occur in Art. 155 of

the memoir of Sarrus do not affect the validity of the inferences

which he draws in his Art. 156.
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183. As a further illustration of the method of Sarrus we will

give in detail the investigation of the variation of a double integral,

in which we will suppose that no differential coefficient of a higher
order than the second occurs in the proposed expression. We shall

require some formulae in the integral calculus which might be
obtained from those we have already given, but for convenience we
will investigate them here.

It is obvious that

du

change u into \dy u ;
thus

that is

therefore
jdxfdyg =

l^dy
u -

F\dy
u

change u into u9
; thus

/*/*--/*/*

Again, in (1) change u into ?u; thus
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[ 7 jdu *ij *o n
[ ^dudrj

therefore
\dxly^ = l^y u-7,7,

u-J^-^J
change u into w#, thus

* * *o i

1*01 1 uOf 7 J dO
|d#7 w-T- = -7-
j y dx } ydx * y * y

f , -i ^ c/77 /*
, q

^^ ^ .

Idxl u^--jj-\dxl -j- 6 -j
1 ............ (3).

J y dy dx ] y ay dx

In the applications we shall have to make of this formula 9? will

be either yQ
or yt

.

Again, it is obvious that

j

dy

change u into uO, thus

[ , d6

\
dy U

Ty^'-

Hence

/* , du J/i J/o

\dy -j- 1 u 1 u:
}

y d y y

7 j *
, n . nnand 7 idiiu-^- ! \dy-j- + 1 1 uO 1 1 uO ........ (5).

*J
y

dy x]
V
dy y y * y

In the applications we shall have to make of the last formula,

will be either X
Q
or x

l
.

184. Let then

U

where V is supposed a function of

dz dz

In this double integral we suppose that the integration is

effected with respect to y first, and the limits y and yl may be

functions of x t As the limits and the order of integration will
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continue unchanged throughout the investigation, it will not be

necessary to denote the limits explicitly, but they must be always

understood.

As in Art. 175 we shall have, using 8 instead of 8,

SU=fdxfdySV+ fjdy V^x^-l^dy
VSx

And

where Vx denotes the differential coefficient of V with respect to

-ydx-y , and F, denotes the differential coefficient of F with respect to

_
-yo

-^ ,
and FB,. that with respect to -y-g ,

and so on.

Thus IdxIdySV consists of six terms, and all of these except

the first may be developed by means of the formulae given in

Art. 183.

First; the term \dx \dy -y- z does not admit of any transfor-

mation.

Secondly; by equation (2) of Art. 183,

. dx

Thirdly; by equation (4) of Art. 183,
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Fourthly ; by equation (2) of Art. 183,

mm .

y
* dx dx J y

cx dx dx

Out of the five terms on the right-hand side of this equation,

the first and the last two admit of further transformation; by
equation (2) of Art. 183,

dVdSz

r jfi dVxx . dyt f , /o dVxx . dy,
\dx 1 -j-^ oz -f-

1 + \dx 1 - 02 -f*
J y dx dx J y dx dx

by equation (3) of Art. 183,

d

y dy **\fa r , dxdy dx

a similar transformation can be made of

J/o d%zdyn

Thus we shall get on the whole
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/
k

4&*y dx dx

+ 1* fs,l>
J y dx dy\

xx
dxj j y dx

It may be observed that as
^/j

and ^ are independent of y

Fifthly ; by equation (2) of Art. 183,

fj (j T7 d^Z fj [j dV*V d*Z
\dx lay V-.. -J~^r = ^- \dx\dy-^- -j-
] J

l *"

dxdy j ]
y dx dy

j ~r i vu*/ i r jw, 7 jdx J y ^
ay ax

The first term on the right-hand side may be transformed by
equation (4) of Art. 183, and the second and third terms may be
transformed by equation (5) of Art. 183.

Thus we shall get on the whole
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x y
** x y x y x y

dx > c^ dx
'

Sixthly; by equation (4) of Art. 183,

dVdSz

vv .

y IV

dy

The first term on the right-hand side may be transformed

by equation (4) of Art. 183. Thus we shall get on the whole

[j ^dVyy^ {, Jo dVvy .
Idxl -- Bz + \dxl j-^ 02
J y dy ) y dy

C.. yi ,r dSz f y ,r dSz
+ Idxl V

vtl -^
-- \dx I Vm -p- .

J y
JV

dy J y dy

We must now collect the results obtained for the various

terms occurring in IdxIdySV. Thus on the whole we shall ob-

tain the following as composing the value of i

First, a double integral, namely,

dv
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Secondly, terms involving integration with respect to y only,

namely,

Thirdly, terms involving integration with respect to x only,

namely,

_
dy \dx dx dy

Fourthly, terms involving no integral sign, namely,

Besides these there are in 8 Z7 the four terms

%jdyVSxt-f*jdyVSx.
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185. We have given in the preceding Article the develop-
ment of the variation of a double integral; we now proceed to

consider the relations which must be satisfied in order that the

variation may vanish, supposing that no restriction exists with

respect to the limits of the integrations.

In order that the part of the variation which involves a double

integral may vanish we must have

av _av. av rv..^vv #v
a={i .

dz dx dy dx* dxdy dy*

this must hold for all values of x and y comprised within the limits

of the integrations.

Next, the term affected with the symbol 7^
I dy must vanish

;

that is, when x = x
t

.

must vanish for all values of y between yQ
and yr And since

J^

-7 ,
and Sx

l
are arbitrary we obtain the three equations

y _ T7-o-Y~ *>- dx dy

these are to hold when x = x^ for all values of y between yQ
and yl9

so that we may conveniently express them thus,

7 F,--) =
O, 7 =

0, 7 7=0.
\

t dxdy) ^ ^

Similarly from considering the terms affected with the symbol

we obtain
7^ \dy

7*7=0.

Next consider the terms affected with the symbols \dxl
y

and

\dxl\ We shall obtain in a similar manner six equations, three
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to hold when y=yl
for all values of x between X

Q
and x

lt
and three

to hold when y = y for all values of x between x and x^. We
may write the first three thus,

dy dx dx dy

dVyv\

dy}~

/'r.o.
y

The other three are obtained from these by changing y^ into yQ
.

Lastly, the four terms without any integral sign must vanish

thus we obtain four equations which must hold for special values

of x and y, namely x = x^ and y = yv and so on. These equa-

tions are

* y
xx dx

The equations we have obtained may of course be combined

and thus simplified ; thus since we have already obtained

it follows that the last four equations reduce to

>
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186. We may now make some comparison of the results of

Article 184 with those obtained in Art. 143 by Delaunay's method.

According to Delaunay's suppositions we have

y i

= yo when x = x
,
and also when x xr

n consequence of this a term affected with the symbol 7
l

I dy

vanishes because the limits of the integration with respect to y are

qual when x = x
l

'

) similarly, a term affected with the symbol

vanishes.:/*

Hence the variation of the double integral reduces to

where

dx dx^ dx\
** dx t

dy \dx) dx dy
'

md P
o
and Q are formed from P

l
and Q l by changing the suffix 1

svherever it occurs into 0.

This result coincides as it should do with that in Art. 143.

14



CHAPTER VIII.

CAUCHY.

187. A MEMOIR by Cauchy on the Calculus of Variations is

published in the third volume of his Exercices ^analyse et de

Physique MatMmatique, 1844; it extends from page 50 to page 130

of the volume.

This memoir may be described as a reproduction of a portion

of the investigations of Sarrus with some difference of notation, and

frequent reference is made to Sarrus throughout the memoir. In

fact Cauchy himself does not appear to have considered his own

memoir as more than a new exhibition of the method of Sarrus;

thus he says at the end of his last chapter : The various formulas

obtained in this last paragraph do not differ in substance from those

obtained by M. Sarrus. They are however simplified by the nota-

tion which we have employed.... Cauchy adds that he will develop
the subject in some other memoirs and apply it to the solution of

various problems. This design appears however not to have been

accomplished.

The memoir published by Cauchy may be considered an evi-

dence of the favourable opinion he held of the method of Sarrus.

188. Cauchy's memoir begins with a few preliminary re-

marks and is then arranged in nine sections under the following
titles. 1. Definitions. Notation. 2. On the continuity of func-

tions and of their variations. General properties of the variations

of several variables or functions connected by known equations.
8. General formula} suitable for furnishing the variations of func-

tions of one or more variables. 4. Properties of the variations of
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different orders. 5. On the variation of a simple or multiple
definite integral. 6. On the different forms which may be given
to the variation of a simple or multiple definite integral. 7. Com-

parison of the formulae established in the fifth and sixth sec-

tions. [The original memoir by mistake has third and fourth

sections.] Differentiation of a multiple integral relative to any
variable different from those with respect to which the integrations

are performed. 8. On the partial variation which for a simple or

definite multiple integral corresponds to variations in the form of

the functions which occur under the integral sign. 9. On the re-

ductions which can be effected by integration by parts in the varia-

tion of a simple or multiple definite integral.

189. The first four sections are very diffuse, but contain nothing
new or important. In the fifth section a formula is obtained for the

variation of a definite multiple integral which, as Cauchy remarks,

is precisely the same as that obtained by Sarrus ;
it is the formula

which we have already given in the case of a triple integral ;
see

Art. 175. In his sixth section Cauchy gives an independent de-

monstration of that formula for the variation of a multiple integral

which, according to Sarrus, was known before he published his

method; see Art. 176. We will exemplify Cauchy's demonstra-

tion by applying it to the case of a triple integral.

190. We have to prove the following formula :

By \dx\dy\dzu, as formerly explained, we understand a triple

integral in which we have first to integrate with respect to z from Z
Q

to z
15

then with respect to y from y to y^ and lastly with respect

to x from x to x
l

.

Now let X=x + Bx, Y=y + By, Z=z + Bz, where Bx, By, Bz

are indefinitely small arbitrary functions of x, y, z. Let U denote

142
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what u becomes when x, y, z, are changed into X, F, Z, respec-

tively, and also any function of x, y, z, involved in u, receives an

indefinitely small arbitrary increment. Then the varied value of the

triple integral is

jdXJdYJdZU;

the limits will be found by keeping the same limiting values as be-

fore for x, y, z. It is important to observe that since Sx, By, Sz are

quite arbitrary we can obtain all the necessary generality in the

varied value of the triple integral by retaining the original limiting

values of x, y, and z.

The variation of the triple integral will be found by subtracting

the original value from the varied value.

Now it is obvious that the complete variation will be obtained

by determining separately the parts of the variation which arise

from the change of u, x, y, z into Z7, X, F, Z^ respectively ;
and

when we are considering the change of one of the quantities the

others may be supposed to retain their original values
;
the terms

thus neglected are in fact of a higher order than those which are

retained. Thus by putting u + $u for U we find that the term

arising from the variation of u is

/

dzSu.

Now consider the term which arises from the change of z into Z
while the other quantities retain their original values. The integra-
tion with respect to z is the first performed; hence by the change
of z into Z the triple integral is changed into

jdxjdyjdzu^
j ^

where the limits of x, y, z are the original limits
;
and

-j-
is the

differential coefficient of Z with respect to z only, that is, supposing
x and y constant. Now

dZ d dS

^ = -(, +^ = 1 +
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thus the term in the variation of the triple integral which arises

from the change of z into Z is

(, f, (, dSz
lax \dy \dz u -7- .

The simplicity of this process arises from the fact that the integra-

tion with respect to z is i]\Q first performed.

Now let us consider the part of the variation of the triple in-

tegral which arises from the change of y into Y. We may conceive

; that the order of integration in the original integral is changed so

;
that y is now the variable with respect to which the first integration

is performed ;
we know from the Integral Calculus that this can

[always
be done by making suitable changes in the limits of the

[integrations.
Then as before we shall find that the term in the

[variation
of the triple integral which arises from the change of y

jinto
Fis

fdxjdzjdyu-^,

Ifche limits being as we have already intimated adjusted to the new

jorder
of integration. Now restore the original order of integration ;

icn we obtain for the required term

irhere the limits will be the original limits.

Similarly the term in the variation of the triple integral which

rises from the change of x into X is

rhere the limits are the original limits.

Then by collecting the terms we obtain the whole variation,

hat is,

dfo[j [j (j (j [j [j f* d*x
, <% ,

d8z\
idxldy Idzu \dx\dy I dz f ou + u

-^
\- u -~ + u r~\ J

bis result obviously coincides with that which was proposed to be

roved.
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This investigation seems more simple than that given by

Ostrogradsky; see Arts. 127 and 128. The simplification arises

from considering the variables separately instead of simultaneously

191. In his seventh section Cauchy shews that the form given

for the variation of a multiple integral by Sarrus coincides with the

form known before ;
this Cauchy does in the same way as Sarrus

gee Art. 176.

Cauchy proposes a new notation which he strongly recommends

According to the notation of Sarrus we have

'*i , du n
xi J"o

dx-j- = 1 u1 u\

Cauchy proposes to express this result thus

[
x\ , du x=x\

\ dx -T- = u.

Similarly what Sarrus would express thus

7*
1

f
l

u _ 7* f
l

u - 7*
1

f u + f f u,x y x y x y x y

Cauchy proposes to express thus

T TV-
*=#o y=yo

This latter is the form that Cauchy really uses
;
but apparently

by a misprint he gives on his page 100 such a symbol as thi

following

T
y

\

Ut

This however seems more convenient than the symbol wind

Cauchy really uses
;
and it may be rendered still more commodiou,

by writing it thus

u.

To exemplify the use of this notation we may take the genera
formula for the variation of a double integral which has been givei
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in Art. 184
;
that formula expressed by the aid of the new notation

will stand thus,

where it must be observed that - will stand either for
-j~ or for

-4* as may be required.

Cauchy says on his last page that on speaking to Sarrus respect-

ing this new notation by means of which the difference between

two values of a variable is expressed by a single symbol he learned

that the same idea had occurred to Sarrus himself. Perhaps we

may infer that Sarrus on trial was not satisfied with it as he did

not use it in his memoir.

Cauchy also proposes to use
|
u in order to denote what

Sarrus denotes by 7 u
;
we shall not follow Cauchy on this point

but adhere to the notation of Sarrus. Thus we only use Cauchy's
notation when we have to express the difference between two values

of a variable, and we use Sarrus's to express a single value of a

variable ; there is then no possibility of confusion.
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192. Cauchy's eighth section contains nothing new or impor-

tant. In his ninth section he considers the transformations which

are to be made of the expressions by means of integration by parts.

This section is illustrated by an example which we will now give

in detail.

Let M be an unknown function of x, y, z
; let v be a function

of y v z and ^r Let 8s denote that part of the variation of
' *' dxdydz

the triple integral Idx \dy Idzv which arises from the variation

of M; then we have

(1),

where r is the differential coefficient of v with respect to , , ,

The limits of the integrations are supposed ta be denoted as hereto-

fore. We propose then to reduce 8s by means of integration by

parts.

d d^u dr d*SwWe have r , , , =-j-r , 7 -3- / j ,dx dy dz dx dy dz dx dy dz

thus (1) becomes

By equation (4) of Art. 177,

(j [j (j ^ d*u *!/. r, d*Su
Idxldyldz^- r-3 j- = \ \dy\dzr-, =

J J
y
j dx dydz

]*9J
y
j dy dz

(j i
y * (j <P%U dy. [ 7 ny'o f 7 d*Su dyn-Idxl ldMr-T 5--jU+\dxl \dzr-j y--f-

J V J dydz dx J y J dydz dx
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Thus (2) becomes

i*
1 [j [j d^u [i (j li dr ^

cs =
\ \dy \dzr -^3 \dx\dy\dz-j- , ,

'*oj
y
j dydz ] J

J
J dxdydz

r _ _yi f _ d?$u dy. f , Jf* f 7
d*$u dyQ-Idxl \dzr-T TJ + \dxl dzr-j j- -f

5

) y } dydzdxj y J dy dz dx

dz

It will be observed that Su is not differentiated with respect to x
in any term of (3).

70*

In equation (2) of Art. 177 change u into r
-j ;

thus

f
7 f, d*Su [, f, drdSu

\dy dz r -= 7-
= I dy \dz -j 7-

J
y
j dydz J

b
J dy dz

^o. !/// -

c?3 dy

+
|

Thus the first term on the right-hand side of (3) becomes

I 'I

1

Idzr --
!

^o 'y J cfe

i

*
! r * n*1 ^s** <fe

i

^ r 0^ ^s <&
(ay/ r -= H-+ Idyl rj =-?

'^oj
^ ^ &

dfjf
'^oj

<:/ * dz dy

dy dz
"

Similarly the second term on the right-hand side of (3) be-

comes
dr d&u

J
x

'y J
^

c?ic ^

( i (j ^drdBudz, T 7 f, *odrd$udz.
\dx\diil -j

= 7*+ \dx\ayl -j- -j- -r1

J J
J * dx dz dy J J

>f * dx dz dy



218 CAUCHY.

The third and fourth terms on the right-hand side of (3) we

shall not transform ;
we proceed to the fifth term.

In equation (2) of Art. 172 change u into r -^ -^ ,
and put z

t

for f ;
then observing that z

v
is independent of z "we obtain the

following result,

dz dy dx

y\ -*i dou dz. fj J^i dz^ dz. d dou ,

'yo * dz dx J x dx dy dz dz

Now by equation (1) of Art. 172

*i d dz
t _ d -*i dz

l rfi
dz

l
dz

l
dr

x dy dx
~
dy x dx x dx dy dz

'

Thus a part of the first term on the right-hand side of (4) can-

cels a part of the third term, and we obtain

(d 7*
1 ^u ^ - - Id f

1*^^*1 ^i
]
y x dydzdx~ j x dz dy x dx

]

y x dz dx

T 7
*i d^udz. dz.

Idyl rf-^--^.
J

* x dz dx ddx dy

A similar formula holds when ^ is changed into z .

Thus we obtain

j-
dz

I*
1
[j n*

1 u z
i i

\fy' r "T~^-L +
\ -j

*oj
<; * dz dy '^oj

' x dz dy
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f _ Vi [ _ dr dSu
I dx] \dz-j -j-
J yoj dx dz

*i dr dou dz. f -, f , *o dr dSu dz

x dx dz dy

dSu

+fcfafc&dy d,

-faffj.Mfy+farfar***
J y J dydzdxj y J dy dz dx

[j (j i*1 d u d *i dz. f , fj *o dou d ~*o dzQ+ Idxldy 1 -Y--T-7 r^ \dx\dy 1 -T-
-j-1 r~

J )
'' * dz dy * dx j J

' z dz dy * dx

/
7 ,yi q

^i dSu dz. f 7 ,y\ *o dSu dz
**L' r-j-^+ldxl 1 rT--^-

yo x QJ%
j jax ]

l

yo * dz dx

[j fj i
l d ou dz dz [j f , *o d*Su dz. dz

Q

\-\dx\dyl r -j-s--^ -j \dx\dyl r-^-^--^-^.
J j

J x dz* dx dy J ]
* x dz* dx dy

In some of these lines terms occur involving integrations with

respect to z and differentiation of Su with respect to z ; such terms

admit of further reduction.

In the first line we have Idz rj. and
J dz '

T dSu *i , fIdzr-^^l rou
I

J dz '*o J z

In the third line we have Idz -= -=
9
and

J dy dz

/,

dr dSu ,*i dr ~ [ 7 d*r ~

iz-j T = -j-ou Idz-jj-bu.
dy dz XQ dy J dydz

In the fourth line we have Idz -, = . and
J dx dz

C 7 dr dou ,*i dr ~ T,
Idz -^ 3= -j-ouldz
J dx dz *odx J

Jdxdz
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/*, d*r dSu
In the sixth line we have Idz , ,

-^
,
and

[, d*r dSu *i d*r . f d*r
Idz j j -j

= -jj~ bu \dz -777- ou.
J ax ay dz **odxdy J dxdydz

IT T. [j d*$u dy. , f, d*Su dya
In the seventh line we have I dz r jj- -p and dz r -^ =--p ,

J dy dz dx J dy dz dx

T 7 d^u dy, ,*i dy,du r 7 dSu dr dy,
and \dzr T-j-iP = \

r -f-
1

-j
-- Idz -=- -=- -4p*,

J o^as aa; '^o dx dy J dy dz dx

[j,*.
d^u dy - 1*

1

v
dv d*u

fj*
dSu dr fy*

I UZ / ~z-^
--

^ / ~7 T~~ I U/& ^
--T~ -,

J d^as aa? '*o aa? o^ J ay dz dx

Thus finally

*i oV . r yt r

^ Sw+ ^
\^orfa; J 'y J

d*r .

Su

wdx dy } y J dy dz
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-
(dx \

yi

f
1

r^%* + (dx \

yi

1* r^^J yo x dz dx j y * dz dx

[^ C 7 *i dz$u dz. dz. [, /* 7
*o d*&udzn dz+ lax lay 1 r -7-5-

-TJ
-y-

1

\dx \dy 1 r =-5- -^ -y-
5

.

J J
' z dz' dx dy J J * dz* dx dy

193. As a particular case of the preceding result, Cauchy
supposes that r = 1. Thus we obtain

f , f, fj d*Su
cs= \dx\dy \dz

dx dy dz

dx

I -i \ i n^^ clou a z, \ ., / _ -,^o aou d z
+ \dx\dyl \--\dx\dyl -7--, f

J J
' * dz dxdy ] )

y * dz dxdy

C _ .y\ *i dSu dz, C , y\ *o dSu dzn

\dx\ 1 -j j-^+ldx 1 -^ =-2

J 'yo * dz dx j y * dz dx

Of the eleven terms here given Cauchy has omitted the sixth and

seventh.

With this particular case Cauchy's memoir terminates.

194. We can now conveniently introduce the third example
which Sarrus gives in illustration of his formulae; see Art. 179.

The example is the following ;
to determine the law of the density

of a body of given form and position in order that the integral

d*v
dzw

dx dy dz
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taken throughout the body may be a maximum or a minimum,

v being the density at the point (x, y, z), and w a given function

of x, y, * and v.

Since the form and position of the body are given there are no

terms in the variation of the triple integral arising from the vari-

ation of the limits. Thus we have for the variation of the proposed

triple integral

The first of these two terms is equal to

'

, d*v dw
5.

dz j j j -j- ov ;

dxdydz dv

the second developes into the twenty-two terms given as the result

of Art. 192 provided in that result we change r into w and u into v.

Of these twenty-two terms the twelfth is the only term which

involves a triple integral ;
this must be united with the term just

given, so that we obtain

r f f
'

/ d*v dw_ _ dsw \
<x

J j i \dxdydz dv dxdydz)

This must vanish by the ordinary principles of the Calculus of

Variations; hence
d*v dw d*w

dxdydz dv dxdydz

This partial differential equation must be solved to find v, the

solution of course involving arbitrary functions ;
and the arbitrary

functions must be determined from the limiting equations which

we shall now examine.

We may consider the given body to be bounded by six faces.

Two of these six faces we will call the upper and lower ; they are

determined by the known values of z
t
and z in terms of x and yt

and may thus be of any form. Two of the six faces we will call

t\ic front and back; they are determined by the known values of

y, and y in terms of x, and are therefore cylindrical having their

generating lines parallel to the axis of z. The remaining two
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faces we will call the rigid and left; they are determined by the

known values of x
l
and #

,
and are therefore planes perpendicular

to the axis of x.

In particular cases these six faces would assume particular

forms. For example, suppose the given body to be the ellipsoid

determined by the equation

the upper and lower boundaries are the portions of the surface of

the ellipsoid determined respectively by

= /f-, x*

y*\~ c

v(
l ~jv)'

ihe front and back boundaries are the portions of the ellipse in the

plane of
(a?, y) determined respectively by

the right and
left,

boundaries are the points on the axis of x for

which x = a and x = a respectively. Thus in this example two

of the six faces degenerate into curves and two into points.

The eleventh term in the result of Art. 192 gives

\dx\dv I

J J
u ]

*o
7 ,

dxdy

and in order that this may vanish, since &v is arbitrary, we must

have
*

,
*

0, and?
,

.

x dxdy * dxdy

The ninth and seventeenth terms in the result of Art. 192 must

be united because they involve the same arbitrary term
;
thus

we get

f 7 f , *i dSv fdw dz. d *i dz\
Idx dy 1 -j -j-

1 + -j- 1 w-r")',
J J

J * dz \dx dy dy * dxj
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J o

and in order that this may vanish, since -j- is arbitrary, we

most have
*i fdw dz. d *i dz\

1 [-3
--

5-
1 + -5- 1 W -y-

3
I
=

0,* Vfo dy % * v

or as we may write it

*i fdw dz
l

dw dz
l

dw
dz^ dz^

d*z
l
\ _

* \dx dy dy dx dz dy dx dxdy)

The tenth and eighteenth terms in the result of Art. 192 lead

to a similar equation with z in the place of z
t

.

The twenty-first and twenty-second terms in the result of

Art. 192 lead respectively to

*i dz. dz. *o dz. dzn
1 w -j-

1

-y-
1

0, 7 w -=-S -y-^
= 0.

* dx dy % dx dy

We have thus proved that the following equations must hold,

n
*i fdw dz. dw dz. dw dz. dz d*z \

1 (-J
--

7-
1 + -7

--
7- + -T- -7- j- + w -jj- = 0>* \ax dy dy dx dz dx dy dxdy)

* dz. dz,
1 wj x-1 -y = 0.~ dx dy

The last of these gives 7

'

w = 0, for -^ and -^ are inde-
* dx dy

pendent of z.

The equation 7 w = shews that w must vanish identically for

all points of the upper boundary. For if w does not vanish iden-

tically w = must coincide with the known equation to the upper

boundary; and then we shall not have the other two of the

above three equations satisfied. For from 7 to we obtain by

differentiation

dw dw dz\ *i /dw dw
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ind from these combined with the second of the above three

Aquations we deduce

dx * ty~ * dz~

and these could not be true if w = were the equation to a surface
;

dw dw , dw , . ,, , . , f
>ecause -7- ,

-r- . and -7- can only simultaneously vanish for
dx '

dy
'

dz

pecial points on a surface and not for any continuous portion of

a surface.

Thus w must vanish identically for all points of the upper

)oundary. And similarly w must vanish identically for all points

)f the lower boundary.

The eighth term in the result of Art. 192 gives

d*w

dxdz
*

This involves the value of Sv for the front and back of the given

)ody. Confining ourselves to the former, we obtain

= 0.
y dx dz

The fourteenth term in the result of Art. 192 gives

f 7
J/i f .,

dSv dy. dw
\dx7 \dz-j-

-~
-j- ;

J y J dy dx dz

nd from this we obtain

y dz
~

,ince the factor -
1
is independent of y.

From the last two results we infer that w must 'vanish iden-

ically for all points of the front boundary. For if -y- be denoted

>y w we have

Ji ,
, J/idw

1 w = 0, and 7 -=- = ;

y y dx
15
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and the first of these equations shews that u>' must vanish identi-

cally for all points of the front boundary, or else w = must coin-

cide with the known equation to this front boundary ;
but the latter

supposition is inconsistent with the second of the above two equa-

tions. Thus w must vanish identically for all points of the front

boundary, and from this and the fact that w vanishes identically for

the points common to the front boundary and the upper boundary,

we infer that w must vanish identically for all points of the front

boundary.

Similarly from the remaining part of the eighth term and the

sixteenth term in the result of Art. 192, we conclude that w must

vanish identically at every point of the back boundary.

From the sixth term in the result of Art. 192 we obtain

,

-, r = 0. and 7 7
, = :

* dy dz ^ dy dz

and from these terms combined with what we already know respect-

ing w we conclude that w must vanish identically at every point of

the right and left boundaries of the body.

Thus we conclude from the terms that we have examined, that

w must vanish identically at every point of all the bounding faces

of the given body ;
and supposing this to be the case we shall find

that the remaining terms in the result of Art. 192 vanish.

195. We will close this part of the subject by giving the com-

plete development of the variation of a triple integral in the case in

which no differential coefficient of a higher order than the first

occurs in the proposed expression.

Let then 1 1 1 Vdxdydz denote the proposed triple integral, where

IT* f A.- f du du duV is a function of x, y, z, u, -=-
, -7- , -7- .

ax ay dz

The integration is supposed to be effected first with respect to z

from
f to

a ,
then with respect to y from ^to^, and then \vitli

respect to x froiy ar to .r^
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Let the differential coefficient of V with regard to be de-
dx

noted by JT, the differential coefficient of F with regard to ~ by F,

and the differential coefficient of Fwith regard to ~ by Z. Thus

du
x
dx -~d^^

J
~dz~'

By Art. 175 we have in the notation of the present chapter

SJjjVdxdydz=ffJ8Vdxdydz

\*1 c f I" yi f r c *\
+

\x \dy Idz VSx + ldx\ Idz Vfy + Idx \dy \
VSz.JJ J ffo J J J o

There are four terms in SV giving rise to four terms in

jjjSVdxdydz.

The first term is not susceptible of transformation.

The second term is to be transformed by equation (1) of Art.

.78
;
this gives

fdxjdyfdzX^=-

+ i

The third term arising from 8V is to be transformed by equation

2) of Art. 178
;
this gives

\dx\dy\dz Yj = \dx\dy Idz
-j-

Su

+ (dx f
l

(dz YSu - (dx (dy f
! Y~ Su.

J V' J J * dy
IO-L'
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The fourth term arising from 8V is to be transformed by equa

tion (3) of Art. 178; this gives

f ldxldy\
ZSu.

Thus we have finally

f

jdy jdz (
VSx + XSu)

jdx
\*

Of these terms those affected with the symbols

I \dy\dz and \dx\ \dz
'*oj

*
} } VoJ

vanish when we confine ourselves to the particular case considered

by Delaunay, as we have already explained in Art. 186. The re-

maining terms agree as far as they go with the result given in

Art. 144.



CHAPTER IX.

LEGENDRE, BRUNACCI, JACOBI.

196. WE are now about to give the history of that part

of our subject which relates to the criteria for distinguishing a

maximum from a minimum, and for ascertaining when neither a

maximum nor a minimum exists.

We have already intimated in Art. 5, that Legendre had

arrived at some results on these points, arid that Lagrange had

hewn that further investigations were required in order to ensure

he accuracy of Legendre's conclusions. The requisite investiga-

ions were supplied by Jacobi in 1837, and the memoir which

Facobi then published has given rise to an extensive series of

commentaries and developments. Before however we proceed to

Facobi's investigations, we will give an analysis of Legendre's
nemoir and of some others connected with it.

197. Legendre's memoir is entitled Memoire sur la maniere

ie distinguer les maxima des minima dans le Calcul des Variations.

[t is printed in the volume for 1786 of the Histoire de VAcademie

Hoyale des Sciences; this volume is dated 1788. The memoir ex-

;ends from page 7 to page 37. There is an Addition to the memoir
>n pages 348 351 of the volume for 1787 of the Histoire ...

;
this

volume is dated 1789.

198. The first investigation in Legendre's memoir is in sub-

stance the same as that which we have given in Art. 5. He shews
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by the method there used that the problem he is considering may
be reduced to the investigation of the sign of

In Article 5, we supposed 8yt
and SyQ

to be zero, so that the

part of the above expression free from the integral sign vanishes.

Legendre adopts the following method with respect to the inte-

grated part of the above expression; the value of X is to be

determined from a differential equation and it will therefore in-

volve an arbitrary constant, and this arbitrary constant may be

supposed to be so taken as to make \ (S^)
2 \ (Sy )

2
vanish or

have the same sign as the part of the expression under the in-

tegral sign.

199. Legendre next considers the case in which the integral

of an expression /(a?, y, p, q) is to be a maximum or a minimum,

where PJ an<i q ~r4 The investigation is similar to that

already given, and the conclusion is that the result found by the

ordinary processes of the Calculus of Variations will be a maxi-

mum if -^ is always negative between the limits of the integra-

tion, and a minimum if it is always positive.

Legendre then says that it is easy to generalise these results

and to infer that the ordinary processes will give a maximum, if

the second differential coefficient off(x,y, ^ , $,
...)

with re-

spect to the highest of the quantities ^, ^4,... which it in-
ax ax

volves is always negative between the limits of the integration,
and a minimum if that second differential coefficient is always
positive.

200. Legendre next considers the case in which we have to

find the maximum or minimum of f/(a?, y,p] dx, supposing that

x is susceptible of variation as well as y. The investigation is
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aylnow
more complicated than that in Articles 5 and 198

;
the re-

ult however is the same, namely, that there is a maximum or

,. d*f .

minimum according as -~ is constantly negative or constantly

[positive
between the limits of the integration.

201. Legendre next supposes that we have to find the maxi-

fi

mum or minimum of I f(x, y,p,$] dx, where
</>

is to be determined

from the differential equation -^ = -Jr in which ilr is a known
ax

r I function of x, y, p, and <. The result at which Legendre arrives

is wrong, and the correct result was afterwards given by Brunacci.

202. Legendre then illustrates his investigations by some ex-

amples. He first considers the case of the solid of least resistance,

'land he shews that the ordinary result is not necessarily a minimum.

;|He then considers the problem in which among all curves of given

length having their extremities in two fixed points, that is re-

quired which has its centre of gravity lowest; here his method

indicates that the catenary does possess the required property.

Then he considers the problem in which a curve of given length

is to be drawn between two fixed points, so that the area bounded

by the curve, the ordinates of the fixed points, and the axis of

abscissae shall be a maximum or a minimum. He shews that

the required curve will in some cases be a circular arc, and in

other cases will be composed of a circular arc and one or two

straight lines; we shall have occasion to return to this point

hereafter. The three examples thus discussed by Legendre form

a very interesting and instructive part of his memoir.

Finally Legendre takes the problem of the brachistochrone in

which the moving particle is to pass from one given curve to

another, starting with an assigned velocity. Then the expression

to be made a minimum is

dx
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where h is the height due to the assigned initial velocity, and c is

the ordinate of the point at which the motion begins. Legendre

takes c and x to be susceptible of variation, as well as y and
j?,

and by a laborious investigation he arrives at the result that the

time of motion is necessarily a minimum if the curve described

be a cycloid, which meets the two given curves in points where the

tangents to those curves are parallel, and which cuts the lower

curve at right angles.

203. In the addition to his memoir, Legendre makes some

remarks in order to strengthen two points in his conclusions. He

says that he has to shew in the first place that the quantities

which he supposes determined by differential equations, like the

X of Article 5, are necessarily real
;
and in the second place that,

as we have stated in Art. 198, the arbitrary constants which occur

in the solutions of the differential equations can be chosen so as

to make the integrated part of the terms of the second order in

the variation zero, or of the same sign as the unintegrated part.

Accordingly he makes some observations in order to establish

these two points.

204. Two remarks may be introduced here. In the first

place it must be remembered that all Legendre's investigations
are subject to the objection indicated by Lagrange ;

see Articles

5 and 6. Legendre does not solve the differential equations which
he obtains, so that there is no security that the quantities he uses
retain always finite values

;
and Lagrange shewed that in a simple

example Legendre's conclusions were not necessarily true. In the

second place, in all investigations with the view of distinguishing
maxima from minima values, it is of course necessary that we
should retain all the terms of the second order which can occur
in our expressions. Now such formula? as those of Poisson and

Ostrogradsky in Articles 102 and 124 are only true to the first

order, and
consequently cannot be used in any investigation in

which we are discriminating between maxima and minima values.
This is one of the reasons which render it advisable to avoid

giving a variation to the independent variable
;
see Art. 25. If,

for example, we vary ?/ and not at, then we have Bp absolutely the
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same thing as -~z-
. If however we vary both y and x, it is shewn

dx

in elementary works, as in Art 39, that

dSx

this equation however is not accurately true, but only true to the

first order. For

dy = pdx,

dy + dfy (p + &p) (dx + dSx) ;

therefore

o dSy pd$x
Ix dx )\

'

dx)
''

thus in order to be true to the second order we must take

and in fact Legendre uses this value of Bp on page 15 of his

memoir.

205. We have next to consider two memoirs by Brunacci.

The first of these is entitled, On the criteria which distinguish

maxima from minima in integral expressions ;
it is published

in the Memorie delVIstituto Nazionale Italiano, Vol. I. part 2.

Bologna, 1806. The memoir extends over pages 191 202 of the

volume; its object is to correct an error in the memoir which

Legendre published in the History of the French Academy for

1786
;
see Art. 201. Suppose we have the integral I Vdx where V

involves x, y, ,
and z, and z is determined by the differential

dx

equation -j- Z, where Z is a function of x, y, -jr- ,
and z. Then

CL*)C CL3&

Legendre arrives at the following result
;

Vdx is rendered a

maximum or minimum by the ordinary processes according as

j-2
is constantly negative or constantly positive between the
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limits of the integration, where p stands for
-j-. Legendre's

method is rather obscure and Brunacci follows it; we will here

give the investigation in the usual manner, and we shall obtain

the same result as Brunacci.

206. Let X denote a function of x at present undetermined
;

then we may consider that we have to find the maximum or

minimum of

and we will denote this expression by U.

Now, considering only terms of the first order, we have

y + p = z + y + p say;
ay dp

SZ= ^$3 +
jffy

+
fafy

= A'Bz + B'fy + C'fy say ;

thus

$>U=\{(A-\A} Bz + (B-\B'} fy+(C-\C') $p

By the usual process of integration by parts we get

Now assume X such that

A-\A'-~^^'
tdx

then, in order that S7may vanish, we must have also

_-
dx ^

Between the last two equations we must eliminate X, and thus

we shall obtain a differential equation for determining the required
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relation between x and y. We now proceed to examine whether

U is thus rendered a maximum or a minimum. The terms of the

second order in 8V are

say

We shall denote the similar terms in Szf by

Let F-\F' = M, G-\G'=*N, H-\H' = 0,

then we have to examine the sign of

)' + 2tf&% +.2 0&8p + P(fy)
2 + 2 <%fy +

Now assume that this expression can be put in the form

I (Sy)* + mfy Sz + n (&)' + (ft ($p +% + &8*)' <fo
;

differentiate both sides of the assumed identity, and equate the
7

coefficients of like terms, observing that
-j-

can be expressed

in terms of y, Sz, and Sp, since -~= = SZ; thus we shall obtain

five equations for determining the five quantities /*, Jc, I, m, n, and

three of these five equations are differential equations of the first

order. Then we assume, as Legendre does, that by giving suit-

able values to the arbitrary constants we can make the integrated

part I (&y)
2 + mty &z + n (Bz}

z
vanish. Thus finally if R be always

negative between the limits of the integration, we obtain a maximum
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value of U, and if R be always positive between the limits of

integration, we obtain a minimum value of U. And

d*V d*Z
=
djf- -&

This is Brunacci's result, and it shews that Legendre's result

is wrong. The investigation is of course subject to the excep-

tions that have been already indicated in Articles 5 and 6.

207. We now pass to Brunacci's second memoir. This is

entitled, Memoir on the criteria which distinguish maxima from

minima in double integrals; it is published in the Memorie delV

Istituto Nazionale Italiano, Vol. II. part 2. Bologna, 1810. It

extends over pages 121 170.

Brunacci refers to Legendre's memoir on the criteria for dis-

tinguishing maxima from minima in single integrals, and his own

correction of one of Legendre's results in his- former memoir. He
states that so far as he knew, no similar investigations had been

made with respect to double integrals. He proposes to consider this

point; but before doing so, he gives some investigations with

respect to single integrals in order to prepare the way. His"

memoir is divided into twelve sections.

208. In his first section, Brunacci makes a few remarks on

the conditions necessary for the existence of a maximum or mini-

mum value of a function. He says that he has proved in his

Course of higher analysis, that I f(x) dx is a positive quantity

provided thatf(x) is always positive for values of x between x= a
and x =

,
and provided also that the differential coefficients/' (x),

f"(x), ... are always finite between the same values. It is ob-
vious however that Brunacci is wrong in saying that it is necessary
that the differential coefficients should be finite; it is sufficient

that f(x] be always positive. Bruncicci repeats this unnecessary
restriction elsewhere in his memoir, but it does not affect his

results.

200. In his second section Brunacci investigates the conditions
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which must subsist in order that I ty dx may have a maximum

or a minimum value, where
\Jr involves #, y, and

-/- ;
and he

clx

shews how to distinguish between a maximum and a minimum.
The investigation is the same as Legendre's; see Art. 198.

In his third section Brunacci supposes that
-fy involves x, y,

J -jn

-~ and -~
,
and he investigates the condition that must subsist

in order that w dx may have a maximum or a minimum value
;

and he distinguishes between the two cases. The investigation
is similar to that already given ;

and the result coincides with

that found by Legendre, and stated in Art. 199.

210. In his fourth section, Brunacci makes some introductoiy

remarks on the subject of double integrals. He states that a

double integral \\F(x,y)dxdy taken between definite limits is

positive, provided that F(x,y) is positive between the limits of

the integrations, and provided also that the partial differential

coefficients of F(x,y) with respect to x and y are all finite be-

tween those limits. The restriction with respect to the differen-

tial coefficients is unnecessary. It is of course quite true that in

the questions treated by the Calculus of Variations, such restric-

tions occur, because certain expansions are effected by Taylor's

Theorem
;
but Brunacci is wrong in saying that these restrictions

occur in the simple case indicated above.

211. In his fifth section, Brunacci takes the integral \\tydx dy,

where
-fy involves x, y, and z, and it is required to determine z

as a function of x and y so that the double integral may be a

maximum or a minimum. He arrives at the following results;

for a maximum or a minimum we must have -^
0, and then

there will be a maximum or a minimum according as , 2
- is
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always negative or always positive between the limits of the

integrations.
For an example he supposes y = ----

,
and

t/

he obtains as the result z = *J(x*+y*). He then suggests as a

particular case, that the integrations should be taken from

y = to y = ax, and from x = to x = 5; he does not observe

that for these limits his double integral becomes infinite.

212. In his sixth section, Brunacci considers the double in-

tegral '^dxdyj where ^ involves x, y, z, and ~ . He proceeds

as Legendre does for a single integral and he arrives at the fol-

lowing result ;
let p denote -7- ,

then to ensure a maximum the

relation between z and x and y must be such as to make

always negative between the limits of the integrations, and to

ensure a minimum always positive. As in Legendre's process, it

is assumed that the quantities which occur always remain finite,

and this condition cannot be tested because a certain differentia]

relation which occurs is not investigated, but only supposed to be

investigated. Brunacci takes for an example ty
= V(l

integral ll where ty involves x, y, z, -7- ,
and -y- . We

213. In his seventh section, Brunacci considers the double

-y- .

will give in substance the investigation of this case as an example.
Let U denote the proposed double integral, then we require the

maximum or minimum value of U. The first thing to do is to

investigate the value of SUto the first order and to make it vanish.

The value of 8U to the first order has been given in Art. 59 ;

and by the usual method the value of z in terms of x and y must

be found from the equation

dx dy

The arbitrary functions which enter into the value of z must

then be BO determined as to make the remaining terms in &U
vanish which are given in Art. 59.
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We then proceed to consider the terms of the second order.

Let p denote -7- and a denote -=- : and let
dx dy

dzdp
'

dzdq dpdq

and Bz co.

Then we have to examine the sign of the expression

[*
l

[*fa +P$}\ Q(
d
}\2Kco^J*Jr ( \dx) \dyl dx

~ dco
,
day da

dy dx dy

Let and /? be two quantities at present undetermined
;
then

the above double integral is identically equal to

. j , , ,

dx
C ' y

j xj yo dy
C "y

dto -nfda)\?
-j-+P -r
dy \dxj

where A = Z-^--f-, B=R-a, C=S-/3.dx dy'

The expression
/<*, TV, da? ft

-jdxdy

really involves only a single integral, because the integration with

respect to y can be immediately effected.

The expression

[
x

\ [y\ da^OL

-j-dxdyJx Jy ax
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also really involves only a single integral ;
because we may change

the order of integration if we make suitable changes in the limits,

and then the integration with respect to x can be immediately

effected.

Now consider the double integral. The necessary and sufficient

conditions in order that

<a<^

should retain an invariable sign are these,

PQ - T* must be positive,

and (PC-BT? must be less than (PQ - T
2

) (PA-B*}

and the sign is then positive or negative according as P is positive

or negative. (See Differential Calculus, Art. 236.)

Now we may suppose that the arbitrary quantities a and ft are

so taken as to satisfy the condition that

(PC - BT}
Z
is less than (PQ - T*) (PA - B*) ;

this condition involves a, /3, -^ and -^ .

ax dy

We have then the following result. In order to ensure a mini-

mum we must have P positive and PQ T2

positive throughout

the limits of the integrations. That is, we must have ~r^ positive,

Similarly in order to ensure a maximum we must have P nega-
tive and PQ jT

2

positive throughout the limits of the integra-

tions; that is, -tHt negative and -^r-^X I-T-HT) positive.
dp* dp* d(f \dpdqj

J

It will also be necessary that the expression
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should be zero or negative for a maximum, and zero or positive for a
minimum

;
this condition will be secured for example if &z be zero

at the limits of the integrations, for then the term just given will

vanish.

The whole investigation is of course liable to the objection that

as the values of a and (3 are not explicitly found we have no means
of ascertaining whether they remain finite throughout the limits of

the integrations.

214. For an example of the preceding investigation Brunacci

supposes -ty
=

fj-J
- a2

\-jp\
. In this case he finds that the rela-

tion between x, y> and z is to be determined from -^ = a2 -^ ,

dif dx*
'

so that

where
</>
and F denote arbitrary functions. For a particular case he

supposes that the surface denoted by the required relation is to pass

rough an oval plane curve determined by the equations

y = inx + n, z = *J(r x).

He says that then by determining suitably the first arbitrary
'unction we shall have

z = J{M+N (x + ay)+L(x + ay)*} +F(x- ay],

where M= r
, , 2 ,

(1 + am)

N= -71 rr, , Li -

But the surface Brunacci thus obtains will not pass through the

surve in question if F(x ay) is still left arbitrary. In continuing

he discussion of this example he arrives at the result that there is

leither a maximum nor a minimum. He says that this ought to be

;he case, because as ^ is zero the double integral ff^rdx'dy over

assigned limits is also zero. Since he says that ^ is zero, it would

ippear that he supposes F(x ay]
=

0, for then his surface does

>ass through the curve in question and ^r is zero. But then it

16
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is not obvious what he means by saying that there ought to be

neither a maximum nor a minimum, since it is quite possible that

a zero value of a function may be a maximum or a minimum value

of that function.

215. In his eighth section Brunacci supposes that ty involves

dz dz d*z d*z , d*z , .

; and he proceeds m the

same manner as before to determine the conditions necessaiy in

order that ffy dx dy may have a maximum or minimum value. He
arrives at the same results as Delaunay afterwards gave in his

memoir; see Art. 147.

216. The remainder of Brunacci's memoir consists of four

sections and is devoted to the investigation of the conditions for a

maximum or minimum of ffy dx dy, when
tjr involves x, y, z, ~^- f

and -j- ,
and also another function F, which is determined by

dV
, , . dz dz rr , dV

dx
=

^' where < involves a?, y, z, -=-
, -j- , F, and

-j-
. This

case is analogous to that involving only a single integral in which
Brunacci corrected an error of Legendre's. Brunacci's method
does not appear very clear. The ordinary method would be to

investigate the maximum or minimum of

Then when the usual reductions are effected the variation of
the double integral to the first order would contain under the inte-

gral signs two terms, one of the form AS F, and the other of the
form BSz. We should then assume X such as to make A =

0, and
then it follows that in order that the variation may vanish we must
also have #=0. The part of the variation which is of the second
order might then be examined in the ordinary way.

217. Nothing was added to this part of the Calculus of Varia-
tions between the publication of Brunacci's second memoir and the
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publication of Jacobi's memoir. Lacroix, Dirksen, and Ohm in

their respective works explained Legendre's method without any
improvements. Ohm seems to have regarded the results as more
certain than they really are, for he omits all reference to the quali-

fications indicated by Lagrange ;
see Articles 5 and 6. Lacroix

does give these on his pages 811813, and Dirksen on his page
113 notices the limitation that the quantities he introduces must

remain finite.

218. We now proceed to Jacobins memoir. This memoir is

entitled, On the theory of the Calculus of Variations and of dif-

ferential equations, by C. Gr. Jacobi. It was published in the

17th volume of Crelle's Mathematical Journal in 1837. The
memoir purports to be an extract from a letter dated November

29th, 1836, addressed to Professor Enke, secretary to the mathe-

matical class of the Academy of Sciences at Berlin. The memoir

extends over pages 68 82 of the volume
;
nine pages relate to the

Calculus of Variations and the remainder to the differential equa-
tions which occur in Dynamics. A French translation of the

memoir appeared in the third volume of Liouville's Journal of

Mathematics in 1838.

We confine ourselves to that part of Jacobi's memoir which

relates to the Calculus of Variations
;

for an account of Jacobi's

researches on Dynamics the student is referred to Mr Cayley's

Report on the recent progress of Theoretical Dynamics, in the Report
of the British Association for the advancement of Science for 1857.

The remainder of the present chapter consists of a translation

of the first nine pages of Jacobi's memoir; it will be seen that

Jacobi merely gives the enunciation of results without demonstra-

tions, and we shall afterwards indicate the writers who have sup-

plied the demonstrations.

219. I have succeeded in supplying a great deficiency in the

Calculus of Variations. In problems on maxima and minima which

depend on this Calculus no general rule is known for deciding

whether a solution 'really gives a maximum or a minimum or

neither. It has indeed been shewn that the question amounts to

determining whether the integrals of a certain system of differential

162
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equations remain finite throughout the limits of the integral which

is to have a maximum or minimum value. But the integrals of

these differential equations were not known, nor had any other

method been discovered for ascertaining whether they did remain

finite throughout the required interval. I have however discovered

that these integrals can be immediately obtained when we have

integrated the differential equations of the problem under con-

sideration, that is, the differential equations which must be satisfied

in order that the first variatioji may vanish. In fact, suppose that

by the integration of these differential equations we have obtained

expressions for the required functions involving a certain number
of arbitrary constants, then the partial differential coefficients of

these functions with respect to these arbitrary constants will furnish

the integrals of those new differential equations which we have to

solve in order to determine the criteria for the existence of a maxi-

mum or minimum.

220. Let us consider the simplest case
;

let the integral which
is to have a maximum or minimum value be

where y' is put for ^. Then we know that y is to be found from

the differential equation

^_l^_o
dy dxdy'~

The value of y obtained from this differential equation will contain
two arbitrary constants which I will denote by a and b. The
second variation of the proposed integral is

where w = Sy and w' = ~.
ax
~
ax

Now to have the complete criteria for the existence of n inaxi-
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mum or minimum we must know the complete expression of a
function v which satisfies the differential equation

this may be seen in Lagrange's Theory of Functions or in Dirksen's
Calculus of Variations. (Ohm's Calculus of Variations is not exact
on this point.) The expression for v I find in the following manner.
Let

dy

where ~,
-j^

are the partial differential coefficients of y with

respect to the constants a and b which occur in y, and a and y3

are new arbitrary constants; then the required expression for v

will be

v= ,

\dydy
T
u dy'" dx)

'

O
which contains one arbitrary constant, namely,

-
.

a

[The differential equation which v must satisfy is the same as

equation (2) of Art. 5, supposing 2\ = v.]

221. The case in which differential coefficients of a higher
order than the first occur in the expression which is to be a maxi-

mum or minimum is more difficult. Let the expression which is

to be a maximum or minimum be

where y =
-^

and y" = -~ . Then we know that y must be found

rom the differential equation

dy dxdy' dx*dy"~

hus y will contain four arbitrary constants which may be denoted
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by a, a
t , a,, a,. Also let &y = w, %' = >', %"=w>"; then the

second variation will be

dy'dy"

For a maximum or minimum -r^ must retain the same sign.

But in order to have the complete criteria we must integrate the

following system of differential equations, as may be seen in La-

grange's Theory of Functions.

dv.\*m '

_
dy"*\d/ dx- dydy

"

From these three differential equations of the first order, which

present a rather complicated appearance, the three functions v, v

and v^ must be determined
;
and the complete expressions for them

will involve three arbitrary constants. I have found the integrals
of these differential equations as follows

;
let

dy dy dy dyU = OLf-+ a -/- +.-/ + CL -/- ,da * da
t

* da2
3 da

a

'

so that u and
u^ are linear expressions of the partial differential

coefficients of y with respect to the arbitrary constants which it

involves. The eight constants a, 1? cr
2 ,

a
3 , , ft, ft, ft are not

entirely arbitrary, for a certain relation must exist between these

six quantities a
/3,
- a^, < _^ a^ _ & A _ a^a, a^_ _ a^.
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OL& - &, which I will not investigate here. The following then

are the general expressions which I have found for v, v
lt

v
2 ;

d\f d*f ~dtf~ I dx*

du. ~~%T
u -j-

1

dx

du d*u

d*f== ~ '

dx

du^ du
u -~ u. -j-dx \dx

d*u\ da d

V __dv1 d\f d\f ~d^~~ l drf fa dx2 dx
'
dx dy'dy' dy"*

"

L^i- ,

d
^\

\ dx l dx)

An identical equation holds between the six quantities a/3t
<

2
2 -og3, ,

besides the relation which exists between them,

and these quantities occur in v
2 ,

v
lt
and v only in the form of ratios,

so that they constitute in fact the three arbitrary constants which

ought to appear.

222. The general theory when differential coefficients of y of

any order occur under the sign of integration may be deduced

without
difficulty from a remarkable property of a certain class of

differential equations. These differential equations of the 2nih order

have the form

where y
(m} =

-y-J ,
and A, A lt

... are given functions of x.
d/X

Now suppose y to be any integral of the equation F=0, and

put u ty, then will the following expression be integrable,

where u(m] = -^ ,
that is the expression is integrable without know-



248 LEGENDRE, BRUNACCI, JACOBI.

ing t. Moreover the integral is of the same form as F, only n

must be diminished by 1
;
so that

where ^m) = an<^ B> A mignt be expressed in terms of y

and the functions A and their differential coefficients. The proof

of this proposition is not without difficulty. I have found the

general expression of the functions B; but it is enough for the

present question to shew that I y Udx can be put in the form indi-

cated without there being any need of knowing the functions B
themselves.

223. The metaphysic of the results obtained (if I may use a

French expression) depends nearly upon the following consider-

ations. The first variation is known to take the form I VSy dx,

where V is the equation to be integrated. The second variation

then takes the form / SVSydx. If then the second variation is to

be incapable of changing its sign, it must be incapable of vanish-

ing; so that the equation SV 0, which is linear in By, must have

no integral By which satisfies the conditions to which by the nature

of the problem By is subjected. Thus we see that the equation
BV= plays an important part in these investigations, and we soon

perceive its connexion with the differential equations which must
be integrated in order to obtain the criteria for maxima and minima.
Also we easily see that a partial differential coefficient of y with

respect to any constant which occurs in y as the solution of V 0,
will be a suitable value of By for satisfying the differential equation
V- 0. Thus the general expression for By as the integral of the

equation BV=Q will be a linear function of all the partial differ-

ential coefficients of y with respect to the constants which it

involves.

!24. The equation 87=0, of which we can thus find the

complete integral, can be put in the form of the above equation
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Y= 0, with Sy in the place of y. By means of the properties of

equations of this kind, we can by repeated integration by parts

transform the expression l&V&ydx into another, which contains

a perfect square under the integral sign ;
we thus obtain the trans-

formation of the second variation which was always desired.

Take for example the integral considered already

and let u and u^ have the meanings already assigned. B V can be

put in the form

and SF will = when y u. Now put Sy = uS'y ;
then from the

general theorem (Art. 222) we have

Denote the last integral by I F
x $y dx

;
then the equation Fx

=

is satisfied when we put S'y
= -

,
and therefore 6

'y
~

We can now continue the same method by putting

u

so that by the same general theorem

and this is the last transformation, in which the arbitrary variation
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occurs under the integral sign only in the form of a square. And
it is easily seen that

and therefore

Moreover A2
= ~~ so that C has always the same sign as
ay

has, and this sign must be always positive for a minimum

and always negative for a maximum. We must moreover examine

whether "y can become infinite within the limits of integration ;

this we can ascertain by our knowing the functions u and u^ ,
and

these we know as soon as the complete integral of the equation
F= is given.

225. Although the analysis just indicated requires a good

knowledge of the Integral Calculus, yet the criteria thence obtained

for determining whether a solution gives in general a maximum or

minimum are very simple. I will consider the case in which we
have under the integral sign y and its differential coefficients up to

the ?i
th

,
and where the limiting values of x, y, y, y", . . . y

(n
~

l] are

given. Now the 2n arbitrary constants which occur in integrating

the differential equation of the (2w)
th order are to be determined by

means of the given limiting values
;
but as this involves the solution

of equations there will be in general several systems of values for

the arbitrary constants, so that several curves may be found which

satisfy the same differential equation and the same limiting con-

ditions. Let one of these systems be chosen, and let one limiting

point be considered as fixed, and then let us pass from this point

along the curve to following points. Now take one of these

following points as the second limiting point ; then, as stated above,
it may happen that through this and the first fixed point a second

curve can also be drawn which satisfies the same differential

equation as the first curve and has the same limiting values

f y' y> y
(n
~
l)

* As soon then as by passing along the curve

we arrive at a point for which one of the other curves coincides with
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it, or as we may say approaches indefinitely near to it, we Lave

reached the boundary up to which or beyond which the integration

must not extend if there is to be a maximum or a minimum
; but

if the integration does not extend up to this boundary there will

d'
2

f
be a maximum or minimum provided that ...

|^ 2 retains the same

sign between the limits.

226. In order to illustrate this by an example I will consider

the principle of least action in the elliptic motion of a planet.

The integral considered in the principle of least action can never

be a maximum as Lagrange believed
;

it will not however always
be a minimum, but certain conditions must hold with respect to the

limits
;
these conditions are given by the preceding general rule,

and if they are not satisfied the integral will be neither a maximum
nor a minimum.

Suppose that the planet begins to move from a where a lies be-

tween the perihelion and aphelion, and let the other limit be 5,

(see fig. 7) ;
let 2A be the major axis, f the sun

; then we know
that the other focus of the ellipse is obtained by the intersection of

two circles described from the centres a and b with the radii 2A af
and 2A ^/"respectively. The two intersections of the circles give
two solutions of the problem which can only coincide when the

circles touch, that is when the line ab passes through the other

focus. Thus if we draw the chord ad through the focus /', then

by the general rule (Art. 225), the other limit b must fall between

a and a if the integral which occurs in the principle of least action

is really to be a minimum for the ellipse. If b coincides with a'

then the second variation of the integral cannot become negative,

but it can become zero, so that the variation of the integral is then

of the third order, and so may be either positive or negative. If

b falls beyond a then the second variation itself can become

negative.

If the starting point a is between the aphelion and the peri-

helion then the extreme point a is determined by the chord of the

ellipse drawn from a through the sun/, (see figure 8). For if a and

a are the limits we can obtain an infinite number of solutions by the

revolution of the ellipse round ad. If then in the last case the
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second limit falls beyond a there will be a curve of double curvature

between the two given limits for which fvds is less than it is for the

ellipse.

227. I will say a few words on the variation of double inte-

grals ; the theory of this subject is susceptible of greater elegance

than it has obtained even after the labours of Gauss and Poisson.

In order to give an example of the way in which it seems to

me proper to express the variation of a double integral, I will

take the simplest case and consider $fff(x, y, z,p, q) dx dy where

v = -?-
, q -T- . Let w be the variation of z : then will* dx j *

dy

Now the method employed in single integrals consists in this ;

the expression under the integral sign is divided into two parts, one

of which is multiplied by w and the other is the element of an inte-

gral.
The first must be put equal to zero under the sign of inte-

gration if the variation is to vanish
;
the second can be integrated

and we make the integral vanish. So in like manner I divide the

expression under the double integral sign into two parts, one of

which is multipled by w and the other is the element of a double

integral as follows ;.letu = aw and put

df df dw df dw . du dv du dv
~~r~ W H T~ ~T I T~ ~T~ == "'W? H 5 7

---
7 7 .

dz dp dx dq dy dx dy dy dx

Equate the terms in w, -7- , -7 ;
thus

dx dy'

_^ __ _ _ dv

dxdy dy dx '

dp
~

dy
'

~ a
dx '

- A + av_av^ __ _ _~
'

~ a
'

~ a

hence ^ = __.
dz dx dp dy dq

'

if this be put equal to zero we obtain the known partial differential

equation, which is here deduced in a perfectly symmetrical manner.
The function v must satisfy the equation

dfdvdfdv
J ~T~ + -T- ~7- =* 0.

dp dx dq dy
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If we put A 0, we have

dudv dudv\

and this taken throughout the given limits must vanish. If z is

given at the limits w is zero at the limits and therefore also aw,

that is, w; therefore \\dvdu is zero. If the values of z at the

limits are entirely arbitrary v must vanish at the limits, or if v

represent the limiting curve the arbitrary functions which occur in

the solution of A = must be so determined that

o, &c.
dp ax dq ay

228. To return to the maximum and minimum
;

it is to be

regretted that so much confusion prevails in the use of these words.

Sometimes an expression is said to be a maximum or minimum
when all that is meant is that its variation vanishes, sometimes

when it really is neither a maximum nor a minimum. Sometimes

an expression is said to be a maximum when all that is meant is

that it is not a minimum. Thus Poisson says in his treatise on

Mechanics that the shortest line on a closed surface between two

given points can be a maximum
;
but it is obvious that by inde-

finitely small inflexions we can increase the length of any such line

however long. In fact the shortest line will only be really a

minimum when the general condition laid down is fulfilled (Art.

225) ;
that is, when between the two limiting points of the curve

two others cannot be found which can be joined by another such

curve indefinitely close to the first. In other cases the shortest

line is hot indeed a maximum; it is neither a maximum nor a

minimum. For surfaces which have at every point opposite cur-

vatures I have demonstrated that the shortest line between any
two points is really a minimum.

[By the shortest line in the above paragraph is meant the line

which is furnished by the ordinary rules of the Calculus of Varia-

tions
;
the investigation of it is given in most treatises on the sub-

ject,' but these treatises do not determine whether the line called

ithe shortest line between two points really is the shortest line

between those points. Such a. line is also called a geodetic curve.]



CHAPTER X.

COMMENTATORS ON JACOB!

229. WE now proceed to give an account of the commen-

taries and developments which have arisen from Jacobi's memoir.

In the sixth volume of Liouville's Journal of Mathematics,

dated 1841, there is an article by V. A. Lebesgue entitled Memoir

on a Formula of Vandermondds and its application to the demon-

stration of a Theorem of Jacobi's. It extends over pages 17 35 of

the volume. It begins thus The principal object of the following

pages is in the first place to demonstrate the identical equation

both the summations are taken from i=0 to i=n'
} (ty)

{ denotes

-j4 and t
(i] denotes -?-< ; y, t,

A
, A^ ,

. . . An denote any functions of

x
;
J?

, B^...Bn are functions of y, -4
,
A

1}
... An and their differen-

tial coefficients. In the second place we propose to find the law of

the functions J5
, B^ ,

. . . Bn .

The above words indicate the object of Lebesgue's article. The

investigations are rather complicated and difficult to follow
; they

depend partly upon the knowledge of the condition of integrabiUty
of a function.

230. In the same volume of Liouville's Journal there is an

article by C. Delaunay entitled Essay on the distinction beti>

maxima and minima in questions which depend upon the Calculus of
Variations. This essay is in fact a commentary upon Jacobi's

memoir
;

it extends over pages 209 237 of the volume.
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231. Dclaunay first proves the theorem enunciated by Jacobi,

which we have given in Art, 222
; Delaunay's proof is somewhat

complicated but perfectly intelligible, and it does not assume a

knowledge of the condition ofintegrability of a function. It may be

observed that the result obtained by Delaunay might be stated

more distinctly than he has himself stated it. He really proves
the following theorem

;
whatever functions of x the symbols u, y,

A
2 ,

... An , may denote, it is possible to take Z>
1? 2 ,

... bn such

functions of x that

dxm dx dxm

where the summations denoted by 5 relate to the letter m and

extend from m = 1 to m = n both inclusive. Now add A^y to both

sides of this identity, and suppose

A+S ^r-
then

IMA dmuy
Cv ^ri^rt i . .

If now u be taken so that b = the right-hand member of this

identity is immediately integrable, and by integrating we have

Thus Delaunay first establishes the general identity (1) and

then deduces (2) which is Jacobi's theorem enunciated in Art. 222.

'This is in fact the same order of demonstration as that chosen

by Lebesgue. Delaunay's demonstration has been adopted in sub-

stance by subsequent writers on the Calculus of Variations ;
sec the

works of Jellett, Price, and Stegmann.

It should be observed that in equation (2) since it has been

obtained by an integration an arbitrary constant ought to be
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explicitly added to the right-hand side or else supposed to be im

plicitly
involved on the left-hand side.

232. Delaunay next proves that 8V can be put in the form

which Jacobi gives ;
see Art. 224. Delaunay then investigates in

full the terms of the second order in the variation for the two cases

which Jacobi specially considers, namely

[x, y, y'} dx and

A mistake occurs in this part of Delaunay's memoir which

should be noticed ;
it is on his page 222, and has passed from De-

launay into other writers. We will here notice it in the form in

which it appears in Mr Jellett's work, since that will probably be

most accessible to the reader. On page 95 of Mr Jellett's work he

has the following equation

and he says that any value of By which makes 8/3 = will also

make

vanish ; the true inference ought to have been that any value of $y
which makes 8/8 = will make

equal to a constant. This constant will not be zero unless a rela-

tion is established between the constants which are involved in the

value of &'y. That is, in Mr Jellett's notation the four constants

C
l9
O

a ,
C

a ,
(7

4
are not all arbitrary, for such a relation must exist

among them as to satisfy his equation (d) and thus reduce them to

three arbitrary constants
;
and this should be the case since equa-

tion (d) is a differential equation of the third order.

In fact Delaunay by this mistake omitted that part of Jacobi's

memoir which forms the latter part of Art. 221, in which Jacobi
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intimates that his results will really involve no more arbitrary con-

stants than they ought ; whereas in Delaunay's process there would
be too many arbitrary constants.

It is possible that the mistake may have been introduced

through Jacobi's statement given in Art. 224 that F
t
= is satis-

fied when we put &'y
= *

;
but Jacobi has expressly said a little

before that u and u^ are to have the meanings already assigned, and
when u and u

t
were introduced in Art 221 it was stated that the

:onstants occurring in them were subjected to certain relations.

233. Delaunay next considers the case in which questions of

relative maxima and minima are proposed. Mr Jellett says on page
363 of his work with reference to this part of Delaunay's memoir,
* the reasoning does not appear to me to be quite satisfactory, and

the conclusion is far less perfect than in the case of absolute maxima
and minima."

234. Delaunay examines four problems as examples of Jacobi's

criteria. 1. The shortest line between two points. 2. The brachis-

tochrone. 3. The curve of given length which includes a given
area. 4. The curve of given length which has its centre of gra-

r

ity highest or lowest.

235. Lastly Delaunay demonstrates the statements made by
Jacobi respecting three differential equations given in Art. 221. It

may be observed that Jacobi's memoir involves two points. We
lave on the one hand Jacobi's own method of exhibiting the

criteria for the maxima or minima values of an integral; this is

described by Jacobi in Art. 224, and it is explained by Delaunay
n his pages 209^-234. On the other hand since the method of

Jacobi does solve the problem in question, it may be inferred that

lis method will really supply the solution of the complicated differ-

ential equations on which Legendre had made the problem depend ;

this is in fact what Jacobi states in Articles 220 and 221, and what

Oelaunay explains in his pages 234 237. It should be remarked

that Delaunay here notices the relations which must exist among
the constants, according to Jacobi's observation at the end of Art.

17
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221. The second point in Jacobi's memoir will thus be seen to be-

long rather to the subject of differential equations than to that

of the Calculus of Variations.

236. Delaunay's memoir is interesting and valuable and de-

serves especial attention as being the first which gave a demonstra-

tion of the whole of Jacobi's method. We have however not

thought it necessary to reproduce the investigations because they
have been substantially adopted by writers whose works are readily

accessible; see Art. 231.

237. In the Journal de TEcole Poll/technique, Cahier28, 1841,

there is an article by M. J. Bertrand entitled, Demonstration of a

theorem of M. Jacobi; the article extends over pages 276 283.

The theorem in question is that given in Art. 222. Bertrand'a

article was published in the same year as those of Lebesgue and

Delaunay, but whether it preceded them both, or followed them

both, or came between them, does not appear. The proof given by
Bertrand depends upon a knowledge of the condition ofintegrability

of a function
; the proof is valuable, and as it seems possible to pre-

sent it in a clearer form than Bertrand has done, we shall exhibit it

here with some modifications.

238. Let a
,
a
l9 2 ,

... n ,
denote any functions of x

;
let y be

any function of #, and let y, y'\ ... y
(n
\ denote the successive differ-

ential coefficients of y with respect to x. Then a differential expres-
sion of the following form we shall call a differential expression of

Jacobi sform ,

and we shall denote this function of x, y, and the differential co-

efficients of y, by < (y) ; and < (v) will denote what the expression
becomes when y is changed to v.

We shall now prove the following theorem
; let v be a quantity

such that v6(y) is an exact differential coefficient, then it is

<snry and sufficient that v should satisfy the differential equa-
tion

</>(?>) =0.
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By saying that v<f>(y] is an exact differential coefficient we mean

that v<f> (y) will result from differentiating with respect to x some

function of x, y, and the differential coefficients of y, this function

remaining unchanged in form whatever may be the value of y in

terms of x.

We have

-y<j> (v) + y4> (v).

Now v<j)(y) y<p (v) is an exact differential coefficient. For

consider a pair of terms from this expression, for example

drary
(r} drarv

(r}

it)
r>J

. _ 77 -.-
dxr y dxr

integrate by parts, and we obtain

~dx
r

The term still under the integral sign may be integrated again

by parts ;
and so on. Then after r integrations by parts we shall

have under the integral sign

d r
v d r

y
-r-j ary

(}
-j~arv

(

,
that is zero.

dx (tx

Thus the pair of terms is shewn to be an exact differential

coefficient by actually finding its integral. Similarly each pair of

terms in v<f>(y) y<j>(v) is an exact differential coefficient, and there-

fore v(f)(y) y(j)(v) is an exact differential coefficient.

Since then
v<f> (y) y<j> (v) + y$ (v) is to be an exact differential

coefficient, and
v<j> (y) y<f> (v) is such, y<j>(v) must either be an

exact differential coefficient or must vanish. The former cannot be

the case, since it is impossible that
y(f> (v) can be obtained by differ-

entiating with respect to x any function of y and its differential

coefficients whatever y may be
;
we must therefore have <j>(v)

= 0.

239. We shall now prove the converse of the preceding theo-

rem, namely the following ;
if any linear differential expression of

an even order has the property that it is made an exact differential

coefficient when multiplied by any one of the quantities which

172
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make the differential expression vanish, and by no other mul-

tiplier, that differential expression can be put in Jacobi's form.

The proof of this theorem is somewhat indirect. We first ex-

amine the nature of the conditions which must be satisfied in order

that a linear differential expression of an even order may be capable

of being put in Jacobi's form.

If we develope the expression which we have denoted by
we obtain for it

dan d^y fn (n
-

1) d'an \

-2) d'an

The chief point to be observed here is that the coefficient ar

does not occur until we arrive at the term -=-%. ,
and then it does

occur in the simple form ar .

Now let any linear differential expression of the order indicated

by 2n be denoted thus,

d*
n~l

y d***y dy
-

in order that this differential expression may take Jacobi's

form the coefficients must agree with those in the developed
form of

<f>(y). This requires that we should be able to find

> n_i> ttn-2 > >
so as to satisfy the following equations;

da.

nn-1-
1.2 dsf ->~*-*> 1.2.3

It will not be necessary for us to do more with respect to these

equations than to observe the following two points. The first,

third, tilth, ... of these equations will determine successively ,

t > whatever the coefficients c8,,, rs,,_9 ,
ea,,_4 ,

... r
4 ,

r
() ,
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may be
;
and they assign a single definite value to each of the

coefficients n ,
an_11 ... a . The second, fourth, sixth, ... of these

equations will then give relations involving c2n_1? c3n_3 , c^_^ ... c
a ,

c
t>

which these coefficients must fulfil in order that it may be possible

for the proposed differential expression to take Jacobi's form.

Now let the differential expression which is under consideration

be denoted by ^(#), and let us examine the nature of the con-

ditions which must be satisfied in order that v^r(y} may be an

exact differential coefficient when v is such that ty (v)
= and only

then.

In order that v^r (y} may be an exact differential coefficient it is

necessary and sufficient that

_
:

dx2n
dx'

2n ~

dx2n~ dx

This follows from the known condition for the integrdbility ofa

function which will be given hereafter in this work. It may also be

deduced from a known theorem in the differential calculus, namely

dz'

1.2

. dr
z

Put cr v for z and use this theorem to transform every term

in
v^fr (y) ;

thus we shall find that v-^r (y) consists of a series of

terms each of which is an exact differential coefficient together with

the term Cy, where

"2
n d^c^ v dzn~l

czn_l
v d*

n
v^_C =-^^i j^r- +

Therefore vfy(y) cannot be an exact differential coefficient

unless (7 = 0.

Or we may obtain the result still more simply thus. Integrate

by parts the terms of v^r (y) as much as possible ;
thus we shall

find

where 8 represents a series of terms free from the integral sign.
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Hence, as before, t^r(y) cannot be an exact differential coefficient

unless (7=0.

Now by hypothesis the values of v which make (7=0 must be

those, and those only, which make ^r(v)=0; and therefore the

differential equation (7=0 must be identical with the different!

equation ^ (v)
= 0. Hence comparing the coefficients of the various

differential coefficients of v we must have the following relations

satisfied,

1O O /T'T* *^
. & . O U/JU \. &

C2n_3 )

It will not be necessary for us to do more with respect to thes(

equations than to observe the following two points. The second

fourth, sixth, ... of these equations will determine successively

<Wa, <w*f c2-5> - c,, cl9 in terms of c* 9 c^, c2n_4 ,
... c

2 ,
ca ;

and

they assign a single definite value to each of the coefficients

c*t_i> ca_3> C3n_6 >
c
8 ,

c
t

. The first, third, fifth, ... of these

equations will then give relations which these quantities must

satisfy, and by substituting the values of these quantities the re-

lations will only involve the coefficients with the even suffixes. It

is however certain that these relations will then be identically

satisfied; because if they were not it would follow that some

necessary conditions must hold among the coefficients with <

suffixes in order that wfr(y) may be an exact differential coefficient

when v satisfies ^ (v)
= and only then. But this is impossible ;

because by the former part of the present article we know that

whatever the coefficients with even suffixes may be, if the others arc

properly determined, ty(y) will take Jacobi's form, and there-

fore vty(y) be an exact differential coefficient when v satisfies

>Jr(")
= and only then.
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Hence we infer that exactly the same conditions must hold

whether we require that v^r(y) should be an exact differential

coefficient when ^r (v)
= and only then, or whether we require

that ty (y) should be capable of being put in Jacobi's form. For

we have proved in the preceding article that when the second of

these properties subsists the first follows
;
and we have proved in

the present article that to ensure either the first or the second pro-

perty, each coefficient with an odd suffix must have a single

definite value in terms of the coefficients with even suffixes which

are themselves arbitrary.

Thus we have proved, as we proposed, the converse of the

theorem proved in the preceding article.

240. We shall now prove Jacobi's theorem given in Art. 222.

Let
<f> (ty) denote what

(f> (y) becomes when ty is put for y ;
and

let Y denote y$(ty} ty$(y}. Then Y is an exact differential

coefficient whatever y may be ;
this may be shewn in the same

manner as that in which it is proved in Art. 238, that

vfy^ _ y (^ is an exact differential coefficient. Let Z stand for

Ihe integral of Y and let k be an arbitrary constant.

Suppose
-- to be a quantity such that

-^ (Z- k) is an exact

differential coefficient. We have

thus if (Z-k) is an exact differential coefficient zY is so also.

dx v

But

and $(ty)-t$(y) is of Jacobi's form with respect to u and its

differential coefficients, where u = ty. Hence, by Art. 238, if z

an exact differential coefficient, yz must be one of the values of u

11
dz &

t'
l(
i\

found from
<f> (u)

-^ (y]
= 0, say yz = u, ;

therefore ^ =^ (^ -)
.

it
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Thus the multiplier of Z k which will make the product an exact

differential coefficient is a quantity of which the type is
-^-

(-} .

We must now indicate some properties of the expression Z lc.

It will be seen on examination that Y does not contain t itself but

only the differential coefficients of t\ this will also be the case

with Z, which is the integral of Y.

For suppose the differential expression Y when arranged ac-

cording to differential coefficients of t to take the form

then if Z contained t at all it could be only by reason of the term
7/7

Af entering into Z\ and then -,- or Y would contain the term

t -T-1 . And -~ is a function of y which is at present quite

dA
arbitrary, so that -^ cannot be zero. Thus as Y does not con-

tain t but only its differential coefficients, it follows that Z does not

contain t but only its differential coefficients.

We may shew that Z does not contain t in another way. If

we integrate each pair of terms in Y in the manner given in Art.

238, we find that Z consists of pairs of terms of which the type is

'

and on effecting the differentiations we see that t does not occur in

this expression but only differential coefficients of t.

If then we put T for
-j-

the expression Z-k will be a differ-

ential expression of the order 2/i - 2 with respect to T and its differ-

entiaUoefficients. And the solutions of Z-k = can only be such

quantities as render Z constant and therefore Fzero; that is, the

values of T must be those of which the type is .
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Thus Z- k is a differential expression such that any multiplier

of it which renders the product an exact differential coefficient must

be a solution of Z k = 0. Hence, by Art. 239, this differential

expression must be capable of being put in Jacobi's form
; that is,

omitting the arbitrary constant, the integral of y <f> (ty) ty<f> (y) is

of the form

If now we suppose y such that
(f> (y)

= 0, we have the integral

of
y<f> (ty) assuming the above form. This is the theorem enunciated

in Art. 222.

241. A remark may be added to obviate a possible miscon-

ception of part of the preceding article. The equation Y= is of

the order 2n 1 in T and its differential coefficients ; thus the

general solution of it will involve 2n 1 arbitrary constants. This
/77

general solution would make Z constant since it makes -=- = :

dx

therefore in order that Z k may be zero a relation must hold

among the 2w 1 arbitrary constants. Thus in effect we have

only 2n 2 arbitrary constants in the solution of Z k = 0, as of

course should be the case. Particular solutions of Z k will

then be obtained by giving particular values to any or all of these

arbitrary constants.

242. More than ten years elapsed before another commentator

upon Jacobi's memoir appeared. We have next to consider a

memoir published by Professor Gr. Mainardi in the third volume

of Tortolini's Annali di Scienze Mathematiche e Fisiche, 1852.

This memoir is entitled Researches on the Calculus of Variations;

it occupies pages 149 192 of the volume, and there is an appendix
which occupies pages 379 383.

243. Mainardi begins by referring to what had been done by
Poisson, Ostrogradsky, Cauchy, Sarrus, Jacobi, Bertrand, Lebesgue

\and Delaunay ;
he intimates that the propositions of Jacobi require

y^t to be more completely developed, and he says that with respect

to the criteria which distinguish a maximum from a minimum in
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the case of multiple integrals he believes nothing had been added

to the remarks of Legendre and Lagrange.

244. Mainardi's memoir is divided into five sections. The

first section occupies pages 149 153
;
this section -contains some

illustrations of the method which was used by John and James

Bernouilli in solving isoperimetrical problems. Poisson in his

memoir had referred to this old method, see Arts. 88 and 97
;
and

Mainardi intimates that he will hereafter publish his researches on

the comparison of the old and modern methods. He confines him-

self in this section to shewing how the old method could be made

to give the terms relative to the limits in the case of a single inte-

gral, and how it could be made to give the variation of a double

integral.

245. The second section occupies pages 154 171. Mainardi

says that in this section he proposes a new method for distinguish-

ing between the maxima and minima values of integrals. Speaking

generally this method may be described as Legendre's improved

by some additions borrowed from Jacobi. Mainardi considers suc-

cessively six cases. (1) A single integral involving x, y, and -t
.

(2) A single integral involving x, y, -g,
and . (3) A single

integral involving x, y, JL -^ ,
and

-jjj
. (4) A double integral

involving x, y, z, -7- ,
and -r- . (5) A double integral involving

dz dz d*z dz
z , d*z , ,

*' * *
Tx> dy' dtf' d^'

and
d?''

he als t0udleS Up n the

particular case in which the double integral involves only x, y, z,

dz dz , d*z . . dy
dx' dy' dxdj/'

^ A Smgle mteS1
'al mvolvinS *> y> z

> ^
and

-j-.
Of these cases (1) and (4) may be considered to be com-

pletely investigated, (2) and (3) nearly completely, and the others

only imperfectly. We shall presently give a more detailed account

of some of these cases.
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246. In his third section Mainardi gives an investigation of

Jacobi's theorem enunciated in Art. 222, using, as he says, Bertrand

for his guide. This investigation extends over pages 172 179,

and then Mainardi indicates briefly the application of the theorem

to the Calculus of Variations. Mainardi's proof does not seem so

good as Bertrand's
;
the principal difference consists in replacing

the indirect reasoning of Art. 239 by direct reasoning. But a

student who had not read Bertrand's proof would find one point of

Mainardi's unsatisfactory. For on comparing, as we have done on

page 262, the coefficients of the various differential coefficients of v,

Mainardi only writes down what we have called the second, fourth,

sixth, equations; and he says briefly that these include the

others
;

see his page 177 at the top. This amounts to omitting
one of the most difficult points in the investigation.

247. In his fourth section Mainardi applies Jacobi's method to

a double integral ;
this section extends over pages 183 185. There

is no difficulty in his first case where differential coefficients of the

first order only occur; but in his second case where differential

coefficients of the second order occur Mainardi himself intimates at

the end of the section that he has accomplished very little.

248. The fifth section extends over pages 185 192. In this

section Mainardi says that he will collect some applications of the

Calculus of Variations which afford ground for some remarks;

accordingly he discusses four examples. (1) He gives a theorem

on geodetic curves; this amounts to finding the first integral of

the equation which determines such a curve for a large class of

surfaces. (2) He speaks of Gauss's theory of capillary attraction

as affording one of the finest modern applications of the Calculus

of Variations
; but he thinks that the investigation given by Gauss

admits of great simplification. Accordingly Mainardi gives an

investigation of the variation of the function which Gauss con-

sidered
;
see Art. 71. Mainardi's investigation is far shorter than that

of Gauss, but it would not be very easy to follow unless the

student had previously read Poisson's memoir or some equivalent
method. (3) Mainardi forms the equation furnished by the Cal-

culus of Variations for the form of a flexible surface which is

in equilibrium under the action of gravity ;
this problem will be
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found in Mr Jellett's Calculus of Variations, page 323. (4) Mai-

nardi says that Steiner found by a geometrical method an elegant

property of the polygon of given perimeter which can be drawn on

a given surface so as to have a maximum area. Mainardi infers

from the Calculus of Variations that when such a- polygon is to

be inscribed in a given polygon, the two arcs of the required

polygon which meet on a side of the given polygon will there make

equal angles with that side. Mainardi gives no reference; a

memoir by Steiner will however be found in the sixth volume of

Liouville's Journal of Mathematics. Steiner's enunciation of his

theorem occurs on page 168, and the enunciation is more explicit

than Mainardi's, namely, the two arcs which form a part of the

inscribed figure, and meet on the same side of the given figure,

either cut it in one point at equal angles or else touch it in two

points.

249. We have thus given an outline of the whole memoir,

and we shall now return to the second section of it and examine

more particularly the method proposed by Mainardi for distinguish-

ing between maxima and minima values. The second section con-

stitutes in fact the most important part of the memoir, and although
it will be seen that the investigations are incomplete, they are not

without interest and value. The appendix to the memoir is de-

voted to the elucidation of part of the second section, and we shall

presently have occasion to refer to it. We may remark that the

whole memoir is difficult, and that it is disfigured by extreme

inaccuracy of printing.

250. We will first give Mainardi's method for distinguishing
a maximum from a minimum in the case of a single integral in-

volving ar,y, and -/ .

ax

Let \F (x, y> y) dx denote the integral which is to be a

maximum or minimum. Change y into y + ico, where i is sup-

posed to be an indefinitely small constant quantity and &> an arbi-

trary function of x. Then expand the new value of F(x, y, y')

in a series proceeding according to ascending powers of ?';
thus
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new value of the integral, that is \F (x, y + ico, y + tV) dx,

is equal to

where the terms not expressed involve powers of / higher than the

second; and

dF dF

[fd'F d*F d*F
,2
\

-*a
= :rr + 2 , ,

,
ft)ft) + -j-^ a)

z

}
dx.

)\dy* dydy dy* 1

The expression Ij, constitutes the variation to the first order of

the proposed integral ;
this must vanish, and thus by the usual

method we arrive at the equation

^--^-0 a)~^J~ ^ .
- V7 . ........ ............. \i ]

dy dx dy

From this equation we must suppose y to be found in terms

of x, and when this value of y is used, let

_ _
dy"

=

3jd?
=

dj*

We have then to examine the sign of

+ 2Bcoo)
r

+ Ceo'
2

) dx.{(

Now assume that we have identically

Atf + 2Bco<o' + (7ft)'
2 = (My

2

)' + aw2
-f 2^ft)ft)' + eft)'

3

;

then we must have

a + M' = A, b + M=.B, c= C ............... (2).

We have thus three equations involving the four unknown

quantities a, &, c, M, so that we are at liberty to make one -more

supposition respecting them
;

it is found convenient to introduce

another quantity and to make two more suppositions.

Let 6 denote this new quantity, and suppose

= 0, and ld + c&= ..................... (3);
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thus (2) and (3) supply five equations for determining five quan-

tities.

From the first two equations of (2) combined with (3) we

obtain

B0+Cff = MO, AO+B6'=(MO)' ..... (4);

hence
Ae+ Bff-(B6+Cff)'=Q (5).

From this differential equation 6 must be determined, and then

from the first of equations (4) we have

then from equations (2) we must obtain a and b
;
also it appears

from (3) that ac = &
2

,
so that

/
,

b \
z

aw* + 2bcoco -f ceo == c
\
co -\ co } .

V c /

Also c = (7
;
thus finally

j(Aco*
+ 2<ft>' + <7o/

2

)
<fo =M 2 + f C (co' + ~

cojdx,

where M has the value just assigned.

Hence if C retains constantly the same sign between the

limits of the integration, and Mco* either vanishes at the limits

or gives rise to a result of the same sign as (7, we have in

general a maximum or a minimum according as the sign of C is

negative or positive.
7 T) T(/T /V

It may be observed that -^
= ^ =

-^ .

O O c/

251. The above article contains all that is peculiar to Mai-

nardi, for the differential equation (5) is solved, with the assistance

of Jacobi, in the following manner; see Art. 221. Let the value

of y found from (1) be denoted by f(x, 715 7^), where 7t
and <

are arbitrary constants
;
then we shall have

where /3t
and /32 are new arbitrary constants

;
this we shall now

prove.

expression /, is the coefficient of t in the expansion of
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the varied value of the proposed integral \F(x, y, y'} dx, and 7
2

2

is the coefficient of - in the same expansion. We may also say

that 7
2

is the coefficient of i in the expansion of the varied value of

Tj_ ;
that is, if in 7

X
we change y into y + ico, and expand in a series

proceeding according to ascending powers of i, the term involving

i will be found to be 7
2
/. Now if the limiting values of y are fixed,

T
A
will vanish whatever may be the values ascribed to the constants

^ and 72 ,
so that 7

t
will also vanish when 7t

is changed into

h + &/! ,
and 72

into 72 + &y2
. Thus 7

t
vanishes when

and 7
X
also vanishes when y receives the increment

ciiT ^ df ~

where ^ and &y2
are indefinitely small

;
that is, il

s
vanishes when

df * df ,
ICO = -j 07 H r 07,

and
tv/j

and ^72
are indefinitely small.

Now we may modify the form of 7
X
and of 7

a by integration by
parts, and thus obtain

dF f/dF d dF
J-

'

,
ft) -f* I

' ~
/

d*F
+
d*F ,\

-7-75 &>
d J

rr^
2^

I < -j-g
J I df

,
/

w 4- -7 -T-/ ^ ~ ^~ 7 7 ,
ft) + T-TO ft)*-7 -T-/

~ ^~ 7 7 , T-TO
dy dy dx \dy dy dy*

And, as before, if in 7
X
we change y into y + ico the term involv-

ing i in the expansion of the new value of 7
t
will be il

z
. Hence

we infer that the coefficient of co under the integral sign in 7
2
will

vanish when iw = 87, + -J- &y .

fy, ^^72

But the coefficient of co under the integral sign in the last form

of Z2
is a linear differential expression of the second order in

ft),

and so the general form of the value of co which makes this
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coefficient vanish must be ^ + $^2, where /31
and /32 are arbitrary

constants and u
t
and w

2
are functions of x. Hence we infer that

the value of o> which makes the coefficient of o> under the integral

sign in the last form of 72 vanish, must be

R df + R
df

*3K*A3fr-

Thus the value of 6 is to be found in the manner already stated.

252. The solution of the differential equation (5) of Art. 250

does in fact constitute one of the most important parts of Jacobi's

theory. We have here had occasion to use it in only a simple case,

namely that in which equation (5) of Art. 250 is of the second

order; the method however is perfectly general whatever be the

order of the equation analogous to (5), and we shall have to apply

it again. The general process is as follows. With the usual nota-

tion the terms of the first order in the variation of an integral will

take the form jVfy dx, excluding the integrated terms. The terms

of the second order, with the same exclusion, will take the form

-
ISVSydx, where

Now suppose that the solution of the equation V= is

y=/07t 7 )

where 715 72 ,
... are arbitrary constants. If this value of y be sub-

stituted in V the result will be identically zero, so that we may
differentiate Fwith respect to any of the arbitrary constants which

occur in /, and the result will still be zero. Let -J- = u, then by

differentiating V with respect to % we obtain

dV dV
,

dV
-j- u + -r-;u +^-,, u + ... = Q.

dy dy dy

This shews that 87=0 is satisfied by fy = w; and therefore it

will be satisfied by fy = /9w, where ft is an arbitrary constant.

Hence the general solution of SF= will be
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253. Next let the proposed integral, which is to be a maxi-

dy , d*ymum or a minimum, involve x, y,
~ and -~

.
1 ax dx

Let JF (x, y, y' 9 y"} dx denote this integral, change as before y
into y 4- fcft>,

and expand the new value of F(x, y, y, y"} in a series

proceeding according to ascending powers of i
;
then the new value

of the integral may be denoted by

2
+

T f/dF dF dF ,,\ ,
Where Ji5BJ^ + __ +

^,a> )dx,

dzF

, - , ,-uco" + 2- r̂rrCl>
l

a>")dx.
dydy dy dy )

Then as usual J
t
must vanish

;
this leads to the equation

__

dy dxdy
1

'

dx*dy"

From this equation we must suppose y to be found in terms of

x, and when this value of y is used let

_ d*F_- '*~

,,
-

We have then to examine the sign of

ft>
2 + 2Bcoco' + Ow'

2 + Go"* + ZHcov" + 2Ka><*" dx.

Now assume that the expression under the integral sign is iden-

tically equal to

2 + 2Z>o)&>' 4- co)'
2
4- #o>"

2
4- 2Aa>&>" 4- 2&o>V ;

T. H.
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then we must have

' = '=

We have thus six equations involving the nine unknown quan-
tities Mt N, P, a, b, c, g, h, &, so that we are at liberty to make

three more suppositions respecting them
;

it is found convenient to

introduce another quantity and to make four more suppositions.

Let 6 denote this new quantity and suppose

also suppose c -- = ............................ (4).

Thus (2), (3) and (4) supply ten equations for determining ten

quantities.

From the equations (2) combined with (3) we obtain

KB" + CO' + B0 = M0 + NO' + (N0 + P0')'\ _
HO" + Bff + A0 = (M0 + N0

1

)' j

'

Hence,

H0"+B0'+A0 - (K0"+ C0'+B0)'+ (
GO" + Kff + H0)" = 0. . . (6).

From this differential equation must be determined, and then

from equations (2), (3) and (4) the rest of the unknown quantities

must be found.

ft
Also since c -- = 0, we have

9

CKO* + 2b(0(o' + ceo'
2 + goo"* + Zhcoco" + 2&a>'&>"

Jca>' 4- hco\* t tf\ 2
_ /, hk~ +

but by eliminating 0" from equations (3) we obtain
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so that since k* gc = 0, we have also Jik l>g 0, and h2

ag = 0.

Therefore

' +
9 /

'

Also (jG\ thus finally,

4 2J2o>ft>' 4- <7o>'
24 6V'2

4-

4 Po>'
2+^ o>" 4 .

Hence if (r retains constantly the same sign between the limits

f the integration, and the integrated part either vanishes or gives

rise to a result of the same sign as Gr, we have in general a maxi-

mum or a minimum according as the sign of 6r is negative or

positive.

254. It remains to shew how to determine the auxiliary quan-
tities a, b, c, h, k, Mj N, P, 6 which are introduced in the preceding

article; for if they are not determined we shall not be able to

ascertain whether they remain finite or not between the limits of

he integration. The value of 6 is determined as before ;
see Arts.

J51 and 252. If we represent the solution of (1) by

rhere ylt 72 , 73 , 74
are arbitrary constants, we shall have

where /3lt /82 , /33 , /34 are new arbitrary constants.

It is with respect to the methods which he proposes for

letermining the remaining auxiliary quantities that Mainardi's

nvestigations are the least satisfactory. He proposes in fact three

nethods for this purpose.

(1) He intimates obscurely that h and k may be determined

>hus
;
let

<j>
be a quantity found like 6 from the differential equation

182
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(6) of the preceding article, so that
<f>

is of the same form as 6 but

has other arbitrary constants instead of /3t , /32 , /33 and P4 ;
then

h and k will be determined by the equations

Gtf'+kff + lid = Q, G<f>" + kfi + h<f>
=

(7).

Mainardi seems to intimate that if h and k be thus determined

and then the remaining auxiliary quantities deduced from such of the

equations (2), (3), (4) as may be convenient, the remainder of these

equations will be satisfied. See his page 157 at the bottom.

(2) Mainardi however seems to allow that the statements just

made require to be proved ;
and accordingly he proceeds to verify

them. With respect to this verification we may observe that it is

really a long process, and in consequence of it Mainardi's method

loses the apparent simplicity which constitutes its chief recom-

mendation. Moreover in this verification, on the sixth line of his

page 168 the right-hand member of his equation should be a coiv

stant and not zero as he gives it
;
this in fact is the same mistake

as we have already indicated in Art. 232. Thus h and k cannot

be found as Mainardi intimates from equations (7) where the four

constants in < and the four constants in 6 are all arbitrary j
there

must be a relation between these constants.

(3) Mainardi returns to the point in the appendix and offers

another reason for the statement that h and k are to be found from

equations (7). He says the equations (2) of Art. 253 really ex-

press the conditions that must hold in order that

(A -a] co* + 2(B-b) coco' + (C-c) o)'
2
-f (G - g} o/'

2

+ 2 (H- h) coco" + 2 (JT- k) to'to"

may be an exact differential coefficient. Now when 6 is found

from equation (6), he says that

A0* + ZB6& + CO'* + GQ"* + 2H00" + 2K0'0"

is an exact differential coefficient, and

vanishes. Thus

(-4 -a)
f

+ 2 (J0-&) a>o)' + (<?-c) o)"+ (G-g) a/"

+ 2 (IT- h) coco" + 2 (A'- &) co'co"
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is an exact differential coefficient when o> = 0, and when o> =
</>,

and therefore the equations (2) must be satisfied when h and k and

the remainder of the auxiliary quantities are found in the way pro-

posed. This however is quite unsound
;
the equations (2) express

the conditions that (A a) w
2 + 2 (Bb] o>'+ ... should be an exact

differential coefficient whatever o> may be, and to say that this ex-

pression is integrable when co= 6 or = < is very different from saying
that it is an exact differential coefficient whatever co may be.

255. The student of the original memoir will see that we
have not kept to the original notation

;
that notation is singularly

perplexing and the language inaccurate. We will indicate one

example of the latter; Mainardi has a term Ic F, and this

02
term vanishes by virtue of the relation c -+ = which he esta-

J
blishes

;
but instead of saying that the term vanishes he says that

Y= 0, which is not the case. This inaccuracy occurs repeatedly.

256. We will now indicate the method which Mainardi gives

for distinguishing a maximum from a minimum in the case of a

double integral which involves differential coefficients to the first

order only.

Let \F(x, y, z, z, z,) dxdy denote the double integral which

is to be a maximum or a minimum, where z stands for -=- and
7 ax

z
t
for

-j-
. Change z into z + ico where i is supposed to be an

indefinitely small constant quantity and <w an arbitrary function of

x and y. Then expand the new value of F(x, y, z, z
',
z

t )
in a series

proceeding according to ascending powers of i
;
thus the new value

of the double integral is

jJF(x, y, z, z',z,) dxdy+Il
%+ I^-

dF dF
,

dF
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The expression /4
must vanish, and thus in the usual way we

arrive at the equation

dz dx dz dy dz
t

From this equation we must suppose z to be found in terms of

x and y, and when this value of z is used let

d*F d*F d*F

TT
d*F KH. -j% = A.

We have then to examine the sign of

Now assume that the expression under the integral sign is

identically equal to

(Ma?)
' + (Nco") ,

+ 0**+ 2&o>o/+ 2coM, + Go>'*+ 2Ha>'a>
t
+ Ka>? ;

then we must have

,
c +N=C ...... (2).

We have thus three equations involving the^ve unknown quan-
tities a, b, c, M, N, so that we are at liberty to make two more

suppositions respecting them
;

it is- found convenient to introduce

another quantity and to make three more suppositions.

Let 6 be this new quantity and suppose that

Off + J20, + 50 = (M

Hff + KO
t
+ cO = Q I ..................... (3).

be' + c0, 4- a6 = j
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From (2) and (3) we obtain

K0
l
+C0 = N0 ................ (4);

Bff + C0
4
+ A0 = (M0)' + (N0) t

I

hence

C0) t
=

(5).

From this partial differential equation must be found
; then

from the first and second of equations (4) we obtain M and N,

namely,

and from equations (3) we obtain a, &, and c. Now we have

>' + 2co>a> + Gco'
2

Gc-Hb

2

(Gc-Hb)* I ,

and the coefficient of o>
2
in the last line vanishes, as we shall find

/V f\ +

by eliminating % and ^ from equations (3).

Hence, finally, we obtain

1 1 (Ad)* + 2J?a>a>' + 2 C(oo)
l
+ (rw'

2 + 2-Hi*>'&>
/
+ -^w,

2

) dxdy

-H1>

The expression in the first of these two lines really involves

nly a single integral ;
the expression in the second line is a double
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integral. In order to ensure that this double integral shall retain

H*
the same sign whatever co may be we must have K

-^
and G of

the same sign; that is, GKH* must be positive. Then if

GKH* is constantly positive throughout the limits of the inte-

gration we shall in general have a maximum if G be constantly

negative, and a minimum if G be constantly positive. These results

agree with those obtained in Art. 213.

257. A value of 6 which will satisfy equation (5) of the pre-

ceding article may be obtained in the manner explained in Art.

251. Suppose, for example, a solution of (1) obtained which in-

volves two arbitrary constants, and denote it by

*=/(* y > 7i 7s)

where 7, and % are the two arbitrary constants
; then the partial

differential equation (5) will be satisfied by

a/ a d/"
Pi ~j 1" PaTT~ >

<#/!
a
^7*

where ft and ft are arbitrary constants.

258. Thus it will be seen that the investigation given by
Mainardi of the question discussed in the preceding two articles

may be considered complete, because the values of the auxiliary

quantities introduced can be really found. But the investigation

is not preferable to another which Mainardi gives and which exactly
follows the method given by Jacobi for a single integral. With
this other investigation we will close our account of Mainardi's

memoir. We will suppose, as is usual in discussing Jacobi's

method, that the limiting values of z, -j- and -7- are given so that

the quantities o>, &>', and co
{
vanish at the limits. With this sup-

position it will be found that the expression in Art. 256 of which
the sign is to be examined may be written thus,

ff^At*
+ Ba' + Ca>

t

-
(Ba> + Gco'+ #*>,)'- (

Ceo + H< + K,)\ vdxdy.
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We may prove this by integrating

rr rr

1 1 (Bay + G(o' + Ilwywdxdy and 1 1
(
Ceo + IIco' + K(o) t <odxdy

each once by parts, and then we shall obtain the same expression
as we used in Art. 256. Or we may modify the form of /

t
and

then deduce that of /
2
in the manner explained in Art. 251.

Let a stand for A B' 0, ;
then the expression of which the

sign is to be examined may be written

jjlao)
-

(
Gco' + Hco)'

-
(Hco' + Kco

t)\ adxdy.

Let 6 be such a quantity that

a(9 _
(
G& + HO)' - (Hff + JE0,),

=
0,

and assume o> = u0. The above double integral becomes

/JJowfl
-

(
Gu'O + Gu6 f + Hu

t
e + Hu9y

-
(Hu'O + Hu& 4 Kufl + Ku6^\ uOdxdy ;

and this on reduction will be found equal to

Integrate by parts and omit the terms which vanish at the

limits
;
thus this double integral becomes

JJ|
(
CM + Hu^ Pu' + (Hu' + Kut)

0*u dxdy,

that is,

fttcW
+ ZHu'u, + Kuf\ Pdxdy.

Hence, finally, we have in general a maximum if GKH* i&

positive and G negative throughout the limits of the integrations,

and a minimum if GK H2
is positive and G positive.

The quantity 6 may be determined in the manner explained in

Art. 257.
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259. In the volume of Tortolini's Mathematical Journal which

contains Mainardi's memoir there is a short article on our subject

by Professor F. Brioschi. It is entitled, On a theorem ofJacobis
relative to the criteria for distinguishing the maxima from the mi-

nima values of integrals. The article occupies pages 322 326 of

the volume.

Brioschi refers to Mainardi's method for distinguishing maxima
from minima values, and he says this method is complicated, by
the admission of Mainardi himself. Brioschi then says he will

briefly indicate criteria for solving the problem proposed. Thus

the title of the article does not give a correct idea of its con-

tents; for there seems to be no reference to Jacobi's theorem,

but instead of that a new method is proposed.

260. Brioschi does not demonstrate the theorems he enun-

ciates ;
the theorems themselves are enunciated in the language of

determinants. The following example will give some idea of the

object of the article.

Consider the expression

Au? + Bo>*+ Cu"* +2.W + 2Fa)o>" + 2 G<oV
;

this expression can be put in the form

+
Ga)t + Fa)

y+
a (*>' + /3o>)

2 + 7
2
,

where a, , 7 are certain functions of A, B, ... G\ we have in

fact indicated the values of a, {3, 7 in Art. 256. The use of such

a transformation is that we can thus see what conditions must

hold in order that the original expression may be incapable of

changing its sign; if a, 7 and C are all of the same sign, or

if a and 7 are zero, the proposed expression cannot differ in sign
from C. Now the theory of determinants furnishes general forms

for such coefficients as we have denoted by a and 7 whatever

be the number of the quantities o>, ', &>", ...which occur in the

original expression. It is this part of the theory of determinants

which Brioschi introduces; and he indicates its use in the ques-
tion of distinguishing a maximum from a minimum value of an

which involves x, y, and z
y
and the differential coefficients
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of y and z with respect to x up to those of the nih
order. But

as we have stated, the results are briefly enunciated without any
demonstration.

261. The introduction of the theory of determinants into the

subject is an important point, and, as we shall see hereafter, this

has been recognized by Hesse and Clebsch. It should be stated

that there are intimations of the value of the theory of determinants

in Mainardi's memoir, but we have not adverted to them in our

account of that memoir, because they are merely intimations which

do not in any practical degree affect the nature or value of Mai-

nardi's investigations.

262. On the last page of Brioschi's article there are two ob-

servations which may be noticed. The first is historical; Bri-

oschi states that the formulas for the complete variation of a double

integral were given by Bordoni in his treatise on the higher

Calculus in 1831, while Poisson's memoir appeared in 1833, and

Ostrogradsky's in 1838. Brioschi however refers to the fact that

Poisson had Jiimself enunciated his formulas in 1818. This fact

seems to render Brioschi's observation altogether superfluous.

Moreover Poisson enunciated his formulas in 1816 and not in 1818

as Brioschi states; see Art. 102. Also Ostrogradsky's memoir

was first published in 1836 in Crelle's Journal, and not in 1838,

as Brioschi states.

The second observation is on a mechanical point. Mainardi

had applied the Calculus of Variations to determine the form of a

flexible surface which is in equilibrium under the action of gravity.

Brioschi states that Mainardi's result is only true on the supposi-

tion that the tension is constant in every direction round any point

of the surface
;
he says that this follows from the researches of

Poisson, Cisa de Gresy and Mossotti. Brioschi gives no references

to the places in which these writers have discussed the question,

but probably the following are the works he has in view. (1)

Poisson's memoir in the Memoires de Vlnstitut for 1812, entitled

Memoire sur les surfaces elastiques. (2) A memoir by Cisa de

Gresy in the Memorie delta Reale Accademia delle Scienze <//

Torino, Tomo XXIII. 1818, entitled Considerations sur V
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des surfaces flexibks et inextensibles. (3) Mossotti's Lezioni di

Meccanica Razionale, Firenze, 1851.

263. The next memoir we have to consider is by Eisenlohr,

entitled Researches on the Calculus of Variations
; Untersuchungen

uber Variations-rechnung. Inaugural-Dissertation von Dr Friedrich

Eisenlohr. Manheim, 1853. This is a quarto pamphlet of 20 pages.

264. The memoir begins with a few introductory observations
;

the author says that his object was to give a simple proof of the

propositions required in Jacobi's method, and to shew that in a

certain case that method might be extended to a double integral.

He says that so far as he knew the second variation of a double

integral had not yet been considered
;
on this point Eisenlohr was

in error, as appears from Articles 147, 213, and 258.

265. The memoir is divided into eleven sections. The first

section contains some remarks on the nature of the Calculus

of Variations
;
and Eisenlohr here objects to the introduction into

the subject of such problems as we have considered in Art. 3.

In his second section, Eisenlohr gives the ordinary investigation

of the variation of a single integral. In his third section, he infers

from the result of his preceding section the condition that must

hold in order that a given function of x, yt and the differential

coefficients of y with respect to #, may be an exact differential

coefficient. In his fourth section, Eisenlohr distinguishes between

the maximum and minimum of
\f(x,y,-j-\ dx\ and in effect

he verifies the statements of Jacobi in Art. 220. In his fifth

section, Eisenlohr distinguishes between the maximum and mini-

mum of
\f\x,y,-jt, -j4j

dx\ and in effect he verifies the state-

ments of Jacobi in Art. 221. These investigations in his fourth and
fifth sections serve as Eisenlohr says to prove the truth of Jacobi's

solutions a posteriori, and the length to which they extend shews
the necessity for some general method of treatment. Accordingly
m his sixth section, Eisenlohr gives his investigation of the funda-

mental theorems of Art. 222. In his seventh section, he shews
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the application of these fundamental theorems to the Calculus of

Variations. In his eighth section, Eisenlohr investigates the maxi-

mum or minimum of I f(x, y> y ', y") dx, as in Jacobi's process of

Art. 224
;
Eisenlohr also illustrates Art. 225 of Jacobi's memoir,

in the case where we have to find the maximum or minimum of

section, Eisenlohr gives the ordi-

nary investigation of the variation of a double integral arising

from the variation of the dependent variable
;
he confines himself

to the case in which no differential coefficient occurs of a higher

order than the first. In his tenth section, Eisenlohr gives a theorem

respecting linear partial differential equations, analogous to that

which he proved in his sixth section. In his eleventh section he

distinguishes between the maximum and minimum value of a

double integral in which no differential coefficient occurs of a

higher order than the first
;
this investigation is equivalent to that

by Mainardi which we have given in Art. 258.

It may be observed that Eisenlohr is free from that mistake as

to the constants which we have noticed in Arts. 232 and 254.

From the above general account of Eisenlohr' s memoir it will be

seen that the only points of novelty which it presents are the proof
of Jacobi's theorems in the sixth section, the application to the Cal-

culus of Variations in the seventh section, and the extension of

Jacobi's theorems in the tenth section ; these we shall now give,

266. Eisenlohr says in his sixth section that Jacobi's method

depends upon the following theorem; a differential expression of

the form

can always be put in the form

This theorem was not proved by Jacobi himself; proofs how-

ever had been given by Delaunay, Lebesgue, and Bertrand.



286 COMMENTATORS ON JACOBI.

Eisenlohr says that Bertrand's proof is the only one that is satis-

factory, and that is very long ; (worunter nur der letztere Beweis

lefriedigend, aber auch sehr weitlaufig ist}. Eisenlohr does not say
what objection he has against the proofs given by Delaunay and

Lebesgue. He then produces his own proof, which he says rests

upon the same principles as Bertrand's. Eisenlohr establishes the

following theorem. Let there be any linear differential expression

which involves #, y, and the differential coefficients of y with respect

to x ;
let it be multiplied by y so that we may denote the product

by yF(x> y> y > y
'

)
Now put y = wz, where w is any function

of x, and subtract the terms which involve 3
2

,
so that the remainder

may be denoted by zFl (x, z, z", ...). If then F
v (x, ',",...) is an

exact differential coefficient whatever w may be, the expression

yF(x, y, y, y", ...) can be put in the form

We shall denote this form for shortness by y(x, y, y, y" , ...).

Now if F(x, y, y', y", ...) be linear and of an order not exceeding
2n it is obvious that if &

,
J
1 ,

J
2 ,

... bn ,
are properly chosen

can be made to involve only differential coefficients of y of odd

orders
;
that is, we can obtain the identity

F(x,y,y',y", ...) -3>(x,y, y', y", ...}=c,y + c,y
f"

+... + c^y^.
(See the commencement of Art. 239.) If then we wish to prove
that F(x t y9 tf, /, ...) can be put in the form 3>(x, y, y, y" , ...),

we must shew that c
l5

c
8 ,

... c^ all vanish.

We suppose it given that if in yF(x, y, y ', y" ...) we change y
into wz and subtract the terms which involve z

2
the remainder

when divided by z is an exact differential coefficient whatever w
may be; and we shall prove that y(x, y, y', y", ...) possesses the

same property. For when we change y into wz in the last expres-
sion we obtain a series of terms of which the type is
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and after subtracting all that involves z
2 we obtain pairs of terms of

which the type is

and thus after dividing by z the type becomes

rw--yV^-- wz
dxr

and this expression is an exact differential coefficient, as we see by
the method used in Art. 238 and referred to in Art. 240.

Thus y3>(x, y, y' , #",...) does possess the property which by
hypothesis yF(x, y, y', y" > ...) possesses ; hence also

possesses the property, and therefore so also does the identical

equivalent of this expression, namely

y fay' + csy" + ... + c^y8""1

*}-

Thus

w fa (wz)' + c
a (wz}'" + ... + <Wj (wz)

(2n
~
1}

}

- wz faw'+c9w'"+ ... 4- Cs^i^**-
1

'}

is an exact differential coefficient, whatever w may be, or else it is

zero. Now apply the theorem in Differential Calculus which we
have quoted in Art. 239, to every term in the former part of the last

expression, or else integrate by parts as much as possible ;
we shall

thus find that the whole expression consists of terms which are im-

mediately integrable together with a term Cwz, where

Now C does not contain z and z is arbitrary, so that Cwz cannot

be an exact differential coefficient
;
we must therefore have (7 = 0.

And as C must vanish whatever w may be, the coefficients of the

differential coefficients of w which occur in C must separately

vanish
;
thus we shall obtain in succession

Cftu.i
= 0, c2n _3 = 0, . . . c

3
= 0, ^ = 0.
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This proves Eisenlohr's theorem. Now to apply this theorem

consider the expression

change y into wz, subtract the part involving s
2

, and divide by z
;

we thus obtain pairs of terms of which the type is

uw

The last expression is an exact differential coefficient, as we see

by the method used in Art. 238 and referred to in Art. 240.

Hence by Eisenlohr's theorem it follows that the expression

which is of the form yF(x, y, y , y" , ...), where F(x, y, y , y" , ...)

is linear, can be put in the form

267. The proof in the preceding article is that given by
Eisenlohr himself, except that he does not enter into any detail

respecting the relation C 0, but merely intimates that it follows

from the known condition of integrdbility of a function. It may be

remarked that the memoir is not free from misprints and inaccu-

racies ; thus, for example, Eisenlohr uses the words differential

equation repeatedly, when he means differential expression, and he

speaks of subtracting the coefficient of z* when he means subtracting

the terms involving z*.

268. In his seventh section Eisenlohr shews that the terms

of the second order in the variation of an integral will take the

form which Jacobi gives; see Art. 224. The variation to the

first order may be denoted by I V8y dx, where we omit the in-

tegrated terms
; that is, we suppose the limiting values of x and

y, and of the differential coefficients of y to be fixed. Then the
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quantity of the second order which we have to examine will

be IBVBydx. We have then to shew that BV is a function of

By and its differential coefficients which can be put in Jacobi's

Form. This will follow by Eisenlohr's theorem since we shall

prove that 8V has the following property; in BVBy change By
into wBz where w is any function of x, and subtract the terms

involving (Bz)
2

,
then divide by Bz, and the quotient will be an

exact differential coefficient whatever w may be.

For suppose that / VBydx becomes / V$z dx by thechange ofy into

wz, then by the same change IBVBydx must become IBVfizdx, that

is, B VBy becomes BV
:
Bz by the change of By into wBz. The part of

dV
SVfiz which involves (Bz)

z
is -r-

1

(z)
2

; hence the expression which

is to be shewn to be an exact differential coefficient is

-
(*)},

dV
that is. B F. --~ Bz.

az

Now suppose that lf(x, z, z, ...) dx represents the integral of

which the variation to the first order, excluding the integrated

terms, is I Vfiz dx ;
then V

t -f- is an exact differential coefficient
;

and so also is BV B -~ . Hence we have only to shew that
dz

B ~ --^ Bz is an exact differential coefficient. Now if we de-
dz dz

velope I B -~ dx by the ordinary process of the Calculus of Vari-

ations we shall find that we obtain a series of terms free from

the integral sign, together with the term

[f

]\

df. d aft d* d
r -

j-^> + -J-* jn - -

z dxdz dx* dz

19
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where/ stands for . And the last integral will be found to

be /TLIJ & fa so that 8 -- -j-
1 & w an exact differential coeffi-

7 as flte dz

cient.

Hence, SFS# does possess the required property, and there-

fore by Eisenlohr's theorem BV can be put in Jacobi's form.

269. The following is the theorem which Eisenlohr gives in

his tenth section, analogous to that in his sixth section.

Let F(x, y,z, z', z
l9 ...) be any linear differential expression

in Zj and its partial differential coefficients with respect to x and

y, where as usual accents above z indicate differentiations with

respect to a?, and accents below z indicate differentiations with re-

spect to y. Multiply the expression by z, put z = wt where w is

any function of x and y, and subtract all the terms which involve

f. If every term of the remainder when divided by t is susceptible

of at least one integration with respect to x or y whatever w may
be, F(x, y, #,',,,...) can be put in the form

+

The proof is similar to that in Art. 266. We denote the

expression last given by 3> (x,y, z, ',
z

t , ...).

Then in the first place we observe that by properly choosing
the coefficients A^ A 19 B^ Ov A# ... we can obtain the following

identity,

zF(x, y, z, z', z
t , ...)

- z &(x, y, z, z'
,
z

i9 ...) =zV(x, y, z, z
t , ...),

where V(x, y, z', z
t , ...) is a linear function of the differential co-

efficients of z of odd orders.

In the second place we prove, that z$>(x,y, z, z, z
/t ...) possesses

the property which by supposition zF(x, y, z, z',z,i ) possesses.
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For change z into wt and subtract all that involves ? and then
divide by t; we thus obtain terms which may be arranged in pairs,
and by pairing them suitably we shall obtain expressions which are

integrable either with respect to x or y. For example a part of the
result is

w -r \A. (wt)'+R (w\flnn I 1 \ / 1 \

and we arrange these terms in the following pairs,

d dw -j- A. (wt) -wt -j- A.w'ax dx l

(M *~j i \ tt

he first of these four expressions is exactly integrable with respect
o x and the second with respect to y the third expression is

equal to

- wBi(wt) i

--
nd the fourth to

'

nd thus every term is susceptible of exact integration either with

espect to x or y.

The general process which is exemplified in the first and

icond of these four expressions presents no difficulty ;
that which

i exemplified in the third and fourth of these expressions will

>e now given.

Let us denote one of the terms in z&(x, ?/, z, z', z
t , ...) by

dm
(

dmz \

dxr

dy*\ dx'dif)'
192
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where r + s-=p + <r = m; then, as we suppose r not equal to p,

there will also be the term

y tm* \A
'&# JotI*dxr

dy

Now change 2 into wt and subtract all that involves tf

2

,
and divide

by t. We thus obtain

dm /. T"t0

Now by repeated integration by parts we have

dm

where $ represents a series of terms free from the integral sign.

Then if we integrate both members of the last equation with respect

to y, we shall find that the only term on the right-hand side that

remains under the double integral sign is

dmw , dmwt

(-I)'//;dx
r

dy dx'dy*

And this term is the only term that will remain under the

double integral sign when we integrate

d
(

f\
K

&d*f
Hence the first pair of -terms written above is such that it consists

of parts which are susceptible of exact integration either with re-

spect to x or y. And the same holds with respect to the second

pair of terms. Thus z&(x t y, z, z
,
z

t , ...) does possess the property
in question.

In the third place it will follow that z^(x, y, z', z
f , ...) must

also possess the property in question or else vanish identically ;

and from this it will follow that ^(x,y, z
',
z
/5 ...) does vanish

identically.

If for example (or, y, z', *,,...) does not involve differential
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coefficients of a higher order than the third, we should have for

zW (x, y, z, z
t , ...) an expression of the form

Hence the following expression must be susceptible of inte-

gration with respect to x or ^, or else vanish identically,

w
{if,
W + Jf, (trf), +^ ()'" + 2̂M; +N3 (wt)' tl

+ N>

2 w'/ + N9
w'

lt + N.w\ .- wt M + w + w

By reducing the terms of the first line by integration by parts

with respect to x or y, we arrive at an unintegrated expression of

;he form Ct where C does not contain t\ this must vanish since

it cannot be an exact integral with respect to x or y. And as G
must vanish whatever w may be, we shall find in succession that

N4 ,
N3 ,
N

a9
N

19 M^M^ must all vanish.

Thus Eisenlohr's theorem is established.

The theorem is applied to the purposes of the Calculus of Vari-

ations in a manner similar to the application of the theorem in

Eisenlohr's sixth section.

270. The next work we have to consider is by Spitzer, en-

titled On the criteria for maxima and minima in problems of the

Calculus of Variations. This work consists of two memoirs

which were communicated to the Academy of Sciences at Vienna ;

:he memoirs were published in 1854 in the SitzungsbericJite of the

Academy. The first memoir extends over pages 1014 1071 of

the 12th volume, and the second over pages 41 120 of the 14th

volume of the Sitzungsberichte.

Spitzer refers in the beginning of his first memoir to the

memoirs of Jacobi and Delaunay, which we have already noticed ;

and then he says, that he has sought to deduce Jacobi's criteria in

another manner, and believes that this new way may deserve

some consideration.

271. The two memoirs consist altogether of thirty sections,

of which thirteen are contained in the first memoir, and the

remainder in the second. The first section gives the ordinary



294 COMMENTATORS ON JACOBI.

investigation of the terms of the first order in the variation of an

integral which involves x, y, and the differential coefficients of y
with respect to x. The second section gives an investigation of

the terms of the second order in the variation of the integral.

The third section shews how Legendre transformed the terms of

the second order so that the existence of a maximum or minimum

might be recognized ; Spitzer writes the equations at full for the

case in which the integral involves only the first differential

coefficient of y, for the case in which it involves both the first

and second differential coefficients of y, and for the case in which

it involves the first second and third differential coefficients of y.

In his fourth section Spitzer makes some remarks on the equa-
tions given in his third section

; he shews that the equations take

the complicated form that has been indicated in Arts. 220 and 221,

and he says that Jacobi had succeeded in integrating these equa-
tions by a refined and difficult analysis, and that he himself had

solved the equations in a much simpler manner. The fifth sec-

tion contains that part of Jacobi's theory which we have given
in Art. 252. The sixth section indicates briefly the general way
in which Spitzer proposes to solve the problem under discus-

sion. The seventh section contains a complete investigation of the

general criteria for the maximum or minimum of an integral
x

\

Vdx, wh^re F involves x, y, and y'. The eighth section con-
ro

tains a discussion of that particular case in which -=- is zero.
ay

The ninth section contains a complete investigation of the ge-

neral criteria for the maximum or minimum of an integral I

'

I \lx

where F involves x, y, y', and y". The tenth section contains a
7 2 17

discussion of that particular case in which -=-775 is zero. The
dy

eleventh section contains a complete investigation of the general

criteria for the maximum or minimum of an integral I

l

Vdx
J *l*Q

where F involves x, y, y', y", and y'". The twelfth and thirteenth

sections contain a discussion of that particular case in which
'

^T-M,V
IB zero. The fourteenth, fifteenth, and sixteenth sections
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contain some additional investigations respecting the particular

cases which are discussed in the eighth, tenth, twelfth, and thir-

teenth sections. The seventeenth section gives the ordinary in-

vestigation of the terms of the first order in the variation of an

integral which involves x, y, z, and the differential coefficients of

y and z with respect to x. The eighteenth section gives an inves-

tigation of the terms of the second order in the variation of the

integral. The nineteenth section shews how the terms of the

second order are to be transformed so that the existence of a

maximum or a minimum may be recognised ;
the necessary equa-

tions are given at full for the case in which the differential co-

efficients which occur do not rise above the first order, and for that

In which they do not rise above the second order. The twentieth

section generalises the theorem given in the fifth section. The

twenty-first and twenty-second sections contain a complete inves-

tigation of the general criteria for the maximum or minimum
o^f

f*\
an integral I Vdx where V involves x, y> z, y and z. The re-

J <t'

maining sections contain discussions of the particular cases which

occur when V assumes particular forms.

272. Speaking generally we may describe Spitzer's work in

the terms we used with reference to Mainardi's, namely, as Le-

gendre's method improved by additions borrowed from Jacobi;

see Art. 245. Spitzer was acquainted with Mainardfs memoir,

for he refers to it on page 62 of the 14th volume of the Sitzungs-

berichte. The investigations of Spitzer however are much more

complete than those of Mainardi
; Spitzer does not shrink from

the labour of working out the solutions of his equations com-

pletely. Spitzer was the first who developed completely the

second variation of an integral involving x, y, y\ y'\ and y"\ the

preceding writers had confined themselves to the case in which

the integral involved only x, y, y and y". Spitzer's investigation

of this problem is extremely complex, and occupies twenty large

octavo pages ;
besides seven more pages which relate to certain

special cases. In fact it seems improbable that any student

would verify the long calculations contained in Spitzer's twelfth

and thirteenth sections, and in his sections comprised between the

twenty-first and thirtieth inclusive.



296 COMMENTATORS ON JACOBI.

It should be observed that the memoir is well and correctly

printed ;
some mistakes at the ends of sections 8, 10, and 13 are

corrected by the author himself in 'a note to section 14. A mis-

take occurs in the second line of page 1032 of the 12th volume of

the Sitzungsberichte, for the sign of the right-hand side of the

equation must be changed; this mistake leads to two more on

the same page, and it appears again on page 44 of the 14th

volume.

273. We will now give some specimens of the investigations

and conclusions of Spitzer.

In Arts. 250 and 251 we have shewn how in general we may

distinguish between the maximum and minimum of I

'

Vdx, where
J XQ

V involves a?, y, and y'. Now suppose for a particular case that

j-ia
=

0, then, excluding the integrated terms, the value of 7
2
on

page 271 will take the form

[fd*V d d*V\
I -T-jT

~
~J~ -j r~r urdx.

]\dy* dxdydy)
Thus for a maximum or minimum it is necessary that

__
dy* dx dy dy

should be respectively constantly negative or constantly positive

throughout the limits of the integration.

Since
^-75-

=
0, it is obvious that Fmust be of the form

thus the differential equation from which y is to be found, namely,

dV_ dV_
dy dxdy'

=
''">

becomes ^ +y^_^_^V = 0|
dy dy dx dy

a

that is ^-^ = 0.

dy dx
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This gives y as a function of x without any arbitrary constant.

Thus, adopting geometrical language, the limiting points between

which the required curve is to be drawn cannot be taken arbitrarily ;

they must lie on the curve determined by
-~ -r- = 0, or else the

problem will be impossible.

In the next place let us suppose that besides -y-^ = 0, we have

also ---_ _ = 0; Spitzer in his fourteenth section deter-

dy* dx dydy
mines what the form of F must then be, in the following manner.

Since ~j-^
=

0, we must have Fof the form/j (aj,y) +y'fz (a?,y).

Now suppose fi(x,y) and j (05, #) expanded in series proceeding

according to ascending powers of y, and let

Thus - 1 . 2A
2 + 2 . 3A

B y + 3 . lAtf + ...

+ y' (1.25. + 2. 35
3^ + 3. 4

dx dydy

d*V d
And since

dy* dxdydy"
we must have

Thus

or
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This gives for Fthe following form,

or we may express our result without any loss of generality thus,

With this value of Fwe have

J
Vdx = ^(x, y) +jyx(

x
)
dx

5

thus in 8 I Vdx the unintegrated part is /%(#) &ydx, and this will

not vanish unless % (a?)
vanishes. Then / Vdx is exactly integrate,

and its maximum or minimum can be sought by ordinary methods.

274. Besides Spitzer's method, we may use another for finding

the form of V in order that we may have

d*V d dzV
-y-Ta

= 0, and also -7-0- -j- , , ,
= 0.

dy* dy
z dx dydy

The latter result is the condition of integrability of the function

-j- ; so that we must have -j an exact differential coefficient of
dy dy
some function of x and y. Thus

I/fry)}'.

We do not introduce y into the function f(x,y), because if

we did -j- would contain y"] and this is impossible, because since

d^ "V

^-*
=

0, we know that F is of the form ft (x, y) +y'f,(x,y),

dV
and so -- does not involve y".

dy dx dy
'

therefore V
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Now let F(x,y) be such a function of a? andy, that

dF_ [df.

JTjl

so that J- =f(x, y}
-

XiH ,

where Xi (
x

)
ig an arbitrary function of x.

where %2 (a?)
is another arbitrary function of a?.

Therefore
F-.J+y^f+Jfc'W

+

=
{*>,

y) +/%2 (*)
<&}

+

And this agrees with Spitzer's form of F.

275. We will in the next place shew the manner in which

Spitzer investigates the criteria for the maximum or minimum of

\Vdx, where F involves a?, y, y and y". We have first to find

in the ordinary manner the terms of the first order in 8 I Vdx and

to make then* vanish. Then to distinguish between a maximum
and a minimum, we must investigate the sign of

f/d*V
-T-a

]\dy*

.

2 -JJ-, ww-T-a -T-/5 -TTT* -JJ
dy*

T
dy'

2

dy"
2

dydy
zV d*V \

j ww" + 2 -j-rj-T, w'*v"
} dxjd dd J

~T~ a j 1 n ww | M j i j i

dydy dydy
where w is put for Sy.

w dV dV
,
dV

Suppose W=-j- w + -j-7 w + -j-n w ,

a?/ y dy

then the above expression which we have to examine is equivalent

to

w (dW_(dW_\\ ,dW

tt*K-(*K\' f
dw

}"
i\dy '~\dy')

+
(dy"J
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The coincidence of the two expressions is easily shewn by in-

tegrating \(-j-r\wdx
once by parts, and

/(-prj
wdx twice by

parts.

Now assume that these terms of the second order can be put

in the form

/d*V-T-772 (w"

where v, v
t ,
v
2 , X, and p are at present undetermined.

In order that this transformation may be possible the following

equations must be satisfied :

d*V

j j ,
= V + V. + X^ -^-^ ,

dydy
r
dy

2

We may observe that if X and p are known the last three of

these five equations will find in succession v
2, v# and v.

We do not propose to give the long process by which Spitzer
solves these equations ; we will however briefly indicate the prin-

ciple on which he proceeds.

Let M
4
denote a value of w or Sy which makes the unintegrated

terms of the second order in the variation vanish, that is, which
makes

dW
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then we may infer that this will make w" + \w -f /JLW vanish, that

is, we shall have

u" + X< + pu^ = ........................ (2).

Similarly, let u
t
be another such value of w or Sy, then

W," + XW
2

'

+ /im2
= ........................ (3).

Then from (2) and (3) we can find X and
//,

in terms of u^ and

u
z
and their first and second differential coefficients; and when v, v

l9

and v
2
are expressed in terms of X and

fj,
from the last three of the

five equations given above, it remains to shew that the first two of

these five equations are satisfied.

When the equation (1) is developed it takes the form

d'V

d*V\' (d*VV-

fd*V\' ,

/ cPFV')
-(-77-,) +(-, j ,;} hW0 ............ (4).

\dydy') \dydy J }

This is a differential equation of the fourth order, so that w,

and u
2 may each involve four arbitrary constants. But practically

to find u^ and u
2
we do not require to solve this differential equa-

tion
;

for we use the principle explained in Art. 252.

Spitzer does shew that when X and
//.

are found in the manner

indicated, and then v, v
l ,

and v
2 deduced, the first two of the five

equations given above are satisfied, provided a certain relation

subsists among the eight constants which occur in w
x
and w

2
. This

agrees with Jacobi's statements in Art. 221.

Since the above five equations lead by the elimination of X
and

/JL
to three differential equations of the first order for finding

v, v
lt
and v

a ,
it follows that if the most general values of these quan-

tities are obtained three arbitrary constants should be involved.

And Spitzer shews that the eight constants which occur in u^ and

u
z
do combine in such a manner as to leave finally three independ-

ent arbitrary constants in the values of v, v
lt
and v

a
. This gives a
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completeness to the investigations which is desirable, but it is not

absolutely necessary. For all that is required in order that the

proposed transformation of the terms of the second order in the

variation may be effected, is that certain differential equations

should be satisfied ;
and it would have been of no- importance if

the number of arbitrary constants had been less than the extreme

number which the most general solutions would supply.

276. The general results at which Spitzer arrives in the in-

vestigations noticed in the preceding article are the same as those

of Jacobi given in Art. 224
; but in addition to these he discusses

some particular cases, and these we will now consider.

Suppose then that we have -^ = ;
then V must be of the

In this case the differential equation in ^, which is formed by

equating to zero the terms of the first order in 8 I Vdx, is a dif-

ferential equation of the second order. We will suppose its inte-

gral to be y = $(x, a^ a
z).

Now assume that the terms of the second order which we have

to examine can be put in the form

vw* + 2VjWw' + v
z
w'* + I P (w + \w}

z dx
;

and put for shortness

* *

'-

_

dydy"
'

dydy'
"

Then we require that

Aw* + BW* + Ww'w" + ZEwio" + %Fww f

= (vw* + 2v
x
W + v

2
W7'

8

)' + P(w
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Thus we must have

Now let uC
l

~ + V*-?~ >
where (7

t
and <7

2
are arbitrary*-

constants
;
and assume X such that u + \u =

; we shall then

examine if we can satisfy the above five equations. The third

and fourth give immediately i\ E^v fi D\ then the second and

fifth give

v = F-E' + - (B-2E-D');u ^

it remains to try if the values thus obtained satisfy

A=v'
This requires that

that is

(A - F' + E") u + u (2E
f + D" - B'} + u' (2E + D

r - B] = 0.

This equation is in fact what equation (4) of the preceding

article becomes when -7-772
= 0, with u in the place of w

;
and from

ay
Art. 252 we know that the value assigned to u does satisfy it.

Thus the unintegrated part of the terms which we are ex-

amining, that is,

IP (w' + \w)
z

dx,

becomes

l-2E-')(w'-^w")dx',
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hence for a maximum or minimum B^ED' must be respec-

tively negative or positive throughout the limits of the inte-

gration.

Next, suppose that we have

d*V dzV d*V f d*V~\'
-y-7^ = 0, and also -7-75 2 , , , ,

, = 0.

dy"
9

dy'
z

dy dy \dydy )

The unintegrated part of the terms of the second order is now

and thus for a maximum or minimum A F 1 + E" must be re-

spectively negative or positive throughout the limits of the in-

tegration.

. . dW fdW\' fdW\"In this case the equation -^ \d~r )
+

(~d~
77

)

~
'

1S no

longer" a differential equation for finding w, because 10"", w"', w",

and w disappear from it. This suggests that the equation obtained

by putting the terms of the first order in SI Vdx equal to zero

will not be a differential equation in y, but an ordinary equation ;

and this will be found to be the case.

For Spitzer shews in the same manner as in Art. 273, that

the form of V must in this case be

4> (*, y) + y ^ (*, y] + ix (*> y> #')}'

and as in Art. 273, we shall obtain for determining y the equation

^_^ = 0.

dy dx

Lastly, suppose that we have

, , v */ t/ i/ \ y y
and also

d'V
( <PV\ ( d*V\" .~ + '

Spitzer shews in the same manner as in Art. 273, that the

form of V must in this case be
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thus in SI Vdx the unintegrated part is
/</> (x) Sydx, and this will

not vanish unless
<f> (x) vanishes. Then I Vdx is exactly integrable,

and its maximum or minimum can be sought by ordinary methods.

277. We may also obtain the results of the preceding article

by another method. Suppose -T-^ = 0, then the left-hand member
ay

of equation (4) of Art. 275 takes the form

(2E+ D' - B} w" + (2E
f + D" - B'} W

' + (A-F' + E") w,

where A, B, D, E, F have the same meaning as in Art. 276. The

above expression may be written thus

{(2E+ D' - B} w'}' + (A-F' + E"} w,

so that we have to determine the sign of

f[{(2E+
D' - B) w'}' + (A-F' + E") w] wdx.

Suppose u such a quantity that

{(2E+ D' - B) u}' + (A-F' + E") u = 0.

Then the expression which we have to examine may be written

D' - B) w
1

}

1

-{(2E+D
r - B} u'}

1 Hi wdx.

Integrate by parts; then the terms remaining under the integral

sign will be

I \(B -2E- D') w'
9 - (B-2E- D') u

r

^1 dx,

that is, j(B-2E- D') (w
r - U-

wj
dx.

This agrees with the result at the bottom of page 303.

278. In his sixteenth section Spitzer examines some excep-

tional cases which occur in rinding the maximum or minimum of

20
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Vdx, when F involves x, y, y, y", and y
1

". He does not here

prove that V must have specific forms in certain cases, but he

assumes specific
forms for V and shews that certain exceptional

cases do thence arise. The following four forms for V are ex-

amined.

2.
<f> (x, y, y'} + y" ty (x, y, y') + be (<*> y> y' /')]'

3.
<#> (a?, y) + y'^ (x, y} + [& (a?, y, y')]' + [%2 0*> y> y' y")]'

4. y* (*) + [%>, y)]' + fofo y, y')T + b&fa y> y' y")T-

279. In concluding our account of Spitzer's memoirs, we may
state that the most interesting and valuable portion of them con-

sists in the examination of certain special cases in which the

general results obtained by Jacobi require to be modified; and

these special cases appear to have been examined by no other writer.

280. The next memoir we have to consider is by Otto Hesse
;

it is entitled, On the criteria for the maxima and minima of single

Integrals. It was published in the 54th volume of Crelle's Mathe-

matical Journal in 1857, and occupies pages 227 273 of the

volume. In the beginning of his memoir Hesse refers to the

following authors who have written commentaries on Jacobi's

memoir, Lebesgue, Delaunay, Bertrand, Eisenlohr and Spitzer;

he makes special mention of Spitzer, and commends his acuteness

and industry. It seems probable that Hesse was led to turn his

attention to the subject by seeing Spitzer's investigations.

281. The first twenty pages of Hesse's memoir contain inves-

tigations of Jacobi's theorems. Although there is little that is

substantially new here given, the investigations are well worthy
of study from their complete and systematic form.

282. In the next seven pages the result obtained by Jacobi's

method is developed by the aid of the theory of determinants, so

as to present the unintegrated part of the second variation in a

wore explicit form than that in which Jacobi leaves it. These
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seven pages constitute the most important portion of the memoir
;

and we will give here the result obtained by Hesse. Suppose

that / Vdx is to be a maximum or minimum, where V contains x, y,

and the differential coefficients of y up to the nih
inclusive. Let z

stand for Sy ;
then the terms of the second order which we have

to examine can be put in the form I ^ (z) zdx. This is proved

by Hesse
;

it is equivalent to the statement in Art. 223, that the

terms of the second order can be put in the form / SVSydx. Now

let u, v, w, ... be values of z which satisfy the equation ^ (z)
=

;

we suppose n of these solutions obtained, and they will be all of

the same^rra, but differ in the values of the 2^ arbitrary constants

which each of them involves. Now adopting the usual notation of

determinants let

V =

w, w, w, win)

and

,
Z

u, u
,
u

,

v, v, v",

(n-1)

where accents denote as usual differential coefficients. Thus v is

a determinant of the (n + l)
th order and \7n is a determinant of the

nih
order. Then Hesse proves that the terms of the second order

f T7
2

which we have to examine can be put into the form I N 5 dx,

where N is the second differential coefficient of V with respect

dn
y

to
dx"

202
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Moreover Hesse draws particular attention to the fact that

certain relations must hold among the arbitrary constants involved

in w, v, w,... See Arts, 221 and 232.

283. The remainder of Hesse's memoir is devoted to the

examination of three particular cases, that in which the integral

involves x, y, y ',
that in which the integral involves a?, y, y', y\

and that in which the integral involves a?, y, y , y", y'". These

cases are treated very fully, and the relations which hold among the

arbitrary constants are completely exhibited. No notice however

is taken of the exceptions to the general theory which Spitzer

considered ;
see Arts. 273, 274, 276. In connexion with the first

of the three particular cases which he examines, Hesse gives a

good discussion of the remarks made by Jacobi relating to the

extreme limits which may be assigned to an integral in order to

ensure a maximum or a minimum
;
see Art. 225.

284. The memoir by Hesse forms the most elaborate commen-

tary that has yet appeared on Jacobi's theorems and method. The

student who masters this and examines what Spitzer has given on

the exceptional cases will not require any further information on

the maxima and minima of single integrals which involve one

dependent variable. Hesse uses the theory of determinants, but

a student who is acquainted with the elements of that subject will

not find any serious difficulty in Hesse's memoir.

285. We have next to consider a memoir by A. Clebsch
;

it

is entitled On the reduction of the second variation to its simplest

form. It was published in the 55th volume of Crelle's Mathemati-

cal Journal in 1858, and occupies pages 254 273 of the volume.

This is the first of three memoirs by this writer on the Calculus

of Variations. He begins by referring to Jacobi's results, and to

the excellent memoir published by Hesse respecting them. He
then indicates the points in which Jacobi's results require still to

be generalised, namely, that similar investigations should be sup-

plied for the case of a single integral which involves more than

one dependent variable, and for the case of a multiple integral, and
fT the case in which equations are given connecting the variables

involved in the integral. The present memoir proposes to supply
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some of these required investigations. Thus, Clebsch states that

the memoir solves the following problem ;
to reduce the second

variation of a single integral so as to make it depend upon the

smallest number of variations, the integral involving any number
of dependent variables and their differential coefficients to any
Order, and also any number of equations being given connecting
the variables. In addition to the solution of this problem, there is

a short section on the subject of multiple integrals, but this is of

no great importance; the writer however intimates that at the

time of printing he had succeeded in overcoming the difficulties of

this part of the subject, and would publish a memoir on it, and in

fact the third memoir fulfils this promise.

As an example of his method, Clebsch gives the ordinary case

of one dependent variable without any connecting equations, and he

arrives at the result obtained by Hesse; see Art. 281.

286. The second memoir by Clebsch is entitled On those

problems in the Calculus of Variations which involve only one in-

dependent variable. It was published in the 55th volume of

Crelle's Mathematical Journal in 1858, and occupies pages 335 355

of the volume.

This memoir may be said to consist of two parts. The first

part is occupied in proving that the solution of any problem in the

Calculus of Variations in which there is only one independent

variable may be made to depend on the solution of a certain partial

differential equation of the first order. It had been intimated by
Jacobi that this proposition was true in a certain case, so that a

problem in the Calculus of Variations could be treated in a manner

analogous to the treatment of dynamical problems by the methods

of Hamilton and Jacobi. Clebsch easily proves the proposition

which he enunciates.

The second part of the memoir is occupied in shewing that

this mode of treating a problem in the Calculus of Variations

presents great advantages in the discussion of the terms of the second

order with the view of discriminating between maxima and minima

values. This part of the memoir is extremely complicated and
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requires the reader to possess a good knowledge of the theory of

determinants.

287. The third memoir by Clebsch is entitled On the second\

variation of Multiple Integrals. It was published in the 56th

volume of Crelle's Mathematical Journal in 1859, and occupies

pages 122 148 of the volume.

The object of the memoir is to shew how to discriminate be-

tween the maxima and minima values of multiple integrals ;
like

the second memoir by the author it is extremely'complicated, and

requires the reader to possess a good knowledge of the theory of

determinants.

288. We have been compelled to give very brief accounts of

the memoirs by Hesse and Clebsch. From the nature of the

memoirs it seems impossible to present any abridgement of them

or any extract from them which will be easily intelligible ;
and

moreover the memoirs belong rather to the Theory of Determinants

than to the Calculus of Variations. As however these memoirs

have been published so recently they can be readily obtained, and

thus there is less need of a detailed account of them than in the

case of works which are more difficult of access.



CHAPTER XL

ON JACOBI'S MEMOIR.

289. THE preceding chapter contains an account in chrono-

logical order of the writings of commentators on Jacobi's memoir
;

the present chapter consists of some miscellaneous articles bearing
on certain parts of Jacobi's memoir.

In Art. 228 we have given Jacobi's remarks on the shortest

line that can be drawn on a surface
;
these remarks are connected

with those in Art. 225. We have also intimated that some of the

commentators on Jacobi's memoir have considered these parts of

it
;
see Arts. 265 and 283. There is a note by J. Bertrand entitled

On the" shortest distance between two points on a surface, which was

published in 1855 in the second volume of the third edition of

Lagrange's Mecanique Analytique, pages 350 352. We will give

this note in the next article.

290. When a material point moves on a fixed surface, and

has an initial velocity but is acted on by no force, Lagrange proves

that its velocity is constant and the curve which it describes is the

shortest that can be drawn between two of its points. In order to

prove this proposition the illustrious author shews that the varia-

tion of the arc fcZs is zero, and therefore there is either a maximum
or a minimum

;
but he says there cannot be a maximum and there-

fore there must be a minimum. This manner of reasoning is in-

admissible, because we know that the variation of an integral may
be zero while the integral is neither a maximum nor a minimum.

However in the particular case in question Lagrange's statement

is exact, as we may shew in a few words.
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The differential equation which expresses that the variation of

the integral fds is zero proves, as is well known, that the oscu-

lating plane of the curve is at every point normal to the surface.

But if we suppose the two extremities of the arc considered to be

indefinitely close, among all the arcs drawn on the~surface joining
the extremities, the least, that in fact which differs least from the

chord, will evidently be the arc which has the least curvature,

that is, the arc which has the greatest radius of curvature. But

the arcs which unite two points of the surface indefinitely close

may be considered as having the same tangent, and therefore, by
the well-known theorem of Meunier, that of which the osculating

plane is normal to the surface has the greatest radius of curvature,

and is consequently the shortest.

The proposition enunciated by Lagrange is exact as we have

just seen for any indefinitely small arc, but it would cease to be

so if we considered an arc of finite size. There exists a curious

theorem on this subject enunciated by Jacobi without demonstra-

tion, which gives a general method for determining with respect
to every line traced upon a surface and satisfying the conditions of

a minimum, the limits between which it is really the shortest

line.

Let AMA' be suck a line ; proceed along this line from the

point A which is fixed towards the following points of the curve.

Ifwe take one of these points as a second limit it may happen that

between this point and the first another curve can be drawn which

satisfies the analytical condition for a minimum as well as the first;
then the line considered will cease to be a minimum between the

point A and the second extremity considered, at a point for which

the second line coincides with (se confond) the first.

This theorem has not been demonstrated by the mathematicians

who have explained the celebrated letter in which it is enunciated.

We think that it will be useful to indicate briefly how it follows

from the analysis of Jacobi.

The integral considered being [/(a>, y, -f]dx,
the variation

takes the form
jVSydx,

V being the function which by being
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equated to zero furnishes by integration the solution of the pro-
blem.

That there may be a minimum, the function ~rz must remain

constantly positive during the limits of integration. This con-

dition will certainly be fulfilled whatever the limits may be, be-

cause we have seen that there is always a minimum between any
two limits whatever if they are sufficiently close. Besides this we
must have according to Jacobi's analysis another condition ful-

filled. Let y denote the expression deduced from the equation
V 0, then y contains two constants a and b suppose ; let a and

P be two other constants, and let

,
da db

Then the other condition is that it must be possible to take the

constants a and /3 so that the expression

i d*fdu\
ud"*dx)dy

may not become infinite between the limits of integration, or,

which comes to the same thing, u must not vanish between these

/Q

limits. Hence it is clear that for each value of if the expression

for u becomes zero in two points of the minimum line furnished

by the Calculus of Variations, then between these two points we
can affirm that the integral is a minimum. Now two such points

will possess the property indicated by Jacobi, that is, it will be

possible to draw between them two lines indefinitely close, each

of which has the minimum property. For we observe that the

expression

dy Q du
u = a -f- + -ftda db

is the general integral of the linear equation 8V'= 0, in which 8y

is the unknown quantity. (See Jacobi's Memoir.) If then we

put instead of y the value y + u, where a and p are so chosen as

to make u indefinitely small, which is allowable, the expression V
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will vanish, because by supposition y makes it vanish and the

indefinitely small increment u renders its variation zero.

Thus there are two lines indefinitely close joining the same

two points, for which the relation F= is fulfilled, that is, two

lines which equally satisfy the conditions of minimum.

The proposition thus demonstrated is not identical with that of

Jacobi, but it is perhaps allowable to suppose that the illustrious

author went a little too far in the rapid sketch which he gave of

his results ;
it is clear, for example, that the conditions found by

him are sufficient but not necessary for the existence of a minimum.

There is therefore no ground for affirming that the minimum ceases

to exist because the function u becomes zero
; but this would be

necessary in order that the enunciation should take the completely
affirmative form given above.

We may observe before closing this note that Jacobi's memoir

contains the enunciation of another very remarkable theorem
; if at

every point ofa surface the two curvatures are in opposite directions

the line which satisfies the analytical conditions of a minimum is

always really the shortest. We confine ourselves to recalling this

theorem to the attention of mathematicians
;
a more detailed dis-

cussion of the geometrical problem which is the object of this note

would be out of place here.

291. Bertrand in the first paragraph of his note says that

Lagrange is right in asserting that there is necessarily a minimum
in the case considered

;
in the third paragraph of his note he says

that Lagrange's statement is not necessarily exact except for an

indefinitely small arc.

The remarks which Bertrand then makes on Jacobi's theorem

coincide in substance with those of other writers on this subject ;
see

for example Mr Jellett's treatise, pages 90 and 98. These remarks

depend on the following consideration
;
Jacobi's method reduces the

unintegrated part of the terms of the second order to the form

and thus we cannot be sure of a minimum if u vanishes between
the limits of integration. Bertrand however is alone in pointing
out that this does not prove so much as Jacobi asserts in tlu>
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particular problem under consideration, for Jacobi asserts that there

will not be a minimum
;
and Bertrand conjectures that Jacobi here

overstated his results. But it has since been shewn by Ossian

Bonnet that Jacobi was quite correct; the proposition to which

Bertrand calls attention at the end of his note is also proved by
Bonnet.

Two notes have been written by Bonnet on the point we are

considering. The first note is entitled On some properties of geo-

desic lines. It was published in the Comptes Rendus ...... de

Academic des Sciences, Vol. 40, 1855, pages 1311 1313. We will

give it in the next article.

292. A line traced upon a surface is called a geodesic line,

when its osculating plane is always normal to the surface.

An arc of a geodesic line is the shortest line that can be

drawn on a curved surface between its two extremities, provided
the arc be comprised within certain limits which have been fixed

by Jacobi in the following manner. Consider a geodesic line A.If

which starts from the point A, and let A be the point where this

line is met by another geodesic line AM' which also starts from

the point A and is indefinitely close to AM. Between the points
'

A andA the line AM will always be a minimum line
;
but beyond

the point A the line AM will generally be neither a maximum nor

a minimum. Assuming this, let p denote the variable distance

MM' between two indefinitely close geodesic lines AM and AM'.

By a formula due to Gauss, p considered as a function of the

arc AM will satisfy the differential equation of the second order

ds
2 Eft

where AM s
}
and R, R' are the principal radii of curvature of the

surface, and in addition, when s = we have p = and -~ = the
ds

angle dO between the geodesic lines AM and AM', which will

completely determine p. Now suppose that the surface is of

opposite curvatures
; -^-

will be negative, and we can assume

1

TtR'

where a is a real constant.
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Let us take the equation

and integrate it so that when s = we may have p t

= and

-^=d0: we shall obtain
as

But from a theorem demonstrated by M. Sturm in his excellent

Memoir on differential equations of the second order, it is known,
that for any interval whatever starting from 5 = 0, the value of pt

must vanish at least as often as that of p ;
but p i

never does

vanish, and so p cannot vanish. Thus in a surface of opposite

curvatures a geodesic line is always a minimum throughout its

length. This beautiful theorem was enunciated by Jacobi, but

it had not been demonstrated up to the present time so far as

I know.

Suppose in the next place that
^- is positive and less than

z .

i-K a
Consider the equation

and integrate it so that when s=0 we may have pt
=0 and -' = dO

;

(is

we shall obtain

pt

= adO sin -
.

But, from a second theorem demonstrated by M. Sturm, it is

known that, starting from s = 0, p will vanish before p t ; but pt

vanishes when s = TTO,, therefore p vanishes before s = ira. Hence
we infer that, in the case considered, a geodesic line cannot be

generally a minimum line throughout a greater length than ira.

Consequently the shortest distance between any two points on a

convex surface is less than ira where a9
is a number greater than

the product RR' of the principal radii of curvature for all points
of the surface.
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293. The theorem due to Gauss which Bonnet quotes in the

Dreccding article is contained in the Disquisitiones generates circa

superficies curvas. This memoir was presented by Gauss to the

Royal Society of Gottingen on October 8th, 1827, and was published
in 1828 in the sixth volume of the Commentationes Recentiores of

that Society. This memoir is reprinted in Liouville's edition of

Monge's Application de VAnalyse a la Geometric.

The theorem in question is also proved by Ossian Bonnet in

tris memoir on the general theory of surfaces in the Journal de

TEcole Polytechnique, Cahier XXXII, 1848.

The memoir by Sturm to which Bonnet refers will be found in

the first volume of Liouville's Journal of Mathematics.

The second note by Bonnet is entitled Second note on geodesic

lines. It was published in the Comptes Eendus... Vol. 41, 1855,

pages 32 35. We give it in the next article.

294. In a note presented to the Academy on the 18th of June,
established some general properties of geodesic lines. My in-

vestigations depended on the following theorem due to Jacobi.

Let AM be any geodesic line which starts from the point A y
and

supposeA to be the point where this geodesic line is met by a geodesic

line which also starts from the point A and is indefinitely near to

the first; then the line AM will be a minimum between the points
A and A

,
and will cease to be a minimum beyond the point A'.

Jacobi did not demonstrate his theorem
;
he merely said that

it might be easily deduced from the general rules which he gave
for distinguishing maxima from minima in questions which de-

pend upon the Calculus of Variations. M. Bertrand has given a

proof of the first part of the theorem in the notes which he has

added to his excellent edition of the Mecanique Analytique; that

is, he has proved that between the points A and A the line AM
is a minimum. In the mode of proof M. Bertrand has followed

the indications of Jacobi. With respect to the second part of the

theorem M. Bertrand thinks that it may not be exact, and that

at alt events the method of Jacobi is not competent to decide the

point. It is in fact certain that the general conditions found by

Legendre and completed by Jacobi, for distinguishing be;
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maxima and minima in problems which depend upon the calculus

of variations are sufficient but not necessary. I have succeeded

in proving by particular considerations both parts of Jacobi's

theorem. I request permission from the Academy to communicate

my demonstration, which thus removes the difficulties which re-

late to an important question, and at the same time gives more

precision to the results of my previous investigations.

Let AMB be an arc of a geodesic line which starts from A
and ends at B. (The reader is requested to make the figure for

himself.) Draw any line AMJ3 indefinitely close to AMB and

having the same extremities. I proceed to estimate the difference

of the lengths of AMB and AMJB as far as small quantities of the

second order
;

for this purpose I draw through the different points

of AMB geodesic curves normal to AMB, and I denote in general

by co the portion of these curves comprised between AMB and

AMJB. Suppose the element MN of AMB ds, and the corre-

sponding element M
1
N

l
ofAM

t
B = ds

;
then

P being the point in NN^ such that NP=MM
l

. But

T., T dco 7

PN^-j-ds^cods,ds

and Mf is, by a theorem due to Gauss, the integral of the equation

dco*^ ER'~

which for co satisfies the conditions u = ds, -=- = Q. Therefore
dco

if we neglect powers of co above the second. Therefore

**-*{(
l -mif +

-i'
or more simply, to the order of approximation which we want,
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Therefore the difference between AM^B and AMB, that is the

second variation of the integral fds, will be

We see immediately that if RR' be negative this second varia-

ion is always positive ;
this proves the first theorem which I have

established in another manner in my first note
; in any surface of

opposite curvatures a geodesic line is a minimum throughout its

length.

Now let us call p the distance comprised between the lineAMB
and another geodesic line indefinitely close to it which also starts

rom A, so that we have

RR'~

fytV)

and when s = we have p and ~- = the indefinitely small angle

dO between the two geodesic lines
;
the expression (1) can be put

n the form

1 f/
,2 d'*p?\ ,

1 ff , dpa>\* 7
1 [fa>*dp\j

- w + -T
- - \ds = -

I [co f- }
ds + - -ids.

2J\ ds pj 2J\ ds pj 2j\p dsjp) 2j\ ds p,

But, if p does not vanish within the limits of integration,

[fco
2

dp\ ,

}(-pds)
ds= ^

or co is zero at the limits
;
thus the second variation is reduced to

1 f/ , dp wV ,-
1 ( i

1

T }
ds.

2j\ dspj

hat is, to a positive result. I conclude therefore, that so long as

he extremity B is not beyond the point A where the line AMB is

net by the geodesic line indefinitely close to it which also starts

'rom the point A, the arc AMB of the geodesic line is a minimum

-Detween the point A and the point B-}
this is the first part of

Tacobi's theorem.
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If the point B is beyond A', then, since co is only subject to the

condition of vanishing at the points A and B, we can take for co a

value which satisfies an equation of the form

d*co . /J J_

where & is real, and which is such that co = and
-^

dO when

8=0. This follows from the fact that in an equation of the form

when G is diminished continuously the roots of the equation p =

increase continuously, (p and
-j-

retaining the same values for s=0).

We have then for this particular value of co

co

but, since o> is zero at the limits, we have also

therefore

Thus the second variation of the integral fds can become nega-

tive, and the arc AMB is neither a maximum nor a minimum

between the point A and the point B. The second part of Ja-

cobi's Theorem is thus established.

We have said above that when once Jacobi's Theorem is fully

demonstrated we can give more precision to the enunciation of the

results contained in the note of the 18th of June. In fact we can

say that if in any convex surface the product ER' of the principal

radii of curvature is less than the constant a2

,
the shortest distance

from one point to another upon the surface will always be less

than ?ra. Hence it follows that every convex surface in which

the principal radii of curvature do not become infinite is neces-

a closed surface.
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295. Although so many proofs have been given of Jacobi's

theorems that it may appear superfluous to present others, yet the

bllowing proofs are of interest as they depend on the principles of

tie Calculus of Variations itself. They were published in an

rticle entitled Observations on Jacobi's Memoir on the Calculus of

Variations, by E. Heine, in Crelle's Mathematical Journal, Vol. 54,

857, pages 68 71. They will occupy our next two articles.

296. The proposition which Jacobi published in the 17th

rolume of Crelle's Journal and which was proved by Lebesgue and

>y Delaunay in the 6th volume of Liouville's Journal may be

emonstrated also, without much trouble, in the following way,
rhich depends on very different principles.

Let A be any given function of x, u any function of x, and

3t u, u", ... denote the differential coefficients of u with respect

o x. Put

2Z=(-l)
n

JAu
(n)

ti
{n} dx ..................... (1),

where u(n) stands for -
;
then

oZ= (- l)
n lAu(n} Su(n} dx.

Now by integrating by parts in the ordinary way Z can be

eparated into two portions, namely, one which is free from the in-

tegral sign, and which we will call L, and another portion which

remains under the integral sign, namely,

dn (Au
w

) ,

\ n
} Su dx.

dxn

Let y denote any given function of x, and put u yt, so that

= yBt; thus
-""""

tdx (
2
).

Now we must obtain an equivalent value for $Z if we first

ut yt for u in (1), and then effect the variation; the form how-

ever of the expression for 8Z will differ from that in (2) ;
and

this difference in form accompanied with equivalence of value will

give a proof of Jacobi's Theorem.
21
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Put yt for w, then u(n) takes the form

where a, o^ ,
. . . are simple functions of y and therefore functions of

x. Thus Au(n]u(n) will consist of a series which we" may denote by

S/3^" ^ where the indices m and p may take all values between

and w, and the functions denoted by /3 will be like a, a
t ,

. . .
, given

functions of x. Put this expression for Au{n]u(n} in (1), then we
shall shew that 2Z can be put in the form

2Z=M+j(C
tt- CjW+ Cft"-...Cnt

(n)
t
w
)dx....... (3),

where M contains no integral sign, and CQ , G^ ... are given func-

tions of x.

For 2 \$lF*4*dx consists partly of terms for which m =p, which

thus have already the form in (3), and partly of terms in which m
and p are different. Suppose then p greater than ra, and first let

p =m + 1
;
for such terms

and thus we obtain again terms of the form in (3). Next suppose

p m greater than unity ;
then by using the following formula

as often as necessary, we shall obtain terms in which the indices of

t are either equal or differ by unity ;
and thus finally we obtain

terms of the form in (3).

Now take the variation of Z expressed as in (3) ;
then by the

ordinary formulas of the Calculus of Variations the term in 8

which remains under the integral sign is
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The expression (4) must therefore be equal to the integral
in (2) ;

thus

d
The quantity <7 is equal to y - J

. For since u= yt, we

have

dn
(Ay

(n}

)thus the term y
^ y

n
'

n

is the only term which can contribute any portion to (7/, and

thus obviously ,

n dn
(Ay

(n)

]--
We can now prove Jacobi's Theorem.

n(n}
Let

where A
Q , A^ ... are given functions of x. Put u=yt where y is a

given function of x
; then from what has been proved

where B
, B^ ... are known functions of a?, like (7

,
C

lt
... were.

n

Also =

thus when y is so chosen that it is an integral of the differential

equation U= 0, we have B
Q
=

;
and then

as Jacobi's Theorem asserts.

Remark. In order practically to determine the values of J5,,

#
2 ,

... which do not come into consideration in Jacobi's memoir,
212
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the method may be modified by first integrating by parts and thus

f f dn (Au (n}
]

reducing lAu{n}u(n)dx to I u \ n
' dx. Now put ty for u, and then

we have to consider integrals of the form Il3tt
(p}

dx, and not as be-

fore integrals of the form
f/3t

(m}
t
{p] dx.

297. Jacobi published another proposition in his Memoir, of

which Delaunay has given a long demonstration in the place already

named. This is the proposition ;

let
J=jf(x,y,y',...y

(n]

)dx,

then &7 consists of a part free from the integral sign together with

the integral I Vfy dx, where

This is well known; then Jacobi asserts that SFmay be put in

the form

We proceed to prove this. Let 8 and 6 be symbols of variation

which are independent of each other
;
then the double variation 8 QJ

will be equal to

where the sign of summation refers to all values of m aiid^? which
are comprised between and n. But on the one hand this expres-
sion must be of the form

for if we vary J with the symbol 6 we should obtain an integrated

part and the unintegrated part I V6y dx ;
and if we now vary the

result with the symbol B we obtain for the unintegrated part
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Moreover the expression given above for 8 6J can be put in

the form

... AV%<n)

)
dx ....... (8),

as we shall shew presently. Now by the ordinary method of

integrating by parts the unintegrated part of the last expression is

found to be \W6ydx; and thus

SF=PF,

which was to be proved.

We have then only to shew that 80J really has the form (8).

The terms in (7) for which m =p have already the required form
;

suppose then^? greater than m, and first let p = m + l. Then it is

plain that by single integration

fy<>) dx

is referred to the form

Ifp be greater than m + 1, then by single integration we make

depend on

and

I

and by proceeding thus we shall ultimately arrive at the form

in (8).

298. There is an article by Minding entitled, On the trans-

formations which serve for distinguishing maxima from minima in

the Calculus of Variations. It was published in Crelle's Mathe-

matical Journal, Vol. 55. 1858, pages 300309. The object of
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this article is to demonstrate two theorems used in Jacobi's memoir
;

namely, the theorem in Art. 222 in the form in which it is given

in Arts. 229 and 231, and the theorem respecting the form of SF
in Art. 223. The demonstrations are somewhat complex, but per-

fectly satisfactory; as they consist however almost entirely of

ordinary algebraical transformations it will be unnecessary to enter

upon them here.

299. We will close this chapter by giving two examples of

the investigation of a maximum or minimum value.

For the first example we will apply Jacobi's method to the

T / y\
z

expression I Vdx where V= [p + ^) x + (2c + cy*) x. This is in
J \ xj

fact the example given on page 108
; the quantities which were there

denoted by r, p, -^
are now denoted respectively by x, y, p. The

expression of the second order which determines whether there is a

maximum or a minimum is here

/{
+

Let

therefore $@ = cxfy
- x -r- (&p + -^

J
;

therefore
j Bfifydx =jcx (fy)

2 dx -/<% Jj (fy
+

Thus we see, since the limits are supposed fixed, that the terms

which we have to examine can be put in the form IspSydx; this

is in accordance with Jacobi's theory.
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Now I S0Sydx=l u&fi^Ldx,
where u is at present undeter-

mined
;
also if u be properly determined we shall have

f ?>/ 7 9 d /SyN
I uSffdx ^ ifx-T-l-Z-};
J dx \ u )

'

for this only requires that

IN s d f dby\ d { d fiy\\+ -o?/-w :r-a;-T^=--T- V#-r K
xj '

dx\ dxj dx\ dx\u)y
d ( dSy * du\- ux-~ xoy -=-

} ,^
3&J

J

du d

that is, we must have

d du

Suppose then that w is taken to satisfy this differential equation ;

then we get

neglecting the terms free from the integral sign, which vanish at

the limits if no infinite quantities occur.

Now u is such a quantity that if put for By in S@ we get
3 =

; hence the value of u is known by Jacobi's theory ;
see

Art. 220. The value of y which makes
8|
Vdx = is in the

present case to be obtained by finding -j- from the value of z on

page 108, and then changing r into x. Thus it is

A~ JV^
C03

dco + B^-xJV^
COSW

log (x sin
2

o>)
<7o>

;

and therefore the value of u is in the present case of the same form,

with A and B replaced by new constants. The second constant
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must be supposed zero in order that u may not be infinite when

x = ;
hence finally

u = al g-*^008 " cos coda),
J o

where a is an arbitrary constant.

This value of u however vanishes when x 0, so that the ex-

pression under the integral sign in the value of I Sftfydx becomes

infinite when x 0. Hence we are not certain that in this case we

really have obtained a minimum.

300. The next example is intended to draw attention to the

case in which we have to discriminate between the maximum and

minimum of a function when the limits are not fixed. Writers on

the calculus of variations appear frequently to intimate that the

fact of the limits being variable does not really render the problem
more difficult ;

this however does not seem correct.

Let us consider the problem of the brachistochrone in which

the moving particle is to pass from one given curve to another,

starting with an assigned velocity. Take the axis of x vertically

downwards
;
let Ti be the height due to the initial velocity, xl

and a;
2

the abscissae of the starting-point and the final point respectively.

Then we have to find the minimum value of
\ *Vdx, where
J #!

V= ^l+P^
N
and = ^. We shall treat the problem in

^(h+x-xj dx
what seems the best way ;

we shall attribute no variation to the

independent variable x but shall obtain the requisite generality in

our formulae by changing the limits of the integration. Suppose
then that p receives the variation $p, and that the limits x

l
and x

%

become respectively x^ + dx
l
and x

z -f dxs
. In consequence of the

change inp and x
l
a change takes place in F, and to the second

order V becomes
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Hence the variation of the integral is

rx2 + dx3 /*d?
fl

Vdx I Vdx
J MI 4- rfra J Xi

C(dV dV 1 d2V d*V 1 d*V )

+ \\~T~ &P+T~dx 't"S~T3 (^P)* + -J~~j~ fyd&i + n~j~t (^#1) r dx.
J [dp

*
dx^ 2 dp dpdx^

J 2 dx* v '

j

the limits in the last line being x
t + dx

l
and #

a + dx^

Now we observe that if in an integral I

a

<f)(x)dx the upper

limit is increased by dx
z
the integral is increased by

to the second order
;
and if the lower limit is increased by dx

l the

integral is diminished by

to the second order. Thus the above variation becomes to the

second order

-
\ F;

dv

where F' stands for the complete differential coefficient -y- ,
and

the suffixes 1 and 2 indicate that # is made equal to x
l
and x

9

respectively.

By reducing the second of the above three lines the variation

becomes to the second order

F
2
dx

2
-

F, dx, + 1
F; (^2)

2 - 1
F;2

c?F, rf7 , \ /^F, JF, \ .

T~ ^P + T~ dk l"-r-&->> j " 1 "!
<5>

J

eic, V, V^?
J

c?i A
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The term I -7 Sp dx of the variation becomes by integration

by parts

dV
Hence we infer that we must have -y- equal to a constant, in

order to obtain a minimum.

We have now to examine the remaining terms of the variation.

We shall first transform &/2
and Sy^

Suppose y = x(x) the equation to the upper limiting curve, and

y = ijr (x) the equation to the lower limiting curve. Then the

co-ordinates x2 , yz satisfy the latter equation, and so also must the

co-ordinates of the new extreme point which is obtained by changing
the curve and the limits. The abscissa of the new extreme point
is #

a + dx
2 ;

the ordinate of the new extreme point will be found

by changing x
z
into x

>2
+ dx

2
in the function y2 + Sy2 ,

so that it

will be

in which we must suppose x put equal to x
2

Thus to the second

order the ordinate in question is

and this must be equal to ^ (xz + dx
2)

estimated to the second

order. Hence we get

A similar expression holds for 8^.

With these values of 8yt
and Sy2

we shall find that the variation

reduces to the following terms of the first order,

dx
l
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together with the following terms of the second order,

(dV* dV, \ , (dV^
'

dV, \ ,

+ -5- op + -7 ax.) dx
z (-r 8p+-jdxl )

dx.
d 1 dx V \d 2 dx V

The interpretation of the terms of the first order is well known,

but we will give it here to render our investigation complete.

Equate to zero the coefficient of dx
z \ thus

_ =
dp

Y
dp dx J 2

substitute the values of Fand-^- ,
and we obtain

dp

j PI y
' + -I =o.

Thus {ptfr

1

(x) + 1}2
=

0, which shews that the curve described

cuts the lower limiting curve at right angles.

Next equate to zero the coefficient of dx
t ;

thus

(dV ,,'; dV dy , T
J [*2dV ,

\-r-xW --r j+ V\ -jdx = Q.

(dp* dp dx
J, J^ dx,

dV V(l +/) dV .

Now -7 = - Ĵ
i >

and by supposition -y- is equal to
x*' dp

P 1
a constant, that is rr--2 . f/7-r = r- say ;

h + x x. - a
hence / = r

Thus =
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(dV , *J(a-h-x+x.} 1
and

/ -j- dx = - y ...
,

--^ =---r- .

J aXi yayfi+x xj p*Ja

(**dV , 1/1 1\
Hence -7 dx = 7-

---
.

J^l
dx

1 Va\p2 pj

Thus our equation becomes

f
J* () + !

1 .._L/1_M_0
W(l+/)V(A+ *-<e

1)J/V^i J,/~

Therefore x(xi)^z + 1=0, and thus the tangents to the limiting

curves at the points where the described curve meets them are

parallel.

We have now remaining in the variation only terms of the

second order
; by reduction they become

Now it is by no means evident that the above expression is

necessarily positive, so that we are not sure of the existence of a

minimum as asserted by Legendre ;
see Art. 203. Nor do Jacobi's

investigations give us here any assistance. The above expression

shews that cceteris paribus the suppositions that
>|r" (a?2)

is positive

and that x'(xi)
^s negative are favourable to the existence of a

minimum. This makes the lower limiting curve convex to the

axis of x and the upper limiting curve concave to the axis of x at

the points where the described curve respectively meets them
;
and

it is obvious from a figure that these circumstances are favourable

to the existence of a minimum.



CHAPTER XII.

MISCELLANEOUS MEMOIRS.

301. THE present chapter contains an account in chronological

order of various articles, memoirs, and treatises, connected with the

Calculus of Variations.

302. Poisson, Memoires de Vlnstitut, 1812, page 224.

Poisson here finds the differential equation to the surface of con-

stant area which makes 1 1 V(l +^
2 + f) (-

+
) dxdy a minimum,

where p and p are the principal radii of curvature at the point (x,y, z)

of the surface. He adds that the equation obtained would also be

obtained if we required that // V(l +^
a + f] (

?) dxdy should

be a minimum, or that I

(V(l +p* + <f)
(

a + 2
) dxdy should be a

minimum
;
for I IS ,

** dx dy vanishes, so far as the terms
JJ pp

^

under the sign of double integration are concerned. There are

two misprints in Poisson's remarks, but there can be no doubt

that his meaning is what we have here given.

303. Rodrigue. Bulletin des Sciences par la Soctite Philo-

matique de Paris, 1815, pages 34 36.

This paper is on certain properties of double integrals and of

the radii of curvature of surfaces. It is stated that the variation

of the double integral \\$ (p, q) (rt-s*) dxdy contains only terms
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relative to the limits. This may be verified without much diffi-

culty ;
that is, we can shew that the part of the variation under the

double integral sign is identically zero. Hence we see that this

statement is an extension of that quoted in the preceding article

from Poisson.

304. Poisson. Bulletin des Sciences par la Societe Philoma-

tique de Paris, 1816, pages 82 86.

This paper is on the Calculus of Variations with respect to

multiple integrals. Poisson refers to the difficulty which Lacroix

had found in the variation of a double integral, which led him to

infer that x must be supposed a function of x only and 8y a func-

tion of y only ;
see Art. 40. Lagrange adopted the same hypothesis

as sufficient for his purpose without asserting its necessity ; see

Mecanique Analytique, 3rd edition, Vol. I. page 92. Poisson re-

moves the difficulty by giving the correct expressions for 8z', Sz
t ,

...

instead of those given by Lacroix. The substance of this paper
was given by Lacroix in his third volume, pages 717 720; and it

was afterwards incorporated by Poisson in his memoir on the Cal-

culus of Variations. See Art. 102.

305. Choisy. Essai Historique sur le probUme des maximums

et minimums et sur ses applications a la mecanique par J. D. Choisy,

Geneva, 1823.

This work consists of 66 quarto pages. It is divided into two

parts. The first part is on the abstract problem of maxima and

minima
;
this contains five chapters; (1) Preliminary considerations,

(2) Elementary and synthetical methods, (3) Analytical methods

up to those of the Bernouillis inclusive, (4) Methods of Euler, (5)

Methods of Lagrange. The second part is on the applications of

the theory of maxima and minima to Mechanics
;
this contains six

chapters ; (1) On the use of indeterminate coefficients in the appli-

cations of the Calculus of Variations to Mechanics, (2) On the

principle of least action, (3) On the Cycloid, (4) On the Catenary,

(5) On elastic curves, (6) On equilibrium.

At the end of the work is a list of authors on the subject ;
this

list docs not seem to contain anything of importance in addition to

the iiRual references.
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The present writer has never seen Choisy's work ;
for the above

notice of it he is indebted to a friend, who at his request exam iiml
the copy in the Bodleian Library at Oxford.

306. C. H. Graeffe. Commentatio Historiam Calculi Varia-

tionum inde db origine Calculi Differentialis atgue Integralis usque,

ad nostra tempora complectens.

This essay obtained a prize from the University of Gottingen
in 1825

;
the adjudicators however state that it is defective in

giving so little information on the more recent investigations re-

lating to the Calculus of Variations. The author in his preface
states his intention of going further into the subject in a future

essay ;
this intention however does not appear to have been ever

carried out.

The essay occupies 60 quarto pages ;
it traces the history of the

subject from its origin until the time of Lagrange. The essay thus

goes over the same ground as the well-known work of Woodhouse.

It is however not so full as the work of Woodhouse
;

it sometimes

merely states that certain results were obtained, without explaining
the method by which they were obtained.

The essay does not bear upon the subject of the present volume,

because it scarcely alludes to anything after the works of La-

grange. A few lines are given to Dirksen, a few to Ohm, and a few

to Buquoy ;
the latter two are not highly estimated by Graeffe.

Thus he says :
" Conatus quos Ohm ad hunc calculum stabiliendum

publicavit parvi momenti sunt...," and "... ad calculi variationum

principia fundanda Comitem de Buquoy etiam, quanquam frustra,

vires tentasse
;
non est tamen meum propositum hos conatus scien-

tiam non augentes accurate explicare." Graeffe refers to Lacroix in

the following terms: "...inter eos qui libros quibus doctrine

niatheseos exponuntur perscripserunt, Lacroix calculum variationum

diligentissime tractasse."

These extracts are all taken from the last two pages of

Graeffe' s work. The present writer has never seen the work of

Buquoy to which Graeffe refers; its title appears to be

eigene Darstellung der Grundleliren der Variatt<mx-i''lunDi>i, ami

the date 1812 is ascribed to it in a bookseller's catalogue.
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307. Minding. Crelle's Mathematical Journal, Vol. 5, pages
297 304, 1830. This article is entitled On curves of shortest

perimeter on curved surfaces; it contains a discussion of a problem

proposed in the third volume of Crelle's Journal by Crelle himself.

The problem is to find the shortest curve which can be drawn on

a given surface so as to include a given area. Minding obtains

the following results. If the given surface be a sphere the required

curve is a plane curve, and therefore a circle. He obtains the re-

quired curve when the surface is a right cone. He remarks that

if the surface be any developable surface, the required curve must

be such as will become a circle when the surface is developed;
this follows from the known fact that of all plane figures a circle

is that of least perimeter which bounds a given plane area.

Minding also establishes the following result. Whatever be

the surface the curve required has this property ; the cosine of the

angle between the osculating plane of the curve at any point and

the tangent plane of the surface at that point is proportional to

the radius of curvature of the curve at that point. This property
has since been proved by other writers who have discussed the

problem, namely, Delaunay, Bonnet, Jellett, and Schellbach.

The last five pages of the article are occupied with an investi-

gation respecting another property of the curve
; Minding appears

to have here fallen into an error, and some detail will be required
to illustrate the point.

A geodesic line is a curve drawn on a surface so that at every

point its osculating plane contains the normal to the surface at

that point. Now suppose a series of geodesic lines starting from
a common point on a surface, and let a series of curves be drawn

cutting these geodesic lines at right angles. The latter curves

may be called geodesic circles, because it can be proved that the

length of the geodesic line drawn from the common starting-point
to any point of one of these curves is constant. This property of

a geodesic circle from which its name is derived is proved by
Minding, although he does not use this name. The name
is used in Price's Infinitesimal Calculus, Vol. II. and the pro-
perty is there proved; see also Bonnet's Memoir on the general
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theory of surfaces in the Journal de I'Ecole Folytechnique, Caliicr

32, page 74.

The property then which Minding considers that he proves is

that the curve of least perimeter which can be drawn on a given
surface so as to include a given area is a geodesic circle. This is

in fact true for any developable surface in virtue of the remark

already made ;
but it does not appear to be generally true. It is

however remarkable that Bonnet and Schellbach, who both seem to

allude to Minding's solution, take no notice of this part of it.

We will indicate the grounds for considering this part of

Minding's article to be erroneous. Let p be the radius of curvature

at any point of the required curve, the angle which the osculating

plane at any point of the curve makes with the tangent plane to

the surface at that point. Then the characteristic property of the

required curve is that = a constant. If then Minding's result

were correct it would follow that this property must necessarily

belong to a geodesic circle. Suppose, for example, that we consider

an ellipsoid ;
let the semiaxes be a, b

}
c in descending order of mag-

nitude
;
and suppose we require the curve of least perimeter which

can be drawn on the surface so as to enclose an area equal to half

that of the ellipsoid. It would appear obvious that the required

surve must in this case be the ellipse which has b and c for its

semiaxes
;
for this curve satisfies the condition = a constant,

P
since cos 6 = 0, and it encloses an area equal to half that of the

ellipsoid. It is however also obvious that this curve cannot be

i geodesic circle, for if it were, the pole of the circle must be the

extremity of the longest axis of the ellipsoid, and the lengths of

geodesic lines from this point to the ellipse in question are not all

iqual.

We will however examine Minding's solution. Let a series of

geodesic lines be drawn on a given surface all starting from a fixed

)oint. Let s denote the length of a portion of one of t

measured from the fixed point, ty the angle which the selected

geodesic line makes at starting with some fixed line on the surtno-

il
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thus s and
>|r

serve as co-ordinates to determine a point on the

surface.

Now let
<f)

be such a function of s and ^ that <f>d^ represents

the length of an element of the geodesic circle which- passes through
the point (s, ty) ;

then
(j>

will be a known function because the

surface is supposed a given surface. With this notation it will

readily follow that the length of the perimeter of any curve is

expressed by the integral I V<
2

(<#\Jr)

2
-}- (ds)* between suitable limits ;

and the area of the enclosed surface is expressed by

between suitable limits. Hence by the usual considerations we
have to find the minimum of

where h is a constant.

Minding then proceeds thus. "We have for determining the

curve of shortest perimeter the equation

= 0.

For brevity put dP2
<

2

(<#>Jr)

2
-f (ds)

2

,
and suppose that only ty

varies since it is known that the two equations which are obtained

by varying s and ty must coincide
;
thus we obtain

this gives the following as the differential equation of the curve of

least erimeterleast perimeter

This equation will be satisfied by the supposition ds = 0, as it is

easy to see. For it follows from this supposition that dP=
</><A/r,

so that the differential equation becomes (^-jd"^^d(f)
=

t
and

this is identically true, whether < depends on
ifr or, as in some

cases may happen, is independent o
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This is Minding's process. It appears from this process that

when we take the variation of the proposed expression, the term

remaining under the integral sign is

Hence the equation for determining the required curve is

dd>\ d^ dty . d
i ):JD ~j -*:r JB

tyj dP ds ds \J dP}

Minding in effect multiplies the expression on the left-hand side

of this equation by -j-r- ,
and then puts -jy

= as a solution. This

is of course unsound.

We may put the solution in a slightly different form. Minding

really takes s as the independent variable; it is however more

natural to take ^r as the independent variable. The double integral

may be reduced to a single integral by supposing the

integration I
(fids effected; denote I (f>ds by v

9
where v will be a

function of s and . We have then to find the minimum of

Hence in the usual way we obtain

,
dcf> ds

, "9-7- 7 h-j-j-dv y ds d d^r _
ds

~~

Now this equation cannot be generally satisfied by supposing

= o
; for this supposition leads to

-j-
+ h -7- = 0, that is,

+ h
-^~ ;

and since
</>

is a function of s and ty this equation

connects s and
i|r,

and shews that s is a function of ^, so that

s .

-ry-
is not zero.

222
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308. Goldschmidt. Determinatio superficial minimce rotatione

curves data duo puncta jungentis circa datum axem ortce. Auctore

Benjamin Goldschmidt. Gottingen, 1831.

This essay obtained a prize from the university of Gottingen in

1831
;

it occupies 32 quarto pages. The problem discussed is to

find the curve joining two given points which by revolving round

a given axis will generate a minimum surface. The problem is

solved in three different ways by using different formulae for the

area of a surface of revolution, and the result is, as is well known,
that the surface is in general that obtained by the revolution of a

catenary round its base. The author then investigates the pos-

sibility of drawing a catenary which shall have a given base and

pass through two given points. The conclusion is that sometimes

two such catenaries can be drawn, sometimes only one, and some-

times no catenaiy. When no catenary can be drawn it is inferred

that the surface consists of two planes formed by the revolution

round the axis of the perpendiculars from the given points on the

axis
;
these planes may be supposed connected by means of the

portion of the axis which they intercept between them. There

is no investigation of the terms of the second order to shew that a

minimum really is obtained.

In the course of the essay some interesting properties of the

catenary are noticed
;
thus on page 1 7 is given a simple geometrical

method of drawing a tangent to a catenary ;
on page 18 it is shewn

that all the curves formed by varying the parameter c in the equa-
X X

tion 2y = c (e
e + e

c

)
touch two straight lines passing through the

origin ;
on page 26 is given a simple geometrical method of deter-

mining the vertices of the two catenaries which have a given axis

and pass through two points equally distant from that axis.

A short account of Goldschmidt will be found in the Monthly
Notices of the Royal Astronomical Society. Vol. 12, page 84.

309. Poisson. Crelles Mathematical Journal, Vol. 8, pages

361, 362. 1832.

This article is entitled Note on the surface of which the area

between given limits is a minimum. We give a translation of it.

One of the first applications which Lagrangc made of the (
1

al-
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culus of Variations was to determine the surface of which the area

between given limits is a minimum. This was a very favourable

example for shewing the advantage of his new calculus over the in-

genious methods which had preceded it; for it would have been
difficult to extend these methods to the maxima and minima of

double integrals, and therefore to questions concerning surfaces.

The equation which Lagrange found is, as is well known, a partial
differential equation of the second order. Monge integrated it in

a finite form, but by considerations which appeared inadmissible,

and which gave rise to long discussions between him and Laplace.

Legendre afterwards obtained the same integral by a transforma-

tion applicable to a large class of equations of the second order,

so that no doubt remained as to the correctness of the result.

(Lacroix, Differential and Integral Calculus, Vol. 2, page 622.)

Unfortunately no advantage could be drawn from this integral,

which involved imaginary quantities and was expressed by a

system of three equations between two auxiliary variables and the

current co-ordinates of the surface. But besides the difficulty

which results from this form of the general integral, in which it

appears, to say the least, very difficult to determine the arbitrary

functions, there is another difficulty arising from the number of

these functions which the question can admit.

In fact the problem of a minimum area comprises two dis-

tinct questions ;
either two closed curves are given and we require

to connect them by a zone of surface of which the area shall be

the least possible, or else only one closed curve is given and we

have to find a surface such that the area of the portion bounded

by this curve shall be a minimum. When, for example, an aper-

ture is made in the surface of a vessel which contains a fluid, the

area of the surface by which we must multiply the velocity and the

time of the movement in order to calculate the volume of the fluid

discharged is precisely the minimum area corresponding to the

second case of the problem, which thus presents a useful application.

In the first case the question and the complete integral which

has been found have the same degree of generality,
and the two

given curves determine implicitly the two arbitrary functions which

this integral includes. In the second case, on the contrary, the
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given curve can only serve to determine one arbitrary function.

One of these functions will then remain undetermined, and the

integral will thus have more generality than the question which

it serves to solve. If the given curve is plane the surface required

is the plane of this curve. If it is a curve of double curvature this

surface is not known a priori, but it ought to be some definite

single surface, and the problem is not solved so long as there

remains anything undetermined in the equation.

In order to resolve this difficulty I have considered specially

the case in which the required surface does not deviate much from

a given plane. By putting the integral of the partial differential

equation under a form which differs from that hitherto used, I have

found that the expression of one of the current co-ordinates as a

function of the other two contains terms which become infinite at a

point of the minimum area, in the second of the two cases of the

problem ;
and these must be suppressed as foreign to the problem.

In the first case these terms retain a finite value through the whole

extent of the zone of surface which is to be determined, so that

while they are to be suppressed in the other case they are to be

retained in this. By this means the expression for the ordinate

of any point of the surface has in each case the degree of gene-

rality which the question requires. Then, by the method which I

have used in other memoirs, all the arbitrary quantities which

enter into this expression are determined, by means of the two

limiting curves of the minimum zone in the first case, and by
means of the single curve which bounds the minimum area in the

second case.

In this manner the solution of the problem is completely
finished in the two parts which it presents, and which form two

distinct questions with reference to the determination of the arbi-

trary functions, although they depend upon the same differential

equation.

The Memoir from which this note is extracted will appear in

another number of this Journal.

[The memoir in question seems never to have been published.]

310. Pagani. Crelk^s Mathematical Journal, Vol. 15, pages

8499, i
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This article is entitled Solution of a problem relating to the

Calculus of Variations. The problem considered is that which was

solved by Gauss ;
see Chapter in. Before considering the problem

Pagani gives a brief investigation of the variation of a multiple

integral. He arrives at the formulas contained in Ostrogradsky's
Memoir

;
see Art. 128. He then gives some remarks on the inte-

gration of the expressions when the number of the variables does

not exceed three. The Memoir contains nothing that will not be

found in Ostrogradsky, arid from its brevity it would be difficult

for a student who had not access to other works on the

subject.

311. Bjorling. Calculi Variationum Integralium Duplicium
Exercitationes. Auctore Em. Galr. Bjorling. Upsal, 1842.

This treatise contains 57 quarto pages. The author refers to

the memoirs by Poisson and Ostrogradsky, and expresses his

surprise that neither of these mathematicians applied his general

formulas to the question of determining the surface of minimum
area. He proposes to consider this problem. He gives by way
of introduction an investigation of the variation of a double inte-

gral, with some remarks on the limiting equations which must be

satisfied in order that the variation may vanish. This part of the

treatise is taken from Ostrogradsky. This introductory part occu-

pies the first 19 pages.

The author then proceeds to the problem of the surface of

minimum area, and he arrives at the well-known result that such

a surface must be determined from the equation

(1 +/) t - 2pqs+ (1 + f) r = 0,

where the usual notation is adopted. Before considering this equation

generally he gives two special examples in which it is satisfied
;
one

example is a surface of revolution, and the other a ruled surface. The

discussion of these examples occupies pages 20 28. Then pages

29 50 are devoted to the solution of the general partial differ-

ential equation given above. Bjorling quotes Monge's solution
;

but by means of transforming the variables he obtains the solution

under another form, which he considers more suitable than that of

Monge when we have to determine the arbitrary functions involved.
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The author refers for Monge's solution to Monge's Application de

IAnalyse a la Geometrie, and to Lacroix, Traite du Calc. Diff. et

Integ. Vol. 2, page 630. Monge's result is also established in

De Morgan's Differential and Integral Calculus, pages 473, 474.

The last seven pages of the treatise form an appendix in which

the author briefly discusses a particular case of the problem of

determining a solid which has a maximum volume while the area of

the surface is given.

It will be seen from this account of the treatise that it con-

tains very little which strictly belongs to the Calculus of Variations ;

in fact it should rather be considered as an essay on the integration

of the partial differential equation given above. We may observe

that the part of the treatise which relates to the integration of the

equation is reproduced by the author in an article in Grunert's

Archiv der Mathematik und Physik, Vol. 4, pages 290 315, 1844.

The following four points of interest may be noticed in the

treatise.

(1) The author before considering the general problem takes

the case of a surface of revolution
;
he then arrives at the known

result that the surface must be that which is formed by the

revolution of a catenary round its base. Supposing that the

surface is to connect two given circles which have their planes

perpendicular to the axis of revolution and their centres on this

axis, he obtains equations for determining the constants involved

in the equation to the catenary. He then asserts that the surface

thus obtained is that which has the minimum area out of all

possible surfaces that can be drawn so as to connect the two given

circles, and not merely the minimum area out of all surfaces of

revolution. He does not explain this remark. Perhaps he means
that we are first to conclude that in the case considered the surface

must be one of revolution
; suppose, for example, we divide it into

two parts by a plane containing the axis, then if the two parts are

not symmetrical one of them will generally be of greater area than

tin- other, we can then replace the part which has the greater area

by a part symmetrically equal to the other part, and thus obtain

a leas total area than that which was assigned as the minimum.
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Or perhaps the author argues that as the surface of revolution

which he has obtained satisfies the general partial differential

equation of the problem, and also satisfies the limiting conditions,

it must be the surface required.

(2) Bjorling discusses another particular example before con-

sidering the general equation, namely, among all surfaces which

can be formed by the motion of a straight line which always
remains parallel to a fixed plane, to determine that of minimum
area.

Take the plane of
(a?, y) as that to which the generating line

is always to be parallel ;
then we have to find a relation between

a?, y, and z, so that the following partial differential equations may
be satisfied,

(1 +p*) t-1pqs + (1 + f)r = 0.

The result is

/ T\ z c
x a = (y o) tan 7 .

This result is however more general than appears from Bjorling's

treatise. It has been shewn by Catalan that out of all ruled sur-

faces the surface determined by the equation just given is the only
one which satisfies the condition for a minimum area ; see Liou-

ville's Mathematical Journal, Vol. 7, pages 203 211, 1842. This

theorem is also proved by Bonnet in the Journal de TEcole Poly-

technique, Cahier 32, page 134, 1848
;

it is there ascribed to

Meunier.

(3) In the appendix which extends from page 51 to the end,

Bjorling considers the following problem ; among all surfaces of

revolution to find that which has a given area and includes a

maximum volume. He obtains the differential equation to the

generating curve, and shews that this curve is that which is tnuvd

out by the focus of a conic section when the conic section is made

to roll on a fixed line. This result he states is due to Delaunay;

and he refers to the Journal called ISInstitut, Number 394, 1841.

(4) On page 4 of his treatise Bjorling points out an important

misprint in Poisson's Memoir; see Art. 107.



346 BERTRAND.

312. Bertrand. Liouville's Mathematical Journal, Vol. 7,

pages 55 58, 1842.

This article is entitled Note on a point in the Calculus of

Variations.

Suppose we have to find the maximum or minimum of I Udx,

while Vdx is to remain constant
;
then the rule which was given

by Euler is that we must find the maximum or minimum of

(V+cU) dx where c is a constant. Bertrand's object is to prove

this rule. He says that his proof is not so simple as that which is

commonly given, and which involves no calculation
;
but the com-

mon proof appears to him unsatisfactory, for it only shews that the

solutions obtained do satisfy the conditions of the problem, but not

that they are the only possible solutions.

rb rb

Suppose then that I Udx is to be a maximum while Vdx
J a J a

rb

remains constant; then we know that the variation 8 Udx
J a

rb

must be zero whenever the variation 8 I Vdx is zero. Sup-
Ja

pose for simplicity that the terms outside the integral signs in

the ordinary expressions for these variations vanish. Then

/b

rb

cou dx must vanish whenever I cov dx vanishes, where u and v
J a

are certain functions derived in the well-known manner from U and

F respectively, and o> admits of all values.

Now it is obvious that we can satisfy this condition by putting
u = cv, where c is a constant

;
for then the two integrals have a

constant ratio whatever u may be, and therefore they vanish

simultaneously. But we wish to prove that this relation u = cv is

not only sufficient but necessary.

Suppose then that - is not a constant, and let - =/(#) ;
then

we shall shew that there cannot be a maximum. For we shall

/b(0v dx vanishes while
i
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b

(ovf(x) dx does not vanish. For we may suppose that o> is zero
a

for all values of # except when x lies between \ and 7*
a
or b<

h
3
and 7*

4 ;
then we can take o> such that

rJ>~ rh4
uv dx+ I a>vdx =

rh4
I

Jh3

For we can suppose that 7i
2 \ is so small that the sign of v

does not change while # lies between \ and A
2

: and also that A
4

h
a

is so small that the sign of v does not change while x lies between

h
3
and 7*

4 ;
then we can make CD have an unchangeable sign during

each interval, and choose the same sign or contrary signs for the

two intervals according as v has contrary signs or the same sign.

By properly choosing k
lt

A
2 ,

A
3 ,
and^

4
we can ensure thatf(x) does

not change sign while x lies between A
x
and\ or between h

3
and h^ ,

and that the value of f(x) throughout one of these intervals is

always greater than throughout the other. Thus

rh2 rh4
I ojvf(x) dx + I (avf(x) dx
J h

t
J h3

will not be zero when the values of co are adopted which we have

supposed used to make

! - f*4
cov dx -f <

, Jh3

covdx
t

zero. Thus there is not a maximum.

Therefore there cannot be a relative maximum or minimum

unless - is constant.
v

Bertrand then considers the case in which the terms outside, the

integral sign in the two original variations do not vanish. It is

however unnecessary to notice this part of his article ;
for what has

been already given shews that there cannot be a solution at all ot

the problem proposed unless -- is constant, and the ordinary

method shews, as Bertrand himself admits, that we can get a solu-

u
tion by supposing

- constant.
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313. Bertrand. Liouville's Mathematical Journal^ Vol. 7,

pages 212214, 1842.

This article is entitled Note on a Theorem in Mechanics. The

Tollowing theorem is proved ;
let there be two curves with their

concavities downwards and terminated at the same extremities ;

then a particle moving under the action of gravity will take a

longer time to describe the upper curve than the lower curve,

the initial velocity being supposed the same in the two cases.

Take the axis of y vertically downwards, and the origin so that

*Jzgy may be the velocity when the ordinate of the particle is y.

Then the time t of describing the arc is determined by the equation

t =

Now from the usual expression for Bt we shall obtain by re-

duction

Now y" is positive because the concavity of the curve is sup-

posed downwards
;
and since we pass from the upper curve to the

lower by assigning a positive value to 8y, it follows that in pass-

ing from the upper curve to the lower Bt is negative. Thus the

time of motion is diminished in passing from one curve to another

which is infinitesimally lower; and therefore a fortiori the time of

motion is diminished in passing from one curve to another which

is at a finite distance below the first, provided the passage can be

effected through a series of curves indefinitely close to each other

all having their concavities downwards, that is, provided the two

extreme curves themselves both have their concavities downwards.

Bertrand uses the same method to shew that a convex arc is

shorter than another which encloses it
;
and he intimates that the

same method may be applied to shew that the area of a convex

surface is smaller than the area of another which has the same

boundary and which encloses the first.

314. Delaunay. LiouvilMs Mathematical Journal, Vol. 8,

pages 241244, 1843.
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This article is entitled Note on the line of given length ?r/////

includes a maximum area on a surface. The area is supposed to

be bounded on three sides by curves which project on the plane of

(a?, y) into straight lines, two of them parallel to the axis of y and

the other parallel to the axis of x; the fourth boundary of the area

is supposed to be the curve required, which is to have a given

length and to include with the other boundaries a maximum area.

r 6 rv
The integral to be a maximum is therefore I dx dy V(l +.?*+*)

J a J c

where the superior limit in the integration relative to y is the

ordinate for any point of the required curve. Moreover the length
of the curve is supposed given.

Thus the problem coincides with that discussed by Minding
and others

;
see Art. 307.

315. Bonnet. Journal de VEcole Poll/technique. Cahier 32,

pages 1 146, 1848.

This Memoir is entitled On the general theory of Surfaces.

It contains many interesting results with respect to geodesic lines,

but it is not very closely connected with our subject; there are

however three points which may be noticed here.

(1) On pages 37 39 the equation to the geodesic lines on any
surface is obtained by means of the Calculus of Variations.

(2) On pages 44 46 the problem is solved by means of the

Calculus of Variations which had been considered by Minding and

Delaunay ; see Arts. 307 and 314.

(3) On pages 134 136 is a note relative to the ruled surface

which has at every point its principal radii of curvature equal and

of opposite signs. It is stated that Meunier was the first prison

who proved that the hefyoide gauche is the only ruled surface whirh

has the property in question. Reference is made to solutions by

Legendre and Olivier; and it is stated that other solutions havo

been given by writers in Liouville's Journal. Bonnet tlu'ii

a geometrical proof of the theorem originally established by

Meunier.

Bonnet's treatment of the problems (1) and (2) by the Calculus
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of Variations is very interesting, but it is too closely connected

with the notation and results of his Memoir to be extracted.

316. Hornstein. Dissertatio de Maximis et Minimis integra-

lium multiplicium quam pro gradu Doctoratus in celeberrima Uni-

versitate Bonnensi consequendo eldboravit auctor C. Hornstein.

Vienna, 1850.

This treatise consists of 26 quarto pages. No reference is given
to preceding writers, but the treatise is obviously constructed under

the guidance of the memoir by Cauchy which we have described

in Chapter vni. Hornstein adopts that modification of Cauchy's
notation which we have given at the bottom of page 214.

The treatise consists essentially of two investigations. (1) An
investigation of the variation of a double integral : this is such an

investigation as we have given in Arts. 183 and 184. Hornstein

gives completely the terms which arise from differential coefficients

up to the second order inclusive, and indicates some of the terms

which arise from differential coefficients of a higher order. (2) An
investigation of the variation of a triple integral ;

Hornstein gives

completely the terms which arise from differential coefficients up to

the second order inclusive. This is similar to the investigation
which we have given in Art. 195, so far as the terms arising from

differential coefficients up to the first order inclusive.

The investigations are given very clearly, and the complicated

expressions which necessarily occur have been very accurately

printed.

317. Ostrogradsky. Memoire sur les Equations differentielles

relatives au prolleme des Isoperimetres.

This Memoir was read to the Academy of Sciences at St

Petersburg, on November 29th, 1848, and was published in 1850,
in the Memoirs of the Academy. The volume which contains the

memoir belongs to the sixth series
;

it is the fourth volume of the

department of mathematical and physical sciences, and the sixth

volume of the combined departments of mathematical, physical, and
natural sciences. The memoir occupies pages 385 517 of the

volume.
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Suppose V to be a function of an independent variable /, and of

tlie variables x
lt
#

2 ,
... xm ,

which are supposed to be functions of
t,

and of the differential coefficients of these functions with respect to

t. Moreover suppose that V involves differential coefficients of

each function x
l ,
x

z ,
. . . xm up to that of the nih order inclusive. If

I Vdt is to be a maximum or minimum S I Vdt must be zero.

By the known principles of the Calculus of Variations this leads

to m differential equations each of the order denoted by 2n.

Now it is shewn by Ostrogradsky that these differential equations

are equivalent to a certain set of 2mn partial differential equations

of the first order. The object of the first part of Ostrogradsky's

Memoir is thus the same as that which was afterwards considered

by Clebsch in the first part of his second Memoir
; see Art. 286.

Ostrogradsky then enters at great length into the subject of the

integration of the equations which are thus obtained, and the

consideration of some remarkable properties connected with the

equations.

The memoir is rather difficult and not very correctly printed.

It is very slightly connected with the Calculus of Variations
;

its

proper place is among the series of modern researches on the

equations of Dynamics, and on the theory of the variation of the

arbitrary constants
;
to these subjects Ostrogradsky often alludes.

The following points of interest may be noticed. In pages

419 430 Ostrogradsky makes some observations on that part of

the Mecaniqiie Analytique in which Lagrange deduces the equa-

tions of motion in Dynamics from the principle of Least Action

combined with the principle of Vis Viva. Ostrogradsky says that

Lagrange's analysis is inexact (page 424). The principle on which

Ostrogradsky founds his objection is, that by virtue of the equation

of Vis Viva there is a relation between certain variations which

Lagrange assumes to be independent (page 423). The part of the

Mecanique Analytique to which Ostrogradsky refers is that c.n p
296 and the following pages of the first volume; in on-

Ostrogradsky refers to page 229, which must be a misprint for

page 299.
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In pages 472480 Ostrogradsky applies his general theory to

some examples ;
these are of great use as illustrations of his theory.

In a note he says that he omits other illustrations because he has

found during the printing of his memoir that it was possible to

generalise and simplify these applications, and also that the general

theory could be simplified and receive some development ;
this he

promises to shew in a future memoir.

On page 512 Ostrogradsky indicates an important application

of a formula originally obtained by Poisson, which application

Poisson himself appears not to have observed.

318. Schellbach. Grdles Mathematical Journal, Vol. 41,

pages 293363, 1851.

This Memoir is entitled Problems of the Calculus of Variations.

The author states that students of mathematics often find the

Calculus of Variations a difficult subject ;
he accordingly considers

some problems which are usually treated by the Calculus of Varia-

tions and solves them without using the methods of that Calculus.

His processes resemble those which were used by the early writers

who solved such problems before the Calculus of Variations was

reduced to a system. The memoir is interesting and instructive,

especially for a student who is examining the foundations of the

subject.

The memoir consists of 35 sections; we will indicate briefly

the contents of these sections, and then give some specimens of the

investigations.

(1) The ordinary formulas for solving problems of maxima
and minima are quoted from the Differential Calculus. (2) A curve

of given length is to be drawn between two fixed points so as

to include with the axis of x and the bounding ordinates a

minimum area. The problem is solved by first considering the

case of a polygon, forming the necessary equations by (1), and

then proceeding to the limit. (3), (4), (5) contain other solutions of

the problem in (2). In (6) the problem is modified by supposing
that the ends instead of being fixed are to lie on given curves.

(7) The problem we have solved in Art. 99 after Poisson. (8) To
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find tlie curve which joins two given points and by revolution

round an axis in its plane generates a minimum surface. (9) To
find the curve which by revolution round an axis in its plan,;

(generates a maximum or minimum volume, the ends of the curve

[lying
on given curves. (10) A general discussion which amounts

;o finding the usual equation for a maximum or minimum in any
ntegral expression with one dependent variable. (11) To find a

jurve such that the area between the curve and its evolute may be

minimum. (12) The solid of revolution of least resistance. (13),

14), (15), (16) and (19) The brachistochrone and allied problems.

17) The problem discussed by Minding and others; see Art. 307.

Schellbach states that it has been discussed by another mathe-

natician besides Minding and Delaunay, but he does not give

precise reference. (18) A curve of given length is drawn on a

jiven surface
;
find the curve so that the volume determined by the

:urve and its orthogonal projection on one of the co-ordinate planes

nay be a maximum or minimum. (20) A problem which we shall

jonsider presently; see Art. 320. (21) The curve which has its

;entre of gravity at a maximum depth. (22) The curve which

xmnds an area having its centre of gravity at a maximum depth.

Sections (23) (29) contain investigations which are not very closely

;onnected with the Calculus of Variations
;
we shall recur to them

igain; see Art. 322. (30) To find a surface having a given

)oundary and a minimum area. (31) General investigation of the

naxima and minima of double integrals. (32) General investi-

gation of the maxima and minima of triple integrals. (33) and (34)

[*he problem which Poisson quotes from Euler, and the problem
vhich Poisson himself considers; see Arts. 118 120. (35) The

ransformation of the equations of motion in Dynamics given by

jagrange in the Mecanique Analytique; see De Morgan's Differ-

ntial and Integral Calculus, page 520.

319. As an example of Schellbach's solutions we will take the

roblem of determining the brachistochrone when a particle moves

Q a resisting medium under the action of gravity ;
see section (14)

f the memoir.

Instead of supposing the particle to describe a curve we will

uppose it to describe a polygon of n sides, each side being ulti-

So
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mately made indefinitely small. Take the axis of x horizontal,

and that of y vertically upwards. Let x
, yQ

be the co-ordinates

of the initial point ;
x

l , y^ the co-ordinates of the beginning of the

second side of the polygon; x
a , yz

the co-ordinates of the begin-

ning of the third side of the polygon ;
and so on. Let Bs be the

length of the first side of the polygon, v the velocity, supposed

uniform, with which it is described
;

let Bs be the length of the

second side of the polygon, v
l
the velocity, supposed uniform,

with which it is described
;
and so on. Then the whole time o:

motion is

We have then to make this time of motion a minimum.

We must first however determine the connexion between th<

velocity at any point and the co-ordinates of that point, by me-

chanical principles. Suppose a particle to be moving on a curve

let p denote the reaction of the curve, gw the resistance where w is

any function of the velocity ; then the equations of motion are
'

dzx dy dx d z

y dx dyW=
^d^-ff

W
d-3 ' -W 9-PTs-^fs-

Eliminate p from these equations ;
thus

dv*= e

lgdy 2gw ds.

Assume v
2 =

2gu, so that

du + dy + wds = Q (1).

Now let us return to the supposition that the motion is to take

place on a polygon and not on a curve
;
then from the equation

last written we obtain the following n equations,

+ W $s =

(2).

The expression to be made a minimum is
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which we shall denote by T. Then we may consider T as a function

of 2n unknown quantities, namely x
, y ,

x
lt ylt

......
, *_,.

and we must determine the values of these quantities so that T may
be a minimum. Now by the ordinary principles of tin-. I >iih-rential

Calculus we may use the method of indeterminate multipliers in

order to take account of the conditions expressed by the equations

(2). So that we may consider we have to find the minimum value

of r+2xrl/r ,
where

Mr
= u

r+1
- ur + yr+1 -yr + wr $sr ,

Xr is a constant, and the summation indicated by 2 extends from

r = to r =n 1 both inclusive. We shall now differentiate

T+ ^\Mr with respect to each variable, and equate each differ-

ential coefficient to zero. Let us take for example the variables

xr and yr ]
each of these occurs in Bsr and in Ss,.^ ;

for

and

moreover yr occurs explicitly in Mr and in Mr_^
. Thus by differ

entiating with respect to xr we get

where 8a?M is put for xr xr_^
and far for xr^ xr .

The above equation may be written

therefore by proceeding to the limit and integrating we obtain

1 dx dx /o\
- -=- + Xw-r = a ..................... Wi
YW as 05

where a is a constant. Here we have dropped the suffix r-l, that

is, we use u, w, X, ^ ,
as representing any one of the corresponding

quantities with its appropriate suffix.
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In the same manner by differentiating with respect to yr we

obtain

this equation may be written

Vz^ .

therefore by proceeding to the limit and integrating we obtain

(4),

where b is a constant.

Equations (3) and (4) are the differential equations of the

problem; they agree with the results obtained by the ordinary
methods

;
see for example Mr Jellett's treatise, pages 298 300.

From (3) and (4) eliminate X; then with the help of (1) we
shall obtain

du= a

y
' - du

As w is supposed a given function of u we obtain from these

two equations x and y as functions of an auxiliary variable u.

320. In Schellbach's twentieth section the following problem
is proposed. The ends of a string of length I are fastened at the

pointsA and B
;
the ends of a string of length X are fastened at the

points A' and J5
7

. The four points A, B, A\ B' are not supposed
to be all in the same plane. A straight line passes from the

position AB to the position A'B' so that it moves over the threads

I and X in the same time with uniform velocity, and thus describes
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-a developable surface. Kequired to determine the forms of the

strings so that this surface may be a maximum or a minimum.

This problem requires some observations.

It is no doubt meant that the straight line is to pass from the

positionAA to the position BB', and not, as it is stated above, from

the position AB to the position A'B'.

The meaning of the problem is best understood by examining
the process of solution which the author adopts. Let P, Q denote

adjacent points of one of the strings, and P', Q corresponding

adjacent points of the other string. Let a generating line be

drawn from P to P'
;

let the end at P be supposed fixed, and let the

line turn round this end remaining always in contact with P Q' ;

thus an indefinitely small conical element is generated. Next let

the end of the line at Q be supposed fixed, and let the line turn

about this end remaining always in contact with PQ thus another

indefinitely small conical element is generated. Now it is the sum

of all these pairs of elements which the author proposes to make a

maximum or minimum. These elements do not form a continuous

developable surface in the ordinary meaning of such a term
;
for

that would require that the following three lines should be in one

plane, the line PQ, the tangent to the guiding curve at P, and the

tangent to the guiding curve at Q, and there is nothing in Schell-

Ibach's solution to secure this. Moreover there is nothing in the

solution corresponding to the condition of moving with uniform

velocity over the two curves, which occurs in the statement of the

problem; the connexion between the lengths of the two curves

described by the moving line in passing from its initial position to

any other position is in fact one of the things sought in the

solution.

Let a?, y, z be the co-ordinates of one end of the moving line, s

the length of the portion of the string which has been described

let f, 77, f be the co-ordinates of the other end of the moving lino. <r

the length of the curve which has been described. Let r ilt-noto

the distance of (x, y, z) from (, 17, f) ;
if the first end of the line

moves over an arc ds while the other end remains fixed, the area

of the element of surface generated will be ultimately
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*v
ds)'

1

similarly if the second end of the line move over an arc da while

the first end remains fixed, the area of the element of surface

generated will be ultimately

Thus since the lengths of the guiding curves are to be constant,

we have, by the usual considerations, to find the maximum or

minimum of

v i - S+ mds +

where m and
fj,

are constants. Schellbach then expresses r,

-y- , -5- ,
ds and do- in terms of x, y, z, %, rj, % and their differentials

;

then by equating the coefficients of the variations to zero in the

usual way he obtains equations for determining the required curves.

The equations he obtains are susceptible of integration to a certain

extent, but the problem cannot be completely solved.

Schellbach next considers a modification of the problem ;
he

supposes that one of the curves is replaced by a straight line of

given length and position, and that the other curve is to be deter-,

mined so as to make the area a maximum or minimum. The solu-

tion of the problem in this form can be carried a little further than

the solution of the original problem.

321. In his twenty-first section Schellbach suggests a problem
which it will be instructive to examine.

A CB is a string of given length which is fastened at A and B
;

see figure 9
; A'C'B' is another string of given length fastened at A\

and B'; CDC' is another string of given length, the ends of
whichj

are constrained to lie on the former strings. Each string is supposed
uniform, but the weight of a unit of length is not necessarily the same
for all the strings. Required the forms of the curves in order that

the centre of gravity of the system may be at a maximum depth.
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We know from Statics that the curves will all be portions of
catenaries

;
and from Statics we can obtain certain equations for

determining the constants involved in the equations to the catenaries.

But the point of interest is to deduce these equations by means of

the Calculus of Variations.

Take the axis of y vertically downwards, and putp for f- . Let
UnC

w
lt
w

a1
w

3
be the weights of a unit of length of the strings A CJ3,

A'G'B', CDC 1

respectively. Then we require that the following

expression should be a maximum,

dx + v>ty V(l +/) dx,

where the three integrals extend respectively over all the elements

of the three curves. And the length of each curve is a constant.

Hence the following expression is to be added to the former,

dx +

and the whole made a maximum, o
1?
a

2 ,
a

5 being constants, and the

three integrals extending over all the elements of the three curves

respectively.

We then make the variation of the whole vanish. This varia-

tion consists as usual of terms under the integral signs and terms

outside the integral signs.

The terms under the integral signs vanish if we suppose equa-
tions to hold of which the type is

that is,

(wy + a) = constant.

In this equation w and a are to have the specific value belonging

to the specific arc we are considering ;
the constant is not necessarily

the same throughout, but will generally have five different values

corresponding to the five arcs,

AC, CB, A'C', O'ff, CDC'.
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The general relation just obtained shews that each of these five arcs

is a portion of a catenary.

Now consider the terms outside the integral signs. We adopt

the usual supposition that both x and y vary, and we denote by
Bx and % the variations of the point C. Then &c and Sy will

occur in three ways, arising from the three curves which meet at (7.

The complete term involving Sy will be

Sy,(L-M-N),
where L, M, N are respectively the values at

'

the point C of the

expression of which the type is
f^. J? >

obtained from the curves

AC, CB, CD respectively.

Thus the equation
L-M-N=0

agrees with what we should obtain from the statical principle of

equating the sum of the vertical tensions at C of the two upper
curves to the vertical tension of the lower

;
for the value ofp found

from the curve BC at C is negative.

Similarly by equating to zero the coefficient of Bx we shall

obtain an equation coincident with that which we should obtain

from the statical principle of equating the sum of the horizontal

tensions of the curves BC and CD at C to the horizontal tension

of the curve CA.

We have theoretically enough equations to determine the con-

stants. For we have five constants from the general relation which

we have found above when it is applied to the five arcs, and five

more constants would be introduced by integrating that general

relation; we have also the three constants a
x ,

a
2 ,
a
3 ;

thus there are

thirteen constants on the whole. Now we have found two equa-
tions among the constants from the conditions which subsist at C,

and similarly we should obtain two more equations from the con-

ditions which subsist at C'\ the four fixed points .4, B, A', B'
y

furnish four equations; the known lengths of the curves furnish

three equations; the fact that three arcs intersect at C furnishes

one equation, and the fact that three arcs intersect at C' furnishes

one equation. Thus on the whole we have thirteen equations.
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322. From page 336 to page 347 of Scliellbacli's memoir is

occupied with the investigation of some simple maxima ami minima

problems in mechanics and optics ;
this part of the memoir is

interesting, though very slightly connected with the Calculus of

Variations. The following example may be taken as a specimen
of these investigations. Suppose we require the form of a solid of

revolution of given mass which shall exert the greatest attraction

in a given direction on a given particle, the attraction varying as

any inverse power of the distance.

Take the given particle as the origin and the given direction

as the line from which to measure angular distance
;

let r, 6 be the

polar co-ordinates of any point in a fixed plane passing through
the given direction. Then if the attraction vary as the nih

power
of the distance the attraction of an element whose co-ordinates are

r and 6 may be denoted by //r
n

;
and the resolved part of this at-

traction in the given direction will be fir" cos 6. Hence the equation

/jir

n
cos constant

represents a curve such that a given element placed at any point

of it will exert the same attraction on the given particle. Hence

this equation represents the curve which by revolving round the

fixed direction will generate the required solid of maximum

attraction, the constant being determined so as to give to the

solid the prescribed volume. It is obvious that such is the case

because the surface we thus obtain separates space into two parts,

and any particle outside the surface exercises a less attraction than

it would if placed within the surface, n being supposed negative.

The result we thus obtain may of course also be obtained by the

ordinary methods of the Calculus of Variations.

323. In pages 357 360 of the memoir we have an interesting

application of the Calculus of Variations which Schellbach states

that he has taken from a memoir by Jacobi in the 36th volume of

Crelle's Mathematical Journal. We will explain this application

rather more fully than Schellbach does.

Suppose in the triple integral (\\Gdxdydz that G is a function

of x, y, z, v, , , ;
where v is a function of a, y, *. Now
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suppose that x, y, z are expressed in terms of new variables X, /*, v

by means of the equations

x=f,(\^v], y=M\P>,v], * =/3 (X, /,*);

then v becomes a function of X, /*, v, which we shall denote by (/>,

and G becomes a function of X, ^ v, ^ , g? , -^ ,
which we shall

denote by F. Then by the known theory of the transformation of

multiple integrals we obtain

(1),

where II is a known expression which involves the differential

coefficients of x, y, z with respect to X, //,, v, so that II is in fact a

known function of X, /*, v. Now take the variations of both mem-
bers of this equation ;

these variations will be equal, and the unin-

tegrated portions will be separately equal. Thus we obtain the

result

(JJQ
Bv dx dy dz =

({JE fy
d\ dp dv,

where Q is an expression derived in the well known way from 6r,

and R is similarly derived from m. Now change the variables

in the integral on the left-hand side of the equation ;
thus

v =
jJB

S< d\ dfj, dv.

Now Bv is the same thing as
S</>,

and is perfectly arbitrary, so

that we obtain from the last equation

u f-i'

This equation written at full becomes

i
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This transformation will sometimes be of use
;
and it is ob\

that we might proceed in a similar way with a multiple integral of

any order as we have proceeded with a triple integral ;
or we might

suppose differential coefficients of a higher order than the first to

occur in G.

For an example we will apply the formula to the transformation

,. . d'v tfv d'v
of the expression

_ +^+^.
fdv\* fdv\

z

, fdv\*Let G = -7- + -r + (T- >
an<*

\dxj \dy] \dzj

x\ cos
yLt, y = X sin

yu,
cos v, z = X sin

yit
sin i>.

Then, using v instead of its equivalent <, we have

dv _dv dx
dv_ dy^

dv dz

d\ dx d\ dy dk dz d\

dv dv . dv .= -7- cos u, + -r- sin /A cos v + -7- sin a sin v,
c&c c??/ c?2J

Jy _ dv dx dv dy dv dz

dp dx dfju dy dfju
dz dp

dv _ . dv dv ^= =- X sin it+ -?-X cos yLt
cos i^ + -j- \ cos a sm v

y

ax ay az

dv dv dx dv dy dv dz

dv dx dv dy dv dz dv

dv dv _ .= 7^ X sin a sin y + -5- X sin a cos v.

dy dz

Thus we obtain

MA*
V7-\

/
' -v 2 l / / I -x 2 ' 2

d\J \ \a/jL/ X Sin
^

And in the present example II =X2

sinyLt; thus we obtain from (1)

y + 1 f*y + __v f?)%
2

Bi

V X1 V ^ sma

/i \dv) }
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Then from the general formula (2) after division by X2
sin

JJL
we

obtain

\ d*v d*v

x'
+d* dz

*

d /
2

. dv\ d ( . dv\ d ( I dv

JxJ
+5 (

sm *
)
+ ster

_ 1 ^ /
f
dv\ 1

_^_
/ .

* V rf\ V rfV
+
X2

sin fi dp V
Sm ^

dv

1 ^2

(Xt?) 1 d t . dv\
_JL

X ^X2
"f

_ __
X2

sin
2

/^ di?

Thus we obtain the well-known transformation first given by

Laplace.

As another example let it be proposed to transform -^ + -^
into an expression involving r and 0, where x r cos 6 and

y = r sin 0.

TJ Jz dz dx dz dii n dz . n dz
Here T" = ^~T" + 3-77= cos ^^-+ sm ^^r->ar dx dr ay dr dx dy

dz dz dx dz dy . A dz ~ dz
-JQ -j- -jn -\--j~ -jh

= rsin^-7- + rcos^-7-.dd dx dd dy dd dx dy

fdz\* fdz\* fdz\* 1 fdz^Thus -7- +1^- = b" +- (ja )

Vc?a7/ VW/ \7 *" VW
Therefore as in (1)

Then as in (2) we obtain

d*z d*z I d dz\ d l dz d*z I dz I d?z

Thus, as Schellbach observes, the transformation used by
Poisson can be readily effected. See Art. 119.
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324. Spitzer. Grunert's Archiv der MatJiematik und Physik,

Vol. 23, pages 125, 126. 1854.

This article is entitled Note on the shortest lines on curved

surfaces.

When a curved surface can be divided by a plane into two

symmetrical portions the intersection of the plane and surface, when

an intersection exists, is in general a line of minimum length on the

surface.

The proof is very simple. Suppose in fact that the equation

to such a surface, which is divided symmetrically by the plane

of xz
t
is

-j-(*,y).

For a minimum line on the surface we must have the integral

a minimum. Put then dz = pdx + gdy, so that

s = */{da? + df + (pdx + qdyf}

then the condition for a maximum or minimum is

^v;i+y
2

+(^+g/)
2

} _ w{i+y
2

+o>+?y)
2

)T
0;

dy L dy J

this gives

^ + y
'...

this may be reduced to

[y" + q(p + ay
1

)

1

] V{i + y* + (p

This equation is satisfied when y = 0; forify = 0, s
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As a sphere is divided symmetrically by any plane which

passes through its centre, any great circle of a sphere is a line of

maximum or minimum length.

325. Heine. Crelle's Mathematical Journal, Vol. 54, page
388. 1857.

This article is entitled Lagranges Theorem. It consists of

a proof of Lagrange's Theorem by the method previously used

by the author for establishing Jacobi's Theorems; see Articles

296, 297.

Let y-hf(y)=x (i);

let
-fy (x) z denote any function of x, and denote the differential

coefficients of z with respect to x by z, z",

Then

If then
(f> (x) be any function of x whatever,

......... (2)

Put y for x on the left-hand side of (2) ;
then it becomes

and therefore by (1),

t>r

J a

and therefore

where a = a - hf(a) , ft
= b - hf(fy .

If h be small enough, at least a portion of the interval between
a and b will coincide with a portion of the interval between a and ft.

Let z be so varied that within this common interval Sz may have
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any arbitrary value and be zero beyond it. The variation of the

right-hand member of (2) will consist of terms free from the in;

sign together with

r

J

b

BSzdx,

where

A2

i ,ux 1 . 2 dx

And since we must have within the common interval

therefore --
$(y) = B.

This is in effect Lagrange's Theorem.

326. Giesel. GescMchte der Variationsrechnung. Einladung-

schrift zu der Feier des Schrb'derschen Stifts-Actus im Gymnasium
zu Torgau am 5 April, 1857. Torgau, 1857.

This is the first part of a History of the Calculus of Variations.

It occupies 45 quarto pages, and details the history of the sub-

ject from its origin until the publication of Lagrange's memoir in

the Miscellanea Taurinensia in 1762. It is a valuable work, and

contains numerous quotations and exact references to the original

sources. It resembles in some degree the well-known work of

Woodhouse, but it is less didactic and more purely historical.

There is a brief notice of this treatise by Schlomilch in the

Zeitschrift fur Mathematik und Physik, 1857, Literaturzeitun.j,

page 60. Schlomilch commends the treatise highly.

327. Loffler. On the Method offinding the greatest a

values of undetermined integral expressions.

This article is printed in the 34th volume of the Sir

of the Academy of Sciences at Vienna, 1859. It occupies 30 O

pages. The article consists principally of remarks on the brachi-
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stochrone problem ;
the remarks appear of no value, but seem to

indicate that the writer has imperfectly grasped the subject.

328. Lindeloef. New demonstration of a fundamental theorem

of the Calculus of Variations.

This article was published in the Comptes Eendus...de VAcademie

des Sciences. Vol. 50, 1860, pages 8588.

The fundamental theorem referred to is one given by Ostro-

gradsky, which was also proved by Cauchy; see Arts. 127 and

190. The object of Lindeloef 's article is to establish this theorem

by the method used by Poisson, in the case of two independent

variables : see Arts. 102 and 103. We will give a translation of

Lindeloef 's article.

It is known that the variation of an integral can be presented

under two forms, according as we do or do not vary the inde-

pendent variables as well as the unknown functions. We propose
to establish the first form, using only the principles of the differ-

ential calculus.

We adopt the method which Euler introduced into the calculus

of variations, and thus regard every unknown function as involving
an arbitrary parameter i, and the variation of the function means

its differential coefficient with respect to this parameter. We re-

gard the variables #, ?/, z, ... t, as unknown functions of other inde-

pendent variables f, rj, f, ...T, and of the parameter t, and the

variations of x, y, z, ... t, mean their differential coefficients with

respect to the parameter t.

Thus any unknown function u of the variables x, y, z, . . . t, is

susceptible of two kinds of variations, since it depends upon the

parameter i directly as well as by means of these variables, and it

is advisable to distinguish them by a difference of notation. The

partial differential coefficient of u with respect to t we shall call the

proper variation of u, and we shall denote it by $u
;
the total dif-

ferential coefficient of u with respect to i we shall call the total

variation of u, and we shall denote it by Du. This distinction

does not exist with respect to the variables a?, y, z, . . . t, and we
might use either symbol D or 8 for their variations; we shall

adopt the latter symbol.
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We now propose to investigate the variation of a multiple
integral

S=jjj...vdxdydz...

when the limits are variable but continuous. For this purpose we
first replace the variables x, y, z, ...

, by others f, 17, ?,..., which
we suppose connected with the first by the differential equations

dx =a^ + ^drj -f- asd%-\- . . . + andr,

dy bid -4- b
2drj + b

8d+ ... + bndr,

dt =

Denote for shortness by the letter T the determinant

formed from the coefficients in these equations ;
then the integral

may be transformed into

With respect to the limits of the two integrals, if the first is to

extend over all the values of x, y, z, ...
,
which render a certain

function L negative, the second should extend over all the values

P *?>?>> which render A negative, where A is what L becomes

by the change of the variables.

As we suppose the limits of the proposed integral to be variable,

L is a function of xt y,z,... the form of which changes with the para-

meter i, which gives rise to the proper variation BL. But we can

dispose of the arbitrary functions Bx
t By, Bz,..., so as to render the

total variation ofL zero, so that

dx dy
' dz
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Under this condition the limits of the new integral S' will

not change with t ;
its total variation will therefore be

and it only remains to develop DT. We observe then that the

partial differential coefficients a, b, c, ...,with which the determi-

nant T is made, must be of the nature of the preliminary functions

&, y, 3, ...
,
from which they spring, and they must consequently be

regarded as functions of f, 77, f, ...
, varying with the parameter .

We have therefore immediately

^ <#T ~ ^ cZT ~>7 ^ c?T ^ ^ dT r,"

7rp

In order to determine the sum S -r- &a, we introduce n auxiliary

quantities alt a
z , 3 ,

... an , by the equations

0,

0.

Solve these with respect to ^ ; thus we obtain

which shews that the product a/T does not involve any of the quan-
tities a. We can prove the same thing with respect to the products

a,T,a8T,...,aftT.

From the identical equation

T
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we obtain immediately

<ZT cTT <ZT <ZT
-TJ- =a,i, -7 =!. -j =aa i, ...., -7 =CLI.
tfoj

' da
2

da
8

' dan

On the other hand, if we regard Sx, $y, Sz, ..., as immediate

unctions ofx,y,z,... 9
we shall evidently have

i
= a

i ~^~ + ~J
--^ C

l1 ax l

ay
l

By means of these developments the sum

d^ , dT dT ,

^ , _,
educes to 2 -r- oa = -j- T.

da ax

A similar process would give

nd so on. Hence finally

dSx

If we put this value in the expression /)5and restore the original

242
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variables we have definitely for the variation of the proposed

integral

This formula is due to M. Ostrogradsky, who established it

by the infinitesimal method
;
afterwards M. Cauchy arrived at it

by other considerations. As to the demonstration just proposed,
which depends essentially on a change of variables, it is right to

remark that the same expedient had been already employed by
Poisson, when he investigated the variation of a double integral.

[The part of the preceding article in which it is inferred that

the limits of S' do not change with i seems difficult; and it

might with advantage be replaced by the method of Poisson given
in Art. 86.]



CHAPTER XIII.

SYSTEMATIC TREATISES.

329. WE shall now give an account of the works which
have been published as systematic treatises on the whole subject.
There are three which from their extent and importance demand

particular notice
;
these we shall describe in the present chapter.

In the next chapter we shall take the remaining works. In each

chapter we shall follow the chronological order.

330. The first of the three treatises is that by Dr G. W.
Strauch. Its title is Theorie und Anwendung des sogenannten

Variationscalcul's. Zurich, 1849.

This work consists of two closely printed volumes of large

octavo size. The first volume contains 499 pages, and the second

788
;
the first volume also contains a preface of 32 pages.

The Preface begins with a sketch of the history of the subject

from the earliest period until the publication of Lagrange's Tkiorie

des fauctions analytiques in 1797
;
this sketch is furnished with

references to the original memoirs. The remainder of the preface
is devoted to an account of the contents of the work and an

indication of the points in which the author believes that he has

improved or corrected the methods of his predecessors. Of the

writers in the present century, Strauch mentions Lacroix, Gergonne,

Dirksen, Poisson, Ohm, and Ostrogradsky. It is remarkable

however that he takes no notice of Jacobi's theorems, nor does

he refer to the memoirs of Gauss, Delaunay, Sarrus, and Cauehy,
which we have described in preceding chapters.
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331. The work may be divided into four parts. The first

part occupies pages 1 356 of the first volume; these pages con-

tain all the ordinary theoretical investigations of the subject,

exclusive of those which refer to double or multiple integrals.

The second part occupies the remainder of the first volume, and

consists of the solution of 60 problems of maxima and minima,
in which neither integrals nor differential coefficients appear ;

these

problems are in fact almost entirely examples of the ordinary

theory of maxima and minima values which is given in the

Differential Calculus. The third part occupies pages 1 211 of the

second volume, and consists of the solution of 93 problems of the

maxima and minima values of expressions which involve dif-

ferential coefficients but not integrals; these problems thus re-

semble that which we have given in Art. 3, from Lagrange.
The fourth part occupies pages 212 739 of the second volume,

and consists of the solution of 135 problems respecting the maxima

and minima values of expressions which involve single or double

integrals. The remainder of the second volume forms a supple-
ment which is chiefly devoted to the theory of relative maxima
and minima values.

332. Strauch may be considered as the successor of Ohm,
whose methods he chiefly follows. The most valuable part of

his work is that which we have called the fourth part. The

problems there given are discussed with great fulness and clear-

ness, and the terms of the second order are almost always com-

pletely exhibited in order to discriminate between maxima and

minima values. Strauch is however content with Legendre's treat-

ment of the terms of the second order, that is, he generally as-

sumes that certain differential equations can be solved, and that the

solutions of such differential equations will not introduce quan-
tities that can become infinite

;
see Art. 5. In a few simple cases

however Strauch actually solves the equations which are analogous
to equation (2) of Art. 5. With the single exception of the

general problem of the shortest line on any surface, all the great

problems of the Calculus of Variations occur in Strauch's collec-

tion; and although he has not given the shortest line on any
surface, he has given cases of the shortest line on specific surfaces.

I li^ problems are always accompanied by excellent historical
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accounts of their origin and progress. On the whole, although
the work contains much that is superfluous, and much thai

of very inferior interest, and very little so far as the theory
is concerned which had not appeared before, yet the large collec-

tion of carefully solved examples which it contains, recommends
it to the notice of every student of the Calculus of Variations.

The work is distinguished for remarkable accuracy, both in the

investigations and in the printing.

333. We proceed to give a more detailed account of the

contents of these volumes. We begin with the first volume.

The first section occupies pages 1 8
;

it is entitled Propositions

which, belong to the Differential Calculus. These pages contain

nothing of importance ; they are principally explanatory of the

notation which the author adopts for distinguishing differential

coefficients formed on different suppositions, such as partial and

complete differential coefficients. The second section occupies

pages 8 13; it is entitled Propositions which belong to the Integral

Calculus. These pages contain nothing new
; they principally

refer to the differentiation of an integral with respect to any

parameter which may occur in the expression to be integrated.

The third section occupies pages 13 20; it consists of an investi-

gation of the conditions under which certain homogeneous func-

tions will retain an invariable sign. For example, consider the

expression

Ap* + ZBpq + Cf + 2Dpr + HEqr + Fr\

and suppose that A, S, C, D, E, F are fixed quantities, and that

jp, q, r are variables which may have any value
;

then Strauch

investigates the conditions that must hold among A, B, C, D, E, F
in order that the expression may be of invariable sign. The fourth

section occupies pages 20 69; it treats of the development of

a function in powers of a variable, the function being connected

with the variable by means of an unsolved equation. Thus, for

example, on page 44, Strauch proposes to express u in a

of ascending powers of v, the equation which connects u and r

being
it* -3*1*0+**0.
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From this equation three series are deduced for u. For it is

shewn that we may have

where Al9
A

a ,
A

9 , A^... are successively determined, and each has

only one value. Or we may have

where J5
1? B^ B^ B^... are successively determined. In this case

it is found that B^ may have two different values, and as the

subsequent coefficients J5
2 ,

J?
3 ,

J?
4 ,... are found

%
in terms of B^

each value of B
l gives rise to a series for u, so that we have two

different series for u. Thus, on the whole we have three forms

for the expansion of u in terms of v, this might of course have

been anticipated from the fact that the original equation is of

the third degree in u, and therefore furnishes three values of u.

The method used by the author throughout this section is

that of indeterminate coefficients. He is very careful in his ex-

amples to obtain all the different expansions which his expressions

will furnish; and he has thus given a more complete exemplifi-

cation of the method of indeterminate coefficients than is usual

in works on algebra. The subject however is not very closely

connected with the Calculus of Variations
;
and the chief use of

this section is in relation to the first series of examples in the

book, which as we have said belong to the ordinary theory of

maxima and minima.

Thus the first four sections of the work are only introductory
to the Calculus of Variations.

334. The fifth section occupies pages 69 131
;

it is entitled

Theory of the so-called Calculus of Variations. In this section

Strauch explains what is meant by a variation, and shews how
to find the variations of different expressions. He objects to the

word variation as not sufficiently distinctive, since the notion of

variables runs through the whole of the Differential Calculus;
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moreover the word variation is used in a peculiar sense in algebra.

Accordingly he adopts the word mutation instead of variation.

We shall however generally retain the usual word. His definition

of a variation coincides in fact with that which has been adopted

by Euler, Lagrange and Ohm
;
see Arts. 22, 15, 55. Let y stand

for < (x) then he supposes (f> (x) changed into
<f> (x, /c),

and
<f> (a?, tc)

expanded in powers of K by Maclaurin's Theorem
;
this expansion

he denotes by

Then supposing K indefinitely small the series

. **y + j72
8* +

jl
8ly + -

is called the variation of y. The quantity K is considered indepen-
ffyi

dent of x : thus the variation of ~ is
dx

'__
dx 1 . 2 dx

[3
dx

and by differentiating this series with respect to x we obtain the

d*v
variation of -~

,
and so on.

Strauch lays great stress on the view he takes of a variation, and

asserts that the common method of denoting the variation of y by
a single term as by or Ky leads to a number of absurdities and con-

tradictions. This assertion seems however quite arbitrary, and a very

careful examination of his theory and problems has not afforded

any confirmation of it. On the contrary, his method leads to a

great and needless complexity in the exhibition of the terms of

the second order in the variations of expressions, with the v

of discriminating between maxima and minima. The student of

Strauch' s work will effect a great simplification,
without any loss,

by supposing that such expressions as 8*y, S
3

y, ..., are all zero, so

as to reduce each variation to its first term.
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In the latter part of his fifth section Strauch explains a dis-

tinction on which he also lays great stress. A function is said to

experience a mixed mutation when some of the variables undergo

that kind of change which the Calculus of Variations" contemplates,

and others that kind of change which the Differential Calculus

contemplates. We can illustrate this by considering an Integral,

although Strauch himself does not introduce Integrals until the

next section of his work. In varying an integral then he does

not ascribe any variation to the independent variable, but makes

changes in the limits of the integration. Thus he calls the whole

change in the integral a mixed mutation, since it partly consists

of an ordinary change of value of the limits of the independent

variable, and partly of a change ofform of the dependent variable

which is strictly a variation or mutation. This restriction of

variations to the dependent variables seems to possess all the ad-

vantages which Strauch claims for it.

The sixth section occupies pages 132 165
;

it treats of some

special points in the theory of variations. This section presents

nothing remarkable or important ;
it is chiefly occupied with in-

ferences which follow from the view the author takes of a variation

as consisting of an infinite series of terms.

335. The seventh section occupies pages 165 356
;
this con-

tains the general theory of maxima and minima values. This

section is divided into three parts ;
in the first Strauch considers

expressions which involve neither integrals nor differential co-

efficients, in the second expressions which involve differential

coefficients, in the third expressions which involve also single

integrals.

Some general remarks and definitions are given on pages
165 171, and then the theory of the maxima and minima values

of functions involving neither integrals nor differential coefficients

occupies pages 171 231. This part of the book contains the ordi-

nary theory, of maxima and minima values which is explained in

treatises on the Differential Calculus; the language is rather

different from that which is usually employ01 1 and the various

cases which occur are treated separately with great care; nothing
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however is given which might not be obtained from the ordinary
treatises on the Differential Calculus. This part of the work is

illustrated by a series of sixty problems occupying pages 357 480

of the first volume. These sixty problems are all, with the

exception of the last six, ordinary problems of maxima and

minima
; the last six are of a slightly different character. Take

for example problem 55. Let a be a given quantity, and let it be

required to determine the function < so that the following ex-

pression shall be a maximum or a minimum, without assigning
a specific value to x,

a2 -
{</> (x)Y + 2< (x) $ (a)

-
{< (a)}

2 - 2x
<f> (x)

- 2a
</> (a).

Let y stand for
</> (x) and ya for

(ft (a) ,
and denote the expression

by U; then

Thus SZJwill vanish if

These lead to x = a; this however is inconsistent with the

supposition that x is not to have any specific value. Suppose the

problem then limited by the condition that ya is always to be

invariable. Then to make 8 7vanish we only require y ya + x 0.

Suppose x = a in this equation ;
thus ya ya + a

;
therefore

a = 0. So the problem does not admit of a solution in the limited

sense unless a be zero. In this case the only term of the second

order is (&/)
2

, indicating that there is a maximum.

It is known that a function of any variable may be a maximum

or minimum when its differential coefficient with respect to that

variable is infinite as well as when it is zero
; Strauch accordingly

in his examples takes account of such infinite values very care-

fully.

The second part of the seventh section occupies pages 231 27 1 :

it investigates the conditions for the maxima and minima values

of expressions which involve differential coefficients. We take
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his first case for an example. Suppose U a given function of

x, y, and p, where p stands for -j- ;
and let it be required to find

y in terms of x so that U may be a maximum or minimum. If we

regard y andp both as variable, then, since the variations of y and

p are independent, we must have in order that the variation of U
should vanish

dU , dU
-7- = 0, and -T- = 0.

dy dp

If we can find y in terms of x so as to satisfy simultaneously

these two equations, we obtain a maximum or a minimum value

of U provided that

is of invariable sign for all indefinitely small values of By and Bp.

Also solutions may sometimes be found by taking y so that

simultaneously

dU
^r'
dU

or so that -7- = co
,

dy
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positive. And a solution may sometimes be found by supposing

dU
~T~=
dp

Or we may suppose y susceptible of variation but not p-t and
then we have to seek for solutions from the equations

dU ,dU
-j

=
0, and -y- = oo ,

dy dy

Strauch then proceeds to the case in which U is a given
function of x, y, p, q, ...

,
and is to be made a maximum or a mini-

mum
;
then to cases in which such an expression is to be made

a maximum or a minimum, while at the same time one or more
relations are to hold between &

9 y,p 9 $,.... Then follow similar

cases in which U is a given function of x, y, 2, -f- ,
~

,
. . . .

dx dx

Lagrange first considered a problem of the kind to which

Strauch devotes this part of his seventh section, and Ohm first

treated the subject in detail; see Arts. 3 and 56. The subject
is neither difficult nor important. In his second volume Strauch

illustrates this part of his work by a series of 93 examples, which

occupy pages 1 211. One of these examples is that given by
Lagrange, and three are taken from Ohm; the remainder are

supplied by Strauch himself. See his preface, page xxix. Most

of these examples are fully worked out, but a few are left with

only indications of the steps.

The third part of the seventh section occupies pages 275 356 ;

this contains such investigations as are usually comprised in the

Calculus of Variations, so far as single integrals are concerned.

Strauch proceeds in the same way as Ohm, beginning with simple

cases and gradually rising to the more complex cases
;
see Art.

In order to distinguish between maxima and minima values he

adopts Legendre's method, without any attention to the ini]

fections of the method indicated by Lagrange and others; see
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Arts. 5, 6, 219. He considers the case in which the integral in-

volves more than one dependent variable, and he adapts Legendre's

method to the discrimination of the maxima and minima values.

This extension of Legendre's method he attributes to Ohm
;
see

Strauch, Vol. I. page 311.

336. We now come to the most valuable part of Strauch's

work, namely, the collection of problems relating to the maxima

and minima of integrals; this occupies pages 212 739 of the

second volume.

The problems which relate to single integrals occupy pages
212 562 ;

these are all examples of the theory which is developed
in the third part of the seventh section. There are 95 problems

according to the author's enumeration, but this number is obtained

by counting as different problems many which are only varieties

of one problem. Strauch says that he has taken 32 of these

problems from Euler's Methodus Inveniendi. . .
,
and 14 of them

from the writings of Lagrange ;
see Strauch's preface, page xxix.

The problems are very carefully solved by Strauch ;
the various

limiting cases that can occur are fully distinguished, and the terms

of the second order are almost always investigated. Valuable

historical notes are added to the discussion of the problems which

have been proposed by the great writers on the subject.

The problems which relate to double integrals occupy pages
562 739. There are 40 problems according to the author's enu-

meration. These are principally strictly examples; but a few of

them are theoretical investigations of the variations of double in-

tegrals, which Strauch had not previously considered. The theo-

retical investigations are given in his usual way by Strauch ;
he

begins with the more simple cases and proceeds to the more

complex. Thus on pages 674 676 he gives an investigation like

that we have given in Art. 59 from Ohm
;
Strauch however sup-

plies an investigation of the terms of the second order. Then on

pages 713 717 he gives a similar investigation for the case in which

the function under the integral sign involves #>#>*> ;~ >

~
>
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72^ /7 2
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-

J
here he does not supply an investigation of the

('(' u/y cty

terms of the second order. This investigation on pages 713 717

does in fact sum up all that Strauch accomplishes with the varia-

tion of multiple integrals; his result coincides with that which we

have already given after Sarrus; see Arts. 183, 184.

Strauch, as we have already stated, does not refer to some of the

writers whose works had preceded his own
;
see Art. 330. lie is

consequently disposed to claim as new investigations which had

already been made. Thus on his page 574 he supposes that he

is the first to investigate the terms of the second order in a cer-

tain double integral ;
Brunacci however had preceded him

;
see

Art. 213. Again, on his pages 737, 738 he institutes a comparison
between his own results and those of Poisson and Ostrogradsky ;

and he justly states that his own are in some points more gene-
ral. But, as we have stated above, Sarrus had preceded him in

the investigation which really involves all that he accomplishes.

See Art. 138.

We will now consider some special points suggested by the

.work of Strauch.

337. We have spoken above of the extreme accuracy of the

work in general ; we will here indicate a few points which appear
to be incorrect.

On page 438 ofVol. II. a case of the brachistochrone is discussed
;

a heavy particle is supposed to be constrained to move on a fixed

plane, and there is a resistance which varies as the square of the

velocity. Here Strauch obtains the result that the curve becomes a

straight line. But he has interchanged the values of the quantities

which he obtains from his equations XXIV. and XXXI.
;
and he does

not observe that the true values render his F(y) infinite and vitiate

his solution. He does not observe also that we can rc>lve the

force of gravity into two components, one in the fixed plane and the

other perpendicular to it, and then neglecting the latter comj

the problem is the same as if the particle moved in a vertical

plane. The latter remark applies again on page 4") I .
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On page 445 of Vol. II. Strauch is discussing a problem given by
Euler

;
the curve is required down which a heavy particle must move

so as to acquire the greatest velocity, supposing a resistance varying
as the square of the velocity. Strauch exhibits some investigations

for discriminating between a maximum and a minimum. His equa-
tion XXV. cannot however be allowed, because his equation xxiv.

from which he deduces it, is true for the curve which the particle is

supposed actually to describe, but not true necessarily for any other

curve.

On pages 461 and 462 of Vol. 11. he attempts to shew that it is

possible that .,
^

2 > can always be equal to a constant J5, and

yet L vanish when x= a. This is impossible, for .,
^

g\ is always

finite, and .~^ .. is less than L. In fact his equation xxvui.

shews that y is impossible when x a. if B is not zero. The only
conclusion is that B = ; then p 0, and the curve becomes a

straight line, as might have been anticipated. Similar remarks

apply to page 466
;

it is impossible that La = and // 2\
== a

constant, unless that constant is zero.

338. Suppose we require the maximum or minimum value

of an expression l^dx, where
<j>

involves x, y> and the differen-

tial coefficients of y with respect to x. Now the well-known

process is to obtain \S<f> dx, and to reduce this expression as

much as possible by integration by parts until it takes the form

L+IMSydx, where M contains no variation; then we put M= 0.

Strauch has a very singular notion on this subject. He says it

cannot be proved that we must have M= ; although he allows

that we do get solutions of our problem thus. Accordingly he pro-

poses to try if solutions cannot be obtained by putting S<j>
= 0. See

his Preface, pages xxv. and xxvi. Thus he frequently tries two
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processes of solution of his problems. It may be safely asserted

that the ordinary view of the necessity of the equation M=0 is

sound
; supposing that whatever series of values By can assume

it can also assume the corresponding series of values numerically

equal but of opposite sign, without changing the limiting values

of the variations. And on examination it will be found that nothing

is gained in any part of Strauch's work by paying attention to

what he considers a second solution of some of his problems. Let

us take for example the case which he himself brings forward

in the preface. Eequired the maximum or minimum value of the

expression

(y
8

2xy + 2p p*) dx.I

J a

The ordinary method furnishes the equation

d

that is,

And we have also the limiting equation

(2).

Strauch then proposes the following as another solution. The

variation of the proposed expression is

J a

Without effecting any reduction by integration by parts, make this

expression vanish ;
this we can do by supposing

y x and 1 p = (3).

The second of equations (3) is in this case consistent with the

first, so that we do get a solution. This however is not a new

solution; it is comprised in (1) ;
for y = x is a particular

solution of

the differential equation (1); and y = x also satisfies (2).

Strauch's supposed second solution is really included, as it should

be, in the ordinary solution.
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Before leaving this part of our subject we will offer some re-

marks with the view of guarding against a possible misconception

of the principle of equating separately to zero the two parts of the

variation of an integral, in order to obtain a maximum or minimum

value of the integral. Consider the problem of finding the curve

which with its evolute includes a minimum area. Let p denote the

radius of curvature at any point of the curve, s the length of the

arc of the curve measured from any fixed origin up to this point ;

then we require that I

l

pds should be a minimum. Let p receive
J SQ

the variation Sp, and let s and s
t
receive the increments ds

Q
and ds

t

respectively ;
then the change in the integral is

fi
Bpds+p1

ds
l
-

J sn

Here the coefficient of &p under the integral sign is unity, which

cannot be made to vanish
;
so that it might perhaps be supposed

at once that the solution of the problem is impossible.

.
But the fact is that we cannot prove in such a case that in

order to obtain a solution we must, make the integrated part and

the unintegrated part separately vanish. For when we take the

arc ? as the independent variable, and pass from one curve to an

adjacent curve the length of the arc will in general be changed ;

and if we make any change in that part of the variation of an

integral which remains under the integral sign, the part outside

the integral sign also undergoes a change. In other words,

the two parts which constitute the whole variation of a proposed

integral are not independent, so that we are not compelled to make
them separately vanish in order that the whole variation may
vanish. If we can make them separately vanish we obtain a solu-

tion of the problem, subject of course to an examination of the

terms of the second order
;
but we are not certain that this is the

only solution. And if we cannot make them separately vanish we

must not therefore conclude that the problem is impossible.

The point we are now considering is perhaps sufficiently obvious
;

I nit as it is sometimes a source of difficulty to students it may be

useful to refer to two other examples.
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Suppose we require a curve which has the property of making

l\/(
c +

")
k a m^n^mum ^1C en^s f *ke curve being supposed

fixed
; c is a constant and r is the radius vector drawn from a fixed

pole. The problem is thus equivalent to the following ; assuming
the principle of least action in Dynamics, and the ordinary law of

attraction, determine the curve which a particle will describe. The

result ought to be a conic section, and we shall obtain this result

if we adopt the usual independent variable 0, and put

^ defoi

But no result will be obtained by attempting to determine r as

a function of s and operating in the usual way immediately on

VK)
Again, suppose we require to describe on a given chord a curve

of given length, such that the area included by the curve and the

chord may be a maximum. This can be easily solved in the usual

way by taking x as the independent variable
;
the result is that the

curve must be a circular arc. But suppose we take s as the in-

dependent variable, and take a fixed point as pole. Then the

polar area between the curve and the extreme radii will be

and as the triangle included by the given chord and the extreme

radii is itself constant, we have to make the above area a maximum
;

also the length of the given curve is to be constant. Thus in the

usual way we have to make the following expression a maximum,

where c is a constant. Proceeding in the usual way we shall have

the equation
252
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+constant,

therefore = o, where a is some constant.

V-"
Therefore

(g'
=^ ,

that is, 1 + r*

g^f
=^ ;

therefore =

From this we should obtain for the required curve a circle

passing through the arbitrary pole ;
and this is inadmissible, be-

cause the circle is determined by the fact that it is to pass through

the ends of the given chord and that its arc cut off by the chord

is to have a constant length, so that it cannot in addition be made

to pass through an arbitrary point.

If p denote the perpendicular from the pole on the tangent to

the curve, the problem amounts to requiring that l(p + c) ds shall

be a maximum
;
and in this form we see at once that no solution

oan be obtained by the ordinary method if we keep s as the inde-

pendent variable and endeavour to determinep as a function of s.

We have hitherto spoken only for simplicity of the use of the

arc s as an independent variable
;
but our remarks apply also to the

use of the arc s as a dependent variable. Thus, taking the example

already used, we have

but if we adopt the right-hand form and thus treat r as the inde-

pendent variable we shall arrive at the same untenable solution as

before. The objection to the process is easily seen. Suppose we
draw one curve through two fixed points, and then draw an adjacent
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curve by changing every s into 5 + &, and also pass from the first

curve to a third curve by changing every s into s &s
;
then if w.-

make the second curve to have the fixed initial and final points, the

first and the third curves will not in general have the same final

points. That is, we cannot change the sign of 8s arbitrarily, and
therefore we have no right to conclude that the coefficient of &s in

the part remaining under the integral sign in the variation of the

integral must be zero.

We may add that the fact that when we use the ordinary
variables x and y we must equate to zero the coefficient of the

variation under the integral sign, seems more obvious when we
ascribe a variation to the dependent variable only than when we
also vary the independent variable

;
this is an additional argument

in favour of an opinion already expressed. See Art. 204.

339. Problems of maxima and minima which involve the

product or quotient of integrals are sometimes incompletely solved.

Strauch has given some examples for the purpose of drawing at-

tention to the point which is liable to be overlooked; see his

Preface, pages xxx. and xxxi. This deserves to be illustrated

fully, and we will accordingly give two problems in addition to his.

I. Determine the form of a curve symmetrical with respect to

its axis such that when suspended by its vertex the time of a small

oscillation of the segment cut off by the ordinate which corresponds

to a given abscissa may be a minimum.

Take the vertex as the origin, the tangent at the vertex as the

axis of y and the axis of x vertically downwards ;
let c denote the

given abscissa. The area cut off by the ordinate which corresponds

to c is supposed to oscillate about an axis through the origin per-

pendicular to the plane of the curve. Then by the principles of

mechanics the length of the equivalent simple pendulum is

7c

yxdx
Jo

and this expression must therefore be a minimum,
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Denote the numerator and denominator of this fraction by u and

v respectively. Then that - may be a minimum we must have

Su u&v

v v*

therefore

Su Sv = :

v

that is,

(V + x*) Sydx - -
f'xSydx

= 0.
J o

^
./O

Now let - be denoted by I
;
then Us a constant for our purpose,

so that the last equation may be written

Hence in the usual way we infer that

and so we apparently obtain a circle as a solution of the proposed

problem.

The solution however is not yet completed; for we require

that - should be equal to I. Substitute for y its value in terms

of x which has just been obtained ; then we require that

re

I x^(lx xz

)
dx

J o

therefore
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.therefore

that is,

This is impossible; so that the proposed problem does not admit

of a solution.

In fact in this problem as there is no limitation about the area

we can suppose it to diminish down to an indefinitely small area

in the neighbourhood of the origin, and so make the time of a small

oscillation indefinitely small.

In such a problem as the above, the investigation as to whether

such a condition as that denoted by - == I can be satisfied, is some-
v

times omitted
;
in the present case it appears that this condition

cannot be satisfied. We will now give a problem of the same kind

which does admit of a solution.

II. A given volume of a given substance is to be formed

into a solid of revolution, such that the time of a small oscilla-

tion about a horizontal axis perpendicular to the axis of the

figure may be a minimum
; determine the form of the solid.

Take the axis of x coincident with the axis of figure, and the

axis of y coincident with the line about which the body is to

revolve
; let x

l
be the abscissa of the lowest point of the body.

We have to find the equation to the curve, which by revolution

round the axis of x will generate the required solid
;
we suppose

the curve to lie in the plane of (x, y}. By the principles of

mechanics the length of the equivalent simple pendulum is

r (

I y*x dx
Jo

this expression must therefore be. a minimum, while TT
J y*dx is
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to be equal to a constant, namely to the given volume. Hence,

by the usual principle we must have

Pl
+// V*J

-_

a minimum, where ft is some constant.

We will at first vary y, and afterwards examine the terms

which arise from a change in the limit x^ of the integrations. Lei

u and v denote the numerator and denominator respectively of the

fraction which occurs in the above expression ;
then in order thai

the expression may be a minimum, we must have

therefore

that is,

/x
/. /

**1 7/1 **"! / **1

^ J A J n

Now let - be denoted by Z, and ftv by ft' ;
then I and ft' are

constants for our purpose, so that the last equation may be

written

I
J

- Myx + 2/3'y) By dx = 0.

Hence, we infer that

=
0,

BO that

/ + 2^- 2& + 2^ = .................. (1).

This indicates that the generating curve is an ellipse with the

axes in the ratio of 1 to ^2. The solution however is not ye
completed; for we must shew that the relation just found wil
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make - = I. This we will shew presently ;
but we will previously

advert to the terms which arise from a change in the limit x
t
of

the integrations. Suppose then that x
l
becomes x

l +dxl , then

to the first order the following is the increment of the expression

which we have to make a minimum,

Cf"").
35

where the subscript denotes that x is to be made equal to x
l

. In

order that this increment may vanish, we must have either

=0,

and the latter combined with the general relation (1) leads also

to yx
= 0. Thus at the lower limit the generating curve meets

the axis of figure.

We have now to shew that it is possible to have

f*!
(

I y*x dx
J

when y is determined by equation (1), and x
l

is such that y
vanishes when x x^.

We have from (1)

let a and V2 ^>e the semiaxes of the ellipse determined by this

P
equation ;

then - 2/8'
=3 2a2

,
and (1) becomes

A
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This equation indicates that the centre of the ellipse is at the

distance from the origin. Assume x
l
= 2a c, then

m

I
- =

0^ a==a c.

Hence we have to shew that

''x*)dx
= 2(a-c) (2);

I y*xdx
J

when

We have

#
2= 4ac- 2c

2 + 4:X (a
-

c)
- 2#2

;

therefore

c - c
2 + 2x (a

-
c)

- x

=
(2oc

- c
2

)

2 + 4a (2ac
~ c

2

) (a
-

c) + 4a2

(a
-

c)
2 - a?

4
.

Integrate from x = 0, to x = 2a c \ thus we obtain

(2a-cy+ 2c(a-c) (2a
-

c)
8 +

| (a
-

c)
2

(2a
-

c)
8 - 1

(2a
-

c)
9
.

And

j
^^ = c(2a-c)

8+
|(a-c)(2a-.c)

3

-l(2a-c)
4
.

Thus the left-hand member of (2) becomes

c
2 + 2c (a -c) + | (

a -c)
f - i

(2a -c)
8
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that is

5 (c + 2a)

and (2) becomes

4a2

)

5(c-f2a)
~ c

'

therefore 7c
2 + lac - 2a2 = 0.

This equation furnishes one positive value of -; it is ap-
a

3
proximately equal to .

Then ft is to be found in terms of a from the equation

this gives a negative value for /3
f

,
as should be the case, because

from (1) we obtain ?/

2 = -2/3' when # = 0. The constant a is to

be determined from the given volume, that is by means of the

equation

f-<j
2 {a

2

(# a -f c)
2

}
dx = the given volume.

To shew that we have really obtained a minimum we should

investigate the terms of the second order in the variation of -
;

to this we shall now proceed. The variation of - arises partly

from the change of y into y + $y, and partly from the change of x
t

into x
l + dx^ . We shall first shew that by reason of the suppo-

sition that y vanishes when x x^ the change in u or v arising

from the change of a^ into x^ + dx^ may be disregarded. For

example, consider v}
the change in v produced by the change

*

y*x<fo$ and asy itself is indefinitely small for values
. P
13

.

of x lying between x^ and x
l + dx

v ,
the above integral may be

considered of the third order of small quantities. Similar remarks
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hold with respect to the change of u. Thus to the second order

we may say that the complete variation of - is

Thus to the second order we obtain ^ , where
Q v

and <?=! +

This gives for the variation the following terms of the first order,

together with the following terms of the second order,

x -
*

([
V

We shall denote the terms of the first order byMl
and those of

the second order byMt ;
so that if the complete variation of - to the

second order be denoted by 8 -
, we have

(3).V

Now since the volume is to be constant we have
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that is 2
f*

l

y*ydx + f'%)*<& = ................ (4).
'o J o

Multiply (4) by /3 and add to (3) ; thus

S - =M
l
+ 2/3 [*y8y <k> + M, + f

*'

(fy) fo.
^ o Jo

And J/j + 2/3 I'ySydx vanishes by (1) ;
thus

that is

that is

This value of 8 - is true to the second order, that is, no terra

of the second order has been omitted.

But from (4) we see that I

l

y$y dx is itself of the second order,
J o

so that the latter of the above two terms is really of the third order.

Hence finally to the second order

and as the right-hand member of this equation is positive we have

obtained a minimum value of - .

v

340. The criticisms which Strauch offers on preceding writers

are sometimes of a very trifling character ;
we have already seen an

instance in Art. 29, and we will now notice two others.
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In the problem solved by Poisson which we have reproduced in

Art. 99, Poisson's own result has 6 instead of 6-}- A-, that is, Poisson

has not explicitly introduced the constant A in his last integra-

tion. Strauch refers to this slight omission in such a manner as

almost to lead a reader to suppose that Poisson's investigation must

be altogether unsatisfactory. See Vol. II. page 504.

On pages 747, 748 of his second volume Strauch solves a

problem of a relative minimum as an example of Euler's method.

Required a curve such that the area bounded by the curve the

axis of x and ordinates at fixed points of this axis shall be constant,

and at the same time the centre of gravity of this area at a mini-

mum distance from the axis of x.

Let the abscissae of the fixed points be a and a
;
then

fa 2l ydx
is to be a minimum while I ydx is constant. .

J a

y* dx

'.+LTydx ............ ........... (1),

2 ydx
J a

where L is a constant
;
and let I y dx be denoted by A.

J a

[yZydx \
y*dx

'

..... (2).

Now put fy&a c[
a

ydx ........................ (3),
J a J a

then (2) may be expressed thus,

Thus 2y C + 2AL (4),

so that we obtain a straight line parallel to the axis of x for the

required curve. Then from (3) we obtain
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C-ZALV G-AL.
a-

therefore C = 2AL or = 2AL
; the former by (4) gives the in-

admissible result y = 0, the latter gives y = C.

Now let the constant area be denoted by g
z

;
then since

we obtain C (a a)
=

g*.

Strauch now proceeds to investigate the terms of the second

order
;
he arrives at the result that the sign of thes^ terms is the

same as that of

and he says that as we cannot assert that the sign of this expression
is positive we are not justified in concluding by this method that

there is a minimum, although it is obvious from statical consider-

ations that our result does give a minimum. He therefore con-

cludes that Euler's process is defective. The answer is obvious.

Since the area is to be constant I Sy dx is absolutely zero, so that
J CL

we are sure of a minimum from Strauch's own process. It will be

found on examining Strauch's investigation of the terms of the

second order that he has in effect in one place himself recognized

fa
that I Sy dx is zero. The whole solution is more laborious than

J a

was necessary ;
for since I ydx is constant we might instead of

J a

Strauch's value of U have used the more simple value given by

fa fa

U= y
2 dx + L\ ydx.

J a J a

Strauch's objections to the methods of Euler and Lagrange

for solving problems of relative maxima and minima seem unim-

portant ;
and his own method is unnecessarily complex. See Vol. I.

pages 339 355, and Vol. II. pages 740763.
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341. It will be convenient to notice in connexion with the

work of Strauch an elaborate memoir which he presented to the

Academy of Sciences at Vienna in 1856, and which may be re-

garded as a continuation of his work. The title of the memoir is

Anwendung des sogenannten VariationscalcuVs auf zweifache und

dreifache Integrate; it was published in 1859 in the 16th volume of

the Denkschriften of the Academy. The memoir occupies 156 large

quarto pages, and is remarkable for the accuracy and beauty of

the printing.

The introduction refers to the memoirs of Delaunay, Sarrus

and Cauchy, which we have described in Chapters vi, vii, viu.

Strauch considers that these memoirs do not really effect what was

required by the Academy of Sciences at Paris when they proposed
their prize subject; see Art. 133. Accordingly lie undertakes in

the present memoir to investigate the variations of double and

triple integrals.

After some explanatory remarks respecting his notation he

proceeds to the variation of double integrals ; this subject occupies

pages 8 78 of the memoir. This part of the memoir contains

little more than the author had already given in his work, for the

most general investigation which occurs is that which we have

already stated to be the most general investigation in his work
;

see Art. 336. The methods are the same as in his work; he

begins with simple cases and proceeds to those which are more

complex ;
he gives a full account of the various suppositions which

can be made respecting the limits of the integrations, although his

statement of the manner in which the arbitrary functions or con-

stants must be determined is too vague and general to be of much
value. He usually investigates the terms of the second order, but

in transforming these terms he is content with imitating the method

of Legendre. The variation of triple integrals occupies pages
79 132 of the memoir, and is treated in his usual manner by
the author. The most general investigation which is completely
worked out is the variation of a triple integral in which no

differential coefficient occurs of an order higher than the first;

some more general investigations are partially worked out. Four

problems occur as examples in this part of the memoir. The first
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to find w so that the following triple integral may have a maxi-

mum or minimum value,

'here A is a constant, and the limits of the integrations are all

onstants. The other three problems are modifications of that

we have given from Sarrus in Art. 180.

The pages 133 154 of the memoir contain some remarks on

be memoirs of Sarrus, Cauchy and Delaunay. Strauch quotes

t full the result which Sarrus obtains for the problem which we

ave explained in Art. 194, and compares this result with that

rhich he obtains by his own processes and in his own notation.

Strauch gives that result from Cauchy's memoir which we have

nvestigated in Art. 192, and compares it with that which he

btains by his own processes and in his own notation. In his

emarks on Delaunay he intimates that some terms are omitted

>y Delaunay in his formulae,' see pages 147 and 148 of the memoir.

There is however no error in Delaunay's formulae; the terms in

uestion do not appear because the problem which Delaunay con-

iders is not the most general that could be proposed, as we have

Iready stated in Art. 138.

Again on page 149 Strauch intimates that Delaunay has only

two equations for determining certain arbitrary functions, while

bur are required, which he has himself supplied ;
Strauch's four

quations would however reduce to two in the particular case which

Delaunay considers.

342. The next of the three comprehensive treatises is Mr

Fellett's, entitled An elementary treatise on the Calculus of Variations

y the Eev. J. H. Jellett. Dublin 1850. It is an octavo volume

)f 377 pages, with a preface and introduction of 20 pages.

This valuable work constitutes the only complete treatise on

lie Calculus of Variations in the English language, and will neces-

arily be studied by all who wish to pass beyond the rudiment*

>f the subject. A brief outline of the work with some rcniavl;
J

26
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a few incidental points is consequently all that will be required

here.

343. The introduction contains a sketch of the history of the

subject; it appears that the author had studied the memoirs of

Poisson, Ostrogradsky, Jacobi and Delaunay, but had not seen that

of Sarrus. The first chapter is entitled Definitions and Principles ;\

it occupies pages 1 10. and explains what is meant by a variation.

A very important remark occurs on page 5,
"

... . many writers on

the Calculus of Variations have been led into considerable difficul-

ties by an unsteady use of the symbol S, a symbol which they

employ sometimes to express the increment which a function

receives in consequence of a change of form only, and sometimes t(

express the increment which it receives from the variation, not onl;

of its form, but also of its independent variables. We shall then!

use the symbol 8 to denote that species of increment which is

peculiar to the Calculus of Variations, that, namely, which a function

receives in consequence of a change in its form only. We shall,

as in the Differential Calculus, denote by the symbol d that incre-

ment which a function receives in consequence of a change in
the]

magnitude of its independent variables."

Accordingly in Mr Jellett's work the independent variable i*

not supposed to undergo variation. It has already been stated ii

the course of the present work that this appears the best methc

of treating the subject.

344. The second chapter is entitled Functions of one indepen-
dent variable; it occupies pages 11 30. It contains the ordinal

investigations and transformations of the variation of a single in-

tegral so far as terms of the first order, and also an
investigation]

of the terms of the second order; the usual expression secoi

variation is adopted for these terms, but a good note is given 01

page 355 respecting the ambiguity of this expression. The thii

chapter is entitled, Maxima and minima of indeterminate film-tint

of one independent variable; it occupies pages 31 136. This

chapter contains the ordinary investigation of the equation
equations which must hold in order that an integral may have
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maximum or a minimum value. Jacobi's theory for distinguishing
between a maximum and a minimum is fully developed ; the author

here follows the guidance of Delaunay, see Arts. 230 236. This

chapter contains a very important discussion as to the number of

constants which can occur in the solution of a certain problem,
and as to the number of them which are indeterminate. Let it be

required to make the integral I Vdx a maximum or a minimum,
J #

where F contains a?, y^ z, and the differential coefficients of y and z

with respect to x
;
while at the same time a relation L is always

to hold among these quantities. The following is the conclusion.

Suppose that V contains y and its differential coefficients as far as

that of the order n inclusive, and z and its differential coefficients

as far as that of the order m
; suppose that the equation L = is of

the order ri in differential coefficients of y and of the order m in

differential coefficients of z. Then

(1) If m be greater then m and n greater than ri the order of

the final differential equation will be the greater of the two

quantities
2 (m + ri) and 2 (m + ri),

and there will be a sufficient number of ancillary equations to de-

termine the arbitrary constants which enter into its solution.

(2) The same conclusion holds for tlie case in which m is

greater than m and n less than ri.

(3) If m' is greater than m and ri greater than w, the order of

the final equation will be in general

2 (m + ri) ;

and its solution may contain any number of indeterminate constants

not exceeding the lesser of the two quantities

2 (m m) and 2 (ri
-

ri).

Mr Jellett points out that a remark made by Poisson in the ninth

[section of his memoir is inconsistent with these results.

262
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The whole of this chapter is illustrated by examples which are

fully solved.

345. The fourth chapter is entitled Application of the Calculus

of Variations to Geometry. I. Theory of Curves; it occupies

pages 137 202. This chapter consists of a collection of problems,

including those of historical celebrity ; they are all fully solved.

The fifth chapter is entitled On multiple Integrals in general; it

occupies pages 203 218. The sixth chapter is entitled Functions

of two or more independent variables; it occupies pages 219 238.

The fifth and sixth chapters contain the variation of multiple inte-

grals ;
the methods are those of Ostrogradsky and Delaunay. The

most general result obtained is equivalent to that which we have

given in Art. 144 after Delaunay. The seventh chapter is en-

titled On maxima and minima ofJunctions of two or more inde-

pendent variables; it occupies pages 239 275. This chapter

illustrates and applies the results of the preceding chapter ;
several

examples are discussed in order to shew the treatment of the

limiting equations.

346. The eighth chapter is entitled Application of the Calculus

of Variations to Geometry. II. Theory of Surfaces; it occupies

pages 276 286. The ninth chapter is entitled Application of the

Calculus of Variations to Mechanics ; it occupies pages 287 334.

This chapter besides the usual examples contains a section on the

application of the Calculus of Variations to the deduction of equa-
tions of equilibrium and motion. The tenth chapter is entitled

Application of the Calculus of Variations to the integration of

functions of one or more independent variables; it occupies pages
335 354. This chapter investigates the conditions of integrability

of various expressions. The remainder of the work consists of notes.

347. It may be of service to students into whose hands the

work under consideration may come, to advert to some points which

may occasion a little difficulty ;
and on this ground we shall now

venture to offer some remarks.

348. In the fourth chapter of Mr Jellett's treatise many of the

problems arc solved by using the arc s of a curve as the inde-
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pendent variable
;
the method however is free from the objection

stated in Art. 338. There is an example on page 138 and the

following pages. In the course of the solution a constant a occurs,

and it is stated that the " existence of the arbitrary constant a is

an ambiguity necessarily introduced by the selection of s for the

independent variable." A reason is then assigned for making a =
;

but the reason does not seem satisfactory. It appears that the

term /^ ds
l pQ dsQ is omitted in the discussion of the limiting

terms on page 141. The whole expression relative to the upper
limit should be

then giving to m^ the same meaning as Mr Jellett does, we have

By means of (1) the expression relative to the upper limit

becomes

Hence

_ (dx\ (dy\ ,Q x

and
U),

+f
"'ksA

=0 () "

Substitute from (3) in (2) ;
thus

therefore /*
= \

This proves that a =
;
since the book proves that \ = p + a.

349. We have stated in the preceding Article that it ap;

that
/A,

ds
l

-
IJLO

ds is omitted in the discussion of the limiting terms.
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In support of this remark we may advert to Art. 152 of the present

work. There by taking account of certain limiting terms we

obtain the equation

X' dx
, , dy ,

dz-
5
= l + a +&-f + c-r ;

p
2

ds ds as'

this equation does not occur in Mr Jellett's investigation. The

truth of this equation is confirmed in Art. 157 by its agreement

with a result obtained by Delaunay.

There is a difference in the methods we have used in Arts.

152 and 348. In Art. 152 we followed the ordinary method and

ascribed a variation to the independent variable s
;
in Art. 348 we

do not ascribe a variation to s. The final results will agree in the

two methods, but the processes will differ. Thus in Art. 348, if we
follow the ordinary method the whole expression relative to the

upper limit will be

instead of what we have given ;
and instead of (1) we shall have

^i = mi^i

Thus the expression above becomes

and from this we obtain as before

On the other hand, suppose that in Art. 152 we follow the second

method. Then instead of the term

dx , dy dz
-T + & j + c -jds ds ds

which is there given, we should have simply Yds. But now the
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variations of the limiting co-ordinates will not be simply &r, By, Sz,

as in Art. 152, but

* ,

dx j 5, dy , ~ dz ^

respectively ;
and these must vanish at the limits, since the limits

are supposed fixed. Thus we shall obtain finally the same result

as before.

Of the two methods which can be used, Mr Jellett has decided

in favour of that which does not ascribe a variation to the indepen-
dent variable, see Art. 343. But it would seem that in the fourth

chapter of his work he has not adopted uniformly the consequences
which follow from this decision.

350. Remarks similar to those already made apply with respect

to pages 153, 155, 178, 181, 183 and 299 of the book.

Again, on page 170 it is remarked,
" and the remaining con-

stant, a, depending upon the given length of the curve...." Nothing
however has been previously said respecting the given length ;

and

it appears here as before that /^ dsl /JLO
ds should be added to the

limiting terms if we adopt the method of Art. 349. Or if we adopt
the method of Art. 152 we must add

(/*
- X + /A I &j

-
(ft
- X + Xp) $V

Again, on page 175 it is stated,
" the superfluous constant a will

be determined by expressing the area as a function of that constant

and equating its differential to zero." This reference to the

ordinary Differential Calculus is unnecessary ;
for the Calculus of

Variations supplies sufficient conditions for determining the con-

stants. The problem under discussion is, to find a curve of given

Length such that the area bounded by the curve itself, its two

extreme radii of curvature, and the arc of the evolute between them

may be a minimum. This problem is solved in most elementary

treatises, and the result obtained is that the curve must be a

cycloid; this result is obtained by the ordinary processes of the

lalculus of Variations. In fact if we adopt the method of Art. 1 ;,J
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we shall find that the following limiting terms have been omitted

in the book,

where /*'
= 1 and

/-i
= p + a constant.

From considering these we find that we must have

Xj
= 0, and X = 0,

since pl
and p vanish. Then by page 168 of the work, we have

dx

for it is shewn on page 169 that 5 = 0. Thus (~\ and
\-j-\

must

vanish. Then by page 174 since yt
and f -7-

j

= we have e(

and this is the result which is established in the book by appealing

to the Differential Calculus.

351. On page 165 some results are given without demon-

stration. The results refer to a segment of a sphere which ia

required to have a maximum or minimum volume, while the surface

is given. Let a denote the radius of the sphere, h the height of the

segment, then the volume of the segment is TT
(
ahz

)
. Since

the surface is given, ah is equal to a constant, which we will denote

by &8
. Let y denote the radius of the plane base of the segment j

then

therefore tf^Ztf-y*.

Thus the volume = TT
j&

2

V(2&
2 -

y*)
- ^~^

|

= V supposi

Now y is supposed to be an ordinate of a given curve, and V ifl

to be made a maximum or a minimum by properly choosing this

ordinate. Let x denote the abscissa corresponding to the ordinate y.

Then we have
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therefore
cte V(2& #) dx

We have now three cases to examine, namely

(1) If ^ itself be a maximum or minimum F will be a maxi-

mum or minimum respectively provided k* y* be positive, and a

minimum or maximum respectively provided &2

y* be negative.

(2) The value y = k makes -= zero, and makes
-j-^- negativedoc dx

provided -^-
be not zero; thus in this case Fis a maximum. If y is

dV
itself a maximum or minimum when y = k, then

-^ changes signdx
when y = k, and so F is itself a maximum or minimum respect-

ively.

(3) With respect to the case of y = we must remark that

the question does not suppose that y is capable of becoming

negative. If the given curve touches the axis of x then the value

y = occurs simultaneously with -j-
=

0, so that y is then a mini-
dx

mum and so is F.

These results do not agree with those in the book. The case

in which y = k seems there overlooked.

If y Jc we have h k a. And it may be seen that the

relation on the 14th line of page 165 of the book may be satisfied

by supposing a = y and the angle CPY zero.

352. On page 365 the following problem is suggested ;
to con-

struct upon a given base a curve such that the superficial
area of the

surface generated by its revolution round AB may be given, and

that its solid content may be a maximum.
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Take the axis of x as that of revolution
;
then adopting the

usual notation we require that TT \y*dx should be a maximum

while 2?r \y >J(l+p*) dx is given, the limits of a; being supposed

fixed. Thus if a be a constant we have to find the maximum
value of

Hence we must have y + a V(l+/) =^ *J(l+p<)
this we know leads to

therefore
, _^_j_y ........................ (2),

where b is a constant.

Then since y is to vanish at the two fixed points we have I = 0,

and then by completing the solution we obtain a semicircle for the

required curve, and therefore a sphere for the solid generated.

Mr Jellett points out that this solution is unsatisfactory, because

the superficial area of a sphere described upon a given diameter is

a determinate function of that diameter, and cannot therefore be

made equal to any given quantity. Mr Jellett proceeds to remark

that the process of the Calculus of Variations fails in this case.

We suggest the following as a solution of the problem.

Let the figure A CEDB consist of two straight lines A (7, BD
perpendicular to the axis of x, and of the arc GED which satisfies

the differential equation (2) ;
see figure 10. Take A as the origin ;

Then the volume of the figure formed by the revolution of

ACEDB round AB is ir I y*dx; and the surface, including the
J o

circular ends, is

o* + 2<7r 19 ^(1 +p*) dx.
J o
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Now suppose that y is changed into y + fy, then the variation

of the volume is 2?r I

l

y%ydx, and we have to make this zero for
J o

such variations as leave the surface unchanged ;
that is, for such

variations as make

o

Thus if a represent a constant we must make

(3).

The part under the integral sign vanishes because we suppose

equation (1) satisfied. So that we only require in addition

This leads to p = + GO and p^ co
;
that is, the curve must

join on continuously to the straight lines at G and D. Then it

appears from (2) that y*
= b when p is infinite, so that AC BD.

The constants a and
,
and that which would arise from in-

tegrating (2), must then be determined so that y*
= b when x = and

when x x^ and that the surface may have the given value.

Suppose however the circular ends are not to be included in the

given surface. In this case y a furnishes a solution. For the

terms ay^ 8yt + ayQ SyQ
do not now occur in (4) ;

arid the value

y a makes

vanish, and it gives p = so that W ^ aiso vanishes. Thus

we obtain a cylindrical surface
;
a will of course be negative, ami

will be determined by the condition that - 27rax
l
must be equal

to the given surface.
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353. A mistake occurs on page 376 of the "book which may be

noticed. The integral / tan
2 6 sin 6 dO is made equal to a finite

/ o

negative value, the fact being overlooked that tan
2 becomes

infinite between the limits of integration. And the same mistake

occurs on page 377 where the integral I ,2 ,. , 2X
is taken between

jp ^/(1+p )

limits which includep = and make the integral really infinite.

In concluding we may strongly recommend the student of the

Calculus of Variations to master this important volume. A trans-

lation of it into German has been advertised, but the present writer

has not had the opportunity of consulting it.

354. The last of the three comprehensive treatises is by
Dr Stegmann, entitled Lehrbuch der Variationsrechnung und Hirer

Anwendung lei Untersuchungen iiber das Maximum und Minimum.

Kassel, 1854. It is an octavo volume of 417 pages with a preface

of 16 pages.

In the preface the author states that he had long been of opinion

that the Calculus of Variations was treated in a meagre and un-

satisfactory manner in elementary treatises, and had resolved to

undertake the task of producing a more complete work on the

subject. The work of Strauch had not appeared when first this

resolution was formed; after it was published the question arose

with Stegmann whether he should continue his design, since he

had no intention of offering to his readers such a rich collection of

problems as Strauch had supplied. Ultimately he resolved to

complete his original design.

In addition to the works of Dirksen, Ohm and Strauch, Steg-
mann refers to the memoirs of Poisson and Ostrogradsky. He has

discussed numerous problems as illustrations of his theory, but he

does not present his work as a collection of problems, for the

development of the general theory has been his main object. In

solving his problems he has imitated Ohm and Strauch in investi-

gating the terms of the second order so as to discriminate between

maxima and minima values.
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355. The work consists of six chapters and two supplements.

The first chapter is entitled On variations generally ; it occupies

pages 1 11. The following is Stegmann's view of a variation;

let y denote any function of x as f(x), and let
<f> (x, t) be any

function of x and t which reduces to f(x) when t =
; then the

variation of y is denoted by By, where

the suffix indicating that t is to be made zero after the differ-

entiation.

On page 7 we have the usual geometrical illustration of the

relation dy =
dy.

In the first four chapters of the work no variation is supposed
ascribed to the independent variable, and no change of value is

made in the limits of the integrals which occur.

356. The second chapter is entitled Variations of expressions
in which Functions of one independent variable occur, but no

Integrals; it occupies pages 11 84.

This chapter gives that portion of the subject which has been

developed by Ohm and Strauch ; see Arts. 56 and 335. The theory
is illustrated by the discussion of the problem originally given

by Lagrange; see Art. 3. Stegmann also gives four problems
which are to be found in the volumes of Strauch, namely those

numbered 1, 76, 85 and 86 by Strauch. Stegmann indicates on

page 60 another problem of the same kind as Lagrange's, namely,
to find a curve such that the product of the perpendiculars let fall

on any tangent from two fixed points shall be a maximum. It is

supposed as in Art. 3 that at any point -gj
alone is susceptible of

variation. The result is that 'the curve must be an ellipse or

hyperbola of which the two fixed points are the foci.

On page 68 Stegmann discusses another problem of this kind,

namely, to find the curve for which yp shall be a maximum or
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minimum, the variations of y and p being so taken that at any

point considered y (x
-J

shall undergo no change by variation.

Thus with the usual notation we must have

2>$y + y$p = Q ........................... (1),

and
(a-J)Sy+j5^

= ..................... (2);

from these equations we obtain

*=<(*- 3*)
......................... (3);

y y \ pi

therefore - ^-
,

therefore y = ~ ,
where A is a constant.

x y A

Now let us retain the terms of the second order in order to

ascertain whether the result gives a maximum or a minimum.

Let U= yp, then accurately

and (y + Sy)x- -^
vp-

- yx +
y =

accurately.

Multiply the last expression by X and add it to & U] thus

_J^ + I

pp P p

where the omitted terms are of the third and higher orders.

Assume X such that

f
then by means of (3) and (4) the terms of the first order disappear

*

from 8 7; also we get X = - ,
and thus to the second order

y
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y &

Thus supposing x positive we have obtained a minimum.

357. The third chapter is entitled Variations of single Integral

expressions with one independent variable; it occupies pages 84 165.

This chapter contains the ordinary theory of the maxima and

minima values of Integrals, illustrated by four examples; it also

contains an investigation of the criterion of integrability of an ex-

pression, and an investigation of Jacobi's method of distinguishing
between maxima and minima values.

The examples discussed are the following: (1) The shortest

line between two given points. (2) The brachistochrone between

a fixed point and a fixed horizontal line
;
the cycloid is obtained

as the general solution, but it is shewn that in the particular case

when the position of the lower limiting point is not fixed on the

fixed horizontal line the result becomes a vertical straight line.

(3) The maximum or minimum value of

dx.f(2^_/%'
1\ x

'

\dx.

(4) The curve which with its evolute includes a minimum area.

In all these examples the terms of the second order are examined.

In investigating Jacobi's method Stegmann proves the first

part of the theorem of Art. 222 universally, that is, he proves that

a certain expression is integrable ;
his proof depends on his previous

investigation of the condition of integrability. With respect to the

second part of the theorem he confines himself to proving that

\ylldx has the required form when B^ is the last of the series of

terms B, B^ 2 ,...; and he exhibits completely the values of

B, B^ and B
2

. He gives an investigation similar to that in Al-

and as in that Article he preserves the terms which are outside the



416 SYSTEMATIC TREATISES.

integral signs. At the "bottom of his page 163 he makes a certain

expression to be zero which should be equal to a constant
;
there

seem indications however on the last page of the chapter that he

had perceived some inconsistency in this proceeding with respect

to the number of constants involved
;
see Art. 232.

358. The fourth chapter is entitled, On the determination of
the maximum or minimum in combinations of simple integrals, or

when certain conditions are prescribed ; it occupies pages 165 265.

This chapter contains the following subjects: (1) Eelative

maxima and minima problems or isoperimetrical problems. (2) Pro-

blems in which the limiting values are subject to certain con-

ditions ;
here Stegmann draws attention to the terms of the second

order, and he keeps them all in, so that he has terms outside the

integral sign besides the terms under the integral sign which may
be supposed treated by Jacobi's method; see pages 187 196 of the

work. (3) Maximum or minimum of an integral which involves

more than one dependent variable, with or without a given equa-
tion connecting the variables. (4) Maximum or minimum of an

integral which involves x, y, differential coefficients of y, and also Z
where Z is an integral expression involving #, y, and the differential

coefficients of y. (5) Maximum or minimum of I Vdx, where V is

supposed determined by a differential equation. (6) Maximum or

minimum of an integral involving a?., y, z and the differential

coefficients of y and z, where the limiting values of y and z and

their differential coefficients occur in the integral.

This chapter contains the following examples. (1) To find the

curve of given length joining two fixed points which with the ordi-

nates of the two fixed points and the axis of x includes the greatest

or least area. (2) The curve of given length fastened at its ends to

two fixed points, which has its centre of gravity lowest. (3) To
find the shortest line that can be drawn between two fixed lines

perpendicular to the axis of x, under the condition that the

product of the extreme ordinates shall have a prescribed value.

In these three problems the terms of the second order are ex-

ainined. (4) The shortest line on a curved surface; the general
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differential equation is obtained and then particular applications
are given ;

for example, the case of the ellipsoid is examined.

(5) Of all curves which have the property that the normal plane

passes through a fixed point, to find that which has the least

length between two fixed parallel planes; this is in Strauch, Vol. ir.

pages 379 381. (6) The brachistochrone in a resisting medium.

/
r*

Zn
dx, where Z= I V(l + p*) dx.

i J a

(8) The curve down which a body must fall in a resisting medium
so as to acquire the greatest velocity. (9) To find the minimum

value of I (-} dx, under the conditions that yQ
= 1 and that

I ydx^y^ (10) The problem we have enunciated in para-'

graph (3) of Art. 311
; Stegmann does not however allude to

the difficulty which occurs in the particular case which we have

examined in Art. 352.

359. The fifth chapter is entitled On Mixed Variations with

simultaneous changes of the independent variable; it occupies pages
265327.

In all the investigations hitherto given in the book the limits of

the integrations have been supposed fixed and the independent
variable unsusceptible of variation

; Stegmann proceeds in the pre-

sent chapter to give that extension to his formulae which they

require in order to apply to problems in which the initial and final

values of all the quantities which occur are changed. He now

adopts the common method of ascribing a variation to the indepen-
lent variable. Suppose x the independent variable and y the

lependent variable, let these become by variation x + Sx and

y + y respectively ;
then Stegmann obtains a relation denoted thus

This result might be presented as a definition, namely, let

-px be denoted by (8)y, and then it might of course be

Jonsidered absolutely true. Stegmann however adopts a different

27
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method
;
he defines (8) y and by means of geometrical considerations

establishes the truth of the relation as far as the first order of small

quantities.

It is then necessary for him to shew that

where q -f-
= -73 ;

and generally that
dx dx

His method is the following,

put ($)y +p$x for fy and qdx for dp, thus

this may be written $p (8)p +

Stegmann subsequently gives the common geometrical illus-

tration of the relation MX = dx.

The above investigation of the value of Bp cannot be regarded as

absolutely true, but only as true to the first order.

Suppose now that U= I Vdx, and that the variation of U is
J a

required ; Stegmann proves that the result obtained when x was

supposed unsusceptible of variation, so far as terms of the first

order are involved, requires only the following modifications

Sy, Sp, ... have to be changed into (8)y, ($) p, .... respectively,

and the following limiting terms added, F$8f Fa 8a. Two proofs

are given of this statement.

The formulas are illustrated by discussing the problem of the

brachistochrone in the case where there is no resistance, and also in

the case where there is, and the problem of the shortest line. In
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both these problems various suppositions are made with respect to

the limiting conditions and carefully examined. For example,
take the problem we have considered in Art. 300

; Stegmann adopts
the suppositions there made and arrives at the results there ob-

tained by interpreting the terms of the first order. Then he makes

another supposition ;
let the limiting values x

l
and x

z
be connected

by the relation

#
a

x
v

a constant,

then dx^
= dx

2 ,
and instead of the two equations obtained by

equating to zero the coefficients of dx
l
and dx

z
we have now the

single equation

I II fJX. \
uu

l I
A

I. . I
"* r 7

this reduces to

therefore tf (a?8)
=

%' (xt) ;

thus the tangents to the limiting curves at the points where the

described curve meets them are parallel.

Stegmann also considers briefly the subject of the discrimina-

tion between maxima and minima values when the independent

variable is supposed to undergo a variation. Here of course allow-

ance has to be made for the circumstance that some of the formulas

employed were only true to the first order. He illustrates his

remarks by considering the problem of the shortest line between

a given point and a given curve.

On the whole the chapter appears to be a good exhibition of

the method which the author selects, but the metho*d seems far

less simple and satisfactory than that of not allowing the inde-

pendent variable to undergo variation, but obtaining the requisite

generality by changing the limits of the integrations.

Two other subjects may be mentioned which are introduced

into this chapter. On pages 278, 279 Stegmann proves the theorem

272
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which we have expressed in Art. 93 thus, Hy + Kz =
;
the proof

does not depend on the Calculus of Variations. On page 292

Stegmann considers the case in which the function under the in-

tegral sign may itself involve the limiting values of the variables

or differential coefficients
;
he points out however that the limiting

values of the highest differential coefficient when there is only
one dependent variable must not occur

;
because if in such a case

we wish to make the integral a maximum or a minimum we have

in general more conditions than disposable quantities. A similar

remark holds when there is more than one dependent variable.

360. A supplement to the third, fourth, and fifth chapters

occupies pages 327 338
;

it draws attention to the method of

solving problems in this subject which was adopted by the early

writers, and refers to the memoir of Schellbach. Stegmann solves

two problems by this method. (1) To find among all curves of

given length that for which I F(y) dx is a maximum or a mmi-
J a

mum. (2) The shortest line on a surface of revolution.

361. The sixth chapter is entitled, On the variations offunc-
tions of two independent variables; it occupies pages 338 395.

On page 11 of his work Stegmann seems to indicate that mixed

variations occur only in the fifth chapter, but we find them again in

the first section of the sixth chapter.

Suppose z any function of x and y, say z =/(#, y) ; let
<f> (x, y, t)

denote any function of x, y, and t, which reduces to f(x, y] when t

vanishes. In
</> (x, y, t) change x into x + &c, y into y + By, and t

into t -f- Bt ;
then a result is obtained which is denoted thus,

or by supposing t = 0,

rv /CVN . dz
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Then since this is true whatever function of x and y is denoted

by z, Stegmann says we have

a .

cp y + -j-s ox*
dx* dx dy

d*z
bq = y +

and so on.

This method seems however an unsatisfactory proof of these

formulae; see Arts. 102 and 124.

Stegmann next refers to questions similar to that in Art. 3,

but involving more than one independent variable. He solves

the following problem ;
to determine a surface having the property

that the sum of the squares of the intercepts cut off from the

co-ordinate axes by the tangent plane at any point shall be a

minimum. Thus in the usual notation

is to be a minimum. Here p and q are supposed susceptible of

variation; the result is that the required surface is determined

by the equation

Stegmann now proceeds to the variation of a double integral;

here he restricts himself to supposing $x and By to be zero, and

he gives the complete development of the variation as far as terms

of the first order, supposing that no differential coefficient occurs

of a higher order than the second. As Bx and $y are supposed

zero, and no change is made in the limits of the integrations,

the investigation is less general than that which we have given

in Arts. 143 and 183. Stegmann illustrates this investigation by

the following examples. (1) To find the minimum of

I I (z + xp + yp*) dydx\
J a J /3

this example is taken from Strauch, Vol. II. page 579. (2) The
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curved surface of minimum area between given limits. In this

case Stegmann obtains the ordinary differential equation and then

gives a long investigation by which he arrives at Monge's integral ;

see Art. 311. Then as an example, he shews that the particular

surface considered by Bjorling and others is included among the

general class of surfaces which is required ;
see Arts. 311 and 315.

With respect to this example however, he states more than he has

proved; see his page 377. He states that if the surface is to

be bounded by two fixed straight lines AC, BD and two fixed

curves AS, CD which constitute a closed four-cornered figure,

then the particular surface referred to does possess the least area.

Now he has not examined the terms of the second order so as

to ascertain that there really is a minimum, and moreover his

solution does not shew that the particular surface referred to is

the only surface that will satisfy the conditions of the problem
so far as making the terms of the first order vanish, but the only
surface out of all those which can be generated by a straight

line which moves so as always to be parallel to a fixed plane. We
shall hereafter see that Stegmann has stated more than is true.

The last three sections of the sixth chapter are devoted to the

consideration of the modification of the formulas for the variation

of a double integral which is produced by supposing that &c and

y are not zero. Stegmann refers to Poisson and Ostrogradsky ;

but it appears probable from coincidence in notation that he has

chiefly followed Bjorling; the latter however, as we have stated,

may be considered to have only reproduced Ostrogradsky's method.

In illustration of the formulae Stegmann considers three particular

cases
;
these are all included in those results, of Poisson which we

have given in Arts. 113 and 114.

362. A supplement on the use of variations in Mechanics

occupies pages 396 417.

Stegmann shews here how certain mechanical problems may
coincide with problems of the Calculus of Variations. For ex-

ample, the principle of Virtual Velocities supplies for the condition

of equilibrium of any system an equation of the form
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then if we suppose 7 a function determined by the relation

dU= 2 (Xdx + Ydy + Zdz),

the condition for equilibrium amounts to the statement that in

general 7 must be a maximum or a minimum.

Lagrange's transformation of the equations of motion in Dy-
namics is also investigated ;

see Art. 318.

The principle of least action is also investigated. Stegmann
considers this principle under the following form; required the

curve for which \vds is a maximum or minimum, where v is

supposed a given function of the co-ordinates x, y, z. He shews

that the differential equations which determine the curve, are

the same as those which are furnished by Dynamics for the curve

which would be described by a particle under forces which would

generate a velocity denoted by the given function v. He draws

attention to the fact that \vds is not necessarily a minimum. For

example, when v is constant and the particle moves on a smooth

surface, the curve obtained may be in general the shortest line

that can be drawn on that surface between fixed points, but will

not be so necessarily. A particle may move on a smooth sphere

acted on by no forces except the normal action of the sphere,

and describe the shortest line between two points, namely the

shorter arc of the great circle joining those points; but it may
also describe the longer arc of the great circle joining those

points.

We shall now consider in detail a few points connected with

Stegmann's work.

363. Suppose we require the maximum or minimum of \4>dx,

inhere
</>

involves x, y, and the differential coefficients of y ;
before

educing I fydx in the ordinary way by integration by parts,

Stegmann makes some remarks on the attempt to solve the probli-m
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which is made by supposing </>
=

;
see his page 85. The relation

B(f>
= can only indicate one of these two things, either

<f>
does not

change by ascribing a variation to y and its differential coefficients,

or else
<j>

is itself a maximum or minimum. The former supposition

is impossible, since
'

With respect to the latter supposition it is to be observed that

if
<f>

be itself a maximum or minimum for all values of x between

given limits, then I
</>
dx will also be a maximum or minimum re-

spectively, the integral being taken between those limits. This

Stegmann proves by means of a figure which is constructed by
taking the ordinate of a curve always equal to fa The proo:

amounts to the consideration that the integral must be a maxi-

mum or a minimum, because each of the elements of which it may
be ultimately regarded as the sum is a maximum or minimum re-

spectively. It is however not true conversely that any relation

which renders I
<f>
dx a maximum or minimum will make < also

J a.

such for all values of x between a and f. This is illustrated by

a figure which amounts to the consideration that I fa dx may be
/

'"
'

greater than I fa dx, even although some of the values of fa are
J a.

less than the corresponding values of fa; for other values of fa may
be greater than the corresponding values of fa.

Thus the conclusion is that the relation 8< = will not neces-

sarily supply all possible solutions of the problem of finding the

maximum or minimum value of l^>dx.

364. On page 109 of his work Stegmann makes a remark

which relates to the use of a series to represent a variation instead

of a single term ; see Art. 334. Stegmann is investigating the

maximum or minimum of I .

"
dx. The ordinary mode

J Q V
would be to change p into p + &p, and then to examine the terms
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involving &p and (8p)
2
. But suppose we change p not into p + Bp

but into a series, after the manner of Strauch
;

let this series be

Arrange the variation of the proposed integral according to

powers of K
;
thus we obtain for the variation

dx
T5x + -

In order that there may be a maximum or minimum we must
have in the usual way

= a constant.

Stegmann then remarks that we are prevented from ascertaining
what the sign of the term involving /c

2

is, by reason of the presence
ofW (x) which is altogether independent of l'(x). He does not

notice that the relation which has been already assumed in order

to make the coefficient of K vanish, also makes the coefficient of

"^f'(x) constant in the term involving /e
2

;
hence it will be found that

since the limiting terms of the first order are made to vanish, the

terms of the second order which depend on "SP 'x will also vanish.

It is in fact this circumstance that renders it useless to adopt
the form of a series instead of a single term in order to denote

a variation.

365. On page 140 of his work Stegmann is discussing the

problem of finding the curve which with its evolute includes a

minimum area.

Let

by making the terms of the first order vanish in the variation of U
we obtain a cycloid for the curve. The terms of the second order

may be put in the form
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and Stegmann says that neither - nor p can become infinite be-

tween the limits of integration ;
so that the solution he has obtained

gives a minimum. But p is infinite at the cusps of the cycloid,

and thus Stegmann is wrong. But although p is infinite yet

* $ ' does not become infinite, this being the radius of curvature

of the curve
;
hence hfortiori

!
, | ,
Z+& and ii^.' do

not become infinite. Thus if Sp and $q are indefinitely small

throughout the limits of the integration the quantity under the

integral sign in the above expression will not become infinite
;
so

that the result obtained is really a minimum in comparison with

all adjacent curves which can be obtained under the limitation that

Sp and 8q shall be indefinitely small.

With respect to the problem in question it will be useful to

notice the conclusions of other writers. Thus in De Morgan's
Differential Calculus, page 463, the following statement is made,
" the radii of curvature at the extreme points are both =0;
which in the cycloid only happens at the cusps. Hence ifA and B
be the given points, every such figure as that in the diagram gives
an algebraical minimum : that is to say, any slight variation of the

upper curves with a corresponding variation of the lower evolutes

would increase the area contained. There is no absolute arithmetical

minimum ; for by sufficiently increasing the number of revolutions

of the generating circle we might diminish the whole area without

limit." The diagram referred to supposes the generating circle to

have turned round three times completely, so that there are three

complete arcs of a cycloid between the two fixed points. There is

no investigation of the terms of the second order to shew that any
slight variation would increase the area.

The problem is solved by Strauch, and he exhibits the terms

of the second order, but makes no remarks of importance. See his

Vol. II. pages 289291.

Mr Jellett discusses the problem, and makes some remarks

on the result; see pages 172 and 177 of his work. He gives a
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figure consisting of a single complete arc of a cycloid with its

extremities at the two fixed points ;
the two fixed points are also

connected by a curve which is composed of two complete arcs of a

cycloid, one of which may if we please be supposed indefinitely

small, and the other finite and differing infinitesimally from the

single complete arc first considered. It is easy to shew that the

area in the second case is less than the area in the first case
;

nevertheless the first is to be considered a real minimum in

the proper sense of that term, because the second curve cannot

be deduced from the first by a legitimate variation.

366. In Art. 202 we have referred to a result obtained by

Legendre in discussing the following problem ; required to connect

two fixed points by a curve of given length so that the area

bounded by the curve, the ordinates of the fixed points, and the

axis of abscissae shall be a maximum. Stegmann discusses this

problem and arrives at the same results as Legendre, though he

does not refer to him ; see Stegmann's work, pages 175 180.

Let Aj ,
&

t
be the co-ordinates of one of the fixed points, which

we will denote by A ;
let A

2 ,
&

2
be the co-ordinates of the other fixed

point, which we will denote by B ;
and we will suppose \ less than

, and k^ less than &
2

. Then with the usual notation I ydx is

J hi

to be a maximum while I V(l +p*) dx is to have a given value.
J h

l

Then we proceed to make I *{y + X V(l +p*)}dx a maximum where
J h}

X is a constant.

Therefore 1 - X
*
^-S-, =

(1),

therefore x G
v

therefore ~ =
dx ~\~

therefore y - C.
= + V{V - (*

-
<?i)') (

2 )-



428 SYSTEMATIC TREATISES.

It is easy to see that the sign of the terms of the second order is

the same as that of

rha

k
and is therefore the same as the sign of X. Then (2) gives for the

required curve an arc of a circle of which X2
is the square of the

radius, and from (1) it may be shewn that this arc will be concave

to the axis of x if X be negative ;
so that an arc of a circle concave

to the axis of x gives a maximum area. The constants X, (7
15
and

(7
2
are to be determined by making the arc go through the points

A and B and have the given length. This given length must of

course be greater than the straight line which joins A and B.

The solution thus obtained is satisfactory as long as the concave

circular arc joining A and B falls entirely between the lines drawn

through A and B perpendicular to the axis of x
;
the extreme ad-

missible case is that in which the ordinate at A is the tangent to

the circular arc at A.

Supposing then that the given length exceeds that which cor-

responds to the extreme admissible case just referred to, we must

modify the problem. Let the ordinate at A be produced through A
to a point distant y^ from the axis of x

;
and let the straight line

of length y \ be considered part of the curve connecting A
rha

and B. Thus we now propose to make I ydx a maximum while
J A!

rha

y^ \ + I >/(! +P*) dx has a given value. No change is thus rc-

Jht

quired in the solution of the problem except so far as relates to the

terms at the limits
;
these formerly vanished because the extreme

points were both fixed. Now we have corresponding to the lower

limit the expression

arid to make this vanish we must have

therefore
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This requires the circular arc to have its tangent at the point

(^i> #1) where it joins the ordinate produced through A, coinci.l.-nt

with that ordinate produced. Thus y^G^ and C
l

A
t
= the

radius of the circle
;
and the constants will be found from these

relations combined with the conditions that the circle shall pass

through B, and that the length of the circular arc together with

yl \ shall be equal to the given length.

In this case then the required curve is made up of a straight line

of the length yl k^ and of an arc of a circle.

The solution thus obtained is satisfactory so long as the concave

circular arc is not cut by the ordinate atB produced through B ;
the

extreme admissible case is that in which the ordinate at B is the

tangent to the circular arc at B.

Supposing then that the given length exceeds that which cor-

responds to the extreme admissible case just referred to, we must

again modify the problem. Let the ordinate at B be produced to a

point distant ?/2
from the axis of x, and let the straight line of length

yz
&

2
as well as the straight line of length y^ \ be considered part

of the curve connecting A and B. Thus we now propose to make

ydx a maximum, while
A 1

has a given value. No change is thus required in the solution of

the problem except so far as relates to the terms at the limits. We
now have the expression

and to make this vanish we must have

therefore pl
= oo

,
and /?a

= - oo .
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This requires the circular arc to have its tangent at the point

(hl9 yj where it joins the ordinate produced through A, coincident

with that ordinate produced; and also its tangent at the point

(^2 > #2) wnere it joins the ordinate produced through B, coincident

with that ordinate produced. This requires the circular arc to be

a semicircle, so that y^yz ^C^ and C
l -(h^-^Ti^ and the

radius of the circle = -
(A2

h
t).

The constant (7
2

is to be found

from the condition that the sum of the length of the circular arc and

yl
k

l
and y2

&
2
is to be equal to the given length.

In this case then the required curve consists of a semicircular

arc and two straight lines.

367. In his fourth Chapter, pages 222 227, Stegmann gives

an investigation of the number of the constants which can occur

in the solution of a certain problem, and of the number of the

equations which serve to determine these constants
;
see Art. 344.

Stegmann's conclusion is that in general these constants can all be

determined; he does not shew that the auxiliary equations may
diminish in number in certain cases, and thus some of the con-

stants remain indeterminate. He draws attention however to some

exceptional cases, in which the number of the constants may be

less than the general theory indicates. Take for example the

first case considered in Art. 273
;
here no arbitrary constants occur

in the solution, so that the terms which relate to the limits must

be supposed to vanish of themselves, or they will not vanish

at all. In other words, if we use geometrical language, the

limiting points must be supposed fixed through which the curve

is to be drawn.

368. On his pages 245 247, Stegmann solves a problem

which we will here notice. Let U= I Zn
dx, where

J a
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required to find the value of y which makes U a maximum or
minimum. Here we have as far as terms of the second order

and
SU=fc [nZ~+

SZ+^A Z~ (SZ)* + ...I dx.

The investigation of Art. 38 may be applied to this problem.
The quantity there denoted by v is here denoted by Z, and

L = nZ-\
AlsoP^^-^,

while N, N', P, Q, Q',... are

zero. Thus we obtain

(A I) P' = a constant
;

and as A I vanishes when x has its superior limiting value, the

constant must vanish
;
this leads to P'= 0, so thatp = 0. The inte-

grated part of the variation also vanishes since the above constant

vanishes.

Since p the only term of the second order which remains

which is positive, and so we obtain a minimum.

Stegmann's solution is effected by the use of an arbitrary multi-

plier, and leads to the same result. In discriminating however

between a maximum and a minimum, he retains the term

and this leads him to make the supposition that n is positive

and not less than unity, in order to ensure a minimum. But as

p is zero, SZ is itself of the second order of small quantities, and

thus the term just expressed is of the fourth order, and therefore

does not require to be retained.

It will be observed that the solution p = can only apply when

the limiting values of y are either not given or are given equal.
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When the limiting values of y are given and unequal suppose these

values to be ft and 77 corresponding to the values a and f of x.

Then putting the problem into a geometrical form, the curve re-

quired appears to be made up of the straight line which joins the

point (a, ft) with the point (f, ft), and the straight line which joins

the point (f, ft) with the point (f, 77) ;
or at least the nearer we ap-

proach to this limit the smaller does U become.

This problem is taken from Euler's Methodus Inveniendi ...

page 94. Euler considers any function of Z instead of Zn
,
and

he arrives at the result p as necessary for a maximum or a

minimum.

369. An example of a relative minimum is solved by Steg-

mann on his pages 255 258, which we will give here. Re-

1 f
1

quired the minimum value of -
I p* dx under the following con-

^ J o

ditions
;

y =i (i),

-1 (2).

Let X be a constant, and let

then to the first order

Hence -= ..........................
<
3
>

x r
1

and Pt-ri y<k = o ..................... (4)
y\ J o

From (3) we have

(*-A)-P,

therefore A (x-A)*=y + B,

where A and B are constants.
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The condition (1) gives

therefore y = 1 + ~ (a?-2Ax) (5).

The condition (2) gives

From (2) and (4) we obtain

that is -(2-^)=0 (7).

By putting x= 1 in (5), we obtain

**i
v

The solution X = of (7) is inadmissible, for that would make
= 1 by (5), and then (2) would not be satisfied. Hence we

deduce A = 2 from (7), and then from (6) and (8) we deduce

12 _2

Now to determine whether a minimum is thus obtained, we
must form the expression for SU correct to the second order;

now we have exactly

and therefore to the second order.

>

y

by (3) and (4).

28
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By integrating by parts we have

thus

\ if 1

Now 2
= 3, and y dx = 1

;
thus finally

y\ y\j *

so that we have obtained a minimum.

370. Stegmann gives on his page 395 one application of the

formulae relating to double integrals which we will reproduce.

Suppose we have to find a surface of minimum area under the

condition that the length of the boundary is given.

The equations which must hold at the boundary are the first

two of equations (13) of Art. 114.

Here F=V(lW+*,2

), JT=
,
F=

, dx\ d*x ds , d d\ d* ds- = ~-~ -

Thus the equations are

z, dx - zdy (d*x , d*y 7 N ds
V/t . >2 .

'

\+c(-j-a dx+-j^dy ^-V (1 + + z
a

) \df? ds* y
j dz
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By ordinary transformations these equations become respectively

tnd this is the form in which Stegmann gives them.

He now takes another condition, namely that z shall be constant

round the boundary, so that round the boundary

,<fy
=

(3),

and since z is constant round the boundary (2) gives

z
t
dx zdy = (4).

From (3) and (4) we have round the boundary

z0 and 0,
= 0.

Also (1) becomes round the boundary

ds

From (5) by integration we obtain the equation to a circle of

which the radius is numerically equal to c ;
that is, the projection

of the boundary on the plane of (#, y) is a circle.

Then Stegmann observes that this cannot give a minimum

area but a maximum area, since the boundary is supposed to be

closed curve. But the result may be made useful by modifying
the problem. The modification appears to be that the projection of

the boundary shall be a four-sided figure having for two of its

sides fixed straight lines perpendicular to the axis of x, and the

other two sides remaining to be determined and each being of given

length. Then Stegmann says these other two sides should be arcs

of circles with their convexities turned towards each other.

282



CHAPTER XIV.

MINOR TREATISES.

371. THIS chapter is intended to give an account of the minor

treatises on the Calculus of Variations. It includes all the separate

works which have come to the writer's knowledge, but does not

attempt to notice every case in which a chapter has been devoted

to this subject in the course of a general work on analysis. A few

such cases have been however included in the present list.

372. Brunacci. A treatise on the Calculus of Variations

occupies pages 166 255 of the fourth volume of Brunacci's Corso

di Matematica Sublime. Florence, 1808.

Brunacci begins with some general remarks similar to those

which we have given in Art. 363 after Stegmann. He considers

the case in which F(x, y] is to be a maximum or minimum by the

variation of y, and then the case in which F(x, y, p) is to be a

maximum or minimum by the variation of y and p or of one of

them
;
and he gives Lagrange's example ;

see Art. 3. He makes
some brief remarks on the history of the subject, and states that

Lagrange had finally relieved it from any consideration of infini-

tesimal quantities; he proposes to follow Lagrange's method in

discussing the subject. He does not use the symbol y, but ia>

instead, where i is supposed indefinitely small and o> an arbitrary

function.

In finding the maximum or minimum value of an integral

\<f>dx he first supposes that
</>

contains only x and y ;
he illustrates
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this by two examples taken from Euler's Mcthodus Invcniendt' . . .
,

pages 39 and 40, and in the second example he agrees with Dirk- n

in distinguishing between a maximum and a minimum more care-

fully than Euler did
;
see Art. 52, and Dirksen, page 202. He next

supposes that < is a function of #, y, and^?, and that l^dx is to be

made a maximum or minimum
;

this case he illustrates by dis-

cussing the problems of the shortest line and the brachistochrone.

He insists on the propriety of separating the problems which occur

into two parts, one depending strictly on the Calculus of Variations

and the other on the Differential Calculus; see Arts. 90 and 91.

He says that this idea was communicated to him by a distinguished
scholar and mathematician Paradisi, and that Euler himself would

bave judged it worthy of his own immortal work, the Methodus

Inveniendi Accordingly Brunacci in treating the problem of

the brachistochrone between two given curves first supposes the

extreme points fixed and obtains a cycloid by the Calculus of

Variations as the required curve
;

then he determines by the

Differential Calculus the position which the cycloid must have

when its ends are supposed moveable on two curves; in spite of

Brunacci's opinion his process seems longer and not clearer than

that usually given which depends on the Calculus of Variations

solely. Brunacci next supposes that
<f>

is a function of #, y, p,

and q, and that the maximum or minimum of I
(f>
d& is required ;

this he illustrates by examples drawn from pages 61 and 247 of

the Metliodus Inveniendi

Brunacci supplies investigations of the terms of the second order

for distinguishing between maxima and minima values
;
he repeats

the investigation to which we have alluded in Art. 216; he says

lowever that it is now presented in a better form.

Brunacci gives some account of problems of relative maxima

and minima, and considers a few simple examples.

With respect to the variation of double integrals he gives an

investigation which is correct so far as it goes; sir Art. *J!>. Hi 1

applies the result to obtain the differential equation to the suri'acr
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which is a minimum among those which include the same volume.

He says however that owing to the difficulty of integrating partial

differential equations, to the difficulty of determining the arbitrary

functions which occur in the solutions, and to other difficulties

which arise from the nature of the problems, very little can be

effected in this part of the subject; in his own words "... siamo

sopra una spiaggia da cui si scopre un mar senza fine, e non ci

e dato per anche d'inoltrarvisi, onde fare delle scoperte."

It would appear from his page 248 that Brunacci considered

that his treatise on the Calculus of Variations might be contrasted

favourably with those which had been previously published. It is

not however very accurate in language or investigation ;
we have

already in Art. 208 pointed out an objectionable statement, and we
will now indicate some others. Brunacci says on his page 168 that

/f(x)
dx is the sum of all possible values of f(x) between those

i

which correspond to x = a and x = h
;

this amounts to overlook-

/hf(x) dx. On his

page 245 he interprets the equation xy = 3z* to mean that the

vertical ordinate is a third of the rectangle of the horizontal co-ordi~

nates, instead of saying that the square of the vertical ordinate is so
;

here he had previously given the statement correctly. On his page

229 he discusses the maximum or minimum of l^dx, where ^ is a

function of Z, and Z=w(l+p*) dx. We have already considered

a case of this problem in Art. 368. Brunacci by an obscure method

arrives at a differential equation, and he shews that when a certain

constant c vanishes the solution is p = ;
but this he says is only

a particular solution. It will be seen, however, on his page 230

that he requires a to vanish at the limits, and

P

so that his solution leads necessarily to c = 0.
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373. Lacroix. An elementary treatise on the Differential and

Integral Calculus, by S. F. Lacroix. Translated from the French.

Cambridge, 1816.

This work contains a brief treatise on the Calculus of Varia-

tions on pages 436463, and 706 711. The treatise has been

described with great justice as "
singularly confused and unin-

telligible."

374. Gergonne. Gergonne's Annales de MaMmatiques
Vol. 13, 1822, pages 193.

This memoir is on the investigation of the maxima and minima

of undetermined integral formulae. Gergonne considers that with

many persons the Calculus of Variations is merely a mechanical

process of which they do not comprehend the spirit. He proposes
to shew that the questions of maxima and minima for which this

Calculus was principally invented can be treated in the clearest and

briefest manner by the principles of the ordinary Differential Cal-

culus. He does not use the distinctive notation of the Calculus of

Variations; thus for what is usually denoted by Sy he puts iY,

where i is an indefinitely small quantity and Y is an arbitrary

function.

This memoir seems of no great use
; any student who could

understand it could understand the ordinary exhibitions of the

Calculus of Variations. The distinctive notation of the Calculus of

Variations has always been considered one of its great advantages,

and nothing is gained by discarding this notation. There are also

passages in this memoir which would probably appear more difficult

to a beginner than the corresponding passages in the ordinary

treatises. Thus, for example, we may refer to the way in which

Gergonne shews that the integrated and the unintegrated part of

the variation of an integral must separately vanish in order that the

integral may be a maximum or a minimum.

The memoir is written with remarkable diffuseness. As an

instance the following may be noticed. When Gergonne is dis-
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cussing the question of the shortest line he obtains these two

equations,

d x' d y'

dz V(i + x 2 + y'
2

)

~
ds * 1*

~

and instead of inferring at once that

'
= a constant> and '2

= a constant>

he devotes a page to performing the differentiations first and then

retracing his steps by integration ;
and he makes a temporary mis-

take in the course of his process by omitting in the fifth line of

his page 36. Page 89 is quite wrong; the equations in the fourth

line are false, since they ought to involve the partial differ-

ential coefficients of $; the equations given by Gergonne would

make the osculating plane of the curve perpendicular to its tan-

gent.

The following paragraph forms the last of Gergonne's memoir.

In conclusion we must ask the indulgence of the reader for the

numerous imperfections and even errors which may be found in

this memoir. If we may believe what is stated by Dr Prompt in a

small treatise published in 1820, the work even of the illustrious

Lagrange on this subject is not free from objections. The em-

barrassing notation of that great mathematician on the one hand,

and the brevity of Dr Prompt on the other hand, have prevented
us from ascertaining to what extent these objections are well

founded
;
but this is a point to which we will return on another

occasion.

[It does not appear that Gergonne ever returned to the subject.

The present writer has not seen any other notice of Dr Prompt's

work.]

375. Ampere. Gergonne's Annales de Mathimatiques ......

Vol. 16, 1825, pages 133167.

This memoir is an exposition of the principles of the Calculus

of Variations, and is said to have been drawn up by Ampere for his
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course of lectures at the Poly-technique School. It constitutes sucli

an elementary treatise on the Calculus of Variations as is frequently

given in works on the Differential and Integral Calculus, and

presents no peculiarity. After establishing the formula for the

variation of an integral Ampere shews that in order that the

integral may be a maximum or a minimum the two parts of the

variation must separately vanish. This he shews by supposing
in the first place that the limiting values of the variables and
of the differential coefficients are given ;

then the part of the

variation which remains under the integral sign must vanish be-

cause the other part vanishes of itself. Next he supposes that

the limiting values are not given ;
still it is in our power to sup-

pose such a variation as leaves the limiting values unchanged,
and this variation must be zero, so that, as before, the part under

the integral sign must vanish. Gergonne himself says in a note

that Ampere is the first who has shewn distinctly that the part
of the variation which is under the integral sign must separately

vanish, and he admits that his own memoir was unsatisfactory on

this point.

376. Verdam and Verhulst. The subject of maxima and
minima appears to have been proposed for a prize exercise in

the University of Leyden in 1823. Essays by Verdam and

Verhulst obtained prizes; they were published in 1824. The
title of the two essays is the same . . . Commentatio ad Qucestionem

Mathematicam ... in Academia Lugduno-Batava . . . propositam . . .

Verdam's essay occupies 100 quarto pages ;
from page 76 to

the end is devoted to the Calculus of Variations. The writer

confesses that he has a very imperfect knowledge of this branch

of the subject. Some of the ordinary formulae are given, but the

demonstrations are only sketched, and reference is made to La-

croix for the details
;
a few of the usual problems are given in

illustration. The essay is not free from error
;
we may refer for

example to the treatment of the limiting equations. Verdam says

in effect, that in a term of the form ASy, if the limits of y are

fixed we still have .4 = 0, whereas the term vanishes because

#=0 and the relation A = does not in general hold. And on
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his page 94 he gives an example from Euler's MetJiodus Inveni-

endi ... page 88, which he treats by means of that formula given

by Lacroix which we have discussed in Art. 38. Verdam's re-

sult is correct for the case which Euler considers in which L
is a function of II, but is not true if, as Verdam says, L is a

function of x and y.

Verhulst's essay occupies 30 quarto pages ;
about three pages

are devoted to the formulae of the Calculus of Variations, and

three more to some of the common problems.

377. Verhulst. There is another essay by Verhulst, which

is on the Calculus of Variations exclusively. This obtained a

prize which was offered in 1823 by the University of Ghent, and

was published in 1824 under the .title ...Commentatio ad Quces-

tionem MatJiematicam ... Academice Gandavensis propositam....

The essay contains a brief sketch of the subject, and discusses

seven problems ;
it gives some account of the application of the

subject to Mechanics, and demonstrates the principle of least

action. It is chiefly remarkable for grave errors.

378. Airy. In Airy's Mathematical Tracts, published at Cam-

bridge in 1826, twenty-three pages are devoted to the Calculus

of Variations. These pages form an excellent elementary treatise

on the subject. The author in his preface speaks of the subject

as the "most beautiful of all the branches of the Differential

Calculus." He says of his treatise,
"
by adhering rigorously to

principles, by exemplifying every formula, and by avoiding the

investigation of useless theorems, the author hopes that he has

removed many of the difficulties which have been thought to beset

this theory."

The fourth edition of the Mathematical Tracts was published
in 1858 ;

the treatise on the Calculus of Variations is here increased

by two pages, namely pages 240 and 241 of the work.

379. Bordoni. Lezioni di Calcolo SMime. Milan, 1831.

This work is in two octavo volumes
; the Calculus of Variations
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occupies pages 192 298 of the second volume. Bordoni adopts
the method and notation of Lagrange which we have describe I

in Art. 15
;
and the work is rendered extremely perplexing by the

profusion of dots and dashes and affixes with which the symbols
are loaded. Scarcely any examples are given in illustration of

the theory. This appears to be the first elementary work which

introduced Poisson's formulas for the variations of the differen-

tial coefficients of a function of two independent variables; see

Art. 262.

We will notice a few points in the treatise in detail.

380. Two examples of the use of Variations are given by
Bordoni on his pages 261 265, which we will briefly explain.

I. Suppose a fixed surface and two fixed points outside it
;

let

a string have its extremities fixed to these points, and let it be

stretched and kept in contact with the surface by means of a

point moving on the surface and against the string; thus the

whole string consists of four portions, namely two straight lines

outside the surface and two curved portions on the surface. The

moving point will trace out a locus on the surface after the

manner in which an ellipse is traced out on a plane by a moving

point which stretches a string having its ends fixed. Then the

locus traced on the surface has this property analogous to a

property of the ellipse; the tangent at any point of the locus

makes equal angles with the two curved portions of the string

meeting in that point. This we shall now prove. The string is

inextensible, and therefore the sum of the variations of the four

parts is zero. Let x, y, z denote the co-ordinates of a point in

one of the curved portions, so that the length of this portion is

between proper limits, where y stands for

and z stands for -^ . The variation of this integral according
ax

to the usual notation consists of an integrated part
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and an unintegrated part

Now this unintegrated part vanishes, because we know from

statical considerations, that the curved portions of the string assume

the forms of the lines of maximum or minimum length on the

surface, and for such lines the unintegrated part of the variation

of the length of an arc vanishes. We have therefore only the

integrated part remaining, and this may be put in the form

that is, Ss cos <, where Ss
2 = &c2 + %2 + &s

2
,
and

<f>
is the angle

between two lines, one having its direction-cosines proportional to

&e, &y, $z respectively, and the other having its direction-cosines

proportional to 1, y', z respectively.

Now at the point which is common to one of the straight

portions of the string and one of the curved portions, Ss and
<f>

have the same values for each portion; so that the two terms

which are thus contributed to the variation of the whole length

cancel. Then at the point common to the curved portions Ss is the

same for the two portions, and therefore
</>

must have the same

value in order that the whole variation may vanish.

II. Suppose one end of a string fixed to a point in a curve

on a fixed surface ; and let the string be stretched so that a part
is kept in contact with this curve, a part kept in contact with the

surface, and a part is free from the surface. Then whatever may
be the position of the string, provided that the three parts are kept

stretched, the third part is always a normal to the surface traced

out by its free end.

This is proved in the same manner as before. Let f, 77, f be

the co-ordinates of the free end
; #, y, z the co-ordinates of the

point where the string leaves the surface. Let s
l
be the length

of the straight portion, s
2
the length of the part which is only kept
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on the surface, s
3
the length of the part which in kept against

the curve. The whole variation of ^ + 2 + *
8
must be zero. T

unintegrated part of the variation of s
2
vanishes as before; tin-

only variation in s
3

is that which is produced by lengthening or

shortening the portion in contact with the curve
;
and this variation

is cancelled by the corresponding term in the integrated part of

the variation of s
2

. The variation of s
l
so far as it depends on

the variation of the point (x, y, z) is cancelled by the corre-

sponding term in the integrated part of the variation of s
a
. Thus

that part of- the variation of s
t
which arises from the variation

of the point (f, 77, f) must separately vanish.

But *- t + (-')
i+(-0 1

,

therefore
(-

this equation shews that two lines are at right angles, namely
the line which has its direction-cosines proportional to Sf, &?;, ?

respectively, and the line which has its direction-cosines pro-

portional to x f, y 7j, z % respectively. This proves the

theorem.

381. On pages 281 298 of his work, Bordoni discusses the

criteria for distinguishing between maxima and minima values
;

here he follows the method of Legendre. Suppose we have to

investigate the maximum or minimum of
i<f> (x,y, y) dx. The

terms of the first order are supposed treated in the usual way
We have then to examine the sign of

where d*<f>-

Now we have identically, whatever a may be,

^(8y)
2 + 25%8y+C

r

(5y)
2

= (A - a') (%)' + 2 (B - a) By 8/ + C (8y')' + {
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Thus the above integral becomes

a
(&yY+f{(A-') (Syf+*(B-a)Sy8y'+ C (By'?} dx.

Then if a can be found so as to make

(A - a!) C greater than (B - a)
2

,

the sign of the expression remaining under the integral sign will

be the same as the sign of (7; and thus we shall be able to

determine whether there is a maximum or a minimum.

A suitable value of a may be found thus. Let c be the least

value of C between the limits of integration, b the least value of

A J5'; find
JJL
from the equation

so that j,

1 - Jce V<

where k is a constant.

Then a =2? /* is a suitable value. For

b + fjf
is less than A I? -f /*', and c less than C ;

therefore (b + n')c is less than C(A-B' + fi],

that is (7 (-4
- B' + //) is greater than

/-t

2

,

that is C(-4-a') greater than (-a) 2
.

Bordoni does not however allow for the exceptions which may
arise; thus in applying the test to a geodesic line, he says that

such a line is a line of minimum length, which we know is not

necessarily the case.

382. One of the investigations which Bordoni gives is in-

tended to discriminate between the maximum and minimum of

<f> (a?, y, z, y\ z] dx when a relation F (#, #, z, y\ z) is sup-

posed to hold. In this case by the use of a multiplier X we find

that we have to investigate the sign of the terms of the second
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order in the variation of I
(< + XF) dx. These terms form a poly-

nomial of the second degree in Sz, Sy', $z, fy ; then Bz' is eliminated

by means of the relation

,.,^ K+ -j-, ty + -j- Sz + -j- By = 0.
z dy dz dy

y

We thus obtain under the integral sign a polynomial of the

second degree in &/, Bz, By, say

and

where

This polynomial is then modified by adding to it the term

{a (SyY+2/3&ySz + 7 (BzY}' and taking away the same term, in

the manner of the preceding article. Then a.($yy+2/3Sy8z+y($zy
is brought outside the integral sign, and the polynomial under the

integral sign involves a, /3, 7 and their differential coefficients.

The polynomial under the integral sign may then be arranged

by the theorem given in Art. 260
;
and finally by properly choosing

the values of a, /3, 7 we may make the polynomial have the same

sign as G. Thus we have a minimum if G be positive throughout
the limits of the integration, and a maximum if Q- be negative

throughout the limits of the integration.

This general result Bordoni applies to two special cases.

First, suppose that
</>

involves only x, y, z and y', and that F
is of the form z' ty (x, y, z, y') ;

then the case coincides with

that considered by Brunacci, and the result is the same as he

obtained; see Art. 206.

Next, suppose <f> (x, y, z, y\ z) reduces to z then G be-

comes
rd*F
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TTJJ JZ'
Bordoni says that this is equal to X -y-> -^-^ ,

because .

y

d'F d*F .d'F dFd*z'

^ + Zr
dyW d^ +

d?d^
= <>'

which is altogether inadmissible.

383. In Klugel's Mathematisches Worterbuch, Vol. 5, 1831,

an article occurs on VariationsrecJinung which occupies pages
600 715. This article presents nothing remarkable. The early

part of it is encumbered with useless generalities. It concludes

with a brief sketch of the early history of the subject, accompanied
with some references to writers, chiefly of the 18th century.

384. Momsen. Elementa Calculi Variationum ratione ad

analysin infinitorum quam proxime accedente tractata. Altona,

1833.

This treatise was written as an exercise for a degree in the

University of Kiel
;

it occupies 73 quarto pages. In the intro-

duction the author treats of the different ways in which the

notion of a variation has been presented by mathematicians, and

gives the preference to that which has been adopted by Euler,

Lagrange, Ohm and Strauch; see Art. 334. The work consists

of four sections besides the introduction. The first section con-

siders the maxima and minima values of single integrals. The
second section considers the maxima and minima values of com-

pound expressions, such as an integral which involves another

integral, or the product of two integrals, or the quotient of one

integral by another integral. The third section considers pro-

blems of relative maxima and minima values. The fourth section

considers the maxima and minima values of double integrals. The
treatise possesses no merit as regards the theory of the subject;

it may be considered as a collection of examples taken almost

entirely from Euler's Methodus Inveniendi. . . Momsen however

adds to the solutions given by Euler some investigations of the

terms of the second order in order to distinguish between maxima
and minima values. Momsen ascribes no variation to the hide-
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pendent variable in his solutions, nor does he make any changes
in the limits of his integrations ;

all investigations respecting the

limiting values of the quantities which occur he considers to

belong to the ordinary Differential and Integral Calculus
;
see his

pages 27 29.

We will make some remarks on certain parts of the treatise.

385. On his page 14 Momsen shews that l^xy-if) dx is

a maximum when y = x\ Euler, in the memoir to which we have

referred in Art. 22, erroneously stated that the result is a minimum.
On his page 15 Momsen discusses an example given by Euler

in his Methodus Inveniendi... page 41
;

see Art. 52. Momsen

agrees with Dirksen in correcting Euler's statement as to the

nature of the result. See Dirksen, page 204, and also page 7 of

the preface to Ohm's work, entitled Die Lehre vom Grossten und
Kleinsten.

On his pages 18 and 19 Momsen considers the problem of the

solid of least resistance. In examining whether the result ob-

tained is really a maximum or a minimum Momsen makes a

mistake in his work
; the mistake occurs in the last two lines of

page 18, where he has
/p-rs instead of

" V3 . Hence,

he erroneously concludes that the solid is really a solid of maxi-

mum resistance, and he says,
" hinc igitur satis perspicitur, ex hac

quaestione, quse in omnibus fere libris de hoc argumento conscriptis
occurrere solet, soluta parum sane emolumenti ad societatem hu-

manam redundare." The true results respecting this problem
have been given by Legendre in the memoir which we have

cited in Art. 197.

On his pages 32 34 Momsen examines the problem of finding

the maximum or minimum of the product of \y dx and /v
/

(l+/)>
)

'

The result apparently obtained is a circle, but Momsen slu-ws that

there is really neither a maximum nor a minimum ; Strauch arrives

at the same result on page 541 of his second volume. Kuler

29
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erroneously concluded that a circle convex to the axis of abscissa?

would give a maximum
;
see the Methodus Inveniendi ... page 149.

386. On his pages 35 37 Momsen discusses a problem given

by Euler in his Methodus Inveniendi... pages 122 126. It is

required to find the curve in which II is a maximum or minimum,
where II is to be found by the differential equation

(1).

This is easily seen to be a problem in Dynamics ;
the curve is

required down which a particle must move so as to acquire a

maximum velocity, supposing a resistance varying as the 2/i
th
power

of the velocity. Strauch has considered the case in which n = 1
,

but in examining the terms of the second order he has made a

mistake; see Art. 337. Momsen also is wrong in his investigation

of the terms of the second order. We will here examine the

problem briefly. We shall denote initial and final values] by the

suffixes and 1 respectively, and we shall suppose II given. Sup-

pose II receives an increment 11
;
then from (1) retaining terms

of the second order, we have

= o . . . (2)

where

= an n -

Multiply (2) by X, where X is a function of x at present undeter-

mined, and integrate ;
thus

Now as X is in our power, we may assume

= .................. (8);
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then the coefficient of By must vanish in the expression under the

integral sign in order that
(811), may be of the second order; thus

= a constant = C say (4).

Moreover it will be necessary that the terms outside the in-

tegral sign in the value of (811) x
should vanish. If the initial and

final points are fixed, these terms vanish because 8y and 8yt
are

then zero; if these points are not fixed, we should require (7=0,
and this would lead to p = 0, and so the required curve would
become a vertical straight line. We take the former supposition,

namely that yQ
and y^ are constants.

From (4) by taking logarithms we can get an expression for

-
-j-

; equate this to the value given by (3), and substitute for

from (1) ; thus we shall finally obtain

Thus we now have

(X8II),
= -

so that (811) j
is of the second order.

Now it is shewn by Euler that we can proceed one step further

in the integration and obtain II as a function ofp. Strauch having
obtained II as a function ofp, differentiates with the symbol 8, and

thus he obtains a relation between 811 and &p, and by using this

relation he simplifies the expression for M-, see his Vol. II.

page 445. He thus in fact assumes that the velocity is the .same

particular function of p both for the curve which we suppose to be

under examination and for an adjacent curve
;
this is altogether in-

admissible. Thus Strauch's equation xxvi is not true
;
mor

in the equation immediately preceding instead of ZLnnv under the

integral sign he ought to have kLmw.

Although the way in which Strauch tries to connect 811 and

$p is inadmissible, yet by another method we may find an exjn

29:?
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for SIT which may be used in transforming M. If (1) could be

integrated so as to give II in terms of p for any curve, we could

connect 811 and Sp ;
but this integration cannot be effected. But

from (1) we have universally to the first order

Let anil"-
1

V(l +/) be denoted by Q and P
by E,. so

that

therefore (</
Qd
*SU) +S^RSp = 0,

and by integrating from x to x

The last result is universally true
;
and when we apply it to

the curve under consideration we may put X for efQdx and G for \R
;

thus
fm

\ SII = I CSp dx = Cfy, supposing SyQ
= 0.

J XQ

If we use this relation we can remove 811 from M, and thus

express If as a function of the variations Sy and Bp.

Momsen's investigation of the terms of the second order is

wrong. If his process be followed out correctly, the result obtained

expressed in our notation will be

and if we put
- X BU for <7Sy, this result agrees with that which we
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have obtained. But Momsen assumes that because (BH) l
is zero to

the first order, therefore 11 is so also
; by this error lie obtains

(!+/)*

By integration by parts the second term gives

in this form Momsen leaves it, and asserts that there is a maximum
;

so that he appears to assume that -j-
- -^ is necessarilyax y (1 "f)

positive.

We may remark that although Momsen does not explicitly say

so, yet from the beginning of his page 36 it appears that he takes

IT to be given and also y and yt
.

387. Some remarks may be made on a problem which Momsen
discusses on his pages 45 and 46. The problem is a particular

case of the second of the two famous isoperimetrical problems pro-

posed by James Bernouilli. Bernouilli's problem is the following

let s denote I */(l+p*) dx
t
and

<f> (s) any function of s; then the
'o ra

relation between x and y is required which makes I
<j> (s) dx a niaxi-

ra
'

*

mum or minimum while I V(l +^
2

)
dx has a given value, a being

J Q

a constant. In the figure which is usually given to illustrate this

problem it is in fact assumed that
</> (s) vanishes when x and

when x = a
;
this limitation is altogether unnecessary, and is never

regarded in the solution. The enunciation implies that the limiting

values of x are constants. The usual figure makes the limiting

values of y both zero; this limitation is also unnecessary, it is

sufficient that the limiting values of y should be constants. Thus

the figure may be drawn as in figure 11, and the enunciation be

given thus
;
A and B are fixed points, it is required to find a curve

A8B of given length such that the area OEDF may be a maxi-

mum or a minimum where PN is always a given function of A3.
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fa
Since I <p (s) dx is to be a maximum or minimum while

J o

V(l +i?
2

)
dx is constant, we proceed to find the maximum or

minimum of I M () + X *J(\ +p*)\ dx. We can then apply the

formula of Art. 38, supposing that

'

The integrated part of 8 I Vdx in that formula vanishes because

the limiting values of x and y are constant
; hence for a maximum

or minimum we have

P+ (A - I) P = a constant = C say,

therefore \p + (A-I)p = C*J(l +/),

G
therefore , \ + A -/= V(l +p") ..................... (1);

by differentiating we obtain

_^J_ -0 dp
dx

that is L or
</>' (s)

=
~rj7^ 5-

~
>

therefore *'W| =SS (2),dx

therefore <f> (5)
= - + <7 ,

^

therefore -f^ = -^= -r-
,

aa; C
l <f)(s)

C
therefore

and
ds W+lCt-tW*]'
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From the last two equations x and y must b' l'.unl in terms

of s; two constants already appear, and two more will occur in the

integrations for finding x and y. These constants must be de-

termined from the consideration that when s = the values of

x and y must be the co-ordinates of the given point A t
and when s

is equal to the given length the values of x and y must be the

co-ordinates of the given point B. A different view of this part

of the solution is given in De Morgan's Differential GVo////.v,

page 468.

In the particular case considered by Momsen <
(s)
= s

;
thus

-f- = -=-
;
and this shews that the curve must be a catenaiydx C

r
s

having its directrix parallel to the axis of y. And thus we see that

the ordinary figure with A and B on the axis of x is impossible in

the present case, because a catenary cannot be cut in two points by
a straight line perpendicular to its directrix.

We proceed to investigate the terms of the second order in

the variation of / -10 (s) + \*J(1 +p
z

) r dx in the particular case in

which
</> (s)

= s.

We have to the second order

( pfy
-K/ff ^ +MM-/) 2

Thus the required terms consist of

therefore
I
dx

\

I *
= I j-

J L/o
(1 +|f)*J Jo (1 +p)

Thus the expression to be examined becomes

2 J n (1 4-n^*
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We must now consider the sign and value of \. From equation

(1), by supposing x a, we obtain

............ ,........... (a).
*=

From equation (2)

ds
__
C dp t

dx
~~

l dx '

therefore X= <

x=a

Hence by the nature of the catenary it may be shewn that X is

numerically equal to the distance of the point B from the directrix

of the catenary.

Suppose in the first place that the ordinate of A is less than that

ofB
;

if the catenary is concave to the axis of x, then X is negative

and is numerically greater than a, so that X + a x is negative and

we have a maximum
;

if the catenary is convex to the axis of x,

then X is positive and we have a minimum. Next suppose that the

ordinate of A is greater than that of B
;

if the catenary is concave

to the axis of x, then X is positive and we have a minimum
;

if the

catenary is convex to the axis of x, then X is negative and is nume-

rically greater than a, so that X + a x is negative and we have a

maximum.

The last eight lines of Momsen's investigation are unsatisfac-

tory ;
he comes to the conclusion that there is always a minimum.

He argues thus
;

let

by integration by parts we have

r j r & i
I sdx sx\ x-j-axy

/a
fa J

sdx = I (a-x}-j-dx't
j Jo U>X
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thus W =
[ (\ + a -

a?) V(l + p*) dx.
>

Hence Momsen says that W is of the same sign as the ex-

pression of the second order

(!+/)

and this is true from what we have given although Momsen does not

prove it. Then Momsen concludes that the result necessarily makes
TFa minimum. This is inadmissible

;
the sign of TFhas nothing

f
to do with the question of the maximum or minimum of I s dx.

J o

It should be observed that the solution here given is liable to

fail, for the given length of curve may be too great to constitute an

arc of a catenary joining the two given points. We will consider

one case, and treat it after the manner of Art. 352. Let k
Q
and A\

be the ordinates ofA and B, and suppose Jc
Q
less than k^ Suppose

a maximum is required, and let us try if the problem can be solved

by supposing the curve joining A and B to be made up of a

straight line of length y Jc
Q
formed by producing OA through A,

and an arc joining the point (0, y )
to B. The expression which is

now to be a maximum is

I {^0
~ K + s

} dx, where 9. ml V(l +^*) dx ;

Jo *

ra

and the whole length is y - Jc + I V(l +P*) dx.
J o

Thus we may consider that we have now to find the maximum of

f {#o-&o+*+W(i+/))^ + My --o)>
J

that is of
f {s + X V(l +/)} dx+(a + X) (y9

-
&J.

J o

The only point in which the solution will differ from tliat

formerly given is in the terms outside the integral sign. We
have (a 4- X) Sy from the term (a + X) y ;

and there is the term
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(P+ AP-IP) ft> in the notation of Art. 38, 'which gives us - C8y .

Thus we require that

C=0 ................., ........... (5).

We have already stated that from (4) it follows that X is nume-

rically equal to the distance ofB from the directrix of the catenary ;

then from (3) it follows that G is numerically equal to the para-

meter of the catenary, that is, to the distance of the directrix from

the nearest point of the curve. And if the catenary is concave to

the axis of x both X and C are negative. Thus we shall deduce

from (5) that the catenary must touch the axis of y at the point

(0,30-

This holds so long as yQ
is not greater than ^. If we cannot

consistently with the given length have y not greater than k
lt
we

must make the catenary convex to the axis of x and make it touch

the axis of y at the point (0, y ).

If a minimum be required, the curve consists of a catenary

beginning at A and ending at the point (a, yx),
and having its

tangent parallel to the axis of y at this point ;
and the length con-

sists of that of the arc of the catenary together with that of the line

joining the points (a, #J and (, &J.

388. The following problems relating to the maxima and

minima values of double integrals are solved in Momsen's fourth

section, the limits of x and y being supposed given in all cases.

(1) The maximum of 1 1 z (x
z + y* az) dx dy \

this is in

Strauch, Vol. II. page 562.

(2) The maximum of
f/J2 *J(x* + y* + z

z

)
- - 1 dx dy.

(3) The minimum of
JJJ*

V(*
2 + f) + f (*

-
c)"i dx dy.

(4) The surface of maximum or minimum area having a given

boundary.

(5) The surface of maximum or minimum area among all

those which correspond to a constant volume.
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(6) The volume of a solid being given, it is required to fn.

bounding surface so that its centre of gravity may be at a maxi-
mum distance from the plane of (x, y). This problem is in Strauch,
Vol. II. page 610. The problem is analogous to that considered in

Art. 340; the result is that the required surface is a plain-. Both

Momsen and Strauch encumber their solution by not paying aUni-

tion to the remark at the end of Art. 340.

(7) Among surfaces of given area to find that which has its

centre of gravity at a maximum distance from the plane of (#, y) ;

the differential equation of the required surface is here obtained,

and as in the preceding problem the investigation is needlessly
encumbered.

A general formula for the variation of double integrals is given

by Momsen from Lacroix, which involves the errors already indi-

cated
;
see Art. 27.

389. Besides the errors we have already noted in Momsen's

treatise, a few more may be given.

On his page 32 Momsen is speaking of the determination of the

constants in the problem we have given in Art. 65. He has a con-

dition equivalent to \b
=

0, so that
j- (^\ must = when x = b.

This equation which holds for a particular value of x he integrates,

and deduces z = Q?
2

,
which is inadmissible.

On his page 39 Momsen is speaking of the determination of the

four constants which occur in the solution of the problem of the

brachistochrone in a resisting medium. He says that two are to be

determined by making the curve pass through given initial and

final points; he proposes what he considers two conditions for

determining the other two, but these two conditions amount really

to only one condition. The condition which he omits is that the

initial velocity must be supposed given, as he lias really assumed

at the top of his page 38. Remarks similar to that which we have

noticed in Art. 387 as occurring in the last eight line-

sen's investigation occur in other places of Momsen's treatise ;
sec

his sections 36, 37, and 40. At the end of his section 48 he
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assumes without any proof that the sign of C can be easily ascer-

tained to be positive when the curve is convex to the axis of x ;

the quantity C is the same as that denoted by M in Strauch,
Vol. ii. page 516, and its sign is not determined by Strauch. In

his sections 38 and 58 Momsen retains terms which are absolutely

zero, in the same way as
/ By dx is zero in Art. 340.
J a

c

390. Abbatt. A Treatise on the Calculus of Variations, by
Kichard Abbatt. London, 1837.

This is a volume in foolscap octavo, of 207 pages, with a preface

of 1 1 pages. The writer in his preface refers to Lacroix, Lagrange,

Euler, Woodhouse and Airy ;
and on page 203 he refers to Pois-

son's memoir. He appears to have used Poisson's memoir also on

his pages 18, 62, 115121 and 194203. Nevertheless he gives

on his pages 192 and 193 the erroneous formulas which we have

noticed in Arts. 39 and 40. He gives the correct formulas on his

pages 197 and 198, but his mode of obtaining them is not satis-

factory.

The treatise contains numerous examples selected from preced-

ing writers on the subject.

391. De Morgan. In Professor De Morgan's Differential and

Integral Calculus, pages 446 475 are devoted to the Calculus of

Variations; this part of the work was published in 1840. By
adopting a condensed yet expressive notation a large quantity of

information on the subject is compressed into a brief space. There

is no investigation of the terms of the second order, but with this

exception the student is introduced to all the important parts of the

subject. In the formulas respecting the variation of double inte-

grals the limits with respect to both variables must be understood

to be all constants, for the reason which we have given in Art. 28.

On pages 470 and 471 the problem of the bracliistoclirone in a

resisting medium is discussed, and the way of determining the four

constants which occur is carefully explained. Mr De Morgan
observes that this part of the problem is omitted in silence by
Woodhouse and Lacroix, and that "

Lagrange merely says that Bz
l

is indeterminate, but does not give any reason..." Lagrange's
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meaning is to be found however from what lie had previously given
on page 465 of the Legons ..., edition of 1806

;
and it appears from

this that Lagrange's view was correct.

We may observe that in Stegmann's discussion of the problem
the constants are determined in the same way as by Mr I ) Morgan ;

see Stegmann's work, pages 318321. Strauch is not satisfactory

pn this point ;
see his Vol. II. page 418.

392. Cournot. Two chapters are devoted to the Calculus of

Variations in Cournot' s Trait6 eUmentaire de la Thtorie des Fonc-

tions... Paris, 1841. These chapters occupy pages 113 155 of the

second volume of the work
; they form a good elementary treatise

on the subject. It should be observed however that in the varia-

tion of double integrals Cournot reproduces the error whicli we
have explained in Art. 27.

393. Hall. The Encyclopaedia Metropolitana contains a brief

treatise on the Calculus of Variations by Professor Hall. It

occupies pages 209 226 of the second volume of the first divi-

sion of the Encyclopsedia; the date of this volume is 1843. The
treatise gives the usual theory so far as terms of the first order in

the variation of single integrals, and applies the theory to a few

examples.

394. Bruun. A Manual of the Calculus of Variations. Odessa,

1848.

This is an octavo volume of 195 pages in the Russian language.

The difficulty of the language will prevent any detailed account of

the work. It is divided into four parts. The first part occupies

pages 1 36, and gives the variations of expressions. The second

part occupies pages 37 56, and discusses the criteria of integrability

of expressions. The third part occupies pages 57 181, and con-

tains the investigation of maxima and minima values. The fourth

part occupies pages 182 195, and consists of a sketch of the history

of the subject.

In the third part of the work the terms of the second order in

the variations of integrals are investigated with the view of dis-

tinguishing between maxima and minima values. Bruun takes in
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succession the case in which the function under the integral sign
involves only x, y and y ',

and the case in which the function under

the integral sign involves x, y, y and y". He gives both Le-

gendre's method and Jacobi's method, and of course by comparing
the results of the two methods the auxiliary quantities introduced

by Legendre's method become determined
; see Art. 235.

The only passage in the third part which presents any appear-
ance of novelty is that on pages 103 108. After having finished

the discussion of the method of Jacobi applied to
j< (x, y, y', y") dx,

Bruun intimates that this method is very complex, and that he will

explain another method of discriminating between maxima and

minima values, given by Sokoloff. He does not however do more

than introduce the method to the reader and refer for detail and ex-

emplification to the memoir of Sokoloff. The title of this memoir

appears to be Researches on a certain point of the Calculus of Varia-

tions. Charkoff, 1842. The following process will give an idea of

the method so far as it is explained by Bruun.

Suppose we are investigating the sign of the terms of the second

order in the variation of I
<f> (x, y, y') dx. The expression we have

to examine may be written thus,

-
(_/ (oy )

> dx,

where A, B, C are functions of x. We wish to know if this ex-

pression retains the same sign for all values of By and By' ;
we will

test this by ascribing a certain convenient value to By.

We have
j{A (%)' + 2J9fy By' + C (By')*} dx

=
j{(ABy+J3By')By+(J3By+CBy')By'}dx

= (BBy + CBy') By +f{ABy+BBy'-^(BBy
+ CBy')}

Thus if we choose for By a value which makes
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the term we wish to examine can be actually int.

sign can be easily ascertained. Now a value of By which will

satisfy the above equation can be found, supposing that we can

solve the differential equation which arises from making the terms

of the first order vanish in the variation of I
<j> (x, y, y') dx see

Art. 251. Such a value will be of the form p^ + 2
w

2 , where ftl

and /32 are arbitrary constants, and u^ and u
z
are known functions of

x. Thus (Bty + CBy') By will be a homogeneous function of the

second order of the arbitrary constants /9X and /32 ,
and so we may

by ordinary methods investigate whether

,- \(BSy+

is positive or negative for all values of these arbitrary constants.

Such appears to be essentially all that Bruun gives. It is

obvious that by this method we may in some cases succeed in

shewing that a proposed expression has neither a maximum nor

a minimum value ;
but it does not appear obvious how we can

deduce a positive test which shall shew when a proposed expression

is a maximum or a minimum.

The pages 193 195 of the work contain a list of references to

writers on the subject. In this list, besides the memoir of Sokoloff,

two works are named which the present writer has not had an

opportunity of consulting. These works are the following.

Textor. Kurze Darsiellung der hb'hern Analysis, nebst <

Anliange von dem Variationencalcul. Berlin, 1809.

Senff. Elementa Calculi Variationum. Dorpat, 1838.

The present writer is indebted to the kindness of Professor

Bruun for a copy of his Manual of the Calculus of Variations.

395. Price. .A treatise on the Calculus of Variations forms

part of the second volume of Professor Price's T, nitesi-

mal Calculus. Oxford, 1854. The Calculus of Variations oo

pages 234 334; and there is an application of the suV

conditions of integrability on pages 440446. The author

to the works of Euler, Lagrange, Poisson, Jacobi, Ostrograd<ky,
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Delaunay, Strauch, Jellett, and Schellbach. The treatise gives the

usual theory of the variation of single integrals ;
it explains Jacobi's

method of distinguishing between maxima and minima values
;

it

treats copiously of geodesic lines
;
and it touches^ briefly on the

variation of double integrals.

396. It may be of service to a student of Professor Price's

work to refer to a few points in which he may find some dif-

ficulty.

In Art. 93 we have given Poisson's proof of a certain relation,

namely, Hy + Kz =
0, and we have stated in Art. 94, that La-

grange had proved this relation repeatedly. Mr Price on his pages

269 and 272 makes a remark which amounts to assuming that this

result is obvious without demonstration.

On page 270 some remarks are made on the method of deter-

mining the arbitrary constants which occur in solving problems in

the Calculus of Variations. If the limiting values of the quantities

are not restricted, the coefficients of the terms &e
,
&c

1? ^ , 8yl5
...

must be equated to zero. The book proceeds,
"
Suppose, however,

that equations are given connecting the variables at the limits, that

is, that equations are given between x and yQ
and between x

l
and

y^ : then if T = is the integral of H = 0, there will be given

/d

This seems unsatisfactory. If, for example, T = then T =
and T\ = necessarily, and no new information is supplied by these

equations. The true method when relations are given between the

limiting values of quantities is to deduce relations between the vari-

ations of these limiting values; thus some of the variations are

expressible in terms of the others, and the number left arbitrary is

diminished
;
we then equate to zero the coefficients of these re-

maining variations, and the equations so obtained together witli the

given relations can be used to determine the arbitrary constants.

In some cases, as we have seen in Arts. 276 and 367 the

number of arbitrary constants occurring in a solution may be too

small. Mr Price speaks of such a problem as indeterminate on
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page 270
;

it should rather be called impossibk, for the
pr<

cannot be solved at all, unless certain restrictions are imposed. See
Mr Jellett's Treatise, page 44.

On page 274 instead of "
... F (a, b) =0, Fl (a, b)

= 0. By

means of which four equations we can determine ^ ,
a and 5, and

thereby definitely fix the line whose equation is (32)," read

"....F (# ,y )=0, ^ fa, &)=<>; also^^
=^^.

aWe have now five equations for finding # , y , x^ylt -5 ."

An important mistake occurs on page 296. The equations (131)

cannot be deduced in the way given in the book. Equations (131)

involve important properties of geodesic lines, but the equations

(127), (128), (129), (130), from which the book deduces (131), are not

at all restricted to geodesic lines. Equations (131) may be proved

thus
;
we may shew by direct investigation that

d\ d dv

ds d*x dx d2
s

~~
ds d*y dyd *s ds dz

z dz dz
s

'

and then by means of equations (115) of the book, we have

d\ dp dv

77
=T ==W t

On page 307 we read "
suppose a series of geodesic lines to

originate at a point (pl9 vj and to touch the line of curvature
(/*,) ;

then at that point ____
"

It is not possible to have a series of

geodesic lines passing through a point and touching a given line

of curvature. In fact the words "originating at a point" should

be omitted, as they are not required or used.

On page 308 we read "
it may be proved in the same way as

the analogous theorem in plane geometry, that the geodi-sic radii

vectores make equal angles with the curve of curvature." The

proposition in question has been assumed to be true in writing the

equations
dr. = d^s cos t, dr

3
= dyS cos t,

30
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which occur immediately "before, so that of course we cannot use

any consequence drawn from these equations in order to establish

the proposition.

On page 329 the same mistake occurs which we have noticed

in Art. 232. We have an equation

f
J

and it is stated that any value of u which makes &H = will also

satisfy the right-hand member of the equation. Either the limits

and 1 should be omitted from the left-hand side and then the

conclusion is that any value of u which makes SH= will make

the right-hand member equal to a constant
;
or if the limits and 1

are retained on the left-hand side the right-hand side must be

written

and then any value of u which makes &H"= makes this expression

vanish.

397. There are some passages in the treatise which do not

appear treated with sufficient detail for those who are studying the

subject for the first time, For example, the process of page 258 of

the treatise may be compared with Ostrogradsky's corresponding

process, which we have reproduced in Art. 128. The statement on

page 283 respecting the equating certain ratios to a constant quantity
seems to need explanation. On page 310 it is stated that the

directions of the principal lines of curvature at any point of an

ellipsoid are evidently parallel to the principal axes of a section of

the ellipsoid made by a plane parallel to the tangent plane at the

point in question ; they are parallel but not evidently so without

demonstration.

398. Meyer. Nouveaux elements du Calcul des Variations.

Lidge et Leipzig, 1856.

This treatise consists of 132 octavo pages. In the preface the

author says he has preserved the classification of variations into

simple and compound, pure and mixed, given by Strauch, and that
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he has borrowed from the profound work of that writer the formula

for the variation of a double integral when the limits of th-

integration are themselves susceptible of variation. He says that

he has given a new method of explaining the principle ,,f tin-

subject, and he considers this method to have the threefold advan-

tage of deducing the subject from Taylor's Theorem, of free-in - it

from the consideration of infinitesimals, and of freeing it from any

question about the convergence of series. As he only proposed to

write an elementary treatise he has not entered upon the calculation

of the variations of the second order. He says that for isoperime-
trical problems he has given a method which is substantially

Euler's, but that he has introduced a modification which removes

some objections that are brought against the methods of Euler and

Lagrange. For the composition of the treatise he has consulted

the most eminent writers, especially Euler, Lagrange, Poisson,

Dirksen, Ohm and Strauch; but as his method of explaining the

principles of the subject differs from those of all the authors whom
he consulted, he calls his treatise, New Elements of the Calculus

of Variations.

The treatise however does not seem to possess any claims to

attention
;
the method which the author adopts for explaining the

principles of the subject would probably present serious difficulties

to a beginner. In many of his earlier formulae Meyer retains

-terms of a higher order than the first
;

this is a useless encum-

brance, because he makes no use of those terms afterwards. It

should be added that the book has been obviously printed at a press

which is rarely used for mathematical works, and thus it presents

an awkward and almost repulsive appearance. Meyer's method

will be seen from the following example which he gives. Let/(x)
and F(x] be two functions of a?; form the equation

from this we may find for TJ a value, say 77
=

?(a?), so that iden-

tically

Thus the original function f(x) changes its properties and is

transformed into F(x). For example,

put a (x + 17)
= sin #,

302
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sin x ax
then

a

f sin x ax\
and a f x +-

j
= sm x.

Thus if y =/(), Meyer puts

-f(x)

Thus with him By = -^ 77, &y = ~^ 77*, ..., where 77 is an arbi-

trary function of x.

This method appears unsatisfactory. In the first place it is

deficient in generality. The usual method is to suppose f(x]

changed into < (x, t)
and not necessarily into the restricted form

Meyer seems to want to consider By and 8*y as arbitrary

and unconnected; this however is not the case in his system,

for

()
In the next place, a beginner would be perplexed by the

author's speaking of 17 as a constant, after the explanation and

example which have been given of it. This language occurs how-

ever on page 6. Again, on page 22 we have this process. Having

given the function p = -~^ ,
in which x is the constant element,

required 8p t tfp, ..., y being a function of x.
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We have by definition

d'y d'Sy
dxm

'

but

moreover rj being an arbitrary function of the constant element x,

we must regard 17, T?

2
,
... as constants.... Here the last statement

would appear obscure to a beginner.

On page 81 there is some novelty, but it cannot be com-

mended. The subject of isoperimetrical problems is considered

on pages 89 and 90; but it is not obvious what modification or

improvement the author has made of the common method.



CHAPTER XV.

MISCELLANEOUS AETICLES.

399. THE present chapter contains a brief account of some

miscellaneous articles connected with the Calculus of Variations;

the connection is in some cases very slight, but it is useful for

purposes of reference to notice all the articles which bear on the

subject. The notices will take the articles in chronological order.

400. Ampere. Kemarks on the application of the general for-

mulae of the Calculus of Variations to mechanical problems.

This memoir was published in 1805, in the first volume of the

Memoires presentes a VInstitut . . .par Divers Savans. It occupies

pages 493 523 of the volume. This memoir contributes nothing
to the theory of the Calculus of Variations

;
its only interest arises

from its relation to mechanics. Lagrange had remarked in the

Mecanique Analytigue, that there is an analogy between the equa-
tions of equilibrium in mechanical problems and the equations

furnished by the Calculus of Variations for determining the maxima

and minima values of integral expressions. Ampere makes some

general remarks on this analogy ;
he illustrates his remarks by the

example of a uniform inextensible string suspended by its extre-

mities and acted on by gravity. In connection with this example
he indicates several properties of the common catenary.

On his page 503 Ampere makes some remarks to the following

effect. The Calculus of Variations consists of two parts, one in

which it is sufficient to attribute variations to the dependent vari-

ables only, the other in which variations must be attributed to all

the variables dependent and independent; writers on the subject
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have however confined themselves as much as possible t

brmer part. The theory of the Calculus of Variations is tin .

,ccording to Ampere, not yet established upon absolutely rigorous

principles. There remains in this respect a deficiency in Mathe-

matics which Ampere proposes to consider elsewhere.

It does not however appear that this purpose was accomplished ;

or the memoir in Gergonne's Annales ... which we have noticed

n Art. 375, can hardly be considered of sufficient importance to

correspond to the purpose here expressed. On his page 516

Ampere refers to some other memoir, without however indicating

where it is to be found.

401. Lagrange. The first volume of the second edition of

Lagrange's Mtcamque Analyiique was published in 1811; the

lecond volume was published in 1815, after Lagrange's death,

liagrange uses the notation and the processes of the Calculus of

Variations freely throughout the work, but the great interest which

>elongs to his investigations is derived from their connection with

Mechanics. The theory of the Calculus of Variations receives no

accession from the work.

402. Crelle. In the article Variationsrechnung of Klugel's

Mathematisches Worterbuch, page 713, reference is made to a work

by Crelle. The article says,
"
Crelle's views on the principles of

;he Calculus of Variations seem not sufficiently known*; they are

contained in his Versuch einer rein algebraischen Darstellung der

Eechnung mit verandlichen Grossen, I. Gottingen, 1813, pages

527776. The numerous new symbols render the work difficult

for study. The application to maxima and minima is not included

n the work." The present writer has not seen this work by

Crelle.

403. On the surface of minimum area between given limits.

Gergonne's Annales de MatUmatiques, Vol. 7, pages 68, 99,

143156, 283287. 1816.

These pages contain some problems proposed for solut

problems are particular cases of the question of the suria.
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minimum area, various conditions being given with respect to the

limits of the required surface. There is an attempt at the solution

of one of the problems by M. Te'de'nat, and criticisms on this

attempt by Gergonne ; Gergonne also makes some observations

on the general question.

The particular case considered by Te'de'nat is the following ;
it

is required to determine a surface which shall pass through the

inverse diagonals of two opposite faces of a cube, and so that the

area of the portion of the surface intercepted by the cube may be

a minimum. By mechanical considerations relating to a flexible

elastic membrane, Te'de'nat considers that he proves that the surface

must be that which is determined by the equation y x tan .

Gergonne admits that this surface satisfies the general partial

differential equation for a surface of minimum area, but objects that

it is not proved that this surface gives the solution of the problem
with the prescribed limiting conditions. Gergonne's criticisms

indicate that he had considered the problem more closely than

Te'de'nat had.

Gergonne gives an interesting account of the circumstances

which drew his attention . to these problems. A distinguished

mathematician informed Gergonne that he had serious doubts as to

the legitimacy of the methods given in the Calculus of Variations.

Gergonne invited him to write an article upon the subject which

might appear in the Annales . . .
; but the article was never sent for

publication. One of the objections of the distinguished mathe-

matician is expressed thus
; suppose the so-called minimum surface

to be determined by conditions which preclude it from being a plane

surface ;
draw any plane curve upon it

;
then remove the piece of

the so-called minimum surface which is bounded by this plane

curve, and replace it by a plane having the same boundary ;
thus

a surface is obtained which is less than the so-called minimum

surface. Gergonne replies that this objection only amounts to a

proof that it would be impossible to draw on the minimum surface

a plane closed curve ;
and this impossibility is consistent with the

fact that the minimum surface has at every point its principal

curvatures in opposite directions.
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Gergonne states that it appeared to him that it would be us< -ful

to propose certain problems relative to the minimum surface in which
there should be definite limiting conditions. Besides the problem

already given, the following are proposed.

To find the surface of minimum area among all those which

are bounded by the curve of intersection of two cylinders of the

same radius, the cylinders having their axes at right angles to each

other, and the axis of each cylinder being a tangent to the other

cylinder.

A quadrilateral is given having its sides not all in the same

plane; find the surface of minimum area among all those which

are bounded by the sides of this quadrilateral.

Find the surface of minimum area among all those which are

bounded by two circles given in magnitude and position.

Find the surface of minimum area among all those which are

bounded by the sides of a given square, and which include between

themselves and the square a given volume.

Among all surfaces which are bounded by the sides of a given

square, and which have within this boundary a given area, find

that which includes between itself and the square a maximum
volume.

No attempts seem to have been made to solve these problems,

except that Tede*nat intimates that he believes that no continuous

surface can be found as a solution of a certain special case of the

problem in which the given boundary is a quadrilateral having its

sides not all in the same plane ;
see page 286 of the seventh volume

of the Annales. ...

404. Crelle. Eemarks on the Calculus of Variations.

These remarks form part of a collection of mathematical treatises

published by Crelle under the title of Sammlung Mathematbcker

Aufsdtze und Bemerkungen. The work consists of two octavo

volumes; the first was published in 1821, and the second in 1899,

both at Berlin. The remarks on the Calculus of Variations

in the second volume ; they occupy pages 44174. These remarks

constitute an elementary treatise on the subject; the tivatiso

however does not seem to possess any special merit, and the
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notation is repulsive. On his page 47 Crelle refers to his former

work on the subject, but not in terms of commendation; see

Art. 383.

405. Crelle. Remarks on the principles of the Calculus of

Variations*

This memoir forms part of the Transactions of the Academy of

Sciences of Berlin for 1833
;
the date of publication of the volume

is 1835. The memoir occupies 40 pages; it proves the ordinary

formula3 for the variation of a single integral, both for constant

and variable limits of integration. The method and notation differ

from those in common use, but present no obvious advantages.

406. Mttller. On establishing and extending the Calculus of

Variations. Crelle^s Mathematical Journal, Vol. 13, pages 240 249.

1835.

This article contains some general remarks on functions without

any obvious reference to the Calculus of Variations. At the end of

the article the author says that he will on another occasion explain
the method of applying these remarks

;
it does not however appear

that this design was accomplished.

407. Boole. On certain theorems in the Calculus of Vari-

ations, Cambridge Mathematical Journal, Vol. 2, pages 97 102.

1840.

The author says at the beginning of this article,
"
It would

perhaps have been more just to entitle this communication ' Notes

on Lagrange.' The papers from which it is selected were written

towards the close of the year 1838, during the perusal of the

Mecanique Analytique" The article contains a simple demonstra-

tion of a theorem which forms the basis of Lagrarige's investigations
on the great problem of the variation of the arbitrary constants.

The theorem is that which Mr De Morgan speaks of as "perhaps
the most characteristic specimen of the genius of Lagrange which

could be given;" see his Differential and Integral Calculus,

page 532.

The author thus indicates the object of the latter part of his

article.
" I shall now proceed to demonstrate from the general
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transformed equation of motion the principles of the conservation of

living forces, and of least action. The former of these ha-

thence deduced by Lagrange. I am not however awun that the

latter has been obtained from the same equation, either by the

discoverer of the Calculus of Variations, or by any subsequent
author."

408. Delaunay. On the surface of revolution which lias its

mean curvature constant. Liouville's Journal ofMathematics, Vul. ij,

pages 309315. 1841.

When we investigate the problem of finding the surface which

with a given area includes a maximum volume, we arrive at a

certain partial differential equation which expresses that the sum of

the principal curvatures at any point of the surface is constant.

Delaunay proposes to determine what surface of revolution has this

property. He finds that the generating curve must be such as

would be traced out by the focus of a conic section, if the conic

section itself were to roll without sliding on a fixed straight line.

There is a note by Sturm immediately after Delaunay's article, in

which the same result is obtained in a different main KM-. The

result is also given in Mr Jellett's treatise
;
see his page 304.

409. Strauch. Problems in the Calculus of Variations.

Grunert's ArcMv der Matkematik und Physik, Vol. 3,

119195. 1843.

This article contains some problems which Strauch publish. <1

as a specimen of his work on the Calculus of Variations. The

first seven pages of the article contain some introductory remarks

and definitions, and then follow the problems. A few of the

problems relate to expressions involving neither symbols of differ-

entiation nor symbols of integration; the remainder relate i

pressions which involve differential coefficients but not int<

All these problems are reproduced by Strauch in his work.

In the same volume of Grunert's ArcJn'v ... a few remark s

made on Strauch's article by Gopel ;
these remarks occupy pages

405 407 of the volume. Gopel says .that the problems of th<
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kind which Strauch considers are only ordinary problems of maxima
and minima values; and he makes a few other observations.

Gopel's remarks did not convince Strauch of the necessity of

making any change, as the parts which are criticised appear again
in substantially the same form in Strauch's work.

410. Laurent. A memoir on the Calculus of Variations was

written by Laurent in competition for the prize offered by the

Academy of Sciences at Paris; see Art. 133. Laurent's memoir

was sent to the Academy after the time fixed for the reception of

the memoirs, but before the judges had published their award.

A report on Laurent's memoir is given by Cauchy in the Comptes
Eendus ... Vol. 18, pages 920, 921. 1844. We will give a trans-

lation of the essential part of this report.

The application of the Calculus of Variations to the investi-

gation of the maxima and minima values of multiple integrals

required especially new formulas of integration by parts and a new
notation which should afford an easy expression of these new

formulae. The judges of the prize had particularly noticed the

paragraphs relating to these two objects in the memoir of Sarrus.

The corresponding paragraphs in the memoir of Laurent are also

worthy of notice. The two authors have employed different methods

of establishing the formulae of integration by parts. But the

formulae are in reality the same in the two memoirs, although they

are expressed by two distinct notations. We may add that when

once these formulae are established Laurent uses methods analogous

to those of Sarrus in order to obtain the limiting equations.

The memoir of Laurent contains besides some observations,

which are not without interest, respecting the different ways of

verifying the limiting equations.

We will not conceal the fact that among the methods employed

by Laurent some may be considered rather as methods of induction

than as perfectly rigorous methods. But it is generally very easy
to verify the exactness of the results obtained by these methods, as

the calculations commonly can be easily effected.

To sum up .we think the memoir of Laurent deserves to be
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approved by the Academy, and to be inserted in the Recueil de*

Savants etrangers.

We may add that the memoir does not seem to have been

printed as yet. There is a report on two memoirs by Laurent in

the Comptes Eendus ... Vol. 40, pages 632 634. 1855. The

report is by Cauchy, and it gives a short account of the scientific

labours of Laurent then recently deceased.

411. Strauch. On the sign of the second variation and on

relative maxima and minima. Grunert's ArcMv der Math'

und PhysiJc, Vol. 4, pages 3968. 1844.

This article contains some problems in which the second vari-

ation of an expression is examined in order to determine whether

the expression is really a maximum or a minimum; and some

problems of relative maxima and minima values are discussed. All

these problems are reproduced by Strauch in his work.

412. Strauch. Eemarks on the words variation, variall

'Grunert's Archiv der Mathematik und Physik, Vol. 7, pages
221224. 1846.

This article contains some remarks by Strauch on some of the

terms used in the Calculus of Variations
;
the remarks are repro-

duced by Strauch in his work, Vol. I., pages 69 71.

413. Koger. Essay on Brachistochrones. Liouville'sJbwr/ja?

of Mathematics, Vol. 13, pages 4171. 1848.

In this essay the author demonstrates several properties relative

to brachistochrones. He considers the case when the moving

tide is constrained to remain on a surface as well as the case of a

free particle. The differential equations of the problem are obtained

by the ordinary principles of the Calculus of Variations, and many

interesting results are deduced from these equations.

414. Goodwin. Cambridge and Dublin Mathematical Journal,

Vol. 3, pages 225238. 1848.

This article is entitled, On certain points in the theory of the

Calculus of Variations. The article is chiefly devoted to the expla-
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nation of a certain geometrical conception relative to variations.

Suppose x and y the co-ordinates of a point in a curve. Then it

is manifest that we may give the most general infinitesimal vari-

ation possible to the position of the point (x, y} by giving it a

small tangential displacement and also a small normal displace-

ment. Let the tangential and normal displacements be denoted

by T and v respectively ;
then if Bx and Sy be the corresponding

displacements parallel to the axes of co-ordinates, and ds an element

of the arc of the curve, we have

. dx ~ dy ~ dy ~ dx
r = Sx -j- + cy -2-

,
v = ex -j- dy -j- ;

ds y ds' ds y ds

and these are equivalent to

dx dy dy dx
&c = T -^ + z> -f- ,

ew = T -f- z> -j- .

ds ds ds ds

The variation of an integral is then expressed so as to involve r

and v, and it appears that r does not occur at all in the uninte-

grated part, and only once in the integrated part.

It is not difficult to illustrate geometrically the fact that r does

not occur in the unintegrated part. The unintegrated part may

be denoted by I Uv ds, and then the equation Z7=0 gives inform

of the curve which is required, and it is manifest that a curve may
be made to pass into another which differs infinitesimally from

itself by a normal variation only, and that in fact a tangential

variation can have no effect upon the form of the curve, because if

a point receive an indefinitely small displacement along the tangent,
or which is the same thing along the curve, it still remains in the

same curve.

The fact that T does not occur in the unintegrated part of the

variation of an integral is the principal topic discussed in this

article, and it is illustrated and developed in various ways. Three

examples are given of the application of the formula? which are

investigated.

The article concludes with some remarks on the condition of

integrability of a function Vdx. In reference to the well-known
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equation which is obtained as tlie condition the author says,
"I think it would be more proper to say that the eju.iti .,n ex-

presses a condition of Vdx being a perfect diil'en-ntiul rathe

the condition, for it is nowhere proved that then; in:tv imt be an
indefinite number of other conditions." It must however be re-

marked here, that it has been distinctly proved that th<

referred to is sufficient to ensure that Vdx should be integrable as

well as necessary ; see the last Chapter of the present work.

415. Vieille. Cours complementaire d"analyse et de J/

rationelle. Paris, 1851.

This valuable work contains some investigations relating to our

subject.

An excellent demonstration of Lagrange's transformation of the

equations of motion in Dynamics is given in pages 1 9.

A chapter entitled Developpements sur le calcul des

occupies pages 38 50. This chapter contains four articles.
(1

/**!

investigation of the maximum or minimum of I Vdx, where V
J X

contains a?, y, z and the differential coefficients of y and z with

respect to x\ and an equation is given which connects the variables

and differential coefficients. (2) To determine the conditions which

must subsist among p, q, r which are all functions of x, y, and z,

in order that I \pdx + qdy + rdz) may retain a constant value
J X

whatever functions of t may be denoted by #, y, z
;
the conditions

are found to be those which ensure that p dx + q dy + r dz is an

exact differential with respect to a?, y, and z, considered as indepen-

dent. (3) Having given dT p dx + qdy + r dz, where x, y, ~ uiv

any functions of
t,

and p, q, r are any functions of x, y, z which

may also contain t, it is required to determine under what

ditions we shall also have ST =pSx + qfy + r Sz; the condition!

are found to be the same as in the preceding example. (>

I

example just given is now modified by the supposition th;r

and z are connected by a relation z = F(x, y)\ the condition now is

found to amount to this, that p dx + q dy + r dz must be an exact
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differential after one of the variables has been eliminated by means

of the given relation z = F(x, y).

A chapter of exercises on the Calculus of Variations occupies

pages 113 127. Four examples are discussed. (1) Among all

curves of given length which are terminated in two fixed points

A and B, to find that for which the sum of the products of each

element by the square of its distance from the line AB is a maxi-

mum. (2) To find the maximum value of I *J(da?+ dif), subject
/**(>

to the relation that I tj(da? + dy* + dz2

)
shall be equal to a given

'o

constant. This question admits of easy geometrical treatment, but

the process of the Calculus of Variations does not completely

succeed, so that Euler's method for solving problems of relative

maxima and minima appears to fail. The reason appears to be,

as Vieille conjectures, that the second integral involves a new
variable z which is quite independent of the other variables x and y
which alone occurred in the first integral. (3) Assuming that

JT = Xdx + Ydy + Zdz, it is required to find the curve for which

T ds is a minimum ;
the result is that the curve must be that

which a flexible string would form when in equilibrium under forces

on each element which referred to a unit of length of string would

be X, Yj Z, respectively parallel to the axes of x, y, z. (4) To find

a curve of given length terminated at two fixed points for which

y*dx is a maximum
;
this is an example of the first of James

Bernoulli's celebrated isoperimetrical problems; see Art. 387.

Vieille gives a figure similar to that which we have recommended

in Art. 387.

Some results relative to brachistochrones are given on pages
299308 of the work.

416. Cauchy. Variations employees comme clefs dlgtbriques.

This article occurs in the Comptes Rendus ... Vol. 37, pages
57 64. 1853. The article presents nothing of interest so far as the

Calculus of Variations is concerned ; it merely uses the symbol B to
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express certain infinitesimal changes in the values of arbitrary
constants. At the end of the article Cauchy promises another

article on the subject. The student who wishes for information

on what Cauchy calls clefs algebriques may consult the Comptes
Eendus ... Vol. 36, page 70, and a memoir on the subject in V..1. 1

of Cauchy's Exercices d'Analyse et de Physique Matlc'in<iti<jue.

417. Cauchy. On the advantages which arise from the intro-

duction of a variable parameter and of the notation of the Calculus

of Variations into some of the principal formula of infinitesimal

analysis. Comptes Eendus, Vol. 40, pages 261 267. 1855.

The following sentences will give an idea of this article by

Cauchy.

Let u be any function of the variables x,y,z\ suppose

u =/0, y> z
) ;

and let u
t
be the value which is obtained from u by changing

x, y, z into x + h, y + k, z + l respectively, so that

Ui=f(x + h, y + k, * + J).

Then put h - ah', k = ok', I = aZ'
;
thus u^ may be considered

a function of the parameter a, and may be developed by Maclaurin's

theorem in a series, which we may express thus
;

This notation is also applied by Cauchy to the case of a system

of differential equations. Cauchy says at the end that he will

give another article on the subject.

418. Carmichael. The treatise on the Calculus of Opera/

published by Mr Carmichael in 1855, contains some investigations

bearing upon the Calculus of Variations; they occupy pages

153 160 of the work. These investigations include generalisations

of the results which occur on pages 253, 262, and 340 '.lott's

treatise, and also some interesting theorems respecting att

31
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419. Braschmann. On the Principle of Least Action. Bulle-

tin...Physico-Mathematique de VAcad6mie...de St Petersbourg. Vol.

17, pages 487489. 1859.

We have remarked in Art. 317 that Ostrogradsky criticises

some parts of Lagrange's Mecanique Analytigue. On page 139 of

the 16th volume of the Bulletin...de St Petersbourg we read that

M. Ostrogradsky announced a memoir on the principle of least action;

and it is stated that he considers the ordinary enunciation of the

principle to require modification. Braschmann's article bears on

this point. It does not appear obvious what error Ostrogradsky
thinks he detects in the common account of the principle. We will

however translate part of Braschmann's article.

Let there be a system of masses m, m, m", m'", . . . considered as

points and acted upon by given forces. Let -5T, F, Z denote the

projections of the accelerating force which acts upon the mass m, let

v denote the velocity of this particle at the end of the time t. Put

then the equation of motion of the system may be written under the

following form ;

the characteristic S relating to all possible displacements of the

masses m, m, m", m'" .... We see by this equation, as M. Ostro-

gradsky has shewn in his memoir on isoperimetrical problems, that

in the passage of a system from one position to another

that is, between given limits the integral I (IT + T) dt is a maximum

or a minimum. Nevertheless in the treatises on Mechanics which

have appeared since the publication of this memoir, we find the

principle of least action still treated after the manner of Lagrange.
This great mathematician replaces in the equation dTL = dT the
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differential d by the letter 8, which relates to possible displace-

ments, and concludes that

\\Tdt or femvds

must be a maximum or a minimum. Although it seems evident

that we cannot substitute S for d in the equation of Vis Viva, yet
it will perhaps be useful for those who are studying rational

mechanics, still to prove by a simple example, that the true prin-

ciple of least action is that given by M. Ostrogradsky, and that we

are not at liberty to replace d by 8 in the equation of Vis Viva.

Braschmann then proceeds to his example. It merely shews

what no one will dispute, that d and S are not to be interchanged

arbitrarily; but it does not shew that there is any error in the

ordinary conception or proof of the principle of least action.

420. In the second edition of the Catalogue of the Library of

the Observatory of Pulkova, St Petersburg, 1860, the titles of some

treatises occur bearing on the Calculus of Variations which the

present writer has not had the opportunity of consulting. These

titles are the following.

Wiedebeck, J. S. In methodum Variationum, Upsal, 1823.

Svanberg, J. In Theoriam Maximorum et Miniinorum, Up-al,

1830.

Almquist, E. De Principiis Calculi Variationis, I. II., Upsal.

1837.

SenfT, C. E. Elementa Calculi Variationum ... Dorpat, 1838.

Lindelof, L. L. Variations-Jcalkylens theori och dess anraml-

w%...Hsfs, 1856.

PopofY, A. Elements of the Calculus of Variations, \\

1856 (in Eussian).

Simon, O. Die Theorie der Variationsreclinung, Berlin, 1>

31-2



CHAPTER XVI.

421. THE following chapter contains brief accounts of some

articles and memoirs on geometry and mechanics which have

some connection with the Calculus of Variations
; and a few works

are noticed which really belong to the ordinary theory of maxima
and minima values given in the Differential Calculus, but the

titles of which might suggest that they were treatises on the Cal-

culus of Variations. We adopt the chronological order.

422. Busse. Neue Methode des Grossten und Kleinsten nebst

Beurtheilung und einiger Verbesserung des bisherigen Systemes.

Freyberg, 1808.

This is an octavo volume of 108 pages with a preface of 12

pages. It is devoted to the ordinary theory of maxima and minima

values, and does not touch on the Calculus of Variations. The
chief point in it seems to be that it draws attention to the fact

that a function of a variable may have a maximum or minimum
value when its differential coefficient with respect to that variable

is infinite as well as when it is zero. It is stated in the preface
that a second part will soon appear; this has not come to the

knowledge of the present writer, and perhaps never appeared.

Ohm speaks unfavourably of the views of Busse
;
see Ohm's

System of Mathematics, Vol. 4, Berlin, 1830, page 127.

423. Playfair. Of the solids of Greatest Attraction, or those

which among all the Solids that have certain properties attract with

the greatest Force in a given direction. Read 5th January, 1807.

Published in the Transactions of the Royal Society of Edinburgh,
Vol. 6, 1812.
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This memoir occupies pages 187 243 of the volume. The

problems on Solids of Greatest Attraction are not treated by the

Calculus of Variations, but by the method which we have illus-

trated in Art. 322.

It is stated on page 204,
" In general, if x, y, and z, are three

rectangular co-ordinates that determine the position of any point of

a solid given in magnitude, and if the value of a certain function Q,

of x, y, and z, be computed for each point of the solid, and if the

sum of all these values of Q added together be a maximum or a

minimum, the solid is bounded by a superficies in which the func-

tion Q is everywhere of the same magnitude."

And on page 205, "All the questions, therefore, which come

under this description, though they belong to an order of pro-

blems, which requires in general the application of one of the

most refined inventions of the New Geometry, the Calculus Va-

riationum, form a particular division admitting of resolution by
much simpler means, and directly reducible to the construction

of loci."

The problems respecting solids that have certain properties

and attract with the greatest force in given directions are exam-

ples of the ordinary methods of maxima and minima explained

in the Differential Calculus.

424. Knight. Of the attractions of such Solids as are terminated

ly Planes; and ofSolids ofgreatest attraction. Kead March 19, 1812.

Published in the Philosophical Transactions, 1812.

This memoir occupies pages 247 309 of the volume. It con-

tains investigations of the attractions of solids of various forms.

Knight refers frequently to Playfair's memoir which we noticed in

the preceding Article. One section of Knight's memoir occupy in-

pages 283301 is devoted to Solids ofgreatest attraction. Knight

states that besides Playfair this subject had been consi-U-n-.l l.y

Silvabelle and Frisi, but that these mathematicians had o-mtinrd

themselves to the case of a homogeneous solid of revolution. Knight

obtains his solutions by a simple application of the Calculus of

Variations. He proves the well-known result for the figure of a
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homogeneous solid of revolution of given mass which exerts the

greatest attraction on a particle in its axis
;
and he notices that the

generating curve is the same as would be obtained if the problem

proposed were to find the form of a curve such that the area in-

cluded may be a given quantity, and the attraction on a given point

a maximum. Playfair had established these results. Knight then

shews that the same form is obtained for the solid of revolution of

given mass and greatest attraction on a point in its axis if the

solid be not homogeneous, provided the density at any point is a

function of the distance of that point from the axis and of the

distance between the foot of the perpendicular from that point on

the axis and the attracted particle.

425. Lehmus. Uebungs-Aufgdben zur Lehre vom Grossten

und Kleinsten. Berlin, 1823.

This is an octavo volume of 202 pages, containing examples of

ordinary maxima and minima problems ;
it does not touch upon

the Calculus of Variations. The problems are principally of a geome-
trical character. Ohm refers to the work in favourable terms

;
see

Die Lehre vom Grossten und Kleinsten, page 208.

426. Crelle's Mathematical Journal, Vol. 6, pages 81 83. 1830.

This is an anonymous article respecting Minding's solution

which we have examined in Article 307, which was not known to

the present writer when that Article 307 was printed. The

anonymous article agrees with what we have stated respecting the

inaccuracy of Minding's result. The equation given by Minding

is here developed into the form
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The writer says that neither
<f>
= nor ^ = can give the

general solution
;
that must be found from the equation in the form

which it takes after removing the factor
<f> TT by division.

The writer gives a geometrical interpretation of the result

- = a constant, which belongs to the required curve. "Suppose

tangent planes drawn to the given surface at all the points of the

required curve; we may suppose a developable surface generated

by the lines which form the perpetual intersections of these tangent

planes. The required curve is then common to the given surface

and the generated developable surface. Then if the developable

surface be developed into a plane the required curve becomes a

circle on that plane.

It appears from page 161 of the same volume of Crelle's Mathe-

matical Journal that Minding admitted his error.

427. Arndt. Disquisitiones historicce de maximis et minimis.

Berlin, 1833.

This essay was written for a degree in the University of Berlin.

It contains a history of the ordinary theory of maxima and minima

values without any reference to the Calculus of Variations. Giesel

refers to it on page 38 of his work.

428. Scherk. Eemarks on the least surface between given limits.

Crelle's Mathematical Journal, Vol. 13, pages 185208. 1835.

This memoir was presented to the Royal Academy of Sciences

at Copenhagen in September, 1833. Some historical information

is supplied as to the problem of the least surface. Lagrange found

the partial differential equation. Meunier shewed the geoni
<

interpretation of the equation, namely, that the required B

must have at every point its two principal radii of curva

in magnitude and opposite in sign. Meunier also indicutol two

surfaces which satisfy this equation, namely, the surface call

heligoide gauche by the French writers, and the surface formed by

revolving a catenary round its directrix. Reference is then made
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to the general integral of the partial differential equation found by

Monge, and to the note on the problem by Poisson in the

eighth volume of Crelle's Mathematical Journal.

The surface in question was proposed as the subject of a prize

essay by a scientific society in Leipsic, and the prize was awarded

to Professor Scherk in Nov. 1830.

The essay which gained the prize is printed in the Acta Socie-

tatis Jablorvoviance, VoL IV. Fasc. II. pages 204 280, under the title

De proprietatibus superficial quce hac continetur cequatione

disquisitiones analyticce.

The two memoirs by Professor Scherk belong to the subject of

differential equations rather than to the Calculus of Variations.

The result of them appears to be that some additional surfaces are

indicated which satisfy the differential equation in question. An

investigation is given with the view of shewing that the heligoide

gauche is the only ruled surface which satisfies the differential

equation, but the author admits that he has not fully established

this proposition.

The following are the equations to three surfaces which are

shwn by the author to satisfy the differential equation,

(2) (<?*
-

e-*) (e*
-

e-<")
= 4 sin ay.

(3) * = b log V(r'+a*)+ vV-*') - a tan

where, as usual, r cos = x and r sin 6 y.

The last result includes two well-known results; for by

putting a we obtain the solid formed by revolving a catenary

round its directrix, and by putting b = we obtain the lieligoide

gauche. Two other equations are given by the author, but they are

very complicated.
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We take this opportunity of adverting to a point in the history
of the problem here considered.

The statements which we have noticed in Art. 315 as made

by Bonnet are not correct. Bonnet's words are, On sail (juc

I'helicoide gauche & plan directeur est la seule surface re*gle6 qui
ait en chacun de ses points ses rayons de courbure principaux

gaux et de signes contraires. Meunier a le premier d&nontr6 cette

proposition remarquable dans son Me*moire sur les surfaces, qui
a 6t6 insert au Eecueil des Savants Strangers. Plus tard Legendre

y a 6t6 aussi conduit (voir les Memoires de IAcademic des Sciences,

ann^e 1787).

The memoir of Meunier is in the Memoires presentfs ...par
Divers Savans ... Vol. 10, 1785

;
see page 504 of the volume.

Meunier proves that the heligoide gauche is the surface of minimum
area among all surfaces that can be generated by the motion of a

line which always remains parallel to a fixed plane, not among all

ruled surfaces
;

thus he does not prove so much as Bonnet

says. Legendre does not prove any thing, but he asserts more

than Bonnet intimates. His words are, Si on cherche la sur-

face la moindre entre deux lignes droites donne'es, non situ^es dans

le meme plan, soit m la plus courte distance de ces lignes, \ Tangle

qu'elles font entr'elles ... il en resultera pour l'e*quation de la surface

cherchee, re*duite a la forme la plus simple,

\y
z = x tang .

to m

These words occur on page 314 of the volume cited by Bonnet.

Thus Legendre asserts that the helicoide gauche is the surfmv

of minimum area among all surfaces which have two rectilinear

boundaries not in one plane ;
this is not true ;

see Art. 442.

429. Michaelis. De lineis brevissimis in datin

imprimis de Linea Geodetica. Berlin, 1837.

This is an exercise for a degree in the University of Berlin ;

it consists of 27 quarto pages. The differential equations I

vestigated by the Calculus of Variations for two problems. (1) The

shortest line on a given surface. (2) The problem consider-
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Minding and others
;
see Art. 307. The investigations are given

in two forms, first by using the ordinary variables x, y, z, and

secondly by using two variables p and q in the manner explained

by Gauss in his Disquisitiones generates circa superficies curvas.

In the second problem Michaelis gives the result which had been

published in the sixth volume of Crelle's Mathematical Journal ;

see Art. 427.

A large part of the memoir is devoted to the geodetic line, by
which the author means the shortest line on the surface of an oblate

spheroid. The investigations in this part chiefly involve the theory

of elliptic integrals.

430. Minding. On the shortest lines on curved surfaces.

Crelle's Mathematical Journal, Vol. 20, pages 323 327, 1840.

In this article the differential equations furnished by the

Calculus of Variations are assumed, and some inferences are de-

duced from them with respect to the shortest lines on developable

surfaces.

431. Catalan. On ruled surfaces with a minimum area.

Liouville's Journal of Mathematics, Vol. 7, pages 203 211. 1842.

The problem discussed is the following; among all ruled

surfaces to find that of which the area is a minimum, or which

amounts to the same thing, to find that which has its two prin-

cipal radii of curvature at every point equal in magnitude and of

opposite sign. The memoir does not make any use of the Calculus

of Variations. The result has been already stated
;
see Art. 311.

432. Catalan. On the line of given length ;

which includes a

maximum area upon a surface. Journal de VEcole Polytechnique,

Cahier 29, pages 151156. 1843.

Reference is made to an investigation by Delaunay in the

eighth volume of Liouville's Journal of Mathematics; see

Art. 314. (Catalan by mistake names the seventh volume).

The following theorems are demonstrated by Catalan in his

interesting article.
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(1) Suppose any surface S, and let there be a curve L of p.

length described on it so as to include a maximum area
; construct

a developable surface 2 which touches the surface S along the curve

L
; then if the surface 2 be developed the curve L is transformed

into a circle. This theorem had been obtained however by previous
writers

;
see Arts. 427 and 429.

(2) Suppose any surface S and on it a curve L of minimum

length; construct a developable surface 2 which touches the sur-

face S along the line L
;
then if the surface 2 be developed the

curve L is transformed into a straight line.

433. Bjorling. In integrationem cequationis Derivatarum par-
tialium superficiei, cujus in puncto unoquoque principales ambo radii

curvedinis cequales sunt signogue contrario. Grunert's Arclti

Mathematik und Pliysik, Vol. 4, pages 290315. 1844.

In the beginning of 1842 Bjorling published a treatise entitled

Calculi Variationum Integralium Duplicium Exercitationes, of which

an account has already been given in Art. 311. A large part of that

treatise was devoted to the integration of the differential equation

which belongs to surfaces of minimum area. In a French scientiiic

journal called IS Institut, Bjorling saw it stated that Wantzcl and

Catalan had proved that the only ruled surface of minimum aiva

was the Jieligoide gauche. Bjorling then resolved to reprint his

investigations on the integration of the partial differential equation,

with some modifications and additions.

Thus the present memoir is devoted to the solution of the partial

differential equation, and the results obtained coincide essentially

with those of the treatise already referred to, namely, that of all

surfaces of revolution, the only one which satisfies the proposed

differential equation is that formed by the revolution of a catenary

round its directrix, and that of all surfaces which can bo !

by the motion of a straight line which always remains parallel

to a fixed plane, the only one which satisfies the proposed dif-

ferential equation is the heligoide gauche. Bjorling expresses a

hope that the demonstrations of Wantzel and Catalan of the state-

ment that this is the only surface out of all ruled surfaces which
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satisfies the proposed differential equation, will soon be published ;

Catalan's has since been published, as we have seen in Art. 431.

There are two points in the memoir to which we will ad-

vert.

In a note on page 303 Bjorling makes a statement to which

he refers more than once afterwards; it is to the effect that if

we are seeking the surface for which \\dxdy *J(\+p* +f) is a

minimum, and suppose the surface to be bounded by two given

curves, the curves must be such that when they are projected on

the plane of (x, y) one projection must be entirely within the

other. It is not obvious what he means to be inferred when this

condition does not hold, whether he regards the problem as then

impossible, or whether he thinks that the ordinary formulae of the

Calculus of Variations cannot be applied to it.

On page 312 Bjorling considers a certain special example. Sup-

pose we have two circles in parallel planes at a distance 2, and sup-

pose that the line joining their centres is perpendicular to the planes

of the circles, and that the radius of each circle is -
(
e + -) .

* \ ^ /

Take the line joining the centres as the axis of x and the origin

midway between the centres. Then it might be supposed that the

minimum surface would be that formed by revolving round the

axis of x, the catenary determined by

and taking that portion of it comprised between x 1 and x 1 .

But it will be found on trial that the surface thus obtained is

not necessarily less than that which would be obtained by taking
a cylindrical surface round the axis of x as axis with any radius

r which is less than -
(
e + -

) ,
and forming the surface of the

& \ &/

part of this cylindrical surface which is contained between

and x=l, together with the plane circular strips at each end

which are necessary to connect the cylindrical surface with the
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given limiting circles. In fact the area of the surface form

the revolution of the catenary will be found to be

and the area of the surface made up of the cylindrical surface

and the plane circular strips is

Now it is quite possible for the former expression to exceed the

latter
;
for example, the former will exceed the latter by TT ( \ ) ,

Q

ifr be taken so that r
2

2r + -
0, that is if r be taken about = '2.

8

Bjorling brings this forward as an example of the necessity of the

restriction he proposed in his note on page 303. It seems to shew
no more than this

;
a result furnished by the Calculus of Variations

must not be assumed to be a maximum or a minimum without

investigating the terms of the second order.

434. Grrunert. On the Cycloid as the Brachistochrone.

Grunert's Archiv der Mathematik und Physik, Vol. 7, pages
308315. 1846.

This article contains an elementary proof of the fact that the

cycloid is the brachistochrone, without the use of the Calculus of

Variations.

435. Jacobi. On a particular solution of the partial differ-

ential equation

Crelle's Mathematical Journal, Vol. 36, pages 113 134. 1848.

In the course of this memoir, Jacobi makes that application of the

Calculus of Variations which we have given in Art. 323.

436. Schlaeffli. On the minimum of a certain Integral. Ci\

Mathematical Journal, Vol. 43, pages 2336. 1852.
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The problem of finding the shortest line on a surface of the

second order amounts to making the integral I \f(dx* + dx* + dx*)

a minimum
, where x^ a?

2 ,
x
a

are connected by an equation of the

second degree. In the present memoir the problem considered is

to make the integral l*/(dx*+ dx*+ ... + dxn*) a minimum, where

the variables x
lt a?

2 ,
... xn are connected by an equation of the

second degree. The memoir however does not belong to the

Calculus of Variations, as there is only one line connected with

that subject; in this line the equations for a minimum value

furnished by the Calculus of Variations are written down, merely
for the purpose of indicating the number of arbitrary constants

which should occur in the solution. The solution of the prob-
lem considered in the memoir is effected by some complex alge-

braical investigations which do not involve the Calculus of Varia-

tions.

437. Hohl. Aufgdben zur Lehre vom Grossten und Kleinsten

der Differenzial-Functionen ... Stuttgart, 1852.

This is an octavo volume of 162 pages ;
the author is a pro-

fessor of Mathematics in the University of Tubingen. The

problems are of the same kind as that which we have considered

in Art. 3, after Lagrange. Three cases are considered by the

author. (1) The maximum or minimum of F(x, y, ^J . (2) *The

maximum or minimum of F fa?, y,
-

,

-jj-J
. (3) The maximum

or minimum of F(X, y> z,
-j-

,
^j-\

. Each case is illustrated by

the solution of numerous simple examples. The author says that

the examples are intended for the exercise of beginners, in Dif-

ferentiation, in Integration, and in the higher Geometry.

The author says in his preface that he did not become ac-

quainted with the work of Strauch before the printing of his

own had advanced to the last sheet. He promises if his work
is favourably received, to follow it up by a similar collection of
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examples on the maxima and minima values of integral ex-

pressions; the present writer is not aware that this conttoi

has appeared.

438. Wituski. De Maximis atque Minimis valoribus Func-

tionum Algebraicarum ... Berlin, 1853.

This is an essay written for a degree in the University of

Berlin; it contains 25 quarto pages. The essay has no relation

to the Calculus of Variations
;

it consists of investigations partly

respecting the equations furnished by the Differential Calculus for

determining the maxima and minima values of expression-

chiefly respecting the tests for ascertaining whether a maximum
or minimum value really exists.

439. Jellett. On the surface which has its mean curvature

constant. Liouville's Journal of Mathematics, Vol. 18, pages
163167. 1853.

The Calculus of Variations shews that for a surface which

includes a maximum volume under a given surface, the mean

curvature must be constant. The object of the article is to prove
that among all the surfaces whose volume can be expressed by
the integral

R fir /27TrR fir /

Jo JQ J o

the sphere is the only surface which has its mean curvature

constant. The proof depends upon two theorems.

(1) For any closed surface

see Mr Jellett's Calculus of Variations, page 353.

(2) For any closed surface the whole area of the surface
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the integral being taken over the whole surface. This remarkable

theorem is proved in the article.

440. Bonnet. Note on the general theory of Surfaces.

Comptes Eendus ... Vol. 37, pages 529532. 1853.

This note contains some results relative to the surface of mini-

mum area. A new form is proposed for the integral of the differ-

ential equation which belongs to such a surface, the new form being
in Bonnet's opinion preferable to that given by Monge. Some new

properties of such surfaces are enunciated without demonstration.

The investigations relative to the integral depend upon a method

of considering surfaces which is due to Gauss. Bonnet does not

demonstrate the fundamental formulae which he uses.

441. Grunert. On the shortest line between two points on

any surface and on the fundamental formulae of spheroidal Trigono-

metry. Grunert's Archiv der Maihematik und Physik, Vol. 22,

pages 64106. 1854.

The design of this memoir is to discuss in an elementary
manner the subjects mentioned in its title, and there is no reference

in it to the Calculus of Variations.

442. Serret. On the least surface comprised between given

right lines not situated in the same plane. Comptes Eendus ...

Vol. 40, pages 10781082. 1855.

Legendre asserted that the least surface comprised between two

given right lines which are not situated in the same plane is the

heli$oide gauche; see Art. 428. Serret shews that this assertion

is incorrect, for there is an infinite number of such surfaces, and

the heliqoide gauche is only a particular case .of them. Serret's

investigation is based on Monge' s form of the integral of the

differential equation belonging to surfaces of minimum area.

443. Bonnet. On the determination of the arbitrary functions

which occur in the integral of the equation for surfaces of minimum

area. Comptes Eendus ... Vol. 40, pages 11071110. 1855.
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Bonnet's design is to shew that the question discussed by 8
on pages 1078-1082 of this volume of tl. v

Rendtu...,
and similar questions of greater difficulty, may be investigated by
means of the formula which he himself gave in the 37th volume of
the Comptes Eendus . . .

; see Art. 440.

444. Roger. Memoir on a certain class of curves. Compte*
Eendus... Vol. 40, pages 1176, 1177. 1855.

This is a brief account by the author of the results of his in-

vestigations. It is as follows.

We may imagine in space or on a given surface an infinite

number of different trajectories which a particle can describe under
the action of a given system of forces. Among these trajectories

I have considered those which make an integral of the form
ra

\ $ (v) ds a minimum, where <
(v) is a certain function of the

^0

velocity, supposed known in terms of the co-ordinates of the moving
particle, and s is the arc described from the starting-point.

Some curves which have been already studied under various

points of view fall under the class which I have defined, and form

particular cases of it. The principal are the following. 1. Geodesic

lines which correspond to the case for which
<f) (v)

= a constant.

2. Brachistochrones for which $ (v)
= -

. 3. The trajectories of

least action which are obtained by taking </> (v)
= v

;
these t

tories by a well-known principle due to Euler are those which the

moving particle is naturally led to describe under the action of the

given forces. 4. The lines of greatest slope (lignes de plus grande

pente) ; these form a peculiar species, which I find corresponds to

the case of TTT\ = 0> whatever v may be.

9 (v)

The lines belonging to these different species and to other

species of the same class which have not as y<
ied a

definition, or rather a distinctive appellation, possess on the one

hand a set of common properties, and on the other hand proj

peculiar to the different species ;
the study of these properties ap-
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pears to me to have some interest. The most striking results which

I have obtained are the following.

I. If we suppose on a given surface a series of trajectories of

the same species which start normally from the same curve, and

take on each of them arcs described in the same time, the curve

formed by the extremities of these arcs will be itself normal to

every one of the trajectories, if these trajectories are geodesic lines

or brachistochrones, and only in these two cases. (This theorem

has already been demonstrated for geodesic lines by Gauss and for

brachistochrones by Bertrand.)

II. The trajectories of least action, the brachistochrones, and

generally the species for which the ratio
^,?{

vanishes when v = 0,

are tangents to the lines of greatest slope, or, which is the same

thing, are normals to the curves of level (courses de niveau] ,
in all

the points where the velocity is zero.

III. If we suppose the moving particle to be free or to be con-

strained to move on a plane, and consider the ratio of the centrifugal

force to the component N of the force estimated along the radius

of curvature of the path described by the particle, then

1. For all the curves which make the integral < (v) ds a mini-

mum the ratio of the component N to the centrifugal force is con-

stant throughout the extent of any curve of level.

2. This ratio is absolutely invariable for all the particular

species determined by a function of the form
</> (v)

= v
k
, where k is

an arbitrary constant, which is in fact the value of the ratio of

Nto
v
-.
r

3. In a more special manner this ratio reduces to 1 for bra-

chistochrones and for curves of least action
;
so that in these two

species the component N is equal, in actual magnitude, to the cen-
s

trifugal force
,
and this property belongs exclusively to these
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two curves, including the right line, which may be considered as
a variety of either of them.

IV. If a curve belongs to two different species it will possess
the properties of all the species ; that is, it will be at every point
geodesic, curve of least action, brachistochrone, line of greatest

slope, &c. For example, in the case of gravity, any meridian of
a surface of revolution with its axis vertical.

This is the end of the author's account of the results of his

investigations. It would appear that these investigations constitute

a development of the memoir published in Vol. 13 of Liouvi lie's

Journal of Mathematics; see Art. 413. In that memoir Roger
explains what he means by a line of greatest slope and by surfaces

of level. It is there stated that the theorem attributed to Gauss
was published by him in the memoir in the 6th volume of the

Gottingen Transactions. The theorem attributed to Bcrtraml is

there proved by Eoger. Eoger first supposes the curves to start

all from the same point; he says that this theorem was communi-

cated to him by Bertrand, and he also gives Bertrand's proof, which

is as follows.

Suppose a point on a surface; see figure 12. Let AM, AM', ...

be brachistochrones, commencing at the same point A, such that

they would be described in equal times by particles starting from

A with the same velocity ;
then the locus of the points M. M . ...

will be normal to every brachistochrone. For if the angle at M '

be acute we can make at M an angle NMM' greater than AM/ 'M\

then we shall have MN less than M'N; thus the moving particle

having arrived at N with a certain velocity would dr-

elementNM in less time than it would describe the element XM', its

velocity not being sensibly altered while describing thr element;

thus the curve ANM would be described in less time than AXM't

that is in less time than AM, which is absurd.

445. Catalan. Note on a surface at every point of which the

radii of curvature are equal and of opposite sign. Comptes Rendus...

Vol. 41, pages 3538. 1855.

Catalan proposes to consider whether the well-known differential'

equation admits of a solution of the form *f (*) + (?)
H '

82 i
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shews that the only solution of such a form is one which in its

simplest form may be written z = log cos y log cos x. He also

points out many properties of the surface denoted by this equation.

This equation had been noticed before
;
see Art. 428.

446. Catalan. Note on two surfaces which have at every

point their radii of curvature equal and of opposite sign. Comptes

Eendus ... Vol. 41, pages 274276. 1855.

Two surfaces are here given which satisfy the well-known

differential equation. One of them is that determined by equa-

tion (3) of Art. 428. Catalan points out some properties of this

surface.

447. Catalan. On the surfaces which have at every point

their radii of curvature equal and of opposite sign. Comptes

Eendus ... Vol. 41, pages 10191023. 1855.

This is an extract from a memoir on the subject named. Some
results are given without demonstration. Catalan appears to have

transformed the differential equation into forms more convenient

for integration than the common form. He is thus enabled to

obtain the integral in a more convenient form than Monge's. Some
new examples are given of surfaces which have the property
considered.

448. Bonnet. Observations on Minima Surfaces. Comptes
Eendus ... Vol. 41, pages 1057, 1058. 1855.

Bonnet adverts to three notes on the subject of Surfaces of

minimum area which Serret had communicated to this volume of

the Comptes Eendus ... Bonnet intimates that his own formulas in

the 37th volume of the Comptes Eendus... had rendered such

investigations superfluous. Bonnet claims for himself the example

given by Catalan in his second note, which as we have seen had

been given before either of them by Scherk
;
see Arts. 446 and 428.

Bonnet then adds two more examples of the use of his formula?.

On page 1155 of the 41st volume of the Comptes Eendus ...

Catalan offers a brief reply to the remarks of Bonnet. This reply
was referred by the Academy to the members who had already
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been appointed to examine Catalan's memoir, Liouvillc,

Binet and Chasles.

449. Bonnet. Note on the surfaces for which the sura of the

two principal radii of curvature is equal to twice the normal.

Comptes Rendus ... Vol. 42, pages 110 112. 1856.

This is an application of the formula? which Bonnet gave, as

he says, in the Comptes Rendus ... Vol. 37, page 349, to the deter-

mination of a class of surfaces which have a remarkable analogy to

the surfaces of minimum area. Page 349 seems to be put l.y

mistake for page 529.

450. Bonnet. New remarks on surfaces of minimum area.

Comptes Rendus ... Vol. 42, pages 532535. 1856.

Bonnet says that this article contains a simpler solution than

that which he had given in Vol. 40 of the Comptes Rendus ... of the

problem to determine the surface of minimum area which touches

a given surface along a given curve.

451. Liouville. Eemarkable expression of the quantity wh id i

by the principle of least action is a minimum in the movement of

a system of material particles subject to any connexions. Comptes

Rendus... Vol.42, pages 1146 1154. 1856.

This article is not connected with the Calculus of Variations ;

it is interesting in its relation to Dynamics.

452. Eichelot. Kemarks on the theory of Maxima ami Minima.

Schumacher's Astronomische Nachrichten. No. 1146. 1858.

This article relates to the ordinary theory of maxima and

minima values of the Differential Calculus.

453. Eichelot. On the theory of elliptic
fund 1 on

the differential equations of the Calculus of Variations. <

Rendus... Vol. 49, pages 641645. 1859.

This article states that the differential equmtiOM
furnished by

the Calculus of Variations for the maximum or minimum ,

integral may be transformed into other differentia] eqi*
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first order and first degree, which take what the author calls the

canonical form ; this term is used because the form agrees with

the analogous form in Dynamics. Blchelot's object is thus the

same as that of Ostrogradsky and Clebsch
;
see Art. 317.

454. Bode and Fischer. Mathematische Lehrstunden von K.

H. Schellbach. Aufgaben aus der Lehre vom Grossten und Klein-

sten, bearbeitet und herausgegeben von A. Bode und E. Fischer.

1860.

This is an octavo volume of 154 pages containing elementary

problems not involving the Differential Calculus.

455. We have in Art. 327 referred to some remarks by Loffler

as destitute of value; since that article was printed the present

writer has seen a later paper by Loffler. This paper is entitled

Beitrag zum Probleme der Brachystochrone; it is published in the

41st volume of the Sitzungslerichte of the Academy of Sciences

of Yienna, pages 53 59, 1860. It is remarkable that a scientific

society should print a communication with so little to recom-

mend it.

Loffler's notion is that the limiting equations in problems of

maxima and minima are often inadmissible or contradictory, and

that in the brachistochrone problem they do not supply sufficient

conditions.

He takes for example the case in which we require the

maximum or minimum value of

and supposes that the limiting values of y are not fixed. The

term outside the integral sign in the variation of I (y* + ]
dx

J\ a-xj

is ty'Sy ;
and Loffler says that it is equal to (a

l
+ - -

J Sy, where

a
l

is a constant. Thus the coefficient of $y is infinite when x = a,

and so we cannot make the integrated part vanisli at the lower

limit. Loffler has not given the coefficient of By correctly ;
for to
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make the proposed expression a maximum or minimum, we have
he equation

-*- = v,a-x J

and this leads to

2y = ajc + a
2
-

(a
-

a) log (x
-

a) ,

where a
t
and

2
are arbitrary constants.

Thus 2y
' = a

v

- 1 - log (x
-

a) ,

and this should be the coefficient of By instead of what Loffler

gives. Nevertheless it is true, as he says, that this coellic:

nfinite when x = a
;
this indicates that if the limiting values of

y are not fixed the proposed integral cannot be made a maxi-

mum or a minimum, and this involves no contradiction and n >

difficulty.

Loffler next considers the brachistochrone problem on the sup-

)osition that the initial point is constrained to lie on one fixed

vertical line and the final point on another fixed vertical line.

Take the axis of y vertically downwards, and let

If we proceed to make U a minimum, we obtain in the usual

way

where a^ is a constant. The integrated part of the variation re

duces to

and this will not vanish if By is arbitrary at both the lin.

y vanishes at both limits. Loffler says that this is in

because the first element of the cycloid must al and not

horizontal. There is no reason for saying that tin- first .

of the cycloid must be vertical; the fact is that our result

cates that there is no minimum in the present case;

There is therefore here no contradiction and no diffici
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Loffler now takes the general brachistochrone problem when

the initial and final points are constrained to lie on given

curves, and the velocity is supposed given at the initial point.

He puts down a few of the steps and arrives at the results which

we have denoted thus in Art. 300,

therefore ^' (#2)
=

^'(^) .

He then asserts, quite untruly, that from the nature of the

cycloid, we must have

and on this error he constructs a large figure and a corresponding

page of text.

Lastly, he considers that there are not enough conditions for

determining the constants of the problem ;
he seems to be in

difficulty with respect to the quantity A. But in the case which

he has himself considered, A is equal to the value of y at the

initial point ;
and if A were any given function of the value of y at

the initial point the problem could be discussed in a similar

manner. Loffler's difficulties arise solely from his own miscon-

ceptions.



CHAPTER XVII.

CONDITIONS OF INTEGRABIL1TY.

456. THE present chapter will be devoted to the subject of

the criteria which determine whether proposed expressions arc

immediately integrable. The history of the subject has not hi:

been fully treated; and it will be seen that the statements which

have been made are deficient in precision.

457. In Gregory's Examples of the processes of the

and Integral Calculus, first edition, page 285, the relations are

given which must hold in order that a function involving two

variables and their differentials may be integrable once, twice,

thrice,... Gregory says, "these remarkable formula-

discovered by Euler (Comm. Petrop. Vol. VIII.) in his investigations

concerning maxima and minima." This does not appear correct;

Euler first gave the relation which must hold in order that a

vfunction of one variable and its differential coefficients may be in-

tegrable once, but not in the place which Gregory cites.

The eighth volume of the Comm. Petrop. is represented to be for

the year 1736, and was published in 1741. It contains a men

by Euler, entitled Curvarum maximi minimive proprietate gauden-

tium inventio; there is nothing in this memoir relating to the

conditions of integrability.

The eighth volume of the Novi Comm. ... Petrop. is repres,:

to be for 1760 and 1761, and was published in 17 03
;

it has

bearing on the conditions of integrability.

458. The tenth volume of the Novi Comm ..... ^re-

presented to be for 1764, and was published in 17 volume
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contains two memoirs by Euler, connected with the Calculus of

Variations. The first memoir is entitled Elementa Calculi Varia-

tionum; the second memoir is entitled Analytica explicatio methodi

maximorum et minimorum. At the end of the second memoir

Euler says: Antequam autem finiam examini Arialystarum egre-

gium Theorema subjiciam cujus Veritas ex principiis hactenus

positis haud difficulter perspicitur, et quod in Calculo integrali

eximium usum praestare videtur. The theorem is that Zdx is

integrable if

, dPd*Q d*R

and that Zdx is not integrable unless this relation holds
;
N

9 P, Q,...

being derived from Z in the well-known manner.

This appears to be the earliest reference to the Theorem.

459. The third volume of the first edition of Euler's treatise on

the Integral Calculus was published in 1770; the present writer

has not seen it, but this date is assigned to it by Strauch in his

preface, page x, and the date is confirmed by the testimony given

in Vol. 15 of the Novi Comm. ... Petrop. which will presently be

quoted.

It appears that the third chapter of the part which treats of

the Calculus of Variations contains the theorem, that the necessary

and sufficient condition for the integrability of Vdx is that

dx

the proof given is in substance the same that has usually been

adopted in Treatises on the Calculus of Variations. The present

writer has not had the opportunity of consulting the first edition of

Euler's Integral Calculus, so that he cannot assert positively that

the proof is there given. Bertrand, in his Memoir in Cahier 28 of

the Journal de VEcole Polyteclmique, quotes Euler's proof but

without giving any precise reference. The passage Bertrand quotes

occurs in Art. 92, page 425 of the second edition of Euler's Ink-rul

Calculus; the date of the volume is 1793. In the same volume,
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Art. 129, page 454, Euler gives the form of th- variation of
|

where V contains two dependent variables y and *, and tl

ential coefficients with respect to x. From his ivsult h

Art. 131 that two relations must be satisfied in order that )'<U may
be integrable, namely,

dP d*Q d*R d'S

and a similar relation in connexion with z and its differ

coefficients.

460. The fifteenth volume of the Novi Co,n,n. ...
I'.t.-.y. ig

represented to be for the year 1770, and was published in 1 77 1 . It

contains a memoir of 68 pages by Lexell, entitled 1)>

grdbilitatis Formularum Differentialium. There is a short a<

of this memoir given in pages 1822 of the volume. In this

account Euler's theorem is referred to as, insigne Theorema ab 111.

Eulero in Tomo in. Calculi Integralis allatum, and the full-

statement is made. Hoc autem Theorema, licet jam demum anno

prseterito in nunquam satis laudato opere Calculi L

gatum fuit, tamen ad minimum ante 16 annos ab Illu

Auctore inventum fuisse certissime nobis habemus perspectum.

Quum vero interea Illustr. Eulerus hoc Theorema cum insigni

quodam Gallige Mathematico communicasset, probabile onmi:

Illustr. Marchionem de Condorcet per eum in cognitionem Imjus

Theorematis pervenisse. Ex Historia enim Illustrissima' Academ.

Scient. Parisinas pro annis 1764 et 1765 acccpimus. modo laudatum

Marchionem primum demonstrationem hujus Theorematis cum

Illustr. Acad. Parisina communicasse, turn vero conscripto Tractate

de Calculo Integrali doctrinam de criteriis integrabilitatis oinnino

fusius explicasse.

It seems singular that in this passage, which claims pr-

ior Euler, it is implied that the theorem was first
g

in his Integral Calculus in 1770, when we have seen that it was

really given by him in the volume of the X<n-i <
j.ul

dished

in 1766. Lexell, in his memoir, gives the criteria which determine
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when an expression admits of integration several times in suc-

cession.

461. The volume of the Histoire de VAcadimie ...de Paris...

for the year 1765 was published in 1768. Here on pages 54 and 55

we find the following statements. M. Le Marquis de Condorcet

presented to the Academy a treatise on the Integral Calculus. He
solves this problem; given a differential equation of any order

with any number of variables, required to determine if this equa-
tion in the state in which it is proposed admits or does not

admit of an integral of an inferior degree. This important solu-

tion is given with all the elegance and all the generality pos-

sible.

Lacroix, Traite du Calc. Diff. ... Vol. 2, page 238, says "... je

passerai aux Equations de condition qu'Euler a rencontrees par

une sorte de hasard, et qui ont ele* demontrees pour la premiere

fois directement par Condorcet, dont je suivrai d'abord la marche."

Accordingly we may presume that Lacroix gives Condorcet's

method. The necessity of the condition is shewn very distinctly,

and the conditions are given which must hold for a function to

admit of integration twice, thrice, &c.

462. The sixteenth volume of the Novi Comm Petrop. is

represented to be for the year 1771, and was published in 1772.

It contains a memoir by Lexell which occupies 59 pages. Lexell

says that he wished to give some examples of the application of

the criteria of integrability, and also to give a new demonstration

of Euler's theorem, since that which he formerly gave was liable

to objection.

Lacroix, in his Tralti du Calc. Diff. ... Vol. 2, page 249, says,

On trouve dans les Novi Commentarii Acad. Petrop. T. xv. et

XVI. deux Memoires dans lesquels M. Lexell s'est propose de

prouver la proposition ci-dessus
;

inais ses proce*de*s sont cxtreme-

ment complique*s, et ont paru tels tl M. Lagrange. (Legons sur le

Calcul des Fonctions, p. 409, de I'ddition vi-S imprimde par
M. Courcier, en 1806.) Lagrange's words are quoted in the next

-article, and they do not bear out the remark of Lacroix; La-
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grange says tliat the demonstration in the fifteenth volume is

complicated, and says nothing of the other <l :

ion, while
Lacroix speaks of Lagrange's opinion of loth demonstrations.

463. Lagrange has proved both the necessity and
sufficiency

of the condition of integrability for the case of a single dependent
variable; and he adds that in the same way the two cond

can be obtained which must hold when there are two dependent
variables. See the TMorie des Fonctions, first edition, page 217;
and the Lemons sur le Calcul des Fonctions, edition of 1806, page
402. It is usual on this point to refer to the latter work, but the

proof is substantially the same in the two works, though the

nature of it is perhaps seen more readily in the former work.

On page 409 of the latter work, after Lagrange has given his

proof, he remarks, Nous venons de prouver non seulement que la

fonction proposee ne peut etre tine fonction ddrivde exacte, & moins

que 1'^quation de condition n'ait lieu, comme Euler et Condorcet

1'avaient trouvee, mais encore que si cette Equation a lieu, la

fonction sera necessairement une derived exacte, ce qui rest

me semble, a d&nontrer; car la demonstration qu'on en trouve

dans le tome xv. des Novi Commentary de Pe*tersbourg, est si com-

plique*e, qu'il est difficile de juger de sa justesse et de sa ge*ne*ralite*.

464. In the Legons... Lagrange, after investigating the con-

ditions of integrability, gives some examples of their use; see

pages 417 421 of the work. Suppose in the first place that we

have a function of the first order f(x, y,y') ;
the condition that

it may be an exact differential is

In order that this may be identical /'(/) must not contain

#', for if it did [/'(/)]' would contain y", and as y" would not

occur in /'(y), the whole expression /'(y)
-

[/'(#')]' would not

vanish identically.

Thus f(x, y, y) must be of the form



510 CONDITIONS OF INTEGRABILITY.

then it will be found that the condition reduces to

Next, consider a function of the second order f(x, y,y , y"} ;
the

condition that it may be an exact differential is

f(y} -[/'(/)]'+[/(/')]"= o.

As before, it is necessary that f'(y"} should not contain y" \

so that f(x, y, y ', y"} must be of the form

Then it will be found that the equation of condition will

become

t' (y) + y" f (y)
-W (y')]' + W>' (*)]' + [>'<#>' (y)]'

= o.

Let
<f>'(x) +y<j>'(y) ty'ty'} be denoted by % (x 9 y, y'}, so that

the condition becomes

that is

t' (y) + %'H + y'x
1

(y) + y" [f (y) + x (/)]
= o.

And y" does not occur in any of the functions ^r'(y), %'(^),

(y}i so that the last equation cannot be identically true unless

and V(y) + x(

Lagrange adds on page 421 In like manner as in the case of

a function of the second order, the equation of condition decomposes
into two which must hold simultaneously, so it may be proved that

for a function of the third order it will decompose into three, for a

function of the fourth order it will decompose into four; and so on.

This statement has been developed in two elaborate memoirs by
liaabe and Joachimsthal. Raabe's memoir is in Crelle's Mathematical

Journal, Vol. 31, pages 181 212. 1846. JoachimsthaTs memoir is

in Crelle's Mathematical Journal, Vol. 33, pages 95116. IS 1C,.
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465. As we have already stated, Lacroix gives a proof of the

necessity of the conditions of
integrability. His method i inde-

pendent of the Calculus of Variations. But he does not prove the

sufficiency of the conditions by this method, but n-it-rs t-. the Cal-

culus of Variations on this point. Accordingly he returns to the

subject in the chapter on the Calculus of Variations, and

improves, as he considers, Euler's proof; see the Traitt du Cole.

Diff. ... Vol. 2, pages 249 and 764.

466. The fourteenth volume of Gergonne's Annales <1

matiques contains a memoir on the integrability of dilTt i

expressions by M. F. Sarrus ;
the date of publication is January,

1824. The memoir occupies pages 197 205 of the volume.

Sarrus begins by referring to the remarks of Lagrange which

we have quoted in Art. 463. He then proves that the conditions

of integrability are necessary; he takes the case in which two

variables x and y are functions of a third variable t, and an ex-

pression involves x and y and their differential coefficients. In

proving that the conditions are necessary, Sarrus adopts precisely

the same method as Lacroix, but he does not give any ivt'. ivnce to

him or to Condorcet. Sarrus then proves that the conditions are

sufficient.

The demonstration given by Sarrus is perhaps the best for

elementary purposes that has yet appeared, unless it be consi

preferable to prove the necessity of the conditions in the manner

given by Sarrus, and the sufficiency of the conditions in the manner

given in Moigno's Legons de Cole. Diff. et de Cole. Int.

467. Another memoir on the conditions of integrabOiiy ap-

peared in the fourteenth volume of Gergonne's Annalcs ...
, pages

319323.

The question considered is the following. Suppose Ta fun

of x andy and their differential coefficients with reaped ! I

variable t. Then the two conditions which must hold in order

that Vdt may be integrable are known from the memoir of Sarros.

Now suppose that y is made a function of .r, it is obvious t
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single condition would ensure the integrability of Vdt ;
it is required

to find that condition. The result is

=
,

at dt

where X and Y are the functions which we should have to equate
to zero to ensure the integrability of Vdt if y had not been made
a function of x. This result is obtained by simple transformations.

The result may be easily obtained by the Calculus of Variations ;

for if y be not supposed a function of x, we obtain in the ordinary

way for the unintegrated part of B I Vdt the expression

suppose y is made a function of x, then this term becomes

dt

Thus in order that Vdt may be integrable, we must have

At the end of the memoir the writer says that the condition is

exactly that of Lagrange, Lemons ... page 412 of the edition of 1806.

But Lagrange has there a different question before him
; Lagrange's

result is in fact that which we have noticed in Art. 93, and have

expressed thus,

468. Graeffe briefly refers to the condition of integrability on

page 46 of his essay ;
see Art. 306. He quotes the theorem of
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Euler as we have given it in Art. -l/is, and says, Manifesto Eulerui
ad illam a3quationem in quaestionibus jiuu ad ualculum variationum

spectant, instituendis venit, unde accidit, ut his prim- i

pi is theorem*

superstrueret. Sed ejusdem evidentia adhuc di -siih -rabatur et quan-

quam Condorcet et Lexell demonstrutioiu-m in stilus calculi

gralis notionibus fundatam tentabant, Lagrange tamen primus rite

confirmavit, si formula Fevanescat, semper quantitatcm Z(L:

grari posse. GraefFe refers to Condorcet, du C<> '^al^

p. 16 seqr. Novi. Comm. ... Petrop. T. XV. p. 127. Lagrange

Lemons ... p. 401 se%.

469. In Poisson's Memoir on the Calculus of Variations, pages
260 270 are devoted to our present subject ;

see Art. 96. Poisson

first shews very briefly the necessity of the condition. He says
that if Vdx is an exact differential the integral U will be a function

of a?
, y , y ', y ", ...

?//, y", ...
;
thus the value of SU must reduce

to the part F, and therefore the factor H under the integral sign
must vanish; see equation (3) of Art 86. Poisson adds tin- t' -How-

ing words :
" Thus the same equation H=Q which dcteriniin

value of y corresponding to the maximum or minimum of U, when

Vdx is not an exact differential, must become identical when

Vdx is an exact differential. This remark is due to Euler, who
has thus been the first to express by an equation the necessary

condition for the integrability of a differential formula of any order.

Lagrange has proved by means of very complicated series not only

that the equation ZT=0 is necessary, but that it is sufficient for the

integrability of Vdx\ Legons ... page 409 of the edition of 1806.'*

Poisson then says that he will give a demonstration of the second

part of the proposition which appears more simple to him, and

which has the advantage of presenting the integral of Vdx un

finite form, when the condition H holds.

470. A note by Sarrus is given in the Cumptcs Rendus. .. VoL L

pages 115117, 1835. This note enunciates some results, which

the author had obtained as generalisations
of h i

gonne's Annales....

471. A memoir by Dirksen on the conditions of integrability

of functions of several variables occurs in the vului; 36 of



514 CONDITIONS OF INTEORABILITY.

the Transactions of the Academy of Sciences of Berlin
;
the date of

the volume is 1838. This memoir names Euler, Condorcet, Lexell,

Lagrange and Poisson. Dirksen agrees with Lagrange in speak-

ing unfavourably of Lexell's first memoir
;
and Dirksen adds that

Lexell's second memoir, which Lagrange does not mention, is un-

satisfactory. Dirksen objects to Poisson's proof, because it depends

on the Calculus of Variations, and intimates that a proof depending

upon considerations which are not foreign to the subject, is still

required. Accordingly, he supplies some tedious investigations on

the subject ;
he proves both the necessity and sufficiency of the con-

dition, considering the case of one variable.

472. A memoir by Bertrand on the conditions of integrability

of differential functions was published in the Journal de TEcole

Polytechnique, Cahier 28, 1841, pages 249 275. Bertrand infers

from the words of Lagrange and Poisson that they did not know
that Euler had professed to prove the sufficiency as well as the

necessity of the condition. Bertrand quotes Euler's words as we
have already stated in Art. 459. After some remarks on the history

of the subject, Bertrand' s memoir is divided into three sections.

In his first section, Bertrand proves the necessity and sufficiency

of the condition. He says himself that his proof agrees with

Euler's when the latter is so modified as to be placed beyond the

reach of objection. He then shews how to effect the integration

when the condition is satisfied. Bertrand then investigates the

conditions when a function is to admit of successive integration ;

next he considers the case when there are two dependent variables
;

and lastly, he considers the condition which must hold in order that

II Vdxdy may be capable of expression without assigning any par-

ticular relation between z, x and y, where V is a function of x, y, z,

and the differential coefficients of z with respect to x and y. All

these investigations are simple and conclusive.

Bertrand begins his second section by saying that his demonstra-

tion in the first section depended entirely on the Calculus of Varia-

tions, and so he says, differe en cela de celles qui avaient e*te* pro-

pose*es jusqu'ici par Lexell, Lagrange, Poisson, et derni^rcmcnt
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encore par M. Sarrus. These words would suggest to a reader that
the memoir of Sarrus was subsequent to that of Poisson, which we
know, however, is not the case. Bcrtrand add* that these mathe-
maticians establish the sufficiency of the condition

l>y effecting
integration, the possibility of which they wish to prove, and he Bays
that they seem to regard this as the only difficulty in the question.
He considers all the demonstrations which have been given very
complicated, and thinks he has found a simple demonstration. Ac-

cordingly, he establishes the sufficiency of the condition. 1 1 is proof
is, as he says, founded on the same principle as Poisson's, but it

avoids the use of the Calculus of Variations. Bertrand's proof is a

simplification of Poisson's. Bertrand next proves the
necessity of

the condition
;
this proof seems rather difficult but decisive.

In his third section Bertrand gives some interesting applications
to Mechanics.

473. The second volume of Moigno's Lemons de Calc. Diff. et

de Calc. Integ. is dated 1844. Moigno refers to our present subject
on page xxxvii. of his preface, and considers it on pages 550 563

of the work. Moigno states that Lexell, Lagrange, and Poisson

seem not to have been aware that Euler had proved not only that

the condition is necessary, but that it is sufficient. This seems in-

correct so far as Lexell is concerned; for Lexell says that his object

was to give a proof without using the Calculus of Variations, so that

he appears to imply that the proposition had been established by the

use of that calculus.

Moigno's proof was communicated to him by M. Jacques ]\

The method of proving the sufficiency of the condition may be de-

scribed as an improvement on Bertrand's simplification of Poisson's

proof. The proofs of Poisson and Bertrand are liable to failtnv, be-

cause a certain quantity which occurs may become infinite or inde-

terminate
;
the proof given by Moigno is free from this d

The proof of the necessity of the condition given by Moigno

seems open to an objection urged by Professor De Morgan in a

memoir which we shall presently notice. 31 r !>< Morgan sx

"
Again, it is to be shewn, not only that the criterion is sufici>

but that it is necessary. Some of tin- pwoft of tfw '

2
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appear to me to fail entirely. They depend upon the reduction of

I Vdx to an integrated portion together with an integral of the form

/
(
Vy Vp

' + . . .
) Q dx. This, it is assumed, must vanish

;
which

though clear enough in the common case in which Q=y, and Vv ...

is a function of x only, is not sufficiently supported in any other.

Why may not
(
Vv ...) Q be a new integrable function?" It does

not seem that this objection holds against any other proof besides

that given by Moigno.

Both Bertrand's proof and that given by Moigno of the suffi-

ciency of the conditions allow us to draw the two inferences drawn

by Poisson ;
see Art. 96.

474. An article on the integrability of functions by Professor

Bruun, of Odessa, was published in 1848, in the eighth number of

the seventh volume of the Bulletin... Physico-Mathematique of the

Academy of St Petersburg ;
the article is in German. This article

proves both the necessity and sufficiency of the condition
;
the proof

depends on the Calculus of Variations. The method resembles

Poisson's, but is much simpler. This article is included in Pro-

fessor Bruun's Manual of the Calculus of Variations.

475. We may now refer to some investigations by Bertrand

and Sarrus which are connected with the present subject. Ber-

trand's investigations were mentioned in the Comptes Bendus . . .

Vol. 28, pages 350, 351. 1849. Sarrus gave on pages 439 442 of

the same volume a brief account of the method which he had for

many years explained in his lectures, and which he presumed
would be found to agree with Bertrand's. A memoir by Bertrand

explaining his method was published in Liouville's Journal of

Mathematics, Vol. 14, pages 123 131. 1849. This memoir is

followed by a note by Sarrus, which occupies pages 131 134 of

the volume.

The method of Bertrand and Sarrus is different from that of

previous writers on the subject. Bertrand's own words will give
an idea of it. After referring to Euler's well-known condition of

integrability, which had been so often demonstrated, Bertrand



CONDITIONS OF INTOIKAIUI.]

makes the following remarks. Notwithstanding the rh-gant form
of this condition the application of it is very laborious. In order

to make use of the condition, we have to perform a large number
of differentiations, and when the condition is satisfied we have to

perform a new set of operations in order to obtain tin-
integral

which is thus known to exist. The method which 1 propose in Una

memoir differs widely from that of Euler, and it would require
some complicated investigations to establish their agreement in a

direct manner
;

the method does not certainly lead to such an

elegant condition as Euler's, but the operations which it requires

have the great advantage of simplicity. It is by integrating a

proposed function that we ascertain that it is integrable; each

operation is followed by a verification, and we are relieved from the

necessity of continuing the process if the verification does not

succeed. We have thus an advantage analogous to that of the

method of commensurable roots in the Theory of Equations; for

this method, although it does not give us a formula for the roots,

indicates a series of operations by which we may find these roots,

and a single operation will often shew that such a root docs not

exist.

We may add that the method is explained in Professor Boole's

Differential Equations, pages 219 222.

476. Minich. An article on the present subject occur

Tortolini's Annali di Scienze Matematiche e Fisiche, Vol. 1, pages

321 336. 1850. The article is said to be an extract from an

unpublished memoir. The article is divided into three sections.

In the first section Minich proposes to exhibit the conditions

which ensure that a function shall be susceptible of repeated inte-

gration, under a simpler form than the well-known form. An

example will give a clear idea of Minich's obj ;ppose we

have an expression V which involves x and y and the differential

coefficients of y with respect to x up to^ ;
and lot the partial

dy <Py
differential coefficients of V with respect to y, ^ , j ,

and f ,
be denoted by N, P, Q, #, G :ivi>1

.
v - Thcn the
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conditions which are necessary and sufficient in order that V
may be immediately integrable four times in succession are known
to be

^
~~dx

+
~dtf

'

dx3
"

dx*

n dQ n d*R A
d5S

P-2-^+3-ri--4-rTdx dx dx

-.
dx

Minich substitutes for this system the following more simple

system,

If we only require that V shall be immediately integrable three

times in succession, the conditions will consist of the first three of

the first system given above ;
and Minich substitutes for them the

following,

6^_3^+^=0;dx dx*

And similarly if V is to be immediately integrable twice in

succession, Minich gives the two conditions,

dx dx dx
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Thus in every case the last condition of Minn-h's system is

same as the last condition of the ordinary system, and the other

conditions of Mmicli's system are simpler than tin- c.nlition of

the ordinary system. Minich gives a general investigation, and

shews that the ordinary system can be deduced from his system.

He does not shew conversely that his system can be deduced from

the ordinary system ;
this however is the case, and it can be easily

verified in the example which we have given.

The object of the second section of Minion's article maybe seen

from an example which occurs in it. Suppose we require the con-

dition which must hold in order that a given expression

Rdx*+ Sdxdy+Tdy*

may result by differentiating an expression of the form Pdx+ Qdy,

on the supposition that dx and dy are both constant. The required

condition is found to be

d*E d*S
{

d*T = Q
dy

z

dxdy dx*

The third section of Minich's article relates to the intcgr.r

of expressions in Finite Differences. Lacroix intimates that Con-

dorcet was the first to consider this subject, and Lacroix considers

the subject more curious than useful; see the Traiti du CaJc.

Dif. et du Cole. Int. Vol. 3, page 311. Minich invest;

condition which is necessary in order that one immediate Finite,

Integration may be possible. Suppose V any function of x, y,

Ay, A
2

y ,
. . . An

y ;
let Ay be denoted bypl ,

and A2

y by p^ , and so on.

Let the symbol E be equivalent to 1 + A. Then the necessary

condition is

*-** -- ......
-

This condition may also be put in another form.

Suppose that in V we put for Ay, A
2

//,
** valu. < in terms

of y, &,&,-; namely

Ay = ?A -y, A2

;/ ==,?/* -*.'/.+ .
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then V becomes a function of x, y, y^ y^ ... yn * The condition may
now be expressed thus,

.. -'
dy dyl dy^ dyn

dV
In this form of the condition -r- is not the same thing as was

denoted by -7- in the first form of the condition.

Minich then briefly indicates the conditions necessary in order

that it may be possible to effect immediate Finite Integration any
number of times in succession ;

and he shews that the system of

conditions which he first obtains is deducible from a second system

which is more simple, so that this part of the third section is

analogous to the first section.

477. In Mr Jellett's treatise on the Calculus of Variations a

chapter is devoted to the present subject. The ordinary proof by
the Calculus of Variations of the necessity and sufficiency of the

condition of integrability is given, and then five propositions are

discussed. (1) To investigate the conditions under which a func-

tion will admit of immediate integration m times successively.

(2) To find the form of the function V in order that 1 1 Vdx dy may

be reduced to a single integral, when V is a function of x, y, z, p,
and q. (3) To find the form of the function V in order that

Vdxdy may be reducible to a single integral, when V is a func-

tion of xy y, z, p, q, r, s, and t. (4) To find whether it is possible

to represent the superficial area of a surface by any such formula as

where F is a quantity referring solely to the limits of integration,

P is the perpendicular from the origin upon the tangent plane, and

6 and < are the polar angles which determine the position of this

perpendicular. (5) Let 7? and R' be the principal radii of curvature
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of a closed surface, P the perpendicular on the tangent plane, and

dw the element of the spherical surfae. -ion of

this perpendicular whose length is equal to unity. Thru

the integrals being extended throughout the entire of the closed

surface.

478. A memoir On some points of the Integral Calculus by
Professor De Morgan was published in 1851 in the second part of

the ninth volume of the Transactions of the Cambridge Philosophical

Society. The fourth section of the Memoir is devoted to the con-

dition of integrability of a differential expression. After the memoir

had been read before the Society Mr De Morgan became acquainted

with the memoir of Sarrus, which we have noticed in Art. 466
;
l>ut

as Mr De Morgan's copy of this memoir was detached from the

volume to which it belonged, he did not know in what journal it

had been published, and made a wrong conjecture. Mr De Morgan

says with respect to Sarrus's memoir,
" This memoir contains the

proof here given, in substance, though the equations on which

the condition is founded are not demonstrated. It is singular that

M. Bertrand takes no notice of it, except to observe that M. Sarrus

does riot use the calculus of variations. MM. Cauchy and Moigno

pass it over altogether. But it must be observed that M. Sarrus

establishes only the necessity of the condition, and does not esta-

blish its sufficiency, except wherf the equations that give it are

presented with it." The statement that Sarrus does not prove the

sufficiency of the condition is incorrect. By "MM. Cauchy and

Moigno" is meant the work published under the name of Moigno

which we have noticed in Art. 473. It is not obvious what is meant

by the remark that "the equations on which the condition is

founded are not demonstrated."

479. There is a very good elementary discussion of the MI-

in Stegmann's treatise on the Calculus of Variations, pages

118132. Stegmann begins by remarking that the ,

nished by the Calculus of Variations for the maximum or minimum
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of an integral may in some cases be impossible and in some cases

identical. An instance of the first kind is supplied by endeavour-

ing to find the maximum or minimum of I (xp y) dx. Here we

should obtain as the condition for a maximum or a minimum

1
-j-

x = 0, that is 2 = 0, which is impossible. In fact if we

transform the proposed expression to polar co-ordinates we find

that we are requiring the maximum or minimum of Ir
2

d0, and it

is obvious that this function may be made either as great as we

please or as small as we please. Stegmann then passes on to the

case in which the equation becomes an identity, and this leads him

to discuss the condition of integrability. He proves the necessity

of the condition in the same way as Sarrus, and the sufficiency

of the condition in the same way as Binet in Moigno's work.

Stegmann makes a remark on his page 123 which we will give

here. Suppose Vdx a perfect differential of u, where u involves x

and y and the differential coefficients of y with respect to x up to

^|. Let yr stand for ^. Then
dxn dx

w du du du du= + +- +

f dV d*u d*u d*u d*u
therefore =-_ +_ + + ... +

dy dydx^ dy^ ^fydy^
^
dy dyn

*>

dV d du
Thus -j-

= -7- -j- ,

ay dx ay

where the right-hand member means the complete differential co

efficient of - with respect to x.

Therefore
Ty }%**>
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so that if Vdx is a perfect differential, the two < * of com-

plete integration with respect to x and partial diti'rivntiatiuii with

respect to y t may be performed on V in either or

480. We will close this chapter by giving a translation of the

memoir of Sarrus which we have noticed in Art. 4C6, and also an

account of the method adopted by Bruun which we have noticed in

Art. 474.

481. The present article is a translation of the memoir of

Sarrus.

The investigation of the conditions of integrability oT differential

functions which has chiefly engaged Euler and Condorcet const

one of the most important branches of the higher analysis. The

method of variations leads very simply to these conditions, but the

use of this method in investigations which strictly belong t

Integral Calculus seems indirect, and moreover it does not assist

us in arriving at the integral when these conditions are fulfil'.

Euler and Condorcet proved satisfactorily by their analysis

that the conditions which they obtained are necessary; but Lexell

appears to be the first who without using any considerations foreign

to the integral calculus, tried to demonstrate that these conditions

are sufficient, that is, that they assure us of the possibility of

ing the integration, which is the important point in the theory

(Novi Comm. ... Pet. Vol. xv). Unfortunately, as Lagrangc re-

marks, the demonstration of Lexell is so complicated that it is

difficult to judge of its accuracy and its generality.

In reflecting on this subject it appears to us that the processes

of the differential calculus, strictly so called, are sufficient by them-

selves to lead in a simple manner to the conditions of integrability

and to the demonstration of the important proposition of Lexell ;

and this we propose to shew in this brief memoir.

In all that follows x and y will be any functions of a t

variable, the differential of which we shall take lor unity, and <

any number of constants. For abridgement, we shall represent
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P, Piy P2 ,
P

3 ,
... will be any functions of x, x^ x

2 ,
x
a ,

...

xm-i> y, yl9 y*> y& #-i> and their differentials will be re-

spectively p, pl9 pz , p5 ,...

Thus we have identically,

dP dP dP

dP dP dP dP dP

and therefore

dp_jdP dp _ ,dP dP dp _ dP dP
'JZ d-r, -7

a -j + -j- , -j a-, + -, ,dx

dp j-^ = d

dx
JL

dP dP
7 ~l 7

-jax

dp
'

dx,n

~
~d

(1),

dp ,dP dp ,dP dP
j =d, -f-=d-j- + ~r- ,

dy dy' d$ dy^ dp
9

dP dP

dp , dP dP
T^=d-t h^

'

dyn dy,
t

(2).

From the first of these systems of equations we obtain by succes-

. , dP dP dP dP
sively eliminating the differentials

of-^ , ^ , ...,-, , -r- ,

^*^n-i ^^m-z CIX^ d/X

dP
ixm_l dx^

dP dp , dp
j

= *y-* -**"-
/ 'T* Ci 3* ft'V

m_1
dxm

\
'

dx, <&,-,

-

</<

(3).
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The last of these equations is an equation of ei.nditi

must be satisfied by the differential^ of the I'm

The equations (2) treated in the same manner give a similar

system to (3), namely

dP dv

dP dp
~r
dyn

dP_^dp__ d dp_

dy
~~

dyl dy2

*

W.>
The last of these is a new equation of condition which must be

satisfied by the differential^? of the function P.

Before we proceed further we may remark that ifP is a function

y-> y\) #2 #-!> Onty5 tnat ls
>
if tn is func-... x ni_,,ofxi,xi+l ,,

tion does not contain any of the quantities x, x^ x
t , ... a?M , we

shall have

dP dP A dP A
-r- = 0, -rr = 0, -^-

=
0,xa

dx dx.

* -0-
dx~

-"'

the application of the same method will then lead to the results

<Z~ =^ (5),

dx
i

4 (6).

This remark will be useful to us in the sequel.

When we are sure that p is an exact differential the equnr

(3) and (4) will supply the simplest means for

tegral P by quadratures only. But we have now

differential function which satisfies identic-ally eqoati

is necessarily an exact differential.
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In the first place let u
t be any function whatever of

subject only to the condition of satisfying the equation

in which ^ is any constant quantity whatever. This equation may
be put in the form

i+l ivi i+5

and hence we infer that since the first member does not involve

differentials of x and y of a higher order than xm , yn ,
the part of

the second member comprised between the brackets cannot involve

differentials of the same variables of a higher order than xm_l
and

yn_i\ and therefore it will be possible to find a function P
i
of #

t-,

XM ,
...

,
xn.l9 y, yl9 ya ,

...
, y^, which satisfies the equation

dPi dui - dut , dty ,m.i+1
5 -^

- U/ "7
---T t*

^7
- ... T- tt-^ dx

i+1
dx

i+2 dx^

and from this by means of (5) we shall have

and therefore ui
= Aixi +pi + u

i+l ...................... (8),

where ^denotes a function of asM ,
x
i+2 , ..., xm , y, yl9 ya , ..., yn ,

which must be determined in a suitable manner. Substitute this

value of ut
in (7), and observing that sincepi

is an exact differential

we have by (6)

___^
m_i

dx
i+l dxM dxm

'

we shall find after reduction

i+l i+2 i+3

and therefore by integrating



CONDITIONS OF INTJ*:i:Ai:n.m .

which shews that w.
+1 is entirely of the same nature as w,.

Let us now suppose that u is a function of x, x
,
x

,

> #> which satisfies the condition

=J,_^ |W dxm
'

by operations analogous to those which gave us equation (8) we
shall obtain

^^ +^ + M

being a function ofy,yl ,ya ,*..,yn only.

Add these equations and put for abridgement

thus u =
(7 + i

7

",

in which ^ is evidently an exact differential because each of the

terms of which it is composed is an exact differential.

If u did not involve y and its differential i t.s y,,yt ,

y3 , ..., yn ,
the function which we have repivseir would be

a constant and therefore zero, otherwise u would be composed of

heterogeneous terms, which can never be the ca.se
;
thus u would

then be an exact differential.
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If on the contrary u involves y and its differential coefficients

y^y^y^ > y^ ^ut so *^at ^e Bowing equation is identically

satisfied,

du , du ,2 du Jn du
O = -T- -d-j- +d*-j-- ... a -J-,

dy fa dy2 dyn

the function Y may be different from zero
;
but by substituting in

this equation the value of u just given, and observing that since y

is an exact differential we have

we obtain, by reduction,

dY .dY ,,dY dY=
-j
-- d-j \-d* -j

-- ... 4- a -7 ;

from this we conclude as before, that since Y only involves y and

its differential coefficients yiy y^ y^ ...
, yn ,

this function Yis neces-

sarily an exact differential, so that in this case, as in the preceding,

u is still an exact differential.

In order to simplify the question we have supposed that all the

functions involved only two variables x and y and their differential

coefficients ;
but it is easy to see that the question would not be-

come very much complicated if we wished to consider more than

two variables, and that moreover the conclusions would be abso-

lutely the same.

[It would perhaps have been clearer if Sarrus had explicitly

introduced the third variable, say t, of which x and y may be sup-

posed functions
;
thus in his value of p we should add a term on

j-p
the right -^- ;

his equations (1) and (2) would still hold. His

method really amounts to the following ;
let V be any function of

Xj y, t, and the differential coefficients of x and y witli respect to t
;

then suppose I Vdt separated into two parts, first, that part which

would arise from supposing t variable, but not x, y, and their differ-

ential coefficients, secondly, that part which would arise from regard-
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r
,L>J

ing x, y and their differential coefficients as variables.

first part maybe supposed obtained by ordinary explicit integration,

and Sarrus disregards it.

Dirksen's process, which we have referred t-> in Art.

resembles that of Sarrus in this respect; both in fact follow

Condorcet's method as given by Lacroix.]

482. We will now give an account of the method adopted

by Bruun which we have noticed in Art. 474.

Bruuri proves the necessity of the condition in the same way as

it is usually proved in works on the Calculus of Variations. His

proof of the sufficiency of the condition is substantially the fol-

lowing. Let V be a function of x and y and the differential

coefficients of y with respect to x
t
which satisfies the condition of

integrability, say V=f(x, y,y, y" , ...) Change y into y + t&y,

and let Vt
denote what V now becomes, so that

Vt =/(*, y + %, y + %', y" + %", ...).

Then let U= I Vtdx, so that

dU _ (dVtj
~dt J ~dt

a

Now -V-* will consist of a series of terms which we may de-
dt

note by
Uy +J% f

+ my" +'!%"' -f ...

Apply the process of integration by parts in the usual manner

of the Calculus of Variations, and we shall obtain

d*P

d*P ,

34
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The part under the integral sign vanishes, because the con-

dition of integrability is supposed to be satisfied with respect to

f(x t y> y
''

y"> )>
an(^ ** w^ therefore be satisfied when y is

changed into y + tSy. Thus we may express our result as follows,

^ (x, y + %, y' + %', y" + %", ...)

Integrate with respect to from = to t = 1
;
then the left

hand member gives us U^ U
,
so that

(*, y + Sy, y' + By', y" + By", ...) dx-ff(x, y, y', y", ...)dx

, y + %, y + %'> y + %", )

, y' + %', ^" + %", )

+ ......

In this result put for y and y for By ; thus

I T i sy* 11 i/ i* i ri *~x* I T I /> C\ f\ C\ \ /t'V*

ij(x) y-> y 5 y , )
ax l/i^, v, u, u, ...; ax

C(-

I p,+
^ fy, (y , ^ , ...) + 8,, ^ (0,, ^, y , ly

+ V^t.C^ *y> ^ ^y">) +
}

^

This is in fact the result originally obtained by Poisson; see

Art. 96.
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The Author has endeavoured to render the present volume suitable as

a Manual for the junior classes in Universities and the higher classes in

Schools. With this object there have been included in it those portions of

theoretical Mechanics which can be conveniently investigated without
the Differential Calculus, and with one or two' short exceptions the

student is not presumed to require a knowledge of any branches of

Mathematics beyond the elements of Algebra, Geometry and Trigo-

nometry. A collection of Problems and Examples has been added,

chiefly taken from the Senate-House and College Examination Papers
which will, it is trusted, be found useful as an exercise for the student.

In the Second Edition several additional propositions have been incorpo-
rated in the work for the purpose of rendering it more complete, and the

Collection of Examples and Problems has been largely increased.

ELEMENTARY HYDROSTATICS.

WITH NUMEROUS EXAMPLES AND SOLUTIONS.

By J. B. PITEAR, M.A.

Fellow and late Mathematical Lecturer of Clare College.

Second Edition. 156 pp. (1857). Crown 8vo. cloth. 5*. 6d.

"An excellent Introductory Book. The definitions are very clear;

the descriptions and explanations are sufficiently full and intelligible ; the

investigations are simple and scinitifie. The examples greatly enhano
its value." ENGLISH JOUIINAL or EDUCATION.

This Edition contains 147 Examples, and solutions to all these ex-

amples are given at the end of the book.



ANALYTICAL STATICS.

WITH NUMEROUS EXAM I i

By I. TODHVNTER, M.A.

Second Edition. 330 pp. (1858). Crown 8vo. cloth. io. 6d.

In this work will be found all the propositions which
usually appear

in treatises on Theoretical Statics. To tin- dinYi- Example*
are appended, which have been principally
and College Examination Papers; tlu-.se will furnish ample exercise in

the application of the principles of the subject.

DYNAMICS. A Treatise.

By W. P. WILSON, M.A.

Professor of Mathematics in the University of Melbourne.

176 pp. (1850). 8vo. 9. 6d.

This Treatise contains the fundamental principles of the si-iri.

their application to the motion of particles and to the simpler cases .

motion of bodies of finite magnitude.

i DYNAMICS OF A PARTICLE.

WITH NUMEROUS EX A M 1

'

i

By P. G. TAIT, 31.A., an<1 V.

Late Fellows of St. Peter's College, Cambridge.

304 pp. (1856). Crown 8vo. cloth. 10*. 6d.

In this Treatise will be found all the onlin;

with the Dynamics of Particles which

without the use of D'Alemberfs Principle*.

be found a number of illustrative Examples

for the most part completely worked out ; otl

or hints to assist the student, are appended t
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A TREATISE ON ATTRACTIONS,
LA PLACE'S FUNCTIONS AND

THE FIGURE OF THE EARTH.

By J. H. PRATT, M.A.

Archdeacon of Calcutta, late Fellow of Gonville and Caius College,

Cambridge.

Crown 8vo. 126 pp. (1860). cloth. 65. 6d.

In the present Treatise the author has endeavoured to supply the want
of a work on a subject of great importance and high interest La Place's

Coefficients and Functions and the calculation of the Figure of the Earth

by means of his remarkable analysis. No student of the higher branches
of Physical Astronomy should be ignorant of Laplace's analysis and its

result "a calculus," says Airy, "the most singular in its nature and the

most powerful in its application that has ever appeared."

DYNAMICS OF A SYSTEM OF RIGID
BODIES.

WITH NUMEROUS EXAMPLES.

By EDWARD JOHN ROUTH, M.A.

Fellow and Assistant Tutor of St. Peter's College, Cambridge.

336 pp. (1860). Crown 8vo. cloth. IDS. 6d.

The numerous Examples which will be found at the end of oac-h

chapter have been chiefly selected from the Examination Papers set in

the University and Colleges of Cambridge during the last t'e\v years.

CONTENTS : Chap. I. Of Moments of Inertia. II. D'Alembcrt's "Prin-

ciple. HI. Motion about a Ki\ <l Axis. IV. Motion in Two Dimen-

sions. V. Motion of a Ri'ji'l Hody in Three Dimensions. VI. Motion

of a Flexible String. VIT. Motion of a System of Rigid Bodies. VIII v

Of Impulsive Forces. IX. Miscellaneous Example-.



A TREATISE ON OPTICS.

^
By S. PARh'JXsnX, l:.I>.

Fellow and Assistant Tutor of St. John's College, Cambridge.

304 pp. (1859). Crown 8vo. 10*. 6d.

The present work may he regarded as a : i of the Trettite om

Optics, by the Rev. W. N. Griffin, whirh I

print, was very kindly and liberally placed at my disposal by th. i .

The author has freely used the lil. ! t> him, and has rearranged
the matter with considerable alterations and adiliti m
parts which required more copious explanation anl illustration to render
the work suitable for the present course ol

A collection of Examples and Problems ha-

sufficiently numerous and varied in rhararti r

for the student : for the greater part : has been had to

the Examination Papers set in the University and the several College*
during the last twenty years.

Subjoined to the copious Table of Contents the author has vent

indicate an elementary course of reading not

ments of the First Three Days in the Cambridge Senate House Kx-

aminations.

GEOMETRICAL TREATISE ON CONIC

SECTIONS.

WITH A COPIOUS COLLECTION

By W. H. DREW, i

Second Master oof i

121 pp. (1857). Crown 8vo. cloth. +8. 6d.

In this work the subject o;

the student in such a form that, it is 1,

ments of Euclid, he may find it an easy and interesting r

his geometrical studies. With a vi

plete Manual of what is required at tl

either embodied into the text,

book-work question, problem, and rider, whu-h has been proposed in the

Cambridge examinations up to th
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A TREATISE ON

PLANE CO-ORDINATE GEOMETRY

AS APPLIED TO THE STRAIGHT LINE AND THE
CONIC SECTIONS;

i(j Jfomermis (Examples.

By I. TOVHUNTER, M.A.

Second Edition. 316 pp. (1858). Crown 8vo. cloth. los. 6d.

This Treatise exhibits the subject in a simple manner for the benefit of

beginners, and at the same time includes in one volume all that

students usually require. In addition, therefore, to the propositions
which have always appeared in such treatises, the methods of abridged
notation, which are of more recent origin, have been introduced

;
these

methods, which are of a less elementary character than the rest of the

work, are placed in separate chapters, and may be omitted by the student

at first. The Examples at the end of each chapter will, it is hoped, furnish

sufficient exercise, as they have been carefully selected with the view of

illustrating the most important points, and have been tested by repeated

experience with pupils.

EXAMPLES OF ANALYTICAL
GEOMETRY OF THREE DIMENSIONS,

Collected ly L TODHUNTER, M.A.

76 pp. (1858). Crown 8vo. cloth. 4*.

A collection of examples in illustration of Analytical (Joomrtry of

Three Dimensions has lonu; been iv<|uiiv<l both by students and lonrhrrs,

;m<l the present work is puMishrd with the view of supplying the want.
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CONIC SECTIONS AND ALGEBRAIC
GEOMETRY.

WITH NUMEROUS EASY EXAMI'I.KS rilOGRE88I\
ARRANGED.

By G. H. PUCk '.A.

Principal of Windcrim-ru College.

Second Edition. 264 pp. (1856). Crown 8vo. 7*. 6d.

This book has heen written with special
and misapprehensions which commonly
mences. "With this object in view, the carl ii

dwelt on at length, and geometrical and numerical illustrations of the

analysis have been introduced. The K

are mostly of a very elementary description. 'ped,
be found to contain all that is required by

'

and by the generality of students at the I'nivi T.-itics, and will also genre

as a preparation for such as may wish to st . , xtenaive modern
treatises.

THE DIFFERENTIAL CALCULUS.

SiUtb lumerous ( rumples.

By I. TODEUNTER, IfjL.

Third Edition, 398 pp. (1860) Crown 8vo. cloth, 10*. 6d.

This work is intended to exhibit

ential Calculus on the method of l.inr. . In the more elementary

portions, explanations have been pven in

that a reader who is without tin- y be enabled to

acquire a competent acquaintance with tlie sul

vestigation of a theorem has been t'n-qu. nt!;.

that the student derives ad\

under different aspects, and that in ord, i-

which he may have to undergo, ho should b

variety in the order of arranging :
in<*

for a corresponding variety in the mode of demonstr..
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THE INTEGRAL CALCULUS AND ITS

X APPLICATIONS.

Mill Jjfamercras (Examples.

By I. TODHUNTER, M.A.

268 pp. (1857). Crown 8vo. cloth. los. 6d.

In writing the present Treatise on the Integral Calculus, the object has

been to produce a woi-k at once elementary and complete adapted for the

use of beginners, and sufficient for the wants of advanced students. In
the selection of the propositions, and in the mode of establishing them,
the author has endeavoured to exhibit fully and clearly the principles of

the subject, and to illustrate all their most important results. In order

that the student may find in the volume all that he requires, a large
collection of Examples for exercise has been appended to the different

\ chapters.

DIFFERENTIAL EQUATIONS.

By GEORGE BOOLE, D.C.L.

Professor of Mathematics in the Queen's University, Ireland.

468 pp. (1859). Crown 8vo. cloth. 145.

The Author has endeavoured in this treatise to convey as complete an
account of the present state of knowledge on the subject of the Differential

Equations as was consistent with the idea of a work intended, primarily,
for elementary instruction. The object has been first of all to meet the

wants of those who had no previous acquaintance with the subject, and
also not quite to disappoint others who might seek for more advanced
information. The earlier sections of each chapter contain that kind of

matter which has usually been thought suitable for the beginner, while
the latter ones are devoted either to an account of recent discovery, or to

the discussion of such deeper questions of principle as are likely to

present themselves to the reflective student in connection with the methods
and processes of his previous course.

The CALCULUS of FINITE DIFFERENCES
v By GEORGE BOOLE, D.C.L.

248 pp. (1860). Crown 8vo. cloth. IQS. 6d.

In this work particular attention has been paid to tlu> connexion of tlu-

methods with those of t lie DiHi-ivntial Calculus a connexion which in

some instances involves fur more than a nu'ivly formal analogy. The
work is in some measure dcsi^'icd as a sequel to the Author's Treatise OH

Differential Equations, and it has been composed on the same plan.
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SENATE-HOUSE MATHEMATICAL
PROBLEMS.

WITH SOLUTh
1848-51. By FERRERS and JA<KS..X. 8vo. 16*. M.
1848-51. (RIDERS). By JAM! - .,,. 7,. &/.

1854. By WALTON and MACKENZIE. 8vo. HK
1857. By CAMPION and WAI. I o.\. svo. 8*. M.
1860. By ROUTE and WATSOX. Crown Svo. 7*. W.

The above books contain Problems on : vebeen ot
in the Cambridge Senate-house Kxaniirai!

during the last twelve years, together wii;

and will afford Teachers and Students who :tr>- livmir at a distance
from the University a better idea of the nature of

best methods of pursuing them than anything else v

Solutions are in all cases given cither by tlie I

under their sanction.

A COLLECTION OF MATHEMATICAL
V PROBLEMS AND EXAMPLES.

WITH ANSWERS.

By II. A. MORGAX, M
Fellow of Jesus College, Cambridge.

190 pp. (1858). Crown Svo. 6s. 6d.

This book contains a number of problems, chi<
-

.iry, in the

Mathematical subjects usually read at Cam!
selected from the papers set during late

;
-us College

few of them are to be met with in other collections and by far thi

larger number are due to some of the most distinguish, d Mathematicians

in the University.

MATHEMATICAL TRACTS

ON THE LUNAR AND PLANKTAKY Till." iUKE

OF THE EARTH, THE UNDH-AToKY II!KKY OP

OPTICS, &c.

By the ASTRONOMER ROYAL, 0, 1 CJL

Fourth Edition. 400 pp. '185.^ 15*.
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THEORY of ERRORS of OBSERVA-
TIONS AND THE COMBINATION

of OBSERVATIONS.
By the ASTRONOMER ROYAL, G. B. AIRY, M.A.

103 pp. (1861). Crown. 8vo. 6s. 6d.

In order to spare astronomers and observers in natural philosophy
the confusion and loss of time which are produced by referring to the

ordinary treatises embracing both branches of Probabilities, the author
has thought it desirable to draw up this work, relating only to Errors of

Observation, and to the rules derivable from the consideration of these

Errors, for the Combination of the Results of Observations. The Author
has thus also the advantage of entering somewhat more fully into several

points of interest to the observer, than can possibly be done in a General

Theory of Probabilities.

THE CONSTRUCTION OF

WROUGHT-IRON BRIDGES.
EMBRACING THE PRACTICAL APPLICATION OF THE

PRINCIPLES OF MECHANICS TO WROUGHT-IRON
GIRDER-WORK.

By J. HERBERT LATHAM, M.A., Civil Engineer.
" The great merit of this book is that it deals with practice more than

theory. All the calculations in the book connected with the strength of

girders are based upon their actual application which abounds in practical

investigations into girder-work in all its bearings, and will be welcomed as

one of the most valuable contributions yet made to this important branch of

engineering.'
' ATHENJEUM.

HISTORY OF THE PROGRESS OF

\THE CALCULUS OF VARIATIONS
DURING THE NINETEENTH CENTURY.

By I. TODIIUNTER, M.A.
Fellow and Principal Mathematical Lecturer of St. John's Coll. Camb.

It is of importance that those who wish to cultivate any subject may
be able to ascertain what results have already boon obtained, and thus
reserve their strength for difficulties which have not yet been conquered.
And those who merely desire to ascertain the present state of a subject
without any purpose of original investigation will often find that the

study of the past history of that subject assists them materially in ob-

taining a sound and exteii.-ive knowledge of the condition which it has
attained. The Author has endeavoured in this work to ascertain distinctly
what has been effected in the Progress of the Calculus, and to form some
estimate of the manner in which it has been effected: accordingly, unless

the contrary is distinctly stated, it mav be assumed that any treatise or

memoir relating to the Calculus of Variations which is described in this

work has undergone thprough examination and study.
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HELP TO LATIN GRAMMAR.
WITH EASY EXERCISES, bOTl

QUESTIONS AND \

By J. WRKillT. .]/../.

Head Master of Sutton ('

175 pp. (1855). Crown 8vo. cloth. 4*. 6<1.

"This book aims at helping the -nhold
difficulties of the Latin Grammar; and never was t

!

: r aid
offered alike to teacher and scholar in that anlim,,,-

j,
a . s . 'j' lu.

gty^ fa at
once familiar and strikingly simple and lu< ;

cisely hit the difficulties, and thnnui-hly explain
much facilitate the acquirement of English Grammar."] KXAL
OF EDUCATION.

THE SEVEN KINGS OF ROME.
A FIRST LATIN READING BOOK. Al'.UIi" >M I. IVY.

BY THE OMISSION OF DIFFKTLT
NOTES AND INDEX.

By J. WRICIIT. M
Second Edition. 138 pp. (1857). F ( '" l ^- 3*-

This work is intended to supply the pupil with an t asy ( 'on strains-book,
which may, at the same time, be made the \ .

-istructing him in

the rules of grammar and principles of comi
the study of Latin seem to the author to have hith. :

apart. Boys have construed the i: Xepos, and
have gone elsewhere for their grammatical e\i-r< i-. >. N. : can this be
wondered at. An educated man must ii-.-l .-haraed of taking
his pupils away from our good Kn-lish authors, u
instead a Delectus or Kutmpiu-. II i* orer them a*

lightly, and escapes from them as quirkly as p..,-

for his composition lesson to one ,.f th. many
swarm from our educational ]n-
has been published. Here Liv\ i '~wn

pleasant words. What is omitted, ,
> one can wuh

:i liG'g'inner to learn, and whieh may l>e Ix-tter learnt elaew

Livy be the master to teach a 1. . liah collector of

sentences, and he will not be found a da.i
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VOCABULARY AND EXERCISES
ON "THE SEVEN KINGS OF ROME."

94 pp. (1857). Crown 8vo. cloth. 2s. 6d.

The Vocabulary is published apart from the Text in order to suit the

views of those who prefer their pupils to consult a general dictionary.
As the aim. of the Text is to teach the elements of grammar, so the

Exercises are intended to test the pupil's knowledge of grammar. Indeed
there is hardly an ordinary Latin construction which is not illustrated in

the text, explained in the notes, and proved in the exercises.

HELLENICA.
A First Greek Reading Book.

FROM DIODORUS AND THUCYDLDES. WITH VOCABULARY.

% J. WRIGHT, N.A.

Author of "A Latin Grammar."

Second Edition. 150 pp. (1851). Pcap. 8vo. cloth. $s. 6d.

In the last twenty chapters of this volume, Thucydides sketches the

rise and progress of the Athenian Empire in so clear a style and in such

simple language, that the author doubts whether any easier or more
instructive passages can be selected for the use of the pupil who is

commencing Greek.

A FIRST LATIN CONSTRUING BOOK.

By EDWARD TURING, N.A.

Head Master of Uppingham School.

104 pp. (1855). Fcap. 8vo. 26-. 6d.

This Construing Book is drawn up on the same sort of graduated
as the Author's Ivnjlixh (irntiiitiar. Passages out of the best Latin Ports

are gradually built up into their peri'eet shape. The l'e\\ words altered. Mi-

inserted as the passages go on, are printed in Italics. It is hoped by
this plan that the learner, whilst acquiring the rudiments <>t

may store his mind with good poetry and a .u-ood vocabulary.
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JUVENAL
WITH ENCI.ISII NOTES.

By JOHN K B. UATOR, M.A.

Fellow and Classical Lecturer of St. John's College, Cambridge.

464 pp. (1854). Crown 8vo. cloth. 10*. 6d.

"A School edition of Juvenal, which, for
really ripe scholarship,

extensive acquaintance with Latin literatim-, and familiar knowledge with
Continental criticism, ancient and modern, is unsurpassed, we do not My
among English School-books, but among Ei >ns generally."
EDINBURGH REVIEW.

CICERO'S SECOND PHILIPPIC.
WITH ENGLISH NOTES.

By JOHN E. B. MAYOR. M.A.

1 68 pp. (1861). Fcp. 8vo. cloth. 5*.

The Text is that of Halm's, 2nd edition (I .eip.j-. \\", idmann, 1858),
with some corrections from Madvig's 4th Edition (CopriihaL'en, 1MB).
Halm's Introduction has been closely translated, with some addition*. Hu
notes have been curtailed, omitted, or cnlar-id. at dir-ti"n; passages
to which he gives a bare reference, are for the nu>: d at

length; for the Greek extracts an English ver-i.m has been subctit

A large body of notes, chiefly grammatical and hist. -Heal, has been added
from various sources. A list of books useful i of Cicero,
a copious Argument, and an Index to the introduction and note*, complete
the book.

SALLUST.
WITH ENGLISH NOT:

By C. MERIVAI.I . !>.D.

Author of "A History : &c.

Second Edition. 172 pp. (1858). Fcap. 8vo. 4*. *>d.

" This School edition of Sail'

a Latin author ought to be. No useless words are sj
^1 no

words that could be of u- xt has been carefullv

coUated with the best editions. It is printed in a large bold type, w
manifests a just regard I'm- the young .

under the text there flows throuL

tremcly well-selected annotations." T 1 - '-H.

The "CATILINA" and " JUOUKTHA"
2s. 6d. each, bound in cloth.
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DEMOSTHENES ON THE CROWN.
WITH ENGLISH NOTES.

By B. DRAKE, M.A.

Late Fellow of King's College, Cambridge.

Second Edition. To which is prefixed JESCHINES AGAINST

CTESIPHON. "With English Notes.

287 pp. (1860). Pcap. 8vo. cloth. 55.

The first edition of the late Mr. Drake's edition of Demosthenes de

Corona having met -with considerable acceptance in various Schools, and
a new edition being called for, in accordance with the wishes of many
teachers has been appended the Oration of JEschines against Ctesiphon,
with useful notes by a competent scholar.

DEMOSTHENES ON THE CROWN.
TRANSLATED INTO ENGLISH.

By J. P. NORRIS, M.A.

H.M. Inspector of Schools.

(1850). Crown 8vo. 3$.

"
Admirably representing both the sense and style of the original."

ATHENJEUM.

THUCYDIDES. Book VI.
WITH ENGLISH NOTES, MAP AND INDEX.

By P. FROST, Jun., M.A.

Late Fellow of St. John's College, Cambridge.

8vo. cloth. 75. 6d.

It has been attempted in this work to facilitate the attainment of

accuracy in translation. "With this end in view the Text has been treated

grammatically.

-ffiSCHYLI EUMENIDES,
WITH ENGLISH VERSE TRANSLATION, COPIOUS

INTRODUCTION, AND NOTES.

By B. DRAKE, M.A.

Editor of " Demosthenes de Corona."

" Mr. Drake's ability as a critical Scholar is known and admitted. In
the edition of the Eumenides before us we meet with him also in the

capacity of a Poet and Ilistoriml Buajiflt, Thr tmMslutiou is flowing
and melodious, elegant and scholarlike. The Greek Text is well printed :

the notes are clear and useful." GUARDIAN.
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ELEMENTS OF

GRAMMAR TAUGHT IN ENGLISH.
WITH QUESTION

By EDWARD Till, I. A.

Head Master of Uppingham Grammar School.

Third Edition. 136 pp. (1860.) Demy iSrao. zt.

THE CHILD'S ENGLISH GRAMMAR.

By the same Aut

New Edition. 86 pp. (1859). Demy i8mo. i*.

The Author's effort in these two books has been to point out the broad,

beaten, every-day path, carefully avoiding di^m- be byeways
and eccentricities of language. This Work took its rise from qu
ings in National Schools, and the -whole of tin

the writing out in order the answer.- t. .
. hare been

used already with success. The study of (irammar in English has
been much neglected, nay by some put on one side as an imiK>&si;

There was perhaps much ground for this opinion, in the medley of arbi-

trary rules thrown before the student, which appL
' a certain

number of instances, but would not work at all in rs, as must

always be the case when principles are not put forward in a language full

of ambiguities. The present work does not, t!..

a compendium of idioms, or a philological ti< mnar. Or
in other words, its intention is to t-:u-h t;. >w to speak and

write correctly, and to understand and explain th- speech and

others. Its success, not only in National Schools, from practical *

which it took its rise, but also in classical schools, is 1;.

ment.

SCHOOL SONGS.

A COLLECTION OF SONGS FOli SCIIn.

Wtlj i\t giusic girningcb for <#onr Voices.

Edited by the Rev. E. T1IRIXG, and J.

Music Si/c.
7-v.

6</.
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ST. PAUL'S EPISTLE TO THE ROMANS.

THE GREEK TEXT WITH ENGLISH NOTES.

By C. J. VAUGHAN, D.D.

Head Master of Harrow School.

Second Edition. Crown 8vo. cloth (1861). 55.

By dedicating this work to his elder Pupils at Harrow, the Author

hopes that he sufficiently indicates what is and what is not to he looked

for in it. He desires to record his impression, derived from the experience
of many years, that the Epistles of the New Testament, no less than the

Gospels, are capable of furnishing useful and solid instruction to the

highest classes of our Public Schools. If they are taught accurately, not

controversially ; positively, not negatively ; authoritatively, yet not

dogmatically ; taught with close and constant reference to their literal

meaning, to the connexion of their parts, to the sequence of their argu-

ment, as well as to their moral and spiritual instruction; they will

interest, they will inform, they will elevate
; they will inspire a rever-

ence for Scripture never to be discarded, they will awaken a desire to

drink more deeply of the Word of God, certain hereafter to be gratified
and fulfilled.

RELIGIOUS CLASS BOOKS.

THE CHURCH CATECHISM ILLUSTRATED AND EX-
PLAINED. By ARTHUR RAMSAY, M.A. 204 pp. (1854). 18010. cloth.

3*. 6d.

NOTES FOR LECTURES ON CONFIRMATION": With
Suitable Prayers. By C. J. VAUGHAN D.D. Third Edition. 70 pp. (1859).

Fcp. 8vo. i*. 6d.

HAND-BOOK TO BUTLER'S ANALOGY. By C. A.
SWAINSON, M.A. 55 pp. (1856). Crown 8vo. is. 6d.

HISTORY OF THE CHRISTIAN CHURCH DURING
TIIK FIRST T1IUKK CKNTT UIKS, AND T11K KKl'OKM ATION IN ENG-
LAND. By \VIU.1 AM Si.Ml'SON, M.A. 307 pp. (1857). Fcp. 8vo. cloth. 5*.

ANALYSIS OF PALEY'S EVIDENCES OF CHRISTI-
ANITY. By CHARLES II. CROSSE, M.A. 115 pp. (1855). 181110. 33. 6rf.
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MANUALS FOR THEOLOGICAL
STUDENTS.

UNIFORMLY PRINTED AND

This Series of Theological Manuals has been jmUi-'

the aim of supplying Books concise, conij , and

accurate, convenient for the Student and
-.sting

to the general reader.

HISTORY OF THE CII1MSTIAN riiriK'II
DURING THE MIDDLE AGES. By Al: II !

WICK. 482 pp. [1853]. With Maps. Crown 8vo. cloth. 10. 6rf.

This Volume claims to be regarded as an integral an>l

treatise on the Mediaeval Church. The History comment <

time of Gregory the Great, because it is admitted on all hands th..-

pontificate became a turning-point, not only in tlu- f.>rtum-s :

Western tribes and nations, but of Christendom at L- -i'livd

reason has suggested the propriety of pausing at t! . the year
when Luther, having been extruded I'mm th - that adhered to

the Communion of the Tope, established a
]

:<>\ :;<nul form of government
and opened a fresh era in the history of E

HISTORY OF THE CHRISTIAN CHURCH
DURING THE REFORMATION. By A \RDWICK,

459 pp. [1866]. Crown 8vo. cloth. 10*. fof.

This Work forms a Sequel to th.- Author'! I' ok

The Author's wish has been to give th

those stirring incidents which mark the K [>eriodL



MANUALS FOB THEOLOGICAL STTJDENTS-Continued.

HISTORY OF THE BOOK OF COMMON
PRAYER. With a Rationale of its Offices. By FRANCIS
PROCTER, M.A. Fourth Edition. 464 pp. [I860]. Crown 8vo.

cloth. 10*. 6d.

The Subject of this Book has been already treated by numerous
writers of distinction. When the present series of Manuals was projected,
it did not appear that any one of the existing volumes taken singly was
available for the desired object. In the course of the last twenty years
the whole question of liturgical knowledge has been reopened with great

learning and accurate research, and it is mainly with the view of epito-

mizing their extensive publications, and correcting by their help the

errors and misconceptions which had obtained currency, that the present
volume has been put together.
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The Author has endeavoured to connect the history of the New Testa-

ment Canon with the growth and consolidation of the Catholic Church,
and to point out the relation existing between the amount of evidence

for the authenticity of its component parts and the whole mass of Christian

literature. Such a method of inquiry will convey both the truest notion

of the connexion of the written Word with the living Body of Christ, and
the surest conviction of its divine authority.

INTRODUCTION TO THE STUDY OF THE
GOSPELS. By BROOKE FOSS WESTCOTT, M.A. 458pp.

[I860]. Crown 8vo. cloth. 10s. 6d.

The title of this book will explain the chief aim which the Author
had in view. It is intended to be an Introduction to the Study of the

Gospels. The Author has therefore confined himself in many oases to

the mere indication of lines of thought and inquiry from the conviction

that truth is felt to be more precious in proportion as it is opened to us

by our own work. In a subject which involves so vast a literatim' much
must have been overlooked

;
but the Author has made it a point at least

to study the researches of tho great writers, and consciously to neglect
none.
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