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‘ PREFACE.

‘When I accepted an invitation to write the article for the Ency-
klopddie on the General Foundations of Thermodynamies, it was understood
that the article should deal, as far as possible, exclusively with the laws
of thermodynamics and consequences immediately deducible :from them,
. and that all properties of particular substances and states which depended
partially on experimental knowledge or other hypotheses should be left
for another article. I had long felt the want of a book in which thermo-
dynamics was treated by purely deductive methods, and it has been my
object in the following pages to develop the subject still more on this
line than was possible in an article professing to be to some extent an
exposition of the history and actual state of knowledge of the subject.

It cannot be denied that the perfection which the study of ordinary
dynamics has attained is largely due to the number of books that have
been written on rational dynamics in which the consequences of the laws
of motion have been studied from a purely deductive stand-point. This
method in no way obviates the necessity of having books on experimental
mechanics, but it has enabled people to discriminate clearly between
results of experiment and the consequences of mathematical reasoning. It
is maintained by many people (rightly or wrongly) that in studying any
branch of mathematical physics, theoretical and experimental methods should
be studied simultaneously. It is however very important that the two
different modes of treatment should be kept carefully apart and if possible
studied from different books, and this is particularly important in a subject
like thermodynamics.

In most text books the treatment of the first and second laws is
based more or less on the historic order, according to which a considerable
knowledge of the phenomena depending on heat and temperature preceded
the identification of these phenomena with energy-transformations. For a
logical order of treatment it is better to regard the laws of thermo-
dynamics as affording definitions of heat and temperature, just as Newton’s
laws afford definitions (so far as definitions are possible) of force and
mass. But in any case there is great danger of assuming some property
of temperature without realising that an assumption has been made, and
of this danger we have an excellent illustration in the assumption commeonly
made, but rarely if ever explicitly stated, that the temperature of a body
at any point is the same in all directions.

To lessen such risks and at the same time to ‘carry the deductive
method further back it appeared to me desirable to adopt the principles
of conservation and degradation of energy as the fundamental laws of
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v PREFACE.

thermodynamics, and to deduce the ordinary forms of these laws from
those principles. A paper was published by me on this subject in the
Boltzmann Festschriff, and some criticisms on it sent to me by Mr. Burbury
- have led to a more extended examination of the foundations upon which
thermodynamics rests. Degradation of energy in some form or other is
a necessary consequence of irreversibilily of energy phenomena. We
therefore go still further back and assume the principle of irreversibility
as our starting point. When an irreversible transformation takes place
the number of subsequent possible transformations is thereby from the
very nature of the case reduced and we thus have a loss of availability
in its most general sense. When we want to identify the more and less
available forms of energy with those forms of energy which we see
around us, an appeal to experience is necessary. It is in fact possible
to conceive a universe in which irreversible phenomena tend in a different
direction to what they do in our own. A mere reversal of the whole of
the phenomena of our universe would give us one example, and if we
want another we should only have to imagine ourselves of molecular
dimensions when we should find that the whole progress of irreversible
phenomena (whether regarded statistically or otherwise) would assume an
entirely different aspect to that to which we are accustomed. The laws
of thermodynamics are thus restricted to phenomena of a particular size
in the scale of nature, and the lower limit of size is about the same as
the limit involved in the applications of the infinitesimal calculus to the
physical properties of material bodies e. g. in hydrodynamics, elasticity
and so forth. The term “differential element” is introduced in the present
book to represent the smallest element which can be regarded, for the
purpose of these applications, as being formed of & continuous distribution
of matter, and the notion of temperature a¢ a point is regarded as not
more nor less justifiable than the corresponding conventlons as to pressure
and denmty at a pomt

It is, however, in connection with entropy and with thermodyuannc
equilibria and stability, that the present method of treatment is found to
be the most advantageous. A controversy on entropy between English
mathematicians, physicists and electrical and other engineers took place
in England in 1903 at the instigation of Mr. Swinburne, an electrical
engineer, who defined entropy by means of what he called “incurred
waste”. In the present book it is shown that if entropy be defined in
terms of increase of unavailable energy this definition will apply not
only in the case of entropy imparted to a system by heat conduction but
also in the case of entropy produced by the irreversible changes within
a system, of which a number of simple illustrations are given.

Moreover the available energy method possesses considerable advantages
in the treatment of thermodynamical equilibria. If we assume that in a
state of equilibrium the available energy of a system is a minimum it
follows immediately that the conditions of equilibrium can be deduced
from the equations of reversible thermodynamics and that it is only
when the stability of the equilibrium is discussed that recourse must be
had to the inequalities of irreversible thermodynamics.
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The old and defunct caloric theory has left us an inheritance in the.
terms “heat” and “qua.ntlty of heat” the vagueness of which does much
to cause confusion in the study of thermodynamics. The quantity of
heat which one body receives from or imparts to another is a perfectly
definite conception, and throughout this book the symbols d@ and dg
refer to this quantity of heat thus received from without by a whole
body or system and a unit mass respectively. It was my original
intention not to consider any other kind of quantity of heat. But there
are many intrinsically irreversible phenomena of common experience such
as the flow of viscous liquids, in which it is usual to regard work as
being converted into heat in the interior of a system, moreover in many
such cases it is possible to assign' a perfectly definite meaning to the
“quantity of heat” so generated. It appeared desirable for several reasons
to discuss examples of such transformations at some length and in these
examples the so-called quantity of heat generated internally by the irre-
versible transformation of work has been denoted by dH or dh, and the
total quantity of heat gained, according to this stand-point viz. d@Q 4+ dH
for the entire system or dq + dk for unit mass, has been denoted
respectlvely by 480 or dq. This convention sometimes enables the
increase of entropy to be put into the form of df/T or dq/T when the
expressions dQ/T and dg/T are inapplicable.

Into the difficulties connected with the extemsion of thermodynamic
formulae to irreversible processes, some insight is afforded notably at
the end of Chapter XI. Even the simple statement that we may put
dq =1,dv + y,dT cannot be admitted without due reserve when irre-
versible changes are taken into account. The method of treatment given
in the section referred to is not the only one that could be proposed
and it may be said with considerabls justification that the truth or
otherwise of any proposed formula in irreversible thermodynamics depends
largely on the particular interpretation which is assigned to the symbols
in that formula: In the controversy of English engineers on entropy
already referred to much importance was attached to the question whether
dQ/T did or did not always represent the change of entropy, and from
what we have said either party had considerable justification for believing
himself to be right according to his own particular interpretation of d¢.

A few words must be said as to the order of treatment in this
book, as this is a very important point. The deductive method here
proposed is not started till Part II (Chapter IV). This chapter might
well be taken as the starting point of a course of lectures given to a
class of students who are already familiar with the elements of thermo-
dynamics, and it was my original intention to place it at the beginning
of the book. But it appeared that the necessarily somewhat philosophical
discussion of Chapters IV—VIII hardly made a su.fﬁciently easy starting
point for a begmner, and moreover it is important in building up a
theory that the main facts for which that theory has to account should
be prominently borne in mind. Accordingly Chapters I, II contain a
general sketch of the most important facts and deﬁmtmns of thermo-
dynamics as based on experience; Chapter I containing definitions of the
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principal thermal magnitudes, such as specific heat and latent heat, and
Chapter II containing a brief summary of the conventional or “classical”
treatment of the first and second laws. In these chapters no attempt
has been made to define heat and temperature, or to aim at anything
like a complete or rigorous discussion. Chapter III contains the matter
included in my Encyklopddie article under the heading “Change of the
Independent Variable”. It was difficult to find a suitable place for this
subject matter in any sequence but its present position was chosen as
the best. The formulae there discussed are immediate deductions from
the principles of the differential calculus, which are in no way dependent
on the dynamical theory of heat; they would be equally true on the old
caloric hypothesis; and for this reason they would be out of place in
Part II. It is important that such formulae should be kept apart from
formulae which are properly described as thermodynamical. The formulae
of Chapter IIT are not practically required before Chapter XI.

In Part I, which deals with particular systems, the discussions are
confined as far as possible to direct consequences of the principles of
Thermodynamics.

Mr. Ferguson, B. Sc. has kindly assisted in revising the manuseript
and proofs. B

July 1906.
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NOTATION.

Note. The thermodynamical magnitudes connected with a homo-
geneous' substance fall into two classes, those whose magnitude is
proportional to the mass of the portion of the substance under con-
sideration and those which are independent of the mass. The first
category includes the volume, energy, entropy and thermodynamic potentials,
while the second includes pressure and temperature. In representing
quantities of the first category, we shall use capital letters when they
refer to the whole body or portion of substance considered, and small
letters when they refer to a unit mass of the substance. For example
the volumes of the whole body and of unit mass of the body are denoted
by V and v respectively, so that if M is the mass we have V=M.

In the case of the thermodynamic potentials it would be sufficient
to make the distinction in the suffixes, Fp referring to the whole body
and §r to a unit mass. This was done in the “Encyklopidie” article
but for greater definiteness we have used f, for unit mass in this book.

The following list gives the symbols used in the present book and
the corresponding notation of many other writers. The formulae are
only given for the purpose of greater definiteness in distinguishing the
various symbols. In most cases- therefore they refer only to simple systems
and hold good only in the case of reversible transformations.

Generally speaking the symbols indicated in the third column by ?)
are most frequently used in Germany (Clausius and others), by *?) in
America (Gibbs), by %) in England (Thomson, Tait), by *) in France
(Duhem). The numbers %), 8) refer to Helmholtz and Massiew respectively.

Name' , Symbol N(?t‘;l:::ns Formulae
Volume . . ............ V v
Density . . .. ........ .. e 0= %
Pressure . . . . . ......... P
Absolute Temperature . . . . . . ™ 6, t®
Heat communicated to a system | dQY dg| dH
from without



NOTATION.

Other

Name Symbol Notations Formulae

Heat generated in the interior | dH, dh See Chapter IX,
of a system by irreversible § 117
transformation of work into
heat (where measurable)

Total heat added to body . an., dq i =dQ+dH

dq=1,dv+y,dT

Entropy . . . .. ......... SV s | o ¢¥ |dS=4dQ/T

(reversible)

External work . . ... ... .. aw dw AW =pdV

(simple system)

Intrinsic Energy . . ... .. .. UY u | & EY |dU=d4Q —aw

Available Energy or Motivity. . A

Thermodynamic Potentials. . S fo W FY, | §r=U—1T8

—HY :

%P fp C”, d)‘)y %P—'U—TS"‘PV
— H'®

s P Sg=U+pV

Generalised position-coordinates |,, «,, . . . AW =2Xdz

Corresponding force-components (X, X,,. ..

Partial differential coefficient of y (d_y) 4,y '
with respect to « with # con- dx/s dz l'
stant |

Specific heat or heat capacity | - T ]I
(generally)

Specific heat at constant volume 7o e, k, c, Po = (:_Iq).,

. 1) %78 daq

Specific heat at constant pressure ye  |CVN®, ¥p = (ﬁ)p

K, ¢
Ratio of the specific heats . . . % kY, y % -=;1
Latent heat of expansion at l M¥e¢ ly = (d_q)
xP {4 0 . Mt dv T

constant temperature

dg=9,8T+1,dr




NOTATION. X1I
T TTE——
Other
Name Symbol Notations Formulae
Latent heat of pressure variation lp ?e ly = (g—q)
at constant temperature p/'r
dg=yp,dT + lpdv
Coefficients of cubic expansion at | «p, @, oy - -'17 (;—;7)
constant pressure and constant ' rd ?
tr tivel == (2
entropy respectively o= (dZ )‘
Moduli of elasticity at constant | ep, &, Ep= — v(:—p)
temperatare and  constant v/r
entropy respectively &= —9 (%l’)
. v/
Mechanical Equivalent of heat J 1/4Y, EY
or specific heat of water in
work units
The constant in the equation of B R pv=BT o
a perfect gas
Masses of the different phases of (M', M",...
a complex (small letters for | , ~n . m
unit mass of complex) L
For a binary complex also (X and
denoted by M—X
zand 1 —2
Specific Volumes of the two | ¢, o v=xv'+(1—z)v"
Phases of a complex
Entropy, energy and potentials | Distin-
of the phases of a complex |guished by
accents in
likemanner
Equation of curve of saturation |G (p,7)=0 fo = f,"
Specific heats of the phases of | 4,9 l¢, 6", y = (_d_g
a saturated complex hyy hy) aT)e
. (ii’)
7 aT)s
where G (p,T) =0

)/l, . ’



X1V NOTATION.
Other
Name Smbol Notations Formulae
Latent heat of transformation . i ) A= (?)
z/7
Magses of the components of a (M,,M,,...
mixture (small letters for unit M,
mass of mixture)
Mgy Mp,y . . .
my
Partial potentials of the com- |wg, ps,... | daU=TdS—pdV
ponents w? + ZpdM
Tp=ZuM
In a galvanic cell the electro- E
motive force
Quantity of electricity passing e dV=TdS—Ede
through the circuit
Entropy of unit charge at any A
point of a reversible thermo-
electric network
Coefficient of Peltier Effect . . . n I, = T{ys — 23}
Specific heat of electricity ¢ — 1%

dat
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CHAPTER I
DEFINITIONS AND ELEMENTARY FACTS.

1. In this chapter, we shall give a brief outline of the more
important facts, as based on actual experience, to account for which
is the purpose of a dynamical theory of heat.

The phenomens known as heat phenomena involve the consideration
among others, of the two following concepts:

(1) The quality of a body known as temperature.

(2) The guantity of heat passing to or from a body under gwen
. conditions.

As the definitions of these concepts are best based on dynamical
considerations, we at present only assume their existence together
with such of their properties as are revealed by simple experiments.

2. Measurement of temperature. — Gas-Temperature. Any
number of bodies may be arranged in order of temperature by means
of the following property, which may be regarded as a deﬁmtmn of
equal and unequal temperatures.

When heat tends to flow from a body A to a body B, -the body A
is said to have a higher temperature than B. When no transference of
heat tends to take place, even umder conditions which render such a
tramsference possible, A and B are said to have the. same temperature.

The choice of a scale of temperature is, apart from thermo-
dynamic considerations, perfectly arbitrary. The most convenient
thermometers, or instruments for measuring temperatures within
ordinary ranges, are those in which changes of temperature are
indicated by the changes they produce in the volume of a definite
quantity of matter, usually a liquid or a a gas, subject to given external
conditions as to pressure, etc.

In physical investigations the substances most commonly employed
to define a scale of temperature are the so-called permanent gases
such as air, hydrogen, etec.

The constant-pressure gas-scale of temperature is a scale in which
temperature is taken to be numerically proportional to the correspond-

1*



4 I. DEFINITIONS AND ELEMENTARY FACTS.

ing volume occupied by a constant mass of some permanent gas,
maintained at a constant pressure. ‘

The wunit or degree of temperature is commonly defined as in
Celsius’ scale by the assumption that from the freezing to the boiling
point of water represents an interval of 100°. With this assumption
the gas-temperatures of the freezing and boiling points of water are
about 273° and 373° respectively.

The advantage of a gas-scale of temperature is that it is found
to be approzimately the same whatever be the constant pressure or
the nature of the gas employed, provided the gas is sufficiently far
from the point at which liquefaction takes place.

As, however, gases may be liquefied under the action of extreme
cold, the gas-scale does not, in itself, apart from thermodynamical
considerations, afford warranty for the statement that “the absolute
zero of temperature is — 273°C”.

3. Measurement of Quantity of Heat. In practical calorimetry
quantities of heat are measured by the quantity of a certain assumed
standard substance to which they would impart a certain definite
assumed change of temperature. The unit of heat commonly adopted
is known by the name calorie. The small calorie or gram calorie,
often called calorie, is the quantity of heat required to raise the
temperature of a gram of water through an interval of 1°C in a
definite assumed part of the thermometric scale. The interval formerly
assumed in the definition of the calorie was from 0° to 1° C, but in
certain modern investigations, a calorie defined by the temperature-
interval 141 ° to 151 ° has been adopted. The great calorie or kilogram
calorie is the quantity of heat which raises 1 kg. of water through
the same temperature-interval of 1°C, and is equal to 1000 small
calories.

4. Heating a Body. In ordinary language when we speak of
heating a body, either of two things may be meant, viz.,

(a) that the temperature of the body is being raised,
(b) that a certain quantity of heat is being imparted to the body.

This ambiguity does not usually cause confusion in every day
life, because in the majority of cases, the two operations (a) and (b)
occur simultaneously. But if a mass of gas is rapidly compressed
its temperature miay be increasing while it is at the same time giving
heat to surrounding bodies; the gas would then be being heated
according to definition (a) and cooled according to definition (b). In
thermodynamics it is therefore desirable to avoid the use of terms
such as heating or cooling a body, whenever any ambiguity can
possibly arise.




HEAT. — SIMPLE SYSTEMS. B

On the contrary, when a body is spoken of as growing hotter or
colder an increase of temperature is always implied, for the hotness
and coldness of a body are qualitative terms which can only refer
to temperature.

5. Isothermal and Adiabatic Transformations. A body is said to
undergo an isothermal transformation when its state varies in such a
way that the temperature remains constant. When the body neither
gains nor loses heat the transformation is said to be adiabatic.

6. Simple systems. The simplest kinds of systems occurring in
the study of heat are homogeneous fluids or solids subjected to no
external stresses except a uniform hydrostatic pressure. The mechanical
properties of such a substance are expressible in terms of two
quantities, namely, its pressure and volume.

The changes occurring in such systems can be expressed in
terms of one variable alone if the transformations contemplated are
either isothermal or adiabatic, and in such cases the pressure would
be a funetion of the volume. We might speak of the systems as
having one degree of mechamical freedom, but we shall prefer to call
them simple systems.

When the above restriction is removed these systems will be
seen to have at least two degrees of freedom. If a fluid receives heat
or has its temperature raised, its pressure can be varied keeping its
volume constant, or its volume may be varied keeping its pressure
constant, but no third independent variation is possible in which
both the pressure and volume remain constant and the fluid remains
homogeneous. The state of the system is therefore completely defined
by two independent variables, and any third variable is connected
with these two; thus between pressure (p), volume of unit mass' (v)
and temperature (¢) there must exist for any particular kind of matter
an equation of the form .

(1) f(p) Uy t) =0.

Another example is afforded by a stretched wire subject to
the condition that only the longitudinal tension varies, the eylindrical
surface of the wire being maintained at constant (usually atmospheric)
pressure. Here the length of the wire and its tension will be dependent
on each other in the case of an isothermal or an adiabatic trans-
formation, but will be capable of independent variation under the
influence of heating effects of a general character.

Where the number of independent variables is greater than two,
the system will be called a compound system. If the system has
n degrees of mechanical freedom for isothermal or adiabatic trans-
formations, the total number of variables will be at least » 4 1.
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7. Use of capital and small letters. In dealing with the properties
of homogeneous substances, there are certain quantities, such as the
volume, which are proportional to the mass of the substance, and others
which are independent of the mass. In designating the former class of
quantities we shall use capital letters when they refer to the whole
_ body, and small letters when they refer to the unit of mass. Thus
taking the case of volumes, if m is the mass, the whole volume will
be called ¥, and the volume of unit mass v, and the relation connec-
ting all such pairs of quantities will be of the form V = mo.

8. Indicator diagrams. If the pressure p and volume v of a simple
substance be taken as coordinates of a point in a plane, then any
continuous variation of the state of the substance will be represented
by a curve described by the point (v, p). The curves corresponding
to isothermal and adiabatic transformations will be called isothermal

and adiabatic curves. Any diagram
Py . . R
drawn in this way will be called an
(BY,)  indicator diagram.
Taking the pressure p and fofal
volume V as coordinates we observe
(BY, that since the work donme in any

N expansion is f pdV it is measured by

I
N
E the area contained by the arc of the
0 3, curve in the (¥, p) plane and the two
Fig. 1. bounding ordinates to the axis of V.

9. Cycle. When a system starts from a given state and returns
to the same state by passing through a different series of intermediate
P states it is said to perform a cycle or
undergo a cyclic transformation. For a
cyclic transformation of a simple system
the indicator diagram will be a closed
curve in the (7, p) plane, and the total
work done by the body, measured by

/ the integral ( f ) pdV will be repre-
sented by the area of the closed curve
0. ~ 17_ described.
Fig. 2. If the axis of p makes with the
axis of 7 an angle 90° in the counter-
clockwise direction this work is evidently positive when the curve is
described in the clockwise direction.
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The sign ( f ) is used to denote an integral taken round a cycle.

[For a system with two degrees of mechanical freedom, the state
could be defined by the coordinates of a point in three dimensional
space, and a cycle would be represented by a closed curve in space,
but the work done would not admit of such a simple geometric
representation. For a larger number of degrees of freedom even this
geometrical representation would be impossible.]

10. The Boyle-Mariotte Law for Gases. The equation of the
isothermals of gases was first investigated by Boyle in England and
Mariotte in France. The relation obtained by them, which is now
known to be approximately satisfied by the majority of gases except
near the point of liquefaction is implied in the statement that

When the temperature of a gas s constant the volume varies
inversely as the Ppressure.

This statement is known as Boyle’s Law or the Boyle Mariotte

Law. According to. this law the equa.tlon of the isothermals of a
gas takes the form

pv = constant

and every isothermal curve is a rectangular hyperbd]a

If ¢ be the gas-temperature as defined in § 2 it follows that in
general

@) ' pv =Rt
where R is constant.

According to Van der Waals a better approximation to the iso-
thermals is given by

3 ‘ (p + 5) (v — b) = constant

where @, b are small constants. To this order of approximation the
relation between pressure, volume, and temperature cannot be con-
veniently expressed in terms of gas- temperature as defined m § 2.
But if the right hand side of (3) is put equal to Rt', where R is
a constant, the quantity ¢’ will give a measure of temperatare which
is mdependent of the substance chosen to a higher order of approxi-
mation than the gas- temperature defined by § 2.

1. Thermal Coefficients. — Specific Heat. The coefficients defined
below express the ratios of the small changes in the physical properties
of simple systems on the assumption that no internal friction, Viscositys
or resistances of a similar character exist in the system, ‘“}d ng
chemical changes take place during the transformations considered
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The term specific heat, or as it might better be called, specific heat-
capacity is used generally to denote the ratio of the quantity of heat
given to a unit mass of any substance to the increase of temperature
which it produces. As, however, this ratio may vary with the tempe-
rature, a precise definition of specific heat-capacity in any state is
given by the differential coefficient
d 1d
r=% o ww

where an infinitesimal increase of temperature d¢ réquires the addition
of a quantity of heat dg to a unit mass or dQ to a mass m of the
substance.

The whole capacity of the body for heat will be represented by

r=2¢

dt

Moreover, as changes of temperature produced by the addition
of heat usually involve other changes in the physical state of a body,
it is necessary to distinguish different kinds of specific heat. In the
- simplest case of a fluid or & solid subjected only to uniform external
. pressure, two kinds of specific heat are distinguished according to
whether the pressure p or volume v is kept constant.

Takmg for example a unit mass; the speclﬁc heat at constant
volume v is defined by

_9
Vo=
subject to the condition v = const.
The notation
@9 or %Y y
azx/s dx

is commonly used in thermodynamics to denote the differential coeffi-
cient of a variable y with respect to a second variable z when a
third variable # is kept constant. With this notation the specific heat
at constant volume is defined by

: dq a9
@ ro= (), o
Similarly the specific heat at comstant pressure is defined by

dq
®) = (dt)
The ratio of the specific heats is a quantity frequently occurring
in physics, and will be represented by x so that
® 5= 2.

0
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12. Latent Heats of Expansion. The latent heat: of expansion of
a simple substance at constant temperature is the ratio of the heat
communicated to a unit mass of the substance to the increase of
volume if the temperature remain constant; in other words, it is
given by

O b —(E)

S1mxlarly the- latent heat of pressure-variation at constant tempe-

rature is given by
. dq

®) lp= (dp)
and we notice that for a given small change, which must be iso-
thermal, dq is the same in both expressions, and the relation between
dp and dv is determined by the isothermal equation of the substance,
so that

(9) =1 (%)t, ?’ =l (gip):

_ The latent heats here referred to must not be confused with

the latent heat of transformation connected with the passage of a
substance ffom the solid to the liquid or from the liquid to the
gaseous phase.

13. The Coefficient of Cubic Expansion a¢ constant pressure p is the
ratio of the increase of volume, expressed as a fraction of the total
original volume, to the increase of temperature; in other words it is
given by

o em ),

14. The Modulus o*]astlclty at constant temperature is given in
like manner by y.
-

oy R T

The reciprocal of this is ca.lled the compressibility, and calling

it B; we have
a v
(11a) ﬁ,=——(——)

dp

There is also a coefficient of cubic expansion and a modulus of
elasticity for adiabatic transformatlons, these being defined respectively by

(12) W=t (@) am—7(2), -

the suffix s denoting that in differentiation the variations must correspond
be an adiabatic transformation. These coefficients are also often
called the isentropic coefficient of expansion and modulus of elasticity.
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15. Changes of phase. The passage of a substance such as water at
ordinary atmospheric pressure from the solid to the liquid or from
the liquid to the gaseous state affords an example of a general class
of phenomena known as changes of phase. If the pressure be kept
constant, such a change takes place at a certain temperature called
the temperature of tramsformation or temperature of equilibrium; thus
the boiling point of water is the temperature of transformation from
the liquid to the gaseous state at normal atmospheric pressure.

If the temperature is given the change takes place at a certain
pressure called the equilibrium pressure; in the case of transition
from the liquid to the gaseous state this pressure is also known as
the vapour pressure corresponding to the given temperature.

The different states are particular cases of what are known
as different phases of the same substance, and the change from
one phase to the other is discontinuous, the substance passing
through no continuous series of intermediate states. The quantities
of the substance existing in the given phases usually vary continuously
during the process of transformation, and the two phases may be
maintained in equilibrium with each other for an indefinite time at
any temperature and pressure at which transformation takes place.

_Thus, let water and steam be in equilibrium in a cylinder with
a moveable piston kept at constant temperature. If the volume be
increased, a portion of the water will be converted into vapour until
the pressure is the same as before, and the phases will then be
remain in equilibrium; if the volume be reduced, the reverse will
take place.

A system in which two or more phases are in equilibrium is
called a saturated complex of the phases. The name mixture is also
commonly applied to such a system, but it is better to apply this
name exclusively to homogencous systems in which various substances
or phases are really mixed, instead of the heterogeneous systems in
which the phases are separate and distinct.

From the above explanation it follows that a saturated complex
of two phases of a single substance can only exist when the pressure p
and temperature ¢ are connected by a certain definite relation, say

(13) G (p,0)=0.

The curve which represents this equation in terms of p, ¢ as
coordinates is called the curve of saturation.

In the passage of a substance from one phase to another a
certain quantity of heat is given out or absorbed. The quantity  of
heat A required to transform a unit of mass of the substance from
one phase to the other is-called the Latent Heat of Transformation or
specific heat of reaction (called by Zeuner the “Wirmeinhalt” of the
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process). If heat is absorbed the substance is said to pass from a
lower to a higher phase and conversely.

The specific volumes of the phases are the volumes of a umt
mass of the substance in these phases, and will be denoted by '
~and ¢ in the case where there are only two phases.

16. Relation between the latent heat of tramsformation and the
latent heat of expansion of the complex. We shall now prove the
very important relation

A

14 : A

v — 0"
connecting the latent heat of expansion of the complex at comstant
temperature with the latent heat of transformation.

Suppose a quantity dm of the substance to pass from the
phase ¢" to the phase ¢/, the temperature being kept constant. The
quantity of heat d@ absorbed is 2dm while the total increase of
volume is AV = (v' —¢")dm. Hence

@) 7o

By taking the total mass of the complex to be unity it is easily
seen that the left hand member is equal to (g%)t: which is the quantity
defined as the latent heat of expansion of the complex, or 7,. (§12.)

17. The Specific Heats of the hfgher and lower ephases in the

state of saturation are the quantities 3/, g defined by

: aq' n_aq"

‘- Y=g ¥ =G e
where dq/, d¢" are the quantities of heat required to raise a unit
mass of the substances in the two phases respectively through a
temperature difference d¢, when the pressure varies in such a way
that the phases continue in equilibrium (i. e. when the changes of
pressure and temperature take place in accordance with the equation
- G(p,t)=0). We may thus write our definitions

. daq' daq"

1) . 7=(at)e 7= (3e)s

18. The Triple Point. When a substance is capable of existing in
three different phases there exist generally a unique temperature and
pressure at which all three phases can be in equilibrium with each other.
This temperature and pressure define what is known as a triple point.

Thus for water the temperature of the triple point is 0.0074° C
and the pressure is 0.00614 atmospheres. At this temperature and
pressure ice, water, and vapour can coexist in equilibrinm with each
other.
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19. Other examplés of phase equilibrium. In sulphur we have an
example of a substance of which two phases, both solid, (monoclinic
and rhomboidal) can coexist in equilibrinm with each other, if the
temperature and pressure are connected by a certain relation.

As an example of phase equilibrium :in which more than one
substance is concerned, we may take a saturated solution of any salt
in presence of und1ssolved salt, - and vapour of the solvent. The
solvent may -or may not occur in all three phases, in the vapour, in
the solution, and in the undissolved salt in the form of water of
crystallisation, similarly the salt may or may not occur in all the
three phases, since, if volatile, its vapour may be mixed w1th the
vapour of the solvent.

20. The Critical Point. When a gas is condensed by increase of
pressure at constant temperature it becomes changed into liquid at a
certain pressure provided that the temperature does not exceed a
certain limit. If the temperature is greater than this limit, no sudden
change takes place. This property was first discovered by Cagniard
de la Tour in 1822 and studied by Andrews for carbon dioxide (CO,).
The limiting temperature at which the distinction between the liquid
and gaseous phases vanishes is called the critical temperature, and the
corresponding limiting value of the pressure of liquefaction is the
critical presstre.

If the ekistence of a cri!ical point be assumed, it is always
possible to transform a subsgance from one phase to the other by a
continuous series of transformations by suitably heating 1t above the
critical temperature during the process.

21, Point of Maximum Density. When water is cooled at constant
atmosphenc pressure its volume decreases till a temperature of about
49 C is reached, but any farther diminution of temperature causes it
to expand, a further expansion accompanying the process of freezing.
The temperature at which contraction changes to expansion is called
the temperature of maximum density.

The specific volume is then a minimum for variations in which
the pressure remains constant so that

(19) (a),0 = (5),>0
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CHAPTER II |
CLASSICAL TREATMENT OF THE FIRST AND SECOND LAWS.

22. Equivalence of Heat and Work. Till the end of .the 18%®
century it was commonly believed that heat was a substance, which
was called caloric, igneous fluid, or Phlogiston, although there are
to be found attempts at a kinetic theory, according to which heat
is attributed to molecular motion, in the wntmgs of Hooke, Descamtes
Locke and others.

- In 1798 Count Rumford described experiments at Munich on the
heat produced by the boring of cannon; finding. that the thermal
capacity of the borings was the same as that of the metal of which
the cannon were made, he inferred that the heat was not taken from
the borings and therefore could not be a material substance, and he
was thus led to believe that heat was nothing else than motion.
About the same time Davy produced heat by rubbing two pieces of
ice together and melting them, although the thermal capacity of
water was greater than that of ice. The new view received so little
support, however, that Fourier in his Théorie de la chaleur (1822)
still held to the materialistic view regarding the nature of heat.

The first determinations of a numerical relation between quantity
of work and quantity of heat were published by Robert Mayer, of
Heilbronn in May 1842, and by James Brescott Joule of Manchester
in August 1843.

Among the various experiments performed by these writers we
may quote Joule’s well known determinations of the heating effects
produced by the friction of fluids. A quantity of water in a closed
vessel was agitated by a rotating paddle set in motion by. a falling
weight, and Joule thus determined the work-quantity required to
raise the temperaturex of the water by a given amount. Other
experiments were made by Mayer and Joule on the heat produced
by the compression of gases, and later experiments have been made
on the heating effects produced by electric currents, as well as by
various other methods.

The agreement between the results obtained by these different
methods is as close as could be expected when errors of experiment
are taken into account, and we are thus led to the so-called Principle
of Equwvalence, First Law of Thermodynamics, or Mayer-Joule
Principle according to which:

When heat is tramsformed into work or comversely work is trams-
formed into heat, the quantity of heat gained or lost is proportional to
the quantity of work lost or gained.
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23. The AbS(t)lute Unit of Heat. Just as Newton’s Laws of
motion afford an absolute quantitative measure of force, so the First
" Law of Thermodynamics gives us an absolute measure of quantity

of heat. The dynamical or absolute unit of heat (introduced by
Rankine) is that quantity of heat which is the equivalent of a unit

of work. In the C.G.S. system of units the dynamical mnit of heat |

is therefore the erg. This unit of heat will always be used in
future in the present work unless the contrary is stated.

The so-called mechanical equivalent of a given wunit of heat is
the number of units of work that mmnst be transformed into heat in
order to produce that unit of heat or its equivalent effect. Its value
depends on.the units adopted for the measurement of work and heat
respectively, and it is commonly denoted by the letter £ or J. From
the experiments of Joule, Hirn, and others it is found that if heat be
measured in small calories and work in ergs, J is equal to about 4.18 >< 107,

If heat be measured in dynamical units the mechanical equivalent
becomes equal to unity, and the equations of thermodynamics assume
a simpler and more symmetrical form.

It is to be observed that from this stand-point the measurements
of the mechanical equivalent of a calorie assume a new meaning.
For from the definition of a calorie it follows that its mechanical
equivalent is the number of work units of heat required to heat the
unit of mass (a gramme) of water through 1° and this number
therefore now represents the specific heat of water.

24. Conservation or non-conservation of heat. While the principle
of conservation of energy shows that the total emergy gained by a
body is equal to the energy supplied from without in the form of
work or heat, (or any other form~of energy which may exist), properly
the fact that energy supplied in the form of work can be withdrawn
in the form of heat, and that under certain limitations the reverse
process is possible, illustrates the fact that no’definite portion of the
energy of a body can be called work and heat respectively, and we
shall never in Thermodynamics speak of a body as containing a
definite quantity of heat.

. There are however a great many ordinary phenomena to which
the old caloric hypothesis is perfectly applicable, and it is so common
to think of a body as containing so much heat that we must examine
why such ideas, though thermodynamically- erroneous, lead in many
cagses to consistent results by simplified methods.

If energy only passes to and from bodies in the form of heat,
the caloric hypothesis will of course give perfectly correct results,
and there will be no error arising from speaking of the total energy
of a body as the quantity of heat contained in it.
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Now this is approximately true in dealing with ordinary solid
or liquid bodies at atmospheric pressure, owing to their small coeffi-
cients .of expansion and large specific heats.

For example, if one gram of water is heated from O°C to 100°C
at atmospheric pressure, its volume increases from 1 to 1.045c.c.
and the work done in expansion, if this pressure is 10,000 dynes per
square centlmetre, is 460 ergs, or only about 0.0000001 of the energy
required to raise the temperature of the gram of water by 1°C
(taking 4.18 >< 107 as the value of the specific heat J). This
exempliﬁes the fact that in bodies other than gases the work of
expansion is usually negligible in comparison "with the energy required
to produce measurable changes of temperature.

Thus the somewhat vague term “quantity of heat contained in
a body” in common use probably means in many cases the same as
the more precise thermodynamical term “intrinsic energy”. But the
word heat is used in such a vague way to demote temperature,
quantity of heat, or indeed mere coefficients of thermal capacity
such as latent heat and specific heat, that it has ceased to have any
precise meaning. '

25. The Second Law. While any quantity of work can be
transformed into heat by friction or otherwise, it is generally im-
possible to transform the whole of the heat again into work, and
the former transformation is for this reason said to be drreversible.

As an instance of this property we have the common steam engine,

in which part of the heat produced by the combustion of the coal
is carried off by the escaping steam, or is absorbed by the condenser
in a condensing engine, and this portion of heat is not transformed
into work.

The exact law determining the mazimum quantity of heat which
can be converted into work by any machine depends on a principle
which was first enunciated on the materialistic view of heat by Sadi
Carnot in 1824, and was discussed from the same stand point by

- Clapeyron in 1834. Its correct form and significance for the
dynamical theory of heat were made clear by Clausius in a paper of
1850 and by Lord Kelvin in a paper of 1851.

The principle thus discovered is known as the Principle of Carnot-
Clausius or the Second Law of Thermodynamics,-and it is virtually
contained in the following axiom: '

Heat cannot pass from a colder to a warmer body without some
compensating tramsformation taking place.

26. Carnot’s Cycle. If we have two bodies H and K maintained at
constant unequal temperatures ¢, and ¢, (t, > f,), an indefinite amount
of work may be obtained from them by means of a third intermediate

£b )a"ﬁ
7] 1V "

e

S
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body S, by causing this body to undergo a series of cyclic trans-
formations of the kind known as Carnot’s cycle. We shall call H
the source, K the refrigerator, and S the working substance. This
latter may be taken to be, e. g., a mass of gas contained in a cylinder
furnished with a piston, and it must be capable of being brought
into thermal contact with either H or K. The process consists of
four parts.

(1) The system S starts at tempemture t, and is brought,
without gain or loss of heat, to temperature ¢, by suitable external
mechanical actions (e. g. compression). !

(2) The system S is placed in thermal contact with the source H
and receives from it a certain quantity of heat @, while its temperature
remains constant and equal to ¢,

(3) The temperature of the body is allowed to fall to ¢, (by
expansion) without its receiving or parting with heat.

(4) The system is brought into contact with the cooler K and
its state is allowed to change until the initial state (i.e. the same
volume as at the commencement) has been obtained. In this
process a certain quantity of heat
@, 18 given to the cooler.

If S is a simple system, charac-
terized by the variables p, ¥V (§ 6)
the cycle will be represented geo-
metrically by a curvilinear quadri-
lateral ABCD. In the first process
the characteristic point will describe

/%

LT an adiabatic line A B, in the second '
(N D an isothermal line BC, in the third
N an adiabatic line CD, and in the
0 “V* fourth an isothermal line DA,
' Fig. 8. The work W done in the cycle

is represented by the curvilinear area
ABCD, and by the Mayer-Joule Principle it is equal to the lost
heat @, — @, expressed in dynamical units.

Carnot’s cycle is perfectly reversible. 1f we imagine the characteristic
point to describe the same quadrilateral in the order ADCBA, we |
shall have a cyclic process in which the system (1) receives @, at |
temperature ¢, from the cooler, (2) undergoes adiabatic changes till
its temperature is ¢, (3) imparts @, at temperature #, to the source, ‘
and (4) is brought back to its initial state by an adiabatic trans-
formation which reduces its temperature to i,. !

In this case a quantity of work @, — @, is converted into heat,
the area encircled by the representative point in describing the quadri-
lateral being negative. |
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Carnot’s cycle is the only perfectly reversible process by which
work can be derived indefinitely from a single source and refrigerator
maintained at given constant temperatures. If, owing to imperfect
thermal contact such as occurs in practice, a difference of temperature
occurs between the working substance and the source and refrigerator
respectively when heat passes between them, or if the intermediate
transformations are not perfectly adiabatic owing to radiation, or,
again, if the expansions and contractions of the intermediary system S
are retarded by friction, viscosity, or such resistances, the resulting
cycle is irreversible.

27, Efficiency of a heat engine. The efficiency of a heat engine
or motor is defined to be the ratio of the quantity of work produced
to the quantity of heat absorbed from the source, and hence if @, and
@, are the quantities of heat absorbed from the source and given to
the refrigerator, expressed in work units, the work dome is @, — @,

and the efficiency is [l S ¥

From the Clausius axiom we now deduce the following:

Of all heat motors working between given temperatures that which
is perfectly reversible has the greatest efficiency.

Let M and N be two heat motors, and if possible let N be
perfectly reversible, and let M be more efficient than N. Let the
two motors have the same source and refrigerator, and let the
motor M transform heat into work, while N, performing the reverse
cycle, transforms this work back into heat. Then since M is
more efficient than N, the quantity of heat absorbed from the source
by M is less than the quantity which N would have to absorb to
perform the same amount of work, and is therefore less than the
quantity of heat N gives to the source when N performs the reverse
transformation. Hence the source receives more heat than it loses,
and since no work is performed on the whole, this heat must be
taken from the refrigerator. Thus heat passes from a colder body
(the refrigerator) to a hotter body (the source) without work being
absorbed. But this is contrary to Clausius’ axiom. Therefore M
cannot be more efficient than N. By similar reasoning we may also
show that all reversible motors working between the same temperatures
have the same efficiency. '

It follows that the efficiency 1 — & of every such reversible

transformation between temperatures ¢, and t; is the same; this
efficiency must therefore be a function of the temperatures only.

Hence @’- is a function of ¢, and ¢, only and therefore we may write
1

(17) o= flty )

. 2
BRYAN, Thermodynamics. 2
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Now suppose, instead of a single cycle, we take two working
substances S; and S,;, one performing a cycle between the temperatures
t, and %, and the other performing a cycle between ¢, and %, so that

B the heat ¢, given out by S, at tem-
perature f, is. absorbed by S, at that
temperature. This combinations of
two cycles is represented graphically
by a figure like Fig. 4, and since
its only ultimate effect is to take a
quantity of heat @, from the source
at temperature ¢, and give a quantity
of heat @; out to the refrigerator
at 4; its efficiency must be equivalent
to that of a single
cycle acting bet-
ween #, and .

Thus

“‘ = f (tv tz);
: % =f (tzr ts)’

0 v

‘ Fig. 4. @— f (tv ts)

and therefore for all values of t, &, and %,

f (tu ts) =f (tn tz) - f (tsn ts)'
Hence

faty) ¢
(18) . ) f(tv ts) = Flt, ) :

Now let #; be put equal to a constant C while ¢, and #, are
left variable. Under these conditions the constant temperature ty
may be omitted from the expressions f(f,t,) and f(t,, %), and these
expressions may be written ¢(f,) and @(%) respectively, that is

@ _ ()
(19) Q0 f(tl: t,) = o)

28. Absolute Temperature. The form of the function ¢(f) will
depend on the scale of measurement of temperature intervals. We may
therefore chose this scale so that ¢(¢) is proportional to the temperature
T, or ¢(t) =%kT, where k is constant. If this assumption be made,
T is said to be the absolute temperature, and the equation gived

(20) : Ql — fl Q! —_ T!' Ql

@& I, @ .9 Ts
Hence we have the following deﬁmtlon
The absolute temperature is a quantity defined by the property
that the absolute temperatures of two bodies are proportional to the
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quantities of heat lost by ome and gained by the other in a perfectly
reversible cyclic transformation in which the bodies play the -part of
source and refrigerator.

The wunit absolute temperature still remains undetermined, and
for this the degree Celsius is usually taken, so that the dlﬂ'erence of
absolute temperature between the freezing point and boiling point of
water becomes equal to 100 degrees. Under this assumption it is
found from experiment that the absolute temperatures of the freezin
and boiling points of water respectively are proportional to 273 and
373, hence these temperatures must be called 273 and 373 degrees
approximately. In this sense it is commonly said in experimental
treatises on heat that the temperature of the absolute zero is — 273°C.

The gas-scale of temperature is very approximately but not
actually identical with the absolute scale, as will be seen later.

29, Carnot’'s Funetion is a quantity p such that the efficiency of
a reversible engine between temperatures { and ¢ -—- d¢ when 07 is -

mﬁmteslma.l is pdt. It therefore equals Z ((t)) of equation (19) or
equals = if T is in absolute units. . '

In the earlier writings of Carnot, Clapeyron, Thomson, Tait,
and Rankine, a different method was employed. Consider the limiting

case of Carnot’s cycle when the area ABCD becomes an infinitesimal
parallelogram, the iso- 5|

thermals 4 D, C B corre-
sponding to tempera- '
tures ¢, t — d¢, and the Q
heat taken from the
source being 6Q. Let [, ¥ c
be the latent heat of

. 4
expansion at tempera-
ture T, so that [,V is
the quantity of heat
required to increase the
volume of the working
substance by dV at
constant temperatuxe £. 0@ P /]
Then Fig. 5.

work done in complete cycle = area 4 BCD —= area FBCE (Fig: 5)
= BF- PQ.

. 3Q
Now BF = )vdt where v is kept constant in ( »and PQ = 1
whence

Tr-67

work of the cycle = Qp ;0T 7~ Q

2ll
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But this by definition equals g0 7d¢Q. Hence

(21) 72— ui.
By the Second Law p is a function of ¢{. If the temperature 7 'be
absolute, p = % and (21) becomes ‘

. . op 1 0
(22) sm= ot a——hg 7= b

This resylt will be obtained later by analytical methods. 3
|

30. Lord Kelvin's “First Scale” of Absolute Temperature. Before
the present scale of absolute temperature had been introduced, Lord
Kelvin, in 1848, suggested a scale based on the assumption that
w=1. If & is the temperature on such a scale we obtain

" d® = pdt (referred to any arbitrary scale)®
= TT (referred to the present absolute scale)

whence (23) & = lognat T + const.

The temperature on the “first scale”, & is therefore equal to
the logarithm of the absolute temperature plus an arbitrary constant.
This scale will be found to  possess the following pecuhanties

(1) The “absolute zero” of the ordinary scale is represented by
& = — oo.

(2) The mdetermmateness of the unit of a.bsolute temperature is
represented on this “first scale” by an indeterminateness in the
position of the zero, which indeterminateness is introduced above in
the constant of integration. Obviously if we take this constant to
be zero (as we naturally should) & = 0 when T = 1.

(3) The temperature 7' has been stated above (§ 28) to be
approximately proportional to the volume v of a unit mass of gas at
constant pressure. To this degree of approximation,

& = logv + const,,

whence ‘1
v
(24) > (GB),- L
The left hand side is defined (§ 13) to be the coefficient of cubical

expansion of the gas. Hence on the “first scale” the coefficient of
cubical expansion of any gas would be approximately equal to unity.

CHAPTER IIL
TRANSFORMATION OF THERMAL COEFFICIENTS.
3l. Formulae which are independent of thermodynamie hypo-

theses. The various coefficients defined in Chapter I are not all
independent, but are subject to certain relations. Some of these
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- relations are independent of the First and Second Laws of thermo-
dynamics, and it is therefore desirable to deduce them outside
the portion of this work which deals with the principles of thermo-
dynamics proper. They may be described in reference to this
characteristic as non-thermodynamical formulae, by which it is to
be understood that they would still be true even if the first and
second laws did not exist, provided that the existence of the concepts
heat and temperature were assumed. If the existence of temperature
be regarded as a corollary of the Second Law of Thermodynamics,
as it should be from the theoretical aspect, these formulae will be
to that extent dependent on thermodynamics. They do not assume
any hypothesis as to the equivalence of heat and work.

The conditions imposed in the definition of the thermal coefficients
of a substance, may be now more definitely expressed by the statement
that the small transformations under consideration are reversible, that
no changes occur in the chemical constitution of the system, and
that the only changes which take place are those specified in the
definitions or formulae.

32. Case of a simple system. Of the three variables p, v, ¢ any
two suffice to determine the state of a homogeneous fluid (taken
as a type of a simple system); and for each such system there is
an equation connecting these variables, of the form f(p, v, ) =0
determinable by experiment. By differentiation

fdp+ o dv + % s =o.

Hence of

(%)‘ g';. and two similar

op
whence
(25) v (3—:’)‘ (Z—;)‘= 1 and two similar
and
(26) (%), &%), GG = - 1
Again the added heat dg can be put!) in the forms

27 dq = p,dt + l,dv, . y
(28) dq = ppdt + lydp o

according to whether £ and v or £ and p are independent variables,
Y9y Vp bsy lp being the specific and latent heats defined in §§ 11, 12.
Eliminating d¢ from these two equations we obtain

1) It is here assumed that no “irreversible conversion of work into heat”
or other irreversible process is occurring in the interior of the-substance.



22 III. TRANSFORMATION OF THERMAL COEFFICIENTS.

_ ypl dv—y, ll,dp
(29) dg =+ —
so that if p and v are taken as independent variables and if
(30) " dgq=Mdv+ Ndp

the coefficients M and N are not new quantxtles but are given .in
terms of the previous ones by the expressions

i
@1) , M=-——’“ ,

Agam changing the mdependent vanables from v, t to p, ¢t in
(27) we obtain ‘ P
, dg = podt +1, {mdt+%dp}

and comparing with (28) '
0
(32) Vo=t gy b= z,,ap
The reverse transformation of (28) leads to
0 0
(33) C r=mt b L=l

In virtue of (25, 26) the two last relations are 1mmedla,tely
deducible from the previous two.

33. For an adiabatic transformation, dg = 0, giving
dv=—""at, dp=—"ras
v P

whence denoting the corresponding differential coefficients by suffix s

o dp _ YP lv — YP dp
(34) @)= 7= @)
and therefore with the notation of § 14,
&g 7
(35) 'S—T = i =%

i. e the moduli of elasticity for adiabatic and isothermal transformations
are in the ratio of the specific heats at constant pressure and volume.
Again we have such formulae as

I 1
oo (@ m ),

34. Generalisation for any number of variables. The above results
depend on the fact that if we have two independent variables the
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relations between the small variations in any quantities dependent on
them can be expressed in terms of the partial differential coefficients
of these variables. Thus, taking v and ¢ as the independent variables
above, the relations between the differentials d @, dp, dv, dt are all

expressible in terms of the partial differential coefficients 9_5’ 381: ’

88(2’ 332, of which the two last are denoted by /, and Vo-

The general formulae of which these are particular consequences
may be worked out as follows,

Let a system be defined by » independent variables, or coordinates
Xy, Xy, ...%n, the “state of the system” being known when definite
values are assigned to these variables.

Let dy,, dy,, ... dy, be variations in certain other quantities
associated with the system, these variations being completely determined
when the values of z,, 2, . .. 2, and their variations dz,, da,, ... dz,
are known. The quantities dy,, dys, ... dy, need not be the perfect
differentials of actual functions Y1y Y25 - - Ym of the coordinates (for
instance d@ in thermodynamics is not the perfect dlﬁ'erentm.l of a
function @ of the coordinates).

In defining any differential coefficient say dy, 1t is necessary
that » — 1 variables shall be kept constant. The ordinary partial
differential coefficients g—g: are defined by the condition that the
remaining # — 1 independent variables x,, 23, ... 2, are constant, but
it is also possible to -calculate Zi on the.supposition that dy,,

dYs, : .. dy, vanish (if there are » or more y’s), or again on the
supposition that some of the dy and some of the dz differentials,
n — 1 altogether in number vanish.

If r — 1 of the differentials dy,, ... dy. are put equal to zero,
then # — r — 1 of the variables z,, 2,, ... , must be made constant
and the general type of differential coefficient will be

(32)
d-‘l?l Yas Yss oo Yps Tp g1 - %

We have the following equations

dy, — %d 2, + ay' day + -+ - da,

0= ay’ al.vv1 +352 o9, dxz ++3 ay’ dx,

oy,
oz,

0———-dxl+ay’dx2+-~-+ dz,.
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Employing the notation of functional determinants we obtain on
elimination

0(Ya+ Yss -+ - 9,) (Y11 Y3+ Yso -+ - Yy)

yla(x,, Ty, .. @) dxla(z,,x,,m,, L)
or
?(yn Ysr- - Y,)
dy, O(%ys Ty - - - T,)
i a4, _—_N T )
(3 ) (dwl)y,, Yoo Up " Fpp 1 ee - Ty 3(3/, . y,,)
a(z, .. ,)

and the value of 4% dy, L subject to the same equations of comdition is
evidently the reciprocal of this.

We may also have to find such differential coefﬁclents as 25

a . dx,
or d_zl ubject to » — 1 equations of condition.
]
Let ! be required on the hypothesis that y,, Ys - Yr are
constant and Trgs - .. Tn constant, then we obtain
?(y:' Yss o oo yL)
(dz, a(x,,m,, D)
(38) (dx,)y,, Yay oo Ypy r’.+1 e Ty 9(y,, Ysy - - - yr)
3(@1,::,, e a:)
Again if ’;‘ be required on the hypothesis that y,, y,, ... ¥,
2
are kept constant and z,, x4, ... 2, constant we get
(Y1 Yss Yar - - - Yy)
dy, 0(@y, T, 24, - - - T,
39 ==t - .
( ) (dy!)"h Yo Yo -+ - Yry ’r+1 ey a(yh ysl yﬁ cre yr)

0 (%ys Tys Ty - - - T,)

34a. Case of two independent variables. The case where there
are only two independent variables &, % and several dependent variables
z, Y, 2... 18 of so0 frequent occurrence in the thermodynamics of
mmple systems, that we give below the necessary formulae of trans-
formation for this particular case:

(40a) ("") - _ 2=
| (a-g-) Z
(40D) (@) =(7£7 %
dx 3nax
s R

)

o]
g
8

)|
o
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oz, y) OJxdy Oxzdy

dx 1 3(& n _0§dn 0noé
(40d) (a‘g)ﬁ ( gg) 5y 5 .
dz/y o1 on
o(x, 2) dxdz Ox0dz
d 1 0(&, 9Edn 0nok
(40e) (d_:)'= §,m) _dEdn n 0§

Of these the first three are the ordinary formulae of the diffe-

rential caleculus, and the fifth can be obtained from the fourth by

dividing ( E) by (Z—é—/)’ The fourth is proved geometrically in most

books on thermodynamics as follows.
Let £={(z, ), n=@(2, y), and consider the carvilinear parallelo-
gram ABCD bounded by the curves :

f(x; ?/)=g, f(xy ?/)=E+d§, (P(a:, y)=1), q;(x, !/)=‘72+d7].

If the coordinates of

4, B, C, D are (z,Yy,) (%39,)
(23Ys) (#,y,) we have

(?) = 0@w,2 0yoz 0yas
&/ s

0
xs=x1+3_::d’7:

0 0
Ty =, + ﬁd&%—a—‘;dy,

x4=x1+g;;d§

and the area of the paral-
lelogram ABCD is twice
the triangle ABD or
oz — ) (9 — %) '
— (@ — x) (% — %1)s
that is (33: oy ayax)dgdﬂ.

ok dn 0% dnq

Again if we wish to express say ( 7 g) » we notice that ( ) ag

is the length of the horizontal line AK intercepted between the

curves f(z, y) =& and f(z, y) =& + d§. Complete the parallelogram

AKLB and draw Ak perpendicular on BL.
Then

gABCD=:/AKLB=AK.Ak_( )dg( )dq

’

and comparing the two expressions for the area, (40d) follows at once.
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. . d dy dy .

By applying similar methods to (Zi_n)y’ ( 7 5) (ﬂ)z we obtain

dzy 0y_ _ (42) 0y_ _(dy) 0z_ (dy) Oz _Ozdy 0xz0y
@D (35), 55— =), 5t =~ @), 75— 55— 7% 77— 7w o

35. Other illustrations. As a further example of the mere use
of the Calculus, let us discuss the effect of variation of pressure on
the temperature of maximum density of water.

Take p and ¢ as independent, v as dependent variable. Then at
the point of maximum density

0 o?

(16) 5 77

Differentiating the first we ha.ve

=0, > 0.

atapd p+ gadt=0

as ‘the condition that the state p 4+ dp, ¢ 4 d¢ shall also be a state
of maximum density. This gives for the variations of the temperature
and pressure of maximum density the relation

0
dp ot
(42) (E?)max denu.= - 2% ’
0top
In virtue of (16), the denominator is equal to
’ d (1 0v 28,
43), vz (o8 =~ "5

where p: is the compressibility at constant temperature (§ 14) and

t
P therefore has the same sign as -

It follows that the temperature of maximum density decreases
as the pressure increases if the compressibility B, decreases as the
temperature increases, which is the case for water. Moreover by

dt

0
observing af’ and the relation between volume and temperature near

the point of maximum density, the ratio %— can be found.
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CHAPTER 1IV.

RECAPITULATION OF CERTAIN PRINCIPLES OF RATIONAL
MECHANICS.

36. Characteristics of a Rational Dynamical System. Thermo-
dynamics is a branch of physics which treats of certain properties of
the Universe which cannot be deduced from the principles of Rational
Mechanics without some further assumption.

Before enunciating the fundamental axioms which may be regarded
as the definitions of a thermodynamical system, it is necessary to
recapitulate briefly the properties which characterise the .systems
usually considered in Rational Mechanics. (Holonomic systems.)

Whatever views be held as to the best axioms to take as the
foundations of dynamics we may say, for the purposes of our enquiry
that a rational dynamical system is defined by the Hamiltonian system
of differential equations

dg, oU 4, 20 _ p
dat T 0p,) dt dg, "
In these equations: :
(1) The only independent variable is the time ¢.
(2) There are any number (say ) of dependent variables ¢, called
the position coordinates and an equal number of dependent variables
p- the generalised momenta or impulse coordinates of the system.
The state of the system is said to be defined when the values of ¢-
and the 2x variables ¢, ... p,... are known.

(3) The expression U, which is called the energy of the system
is a known function of the dependent variables p, ... ¢, ....

This function is of the form U= L + ¥V where L is a homo-
geneous quadratic function of the impulse coordinates p,, and V is
independent of these coordinates. L is the kinetic energy and V
the potential energy of the system. Both the coefficients in L and ¥V
may in general involve the position-coordinates ¢, in any form
whatever, and the particular system under consideration is characterised
by the particular forms of the functions L and V.

(44)
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(4) The quantities P,, called the generalised force coordinates are
usually functions of the quantities by which the state of the system
is defined, according to the nature of the problem. When the
quantities P, ... vanish, the system is said to be isolated.

(5) The principle of action and reaction may be regarded as
embodied in the statement that every non- -isolated system is part of
a larger isolated system.

The external forces P, acting on any finite portion S of the
universe being due to actions and reactions between this portion and
neighbouring portions, must be derivable from the mutual energy
of these portions and S, and by extending the system so as to
include all those bodies which exert actions on S, the forces P, will
be eliminated just as the mutual actions and reactions of the particles
of a rigid body are eliminated in forming the equations of motion by
D’ Alembert’s Principle.

37. Dynamical and granular theories of the Universe. By a
proper choice of coordinates many typical phenomena may easily be
brought under the scheme of the last article. We may instance the
electric and magnetic phenomena occurring in a system of bodies
"which are either perfect conductors or perfect insulators, and in
which no magnetic hysteresis occurs.

If it be possible to bring all physical phenomena under this
scheme, then we have a dynamical theory of the Universe.

A further simplification occurs if it be possible to reduce the
system to a collection of isolated mass-points, devoid of rotatory
inertia, moving in accordance with Newton’s Laws, and attracting or
repelling each other with forces which are continuous or discontinuous
functions of the distance between them. A medium formed of such
mass-points might be called a Newtonian or granular medium. The
medium considered by Prof. Osborne Reynolds') is of this character.
It will be seen that for such a medium, taking z,, y,, 2, to be the
coordinates of a grain and &, 7,, { the corresponding impulse
coordinates, the expressions for the energy must assume the forms

£ +m +¢,?

b
2m,

L=2X

V=3XF,, { [@—z)*+ (yr— y) + (& — z.)’ﬁ}

and if further the grains are to be alike in all respects m, must be
the same for all grains, and the function F,. the same for all pairs
- of grains.

1) Scientific Papers vol. I1I.
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38. The Principle of the Conservation of Emergy. Now every
system included within the scheme of § 36 obeys two fundamental
laws, which are known as the Principles of Comservation of Energy,
and Reversibility.

To obtain the former, comsider an isolated system, satisfying
the equations

dg, U dp, ouU
at T 0p, at ~ 9,
1 dg dp .

Multiplying the former by —="; the latter by ——="» and summing
for the different variables we have

oU 4p,  9U 44, . dU
Z(aT,W+EW)=O’ ie =0
whence
(45) U = const.

If the system is not isolated we have

oU 4p, | 39U dq,-) dg,
2(@ at tog @) T EPg =0

which when integrated gives

(46) U—U,+ 2 f P.dg,=0

or the gain of energy U, — U, in any time interval is equal to the
external work — X f P,dq, done on the system.

39. Localisation of Energy. The property, that the equations of
motion of different parts of the universe (e. g. different bodies), which
are not completely isolated, can be worked out independently of the
rest by equations of the above form involving the introduction of the
notion of “impressed forces”, depends on the fact that the coordinates
of an isolated system can often be divided into groups corresponding
in general to different bodies, 4, B, C of the system, but not excluding
from the investigation different portions of the ether when such are
taken into account, these groups being usually characterised by the
following properties:

(1) The kinetic energy usually takes the form

47) T=T44 T+ T¢

where 7, is the kinetic energy of 4 or kinetic energy located in 4,
and depends on the position and velocity coordinates of 4 and not
on those of the other parts B, C,... This not necessarily true in
dealing with electric phenomena, where we may have to take account
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of mutual kinetic energy. In the case of the mutual induction of
two circuits we have an instance in point and the equations of
motion of the two circuits are interdependent and cannot be separated.
We shall assume such exceptional cases excluded where they would
invalidate our arguments.
' (2) The potential energy takes the form

(48) ‘ Vat+Vig+Vp+---

where ¥V, is the potential energy located in A V,z the mutual
potential energy of 4 and B.

Taking g4, g, ... to be types of the coordinates of the parts
4, B, ..., then in any change

ov

‘is the increase in the potential energy of A4, and is a complete
differential, ¥, being a function of the coordinates g,.

(50) 2 iga=aW.a

3q4

is the external work done by the body against the external forces

which are given by the type

oV, g

(61) P,= T
In the case of two bodies in contact the actions and reactions

are equal and opposite, and in any motion the displacements of their

points of application are equal. In such cases as this the works done

on the bodies are equal and opposite' so that

a
(52) dq4+2 quB—dW4+ AWa=0.

In other cases as where actlons a.t a distance occur

(528) AquB— dVAB

gives the increase of mutual potential energy of the two A4, B bodies,
and this is equal to the algebraic sum of the works done by the bodies.
This mutual potential energy may be regarded as located in the
medium by which the forces are transmitted from one body to the
other. With this assumption all energy may be regarded as located
esther in separate bodies or in the ether.
" By the. intrinsic energy of the body A is meant only the kinetic
and potential energy located in A, that is U,, where

(53) Us=Ta+ Va.
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The principle of conservation of energy may now be written
(54) AUs+ dW4=0

or the decrease of intrinsic energy is equal to the work done by the body.

40. Reversibility. In the next place the motions of a dynamical
system possess an important peculiarity which 1s expressed by saying
that they are perfectly reversible.

We may illustrate the meaning
of reversibility by considering the
motion of a projectile under gravity ¢~
alone. Let a body be projected
from A with velocity U at an ele- U
vation «, and in any time 7' suppose
it to describe the arc A B, arriving
at B with velocity ¥ making an
angle g with the horizon. * Then we
know that if the body is projected
from J§ with a equal velocity V in
the opposite direction it will retrace
its steps over the same parabola,
and will after a further interval T’
return to 4 with a velocity U equal
and opposite to the original velocity
of projection. We may therefore
say that the parabolic motion of a
projectile is reversible, meaning that
corresponding to any motion, which
we may call a direct motion, a re-
versed motion is possible in which
the projectile retraces its steps, - Fig.T.
describing the same path backwards,
taking the same time over the same arc, and passing through the
same points with equal and opposite velocity.

On the other hand the motion of a projectile in a resisting
medium is irreversible. Thus if in the direct motion the medium
exerts a retardation proportional to the square of the velocity, a
reversed motion which is an exact counterpart of the direct motion
could only be obtained by postulating an acceleration proportional to
the square of the velocity, whereas in reality a retardation would
again be exerted by the medium.

If the differential equations of motion of a system be expressed
in terms of the position coordinates only as dependent variables, the
motions which they determine will be perfectly reversible if the

BRYAN, Thermodynamics. 3
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equations of motion are unaltered by writing — d¢ for df, that is if
they only involve even powers of df in the differential coefficients.
Thus motions uniquely determined by the differential equations in z

] 2
(55) T +a(F) +be=0
are reversible, while those determined by

. 2
(56) - a4 ba=0
are irreversible.?)

The equations of rational mechanics always represent reversible
motions, provided that (1) the kinetic energy is a homogeneous
quadratic function of the velocity or impulse coordinates and (2) that
the external forces are functions of the position coordinates only.
To prove this it is most convenient to take the equations in the
Lagrangian form

4oLy 3L 0V p
at (aq,) g, Tag, — 1t

41. Physical unreality of reversible processes. In Nature all
phenomena are irreversible in a greater or less degree. The motions
of the celestial bodies afford the closest approximations to reversible
motions, but motions which occur on this earth are largely retarded
by friction, viscosity, electric and other resistances, and if the relative
velocities of the moving bodies were reversed, these resistances would
still retard the relative motions and would not accelerate them as
they should do if the motions were perfectly reversible.

Irreversibility may be either statistical or actual. If the molecules
of a body form a rational dynamical system satisfying the conditions
of § 36, the changes which take place would be perfectly reversible,
if in reversal, the velocity of every molecule of the system were
reversed. As however it is impossible to control the motions of
individual molecules; the phenomena which can be observed in such
a system by means which we are able to command may take the
form of irreversible effects. In such a case the system is statistically
trreversible. On the other hand if the motions of the ultimate parts
of the system (atoms or molecules) are themselves irreversible we

1) When ‘;—‘: s positive equation (55) represents the motion of a particle

under a force to the origin varying as the distance, subject to a retardation
varying as the square of the velocity. But in a resisting medium the motion is
not uniquely defined by equation 55 for as soon as the velocity becomes negative
the equation of motion is changed to

diz dx\*
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have a case of actual irreversibility, and the changes in the system .
can no longer be represented by assuming the conditions of § 36.
The hypotheses that not only are the phenomena of nature only
statistically irreversible but that the universe is a rational dynamical
system with the properties of ‘§ 36 are confirmed by many results
of the Kinetic Theory of Gases. But whether the reversibility is
actual or statistical, a dynamical scheme which takes account of motions
of individual molecules is far too elaborate and minute to be employed
in all practical calculations relating to the phenomena observed in
nature as irreversible. It therefore becomes necessary to formulate
a new scheme, and the simplest way of doing this is by the introduction
of additional variables not conforming to all the conditions of § 36.

42. Available Energy. If a system is statistically irreversible in
the sense here considered, and its ultimate parts conform to the
properties of § 36, the system will satisfy the Principle of Conservation
of Energy, so that as long as no energy is supplied to the system
from without the total emergy will remain constant. But only a
limited portion of this energy will be capable of being utilised for
conversion into mechanical work. For in order to utilise the whole
of the kinetic energy of the molecules, it would be necessary to reduce
each molecule individually to rest. The impulses which would have
to be applied to the molecules would be exactly half those necessary
to reverse the motions of the system. The process is impossible
in reality. Maxwell however gave the name demon to a hypothetical
agent capable of controlling the motions of individual molecules, and
with this nomenclature, statistical irreversibility consists in the property
that “Maxwell’s demons” exist only in imagination and not in reality.

We are thus led to the conclusion that under any given conditions
only a limited portion of the energy of a system can be converted
into mechanical work. This portion is called the available energy of
the system subject to the given conditions. In order, however, to
completely define the available energy of a system, it is necessary
to specify not only the external conditions to which the system is
subject, but also the means at our disposal for converting energy
into useful work.

43. A parallel in mechanics. Owing to the Earth's rotation
about its axis and its orbital motion about the Sun, the Earth
possesses an enormous store of unavailable energy. The only mechanical
. energy which is available, is that depending on the relative displacements
and motions of bodies on the Earth’s surface. It is in general im-
possible to influence the Earth’s motions as a whole, for this would
necessitate producing equal and opposite reactions on some other body.
Hence it is impossible to draw on the store of energy contained in

3*
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these motions. An exception occurs in the case of the tides which
are produced by action and reaction between the Earth and the Moon
and Sun, and which may to some extent be utilised for driving
machinery in suitable places.. ’ )

Generally (a) if one imagines an isolated system of bodies moving
freely through space with a common uniform velocity, the mechanical
energy which is available without going outside the system is zero,
but if the parts of the system are in relative motion among them-
selves the available energy will be the amount of work that can be
obtained by reducing the system to a state of uniform translation
combined with rotation in a configuration of stable relative equilibrium*)
without altering its linear and angular momenta.

On the other hand (b) if a system is in the presence of a very
large uniformly moving body or base such as the earth, its available
mechanical energy is the amount of work that can be produced in
making its velocity the same as that of the large body.

Cases (a) and (b) have their parallels in thermodynamics in the
cases of an isolated system of unequally heated bodies and of a
system in the presence of a large body of uniform temperature, as
we shall see later. But the problems are essentially distinet and in
Thermodynamics, we shall not as a rule find it necessary to take
account of the unavailable mechanical energy considered in this article.

44. Dependence of available energy on external conditions. In .
the dynamical illustration of the preceding paragraph it will be seen
that the available energy of the system depends not only on the actual
state of the system, but also on the external conditions to which
the system is subjected. Thus if the system is moving with velocity
V in the presence of a base moving with the same velocity, none of
the kinetic energy of the system is available for conversion into
work, and the only energy which is available is the potential energy.
The total available energy is therefore a minimum. On the other
hand a system at rest may become a source of available energy when
brought into the presence of a moving base and the amount of this
available energy (apart from any potential energy due to the mutual

actions of the body and base) is easily seen to be %mV"where m

is the mass of the system.

Lastly, if we have two bases moving with different velocities it
is possible to genmerate work indefinitely by bringing a third body
alternately under the influence of the two bases.

1) If the configuration of stable relative equilibrium is not uniquely
determined by the momenta, that configuration must be selected which has the
least energy.
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The thermodynamical analogues of these properties, which will
be discussed more fully later, are that if a body is surrounded by a
medium at temperature 7' the total available energy is a minimum
when the temperature of the body is 7'; that a cold body may
become a source of available energy in the presence of a hotter one,
and that work may be generated indefinitely by bringing a body
alternately into the presence of a hotter and colder medium, as in
Carnot’s cycle '

45. Another illustration. A mass of gas can do work by
expanding and it therefore possesses energy which in the process of
expansion is converted into work. But if the gas is surrounded by
a medium at constant pressure the only available energy is the work
which would be done by the gas in expanding till its pressure is
equal to that of the medium. Again, a vacuum or a region containing
gas at a lower pressure would become a source of available energy
in the presence of such a medium. Lastly for several gases surrounded
by a closed envelope the available energy would be the work done
in expanding till the pressure was uniform throughout the interior
of the envelope. [We may suppose for the sake of simplicity that
the pressures of the gases are functions of their volumes only and
that the temperature is everywhere constant. This assumption
enables us to omit temperature altogether from our equations and
consider the phenomena in their purely dynamical aspect.]

46. Differential elements. In studying the dynamical properties
of extended distributions of matter, the conception of a differential
element is frequently introduced. Thus, in order to define the density
of a substance, when variable, we take a volume-element (dz dydz)
enclosing any point (z, y, #) of the substance, then if the mass of
this element is godxdydz and the dimensions of the element are
suitably chosen, ¢ will represent the density of the body at the
point (z, y, ). Similarly in defining pressure of a fluid at a point,
we take a plane surface-element dS containing the point and suppose
the thrust on it is pdS, then if the dimensions of the element are
snitably chosen, p will be the pressure at the point.

The difficulty in these definitions arises from the fact that
mathematical theory requires the element in either case to be infinitely
small while physical considerations require it to be infinitely great.
It is only by taking the element infinitely small compared with the
dimensions whose measurements we are considering that the methods
of the differential and integral calculus become strictly applicable, and,
‘that the measures of density and pressure tend to approach limits
which are independent of the size of the elements of volume and area.
On the other hand if matter is made up of molecules, density and
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pressure have no meaning as applied to elements of molecular
dimensions, and it is only by taking the respective elements infinitely
large compared with the corresponding spaces occupied by individual
molecules that the measures of these quantities become independent
of the effects of individual molecules.

The property that infinitesimal analysis can be applied to the
solution of many problems in dynamics or other branches of {mathe-
matical physics, involving space distributions of matter, is explained
by the extreme smallness of the space occupied by each individual
molecule in comparison with bodies which are regard as “of finite
gize”. This smallness is illustrated by the fact that in a cubic
centimetre of gas there are about 5.4 >< 10' molecules. It is there-
fore possible to choose an element of length, area, or velume so small
that it may regarded as infinitesimal for purposes of analysis and yet
so large in comparison with molecular dimensions that its structure
may be treated as homogeneous instead of molecular.

Such an element we shall define to be a “differential element”
of volume, mass, area or length as the case may be.!) We notice
that similar considerations also lead to the conception and definition
of a differential element of #ime, which shall be small compared with
the times (such as a second) during which finite motions of finite
bodies take place, and large compared with the time intervals defined
by the motions of individual molecules.

The difference between thermodynamics and the kinetic theory
(statistical mechanics), is that the former branch of study seeks to
investigate certain properties of matter in terms of their effects
considered with respect to differential elements of time and space as
a whole, while the latter seeks to investigate the progress of events
within these individual elements themselves. :

CHAPTER V.

GENERALISED CONCEPTIONS OF ENERGY.
IRREVERSIBILITY.

47. The notion of emergy in its most general aspect. From
considerations such as those briefly indicated in the last chapter, it
can be seen that the principles of rational mechanics (at any rate
apart from statistical methods) can be only applied to explain pheno-
mena that are both conservative and reversible.

1) The term physically small has also been suggested for such elements
and is used by Leathem, “Volume and Surface Integrals used in Physics”, p. 5.




ENERGY IN ITS GENERAL ASPECT. 39

with the class of phenomena falling under tifgg head of thermo-
dynamics, it is necessary in the first place to
and more general conception of energy than suffices for the study

In order to desl with irreversible phenomtﬁ‘xd in particular

of the particular class of phenomena included under Rational Dynamics. -

The following statements may be regarded in the light partly of
a definition of energy, and partly of an enunciation of its properties
which are assumed as fundamental.

There is a certain entity called energy which is characterised by
the following properties:

* (1) In an isolated system the total quantity of this entity always
remains constant.
.. (2) The energy of a system cannot be changed without some real
. physical changes taking place in the state of the system.
. (8) The kinetic and polential emergies of dynamics are particular
forms of this entity.

The first statement is the Principle of Conservation of Energy,
and it leads to the following conclusions.

If the energy of a finite non-isolated system or part of a
system changes in amount, then changes of equal but opposite amount
must occur somewhere outside the system or part considered, so as
to make the total amount unaltered.

According to (2) if the physical state of a system is completely
defined by certain variables, the energy is a function of those variables
only, and does not depend on the past history of the system previous
to attaining the state in question.

On the other hand, if the state of the system is defined so far
as certain physical phénomena are concerned by certain variables,
and we have evidence, from the existence of irreversible phenomena,
or from any other cause, that energy changes have occurred in the
system which are independent of the changes of these variables, we
infer that the variables originally assumed are not sufficient to
completely determine the physical state of the system, but that this
state depends on some other variables as well.

48. Observations. In connection with the above statements we
notice the following points:

(1) The energy of an isolated system is not the only quantity
which remains constant. The components of momentum also remain
constant, but the emergy is the omly quantity which possesses the
property of being wholly or partially transformable into the forms
of energy defined in Dynamics.

(2) As it is impossible to conceive or realise a state of sero
energy, it is necessary to include an unknown constant in the expression

troduce a broader.

/
V
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for the emergy. But this constant, though unknown, is perfectly
definite and unchanging in value, and thus the principle of conservation
of energy is not made less definite by its presence.

(3) Under the general term physical state of a system, we include
such data as the positions of its parts, its state of rest or motion,
the chemical constitutions of the various parts of the system, its
state of electrification and magnetisation, its state of stress or strain
and other properties. We establish Thermodynamics on a footing
independent of preconceived notions as to heat by assuming that
the list of variables by which the state of the system was defined, in
the first instance, excluded all reference to the phenomena of heat
and temperature. Under such’ circumstances experience shows that
phenomena occur indicating changes of energy which are independent
of the variables originally postulated. We conclude that the original
choice of variables was not sufficient to completely specify the
physical state of the system. It then becomes the object of Thermo-
dynamics to investigate the additional changes of physical state
postulated by experience, and to discuss their representatlon by a
suitable choice of variables and formulae.

49. Irreversibility. If a system passes from a state 4 to a
state B the change is said to be irreversible when the system cannot
pass of dtself back from the state B to the state 4, and can only be
made to do so by the action of outside influences.

In connection with irreversible phenomena the following axioms
have to be assumed.
| (1) If a system can undergo am irreversible change it will do so.

(2) A perfectly reversible change cannot fake place of dtself; such
a change can only be regarded as the limiting form of am irreversible
change.

We shall call a transformation positive, when that transformation
tends to take place of itself; the reverse transformation will then be
negative, so that a negative transformation cannot take place of itself.

Since the total quantity of energy is by hypothesis constant,
any change which occurs and which involves energy may be regarded
as 'implying a fransformation of energy from one form to another.
If then a system undergoes an irreversible transformation from the
state 4 to the state B this energy of the system is necessarily less
capable of being transformed into other forms of energy in the final -
state than it was in the initial state. '

For every state C of the system which can be reached by
starting from the state B can also be reached by starting from the
state 4 and passing -through the state B. On the other hand, if in
passing from A4 to B by any irreversible process, the system passes
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through any intermediate state D, the state D- can be reached by
starting from 4, but can nof be reached by starting from the state B.

If then we use the term availability to designate the extent to'
which the energy of any given system in any given state is capable
of being transformed into other forms of energy, we may regard it
as a self evident truth that n cmy irreversible transformation there is
a loss of availabdzty

50. Compensating transformations. When a transformation 4B
of a given system S is in itself irreversible and therefore positive,
the reverse or negative transformation BA can neverfheless (sometimes
at any rate) be made to take place by the introduction of a com-
pensating transformation. The meaning of this will be made clearer
by considering in the first instance the simple mechanical illustration
of two weights connected by a pulley in such a way that when one
rises the other falls. KEach weight tends to fall to the ground but
it can only do so by raising the other weight. The weight which
preponderates will raise the other. If neither weight preponderates,
there will be equilibrium, and a slight disturbance one way or the
other will determine the direction in which the system moves.

Now let = be a second system capable of performing a positive
transformation CD, and let the systems be combined together in such
a way that the positive transformation CD can only take place
simultaneously with the negative transformation BA and wice versa.
Then if the two simultaneous transformations B A, CD taken as a
whole constitute a positive transformation, this transformation will,
if it can, take place of itself by axiom (1) above, and will be irre-
versible; if the combined transformation is negative the reverse trans-
formation will, if if can, take place of itself, and the system = will
undergo the negative transformation DC while S undergoes the
positive transformation AB. In the limiting case when the opposite
tendencies of the systems exactly balance each other, there will be
no tendency for the combined system to undergo transformation in
one direction more than the other, and a transformation in either
direction will be perfectly reversible. In this case a positive trans-
formation of one system is said to be compensated by a negative
transformation of the other.

In reality this limiting case can never be actually realised
because loss of availability must necessarily take place in the connections
by which the two systems are bound together, or elsewhere.
We may exemplify this point if we think of the mechanical illu-
stration of two equal weights hanging by a string passing over a
rough pulley. Although the weights theoretically balance one another
a considerable effort must be made to overcome friction in order
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to move the system in either direction. Again, in order that the
system may move of itself, the descending weight must exceed the
ascending one by an amount depending on the friction of the pulley.
Still, if one irreversible physical phenomenon can be reversed by
coupling it with a different irreversible phenomenon, we know that
the irreversibility is comparable in the two phenomena, and that it
is at least theoretically possible to adjust the magnitudes of the two
changes in such a way as to make them compensate each other. In
this case we may say that in both transformations the irreversibilities
are of the same kind or convertible.

51. Availability measured in terms of emergy. When a number
of irreversible transformations are of the same kind, it is possible to
make quantitative comparisons of their drreversibility or loss of
availability by choosing as the compensating transformations, changes
in which energy is transformed from one particular form to another
less available form, the initial and final forms being the same in
each case. The quantity of energy so transformed in the transformation
required to' compensate any given irreversible transformation will
then afford a numerical measure of the irreversible changes connected
with the given transformation. We may thus replace the words
“loss of availability” by the more precise wording “quantity of
available energy lost”. In order to make this measure a definite one
it is necessary to specify what is meant by available energy, i. e,
when energy is available and when it is not, and this necessarily
depends on' the assumed conditions under which energy is trans-
formable from one form to another.

There is of course no a priori reason for asserting that all the
irreversible phenomena of the Universe are of the same kind, as it
is possible to conceive transformations which bear no relation whatever
to each other. If such exist, they must be discussed separately, and
cannot be made the subject of quantitative mathematical investigations
common to them. It must be regarded as the result of experience
and not as a self-evident truth that a very large class of actual
physical and chemical phenomena lend themselves to investigation by
the methods described in this book. »

52. Availability of known forms of energy a matter of experience.
We now see that the Principle of Irreversibility as applied to energy
phenomena, naturally leads to the conceptions of availability, and of
available energy, provided that these conceptions are defined exclusively
with reference to the power of transforming energy from one form
to another. In order to build up a theory which will account for
the irreversible phenomena of our universe, it is necessary to appeal
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to experience when we attempt to identify the available energy thus
defined with different forms of emergy with which we are familiar.
We are thus led to assume the following axiom which may be
regarded as the simplest form of the Second Law of Thermodynamics:

Energy in the form of mechanical work is always wholly convertible
into any other forms of energy to which the present theory is applicable,
but the converse processes are mot in general possible.

From this axiom, it may be seen that:

The available energy of a system subject to given external conditions
is the maxtmum amount of mechanical work theoretically derivable from
the system without violating the given conditions.

We may regard this statement coupled with the statement that:

In all irreversible tramsformations avadable emergy is lost, never
gained
as constituting a fundamental law of nature which we shall call the
Principle of Degradation of Energy. Either of the two statements
may be regarded as a definition of available energy, and the other
statement will then be an axiom based on experience.

The necessity of the appeal to experience is manifest from the
following considerations: If in our Universe events occur in a certain
definite sequence, it is possible to conceive a universe in which events
occur in the opposite sequence, by merely reversing the scale of
time. In such a universe the transformations of energy would be
exactly the opposite to those of which we have experience, and the
forms of energy which are least capable of being converted into other
forms in our Universe would become the most convertible. In stating
this it is assumed that the individuals living in either universe possess
the power of influencing the progress only of future events and
possess a knowledge only of past events. This assumption is impli-
citly involved in all our ideas relating to irreversibility.

53. Theoretical and practical limitations to conversion of energy.
In practice .a system may often possess a considerable amount of
energy which is easily recognisable as mechanical, potential or kinetic
energy, although it would be very difficult to devise mechanisms for
employing this energy to drive machinery. Thus when a ship goes
through the water a large amount of energy is expended in setting
up waves and vortices and is still recognisable as mechanical energy,
although it is practically impossible to recover this emergy or to
apply it to a useful purpose. Energy of vibration or of sound waves
may be taken as another instance. There is thus an apparent difficulty.
in drawing the line between energy which is, and energy which is not
directly convertible into mechanical work. To overcome this difficulty
it will probably be at least sufficient for our present purpose to
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agree to classify under the title mechanical energy all those forms of
energy which occur in the study of reversible rational mechanics.
This would include the energy of wave motion and vortex motion
referred to above; since these forms of energy occur in the reversible
dynamics of a perfect fluid. They become associated with irre-
versibility when the fluid is assumed to be viscous, and then the
effect of viscosity is to absorb, or rather convert them into less
available forms in accordance with the principle of degradation of
energy. Again if we introduce the conception of differential elements
a8 introduced in § 46 the energies due to the motions of such
elements as a whole, and to strains in the elements which in the
limit may be regarded as homogeneous, will all be of the nature of
mechanical energy.

In most problems in thermodynamics we are able to assume
that such forms of energy as those of wave motion or vibration
have been transformed, and that the mechanical energy of the systems
is either due to simple homogeneous strains, or is, at any rate, a
function of a small number of independent variables. In such cases
it is easy to draw the line between the energy which is and that
which is not wholly available. ‘

54. Qualitative nature of irreversible thermodynamics. The
principle of degradation of energy merely deals with the direction in
which energy transformation tends to take place and makes no
statement as to the rafe at which the change proceeds. The study
of the rates of change is necessarily based on experiment; no
general laws can be enunciated, and each transformation has to be
studied in detail as in the theories of friction, viscosity, conduction
of heat, law of electric resistance, and other phenomena. Hence
irreversible thermodynamics is in general a purely qualitative and
not quantitative study, and its phenomena are represented by inequalities,
not equations. When, however, we pass to the study of reversible
processes by treating them as the limit of irreversible ones, the
inequalities of irreversible thermodynamics become equalities and the
results become quantitative. The same is the case, frequently, when
we consider the ultimate distribution of energy in a system that has
been left for such a long time that no further irreversible changes
can occur.
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CHAPTER VL

THE CHARACTERISTICS OF A THERMODYNAMICAL SYSTEM.
THE NOTION OF TEMPERATURE.

55. Characteristics of a thermodynamical system. We are now
led to the consideration of conservative and irreversible systems in
which degradation of energy takes place in such a way as to diminish
the amount of energy utilisable in the form of mechanical work.
Even this statement allows considerable latitude in regard to the
general character of the phenomena occurring in such systems, and
further assumptions are necessary in order that the system should
reproduce the effeats observed in the experimental study of heat.

At the outset we shall confine our attention to endeavouring
to account for such irreversible processes as might be conveniently
characterised as “thermo-mechanical” phenomena. By this we exclude
all chemical actions for the present, and indeed wuntil Chapter XV,
where such actions are treated for the first time. Moreover, we limit
ourselves until Chapter X to discussing energy changes in a system
of material bodies. By this we do not exclude the possibility of
energy passing by radiation from one body to the other, but we assume
that the bodies are so near together that the passage may be regarded
as instantaneous, and the quantity of energy in tramsit in the inter-
vening ether may be neglected.

We commence by supposing the system divided into differential
elements of mass dm occupying differential elements of volume
dzdydz subject to the conventions contained in the definitions
of § 46.

There are two methods in which degradation of available energy
may take place in the system:

(a) by changes which take place entirely within the mass-elements
(dm) without energy being transformed from one element to another;

(b) by changes in which energy passes from one mass-element
to another, or more generally from any portion of the system to the
other, where such changes cause a decrease of the total amount of
available energy.

, Now there are certain processes in Nature, such as the friction

of fluids, in which available energy is absorbed according to method
(a) within the volume elements themselves. Such processes are
commonly spoken of in text books on Theoretical Mechanics as non-
conservative. They can be equally well explained, as is indeed generally
done in these books, by restricting the term “energy” to dynamical
energy, kinetic and potential. In this case it is commonly stated
that “energy is lost” in the system, meaning that “available energy
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is lost”, and the phenomena occurring in the system can often be
adequately discussed without making enquiries as to what becomes
of this lost energy.

If energy were unable to pass from one portion of a system to
another otherwise than by the performance of mechanical work, only
the available energy could be so transferred, and any energy rendered
unavailable by irreversible changes in an element would remain
permanently locked up in that element. If the unavailable energy
thus accumulated were not to affect the physical properties of the
element, this energy would be completely lost, and we should have
no evidence of its existence or of the truth of the principle of
conservation of energy. On the other hand if the accumulated
unavailable energy were to affect the physical state of the element,
we should have a state of affairs in which the properties. of all
bodies were continuously changing and no body could ever be brought
back to its initial state by any external agency whatever. Such a
condition of affairs is contrary to our experience.

We are thus led to postulate a system in which energy can pass
from one element to anmother otherwise than by the performance of
mechamical work.

56. Still confining ourselves to the consideration of purely
hypothetical systems, it is again possible to postulate any one of
the following assumptions with regard to this assumed transference
of energy. :

(1) The whole of the energy so transferred is, under all conditions,
unavailable for transformation into mechanical work.

or (2) The transferred energy is partly available and partly unavailable,
but the transference does not alter the quantity of available energy
present in the system as a whole.

or (3) The transference of energy tends, in general, to decrease the
total quantity of available energy present in the system.

If assumption (1) be made, the transferred energy can be dis- -
regarded in considering the progress of dynamical events in the
system, and the dynamical phenomena will be identical with those
of a non-conservative system such as is considered above.

If assumption (2) be made, the available and unavailable portions
of the transferred energy may be considered separately. The trans-
ferences of the available portions may, by a proper choice of coor-
dinates, be represented by the equations of rational dynamics, in
which case the transferred energy assumes the form of work done
by the variation of the coordinates so chosen, and if the unavailable
energy be neglected, we are left with a system which is again equivalent
to the same non-conservative system as before.
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In thermodynamics we shall find an illustration of this very
point. So long as only reversible transformations are considered we
shall find that the equations of thermodynamics are identical in form
with the equations of dynamics with the addition of an extra position
coordinate (the entropy) and its corresponding generalised force
coordinate (the temperature).

We are thus led to adopt assumption (3) as the simplest charac-
teristic feature of a system which cannot be better represented by
the equations of non-conservative dynamics.

57. We accordingly define a thermodynamical system as one
possessing the following properties distinguishing it from the systems
considered in rational mechanics.

(1) Its energy is not a function of the position coordinates and
the corresponding generalised velocity components alone, but is capable
of undergoing independent variations.

(2) These variations consist in transferences of energy between
different parts of the system or between the system and other systems,
in conformity with the principle of conservation of energy.

(3) These transferences of energy are distinguished from those
considered in rational dynamics, in that they are in general accompanied
by a loss of available energy, and are therefore in general, by the
principle of degradation of energy, irreversible. In the systems of
rational dynamics all energy is available and all transformations are
reversible.

(4) As in § 39, the total energy may be expressed as a sum of
terms representing respectively the parts of the energy which are
located in different bodies and in the ether.

58. Quantity of Heat. Definition. When energy flows from one
system or part of a system to another otherwise than by the perform-
ance of mechanical work, the energy so transferred in called heat.

If the energy of a body increases by d U while the body at the
same time performs external mechanical work of amount dW, the
body is said to receive a gquantity of heat d@, defined by the relation

(57) ' dQ=dU+dW.

This relation thus affords a definition of the quantity of heat
absorbed or emitted by a body. It is to be observed that we cannot
speak of the quantity of heat confained in the body.

For if the body undergoes & cyclic transformation so that its
initial and final states are identical it must have the same energy at
the end as at the beginning. But it does not necessarily follow that
the algebraic sums of quantities of heat absorbed and of work done
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by the body are each separately zero. What we do learn by integration
of (57) is that since the total energy is the same at the end as at the

beginning [i. e. since ( f )dU = 0] therefore

(58) (S)ae=(S)aw

or the total quantity of heat absorbed is equal to the total quantity
of work done in the cycle, the sign ( f ) indicating integration taken
round a coniplete cycle. If we were to imagine the body at every

instant to contain a definite quantity of heat, this quantity would be
greater at the end than at the beginning of the cycle by an amount

( f )d @, and either it would be implied that there was some difference

between the initial and final states — such difference being contrary
to the definition of a cycle, — or the statement would be meaning
less. The other alternative, that of assuming that a cycle could only

exist in which ( f )d @ and ( f )dW were both zero would imply an

independence of heat energy and work energy, which is not only
contrary to experience, but which would fail to account for degradation
of the latter form of energy.

If, instead, we consider a change of the system from a state A
to a state B, and let U, and Uy denote the energy of the system
in the two states, we have

(59) Us— U4=jize-zj§zw.

. 4

From what has been said above it follows too that dQ and d W
are not themselves perfect differentials but that their difference
dQ — dW is a perfect differential of the function U which is the
energy of the system.

59. When two bodies act thermically on one another the
quantities of heat gained by one and lost by the other are not
necessarily equal.

In the case of bodies at a distance, heat may be taken from or
given to the intervening medium.

The quantity of heat received by any portion of the ether may
be defined in the same way as that received by a material body.

Another important exception occurs when sliding takes place
between two rough bodies in contact. The algebraic sum of the
works done is different from zero, because, although the action and
reaction are equal and opposite the velocities of the parts of the
bodies in contact are different. Moreover, the work lost in the process
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does not increase the mutual potential energy of the system and there
is no intervening medium between the bodies. Unless then_ the lost
energy can be accounted for in other ways, (as when friction produces
electrification), it follows from the principle of Conservation of Energy
that the algebraic sum of the quantities of heat gained by the two
bodies is equal to the quantity of work lost by friction. From the
observed result of experience that friction tends to decrease the
relative velocity of the moving parts we can easily prove that this
total quantity of heat gained is positive. This result is in accordance
with the principle of Degradation of Energy, although it is not a
necessary consequence of that principle.t)

60. Condition of internal heat equilibrium. It follows from the
principle of degradation of energy, that any body or system subjected
to given external conditions will tend to assume an equilibrium state
in which the available energy is a minimum for all virtual variations
of the distribution of energy in the system such as could be produced
by heat passing from one mass-element of the system to another,
without violating the given external conditions. When this is the
case, the system may be said to be in thermal equilibrium or thermi-
cally homogeneous.

The state of such a system can then only be varied either (a)
by imparting energy in the form of heat to the system as a whole,
in which case the system will tend to assume a new equilibrium
distribution, or (b) by variations in the generalised coordinates defining
the dynamical state of the system.

It follows that if the state of a thermically homogeneous system
is defined by » variables or generalised coordinates for changes which
involve no transmission of heat to or from the system as a whole,
then, when such transmissions of heat are taken into account, n» + 1
variables will be required to define the state of the system. Since
the passage of heat to or from the body involves gain or loss of
energy, we may, in the first instance, choose these # + 1 variables
to be the energy U and the generalised position-coordinates of the
system.

A transformation in which no heat is gained or lost is called
an adiabatic tramsformation (cf. § 5). If z;, %, ... 2, are the gene-
ralised position-coordinates, X, X;, ... X, the corresponding gene-

1) Conceive a hot body placed in contact with a cold one and slipping on
it. There is nothing contrary to the principles of thermodynamics in imagining
that as heat passes from the hot body to the cold one, a certain proportion of
heat might be absorbed at the common surface and employed in increasing the
relative velocity of the sliding parts. Hence the appeal to experience cannot
be dispensed with.

BRYAN, Thermodynamics. 4
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ralised force-coordinates, it follows that adiabatic transformations are
given by the differential equation

(60) iU =2Xdz

connecting the % 4+ 1 independent variables U, x;, x5, ... Za.

In the case of a homogeneous fluid substance (taken as a type
of a simple system) the state will be completely defined either by
the total volume V7 and energy U or by the volume and energy of
unit mass, which we shall call v, w. If p is the pressure, and we
adopt the former alternative, then since

(61) AU =dQ — pdV

al

(©2) 2=~ @)sms

Hence p is known when U, V are known, and conversely, the
state of the system is in general known when p and U are known.
For such a system the state may be completely defined by the variables
pand V or p and v instead of U and ¥ or » and v. By the new
choice of variables, the transformations can be represented by an
indicator diagram as is explained in § 8.

61. The Second Law of Thermodynamics. Let M and N be two
independent thermically homogeneous systems. If the states of these
systems are such that their total available energy is decreased by
the passage of a small quantity of heat from M to N, it follows at
once from the principle of degradation of energy:

(1) that heat will, if it can, flow of itself from M to N,

(2) that heat cannot be made to pass from N to M without supplying
available energy from without. _

If we define one system as being holter or colder than another,
according as. the available emergy of the two is decreased or in-
creased by transporting a small quantity of heat from the first to
the second, statement (b) is identical with the usual statement of the
second law which asserts that heat cannot pass from a colder to a
hotter body without some other change taking place.

In the limiting case of thermal equilibrium the available energy
will to the first order of small quantities be unaffected by the trans-
ference of a small quantity of heat in either direction — a result
closely analogous to the Principle of Virtual Work in Statics.

62. The thermal equilibrium between two bodies is independent
of their relative positions. This important property, though frequently
overlooked and tacitly assumed in thermodynamical treatises, requires
somewhat careful consideration.
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We may in the first place consider two bodies or systems M, N,
which are not both in thermically homogeneous states. Some part
of M may be hotter than some part of N, in which case if these
parts are brought into contact or otherwise favourably placed heat
will pass from M to N, while at the same time some part of M
may be colder than some other part of N, so that by varying the
relative positions of the systems heat may be made to flow from
N to M. It is necessary to show that such cases cannot occur when
the bodies are in thermically homogeneous states, provided that the
displacement merely alters their relative positions and not the con-
figuration of either body.

Suppose M hotter than N, and suppose if possible that by
varying their relative positions heat could be made to flow from N
to M, and that after any quantity @ had thus been transferred the
bodies were brought back to their initial positions. Thus we should
have transferred a quantity @ of heat from the colder body N to
the hotter body M, and by making @ sufficiently small, M would
still remain hotter than N after the transformation. From the last
paragraph this result could only take place if available energy were
supplied from without, and the only way in which such energy could
be supplied would be by means of work done during the displacement
of the bodies from the first to the second position and back again.
This would imply not only that the bodies exerted attractive or other
forces on each other during the displacements, but that these forces
were different during the return displacement from what they were in
the outward displacement. Hence the truth of the proposition fo be
proved depends on the following axiom:

The attractions between any two bodies depend only on the relative
posttions and configurations of the bodies and are unaltered by the
tramsference of heat to or from either or both of the bodies.

That this axiom is. in accordance with experience affords
evidence that

(1) 3f ome thermically homogeneous body is hotter than another the
same will remain the case when their relative positions are altered.

Similarly (2) if the two bodies are in thermal equilibrium, the
same will be true when their relative positions are altered. '

These results no longer hold if the dimensions or configurations
of the bodies are altered by the displacement, for example a mass
of gas which is colder than a given body may be made hotter than
it by compression. ‘ '

8 . 63. Carnot’s Cycle. To transport heat from a colder body N to

a hotter body M (according to the above definition) available energy

must be supplied from without. The simplest way of doing this is
4!
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by processes identical in character with those of Carnot's cycle reversed,
in which an auxiliary body L is taken which first receives heat from
N, and is then, by compression or otherwise, brought to a state
capable of imparting heat to .

To complete the cycle the body L must then be allowed to

expand without gain or loss of heat until it is in a suitable state to

receive a further supply of heat from NN.

‘ To supply the available energy absorbed in a cyclic transformation
of the auxiliary body a balance of work-energy must be supplied to
this body in each cycle, and by the principle of conservation an
equivalent amount of heat-energy must be given to the body M, over
and above that taken from N. We may thus suppose a quantity of
heat d @y taken from N, a quantity d @, given to M, and a quantity
of work d4 = dQy— dQy performed on the auxiliary body during
the process. -

The reverse process is identical in character with the direct
Carnot's cycle of § 26 in which d @'y is received from M, dQ'y is
given to N, and work dA4'=d@Q'y— dQ'y is done by the auxiliary
body during the cycle.

Since a combination of the direct and reversed cycles can never
result in a gain of available energy, the ratio of the work to the
heat taken from or given to the hotter body M must be greater in
the cycle in which work is absorbed than in the one in which work
is generated (compare § 27). In other words, by the well known
proof of combining the direct and reversed motions, the principle of
limited availability gives that

adA’ dA
(63) aQ y < d—M
and therefore
dQ’ aQy dQ'M aQ,
(64) aQ, *> 70 0, ¢ ag, =1q,

and by considering the limiting case where the combination of the
direct and reversed cycles is accompanied by no loss of availability
and the processes are all therefore reversible, we get

(65) (769 .= Ge®) ..

64. Let each of these limiting ratios be written equal to Zyy
for the bodies M and N. Then the following properties are readily
shown to be satisfied by the function 7.

(1) Tyw is constant for the same two thermically homogeneous
systems in the same two states. It is independent of their relative
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positions and therefore only a function of the variables by which the
states of the bodies M and N are separately specified.

This may be proved exactly as in § 62, and the truth of the
statement depends on the axiom there enunciated.

(2) The ratio Ty for two systems M, N, is equal to the corre-
sponding ratio 7'y y for any other two systems M', N', of which
M’ is in thermal equilibrium with M and N' is in thermal equilibrium
with .

For if Tyy> Ty y combine a direct Carnot’s cycle between M
and N with a reversed cycle between M' and N' so that the work
generated in the former cycle is absorbed in the latter. Then the
heat received by M will be greater than that lost by M' and that
lost by N will be greater than that gained by N'!)

Now the heat lost by M' may be taken from M and that gained
by N' may be given to N without loss of available energy. There
remains a balance of heat gained by the hotter body M and lost by
the colder body N which is not compensated for by any loss of
available energy in any other part of the system, which is contrary
to the principle of degradation of Energy. Similarly Ty cannot be
less than 7'y 5.

(3) T'yy is independent of the size of the systems M and N
provided that they are thermically homogeneous. In the case of
homogeneous fluids, 7'y is therefore a function of their volumes
and energies per umit mass, not of their total volumes and energies.

This result follows from the previous one by observing that the
ratio in question is the same for any two parts of the same two
thermically homogeneous systems.

(4) T'yy is equal to unity when heat-equilibrium exists between
M and N, it is greater than unity when heat can flow of itself from
M to N, and less than unity when heat can only flow of ifself from
N to M.

(5) We have the relation

(66) '.TMNX TNM= 1.
This is simply the property of the differential calculus according
to which Q‘"x 0y =1
aQy " " adQ,

1) For by hypothesis d@, —dQy=d A4, and dQ, —d@y =dA whence

dQy dA aQy ad dQy _adQy
1234 apa ¥ _ 94 gy Tva Cew 44 dd
aQ, ag, ™ aq, aQy ™ ag,<aq, 3¢y~ aqy

whence if dA is the same for both cycles d@Qy> d@'y and d@Q,,>dQ',,.
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(6) Takmg a third system P, we have by comparing the cycle
between M and N with a combination of two cycles between 37
and P and between P and N respectively -

TM P_

(67) TMNTJ{PXTP'IV=T_

NP

This is proved exactly as in § 27.

65. Absolute Temperature. Now let the system P be taken to
be a standard system whose state is kept constantly fixed, while other
systems are compared with if.

. The expression 7'yp will then be a function only of the variables
which define the state of the system 21.

Typ is said to be the absolute temperature of the body M referred
to P as unit of absolute temperature.

If any other body @ be substituted for P, the unit of absolute
temperature will be altered, but the numerical measures of the tem-
peratures. of all bodies will be altered in the same ratio. For by

(67) above
Tuq=Tup><Tpq

in other words the absolute temperature of M relative to @ is equal
to absolute temperature of M relative to P multiplied by the absolute
temperature of P relative to ¢@. Hence all the new absolute tem-
peratures are obtained by multiplying the old ones by the same
constant factor Tpq.

The properties proved in the last article are identical with the
properties of temperature proved in treatises on experimental heat
and mentioned in Chapter I. We thus have a deduction of these
temperature properties from the Principle of Availability, which is
independent of any preconceived ideas regarding temperature.

66. Temperature at a point. When a body is not in a thermi-
cally homogeneous state its temperature at amy point can be defined
by considering a differential element of mass containing that point,
in the same way that we define density at a point or pressure at a
point in hydrostatics. We might, for example, say that the temperature
at any point P was equal to 7, if when a mass element dM con-
taining the point P is removed without changing its physical state
and placed in contact with a body of uniform temperature 7', no
passage of heat takes place in either direction.

The property that femperature is a scalar not a vector quantity
or that the temperature of matter at a point is the same in all directions
follows from the considerations contained in § 62, and depends on
the same axiom. As an instance of this point, if we suppose two
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uniformly heated cubical blocks of material to be in thermal equili-
brium with two of their faces in contact, they will remain in thermal
equilibrium when any other two faces are brought into contact. An
exception to this statement could only occur under the conditions
discussed in § 62. It would require work to be done in turning the
cubes over into their new positions, and the amount of this work to
be altered if heat were to flow from ome cube to the other. It is
not to be inferred that when radiation takes place through the ether
in a particular direction the temperature at a point of the ether is
necessarily the same in all directions, or even that the ether has a
temperature, for the above proof only applies to material bodies.

67. Temperature of moving body. When of two bodies M, N,
one is at rest and the other is in motion, or both are moving with
different velocities, their temperature ratio can still be defined by
means of an auxiliary body L performing a Carnot’s cycle between
the two, but in this case the velocity of the body L will have to
be changed in the course of the adiabatic transformations in such a
way that when L is in contact with M it is moving with the same
velocity as M, and when in contact with N it is moving with the
same velocity as N.

This definition gives rise to no special difficulties in the cases
ordinarily occurring in nature. The work done in changing the
velocity of the auxiliary body being equal to the alteration of kinetic
energy of the body as a whole, the sum of the works thus done in
the two adiabatics of the cycle is zero. In order that the sum of
the works should be different from zero it would appear necessary
that the inertia of the auxiliary body should be altered by communi-
cating heat-energy to it; if such a phenomenon were to exist the
present arguments would break down.

We can also suppose heat equilibrium to be maintained by radiation
between two bodies whose velocities are unequal and which are not
actually in contact. We here assume that either the transmission of
heat between the bodies is instantaneous, the heat-capacity of the
intervening ether being neglected, or that an equilibrium state has
been attained between the bodies and the ether. (See Chapter X.)

From considerations such as the above, it is evidently possible
to define the femperature at a point at amy instant in a system whose
parts are in motion among themselves and are not in thermal equili-
brium; at all events in the majority of conceivable cases.

A body which is in the course of undergoing shearing strain,
for instance a fluid, appears to present the most favourable conditions
for finding an exceptlon, if such exist, to the property that the
temperature at a point is the same in all directions.
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CHAPTER VIL
UNAVAILABLE ENERGY AND ENTROPY.

68. Unavailable energy. The Principle of Conservation of Energy
involves the result that amy loss of available energy implies the gain
of an equal amount of unavailable energy. But whereas the phenomena
of Rational Mechanics involve changes in the location of the available
energy of a system, they do not imply any transformations of
unavailable energy. Hence in many cases it is simpler to study the
properties of the wnavailable part of the energy rather than those of
the available portion, for the reversible transformations of energy in
the form of work do not have to be taken into account.

In the last chapter we have seen that the ratio of the absolute
temperatures of two bodies is defined by the relation

Ty 39
Ty dQy

where dQy, dQy are the quantities of heat gained by one and lost
by the other in a perfectly reversible Carnot’s cycle working in either
direction between the two bodies. In future we shall use the word
“temperature” to denote absolute temperature unless otherwise stated.

As the transference of heat between bodies of finite size changes
their temperature, d@Q, and d@y must in general be infinitesimal.
If however the bodies are very large, or are by other means maintained
at a constant temperature, this restriction may be removed and we
may write r 0 :

x ¥

(68) IN QN
where @y, Qy are the quantities of heat gained and lost either in
one cycle or in a number of cycles.

The maximum amount of work obtainable from @y under these
circumstances is

Qu— @y or Q_,,(l — ;“;)

T
The balance @y or @i > T—V represents energy given in the
M

form of heat to the body at temp;arature Ty, from which no further
work can be obtained if Ty is the lowest available temperature.
Under this condition Qy is to be regarded as wholly unavailalle energy.
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If we had another body capable of receiving heat continuously
at a lower temperature T, we might obtain a further amount of work

ox(1-7)

out of the heat @y, and then the balance of unavailable energy o
communicated to the latter body would only be given by

Qo= @yl = Qul
0 = Nm = o
Ty MTy

and would be the same as if the cycle were performed directly between
the temperatures 7T’y and 7. .

From these forms we deduce that the unavailable energy associated
with a given quantity of heat

(1) 4s directly proportional to the loivest absolute temperature
available for a refrigerator

(2) ds inversely proportional to the temperature of the body which
the heat is entering or leaving.

69. The auxiliary medium. — Entropy. In the above statements
we have estimated unavailable energy with reference to a medium
of constant temperature which can be used as a refrigerator in
connection with any necessary reversible cyclic transformations involving
gain or loss of heat. Such a medium may be called an auziliary
medium and its temperature the auxiliary temperature.

If we take a steam engine as a practical illustration we should
take as auxiliary temperature, the lowest temperature at which water
could be obtained for the condenser of the engine. The lower the
auxiliary temperature the less energy unavailable.

Taking now a quantity ¢ of heat entering or leaving a body
at temperature 7', we see that if the unavailable energy @, associated
with it be divided by the auxiliary temperature 7, we have

_ ¢

T,~ T

or the quotient is independent of the auxiliary temperature.
Thus 4?,; may be regarded as a measure of unavailability or factor

which only requires to be multiplied by any assumed auxiliary
temperature 7, in order to give the quantity of unavailable energy
relative to that temperature.

This factor is called enfropy, and may be defined more precisely
in two ways. ' '
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70. First definition of Entropy. If a system or part of a system

at temperature T receives a quantity of heat dQ the quotient # is

called the increase of emtropy of the system arising from this cause.

If A and B denote two different states of a system which are
capable of being commected together by a conlinuous series of reversible
tramsformations, then the change of entropy of the system in passing from
the state A to ‘the state B is defined by the expression

B
aq

T
A

where the summation extends to all parts of the system and the integral
is taken alomg the reversible series of tramsformations referred to.

This definition is the one most commonly known though it is
frequently stated in a somewhat less precise form. In dealing with
reversible phenomena it leads to consistent results and is sufficient.
But- there are many irreversible phenomena, for which this definition
is either inapplicable or can only be made applicable by somewhat
cumbersome extensions. It is in many ways unsatisfactory or at least
inconvenient. ' '

7. Second Definition of Entropy. If from any cause whatever,
the unavailable energy of a system with reference to an auxiliary medium
of temperature To undergoes amy (positive or negative) increase and if
this increase be divided by the temperature Ty the quotient is called the
increase of entropy of the system.

As it is only possible to investigate changes of unavailable energy,
and not its total amount, the expression for the entropy involves an
unknown constant. This constant occurs in the form of a constant
of integration in any expressions which are obtained for the entropy
of particular systems such as perfect gases etc. In most cases the
entropy takes the form of a logarithm.

The second definition makes no restrictions as to the nature of
the transformations which take place; it holds if the unavailable
energy is imported into the system in the form of heat received from
without, as well as when irreversible changes occur in the system
itself, producing an increase of unavailable at the expense of available
energy.

The second definition of entropy may perhaps be stated more
briefly by saying that the entropy of any system is equal to, or differs
by a constamt from the unavailable energy of the system relative to an
auxiliary medium of unit temperature.
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72. Clausius’ Inequalities, It follows from the second definition
that the entropy of a finite system is a function of the physical state
of the system omly, for no change can take place in the amount of
energy unavailable with reference to a given auxiliary medium without
some change. occurring in the physical state of the system.

(1) If mo irreversible changes occur in the interior of the system,
unavailable energy is only imparted to the system from without in
connection with heat received, and it follows from § 70, that the
change of entropy of the system Sp — SA between states A and Bis
given by

B
(69) Sp—S.=2 [22.

4

(2) If however irreversible changes have occurred in the interior
then since these changes involve an increase of unavailable energy
the total increase of entropy is greater than that due to the heat
gained from without, in other words

. 1A
(70)' ' Sg—8,> 2 Q

A

and the difference represents increase of entropy due to the internal
changes.

() If the system undergoes a reversible cyclic transformation then
since the initial and final entropies are the same

@ s(f)ie

the integral being taken round the cycle.
(4) If the cycle involves irreversible changes in the interior of the
system (70) gives

(12) z(f)fl—,@<p.

In this case the quantity of entropy received from without during
the cycle in connection with the heat imparted must be negative in
order to balance the increase of entropy produced by the irreversible
changes within the system.

The inequalities (70), (72) are known as the inequalities of Clausius.

(5) It is not usually possible, however, for a system to undergo
a reversible transformation unless at any instant all the parts of the
system are at the same temperature 7', this temperature being a
function of the time alone. For if any difference of temperature
existed between the parts, heat would, in general, flow from the hotter
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to the colder parts and this process would be irreversible. Under
these circumstances we take d@ to denote the heat received by the
whole system at the instant when its temperature is I' and the

equalities take the form
B
d
f 99 — 8 — Su.
A

(/)%

73. A more detailed investigation. We may examine in greater
detail the processes involved in the proof of Clausius’ inequality for
a closed cycle as follows.!)

Let us suppose that we are dealing with any thermodynamical
system M in the presence of an indefinitely extended medium M, of
absolute temperature T, this being the lowest temperature contmuously
available for the refrigerator of a Carnot’s cycle.

Under these circumstances a quantity of heat d @ at temperature
T represents a quantity of available energy of amount

~

© A= dQ(l——) i

that being the maximum work obtainable from d@ subject to the
given conditions.

It follows, then, that if a quantity of heat d¢ is imparted to the
system from without at a point where the absolute temperature is 7,
the available energy of the system is increased: by the above amount
dA. Again, if the system performs external work dW, this work
represents available energy taken from the system M and given to
some outside system on which the work is done. So far as the
system M is concerned we thus have a loss of available energy dW.

Hence the quantity of available energy absorbed by the system
from without in any small transformation is

1
a4=3[aQ(1=P)-aw|
the X referring to different parts of the system. Now by the First Law

1) Many articles in this chapter have been written and rewritten a large
number of times, with the result that a certain amount of repetition occurs in
some of the arguments, especially in connection with Clausius’ Inequalities.
Some of this repetition is necessitated by the two alternative definitions of
entropy. In other cases it is hoped that the repetition will merely call the
attention of thé reader to the number of different ways of arriving at the
same result.
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2(dQ—dW)=dU

where U is the total energy of the system. Hence the total amount
of available energy absorbed takes the form

T
dA=dU—Z.'dQT°

and if the system changes from state 4 to state B we get the total
available energy absorbed

— B—UA—ZfdQ

If the system is made to undergo a cyclic transformation the
energy U is the same at the beginning as at the end, and therefore
if (A4) is the available energy taken from without in the cycle

(18 (4)=—1,2( )%

the integral being taken round the cycle. This expression is equal
and opposite to the gain of unavailable energy, as it should be since
the total gain of energy in the cycle is necessarily zero.

Now let us apply the principle of degradation of energy to the
changes which take place in the ¢nferior of the system, between its
different parts. In these changes, available energy is always lost,
never gained; and it is only in the limiting case of reversible trans-
formations that the loss vanishes. But, at the end of a cyclic
transformation, the system M is exactly in the same condition as at
the beginning, and therefore its available energy in the presence of
the medium M, must be the same. Therefore available energy must
have been increased in the system in commection with heat received from
without to compensate for the loss within, and hence (4) in equation
(13) must be positive.

Therefore (1) in any cyclic non-reversible transformation

2(/)@_@ <0.

This relation is the Inequality of Clausius.
(2) The left hand member of this inequality is equal to — ——: where
0

A represents the amount of energy rendered unavailable subject to
the condition that 7, is the Iowest outside temperature available
for the purposes of a refrigerator.

(3) The loss of available energy in the cycle is proportional to
To. If a colder medium were substituted for M, we should obtain
increased facilities for the conversion of emergy imto work, and a



62 VII. ONAVAILABLE ENERGY AND ENTROPY.

proportionately smaller amount of energy would be rendered unavailable
under the new conditions though the cycle was identically the same.

The difficulty of understanding Clausius’ Theorems lies, not so
much in the proof, as in the interpretation of their meaning in the
case of the different irreversible phenomena with which we have to
deal in applications. Even the statement of the theorems admits of
some ambiguity, for there exist a number of inequalities of the form

z(f)ﬂko

obtainable by assigning dlﬂ'erent meanings to d@Q and 7. For this
reason we shall now illustrate the particular cases which occur by
easy and gradual stages, starting with reversible cycles and then
considering in detail the simpler classes of irreversible phenomena
with which we have to deal in practice.

74. Particular cases. Simple systems. We start with a simple
system, and first suppose it to be the working substance performing
a Carnot’s cycle between a source at temperature 7'y and a refrige-
rator at temperature Ty. We transform the equation

aQy ﬂ,
dQN N
firstly, by letting dQ,, d@Q, denote the heats received by the system
from the source and refrigerator, so that d@Q, = dQu, d@Q; = — d Qu,
into the fi
into the form aq, N aq, _
T T ’
The conditions of reversibility require that when the working
substance is in contact with either the source or the refrigerator the
temperatures of the two shall be equal. Letting 7}, T, denote the

temperatures of the working substance, so that T, = Ty, T,= Ty, the
equation last written down transforms into

de + %% a Qa -
an equation now involving only qua.ntltles which refer to the workmg
substance, and not to the source or refrigerator.

Next suppose the working substance to undergo a revers:ble
cyclic transformation, its temperature being any function of the time.
Let the indicator diagram of the cycle be the curve APB@. Divide
this curve into narrow strips by adiabatic lines crossing it and join
the ends of these adiabatics by isothermals. The diagram is thus
divided into a series of Carnot’s cycles such as PM QN, and from

what we have first shown the values of dT;Q contributed by the
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elements PM and QN must be equal and opposite so that their sum
is zero. Passing to the limit when the elements PMQN are in-
definitely narrow,

we shall now 2
show that

(e

the integral being
. taken round the
circuit APBQ.
To prove this
it is necessary to
show that the va-
lue of d @ for the
element of arc
PP'is ultimately
equal to the value
for the correspon- . Fig. 8.
ding isothermal
element PM. Using suffixes to denote the quantities of heat absorbed
in the corresponding elements we see from the principle of energy
that dQpp + dQp' y + dQup is equal to the work donme in the
elementary cycle PP' M P; this is represented by the area of the
A PP'M and is therefore a small quantity of the second order, PP’
and PM being of the first order. Also d@Quyp'= 0, the transformation
being adiabatic. Therefore dQpp+ dQyp=0 or dQpp = dQpry to
first order. Hence the cyclic integral '

()

for the circuit APBQ is ultimately the same as the sum of the
corresponding expressions for the elementary Carnot’s cycles inscribed
in it as above, and is therefore zero.

75. Extension to compound systems; reversible cycles. We now
consider a compound system with any number of degrees of freedom,
whose temperature at any instant is the same at every point, and is
therefore a function of the time alone. In a reversible cycle, the
position coordinates may be varied in different ways, and consequently

the proof of the relation
| ER

given in the last article usuvally breaks down, or at least gives rise
to difficulties, depending -on the impossibility of drawing an indicator
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diagram and the consequent difficulty of dividing the cycle into a
network of Carnot’s cycles. The following proof is convenient, and
bears a considerable analogy to the more general proof of § 72.

Let the system M describe any reversible cycle K and let d@
" be the heat received by M at any stage of the process when 7’ is
its temperature. Then without loss of generality we may suppose
the quantity dQ taken from an auxiliary body, such as a mass of
gas, performing a Carnot’s cycle between the system M at temperature
T and a large reservoir of heat M, at temperature 7,,. In this case
the auxiliary body will receive from the reservoir a quantity of heat
d@Qo determined by
: i@ _ag
T, T

or
dQo=T, %%

If, now, we assume that every transformation of the system under
consideration is connected with an auxiliary Carnot’s cycle working
in combination with the same reservoir M,, the total amount of heat
taken from the reservoir in the cycle will be

w-n(f)

If this quantity @, were positive, a quantity of work @, would
have to be donme somewhere or other, since all the bodies have
returned to their initial state. We should thus have the conversion
of Qo units of heat into work with no compensating transformation,
and in this way all the energy taken from M, in the form of heat
would be capable of being rendered available, even if M, were the
coldest body of the system. It follows that @, cannot be negative,
and moreover if Qo is positive the series of processes is irreversible.
Hence for a reversible series of processes we must have Qo= 0 and

therefore
(f)-o

76. Entropy. — (Definition I) The property that for a given
thermically homogeneous system, simple or compound, the integral

(¥

vanishes round a reversible closed cycle leads immediately to the
result that the integral
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S
T

A

is the same for all reversible transformations of the system from a
given initial state 4 to a given final state B. In illustration taking
a simple system and
supposing the integral
to vanish round the cir-
cuit APBQ (Fig. 9), it o
follows that the parts : \
contributed by the paths
APB and BQA are N\B (BV) -
equal and opposite, and P /]
therefore the line inte- o
grals taken along APB / ¥
and 4QB from 4 to B / Q@
are equal, the initial state | 771
(p, V) and final state P2
(p; V;) being the same |
for both.

We may therefore

write, for a simple system @ Vv
Fig. 9.

(P KL SO AR TR AL )

and for a compound system we have in like manner

B
[4 s, s,
A

where S denotes a certain quantity dependent on the actual state of
the system, and S, Sz denote its values in the states 4, B. We
are thus led to associate irreversible transformations with a new
quantity S whose value at any instant depends only on the state of
the system at that instant. This quantity we call entropy and we
are led to the first definition of § 70, which for the systems here
considered may be stated as follows:

Let A and B be two different thermically homogeneous states of the
same system, which are capable of being connected together by continuous
reversible tramsformations. Then the integral

BRYAN, Thermodynamics. 5
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taken along any such transformation is called the entropy of the system
in the state B relative to the state A or the difference of the entropies
in the states A and B.

The entropy in any state is thus determined, to within an
arbitrary constant of integration, by the indefinite integral

aQ
)

The constant of integration is to a certain extent arbitrary, but for
the same substance in the same state (as to pressure, temperature etc.)
the entropy of unit mass must always be taken to be the same.

We may also give the following definition: The entropy of a
thermically homogeneous system is a quantity such that when in
any reversible transformation the system receives a quantity 4@ of
heat at absolute temperature 7' the entropy increases by an amount

(—l;IQ - This is merely a re-statement of the First Definition of Entropy,

given above.

It is clear that to produce a given change in the physical state
of a body of given material the quantity of heat communicated
must be doubled if the mass of the body is doubled, so that the
entropy of a body in a given physical state is proportional to its
mass. The entropy of unit mass, which, in accordance with previous
conventions we shall denote by s, depends only on the state of the
substance, as defined e. g. by its pressure and temperature.

The progress of events within the working substance depends
on the various temperatures of the substance at different stages and
the quantities of heat received by it. It does not depend on whether
the heat is received from a body of the same temperature or a body
of different temperature provided that the transformation is the same.

Hence the relation
(f)%-
=

and the definition of entropy is extended to all cyclic transformations
of the working substance, provided that the processes which take
place in the substance itself are reversible.

77. Connection between entropy and available energy. — Second
Definition of Entropy for thermically homogeneous systems undergoing
reversible changes (Definition II). We now revert to the methods
of § 73, but assume for the present, that the system M with which
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we are dealing is at every instant at uniform temperature I’ throughout,
and that the transformations which it undergoes are all reversible.
As before, the facilities for conversion of energy into work are
assumed to be limited by the presence of a surrounding medium M,
of temperature 7.

Under these circumstances the change of available energy in the
system itself in any non-cyclic transformation from state A to state
B has been shown (§ 73) to be

B

UB— UA—Tofd—Z?

A

The total change of energy is Uz — Ul.
Hence the quantity of non-available energy gained by the system
in transformation is equal to

that is to 7T, times the iiicrease of entropy (Definition I).

We thus obtain the second definition of entropy of § 71, according
to which the increase of entropy is found by dividing by T, the
increase of unavailable energy estimated with reference to an auxiliary
medium of temperatare 7.

78. Entropy in non-reversible transformations. The extension
of the first definition of entropy to irreversible transformations is a
subject of considerable difficulty, which has led to many controversial
discussions. There is not the same difficulty with the second definition,
nevertheless it is only possible to arrive at a clear understanding of
entropy by examining the various possible methods of treatment
which present themselves, and by a minute consideration of the
simpler irreversible phenomena.

We start by laying down the following

Fundamental Condition. Z'he entropy of a system shall be defined
in such a way that its value at any instant depends only on the physical
state of the system at that instant, and not on the previous history of
the system. ,

If this assumption were not made the theory of thermodynamics
would involve the consideration of changes of entropy of a purely
arbitrary character corresponding to no real physical phenomena.

If, for example, a given mass of gas undergoes any series of
transformations, reversible or irreversible, and is finally brought back
to its original volume and temperature, the condition we lay down

5*
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is that the entropy shall be the same as it was at the beginning.
The initial and final states of the gas are by hypothesis indistinguishable
from each other in every respect, and if we made the entropies different,
this difference would be devoid of physical meaning.?)

If irreversible phenomena have occurred in the gas, the return
to the original state can only be made at the expense of compensating
transformations elsewhere. It is not in the gas itself but in the
external systems that a permanent change has occurred which may
affect the value of their entropy.

Subject to this assumption, we may proceed in two ways,
according as we start from the first or second definition above.

(1) Starting with the first definition, we may define the entropy
of a thermically heterogeneous system (i. e. system at non-uniform
temperature) as the sum of the entropies of its differential mass
elements.

The change of entropy in an irreversible transformation can now
be defined when it is possible to find a reversible transformation that
would produce identically the same changes as actually take place in
the system. The change of entropy in the irreversible transformation
is then defined as being equal to the change which would take place
in the corresponding reversible transforma.tlon bet ﬂen the ame
initial and final states. ({4 / (/. ov . , 2/5

[This convention must be made if entropy is to 4be cons1dere3
as a definite physical entity obeying the above fundamental condition.]

. This definition applies to all cases in which the initial and final
states can be connected by a reversible transformation. If this is not
possible, there is no a prior: reason for asserting that a definite meaning
can be assigned to entropy changes according to the first definition.

(2) We may start with the second definition which, we observe,
always gives a definite meaning to the concept entropy in accordance
with our assumed fundamental condition, and we may deduce from
it expressions representing the entropy changes corresponding to
different irreversible phenomena.

. 79. Entropy of a thermically heterogeneous system. If a system

of bodies consists of different parts m,, m, ... at uniform temperatures
T,, T ... the whole entropy of the system is the sum of the entropies
of the parts of the system?®), and hence is given by

1) We do not deny that it is possible to build up a mathematical theory
based on a definition according to which the entropy of a body depends on its
past history, and even, by suitably interpreting this theory, to deduce results in
accordance with facts. But such a theory would of necessity be an artificial one.

2) The use of the word “whole” as in whole volume, whole entropy or
whole energy is convenient to distinguish these from the volume, entropy and
energy of a unit mass. Compare also § 7.
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S=ms, + mgSy+ -+ + m,$,

where m,, m, are the masses of the parts, s,, s, their entropies per
unit mass. We see also that the increment of entropy is given by

where d @, is the whole heat recelved by the part m, at temperature
T,, whether this heat be received from outside or from other parts
of the system. The only limitation to this statement is that no
irreversible changes must occur within the separate portions m,, m, . ..

‘Where the temperature varies from point to point the system must
be divided into “differential” elements of mass, as explained in § 46,
these elements being so small that the temperature is uniform over
a single element, but the element is large compared with the molecular
structure of the substance. The summations of the last case must
. be replaced by integrals and we shall write the resulting equations

S= | sdm
as = fiq—'cim

where dg'dm is the qua.ntxty of heat absorbed by the element dm
when its temperature is T. In this notation dg' will stand for
quantity of heat absorbed per unit mass in the neighbourhood of the
point whose temperature is 7, and the sign of integration will refer
to the various “differential” mass elements of the body.

We notice that the second definition of entropy of § 71 is
applicable without modification in the present case, since a quantity
d @, received by the part at temperature 7, represents an increase of

T, T,
energy d@, of which d@, (1 - —o) is available and d@, .’ T, is non-
available relatively to the refngerator To.

80. Changes of entropy due to conduction or radiation of heat.

Let a quantity dQ; of heat flow by radiation or conduction from a

hotter part of the system whose temperature is 7, to a colder part

where the temperature is 7;. Then the entropy of the first part
a a

decreases by —TQ— and that of the second increases by — 2% hence the

total entropy increases by an amount &

1
d¢: (’T,‘ - T—,) |
This increase is always positive since 7 must be > T, for the
flow to take place from T, to 7,. Hence
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(1) The effect of irreversible heat flow between the parts of a system
is to increase the entropy of the system.
(2) There is mo difficulty about representing the entropy changes

due to this cause as a sum of differentials of the form e where the

T
- differentials d @ refer to the actual transformation.

We have here assumed the passage of heat from one part of
the system to the other to be instantaneous. When a finite time is
taken by radiation from one body to reach another, account must
be taken of the heat gained and lost by the intervening ether, and
this problem is discussed in Chapter X.

If the system undergoes a complete cycle, we may divide the
heat d @ received by any element when at temperature 7' into two
parts, one d¢; due to conduction or radiation from neighbouring
elements, and the other d ¢, being due to bodies outside the considered
system.

Hence for the cycle, we have

(f)4-=()8

the sign of summation X referring to the different bodies or mass
elements of the system.

Now the first integral vanishes, the total entropy being the same
at the beginning and end of the transformation'), and from what
has been just shown the second integral is positive; therefore

z(f)dg‘ <o.

This is a particular case of the inequality of Clausius proved in
§ 72. The entropy of the system is the same at the end as at the
beginning of the cycle, but the irreversible flow of heat causes an
increase of entropy inside the system. To compensate for this a
negative quantity of entropy must be taken from without, and we
may now enunciate Clausius’ inequality as follows:

In any nonm-reversible cycle, the quantity of entropy gained by the
system from without must be megative.

We may obtain a further modification of the last inequality, in
which the temperature of the system itself is replaced by the tempera-
ture of the external body or medium from which the system is heated.

)T

1) Although irreversible changes take place between the elements or parts
of the system, we are assuming in this paragraph that the processes within any

element are reversible, so that for every individual element ( f ) d_TQ vanishes

for the complete cycle.
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If the quhntity of heat d @ is taken from a body at temperature
T., and given to a part of the working substance at temperature 77,
the entropy of the latter is by definition increased by
aQ
T
but that of the source of heat is decreased by ?
If heat is absorbed from the source so that d @ is positive 7, > T;
and hence iQ  dQ
N —ITe >0

3

while if heat is given out the same result still holds because T, < T;
and d@ is negative. The fofal entropy consisting of the sum of the
entropies of the working substance and the surrounding media is
therefore increased. Moreover

=(f)5<=())%

and therefore a fortiori from (1)

2(f)%3<0.

A particular illustration of the difference of the two forms of
inequality is afforded by a system performing what is called a
conditionally irreversible cycle. By this we mean “a cycle which
under existing external conditions is irreversible but which may be
made reversible by the substitution of other external conditions”.
As an example we may take a simple system performing the series
of operations of Carnot’s cycle, but suppose that when it receives
heat from the source it is at a slightly lower temperature than the
source, and that when it gives heat to the refrigerator it is at a
slightly higher temperature than the refrigerator — a condition of
things which always exists in actual cycles. In this case the cycle
would be made reversible by an suitable alteration in the temperatures
of the source and refrigerator. For such cycles we have

z(f)“T—?=o bat z(f)iT?<o.

81. Irreversible conversion of Work into Heat. There are a
large number of cases in which irreversible changes take place, often
within the ultimate elements of the system, in such a way that it
is very difficult to analyse the exact process of events during the
change. We may take the following as illustrations of onme such
class of phenomena.
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(1) Friction between two rough bodies.

(2) Impact of two imperfectly elastic bodies.

(3) Gas rushing into vacuum.

(4) Stretched wire which is suddenly cut.

() Retardation of fluid motions due to viscosity.

(6) Flow of electricity in imperfectly conducting bodies.

All these phenomena may take place in the interior of a closed
vessel, impervious to heat, and then no entropy or emergy (available
or otherwise) is imported into the systems from without. In the
present cases the visible effects produced include an apparent absorption
of mechanical work in the interior of the system. By the principle
of conservation of energy, this lost work must reappear in the system
in the form of some other kind of energy. We may define this
energy as heat gemerated internally in the system, the guantity of heat
so generated being measured by the quantity of work lost!) We
shall speak of the phenomenon as an irreversible conversion of work
into heat in the interior of the system. Experience shows that a rise
of temperature or some other equivalent effect invariably accompanies
the transformation and is exactly the same in amount as if the heat
said to be generated in the system had been supplied from without.

What we can safely assert is that the ultimate effect of the
irreversible changes on the system is the same as could be produced
by reversible means if energy in the form of work was taken from
the system, and energy in the form of heat imparted to the system.
To make things clearer, we consider the separate cases.

(1) Friction between imperfectly rough bodies. If we were to
replace the rough surfaces by smooth ones, or introduce balls or other
anti-friction bearings, it would be necessary in order to make the
other effects the same, to apply equal and opposite external resistances
to the sliding parts, equal to the forces of friction which previously
existed. To make up for the emergy thus taken from the system,
- and to reproduce the temperature changes actually observable in the
bodies, heat energy would have to be supplied to the opposing
surfaces. If dH is a quantity of work lost by friction, then in the
reversible alternative system, the work dH is taken from the system,
and heat dH is given to it. If 7' is the temperature of the point
at which this “generated heat” is applied to the system, the gain of

entropy in the reversible process is %{i, and hence by definition the

same is true in the irreversible process. It therefore follows that in
defining entropy by the first method “quantities of heat generated

1) We are here using the term “quantity of heat” generated internally to
denote something different from the “quantity of heat” received by one body
from another, as defined in § 58.




IRREVERSIBLE: CONVERSION OF WORK INTO HEAT. 3

in the body” must be taken into account, a procedure open to some
objection.

But the removal of dH units of work reduces the available
energy of the system by dH, and the substitution of dH units of

T
relative to a refrigerator 7,. It follows that the gain of unavailable

T
heat at temperature 7, increases its available energy by d H (1 — —1)

T
energy in the system is dH T" and is equal to 7, times the corre-

sponding gain of entropy. Therefore the second definition of entropy
becomes applicable in this case.

(2) Impact of imperfectly elastic bodies. . Here no energy passes
to or from the bodies from without, and their total energy is
therefore constant. The changes in the translational and rotational
energy produced by impact could be effected by external forces, but
the bodies would then do external work. Hence to reproduce the
same results including the observed changes of temperature, by
reversible means energy equal to this external work must be supplied
from without in the form of heat. The change of entropy in the
aH
T
dependent on this supplied heat, and this by definition will re-

present the change of entropy in the actual transformation. As

reversible transformation will be the resulting value of ( f )

before it is easy to see that 7, ( f )(—iz—,H represents the non-available

energy gained by the system relative to a refrigerator T,, so that
Definition II is still valid.

(3) Gas rushing into a vacuum. The gas appears to do work
in expanding, but no work is done on the containing vessel, so that
the energy all remains in the gas. If the gas expanded against a
piston external work would be done, and heat would have to be
supplied to maintain its energy constant. Otherwise it would be
found that the temperature of the gas was lower than when it expanded
freely. This heat would increase the entropy but Definition II would
still hold.

(4) For a streiched wire that is suddenly cut the arguments are
precisely similar to the last case.

(5) Fluid motion brought to rest by viscosity. Instead of repro-
ducing the same change by artificial means, it is here easier to
bring back the system to its original state by imparting kinetic
energy to the fluid and withdrawing heat energy from it. The
entropy taken from the fluid in the latter change must be equal to
that which it gains in the former.

(6) Flow of electricity along a wire. If the electricity were
transported by convection from the higher to the lower potential,
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outside work would be done, and a corresponding quantity of heat
would have to be supplied to the wire, reproducing the observed
temperature changes caused by the current, and producing an increase
of entropy. Both in this and the last case, Definition II still holds.

In the class of systems here considered, if we suppose for greater
generality that work is being irreversibly converted into heat in the
interior, and at the same time heat is being received from without,
and is also passing between the parts of the system, the change of
entropy takes the form

(16) &—&fzfm+2fw+sz

where d ), is the heat received from without the system at the part
whose temperature is T;, d@; is the heat received from other parts
of the system, and d H the heat internally generated in the part itself.

Thus the change of en&ropy can only be expressed as a sum of

differentials of the form by assigning a second meaning to the term

“quantity of heat”.

In equation (76) we notice that dH is from the nature of the
case essentially positive, since heat cannot be converted into work
without some compensating transformation. Also the second term

Hence it follows that

dQe

<SB—-SA

(™)

A

and for a closed cycle we have

(18) zr(f)‘i'j,?f<o

If we replace 7; by 7, the external temperature at the point
from which the heat d ¢, was obtained we have, a fortior:

(19) Q

(80) | f) € <o,

Inequalities (77—80) all constitute forms or modifications of
Clausius’ Inequalities as applied to closed and unclosed transformations.

<SB-—-SA




CASES WHERE THE FORM | QTQ IS INAPPLICABLE; ()

82. Cases where the previous method fails. The following irre-
versible phenomena may here be cited as examples:

(7) Diffusion of gases.

(8) Combustion and other chemical changes.

(7) Diffusion of gases will be treated more fully in chapter XII.
If the diffusion takes place at constant pressure, volume, and tempe-

rature, and without gain or loss of heat, no expression of the form %Q

can be associated with the change, and the First Definition of entropy
is calculated to give the incorrect impression that the entropy is
necessarily unaltered by diffusion. The Second Definition is free from
this objection and rightly suggests that the matter can only be
decided by studying the conditions under which the mixed gases can be
separated or work obtained by mixing the gases in some different way.

(8) Combustion and other chemical changes. Here we may have
to deal with cases in which heat is suddenly generated, producing a
discontinuous change of temperature. It is evident that differentials

of the form % can only be integrated when the temperature varies

continuously. If however the energy, available and unavailable, is at
any instant definite, the entropy of the system will be definite according
to Definition II, even when Definition I fails.

Thus in the last two cases, the change of entropy cannot be expressed

as a sum of differentials of the form ?1?

We thus conclude that while the second definition of entropy is
applicable to irreversible as well as reversible changes, the first definition
cannot be extended to irreversible changes except in a limited number
of cases.

[This of course does not refer to definitions of entropy based on
the substitution of a reversible change for an irreversible one and the
wording of the First Definition adopted in § 70 seems free from
objection.]

83. Dependence of non-available energy -on temperature of
auxiliary medium. In connection with Definition II, we have seen
that the non-available energy gained by a system relative to an auxiliary
medium of temperature 7, is proportional to 7,. It is important to
observe that this property does mot imply any physical peculiarity of
th esystem itself which changes when a different medium is substituted
as refrigerator.

When we speak of a system as containing a quantity @, of
energy non-available relative to a refrigerator 7,, we imply that when
as much energy as possible has been converted into work by Carnots’
cycles working with this refrigerator the quantity @, will be absorbed



6 VII. UNAVAILABLE ENERGY AND ENTROPY.

by the refrigerator. If however another refrigerator 7', be substituted
the quantity ¢, must be further transformed by a Carnots’ cycle
from T, to T,, and the quantity of non-available energy @, now
absorbed will be given by 0 0

T,= 7T,

and will be to the former quantity as 7', is to 7|, without any difference
occurring in the system itself.

84. Clausius’ Statements. According to Clausius the First and
Second Laws are summed up in the following statements.

I. The Energy of the Universe is Constant.

II. The Entropy of the Universe tends to a maximum.

According to Definition II, the latter statement immediately
follows from the fact that the available energy tends to decrease, and
therefore the non-available energy necessarily tends to increase.

Further, Clausius’ Inequalities for non-ecyclic transformations
follow at once from this definition. For the increase of non-available
energy in the system in a transformation from 4 to B is by the
Second Definition of Entropy equal to T,(Sz — S,). The quantity of
non-available energy imported from without amounts respectively to

ae, ae,
qu Te and Tof—j.:-

according as this energy is measured when it leaves the external
systems or when it reaches the system itself. Now the changes
occurring within the system tend to decrease the available energy
without altering the total energy, and therefore they must increase
the non-available energy. Hence

B B
aQ, a ¢,
T,(Sz — S4) > T.,f—Ti—> Tof—T‘—
A A

d d
Jhs ftcs, s,

and moreover, the loss of available energy due to changes occurring
in the interior of the system itself is measured by

55— [42]

A

whence

while the loss of available energy in transit to and from the system

is measured by 5
'dQ aeQ,
A
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85. Examples of Entropy. Heat Conduction. We may apply
Fourier's method of analysis to determine the rate at which entropy -
is being generated in a solid through which heat is passing.

Taking & to be the thermal conductivity, y the specific heat
and o the density, consider a portion of the solid bounded by a
surface S, the direction cosines of the outward drawn normal at any
point of which are I, m, n.

The rate at which entropy is increasing in the portion is

arT
fff’; ¥ dxdyde.

The rate at which entropy is flowing in from outside

_ff_ 19T 4 d—;"-l-n‘%)ds
—fff {a( &= +dy(k dy)+dz ("’ )}d”dydz
S G+ G+ () amavas

The difference of these two expressions gives the rate at which
entropy is being generated in the solid. By the equations of
conduction this reduces to the last term, namely

fff”f‘*{(%)u Go) + () ) dwayas

an expression which is essentially positive.
This expression can also be written

fffF%(%)dxdydz

where F'is the resultant flux of heat, ds an element of length in the
direction of this flux at the point (z, y, 2). The interpretation of the
last expression is obvious.

Numerical examples. The quantity of entropy absorbed by
1 gram of water when its temperature is increased from 0°C to 1°C
is found by dividing the work measure of the heat 4-18 >< 107 ergs
by the mean absolute temperature 273.5°C and is therefore
1-529 >< 10° units.

If a mass of 1 kilogram moving with a velocity of 1 metre per
second is brought to rest by friction at a temperature of 15° C or
288° absolute, the work energy rendered unavailable is 110%.100%

r -5 ><10° ergs and the gain of entropy 1.736 >< 10* units.
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86. The Laws of Conservation, Localisation and Transmission of
Entropy. We may now enunciate the following principles:

(1) The entropy of an isolated system of bodies can be divided
into a sum of terms representing respectively the portions of entropy
located in the several bodies and in the medium.

(2) The entropy of a body is always the same whenever the
body is in the same physical state. It may have undergone any
number of reversible or irreversible changes but if it is brought
back to its former condition it will contain the same quantity of
- entropy as before.

(3) The expression for the entropy, like that for the energy
involves an unknown integration constant. It is possible that the
entropy of a body at absolute zero may be — oo. The constant
introduces no difficulties as we are only concerned with changes of
entropy.

(4) Entropy can be generated but never destroyed.

() Entropy is always generated when irreversible processes take
place, and the quantity of entropy so generated affords a measure of
the irreversibility.

(6) From (2) and () we see that although phenomena may
repeat themselves in certain limited parts of the Universe, irreversible
changes will leave an indelible imprint on the progress of events
somewhere or other, and the increase of entropy will represent a
real change in the physical condition of the Universe as a whole.

(7) When irreversible changes take place in the interior of a
system, the gain of entropy is greater than the quantity of entropy
imported into the system from without, the difference representing
the quantity of entropy generated by the irreversible changes. If
the system undergoes an irreversible cycle a positive quantity of
entropy will have to be exported from the body equal to the quantity
generated internally.

(8) When heat flows from a hot to a cold body entropy is
generated. If the flow take place by radiation, this entropy may be
said (provisionally) to be generated in the intervening medium or at
the surfaces of the two bodies. At the same time, it must be
remembered that we have not yet discussed the thermodynamics of
the ether, which will be dealt with in Chapter X.

(9) The reversible phenomena of thermo- electricity show that the
localisation of entropy may be altered by electric currents, leading to
the inference that the entropy of a system depends on its electric
state. For a detailed discussion of these phenomena, and a comparison
of the two definitions of entropy as applied to them, the reader is
referred to Chapter XVI.




LAWS OF ENTROPY. TEMPERATURE ENTROPY DIAGRAMS. 79

87. Temperature-entropy diagrams. In the practical applications
of thermodynamics to steam-engines and other heat-motors much
use is made of the temperature-entropy diagram, i. e. the diagram of
a cyclic or other process formed by taking as coordinates temperature
and entropy. As & and ¢ instead of I' and S are the usual symbols
for temperature and entropy in English books, such a diagram is
known in England as a “thetaphi diagram”.

The following are some of the most important properties of
such a diagram when the working substance is a simple system:

(1) For a Carnot’s Cycle the diagram is a rectangle bounded by
two lines T = constant and two lines S = constant.

(2) For a reversible cycle, integrating the equation

AU = TdS — pd¥,

(f)TdS=(f)pdV

or the areas of the (T,S), and (p, V) diagrams are equal.

(3) For a working substance performing an intrinsically irreversible
cycle, the temperature entropy diagram is a closed curve. If the
cycle be replaced by a rever-
sible one having the same 7
temperature - entropy  dia-
gram the amount of work
obtained will be greater than
before. It readily follows
that the area of the (p, V) dia-
gram is less than that of
the (7, S) diagram, and that
the ratio of these areas gives
the ratio of the efficiency
of the cycle to that of a
perfectly reversible one, i. e.
the efficiency of the cycle
taking that of a perfectly
reversible cycle as unity.

(4) If however we seek 0 S
to represent in a diagram Fig. 10.
the  temperature - entropy '
changes occurring in the source and refrigerator, we do not
necessarily obtain a closed curve. In this case if 7, and T, are the
temperatures of the source and refrigerator, S the entropy faken from
the source in one cycle, the work which would be obtainable from
the same quantity of heat in a perfectly reversible cycle is represented

we obtain

T . const.

EN
S

v W $~const.
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by a rectangular area of height S and base T, — T, and the ratio of
the indicator or (p, V) diagram to this diagram is the proper measure
of the efficiency ratio. The reason for this choice is that in practice
we want to economise the heat taken from the source as far as
possible, and we do not mind so much what happens at the
refrigerator provided we get the greatest possible amount of work
out of this heat.

The complete study of these diagrams belongs to treatises on
technical thermodynamics.

CHAPTER VIIL

EXPRESSIONS FOR THE AVAILABLE ENERGY UNDER
PARTICULAR CONDITIONS. — CONDITIONS OF STABILITY.

88. The energy test of stability. The discussions of the preceding
chapters lead to the general conclusions expressed by the formula

81) AU=dQ —dWw

and for reversible transformations at temperature 7'
ae

(82) a8 =

whence also

(83) AU=TdS — aw

where d U and dS are the perfect differentials of two functions whose
values are determined by the state of the system, these two functions
being called energy and entropy of the system.

We now proceed to discuss the conditions of equilibrium and
stability of certain systems subject to given external conditions, assuming
the First Definition of Entropy. We provisionally exclude chemical
and other changes for which the First Definition fails, and in parti-
cular we exclude radiation phenomena except in cases where the
energy capacity of the ether is negligible (§ 66).

From the energy test of stability in Rational Mechanics, combined
with the principle of degradation of energy, it follows that a thermo-
dynamic system subject to given conditions will be in stable equilibrium
if its available energy is a minimum for all small variations consistent
with the given conditions.

If 2, y, 2, ... be any variables specifying the state of the system
subject to given conditions, and 4 = f(z, y, #) represents the available
energy, the usual theory of maxima and minima requires that if

1
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fle+h,y+k, 2+1...)—f(z,y,2) be a function capable of expansion
in powers of h k, ! then (a) the terms of the first degree must
vanish, and (b) those of the second must be essentially positive.
Also we infer by analogy with the corresponding problem in Rational
Mechanics that the first condition (@) is required for equilibrium,
and condition (b) for stability; in other words we shall in general
assume that

For equilibrium, the variation of the. available energy must vanish
to the first order.

For stability the variation of the available energy must be positive
to the second order.

The first of these conditions may be stated in the following
form: In the meighbourhood of any equilibrium state any small change
may be regarded as perfectly reversible to the first order of small
quantities.

This property is of fundamental importance as it shows that
problems of thermodynamic equilibrium can in general be correctly
solved by means of the methods of reversible thermodynamics alone.
Most applications of thermodynamics depend on this fact.

89. Exceptional Cases. In applying the energy test of equilibrium
and stability exceptional cases may occur, of which the following

simple illustrations from elementary mechanics sufficiently indicate the
nature. These exceptlons

must be borne in mind in
any general treatment:

(a) State of Stable Equi-
librium not unique. A heavy
particle may be in stable .
equilibrium on the curve
of Fig. 11 either at 4, B,
or C, although its potential
energy is greater at B than
at 4, and greater at 4
than at C. Thus the con-
dition of stability does not <
require the energy to have :
the least possible value
but only to be less than g
in neighbouring positions. Fig. 11.

(b) The variation of emergy does mot vamish to the first order.
When a weight rests with its base AB on a table a small angular
displacement about A or B will produce a change of the same order
in the potential energy. We might speak of the system as having

BRYAN, Thermodynamics. 6
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unilateral freedom, the constraint due to the table allowing the base
to be raised but not lowered. For a system to rest in such a state
it is necessary for the energy variation to be positive for any possible
displacement consistent with the constraint, but when a displacement
in the opposite sense is excluded, this energy variation is not
necessarily a quantity of the second order.

| )/
A l B
Fig. 18.

c
Fig. 13.

(¢) Equilibrium maintained by friction. A body placed on a plane
inclined at an angle less than the angle of friction will remain at
rest, although if friction were removed it would slide down.

Thermodynamical analogues of these cases exist in chemical
phenomena; according to Duhem case (c) has its analogue in certain
phenomena called “false equilibria”.

With these prefatory statements, we shall now show how the
principle of degradation of available energy can be used to obtain
the conditions of equilibrium and stability of a thermodynamical
system in certain particular cases. To do this it is only necessary to
construct expressions for the available energy of the system subject
to the given external conditions.

Some of the results obtained — as for instance that for equilibrium
the temperature and pressure of a system (under no forces except
pressure) must be the same throughout — are so obvious that it is
of course superfluous to prove them by this means, but the investigation
is necessary in order to deal with the question of stability, and to
extend the conditions of thermodynamic equilibrium to more general
systems.

90. System at rest surrounded by an indefinite medium of uniform
temperature 7;, and pressure p;. We do not suppose the system to
have attained its equilibrium state, so that its pressure and temperature
are not necessarily the same as those of the medium. Suppose for
the sake of simplicity that the system consists of r simple systems
characterised by the suffixes 1, 2, ... and that the state of the rth
part is fully specified by the variables p,, V,, T,, S,, U,, representing
pressure, whole volume, temperature, whole entropy and energy, of
which only two are independent.
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Then if a quantity d @, of heat be withdrawn from the rth part, it
follows from above that a quantity of af least d@, >< % will have

to be given to the medium, and hence that the maximum amount
of mechanical work derivable from d¢@, is
T,
e (1-7)
Moreover, when the volume expands by an amount dV, against
the external pressure, the amount of work done is (p, — p,)dV..

Hence the total differential of the available energy of the system is
measured by

id= i, (1- 1) + D@~ p)dVn

_For equilibrium d.4 must vanish, giving the conditions 7, = T,
Pr =1D,, hence the available energy can only be a minimum when
the temperature is everywhere 7, and pressure p,, as is otherwise
obvious. o

We may take the available energy in this state to be zero since
no work can be obtained from the system by the transformations,
subject to the conditions wunder consideration. This does not mean
that the system cannot undergo other transformations such as
chemical changes, or that further energy cannot be rendered available
by a change of external conditions, but merely that our estimate
refers to the amount of energy which is available for conversion into
work when such extraneous changes are excluded.

Moreover d @, = — T,.dS, (d @, represents heat withdrawn whence
the minus sign). Hence the integral representing the available energy
of the whole system becomes

- -Zf(f, — T,)dS, + Z’f(p, — po)dV,.
But by the equations of reversible thermodynamics
aU,=T,dS, — p,dvV,.
Hence the total available energy is

4= [(@0, - 1,45, + 9,7,
taken from the initial state to the state (7, p,)

'=2(Ur — T8, + po V) — E(Uor — T,8% + p, V*)
where U,% S,° V,° refer to the rth body in the final state (7, p,).
This expression gives on summation

(84) A= (U= 0) — To(8 = 85) + po(V — Vo).
6*
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It follows frdm this expression that if
(85) ) U—T1T,8 4 p,V> U, — Iy8, + p, ¥,

the system can pass from the state (U, S, V) to the state (U,, S,

¥,) but cannot pass in the reverse dlrectlon unless available energy
be supplled from without. This condition is therefore the condition
that the state (U,, S,, V,) should be one of stable equilibrium.

91. System surrounded by an envelope of invariable volume ¥,
kept at constant temperatnre 7,. In this case the differential of the
available energy is given by

d4=— DT, — T)dS, + D, p.dV,
and the condition of constancy of volume gives

Sav,=o0.

The state of minimum available emergy is thus defined by

0=dd =— DT, — T)as, + D p.av,

for all variations consistent with Zd V,.=0.
It follows that for this state of equilibrium

T, =Ty, py=ps - =2pr
(results which are otherwise obvious).

And since ,
dU,=T.dS, — p,dV,,
we have .
dd=—Dlav, +1,Das,
whence

(86) A= DU, — T,8) - DU TS")
= U—Ty,— T,(S — 8y)

leading to the result that for stable equilibrium in the state U, S,
we must have for all possible neighbouring states U, S,

(87) U—T,8> U,— T,85,.

92. Stability of homogeneous fluids. Although a homogeneous
fluid has been taken as the type of a simple system, and may be so
taken as long as it remains homogeneous, it is necessary in order
that the fluid may be in stable equilibrium that its available energy
, shall be a minimum for all displacements and not merely for dis-
placements in which the fluid remains homogeneous. The same
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consideration applies to thermodynamic systems of a more general
character, and shows that in discussing the stability of a system with
n degrees of mechanical freedom it is necessary to contemplate
variations other than changes in the values of the #» + 1 variables
which are sufficient to specify the state of the system as long as it
remains homogeneous. For the present we confine ourselves to a
detailed discussion of the case of a homogeneous fluid, which will
sufficiently indicate the general character of the analytical results
obtained when any case of thermodynamic stability is worked out by the
methods of the differential calculus as a problem in maxima and minima.

We have to consider the possibility of displacements in which
the fluid instead of remaining homogeneous divides itself into two
or more parts differing in their physical properties, as illustrated,
for example, by a liquid in contact with its vapour, or a substance
partly in the solid and partly in the liquid state. If by such a
change the available energy could be decreased the homogeneous
state would be unstable, and examples of such unstable states are not
uncommon in actual experience.

If we consider an element of the fluid whose mass is a very
small fraction of the total mass, any chdnge in the state of -this
element will prodace a correspondingly very small change in the
pressure and temperature of the remainder. By dividing the fluid up
into differential elements of mass (§ 46) the condition of stability of
each element is seen to be correctly obtainable by making the
assumption that the fluid surrounding that element is kept at constant
pressure and temperature. Taking 7, p to be this temperature and
pressure, u, v, s the energy, volume, and entropy of a unit mass of the
fluid at any point in the equilibrium state, ', »', s' their values at
any neighbouring state, we must have af every point

(88) uw'—Ts'+ pv'>u— Ts + po.

Now let the energy u be expressed as a fanction of the entropy s
and volume v. Putting s —s=h, v —v=F% and expanding » in
powers of h, k by Taylor's Theorem we find to the second order in A, k

(u'— Ts' +pv')-—-(u—-Ts‘+pv)
0%u 0*u
_h('——T)_Fk( +p )+ W s’+hkasav+k230’

For equilibrium the terms of the first order vanish; for stability
those of the second order are positive. Therefore for equilibrium

0
89) e =
and for stability

(90) Tu>0, Fu>o0, Lulu_ (Ta)'so,
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Equations (89) lead to
du = Tds — pdv

in accordance with the Principle of Conservation of Energy and the
property that a small transformation is reversible to the first order.
Of the inequalities (90) the first two now give

oT J
@) G)>o ()<
The third may be written

oT op 0T op
(92) W%—%g—g<0

taking s and v as independent variables. Now
oT oT
aTl = '—a—sds + %—dv
_9p op
dp == - ds + 5 dv.

It follows as in § 34 that
0T 0p 0T op 0T dp 0T op

(aa_f)p="as‘a_v;£Wa_s (ap)r=’as‘ dv ~ ov 0s
ov ds

and therefore (91), (92) are equivalent to the four statements ‘

(w).>0 G),>o @< G.<o

These signify that

The addition of heat at comstant pressure or at constant volume
raises the temperature; that is the specific heats at constant volume and
pressure are positive (§ 11). '

The increase of pressure at constant temperature or entropy decreases
the volume, that is the moduli of elasticity at constant temperature or
entropy are positive (§ 14).

These conditions are obvious from general considerations.

93. When the pressures are everywhere in équilibrium the
expressions for the variation of the available energy in the presence
of a medium of temperature 7, take the form

T,
dA=2dQ,(1 —T)
If we have a mass m of a homogeneous substance whose specific
heat is ¥, and temperature 7,, the available energy obtainable in

|
l
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‘reducing it to a uniform temperature T, by reversible means is
therefore given by

A= [mp(1—T)ar.

Here y must be taken to be the specific heat at constant pressure
or constant volume according as the external conditions are those
of § 90 or § 91.

This is all the available energy obtainable from the system
(unless the final state is unstable or the stable state is not
unique, § 89 (a) or other variations may take place). We may say
that the available energy in the final state is zero. If subject to the
assumed conditions a medium of temperature different to 7|, were
procured, the conditions would be altered and further energy would
be rendered available.

If the body is colder than the surrounding medium (7, < T})
the expression for the available energy obtainable in bringing it to
temperature Ty may be thrown into the form

To

= To
4 . my ('p —1)ar
and since 7y> T throughout the integration A is again positive. Thus
available energy is obtainable from a cold body such as a glacier;
conversely to cool a body below the temperature of the surrounding
air, as in the manufacture of artificial ice, available energy must be
supplied from without, by means of a steam engine or otherwise.

94. System enclosed in a rigid envelope impervious to heat. —
Gibbs’ First Condition of Stability. The work done by the expansions
of the different parts of the system is equal to

Z’prdVr,

subject to the condition Zd V,=0.

To estimate the available energy which can be converted into
work by expansion and transference of heat between different parts
of the system, assume an auxiliary body at temperature T, and in
the first place suppose heat is transferred between the various bodies
of the system and the auxiliary body by means of Carnot’s cycles.

If dQ, is the quantity of heat, dS, the quantity of entropy

taken from the rth body then a quantity of heat d @, >< % is given

to the auxiliary body and the amount of work done is
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_L
and e (1 T')

(93) i4—Sde, (1 — %) +S'pav..

If the total quantity of heat received in any time-interval by
the auxiliary body is made equal to zero, the auxilia¥y body may
be removed, and if the volume be kept constant the conditions will
be those of a system completely closed from outside influence. Equating
to zero the heat received by the ‘auxiliary body we have

0 =2d Q. % — 1, s, — 7,8

S = constant

whence

also
(94) dd=D'dQ,+ DpdV,.
For equilibrium dA4 = 0 subject to

d
(95) . -1?—'=0 and > dV,=0.
This requires the obvious conditions
I'=T;=--=1, and p=py=--=p,

ahd the maximum work obtainable under these conditions is

A=2f(dQ,+p,dV,).

Since d @, here represents heat taken from the rth body instead
of heat given to that body, d @, is equal and of opposite sign to the
ordinary d@ of thermodynamics, and therefore d @, + p,dV,= —d U,,
and the expression for the available energy becomes

(96) =—2der=—de=U—Uo (s;y)

the integration being made along an isentropic path from the given
state to the state in which the energy U, is a minimum subject to
the condition of constant entropy.

The condition for stable equilibrium requires that the available
energy shall be a minimum, and therefore that the total energy U
shall be a minimum for variations which keep the entropy S constant.
This is one of the two alternative conditions of stability of an isolated
system given by Gibbs in the following statement: —

For the equilibrium of any isolated system it is necessary and
sufficient that
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(1) for all variations of the system which do mot alter its energy,
the variation of its entropy shall be either zero or megative

(2) for all variations of the system which do not alter its entropy
the variation of its energy shall be either zero or positive.

In other words
90 @08y <0 or (0U)s=0.

95. Gibbs’ Second Condition of Stability. Let any system be
isolated from all external influences for any given interval of time.
If the parts of the system are not in equilibrium amongst themselves,
irreversible changes will occur in the internal state of the system,
and the principle of degradation of energy states that these changes
will be of such a character as to decrease and never to increase the
available energy which the system would have when subjected to
given external conditions.

Now we have obtained for the available energy of a system of
constant volume in the presence of an indefinitely extended medium
at temperature 7|, the form

A= (U—1I,8) — (Uy — T,5)
according to whether the pressure of the medium or the volume of
the system is kept constant. '

For changes which take place in the interior of the system alone,
the total energy U remains constant. The only quantity which can
vary is the entropy S, and we see that the changes of entropy and
available energy are connected by the relation

0d4=—T,08.

Since 4 tends to decrease S tends to increase, and hence in the
position of stable equilibrium in which 4 is a minimum for constant
U, S is a maximum as stated by Gibbs.

The expression I;(S,— S) subject to U= U, represents the
amount of work which may be made available subject to the conditions
that no energy either in the form of heat or of work is to leave the
system as a whole.

In the previous article it was assumed that no heat was gained
or lost by the auxziliary body. The present expression, on the other
hand, assumes that no heat is gained or lost by the system. The
energy which is made available in the form of work is really taken
from the auxiliary body by transformations compensating the trans-
formations of heat from the hotter to the colder parts of the system.

It will thus be seen that the available energy of an isolated
system, though it appears at first sight to be simpler, is really more
difficult to evaluate than that of a system in the presence of a
thermically homogeneous medium. TUnder either hypothesis it is
doubtful how far the system can be correctly described as isolated,
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for, strictly speaking, this term implies that it can exert no outside
influences whatever. At the same time irreversible changes may
occur in the interior of the system; what we do know is that if
communication be established with the outside in any given way,
the energy thus rendered available will be greater before than after
the changes.

Again, the energy which is available in a system which is more
or less isolated is necessarily not greater than its available energy in
the presence of a medium 7,, For we may always in the latter
case assume the system to undergo the same transformation as if
the medium were absent, and if the final temperature which it
reaches under that condition is different from 7, there will still be
available energy between the system and the medium.

96. Lord Kelvin's Expressions. The expressions of § 94 for the
available energy of an isolated system have been thrown into a
simpler form by Lord Kelvin in the particular case in which the
pressures are in equilibrium amongst themselves (so that the work of
expansion is zero), and the heat capacities of the various portions
remain constant throughout the range of temperatures concerned.
Taking the equations (94), (95) which now become

0 =2df’ and dd=_,dQ

and supposing I, to be the total capacity for heat of the rth body
and 7 the final temperature, we obtain

T, T,
aT
0=2f1*, L A—_—Zfr,dT
r T
* or since I is constant :
I log T,
log T="2%2"% A= D 0T,—T T

=T,
In the case of two bodies of equal thermal capacity
: r ,
1-'1 = 1—‘3 = '2‘

where I' is the thermal capacity of the whole. Lord Kelvin finds
r
T=V(T1 Tz); 4= ?(VT1 —VT2)2-

In the general case an equally simple result can be obtained by
dividing the system into a number of parts or elements whose
capacities for heat are equal. If » is the number of parts and I'
the total capacity for heat of the system, we write

ﬂ=ﬂ=m=ﬂ=§

in the above equations and obtain
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1
I'=(1,T,,...T,)"=geom T,
T, + T+ + 1T,

A=T — I'T=TI'(arm T — geom T')

n

where arm 7' and geom 7' denote the arithmetic and geometric
means of the initial temperatures.

The precise meaning of this result is as follows:

When the system is brought to a common temperature by
reversible processes, that final temperature is the geometric mean of
the initial temperatures. If it is allowed to come to a common
temperature by heat conduction between the several parts thereby
losing all its available energy, that common temperature will be the
arithmetic mean of those of the parts. The available energy is equal
to the quantity of heat required to raise the temperature of the
system from the final value it would obtain by reversible processes
to the value it would obtain by irreversible conduction.

CHAPTER IX.
THERMODYNAMIC POTENTIALS.

97. Thermodynamic Potentials of a Simple System. In this
chapter we shall consider the statics of an ideal thermodynamic system,
and shall show that the properties of such a system when in equilibriam
are completely determined by a single function of the independent
variables required to define the state of the system. We start with
equation (83) of the preceding chapter,

U= TdS — dwW,

and we observe that this relation holds (a) for reversible trans-
" formations in which the system remains thermically homogeneous,
and (b) in general for small displacements from a state of equilibrium,
the uniformity of temperature being a necessary condition of equi-
librium (§§ 88, 94).

Taking now a homogeneous fluid as the type of a simple system,
we write dW = pdV, and therefore d U= 7dS — pdV whence

oU oU
(98) Gs)=1 Gv)s— -2
It follows that if the volume V and entropy S are chosen as
the two independent variables specifying the state of the system and
if U={sry where sy is a known function of S and ¥, the
temperature and pressure are given by the two partial differential
_coefficients of this function (the second with its sign changed). -
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For this choice of independent variables the energy, therefore,
plays the part of a potential function and may be regarded as the
thermodynamic potential of the system.

We can compare these results with the analogous relations in
statics; S and 7 will represent the generalised position coordinates
of a system, — 7T and p with the corresponding force-coordinates.
Or again in the kinetic analogue S and V will represent generalised
velocities, 7' and — p the corresponding momenta or impulse-
coordinates.

In practice it is usually more convenient to take the temperature
instead of the entropy as an mdependent variable, and sometimes the
pressure instead of the volume, and in such cases we use a “modified
function” in place of the function U.

Let V and T be the independent variables and put

(99) Eovr=U— ST
then dFry=dU — TdS — SdT
‘ =—SdT — pdV
leading to
g oy
(100 LA
Again taking p and 7 as independent variables put
(101) Srr=U—-8T+pV
then
AFrp=—8dT + Vdp
leading to
0 0
(102) _—8%11:?=_S’ gTP=-|-'V_
Finally if S and p are independent variables and if
(103) Fsp=U+pV
we get dFsp=TdS + Vdp,
I8sp 98sp
(104) -5 =T, 2 — V.

The four functions sy, Frr, Tre, Jsp are thermodynamlc
potentials of the system for the corresponding pairs of independent
variables. As however the second and third are the most commonly
used, they will be denoted for shortness by §y and p, and called
the thermodynamical potentials for given volume and pressure respectively,
the other variable being taken to be the temperature unless the
entropy is actually specified.

When instead of the whole body we wish to refer to a unit
mass of the working substance we use small letters to denote the
volume, energy and entropy, and these are got by dividing the

3’:» u( L) — Em-uﬂ
FrzPeom) — Wah famdoen,
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corresponding quantities for the whole body by the mass. We shall
denote the corresponding thermodynamic potentials per unit mass by

fiooru, §oorf,, $porf, and F, orf,

As the small suffixes are sufficient to distinguish the potentials
of unit mass from the potentials of the whole body, it is immaterial
whether a capital §§ or small § is used.

The fundamental property common to each of the thermodynamic
potentials viz: that all the coefficients which determine the physical and
mechanical properties of a body are known when a certain function of
the independent variables which define the state of the body 1is known,
was enunciated by F. Massiex in 1869 —1876, who gave the name
characteristic function to such functions.

98. Systems with any number of degrees of Freedom. Let us
now consider a thermically homogeneous system with » degrees of
mechanical freedom. The state of such a system is completely
specified by its » generalised coordinates, z,, ,, %, . . . #, and either
its absolute temperature 7' or its entropy S. If X, X,, ... X, are
the generalised force components corresponding to z,, z,, ... 2. the
external work done in any displacement is

AW = X,dz, + Xydag+ - + X,dz,.

From (83)

(105) dU=1TdS - X,dz, — Xydz, — --- — X, dz,
giving for independent variables S, z,, z,, ... if Fs.= U,
%, %5,

—5 =T, —95- =—X,.
Taking in like manner
Sr==U~— T8,

Frx=U— TS+ > Xz,
%sx= U+2X.’D

we have for the corresponding choices of variables

ag.’l’z a%Tz

o7 =5 5 =—Xn
a%I'X B%TX

1 =~ 8 ox =t
a%SX a%S.x

o5 —t 1 x =t

We may also construct other modified forms of thermodynamic
potential for cases in which it is convenient to take some of the
independent variables to be coordinates and some to be force
¢omponents.

3':;9‘ $(p) ~ Fam '

N _m o~ HoX



94 . IX. THERMODYNAMIC POTENTIALS.

99. Number of Arbitrary Constants in the Potentials. The energy
and entropy of a system each involve an unknown arbitrary constant
dependent on the fact that we are only able to take cognisance of
changes of their values and that we cannot form a definite conception
of a state of zero energy or entropy.

Consequently the thermodynamic potentials in which the tem-
perature is an independent variable contain two arbitrary constants
entering in the form a + bT.

If we agree to choose an arbitrary zero of emergy and entropy,
i. e. to make the entropy and energy zero in a state which is capable
of experimental realisation, the constants disappear.

Whether a state at absolute zero of temperature can be taken
as that of zero entropy depends on whether the heat capacity tends
to a finite limit or to zero as the temperature approaches zero. If
the former the entropy at absolute zero will be minus infinity.

100. Connection with available energy; Helmholtz’s “Free
Energy”. If we compare the expressions for §y and §p with the
expressions of §§ 90,91 we see that by a proper choice of the arbitrary
constants mentioned above y becomes the available energy of the
system in the presence of a medium of the same temperature as itself,
and {p, becomes its available energy in the presence of a medium of
the same temperature and pressure as ilself. The difference is that in
88 90, 91 we do not necessarily suppose the temperature and pressure
of the system to be the same as those of the medium, so that our
expressions there obtained are of a more general character. When
the system has come into a state of equilibrium with the surrounding
medium its available energy will be equal to §y or pr as the case
may be!), or will differ from these functions by the arbitrary
constants a + bT.

In the case of a compound system, a method of proof identical
with those of §§ 90,91 shows that the available energy relative to a
medinm 7, is of the form

U—-U,— Ty(S—S,)

or
AR e ACE AR ACEEN

1) This statement leads to little difficulty in connection with §§ 90,91 in
which we have assumed the zero of available energy to be obtained when the
temperature (and pressure) of the system are the same as those of the medium.
The fact is that many writers have deduced the conditions of thermodynamic
equilibrium from the consideration of isothermal displacements alome, and for
such displacements the thermodynamic potentials sufficiently determine the
variations of available energy (or “free energy” in the sense adopted by
Helmholtz).
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according as the coordinates or the external forces X, ... are
maintained constant. It is easy to see that a similar connection here
exists between the functions {7, and Frx and the corresponding
available energies of the system subject to the limitation that equilibrium
exists between the system and medium.

The potential Fry or Fr, is the function used by Helmholiz
under the name of “free emergy”. This potential is known as the
inner thermodynamic potential by Duhem while the other potential
Srp or Frx is called the total thermodynamical potential.

101. Thermodynamic Surfaces. A function of one or more variables
is not necessarily expressible in terms of those variables by any
symbolic formula, however complicated, hence we are not justified
in assuming a priori that a thermodynamic potential is so expressible
in terms of the variables which are chosen to define the state of the
system. In a simple system, where we have only two independent
variables, and one dependent variable, namely the corresponding
thermodynamic potential, we may take these as represented by the
three rectangular coordinates of a point, and the locus of this point
will be a geometric surface which is called a thermodynamic surface.

Taking a unit mass of a working substance, the surface obtained
by taking (v, s, u) as coordinates is known as Gibbs' thermodynamic
model of the substance, and has been constructed for various actual
substances from experimental considerations. Taking z, y, # as the
axes of v, s, u respectively, the polar reciprocal with respect to
y® = 22 keeping 2 constant gives the corresponding (v, 7, {¥,) surface
and the reciprocal with respect to 2® + y*= 22z gives the (p, T, ¥,)
surface as will be shown later.

The condition of stability of § 92 also receives a simple geometric
interpretation in connection with the (v, s, u) surface. It represents
the condition that the surface in the neighbourhood of any point
shall be below the tangent at that point, i. e. shall be concave up-
wards if the axis of u is drawn upwards.

102. Thermodynamical potentials of an Elastic Solid. In the
theory of elasticity, the state of strain of a body at any point is
determined by six components (., &, &, ¥z, ¥y, 7.), connected with
the three displacements (&, %, ) of the point (2, y, #) by six rela-
tions of the forms ;

A

— .o . —1 an a: . .
a=gy o Be=g (o)

On the other hand the state of stress is defined by six com-
ponents (6., @y, 6., T, 7,, 7,) 80 chosen that in any small displacement
the work done referred to unit volume of the undeformed body at
the point (z,y, 2) is o.de. + 6,d¢, + a.de, + v.dy, + v,dp, + v.dy,.
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To refer this to unit mass instead of to unit volume we have
to divide by ¢ the density of the body in its original undeformed
state, and taking « as the energy per unit mass, we have

du = Tds + %- (ZGde + Zrdy)-

Here ou is the elastic potential of unit volume at constant
entropy, giving for adiabatic changes

ou ou
o(0),= 000 e(az), =7

the differentiations being made on the supposition that the entropy
is constant. This condition holds in the case of rapid vibrations in
which no heat passes between the parts of the body.

Introducing the thermodynamic potential {§., namely

&e =u — Ts,
dF = —sdT + —:—(Zﬁde + Slvdy)

0 0
9(%) =0z) ..., Q(ﬁ) = Tzy ey
&/ ayz vy

the condition 7' = constant during partial differentiation showing that
&. is the proper elastic potential to use for slow displacements where
the temperature remains constant.

If the stress components are given the potential functions to be
used are obtained by subtracting from w and . the expression

1
F(Gzaz + Gy &y + 6.8, + T2V + TyVy + 1:7:)

and the corresponding potentials may be denoted by {so and Fr,
respectively, or for brevity s and Fr. We shall have

we have

leading to

: : v 1 B%Sv 1 a%SU

for adiabatic changes Ep = — ? _8—6?’ Vz = — —Z,— 81:z [}
: 1 a%Ta 1 a%r,;

for isothermal changes &, = — © s, Ye=— o

In the case of simple traction parallel to the axis of z, we have
Gy, 6., Tz, Ty, T, each equal to zero, and the corresponding value of
7./¢, derived from the potential ., represents the ordinary modulus
of elasticity (Young’s modulus). It is also to be observed that in
the ordinary theory of elasticity where small displacements are only
taken into account, so that the stresses are assumed for the purposes
of calculation to be linear functions of the strains and conversely,
the potential functions are quadratic functions of the strains or
stresses according to the choice of coordinates, and the entropy of
unit mass must therefore be also a homogeneous quadratic function
of the same variables, plus a constant.
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CHAPTER X.
APPLICATION OF THERMODYNAMICS TO RADIATION.

103. Black body radiations, The principle of degradation of
energy is essentially based on our knowledge of phenomena associated
with matter. The motions of the celestial bodies, and the propagation
of light waves which reach the Earth from distant stars afford
evidence that in the ether no such degradation of energy takes place,
or, if degradation exist, it is immeasurably smaller than what occurs in
the phenomena of material bodies.

While radiation may follow a body in a particular direction, the
radiation emitted by a body is equally distributed in all directions.
It follows that when the ether is traversed by radiation which is
unequally distributed as regards direction no state of heat equilibrium
can exist between the ether and a material body, and the notion of
temperature at a point which is the same in all directions becomes
inapplicable to the ether. Even if the heat absorbed and emitted
by a body are equal in amount, they are different in direction, so
that this condition, so far from representing an equilibrium state,
corresponds to a steady irreversible transformation.

For heat equilibrium to exist between a body and the ether it
is necessary that the radiation should be equally distributed in all
directions, and that the intensity of the total radiation falling on the
body should be equal to that of the radiation emitted by the body.
If we imagine a body of uniform temperature containing a cavity.
unoccupied by matter this state of equilibrinm will soon be attained
and the intensity of the radiation inside the cavity will be the
intensity of radiation of a “black body” of equal temperature. In
this way a black body is capable of experimental realisation, and
its radiation has been studied by Lummer, Wien, Pringsheim
and others.

In many of the previous discussions it has been tacitly assumed
that when heat passes from a hot to a cold body the transfer takes
place instantaneously, and this is virtually equivalent to assuming
that the heat capacity of the ether may be neglected. There is no
a priori reason for asserting that heat could not be made to pass

7‘
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from a cold to a hot body, and perpetual availability thus obtained,
if it were possible to produce a suitable series of changes during the
small time-intervals occupied by radiation in travelling from one
body to the other. If such a possibility existed, it would be difficult
if not impossible to put in practical working, and would in no way
vitiate the validity of the principles of thermodynamics as applied
to a large and important class of phenomena in which they would
still hold good. ’

The only way of dealing with this point is to ask in the
first instance the question: If the principle of degradation of energy
still holds good what consequences are logically deducible from it?
When this question has been answered the next step in the enquiry
is to ascertain whether these consequences are in agreement with
experiment.

104. Existence of radiation pressure. Now the first result arising
out of this mode of reasoning is the existence of pressure due to
radiation.

For let S be a perfectly reflecting tube, near the ends of which
are placed perfectly reflecting partitions C, D, the space between
which is devoid of radiation. Let a colder body B and warmer body
A be placed in the two ends, and let the partition 1) be opened.

Then radiation from B will pass

c D into the tube until an equili-
brium state is attained. If D

@ s @) be closed and B opened this
, radiation will certainly pass to-

Fig. 14. wards the warmer body 4, but

A will send radiation of greater
intensity into the cavity so that heat will not as yet pass from the
colder to the warmer body. '

But if the plug D be moved up to the end C, the heat from B
-will be transferred to A.

If we assume that this case does not afford an exception to the
principle of degradation of energy, available energy must be supplied
from without, and the only form which this energy can assume is
that of work done in moving the plug from D to C. The radiation
must therefore exert a pressure on the plug.

Now the existence of such a radiation-pressure is verified by
experiment as well as by theoretical considerations which are in-
dependent of the laws of thermodynamics, in connection with the
electromagnetic theory of light. We may regard this result as a
first step towards proving that it is impossible to restore lost availability
by means of the ether.
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105. Boltzmann’s Investigation. We may now following the
methods of Boltzmann construct a Carnot’s cycle for the ether or
“ether engine” as follows:

Let KC be a perfectly
reflecting tube containing a per- E

fectly reflecting piston C, and
devoid of matter, A a hotter K S
and B a colder radiating body. E '

(1) The piston being at 4
the end K, let it be placed in
contact with 4, and let the Fig. 15.
piston move outwards slowly,
the space behind absorbing radiation from 4 and work being done
by the radiation pressure. ‘

"(2) Let the body A be removed and the end K closed to further
radiation. Let the piston move outwards until the intensity of
radiation has diminished till it is exactly in equilibrium with that
emitted by B.

(3) Let the body B be placed at the end K and the plug C
pushed in until it is in contact with B, the whole radiation inside
the tube being absorbed by B.

(4) Let the body A be substituted for B.

By applying the laws of thermodynamics to this cycle Boltz-
mann obtained an important relation connecting the energy of
radiation per unit volume, the radiation pressure, and the temperature
of the radiating body.

Suppose when the temperature of the radiating body is 7, that
the energy of radiation per unit volume in the ether, when equilibrium
has been established is ¢, and the radiation pressure is f.

Let T,, T, be the temperatures of the source and refrigerator,
vy, v, the volumes of the space enclosed by C at the beginning and
end of the second process which is an adiabatic transformation.

The energy received by the medium in the first step is ¥,v,
and the work done in expansion is f;v,. Hence the total heat received
from A4 is (f; + ¥,)v,. ' v

In the second step the work of expansion is equal to f fdv
and is equal to the loss of radiant energy v, v, — ¢,v,. o

In the third stage the work of compression is f,v, and the total
heat received by B is (f; + %,)%,.

The principle of comservation of energy applied to the second
process thus gives

(106) P 0 — Pgly = f fav.
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While the analytical expression for the second law (the cycle
being reversible) namely

;QL = _Q_'
: T, T,
gives
(107) v (flT-,’- ¥y) _ nlhy T-’F V).

Equations (106), (107) involve the volume v and are only true
for adiabatic processes. By eliminating v we get a relation which is
not subject to this restriction, f and ¢ being only functions of T.
Making 7, — T; an infinitesimal of the first order in (106), (107)

we have
fdv=— vdy — pdo,

T((f + ¥)dv + vd(F + )] — v(f + $)dT = 0.

Eliminating ‘-iv—v from these equations we have

" (108) Tdf— (f+ v)dT=0

which is Boltzmann’s Equation.

106. Stefan’s Law. If we assume with Maxwell that the radiation
pressure is equal to one-third the energy per unit volume, that is

f= %w we get Tdy = 4ydT or
(109) oe T

or the energy per unit volume in the ether in the presence of a
“black body” varies as the fourth power of the temperature.

This is known as Stefan’s Law and has been verified experi-
mentally. Conversely if Stefan’s Law and the formula for the radiation
pressure be assumed as the result of experiment, we have a con-
firmation of our assumption that the laws of thermodynamics are
applicable to the ether.

According to Stefan’s law, the heat capacity of the ether per
unit volume o= 7% Under these conditions we may state that the
temperature of the ether is 7, this being the temperature of a “black
body” in thermal equilibrium with the ether, and the radiation being
assumed to be equally distributed in all directions.

Stefan’s law 'is not a pure deduction from thermodynamical

principles, for if we had assumed f = instead of %1{; we should

have found ¢ oc T2 instead of 7¢ But if Stefan’s Law be assumed
it affords a measure of absolute temperature which is independent of
any material body.
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107. Entropy of black body radiation. If, following the old
practice, we define entropy for reversible processes by the relation

as = ‘—iTQa, the entropy, per unit volume, of black body radiation may

be obtained by considering a black cavity the temperature of whose
walls is gradually raised from the absolute zero to temperature 7.
Assuming Stefan’s Law 3 = kT'* this gives

d 4
(110) - T"’ ?krs=?_}!’.
0

where S' represents entropy per unit volume.
Referred to auxiliary temperature 7, this represents a quantity

of unavailable energy —- ¢ Of this qua.ntlty ¢ represents the actual
energy of the cavity, and the remainder ——¢ is equal to f and

represents unavailable energy arising out of the radiation -pressure.
It is obvious that if we wish to transfer the energy of the cavity to
a body at temperature 7, work ¢ must be done by the radiation
pressure, so that the total energy transferred which is unavailable at
temperature 7' is equal to ¥ + f.

If however we start with the second definition of entropy, it
follows conversely that the entropy of the black cavity radiation is

in every instance equal to @—I—f—n

of Stefan’s Law.

» and this conclusion is independent

108. Impossibility of increasing availability by optical methods.
If it were possible to cause heat to pass from a colder body to a
hotter one by means of burning glasses, concave mirrors or indeed
any optical combination, we should have an exception to the principle
of degradation of energy, and should find it easy to obtain energy
in the form of work from a thermically homogeneous system. That
this is impossible was shown originally by Clausius in the case in
which the extreme media were the same; and it was also shown that
if the conclusion applies equally when the extreme media are different,
then the intensity of emission of a body in any medium must be
proportional to the square of the refractive index for that medium.?)

When a ray falls on a surface separating two media, part is
reflected and part refracted. It is obvious that the existence of the
reflected portion reduces the efficiency of a burning glass for the

1) Pogg. Ann. CXXI (1864) 1. As an example of the property, it would
be impossible to heat a body to a higher temperature than the Sun by con-
centrating the Sun's rays with a burning glass, even if atmosplieric absorption
did not exist.
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purpose of concentrating heat, and it is to be noticed, further, that
the splitting of the incident ray into two parts is in general irre-
versible; for, taking light of a certain definite wave length, a definite
relation exists between the amplitudes, phases and polarisation of the
reflected and refracted components, and unless this relation were
preserved when the paths of the rays were reversed, they would not
recombine to form a single’ray. If such recombination were possible
in the case of radiations emitted by different bodies we might have
a means of restoring lost availability. We shall therefore assume,
to shorten the discussion, that the loss of availability can in no
case be less than it would be in the case of purely hypothetical
media which refracted the whole of the incident light. Such a
medium we might call a “perfect refractor”, a “perfect reflector”
being similarly defined with reference to reflection.

Let ds and ds' be elements of area of two radiating surfaces,
and suppose that the rays from a point on ds which reach the
element ds' lie within a cone of solid angle dw' whose axis makes
an angle ¢ with the normal to ds. Then if I be the intensity of
normal radiation from ds, the total quantity of radiation falling on
ds' is
(111) dQ =1Icos ¢-dods.

With corresponding notation for the element ds', if dQ' denote
the quantity of radiation received from ds on ds',

dQ' =1I'"cos&'-dow'ds'.
The condition that d Q = d Q' requires that
Icos e dwds=I'cos &'dw'ds'.

If the extreme media are the same, I, I' are, for perfectly
radiating bodies, functions of the temperature alone, and in order
that heat equilibrium may represent equality of temperature we have
to prove the relation

(112) cos edwds = cos &'dw'ds’.

In the case of direct radiation through a homogeneous medium
if r be the distance between the elements

ds' cos &' ds cos &
do = — do'="—"%F%
r 7

)

cos sdwds = cos e'dw'ds'.
It follows from this that the ratio

cos 'do’ ds'
cos tdwds
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is equal to unity for all pairs of points in the case of rectilinear
propagation of light in a homogeneous medium. We may say that
the product of the cross section ds’ cos &' into the solid angle do'
of a pencil is invariant at all points of its course in the same medium.

109. Case of a perfect refractor. It now remains to show how
this ratio is altered at a reflecting or refracting surface.

Let do be any element of the refractive surface, u, u' the indices
of refraction, @, ¢' the angles of incidence and refraction, ¢ the
azimuthal angle measured about the normal

Then the solid angles dw, do' of a small pencil before incidence
and refraction may be taken to be '

do =sin pdpdy, do'=sing'de'dy'.
But . Py
psin @ = p' 8in @',
.. wcos pdp = p' cos p'do’,
.. utcos pdwda =pu'? cos p'dode
so that the ratio of the differentials
cos ¢'do'ds’ _ w?
3

cos pdwde "

and when d@Q — dQ' we must have
. '
(113) 5=
By extending this result to any number of reflections and
refractions, we see that the ratio
w?tcos fdo'ds
“uicos eduds
at any two points traversed by the rays is equal to unity, or the
product of the cross section
into the solid angle of a
pencil at any point is in-
versely proportional to the
square of the refractive

index (Fig. 16).
It should be noticed g
that Helmholtz's formula for
the magnification of an
optical combination is con- Fig. 16,

tained in this result.

110. Entropy of directed radiation. From the last article it
follows that if radiation of intensity I is emitted in a medium of

index u, the quantity “i, is an invariant in the sense that it represents
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a quality of the radiation which is unaltered by perfect reflection or
refraction or direct propagation. So long as this is the case the trans-
mission of the rays does not necessarily involve passage from a hotter
to a colder body.

If we imagine a perfectly black body of finite size emitting
radiation, then at any distant point the directions of the rays will
be confined to the solid angle which the body subtends at that point.
By means of a suitable combination of perfect reflectors or refractors
or both we may regard it as theoretically possible to make any
portion of the rays converge into a smaller area in such a way that
this solid angle is increased to 2«#. When this is the case there
will be equilibrium of radiation at the surface of convergence if the
temperature of a body placed there is equal to that of the source.

On the other hand, if the source begins to send out radiation
into empty space, radiation pressure will be set up where it did not
previously exist, representing an increase of unavailable energy and,
therefore, of entropy. '

The entropy per unit volume at any point of the ether is a
measurable quantity in the case of a radiating sphere surrounded by
a perfectly reflecting concentric spherical surface. This case differs
from the previous onme in that we have everywhere to deal with
emitted and reflected radiation of equal intensity confined. within the
same limits of direction. '

If the radius of the reflecting sphere is decreased from » to
r — dr, the radiation between these distances will be absorbed by
the source, and work will be done against the radiation pressure.
It follows that the entropy per unit volume again takes the form of

§ 107, viz S = w where ¢ is the total intensity of radiation, f

the radiation pressure, and 7' the temperature of a perfectly black
body emitting radiation of the intemsity in question.

11l. Summary of irreversible radiation phenmomena. The irre-
versible processes connected with radiation may generally be summed
up in Planck’s statement that emission without simultaneous absorption
s possible but irreversible, absorption without simultancous emission is
impossible.

Although the generation of entropy due to outward ‘radiation
considered in the last article may be naturally regarded as taking
place in the ether, it will be seen that the change is really a direct
consequence of this assumption. If it were possible to conceive a
body at temperature 7' capable of absorbing without emitting the
radiation due to that temperature, any portion of the ether could be
cleared of radiation without doing work against radiation-pressure, and
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without involving passage of heat from a hotter to a colder body,
so that the gain of entropy in question would then cease to exist.

Another case of irreversibility occurs when a body absorbs
radiation in certain directions and emits radiation in all outward
directions without gaining or losing heat on the whole. Here the
invariant of the radiation is changed, and the scattering of light by
small particles affords a familiar instance.

A third case, not yet considered, arises in connection with
imperfectly radiating or absorbing bodies. A discussion of such
bodies will be found in elementary treatises on light and need not
. be given here. For our purpose the phenomena are sufficiently
represented by considering that the invariant of the emitted radiation
is the same as that of a perfectly black body of lower temperature
while the invariant of the absorbed radiation is the same as that of
a perfectly black body of higher temperature. The irreversible
changes are thus measurable in terms of heat taken from a higher
to a lower temperature, and therefore they define increases of entropy.

All these cases are covered by Planck’s general statement quoted
above. Whether all the irreversible phenomena of the universe can
be deduced from this statement by the consideration of intermolecular
radiations is a difficult question to answer, especially in connection
with such phenomena as diffusion of gases.

Note. In this chapter no attempt has been made to give a
complete account of the thermodynamics of radiation. The proof of
Maxwell’s expression for the radiation, and all considerations relating
to the distribution of light-waves of different frequency in black
cavity radiations have been omitted. For a full discussion of these
and other questions, and further considerations relating to the entropy
of radiation especially as treated from a statistical stand-point the
reader is referred to Dr. Planck’s recent treatise.?)

CHAPTER XI.

THERMODYNAMIC FORMULAE OF A SIMPLE SYSTEM.
[CHAPTER III SHOULD BE REVISED BEFORE PROCEEDING FURTHER.]

112, Deductions from the First Law. In Chapter III we showed
that the various thermal differential coefficients of a body are not
all independent but are connected by the formulae of the Differential
Calculus for change of the independent variable—%Fhe laws of thermo-

1) Vorlesungen iiber die Theorie der Wmmestrahlungen Leipzig, Barth, 1906.
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dynamics introduce two new quantities, namely, intrinsic energy and
entropy, and differential coefficients involving these quantities fall
under the general formulae there discussed.

We now have, however, the further properties that in reversible

changes d@Q —dW and ‘11—?— are perfect differentials of these two
quantities, and we may apply the well known analytical theorem,

that if Mdxz 4 Ndy is a perfect differential then %—1:/[ = ;;—JZ

Applying this property to dQ — d W and assuming z and y to
be independent variables by which the state of the body is defined,
Clausius gives the formula

(114) 209 00Q 23W 2 0W

dz 0y Jy 0z 0x Oy oy ox
Taking a unit mass of fluid as a simple system we may put
dW = pdv, and for the added heat which we now call dg, if we
write as in Chap. III

@7) dg = lLdv + 7.dT,
(28) dq=1lpdp + y,dT,
(30) dq= Mdv+ Ndp,
we obtain the particular forms '
o(l,—p) 1,
(115) 3T =5’
o(1,+v) 0y
(116) GT = 7p’
oM ON
(117) Pp 0= b

and since each of these expresses the condition that the same expression
should be a perfect differential, each is analytically deducible from
the others as can be readily verified. .

113, Deductions from the Second Law. Again making % a perfect
differential, we obtain in the first place Clausius’ formula
0 0 0 0 1 /0Q 0T 0Q 0T
(118) Q Q ( @ Q _)

37 9y 9y 70 =1 32 3y — 7y
and in the second place the particular forms
al, 4 oy,

ol l
(120) 0y b _

(121) W T p T T T op
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Combining these with the previous set of equations we obtain
(122) T(a oW D aW) 2Q 0T 8Q oT

oz 0y 0y ox

a2 )
(124) (#5),——
(125) Ma_p_N?%—=T‘
From (115), (123) and (116), (124) we deduce further, the relations
126) R
(127) (@)= - 707,

which are of use in experimental determinations of y, and y,.

114. Maxwell’s Four Thermodynamic Relations. The last two
articles, combined with the results of Chapter III, will show how
easy it is to write down an almost endless number of thermodynamic
formula. In order to evolve order out of the chaos which would
very soon arise, it is best to introduce the thermodynamic potentials,
which for unit mass we denote by

% Or fin, fo, o and f, or %c_p-
Applying the conditions for a perfect dlﬁ'erentlal to the differentials
of these functions, as given by § 112 and writing - 9 for ds

129 (&)~ - 7(%2);
(129) (“:3) +T( )
(180) (35).= = 7(7),
(181) (@)= + 7(32),

of which (129) is identical with (123) and (130) with (124). Equation
(123) is moreover the equation (22) given in Chapter II § 29 and
known as Clapeyron’s Equation.

These four relations are mutually dependent for if (128) is satisfied
Tds — pdv is a complete differential, therefore (e.g.) Tds — pdv — d(T's)
is a perfect differential giving (129).
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These relations are known as “Maxwell's four thermodynamical
relations”, and they may be readily interpreted in words.

Attending only to the signs of the differential coefficients, we
draw the following conclusions.

(a) If the substamce expands adiabatically, the temperature will
increase or decrease as the volume increases, according as addition of
heat decreases or increases the pressure at constant volume.

(b) If the substance is compressed adiabatically, the temperature will
increase or decrease with the pressure, according as addition of heat
increases or decreases the volume at comstant pressure. '

(c) If the substance expands at constant temperature, it will absorb
or give out heat as the volume increases, according as the pressure al
constant volume increases or decreases with the temperature.

(d) If the substance is compressed at comstant temperature, it will
absorb or give out heat according as the pressure increases as the volume
at constant pressure decreases or increases with the temperature.

As an example we may take the case of water below the tem-
perature of maximum density. Here when the pressure is kept
constant the volume decreases as the femperature increases and *con-

versely”. Hence (g%)p and (‘%)p are both negative, and the second
and fourth relations give (%%). negative and (%)r positive. We
conclude that in such a substance an increase of pressure causes cooling.

The equations moreover give an exact numerical relation between
the phenomena correlated by them. For example (124) may be stated
quantitatively thus: “The latent heat of expamsion at constant tem-
perature s equal to the product of the temperature wmto the rate of
increase of pressure per unit increase of lemperature at constant volume.”

For a system defined by »n + 1 variables viz: T’ or S, and either
the n generalised coordinates x,, y,...%., or the corresponding

generalised forces, X, X,,... X,, we get %(n + 1) independent

relations from the condition of integrability of the differential of any
thermodynamic potential.
We thus obtain the four sets

(@)gn == (@) (@ = (3)

ax, /s,z as /s day/s,«, . \dz, sz
(d_s - (d_x) (‘_’ﬁ)' =(“_X-)

(132) dz, ) 1,2, aT)s’ \dz)rz — \dz/rs’
()~ (83 () ()
dX)r,x,” ~ \dT)Y \aX/nx~ \dX/nx,
(ﬂ) - (ix_) , (d_z) =(di)
aX,/s,x,  \a8/x \dX,/)sx, \dX,/szx,
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As a further example, we may consider the case of an elastic
wire subject to longitudinal tension only, here we obtain the following
relations (see § 102 for notation)

- (ﬂ) ,
de, /g

1 daz)
+(@).,
1 dez ( ds o

e Gr), =+ (7)),

These "equations, like Maxwell's ordinary relations can be tested
experimentally. For example the last equation but one asserts that
a sudden (adiabatic) increase of temsion will increase or lower the
temperature of a wire according as the addition of heat produces

contraction or elongation under constant tension. The former is the
case in caoutchouc.

115, Geometrical proof. Maxwell's four relations may also be
deduced from the property that the areas of the pressure-volume and
temperature-entropy diagrams corresponding to a Carnot’s cycle are
equal and therefore, substituting these variables in equations (41)
each member becomes numerically equal to unity. The question of
sign is easily settled.

116. Expression in terms of thermodynamic potentials. A further
simplification and coordination of formula is effected by expressing
all the thermodynamic magnitudes in terms of ome of the thermo-
dynamic potentials and its derivatives with respect to the corresponding
independent variables. There being four potentials for a simple
system, every expression can thus be expressed in four different ways,
and there will be a close analogy between the expressions for (e.'g.)
the specific heat at constant pressure referred to independent variables
p, T and potential f,r and the specific heat at constant volume
referred to independent variables v, 7' and potential f,7. For the
sake of brevity we only consider here expressions in terms of the
two more important potential functions f, and f, (referred to unit
mass) in which the temperature is the other independent variable,
and these we write side by side in order to being out more clearly
the kind of principle of duality between them.

fo-Formulae. fo-Formulae.
Specific heat at constant Specific heat at constant
volame pressure )
dq ds o, dq ds\ 9
o= (35).=T(G7),=— T5pv | #o=(37),= T(27),= T52>
Specific heat at constant Specific heat at constant
pressure - volume




112
as
Vp= T(d_T),
0s 0p 08 0p
T'a—f dv v 0T
= 7
p
v
(by Chapter III Formula 40d)
a:fo 3:70 a:fv )3
0T 0v*  \9Tov
rp=—T o,
0v*
moreover ( o, )’ .
=T o0Tov ——I(W)
Vp— V=L T T op
00t oo
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At constant temperature At constant temperature
ap a’f,,. ov _ a’fp.
5o = " 0 ap— T op
The modulus of elasticity is The modulus of elasticity is
therefore therefore )
f
dyp o*f dv op
er=0(d) =-—vav, 81'=’0(dp) 'E"
op?

The modulus of elasticity at The modulus of elasticity at
constant entropy is v(g—:’)‘ whence | constant entropy is v(%) » or

by Chap. III Formula (40d) of
21@ where
(@)
ap
op 98 _ 0p 0s dv 08 _ 0v 08
(d}g) =3v 0T 0T ov (dg) =6_p 0T 0T dp
av/s 0s ap/s Js
orT oT
9%, 0, ( o, )’ 0*f, 0*, ( a*f, )’
01% 9v? ~ \owoT 0T 9p* ~ \opoT
_ — i . =+ P
° 4
o1? o1
To transform any other partial To transform any other partial

differential coefficient we refer to|differential coefficient we refer to
T and v as variables by the formulae | T'and p as variables by the formulae
of § 34 and finally substitute of § 34 and finally substitute

21, 21, 21, 21,
S=—51 P=" 3y s=—gp v=+g,

117. Modifications in certain irreversible processes. The expressions
for dq in § 112 are assumed on the hypothesis that the small change
(dp, dv, dT) is reversible and that dg represents heat communicated
to the system from without. The six coefficients ,, l,, ... are
definite functions of any two of the variables (p, v, T) by which
the state of the system is defined.

In the case of intrinsically irreversible processes by which heat
is converted into work in the interior of the system, by friction,
viscosity, or other causes, (as explained in § 81) our formulae require
to be reconsidered and modified.

As a general rule a system does not remain homogeneous under
such circumstances, and moreover its parts are usually in motion

BRYAN, Thermodynamics. 8
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among themselves. We may however apply the usual methods of
analysis by supposing the system divided into differential mass
elements. The kinetic energy of dm due to the motion will be
a quantity £dm in which % is calculable by the methods of hydro-
dynamics. Moreover the intrinsic volume v of unit mass has a
definite value for every differential element, and we shall assume the
same is true of temperature 7, and that the temperature at a point is the
same in all directions. The following investigation will then refer
to the progress of events in a differential mass-element of the system.
If the substance when at rest obeys the equation

f(p, v, )=0
this equation can be used to define the pressure at any point at
any instant; in the case of a viscous fluid this will be the mean
pressure considered in the theory of viscosity, and will be different
from the actual stresses at that point.
If instead of dgq we write dq in equations (27, 28, 30), for example

(133) dq=1,dv + p,dT
dq represents the quantity of heat which would be required to produce
the transformation (dv, dT) by perfectly reversible processes.

We use dg as usual to denote the quantity of heat received
from without, and we may put

(134) dq = dq + dh.

The quantity dk, in accordance with § 81 will be defined as the
quantity of heat generated in. the interior of the system, and we
notice that it is given by

(135) dh =1,dv + 7,dT — dg.

Let dw be the external work done by the substance, % the
kinetic energy due to the motion of its parts among themselves.
Then if we put

(136) ds =dgq — dw

de represents the quantity of emergy communicated to the substance
from without.

‘Again if we put
(137) du =dq — pdv= (I, — p)dv + p,dT

du represents the increase in the intrinsic energy of the substance,
i. e, in the energy depending on its volume and temperature.
Because the coefficients I, and p, are functions of v and T defined
by the equations of reversible thermodynamics, du is the perfect
differential of a function u, which is the same function of v and T
as in reversible thermodynamics.
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g

Now the energy communicated to the system from without is
partly converted into kinetic energy of agitation, and partly into
intrinsic energy, therefore by the Principle of Conservation of Energy

(138) : de=dk + du.
Hence

(139) dq — dw = dk + dq — pdv,

whence

(140) pdv — dw = dk + dh.

If ‘the initial and final kinetic energy is zero we have

(141) fpdv —fdw =fdh.

The left hand side of this equation represents the quantity of
work energy lost in the interior of the system, and the right hand
the quantity of “internal heat” generated irreversibly in the system,
and we notice that these are equal, as they should be.

. The difference between f pdv and f dw may represent work

done in agitating or stirring the system as in Joule’s experiment,
or it may represent work energy lost by the substance in flowing
from a place of higher to one of lower pressure, as in the case of a
gas rushing suddenly into a vacuum or passing through a porous plug.

It will thus be seen that the equations which we have obtained
so far are consistent with (a) the principle of Conservation of Energy,
and also with (b) the axiom that the intrinsic energy of a simple
system (excluding kinetic energy of agitation) is a function of its
volume and temperature alone.

We shall now show how equally consistent results can be obtained
in connection with the entropy-properties of the particular system
under consideration. If we put

1,dv+7,dT

(142) , ds =

ds will represent the change of entropy per unit mass if the trans-
formation dv, dT is reversible. On the hypothesis that the entropy
of the system at any instant depends on the actual state of the
system at that instant and not on its previous heating, we must
assume the above expression to represent the change of entropy
whatever be the means by which the change is effected, so that we
now have with the above definition of dg

(143) ds =23

8*
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A ]
The entropy per unit mass imported into the system from without
is equal to do where iq

(144) . de=%

The difference represents the entropy per unit mass generated in
the system and is by (134, 140) given by
dh _pdv—dw-—~dk

(145) ds —de =57 = L
or
(146) ds___pdv—dw;dk-{-dq.

Now let 7' be taken as the standard temperature of a refrigerator
used in defining available energy.

Then pdv — dw denotes the quantity of potential energy lost
in the interior of the system, and this energy is all available energy.
Also — dk represents the loss of kinetic energy which by previous
conventions is to be regarded also as available energy, hence
pdv — dw — dk represents the total quantity of emergy rendered un-
available within the system. Also dg represents enmergy imported
into- the system which is unavailable at temperature 7. Hence
pdv — dw — dk + dq represents the total increase of energy which is
unavailable at temperature 7', and therefore

increase of energy unavailable at temperature T
(147) ds = oy e :

Hence the entropy defined by (142) satisfies Definition 2 of
Chapter VII, and conversely if Definition 2 be assumed the entropy
will satisfy equation (142) and will be a function only of the coordinates
(v, T') of the system, and its change in any small transformation
(dv, dT') will be independent of whether that transformation is
a reversible one or an irreversible one of the particular kind here
considered.

CHAPTER XIL
PERFECT GASES.

118. Definitions of a perfect gas. The earliest experiments with
gases led to the inference that the majority of gases obey the
following laws, provided that their states as regards pressure and
temperature differ considerably from that at which they liquefy.

1. Boyle’s Law or Mariottes Law. When the temperature is
constant the volume varies inversely as the pressure. Hence pv = con-
stant when 7' = constant, whence generally

(A) pv=f(T), a function of 7.
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2. Joule's Law. All the work done in compressing a gas at
constant temperature is converted into heat, and conversely when the
gas expands at constant temperature the quantity of heat absorbed
is equal to the quantity of work done.

3. Clausius’ Law. The specific heat of a gas at constant volume
is independent of the temperature.

More exact experiments show these laws to be only approximate
(Chapter I § 10) but the properties of gases are greatly elucidated by
studying what would happen in an ideal substance which obeyed them
exactly.

A perfect gas is an ideal substance which can be defined in two
ways. According to one definition, a perfect gas is considered to be
a substance which conforms accurately to the first and second of these
laws, according to the other definition, adopted by Clausius, a perfect
gas is considered to be a substance which obeys all three laws.

119. Expansion of a perfect gas. We shall now deduce the
principal properties of a perfect gas assuming in the first instance
that it obeys Boyle’s and Joule’s Law only. When a unit mass of the
gas expands slowly at constant temperature we have by putting d7'=0
in equation (27) dg = 1,dv

But from Joule’s Law in this case

dq = pdv
therefore =2
(148) lo=p.
From Clapeyron’s Equation (22) however
apy _ b _p
(149 Gr)-7-%

By integration it follows that when v is constant p is proportional
to 7. Next, supposing v may vary, and combining this result with
Boyle’s Law, we have pv proportional to 7' or

(150) pv= BT.

It follows that the absolute temperature of a perfect gas is
proportional to the volume when the pressure is constant, and to the
pressure when the volume is constant. The coefficient of cubical
expansion of a gas at constant pressure is given by

1 fav 1
(151) | 0= ( d*r‘),, -5
and therefore at the same temperature, this coefficient of cubical
expansion 1is the same for all perfect gases. This result is known as°
Charles’ or Gay Lussac’s Law.
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A perfect gas contained in a vessel in which it could expand or
contract at constant pressure, would therefore constitute a thermo-
meter for the measurement of absolute temperature, the volume of
the gas being proportional to the absolute temperature. A second
method would be to keep the volume constant, and take the pressure |
as a measure of the absolute tempera.ture

When an actual thermometer is thus constructed with any real
gas, we obtain a constant-pressure or comstant-volume gas thermometer;
a convenient plan is to employ ordinary air, giving an air-thermo-
meter (cf. Chap. I § 2). From the considerations discussed above
such a thermometer only gives an approzimate absolute scale of
temperature, the degree of approximation of this scale depending on
the degree of approximation with which Boyle’s and Joule’s Laws
are satisfied. '

120. The Universal Gas Constant. In the first place it is obvious
that the constant B for any gas is inversely proportional to the
density of that gas at given temperature and pressure.

In the second place it is readily proved from the dynamical
theory of gases that in a medium consisting of a large number n
of molecules moving about in all directions, the average kinetic energy
of a molecule being L

pV=mnL

and further for mixtures of different molecules L is the same for
each kind, so that L may be put proportional to the temperature. If
then M is the molecular weight of the gas, i. e. the ratio of the
mass of a molecule of the gas to an afom of hydrogen it follows that
(1) at given temperature and pressure, the number of molecules #
occurring in a unit volume is constant, (2) the mass of unit volume
is proportional to M, and (3) the volume of unit mass is therefore

proportional to l:{ Hence if B = % R will be a universal constant

which has the same value for all gases. If moreover we write
v' = Mv, then ¢' is the so-called molecular volume of the chemist, and
with this notation we may write (150) in the form

(152) pv'=RT.
121. Specific Heats. In the first place we notice that
dv v
(153) lp= l, (d—?;)l'=p . ('— 5) = — 9.

Again substituting I, = p in the equation for the energy
we have du=dq—pdo=1yp,dT + (lv'-p)dv.
(154) ) ' du — ypdT;
du
(155) (%)T= 0
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Therefore  and also p, are functions of 7' only. That is: The
specific heat at constant volume and the internal emergy are functions of
the temperature alone.

Again from (32)

d B
(156) Yo — Vo= I (d—%)p =P ) =B

That is the difference of the specific heats is for the same perfect
gas a constant. For different gases the differences of the specific
heats are inversely proportional to the molecular weights.

If, moreover the gas satisfies Clausius’ Law (this has not so far
been assumed), the two specific heals are both conmstamt, and moreover
the intrinsic energy of unit mass of the gas is given by

(157 w=2,T + u,

We should naturally take the constant u, to be zero, i. e. assume
that at the zero of absolute temperature the energy would vanish.
It must not however be forgotten that a gas might possess forms
of energy other than those considered in Thermodynamics, which did
not vanish at the absolute zero of temperature. So long as we are
dealing with a purely hypothetical substance we may assume any
such property we like, but this is not justifiable if a perfect gas is
intended as an approximation to an actual gas.

The equation of the adiabatics referred to p, v as coordinates is
most easily obtained from the property that the ratio of the elasticities
is equal to the ratio of the specific heats, i. e.

@)= %)= — =%

By integration we obtain Poisson’s equation
(158) pv* = constant.

The same property enables the specific heat ratio » to be found
for any gas (not necessarily a perfect gas). This can be dome in
many ways, one of the simplest in principle being by determining
the velocity of sound waves (@) in the gas, which, by the theory of
sound, is given by a®= — v? (Z—f)s- If the value of (?WP)T is found by
experiments on the compression of the gas (Boyle’s Law not being
necessarily assumed) x is at once obtained. For most ordinary gases-

such as air or hydrogen x» = 1.40 approximately, a result partly
justified by the Kinetic Theory.

122. Themod&namic Potentials. To find the entropy, energy and

thermodynamic potentials per unit mass of a perfect gas satisfying
Clausius’ Law we have
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a arT av
ds — —lg =V +PT

arT a
=?’T+B7”’

(169) .. 8=1yp,log T+ Blogv + s,
where s, is the arbitrary constant of integration.
Again
w =9, T + t,
fo=u—1Ts
= 9, T + uy— T'(p, log T + Blog v + s;,)
(160) =9,T(1 —log T) — BT logv + uy— Ts,
similarly
fp = fv + pv,

which when expressed in terms of 7' and p only becomes
(161) fo=9T(1 —logT)+ BTlogp + u,— Te,

where the comstant 6, is equal to s, + Blog B.
It is to be noticed that the expressions for the entropy in terms
of pressure and temperature or pressure and volume are

(162) s =yplog T — Blogp + 6,
(163) s =y, logp + p,log v+ &,
where

£ = 8y— ¥» log B =6, — p, logv.

Finally the thermodynamic potential f,,, which is the energy
expressed in terms of the volume and entropy, is given (for unit
mass) by

1

(164) foo = = s (5;,—)7 +

123. Case of a gas rushing into a vacuum. Joule’s Law, as stated
in § 111 was originally proved by the following experiment, due to
Joule: Two vessels V' and V" were taken, one V' containing air
and the other V" exhausted. They were connected by a stopcock
and immersed in a reservoir of water. On opening the stopcock gas
rushed from V' into V" till the pressure was equal in the two
vessels, and it was found (though later experiments showed the result
to be only approximate) that no change of temperature occurred in
the water. Hence (a) the temperature of the gas was unaltered, and
(b) no heat was absorbed or emitted by the gas, so that no energy
either in the form of work or heat passed in or out of the whole
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space V'+ V". The whole energy of the gas when at volame V'
was therefore equal to its whole energy at volume V'+4 V" at the
same temperature, and hence the energy of a given mass of gas at
given temperature was independent of the volume. Taking the expression

du = (I, — p)dv + p,dT

this gives [, =p as in § 112. :

The relation between the increase of entropy due to the irre-
versible expansion and the quantity of energy rendered unavailable
is readily verified. Taking a unit mass of gas and putting v, for V',
vy for V'+ V", the work of expansion at temperature 7'

[ :
=fpdv =f—o—dv=BT(log'v,,—log ).

This energy is all converted into a form which is unavailable at
temperature 7, and is equal (as it should be) to 7' times the increase
of entropy, the latter increase being, by (159)

B(log vy — log v,).

124. Gas mixtures. The definitions of a perfect gas in § 118
define only the properties of a single gas. Consistently with these
definitions and in view of the fact that a perfect gas is a purely
hypothetical substance, we might assume the mixing of two or more
gases to obey any laws we chose to assume, but the investigation
would be uninteresting unless (a) the laws were of the simplest
possible kind, and (b) they were verified at any rate approximately in
the case of actual gases.

In order that two gases may be mixed gradually, and without any
accompanying mechanical or thermal effects, they must be first brought
to the same temperature and pressure, and on communication being
made between the vessels the mixture will take place slowly by diffusion.
Experience with common gases then shows that, approximately, the
temperature and pressure are unaltered by the process of diffusion,
and therefore we assume the following as one definition of a mizture
of perfect gases:

When two or more gases mix slowly by diffusion at a given
temperature and pressure, their volume remains constant and no heat is
absorbed or given out.

A corollary of this assumption is known as Dallon’s law and
states that: The pressure of a mixture of gases at volume V and
temperature T is the sum of the partial pressures which the various
constituent parts would separately produce if enclosed in a volume V at
temperature T.
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For if V' and V" are the total volumes of the two parts before
mixing at temperature 7' and pressure p, the pressures which the
parts would have at the same temperature and at volume ¥ equal to .
V'+ V" would by the Boyle Mariotte Law be

_pV LA
VI + V” VI + 'V" )
and the sum of these is equal to p.

Let m', m", ... be the masses of the different components entering
into a unit mass of the mixture. In the case of a mixture of two
gases only we may write m' =2, m"=1—x. Let accented letters
such as v’ and ¢" denote the volumes per unit mass, and other thermo-
dynamic quantities of the gases before mixing, and let unaccented
letters refer to a unit mass of the mixture. Then if the mixing takes
place at temperature 7' and pressure p

po'=B'T, pv"=DB"T

and

and
v=m'v'+ m"v" =zv' + (1 — 2)0".
Hence
pv=2zpv' + (1 — z2)pv"
(165) =zB'T+ (1 —2)B"T.
Hence the constant B for the mixture is given by
(166) B=zB'+ (1 —z)B".

We now assume that the total energy of the gases is unaltered
by mixing, i. e. that w =o' + (1 — 2)u.

Employing the expression u =y, T + %, (157), and remembering
that the last result is true for all values of 7, we have

(167) uy = zuy + (1 — x)u,’,
(168) o=y + (1 —2)p."
and in virtue of (156)

(169) =ap + (1 —2)p,"

whence the whole heat capacity of the mizture either at constant pressure
or at constant volume is the sum of the whole heat capacities of the parts
before mixing.

Substituting in the expression for the entropy in terms of pressure
and temperature, we have

(170) s={ay) + (1 — 2)p,") log T — {&B'+ (1 — 2)B"} log p + 0,
that is the whole entropy of the mixture can only differ by a constant

from the sum of the whole entropies of the parts before mixing. The
constant difference C is given by

(171) C = 6,— {wa, + (1 — z)a,"}.
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From the laws of thermodynamics, this difference cannot be
negative. As two gases at equal pressure and temperature in general
tend to mix by diffusion, not to separate, the process of diffusion is
irreversible, and we cannot ascertain at the present stage whether
the change of entropy C vanishes or is positive. In order that any
definite conclusions may be found it is necessary that the gases should
be capable of being separated as well as mixed by reversible methods.
In the case of actual gases the separation may be effected by lique-
fying one of the components or by placing the mixture in the presence
of a liquid which readily absorbs one component but not the other.
‘What we have shown is that if an increase of entropy takes place on
mixing, this change is independent of the temperature and pressure at
which mizing takes place.

This conclusion is justified by the following general reasoning:
It ¢omes to the same thing whether we allow the gases to mix at
temperature 7, and pressure p,, or first alter their temperature and
pressure to T,, p,, then let them mix and finally bring the mixture
back to T, p,. '

It is further to be observed that as the thermodynamic phenomena
presented by a given system are unaffected by the values of the
integration constants in its energy and entropy, the value of the
constant C does not affect any transformations which are unaccompanied
by mixing or separation of the gases.

125. Substituting in _the formula for the thermodynamic poten-
tial f,, this is given in terms of the corresponding potentials of the
separate components at the same temperature and pressure by

fo=2%+1—-2)f,'—CT

subject to the condition p = p'=p". :

If we require the entropy as a function of v and 7' or the
thermodynamical potential f, the best way is to express s, for the
mixture in terms of 6, in equations (159, 160) which become

(172) s =7, log T+ Blog () + o,
(113) fo = 7. 7(1 — log T) — BT log () + u,— T,

The corresponding expressions for the components are of course
of the same form with accented letters. The condition of equal pressure
for the mixture and components is given by

(174) v _ .
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If this condition is satisfied we have undoubtedly

(175) o= o+ (1 — )R —

a relation connecting the thermodynamic potentials f, of the mixture
with those of its components at the same pressure.

126, Physical evidence as to the value of the comstant C.
(a) From liquefaction of ome of the compoments. We assume the
following law as based on experiment:

When a liquid or solid is in contact with its vapour at any
given temperature, and the vapour is mixed with other gases, the
partial pressure of the vapour is the same as if the other gases
were absent.

Thus if a vessel contains air and water at a given temperature,
the partial pressure of the water vapour mixed with the air is the
same as the pressure of the vapour in contact with the water would
be if the air were exhausted. The actual pressure in the mixture is
the sum of the partial pressures of the air. and the vapour. The
density of the vapour is the same in both cases.

Now let there be a mixture of two gases G,, G,, of which G,
is more readily liquefied than G,, and let the original whole volume
of the mixture be 7.

Let the mixture be cooled till the components separate out in
the liquid form, one liquefying before the other and the two being
kept separated. Let the components be then evaporated in separate
vessels. Then in the course of evaporation the partial pressures p,
and p, of the component gases at any temperature 7' are the same
functions of 7' in the separated gases as in the mixture.

Assume further that the wvolumes of the lzqmds are negligible by
comparison with those of their vapours.

Then the work done in compressing the mixture at any temperature
will be equal to the works of expansion of the parts at the same
temperature, if the volume of each part is equal to the previous
volume of the mixture, as is evident from the relation (p, + p,)dV
=p,dV+ p,dV. Again, assuming the constancy of the specific heats,
the heat given out in cooling the mixture by an amount d 7' is equal
to the heat absorbed in raising the components through the same
temperature interval.

Assume further that the latent heat of evaporation of either component
is unaffected by the presence or absence of the other.

Then, if the separate constituents be finally each brought to
volume V, the entropy changes in the processes of expansion will
exactly balance those in the processes of condensation, and the whole
process will be perfectly reversible and we conclude that:
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The whole entropy of a mixture of gases at temperature 7'
and volume V7 is equal to the sum of the whole entropies of the
separate components at the same lemperature and whole volume V.

Remembering that when the gases were allowed to mix by
diffusion, the pressures of the components were equal to that of the
mlxture, and the whole volumes V7', V" were together equal to the
volume of the mixture we see that:

When two gases at equal temperature and pressure mix by
diffusion, the loss of available emergy and consequent gain of entropy
is the same as would occur if each component were to expand by rushing
mto a vacuum Gll it occupied the same volume as the mixture.

(b) From diffusion through a membrane. There are certain
substances which allow some gases to pass through them more easily
than others, and these lead to the conception of an ideal substance
which is pervious to one gas and perfectly impervious to another.

In this case we make use of the result of experiment, according
to which:

When a gas is in equilibrium on the two sides of a membrane
through which it can pass freely, the partlal pressures of the gas are
the same on both sides, even if the gas is mixed with other gases on
one side only, so that the total pressures on the two sides are different.

By means of two ideal membranes, one of which is pervious only
to one component and the other pervious to the other component we
could separate or recombine the two gases reversibly without
expenditure or absorption of work, the volumes of the separated
gases would then be equal to that of the mixture and the pressures
of the separated gases would be equal respectively to their partial
pressures in the mixture We conclude that under these circumstances
" the whole entropy of the mixture would be equal to the sum of those
of the separated gases.

127. Corrected Relations between the Potentials. Value of C.
We now see that the relations between the potentials per unit mass
of the mixture and its constituents are connected by the relations

(176) fo=2f/+ (1 — 2)}"
177) fo=2f+ 1 —2)f,"
provided that the whole volumes of the mixture and the two components

are equal. The volumes and pressures per unit mass are then connected

by the relations o' = (L —2)o",

p_r __ P
B~ zB'~ (1—-=zB"
the last necessarily involving the relation,

p=9p +9p", since B=zB'+ (1 —z)B"



126 : XII. PERFECT GASES.

1t is easily seen that the constant C in the previous equations
‘is equal to

(178) Blog B— zB'log zB'— (1 — z)B" log {(1 — #)B"}.
This may be written

(179) C =3B log ZZ+1B

«B'+(1—2)B"
I—2)B"

+ (1 x)B" log

and ‘is obviously positive, the arguments of the logarithms both being
greater than unity.

As a matter of fact these formulae are cumbersome to remember,
and it is much more convenient to remember the statement that

The whole thermodynamic potential of a gas mixture at given volume
or pressure is the sum of the corresponding potentials of the components
at the same temperamre and whole volume.

The same is also true of the whole energy of the gas mixture.
The energy of a perfect gas dependlng only on its temperature, it
makes no difference so far as energy is concerned whether the gases
are mixed as in § 124 or as in § 126. ,

128. Note. The qualitative property that diffusion through a
membrane may give rise to mechanical effects in the form of diffe-
rences of pressure is of course easily verified. Since these differences
can be utilised for the production of external work, although every-
thing is at the same temperature, it follows that the separate gases
possess available energy which is lost when the gases are mixed by
diffusion without a membrane by the method of § 124. In regard to
the difficulty of making gquantifative experiments, experience does
warrant the belief that a gas never passes through a membrane
from a‘lower to a higher partial pressure even when the pressure of
another gas would tend to force it through. In evidence of this
property, Planck quotes his remarkable experiments made at Munich
in 1883, in which a platinum tube originally containing hydrogen at
atmospheric pressure was heated till the platinum became permeable
to hydrogen, and it was found that almost the whole of the contents
diffused out leaving a high vacuum.

It is obvious too that the ideal “semi-permeable partition” (so
called) postulated above would afford the maximum efficiency either
in separating mixed gases or in obtaining mechanical work from them
while mixing. Moreover an actual partition or mempbrane will be the
less efficient the more its properties differ from the ideal membrane.
But this difference must be regarded as a peculiarity of the membrane
and not of the gases, and the entropy changes caused by an imperfectly
efficient membrane must be regarded as distinct from those necessarily
associated with the gases themselves.
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| CHAPTER XIL
DETERMINATION OF THERMODYNAMICAL MAGNITUDES.

129. Determination of absolute Temperature. Hitherto we have
regarded absolute temperature, entropy, energy and thermodynamical
potentials from a purely theoretical stand-point. We now proceed :
to show that these quantities can be determined experimentally for
any particular substance.

The definition of absolute temperature in thermodynamics being a
purely theoretical one, it remains to be shown that absolute temperatures
are capable of being determined experimentally. The actual details
of the experiments belong to the experimental study of heat rather
than to theoretical thermodynamics; what we have to show is that
the determinations can be effected by methods that are experimentally
practicable.

Most of these methods depend on Clapeyron’s equation or its
analogue, which may be written

(180 (g z). =% (mgz),— %

in which it must not be forgotten that the latent heat I, and coefficient
l, are referred to the work umit of heat and are obtained from the
corresponding coefficients referred to the calorie by multiplying by
the “mechanical equivalent” of the calorie, the determination of which
was discussed in Chap. IL

The form of equations (180) indicates the presence of an arbitrary
constant of integration in the value of log 7, giving an arbitrary
factor in the value of T'; corresponding to the fact (§ 28) that the
thermodynamic definition does not determine the unit or degree of
absolute temperature but merely the ratio of the absolute temperatures
of two different states of a substance.

We have seen in the last chapter that a perfect gas would afford
a measure of absolute temperature when used either as a constant
pressure or a constant volume gas thermometer. = If therefore an
actual gas is used in either of these forms the small corrections which
will have to be supplied to reduce its readings to the absolute scale
will depend on

(a) the deviation of the (p, v) equation of its isothermals from
the Boyle Mariotte Law, '

(b) the deviations from Joule’s Law.

Now the determination of the isothermal equation so far as is
postulated above does not presuppose a knowledge of the absolute
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scale, for constancy of temperature can be shown by any thermo-
meter whatever. If ¢ is the measure of temperature indicated by
such a thermometer, it is obviously experimentally possible to determine
for the gas an equation of the form

(181) f(p; v, t) =0

in which ¢ is a definite but for the present unknown function of the
absolute temperature 7. As an example of the result of such a
determination we might cite Van der Waals’ empirical formula in the
form

(182) (p+35) @0 =8 = 9(T)

the form of ¢(7') being as yet undetermined.

To determine the deviations from Joule’s Law one of the most
usual methods is that adopted in the classical experiments of Joule
and Kelvin of which we now proceed to give such details of principle
as are necessary to understand the theory. '

130. The porous plug experiments. A gas is allowed to flow
steadily through a tube containing a series of holes or a porous plug
in traversing which it undergoes a fall of pressure, and a certain
quantity of mechanical work is done against the friction of the plug,
the viscosity of the gas etc, the exact nature of such internal
resistances being immaterial. We thus have a case of irreversible
conversion of work into heat, and instead of the equations of reversible
thermodynamics, the modifications of § 112 are applicable. The
effects observed consist generally speaking in a cooling of the gas
which can be determined quantitatively in two ways:

(a) The gas may be kept at its original temperature by enclosing
the apparatus in a calorimeter, and the quantity of heat absorbed for
every unit mass of gas that flows through the plug may be measured
by the calorimeter and finally reduced to work units.

(b) The pipe and plugs may be enclosed in a non-conducting
envelope, the gas receiving no heat from without, and the difference
of temperature on the two sides of the plug may be measured by
an ordinary thermometer.

The kinetic energy of the in- and outflowing gas is usually small
enough to be neglected though, if desired, a correction for this could
be easily applied.

(a) Taking the first method, let p,, v, and p,, v, be the pressure
and volume of unit mass of the gas before and after passing the
plug, ¢ the heat which it absorbs from the calorimeter. To form
an estimate of the external work done in forcing the gas through
the plug, it may be assumed that moveable pistons are placed in the
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tube before and behind the plug, by which the pressures on both
sides are kept constant and the total mass of gas also kept constant.
When a unit mass of gas flows through the plug work p,v, is done
in pushing in the back piston, and work p,v; is done by the issuing
gas in pushing the back piston out, hence energy p,v, — p,v,° is
supplied from without in this way. Moreover, energy ¢ is supplied
from the calorimeter. Hence the total quantity of energy supplied
from without is p,v; — pyv; + g. At the end of the process the only
visible result is that there is a unit mass less of gas at the back
and a unit mass more gas at the front of the plug. Moreover the
flow being steady, the energy of every unit mass at the back of the
plug always remains the same, and the energy of every unit mass
in front of the plug always remains the same. The principle of
conservation of energy now leads to the inevitable conclusion?) that
the intrinsic energies of the unit mass in front and the unit mass
behind the plug must differ by an amount given by

(183) Uy — Uy =P 0 — PV + ¢.

Again, the intrinsic ‘energy of a gas depends only on its actual
state, and the initial and final temperatures are equal. Hence the
change of emergy u, — u, must be the same as in an isothermal
reversible transformation between the same two states. By the formula

du = y,dT + (I, — p)dv

= y,8T + lydp — pdv
we get therefore

(184)  uy—uy = (ﬁl,—p)dv) _ (ﬂﬁ,dp —f;dv) -

Substituting in (183) we obtain the two forms

(185) g = (nm—p9) + [ (=D,

(186) q= ﬁl,+ v)dp - = — ﬁlp+ v)dp.

P2
For a perfect gas p,v,=p,v,, I, =p, l,= — v, whence

(187) =0,

1) This conclusion could easily be verified by assuming any simple law of
frictional resistance in passing through the tube, remembering to add in a
quantity of heat equal to the work lost in overcoming friction.

BRYAN, Thermodynamics. 9
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hence for ordinary gases g is small. Taking (186) we have on
differentiation (remembering p, > p,)

d
(188) 3=+
where Z—q measures the “cooling effect” expressed as the ratio of

p
the absorbed heat to the fall of pressure when the latter is small
Calling this quantity 5 we have by (124)

(189) (), =0+ 1
or .
(190) {d lOg T = ‘vd-:z }p const.

If for any given pressure p, the coefficient z has been determined
as a function of v, the above equation when integrated between
suitable limits will give the ratio of the absolute temperatures corre-
sponding to any two volumes of the gas contained in a constant
pressure gas thermometer. As y is small compared with v, various
approximate methods can be adopted according to the particular case
considered. Thus if between certain limits y may be taken to be
constant, the integral of the equation between these limits is of the form
(191) Tocv+yg.

But if ¢ is the temperature in a constant pressure gas thermometer

tocw
and if we suppose {= pv, equation (191) shows that the absolate
zero i8 below the zero of gas temperature by an amount gy or %z
In like manner taking equation (185) we have

) dg  d(pv)
(192) % = dv + l, - _p
or
, dq  d(pv) dp
(193) as~ s =+ (FgT),— P

This equation might be used to find the corrections to the readings
of a constant volume gas thermometer, but it will be seen that the
aq

correction depends on two terms, one ;- representing the “cooling
effect”, and the other dfz; 2, representing the deviations from Boyle’s

Law, and both these terms may be equally important.
If the gas neither gains nor loses heat we have
(194) Uy — Uy =DV, — P
whence the transformation satisfies the condition % 4 pv = constant
or {, = constant.
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But
du=p,dT + l,dp — pdv

hence substituting we have

(195) S04T + G+ 9yip) =0
or for a small change of state
(196) 98T = — (I, + v)dp.

To avoid introducing absolute temperature the left hand side
may be put equal to c¢,dt{, where df is the observed change of
temperature on the scale of the thermometer used in the experiment,
and ¢, the specific heat at constant pressure referred to the same
scale. Moreover if ¢,d? is now put equal to dg, dg will represent the
heat which would have to be taken from a calorimeter to bring the

gas back to its original temperature, and hence if :—; be put equal

to g, this is the same measure of the cooling effect as in the previous
case. In other words, cooling effect takes the form of a fall of
temperature in the gas itself instead of an absorption of heat from
the calorimeter, and the method is practically the same. A difference
would of course exist between the two cases if the change of temperature
were considerable.

131. Comparison with the case of a gas rushing into a vacuum.
It is to be observed that while the porous plug experiment gives
the-correction for the constant pressure gas thermometer, Joule's original
experiment of a gas rushing into vacuum gives the correction for the
constant volume thermometer. In that experiment the energy remains
constant hence

(197) 74T + (I, — p)dv = 0.
Writing
, 7,4T c,dt
(198) Y =="3% = &
y affords a measure of the cooling effect and the equation becomes
d
(199) {a0ors), =2 +7-

With this method the correction for the constant pressure thermo-
meter would contain terms depending on the deviations from Boyle’s
Law, which could not be neglected.

132. Inversion of the porous plug effect. It will be noticed that
the cooling effect y vanishes if

(_¢h)_) =9 Or (d__v_) — _v_.
dlogT)p ar),~ T
91
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If we assume as our known data, the (p, v, T') equation of a gas,
and take any two of these variables as coordinates of a point in a
plane, the present equation determines a curve in that plane which
may be called the curve of imversion. This curve separates those
states in which the cooling effect is positive from those in which it
is negative. If we take v and 7' as our independent variables, the
curve of inversion is obviously the locus of the points of contact of
tangente drawn from the origin to the family of curves p = constant.

Secondly if the curve of inversion be determined experimentally
the data may be utilised in determining the (p, v, T) equation of
the gas.

- Thirdly if the (p, v, t) equation of the gas referred to any arbitrary
scale of temperature and its curve of inversion are known, we have
sufficient data for comparing the assumed scale of tempera.ture with
the absolute scale. This method would really constitute a “null
method” of determining absolute temperature since it depends on the
vanishing of the cooling effect and not on determinations of its amount.

133. Determination of Entropy, Energy and Thermodynamical
Potentials. The scale of absolute temperature having now been fixed,
it follows that temperatures may be measared on any thermometer
and reduced to absolute measure. It now remains to show how the
entropy, energy, and thermodynamic potentials of a substance (which
we take to be a simple system such as a gas or liquid) can be
expressed in terms of quantities which can be experimentally determined.

Substitating from (123, 124) the values of 7, and [, in the diffe-
rentials of the entropy and energy we obtain on integration from state

(205 v, T,) to state (p,, v, T}):

With v and T as variables |  With p, T as variables
o, T)
8 — 8y = {y’dT+( )dv} —So=f 25 . d }
0y To 20y To
Uy — U (s + p1v;) — (% + Do)
kgt Py
—/{y,dT+ 3T p)dv} —f{ypdT+ p Tz—)dp} '
00y T 2oy To

Now the changes of entropy and energy depend only on the
initial and final states, hence we may perform the integration along
any path representing a continuous series of transformations from
the initial to the final states. Thus

(1) Taking v and T as variables we may integrate keeping
v=0, from T'=1T, to T =T, and then integrate keeping T = T,
from v =y, to v =v,. We thus obtain
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(200) 8 — Sy = (fZ’-dT) +<j€§—§.)dv) ’

=9, 2o

(201) Uy — Uy = (fy,dT) _ +(ji1"’_1°_ )dv)T "T,

o Yo

(202)f»1—f»o=( f%(l—%‘)dT> (@ T)n- (vfpdv)

(2) Similarly with p and 7' as vanables keeping first » and then
T constant, we have

(203) s—so=< ’?dT (vfw dp )
-’l'o

T=1,

=1

(“1 + P1”1) - (“o + Dy%,)

(204) “ ( th (ﬂ / )

and an expression for f, — fpo closely analogous to (202).

Now we may choose the state pyv,T, to be a standard state of
the system with which other states are compared. The corresponding
values of syu, will be undetermined and will represent the unknown
constants of integration which necessarily occur in the expressions
for the entropy and energy of a system, and the above equations
will then give the entropy and energy in any other state represented
by the suffix 1.

On examination of the mtegra.ls we see that

In order that the entropy, emergy, and thermodynamic potentials of
a simple system may be determined for every possible state of that
system, i is sufficient to know

(1) The p, v, T equation of the system,
and either

(28) The relation commecting the specific heat p, with the absolute
temperature T when the specific volume remains constant and equal to v,,
or ’ ‘

(2b) The relation connecting the specific heat y, with the absolute
temperature T when the pressure remains constant and equal to p,.

We notice, moreover, that the entropy, energy, and thermodynamic
potentials of a simple system cam each be expressed as the sum of two
terms, one a function of v and T, or p and T delermined completely
by the form of the (p, v, T) equation, and the other a function of T alone,
depending on the expression for the specific heat.
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134. Geometrical Interpretations. Taking for example v and 7
as variables and representing them as the coordinates of a point in
a plane, the first of these conditions may be stated as follows:

In order that the thermodynamic properties of a simple system
may be completely defined within any assigned limits of volume and
temperature, it is necessary and sufficient that

(1) The pressure should be known at all points of the (v, T)
plane within the assigned limits.

(2) The specific heat p, should be known at all points lying
along a straight line v = constant (= v,, say) lying within the assigned
limits.

The values of p, along any other line v = o, are completely
determined by the assumed data. They are most easily deduced from

the equation i
2
(_c%)z)]' - T (((:—;” ) L4

which gives on integration along a line of constant temperatare T'= T,

(205) Po(0,. 1)) — 7. (0 Ty) = T} (f(;_;?’)” dv)

Vo

and conversely, if we know y, at all points of the region considered
v !
we should know BETIZ_ and thus obtain a check on the correctness of

our assumed expression for p in terms of v and 7.

Exactly analogous results hold good if p and T are chosen as
independent variables and as coordinates. The latter choice possesses
an obvious advantage in the convenience of determining specific heats
at a constant standard atmospheric pressure.

135. Advantages of a choice of method. It will thus be seen
that the data which are necessary and sufficient to determine the thermo-
dynamic properties of a substance fall -considerably short of those
which are capable of being determined experimentally with greater
or less accaracy: A complete discussion of the advantages and
disadvantages of different methods belongs to the study of experimental
heat and would be out of place here. It will be sufficient to point
out that the possibilities thus opened up have two important advantages

(1) by enabling those methods to be adopted which are best
adapted for accurate experimental observations,

(2) by enabling the same results to be obtained by different
methods, thus affording a check on the accuracy of the various
observations.
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As an instance, of how to put the above results into practical form,
we should notice in the expressions for the energy-differences that

J .41 and f yp@7T represent the total quantities of heat required

to raise the temperature from 7, to T, at volume v, and pressure p,.
Moreover the entropy difference s, — s, could be obtained by starting
with the substance in the state (p,,v,, T,) allowing it to expand
reversibly and adiabatically till its temperature was 7|, and then
cooling at constant temperature 7|, till its volume and pressure were
v, and p,. The quantity of heat given out in the last transformation
when divided by 7|, would give the required entropy difference.

136. Tllustrative Example. Consider a gas which obeys van der
‘Waals’ Equation
(p+53)(®—t) =BT

where a, b, B are constants.. We obtain

°p B op
aT —v—b’ 17— TaT p=

It follows that

= function of 7 only and
(206) s= f Po dTT_ + Blog (v — b) + constant C,,
(207) wu =fy,,dT — —-‘5 + constant C,,

(208) f,,—fy.,dT T ["ar - £BTlog (v —b) + G~ C,T

but owing to the fact that the (p, v, T') equation is a cubic in v, the
expression for f, in terms of p and T could not be given in a
simple form.




136 XIV. CHANGES OF STATE OF AGGREGATION.

CHAPTER XIV.
CHANGES OF STATE OF AGGREGATION.

137. Phenomena deducible from the van' der Waals’ Equation.
We shall now show how, by assigning suitable forms to the (p, v, T')
equation of a working substance, the phenomena of liquefaction of
gases and of the critical point can be represented analytically.

We start by supposing the substance to obey van der Waals’
empirical equation a
(p+ )@~ =BT

a relation satisfied to a considerable degree of approximation by most
gases. We suppose the family of isothermal curves 7' — constant
represented taking p and v as rectangular coordinates.

Writing this as a cubic equation in o

. o BT\ o, a ab
(209) - (5+ p—)v’+;v—;—=0

we see that the horizontal
line p = constant will cut
the isothermal 7' = constant
in 3 or 1 real points accor-
ding as the cubic has 3 or
1 real roots. In the former
case, there would theoreti-
cally be three possible states
at the given pressure and
temperature corresponding to
the points 4, B, C (Fig. 17).
But at B where the curve
is ascending we have (d—p)
av/r
positive, -hence (§ 92) the
state B would be unstable,
the effect of any slight devi-
ation from uniform density
being to cause the substance
to flow from the points of
lesser to those of greater den-
sity, and thus to separate into
two stable phases represented
by points on the descending parts of the curve.
It follows that if the isothermal line cuts any horizontal line in
3 real points, the substance, instead of following the curve in an

: v
Fig. 117,
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isothermal transformation, must undergo a discontinuous change of
state, from the branch AD to the branch EC, while if the curve
continually descends towards the axis p =0 as v increases no sach
discontinuous change is pos-
sible. In the former case the *
sudden change reproduces the
phenomena of liquefaction, in
the latter case we have a
perfectly continuous trans-
formation similar to that ob- = A
served when a gas is com- e .
pressed at a temperature A
above its critical temperature A B “C
(Chap. I § 20). :
The discontinuous trans- !
formation just vanishes when \
the isothermal line has a i
point of inflexion with a hori-
zontal tangent. This point v
of inflexion is the critical D)
point, and its coordinates -
determine the critical pres-
sure, volume, and temperature
which we denote by p.v.T..
At this point the cubic (209) has three equal roots each equal

Fig. 18 (after Clausius).

to v,, hence. BT
¢ b
B Bo,=b+ % Bui=ty wd=%
giving
8
(210) v, =3b, p,= %17" I.= 57—;7
conversely .
v, 8 ov
(211) = ?c’ a = 3p.vs, -3 7 °

c

whence a, b, R can be determined if the critical pressure, volume,
and temperature are known.

138. Properties peculiar to van der Waals’ Equation. It will
be observed in the first place that if different gases obey van der
Waals’ formula, their critical points must all satisfy the common
relation 8 B,0,

8 T

4

Let =, v, & be the ratios of the pressure, volume, and temperature
of the gas in any state to their critical values; these, which are called
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the “reduced” pressure, volume, and temperature, will be the measures
of these quantities taking their critical values for the particular gas
considered to be ‘the units. Then van der Waals’ equation assumes
the form '

3 1 8
or
(213) 30— (x + 89)0* + 9v — 3 = 0.

This equation is independent of the gas considered and it follows
that according to van der Waals’ Law the isothermal curves of
different gases are the same family of curves and differ only in the
horizontal and vertical scales representing the pressure and volume.

139. Critical phenomena for other (p, v, T) equations. The
general arguments of the last article but one as to the existence of
discontinuous changes of state and critical points are not peculiar to
van der Waals’ Equation but lead to the following general conclusions:

(1) If for certain values of p, T, say p,, T;, the (p, v, T)
equation of a substance when solved for » has three real roots, then
when the substance is compressed or allowed to expand at temperature
T, a discontinuous change of state must occur somewhere.

(2) If for some other value of T, say 7,, two of the roots
remain imaginary for all values of p, the initial and final states
corresponding to the discontinuous change can be connected by a
continuous series of transformations by suitable changes of temperature.

(3) In this case a critical point will exist and will be determined
by making three roots of the (pv7') transformation all equal.

(4) If the critical volume, pressure and temperature are known,
we have three equations to determine the constants in the p, v, T
equation of the gas.

For convenient reference we subjoin the following list of empirical
equations that have been proposed by different physicists as representing
approximately the (pvT) equations of imperfect gases. But of these
it will be seen that the first three fail to account for liquefaction
or critical phenomena; they have now been superseded, and are chiefly
of historic interest

(214) pv =BT — - (Rankine")
(215) T =B - %—f;,—fi (Joule & Thomson?®)
(216) pv = BT(I - —) (Regnault)

1) Phil. Trans. 1854. 2) Phil. Trans. 1862.
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where By is a function of 7, found to vary directly as the absolute

temperature, and mversely as the pressure of saturated vapour at that
temperature,

c S

(217) @+WH§4@—@=BT@me,
C A
vty vite
v—[a-|-m(v—b)+ ]
v—atnVo-B

Finally Dr. Kamerlingh Onmes*) has abandoned the attempt to
express the p, v, & equation of a gas in a finite form, and has
adopted infinite series involving negative powers of v.

If Clausius’ Equation be assamed, the critical point is given by

8¢ ¢cB
(220) 0.=3¢+2B, T'=gorum 0'=gp0m
giving conversely

(218) po—B|1 +v+a} + (Tait?)

(219) p+ = 1¥ (Amagat“)..

BT, 8BT, BT

’ =———0, T
4p, 8p, o 64p,

221) e=v—

With the virial equation of Tait the critical point is given by

A—BeT, C  A—DBelT, c
(222) D= (’0 +“)’ + (u +7)s7 0= (vc-l-d)' - (”c'l"‘)’)s
. whence
(223) A — Ber, =Pt o _ (%t
«—=7 a—y
and it is also found that
(224) B0+ o+ p — Bp;.rc

while by substitution the (p, v, T') equation becomes

(225) P=Pc{1—m£;%y)}+'3{l+v+a}

involving seven constants p., v, T;, @, 7, ¢, B, connected by the
single relation (225).

T-T,
v

1) Wied. Ann. 1880. Phil. Mag. 1880.

2) Foundations of the Kinetic Theory of Gases, Trans. R.S.E.
3) Jowrnal de Physique, July 1899.

4) Leiden, Communications, 71.
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140. Conditions of phase equilibrium. When two different phases
of the same substance -are in equilibrium with each other their
pressures and temperatures are obviously equal, and we shall now
show that the thermodynamic potentials f, of a unit mass in the
two phases are also equal.

Let o, ¢, «, f,/ be the volume, entropy, energy, and potential at
given pressure per unit mass in one phase, say the higher phase (Chap. I,
§ 15), ", 8", u", f," the corresponding quantities for the other phase.
Then if a mass m passes from the first to the second phase by a
reversible transformation at temperature 7' and pressure p the quantity
of heat absorbed is mZ'(s" —s'), the work done by expansion is
mp(v" — ') and the increase of energy is m(u"— u'). Hence by
conservation of energy

(226) W' — ol = T(s" — &) — p(o/" — o)
1. e.

(227) W' — Ts" + po' = ! — T + po!
or

(228) A

The same conclusion can be put into a more general form by
considering the expression for the available energy of the complex
when subjected to the condition of constant pressure and temperature.
If m' and m" are the masses of the substance in the two phases this
available energy is by § 90 given by

(229) A =m'f) + m"f,".

: If f, > f,” A may be decreased by the transformation of part

of the complex from the higher to the lower phase, and therefore
this transformation will tend to take place and will be irreversible.
Similarly if {/ <f,” a transformation from the lower to the higher
phase will tend to take place and will be irreversible.

The former case represents an instance of what is called a
supersaturated complex, the latter of an wmsaturated complex. For
equilibrium we must have f,’=f,” and the complex is then saturated
(8 15).

At the same time in an ordinary supersaturated or unsaturated
complex, such as occurs with water and steam, when condensation
or evaporation is taking place, the temperature is not necessarily
uniform, nor is the pressure quite uniform when the parts are in
rapid motion as when water is being boiled briskly. In no case
does equilibrinm exist except when p, 7, f, are the same throughout
the complex.

The thermodynamic potential f, involves two integration constants,

one multiplied by 7. But if the two phases can be connected by a
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continuous series of transformations by passing above the ecritical
temperature, these constants will be eliminated when we take the
~ difference f," —f,' at the same temperature and will not affect the
form of the equilibrium equation f," = f,.
This equation will therefore be a determinate equation in p and
T, and if p and T be the coordinates of a point in a plane, the
locus of the equation will be a curve in the (p, 7') plane which is
called the cwrve of satwration. By means of the (p, v, T') equation of
the substance the corresponding curve of saturation can be transferred
to the coordinates v, T or p, ». .

141. Application to van der Waals’ Equation. If the substance
obeys van der Waals’ Equation we have by § 116 '

b=t o= [pa?—1 [ar
— — —BTlog (v —b) + C,— G, T + po.

(230)

Here y, is a function of 7' alone. It is not impossible to
concgive a substance where 9, is a different function of 7' in the
liquid and gaseous phases provided that is the same function of 7'
for all values of v above the critical temperature. The following
arguments would fail in such a case, we assume that p, is the same
function of 7' in both. The equation f,'= f,” then gives
(231) P =) =5 — & L BTlog 5.

This equation involves the two volumes ¢/, ¢ which are the
greatest and least roots of the cubic (209), hence the elimination leads
to a very cumbersome equation in (p, v) for the border curve. But
writing the (p, v, T') equation in the form

BT _ e
v—>b o?

(282) p=

and assuming it to hold good for all values of p, v, T whether corre-
sponding to possible states of the substance or not, the area of the
curve T = constant from v =4’ to v =1¢" in the plane of (p, v) is
equal to the right hand side, whereas the left hand side represents
the corresponding area cut off by the line p = constant between the
same ordinates. We have thus the following rule: Draw the isothermal
curve for T, in the (p, v) plane and draw a horizontal line crossing it
in such a position that the areas of the segments thus intercepted on the
sothermal above and below this line are equal (Fig. 18).
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Then the points of intersection of this horicontal line with the

isothermal will give the volumes and pressure at which change of phase

occurs at temperature T.

The transformation will thus be represented by the horizontal
line ABC instead of the curved line ADBEC but the area swept
out by the ordinate will be the same for both.

142. Extension of the Rule of Equal Areas. The same rule has
been employed to fix the position of the horizontal lines in the (p, v)
diagram of the isothermals in other cases than that afforded by van
der Waals’ Equation. Its generalisation is open to the objection that
since the ascending parts of the isothermals represent unstable and
therefore physically impossible states of the substance, no experimental
data are available for tracing them, and it is clear that if these parts
are merely filled in by drawing, the areas which they intercept on a

" horizontal line are perfectly arbitrary. We may get over the difficulty
by stating the rule in the following form.

Let p and p, be two functions of v and 7' connected by the
differential equation

ayv a’p
(233) e =Tk

which are equal to the pressure and specific heat at constant volume
of the substance over regions representing physically possible states,
and which remain finite, single valued and continuous over the
intermediate (or “unstable”) region. Let the values of p for eonstant
T be plotted in the (p, v) plane thus joining up the corresponding
isothermals.

Then the horizontal line which intercepts segments of equal area
on one of these curves will determine the points at which change of
phase takes place.

Proof. From the above differential equation

7,dT + (T;’% —p) dv and 7—,;,dT + 93_1% dv
are perfect differentials throughout the whole region, therefore their
integrals are the same taken along every curve joining the same two
points in the (v, T') plane. .

If the initial and final points represent physically possible states
of the substance, the integrals must therefore represent the corre-
sponding differences of energy and entropy respectively, whether the
intermediate path passes through physically possible states only or
not. We may therefore integrate across the unstable region along
the path T'= constant and get
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’
°

0 :
(284) u'—u"=(f(Ta—g— )dv), g — s"-(fgg-dv),
’ r

0! 3

(235) B ( fpdv) —4

where A is the area of the isothermal between ¢ and o'
The condition of phase equilibrium is

(236) 0=1f —f"= (' + pv) — (f" + po")
or.
(237 O=—A4A+4 pH'—")

which is the rule of equal areas.

Ezample. Thus if Clausius’ equation (217) be assumed equation
(233) gives on integration

2¢
7’v=m+f(T)

and if f(T') is the same function of T' in the liquid and gaseous
states Clausius’ equation may be assumed to hold across the gap
separating the two states, and the rule becomes applicable and gives

v —a (4
(238) p= ’0' o lo og v — o T(v' ¥B) (vll ¥B)

where v' and v" are the greatest and least roots of Clausius’ equation
when written as a cubic in v.

143. Metastable and essentially stable states. It is to be observed
that the descending portions of the isothermal curves beyond the
horizontal line may represent states of the substance which are
physically possible if it exists only in one phase. Thus if f,' > f,”
the substance may exist in equilibrium in the higher phase if the
lower phase is completely absent, but the presence of any quantity,
however small, of the lower phase will destroy the equilibrium, and
any disturbance may cause the substance to pass more or less suddenly
into the lower phase. Such cases have been realised experimentally.
This result does not of course apply to the ascending parts of the
isothermal.

We may speak of the states in which f, is least as being essentially
stable, to distinguish them from states which are only stable for
continuous variations and whose equilibrium may be broken by a
discontinuous change of phase. The latter are called metastable.
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144. The Triple Point. The conditions of phase equilibrium
when applied to a substance capable of existing in three different
phases (as exemplified by the solid, liquid and gaseous states of
matter), determine the phenomenon of the triple point (Chap.I § 18).

For if §, f,", f," represent the potentials of the three phases
expressed as functions of p and 7, the condition of simultaneous
equilibrium of the phases gives

(239) fp' — fp" = fp",'

We have thus two simultaneous equations which when solved give
one or more values of p and 7. This value or values are therefore
finite in number.

A triple line could not in general exist, even if, owing to the
peculiar forms of the potentials the two equations derived from (239)
were not independent. For at points on either side of this line in
the p, T plane, equilibrium would only be essentially stable in the
phase for which f, was least (§ 140) and there could be only one
phase on either side of the line satisfying this condition. An exception
might occur if the potentials of two phases were equal over a finite
area on one side of the line but the phases would then be thermo-
dynamically identical.

If §, f,", f," are the potentials of water in the gaseous, liquid
and solid states, the p, T' curves

(240) W=f B=f mad g

are the so-called steam line, ice line, and hoar-frost line.
» The three curves
? : all pass through the
2 triple point, but if they
be -produced through
that point the produced
parts do not in general
represent  essentially
stable states of phase-

equilibriam.
For if the line
fo =f," be produced
; through the triple point
/3 fg —f," vanishes - and
0 ' 7T in general changes sign -
Fig. 19. : . in passing that point.
( On the side on which
fp and f" <, equilibrium will be essentially stable between the
first and second phases, but on the other side f, and f,” will be

‘ 3"__333"
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> f," and the substance will tend to pass into the third phase as
the essentially stable condition.

Thus the three curves determine three regions about the triple
point, and in the interior of each region only one phase can exist,
namely, that with the lowest potential.

145. The Phase Rule for a single substance. When a substance,
can occur in four different phases a quadruple point does not in general
exist. For equilibrium between four phases would require that the

equations fp' - fp" _ fp’" - fp""

should be satisfied by the same values of p and 7, and as we have
three equations and only two variables this is in general impossible.
If the forms of the potentials should happen to be such as to render
the three equations consistent, a quadruple point would undoubtedly
be formed, but it would be more correct to regard such a point as
formed by the coincidence of {wo, and consequently of four triple
points. Thus in general not more than three different phases of the
same substance can coexist at the same pressure and temperature.

We thus arrive at the conclusions that so long as we are dealing
with a single substance (1) three different phases can only coexist at
one or more points in the plane of (p, T'), (2) two phases may
coexist along one or more p
lines in the (p, T') plane,
(3) one phase can only
exist at points lying within
a certain area in the (p, T')
plane.

In the first case the
system is called avariant,
since neither the pressure
nor the temperature can
be varied without reducing
the number of phases. In
the second the system is
called wnivariant, since
either p or T may be
varied if the other of
these two variables is .
varied so that the point O T
(p, T) moves along the Fig. 30.
proper line, in the third
case the system is called bivariant, since either p or T can be
varied independently provided that the point p, T' does not pass

BRYAN, Thermodynamics. 10
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out of the region in which the phase considered exists in stable
equilibrium.

Sulphur is a case in point. The substance can exist in four
phases, two solid (monoclinic and rhombic), the liquid phase, and
the gaseons phase. If the curves of equilibrium between the different
phases in the (p, T') plane be drawn, as in Fig. 20, it is seen that
the curves divide the plane of the diagram into 4 regions in which
the systems are bivariant, bounded by six curves which correspond
to univariant systems, the six curves intersecting in four triple points,
at each of which the system is avariant.

The generalisations of these conclusions for the case where
instead of a single substance, we have a number of different substances
constitute the Phase Rule of Gibbs which is given in the next chapter.

146. Moutier’s Rule. The distribution of the curves in the p, 7'
plane in the neighbourhood of a triple point may be found by finding
where they or their produced directions cut an isothermal line corre-
sponding to a temperature differing from the triple temperature by
a small amount AT. If Ap,, be the corresponding difference of
pressure along the curve of separation f,’ — f,'=0 and Ap,, Ap,
refer to the other curves, we have

(- garo

d n n
(241) (G — %) By
af

and two similar equations. Now ap = ¢' the volume of unit mass in
the state f,’, whence on substituting and adding we obtain

(242) (" — ") Apgy + (V"' — V) Bpy + (v — V") Apy =0
an equation equivalent to Moutier's three equations of the form

(243) (BPs; — Bpss) (V"' — V) = (Apys — Bpgg) (V' — V).

If o/, v", v"" are in descending order of magnitude it follows that
Ap,, is between Ap,, and Ap,,. Hence Moutier’s rule, according to
which if a horizontal line (T = constant) be drawn culling the three
curves of tramsformation or their produced directions near the triple
point the middle of the three points of section corresponds to the trans-
formation involving the greatest chamge of wvolume.

In like manner if a vertical line (p = constant) be drawn cutting
the same curves or their produced directions near the triple point
the middle of the points of section corresponds to the transformation
involving the greatest change of entropy.
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147. Properties of a saturated complex of two phases. We shall
now show how the thermodynamical properties of a complex of two
phases of the same substance considered as a whole can be expressed
in terms of those of the substance in the separate phases.

Let M be the total mass of the complex, X and M — X the
masses of the portions in the two phases respectively, and let these
phases be called by way of distinction the first and second phase.

If we put 37 =% then z and 1 — 2 will be defined to be the masses

of the two phases in a unit mass of the complex, although this is
of course a mere convention unless the whole mass of the complex
is unity, because the complex is not homogeneous like a mixture
of gases but the two phases are quite distinet and separate.

In the same way if ¥, U, S are the whole volume, energy and

entropy, we may define 7;;; TZ’ % as the volume, energy, and entropy

of unit mass of the complex, these we denote by v, u, s, while we
use accented letters (v, w/,s')(¢v", ", s") to denote the volume, energy, and
entropy per unit mass in the first and second phases respectively..
It will be convenient in understanding what follows to suppose that
the mass of the complex is actually equal to unity, though this is
not necessary.

In the first place we notice that the complex like a simple system
admits of two independent variations.

(1) The temperature may be varied without altering the masses
z, 1 — z of the components. In this case the corresponding varmtlon
of pressure is determined by the condition of saturation

fp =
which we shall denote for convenience by the equation
(244) G(p, T)=0.

(2) The composition of the complex may be altered by the trans-
formation of a quantity dz or Az of matter from the second to the first
phase — or vice versa,— the temperature, and consequently the pressure
remaining constant. The volume, energy and entropy will in general
be altered, and heat will be absorbed or given out. If 1Az is the
quantity of heat absorbed in the transformation of Az, whether this
quantity be small or finite, 2 will be the latent heat of transformation
from the second to the first phase (Chap. I § 15).

The state of the complex is thus defined by the two independent
variables 7' and z, and the difference from an ordinary simple system
is that the equation G(p, T') =0 takes the place of a relation
between the three quantities p, v, T.

10*
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Since the whole volume, energy, and entropy of the complex are
respectively equal to the sums of the corresponding whole volumes,
energies, and entropies of the components we have

(245) v=uax¢ + (1 —2),
(246) u=zu + (1 —z)u’,
(247) s =z + (1 —2z)d".

Consider now the effect of the transformation Az at constant
temperature 7. We have from (245) and (247)

(248) Av= (W —d)Az, As=(—¢d")Az
and from above
(249) ' Ag =0z
where Agq is the absorbed heat. But
A A
(250) Z—z‘ = lo; _l_g“ = As

where [, is the latent heat of expansion of the complex.
Hence as in Chap. I § 16

) 2
(251) b= g—
and further ,
(252) 3' _— 3" = T.

Clapeyron’s Equation

(d_P) b
atl, T’

when taken in conjunction with (251) gives
ap )

(253) aT = @=vT
where the condition v = constant is no longer required in the expression
for g%, because since the complex is saturated p is a function of 7'
alone, and the differential coefficient in question is the same as would
be obtained from G(p, T') = 0.

In the above work we have used the symbol A to denote variations
which may be finite. In the more general case where the temperature

also varies we are restricted however to infinitesimal changes. We
now put for the added heat dg

(264) dq=Adz + zy'dT + (1 — 2)p"dT

where 4/, 9" are the speciﬁc‘ heats of the two components in a state
of saturation.
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Thus we should have 3/, 9" connected with the specific heats
¥p» 75 at constant pressure and latent heat coefficients I, I,” by the

formulae
' | dp dp
v+l (dT)’ V=1 l”" (dT)'
dq

Since - 18 8 perfect differential we have
0 (3 0 (xzy'+(1—2)y"
(255) ar(r)=oal" 7 )
whence s
2 i
(256) sr—T=¢—7

a formula due to Clausius.

148. Applications. From (253) we see that increase of pressure
will raise or lower the temperature of transformation according as
latent heat is absorbed in passing from the state of lesser to that of
greater specific volume or the reverse. The former is the case with
water and steam, the latter with ice and water.

Let us next consider the effects of a sudden adiabatic compression.
Putting dg =0 in (264) we have

dx=—ﬂ':+(lz;wdT

(257) - _ w1'+(;’—m)7" ”'; v Tdp

and the sign of the coefficient of dp on the right hand side determines
whether the effect of an increase of pressure will transform part of
the complex from the second to the first phase or conversely.

If ¢’ and 9" are both positive it is clear that dz and dp will
be of opposite signs if o'> ' and conversely. This means that
increase of pressure transforms part of the complex from the phase
of greater to that of less volume. For example, in a saturated complex
of ice and water compression causes liquefaction.

If ¢ is negative (as is the case for steam) and 3" positive the
same conclusion holds good if zy' + (1 — z)y" is positive, but the
effect is reversed if this expression is negative. It appears that the
effect will depend on the proportion of the two components, a slight
adiabatic compression causing transformation to the phase of greater
or less volume or no change according as

17" 7 or z > 17” 7 Or %= :7” 7N
Y= yY—=r A 4

The effect of a small change of temperature at constant volume
may be discussed by means of the equation v = z¢v' + (1 — z)v", which
gives on differentiation with v constant

<
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(258) da(v' — o") = aT (2 5% + (1 — ) )

a relation leading to conclusions closely similar in their general
character to those just found.
Finally the relation between latent heat and temperature is given by

(259) =ty

If /> 9" (as is the case with water and ice) the latent heat
necessarily increases with the temperature. As another example if
% is negative and % > 9", then 3’ must be negative. This result is
verified in the case of steam.

149. Properties at the Triple Point. If we have three phases
of a substance in equilibrium at the triple point, p and 7' will both
be constant. If the total mass is unity, the masses of the phases
being z, y, 1 — z — y, we have equations of the form

v=2zv +yo'' + (1 —z—y),
u=azu + yu" + (1 — 2 — y)u",
s=uz28 +ys" + (1 —z—y)s".

The temperature being constant the specific heats do not enter
into the question, but we get

(260) dq = g dz + Agydy

where ls;, Ay are the latent heats absorbed in passing from the third
to the first and second states respectively. With this notation we
should evidently write 4;, = — 4,; and

(261) A3+ Agy + 243 = 0.

The complex involves two independent variables z and y. These
are determined if v and s are known. Hence the composition of the
complex can be varied by altering the volume or by adding or with-
drawing heat so as to alter the entropy, and these variations may
be made independent of one another. The variations dz, dy produced
by these changes are in fact given by the equations

(262) ' —v"Mdz + (V"' — ")dy = dv
and ‘
(263) Ryy 4% 4 Aydy = dq = Tds

or
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(264) (¢ — "M dz + (' — ") dy = ds

of which the last two are equivalent in virtue of the equations

(265) §— g — 7;;_:_, §— M — laT’
The latent heat of expansion g% depends on the ratio of dz to

dy and is indefinite. This is in agreement with Clapeyron’s equation

. . op 0
in which 5T takes the form o

CHAPTER XV.
PHASE EQUILIBRIUM WITH MORE THAN ONE SUBSTANCE.

150. Partial potentials of the constituents of a mixture. In this
chapter we shall show how the methods of Thermodynamics can be
applied to a mixture or compound of various substances when account
is taken of variations in the composition of the mixture. This is the
investigation first published by Gibbs under the title “Equilibrium
of Heterogeneous Systems”.

Suppose that a homogeneous mixture which we shall call our
system is formed of masses M,, M,, M., ... M, of k different substances
which we may call 4, B, C,... K and that this mixture is at uniform
pressure p and temperature 7, the whole volume being V. Then so
long as the mixture remains homogeneous (as is here assumed) the
only independent variations of which it is capable of undergoing are

(a) variations in the masses M,, M;, ... M; of the constituents,

(b) variations of the whole volume 7,

(c) variations produced by adding or withdrawing a quantity of.
heat d @, i. e. variations of entropy.

It follows that the state of the system when homogeneous can

.be completely specified by the masses M,, M,,... M;, the whole
volume ¥ and the whole entropy S.

By the extended principle of Conservation of Energy (Chapter V)
we regard it as an axiom that an entity exists called the whole
energy of the system and that this energy U is a function of the
variables above mentioned, i. e., that an equation exists for the system,
of the form

(266) U=f(S,V, M,, M, ... M;)
by which its whole energy U is defined.
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The variation of U is thus given by

¢ ouU

(267) aU=%¢ dS+anV+2

‘When the masses M,, M,, ... M, are kept consta.nt the system behaves
as a simple system for which

S

ou U

(268) AU =TdS — pdV, .‘.ﬁ=T, a7 =P
If we write
oU
m=l"k’

the differential of the energy assumes the form

(269) AU = TdS — pdV + D md M.

The coefficient w; is called the partial potential of the substance
K in the mixture, or, according to Gibbs, simply its potential. From
this we obtain the following definition in words.

Let the mass of the substance K in the mixture be increased by
the differential quantity d My without altering the total volume or entropy
of the mixture, amnd let the corresponding increase of total energy be
wd M. Then w is said to be the partial potential of the substance K
in the mixture in question.

To increase the mass of one of the constituents without altering
the whole entropy of the system we may conceive the mass d.M;
added at temperature 7' equal to that of the system and a quantity
of heat withdrawn equal to 7' times the gain of entropy caused by
the addition in question.

151. Expression for the whole thermodynamical potential §» in
terms of the partial potentials of the constituents. In the next place
. we notice that the assumption that the system. is a homogeneous
mixture imposes a certain limitation on the form of the function f
by which the energy is expressed.

For the condition of being homogeneous involves the property
that if different quantities of the same mixture be taken, the whole
volume, entropy, and energy and the masses of the constituents are
proportional to the quantities, that is, more exactly, to the whole
masses of the mixture in question.

Hence, if the masses M,, M,,... M, the whole volume ¥V and
the whole entropy S are each increased by a small fraction de of
their original values, the whole energy will be increased by the same
fraction of its original value. Equation (267) must therefore be
_satisfied by
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AU=Uds, dV="Vds, dS=8ds, dM,=M,ds,..., d M= Mds

whence we have by substitution

(270) U=T8—pV+ D M
and therefore
(271) Fo=U—T8+pV = M.

In other words the potential {» of the mixture is equal to the
sum of the masses of the constituents multiplied by their corresponding
partial potentials.

In the special case of a single substance, the partial potential u
becomes, therefore, identical with the thermodynamic potential f, of
unit mass at given tefaperature and pressure.

The above result also follows from the fact that U'is a homogeneous
function of the first degree in S, V, M,,... M; (not in general a
linear function) whence by Euler's Theorem of homogeneous functions

@12) U=S5E+ Vo0 + S Mgy 5T —pV + S My,

In general the potentials u depend on the percentage composition
but are independent of the total quantity of mixture taken, so that
if mg, my,...m; are the masses of the constituents, v, s the volume
and entropy, g, t, . . - W are expressible as functions of v, s, mg, . . . My,
or if preferred they can be expressed as functions of the pressure p,
temperature 7, and percentage composition as defined by the quantities

Mg, My, ... m; subject to m;=1. In other words was, ws, ... m
are homogeneous functions of zero degree in S, V, M,,... M;.

152. Transformation of the Fundamental Equation. The equation
(266) U=F8, V, M, ... M)

is called a fundamental equation, and as has been stated above, the
existence of such an equation is an axiomatic consequence of the
fundamental principles of thermodynamics, and for a homogeneous
mixture £ must be a homogeneous function of the first degree. We
shall now show how to deduce other equivalent forms of fundamental
equation suited to cases when the system is specified by different
choices of variables.
We observe that equation (266) and the subsidiary equations

oU oU oU
(273) ﬁ’Tf 5f=_.p7 m=”’k

form a system of k4 3 equations connecting the following 2k 4 5
variables, namely
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U'S, V, M, My, ... M,

T, p, thay tos - - - 2

so that the variables are completely determined if the values of any
k + 2 of them are given. As in the ordinary case of a simple system
the above system of equations is easily seen to be equivalent to the
following:

(275) &= U— T'S = a known function of (7, V, M,, ... My),

0%, s 03, 0%, g,
T = v T b gar, T Mer - gar, T

(274)

(276)

or, again, to the following
(277) §p= U — TS + pV = a known function of (7} p, M,, . . . M),

0p %p 0%y, 03,

(278) ﬁ":_s’ 75‘=+I’) mﬁ=l"a,"‘m‘ial‘k

in which (275) and (277) are the fundamental equations respectively.
If, following an analogous method, we attempt to form a

fundamental equation with p, 7, w,, g, . . . pz a8 independent variables

the potential function we should logically use would be

U—TS+pV - Duds

but this for a homogeneous mixture vanishes by (270). We conclude
that the fundamental equation in this case takes the form of a relation
between the variables p, T, s, ws, . .. pi alone so that these variables
are not independent. This case may be best treated as follows.

(a) If we start with the system of equations (273), (266) we find
that p, T, e, o, - - . tx depend not on the whole mass of mixture
taken, but only on its percentage composition so that if small letters
refer to a unit mass, these % + 2 variables are functions only of the
k + 2 quantities

v, Sy Mgy My, ... My

which are subject to the relation

2m=1.

By means of this additional relation we obtain on elimination
an equation involving p, 7, p,, ts, ... only and this relation we
shall write in the form

(279) 0 =0(T, pay o, - - - a)-

(b) Conversely, the last equation will now be shown to be
equivalent to a fundamental equation of the form (266). For the
elimination of d U from the equations
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(269) dU=Td8 —paV+ D wmaM,,
(270) U=T8 —pV + D wl,
gives
(280) 0= 84T — Vap + > Mid,
or

S M,
(281) dp =5 dT+ D dw.

Taking T, p,, ws, . . . ux a8 independent variables we have

S ap M, 0p M, op
(282) V-—a—T-7 ?=9y—a7"?=—a—‘;;

so that an equation of the form

=0T, pa, ts, - - - )
is sufficient to determine
S Ma Mk
7 g

If the whole mass of the mixture ZM‘ is also given, to be
equal to M, we have for ¥ the equation
0P
(283) 14 ou, M
whence V is found and the other variables S, M,, M,, ... M; are
known. Finally the energy U is given by (270) whence

(284) U= V{T({j’})ﬂ-— 0+ > j:k}

Equations (279), (282), (283), (284) are k¥ + 4 in number and
they involve 2k 4 6 variables namely the variables listed in (274) and
the total mass M. It follows that any % + 3 of the variables may
be eliminated and the result will be a single equation between the
remaining % 4+ 3 variables which we may take to be an equation
between U, S, V, M,,... M,.

If instead of the whole mass, the whole volume ¥V is given
equations (282) are necessary and sufficient to determine the
pressure, whole entropy, and masses of the constituents, the total
number of variables being now 2% + 5 omitting the whole mass M.
With this omission equation (283) becomes omitted and the general
conclusions are the same as before.

We may also state our conclusions as follows: If the potentials
of the constituents are given and also the temperature, then the
pressure, percentage composition and generally the stafe of the mixture
as apart from its total quantity are known.
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153. Phase Equilibrium. While the preceding discussion refers
only to a single phase of a chemical system we now proceed to find
the condition for the equilibrium of a complex of different coexisting
phases ¢, ¢",... p™ each of which consists of all or of a certain
number of the % substances 4, B, ... K. Asillustrated by the complexes
formed of different phases of the same substance discussed in the
previous chapter, a complex consists of several portions of matter
which remain in equilibrium without tending to mix or combine into
a single homogeneous mixture or compound which would be described
as a single phase. These different parts are called the phases of the
complex. The difference between the phases considered in this chapter
and those in the last chapter is that here we may have a difference
in the percentage composition of two phases. As an example we
may take the case where calcium carbonate, calcium oxide and
carbonic anhydride (or carbon dioxide) (CaCO,, CaO, CO,) are in
equilibrium, here we have three phases formed out of the two constituents,
CaO and CO, In the case of ice, water and steam, as considered in
the last chapter all three phases had the identical chemical composition
(H, 0).

In Gibbs’ treatment it is assumed that the effects of gravity, of
capillary tensions and of electrical and similar forces are neglected.

If gravity be not neglected the energy per unit mass of a
homogeneous mixture will not be the same throughout as has been
assumed.

If capillary and electric actions between different phases be not
neglected these phases will have mutual potential energy and the
whole energy of the complex will no longer be equal to the sum of
the whole energies of the parts in the separate phases, as we shall
assume.

In the last chapter we found that in the case of a single substance,
the conditions for equilibrium of two phases require that the pressure,
temperature, and thermodynamic potential of unit mass f, shall be
equal in both phases. For several substances we should expect that
the third condition would be generalised by the substitution of the
partial potentials g of the different substances for the potential fj,
in other words, that in addition to the temperature and pressure being
the same in all the phases, the partial potential of any substance
would be the same in all the phases in which that substance occurred
in order that these phases should be in equilibrium.

Consider variations in which the total volume of the complex
remains constant and no heat enters or leaves it as a whole. From
Chapter VIII § 94 the equilibrium condition of minimum available
energy requires that for small variations of the first order in which
the whole entropy of the complex remains constant the variation of
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the whole energy shall vanish to the first order. Now let y' and u"
be the partial potentials of any substance in two phases. Then a
variation in which a mass d M of the substance in question passes
from the second to the first phase without altering the volume or
. entropy of either phase has been shown to be a physically conceiveable
change (§ 150), and it is consistent with the condition of constancy
of the whole entropy of the complex. By the definition of the partial
potentials this change would increase the whole energy of the first
phase by u/'dM and decrease the energy of the second by u'dM.
And since the two phases are assumed (as explained above) to have
no mutual potential energy, the quantity

W —w"aM
represents the increase of the whole energy of the complex. This
increase vanishes, therefore
(285) w=y"

We may, if preferred, give the proof in the following analytical
form. If quantities referring to the different phases ¢, ¢" are denoted
by corresponding accents, and unaccented letters refer to the whole
complex, we have, since mutual potential energy of the phases is

neglected :
UC=U0'4+U0"+.--4 O™

. O0U=0U0 400"+ .--4+00W
= T'08' — g OV + D O My

+ T" GSH _p"a'V" + ZM;IGM;I

+ T®3S®™ — pm SV 4 2 u™ M.

Since the conditions of equilibrium hold for variations which do
not alter the total volume of the complex or the total mass of any
substance K and in which no heat passes to or from the complex,

we have generally
oU=0,
for all variations subject to

38" + 88" 4.+ 08m™ =0,
V' + V" + ... 4+ 8V®™ =0,
ML+ M+ - + S MM =0,

ML+ M + -+ OMP=0.
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This requires that
T'=_T"=...=T(’l)’ p’=p”=...=p(")’
“z‘=“g=...=”£”)’ y‘;c=”,'k'=...=y,$‘").

By this method the conditions of equality of temperature and
pressure as well as of the potentials are established.

We might if we preferred deduce the conditions of equilibrium
by supposing the complex to be surrounded by a medium of temperature
T, and pressure p,, and forming the available energy according to
§ 90, in this case we should obtain the farther condition that the
temperature and pressure of each phase were equal to 7, and p,
respectively.

154. Case of absent constituents. If any component is entirely
absent from any particular phase, it is necessary and sufficient that
its partial potential where it occurs should be less than the potentials
which it would have if it were present in infinitesimally small
quantities in the phases from which it is absent.

Thus let ' be the potential of a substance in the phase in which
it is present, u(® the potential it would have if present in infinitesimal
quantities in a second phase. Then if a mass dm of the substance
were to pass from the first to the second phase without altering the
whole volume or entropy of either phase the increase of energy would
be (u©@ — u')dm.

This must be positive or zero, hence ' < u®. But & change in
the opposite direction is impossible, hence the energy does not
necessarily satisfy the usual analytical conditions for a minimum, that
is, its variation of the first order does not necessarily vanish, and
¢ is not necessarily equal to u®. We have in fact a case in which
only “unilateral” variation is possible as considered in § 89b.

155. The Phase Rule. Now let us investigate the mazimum
number of different phases which can exist together in a single
complex formed out of the % different substances 4, B,... K.

Since the temperature and pressure are the same throughout,
and the partial potential of each substance is the same in all the
phases in which that substance occurs, we have only % 4 2 variables
at our disposal, namely the common pressure and temperature and
the values, common to each phase, of the partial potentials of the &
substances. We may therefore denote these values by p, T, u,, ... m
without using accents to distinguish the different phases.

Moreover we have shown that the existence of any phases ¢
involves a fundamental equation of condition, which may be written
in the form

P =@ (T, thay oy - - ).
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In general the number of equations of condition cannot exceed
the number of variables at our disposal and we thus conclude that

(1) There cannot in general be more than %+ 2 phases in
equilibrium formed of % substances.

(2) If these k + 2 phases all coexist, the variables are all
completely determined, and this case can only occur when the pressure,
temperature and partial potentials have one or more definite discrete
values. Such a complex is .called invariant or avariamt because no
change of a physical character can take place without disturbing the
equilibrium of one or more phases. The relative quantities of the
different phases may however be varied, but their percentage com-
positions and the volumes and entropies per unit mass of each will remain
constant. The state in question is called a multiple point of order k + 2.
The triple point of the last chapter is the special case for &k = 1.

(3) If only k¥ + 1 phases are coexistent, the complex possesses
one degree of freedom and is called univariant. If the pressure or
temperature is given, or more generally any single additional arbitrary
condition is imposed, such as a relation between pressure, temperature,
and potentials, the k¥ 4+ 2 variables will be completely determined.

(4) If & phases coexist the complex has two degrees of freedom
and is called bivariant. It can now be mdde to satisfy two additional
arbitrary conditions, for example, both pressure and temperature may
be given and may be independently varied.

() If generally i phases coexist the complex is called multi-
variant, its variance being of order £+ 2 — ¢ and denoting the
number of its degrees of freedom.

These conclusions constitute the Phase Rule of Gibbs. It will
be noticed that the variations above considered have no reference to
the quantities of the different phases present in a given complex.
Moreover the conclusions are equally valid when the components are
not present in all the phases. In the case of absent components the
potentials of these components will not enter into the fundamental
equations of the corresponding phases, but the number of equations
and the number of variables will be the same as before.

A few examples will make this latter point clearer.

Ex. 1. Suppose 4, B to be two substances which can never mix.
If A is at the triple point, the temperature and pressure are known.
These will not in general satisfy the condition for equilibrium between
two phases of B, and hence B only can occur in one phase, giving
four phases altogether, in accordance with the rule.

If however only two phases of 4 occur, we have a single relation
between the temperature and pressure and we can make them satisfy
s second relation necessary for the coexistence of two phases of B,
giving, as before, four phases.
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Ex. 2. Consider a saturated solution of salt in the presence of
undissolved salt. We have two phases with two components. If
the temperature and pressure are given the strength of the solution
will be completely determined.

Ex. 3. If the solution of the last example is also in equilibrium
with vapour of the solvent, then if the temperature alone is given,
the vapour pressure will be known and the state of each of the three
phases completely determined.

156. Application to the thermodynamic potentials of gas-mixtures.
We may now give a more satisfactory discussion of the question
treated in- § 122.

We assume that if a liquid is in equilibrium with its vapour
alone at temperature 7' and pressure p', it will also be in equilibrium
at temperature 7' with its vapour mixed with other gases, if the
partial pressure of the vapour be p'.

Now in the first case the potential f, of the liquid is equal to
that of the vapour, and in the second case it is equal to the partial
potential of the vapour in the mixture and a comparison of the

equations of § 127
fo=2f+ (1 —2)f,"
with the equations of § 151

fo='m' + p'm" (m' =z, m'"=1—z)

shows that this partial potential u' is the same as the f,' of
Chapter XIIL

If the potential of the liquid were the same in both cases, we
should have the potential of the vapour exactly equal to its partial
potential in the mixture at the same temperature 7' and partial
pressure p'.

This is not strictly the case, for if p" be the partial pressure of
the remaining gases, the surface of the liquid is in-the one case
subjected to the pressure p' and in the other case to the total
pressure p' + p', and the expression for f,, viz.

fo=u—Ts+ pv

shows that even if the liquid has the same specific energy and
entropy in the two cases, its potentials will differ by the amount p"v.
But to obtain some idea of the percentage error commonly intro-
duced by neglecting this term we may take, as an example, water
and its vapour at 100°C. Here the volume of the vapour is 1650 times
that of the liquid so that the percentage error is comparable with
what would be introduced by an error of observation of 0.06 per
cent in the estimation of the partial pressures or temperature.




POTENTIALS OF GAS MIXTURES. 161

In deciding as to the most suitable assumption to make in the
hypothetical case of a perfect gas, the most natural plan is to
regard the equation pv = BT as a limiting case of van der Waals’
equation or some analogous form. But when van der Waals’ equation
is written in the form of a cubic in v and the constants a, b in it
are subsequently made equal to zero, two of the roots of the cubic
vanish. We conclude that in order to bring the properties of perfect
gases into harmony with those of ordinary gases we must take the
limiting form of the result of the preceding investigation when the
ratio of the volumes of the liquid and gaseous phases is made
infinitely small.

We thus have the result that the partial potential of a perfect
gas at given pressure and temperature is independent of the other
gases with which it is mixed. ,

The loss of available energy and gain of entropy by the diffusion
of two such gases then follows the laws discussed in Chapter XII.

[If we adopted any other hypothesis, as, for example, that no
available energy was lost by the diffusion of perfect gases, the study
of the properties deduced from such an assumption would be devoid
of physical interest and the “perfect gases” so defined would possess
no resemblance whatever to actual gases in regard to these properties.]

157. To find the faundamental equation of the mixture in the
form of a relation between p, T and the potentials, we first transform
the equation (Chapter XII § 122) for the potential of a single gas
so as to give p explicitly thus

fo—t  ¥p Go—1
p=e BT TBe B

We now notice that when the gas occurs in a mixture the partial
potential p takes the place of f, and the partial pressure of the gas
is determined by the same equation. And since the total pressure
of the mixture is equal to the sum of the partial pressures of its
components we get for the fundamental equation of the mixture

K—uo Tp To=Tp
(286) p=3|e 8T T8 ¢ ¥

where the accented letters denote quantities which are different for
the different gases!), and the sign. of summation refers to these
several gases.

1) This is reducible to the form given by Gibbs on substituting y,4 B
for y, and v, + Blog B for 6,.

BRYAN, Thermodynamics. 11
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CHAPTER XVL
REVERSIBLE THERMOELECTRIC PHENOMENA.

158. Definition of a Reversible Galvanic Element. The flow of
electricity through conductors is associated with several heat phenomens,
some of which are reversible and others irreversible.

When a current I flows through a wire of finite resistance R,
and of uniform temperature throughout, available electrical energy of
amount I?R per unit time is absorbed, and either a quantity of heat
equal to this is given to the surrounding media or a rise of tem-
perature occurs in the wire equal to that which would be produced by
imparting this quantity of heat to it. If the direction of the current
be reversed the same transformation will take place. We have
therefore a simple case of irreversible conversion of work into heat
in the substance of the wire itself as explained in § 81, and
entropy is generated in the wire at a rate per unit time represented
by £T£
As however the laws of irreversible thermodynamics are represented
by inequalities instead of equations, we must in order to study
reversible phenomena, leave this heating effect out of account, and
for this purpose it is necessary either to assume perfect conductivity
(R=0) or to suppose the flow of electricity to take place infinitely
slowly. If e is the quantity of electricity flowing through the wire
in time ¢ and we consider the simple case of a uniform current, we
h'a}r{e e = It, so that the quantity of emergy transformed is equal to
e

— and keeping e constant this quantity may be decreased in-

definitely by increasing ¢, as well as by decreasing R. In either case
the differences of potential in the conductors due to the currents
vanish. In dealing therefore with a galvanic cell of finite electromotive
force £ we must therefore suppose a motor or a condenser (e.g. an
air-condenser with parallel plates) included in the circuit giving rise
to an equal and opposite electromotive force, and when a quantity
of electricity de flows from the positive to the negative pole of the
cell throngh the motor or in the same direction relative to the cell
in connection with the condenser, a quantity of external work Ede
will be done by the motor or by the attraction of the plates of the
condenser. On reversing the process an equal quantity of available
energy must be supplied from without, in the form of mechanical
work. In this statement it is assumed, consistently with the principles
of electrostatics or electromagnetism that the electrical energy passing
to or from the condenser or motor is wholly of the nature of
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available energy. This is true consistently with what is proved
later on if the electrodes (i. e. the points at which the current enters
or leaves the region included in the cell) are of the same material
and at the same temperature. This is assumed.

A perfectly reversible element may therefore be defined as one in
which no available energy is lost by the passage of electricity between
the poles or by any of the other transformations contemplated in
reversible thermodynamics. If then a quantity e of electricity passes
between the poles in one direction and an equal quantity then passes
in the opposite direction, no other change taking place (the trans-
formation being adiabatic) the element will return to its original
physical and chemical state.

159. Application of Thermodynamic Equations. When in addition
to the last mentioned changes heat may pass to or from the element,
other changes being excluded, the element behaves as a simple system,
and its state at any instant can be specified by two coordinates,
namely the whole quantity of electricity that has passed between the
poles, denoted by e, and the entropy, or the temperature. That e
can be regarded as a coordinate is most readily seen when the circuit
is completed by a condenser.

Since Ede is the external work done corresponding to the
variation de, we have by the laws of thermodynamics

(287) dU = TdS — Ede.

If then
Fe=U—TS,

& will be the thermodynamic potential corresponding to §, for a
simple substance, and we shall have

(288) . 4§, =— 84T — Ede
whence .

d e
(2883) E—— (),

a relation first obtained by Gbbs.
Since d, is a perfect differential

a0 (- 5D o)
Putting -
A=- (W) T
we obtain
o -5 238,

11*
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The interest in this equation, which is known as Helmholtz' equation
lies in the physical meaning of A. In fact 4 is the loss of internal energy
per unit quantity of electricity generated in the circuit at constant tem-
perature 7. The constancy of temperature and the exclusion of other
variations shows that this energy has its origin in the chemical
combinations formed in the element during the change. Now the
quantities of the different substances combined in connection with
the passage of a unit electricity are called the electrochemical equi-
valents of these substances. Moreover the quantities of energy evolved
by them are called their heals of formation (expressed in work units)
because in the simplest experiments on chemical combination the
evolved energy takes the form of heat. Hence 1 is said to be
equal to the algebraic sum of the heats of formation of one
electrochemical equivalent of each of the active substances contained
in the cell.

160. Separation of the Thermoelectric Effects in the circuit.
From the last section we see that E is not equal to 4 unless E and
therefore A is independent of 7. In other cases we have

dE

E—1=T(g),

- T(ﬂs)

delr
Here Ede is the total electric energy associated with the
change de, ide the energy arising from chemical reaction and we

see that the remainder is T'dS, and represents the energy supplied
from without in the form of heat. The coefficient which is equal

to :—g represents therefore the part of the electromotive force due

-to direct thermo-electric actions in the element.
When no chemical changes occur, so that 4 = 0, equation (290)
gives on integration

(291) E=CT

where C is a constant. Hence the thermo-electromotive force in an
ideal element consisting of metals or other substances in contact,
between which no chemical action takes place is proportional to the
absolute temperature.

In the more general case where 4 is not zero, E and 1 will be
functions of 7 alone, so long as the battery is continuously working.
In this case equation (290) gives on integration

(202) E=T{C—f%dT}-
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161. @ibbs’ Formula. If i is possible to assume A to be inde-
pendent of T this gives

(293) E=T(C+7)

or putting € = — % (C may be positive or negative) this gives
[

(294) E=1%-T

0

This result was given by Gibbs, who deduced it by the application
of a cyclic transformation to the element. It does not however
appear to be deducible from purely thermodynamic reasoning without
some assumption. It necessarily involves the converse property that
2 (but not E unless T, = 0) is independent of T and further that
the total thermo-electromotive force E — 1 is proportional to the
absolute temperature 7, as in the case where no chemical action
takes place.

A very simple assumption which leads to Gibbs’ formula is that
the thermal capacity of the cell is unmaffected by any chemical changes
which take place in it. Thus supposing we are dealing with zinc and
sulphuric acid we assume that the hesat required to raise the tem-
perature 1° is the same for the zinc sulphate as for the separate
constituents. If we start from this assumption we have, taking T’
and ¢ as variables,

(:—S)’= function of T only,
. &S
‘dTde 0,
. (Z_f)r is independent of T,
—2

7 18 independent of 7.

Also the assumption that the battery is in continuous action
makes E and 1 independent of e¢. Therefore ‘
E—1

= constant C

as in (293). The converse is also true as may easily be seen.

162. Temperature of Transformation. The comstant 7;, in the
equation of the last article has an important physical meaning. For
if the temperature 7'= T,, E vanishes and as T increases past the
value 7,,, E changes sign.
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At the temperature T, a current can flow through the circuit
freely in either direction, and there being no electromotive force, no
energy is absorbed or given out to the current. The chemical
changes occurring in the cell will depend on the magnitude and
direction of the current but the energy involved in them will be
wholly transformed in the form of heating.

When the temperature exceeds T, the current tends to flow in
the opposite direction, its flow being accompanied by dissociation of
the compounds formed in the previous case. The process of com-
bination can then only be continued by inserting an external electro-
motive force in the direction hitherto regarded as positive and thus
supplying external electrical energy.

These conclusions which are verified by experiment, are not
dependent on the particular form of equation (294).

Taking the perfectly general thermodynamic formula (290) we
may write it in the form .

(295) E— Tf-l‘,—,dT.

T

Here T, will be the temperature of transformation, and will possess
all the properties above stated.

163. Effect of changes of volume or pressure. In such cases as
that of a gas battery where expansion takes place under external
pressure, an additional variable must be taken into account namely
the volume ¥V or the pressure p. The equations give

dU=TdS — Ede —pdV
and taking the thermodynamic potentials
Sr=U—-T8, FF=U--TS+pV
we obtain in the usual way
dFv=—8dT — Ede —pdV,
dFp =--8dT - Ede = Vdp.

The conditions for a perfect differential now give rise to six
reciprocal relations between the differential relations; of these the
only ones which have not been already discussed in §§ 112—114, are

(296) (:_fjf),’ de v1 db)a, == W nT

The last relation shows that the electromotive force increases or
decreases with the pressure according as the volume decreases or
increases when a current flows through the battery.
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In a constant pressure battery in continuous action at constant
temperature the change of volume depends on the chemical trans-
formations taking place in the battery, and is proportional to the
quantities of the chemical constituents involved in the change, or
again to the quantity of electricity that has passed through the
battery, giving av ' .

' : (W)p — constant, .

in accordance with Faraday's Law. Thus for example if we take the

case of hydrogen and oxygen, the value of (%)ﬂ will represent

the difference between the volumes of one electrochemical equivalent
of oxygen and hydrogen and that of water at the temperature and
pressure of the cell. We may therefore write

oV _V,-V
[

= function of p, 7' only.
Hence

) ()5

This equation may be integrated keeping T comstant in order to
compare the electromotive forces of the same battery at two different
pressures af the same temperature provided the (p, V, T') equations of
the substances involved are known.

Example. Suppose the substances to consist partly of solids and
liquids whose volume may be approximately assumed to be independent
of the pressure, partly of gases which obey Boyle’s Law. Then at
constant temperature T’

(298) Yo

14 BT
=4+

where A is the change of volume of one electro-chemical equivalent

of the solids and hqulds, BT that of the gases. Then the integral
becomes

(299) Emm—Emn=Am—m+Bmm%

The experimental aspect of such equations has been studied by
Gilbauls.

164. The Peltier and Kelvin Effects. Hitherto we have con-
sidered thermo-electric phenomena that are associated with chemical
action. We now proceed to discuss more fully those phenomena
which occur in systems of conductors in which no chemical action
takes place. Such conductors are called conductors of the first class,
those previously considered being classed as conductors of the second class.
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The thermo-electric phenomena occurring at the surface of
separation of two conductors of the first class are known as the
Peltier Effect. There is in general a difference of potential (IT) at
the two sides of the surface, and when a quantity of electricity
flows across the surface, the energy corresponding to the change
takes the form of heat absorbed or given out at the surface, in just
the same svay that when friction occurs between two bodies each
appears to receive heat from the common surface of separation.

From § 160 it appears that in an element in which the only
electromotive forces are those due to contact, the sum of these,
representing the total electromotive force, must be of the form CZ,
i. e. proportional to the absolute temperature.

This result may be generalised by taking a (non-resisting) circuit
formed of any number of metals. Let IT,, IT;, IT; be the electromotive
forces of contact at the various junctions taken in order round the
circuit 7, T,, T; the absolute temperatures.

Lét e units of electricity flow round the circuit in the positive
direction. Then the quantities of energy gained at the junetions are
ell,, eIl,, eIl,, and these represent the quantities of heat absorbed.
Since the process is reversible, the sum of the corresponding changes
of entropy is zero. That is

o, m , I
(800) T+t =0

Now let all the temperatures of the junctions but one, 7, be
kept constant. Then it follows immediately that

Hf
- = constant,

and calling this constant C we have
(301) In.=0C.T, and XC=0.

Thus #n a reversitble circuit in which no other electromotive forces
occur the Peltier effect at any junction must be proportional to the
absolute temperature of that junction and further the sum of the co-
efficients C, must be algebraically zero.

In particular the electromotive force in a circuit of two metals
will be proportional to the difference of temperature of the junctions.

Now in practice it is found that when the temperatare of one
junction is kept constant and that of the other is raised, the current
instead of always increasing may vanish and change sign. From this
it follows that conformably with the laws of thermodynamics, other
electromotive forces must exist in the circuit. From arguments of
this character Lord Kelvin was led to the discovery of the Thomson
or Kelvin effect according to which:
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When differences of temperature exist at different points of the same
" substance, they are in gemeral accompanied by a difference of potential.
These differences of potential which are here discussed in
connection with an ideal reversible circuit are of course entirely
independent of those due to resistance in irreversible circuits.

The energy absorbed when electricity passes from a place of
lower to one of higher potential is necessarily supplied in the form
of heat, and hence the phenomena give rise to reversible heating
effects which are independent of the irreversible effects due to con-
duction of heat in the cases which occur in practice. To these
heating effects the name “electric convection of heat” has been given.
In order to eliminate the effects of irreversible heat conduction, it
is necessary to assume that the thermal conductivity of the connections
forming the circuit is negligible.

The laws of reversible thermodynamics show that under the
assumed conditions, when a unit of electricity flows round the circuit,
the sum of the energies given out in the form of heat at the junctions
and in the conductors is equal to the whole electromotive force
tending to produce a current in this direction in the circuit, and
the sum of the entropies given out is zero.

The last statement shows that the total quantity of entropy
absorbed when a unit of electricity is made to pass from one point O
to another point P of a thermo-electric network is independent of
the path by which the charge travels from O to P. If we denote
this quantity by 5, we notice that since the present result is unaffected
by the addition or substitution of hypothetical connections of the
most general character between O and P, the quantity y can only
depend on the temperatures and nature of the substances at O and P.
And by taking O to refer to a standard substance at a standard
temperature we shall have y a function of the termperature and the
nature of the substances at P which we shall write y(a,T) for
substance a at temperature 7. This function will determine all the
thermo-eleetric phenomena occurring in the system.

Thas if IT,, is the electromotive force at temperature T’ of the
Peltier Effect between two substances a and b,

(302) I, = T{y(a, T) — 2 (5 )}
Again let ¢,dT represent the electromotive force of the Kelvin

effect corresponding to the temperature difference d7' for substance a
then since

6, a1 = increase of enefgy of unit charge corresponding to d7'
= T >< increase of entropy = T'dy(a, T),

_ maxeT)
(303) . .6, = T,—dT——
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The coefficient @, has been called by Lord Kelvin the specific
heat of electricity for substance a at temperature 7, because a,dT
represents the heat absorbed by unmit charge for a change of tempe-
rature dT' obtained by moving along the wire. It will be noticed
that ¢ and IT are connected by the relation :

I —
(304) () =r-0

which is identical with the relation between the specific heats and
latent heat of transformation in a complex of two phases of the
same substance. This identity is a necessary consequence of the
physical interpretation of the two equatlons, which represent the fact
that the sum of the entropy changes is zero in a circuit of two
metals and a cycle between the two phases respectively for a
temperature- difference d7' in the neighbourhood of T.

165. Determination of the Total Electromotive Force. If two
points are taken in the same homogeneous comductor at temperatures
T,, T, the electromotive force between them is given by

T,
(305) E=|o,dT -dex (aT) = &(T,) — 9(T)
T
where @(T) is a function of 7' alone. This follows since y(aT) is
a function of T' alone so long as a is the same. Hence so long as

the substance is the same, the thermo-electromotive force is derivable
from a potential @(T) satisfying the relation

(306) d® = Tdy.
a - c Next consider a
1(? 7L T ,}, number of conductors
o 1 2 7 a,b,e,...k in series
Fig. 81.

with their junctions at
temperatures T,, 7;,...Ti—;. Then the expression for the whole
electromotive force between (@, T,) and (%, T;) can be written in the
following various forms
(307) E= ¢(a" Tl) - ¢(a‘} To) + Hab(Tl)

+ Q(b7 Ts) - Q(b) To) + HM(T:) + &e,

(308)  E=[Tdyel) + T,(0L) - y(aT)

+[Tay®, 1) + 1,26 1) — 1B T} + &,
T
or, again, by partial integration the last form gives
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. T, T,
(809) E=Tig(h 1)~ Tg(oT)— [ 2aT)aT— [ 3, )T — .
T n

which may be ﬁritﬁen
Ty
(810) = Tig(h T3) — Top(a, Ty) — f 7T
) &7,
whence for a complete circuit

(311) E=—-(/)xdT.

We notice the following conclusions, which are in- accordance
with the results of general reasoning:

(1) If the circuit is all formed of one metal E = 0.

(2) If the junctions are all at the same temperature E = 0, for as
n any conductor y is a fumdion of T only, therefore if the two ends
are at the same temperature, the portion of the integral contributed by
that conductor vanmishes.

We further notice that the electromotive force in the complete
circutt is the same as would be obtained by assuming an electro-
motive force ydT to act between points of the same substance whose
temperature difference is d7' and no electromotive forces would then
have to act at the junctions. In other words the whole electromotive
force can be accounted for by a suitably formed expression for the
Kelvin effect without any Peltier effects. But such an expression
would not give rise to the same beating effects, nor would it bring
these . heating effects into accordance with the Second Law of
Thermodynamics.

166. Converse Problem. — Specification of a Thermo-electric
System. Next suppose that we have a circuit formed of two metals
a, b and that we have determined its electromotive force for different
values of the temperatures T, T, of the two junctions, so that

E = f(TU Ts)

a known function of 7, and Tj.
Then we may write the relation (308) in the form

(312) Ju@n) g myar =1z, 1)

therefore
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of(T,, T,
(313) . 1(a, Ty) — (b, T) = f(aiv )

of(T,, T,
(314) 2@ T) —2(5,T)) = — '—fia—}—l—’)

and by varying one or other of the temperature limits it follows
that 4 (a,T) — 5 (b, T) is determinable from these data for all values
of T.

This information is sufficient to completely determine the Peltier
effect at either junction, but it is not sufficient to determine the
Thomson effects in the two separate conductors. All we know from
the assumed data is the difference y(a,T) — (b, T'). If the values
of one of the expressions 2(a,T) be determined by observations of
the heating produced by the Thomson effect in one of the metals
the corresponding values of x(b,T) are completely determined.
Without this additional information the expression for y in any
substance must be regarded as containing am wmknown ferm in the
form of am unknown function of T alome which is the same for all
substances.

It also readily follows that the thermo-electric properties of a
number of different substances can be completely determined from
the following data, each of which may be regarded as the complete
specification of an ideal thermo-eleciric system:

(1) If the specific heat of electricity of each of the substances
is known as a function of the temperature for all temperatures, and
the Peltier electromotive forces are known at one particular tempera-
ture between one substance and each of the others.

(2) If the specific heat of electricity of ome of the substances is
known as a function of the temperature, and the Peltier electromotive
force between that substance and each of the others is known as a
function of the temperature for all temperatures.

In either case the remaining unknown data may be determined
from the relation

11 6,—¢
(19) ar (7) 7 =0
or the expressions for 5 may be obtained directly from (313) or (314).

Any further experimental data in excess of the minimum must
be interpreted as tests either of the accuracy of the observations or
of the validity of the laws of Thermodynamics.

Example. Let us assume for E the expression proposed by Tait
namely _

(316) E=kab(T1"Ts)[Tab—%(Tl‘l'Ts)]

where T, k,, are constants. Then
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(317) 1@,T)— 20 T) =Fkar(Tao—T)
whence
(318) ’ Oy =kep (Taw —T)T

so that T,, is the temperature at which the two metals are neutral
to each other (II,, = 0), also

(319) 0, — 6= — ks T.

This is as far as we can go by purely thermodynamic reasoning.
The only plausible hypothesis is that o, and @, are both proportional
to T. If for one substance ¢ is assumed as the result of experiment
to be proportional to T’ within certain temperature limits, the same
result is now established for other substances within the same limits,
subject of course to (319) being true within these limits.

In the case of lead (say !) it is known from experiment that
@, is sensibly zero over a considerable range of temperature; on this
hypothesis

"(320) .= —ku,T, o - ki T, Koy = Koz — kos

and if the above result for lead should be shown to be only
approximately true, the first hypothesis would still give

(321) 6¢ = - k.,T, 6(, = — kb.T’, kab = ka - kb.

kauy by in thié case being referred to an ideal substance (I) for which
6 =0. We further have by cyclic addition of (319)

(322) (kb - kc) Tbc + (kc - ka) Tca + (ka - kb) Tab =0
whence we may write

(823) 1@, 1) =Fki(Ta—1T),

(324) 16, T) =k (T, - T),

supposing T,, T, to be the neutral temperatures of a,b with respect
to lead or the ideal substance (I) referred to. The integration constant
which occurs in the value of y (depending on the initial state assumed
in the definition of y) is here made to vanish by taking the initial
state in the substance I.

167. Effects of the Currents om Localisation of Emergy and
Entropy. The phenomena discussed in the preceding articles afford
evidence that thermo-electric currents may alter the localisation both of
energy and entropy.

Suppose any number of conductors, maintained at a distribution
of temperature which is independent of the time, to be placed in a
thermo-electric circuit, and after a quantity of electricity e has
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passed through the circuit suppose the conductors to be isolated.
Then energy and entropy have been absorbed at the conductors
during the passage of the current, yet at the end there is no change
in the state of the conductors themselves. It is therefore clearly
absurd to suppose that this energy and entropy have been stored in
the conductors, and we have no alternative but to suppose them to
be localised in the electric charge itself.

So far as energy is concerned, this view forms the basis of the
most elementary theories and no better evidence can be adduced
than the important applications of electric transmission of power, by
which for example, energy is made to change its localisation from a
waterfall to a tramear.

Consistently with the theories of the previous articles we have
now to assume that the entropy which for charge e at temperature T
in substance a is denoted by ey (a, T') is localised in the charge ilself,
and that during all peregrinations of the charge, a certain amount
of entropy follows it about. When owing to the changes in a or 7,
the function y increases, entropy is picked up by the charge, when
it decreases, entropy is left behind.

In the case of a charged conductor whose temperature is being
raised, we may first suppose the charge brought to the conductor
from a fixed base, and after the conductor has been heated we may
suppose the charge returned to the same base. The principle of
conservation of entropy for reversible cycles requires that entropy
shall be supplied during the process of heating, represented by the
increase in the value of y. If no other phenomena exist which can
account for the change, we infer that heat must be supplied to the
conductor, over and above the amount required if the conductor
were uncharged, and that the “specific heat of electricity” is the
proper thermal coefficient in this case as it is in connection with
“electric convection of heat”.

CHAPTER XVIL
GEOMETRICAL AND DYNAMICAL REPRESENTATIONS.

168. Thermodynamic Models of a Simple System. The method
of representing the thermodynamic properties of a simple system,
such as a homogeneous fluid by means of a geometrical surface in
three dimensional space is due to J. Willard Gibbs. For convenience
we shall suppose the quantities involved to refer to unit mass,
though the methods will be closely analogous if the whole mass of
the substance is considered.
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Taking z,y, # to denote coordinates generally if we put
Z=0, Yy=8§ 2=u

where v, s, u are the volume, entropy and energy of unit mass at
the substance, we see that since for any given substance, u is a
definite function of v, s, say

%= f(v, S),v '
the point (v,s, ) lies on a certain surface which may be regarded
as a thermodynamic model of the substance.

We may construct other surfaces representing the thermodynamic
properties of the substance by taking

z=v, y=1, z2=1,
or again
z=p, y=1T, z2=F,
or lastly
T=p, Y=38 &= fs
where f,, fp, f, are the thermodynamic potentials,
fo=u—1Ts, fo=u—Ts+pv, f,=u+po

Of the four surfaces thus defined any one is sufficient to
determine the thermodynamic properties of the substance. The most
convenient however as a general rule are the (v,s,u) surface and
the (p, T, f,) surface. The first is usually spoken of as the volume-
entropy energy diagram, or thermodynamic model; the second is
often' called Gibbs’ Zeta surface, the Greek letter { being umsed by
@Gibbs to denote the potential which we have demoted by f,. *

169. Reciprocal properties of the volume-entropy-energy and
pressure-temperature-potential surfaces. We may conveniently study
the properties of these two surfaces side by side, and it will be
observed that they are connected by the principle of duality.

The (v, s, u) surface. . The (p, T, §,) surface.

The equation of the tangent The equation of the tangent
plane at any point of the surface is | plane at any point of the surface is

0§ of
s—u=@—0)gr+ 952 | s —fy=@—p)5 +(y—T) 52

that is that is
t—u=—(@—0)p+Y—9T | s—fo=@@—p)v—(y—1)s
or or

z=—px+ Ty+f,. =9z — sy + u.
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Hence — p, T, {, are the tangential
coordinates of the point u,s, v
when the equation of the tangent
plane is put in the form

=1z + my + n.

The condition of stability in
the state (v, s, w) requires that for
any neighbouring state (¢, ¢, ')

wW>u—pW—v)+ I —s).

If now the line through (v/,¢,u')
parallel to the axis of # meets the
tangent plane at (v, s, %) in the
point (¢, &, #) this gives

u>z.

Hence the 2 coordinate of the
surface is greater than that of the
corresponding point on the tangent

plane, that is the surface is concave
towards the positive direction of

the axis of z or .

Hence v, —s, u are the tangential
coordinates of the point p, 7, {,
when the equation of the tangent
plane is put in the form

s=Ilz+ my+ n.

The condition of stability in
the state (p, T, {,) in the opposite
column, leads to the result that for
any neighbouring state (o', 7', f,)

o <fy +Y(—2)— (T 1"

If now the line through (p, 7, f,)
meets the tangent plane at the
neighbouring point (p', 7", f,) in
the point (p, T,7) this gives

fo<?.

Hence the 2 coordinate of the
gurface is less than that of the
corresponding point on the tangent
plane, that is the surface is convex
towards the positive direction of
the axis of # or f,.

[The reciprocal properties of the two surfaces are easily seen to
be consequences of the theory of polar reciprocation in geometry.

For supposing two surfaces

2 =fi(#, y) and z=

12 (%3, ¥s)

to be polar reciprocals with respect to the paraboloid

x"l'!/’

=22,

then since the tangent plane at (z,, y,, #,) is the polar plane of

(25, s, #;) the equations

dz,
dy,
and

(a:, ds Ty dzl )

2+ 2, = x33 + YY3

are identical giving

d 2,
da:,

% dz

Y9 = dy’ 4

dz

dg
'=x1g;: +y1dy et

which are exactly the same as the relations connecting the coordinates
on the two surfaces with certain differences of sign.]
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170. Properties of a complex.

If two phases coexist then the
corresponding points on the (v, s, %)
surfaces have a common tangent
plane determined by the tangential
coordinates (p, T, f,) which are
the same for both phases.

If three phases coexist, p, 7, f,
are the tangential coordinates of a
triple tangent plane to the three
corresponding parts of the thermo-
dynamic surface.

The boundary between any two
phases is determined by a tangent
plane rolling in double contact
with the two corresponding parts
of the surface; this plane envelopes
a developable surface.

177

If two phases coexist then the
point (p, T, f,) lies on a curve of
intersection of the corresponding
parts of the thermodynamic sur-
faces.

If three phases coexist then
the point p, T, f, is at the common
intersection of the three correspond-
ing parts of the thermodynamic
surface.

The boundary between any two
phases is determined by the curve
of intersection of the two cor-
responding parts of the thermo-
dynamic surfaces, and the proj :otion
of this curve on the plane of (p,T)
determines the curve of saturation
referred to p, 7' as variables.

171. Representation of an actual complex on the (v,s,u) surface.

Let (¢, 8, ') and (", s", u") represent two phases of the substance
which can exist in the presence of each other. Then if m/, m" are
the masses of the two phases occurring per unit mass in any complex
formed of them, the volume, entropy and energy per unit mass of
the complex are given by expressions of the form

v = ’nlvl + m",v!!’

and hence the point (v, s, w) referring to the complex lies on the
straight line joining the points (¢, s/, w') and (v, s", «"), and is the
centre of mean position, or centre of mass of masses m', m" at the
two points (¢, s, «') and (v",s",w"). The locus of such points is
the developable surface enveloped by the double tangent plane to
the (v, s, u) surface of the two phases.

Similarly for a complex of masses m', m", m" of three phases
at the triple point the volume, entropy and energy per unit mass of
the complex are the coordinates of a point on the triple tangent
plane which is the centre of masses m', m", m" at the respective
points of contact. '

Now take the plane of (v,s) as the plane of projection; let
S,L,V be the projections of the points of contact of the triple
tangent plane corresponding to the solid, liquid and gaseous states,

and let the thick curved lines represent projections of the loci of
BRYAN, Thermodynamics. 12
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points of contact of the double tangent planes. Then any point on
the triple tangent plane within the triangle LV'S represents a complex
of three phases, any point on one of the developable surfaces between
the triangle and the curved lines represents a complex of two phases,
and any point outside these regions represents a simple phase only.

The continuity of the liquid and gaseous states is accounted for
by supposing that as the double tangent plane rolls, the two points
of contact ultimately coincide at some point which represents the
critical point.

S

) | 4
Fig. 3.

The thermodynamic surface remains concave towards the direction
of v positive to some distance within the curved lines, and if the
dotted lines represent the limits of concavity the substance can exist
in a metastable state represented by points on the surface between
the dotted and continuous lines. The curves bounding the absolutely
stable and metastable regions touch at the critical point, as may be
shown without difficulty.

172. The surface of dissipated emergy. This name has been
given to the composite surface made up of

(a) the portions of the thermodynamic (v, s, u) surface beyond
the lines of contact of the double tangent planes which therefore
represent essentially stable states,

(b) the developable surfaces joining the points of contact of
double tangent planes representing all complexes of two phases, and
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(¢) the plane triangle formed by the triple tangent plane w]nch
represents all complexes of three phases.

This surface represents the locus of all points at which the
energy is a minimum for given volume and entropy consistently
with the thermodynamic properties of the substance. It therefore
represents all absolutely stable states of the working substance.

It should be noticed that in the case of a substance, like sulphur,
which is capable of existing in four different phases (not all at the
same pressure and temperature) and which has three triple points,
the surface of dissipated energy will include three triple tangent
planes as well as the different developable surfaces (six in number)
connecting them.

173. Representation of a complex in the (p, 7, f,) diagram. It
is easy to see that the volume, entropy and energy of an actual
complex are represented in the (p, 7, f,) model by the coordinates
(tangential as previously specified § 229) of a plane (L say) whose
equation may be written, for the respective cases of a double or
triple point in the forms

(326) WL 4w D =0
or .
(326) m' L' + m" L" + m" " =0

where m', m", m" represent masses of the phases occurring in unit

mass of the respective complexes and
I'=0, I'=0, I"=0

are the tangent planes to the sheets of the (p, T, f,) surface representing
the corresponding phases.

If the f, axis is measured upwards the surface of dissipated
energy consists of the portions of the thermodynamic surface whieh
are convex upwards and extend up to but not above the double lines.
The portions above these lines which are convex represent metastable
states (§ 141). There is no region representing a complex, but when
a substance passes in gradually increasing quantity from one phase
to another the representative plane L turns in contact with the
double line on the upper side of the surface from one tangent plane
to the other.

174. Cases where the composition is variable. Except in the
case of a simple system the number of variables is too great to
enable the thermodynamic properties to be completely represented by
a model in three dimensional space. If there are two components
we have one variable too many, if there are three, we have two
variables too many. It is necessary therefore to assume some further

12*
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condition or conditions before a model can be constructed. The most
interesting applications of thermodynamic surfaces are those which
refer to

(1) a mixture of two components when the pressure is kept
constant,

(2) a mixture of three components when the pressure and tem-
perature are both constant.

For more than three components the proportions of which are
capable of independent variation a model in three-dimensional space
is no longer sufficient.

The choice of coordinates depends mainly on the problem to be
studied. For a detailed discussion of experimental aspects of the
problem the reader is referred to the many excellent treatises on
physical chemistry.

For the purposes of theoretical discussion the best variables to
take are the partial potentials of the components, with the temperature
as a third variable if there are only two components. For practical
purposes the variables should be so chosen as to specify the percentage
composition of the mixture.

175. The partial potentials of the components as coordinates.
Consider first a mixture of two components a, b at constant pressure p,
and take as coordinates

Z=fay Y=p, #=1T.

Then since by the properties of the mixture p is a function of u,, w,
and 7, the equation
(327) p = constant

determines a surface which is the thermodynamic model of the
mixture at constant pressure p.

Moreover the points of intersection of two or three sheets of the
surface determine states of phase equilibrium between two or three
phases respectively.

From the equation

—vdp + sdT 4+ Zmdp =0
it follows that the equation of the tangent plane can be written
(328) (z — pa)ms + (y — o) my + (2 — T)S = 0.

Hence if the tangent plane is cut by the plane # == constant, its
trace on that plane makes with the axis of # an angle whose tangent
is — m, m; -and this determines the ratio of m, to m;, the actual
masses in a unit mass of mixture being got by putting

mg + my = 1.
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Again put
z =y =1 cos 45°
in the equation of the tangent plane; then remembering m, + m,=1
we get

(329) 48 + 37y 2 = constant.

Hence if ¢ be the inclination to the axis of # of the line in
which the tangent plane meets a plane making angles of 45° with
the axes of z and y,

(330) tan p =Sy2
and hence the direction of the tangent plane determines not only
the composition of the mixture but also its entropy per unit mass.

This information is useful in determining whether a given change of
phase is accompanied by absorption or evolution of heat.

176. In the case of three compoments, the equations
p = constant, 7' = constant

determine with the fundamental equation of the mixture a single
equation between u,, w,, y. so that taking the coordinates to be

T={lay Y=1thy &=
the point (2, y, 2) lies on a surface which is a thermodynamic model
of the mixture at temperature I' and pressure p.

The tangent plane to the surface is given by

(@ — pa)ma+ (y — m)ms + (2 — po)me =0
or
(331) ma% + mpyy + mez — f, = 0.
The direction of the tangent plane thus determines the percentage
composition of the mixture and its position determines the potential f,
(which however is known independently when me,, m,, m, are known as
well as the partial potentials).

If we put m, =0 we see that the tangent plane is parallel to
the axis of . This is true whether we are dealing with two or
three components. The curves determined by this condition and by
similar conditions representing the absence of the other component
or components determine the boundary of the thermodynamic surfaces.
The bounding curve m, = 0 is the line of contact of an enveloping
cylinder whose generating lines are parallel to the axis of z.

If through any point P of this boundary a line be drawn
parallel to the axis of # and meeting another sheet of the thermo-
dynamic surface in a point ¢ on the megative side of P, equilibrium
will exist between the phase represented by @ and the phase with
the absent component represented by P.
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177. Case of two components when ome coordinate determines
the percentage composition. If z and 1 — = are the masses of the
two components in unit mass of a mixture we may take as co-
ordinates z, T and f,, # lying between O and 1, and the thermo-
dynamic surface will then be given by p = constant.

The equation

dfp=-—-8dT + Vdp + Zpdm
= — 8SdT + (pa — w) dx
shows that the equation of the tangent plane may be written in the
form
(332) t—fo=—80U—T)+ (ks — m) (&' — 2)
if we write z' for the coordinate on the tangent plane. We have
moreover
fo = #az + 1 (1 - 2)

whence the equation of the tangent plane becomes

(333) 2=—8@W—T)+ paz' + p, (1 —2').
The tangent line in the plane y = T is given by
(334) = pa' + (1 —2")

' and hence g,, y, are
g’, the intercepts which
N it cuts off from the

lines z' =1, 2' =0

Begion of Complexes respectively.

If two phases are
in equilibrium, they
lie in the same sec-
tion 7 = constant,
and we now see that
they have a common
tangent line in that
plane. It readily fol-
‘ Grétical Point. lows that in any sec-
Zegion of homegeneous solution tion, a double tan-

gent line will repre-
Concentration sent & complex of

two phases, and the -

essentially stable sta-
tes at temperature 7' will be represented by points on the convex
line found by the sections of the thermodynamic surface and its
double tangents.

Fig. 23.
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Now making T’ variable let the double tangent move along the
surface always remaining parallel to the plane y =0, and let the
curves which it traces on the surface be projected on the plane of
(z, T). We shall thus have the plane divided into regions, showing
the limits of percentage composition and temperature corresponding
to single phases or a complex of two phases. These are the concen-
tration and temperature diagrams commonly found in treatises on physical
chemistry, and Fig. 23 shows an example of them, giving the relation
between the concentration of a solutmn of dimethylamine in water
and the temperature.

178. Case of three components. — Use of triangular coordinates.
For three components the masses per unit mass of the mixture are
connected by the relation
mg + my + m; = 1

and a convenient way of repre- B

senting quantities of this kind

in a plane is by the use of axial

or triangular coordinates. If

ABC is any fixed triangle,

M any point in its plane, and 4 v c
if «, B, y denote the ratios Fig. 94,

ABMC ACMA AAMB
AABC’ AABC A4BC’

o, 8, y are the triangular coordinates of M and satisfy the relation
et+pf+y=1
We may take «, f, y to represent the masses of the components and
a line M P perpendicular to the plane to represent the potential f,,
so that the coordinates of P will be
@="mg f=m p=m, Z=fp
and the thermodynamic surface is given by
p = constant, 7' = constant.
Substituting these values in the differential equation

dfp=—8dT +vdP + Zpdm,
and noting that
fo=Z2um, 1=2m

the equation of the tangent plane reduces to
(335) 7= aps+ B + it

Putting =0, y =0, e« =1, we get #=pu,. Hence the potentials
Wa; Wby W are the heights of the tangent plane above the vertices
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A, B, C; the condition of phase-equilibrium requires that the points
representing the three phases shall have a common double tangent
plane. The points of contact of these double tangent planes will
divide the triangle A BC into regions representing the limits of per-
centage composition of single phases and of complexes of two phases.

In forming the surface of dissipated energy the double tangent
plane must be rolled on the upper side of the bounding curves in
the planes, « =0, =0, y =0, thus determining the regions
representing complexes in which one constituent is absent from one
of the phases, and it must also be turned about the highest points
on thermodynamic surfaces above the vertices of the primitive triangle,
thus determining regions in which one of the phases contains only
a single constituent.

Fig. 25 (after Wilder D. Bancroft') is an instance of the diagrams
occurring in treatises on physical chemistry, the three components in
this case being the nitrates of lead, potassium and sodium. It differs

B
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D 44

Fig. 25.

A

from the theoretical diagrams discussed above in the fact that the
temperature is not the same at all points. To be complete, the diagram
would have to be crossed by a series of isothermal lines. For a more
detailed discussion the reader is referred to the treatises in question

1) Phase Rule.
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Description of Figure 25.

A is corner for KNO,.

B is corner for Pb(NOy),.

C is corner for NaNO,.

At D KNO; and NaNO; are in proportions corresponding to
eutectic alloy. .

E = eutectic alloy of KNO, and Pb(NO,),.

# = eutectic alloy of NaNO; and Pb(NO,),.

Along DO, solid phases are K and Na nitrates;

Along EO, solid phases are K and Pb nitrates;

Along F O, solid phases are Na and Pb nitrates.

At O exists nonvariant system of K, Pb and Na nitrates, solu-
tion, and vapour.

Field ADOE represents a divariant region of KNO,, solution,
and vapour.

Field CDOF represents a divariant region of NaNO,, solution,
and vapour.

Field BEOF represents a divariant region of PbNO,, solution,
and vapour.

179. Dynamical Model of Carnot's Cycle. The equations of
reversible thermodynamics being analogous in form to those of
rational mechanics with the addition of one extra independent variable
and the corresponding dependent variable obtained by the differentiation
of a potential function (the variables being temperature and entropy,
and the function being the suitable thermodynamic potential), it
naturally follows that a dynamical model can easily be constructed
which is capable of representing the phenomena of reversible thermo-
dynamices.

A very simple model of a simple system is shown in the
Fig. 26, on p. 186. A shaft which can rotate freely about a vertical
axis carries an projecting arm on which a bead of mass m can slide,
and the distance » of the bead from the axis can be varied by pulling
a string . passing 6ver a pulley and through the middle of the shaft.
To prevent the string from twisting indefinitely with the rotation
of the shaft a small swivel may be fixed in its vertical part. We
suppose work done by the tension of the string to represent the
mechanical work dW of thermodynamics, whereas work dome by
applying a couple about the axis of the shaft represents the communi-
cated heat d@Q. The source and refrigerator of Carnot’s cycle may
be represented by flanges rotating above and below the vertical shaft
with constant angular velocities @, and o, respectively. Heat com-
munication may be represented by bringing one of these flanges into
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contact with flanges fixed to the shaft itself (as shown in the figure).
If two flanges are only brought into contact when their angular velo-
cities are equal the motions will be conservative and reversible as in

_//‘// 7 B

Refrigerator

Fig. 26.

the thermodynamical process
where the working substance is
only brought into contact with
the source or refrigerator when
their temperature are equal.

The four processes of Car-
not’s cycle will be represented
as follows:

(1) The shaft starts with
angular velocity w, and is dis-
connected from both flanges.
The string is pulled till the
angular velocity of the shaft
becomes equal to @, the angular
momentum remaining constant
and the moment of inertia de-
creasing.

(2) The shaft is connected
with the “source” o, and absorbs

energy ¢, from it, this energy causing the bead to fly outwards and
a certain quantity of external work being done by the tension of the

string.

(3) The shaft being disconnected and free undergoes an “adiabatic”
transformation in which the angular momentum remains constant and
the angular velocity decreases from w, to @, as the bead recedes

further from the axis.

(4) The shaft is now connected with the “refrigerator” o, and
the bead slowly drawn back to its initial position, energy @, being

given to the refrigerator.

A Watt's governor with a similar arrangement of rotating flanges
for the source and refrigerator will lead to an essentially identical

cycle.

If & is the angular coordinate of the shaft, I the moment of
inertia apart from the bead, the energy of the shaft is

1 : 1
L=5T+mr) 8 =TI+ mr) o

and if 2 is the angular momentum

h=I+mMe, L=_ho
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If G is the couple applied.to the shaft, Lagrange’s equation of
motion gives
=42 (d_L 4L _dh
Tdt dm) de  dt
and the work done by this couple while in contact with the source
is given by
dQ, = Go,dt = m,g—%dt
whence for the whole work
Q= o, (hy—h,)

where h, and h, are the initial and final angular momenta. Similarly
for the work energy communicated to the refrigerator

. Qs = @3 (b, — hy)
leading to .
This equation is exactly analogous to the equation
@ _ G
1, T,

of Thermodynamics. Angular velocity represents temperature and
angular momentum represents entropy. '

A further analogy is afforded by the fact that work done by
the pull of the string represents available energy, whereas work
cannot be obtained through the angular coordinate by reversible
methods except by bringing the shaft into contact with another shaft
rotating with the same angular velocity; energy communicated in this
way is therefore not wholly available (compare also §§ 43, 44).

We notice that in the more general case when the shaft has a
couple G applied to it in any manner

(337) Q=0 at—adh

g0 that

‘10?_ =dh, analogous with %Q =ds.
But ® is not the only integrating divisor of d¢. The most general
form of integrating divisor is @ multiplied into a function of %, and
the energy L is itself an integrating divisor, thus

(338) W_2% _glogm

another analogue of the thermodynamic equation, L taking the place
of temperature and log A* + const. the place of entropy. Since
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WB=2T+ mr*)L
the expression for the entropy in this case takes the form
(339) s =log L + log (I + mr*) + const.
resembling more closely the form for a perfect gas
s =1y, log T + Blog v + const.

and affording confirmation of the view that temperature is a quantity
of the nature of the kinetic energy.

The analogy with thermodynamics does not extend to the irre-
versible processes arising when two shafts with unequal angular
velocities are brought into contact. In the dynamical model the
angular momentum or entropy remains constant and the energy
decreases. -

180. Monocyclic systems. The model described in the last para-
graph is an example of what von Helmholtz calls a monocyclic system
or system containing one circulating motion; a system containing
more than one circulating motion is called polycyclic, and both are
included under the general name of cyclic system. The coordinates
defining the circulating motions are called cyclic or wuncontrollable
coordinates; (so that the angular coordinate of the shaft of the above
model is a cyclic coordinate). The remaining coordinates (such as
the distance of the sliding mass from the axis) are spoken of as
controllable or non-cyclic. Exact definitions of these terms are given
by the following assumed properties of the system:

(1) The kinetic and potential energies of the system do not depend
on the cyclic coordinates themselves, but the kinetic energy is a
function of their rate of change.

(2) In variations of the state of the system the rates of change

of the non-cyclic coordinates are small and the same applies to the

accelerations of both classes of coordinates. .

Let g4, ¢» be types of the generalised position coordinates, the
suffixes a, b referring respectively to non-cyclic and eyclic coordinates.
Let pa, p, be the corresponding impulse-coordinates or generalised
momenta, P,, P, the force-coordinates so that Pdg represents the
work done on the system in the displacement dg. Then if U denotes
the total energy expressed as a function of the position and impulse-
coordinates, L, ¥ the kinetic and potential energies, Hamilton’s
modification of Lagrange’s equations gives for either class

dg _9U__dL

- —4p  4aU
at —op —p 2d P=gr+ 5,

-
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In virtue however of the above assumption as to ¢,, we have

dpb
P, = dat

and if dQ is the whole work communicated through the coordinates
Qs in time dt

d
dQ — 2P, dg, — =2 %% 44 _ 54 ap,

dt dat
. dg,
= mb'

If L is the kinetic energy, L is expressed in the above method

as a homogeneous quadratic function of the momenta p,, p,, therefore

2= 3(on i+ 25) = 2035 + ')

= Zp,gs (neglectmg g, as assumed).
For a monocyclic system we therefore have

(340) € _ ip, W =24dlogp,
9 L

so that either ¢, or L is an integrating divisor of d@. These results

are analogous in form to the thermodynamic equation

W s

but as Helmholtz points out, it is more difficult to obtain dynamical
properties representing temperature equilibrium between two bodies,
especially seeing that the condition for this in thermodynamics is that
the integrating divisors of d@ for the two bodies are equal. As to the
phenomena of heat flow between unequally heated bodies, a purely
dynamical representation is precluded by the very character of the
assumed dynamical equations, unless recourse is had to arguments of
a-statistical character, and even then, some assumption must necessarily
> be made.

A polycyclic system does not in general possess an integrating
divisor for dQ. If however the changes which take place in it are
such that all the cyclic velocity coordinates are always increased or
decreased in the same ratio, then L will be an integrating divisor
of dQ. It is to be observed that in this case the velocities are all
expressible in terms of a single variable so that the system really
remains monocyclic.

This condition is satisfied by a large assemblage of molecules
whose velocities are distributed according to the usual Boltzmann-
Maxwell Law of the Kinetic Theory of (ases, provided that the
variations represented by d@ take place so slowly that. this law of
distribution continuously re-establishes itself.

where



190 XVII. GEOMETRICAL AND DYNAMICAL REPRESENTATIONS.

181. The Clausius-Szily System. — Stationary or Quasi Periodic
Motions. The results arrived at as the result of a number of papers
published by Clausius and Szily between the years 1870 and 1876
may be said to lie on the borderline between non-statistical and
statistical methods. In this method we consider a number of molecules
whose motions individually are uncontrollable and for simplicity we
shall represent them by masses m, at (z,,¥,,2), m, at (2, ¥;, 25)
and so on. We suppose in addition that there are certain controllable
coordinates, ¢,, g,, g, - - . entering into the expressions for the energy
of the system; thus for a mass of gas, the volume of the containing
cylinder would be a coordinate of this character. The changes of
these coordinates are so slow compared with the motion of the
molecules that their velocities are neglected and the kinetic energy
is therefore entirely molecular. We assume that the character of the
motion is capable of . variation independently of the coordinates
4y 9, - - - and that dQ represents energy imparted to the system by
this independent variation. Taking L and ¥V to be the kinetic and
potential energies we have

1 . . .
L=32Zm(@+ i+ %)
av av av av
8V = 2(5 0z + 70+ T 09) + 23, %
From the methods of the Principle of Least Action

. .

12y
d‘f2Ldt=[2m(é: 8a +§ 8y +:34)),
t) *

t
+f{6L — Zm(58z + §dy + 5 82)) dt.
4

By D’Alembert’s principle
— Zm(&dx + §dy +792)
av av av
av
=0V +0W

where dW is the external work done through the g coordinates.
Also by conservation of energy or the first law

0Q=0U+ W =20L+ 0V +oW.
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It readily follows that

t, ty
asz dt = [zm (#0z + 40y + édz)]:'+f6‘th.
1 .

Y

Putting ¢ — ¢, = ni where % is any numerical quantity whatever
(integral or fractlonal), and using a bar drawn over the letters to
represent mean values taken over the time interval ni, the first and

last integrals become nd(2:L) and #idQ and we obtain

~ ‘[Zm(zax+goy+nz)]:’
- ot ry - S

Now there are many definite systems performing definite motions
in which we are justified in assuming that the time interval

SIES

th—t =ni

may be so chosen that the term
(341) [Zm @0z +ydy + zdz)] et

either vanishes or lies between finite limits however large be the
value of #, so that by making » sufficiently large the quotient of
this expression when divided by niL may be made as small as we
please. And the value of & log (iL?) is not affected by replacing &
by a numerical multiple of ¢, that is by altering #, if the mean
value L is taken over the same time interval #i. Such cases may .
be specified by introducing the term “quasi periodic” to characterise
the particular systems performing the particular motions to which
this assumption applies, and we then obtain the property that L
is an integrating divisor of 0@ the quantity taking the place of
entropy then taking the form log GL)

At the same time the interpretation of the quantity ¢ raises
difficulties which have to be examined in detail in applylng the method
to any particular case.

182. Energy accelerations. By introducing the concept of energy
accelerations it is possible to obtain for a conservative dynamical -
system relations analogous in form and dimensions to the temperature-
relations which determine the equilibrium or non-equilibrium of heat,
such relations being compatible with the view that temperature is a
quantity of the nature of molecular kinetic energy and is therefore

a homogeneous quadratic function of the velocity-coordinates of the
system.
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Considering a system of masses m at points (z,y,2) moving
with velocities (%, v, w) and supposing the potential energy due to
their mutual actions as well as to the field in which they are placed
to be ¥V and taking the equations of motion

dw __dz__ oV
i TR T P
and supposing the suffixes 1, 2,... to refer to different particles, it
will be found that if we form the first differential coefficients with
respect to ¢ of the squares and products, such as

2
wh uv, u Uy, U0, ...

the signs of these will be reversed by reversing all the velocities
and this is not what we want, but if we form the second differential
coefficients , \

‘—zdt—,u’, d%(uv), e
which we call the accelerations of these quantities, these can be
expressed in the form of quadratic functions of the velocities plus
constant terms.

These forms show that the accelerations thus defined are
unaltered in sign when the velocities are reversed in sign, and that
the squares and products in question obey differential equations of
the second order analogous in form to the equations of ordinary
dynamics. For instance we should have

at /1 1 (dV\2 wu d d a\dv
ar (7%) = (ag) —m > Mgz + 02y + 0 3) T
The variables (other than position variables) occurring in these
equations include those necesssary to define the components of kinetic
energy corresponding to the different particles and coordinates, and
_the equations may be thus used to determine the conditions of energy-
equilibrium as well as the variations of the energy-components relative
to their equilibrium values, just as we consider in Dynamics equilibria
of position and motions relative to states of equilibrium, determined
by the accelerations of the position coordinates.
If two collections of particles be brought within working distance
. of each other the new state of energy-equilibrium must be determined
with reference to the system as a whole, and energy-accelerations
will be set up different to those which existed previously. - These
will be of such a character as to bring the systems towards a stable
distribution or away from an unstable distribution just as two unequally
heated bodies when placed in contact tend to a stable state of
uniform temperature.
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A simple illustration of redistribution of energy is afforded by two
pendulums of nearly equal mass and period brought within each other’s
influence. If one is swinging and the other initially at rest energy
passes from the former to the latter and back so as to make the
average energy the same for both when taken over a cycle of changes.
With two pendulums it is easy to separate them when the energy
is all in one, but if we had a hundred pendulums and the average
energy of fifty of them were initially different by a finite amount
from that of the rest, the energies of the pendulums would fluctuate
about an average distribution so that after a short time the average
energy of the first fifty would never differ from that of the others
by more than a very small fraction.

183. Duhem’s Theory of false Equilibria. According to the
theories of chemical equilibrium as previously discussed a substance
S will pass from one phase to another as soon as its poténtial in
the first phase becomes greater than in the second, and vice versa.
In a thermal diagram, according to this view, the curve of transition
from phase 1 to phase 2 will be identical with the curve of tran-
sition from phase 2 to phase 1, and will be the locus of points for
which the potentials in the two phases are equal. Now it is found
in practice that two phases may often remain in contact without any
change taking place even when the conditions of equilibrium obtained
by the methods of conventional — or as Duhem calls it “classical”
Thermodynamics are not satisfied. In such cases the curve of
transition from phase 1 to phase 2 will be different to the curve
of transition from phase 2 to phase 1, and the curve of true equilibrium
will be bordered by a region of “false equilibrium” in which the sub-
stance will remain in whichever phase it happens to be without
any change taking place. If the borderline of this region is reached
an explosion not unfrequently accompanies the change. These cases
of false equilibrium have been explained by Duhem on the assumption
of a resistance analogous to friction which tends to prevent a sub-
stance from passing from one phase into another. If the difference
of potential in the two phases is less than the friction, the system
remains in false equilibrium, if it is greater the false equilibrium
breaks up. As in mechanics, the friction always acts in the opposite
direction to that in which transformation tends to take place, and
the amount of friction called into play is just what is necessary to
prevent a change from taking place, provided that this amount is
less than the limiting friction.

This frictional resistance differs from viscosity in that the latter
diminishes indefinitely with the rate of change or velocity. A
resistance of the latter character merely retards the temndency to

BRYAN, Thermodynamics. 138
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assume a state of equilibrium, but can never maintain the system
indefinitely in a different state; it would not therefore account for
phenomena like false equilibria. The conditions under which an
explosion occurs when a state of false equilibrium is broken have
also been investigated by Duhem, who has shown that they admit
of a simple geometrical interpretation.

An example of false equilibrium is afforded by a mixture of
oxygen and hydrogen at ordinary temperatures. If the mixture is
ignited by an electric spark a violent explosion takes place.

A mechanical illustration is. afforded by a cylinder containing
gas, furnished with a tightly fitting piston, between which and the
cylinder friction acts, and on which various loads can be placed.
In the absence of frlctlon, the load would by Boyle’s law be
inversely proportional to the volume, and the curve representing
the relation between volume and load would be a rectangular
hyperbola. Owing to friction however this “curve of true equilibrium”
is bordered by a region of false equilibrium, and the boundaries of
this region will be rectangular hyperbolas above and below the
curve of true equilibrium at distances from it representing the limi-
ting force of friction. One of these boundaries will represent the
relation between volume and load when the piston is ascending, the
other when the piston is descending.!) It should however be
mentioned that differences of opinion exist regarding Duhem’s theory.

1) J. W. Mellor, Chemical Statics and Dynamics, London, Longmans, 1904.
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GENERAL SUMMARY OF THE FOUNDATIONS
OF THERMODYNAMICS.

In all the transformations of a material system consxdered in this
book there is a certain entlty which
(1) Bemains constant in quantity,

(2) Is capable under certain conditions of assuming the forms of
kinetic and potential energy which are dealt with under the study of
Rational Dynamics. _

This entlty is called energy.

; As it is only possible to study changes of energy the expression for
thd energy of a material system necessarily contains an unknown constant.

“Trreversible transformations exist, and if such a transformation can
take place it will do so. A reversible transformation can only be regarded
as the limiting form of an irreversible one.

An irreversible transformation involving energy must from the very
nature of irreversibility transform energy into forms which are less capable
of further transformation than they were previously, and this fact is
expressible by the statement that such a transformation involves a loss
of availability.

In order that the irreversible effects of different transformatlons
should be capable of comparison and quantitative measurement it is
necessary that compensating transformations should exist. In all the
problems considered in this book, it has been assumed that this is the case.

When irreversible changes have occurred in the interior of & finite
system we accordingly assume that the system itself can be brought back
to its initial state by a compensating transformation, but in this case
changes must take place in some other part of the universe. An irre-
versible transformation thus leaves an indelible imprint somewhere or other
on the progress of events in the universe considered as a whole.

The kinetic and potential energies considered in rational dynamics
are under all conditions to be regarded as wholly available for trans-
formation into other forms. We shall call these forms of energy mechanical
energy or shortly work.

We may therefore measure the loss of availability of an irreversible
transformation by the loss of energy capable of being transformed into
work or kinetic and potential energy of visible motion, that is by loss
of available energy. It is however necessary to specify more fully the
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conditions under which energy is transformable in order to render the
notion of available energy definite.

The various forms of kinetic and potential energy occurring in
phenomena that can be studied by the methods of reversible dynamics,
with the exclusion of statistical methods as applied to molecular dynamics
are in general to be regarded as wholly available energy.

Under this heading we include those forms of energy occwrring in
hydrodynamics and elasticity, where the eguations of reversible dynamics
are applied in conjunction with the methods of the infinitesimal calculus.

Such applications involve the conception of differential elements
which are large compared with the molecular structure of matter but
sufficiently small to define the properties of matter treated in reversible
dynamics. The conception of such elements is involved in the definitions
of pressure and density “at a point”.

While the notion of a differential element is necessarily an artificial
one and it is not possible d priori to draw a hard and fast line between
energy which is and energy which is not available under all circumstances,
experience shows that in a large number of physical phenomena the
distinction is well marked. It is in such cases that thermodynamical
methods become applicable. .
¢  Energy can be transferred from one body to another or from 4ne
differential element of a body to another, otherwise than by the -
formance of work. In such cases the energy so transferred is called heat
and the quantity of energy so transferred is called the quantity of heat
passing from the one body or element to the other.
~  Energy communicated to a body in the form of heat is in general
partially but not wholly available for conversion into work, the proportion
which is available depending on the physical state of the body and the
external conditions to which it is subjected. Hence we cannot speak of
a system as containing a definite quantity of heat or a definite quantity
of work.

Passage of heat from one body to another is usually irreversible
and therefore accompanied by a loss of available energy. If we define
A to be hotter or colder than B according as available energy is lost
or gained by the transference of heat from A to B, it follows that heat
can and in general will pass from hotter to colder bodies, but the reverse
change can only be effected by combining it with a compensating trans-
formation. When no transference of heat tends in either direction the
bodies are said to be in thermal equilibrium.

~ Carnot’s cycle reversed is a compensated reversible transformation
by which heat can be continuously taken from a colder and given to a
hotter body or wvice versa without loss of availability (§ 63). In this
case the compensating transformation takes the form of work absorbed
or produced.

The ratio of the quantities of heat passing to and from two bodies
in a Carnot’s cycle is called the absolute temperature-ratio of the bodies,
and leads to a definition of absolute temperature which is in accordance
with all the ordinary properties of temperature (§ 63).
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Absolute temperature as thus defined in thermodynamics contains an
indeterminate constant factor depending on the magnitade of the unif or
degree which is arbitrary, and must be fixed by convention.

That thermal equilibrium between two bodies is unaffected by dis-
placing the bodies so as to alter their relative position or orientation is
not a self evident truth. On the contrary this property is deducible from
z(a, éert)ain assumption as to the nature of the forces between the bodies,
§ 62). ) :
The conception of temperature at a point of an unequally heated
body rests on conventions similar to those employed in defining pressure
at a point or density at a point in ordinary dynamios, and involves the
consideration of differential elements. The property that the temperature
at a point of a material body is the same in all directions depends on
an assumption similar to that mentioned just above.

An isolated system will tend to a state of stable equilibrium in
which the available energy is & minimum subject to the conditions that
the total energy is constant, and it follows that the unavailable energy
will be a maximum. In this state of equilibrinm thermal equilibrium
must exist between all parts of the system, i. e. they must be at the
same temperature.

Let a finite system be in the presence of an indefinitely extended
material medium all of whose parts are in thermal and mechanical
equilibrium and therefore at a uniform temperature 7,. Let the system
undergo any change, such, for example as an irreversible internal change,
or the communication of heat from without, this heat representing energy
which is not wholly available under the conditions postulated. Then the
increase of non-available energy produced by the change is proportional
to the absolute temperature 7, of the medium. This increase when
divided by T, is therefore a quantity depending only on the changes
which take place in the system and not on the temperature of the medium.
This quantity is called the increase of emtropy produced in the system
by the given transformation. From this increase the emtropy of the system
is defined, but its expression contains an unknown constant entering in the
same form as an integration constant.

In some irreversible transformations the change of entropy can be

expressed as a sum of differentials of the form '¥’ in many others it is

impossible to do this in any simple way.

Entropy is increased by irreversible transformations, but can never
decrease. If a finite system is put through an irreversible cyclic change,
there must be an increase of entropy somewhere outside the system.

When the available energy of a system is a minimum it follows
from the ordinary properties of maxima and minima in analysis that its
differential ¢n gemeral vanishes to the first order. For this reason the
equations of reversible thermodynamics are in gemeral applicable to
investigate the conditions of thermodynamic eguilibrium. The inequalities
of irreversible thermodynamics are required in discussing stability of
equilibrium.
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The properties of systems in thermodynamic equilibrium are thus
made to depend on potential functions similar to those occurring in
statics, but with the addition of one further variable. By suitable medi-
fications of the potential function this variable may be made to be the
temperature. If such a potential function is known as a function of the
corresponding variables for a given system the thermodynamic properties
of the system are completely defined.

The thermodynamic properties of a simple system as represented by
a bomogeneous fluid are completely specified by the following data, or
their equivalents:

(a) The pressure as a function of the volume and temperature for
all volumes and temperatures.

(b) The specific heat at constant volu.me a8 a function of the tem-
perature alone at one particular volume only.

The properties of a reversible thermo-electric network are determined
by a single function which represents at any point the quantity of entropy
gained by carrying a unit charge to that point. From the effect of
electric currents on the localisation of both available and unavailable
energy it appears that entropy must be regarded as capable of being
located in an electric charge.
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and 143;

Equal Areas, Rule of 141;

Equation, Fandamental 153, 161;

Equilibrium, Duhem’s Theory of false 198 ;

— Phase 12, 140, 156;

— Stable 81, 84;

— Temperature of 10;

— Thermal 49, 50;

Equivalence of heat and work 18;

Equivalent, Mechanical 14;

Expansion, Coefficient of cubic 9, 112;

— of a gas 20, 117;

— Latent heat of 9, 112.

T, § 92, 93;

False equilibria, Duhem’s theory of 198;
Fayraday's Law 167;

Ferguson Preface VI;

Final temperature 91;

First definition of entropy 58, 64,

— Law of Thermodynamics 18, 107;
— Scale, Kelvin’s 20;

Flow of electricity along & wire 78;




Currents — Kinetic Theory.

Fluid motion brought to rest by visco-
sity 78;

Fluids, Stability of homogeneous 84;

Force Coordinates 30;

— Electromotive 170;

Formation, hea.ts of 164;

Fourier 13;

Four Thermodynamic Relations,
well’s 109;

Freedom, Mechanical 5;

— Unilateral 82;

““Free energy”, Helmholtz’ 94;

Friction 72;

Functional determinants 24;

Function, Carnot’s 19;

Fundamental equation 163, 161.

Max-

G (p, T) 147;

T, yp, 70 85

7'y 115

Gain of entropy 125;
Galvanic element, Reversible 162;

Gas battery 166;

— Constant Universal 118;

Cubical expansion of a 117;
Mixtures 121;

Potential of 126, 160;

rushing into a vacuum 78, 120, 181;
— Temperature 3;

— thermometer 118, 130;

Gases, Diffusion of 75, 125, 126;

— Irreversible effects of mixing 124;
— Perfect 116;

Gay Lussac or Charles Law 117;
Geometrical Interpretations 134;

Gibbs 89, 1566, 1569, 168, 165, 174, 175;
— Formula for electromotive force 165;
— Stability conditions 89;

— Theory of Chemical Systems 151;
Gilbault 167;

Gram - Calorie 4;

Granular Medium 30;

— theories 80;

Great calorie 4.

h, H, dh 114;
Hamiltonian 29;

201

Heat-see separate entries, such as latent
heat, quantity of heat, specific
heat, unit of heat, etc.?)

Heating a Body 4;

Helmholtz 94, 164, 188;

— “Free energy” 94;

Heterogeneous systems, chemically 156;

— thermically 68;

Hirn 14;

Hoar- frost line 144;

Homogeneous ﬂulds, Stability of 84

— Mixture 162;

— systems, Thermically 49;

Hooke 13.

L
Ice line 144;
Impact of unperfectly elastic bodies 78;
Indicator diagrams 6;
Inequalities, Clausius’ 69, 61;
Inner thermodynamic potential 95;
Internal heat equilibrinm 49;
Intrinsic energy 82;
Inversion of porous plug effect 181;
Irreversible Conversion of work into

heat 71;

— processes 113;
— radiation phenomena 106;
— transformations 67;
Irreversibility 40;
Isentropic Coefficient of expansion 9;
Isothermal Transformations .

J.
J 14;
Joule, James Prescott 18,14,117, 128, 188.

K.
K 8;
Kamerlingh Onnes Dr. 139;
Kelvin, Lord 15, 20, 90, 128, 167, 168;
Kelvin’s Expressions for available
energy 90;
— First Scale 20;
Kilogram Calorie 4;
Kinetic Theory of gases 189.

1) The word , heat‘ occurs so frequently and is used in so many different connections that
it has purposely been omitted from the index. To index it sepsutely would have involved a large

amount of repetition.
BRYAN, Thermodynamics.
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L.
L 29;
lp, 1o 9;
2 10, 147;

Latent heat of expansion 9, 21, 108, 112;

— of pressure-variation 9, 21, 108, 112;

— relation with tempemhu'e 150;

— of transformation 10, 11, 147;

Leathem 88;

Line, Steam, Ice, hoar-frost 144;

Localisation of energy 81;

— — and entropy, Effects of Currents
on 178;

— of entropy 78;

Locke 18;

Lummer 99;

Lussac’s (Gay) Law 117,

M.

Mariotte 7, 116;
Massieu, F. 98;
Maximum density 12, 26;
Mazuwell- Boltzmann distribution 189;
Mazwell’'s Four thermodynamic rela-
. tions 109;

Mayer, Robert 18;
Mechanical energy 44;
— equivalent 14;
— freedom 5;
Medium, Auxiliary 57;
— Granular or Newtonian 80;
Mellor, J. W. 194;
Metastable and essentially stable 143;
Mixture, Gas 121;
— Potential of & 126, 160;
— Homogeneous 152;
— Partial potentials of the Constatuents

of a 150;

— Whole entropy of 122;
Model of Carnot’s Cycle, Dynamical 185;
— Thermodynamic 174;
Modulus of elasticity 9, 113;
— Young’s 96;
Molecular volume 118;
Monoclinic 146;
Monocyclic System 188;
Moutier's Rule 146;
Moving body, Temperature of 56;
Mutual potential energy 82.

INDEX.

N'

Newtonian or Granular Medium 80;
Non-Conservation of heat 14;
Non-reversible transformations 67, 113.

0.

Onnes, Dr. Kamerlingh 139;
Optical Methods do not increase avai-
lability 108.

P.

P b;

Partial differential Coefficients 28;

— potentials of the Constituents of a
mixture 160;

— a8 Coordinates 180;

Peltier 167;

Perfect differential 108;

— gases 116:

— reflector 104;

— refractor 104;

Phase, Changes of 10;

— equilibrium 12, 140, 156;

— Ruile 145, 146, 158;

Phlogiston 18;

Physically Small 88;

Physical State 40;

Planck 106, 126;

Plug, Porous 128;

— — Inversion of effect 181;

Point Critical 12, 187;

— of maximum density 13, 26;

— Temperature at a b64;

— Triple 11, 144, 150;

Poisson 119;

Polar reciprocation 176;

Polycyclic 188;

Porous plug 128;

— — Inversion of effect 181;

Potentials 91, 119, 128;

— Constants in the 94;

— partial, of constituents of mixture 150 ;

as coordinates 180;

— Determination of 182;

— Thermodynamic, expression in terms
of 111;

Potential of a gas mixture 126, 160;

Pressure, Critical 12;

— Radiation 100;

— Bpecific heat at Constant 8;

— temperature-potential Surfaces 175;



L —Temperature.

Pressure, Vapour 10;
— variation. Latent heat of 9;
Pringsheim 99.

Q.
@ 9 4Q 4T;
D, q, dq 114;
Qualitative character of Thermo-
dynamics 44;
Quantity of heat 4, 47;
— generated internally 114;
Quasi Periodic motions. Stationary or 190.

R.
R 118;
Radiation. Black body 99;
— Entropy of black body 108;
— — of directed 105;
— of heat 69;
— phenomena. Irreversible 106;
— pressure 100;
Rankine 19, 188;
Ratio of specific heats 8;
Rational Dynamical system 29;
Reciprocation. Polar 176;
“Reduced” pressure 138;
“Reflector” perfect 104;
“Refractor” perfect 104, 105;
Regnault 138;
Relations. Mazwell’s
dynamic 109;
Reversible Galvanic element 162;
Reversibility 83:
— of small diplacements from eqm-
librium 81;
Reynolds, Osbome 80;
Rhombic -146;
Rule of equal areas 141;
— Phase 145, 146, 158;
Rumford 18.

four Thermo-

s‘
S, 8 65, 69;
Saturated Complex 10, 140;
Saturation. Curve of 10, 141;
— Specific heat in the sta.te of 11
Scalar nature of temperature 54;
Second definition of entropy 88, 116;
— Law of Thermodynamics 15, 50, 108;
Semi-permeable partition 126, 126;

203

Simple Systems 5, 21, 107;

— model of 174;

— specification of 138;

Small Calorie 4;

Solid. Elastic 95; 4
Specification of thermoelectric system172;
— simple system 1388;

Specific heat 7, 21, 118;

at Constant pressure 8, 111;
— volume 8, 111;

of electricity 170;

of water 14;

in the state of Saturation 11
ratio 8;

volumes 11;

Sta.blhty 176;

— Energy test of 80;

— Gibbs’ test 89;

— of homogeneous fluids 84;
State. Physical 40;

Stationary or Quasi Periodic motions 190;
Statistical irreversibility 84;

— methods 190;

Steam line 144;

Stefan’s Law 102;

Sulphur 146;

Supersaturated Complex 140;
Surface of dissipated energy 178;
— thermodynamic 174;

— Zeta 175;

Swinburne Preface IV;

System. Clausius-Szily 190;

— Monocyclic 188;

— Simple 5, 21, 107.

T.
T 18, 54;
Tait 19, 139, 172;
Temperature. Absolute 18, 54, 127;
— Critical 12;
— entropy diagrams 19;
— Final 91;
— «Gas 8;
Latent heat and 150;
at & point 54;
of equilibrium 10;
of Maximum density 12;
of moving body 55;
scalar nature of 54;
of transformation 10, 165;
unit of 19;
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Thermal coefficients 7, 20, 108, 116;
— equilibrium 49, 50;

Thermically heterogeneous 68;

— homogeneous 49;

Thermodynamic models 174;

— Potentials 111;

— — Determination of 182;

— Relations. Maxwell's four 109.

— System 45, 47:

Thermodynamics. First Law of 18, 107;

* — Second Law of 15, 50, 108;

Thermoelectric effects 164;
Thermometer. Air 118;

- Gas 118, 180;

“Thetaphi” diagrams 79;

Thomson (see also Kelvm) 19, 188;
Transformation. Adiabatic 6, 22, 49;
— Cyclic 6;

—_ Isothermal b;

— Latent heat of 10, 11;

— Temperature of 10, 165;

— of thermal coefficients 20;
Transformations. Compensating 41;
— Irreversible 67;

Transmission of entropy 78;

— — by currents 178;

Triangular Coordinates 188;

Triple Point 11, 144, 150.

.U‘

U, w 29, 47, 49;

Unavmlable energy 56;

Unilateral freedom 82, 158;

Unit of heat, conventional 4;

— — absolute 14;

— temperature 19;

Univariant 145;

Universal gas Constant 118;

Unreality of reversible processes, Physi-
cal 34;

Unsaturated Complex 140.

INDEX.

v.‘
V, v 6;
Vacuum, Gas rushing into a 78, 120, 131;
Van der Waals 7, 128, 185, 186, 188, 141;
Vapour pressure 10;
Viscosity, Fluid motlon brought to rest
by 78;
Volume energy and entropy of the
Complex, Whole 148;
— entropy -energy -surfaces 175;
Volume, Molecular 118;
— BSpecific heat at Constant 8;
— Specific 11;
— whole and of unit mass 6.

WI
W, AW 82, 47;
Waals, Van der 7, 128, 185, 186, 138,141
Water, Specific heat of 14;
Whole entropy of a Mixture 112;
— volume, energy and entropy of a
Complex 148:
Wien 99;
Wilder, D., Bancroft 184;
Wire, Elastic 111;
— Flow of electricity along 73;
— stretched and suddenly cut 73;
Work, Equivalence of heat and 13;
— Irreversible Conversion of 71,114, 128.

X.
x 147;
Zr, Xr 93.

Y.
Young's Modulus 96.

z.

Zero, Absolute 19;
Zeta surface 175;
Zeumer 10.

ERRATA.

Pages 31 and 82, substitute L for T as the symbol for kinetic energy.
Page 89 line 18 for A=(U-T,8—(U,— T, 8,) read

or A=

“Ad=(U— TS+P0V) (U TS+P0 Vo)
(U—T,8—(U,— T, S,)"

Printed by B. @, Tewbner, Dresden.
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